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Abstract. We present a monadic denotational semantics for a higher-
order programming language with shared-state concurrency, i.e. global-
state in the presence of interleaving concurrency. Central to our approach
is the use of Plotkin and Power’s algebraic effect methodology: designing
an equational theory that captures the intended semantics, and proving
a monadic representation theorem for it. We use Hyland et al.’s equa-
tional theory of resumptions that extends non-deterministic global-state
with an operator for yielding to the environment. The representation is
based on Brookes-style traces. Based on this representation we define a
denotational semantics that is directionally adequate with respect to a
standard operational semantics. We use this semantics to justify compiler
transformations of interest: redundant access eliminations, each following
from a mundane algebraic calculation; while structural transformations
follow from reasoning over the monad’s interface.

Keywords: Shared state · Concurrency · Denotational semantics ·
Monads · Equational theory · Program refinement · Program
equivalence · Compiler transformations · Compiler optimisations

1 Introduction

Denotational semantics [[−]] associates every program M with its meaning, i.e. its
denotation, [[M ]]. A key feature of a denotational semantics is compositionality:
the denotation of a program depends only on the denotations of its constituents.

As a concrete example, consider an imperative language that manipulates
a memory store σ ∈ S, and denotational semantics for it that associates with
each program M a denotation [[M ]] ∶ S → S modelling how M transforms the
store. For example – denoting by σ [a↦ v] the store that is the same as σ but
with its value at a changed to v – we have [[a ∶= v]]σ =σ [a↦ v]. Compositionality
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manifests in the semantics of program sequencing: [[M ; N ]]σ= [[N ]] ([[M ]]σ). Thus
[[a ∶= 0 ; a ∶= 1]]σ= [[a ∶= 1]] ([[a ∶= 0]]σ)=(σ [a↦ 0]) [a↦ 1]=σ [a↦ 1]. Incidentally, we
also have [[a ∶= 1]]σ = σ [a↦ 1], and so [[a ∶= 0 ; a ∶= 1]] = [[a ∶= 1]].

A desirable property of a denotational semantics [[−]] is adequacy, meaning
that [[M ]] = [[N ]] implies that M and N are contextually equivalent: replacing
N with M within some larger program does not affect the possible results of
executing that program. Contextual equivalence is useful for optimizations: for
example, M could have better runtime performance than N . Adequate denota-
tional semantics can justify optimizations without quantifying over all program
contexts, serving in this way as a basis for validating compiler optimizations.

Returning to the example above, although [[a ∶= 0 ; a ∶= 1]] = [[a ∶= 1]], in the
presence of concurrency a ∶=0;a ∶=1 and a ∶=1 are not contextually equivalent. For
example, if b∶=a? (read from a and write the result to b) is executed concurrently,
it could write 0 to b only with the first program. Therefore, the semantics we
defined is inadequate for a concurrent programming language; differentiating
between these programs requires a more sophisticated denotational semantics.

Moreover, the transformation a ∶= 0 ; a ∶= 1 ↠ a ∶= 1 eliminating the first,
redundant memory access is valid in the presence of concurrency, even though
the programs are not equivalent. Indeed, a compiler applying this simplification
within a program would not introduce any additional possible results (though it
may eliminate some), and in particular it would conserve the correctness of the
program. We would like our semantics to be able to justify such transformations.

This leads us to the concept of directional adequacy, a useful refinement of
adequacy. Given a partial order ⩿ on the set of denotations, the denotational
semantics is directionally adequate (w.r.t. ⩿) if [[M ]] ⩿ [[N ]] implies that M con-
textually refines N : replacing N with M within some larger program does not
introduce new possible results of executing that program. Thus, directional ade-
quacy can justify the transformation N ↠M even if it is not an equivalence.

In this paper we define directionally-adequate denotational semantics for a
higher-order language, subsuming the imperative language above, that justifies
the above transformation along with other standard memory access eliminations:

� ∶= w ; � ∶= v ↠ � ∶= v (write ; write)
� ∶= v ; �? ↠ � ∶= v ; v (write ; read)

let x = �? in � ∶= x ; x ↠ �? (read ; write)
let x = �? in let y = �? in 〈x, y〉 ↠ let x = �? in 〈x, x〉 (read ; read)

�? ; M ↠ M (irrelevant read)

Other transformations and equivalences this semantics validates are struc-
tural ones, such as if M thenN elseN ≅M ; N ; and concurrency-related ones,
such as (M ∥N) ; K↠M ; N ; K.
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None of these transformations are novel. Rather, the contribution of this
paper is in the methodology that is used to justify them, fitting shared-state con-
currency semantics into a general, uniform model structure. In particular, each
memory access eliminations is proven correct via a mundane algebraic calcula-
tion; and the structural transformations can be justified using simple structural
arguments that abstract away the details of our particular semantics.

Methodology. The use of monads to study the denotational semantics of
effects [30] has proven fruitful, especially with its recent refinement with alge-
braic operators and equational theories [9,10,23,35,36]. We follow the algebraic
approach to define denotational semantics for a simple higher-order concurrent
programming language, using an equational theory extending non-deterministic
global-state with a single unary algebraic operator for yielding computation to
a concurrently running program [1]. We find a concrete representation of the
monad this theory induces based on sets of traces [4,6], and use it to define
a directionally adequate denotational semantics. From this adequacy result we
deduce various program transformations via routine calculations.

The advantages of denotational semantics defined with this approach include:

Uniformity. Theories are stated using the same general framework. This uni-
formity means that many theoretical results can be stated in general terms,
applying to all theories. Even if a theorem, like adequacy, must be proven
separately for each theory, it is likely that a similar proof technique can be
used, and experience can guide the construction of the proof.

Comparability. Comparing and contrasting theories is convenient due to uni-
formity [23]. While our language and semantics is very different from Abadi
and Plotkin’s [1], the equational theory we obtain easily compares to theirs.

Modularity. Since the theories are stated algebraically, using operators and
equations, they are amenable to be combined to form larger theories. Some
combinations are the result of general theory-combinators, such as the the-
ory of non-deterministic global-state resulting from combining the theory of
global-state [34] with the theory of non-determinism [14]. In this combined
theory, equations that are provable in each separate theory remain provable.
Even if the combination is bespoke, using an algebraic theory breaks down
the problem into smaller components [8].

