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Preface

This volume contains the papers presented at the 20th Asian Symposium on Program-
ming Languages and Systems (APLAS 2022), co-located with SPLASH 2022 and held
on December 5, 2022, in Auckland, New Zealand.

The 10 papers in this volume were selected by the Program Committee (PC) from 22
submissions. We were also honored to include the invited talk by Shankaranarayan
Krishna (IIT Bombay) on the topic of “Verification of Concurrent Programs under
Release-Acquire Concurrency”.

Each of the regular APLAS 2022 submissions received between three and four
reviews. After having received the initial reviews, the authors had a chance to respond
to questions and clarify misunderstandings of the reviewers. After the author response
period, the papers were discussed electronically using the HotCRP system by the 25
Program Committee members and seven external reviewers. One paper, for which the
PC chair had a conflict of interest, was kindly managed by Eric Koskinen. The reviewing
for APLAS 2022 was double-anonymous, and only authors of the eventually accepted
papers have been revealed.

Following the example set by other major conferences in programming languages,
for the first time in its history, APLAS featured optional artifact evaluation. Authors
of the accepted manuscripts were invited to submit artifacts, such as code, datasets,
and mechanized proofs, that supported the conclusions of their papers. Members of
the Artifact Evaluation Committee (AEC) read the papers and explored the artifacts,
assessing their quality and checking that they support the reported results. The authors
of seven of the accepted papers submitted artifacts, which were evaluated by 21 AEC
members, with each artifact receiving at least four reviews. Authors of papers with
accepted artifacts were assigned unique artifact evaluation badges, designed specifically
for APLAS by Kiran Gopinathan. The badges indicate that the authors have taken the
extra time and have undergone the extra scrutiny to prepare a useful artifact. APLAS
2022AEC awardedAccessible, Verified, and Expandable badges. All submitted artifacts
were deemed Accessible and Verified, and five were found to be Expandable.

My sincere thanks to all who contributed to the success of the conference and to
its exciting program. This includes the authors of the submitted papers; the external
reviewers, who provided timely expert reviews; the members of AEC and its chairs,
Arpita Dutta and Jan de Muijnck-Hughes, who took great care of this new aspect of
APLAS; and, of course, the members of the APLAS 2022 Program Committee. Finally,
I would like to thank Alex Potanin (SPLASH 2022 General Chair), Andreea Costea
(SPLASH2022 Publicity Chair), HakjooOh (the PC chair of APLAS 2021), andAtsushi
Igarashi (the Chair of Asian Association for Foundation of Software), for their advice
and support.

October 2022 Ilya Sergey
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Verification of Concurrent Programs Under Release
Acquire (Invited Talk)

Shankaranarayan Krishna

IIT Bombay
krishnas@iitb.ac.in

Abstract. This is an overview of some recent work on the verification of
concurrent programs. Traditionally concurrent programs are interpreted
under sequential consistency (SC). Eventhough SC is very intuitive and
easy to use, modern multiprocessors do not employ SC for performance
reasons, and instead use so called “weak memory models”. Some of the
well knownweakmemorymodels in vogue amongmodernmultiprcessor
architectures are Intel x-86, IBM POWER and ARM. The use of weak
memory is also prevelant in the C11 model, leading to the release acquire
fragment of C11. This talk is on the verification of concurrent programs
under the release acquire (RA) semantics.

The main focus of the talk will be on non parameterized programs
under RA, and I will briefly discuss results in the parameterized setting.

In the non parameterized setting, the reachability problem for RA is
undecidable even in the case where the input program is finite-state.What
works well for this class is under approximate reachability, in the form
of bounded view switching, an analogue of bounded context switching,
relevant to RA. In the parameterized setting, the first observation is that
the semantics of RA can be simplified, lending to a better complexity for
verification. Further, safety verification is pspace-complete for the case
where the distinguished threads are loop-free, and jumps to nexptime-
complete for the setting where an unrestricted distinguished ego thread
interacts with the environment threads.
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An Algebraic Theory for Shared-State
Concurrency

Yotam Dvir1(B) , Ohad Kammar2 , and Ori Lahav1

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
yotamdvir@mail.tau.ac.il, orilahav@tau.ac.il

2 School of Informatics, University of Edinburgh, Edinburgh, Scotland

ohad.kammar@ed.ac.uk

Abstract. We present a monadic denotational semantics for a higher-
order programming language with shared-state concurrency, i.e. global-
state in the presence of interleaving concurrency. Central to our approach
is the use of Plotkin and Power’s algebraic effect methodology: designing
an equational theory that captures the intended semantics, and proving
a monadic representation theorem for it. We use Hyland et al.’s equa-
tional theory of resumptions that extends non-deterministic global-state
with an operator for yielding to the environment. The representation is
based on Brookes-style traces. Based on this representation we define a
denotational semantics that is directionally adequate with respect to a
standard operational semantics. We use this semantics to justify compiler
transformations of interest: redundant access eliminations, each following
from a mundane algebraic calculation; while structural transformations
follow from reasoning over the monad’s interface.

Keywords: Shared state · Concurrency · Denotational semantics ·
Monads · Equational theory · Program refinement · Program
equivalence · Compiler transformations · Compiler optimisations

1 Introduction

Denotational semantics [[−]] associates every program M with its meaning, i.e. its
denotation, [[M ]]. A key feature of a denotational semantics is compositionality:
the denotation of a program depends only on the denotations of its constituents.

As a concrete example, consider an imperative language that manipulates
a memory store σ ∈ S, and denotational semantics for it that associates with
each program M a denotation [[M ]] ∶ S → S modelling how M transforms the
store. For example – denoting by σ [a↦ v] the store that is the same as σ but
with its value at a changed to v – we have [[a ∶= v]]σ =σ [a↦ v]. Compositionality

Supported by the Israel Science Foundation (grant numbers 1566/18 and 814/22) and
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no. 851811); and by a Royal
Society University Research Fellowship and Enhancement Award.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Sergey (Ed.): APLAS 2022, LNCS 13658, pp. 3–24, 2022.
https://doi.org/10.1007/978-3-031-21037-2_1
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4 Y. Dvir et al.

manifests in the semantics of program sequencing: [[M ; N ]]σ= [[N ]] ([[M ]]σ). Thus
[[a ∶= 0 ; a ∶= 1]]σ= [[a ∶= 1]] ([[a ∶= 0]]σ)=(σ [a↦ 0]) [a↦ 1]=σ [a↦ 1]. Incidentally, we
also have [[a ∶= 1]]σ = σ [a↦ 1], and so [[a ∶= 0 ; a ∶= 1]] = [[a ∶= 1]].

A desirable property of a denotational semantics [[−]] is adequacy, meaning
that [[M ]] = [[N ]] implies that M and N are contextually equivalent: replacing
N with M within some larger program does not affect the possible results of
executing that program. Contextual equivalence is useful for optimizations: for
example, M could have better runtime performance than N . Adequate denota-
tional semantics can justify optimizations without quantifying over all program
contexts, serving in this way as a basis for validating compiler optimizations.

Returning to the example above, although [[a ∶= 0 ; a ∶= 1]] = [[a ∶= 1]], in the
presence of concurrency a ∶=0;a ∶=1 and a ∶=1 are not contextually equivalent. For
example, if b∶=a? (read from a and write the result to b) is executed concurrently,
it could write 0 to b only with the first program. Therefore, the semantics we
defined is inadequate for a concurrent programming language; differentiating
between these programs requires a more sophisticated denotational semantics.

Moreover, the transformation a ∶= 0 ; a ∶= 1 ↠ a ∶= 1 eliminating the first,
redundant memory access is valid in the presence of concurrency, even though
the programs are not equivalent. Indeed, a compiler applying this simplification
within a program would not introduce any additional possible results (though it
may eliminate some), and in particular it would conserve the correctness of the
program. We would like our semantics to be able to justify such transformations.

This leads us to the concept of directional adequacy, a useful refinement of
adequacy. Given a partial order ⩿ on the set of denotations, the denotational
semantics is directionally adequate (w.r.t. ⩿) if [[M ]] ⩿ [[N ]] implies that M con-
textually refines N : replacing N with M within some larger program does not
introduce new possible results of executing that program. Thus, directional ade-
quacy can justify the transformation N ↠M even if it is not an equivalence.

In this paper we define directionally-adequate denotational semantics for a
higher-order language, subsuming the imperative language above, that justifies
the above transformation along with other standard memory access eliminations:

� ∶= w ; � ∶= v ↠ � ∶= v (write ; write)
� ∶= v ; �? ↠ � ∶= v ; v (write ; read)

let x = �? in � ∶= x ; x ↠ �? (read ; write)
let x = �? in let y = �? in 〈x, y〉 ↠ let x = �? in 〈x, x〉 (read ; read)

�? ; M ↠ M (irrelevant read)

Other transformations and equivalences this semantics validates are struc-
tural ones, such as if M thenN elseN ≅M ; N ; and concurrency-related ones,
such as (M ∥N) ; K↠M ; N ; K.
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None of these transformations are novel. Rather, the contribution of this
paper is in the methodology that is used to justify them, fitting shared-state con-
currency semantics into a general, uniform model structure. In particular, each
memory access eliminations is proven correct via a mundane algebraic calcula-
tion; and the structural transformations can be justified using simple structural
arguments that abstract away the details of our particular semantics.

Methodology. The use of monads to study the denotational semantics of
effects [30] has proven fruitful, especially with its recent refinement with alge-
braic operators and equational theories [9,10,23,35,36]. We follow the algebraic
approach to define denotational semantics for a simple higher-order concurrent
programming language, using an equational theory extending non-deterministic
global-state with a single unary algebraic operator for yielding computation to
a concurrently running program [1]. We find a concrete representation of the
monad this theory induces based on sets of traces [4,6], and use it to define
a directionally adequate denotational semantics. From this adequacy result we
deduce various program transformations via routine calculations.

The advantages of denotational semantics defined with this approach include:

Uniformity. Theories are stated using the same general framework. This uni-
formity means that many theoretical results can be stated in general terms,
applying to all theories. Even if a theorem, like adequacy, must be proven
separately for each theory, it is likely that a similar proof technique can be
used, and experience can guide the construction of the proof.

Comparability. Comparing and contrasting theories is convenient due to uni-
formity [23]. While our language and semantics is very different from Abadi
and Plotkin’s [1], the equational theory we obtain easily compares to theirs.

Modularity. Since the theories are stated algebraically, using operators and
equations, they are amenable to be combined to form larger theories. Some
combinations are the result of general theory-combinators, such as the the-
ory of non-deterministic global-state resulting from combining the theory of
global-state [34] with the theory of non-determinism [14]. In this combined
theory, equations that are provable in each separate theory remain provable.
Even if the combination is bespoke, using an algebraic theory breaks down
the problem into smaller components [8].

Abstraction. The semantics we define for the fragment of our language without
shared-state is identical in form to the standard semantics, by using the
monad operations. Therefore, any structural transformation proven using
these abstractions remains valid in the language extended with shared-state.

Implementability. Monads are ubiquitous as a computational device in func-
tional programming languages, such as Haskell. Thus a theory based on a
monad may in the future form a bridge to implementation.

Outline. The remaining sections are as follows. The next section provides back-
ground to the problem and overviews our results in a simplified manner. Then
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we dive into the weeds, starting with a succinct presentation of the equational
theory and related notions (Sect. 3). We then work our way gradually to define
the induced monad’s concrete representation (Sect. 4). Next we define the deno-
tations using this representation (Sect. 5). With everything in place, we present
our metatheoretical results and use them to justify program transformations and
equivalences (Sect. 6). We conclude with a discussion of related work and future
prospects (Sect. 7).

2 Overview

Our setting is a simple programming language with state. We fix a finite set of
locations L ∶= {l1, . . . , ln̄} and a finite set of (storable) values V ∶= {v1, . . . , vm̄}.
A store σ is an element of S ∶=L→V, where σ [�↦ v] is the store that is equal to
σ except (perhaps) at �, where it takes the value v. We use subscripts to apply
stores to locations, i.e. we write σ� instead of σ�. In examples we often assume
L = {a, b, c} and V = {0, 1}, and write stores in matrix notation, e.g. ( a b c

1 0 1 ).
The language is based on a standard extension of Moggi’s [30] computational

lambda calculus with products and variants (labelled sums), further extended
with three shared-state constructs. Many other constructs are defined using
syntactic sugar, such as if-statements and booleans, let-bindings, and program
sequencing. The core syntax is presented below (where n ≥ 0):

G ∶ ∶ = (G1 ∗ · · · ∗Gn) | {ι1 of G1 | · · · | ιn of Gn} (Ground types)
A,B ∶ ∶ = (A1 ∗ · · · ∗An) | {ι1 of A1 | · · · | ιn of An} | A −> B (Types)
V,W ∶ ∶ = 〈V1, . . . , Vn〉 | ι V | λx.M (Values)
M,N ∶ ∶ = x | 〈M1, . . . ,Mn〉 | ιM | λx.M | MN (Terms)

| matchM with 〈x1, . . . , xn〉 −> N

| caseM of {ι1 x1 −> N1 | · · · | ιn xn −> Nn}
| M? | M ∶=N | M ∥N

The typing rules for the shared-state constructs appear at the top of Fig. 1,
where we define Loc ∶={l1 of () | · · · |ln̄ of ()} and Val ∶={v1 of () | · · · |vm̄ of ()}.

The language is equipped with a call-by-value, small-step operational seman-
tics σ,M ↝ ρ,N , meaning that the program M executed from store σ progresses
to N with store ρ. The operational semantics for the shared-state constructs
appears at the bottom of Fig. 1. Parallel execution is interpreted via a standard
interleaving semantics, ultimately returning the pair of the results of each side,
and synchronizing on their completion. The reflexive-transitive closure of ↝ is
denoted by ↝∗. The operational semantics can be seen in action in Example 2.

2.1 Global-State (for Sequential Computation)

To make this exposition more accessible, we focus on sequential computation
before advancing to denotational semantics of concurrent computation. Sequen-
tial computations with global state cause two kinds of side-effects: looking a
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Γ M A

Γ M Loc

Γ M? Val

Γ M Loc Γ N Val

Γ M N

Γ M A Γ N B

Γ M N A B

σ,M σ ,M

σ,M σ ,M

σ,M? σ ,M ? σ, �? σ,σ�

σ,M σ ,M

σ,M N σ ,M N

σ,N σ ,N

σ,V N σ ,V N σ, � v σ � v ,

σ,M σ ,M

σ,M N σ ,M N

σ,N σ ,N

σ,M N σ ,M N σ,V W σ, V,W

Fig. 1. Typing and operational semantics of the shared-state constructs.

value up in the store, and updating a value in the store. Plotkin and Power [34]
propose a corresponding equational theory with two operators:

Lookup. Suppose � ∈ L, and (tv)v∈V is a V-indexed sequence of terms. Then
L� (tv)v∈V is a term representing looking the value in � up, calling it v, and
continuing the computation with tv. We write L� (v. tv) instead of L� (tv)v∈V.

Update. Suppose � ∈L, v ∈V, and t is a term. Then U�,vt is a term representing
updating the value in � to v and continuing the computation with t.

The equations of the theory of global-state are generated by taking the clo-
sure of the axioms – listed at the top of Fig. 2 – under reflexivity, symmetry,
transitivity, and substitution. The grayed-out axioms happen to be derivable,
and are included for presentation’s sake. The theory of global-state can be used
to define adequate denotational semantics for the sequential fragment of our
language, obtained by removing concurrent execution (∥).

Example 1. Global-state includes the following Eq. (1) which, when considering
sequential programs, represents the program equivalence (2):

Lb (v. Ua,vLc (w. Ua,w 〈〉)) = Lc (w. Ua,w 〈〉) (1)
a ∶= b? ; a ∶= c? ≅ a ∶= c? (2)

2.2 Shared-State

The equivalence (2) from Example 1 fails in the concurrent setting, since the
two program can be differentiated by program contexts with concurrency:
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UL-det
UU-last
LU-noop
LL-diag
UU-comm
LU-comm
LL-comm

ND-return
ND-epi surjective
ND-join bijective

ND-L
ND-U
ND-Y

Fig. 2. The axiomatization of the algebraic theory

Example 2. Consider the program context Ξ [−] = [−] ∥ a?, i.e. executing each
program in parallel to a thread dereferencing the location a. Then there is no
execution of Ξ [a ∶= c?] that starts with the store ( a b c

1 0 1 ) and returns 〈〈〉 , 0〉, but
there is such a execution of Ξ [a ∶= b? ; a ∶= c?]:

( a b c
1 0 1 ) , a ∶= b? ; a ∶= c? ∥ a? ↝∗ ( a b c

0 0 1 ) , a ∶= c? ∥ a? ↝

( a b c
0 0 1 ) , a ∶= c? ∥ 0 ↝∗ ( a b c

1 0 1 ) , 〈〉 ∥ 0 ↝ ( a b c
1 0 1 ) , 〈〈〉 , 0〉

Therefore, the aforementioned denotational semantics defined using the the-
ory of global-state cannot be extended with a denotation for (||) while preserving
adequacy. More sophistication is needed in the concurrent setting: the denota-
tions, even of sequential programs, must account for environment effects.

We thus extend the global-state theory with a single unary operator:

Yield. Suppose t is a term. Then Yt is a term. Its intended meaning is to let
the environment read and write and then continue with the computation t.

We also need to account for the non-determinism inherent in parallel exe-
cutions. We do so by extending the resulting theory with operators for finite
non-determinism with their equational theory, and further standard equations
axiomatizing commutative interaction with the other operators [14]:

Choice. For every α ∈ N there is a respective choice operator. Suppose (tı)ı<α

is a sequence of terms t0, . . . , tα−1. Then
∨

α (tı)ı<α is a term. Its intended
meaning is to choose ı < α non-deterministically and continue with the com-
putation tı. We write

∨
ı<α tı instead of

∨
α (tı)ı<α; and when α = 2 we use

infix notation, i.e. instead of
∨

ı<2 tı we may write t0 ∨ t1.



An Algebraic Theory for Shared-State Concurrency 9

The axioms of the resulting theory of resumptions Res [1,14,30] are listed
in Fig. 2. The novelty is not in the equational theory, but rather in the way we
use it to define denotations. We compare to related work in Sect. 7.

2.3 Denotations

In Sect. 5 we define denotations of programs, but for the sake of this discussion
we simplify, defining the denotation [[M ]] of a program M to be an equivalence
class |t| of a particular term t in Res. Our actual denotations defined in Sect. 5
will use the concrete representation of the monad (developed in Sect. 4.3), similar
to how state transformers represent equivalence classes of terms of global-state.

Dereference & Assignment. We use the monadic bind ⟫= (defined in
Sect. 4.3), which we can think of as “sequencing”; and possible yields Y?t ∶=t∨Yt:

[[M?]] ∶= [[M ]] ⟫= λ�.
∣
∣
∣L�

(
v. Y?v

)∣
∣
∣

[[M ∶=N ]] ∶= [[M ]] ⟫= λ�. [[N ]] ⟫= λv.
∣
∣
∣U�,vY?〈〉

∣
∣
∣

The main idea is to intersperse possible yields to block the use of global-state
equations such as in (1) and to allow computations to interleave. Although Eq.
(1) still holds in Res, it does not imply the program equivalence (2) because the
programs in (2) do not map to the algebraic terms in (1). Rather:

Example 3. The denotations of the programs in Example 1 are:

[[a ∶= c?]] =
∣
∣
∣Lc

(
v. Y?v

)∣
∣
∣ ⟫= λv.

