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Abstract. Hoare-style program logics are a popular and effective tech-
nique for software verification. Relational program logics are an instance
of this approach that enables reasoning about relationships between the
execution of two or more programs. Existing relational program logics
have focused on verifying that all runs of a collection of programs do
not violate a specified relational behavior. Several important relational
properties, including refinement and noninterference, do not fit into this
category, as they also mandate the existence of specific desirable exe-
cutions. This paper presents RHLE, a logic for verifying these sorts of
relational ∀∃ properties. Key to our approach is a novel form of func-
tion specification that employs a variant of ghost variables to ensure that
valid implementations exhibit certain behaviors. We have used a program
verifier based on RHLE to verify a diverse set of relational ∀∃ properties
drawn from the literature.

1 Introduction

Hoare-style program logics are a popular and effective verification technique.
Starting with Hoare’s seminal paper [20], this approach has been adapted to
cover a variety of programming languages and assertions [3,21,28,32,34]. These
logics typically feature several pleasant properties: they can be declaratively
specified via a set of rules over the syntax of the target programming language,
they permit compositional reasoning over individual program components, and
they often admit effective automated verification procedures. Most of these logics
focus on proving safety properties of single programs, i.e., that executing a
program in a valid initial state never results in a state violating a postcondition.

Not all program behaviors fall into this category, however. As one example, con-
sider the common scenario where a developer decides they want to migrate a hand-
rolled implementation of a function to one that uses a third-party library. Figure 1
gives a concrete example of this situation. The program on the left, sample1, uses
a random number generator to directly sample a subset of an array. The program
on the right, sample2, opts to delegate the task to an external list library which
supports shuffling and constructing sublists. While sample1 works with replace-
ment (the same elements may be sampled multiple times), sample2 works without
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int[] sample1(int[] arr,
int size) {

assert(size <= arr.length);
int[] samp = new int[size];
for (i in [0..size]) {

int j = randB(arr.length);
samp[i] = arr[j];

}
return samp;

}

int[] sample2(int[] arr,
int size) {

assert(size <= arr.length);
list = new List(arr);
perm = list.permute();
samp = perm.sublist(size);
return samp.toArray();

}

Fig. 1. An example migration of a function which randomly samples a list of integers
with replacement to a function which samples without replacement. The original pro-
gram (sample1) uses a function which generates random numbers, while the migrated
program (sample2) uses a list abstraction with a permute operation.

replacement (an elementmaybe sampled atmost once). In order to ensure that this
change does not break things, the developer may wish to verify that sample2 does
not do anything that sample1 could not, i.e., that the updated function refines
the original. Notably, this refinement property relates the behavior of multiple pro-
grams. In addition, it does not have the form of a standard safety property. The
developer does notwant to enforce thatsample2 produces every permutation that
the hand-rolled implementation does; rather, they wish to ensure it does not start
returning previously impossible samples.

int encode(int msgH) {
int keyH = randB(MAX_INT);
int encL = msgH xor keyH;
return (keyH, encL);

}

As another example, consider the
encode function on the right which
performs a simple xor cipher. This
function takes a single high-security
argument, msgH, and returns a pair of
high-security and low-security results,
keyH and encL, respectively. The function encodes its argument by first generat-
ing a random key (randB returns a random value between 0 and its argument),
taking the xor of the key and the message, and finally returning the key along
with the encoded message. The developer may wish to guarantee an attacker
can learn nothing about the secret message given only the encoded message.
Whether or not encode meets this generalized noninterference [26] property
crucially depends on the behavior of randB: if the attacker knows this function
always returns 3, for example, they can decipher any encoded message. We can
again frame this behavior as a relational property between the executions of
two programs (in this case calls to encode with arbitrary arguments msgH1 and
msgH2): every execution of encode(msgH1) must have a corresponding execution
of encode(msgH2) that returns the same low-security encoded value.

In both examples, the desired behavior has the shape for all executions of some
program, there exists a corresponding execution of a second program that is some-
how related. Thus, we call these properties relational ∀∃ properties. While several
relational program logics have been developed for reasoning about the behavior of
multiple programs [8,9,36], all have focused on relational safety properties, i.e.,
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n ∈ N x, y ∈ V
f, g ∈ N σ ∈ V N

a ::= n | x | a + a | a − a | a ∗ a

b ::= true | false
a = a a < a b b b

s ::= skip | s; s

| if b then s else s

| while b do s end

| x := a | x := havoc | x := f(a)

FD ::= def f(x) s; return a

Fig. 2. Syntax of FunIMP.

that all the final states of multiple programs satisfy some relational postcondi-
tion. Unfortunately, in the presence of nondeterminism, none of these logics are
capable of verifying relational ∀∃ properties such as refinement and generalized
noninterference. The need to reason about nondeterminism naturally arises in the
presence of external functions like permute in Fig. 1, where specifications are used
to approximate the behavior of multiple possible implementations.

This paper addresses this gap by introducing RHLE, a relational program
logic for reasoning about ∀∃ properties. Key to our approach is a novel form of
function specifications which approximate the set of behaviors a valid implemen-
tation must exhibit. These specifications use a novel variant of ghost variables,
which we call choice variables, that guarantee the existence of required behav-
iors. RHLE admits a modular reasoning principle, where any properties verified
against a set of function specifications continue to hold whenever the program is
linked to any satisfying implementation. While techniques based on Constrained
Horn Clauses [38] and model checking [25] have recently been developed that are
capable of reasoning about ∀∃ properties, RHLE is, to the best of our knowledge,
the first Hoare-style program logic for doing so. We have used a verifier based on
RHLE to verify a range of ∀∃ properties including refinement, noninterference
(with and without delimited release), semantic parameter usage, and flaky tests.

We begin by defining a core imperative language with function calls (Sect. 2)
equipped with semantics for both over- and under-approximating function behav-
iors (Sect. 3). We next present RHLE, and a corresponding verification algorithm
for verifying ∀∃ properties (Sect. 5). We evaluate our approach by applying an
implementation of this algorithm to verify a diverse set of relational properties
(Sect. 6). We conclude with an examination of related work (Sect. 7). We have for-
malized the details of our approach in the Coq proof assistant; this development
is available in the supplementary materials of this paper [16]. Our verification tool
and benchmark suite are also publicly available [16,17].