Abstraction. The semantics we define for the fragment of our language without
shared-state is identical in form to the standard semantics, by using the
monad operations. Therefore, any structural transformation proven using
these abstractions remains valid in the language extended with shared-state.

Implementability. Monads are ubiquitous as a computational device in func-
tional programming languages, such as Haskell. Thus a theory based on a
monad may in the future form a bridge to implementation.

Outline. The remaining sections are as follows. The next section provides back-
ground to the problem and overviews our results in a simplified manner. Then
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we dive into the weeds, starting with a succinct presentation of the equational
theory and related notions (Sect. 3). We then work our way gradually to define
the induced monad’s concrete representation (Sect. 4). Next we define the deno-
tations using this representation (Sect. 5). With everything in place, we present
our metatheoretical results and use them to justify program transformations and
equivalences (Sect. 6). We conclude with a discussion of related work and future
prospects (Sect. 7).

2 Overview

Our setting is a simple programming language with state. We fix a finite set of
locations L ∶= {l1, . . . , ln̄} and a finite set of (storable) values V ∶= {v1, . . . , vm̄}.
A store σ is an element of S ∶=L→V, where σ [�↦ v] is the store that is equal to
σ except (perhaps) at �, where it takes the value v. We use subscripts to apply
stores to locations, i.e. we write σ� instead of σ�. In examples we often assume
L = {a, b, c} and V = {0, 1}, and write stores in matrix notation, e.g. ( a b c

1 0 1 ).
The language is based on a standard extension of Moggi’s [30] computational

lambda calculus with products and variants (labelled sums), further extended
with three shared-state constructs. Many other constructs are defined using
syntactic sugar, such as if-statements and booleans, let-bindings, and program
sequencing. The core syntax is presented below (where n ≥ 0):

G ∶ ∶ = (G1 ∗ · · · ∗Gn) | {ι1 of G1 | · · · | ιn of Gn} (Ground types)
A,B ∶ ∶ = (A1 ∗ · · · ∗An) | {ι1 of A1 | · · · | ιn of An} | A −> B (Types)
V,W ∶ ∶ = 〈V1, . . . , Vn〉 | ι V | λx.M (Values)
M,N ∶ ∶ = x | 〈M1, . . . ,Mn〉 | ιM | λx.M | MN (Terms)

| matchM with 〈x1, . . . , xn〉 −> N

| caseM of {ι1 x1 −> N1 | · · · | ιn xn −> Nn}
| M? | M ∶=N | M ∥N

The typing rules for the shared-state constructs appear at the top of Fig. 1,
where we define Loc ∶={l1 of () | · · · |ln̄ of ()} and Val ∶={v1 of () | · · · |vm̄ of ()}.

The language is equipped with a call-by-value, small-step operational seman-
tics σ,M ↝ ρ,N , meaning that the program M executed from store σ progresses
to N with store ρ. The operational semantics for the shared-state constructs
appears at the bottom of Fig. 1. Parallel execution is interpreted via a standard
interleaving semantics, ultimately returning the pair of the results of each side,
and synchronizing on their completion. The reflexive-transitive closure of ↝ is
denoted by ↝∗. The operational semantics can be seen in action in Example 2.

2.1 Global-State (for Sequential Computation)

To make this exposition more accessible, we focus on sequential computation
before advancing to denotational semantics of concurrent computation. Sequen-
tial computations with global state cause two kinds of side-effects: looking a
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Γ M A

Γ M Loc

Γ M? Val

Γ M Loc Γ N Val

Γ M N

Γ M A Γ N B

Γ M N A B

σ,M σ ,M

σ,M σ ,M

σ,M? σ ,M ? σ, �? σ,σ�

σ,M σ ,M

σ,M N σ ,M N

σ,N σ ,N

σ,V N σ ,V N σ, � v σ � v ,

σ,M σ ,M

σ,M N σ ,M N

σ,N σ ,N

σ,M N σ ,M N σ,V W σ, V,W

Fig. 1. Typing and operational semantics of the shared-state constructs.

value up in the store, and updating a value in the store. Plotkin and Power [34]
propose a corresponding equational theory with two operators:

Lookup. Suppose � ∈ L, and (tv)v∈V is a V-indexed sequence of terms. Then
L� (tv)v∈V is a term representing looking the value in � up, calling it v, and
continuing the computation with tv. We write L� (v. tv) instead of L� (tv)v∈V.

Update. Suppose � ∈L, v ∈V, and t is a term. Then U�,vt is a term representing
updating the value in � to v and continuing the computation with t.

The equations of the theory of global-state are generated by taking the clo-
sure of the axioms – listed at the top of Fig. 2 – under reflexivity, symmetry,
transitivity, and substitution. The grayed-out axioms happen to be derivable,
and are included for presentation’s sake. The theory of global-state can be used
to define adequate denotational semantics for the sequential fragment of our
language, obtained by removing concurrent execution (∥).

Example 1. Global-state includes the following Eq. (1) which, when considering
sequential programs, represents the program equivalence (2):

Lb (v. Ua,vLc (w. Ua,w 〈〉)) = Lc (w. Ua,w 〈〉) (1)
a ∶= b? ; a ∶= c? ≅ a ∶= c? (2)

2.2 Shared-State

The equivalence (2) from Example 1 fails in the concurrent setting, since the
two program can be differentiated by program contexts with concurrency:
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UL-det
UU-last
LU-noop
LL-diag
UU-comm
LU-comm
LL-comm

ND-return
ND-epi surjective
ND-join bijective

ND-L
ND-U
ND-Y

Fig. 2. The axiomatization of the algebraic theory

Example 2. Consider the program context Ξ [−] = [−] ∥ a?, i.e. executing each
program in parallel to a thread dereferencing the location a. Then there is no
execution of Ξ [a ∶= c?] that starts with the store ( a b c

1 0 1 ) and returns 〈〈〉 , 0〉, but
there is such a execution of Ξ [a ∶= b? ; a ∶= c?]:

( a b c
1 0 1 ) , a ∶= b? ; a ∶= c? ∥ a? ↝∗ ( a b c

0 0 1 ) , a ∶= c? ∥ a? ↝

( a b c
0 0 1 ) , a ∶= c? ∥ 0 ↝∗ ( a b c

1 0 1 ) , 〈〉 ∥ 0 ↝ ( a b c
1 0 1 ) , 〈〈〉 , 0〉

Therefore, the aforementioned denotational semantics defined using the the-
ory of global-state cannot be extended with a denotation for (||) while preserving
adequacy. More sophistication is needed in the concurrent setting: the denota-
tions, even of sequential programs, must account for environment effects.