∣
∣
∣Ua,vY? 〈〉

∣
∣
∣ =

∣
∣
∣Lc

(
v. Y?Ua,vY? 〈〉

)∣
∣
∣ (3)

[[a ∶= b? ; a ∶= c?]] =
∣
∣
∣Lb

(
w. Y?Ua,wY?Lc

(
v. Y?Ua,vY? 〈〉

))∣
∣
∣ (4)

So the denotation (3) looks c up finding a value v, then possibly yields, then
updates a to v, then possibly yields, and finally returns the empty tuple. The
concrete representation (Theorem 1) immediately proves that (3) and (4) are
not equal, in contrast to the situation in Example 1.

Parallel Execution. Computations interleave using the yield operator. Inter-
leaving execution of programs suggests, for example, the following calculation:

[[�? ∥ � ∶= 0]] =
∣
∣
∣L�

(
v. Y? [[v ∥ � ∶= 0]]

)
∨U�,0Y? [[�? ∥ 〈〉]]

∣
∣
∣

=

∣
∣
∣L�

(
v. Y?U�,0Y? [[v ∥ 〈〉]]

)
∨U�,0Y?L�

(
v. Y? [[v ∥ 〈〉]]

)∣
∣
∣

=

∣
∣
∣L�

(
v. Y?U�,0Y? 〈v, 〈〉〉

)
∨U�,0Y?L�

(
v. Y? 〈v, 〈〉〉

)∣
∣
∣

The problem with the above is that is lacks compositionality: [[�? ∥ � ∶= 0]]
should be defined in terms of [[�?]] and [[� ∶= 0]], without referring to the underlying
programs. In Sect. 4.6 we define a function (|||) such that [[M ∥N ]] = [[M ]] ||| [[N ]].
This definition relies on the concrete representation from Sect. 4.3.
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2.4 Program Transformations

Our main result is directional adequacy (Theorem 5). Under this simplified view
it can be stated, in terms of the partial-order on our denotations generated by
|t|⩿ |t ∨ s|, as follows: if [[M ]]⩿ [[N ]] then the transformation N↠M is valid in the
concurrent setting. The following example illustrates how directional-adequacy
can be used to validate program transformations of interest, of the relatively few
that are valid in the strong memory-model we consider here.

Example 4. We validate (write ; read) (see also Example 9):

[[� ∶= v ; �?]] =
∣
∣
∣U�,vY?L�

(

w. Y?w
)∣
∣
∣ ⪀

∣
∣
∣U�,vL�

(

w. Y?w
)∣
∣
∣ =

∣
∣
∣U�,vY?v

∣
∣
∣ = [[� ∶= v ; v]]

We can similarly validate the other memory access eliminations from Sect. 1. By
using Y? rather than Y in the denotations, the cases where the environment is
known to not interleave are taken into accounted explicitly. The relevant global-
state equation can then be exploited to eliminate the redundant memory access.

2.5 Caveats and Limitations

Our goal in this work is to fit concurrency semantics on equal footing with other
semantic models of computational effects. As a consequence, the proposed model
has its fair share of fine print, which we bring to the front:

Memory Model. We study a very strong memory model: sequential consis-
tency. Modern architectures adhere to much weaker memory-models, where
further program transformations are valid.

Concurrency Model. Our semantics involves a simple form of concurrency
in which threads interleave their computation without restriction, acting
on a shared memory store. This is in contrast to a well-established line of
work in which models include a causal partial-order in which incompara-
ble events denote “truly” parallel execution [31]. These causal models are
showing promise in modelling sophisticated (i.e. weak) shared-state mod-
els [7,16,17,25]. We hope further work would fit these causal models into a
relatable semantic footing that easily accommodates higher-order structure.

Features. Our analysis lacks many valuable features that appear in related
work, such as recursion [1], higher-order state [4], probabilities [41], and
infinitely many locations/values. This simplification is intended: we took to
reductionism, finding a minimal model still accounting for core features of
shared state. The benefit of the algebraic approach is that this model can be
modularly combined with other features, hopefully using standard technol-
ogy such as sum-and-tensor [14], domain-enrichment [27], and functor cat-
egories [21,32,33,38]. For example, to support recursion our model may be
integrated with one of the known powerdomain theory-combinators [42]. This
requires making a semantic-design choice that is orthogonal to shared-state
concurrency, each with different trade-offs. We avoid making such choices.
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Semantic Precision. The equational theory and denotational semantics based
on it leave much room for improvement in terms of precision and abstraction.
For example, our denotational model does not support the introduction of
irrelevant reads, i.e. it does not justify the valid transformation M↠ �? ;M .
Indeed, taking M = 〈〉, we have [[�? ; 〈〉]] =

∣
∣
∣L�

(
v. Y? 〈〉

)∣
∣
∣ =

∣
∣
∣Y? 〈〉

∣
∣
∣ ⩿̸ |〈〉| = [[〈〉]].

The problem stems from a “counting” issue: even though the value being
looked-up in � is discarded, the additional possible-yield remains. We hope
further work could address this semantic inaccuracy.

Full Abstraction. Brookes’s seminal work [1,6] defined denotational semantics
for concurrency that is fully-abstract, meaning that the converse of adequacy
holds: programs that are replaceable in every context have equal denotations.
Our semantics is far from being fully-abstract: there is a first-order valid
equivalence, M ≅ �? ; M , that our semantics does not support. Moreover, we
do not include atomic block executions in our language as Brookes did, which
was crucial for the proof of full-abstraction. However, even if our model was
precise enough to capture the first-order equivalences, and even if we were
to include atomic block executions, we still would not expect to obtain full-
abstraction, since this result is infamously elusive for higher-order languages
(see Abramsky’s recent overview on the full-abstraction problem of PCF [2]).

3 Equational Theory

At the foundation of our approach is the equational theory of resumptions Res [1,
14,30] presented in Sect. 2, consisting of operators and equational axioms over
them. We succinctly fill-in the formalities below, followed by related definitions.

The signature of Res consists of the following parameterized operators. The
notation O ∶ A 〈P 〉 means that the arity of the operator O is the set A and it is
parameterized over the set P :

L ∶ V 〈L〉 lookup Y ∶ 1 〈1〉 yield

U ∶ 1 〈L × V〉 update
∨

α

∶ α 〈1〉 non-deterministic choice for every α ∈ N

From now on, whenever we refer to an operator, we mean an operator of Res.
We denote the set of terms freely generated by the signature over X by TermX.

Figure 2 lists the axioms of Res, classified as follows: an axiomatization
of the equational theory of global-state [34]; the standard axiomatization of
non-determinism; and an axiomatization of the commutative interaction of non-
determinism with the other operators [13] via the tensor [14].

A Res-algebra A consists of a carrier set A together with interpretations
ÕA
∶ AA

× P → A for each operator O ∶ A 〈P 〉. We elide the superscript if it is
clear from context. For a set X, a Res-algebra on X consists of a Res-algebra A
and a function env ∶X→A; which extends to eval ∶TermX→A homomorphically
along the inclusion X↪TermX. A Res-model on X is a Res-algebra on X that
satisfies each axiom of Res, i.e. the same element of A is obtained by applying
eval to either side of the axiom.
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In the following, we abbreviate using 	L (σ. tσ) ∶ =Ll1 (v1. . . . Lln̄ (vn̄. tλli. vi
))

and 	Uσt∶=Ul1,σl1
. . . Uln̄,σln̄

t, in addition to Y?t∶=t∨Yt that we saw in Sect. 2.3. For

example, 	L
(

σ. 	U(
a b c
1 0 σb

)Y?tσc

)

=La (v. Lb (w. Lc (u. Ua,1Ub,0Uc,w (tu ∨Ytu)))).

We use similar shorthands with interpretations of operators as well.

4 A Monad for Shared-State

The next part in our denotational semantics is a monad whose elements rep-
resent equivalence classes of Res. The monad can be obtained via a universal
construction [28] (by quotienting the terms by the equational theory), but a
concrete representation is crucial to reason about it; for example, to show that
two denotations are different.

4.1 Difficulty of Term Normalization

To motivate the definitions building up to this concrete representation, we first
find a representative for each equivalence class in TermX/Res, by taking an
arbitrary t ∈ TermX and transforming it via equations in Res to a particular
form – a normal form – such that there is only one term of this form equal to t.

Consider an algebraic term t ∈TermX. Using LU-noop once for each location,
a sequence of LU-comm, and ND-return, we find that t = 	L

(
σ.

∨
ı<1

	Uσt
)
. Note:

	UσL� (v. sv) Res
=

	Uσsσ�
	UσU�,vs

Res
=

	Uσ[�↦v]s 	Uσ

∨

ı<α

sı
Res
=

∨

ı<α

	Uσsı

By applying these equalities left-to-right as long as possible, and applying
ND-join and ND-epi to rearrange the sums, we find that t is equal to a term of
the form 	L

(
σ.

∨
ı<ασ

	Uρı,σ
sı,σ

)
, where sı,σ is either in X or is of the form Ys′

ı,σ.
For every σ, we can rearrange the sum according to common prefixes, thus

we find that t is equal to a term of the form: 	L
(
σ.

∨
ρ∈S

	Uρ

∨
j<αρ,σ

sj,ρ,σ

)
where

sı,ρ,σ is either in X or is of the form Ys′
ı,ρ,σ (we can take αρ,σ =0 when the prefix

	Uρ did not appear in t). For every ρ, we can rearrange to obtain the form:

	L

⎛

⎝σ.
∨

ρ∈S

	Uρ

⎛

⎝Yrρ,σ ∨

∨

j<βρ,σ

xj,ρ,σ

⎞

⎠

⎞

⎠ (5)

This is not yet a normal form, which to obtain would require recursively
applying this procedure to rρ,σ and propagating empty choice operators outward.
Were we to continue in this way to find a normal form, we would still need to
prove uniqueness and completeness. One standard way to achieve this is to show
that this procedure equates the sides of every axiom and respects the deduction
rules of equational logic. This requires a careful proof-theoretic analysis of this
normalization procedure. Instead, we take a model-theoretic approach, akin to
normalization-by-evaluation, constructing for every set a concrete representation
of the free Res-model over it. This representation is based on finite sets of traces.
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4.2 Traces

Brookes [6] defined a trace to be a non-empty sequence of transitions, where a
transition is a pairs of stores; e.g. 〈( a b c

1 0 1 ), ( a b c
0 0 1 )〉 〈( a b c

0 1 1 ), ( a b c
1 0 1 )〉. Brookes used

traces to define a denotational semantics for an imperative concurrent program-
ming language. In Brookes’s semantics, traces denote interrupted executions,
where each transition corresponds to an uninterrupted sequence of computation
steps that starts with the first store and end with the second store. The breaks
between transitions are where the computation yields to the environment.

The concept was adapted by many, including Benton et al. [4], to define
denotational semantics for a functional language, where they have added an
additional value at the end of the sequence to refer to the value the computation
returns. A trace in this paper will refer to this concept: a non-empty sequence
of transitions followed by an additional return value. If we wish to specify X as
the set of the return values, we will call it an X-trace. For example, if x ∈X then
〈( a b c

1 0 1 ), ( a b c
0 0 1 )〉 〈( a b c

0 1 1 ), ( a b c
1 0 1 )〉 x is an X-trace.

For sets Y,Z, we denote by Y ∗ the set of sequences over Y , by Y + the set
of non-empty sequences over Y , and Y · Z ∶= {yz | y ∈ Y, z ∈ Z}. That is, (·) is
just notation for (×) which suggests that the elements of the set are written in
sequence, eliding the tuple notation. Thus (S × S)+ · X is the set of X-traces.

Following our discussion in Sect. 4.1, our representation will use finite sets
of traces instead of the algebraic syntax. In particular, the form we have found
in (5) suggests the recursive definition:

rep t ∶= {〈σ, ρ〉 τ | σ, ρ ∈ S, τ ∈ rep rρ,σ} ∪ {〈σ, ρ〉 xj,ρ,σ | σ, ρ ∈ S, j < βρ,σ} (6)

The model-theoretic approach we use below obviates the need for the syntactic
manipulation that leads to the form in (5) as part of finding the representation.
In the model definition, eval will play the role of rep.

4.3 Model Definition

We represent elements of TermX/Res by T X ∶=Pfin

(
(S × S)+ · X

)
, i.e. finite sets

of X-traces. We equip T X with a Res-algebra structure FX:

L̃� (v. Pv) ∶= {〈σ, ρ〉 τ | 〈σ, ρ〉 τ ∈ Pσ�
}

∨̃

ı<α

Pı ∶=

⋃

ı<α

Pı

Ũ�,vP ∶= {〈σ, ρ〉 τ | 〈σ [�↦ v], ρ〉 τ ∈ P} ỸP ∶= {〈σ, σ〉 τ | σ ∈ S, τ ∈ P}

We further equip it with envx ∶= {〈σ, σ〉 x | σ ∈ S} to make it a Res-algebra over
X. We denote env x by returnx, or x̃ for shorthand. This Res-algebra is in fact
a Res-model over X by virtue of satisfying the axioms of Res:

Example 5. We verify that 〈FX, return〉 satisfies the axiom LU-noop:

eval (L� (v. U�,vx)) = L̃�

(
v. Ũ�,vx̃

)
= L̃� (v. {〈σ, σ [�↦ v]〉 x | σ ∈ S})

= {〈σ, σ [�↦ σ�]〉 x | σ ∈ S} = {〈σ, σ〉 x | σ ∈ S} = x̃ = eval x
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4.4 Correspondence to Non-deterministic Global-State

The theory of non-deterministic global-state (the fragment of Res excluding
Y) admits a concrete representation using non-deterministic state transformers
S→ Pfin (SX) [14]. This representation corresponds to the one we have defined
in an interesting way. Namely, there is a bijection between T X and the set of
functions mapping stores to finite sets of X-traces-with-the-first-store-removed:

λP ∈ T X. λσ ∈ S.
{
ρτ ∈ S · (S × S)∗ · X | 〈σ, ρ〉 τ ∈ P

}

λψ ∈ S→ Pfin

(
S · (S × S)∗ · X

)
.

⋃

σ∈S

{
〈σ, ρ〉 τ ∈ (S × S)+ · X | ρτ ∈ ψσ

}

Implicitly identifying the two, the model from Sect. 4.3 can be defined using
formulas that look exactly like the non-deterministic global-state ones:

L̃� (v. Pv) ∶=λσ. Pσ�
σ

∨̃

ı<α

Pı ∶=λσ.
⋃

ı<α

Pıσ

Ũ�,vP ∶=λσ. P (σ [�↦ v]) x̃ ∶=λσ. {σx}

However, these are not the same formulas – they are defined for different ele-
ments (sets of traces as opposed to non-deterministic state transformers).

Using this identification for the yield operator, we obtained the definition
ỸP ∶=λσ. {στ | τ ∈ P}, which we understand as “the thread does not modify the
state, then allows the environment to intervene, and then continues as before.”

4.5 Representation Theorem

The model 〈FX, return〉 defined in Sect. 4.3 represents TermX/Res because –
according to the representation theorem – this is a free Res-model on X, and
therefore equivalent to the model of equivalence classes we used in Sect. 2 or the
model of syntactic normal forms to which we have alluded in Sect. 4.1.

To prove that the model is free we first equip the family of sets T with
a monad structure. For every Res-model A and function f ∶ X → A, define
− ⟫= f ∶ T X → A, the homomorphic extension of f along return, recursively;

where R
〈σ,ρ〉
P ∶=

{
τ ∈ (S × S)+ · X | 〈σ, ρ〉 τ ∈ P

}
and X

〈σ,ρ〉
P,f ∶=

∨̃A
〈σ,ρ〉x∈P fx:

∅ ⟫= f ∶=
∨̃A

0

∅ P ⟫= f ∶=	̃L
A

⎛

⎝σ.
∨̃A

ρ∈S

	̃U
A
ρ

(
Ỹ

A (
R

〈σ,ρ〉
P ⟫= f

)
∨̃

A X
〈σ,ρ〉
P,f

)
⎞

⎠

A simpler definition is available when there exists a set Y such that A = FY :

∅ ⟫= f ∶=∅ P ⟫= f ∶= {α 〈σ, ς〉 τ | ∃ ρ. α 〈σ, ρ〉 x ∈ P ∧ 〈ρ, ς〉 τ ∈ fx}

The recursion is well-founded since R
〈σ,ρ〉
P is smaller than P when measured by

the length of the longest trace in the set.
Thus we have our monad structure T ∶= 〈T , return, ⟫=〉. We show it is induced

by the aforementioned family of free Res-models:
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Theorem 1 (Representation for shared-state). The pair 〈FX, return〉 is
a free Res-model on X: for every Res-model A and f ∶ X → A, the function
− ⟫= f ∶ T X →A is the unique homomorphism g satisfying f = g ◦ return.

As a direct consequence:

Corollary 1 (Model is sound and complete). Terms over X are equal in
Res iff they have the same representation in 〈FX, return〉.

4.6 Synchronization

To define the denotational semantics of (∥) in Sect. 5, we will define a corre-
sponding function (|||) on elements of the monad. To this end we first define
the trace synchronization, an inductively defined relation τ1 || τ2 =⇒ τ presented
below, that relates τi ∈ (S × S)+· Xi and τ ∈ (S × S)+· (X1 ×X2), representing the
fact that τ1 and τ2 can synchronize to form τ :

τ || π =⇒ ω
〈σ, ρ〉 x || 〈ρ, ς〉 βy =⇒ 〈σ, ς〉 β 〈x, y〉

(Var-Left)

τ || π =⇒ ω

〈σ, ρ〉 τ || π =⇒ 〈σ, ρ〉 ω
(Brk-Left)

τ || π =⇒ 〈ρ, ς〉ω

〈σ, ρ〉 τ || π =⇒ 〈σ, ς〉 ω
(Seq-Left)

Symmetrically: (Var-Right) (Brk-Right) (Seq-Right)

One way to understand these rules is to concentrate on the first transition on
the left trace τ1 = 〈σ, ρ〉 τ ′

1; the right-sided rules are treated symmetrically. If the
first transition is also the last, i.e. τ ′

1 ∈X, then ρ must be the initial store when
the execution continues (recall that only a break between transitions reflects a
yield to the environment). This is why Var-Left combines the transitions as
it does. The value in τ3 is the pair of the values in τ1 and τ2, reflecting the
operational semantics of (∥) returning the pair of the results. If, on the other
hand, the first transition is not the last, then we may combine the transition with
the continuation of the computation (Seq-Left), or we may not (Brk-Left).
The first option means the yield was used-up in this synchronization; while in
the second option yield remains available to ambient synchronizations.