2 The FunIMP Language

We begin with the definition of FunIMP, a core imperative language with func-
tion calls x := f(a) and nondeterministic variable assignment x := havoc. The
full syntax of FunIMP is presented in Fig. 2. The calculus is parameterized
over disjoint sets of identifiers for program variables V and function names N .
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Functions have a fixed arity. Function definitions consist of a sequence of state-
ments followed by an expression that computes the result of the function. For
brevity, we denote sequences x1, . . . , xn as x. For ease of presentation, we treat
functions as returning a single value, although it is straightforward to extend
FunIMP to allow for multiple return values: (x, y, . . .) := f(a). Our verifica-
tion tool, ORHLE (see Sect. 6), uses such an extension to model functions which
mutate their arguments.

The semantics of FunIMP programs are defined via a standard big-step
evaluation relation from initial to final program states. States are mappings
from variables to integers, and are usually notated as σ. We write [x �→ a]σ to
refer to state σ updated with a mapping from x to a. The evaluation rules are
parameterized over an implementation context, a mapping I ∈ N → FD from
function names to their definitions, which is used to evaluate function calls:

I(f) = def f(x) {s; return e}
I � σ, a ⇓ v I � [x �→ v], s ⇓ σ′ I � σ′, e ⇓ r

I � σ, y := f(a) ⇓ [y �→ r]σ
ECall

We use ⇓ for the evaluation relation of both expressions and statements; σ, e ⇓ σ′

holds when executing e on state σ can result in state σ′. Since programs may
be nondeterministic, there may be multiple final states related to a single initial
state for a given program. Note that havoc is the only source of nondetermin-
ism when evaluating a FunIMP program. The remaining evaluation rules for
FunIMP are standard and can be found in the extended version of the paper [15].

3 Approximating FUNIMP Behaviors
In order to modularly reason about relational ∀∃ properties, we first present
semantics for capturing the possible executions of a FunIMP program in any
valid implementation context. In order to account for both “for all” and “there
exists” behaviors of functions, we rely on two kinds of specifications. To reason
about all possible executions of a valid implementation, i.e., a standard safety
property, we use a universal specification. For guarantees about the existence of
certain executions, we use an existential specification.

3.1 Universal Executions

Both kinds of specifications are parameterized over an assertion language A on
program states and a mechanism for judging when a state satisfies an assertion.
We write σ |= P to denote that a state σ satisfies the assertion P . The universal
specifications used to reason about programs on the “for all” side of ∀∃ properties
are written as FA:: = ax∀ f(x) {P}{Q}, where P ∈ A is a precondition with free
variables in x and Q ∈ A is a postcondition with free variables in x ∪ {ρ}. The
postcondition uses the distinguished variable ρ to refer to the value returned by
f . Universal specifications promise client programs that the valid implementa-
tions of a function will only evaluate to states satisfying the postcondition when
evaluated in a starting state that satisfies the precondition.
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Definition 1 (∀ − Compatibility). A function definition def f(x){s; return r}
is ∀-compatible with a universal specification ax∀ f(x){P}{Q} if only values
satisfying Q may be returned whenever f is called with arguments satisfying P :

∀σ, σ′. (σ |= P ) ∧ (I � σ, s ⇓ σ′) ∧ (σ′, r ⇓ v) =⇒ ([ρ �→ v]σ |= Q)

We say that an implementation context I is ∀-compatible with a context of
universal specifications S∀ ∈ N → FA when every definition in I is ∀-compatible
with the corresponding specification in S∀.

To characterize the set of possible behaviors of a program under any ∀-
compatible implementation context, we define a new overapproximate semantics
for FunIMP, ⇓∀. The evaluation rules of this semantics are based on ⇓, but they
use a universal specification context, S∀, instead of an implementation context,
and replace ECall with the following two evaluation rules:

S∀(f) = ax∀ f(x) {P} {Q}
S∀ � σ, a ⇓∀ v [x �→ v] |= P [ρ �→ r, x �→ v] |= Q

S∀ � σ, y := f(a) ⇓∀ [y �→ r]σ
ECall∀1

S∀(f) = ax∀ f(x) {P} {Q} S∀ � σ, a ⇓∀ v [x �→ v] �|= P

S∀ � σ, y := f(a) ⇓∀ [y �→ r]σ
ECall∀2

The first rule states that if a function is called with arguments satisfying its
precondition, it will return a value satisfying its postcondition; otherwise, the
second rule states that it can return any value. The latter case allows the overap-
proximate semantics to capture evaluations where a function is called with argu-
ments that do not meet its precondition. The extended version of this paper [15]
includes a complete listing of the ⇓∀ relation.

Any final state of a program evaluated under an implementation context I
which is ∀-compatible with S∀ can also be produced using ⇓∀ and S∀. Appealing
to this intuition, we call the evaluations of a FunIMP program p using ⇓∀ the
overapproximate executions of p under S∀.

Theorem 1. When run under an implementation context I that is ∀-compatible
with specification context S∀ and an initial state σ, a program p will either diverge
or evaluate to a state σ′ which is also the result of one of its overapproximate
executions under S∀.

3.2 Existential Executions

Universal specifications approximate function calls on the “for all” side of ∀∃
properties by constraining what a compatible implementation can do. Existen-
tial specifications approximate the “there exists” executions by describing the
required values a valid implementation must be able to return. In order to flex-
ibly capture these behaviors, existential pre- and post-conditions are indexed
by a set of choice variables c ⊆ V. Each instantiation of these variables defines
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def randB(x)
skip;
return 0

def randB(x)
r := havoc;
while (x ≤ r) do r := r x end;
return

def randB(x)
r := havoc;
return r

Fig. 3. Implementations of a function which returns an integer within a bound.

a particular behavior that an implementation has to exhibit. The syntax for
writing an existential specification is: FE :: = ax∃ f(x) [c] {P}{Q}.