We thus extend the global-state theory with a single unary operator:

Yield. Suppose t is a term. Then Yt is a term. Its intended meaning is to let
the environment read and write and then continue with the computation t.

We also need to account for the non-determinism inherent in parallel exe-
cutions. We do so by extending the resulting theory with operators for finite
non-determinism with their equational theory, and further standard equations
axiomatizing commutative interaction with the other operators [14]:

Choice. For every α ∈ N there is a respective choice operator. Suppose (tı)ı<α

is a sequence of terms t0, . . . , tα−1. Then
∨

α (tı)ı<α is a term. Its intended
meaning is to choose ı < α non-deterministically and continue with the com-
putation tı. We write

∨
ı<α tı instead of

∨
α (tı)ı<α; and when α = 2 we use

infix notation, i.e. instead of
∨

ı<2 tı we may write t0 ∨ t1.
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The axioms of the resulting theory of resumptions Res [1,14,30] are listed
in Fig. 2. The novelty is not in the equational theory, but rather in the way we
use it to define denotations. We compare to related work in Sect. 7.

2.3 Denotations

In Sect. 5 we define denotations of programs, but for the sake of this discussion
we simplify, defining the denotation [[M ]] of a program M to be an equivalence
class |t| of a particular term t in Res. Our actual denotations defined in Sect. 5
will use the concrete representation of the monad (developed in Sect. 4.3), similar
to how state transformers represent equivalence classes of terms of global-state.

Dereference & Assignment. We use the monadic bind ⟫= (defined in
Sect. 4.3), which we can think of as “sequencing”; and possible yields Y?t ∶=t∨Yt:

[[M?]] ∶= [[M ]] ⟫= λ�.
∣
∣
∣L�

(
v. Y?v

)∣
∣
∣

[[M ∶=N ]] ∶= [[M ]] ⟫= λ�. [[N ]] ⟫= λv.
∣
∣
∣U�,vY?〈〉

∣
∣
∣

The main idea is to intersperse possible yields to block the use of global-state
equations such as in (1) and to allow computations to interleave. Although Eq.
(1) still holds in Res, it does not imply the program equivalence (2) because the
programs in (2) do not map to the algebraic terms in (1). Rather:

Example 3. The denotations of the programs in Example 1 are:

[[a ∶= c?]] =
∣
∣
∣Lc

(
v. Y?v

)∣
∣
∣ ⟫= λv.

∣
∣
∣Ua,vY? 〈〉

∣
∣
∣ =

∣
∣
∣Lc

(
v. Y?Ua,vY? 〈〉

)∣
∣
∣ (3)

[[a ∶= b? ; a ∶= c?]] =
∣
∣
∣Lb

(
w. Y?Ua,wY?Lc

(
v. Y?Ua,vY? 〈〉

))∣
∣
∣ (4)

So the denotation (3) looks c up finding a value v, then possibly yields, then
updates a to v, then possibly yields, and finally returns the empty tuple. The
concrete representation (Theorem 1) immediately proves that (3) and (4) are
not equal, in contrast to the situation in Example 1.

Parallel Execution. Computations interleave using the yield operator. Inter-
leaving execution of programs suggests, for example, the following calculation:

[[�? ∥ � ∶= 0]] =
∣
∣
∣L�

(
v. Y? [[v ∥ � ∶= 0]]

)
∨U�,0Y? [[�? ∥ 〈〉]]

∣
∣
∣

=

∣
∣
∣L�

(
v. Y?U�,0Y? [[v ∥ 〈〉]]

)
∨U�,0Y?L�

(
v. Y? [[v ∥ 〈〉]]

)∣
∣
∣

=

∣
∣
∣L�

(
v. Y?U�,0Y? 〈v, 〈〉〉

)
∨U�,0Y?L�

(
v. Y? 〈v, 〈〉〉

)∣
∣
∣

The problem with the above is that is lacks compositionality: [[�? ∥ � ∶= 0]]
should be defined in terms of [[�?]] and [[� ∶= 0]], without referring to the underlying
programs. In Sect. 4.6 we define a function (|||) such that [[M ∥N ]] = [[M ]] ||| [[N ]].
This definition relies on the concrete representation from Sect. 4.3.
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2.4 Program Transformations

Our main result is directional adequacy (Theorem 5). Under this simplified view
it can be stated, in terms of the partial-order on our denotations generated by
|t|⩿ |t ∨ s|, as follows: if [[M ]]⩿ [[N ]] then the transformation N↠M is valid in the
concurrent setting. The following example illustrates how directional-adequacy
can be used to validate program transformations of interest, of the relatively few
that are valid in the strong memory-model we consider here.

Example 4. We validate (write ; read) (see also Example 9):

[[� ∶= v ; �?]] =
∣
∣
∣U�,vY?L�

(

w. Y?w
)∣
∣
∣ ⪀

∣
∣
∣U�,vL�

(

w. Y?w
)∣
∣
∣ =

∣
∣
∣U�,vY?v

∣
∣
∣ = [[� ∶= v ; v]]

We can similarly validate the other memory access eliminations from Sect. 1. By
using Y? rather than Y in the denotations, the cases where the environment is
known to not interleave are taken into accounted explicitly. The relevant global-
state equation can then be exploited to eliminate the redundant memory access.

2.5 Caveats and Limitations

Our goal in this work is to fit concurrency semantics on equal footing with other
semantic models of computational effects. As a consequence, the proposed model
has its fair share of fine print, which we bring to the front:

Memory Model. We study a very strong memory model: sequential consis-
tency. Modern architectures adhere to much weaker memory-models, where
further program transformations are valid.

Concurrency Model. Our semantics involves a simple form of concurrency
in which threads interleave their computation without restriction, acting
on a shared memory store. This is in contrast to a well-established line of
work in which models include a causal partial-order in which incompara-
ble events denote “truly” parallel execution [31]. These causal models are
showing promise in modelling sophisticated (i.e. weak) shared-state mod-
els [7,16,17,25]. We hope further work would fit these causal models into a
relatable semantic footing that easily accommodates higher-order structure.