From this relation we derive the semantic synchronization function:

(|||) ∶ T X × T Y → T (X × Y ) P ||| Q ∶= {ω | ∃ τ ∈ P, π ∈Q. τ || π =⇒ ω}

Example 6. For σ, ρ ∈ S, we may synchronize 〈σ, ρ〉 〈ρ, σ〉 〈〉 and 〈ρ, ρ〉 0 so:

〈ρ, σ〉 〈〉 || 〈ρ, ρ〉 0 =⇒ 〈ρ, σ〉 〈〈〉, 0〉
Var-Right

〈σ, ρ〉 〈ρ, σ〉 〈〉 || 〈ρ, ρ〉 0 =⇒ 〈σ, σ〉 〈〈〉, 0〉
Seq-Left
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Therefore, if 〈σ, ρ〉 〈ρ, σ〉 〈〉 ∈ P and 〈ρ, ρ〉 0 ∈Q, then 〈σ, σ〉 〈〈〉, 0〉 ∈ P ||| Q.
The use of Seq-Left was possible since the stores happen to match, resulting

in a trace that does not allow the environment to interfere. By using Brk-Left
we could find a different synchronization, one that does yield to the environment.

5 Denotational Semantics

With the monad in place, denotations of types and contexts are standard [30]:

[[(A1 ∗ · · · ∗An)]] ∶= [[A1]] × · · · × [[An]] [[A −> B]] ∶= [[A]]→ T [[B]]
[[{ι1 of A1 | · · · | ιn of An}]] ∶=

⋃n
i=1 {ιi } × [[Ai]] [[Γ ]] ∶=

∏
(x∶A)∈Γ [[A]]

Define the extension of γ ∈ [[Γ ]] to γ [x↦ y] ∈ [[Γ, x ∶A]] by γ [x↦ y] x ∶=y.

On the above we base two kinds of denotations for programs Γ ⊢M ∶A:

Computational. [[M ]]c ∶ [[Γ ]] → T [[A]]. When Γ is empty we may write [[M ]]c

instead of [[M ]]c 〈〉. We write [[M ]]c ⊆ [[N ]]c for ∀γ ∈ [[Γ ]]. [[M ]]cγ ⊆ [[N ]]cγ.
Valuational. [[V ]]v ∶ [[Γ ]]→ [[A]] defined solely for values, and satisfying [[V ]]cγ =

return ([[V ]]vγ). When Γ is empty we may write [[V ]]v instead of [[V ]]v 〈〉; and
if furthermore A is a ground type, we may write V instead of [[V ]]v, noting
that the restriction of [[−]]v to closed programs of ground type is a bijection.

Most denotations of programs are standard as well, such as:

[[〈〉]]vγ ∶= 〈〉 [[λx.M ]]vγ ∶=λy. [[M ]]cγ [x↦ y]
[[x]]vγ ∶=γx [[NM ]]cγ ∶= [[N ]]cγ ⟫= λf. [[M ]]cγ ⟫= f

The denotations of the state effects allow the environment to intervene:

[[M?]]cγ ∶= [[M ]]cγ ⟫= λ�. L̃�

(
v. Ỹ

?
ṽ
)

[[M ∶=N ]]cγ ∶= [[M ]]cγ ⟫= λ�. [[N ]]cγ ⟫= λv. Ũ�,vỸ
?〈̃〉

[[M ∥N ]]cγ ∶= [[M ]]cγ ||| [[N ]]cγ

Example 7. With the definitions above, we can state the denotations from Exam-
ple 3 precisely. For instance, (4) becomes:

[[a ∶= b? ; a ∶= c?]]c = L̃b

(
w. Ỹ

?
Ũa,wỸ

?
L̃c

(
v. Ỹ

?
Ũa,vỸ

?〈̃〉
))

Example 8. We can explain the execution of a ∶= b? ; a ∶= c? ∥ a? from Example
2 in denotational terms. First we find traces to synchronize:

〈( a b c
1 0 1 ), ( a b c

0 0 1 )〉 〈( a b c
0 0 1 ), ( a b c

1 0 1 )〉 〈〉 ∈ [[a ∶= b? ; a ∶= c?]]c

〈( a b c
0 0 1 ), ( a b c

0 0 1 )〉 0 ∈ [[a?]]c

Following from the derivation in Example 6 with σ = ( a b c
1 0 1 ) and ρ = ( a b c

0 0 1 ):

〈( a b c
1 0 1 ), ( a b c

1 0 1 )〉 〈0, 〈〉〉 ∈ [[a ∶= b? ; a ∶= c? || a?]]c

This trace corresponds to the (uninterrupted) execution presented in Example 2.
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6 Metatheoretical Results

First we find that the single-transition traces in the denotation of a program
account for the possible executions of that program:

Theorem 2 (Soundness). If σ,M ↝∗ ρ, V then 〈σ, ρ〉 [[V ]]v ∈ [[M ]]c.

For the proof, omitted for brevity, we instrument the operational-semantics
with actions, elements of {U�,v,L�, ε} signifying the effect caused by the step, to
analyse the change to the denotation of the program as it runs.

Working our way up to the fundamental lemma, we define a unary logical
relation: functions V �−� and E �−� from types to sets of closed programs by
mutual recursion. Specifically, V �A� is a set of closed values of type A, and E �A�
is a set of closed programs of type A. The definition of V �−� is standard:

V �A −> B� ∶= {λx.M | ∀ V ∈ V �A�. M [V/x] ∈ E �B�}
V �(A1 ∗ · · · ∗An)� ∶= {〈V1, . . . , Vn〉 | ∀ i. Vi ∈ V �Ai�}

V �{ι1 of A1 | · · · | ιn of An}� ∶=
⋃

i {ιi V | V ∈ V �Ai�}

The definition of E �−� is also standard in that it ensures programs in E �A�
compute to values in V �A�, but bespoke in its requirement about how they
compute. This requirement is based on the way traces specify interrupted exe-
cutions, a notion we have discussed in Sect. 4.2 and now make precise. For a
non-empty sequences α= 〈σ1, ρ1〉 . . . 〈σm, ρm〉 we write M

α
−→ N when there exist

M =M1,M2 . . . Mm,Mm+1 =N such that σi,Mi ↝∗ ρi,Mi+1 for all i∈{1, . . . ,m}.
We write M

αx
−−−→ V when M

α
−→ V and [[V ]]v = x. We now define:

E �A� ∶=
{

M ∈ · ⊢A | ∀ τ ∈ [[M ]]c ∃ V ∈ V �A�. M
τ
−→ V

}

The last component needed is the function G�−� from typing contexts to sets
of program substitutions: G�Γ � ∶ = {Θ | ∀ (x ∶A) ∈ Γ. Θx ∈ V �A�} The semantic
typing judgment Γ ⊧M ∶A is then defined as: ∀Θ ∈ G�Γ �. ΘM ∈ E �A�

Theorem 3 (Fundamental Lemma). If Γ ⊢M ∶A then Γ ⊧M ∶A.

This brings us one step closer to proving the theorem of directional adequacy.
One piece is still missing: since the theorem assumes set inclusion of denotations
rather than equality, we will need a different form of compositionality of the
denotations than the one that holds by definition.

To state this form of compositionality we first define the standard notion of
a program with holes. A function Ξ [−] ∶ Γ ⊢A→Δ ⊢B is a program context (or
context for short) if, in the language extended with a program • and additional
axioms Γ ′

⊢ • ∶ A for all Γ ′ ≥ Γ , we have Δ ⊢ Ξ [•] ∶ B; and if Γ ⊢M ∶ A, then
Ξ [M ] is obtained from Ξ [•] by replacing every occurrence of • with M .
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Theorem 4 (Compositionality). Let Ξ [−] ∶ Γ ⊢ A → · ⊢ G be a context for
ground G, and M,N ∈ Γ ⊢A. If [[M ]]c ⊆ [[N ]]c then [[Ξ [M ]]]c ⊆ [[Ξ [N ]]]c.

The condition that the context be closed and ground is necessary, so an
attempt to prove directly by induction on the structure of the context fails. The
proof, omitted for brevity, instead uses a binary logical relation approximating
containment that identifies with it on ground types; the main ingredient being:

E◦�A� ∶= {〈P,Q〉 ∈ T [[A]] × T [[A]] | ∀ αx ∈ P ∃ βy ∈Q. α = β ∧ 〈x, y〉 ∈ V◦�A�}

With this compositionality in hand we are finally ready to prove the main
result of this paper, that we will then use to justify program transformation. To
state it we first spell out the standard definition of contextual refinement.

Suppose that M,N ∈ Γ ⊢ A. We say that M refines N , and write M ⊑N , if
σ,Ξ [M ] ↝∗ ρ, V implies σ,Ξ [N ] ↝∗ ρ, V whenever Ξ [−] ∶ Γ ⊢ A → · ⊢ G is a
context for ground G. This justifies the transformation N ↠M , since replacing
N with M within a larger program introduces no additional behaviours.

Theorem 5 (Directional Adequacy). If [[M ]]c ⊆ [[N ]]c then M ⊑N .

Proof. Let Ξ [−] ∶ Γ ⊢ A → · ⊢ G be a program context for some ground
G, and assume σ,Ξ [M ] ↝∗ ρ, V for some V . By soundness, 〈σ, ρ〉 [[V ]]v ∈
[[Ξ [M ]]]c. Using compositionality, by assumption 〈σ, ρ〉 [[V ]]v ∈ [[Ξ [N ]]]c. By the

fundamental lemma, Ξ [N ]
〈σ,ρ〉
−−−−−→ W for some W such that [[W ]]v = [[V ]]v. They

are of ground type, so W = V . Therefore, σ,Ξ [N ] ↝∗ ρ, V .

6.1 Example Transformations

Thanks to directional adequacy, we can now justify various transformations and
equivalences using rather mundane calculations, requiring no reasoning about
the context in which these transformations are to take place.

Example 9. We make the reasoning from Example 4 precise.
Denote Γ ∶=x ∶Loc, y ∶Val. We have Γ ⊢ x ∶= y ; x? ∶Val and Γ ⊢ x ∶= y ; y ∶Val.

Let γ ∈ [[Γ ]], and denote � ∶=γx and v ∶=γy. Calculating, we have:

[[x ∶= y ; x?]]cγ = Ũ�,vỸ
?
L̃�

(
w. Ỹ

?
w̃

)
⊇ Ũ�,vỸ

?
ṽ = [[x ∶= y ; y]]cγ

By directional adequacy, x ∶= y ; y ⊑ x ∶= y ; x?.

Example 10. We validate elimination of irrelevant reads, i.e. M ⊑ x? ; M :

[[x? ; M ]]cγ = [[(λ .M) x?]]cγ = [[x?]]cγ ⟫= λv. [[M ]]cγ = Ỹ
?
([[M ]]cγ) ⊇ [[M ]]cγ

As mentioned in Sect. 2.5, the semantics does not validate introduction of irrel-
evant reads, i.e. we have [[x? ; M ]]c ⊈ [[M ]]c even though x? ; M ⊑M .
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Example 11. Thanks to our use of standard monad-based semantics, structural
transformations and equivalences follow from structural reasoning, avoiding con-
siderations relating to shared-state. For instance:

[[if y thenλx.Ktrue elseλx.Kfalse ]]cγ =
[
[λx.Kγy

]
]cγ

= returnλz.
[
[Kγy

]
]c (γ [x↦ z]) = [[λx. if y thenKtrue elseKfalse ]]cγ

Therefore, if y thenλx.Ktrue elseλx.Kfalse ≅ λx. if y thenKtrue elseKfalse .

Finally, adequacy can help validate expected transformations involving (∥):

Example 12. Defining mapψP ∶= {α (ψx) | αx ∈ P} we have:

[[〈M,N〉]]cγ ⊆ [[M ∥N ]]cγ (Sequencing)
[[M ∥ V ]]cγ =map (λx. 〈x, [[V ]]v〉) ([[M ]]cγ) (Neutrality)
[[M ∥N ]]cγ =map (λ〈y, x〉. 〈x, y〉) ([[N ∥M ]]cγ) (Symm.)

[[(M ∥N) ∥K]]cγ =map (λ〈x, 〈y, z〉〉. 〈〈x, y〉, z〉) ([[M ∥ (N ∥K)]]cγ) (Assoc.)

Unlike the previous examples, proving the above involves careful reasoning at
the level of the traces. We still gain the benefit of justifying equivalences and
transformations of programs – even open ones – without resorting to analysis
under arbitrary program contexts and substitutions:

〈M,N〉 ⊑M ∥N (Sequencing)
〈M,V 〉 ≅M ∥ V (Neutrality)
M ∥N ≅matchN ∥M with 〈y, x〉 −> 〈x, y〉 (Symm.)

(M ∥N) ∥K ≅matchM ∥ (N ∥K) with 〈〈x, 〈y, z〉〉〉 −> 〈x, y〉 , z (Assoc.)

Coordinating the returned values make these somewhat awkward. More con-
venient but less informative forms are derivable, such as M ; N ; K ⊑ (M ∥N) ;
K (mentioned as a transformation in Sect. 1) which is a consequence of
(Sequencing).

7 Conclusion, Related Work, and Future Work

We have defined a monad-based denotational semantics for a language for shared-
state providing standard higher-order semantics supporting standard meta-
theoretic development. This monad is a representation of the one induced by
the equational theory of resumptions, which extends non-deterministic global-
state with a delaying/yielding operator [14].

Abadi and Plotkin [1] design a modification for the theory of resumptions
to define a denotational semantics for a concurrent imperative programming
language with cooperative asynchronous threads. We have shown that the theory
of resumptions can be used as-is to define denotational semantics for concurrency,
albeit of a different kind. It is interesting to note that they interpret the unary
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operator analogously to our interpretation of Y?, rather than Y. By decomposing
into a sum we were able to validate transformations that are not equivalences.

Benton et al. [4] also define a monad for higher-order shared-state, with
additional features such as recursion and abstract locations, using Brookes’s
style of semantics. Contrasting, the monad we defined is presented algebraically,
and has finite sets of traces, whereas Benton et al.’s denotations are infinite
even for recursion-free programs. Although this finiteness makes our definition
simpler, we saw in Example 10 that it leads to a resumption-counting issue, thus
less abstract semantics. It would be interesting to analyse their semantic model
from the algebraic perspective as it may lead to more abstract semantics.

Like in previous work, including those mentioned above, our semantics is
based on the sets of traces, originally used by Brookes [6] to define denota-
tional semantics for an imperative concurrent language. Brookes proved that
this semantics is not only directionally adequate, but also fully abstract. The
proof makes crucial use of atomic execution blocks which we have not included.

Birkedal et al. [5] provide an interesting related model, given by logical rela-
tions (step-indexed, Kripke, etc.) over syntactic terms as semantics. Their lan-
guage is substantially more expressive including higher-order local store, and
accounts for a type-and-effect system semantics. A more precise model could
lead to a monadic account that reproduces these results less syntactically.

Also of note are process calculi and algebraic laws concerning the structure
of programs. Hoare and van Staden [12] give such an account for concurrent
programs, unifying previous work. Their laws are much more general, parame-
terizing over the notions of sequencing programs and running programs in par-
allel. It would be interesting to discover if and how our semantics is an instance
of theirs. There is also a lot of work on semantics of “while” languages where
all information flows through the state, which support more advanced features
such as probabilistic choice [3,11,41]. Others approach the study of concurrency
through game semantics, such as Jaber and Murawski’s [15] study of the seman-
tics of a higher-order call-by-value concurrent language. Trace semantics features
in their study too, though their traces are quite different, being sequences of
player/opponent actions that incrementally transform configurations.

In the future we plan to refine the type system into a type-and-effect sys-
tem [18,20,22,29,39,40], by annotating the typing judgments with the allowed
effects. The denotations then depend on the effect annotations, with each anno-
tation having its own associated equational theory. This may allow additional
transformations that are currently beyond this model’s reach. For example, the
converse of (Sequencing) under certain syntactic and static guarantees would
enable compiler parallelism.

Atomic constructs that disallow interference from the environment are a com-
mon feature of concurrent languages. Adding such constructs may be a simple
matter, since we have a dedicated operator, yield, for allowing interference. Nev-
ertheless, in the spirit of reductionism, we leave this investigation to future work.

We would also like to see how well our approach extends to weak-memory
models. In particular, we believe that the timestamp-based operational seman-
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tics of the release-acquire memory model [19,24,26,37] is amenable to a similar
treatment by using more sophisticated traces.

Acknowledgments. We thank Andrés Goens for providing his perspective on a pre-
vious version of this paper, and the anonymous APLAS reviewers for their helpful
feedback.

References

1. Abadi, M., Plotkin, G.D.: A model of cooperative threads. Log. Methods Com-
put. Sci. 6(4) (2010)..https://doi.org/10.2168/LMCS-6(4:2)2010, https://doi.org/
10.2168/LMCS-6(4:2)2010

2. Abramsky, S.: Intensionality, definability and computation. In: Baltag, A., Smets,
S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp.
121–142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5 5

3. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. In: Jagan-
nathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2014, San Diego, CA, USA,
20–21 January 2014. pp. 113–126. ACM (2014). https://doi.org/10.1145/2535838.
2535862, https://doi.org/10.1145/2535838.2535862

4. Benton, N., Hofmann, M., Nigam, V.: Effect-dependent transformations for concur-
rent programs. In: Cheney, J., Vidal, G. (eds.) Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, 5–7 September 2016. pp. 188–201. ACM (2016). https://doi.org/
10.1145/2967973.2968602, https://doi.org/10.1145/2967973.2968602

5. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A Concurrent logical relation. In:
Cégielski, P., Durand, A. (eds.) Computer Science Logic (CSL’12) - 26th Interna-
tional Workshop/21st Annual Conference of the EACSL. Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 16, pp. 107–121. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2012). https://doi.org/10.4230/
LIPIcs.CSL.2012.107, http://drops.dagstuhl.de/opus/volltexte/2012/3667

6. Brookes, S.D.: Full abstraction for a shared-variable parallel language. Inf. Comput.
127(2), 145–163 (1996). https://doi.org/10.1006/inco.1996.0056, https://doi.org/
10.1006/inco.1996.0056

7. Castellan, S.: Weak memory models using event structures. In: Signoles, J. (ed.)
Vingt-septimes Journées Francophones des Langages Applicatifs (JFLA 2016).
Saint-Malo, France, January 2016. https://hal.inria.fr/hal-01333582

8. Fiore, M., Saville, P.: List objects with algebraic structure. In: Miller, D. (ed.)
2nd International Conference on Formal Structures for Computation and Deduc-
tion, FSCD 2017, 3–9 September 2017, Oxford, UK. LIPIcs, vol. 84, pp. 16:1–
16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/
10.4230/LIPIcs.FSCD.2017.16, https://doi.org/10.4230/LIPIcs.FSCD.2017.16

9. Forster, Y., Kammar, O., Lindley, S., Pretnar, M.: On the expressive power of user-
defined effects: effect handlers, monadic reflection, delimited control. J. Funct. Pro-
gram. 29, e15 (2019). https://doi.org/10.1017/S0956796819000121, https://doi.
org/10.1017/S0956796819000121

10. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In:
Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th ACM SIG-
PLAN international conference on Functional Programming, ICFP 2011, Tokyo,

https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.1007/978-3-319-06025-5_5
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.4230/LIPIcs.CSL.2012.107
http://drops.dagstuhl.de/opus/volltexte/2012/3667
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1006/inco.1996.0056
https://hal.inria.fr/hal-01333582
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121