We write A[x/y] to denote the predicate A with all free occurrences of x
replaced with y. Intuitively, for any instantiation v of choice variables c, an
existential specification requires an implementation to produce at least one value
satisfying the specialized postcondition Q[v/c], when called with arguments that
satisfy the corresponding precondition P [v/c]. This intuition is embodied in our
notion of compatibility for existential specifications:

Definition 2 (∃-Compatibility). A function definition def f(x){s; return r}
is ∃-compatible with an existential specification ax∃ f(x)[c]{P}{Q} if, for every
selection of choice variables v, calling f with arguments that satisfy P [v/c] can
return at least one value satisfying Q[v/c]:

∀σ, v. (σ |= P [v/c]) =⇒ ∃σ′. (I � σ, s ⇓ σ′) ∧ (σ′, r ⇓ v) ∧ ([ρ �→ v]σ |= Q[v/c])

Example 1. To see how universal and existential specifications work together to
describe a function’s behavior, consider a function randB(x) which is intended
to return some integer between 0 and its argument x. We can write a universal
specification requiring all return values to be within the desired bound: ax∀
randB(x) {0 < x} {0 ≤ ρ < x}. This does not, however, guarantee every value
in this range is possible. To express this requirement, we reify the choice of the
random value using an existential specification: ax∃ randB(x) [c] {0 < x∧0 ≤ c <
x} {ρ = c}. Figure 3 lists a variety of possible randB implementations; the first
implementation is compatible with the aforementioned universal specification
and the third definition is compatible with the existential specification, but only
the middle one satisfies both. Note how c acts as a ghost variable which constrains
the choice of the random number. Thus, when reasoning about a client of randB,
we can select a concrete value for c that forces the desired result.

Equipped with a context of existential specifications S∃ ∈ N → FE , we char-
acterize the set of behaviors a program must exhibit under every ∃-compatible
implementation context via an underapproximate semantics for FunIMP pro-
grams. The judgements of this semantics are denoted as S∃ � σ, p ⇓∃ Σ, which
reads as: under context S∃ and initial state σ, the program p will produce at
least one final state in the set of states Σ. The evaluation rules of this semantics
are given in Fig. 4. Most of the rules in Fig. 4 adapt the FunIMP evaluation
rules to account for the fact that commands now produce sets of states from an
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S∃ σ, skip ⇓∃ {σ} ESkip∃
S∃ σ, x := havoc ⇓∃ {σ | ∃v.[x v]σ } EHavoc∃

σ, a ⇓ v

S∃ σ, x := a ⇓∃ {[x v]σ} EAssn∃
S∃ σ, s ⇓∃ Σ Σ ⊆ Σ

S∃ σ, s ⇓∃ Σ
EConsq∃

S∃ σ, s1 ⇓∃ Σ ∀σ ∈ Σ. S∃ σ , s2 ⇓∃ Σ

S∃ σ, s1; s2 ⇓∃ Σ
ESeq∃

σ, b ⇓ true S∃ σ, c ⇓∃ Σ
∀σ ∈ Σ. S∃ σ ,while b do c end ⇓∃ Σ

S∃ σ,while b do c end ⇓∃ Σ
ELpT∃

σ, b ⇓ false

S∃ σ,while b do c end ⇓∃ {σ} ELpF∃
σ, b ⇓ true S∃ σ, s1 ⇓∃ Σ

S∃ σ, if b then s1 else s2 ⇓∃ Σ
EIfT∃

σ, b ⇓ ⊥ S∃ σ, s2 ⇓∃ Σ

S∃ σ, if b then s1 else s2 ⇓∃ Σ
EIfF∃

S∃(f) = ax∃ f(x) [c] {P} {Q} S∃ σ, a ⇓ v [x v] |= P [k/c]

S σ, y := f(a) σ r. σ = [y r]σ [ρ r, x v] = Q[k/c]
ECall∃

Fig. 4. The existential evaluation relation.

initial state. For example, the evaluation rule for sequences, ESeq∃, states that
s2 produces a final state corresponding to every state in the set produced by s1.
The rule for function calls, ECall∃, is the most interesting: it chooses one of the
behaviors guaranteed by the existential specification of a function and produces
a set of final states for every return value consistent with that choice.

Every set of final states for a program p produced by these semantics under
S∃ includes a possible final state of p when evaluated under any ∃-compatible
implementation context. For this reason, we term the evaluations of p using ⇓∃
the underapproximate executions of p under S∃.

Theorem 2. If there is an underapproximate evaluation of program p to a set
of states Σ from an initial state σ under S∃, then p must terminate in at least
one final state σ′ ∈ Σ when it is run from σ under an implementation context I
that is ∃-compatible with S∃.

3.3 Approximating ∀∃ Behaviors

Taken together, the over- and under-approximate semantics allow us to relate
the ∀∃ behaviors of multiple client programs under every ∀- and ∃-compatible
implementation context. This admits a modular reasoning principle, where if a
set of clients can be shown to exhibit some behaviors using the overapproximate
and underapproximate semantics, linking the client with any compatible envi-
ronment will continue to exhibit those behaviors. The key challenge to ensuring
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these ∀∃ behaviors is identifying, for every overapproximate execution, an appro-
priate selection of choice variables that cause the underapproximate executions
to evaluate to a collection of final states satisfying a desired ∀∃ property.

Example 2. Consider the second example from the introduction, and assume
that randB has the universal and existential specifications from Example 1.
To ensure that encode does not reveal anything about its secret input via its
public output, it suffices to establish that for any universal execution of encode
on a specific input, every other possible input to encode could produce the
same encoded message under the existential semantics. The first execution begins
with the statement int keyH∀= randB(MAX_INT) (for convenience, we annotate
program variables from the first and second executions with the subscripts ∀ and
∃, respectively). By ECall∀1, this statement will update keyH∀ to hold a value
between 0 and MAX_INT. The function then encodes the message using this key,
and returns the result. In order to show this leaks nothing, we need to establish
a corresponding execution of encode that returns this same result regardless
of the value of its argument. In effect, this amounts to finding a strategy for
instantiating the choice variable in ECall∃ to assign an appropriate value to
keyH∃. In this case, the choice is straightforward: we need a c such that c xor
msgH∃ =encL∀. Using msgH∃ xor enc

L
∀ for c in ECall∃ achieves the desired result.