Features. Our analysis lacks many valuable features that appear in related
work, such as recursion [1], higher-order state [4], probabilities [41], and
infinitely many locations/values. This simplification is intended: we took to
reductionism, finding a minimal model still accounting for core features of
shared state. The benefit of the algebraic approach is that this model can be
modularly combined with other features, hopefully using standard technol-
ogy such as sum-and-tensor [14], domain-enrichment [27], and functor cat-
egories [21,32,33,38]. For example, to support recursion our model may be
integrated with one of the known powerdomain theory-combinators [42]. This
requires making a semantic-design choice that is orthogonal to shared-state
concurrency, each with different trade-offs. We avoid making such choices.



An Algebraic Theory for Shared-State Concurrency 11

Semantic Precision. The equational theory and denotational semantics based
on it leave much room for improvement in terms of precision and abstraction.
For example, our denotational model does not support the introduction of
irrelevant reads, i.e. it does not justify the valid transformation M↠ �? ;M .
Indeed, taking M = 〈〉, we have [[�? ; 〈〉]] =

∣
∣
∣L�

(
v. Y? 〈〉

)∣
∣
∣ =

∣
∣
∣Y? 〈〉

∣
∣
∣ ⩿̸ |〈〉| = [[〈〉]].

The problem stems from a “counting” issue: even though the value being
looked-up in � is discarded, the additional possible-yield remains. We hope
further work could address this semantic inaccuracy.

Full Abstraction. Brookes’s seminal work [1,6] defined denotational semantics
for concurrency that is fully-abstract, meaning that the converse of adequacy
holds: programs that are replaceable in every context have equal denotations.
Our semantics is far from being fully-abstract: there is a first-order valid
equivalence, M ≅ �? ; M , that our semantics does not support. Moreover, we
do not include atomic block executions in our language as Brookes did, which
was crucial for the proof of full-abstraction. However, even if our model was
precise enough to capture the first-order equivalences, and even if we were
to include atomic block executions, we still would not expect to obtain full-
abstraction, since this result is infamously elusive for higher-order languages
(see Abramsky’s recent overview on the full-abstraction problem of PCF [2]).

3 Equational Theory

At the foundation of our approach is the equational theory of resumptions Res [1,
14,30] presented in Sect. 2, consisting of operators and equational axioms over
them. We succinctly fill-in the formalities below, followed by related definitions.

The signature of Res consists of the following parameterized operators. The
notation O ∶ A 〈P 〉 means that the arity of the operator O is the set A and it is
parameterized over the set P :

L ∶ V 〈L〉 lookup Y ∶ 1 〈1〉 yield

U ∶ 1 〈L × V〉 update
∨

α

∶ α 〈1〉 non-deterministic choice for every α ∈ N

From now on, whenever we refer to an operator, we mean an operator of Res.
We denote the set of terms freely generated by the signature over X by TermX.

Figure 2 lists the axioms of Res, classified as follows: an axiomatization
of the equational theory of global-state [34]; the standard axiomatization of
non-determinism; and an axiomatization of the commutative interaction of non-
determinism with the other operators [13] via the tensor [14].

A Res-algebra A consists of a carrier set A together with interpretations
ÕA
∶ AA

× P → A for each operator O ∶ A 〈P 〉. We elide the superscript if it is
clear from context. For a set X, a Res-algebra on X consists of a Res-algebra A
and a function env ∶X→A; which extends to eval ∶TermX→A homomorphically
along the inclusion X↪TermX. A Res-model on X is a Res-algebra on X that
satisfies each axiom of Res, i.e. the same element of A is obtained by applying
eval to either side of the axiom.
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In the following, we abbreviate using 	L (σ. tσ) ∶ =Ll1 (v1. . . . Lln̄ (vn̄. tλli. vi
))

and 	Uσt∶=Ul1,σl1
. . . Uln̄,σln̄

t, in addition to Y?t∶=t∨Yt that we saw in Sect. 2.3. For

example, 	L
(

σ. 	U(
a b c
1 0 σb

)Y?tσc

)

=La (v. Lb (w. Lc (u. Ua,1Ub,0Uc,w (tu ∨Ytu)))).

We use similar shorthands with interpretations of operators as well.

4 A Monad for Shared-State

The next part in our denotational semantics is a monad whose elements rep-
resent equivalence classes of Res. The monad can be obtained via a universal
construction [28] (by quotienting the terms by the equational theory), but a
concrete representation is crucial to reason about it; for example, to show that
two denotations are different.

4.1 Difficulty of Term Normalization

To motivate the definitions building up to this concrete representation, we first
find a representative for each equivalence class in TermX/Res, by taking an
arbitrary t ∈ TermX and transforming it via equations in Res to a particular
form – a normal form – such that there is only one term of this form equal to t.

Consider an algebraic term t ∈TermX. Using LU-noop once for each location,
a sequence of LU-comm, and ND-return, we find that t = 	L

(
σ.

∨
ı<1

	Uσt
)
. Note:

	UσL� (v. sv) Res
=

	Uσsσ�
	UσU�,vs

Res
=

	Uσ[�↦v]s 	Uσ

∨

ı<α

sı
Res
=

∨

ı<α

	Uσsı

By applying these equalities left-to-right as long as possible, and applying
ND-join and ND-epi to rearrange the sums, we find that t is equal to a term of
the form 	L

(
σ.

∨
ı<ασ

	Uρı,σ
sı,σ

)
, where sı,σ is either in X or is of the form Ys′

ı,σ.
For every σ, we can rearrange the sum according to common prefixes, thus

we find that t is equal to a term of the form: 	L
(
σ.

∨
ρ∈S

	Uρ

∨
j<αρ,σ

sj,ρ,σ

)
where

sı,ρ,σ is either in X or is of the form Ys′
ı,ρ,σ (we can take αρ,σ =0 when the prefix

	Uρ did not appear in t). For every ρ, we can rearrange to obtain the form:

	L

⎛

⎝σ.
∨

ρ∈S

	Uρ

⎛

⎝Yrρ,σ ∨

∨

j<βρ,σ

xj,ρ,σ

⎞

⎠

⎞

⎠ (5)

This is not yet a normal form, which to obtain would require recursively
applying this procedure to rρ,σ and propagating empty choice operators outward.
Were we to continue in this way to find a normal form, we would still need to
prove uniqueness and completeness. One standard way to achieve this is to show
that this procedure equates the sides of every axiom and respects the deduction
rules of equational logic. This requires a careful proof-theoretic analysis of this
normalization procedure. Instead, we take a model-theoretic approach, akin to
normalization-by-evaluation, constructing for every set a concrete representation
of the free Res-model over it. This representation is based on finite sets of traces.
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4.2 Traces

Brookes [6] defined a trace to be a non-empty sequence of transitions, where a
transition is a pairs of stores; e.g. 〈( a b c

1 0 1 ), ( a b c
0 0 1 )〉 〈( a b c

0 1 1 ), ( a b c
1 0 1 )〉. Brookes used

traces to define a denotational semantics for an imperative concurrent program-
ming language. In Brookes’s semantics, traces denote interrupted executions,
where each transition corresponds to an uninterrupted sequence of computation
steps that starts with the first store and end with the second store. The breaks
between transitions are where the computation yields to the environment.