22 Y. Dvir et al.

Japan, 19–21 September 2011, pp. 2–14. ACM (2011). https://doi.org/10.1145/
2034773.2034777, https://doi.org/10.1145/2034773.2034777

11. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In:
Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2011, Tokyo,
Japan, 19–21 September 2011, pp. 2–14. ACM (2011). https://doi.org/10.1145/
2034773.2034777, https://doi.org/10.1145/2034773.2034777

12. Hoare, T., van Staden, S.: The laws of programming unify process calculi. Sci.
Comput. Program. 85, 102–114 (2014). https://doi.org/10.1016/j.scico.2013.08.
012, https://doi.org/10.1016/j.scico.2013.08.012

13. Hyland, M., Levy, P.B., Plotkin, G.D., Power, J.: Combining algebraic effects with
continuations. Theor. Comput. Sci. 375(1-3), 20–40 (2007). https://doi.org/10.
1016/j.tcs.2006.12.026, https://doi.org/10.1016/j.tcs.2006.12.026

14. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor. Theor.
Comput. Sci. 357(1-3), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013,
https://doi.org/10.1016/j.tcs.2006.03.013

15. Jaber, G., Murawski, A.S.: Complete trace models of state and control. In: ESOP
2021. LNCS, vol. 12648, pp. 348–374. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72019-3 13

16. Jagadeesan, R., Jeffrey, A., Riely, J.: Pomsets with preconditions: a simple model
of relaxed memory. Proc. ACM Program. Lang. 4(OOPSLA) (nov 2020). https://
doi.org/10.1145/3428262, https://doi.org/10.1145/3428262

17. Jeffrey, A., Riely, J., Batty, M., Cooksey, S., Kaysin, I., Podkopaev, A.: The leaky
semicolon: Compositional semantic dependencies for relaxed-memory concurrency.
Proc. ACM Program. Lang. 6(POPL) (2022). https://doi.org/10.1145/3498716,
https://doi.org/10.1145/3498716

18. Jouvelot, P., Gifford, D.K.: Algebraic reconstruction of types and effects. In: Wise,
D.S. (ed.) Conference Record of the Eighteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, Orlando, Florida, USA, 21–23 January 1991.
pp. 303–310. ACM Press (1991). https://doi.org/10.1145/99583.99623, https://
doi.org/10.1145/99583.99623

19. Kaiser, J., Dang, H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for weak
memory: reasoning about release-acquire consistency in iris. In: Müller, P. (ed.)
31st European Conference on Object-Oriented Programming, ECOOP 2017, 19–
23 June 2017, Barcelona, Spain. LIPIcs, vol. 74, pp. 17:1–17:29. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ECOOP.
2017.17, https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

20. Kammar, O.: Algebraic theory of type-and-effect systems. Ph.D. thesis, University
of Edinburgh, UK (2014). http://hdl.handle.net/1842/8910

21. Kammar, O., Levy, P.B., Moss, S.K., Staton, S.: A monad for full ground refer-
ence cells. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Soci-
ety (2017). https://doi.org/10.1109/LICS.2017.8005109, https://doi.org/10.1109/
LICS.2017.8005109

22. Kammar, O., McDermott, D.: Factorisation systems for logical relations and
monadic lifting in type-and-effect system semantics. In: Staton, S. (ed.) Proceed-
ings of the Thirty-Fourth Conference on the Mathematical Foundations of Pro-
gramming Semantics, MFPS 2018, Dalhousie University, Halifax, Canada, June
6–9, 2018. Electronic Notes in Theoretical Computer Science, vol. 341, pp. 239–
260. Elsevier (2018). https://doi.org/10.1016/j.entcs.2018.11.012, https://doi.org/
10.1016/j.entcs.2018.11.012

https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1016/j.scico.2013.08.012
https://doi.org/10.1016/j.scico.2013.08.012
https://doi.org/10.1016/j.scico.2013.08.012
https://doi.org/10.1016/j.tcs.2006.12.026
https://doi.org/10.1016/j.tcs.2006.12.026
https://doi.org/10.1016/j.tcs.2006.12.026
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1007/978-3-030-72019-3_13
https://doi.org/10.1007/978-3-030-72019-3_13
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3498716
https://doi.org/10.1145/3498716
https://doi.org/10.1145/99583.99623
https://doi.org/10.1145/99583.99623
https://doi.org/10.1145/99583.99623
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
http://hdl.handle.net/1842/8910
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1016/j.entcs.2018.11.012
https://doi.org/10.1016/j.entcs.2018.11.012
https://doi.org/10.1016/j.entcs.2018.11.012


An Algebraic Theory for Shared-State Concurrency 23

23. Kammar, O., Plotkin, G.D.: Algebraic foundations for effect-dependent opti-
misations. In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, Philadelphia, Pennsylvania, USA, 22–28 January 2012, pp. 349–360.
ACM (2012). https://doi.org/10.1145/2103656.2103698, https://doi.org/10.1145/
2103656.2103698

24. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, 18–20 January 2017, pp. 175–189. ACM (2017). https://
doi.org/10.1145/3009837.3009850, https://doi.org/10.1145/3009837.3009850

25. Kavanagh, R., Brookes, S.: A denotational semantics for sparc tso. Elec-
tronic Notes in Theoretical Computer Science 336, 223–239 (2018). https://doi.
org/10.1016/j.entcs.2018.03.025, https://www.sciencedirect.com/science/article/
pii/S1571066118300288, the Thirty-third Conference on the Mathematical Foun-
dations of Programming Semantics (MFPS XXXIII)

26. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Bod́ık, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, 20–22 January 2016, pp. 649–662. ACM (2016). https://doi.
org/10.1145/2837614.2837643, https://doi.org/10.1145/2837614.2837643

27. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics
Structures in Computation, vol. 2. Springer, Dordrecht (2004). https://doi.org/
10.1007/978-94-007-0954-6

28. Linton, F.E.J.: An outline of functorial semantics. In: Eckmann, B. (ed.) Seminar
on Triples and Categorical Homology Theory. LNM, vol. 80, pp. 7–52. Springer,
Heidelberg (1969). https://doi.org/10.1007/BFb0083080

29. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Ferrante, J., Mager,
P. (eds.) Conference Record of the Fifteenth Annual ACM Symposium on Princi-
ples of Programming Languages, San Diego, California, USA, 10–13 January 1988,
pp. 47–57. ACM Press (1988). https://doi.org/10.1145/73560.73564, https://doi.
org/10.1145/73560.73564

30. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92
(1991). https://doi.org/10.1016/0890-5401(91)90052-4, https://doi.org/10.1016/
0890-5401(91)90052-4

31. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2, https://doi.org/10.1016/0304-3975(81)90112-2

32. Oles, F.J.: A Category-Theoretic Approach to the Semantics of Programming Lan-
guages. Ph.D. thesis (1983)

33. Oles, F.J.: Type algebras, functor categories, and block structure. DAIMI Report
Series (156) (1983)

34. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

35. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Cat-
egorical Struct. 11(1), 69–94 (2003). https://doi.org/10.1023/A:1023064908962,
https://doi.org/10.1023/A:1023064908962

36. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00590-9 7

https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1016/j.entcs.2018.03.025
https://www.sciencedirect.com/science/article/pii/S1571066118300288
https://www.sciencedirect.com/science/article/pii/S1571066118300288
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/BFb0083080
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7


24 Y. Dvir et al.

37. Podkopaev, A., Sergey, I., Nanevski, A.: Operational aspects of C/C++ concur-
rency. CoRR abs/1606.01400 (2016), http://arxiv.org/abs/1606.01400

38. Reynolds, J.C.: The essence of algol. In: de Bakker, J.W., van Vliet, J.C. (eds.)
Algorithmic Languages. pp. 345–372. International Symposium on Algorithmic
Languages, Amsterdam; New York: North-Holland Pub. Co. (1981)

39. Talpin, J., Jouvelot, P.: Polymorphic type, region and effect inference. J. Funct.
Program. 2(3), 245–271 (1992). https://doi.org/10.1017/S0956796800000393,
https://doi.org/10.1017/S0956796800000393

40. Talpin, J., Jouvelot, P.: The type and effect discipline. Inf. Comput. 111(2), 245–
296 (1994). https://doi.org/10.1006/inco.1994.1046, https://doi.org/10.1006/inco.
1994.1046
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Abstract. Abstract Interpretation approximates the semantics of a pro-
gram by mimicking its concrete fixpoint computation on an abstract
domain A. The abstract (post-) fixpoint computation is classically
divided into two phases: the ascending phase, using widenings as extrap-
olation operators to enforce termination, is followed by a descending
phase, using narrowings as interpolation operators, so as to mitigate the
effect of the precision losses introduced by widenings. In this paper we
propose a simple variation of this classical approach where, to more effec-
tively recover precision, we decouple the two phases: in particular, before
starting the descending phase, we replace the domain A with a more
precise abstract domain D. The correctness of the approach is justified
by casting it as an instance of the A2I framework. After demonstrating
the new technique on a simple example, we summarize the results of a
preliminary experimental evaluation, showing that it is able to obtain
significant precision improvements for several choices of the domains A
and D.

Keywords: Abstract interpretation · Static analysis · Widening ·
Narrowing

1 Introduction

Abstract interpretation [17] is a framework for designing approximate semantics,
with the aim of gathering information about programs in order to provide con-
servative/sound answers to questions about their run-time behaviors. In other
words, the purpose of abstract interpretation is to formally design automatic
program analyses by approximating program semantics for statically determin-
ing dynamic properties. The design of static analyzers consists in automatizing
the computation of such approximations, and in this case the answer can only be
partial or imprecise, due to the undecidability of program termination. Abstrac-
t/approximated semantics are computed by mimicking the monotonic (ascend-
ing) concrete semantics computation, obtained by Kleene iteration reaching fix-
point. Unfortunately, it is well known that Kleene fixpoint computation may
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not terminate. In the static analysis framework this issue has been tackled by
introducing fixpoint accelerators, namely new operators (called widenings) built
on the computational abstract domain, allowing to accelerate the fixpoint com-
putation at the price of potentially reaching a post-fixpoint, namely at the price
of losing precision in the answer. For this reason, it is common in static analysis
to design another operator (called narrowing) performing a descending path in
order to try to recover some precision by refining the reached post-fixpoint.

The precision of the result depends both on the ability of the widening oper-
ator to guess a limit of the increasing sequence, and on the information gathered
during the decreasing phase. Intuitively, the increasing sequence extrapolates the
behavior of the program from the first steps of its execution, while the decreas-
ing sequence gathers information about the end of the execution of the program
[13]. Moreover, a naive application of the classical approach may lead to an inad-
equate analysis, which is too expensive or too imprecise, meaning that there is
a strong need for mechanisms that can effectively tune the precision/efficiency
tradeoff. In order to improve this ratio, we could either improve efficiency (usu-
ally to the detriment of precision) by choosing a simpler (less precise) domain
or by changing the fixpoint construction (e.g., replacing precise abstract oper-
ators with cheaper over-approximations), or improve precision (usually to the
detriment of efficiency) by choosing a more precise/costly domain or again by
changing the fixpoint construction (clearly in the opposite direction, see tech-
niques discussed in Sect. 5).

In this work, we propose to combine these improvement approaches by choos-
ing to use different domains (with different precision degrees) depending on the
analysis phase: we use a potentially less precise domain in the fixpoint computa-
tion exploiting a widening operator for reaching a post-fixpoint in the ascending
phase, and therefore potentially sensitively losing precision, and we use a more
precise domain in the descending (narrowing) phase for trying to improve the
gain of precision of such phase. The idea is rather simple but, to the best of our
knowledge, it was never proposed before; also, since it is orthogonal with respect
to similar approaches, it can be used in combination with them (rather than as
an alternative to them). The intuition beyond the gain of precision without a
relevant loss of efficiency is based on the idea that in the descending phase we do
not need to use the more expensive operations. Such intuition is supported by
our initial experimental evaluation, showing that the proposed approach is surely
promising, being able to improve precision in a significant number of cases.

Paper Structure. Section 2 gives basics in order theory, Abstract Interpreta-
tion, and the classical approach for static analysis by Abstract Interpretation.
Section 3 presents our proposal for decoupling the ascending and descending
phases with two different abstract domains. Section 4 reports a preliminary
experimental evaluation of our approach. Section 5 discusses most related works.
Section 6 concludes.
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2 Background

Order Theory. We denote by ℘(S) the powerset of a set S. A poset 〈L,�L〉 is
a set L equipped with a partial order �L ∈ ℘(L × L), i.e., a reflexive, transitive
and anti-symmetric binary relation; in the following we will omit subscripts when
clear from context. A poset is a join semi-lattice if, for each l1, l2 ∈ L, the lub
(least upper bound) l1 � l2 belongs to L; similarly, it is a meet semi-lattice if the
glb (greatest lower bound) l1 � l2 belongs to L; when both properties hold, we
have a lattice 〈L,�,�,�〉. A lattice is complete if ∀X ⊆ L,

⊔
X and

�
X belong

to L; a complete lattice with bottom element ⊥ and top element � is denoted
〈L,�,�,�,⊥,�〉. A poset 〈L,�〉 satisfies the ascending chain condition (ACC)
iff each infinite sequence l0 � l1 � · · · � li � . . . of elements of L is not strictly
increasing, i.e., ∃k ≥ 0,∀j ≥ k : lk = lj . Dually the poset satisfies the descending
chain condition (DCC) iff each infinite sequence l0 � l1 � · · · � li � . . . of
elements of L is not strictly decreasing, that is ∃k ≥ 0,∀j ≥ k : lk = lj .

A function f : L → L on poset 〈L,�〉 is monotone if, for all l1, l2 ∈ L, l1 � l2
implies f(l1) � f(l2). We denote post(f) the set of post-fixpoints of f , i.e., those
elements x ∈ L satisfying f(x) � x; similarly, pre(f) is the set of pre-fixpoints
of f , satisfying f(x) � x; the set of fixpoints of f , satisfying f(x) = x, is thus
fix(f) = pre(f) ∩ post(f). Given a function f : L → L we recursively define the
iterates/iterations of f from x ∈ L as f0(x) = x and f i+1(x) = f(f i(x)). The
Kleene fixpoint theorem says that a continuous function f : L → L on a complete
lattice 〈L,�,�,�,⊥,�〉 has a least fixpoint lfp(f) ∈ L, which can be obtained
as the lub of the increasing sequence f0(⊥) � f1(⊥) � · · · � f i(⊥) � . . . [18].

Abstract Interpretation (AI). Abstract Interpretation [17,18] is a theory to
soundly approximate program semantics, focusing on some run-time property
of interest. In the classical setting, the concrete and the abstract semantics are
defined over two complete lattices, respectively called the concrete domain C and
the abstract domain A. A pair of monotone functions α : C → A and γ : A → C
forms a Galois Connection (GC) if ∀c ∈ C,∀a ∈ A : α(c) �A a ⇔ c �C γ(a).
If C and A are related by a GC, denoted C −−−→←−−−

α

γ
A, then an abstract function

fA : A → A is a correct approximation of a concrete function fC : C → C if and
only if ∀c ∈ C : α(fC(c)) �A fA(α(c)) or equivalently ∀a ∈ A : fC(γ(a)) �C

γ(fA(a)); the best correct approximation of fC is f �
A = (α ◦ fC ◦ γ).

Static Program Analysis via Abstract Interpretation. It is possible to represent
a program of interest as a control-flow graph (CFG for short). A CFG is a graph
〈N,E〉 such that N = {n1, n2, . . . , nm} is a finite set of nodes corresponding to
the control points of the program, and E ⊆ N × N is a finite set of edges. It is
possible to compute the CFG associated with a certain program with standard
techniques [37].

Let us denote by A the abstract domain approximating the concrete domain
C, used to analyze programs of interest. With each node n ∈ N is associ-
ated a function transformer fn : Am → A capturing the effects of the node
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int main () {
int x = 0;
while (x < 100)
if (x < 50)

x = x + 2;
else

x = x + 10;
}

(a)

=

<

= + = +

<

x1

x2

x3

x4 x5

x6

(b)

x1 = x3 = x2 x4 = x3 x5 = x3 x6 = x2

x2 = Even (x4 +Par Even) (x5 +Par Even)

(c)

Fig. 1. (a) C function example, (b) associated CFG, (c) associated system of equations
with the Par abstract domain.

n, i.e., the abstract semantics. Analyzing a given CFG C = 〈N,E〉, where
N = {n1, n2, . . . , nm} means to resolve the following system of equations1

F =
{

xi = fi(x1, x2, . . . , xm)
∣
∣ i = 1, 2, . . . ,m

}

The goal of AI-based static analysis, using an abstract domain A, is to compute
the least solution of the equation set F as the limit of a Kleene iteration on A,
i.e., xlfp(F )

�

= (xlfp(F )
1 , . . . , x

lfp(F )
m ) starting from the bottom elements of A, i.e.,

∀i ∈ [1,m]. xi = ⊥.

Example 1. Consider the C function of Fig. 1a and the corresponding CFG,
shown in Fig. 1b. We intuitively describe the analysis of this program using
the abstract domain Par [18, Example 10.1.0.3], tracking the parity of numerical
variables:

Par =
〈{⊥,�,Even,Odd},�,�,�,⊥,�〉

,

where the partial order is defined by ⊥ � x � �, for each x ∈ Par. The system of
equations is reported in Fig. 1c; Note that the equation defining xi is intuitively
describing the values that are possibly entering the corresponding node of the
CFG (also labeled xi for convenience); for instance, the right hand side of the
equation defining x2 computes the lub of the abstract values exiting from nodes
x1, x4 and x5, respectively. For space reasons, we leave to intuition the abstract
functions modeling the semantics of each CFG node (e.g., function +Par : Par ×
Par → Par modeling addition on the Par domain). The least solution for the
system is x1 = � and xi = Even for i = 2, . . . , 6. ��
1 In general, the least fixpoint on the concrete domain C is not finitely computable.

Hence, the idea is to compute an abstract fixpoint, over an abstract domain A, that
correctly approximates the concrete one.
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The ascending sequence over the system of equations F may fail to (finitely)
converge for abstract domains that do not satisfy the ACC. A converge guarantee
can be provided by widening operators, which over-approximate the least fixpoint
solution xlfp(F ) by effectively computing a post-fixpoint of F . A widening ∇ : A×
A → A is an operator such that:

– for each a1, a2 ∈ A, a1 � a1 ∇ a2 and a2 � a1 ∇ a2;
– for all ascending sequences a0 � · · · � ai+1 � . . . , the ascending sequence

x0 � · · · � xi+1 � . . . defined by x0 = a0 and xi+1 = xi ∇ ai+1 is not strictly
increasing.

In principle, widening can be applied to all equations of the system F , which
however would lead to a gross over-approximation; following [12], it is sufficient
that the widening is applied on one node in each cycle of the CFG; for instance,
in Fig. 1b we can use x3 as the one and only widening point. We denote WP ⊆ N
the set of widening points, i.e., the nodes of the CFG where widening is applied,
leading to the system of equations F∇:

{
xi = xi ∇ fi(x1, x2, . . . , xm), if i ∈ WP ;
xi = xi � fi(x1, x2, . . . , xm), otherwise.