Using this strategy, we can construct an appropriate execution in response to
every execution of encode. In contrast, if our existential specification were ax∃
randB(x) [ ] {0 < x} {0 ≤ ρ < x}, it would only guarantee the existence of a
single result, and there would be no workable strategy. Indeed, the first definition
of randB in Fig. 3 satisfies this specification, and encode will always leak the
full message when using this implementation!

4 RHLE
We now present RHLE, a relational program logic for proving that a collection
of FunIMP programs exhibit some desired set of ∀∃ behaviors. As a conse-
quence of Theorem 1 and Theorem 2, this entails that properties established in
RHLE will continue to hold when the programs are linked with any compatible
implementation context.

RHLE specifications use relational assertions (denoted Φ, Ψ ∈ A) to relate
the execution of multiple programs. As normal assertions are predicates on a
single state, a relational assertion is a predicate on multiple states. Each program
in a RHLE triple operates over a distinct state space. To disambiguate between
variables that occur in multiple copies, shared variable names are annotated
with an identifier unique to each program. Following existing convention [9,36],
we use a natural number to identify which state a variable belongs to. As an
example, the relational assertion x1 ≤ x2 is a binary predicate over (at least)
two states. This assertion is satisfied by any set of two (or more) states where
the value of x in the first state is less than or equal to the value of x in the
second.
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Table 1. Example RHLE assertions. In the second row, lowx refers to the low security
state in program px; note the ∀∃ relationship must hold for any pair of initial high
security values, so highx is not constrained in the precondition.

Property RHLE Assertion

Refinement S∀, S∃ |= 〈x1 = x2〉 y1 := f(x1) ∼∃ y2 := f(x2) 〈y1 = y2〉
Noninterference S∀, S∃ |= 〈low1 = low2〉 p1 ∼∃ p2 〈low1 = low2〉
Injectivity S∀, S∃ |= 〈x1 �= x2〉 y1 := f(x1) � y2 := f(x2) ∼∃ skip 〈y1 �= y2〉
Nondeterminism S∀, S∃ |= 〈x1 = x2〉 skip ∼∃ y1 := f(x1) � y2 := f(x2) 〈y1 �= y2〉

RHLE triples have the form S∀, S∃ |= 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 and assert that for
all universal executions of the programs p∀, there exist existential executions of
the programs p∃ satisfying the relational pre- and post-condition Φ and Ψ :

S∀, S∃ |= 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 ≡ ∀σ∀ σ∃ σ′
∀. σ∀, σ∃ |= Φ ∧ S∀ � σ∀, p∀ ⇓∀ σ′

∀ =⇒
∃Σ. S∃ � σ∃, p∃ ⇓∃ Σ ∧ ∀σ′

∃ ∈ Σ. σ′
∀, σ′

∃ |= Ψ

We use � to delineate different programs on the universal and existential sides of
∼∃ so that, e.g., a sequence of n programs p is also denoted as p1 � . . .� pn. For
example, to assert the program x := havoc is nondeterministic, we write a RHLE
triple with two copies of the program, adding a subscript to the variable x in each
for clarity: · |= 〈�〉 skip ∼∃ x1 := havoc � x2 := havoc 〈x1 �= x2〉. This triple says
that, for all starting states and all executions of the trivial program skip, there
exist executions of the programs x1 := havoc and x2 := havoc such that x1 �= x2

after both programs have executed. Note that � is not a concatenation operator;
it does nothing more than delineate multiple programs in a RHLE triple. Table 1
gives some additional examples of RHLE assertions.

S∀, S∃ Φ skip ∼∃ skip Φ
Finish S∀, S∃ Φ p∀; skip ∼∃ p∃; skip Ψ

S∀, S∃ Φ p∀ ∼∃ p∃ Ψ
SkipI

∀σ σ∃. S∀ Φ |i σ, σ∃} si {Φ |i σ, σ∃}
S∀, S∃ Φ p1 . . . si . . . sn ∼∃ p∃ Ψ

S∀, S∃ Φ p1 . . . si; si . . . pn ∼∃ p∃ Ψ
Step∀

∀σ∀ σ. S∃ [Φ |i σ∀, σ] si Φ |i σ∀, σ ∃
S∀, S∃ Φ p∀ ∼∃ p1 . . . si . . . pn Ψ

S , S Φ p p1 . . . si; si . . . pn Ψ
Step∃

Fig. 5. Core RHLE proof rules.

The core logic of RHLE is given in Fig. 5. Relational proofs are built by
reasoning about the topmost statement of either one of the universally quantified
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programs via the Step∀ rule or one of the existentially quantified programs
using the Step∃ rule. Once all program statements have been considered, final
proof obligations can be discharged using the Finish rule. The SkipI rule is
used to ensure that all programs end with skip, so that Finish can be applied.
Both Step rules rely on non-relational logics for reasoning about the universal
S∀ � {P} p {Q} and existential S∃ � [P ] p [Q]∃ behaviors of single statements;
we will present the details of both logics shortly. The Step rules employ a
projection operation, σ|iΨ , which maps a relational assertion to a non-relational
one. Given a collection of n states, Ψ |iσ is satisfied by any state σ′ which satisfies
Ψ when inserted at the ith position:

σ′ |= Ψ |i σ ≡ σ1, . . . , σi−1, σ
′, σi+1, . . . , σn |= Ψ

In effect, this operation ensures the states of the other programs remain
unchanged when reasoning about the ith program in the triple.