The concept was adapted by many, including Benton et al. [4], to define
denotational semantics for a functional language, where they have added an
additional value at the end of the sequence to refer to the value the computation
returns. A trace in this paper will refer to this concept: a non-empty sequence
of transitions followed by an additional return value. If we wish to specify X as
the set of the return values, we will call it an X-trace. For example, if x ∈X then
〈( a b c

1 0 1 ), ( a b c
0 0 1 )〉 〈( a b c

0 1 1 ), ( a b c
1 0 1 )〉 x is an X-trace.

For sets Y,Z, we denote by Y ∗ the set of sequences over Y , by Y + the set
of non-empty sequences over Y , and Y · Z ∶= {yz | y ∈ Y, z ∈ Z}. That is, (·) is
just notation for (×) which suggests that the elements of the set are written in
sequence, eliding the tuple notation. Thus (S × S)+ · X is the set of X-traces.

Following our discussion in Sect. 4.1, our representation will use finite sets
of traces instead of the algebraic syntax. In particular, the form we have found
in (5) suggests the recursive definition:

rep t ∶= {〈σ, ρ〉 τ | σ, ρ ∈ S, τ ∈ rep rρ,σ} ∪ {〈σ, ρ〉 xj,ρ,σ | σ, ρ ∈ S, j < βρ,σ} (6)

The model-theoretic approach we use below obviates the need for the syntactic
manipulation that leads to the form in (5) as part of finding the representation.
In the model definition, eval will play the role of rep.

4.3 Model Definition

We represent elements of TermX/Res by T X ∶=Pfin

(
(S × S)+ · X

)
, i.e. finite sets

of X-traces. We equip T X with a Res-algebra structure FX:

L̃� (v. Pv) ∶= {〈σ, ρ〉 τ | 〈σ, ρ〉 τ ∈ Pσ�
}

∨̃

ı<α

Pı ∶=

⋃

ı<α

Pı

Ũ�,vP ∶= {〈σ, ρ〉 τ | 〈σ [�↦ v], ρ〉 τ ∈ P} ỸP ∶= {〈σ, σ〉 τ | σ ∈ S, τ ∈ P}

We further equip it with envx ∶= {〈σ, σ〉 x | σ ∈ S} to make it a Res-algebra over
X. We denote env x by returnx, or x̃ for shorthand. This Res-algebra is in fact
a Res-model over X by virtue of satisfying the axioms of Res:

Example 5. We verify that 〈FX, return〉 satisfies the axiom LU-noop:

eval (L� (v. U�,vx)) = L̃�

(
v. Ũ�,vx̃

)
= L̃� (v. {〈σ, σ [�↦ v]〉 x | σ ∈ S})

= {〈σ, σ [�↦ σ�]〉 x | σ ∈ S} = {〈σ, σ〉 x | σ ∈ S} = x̃ = eval x
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4.4 Correspondence to Non-deterministic Global-State

The theory of non-deterministic global-state (the fragment of Res excluding
Y) admits a concrete representation using non-deterministic state transformers
S→ Pfin (SX) [14]. This representation corresponds to the one we have defined
in an interesting way. Namely, there is a bijection between T X and the set of
functions mapping stores to finite sets of X-traces-with-the-first-store-removed:

λP ∈ T X. λσ ∈ S.
{
ρτ ∈ S · (S × S)∗ · X | 〈σ, ρ〉 τ ∈ P

}

λψ ∈ S→ Pfin

(
S · (S × S)∗ · X

)
.

⋃

σ∈S

{
〈σ, ρ〉 τ ∈ (S × S)+ · X | ρτ ∈ ψσ

}

Implicitly identifying the two, the model from Sect. 4.3 can be defined using
formulas that look exactly like the non-deterministic global-state ones:

L̃� (v. Pv) ∶=λσ. Pσ�
σ

∨̃

ı<α

Pı ∶=λσ.
⋃

ı<α

Pıσ

Ũ�,vP ∶=λσ. P (σ [�↦ v]) x̃ ∶=λσ. {σx}

However, these are not the same formulas – they are defined for different ele-
ments (sets of traces as opposed to non-deterministic state transformers).

Using this identification for the yield operator, we obtained the definition
ỸP ∶=λσ. {στ | τ ∈ P}, which we understand as “the thread does not modify the
state, then allows the environment to intervene, and then continues as before.”

4.5 Representation Theorem

The model 〈FX, return〉 defined in Sect. 4.3 represents TermX/Res because –
according to the representation theorem – this is a free Res-model on X, and
therefore equivalent to the model of equivalence classes we used in Sect. 2 or the
model of syntactic normal forms to which we have alluded in Sect. 4.1.

To prove that the model is free we first equip the family of sets T with
a monad structure. For every Res-model A and function f ∶ X → A, define
− ⟫= f ∶ T X → A, the homomorphic extension of f along return, recursively;

where R
〈σ,ρ〉
P ∶=

{
τ ∈ (S × S)+ · X | 〈σ, ρ〉 τ ∈ P

}
and X

〈σ,ρ〉
P,f ∶=

∨̃A
〈σ,ρ〉x∈P fx:

∅ ⟫= f ∶=
∨̃A

0

∅ P ⟫= f ∶=	̃L
A

⎛

⎝σ.
∨̃A

ρ∈S

	̃U
A
ρ

(
Ỹ

A (
R

〈σ,ρ〉
P ⟫= f

)
∨̃

A X
〈σ,ρ〉
P,f

)
⎞

⎠

A simpler definition is available when there exists a set Y such that A = FY :

∅ ⟫= f ∶=∅ P ⟫= f ∶= {α 〈σ, ς〉 τ | ∃ ρ. α 〈σ, ρ〉 x ∈ P ∧ 〈ρ, ς〉 τ ∈ fx}

The recursion is well-founded since R
〈σ,ρ〉
P is smaller than P when measured by

the length of the longest trace in the set.
Thus we have our monad structure T ∶= 〈T , return, ⟫=〉. We show it is induced

by the aforementioned family of free Res-models:
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Theorem 1 (Representation for shared-state). The pair 〈FX, return〉 is
a free Res-model on X: for every Res-model A and f ∶ X → A, the function
− ⟫= f ∶ T X →A is the unique homomorphism g satisfying f = g ◦ return.