(1)

In order to mitigate the loss of precision introduced by widenings, the ascend-
ing phase computing the post-fixpoint x∇ of F can be followed by another Kleene
iteration on the system F , starting from x∇ and descending towards a fixpoint
of F (not necessarily the least one). If the abstract domain A does not satisfy the
DCC, this descending sequence may fail to converge; a convergence guarantee
can be obtained by using a narrowing operator Δ: A × A → A, satisfying:

– for each a1, a2 ∈ A, a1 � a1 Δ a2 � a1 � a2;
– for all descending sequences a0 � · · · � ai+1 � . . . , the descending sequence

x0 � · · · � xi+1 � . . . defined by x0 = a0 and xi+1 = xi Δ ai+1 is not strictly
decreasing.

As before, the application of narrowings can be limited to WP , leading to the
system of equations FΔ used during the descending phase:

{
xi = xi Δ fi(x1, x2, . . . , xm), if i ∈ WP ;
xi = xi � fi(x1, x2, . . . , xm), otherwise.

(2)

In general, the descending sequence with narrowing will compute a post-fixpoint
xΔ of F (not necessarily a fixpoint), satisfying xΔ � x∇. A graphical repre-
sentation of the ascending and descending phases over the abstract domain A
is reported in Fig. 2. Note that a “glb-based” narrowing operator can be eas-
ily defined by computing the domain glb and forcing the descending sequence
to stop as soon as reaching a fixed, finite number k ∈ N of iterations. For this
reason, several abstract domains do not implement a proper narrowing operator.
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⊤

post(F )
x∇A

pre(F )

fix(F )

F∇

FΔ

xΔ

Fig. 2. The ascending and descending phases over abstract domain A.

Example 2. The domain of integral intervals [22] (or 1-dimension integral boxes)
is an example of complete lattice satisfying neither the ACC nor the DCC:

Itv = {⊥,�} ∪ {
[�, u]

∣
∣ �, u ∈ Z, � ≤ u

} ∪ {
[−∞, u]

∣
∣ u ∈ Z

} ∪ {
[�,+∞]

∣
∣ � ∈ Z

}
,

where ⊥ is the bottom element (denoting the empty interval), � = [−∞,+∞] is
the top element (denoting Z) and the partial order, lub and glb operators consis-
tently model the usual containment relation. The interval widening operator [22]
∇ : Itv × Itv → Itv is defined, for each x ∈ Itv, by ⊥ ∇ x = x ∇ ⊥ = x and

[�0, u0] ∇ [�1, u1] = [(�1 < �0 ? −∞ : �0), (u0 < u1 ? +∞ : u0)].

Similarly, the interval narrowing operator [22] Δ: Itv × Itv → Itv is defined, for
each x ∈ Itv, by ⊥ Δ x = x Δ ⊥ = ⊥ and

[�0, u0] Δ [�1, u1] = [(�0 = −∞ ? �1 : �0), (u0 = +∞ ? u1 : u0)].

Considering again the C function in Fig. 1a, the corresponding system of
equations for the domain Itv is shown in Fig. 3a (where +Itv : Itv × Itv → Itv
models addition on the Itv domain). The computation of the ascending and
descending sequences is shown in Fig. 3b, where in the 2nd column we have
highlighted the only widening point x3; in particular, the 4th and 6th columns
show the post-fixpoint and the fixpoint obtained at the end of the ascending and
the descending phases, respectively. ��
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x1 = x4 = x3 [ , 49]

x2 = [0, 0] (x4 +Itv [2, 2]) (x5 +Itv [10, 10]) x5 = x3 [50,+ ]

x3 = x2 [ , 99] x6 = x2 [100,+ ]

(a)

ascending phase iter descending phase iter
N 1st 2nd (= xItv) 1st 2nd (= xΔ

Itv)
x1

x2 [0, 0] [0,+ ] [0,+ ] [0, 109]
x3 [0, 0] [0,+ ] [0, 99] [0, 99]
x4 [0, 0] [0, 49] [0, 49] [0, 49]
x5 [50,+ ] [50, 99] [50, 99]
x6 [100,+ ] [100,+ ] [100, 109]

(b)

Fig. 3. (a) Equations for CFG in Fig. 1b using Itv, (b) interval results.

Powerset Domains. Many abstract domains (e.g., numerical domains whose ele-
ments are convex sets) are unable to precisely describe disjunctive information,
thereby incurring significant precision losses whenever the abstract semantic con-
struction needs to merge different control flow paths. To avoid these losses, it is
possible to lift the domain using a disjunctive domain refinement operator [18].
In the following we will consider the finite powerset [6] of an abstract domain A,
which is the join-semilattice Setfn(A) = 〈℘fn(A),�fn,�fn,⊥fn〉, where:

– the carrier ℘fn(A) is the set of the finite and non-redundant subsets of A (an
element a1 ∈ A is redundant in S ⊆ A iff a1 = ⊥A or ∃a2 ∈ S . a1 �A a2);

– the partial order S1 �fn S2 is defined by ∀a1 ∈ S1,∃a2 ∈ S2 . a1 �A a2;
– the (binary) least upper bound S1 �fn S2 is computed by removing the redun-

dant elements from the set union S1 ∪ S2;
– the bottom element is ⊥fn = ∅.

For space reasons we omit a more thorough discussion of powerset domains
(e.g., the lifting of the abstract semantic operators defined on A), referring the
interested reader to [6,18].

3 Decoupling the Ascending and Descending Phases

In the previous section we have recalled the classical approach used in static
analysis based on abstract interpretation, which can be summarized as follows:
(a) fix an abstract domain A such that C −−−→←−−−

α

γ
A and a corresponding, correct

system of abstract equations FA; (b) approximate the concrete semantics by
computing a post-fixpoint of FA in the ascending phase (with widening); (c)
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FΔ
xΔ

⊤

⊥

x∇

fix(F )

F∇

⊤

⊥

γ ↑↓ (x∇)

fix(F )

FΔ

xΔ

post(F ) post(F )

pre(F ) pre(F )

Fig. 4. The ascending and descending phases over A and D, respectively.

improve the result in the descending phase (with narrowing). What is worth
noting is that the two phases (b) and (c) are computed on the same domain A.

Moving from the observation that the only goal of the descending phase is to
improve precision, we propose to decouple it from the ascending phase: that is, we
compute the descending sequence on a different, more precise abstract domain,
so as to increase the chances of a significant precision improvement. Clearly, the
adoption of a more precise domain likely incurs some penalty in terms of the
efficiency of the analysis; however, since in our proposal this domain is only used
in the descending phase, it should be simpler to achieve a good tradeoff between
precision and efficiency, because the descending phase can be stopped after any
number of iterations and still provide a correct result.

In the following we will denote A and D the abstract domains used in the
ascending and descending phases, respectively, and use the notation A ↑↓ D to
refer to this decoupled approach. The correctness/precision relation between
the concrete domain and the two abstract domains is formalized by requiring
C −−−−→←−−−−

αD

γD
D −−−−−→←−−−−−

αA↑↓D

γA↑↓D

A; we also require that the concretization function γA↑↓D is
effectively computable.

Our decoupled approach is graphically represented in Fig. 4. The (concrete)
system of equations FC is correctly approximated on domain D by the (abstract)
system of equations FD, which is further approximated on domain A by the sys-
tem of equations FA. We first compute a post-fixpoint x∇

A ∈ A using the system
of equations F∇

A (with widening); instead of descending on the same abstract
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domain, as done in Sect. 2, we transfer the post-fixpoint x∇
A to the more precise

domain D, using the concretization function γA↑↓D (which is computable); hence,
the descending phase will use the system of equations FΔ

D (with narrowing)
on domain D, starting from γA↑↓D(x∇

A ) and obtaining an improved post-fixpoint
xΔ
D ∈ D.

The next lemma states that the post-fixpoint x∇
A ∈ A corresponds to a post-

fixpoint for FD, necessary for starting the descending phase on D.

Lemma 1. Consider D −−−−−→←−−−−−
αA↑↓D

γA↑↓D

A and let FA : A → A be a correct approxima-
tion of FD : D → D. Then,

x∇
A ∈ post(FA) =⇒ γA↑↓D(x∇

A ) ∈ post(FD).

It would be desirable to prove that the final result xΔ
D obtained when using

the decoupled approach A ↑↓ D systematically improves on the final result xΔ
A

obtained by the classical approach, i.e., xΔ
D �D γA↑↓D(xΔ

A ). However, in general
this property does not hold, due to the use of different, unrelated, possibly non-
monotonic narrowing operators on the domains A and D. We can prove the
desired result provided we force both domains to use the glb-based narrowing
(with the same threshold value).

Proposition 1. Consider D −−−−−→←−−−−−
αA↑↓D

γA↑↓D

A and let FA : A → A be a correct approx-

imation of FD : D → D; let also x∇
A ∈ post(FA). Then, for each k ∈ N,

F k
D(γA↑↓D(x∇

A )) �D γA↑↓D(F k
A (x∇

A )).

Note that Lemma 1 and Proposition 1 are well-known results. Intuitively,
the correctness of the decoupled approach is easily justified by viewing it as
an instance of the A2I framework [20]: starting from a classical analysis using
the more precise domain D, we further abstract part of its computation (the
ascending phase), approximating it on domain A.

On the Galois Connection Requirement. When formalizing our decoupled pro-
posal, we have assumed that all the considered domains (concrete, ascending and
descending) are related by GCs: this corresponds to an ideal situation where for
each element x of the more precise domain (resp., each semantic transformer f)
we can identify the corresponding best correct approximation on the less precise
domain α(x) (resp., α ◦ f ◦ γ). However, there are well-known abstract domains
(e.g., the domain convex polyhedra [21] approximating sets of reals or the deter-
ministic finite-state automata domain [4] approximating sets of strings) that
cannot be related to the concrete domain using a GC. This is not a real concern
because, as discussed at length in [19], one can adopt a slightly weaker theoret-
ical framework and still ensure the correctness of the analysis. As a matter of
fact, in the experimental evaluation we will implicitly relax the GC assumption.
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transfer descending phase
N γItv ISet(xItv) 1st iter 2nd iter
x1 Itv Itv Itv

x2 [0,+ ] [0, 0], [2, 51], [60,+ ] [0, 0], [2, 2], [4, 51], [60, 61], [70, 109]
x3 [0,+ ] [0, 0], [2, 51], [60, 99] [0, 0], [2, 2], [4, 51], [60, 61], [70, 99]
x4 [0, 49] [0, 0], [2, 49] [0, 0], [2, 2], [4, 49]
x5 [50, 99] [50, 51], [60, 99] [50, 51], [60, 61], [70, 99]
x6 [100,+ ] [100,+ ] [100, 109]

Fig. 5. Computing the descending phase on Itv↑↓ISet.

Example 3. We now reconsider the C program in Fig. 1a and show how the
decoupled approach can be used to improve on the results computed by the
classical analysis on domain Itv (see Example 2 and Fig. 3b). To this end, while
keeping the domain Itv for the ascending phase, we will compute the descending
phase on the powerset domain ISet = Setfn(Itv), i.e., we will adopt the combina-
tion Itv↑↓ISet.

Before starting the descending phase, the post-fixpoint x∇
Itv computed in the

ascending phase using Itv (see the 4th column of Fig. 3b) is transferred to ISet
using γItv↑↓ISet : Itv → ISet, obtaining the (singleton) sets of intervals shown in
the 2nd column of Fig. 5. Then the descending phase on ISet is started: note that
we use the glb-based narrowing, with a threshold value k = 2 on the number of
iterations; the results computed by the two iterations are shown in the 3rd and
4th columns of Fig. 5.

It is now possible to perform a precision comparison of the results obtained
on domain Itv using the classical approach (last column in Fig. 3b) with respect
to the results obtained with the Itv↑↓ISet combination (4th column of Fig. 5): for
convenience, in the last column we show a checkmark (�) on the CFG nodes
where we actually obtain a precision improvement. Note that the post-fixpoint
computed on ISet is not a fixpoint: hence, the precision could be refined further
by increasing the threshold value k ∈ N. ��

4 Experimental Evaluation

In order to obtain a preliminary experimental evaluation of the precision gains
resulting from the proposed analysis technique, we have modified the open
source static analysis tool PAGAI [32] to allow for decoupling the ascending
and descending iteration phases; in particular, we have added program options
to select a different abstract domain for the descending phase, as well as to select
a threshold value for the number of descending iterations (this threshold is set
to 3).2 In our experiments we configured PAGAI to perform a simple static anal-
ysis: hence, we disregard more sophisticated approaches, such as path focusing,
2 By design, PAGAI does not use proper narrowing operators to enforce the termina-

tion of the decreasing sequence; rather, it stops when the iteration count reaches the
threshold value (or earlier, if a fixpoint is detected).
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and we disabled those LLVM bitcode instrumentation passes that heavily modify
the CFG in order to potentially detect overflows and other runtime errors.

PAGAI is interfaced with the Apron library [33], which provides several
numeric domains, among which boxes [17] (Box), octagons [35] (Oct) and convex
polyhedra [21] (Pol); these non-disjunctive domains all implement the corre-
sponding “standard” widening operator. We extended Apron interface by adding
a modified version of the PPLite library [10] which, besides its enhanced imple-
mentation of the domain of convex polyhedra [7,8], also includes a prototype
implementation of the finite powerset PSet = Setfn(Pol) of convex polyhedra [6];
since this prototype is not (yet) provided with a widening operator, it can only
be used in the descending phase of the analysis. Note that PAGAI features a
variant analysis technique that is meant to compute disjunctive invariants, but
this would yield an analysis which is quite different from the direct adoption of
a powerset domain; for instance, one would be forced to choose in advance the
maximal number of disjuncts that are allowed.

The experimental evaluation considers 35C source files distributed with
PAGAI, which are variants of benchmarks taken from the SNU real-time bench-
mark suite for worst-case execution time analysis. PAGAI can be configured to
perform a precision comparison among two different abstract domains (DOM1

and DOM2): in this case, the analyzer records the invariant properties computed
by the two domains for each widening point (WP); then it compares them and
provides a final report made of four numbers, counting the widening points on
which the invariant computed by the first domain is, respectively, equivalent
(EQ), stronger (LT), weaker (GT) and uncomparable (UN) with respect to the
invariant computed by the second domain. The results of the precision compar-
isons have been summarized in Tables 1 and 2; note that, for readability, the
tables show the percentages of widening points, rather than absolute values.3

Table 1. Precision comparison for non-disjunctive domains.

% WP
DOM1 DOM2 EQ LT GT UN ΔEQ

Box Oct 66.5 0.7 32.4 0.4
Box Box↑↓Oct 83.6 0.4 16.0 0.0
Box↑↓Oct Oct 73.0 0.7 26.3 0.0 6.4
Box Pol 53.7 3.6 37.0 5.7
Box Box↑↓Pol 76.5 0.4 23.1 0.0
Box↑↓Pol Pol 59.8 5.7 31.3 3.2 6.0
Oct Pol 69.4 6.8 21.4 2.5
Oct Oct↑↓Pol 87.2 0.0 12.8 0.0
Oct↑↓Pol Pol 72.2 8.2 18.5 1.1 2.8

3 The total number of widening points is 281.
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Consider first Table 1, which is meant to evaluate the effectiveness of the new
approach when both abstract domains are non-disjunctive. Note that the rows
in the table are divided in three groups (three rows per group); let us focus on
the first group, which is evaluating the precision improvements obtained when
using the abstract domain Box↑↓Oct. The first row in the group provides the
baseline for the precision comparison: in particular, the value in column EQ
(highlighted in boldface) informs us that the domain Box achieves the same
precision as Oct on 66.5% of the widening points; this means that only the
remaining 33.5% of widening points are further improvable. The second row in
the group, in particular the value in column GT, shows us that Box↑↓Oct is able
to improve the precision of Box on 16% of all widening points. The third row
in the group, in particular the value in column EQ, informs us that Box↑↓Oct
is able to achieve the same precision of Oct on 73% of the widening points: this
corresponds to an increase by 6.4% (reported in the column labeled ΔEQ) with
respect to the baseline EQ value (in the first row).

It is worth stressing that the percentages highlighted in the second and third
row of the group are computed with respect to the total number of widening
points, which might mislead the reader towards an underestimation of the effec-
tiveness of the approach. One should observe that a precision gain on 16.0%
of all the widening points corresponds to a precision gain on almost one half
(16.0/33.5 = 47.9%) of the improvable widening points. The same reasoning
applies to the 6.4% value of ΔEQ, which corresponds to almost 20% of the
improvable widening points.

Similar observations can be derived from the second and third group of rows
in Table 1, where we evaluate the abstract domain combinations Box↑↓Pol and
Oct↑↓Pol, respectively. For instance, the third group of rows in Table 1 informs
us that Oct↑↓Pol is able to improve precision on 12.8% of all the widening points
with respect to Oct and that it increases by 2.8% the percentage of widening
points on which the same precision as Pol is obtained.

Table 2. Precision comparison when using PSet in the descending phase.

% WP Time (s)
DOM1 DOM2 EQ LT GT UN DOM1 DOM2

Box Box↑↓PSet 52.3 0.4 47.3 0.0 6.20 6.76
Oct Oct↑↓PSet 56.2 0.0 43.8 0.0 12.70 8.93
Pol Pol↑↓PSet 64.8 0.0 35.2 0.0 7.03 7.53

In Table 2 we provide the summary for the precision comparisons between the
three non-disjunctive domains Box, Oct and Pol and the corresponding enhanced
combinations using the finite powerset of polyhedra PSet in the descending
phase. Note that, in contrast with what we did in Table 1, in this case we cannot
provide a baseline comparison with PSet because, as said before, this domain is
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missing a widening operator and hence cannot be used in the ascending phase
of the analysis. The use of a powerset domain in the descending phase is of par-
ticular interest because it should be able to avoid the over-approximations that
are incurred by the non-disjunctive domains when merging control flow paths.
In fact, the values in column GT show us that the number of widening points
where a precision improvement is obtained is significantly higher than those of
Table 1, ranging from 35.2% to 47.3%. In summary, the results in Tables 1 and 2
provide an evidence that the adoption of a more precise abstract domain in the
descending phase of the analysis is able to significantly improve precision. Intu-
itively, this is due to the fact that, by changing the abstract domain, we are
potentially improving the precision of all the abstract semantic operators used
in the descending phase (i.e., all operators except widening).

Note that we do not perform a proper efficiency comparison, because the
considered benchmark suite seems inadequate to the purpose; also, PAGAI is
a static analyzer meant to simplify experiments, rather than achieve maximum
efficiency. Hence, we merely report in the last two columns of Table 2 the overall
time spent on the 35 tests. A meaningful efficiency comparison will be the subject
of future work.

A Note on the Relative Precision of Abstract Domains. A non-expert but atten-
tive reader may be wondering how it is possible that the more precise abstract
domain Pol can sometimes compute weaker invariants when compared to the less
precise domain Box (more generally, why column LT is not always zero). A first
reason is that widening operators are not monotonic; another reason is that the
two domains may be adopting different approximation strategies for some of the
semantic operators (e.g., when modeling non-linear tests/assignments and when
taking into account the integrality of program variables).