Universal Hoare Logic. The program logic for universal executions has a stan-
dard partial correctness semantics:

S∀ |= {P} p {Q} ≡ ∀σ, σ′. σ |= P ∧ S∀ � σ, p ⇓∀ σ′ =⇒ σ′ |= Q

The rules of this logic are largely standard1, except for the rule for function calls,
which uses a context of universal function specifications:

S∀(f) = ax∀ f(x){P}{Q}

S∀ �
{

P [a/x] ∧
∀v.Q[v/ρ; a/x] =⇒ R[v/y]

}
y := f(a) {R}

∀Spec

Existential Hoare Logic. The assertions of our program logic for existential execu-
tions say that, for any state meeting the precondition, there exists an execution
of the program ending in a set of states meeting the post-condition:

S∃ |= [P ] p [Q]∃ ≡ ∀σ. σ |= P =⇒ ∃Σ. S∃ 
 σ, p ⇓∃ Σ ∧ ∀σ′ ∈ Σ. σ′ |= Q

These rules are largely standard total Hoare logic rules2, augmented with a rule
for calls to existentially specified functions:

S∃(f) = ax∃f(x) [c] {P} {Q}

S∃ �

⎡
⎢⎢⎢⎢⎢⎢⎣

∃k. ([x �→ a] |= P [k/c]

∧ ∃v.[ρ �→ v, x �→ a] |= Q[k/c]

∧ ∀v.[ρ �→ v, x �→ a] |= Q[k/c]

=⇒ R[v/y])

⎤
⎥⎥⎥⎥⎥⎥⎦

y := f(a) [R]∃

∃Spec

1 The extended version of this paper [15] gives a full listing of the rules of this logic.
2 The full existential logic is presented in the extended version of this paper [15].
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The precondition of this rule is quantified over instantiations k of the specifi-
cation’s choice variables. The first of the three conjuncts under this quantifier
ensures that the statement is executed in a state satisfying the function’s precon-
dition. The next conjunct ensures that the function’s post-condition is inhabited.
The final conjunct requires that every possible return value satisfying the func-
tion’s post-condition also satisfies the triple’s post-condition.

Example 3. Given the existential specification ax∃ zeroOrOne() [c] {c = 0∨c = 1}
{ρ = c}, we can use ∃Spec (along with the standard rule for while loops, see the
extended paper [15]) to prove the existential assertion S∃ � [k = 0] while k <
4 do k := k+zeroOrOne() end [k = 4]∃. This loop could loop forever by choosing
to add 0 to k at every iteration. Nevertheless, by using measure 4 − k with the
well-founded relation < and instantiating the choice variable with 1 at each
iteration, we can prove a terminating path through the program exists.

4.1 Synchronous Rules

While the rules in Fig. 5 are sufficient to reason about relational properties, it
is possible to lessen the verification burden for structurally similar programs by
employing synchronous rules which exploit structural similarities between the
programs being verified [27]. Reasoning over similar control flow structures in
lockstep can reduce the space of states verification must consider and simplify
loop invariants. This is particularly useful when reasoning about hyperproper-
ties [12], or relational properties on multiple executions of the same program.
In order to more easily reason about structurally similar programs, RHLE also
includes synchronous rules inspired by the Cartesian loop logic presented by
Sousa and Dillig [36]. The extended version of this paper [15] includes a full
listing of these rules.

Example 4. Consider proving that while (x < 10) do y := y + randB(9) end
refines while (x < 10) do y := y + randB(5); y := y + randB(6) end. Intu-
itively, the first program refines the second because the bodies of the loops are
themselves refinements. A proof using only the rules in Fig. 5 is unable to take
advantage of this intuition, however. Instead, the proof requires a sufficiently
strong invariant characterizing the behavior of the entire loop on the left, and
then an invariant for the righthand program that accounts for the behavior of
individual iterations of the lefthand loop.

The SyncLoops rule is designed for this situation:

S∀, S∃ � 〈I ∧
∧

0≤i≤n

bi〉 s0 � · · · � sk ∼∃ sk+1 � · · · � sn 〈I〉

I ∧
∧

0≤i≤n

¬bi =⇒ Ψ I ∧ ¬
∧

0≤i≤n

bi =⇒
∧

0≤i≤n

¬bi

S∀, S∃ � 〈I〉 while b0 do s0 end � · · · � while bk do sk end
∼∃ while bk+1 do sk+1 end � · · · � while bn do sn end 〈Ψ〉

SyncLoops
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The first premise of this rule says that executing all loop bodies preserves some
invariant I, the second ensures the invariant is strong enough to imply the post-
condition, and the third requires all loops to end on the same iteration. Since this
invariant is reestablished after the execution of every loop body; the invariant
that y1 and y2 are equal at each iteration suffices to verify this example.

4.2 Soundness

The combination of the core and synchronous rules provide a sound methodology
for reasoning about ∀∃ properties:

Theorem 3 (RHLE is Sound). Suppose S∀, S∃ � 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉. Then,
for any function context I compatible with S∀ and S∃, any set of initial states
σ∀ and σ∃ satisfying Φ, and every collection of final states σ′

∀ of p∀, there must
exist a collection of final states produced by p∃ that, together with σ′

∀, satisfies
the relational post-condition Ψ .

5 Verification

Algorithm 1: RHLEVerify
Inputs : Φ, relational precondition

p∀, universal programs
p∃, existential programs
Ψ , relational postcondition

Output: 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 validity
1 begin
2 Ψ ← (∅, ∅, Ψ)
3 (a, e, Ψ ′) ←

VCGen(skip; p∀, skip; p∃, Ψ)
4 return

Verify(∀a∃e. Φ =⇒ Ψ ′)

We now turn to the relational
verification algorithm based on
RHLE, presented in Algorithm 1.
The algorithm is implicitly param-
eterized over a pair of univer-
sal and existential contexts, and
Verify, a decision procedure for
checking validity of a formula in
the underlying assertion logic. The
bulk of the work is delegated to
VCGen, presented in Algorithm 2,
which builds a weakest relational
precondition for the input RHLE
triple. The algorithm then checks

that the RHLE triple’s precondition entails the calculated weakest precondi-
tion.