As a direct consequence:

Corollary 1 (Model is sound and complete). Terms over X are equal in
Res iff they have the same representation in 〈FX, return〉.

4.6 Synchronization

To define the denotational semantics of (∥) in Sect. 5, we will define a corre-
sponding function (|||) on elements of the monad. To this end we first define
the trace synchronization, an inductively defined relation τ1 || τ2 =⇒ τ presented
below, that relates τi ∈ (S × S)+· Xi and τ ∈ (S × S)+· (X1 ×X2), representing the
fact that τ1 and τ2 can synchronize to form τ :

τ || π =⇒ ω
〈σ, ρ〉 x || 〈ρ, ς〉 βy =⇒ 〈σ, ς〉 β 〈x, y〉

(Var-Left)

τ || π =⇒ ω

〈σ, ρ〉 τ || π =⇒ 〈σ, ρ〉 ω
(Brk-Left)

τ || π =⇒ 〈ρ, ς〉ω

〈σ, ρ〉 τ || π =⇒ 〈σ, ς〉 ω
(Seq-Left)

Symmetrically: (Var-Right) (Brk-Right) (Seq-Right)

One way to understand these rules is to concentrate on the first transition on
the left trace τ1 = 〈σ, ρ〉 τ ′

1; the right-sided rules are treated symmetrically. If the
first transition is also the last, i.e. τ ′

1 ∈X, then ρ must be the initial store when
the execution continues (recall that only a break between transitions reflects a
yield to the environment). This is why Var-Left combines the transitions as
it does. The value in τ3 is the pair of the values in τ1 and τ2, reflecting the
operational semantics of (∥) returning the pair of the results. If, on the other
hand, the first transition is not the last, then we may combine the transition with
the continuation of the computation (Seq-Left), or we may not (Brk-Left).
The first option means the yield was used-up in this synchronization; while in
the second option yield remains available to ambient synchronizations.

From this relation we derive the semantic synchronization function:

(|||) ∶ T X × T Y → T (X × Y ) P ||| Q ∶= {ω | ∃ τ ∈ P, π ∈Q. τ || π =⇒ ω}

Example 6. For σ, ρ ∈ S, we may synchronize 〈σ, ρ〉 〈ρ, σ〉 〈〉 and 〈ρ, ρ〉 0 so:

〈ρ, σ〉 〈〉 || 〈ρ, ρ〉 0 =⇒ 〈ρ, σ〉 〈〈〉, 0〉
Var-Right

〈σ, ρ〉 〈ρ, σ〉 〈〉 || 〈ρ, ρ〉 0 =⇒ 〈σ, σ〉 〈〈〉, 0〉
Seq-Left
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Therefore, if 〈σ, ρ〉 〈ρ, σ〉 〈〉 ∈ P and 〈ρ, ρ〉 0 ∈Q, then 〈σ, σ〉 〈〈〉, 0〉 ∈ P ||| Q.
The use of Seq-Left was possible since the stores happen to match, resulting

in a trace that does not allow the environment to interfere. By using Brk-Left
we could find a different synchronization, one that does yield to the environment.

5 Denotational Semantics

With the monad in place, denotations of types and contexts are standard [30]:

[[(A1 ∗ · · · ∗An)]] ∶= [[A1]] × · · · × [[An]] [[A −> B]] ∶= [[A]]→ T [[B]]
[[{ι1 of A1 | · · · | ιn of An}]] ∶=

⋃n
i=1 {ιi } × [[Ai]] [[Γ ]] ∶=

∏
(x∶A)∈Γ [[A]]

Define the extension of γ ∈ [[Γ ]] to γ [x↦ y] ∈ [[Γ, x ∶A]] by γ [x↦ y] x ∶=y.

On the above we base two kinds of denotations for programs Γ ⊢M ∶A:

Computational. [[M ]]c ∶ [[Γ ]] → T [[A]]. When Γ is empty we may write [[M ]]c

instead of [[M ]]c 〈〉. We write [[M ]]c ⊆ [[N ]]c for ∀γ ∈ [[Γ ]]. [[M ]]cγ ⊆ [[N ]]cγ.
Valuational. [[V ]]v ∶ [[Γ ]]→ [[A]] defined solely for values, and satisfying [[V ]]cγ =

return ([[V ]]vγ). When Γ is empty we may write [[V ]]v instead of [[V ]]v 〈〉; and
if furthermore A is a ground type, we may write V instead of [[V ]]v, noting
that the restriction of [[−]]v to closed programs of ground type is a bijection.

Most denotations of programs are standard as well, such as:

[[〈〉]]vγ ∶= 〈〉 [[λx.M ]]vγ ∶=λy. [[M ]]cγ [x↦ y]
[[x]]vγ ∶=γx [[NM ]]cγ ∶= [[N ]]cγ ⟫= λf. [[M ]]cγ ⟫= f

The denotations of the state effects allow the environment to intervene:

[[M?]]cγ ∶= [[M ]]cγ ⟫= λ�. L̃�

(
v. Ỹ

?
ṽ
)

[[M ∶=N ]]cγ ∶= [[M ]]cγ ⟫= λ�. [[N ]]cγ ⟫= λv. Ũ�,vỸ
?〈̃〉

[[M ∥N ]]cγ ∶= [[M ]]cγ ||| [[N ]]cγ

Example 7. With the definitions above, we can state the denotations from Exam-
ple 3 precisely. For instance, (4) becomes:

[[a ∶= b? ; a ∶= c?]]c = L̃b

(
w. Ỹ

?
Ũa,wỸ

?
L̃c

(
v. Ỹ

?
Ũa,vỸ

?〈̃〉
))

Example 8. We can explain the execution of a ∶= b? ; a ∶= c? ∥ a? from Example
2 in denotational terms. First we find traces to synchronize:

〈( a b c
1 0 1 ), ( a b c

0 0 1 )〉 〈( a b c
0 0 1 ), ( a b c

1 0 1 )〉 〈〉 ∈ [[a ∶= b? ; a ∶= c?]]c

〈( a b c
0 0 1 ), ( a b c

0 0 1 )〉 0 ∈ [[a?]]c

Following from the derivation in Example 6 with σ = ( a b c
1 0 1 ) and ρ = ( a b c

0 0 1 ):

〈( a b c
1 0 1 ), ( a b c

1 0 1 )〉 〈0, 〈〉〉 ∈ [[a ∶= b? ; a ∶= c? || a?]]c

This trace corresponds to the (uninterrupted) execution presented in Example 2.
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6 Metatheoretical Results

First we find that the single-transition traces in the denotation of a program
account for the possible executions of that program:

Theorem 2 (Soundness). If σ,M ↝∗ ρ, V then 〈σ, ρ〉 [[V ]]v ∈ [[M ]]c.