A Technical Note on the Precision Comparison. When comparing the invari-
ants computed by different abstract domains, PAGAI calls a third-party model
checking tool based on SMT (Satisfiability Modulo Theory), which also takes
into account the integrality of program variables. Hence, when comparing the
abstract elements of different domains, we are not counting those “dummy” pre-
cision improvements that are simply induced by the real relaxation step. As a
concrete example, when x is an integral variable, the Box value x ∈ [0, 2], the
Pol value {0 ≤ x ≤ 2} and the PSet value { {x = 0}, {x = 1}, {x = 2} } are all
considered equivalent (note that the last two would not be considered equivalent
when compared in the more precise domain PSet).

4.1 A Detailed Example

In Fig. 6 we show a simplified version of one of the tests distributed with PAGAI;
assuming N > 1, function fib(N) computes the (N + 1)-th element of the
Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . . In Table 3 we show the abstract values
computed for the one and only widening point (whose position in the code is
highlighted using a comment), first with the classical Box domain and then
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int fib(int N) {
int P = 0, F = 1;
for (int K = 2; K < N; ++K) {

/* widening point */
int tmp = F;
F += P;
P = tmp;

}
return F;

}

int main () { return fib(7); }

Fig. 6. A simplified version of fibcall.c

using the Box↑↓PSet combination, i.e., using the finite powerset of polyhedra in
the descending phase. For this example, the threshold value for the number of
downward iterations is set to 10.

When using the Box domain, the ascending phase ends on the 4th iteration:
due to the use of widenings, the computed post-fixpoint has no upper bound
for variable K; the upper bound 6 is easily recovered in the first iteration of
the descending phase, which is then detected to be an abstract fixpoint on Box.
When using the Box↑↓PSet combination, the ascending phase is computed exactly
as before but, before starting the descending phase, the post-fixpoint on Box is
transferred to the PSet domain using the concretization function γ : Box → PSet,
obtaining a singleton set of polyhedra (see row labeled ‘dsc/0’). Then the analysis
proceeds by computing the descending iterates using the more precise domain
PSet; the descending sequence is able to improve precision by computing several
disjuncts, detecting the fixpoint on the 6th downward iteration.

It is worth stressing that, in this specific example, the descending sequence
is able to reach a fixpoint on PSet only because function fib is called with a
constant argument (N = 7). If instead the value of the argument was unknown,
the descending sequence on PSet would be non-stabilizing, generating a new
disjunct at each iteration. This is not a real issue because, as we already said, once
started the descending phase the static analysis can be stopped at any iteration
and still preserve correctness; a precision improvement with respect to the Box
decreasing sequence is obtained even when computing a single downward iterate.
Note that, for this detailed example, we have chosen the domain combination
Box↑↓PSet and the constant value N = 7 merely for exposition purposes, since
the computed abstract values turn out to be simpler. For instance, if using the
combination Box↑↓Pol and stopping after the 3rd downward iteration, we would
obtain as post-fixpoint the following abstract value:

{2 ≤ K ≤ 6, 3K − 3P + 2F ≥ 8, 7K − 7P − 13F ≤ 1, K + 12P − 8F ≤ 7,

K + 4P − 4F ≤ 3, 3K − 16P + 8F ≤ 14, 3K − 6P − 2F ≤ 4}.
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Table 3. Abstract values computed using Box and Box↑↓PSet.

Domain Phase/Iter Abstract value

Box asc/1 P ∈ [0, 0], F ∈ [1, 1], K ∈ [2, 2]
Box asc/2 P ∈ [0,+∞], F ∈ [1, 1], K ∈ [2,+∞]
Box asc/3 P ∈ [0,+∞], F ∈ [1,+∞], K ∈ [2,+∞]
Box asc/4 Same value (detected post-fixpoint in Box)
Box dsc/1 P ∈ [0,+∞], F ∈ [1,+∞], K ∈ [2, 6]
Box dsc/2 Same value (detected fixpoint in Box)
PSet dsc/0 { {P ≥ 0, F ≥ 1, K ≥ 2} }
PSet dsc/1 { {P = 0, F = 1, K = 2}, {P ≥ 1, F ≥ P, 3 ≤ K ≤ 6} }
PSet dsc/2 { {P = 0, F = 1, K = 2}, {P = 1, F = 1, K = 3},

{P + 1 ≤ F ≤ 2P, 4 ≤ K ≤ 6} }
PSet dsc/3 { {P = 0, F = 1, K = 2}, {P = 1, F = 1, K = 3},

{P = 1, F = 2, K = 4}, {3P ≤ 2F, F ≤ 2P − 1, 5 ≤ K ≤ 6} }
PSet dsc/4 { {P = 0, F = 1, K = 2}, {P = 1, F = 1, K = 3},

{P = 1, F = 2, K = 4}, {P = 2, F = 3, K = 5},
{3P + 1 ≤ 2F, 3F ≤ 5P, K = 6} }

PSet dsc/5 { {P = 0, F = 1, K = 2}, {P = 1, F = 1, K = 3},
{P = 1, F = 2, K = 4}, {P = 2, F = 3, K = 5},
{P = 3, F = 5, K = 6} }

PSet dsc/6 Same value (detected fixpoint in PSet)

5 Related Work

Widening operators are quite often necessary to enforce the stabilization of the
ascending iteration sequence. Sometimes they are used even in abstract domains
having no infinite ascending chains, to accelerate convergence, rather than enforc-
ing it. In restricted cases, the use of widenings can be avoided even though the
domain has infinite ascending chains: sometimes it is possible to apply fixpoint
acceleration techniques [25] or strategy/policy iteration [23,24] so as to compute
the exact abstract fixpoint.

When widening operators are actually used, they also are one of the main
sources of imprecision for the static analysis. As a consequence, many techniques
try to mitigate the corresponding precision loss: [31] proposes the widening up-to
technique, which tries to preserve precision by using a fixed set of constraints,
used as widening hints; a similar approach (widening with thresholds) is used
in [11]; in [5] a framework is proposed to improve the precision of any given
widening operator using several heuristics, while still guaranteeing termination;
other generic techniques include widening with landmarks [38], lookahead widen-
ing [26], guided static analysis [27], and stratified widening [36]. Note that all of
the approaches above focus on the ascending sequence and hence are in principle
orthogonal with respect to (i.e., they can be combined with) our proposal.
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The computation of the descending sequence with narrowing is just another
technique (as a matter of fact, the very first one proposed in the literature) to
mitigate the imprecision of widenings. However, narrowings have received fewer
attention,4 and it is often believed that the descending sequence can hardly
improve precision after a few iterations. Such a belief is probably justified when
considering abstract domains whose elements are expressible as template poly-
hedra. In particular, for the case of template polyhedra with integral bounds
(including integral boxes and octagons), [1] first shows that the abstract join
operation can be safely replaced by its left strict variant; then they prove that,
when using this join operator, the computed descending sequence cannot be infi-
nite. However, as witnessed by the fibcall.c example shown in Fig. 6, when
adopting more precise domains the descending sequence can improve the preci-
sion of the analysis well beyond the first few iterations. This seems to be the
case, in particular, for domains such as the finite powerset of polyhedra.

[2,3] propose a technique to intertwine the computation of widenings and
narrowing (i.e., the computation of ascending and descending chains) during the
analysis, aiming at improving the precision of the post-fixpoint computed when
the CFG has nested loops. [13,29] propose a technique to improve the preci-
sion of the analysis by restarting, possibly several times, the abstract (ascending
and descending) iteration sequence from a perturbation of the computed post-
fixpoint. In the proposals recalled above the abstract domain is fixed during the
runs of the analysis, i.e., the same domain is used in the ascending and descend-
ing iteration phases; hence, once again, these approaches are orthogonal with
respect to the proposal of this paper. We plan to better investigate the potential
synergies arising by integrating the intertwining of widening and narrowing of [3]
(implemented for instance in IKOS [14] and SeaHorn [28]) with our decoupling
of the ascending and descending phases: in practice, for the combination A↑↓D,
besides using the concretization function γ : A → D to transfer the ascending
post-fixpoint to domain D (as in the current proposal), we will also be using
the abstraction function α : D → A to transfer back the descending post-fixpoint
whenever restarting the ascending phase on A.

As mentioned previously, a formal justification for the correctness of our
proposal is easily obtained by casting it as a meta-abstract interpretation (the
so-called A2I framework [20]). The pre-analysis of the CFG proposed in [12] to
reduce the number widening points can be interpreted as a very early instance
of the offline A2I approach. More recently, [34] propose an offline pre-analysis
to tailor the configuration of the static analysis tool to the specific program
being analyzed. Online (i.e., dynamically computed) meta-analyses include, for
instance, variable partitioning techniques [30,39] and the optimized implemen-
tation of semantic operators using boxed polyhedra [9]. While there certainly are
static analysis tools that perform a non-uniform analysis (i.e., they use different
abstract domains for different portions of the program being analyzed), to the
best of our knowledge our approach is the first example of an analysis where the

4 Probably, this is due to the fact that the abstract domain glb operator implements
a correct narrowing as soon as we can enforce a finite number of applications.
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whole abstract domain (and not just one of its operators) is changed during the
analysis of a single portion of code.

6 Conclusion

In this paper we have proposed a novel yet simple variation of the typical app-
roach used in static analysis by abstract interpretation, where we decouple the
ascending and descending phases of the abstract semantics computation. We
use an abstract domain combination denoted A↑↓D, meaning that the ascending
phase uses an (ascending) abstract domain A, while the descending phase uses
a strictly more precise (descending) abstract domain D. We have implemented
our approach by extending the static analysis tool PAGAI and studied its effec-
tiveness on several, different choices for A and D of classical numerical abstract
domains, including boxes, octagons, convex polyhedra and sets of polyhedra.
Our preliminary experimental results show that decoupling the ascending and
descending phases in A↑↓D allows to obtain significant precision improvements
when compared with a classical static analysis computing on A. In particular,
the choice of a disjunctive domain for the descending phase seems promising.

Even though this preliminary experimental evaluation is not adequate for
assessing the impact on efficiency (in particular, scalability) of the proposed
approach, we conjecture that the idea of using a more precise domain D only
in the descending phase naturally leads to a more easily tunable efficiency/-
precision tradeoff. We would also like to stress that our approach is not really
meant to be used uniformly on all the code being analyzed; rather, the idea is
to selectively enable it on those portions of the program where a precision gain
would be desirable, but scalability issues likely prevent to perform the whole
analysis using the more precise (and usually less efficient) domain D. As a con-
sequence, an interesting problem that will be studied in future work is how to
automatically identify those parts of the program where the decoupled approach
is going to be more helpful. In particular, we plan to investigate the effectiveness
of simple heuristics (e.g., suitable metrics on the CFG of a function) as well as
more sophisticated approaches possibly based on machine learning techniques.
Going even further, we could not only select where to enable the more concrete
descending domain D, but also drive the choice of the descending domain D.
In particular, we can observe that precision of static analysis is an intensional
property, namely it depends on the way the program is written [15,16]. This
implies that, we can drive the choice of the descending domain depending on the
syntactic characteristics of expressions (guards and assignments) that, in the
program, we effectively aim to analyze, since precisely these expressions are the
program elements determining the precision of the analyzer [16].

By studying the results of the experimental evaluation, one can also observe
that, in a high percentage of cases, the analysis with A ↑↓ D is able to produce
the same analysis results of the more precise domain D (e.g., Box ↑↓ Oct obtains
the same results of Oct in 73% of the widening points for the considered bench-
marks). This suggests an alternative usage of the decoupled approach, starting
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from rather different motivations: instead of improving the precision of a classical
analysis on A using the more precise combination A ↑↓ D (as discussed above),
one may try to improve the efficiency of a classical analysis on D by adopting
the less precise combination A ↑↓ D. In such a context, one would be interested
in identifying those portions of the program where the decoupled approach is
anyway as precise as the classical approach using D; once again, from a practical
point of view, this problem can be addressed using heuristics and/or machine
learning techniques. The same problem can also be addressed from a more theo-
retical point of view, leading to the following research question: “For a program
P and an abstract domain D, which is the less precise domain A such that the
decoupled approach A ↑↓ D yields the same results of D on P?”
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Abstract. Region-based type systems are a powerful tool for various
kinds of program analysis. We introduce a new inference algorithm for
region types based on an abstract notion of environment transformation.
It analyzes the code of a method only once, even when there are multi-
ple invocations of the method of different region types in the program.
Elements of such an abstract transformation are essentially constraints
for equality and subtyping that capture flow information of the program.
In particular, we work with access graphs in the definition of abstract
transformations to guarantee the termination of the inference algorithm,
because they provide a finite representation of field access paths.

Keywords: Program analysis · Region type · Type inference ·
Environment transformation · Type constraint · Featherweight Java

1 Introduction

Programs typically make extensive use of libraries. Analyzing a program thus
often involves analysis of big libraries which can be heavy and expensive. The
situation gets worse for those analyses where multiple invocations of the same
library method requires to re-analyze the library. Therefore, it is significant for
analyses to be compositional, that is, the analysis result of a program can be
computed from the results of its components. Once a library has been analyzed,
the result can be directly used to analyze programs that use the library. This
work aims at making region type inference compositional.

Region-based type systems have been illustrated to be a powerful tool for e.g.
memory management [7,8], pointer analysis and taint analysis [5,14,15]. The
usage of regions in effect-and-type systems can improve the precision of analysis
of trace properties [10,11]. The idea of these type-based analysis approaches are
to infer the type of a program which allows one to verify if the program satisfies
certain properties. However, the type inference algorithms for the region type
systems for Featherweight Java from the previous work [5,10,11,14] are not
compositional. The type of a method is inferred from the ones of its arguments.
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If the method is called with arguments of different types, its code is analyzed
multiple times, one for each invocation.

To avoid redundant analysis, we introduce a new inference algorithm based
on an abstract notion of environment transformation. The idea is to summarize
the flow information of the program using an abstract transformation. Then we
derive the type of a method by applying its abstract transformation to the types
of its arguments. When analyzing some new code which invokes some methods
that have been analyzed, we can use the abstract transformations computed in
the previous round of analysis, rather than re-analyzing the code of the methods
as in the previous work [5,10,11,14]. We now explain the idea in more detail.

Region Types and Typing Environments. We work with the region type system of
Beringer et al. [5] for Featherweight Java [16]. But our approach can be adapted
for other type systems. In our type system, region types represent some proper-
ties of values. For example, we consider a region CreatedAt(�) for references to
objects that were created in the position with label �. One can think of the label
� as a line number in the source code. This region enables us to track where in
the program an object originates. We allow typing environments to carry field
typing. For example, the environment

E = (x : CreatedAt(�1), CreatedAt(�1).f : CreatedAt(�2))

means that x points to an object which is created at position �1 and the field f
of any object created at �1 is an object created at �2.

Environment Transformations. Inferring region types is essentially a flow analy-
sis. The execution of a program may change the types of its variables and fields.
Thus we want to assign it an environment transformation that captures how the
types are updated in the program. For example, the program

y = x.f ;
x = new�3 C();

can be assigned the transformation

[y :�→ x.f, x :�→ CreatedAt(�3)].

It updates the environment E to

(x : CreatedAt(�3), y : CreatedAt(�2), CreatedAt(�1).f : CreatedAt(�2)).

Note that the substitutions are performed simultaneously. If the program returns
the variable x, then we look it up in the above updated environment and conclude
that the program has return type CreatedAt(�3), meaning that it returns an
object created at position �3.
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Field Access Graphs. Directly using field access paths like x.f in environments
as above is problematic, because the lengths of access paths may be unbounded.
The computation of environment transformations involving such access paths
may not terminate. For example, consider a class of linked lists with a field
next : Node pointing to the next node. The following method returns the last
node of a list.

Node last() {
if (next == null) {return this; }
else {return next.last(); }

}
Its return type can be the same as the type of variable this, or the types of
the paths this.next, this.next.next and so on, resulting in an infinite set of
access paths. To solve this, we work with access graphs which provide a finite
representation of access paths [18,28]. For example, the Node class has three
access graphs to represent all its access paths. The return type of last is then
computed via the set containing these three graphs.

Field Update and Constraints. We work with weak update for field typing as
in [5]: If a field f of some object is assigned a value of type B, and in another
occasion it is assigned a value of type C, then the field should have a type
containing both B and C. Therefore, for an assignment statement like y.f = x,
we assign it a constraint y.f :≥ x, meaning that the type of the field f of any
object of the type of y should be greater than or equal to the type of x.

Abstract Transformations. With the above ingredients, we introduce a notion
of abstract transformation. An abstract transformation consists of assignments
x :�→ u and constraints κ :≥ v. The value such as u, v is a formal disjunction of
some atoms. An atom is a variable, a type or a field graph following a variable
or a type. The key κ is a non-empty graph representing access paths. To cap-
ture how types are updated in a program, we define the following operations on
abstract transformations. We instantiate an abstract transformation to an end-
ofunction on typing environments. It computes the types of variables and fields
of a program with a given initial typing. We define the composition of abstract
transformations to model type updates in a statement followed by another. We
also define the join of abstract transformations to tackle conditional branches.

Type Inference. Suppose we have a table T assigning an abstract transformation
to each method of a program. Then we can compute an abstract transformation
for any expression e of the program by induction on e. For example, when e is an
invocation of a method, we lookup the table T to get the abstract transformation;
and when e is a conditional expression, we join the abstract transformations of
its branches. For any well-typed program, we have a fixed-point algorithm to
compute such a table T for it. To infer the type of a method, we find its abstract
transformation from T , feed it with the argument types, and then get the type
of the return variable from the resulting typing environment.
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Related Work. Constraint-based analysis is a common technique for type
inference with a rich history [1–3,21,22,29–31]. It may be divided into two main
phases. The first phase is to generate constraints by traversing the program. To
improve the efficiency of type inference, some simplification may be performed
on the generated constraints. Our computation of the table T of abstract trans-
formations corresponds to constraint generation, where constraints are simplified
by the composition operation of abstract transformations. The second phase is to
solve the generated constraints. There are many different constraint solvers. In
our approach, we instantiate the abstract transformations in T to infer the type
of the program, which corresponds to constraint solving. Therefore, our approach
is essentially a constraint-based type inference algorithm. But it departs from
the existing work in the following aspects. We make use of constraints to infer
region information of the program rather than implementation types (i.e., sets
of classes) [1,22,31]. Moreover, we work with access graphs for the constraint
language to guarantee the termination of our inference algorithm, rather than
requiring an additional termination test [29,31].

Our approach is also closely related to the framework for Interprocedural
Distributive Environments (IDE) of Sagiv et al. [25]. The main idea of the IDE
framework is to reduce a program-analysis problem to a pure graph-reachability
problem. A user defines a set of environment transformers, that is, endofunc-
tions on environments describing the effect of a statement, and then uses an
IDE solver such as Heros [6,23] to compute analysis results for the entire pro-
gram. In particular, IDE requires environment transformers to be distributive:
transforming the join of any environments gives the same result of joining the
transformed environments. We attempted to use IDE to infer region types, but
the environment transformer for statement such as x = y.f is not distributive,
because it needs to access the input environment multiple times in order to get
the type of y.f . This failed attempt motivated us to develop a symbolic repre-
sentation of environment transformers for type inference, resulting in our notion
of abstract transformation.