The body of VCGen builds a formula by recursively generating verification
conditions for the input programs statement by statement. This loop tries to
maximize opportunities to apply synchronous rules at each step, as these rules
allow us to simultaneously generate proof obligations for multiple subprograms,
as discussed in Sect. 4.1. After establishing there are still program statements
to step over (lines 3–4), VCGen looks for and processes any trailing program
statements which are not loops (lines 5–8), as such statements are not subject
to synchronous rule applications. To process individual program statements,
VCGen relies on a pair of verification condition generators, VC∀ and VC∃, for
the non-relational program logics. These functions are largely standard weakest
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Algorithm 2: VCGen
Inputs : p∀, a set of universal programs

p∃, a set of existential programs
Ψ = (Q∀, Q∃, Ψ), Ψ a postcondition with quantified variables Q∀, Q∃

Output: ({v0, . . . , vn}, {w0, . . . , wn}, Φ) such that vi, wi free in Φ and
〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 is valid if ∀v0, . . . , vn ∃w0, . . . wn. Φ =⇒ Ψ

1 begin
2 match p∀ ∼∃ p∃:
3 case skip ∼∃ skip do
4 return Ψ

5 case p′
∀ � (s1; s2) � p′′

∀ ∼∃ p∃ where s2 not a loop do
6 VCGen(p′

∀ � s1 � p′′
∀, p∃,VC∀(s2, Ψ))

7 case p∀ ∼∃ p′
∃ � (s1; s2) � p′′

∃ where s2 not a loop do
8 VCGen(p∀, p′

∃ � s1 � p′′
∃,VC∃(s2, Ψ))

9 case p′
∀ � s1; if b then st else se � p′′

∀ ∼∃ p′
∃ do

10 (Q∀, Q∃, ΨT ) ← VCGen(p′
∀ � s1; st � p′′

∀, p∃, b =⇒ Ψ))
11 (Q′

∀, Q′
∃, ΨE) ← VCGen(p′

∀ � s1; se � p′′
∀, p∃, ¬b =⇒ Ψ))

12 return (Q∀ ∪ Q′
∀, Q∃ ∪ Q∃, ΨT ∧ ΨE)

13 case p0;while b0 do s0 � · · · � pi−1;while bi−1 do si−1 ∼∃
p′
i;while bi do si � · · · � p′

n;while bn do sn do
14 I ← FindInvariant(while b0 do s0 � · · · � while bi−1 do si−1 ∼∃

while bi do si � · · · � while bn do sn)
15 (Q′

∀, Q′
∃, Ψbody) ← VCGen(s0 � · · · � si−1 ∼∃ si � · · · � sn, I)

16 inductive ← I ∧ ∧
0≤i≤n bi =⇒ Ψbody

17 lockstep ← I ∧ ¬ ∧
0≤i≤n bi =⇒ ∧

0≤i≤n ¬bi

18 post ← I ∧ ∧
0≤i≤n ¬bi =⇒ Ψ

19 (Q∀, Q∃, Ψ) ← Ψ
20 if Verify(Q∀ ∪ Q′

∀, Q∃ ∪ Q′
∃, inductive ∧ lockstep ∧ post) then

21 VCGen(p, p′, (Q∀, Q∃, I))

22 else
23 next case

24 case p′
∀ � (s1; s2) � p′′

∀ ∼∃ p∃ do
25 VCGen(p′

∀ � s1 � p′′
∀, p∃, vc∀(s2, Ψ))

26 case p∀ ∼∃ p′
∃ � (s1; s2) � p′′

∃ do
27 VCGen(p∀, p′

∃ � s1 � p′′
∃, vc∃(s2, Ψ))

precondition generators extended with support for existential function calls. The
consequents of ∀Spec and ∃Spec immediately yield weakest precondition rules,
so that if S∀(f) = ax∀ f(x){P}{Q} and S∃(f) = ax∃f(x) [c] {P} {Q}, then:

VC∀(Ψ, y := f(a)) = P [a/x] ∧ ∀v.Q[v/ρ; a/x] =⇒ Ψ [v/y]

VC∃(Ψ, y := f(a)) = ∃k. ([x �→ a] |= P [k/c] ∧ ∃v.[ρ �→ v, x �→ a] |= Q[k/c]

∧ ∀v.[ρ �→ v, x �→ a] |= Q[k/c] =⇒ Ψ [v/y])
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If the first three cases fail, the final statements of all the remaining programs are
loops. In this case, VCGen attempts to simultaneously process the loops (lines
9–19) à la the SyncLoops rule in Example 4. To be eligible for fusion, loops
must execute in lockstep. This condition is checked (line 16) before returning;
if loops may execute different numbers of times, the algorithm proceeds to the
next match case. If no synchronized reasoning is possible, VCGen defaults to
stepping over an arbitrary loop in one of the programs (lines 20–23).

VCGen is parameterized over a procedure called FindInvariant, which
acts as an oracle for relational loop invariants. Our prototype implementation of
Algorithm 1 currently requires loops to be annotated with their invariants; these
annotations are used to implement FindInvariant. We have experimented
with adapting both purely logical [18,19] and data-driven approaches [30,31] for
invariant inference, but have yet to discover one that is effective for our larger
benchmarks. Unlike traditional loop invariants, which must be re-established on
every possible execution of the loop body, invariants in existentially quantified
executions need only be re-established on a subset of the possible executions
of the body. A robust invariant inference approach thus requires finding not
only the invariant itself, but a strategy for instantiating choice variables that
consistently re-establish the chosen invariant. Scalable invariant inference for
existentially quantified executions is an important and interesting direction for
future work.

See the extended version of this paper [15] for an example application of
Algorithm 1 to RandB.

6 Implementation and Evaluation
To evaluate our approach, we have implemented ORHLE, a publicly avail-
able [16] automatic program verifier based on Algorithm 1. ORHLE is imple-
mented in Haskell, and uses Z3 as a backend solver to fill the role of Verify.
As previously mentioned, invariants are provided by the programmer via anno-
tations in the code. Input to ORHLE consists of a collection of FunIMP pro-
grams, a declaration of how many copies of each program should be included in
the universal and existential contexts, and a collection of function specifications
expressed using the SMT-LIB2 format. Functions can have both universal and
existential specifications, with the latter containing declarations of choice vari-
ables. See the extended version of this paper [15] for example ORHLE input
listings. ORHLE outputs a set of verification conditions along with a success or
failure message. When a property fails to verify, ORHLE outputs a falsifying
model.