For the proof, omitted for brevity, we instrument the operational-semantics
with actions, elements of {U�,v,L�, ε} signifying the effect caused by the step, to
analyse the change to the denotation of the program as it runs.

Working our way up to the fundamental lemma, we define a unary logical
relation: functions V �−� and E �−� from types to sets of closed programs by
mutual recursion. Specifically, V �A� is a set of closed values of type A, and E �A�
is a set of closed programs of type A. The definition of V �−� is standard:

V �A −> B� ∶= {λx.M | ∀ V ∈ V �A�. M [V/x] ∈ E �B�}
V �(A1 ∗ · · · ∗An)� ∶= {〈V1, . . . , Vn〉 | ∀ i. Vi ∈ V �Ai�}

V �{ι1 of A1 | · · · | ιn of An}� ∶=
⋃

i {ιi V | V ∈ V �Ai�}

The definition of E �−� is also standard in that it ensures programs in E �A�
compute to values in V �A�, but bespoke in its requirement about how they
compute. This requirement is based on the way traces specify interrupted exe-
cutions, a notion we have discussed in Sect. 4.2 and now make precise. For a
non-empty sequences α= 〈σ1, ρ1〉 . . . 〈σm, ρm〉 we write M

α
−→ N when there exist

M =M1,M2 . . . Mm,Mm+1 =N such that σi,Mi ↝∗ ρi,Mi+1 for all i∈{1, . . . ,m}.
We write M

αx
−−−→ V when M

α
−→ V and [[V ]]v = x. We now define:

E �A� ∶=
{

M ∈ · ⊢A | ∀ τ ∈ [[M ]]c ∃ V ∈ V �A�. M
τ
−→ V

}

The last component needed is the function G�−� from typing contexts to sets
of program substitutions: G�Γ � ∶ = {Θ | ∀ (x ∶A) ∈ Γ. Θx ∈ V �A�} The semantic
typing judgment Γ ⊧M ∶A is then defined as: ∀Θ ∈ G�Γ �. ΘM ∈ E �A�

Theorem 3 (Fundamental Lemma). If Γ ⊢M ∶A then Γ ⊧M ∶A.

This brings us one step closer to proving the theorem of directional adequacy.
One piece is still missing: since the theorem assumes set inclusion of denotations
rather than equality, we will need a different form of compositionality of the
denotations than the one that holds by definition.

To state this form of compositionality we first define the standard notion of
a program with holes. A function Ξ [−] ∶ Γ ⊢A→Δ ⊢B is a program context (or
context for short) if, in the language extended with a program • and additional
axioms Γ ′

⊢ • ∶ A for all Γ ′ ≥ Γ , we have Δ ⊢ Ξ [•] ∶ B; and if Γ ⊢M ∶ A, then
Ξ [M ] is obtained from Ξ [•] by replacing every occurrence of • with M .
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Theorem 4 (Compositionality). Let Ξ [−] ∶ Γ ⊢ A → · ⊢ G be a context for
ground G, and M,N ∈ Γ ⊢A. If [[M ]]c ⊆ [[N ]]c then [[Ξ [M ]]]c ⊆ [[Ξ [N ]]]c.

The condition that the context be closed and ground is necessary, so an
attempt to prove directly by induction on the structure of the context fails. The
proof, omitted for brevity, instead uses a binary logical relation approximating
containment that identifies with it on ground types; the main ingredient being:

E◦�A� ∶= {〈P,Q〉 ∈ T [[A]] × T [[A]] | ∀ αx ∈ P ∃ βy ∈Q. α = β ∧ 〈x, y〉 ∈ V◦�A�}

With this compositionality in hand we are finally ready to prove the main
result of this paper, that we will then use to justify program transformation. To
state it we first spell out the standard definition of contextual refinement.

Suppose that M,N ∈ Γ ⊢ A. We say that M refines N , and write M ⊑N , if
σ,Ξ [M ] ↝∗ ρ, V implies σ,Ξ [N ] ↝∗ ρ, V whenever Ξ [−] ∶ Γ ⊢ A → · ⊢ G is a
context for ground G. This justifies the transformation N ↠M , since replacing
N with M within a larger program introduces no additional behaviours.

Theorem 5 (Directional Adequacy). If [[M ]]c ⊆ [[N ]]c then M ⊑N .

Proof. Let Ξ [−] ∶ Γ ⊢ A → · ⊢ G be a program context for some ground
G, and assume σ,Ξ [M ] ↝∗ ρ, V for some V . By soundness, 〈σ, ρ〉 [[V ]]v ∈
[[Ξ [M ]]]c. Using compositionality, by assumption 〈σ, ρ〉 [[V ]]v ∈ [[Ξ [N ]]]c. By the

fundamental lemma, Ξ [N ]
〈σ,ρ〉
−−−−−→ W for some W such that [[W ]]v = [[V ]]v. They

are of ground type, so W = V . Therefore, σ,Ξ [N ] ↝∗ ρ, V .

6.1 Example Transformations

Thanks to directional adequacy, we can now justify various transformations and
equivalences using rather mundane calculations, requiring no reasoning about
the context in which these transformations are to take place.

Example 9. We make the reasoning from Example 4 precise.
Denote Γ ∶=x ∶Loc, y ∶Val. We have Γ ⊢ x ∶= y ; x? ∶Val and Γ ⊢ x ∶= y ; y ∶Val.