2 Background

We briefly recall the definitions of Featherweight Java and access graphs.

2.1 Featherweight Java

We work with a variant of Featherweight Java (FJ) using the formulation of [10].
It extends FJ [16] with field updates, and has primitive if- and let-expressions for
convenience. In the presence of field updates, we omit constructors for simplicity.

The syntax of the language uses four kinds of names.

variables: x, y ∈ Var classes: C,D ∈ Cls
fields: f ∈ Fld methods: m ∈ Mtd
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Program expressions are defined as follows:

Expr � e ::= x | let x = e1 in e2 | if x = y then e1 else e2

| null | new� C | (C) e | xC .m(ȳ) | xC .f | xC .f := y

The expression new� C creates a new object of class C with all fields initiated
to null. It is annotated with a label � ∈ Pos. We use labels only to distinguish
different occurrences of new in a program, since our type system will track where
objects were created. In a few expressions we have added type annotations and
write xC for a variable of class C. They will be needed when looking up in the
class table. This is simpler than working with typed variable declarations, since
we do not need to find the declarations in order to get the type of a variable.
We sometimes omit annotations when they are not needed.

We assume three distinguished formal elements: Object, NullType ∈ Cls and
this ∈ Var . The NullType class plays the role of the type of null from the Java
language specification [13, §4]. It may not be used in programs, i.e. we require
C �= NullType in create expression new� C and casting expression (C) e. When
x is not a free variable of e2, we may write e1; e2 rather than let x = e1 in e2.

An FJ program (≺,fields ,methods,mtable) consists of

– a subtyping relation ≺ ∈ Pfin(Cls × Cls) with C ≺ D meaning that C is an
immediate subclass of D,

– a field list fields : Cls → Pfin(Fld) mapping a class to its fields,
– a method list methods : Cls → Pfin(Mtd) mapping a class to its methods,
– a method table mtable : Cls ×Mtd ⇀ Var∗ ×Expr mapping a method to the

pair of its formal parameters and its body.

All components are required to be well-formed. We refer the reader to e.g. [10,
Section 3] for details. Let 	 be the reflexive and transitive closure of ≺. Then we
have C 	 Object and NullType 	 C for any class C ∈ Cls.

In the standard FJ type system [16], types are simply classes. In the rest of
this paper, we consider only FJ programs that are well-typed with respect to
the standard FJ type system.

2.2 Access Graphs

For recursive data types such as linked lists, the lengths of access paths may
be unbounded. If environment transformations are defined upon access paths,
their computation may not terminate. In this paper, we choose to work with the
finite representation of access paths given by access graphs [18,28] among the
others [9,17,19].

An access graph x.G consists of a local variable x, called its base, and a field
graph G. A field graph is a directed graph whose nodes are fields. The empty
field graph is denoted by E . The access graph x.E represents the plain variable x.
Thus we often omit the empty field graph E and simply write x. If a field graph
is not empty, it has a head node h ∈ Fld and a tail node t ∈ Fld such that for
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each node n ∈ Fld within the field graph there exists a path from h to t passing
through n. Note that the head and tail can be the same. A non-empty field graph
can be uniquely identified by its head h, tail t and edge set E ⊆ Fld ×Fld ; thus,
we write 〈h,E, t〉 to denote it. Each access graph x.〈h,E, t〉 represents the set
of access paths obtained by traversing the field graph from the head to the tail.
We write F to denote the set of field graphs and use G,G′ to range over field
graphs in the paper.

Example 1. Consider the following access graphs for a class of nodes for linked
lists. The field v is the value stored in the current node and the field n points to
the next node.

(1) x (2) x v (3) x n v

In the above diagrams, each bold circle represents a tail. These access graphs
represent access paths as explained below:

(1) x.E represents the variable x.
(2) x.〈v, ∅, v〉 represents the path x.v.
(3) x.〈n, {(n, n), (n, v)}, v〉 represents the paths x.n.v, x.n.n.v and so on. ��

Given any two field graphs G and G′, we concatenate them and obtain a field
graph G.G′ ∈ F as follows:

G.E := G

E .G′ := G′

〈h,E, t〉.〈h′, E′, t′〉 := 〈h,E ∪ {(t, h′)} ∪ E′, t′〉.
Intuitively, the concatenation of a path in G with one in G′ lives in G.G′. This
operation is needed for defining composition of environment transformations.

We work with a generalization of access graphs b.G where b can be either a
variable or a type in order to model field typing as explained in Session 3.2.

3 A Theory of Abstract Transformations

Our idea is to type a program via environment transformations. Consider the
simple example given in Fig. 1. Each statement of the program is assigned an
environment transformation. They are composed into an environment transfor-
mation σ for the whole program. For any given initial typing environment env ,
we obtain the updated environment σ(env) containing the typing information
after executing the program. Lastly, we get the return type of the program from
the updated typing environment σ(env). In this section, we explain what envi-
ronment transformations are and how they update typing environments.

This section is organized as follows. Section 3.1 presents the assumptions and
definitions of types and typing environments. Section 3.2 introduces our abstract
notion of environment transformation which is based on access graphs. Lastly,
Sect. 3.3 demonstrates some operations on abstract transformations which are
essential for modeling the type updates of the program.
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x = y.f;

y = new C();

y.f = x

[x : y.f ]

[y : C]

[y.f :≥ x]

σ = [x : y.f, y : C, C.f :≥ y.f ]

env = (y : A, A.f : B)

σ(env) = (x : B, y : C, A.f : B, C.f : B)

Fig. 1. An example illustrating the idea of typing via environment transformations

3.1 Types and Environments

We use abstract transformations to encode the changes of types in the program.
But our approach is general and works for various type systems including those
in the previous work [5,10,11,14]. We target at flow type systems in the spirit of
Microsoft’s TypeScript [20] and Facebook’s Flow [12], rather than the standard
FJ typing [16]. We leave the notion of type generic in this section. For instance,
when working with classes, our approach can infer implementation types [1,22,
31]. In the next section, we work with region types to present a new algorithm
for inferring region information using abstract transformations.

In this section, we assume a finite set Typ of atomic types and use A,B,C
to range over atomic types. In addition, we assume a set Cls(A) ⊆ Cls of actual
classes of an object of type A. This allows us to get the set Fld(A) ⊆ Fld of
fields of (objects of) type A. We write A.f to denote the field f ∈ Fld(A).

We consider the field typing as a part of an environment; thus, a typing
environment is a mapping Var ∪Typ ×Fld ⇀ P(Typ) that assigns a variable or
a field its possible types. We work with a partial order � on environments given
by env � env ′ iff env(κ) ⊆ env ′(κ) for all κ ∈ dom(env). Given an environment
env , we write env |v : Var ⇀ P(Typ) and env |f : Typ ×Fld ⇀ P(Typ) to denote
the typings of variables and fields of env respectively. Given a variable typing
V : Var ⇀ P(Typ) and a field typing F : Typ × Fld ⇀ P(Typ), we write (V, F )
to denote the environment combining the typings from V and F . In particular,
we have env = (env |v, env |f).

We often call a set of atomic types a type. We simply write A to denote the
singleton set {A} and misuse the disjunction symbol ∨ for set unions. The set
{A,B,C} for example is thus denoted as A ∨ B ∨ C. In particular, we write ⊥
to denote the empty set of atomic types. For instance, (x : A, A.f : B ∨C) is an
environment stating that the variable x has type A and the field f of any object
of type A can have type B or C.

3.2 Abstract Transformations

Now we define our notion of abstract transformation which encodes type updates
of the variables and fields of a program.

When assigning transformations to statements in the program, the interest-
ing cases are the assignment statements. Consider a statement x = e and its
following possible transformations:
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– If e is a constant of type A, then the resulting transformation is [x :�→ A],
meaning that the type of x is A.

– If e is a variable y whose type is unknown yet, then the resulting transforma-
tion is [x :�→ y], meaning that x has the same type as y.

– If e is a field y.f and the type of y is known to be A, then the resulting
transformation is [x :�→ A.f ], meaning that x has the same type as the field
f of any object of type A.

– If e is a field y.f and the type of y is unknown, then the resulting transfor-
mation is [x :�→ y.f ], meaning that x has the same type as the field f of any
object of the type of y.

The above cases list four atomic kinds of assignment values: atomic type A, vari-
able y, fields A.f and y.f of a type and a variable. As discussed earlier, we work
with access graphs instead of access paths to avoid non-terminating computa-
tion. All of above assignment values can be represented using a generalization
b.G of access graphs where the base b can also be a type. For instance, the type
A is represented by A.E where E is the empty field graph, and the field A.f is
represented by A.〈f, ∅, f〉. We consider one more possible case of e:

– If e involves some branches and thus has type B ∨ C, then x = e results in a
transformation [x :�→ B ∨ C], meaning that x has type B or C.

More generally, the value v of an assignment x :�→ v can be the ‘formal disjunc-
tion’ of some access graphs b.G. These cases bring the following definition of
terms to represent assignment values.

Definition 1 (Atoms and terms). Atoms are a generalization of access
graphs whose base is either a variable or an atomic type. We write b.G to denote
the atom with base b ∈ Var ∪ Typ and field graph G ∈ F .

A term is simply a set (or a formal disjunction) of atoms. We write ⊥ to
denote the empty term, i.e., the empty set of atoms, and u∨v to denote the join
of terms u and v, i.e., the union of the two sets u, v of atoms. Therefore, we
have u ∨ ⊥ = u = ⊥ ∨ u for any term u.

When the field graph G is empty, the atom b.G represents a variable or an
atomic type. Thus we often omit G and simply write b to denote the atom. If
G = 〈f, ∅, f〉, that is, a graph consisting of only the singleton field access path
f , then we may write b.f rather than b.〈f, ∅, f〉.

By definition, each term u has the form
∨n

i=1 bi.Gi where u = ⊥ if n = 0.
We concatenate a term u with a field graph G by

u.G = (
∨n

i=1 bi.Gi).G =
∨n

i=1 bi.(Gi.G)

where the concatenation Gi.G of field graphs has been defined in Sect. 2.2.
A term is a formal expression that can be instantiated into a concrete type

with a given typing environment (see Definition 6). We denote the set of terms
by Tm and use u, v, w to range over terms.
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Definition 2 (Assignments). An assignment is a pair consists of a variable
x and a term u, written as x :�→ u. It means that the type of variable x is the
instantiation of the term u w.r.t. any typing environment. We call x the key of
the assignment.

We want a notion of environment transformation that encodes also the update
of field typing. In particular, we choose to work with weak update for field typing
as in the previous work [5,10,11,14]: If a field f of an object of type A is assigned
a value of type B and f of another object of the same type A is assigned a value of
type C, then the field A.f of any object of type A should have a type containing
both B and C. Therefore, for a statement like y.f = x, we cannot give it the
assignment y.f :�→ x as it expresses that y.f has the same type of x. Instead, we
assign it a constraint y.f :≥ x, meaning that the type of the field f of any object
of the type of y should be greater than or equal to the type of x. If y has type
A, then the constraint becomes A.f :≥ x. More generally, we define constraints
as follows.

Definition 3 (Constraints). A constraint is a pair consisting of a nonempty
access graph b.G and a term u, written as b.G :≥ u. It means that the type of any
field reachable via some path of b.G is greater than or equal to the instantiation of
the term u w.r.t. any typing environment. We call b.G the key of the constraint.

Abstract transformations consists of assignments and/or constraints.

Definition 4 (Abstract transformations). An abstract transformation

[x1 :�→ u1, . . . , xn :�→ un, κ1 :≥ v1, . . . , κm :≥ vm]

is a finite set consisting of assignments xi :�→ ui and constraints κj :≥ vj such
that all the keys are different and xi �= ui for all i ∈ {1, . . . , n} and vj �= ⊥ for
all j ∈ {1, . . . , m}. Let σ be the above abstract transformation. We write dom(σ)
to denote its domain, that is, the set of keys {x1, . . . , xn, κ1, . . . , κm}.

Let K be the set of keys, that is, variables and nonempty access graphs. Each
abstract transformation σ is a representation of a total function from K to Tm

σ(x) :=

{
u if (x :�→ u) ∈ σ

x if x �∈ dom(σ)
σ(κ) :=

{
v if (κ :≥ v) ∈ σ

⊥ if κ �∈ dom(σ).

In other words, identity assignments x :�→ x and bottom constraints κ :≥ ⊥ are
omitted in abstract transformations. This is because they add no information
to the transformations. For instance, if a transformation contains only identity
assignments and bottom constraints, then it is instantiated into the identity
function on typing environments according to Definition 7.

We write ATrans to denote the set of abstract transformations and use σ, θ to
range over abstract transformations in the paper. The empty transformation is
denoted as [], and the one consisting of only bottom assignments x :�→ ⊥ for all
variable x is denoted as ⊥. As will become clear, [] is the identity environment
transformation and ⊥ the ‘least’ environment transformation.
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Example 2. Consider again the example in Fig. 1. The program

x = y.f; y = new C(); y.f = x

results in the transformation

[x :�→ y.f, y :�→ C, C.f :≥ y.f ].

For x = y.f, the type of y is not known yet and thus it leads to the assignment
x :�→ y.f . In this example, we assume that the type of new C() is some type C
which can be different from class C. Thus y = new C() leads to y :�→ C. The
last statement y.f = x by itself results in the constraint y.f :≥ x. But because
of x :�→ y.f and y :�→ C, the constraint is updated to C.f :≥ y.f by substituting
y in the key y.f by C and the constraint value x by y.f . ��

3.3 Operations on Abstract Transformations

Consider again the example from Fig. 1. In this section, we firstly demonstrate
how the transformation σ = [x :�→ y.f, y :�→ C, C.f :≥ y.f ] updates the environ-
ment env = (y : A, A.f : B) to σ(env) = (x : B, y : C, A.f : B, C.f : B). Then
we show that abstract transformations can be composed and joined so that we
can construct the transformation σ for the program from those of its statements.

To begin with, we look into how the type of x is computed in σ(env). There
is an assignment x :�→ y.f in σ, meaning that x has the same type as y.f . We
have to instantiate the term y.f using the typing information given by the input
environment env . Because y has type A in env , we instantiate y.f to A.f . And
because A.f has type B in env , we instantiate y.f further to B. Therefore, x
has type B in the updated environment σ(env).

We have seen from the above example that we need to instantiate a term to
a type according to the environment which we want to update. In particular, we
consider how to instantiate an atom A.〈h,E, t〉. For example, let us instantiate
A.f.g according to (A.f : A ∨ B, B.g : C, C.g : D). The goal is to compute the
type of the field g of A.f . Which field in the environment should be considered,
B.g or C.g? Because A.f can have type A or B, we can reach the field B.g but
not C.g. Therefore, we should instantiate A.f.g only to C, i.e., the type of B.g.

In the following, we describe how to compute the reachable fields from a field
A.h via an edge set E according to the field typing in an environment env . Then,
to instantiate A.〈h,E, t〉 w.r.t. env , we simply join the types of all fields B.t in
env which are reachable from A.h.

Definition 5 (Reachable fields). Let A be an atomic type, h a field, E an edge
set and env an environment. We construct the set R(A.h,E, env) ⊆ Typ × Fld
of reachable fields from A.h via E according to env as follows:

(1) Let R(A.h,E, env) = {A.h}.
(2) For each B.f ∈ R(A.h,E, env), let R(A.h,E, env) = R(A.h,E, env)∪SB.f ,

where SB.f is the set of immediate successors of B.f defined by

SB.f := {C.g | C ∈ env(B.f) and (f, g) ∈ E and g ∈ Fld(C)}.



Abstract Transformations 55

(3) Repeat (2) until R(A.h,E, env) cannot be updated anymore.

Any field A.f is reachable from itself. To compute the other reachable fields
from A.f , the above algorithm simply gets the immediate successors of A.f , and
then those of the immediate successors and so on.

Example 3. Let env = (A.f : A ∨ B, B.g : C) and assume Fld(A) = {f, g} and
Fld(B) = {g}. By definition, we have

R(A.f, ∅, env) = {A.f}
because the edge set is empty and thus f has no successors. We have

R(A.f, {(f, g)}, env) = {A.f,A.g,B.g}
indicating that A.g and B.g are also reachable from A.f . That’s because g is a
successor of f and g is a field of both A and B. ��

The instantiation (A.〈h,E, t〉)[env ] ⊆ Typ is given by the join of env(B.t) for
all reachable fields B.t ∈ R(A.h,E, env). With this, we can instantiate arbitrary
atoms and thus terms.

Definition 6 (Instantiation of terms). Let env be an environment. We
define the instantiation (b.G)[env ] ⊆ Typ of atom b.G as follows:

A[env ] := A

(A.〈h,E, t〉)[env ] :=
∨ {env(B.t) | B.t ∈ R(A.h,E, env)}

(x.G)[env ] :=
∨ {(A.G)[env ] | A ∈ env(x)} .

The instantiation of a term u is the join of the instantiations of its atoms, i.e.,

u[env ] = (
∨n

i=1 bi.Gi)[env ] :=
∨n

i=1(bi.Gi)[env ].

In the above definition, we assume that if a �∈ dom(env) then env(a) = ⊥,
that is, the empty set of types, where a is a variable x or a field A.f . Therefore,
we have x[env ] = env(x) and (A.f)[env ] = env(A.f).

Example 4. Let env = (A.f : A ∨ B, B.g : C) and assume Fld(A) = {f, g} and
Fld(B) = {g} as in Example 3. By definition, we have

(A.f)[env ] = env(A.f) = A ∨ B

and
(A.f.g)[env ] = (A.〈f, {(f, g)}, g〉)[env ]

=
∨{env(X.g) | X.g ∈ R(A.f, {(f, g)}, env)}

= env(A.g) ∨ env(B.g)
= ⊥ ∨ C = C

because from Example 3 we know both A.g and B.g are reachable from A.f . ��
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Lastly, we instantiate abstract transformations to endofunctions on typing
environments. The type of a variable is computed by instantiated the its assigned
term in the transformation, as discussed above. To compute the types of fields,
we solve the constraints using a fixed-point algorithm.

Definition 7 (Instantiation of abstract transformations). Let σ be an
abstract transformation. We define an endofunction ϕσ on environments by

ϕσ(env)(x) :=

{
u[env ] if (x :�→ u) ∈ σ

env(x) otherwise

ϕσ(env)(A.f) := env(A.f) ∨ ∨{u[env ] | (b.〈h,E, f〉 :≥ u) ∈ σ and
B ∈ b[env ] and A.f ∈ R(B.h,E, env)}.

Let env be an environment. We define an environment σ(env) by

1. Let env ′ = env .
2. Let env ′′ = ϕσ(env |v, env ′|f), where (env |v, env ′|f) is the environment

obtained by combining the variable typing of env and the field typing of env ′.
3. If env ′ �= env ′′, then let env ′ = env ′′ and go back to Step 2. Otherwise, let

σ(env) = env ′.

This procedure results in an environment transformation mapping env to σ(env).

To instantiate an abstract transformation σ, we use the above fixed-point
algorithm to solve the constraints for field typings in σ. What crucial is the
function ϕσ that updates the environment in each iteration towards the fixed
point. If (x :�→ u) ∈ σ, then ϕσ(env) assigns x to the instantiation u[env ];
otherwise, x is assigned the type as claimed in env . Because of weak update for
field typing, ϕσ(env) assigns a field A.f to the join containing its previous type
env(A.f) given by the environment and the instantiations of constraint values
from whose keys the field A.f can reach.