Our evaluation addresses the following questions:

(R1) Is RHLE expressive enough to represent a variety of interesting properties?
(R2) Is our approach effective; that is, can it be used to verify or invalidate

relational assertions about a diverse corpus of programs?
(R3) Is it possible to realize an efficient implementation of our verification app-

roach which returns results within a reasonable time frame?
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To answer these questions, we have developed a suite of 41 programs over
5 kinds of relational specifications drawn from the literature. We have also
compiled an additional set of 12 benchmarks over two non-relational existen-
tially quantified properties in order to evaluate similar questions about the non-
relational existential logic from Sect. 4. Both sets of benchmarks contain a mix of
valid and invalid properties. We have made these benchmarks publicly available3
via GitHub [17].

Our benchmarks for the non-relational existential logic from Sect. 4 fall into
two categories:

Winning Strategy. Programs in this category play a simplified version of the card
game twenty-one. Players start with two cards valued between 1 and 10, and can
then request any number of additional cards. The goal is to get a hand value as
close to 21 as possible without going over. The property of interest is whether
an algorithmic strategy for this game permits the possibility of achieving the
maximum hand value of 21 given any starting hand.

Branching Time Properties. Our next set of benchmarks are taken from work
by Cook and Koskinen [14] which considered verification of properties of single
programs expressed in CTL. The programs in this category are adaptations of
the subset of those benchmarks which assert the existence of desirable final states
and are thus expressible in RHLE.

Our set of relational benchmarks cover program refinement in addition to:

Noninterference. Generalized noninterference is a possibilistic information secu-
rity property which ensures that programs do not leak knowledge about high-
security state via low-security outputs. Our formalization of this property is
based on Mclean [26] and requires that, for any execution of a program p whose
state is divided into high security pH and low security pL partitions, any other
starting state with the same initial low partition can potentially yield the same
final low partition, regardless of the high partition.

Delimited Release. Delimited release is a relaxation of generalized noninterfer-
ence which allows for limited information about secure state to be released. For
example, given a confidential list of employee salaries, it may be acceptable to
publicize the average salary as long as no other salary information is leaked.
We formulate delimited release as a noninterference property with an additional
condition requiring that the programs agree on the values of the released infor-
mation. For the previous example, we would add a precondition asserting the
average salary across all executions is equal.

Parameter Usage. Our parameter usage benchmarks check whether a function
parameter is semantically unused, in that the existence of the parameter does

3 Branching time property benchmarks are adapted from a proprietary source, and
are thus omitted from the publicly available benchmarks.
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Property Shape Pos Neg Unk Med(ms) Max(ms)
Delimited Release ∀p1∃p2 7 6 0 222 253
Flaky Tests ∃p1p2 2 0 0 231 245
Generalized Noninterference ∀p1∃p2 4 6 0 222 229
Parameter Usage ∀p1∃p2 4 3 0 220 245
Program Refinement ∀p1∃p2 4 4 1 224 1367

Winning Strategy ∃p 1 2 0 228 230
Branching Time p 7 2 0 226 259

Fig. 6. ORHLE verification results over a set of relational and non-relational proper-
ties. The Shape column gives the execution quantification pattern for the property;
each property is of the form ∀p0 . . . pn∃qo . . . qn, where pi’s and qi’s are (possibly empty)
sets of executions. The Pos and Neg columns give the number of benchmarks over
which the property holds or does not hold, respectively. The Unk column gives the
number of benchmarks whose verification conditions could not be decided by the SMT
solver. The Med and Max columns give (respectively) the median and maximum
verification times in milliseconds over each set of benchmarks.

not affect the program’s reachable final states. For example, the flag parameter
in f(flag) = if flag then return 1 else return 1 is syntactically
used in f, even affecting its control flow, but does not have any effect on f’s
possible outputs; we therefore consider flag to be semantically unused. For an
n-ary function f(p1, . . . , pn), we say parameter pi is semantically unused if

〈vi �= wi ∧
∧
j �=i

vj = wj〉 a := f(v1, . . . , vn) ∼∃ b := f(w1, . . . , wn) 〈a = b〉

Flaky Tests. Tests of program behavior which can nondeterministically pass or
fail pose a significant hazard as they can trigger false alarms or allow regres-
sions to go undetected. We modeled representative nondeterministic tests in
FunIMP based on examples from The Illinois Dataset of Flaky Tests (IDoFT)
[24,35], framing flakiness as a ∀∃ property containing only existential execu-
tions. We consider a test verifiably flaky when there exists both a test execution
that succeeds and one that fails. We model nondeterminsitic system behavior
(e.g., getCurrentTimeMs() or the results of network calls) as function calls.
For example, to model the imprecision of thread sleeps, we give the verifier
leeway to sleep within a ±20 ms window around the requested interval: ax∃
sleep(interval, currentTime) [sleepTime] {0 ≤ sleepTime ∧ interval − 20 ≤
sleepTime ≤ interval + 20} {ρ = currentTime + sleepTime}.

The variety of properties we were able to represent in ORHLE provides evi-
dence that it is sufficiently expressive (R1). To show that ORHLE is both effec-
tive and efficient (R2)-(R3), we have used it to verify and/or invalidate exam-
ples of the benchmark properties described above. All of these experiments were
done using an Intel Core i7-6700K CPU with 8 4GHz cores. Figure 6 presents the
results of these experiments. ORHLE yielded the expected verification result in
all cases except for one refinement benchmark, where the backing SMT solver
(Z3) was unable to determine the validity of the verification conditions. While
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most benchmarks’ verification conditions fell within the theory of linear integer
arithmetic, verification conditions fell in a non-decidable fragment of arithmetic
in this benchmark. This undecidable instance accounts for the outlier maxi-
mum verification time in the refinement benchmarks. Overall, these results offer
evidence that ORHLE is both effective and efficient for verifying a variety of
existential and ∀∃ properties.