Let γ ∈ [[Γ ]], and denote � ∶=γx and v ∶=γy. Calculating, we have:

[[x ∶= y ; x?]]cγ = Ũ�,vỸ
?
L̃�

(
w. Ỹ

?
w̃

)
⊇ Ũ�,vỸ

?
ṽ = [[x ∶= y ; y]]cγ

By directional adequacy, x ∶= y ; y ⊑ x ∶= y ; x?.

Example 10. We validate elimination of irrelevant reads, i.e. M ⊑ x? ; M :

[[x? ; M ]]cγ = [[(λ .M) x?]]cγ = [[x?]]cγ ⟫= λv. [[M ]]cγ = Ỹ
?
([[M ]]cγ) ⊇ [[M ]]cγ

As mentioned in Sect. 2.5, the semantics does not validate introduction of irrel-
evant reads, i.e. we have [[x? ; M ]]c ⊈ [[M ]]c even though x? ; M ⊑M .
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Example 11. Thanks to our use of standard monad-based semantics, structural
transformations and equivalences follow from structural reasoning, avoiding con-
siderations relating to shared-state. For instance:

[[if y thenλx.Ktrue elseλx.Kfalse ]]cγ =
[
[λx.Kγy

]
]cγ

= returnλz.
[
[Kγy

]
]c (γ [x↦ z]) = [[λx. if y thenKtrue elseKfalse ]]cγ

Therefore, if y thenλx.Ktrue elseλx.Kfalse ≅ λx. if y thenKtrue elseKfalse .

Finally, adequacy can help validate expected transformations involving (∥):

Example 12. Defining mapψP ∶= {α (ψx) | αx ∈ P} we have:

[[〈M,N〉]]cγ ⊆ [[M ∥N ]]cγ (Sequencing)
[[M ∥ V ]]cγ =map (λx. 〈x, [[V ]]v〉) ([[M ]]cγ) (Neutrality)
[[M ∥N ]]cγ =map (λ〈y, x〉. 〈x, y〉) ([[N ∥M ]]cγ) (Symm.)

[[(M ∥N) ∥K]]cγ =map (λ〈x, 〈y, z〉〉. 〈〈x, y〉, z〉) ([[M ∥ (N ∥K)]]cγ) (Assoc.)

Unlike the previous examples, proving the above involves careful reasoning at
the level of the traces. We still gain the benefit of justifying equivalences and
transformations of programs – even open ones – without resorting to analysis
under arbitrary program contexts and substitutions:

〈M,N〉 ⊑M ∥N (Sequencing)
〈M,V 〉 ≅M ∥ V (Neutrality)
M ∥N ≅matchN ∥M with 〈y, x〉 −> 〈x, y〉 (Symm.)

(M ∥N) ∥K ≅matchM ∥ (N ∥K) with 〈〈x, 〈y, z〉〉〉 −> 〈x, y〉 , z (Assoc.)

Coordinating the returned values make these somewhat awkward. More con-
venient but less informative forms are derivable, such as M ; N ; K ⊑ (M ∥N) ;
K (mentioned as a transformation in Sect. 1) which is a consequence of
(Sequencing).

7 Conclusion, Related Work, and Future Work

We have defined a monad-based denotational semantics for a language for shared-
state providing standard higher-order semantics supporting standard meta-
theoretic development. This monad is a representation of the one induced by
the equational theory of resumptions, which extends non-deterministic global-
state with a delaying/yielding operator [14].

Abadi and Plotkin [1] design a modification for the theory of resumptions
to define a denotational semantics for a concurrent imperative programming
language with cooperative asynchronous threads. We have shown that the theory
of resumptions can be used as-is to define denotational semantics for concurrency,
albeit of a different kind. It is interesting to note that they interpret the unary
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operator analogously to our interpretation of Y?, rather than Y. By decomposing
into a sum we were able to validate transformations that are not equivalences.

Benton et al. [4] also define a monad for higher-order shared-state, with
additional features such as recursion and abstract locations, using Brookes’s
style of semantics. Contrasting, the monad we defined is presented algebraically,
and has finite sets of traces, whereas Benton et al.’s denotations are infinite
even for recursion-free programs. Although this finiteness makes our definition
simpler, we saw in Example 10 that it leads to a resumption-counting issue, thus
less abstract semantics. It would be interesting to analyse their semantic model
from the algebraic perspective as it may lead to more abstract semantics.

Like in previous work, including those mentioned above, our semantics is
based on the sets of traces, originally used by Brookes [6] to define denota-
tional semantics for an imperative concurrent language. Brookes proved that
this semantics is not only directionally adequate, but also fully abstract. The
proof makes crucial use of atomic execution blocks which we have not included.

Birkedal et al. [5] provide an interesting related model, given by logical rela-
tions (step-indexed, Kripke, etc.) over syntactic terms as semantics. Their lan-
guage is substantially more expressive including higher-order local store, and
accounts for a type-and-effect system semantics. A more precise model could
lead to a monadic account that reproduces these results less syntactically.

Also of note are process calculi and algebraic laws concerning the structure
of programs. Hoare and van Staden [12] give such an account for concurrent
programs, unifying previous work. Their laws are much more general, parame-
terizing over the notions of sequencing programs and running programs in par-
allel. It would be interesting to discover if and how our semantics is an instance
of theirs. There is also a lot of work on semantics of “while” languages where
all information flows through the state, which support more advanced features
such as probabilistic choice [3,11,41]. Others approach the study of concurrency
through game semantics, such as Jaber and Murawski’s [15] study of the seman-
tics of a higher-order call-by-value concurrent language. Trace semantics features
in their study too, though their traces are quite different, being sequences of
player/opponent actions that incrementally transform configurations.

In the future we plan to refine the type system into a type-and-effect sys-
tem [18,20,22,29,39,40], by annotating the typing judgments with the allowed
effects. The denotations then depend on the effect annotations, with each anno-
tation having its own associated equational theory. This may allow additional
transformations that are currently beyond this model’s reach. For example, the
converse of (Sequencing) under certain syntactic and static guarantees would
enable compiler parallelism.

Atomic constructs that disallow interference from the environment are a com-
mon feature of concurrent languages. Adding such constructs may be a simple
matter, since we have a dedicated operator, yield, for allowing interference. Nev-
ertheless, in the spirit of reductionism, we leave this investigation to future work.

We would also like to see how well our approach extends to weak-memory
models. In particular, we believe that the timestamp-based operational seman-
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tics of the release-acquire memory model [19,24,26,37] is amenable to a similar
treatment by using more sophisticated traces.
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