7 Related Work
Relational Program Logics. Relational program logics are a common approach to
verifying relational specifications. Relational Hoare Logic [9] (RHL) was one of
the first examples of these logics, and is capable of proving 2-safety properties.
Relational Higher-order Logic [2] is a higher-order relational logic for reasoning
about higher-order functional programs expressed in a simply-typed λ-calculus.
Probabilistic RHL [8] is a logic for reasoning about probabilistic programs in
order to prove security properties of cryptographic schemes. The relational logic
closest to RHLE is Cartesian Hoare Logic [36] (CHL) developed by Sousa and
Dillig. This logic which provides an axiomatic system for reasoning about k-
safety hyperproperties along with an automatic verification algorithm. RHLE
can be thought of as an extension of CHL for reasoning about the more general
class of ∀∃ properties. Nagasamudram and Naumann [27] examine alignment
completeness for relational Hoare logics, which classifies the ability of these logics
to reason about programs in lockstep. Banerjee et al. [4] introduce a relational
Hoare logic capable of reasoning about encapsulation and invariant hiding, but
which is confined to 2-safety properties.

Underapproximate Program Logics. Several program logics have been proposed
to reason about the existence of particular executions of a single program, sim-
ilar to the non-relational existential logic presented in Sect. 4. Reverse Hoare
Logic [39] is a program logic for reasoning about reachability over single exe-
cutions of programs which have access to a nondeterministic binary choice (�)
operator. Incorrectness Logic [29] is a recent adaptation of Reverse Hoare Logic
to a more realistic programming language. While these logics express the exis-
tence of a satisfying start state for all satisfying end states (∀σ′∃σ), the exis-
tential logic presented in Sect. 4 requires there to exist a satisfying end state
for all satisfying start states (∀σ∃σ′). Reverse Hoare Logic and Incorrectness
Logic both reason about reachability over single executions, but properties in
these logics are pure underapproximations: every state in a given postcondition
must be reachable. In contrast, our reasoning over existential specifications is
underapproximate with respect to the choice variables only. While every valid
choice value must correspond to a reachable set of final states, each of these sets
are still overapproximate. This feature of our existential specifications enables a
natural integration with standard Hoare logics.

First-order dynamic logic [33] is a reinterpretation of Hoare logic in first-
order, multi-modal logic. For a program p, the modal operators [p] and 〈p〉
capture universal and existential quantification over program executions. Our



84 R. Dickerson et al.

universal Hoare triple � {P}p{Q} corresponds to P =⇒ [p]Q, and our existen-
tial Hoare triple � [P ]p[Q]∃ corresponds to P =⇒ 〈p〉Q. In contrast to RHLE,
dynamic logic reasons about properties of single program executions.

Prophecy Variables. Prophecy variables were originally introduced by Abadi and
Lamport [1] in order to establish refinement mappings between state machines.
Choice variables in our existential specifications are similar to prophecy variables
in that they capture the required value of some “future” state, although we use
them as part of a program logic rather than to reason about refinement map-
pings between state machines. Jung et al. [22] incorporate prophecy variables
into a separation Hoare logic to reason about nondeterminism in concurrent
programs, but differ from our approach in that the program logic operates in a
non-relational setting and is designed for interactive and not automated verifi-
cation.

Relational Verification. The concept of a hyperproperty was originally intro-
duced by Clarkson and Schneider [12], building on earlier work by Terauchi and
Aiken [37]. The initial work discusses verification but it does not offer an algo-
rithm; numerous program techniques have been subsequently proposed to verify
hyperproperties. Product programs are an alternative approach to relational ver-
ification [5]. This approach can leverage existing non-relational verification tools
and techniques when verifying the product program, but the large state space of
product programs can make verification difficult in practice. Product programs
have been used to verify k-safety properties and reason about noninterference
and secure information flow [7,23]. Barthe et al. [6] have developed a set of nec-
essary conditions for “left-product programs”; these product programs can be
used to verify hyperproperties outside of k-safety, including our ∀∃ properties,
although the work does not address how to construct left-product programs.

Unno et al. [38] have developed a technique for verifying ∀∃ properties
including program refinement, generalized noninterference, and cotermination
by encoding a constraint satisfaction problem expressed using a generalization
of constrained Horn clauses. The approach solves constraints using a strati-
fied CEGIS approach, and can synthesize non-trivial alignment predicates for
interleaving executions of loop bodies. This work is not based on a Hoare-style
program logic, but rather develops per-property embeddings of ∀∃ verification
problems in a novel adaptation of constrained Horn clauses.

There are several modal logics which support a style of existential reason-
ing similar to our existential logic. Temporal logics like HyperLTL and Hyper-
CTL [11] can be used to reason about hyperproperties, although verification
tooling [10] is focused on model checking state transition systems rather than
program logics. Coenen et al. [13] examine verification and synthesis of compu-
tational models using HyperLTL formulas with alternating quantifiers. Cook et
al. [14] examine existential reasoning in branching-time temporal logics by way
of removing state space until universal reasoning methods can be used. Lamport
and Schneider [25] examine using TLA to verify ∀∃ properties including refine-
ment and GNI. While the above approaches are capable of reasoning about the
kinds of liveness properties we consider in this paper, they all focus on model
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checking state transition systems rather than using a Hoare-style logic to reason
directly over programs as in our approach.

8 Conclusion
This paper presented RHLE, a novel relational Hoare-style program logic for
reasoning about ∀∃ properties. These properties can capture a variety of inter-
esting behaviors of multiple program executions, including program refinement
and information flow properties. Key to our logic is a novel form of function spec-
ifications which constrain the set of behaviors that a valid implementation of a
function must exhibit. We have developed an automated verification algorithm
based on RHLE, and we demonstrated that an implementation of this algorithm
is able to check the validity of a variety of ∀∃ properties over a benchmark suite
of programs.
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