Note that, in each iteration towards the fixed point, the input of ϕσ consists of
the variable typing env |v from the original environment env and the field typing
env ′|f from the result env ′ of the previous iteration. This is because types of
variables and of fields are updated in different manners. We ‘accumulate’ the
field typing by feeding ϕσ with the field typing from the previous iteration due
to weak update as explained earlier. However, variable typing is not updated
in this way. For instance, consider the code x = y; y = new C(), resulting in
the transformation σ = [x :�→ y, y :�→ C], and the environment env = (y : A).
We have ϕσ(env) = (x : A, y : C) which gives the correct type to x, because x
should have the same type of y before the assignment y = new C() which is A.
But applying ϕσ to the updated environment would give x type C.

By definition, the empty transformation [] is identity on environments. For
a more interesting example, we consider the transformation from Fig. 1.

Example 5. Recall the abstract transformation from Fig. 1:

σ = [x :�→ y.f, y :�→ C, C.f :≥ y.f ].
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Let env = (y : A, A.f : B). The variables and fields that should appear in the
updated environment σ(env) consist of x, y, A.f and C.f . By definition, we have

ϕσ(env)(x) = (y.f)[env ] = B

ϕσ(env)(y) = C[env ] = C

ϕσ(env)(A.f) = env(A.f) ∨ ⊥ = B

ϕσ(env)(C.f) = env(C.f) ∨ (y.f)[env ] = ⊥ ∨ B = B.

Because ϕσ(env) = ϕσ(env |v, ϕσ(env)|f), we reach the fixed point and get the
updated environment σ(env) = ϕσ(env) = (x : B, y : C, A.f : B, C.f : B). ��

As explained in the next section, each statement of a program can be assigned
a transformation indicating the assignment or constraint of the involved type.
To combine them into one transformation that summarizes the type updates of
the whole program, the operations of composition and join for transformations
are needed. Due to the lack of space, we characterize these operations in the
following theorems. Details of their (non-surprising) constructions are available
in the arXiv version of the paper [26, Appendix A].

Theorem 1 (Composition of abstract transformations). For any abstract
transformations σ and θ, we can construct an abstract transformation δ such that
σ(θ(env)) � δ(env). We write σθ to denote δ and call it the composition of σ
and θ. Moreover, we have σ[] = σ = []σ for any transformation σ, where [] is
the empty transformation. ��

The difficult part of the work is to come up with the right notion of abstract
transformation that supports composition. But the construction of composition
and its correctness are then straightforward. The idea to compose our abstract
transformations is similar to the one for substitutions (see e.g. [4, §2.1]). And its
correctness can be proved with a standard inductive argument on the length of
the abstract transformation.

Note that we have only σ(θ(env)) � (σθ)(env) where � is the ordering on
environments defined pointwisely. This is because σθ involves concatenation of
field graphs which causes the over approximation. For instance, concatenating
a singleton path f with itself does not give the path f.f . Instead it results in
the field graph 〈f, {(f, f)}, f〉 which represents all the paths consisting of f with
length greater than 1. However, the type inference algorithm presented in next
section is still sound. It may give a less precise type to the program.

Theorem 2 (Join of abstract transformations). For any abstract trans-
formations σ and θ, we can construct an abstract transformation δ such that
σ(env) � θ(env) � δ(env). We write σ ∨ θ to denote δ and call it the join of σ
and θ. Moreover, we have σ ∨ θ = θ ∨ σ and σ ∨ ⊥ = σ for all σ and θ, where ⊥
is the bottom transformation that assigns all variables to the bottom type. ��

The join σ∨θ is constructed componentwise using the join operator on terms.
It does not preserve fixed points and we have only σ(env)�θ(env) � (σ∨θ)(env).
As discussed above, this causes no harm to the soundness of the type inference.
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4 Type Inference via Abstract Transformations

In this section, we demonstrate how to infer the type of an FJ program using
abstract transformations. The idea is to use abstract transformations to capture
the flow information of a program, which leads to a more efficient type inference
algorithm. As an example, we work with the region type system of Beringer et
al. [5]. Our inference algorithm firstly computes an abstract transformation for
each method of the program, and then uses them for the type inference rather
than analyzing the method bodies.

4.1 Region Type System

We briefly recall the region type system of Beringer et al. [5].
A region represents a property of a value such as its provenance information.

In this paper, we use the following definition of regions:

Reg � r, s ::= Null | CreatedAt(�)

The region Null contains only the value null . The region CreatedAt(�) contains
all references to objects that were created by an expression of the form new� C.
This region allows us to track where in the program an object originates. One can
use a richer definition of regions to capture other properties of interest such as
taintedness [10]. We keep it simple here because we focus on the type inference.

Region type information is complementary to FJ type information and can
be captured without repeating the FJ type system. Therefore, we directly work
with region types rather than refining FJ types as in the original system [5,
Section 3].

As for FJ, we need a class table to record the region types of methods and
fields. This is needed to formulate typing rules for method call and field access.
A class table (F,M) consists of

– a field typing F : Cls × Reg × Fld ⇀ P(Reg) that assigns to each class C,
region r and field f ∈ fields(C) a set F (C, r, f) of regions of the field f , and

– a method typing M : Cls ×Reg ×Mtd ×Reg∗ ⇀ P(Reg) that assigns to each
class C, region r, method m ∈ methods (C) and sequence s̄ of regions of m’s
formal arguments a set M(C, r,m, s̄) of regions of the method m.

The typing functions are required to be well-formed, which reflects the subtyping
properties of FJ. See [11, Definition 4.2] for the details.

Typing judgments take the form Γ � e : R, where Γ : Var ⇀ Reg is a
typing environment for variables, e ∈ Expr a term expression and R ⊆ Reg a
set of regions. The typing rules are listed in Fig. 2. For instance, the call rule
looks up the method typing M for all possible regions where the object x and
arguments ȳ may reside and joins the matched entries as the return type of the
method invocation x.m(ȳ).

An FJ program (≺,fields ,methods, mtable) is well-typed w.r.t. a class table
(F,M) if for any (C, r,m, s̄) with M(C, r,m, s̄) = R and mtable (C,m) = (x̄, e),
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var
Γ, x:R x : R

null
Γ null : Null

new
Γ new C : CreatedAt( )

sub
Γ e : R R ⊆ R

Γ e : R
cast

Γ e : R

Γ (D) e : R

if
Γ, x:R ∩ S, y:R ∩ S e1 : T1 Γ, x:R, y:S e2 : T2

Γ, x:R, y:S if x = y then e1 else e2 : T1 ∪ T2

let
Γ e1 : R Γ, x:R e2 : T

Γ let x = e1 in e2 : T
call

T = {M(C, r, m, s̄) | r ∈ R, s̄ ∈ S̄}
Γ, x:R, ȳ: S̄ xC .m(ȳ) : T

get
T = {F (C, r, f) | r ∈ R}

Γ, x:R xC .f : T
set

∀r ∈ R. S ⊆ F (C, r, f)

Γ, x:R, y:S xC .f := y : S

Fig. 2. The region type system of Beringer et al. [5]

the typing judgment this: r, x̄: s̄ � e : R is derivable. A soundness theorem has
been proved in [5, Theorem 1], stating that, for any expression e in a well-typed
FJ program with respect to a class table (F,M), if e evaluates to some value v
and e has type R, then v is in some region in R.

4.2 Inferring Region Types via Abstract Transformations

Let an FJ program P be given. Now we introduce an algorithm to construct a
class table (F,M) with respect to which P is well-typed. As mentioned above, our
approach is based on abstract transformations. From now on, the atomic types
we are working with are the regions, i.e., take Typ = Reg for the development
of abstract transformations.

We firstly compute an abstract transformation σ and a term t for each FJ
expression e. The transformation σ encodes the type updates of the variables
and fields in e, while the term t pre-calculates type of e. Once we are given a
typing environment env , we update it using σ and then instantiate t with the
updated environment to compute the type of e, i.e., e has type t[σ(env)].

For this, we define the following operations on pairs of abstract transforma-
tions and terms: Let (σ, s), (θ, t) ∈ ATrans × Tm.

– Composition: We define (σ, s)θ := (σθ, sθ), where σθ is the composition of
transformations, and sθ is term substitution.

– Join: We define (σ, s) ∨ (θ, t) := (σ ∨ θ, s ∨ t).

Suppose we have a function T : Cls × Mtd → ATrans × Tm, called an
abstract method table, that assigns an abstract transformation and a term to
each method. The transformations capture the type updates for the method and
the term will be instantiated to the type for the method. Then we define a pair
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[[e]] : ATrans × Tm by induction on the FJ expression e:

[[x]] := ([], x)
[[if x = y then e1 else e2]] := [[e1]] ∨ [[e2]]

[[let x = e1 in e2]] := [[e2]]([x :�→ t]θ) where (θ, t) = [[e1]]
[[null]] := ([], Null)

[[new� C]] := ([], CreatedAt(�))
[[(D) e]] := [[e]]

[[x.f ]] := ([], x.f)
[[x.f := y]] := ([x.f :≥ y], y)

[[xC .m(ȳ)]] := T (C,m)[this :�→ x, args(C,m) :�→ ȳ]

where args(C,m) denotes the arguments of m, i.e., if mtable(C,m) = (x̄, e) then
args(C,m) = x̄.

Given an FJ program, we compute an abstract method table T as follows:

1. Initialize T with T (C,m) = ([],⊥) for all m ∈ methods(C), where ⊥ is the
empty term, i.e., the empty set of atoms.

2. For each method, compute an abstract transformation and a term for its
body, and then update the corresponding entry in T . Specifically, for each
m ∈ methods(C) with (x̄, e) = mtable(C,m), let T (C,m) = T (C,m) ∨ [[e]].

3. Close T under the subclass relation, i.e., let T (C,m) = T (C,m) ∨ T (D,m) if
D is a subclass of C.

4. Repeat steps 2 and 3 until no more update of T is possible.

After computing the table T , we compute a class table (F,M) as follows:

(a) Initialize F and M with the least type, i.e., the empty set of regions.
(b) Use T to update the entries in F and M . Specifically, for each C, r,m, s̄

with (σ, u) = T (C,m), we update the environment and get env = σ(Γ, F )
where Γ = this: r, args(C,m): s̄. Then we update the class table by taking
F = F ∨ env |f and M(C, r,m, s̄) = M(C, r,m, s̄) ∨ u[env ].

(c) Ensure that (F,M) are well-formed. For instance, if D is a subclass of C,
then both F (C, r, f) and F (D, r, f) are set to their join.

(d) Repeat steps (b) and (c) until no more update of F and M is possible.

To summarize, the inference algorithm has two steps. It firstly computes
an abstract method table T . The abstract transformations in T capture the
flow information of each method. This step is similar to constraint generation
and preprocessing such as simplification or closure in the constraint-based type
inference [29,31]. Then it computes the class table (F,M) by instantiating the
abstract transformations in T . This step solves the constraints collected in T via
a least fixed-point argument.

The inference algorithm in the previous work [10, Appendix F] analyzes the
same method body multiple times when the method is fed with arguments of
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different types at different invocations. Our algorithm instead uses the abstract
transformation stored in T to infer the types of different method calls. Therefore,
it can effectively enhance the efficiency of analysis especially when the analyzed
program contains many method invocations with arguments of different types.
The arXiv version [26, Appendix B] has an example demonstrating how to com-
pute and use T to analyze invocations of the same method.

Lastly, the computed class table (F,M) reveals the region information of the
program in the following sense.

Theorem 3 (Correctness of type inference). Let P be an FJ program. The
above algorithm gives a class table (F,M) with respect to which P is well-typed.
In particular, for any C, r,m, s̄ with M(C, r,m, s̄) = R and for any x : r and
ȳ : s̄, if x.m(ȳ) evaluates to a value v, then v resides in some region in R. ��

The second part of the above theorem is a corollary of the soundness result [5,
Theorem 1]. It states that the type of each method computed by M is correct.
We sketch the proof of the first claim that the program is well-typed with respect
to the class table (F,M) given by our algorithm. Because the typings F and M
are computed by the abstract transformations of the table T , we only need to
prove that these abstract transformations compute types greater than the ones
from typing derivation. More precisely, we need to prove

if Γ � e : R then R ⊆ Type([[e]](Γ))

where Type([[e]](Γ)) is the type of the expression e obtained by firstly applying
the transformation component of [[e]] to Γ to obtained an updated environment
and then instantiating the term component with the updated environment. The
above statement can be proved by induction on the length of typing derivation
as usual, because the definition of [[e]] reflects the typing rules.

5 Conclusion, Implementation and Discussion

In this paper, we develop a theory of abstract transformations to capture type
changes in programs. The elements of an abstract transformation can be viewed
as equality and subtyping constraints. In particular, we work with access graphs
when defining these constraints. Access graphs provide a finite representation
of field access paths and thus ensure the termination of the procedure to com-
pute abstract transformations for the program. We instantiate abstract transfor-
mations to endofunctions on typing environments to compute the types of the
program, which solves the constraints in the abstract transformations. As an
example, we work with the region type system of Beringer et al. [5] to demon-
strate how to use our inference algorithm based on abstract transformations to
compute region information of Featherweight Java programs. The advantage is
that the code of a method is analyzed only once even when it is invoked with
arguments of different region types in multiple occasions of the program.

We have a prototype implementation of the type inference algorithm using
the Soot framework [24]. It takes a Java bytecode program as input and computes
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the region types of the program. The implementation of abstract transformations
and their operations follows the definitions in this paper. The function [[−]] com-
puting an abstract transformation and a type term for FJ expressions becomes
a forward flow analysis for the control flow graphs of the program. In particular,
it has a flow-through method that computes an abstract transformation for each
node in the control flow graph and then concatenates it with the one generated
from the previous nodes. Then a fixed point procedure is implemented to com-
pute an abstract transformation for each method in the program using the flow
analysis. Lastly, the generated abstract transformations are instantiated to com-
pute the types of the methods in the program. The prototype implementation
is available [27].

Region types can make the analysis of trace properties more precise [10,11].
By extending region type systems with effect annotations to give information
about possible event traces of the program, a method invocation x.m(ȳ) can
have different effects for x, ȳ in different regions. Our approach can be extended
to reason also such region-sensitive trace effects. Our idea is to make the abstract
method table T to compute also a formal expression capturing the information
of traces and method calls. For example, consider the following FJ program

emit(a); x.f(ȳ); emit(b); x.g(z̄)

where emit(a) is a primitive method that emits the event a. We can assign it a
formal expression

{a} · X(x,f,ȳ) · {b} · X(x,g,z̄)

meaning that any trace generated by the program starts with the event a, fol-
lowed by a trace generated by the method call x.f(ȳ) and then the event b and
a trace generated by x.g(z̄). Here x, ȳ, z̄ are variables and can be instantiated
to region types with a given environment; thus, the formal expression can be
instantiated such that it contains only variables like X(r,f,s̄) for the effect of
the method call of f for an object in region r with arguments in regions s̄. For
each method in a calling context, we use its abstract transformation to update
the environment and then use the updated environment to instantiate its call
expression. In this way, we obtained a set of call expressions, one for each method
invocation in a calling context. Then we can use a least fixed point algorithm to
compute the trace effect of each method from these call expressions. Currently
we are still tackling the details to develop such a compositional algorithm for
inferring region-sensitive trace effects.

Acknowledgements. We thank Fredrick Nordvall Forsberg for the fruitful discussion
on this work and the anonymous reviewers for their valuable comments and suggestions
on the paper and its accompanying artifact.
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Abstract. Hoare-style program logics are a popular and effective tech-
nique for software verification. Relational program logics are an instance
of this approach that enables reasoning about relationships between the
execution of two or more programs. Existing relational program logics
have focused on verifying that all runs of a collection of programs do
not violate a specified relational behavior. Several important relational
properties, including refinement and noninterference, do not fit into this
category, as they also mandate the existence of specific desirable exe-
cutions. This paper presents RHLE, a logic for verifying these sorts of
relational ∀∃ properties. Key to our approach is a novel form of func-
tion specification that employs a variant of ghost variables to ensure that
valid implementations exhibit certain behaviors. We have used a program
verifier based on RHLE to verify a diverse set of relational ∀∃ properties
drawn from the literature.

1 Introduction

Hoare-style program logics are a popular and effective verification technique.
Starting with Hoare’s seminal paper [20], this approach has been adapted to
cover a variety of programming languages and assertions [3,21,28,32,34]. These
logics typically feature several pleasant properties: they can be declaratively
specified via a set of rules over the syntax of the target programming language,
they permit compositional reasoning over individual program components, and
they often admit effective automated verification procedures. Most of these logics
focus on proving safety properties of single programs, i.e., that executing a
program in a valid initial state never results in a state violating a postcondition.

Not all program behaviors fall into this category, however. As one example, con-
sider the common scenario where a developer decides they want to migrate a hand-
rolled implementation of a function to one that uses a third-party library. Figure 1
gives a concrete example of this situation. The program on the left, sample1, uses
a random number generator to directly sample a subset of an array. The program
on the right, sample2, opts to delegate the task to an external list library which
supports shuffling and constructing sublists. While sample1 works with replace-
ment (the same elements may be sampled multiple times), sample2 works without
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Sergey (Ed.): APLAS 2022, LNCS 13658, pp. 67–87, 2022.
https://doi.org/10.1007/978-3-031-21037-2_4
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int[] sample1(int[] arr,
int size) {

assert(size <= arr.length);
int[] samp = new int[size];
for (i in [0..size]) {

int j = randB(arr.length);
samp[i] = arr[j];

}
return samp;

}

int[] sample2(int[] arr,
int size) {

assert(size <= arr.length);
list = new List(arr);
perm = list.permute();
samp = perm.sublist(size);
return samp.toArray();

}

Fig. 1. An example migration of a function which randomly samples a list of integers
with replacement to a function which samples without replacement. The original pro-
gram (sample1) uses a function which generates random numbers, while the migrated
program (sample2) uses a list abstraction with a permute operation.

replacement (an elementmaybe sampled atmost once). In order to ensure that this
change does not break things, the developer may wish to verify that sample2 does
not do anything that sample1 could not, i.e., that the updated function refines
the original. Notably, this refinement property relates the behavior of multiple pro-
grams. In addition, it does not have the form of a standard safety property. The
developer does notwant to enforce thatsample2 produces every permutation that
the hand-rolled implementation does; rather, they wish to ensure it does not start
returning previously impossible samples.

int encode(int msgH) {
int keyH = randB(MAX_INT);
int encL = msgH xor keyH;
return (keyH, encL);

}

As another example, consider the
encode function on the right which
performs a simple xor cipher. This
function takes a single high-security
argument, msgH, and returns a pair of
high-security and low-security results,
keyH and encL, respectively. The function encodes its argument by first generat-
ing a random key (randB returns a random value between 0 and its argument),
taking the xor of the key and the message, and finally returning the key along
with the encoded message. The developer may wish to guarantee an attacker
can learn nothing about the secret message given only the encoded message.
Whether or not encode meets this generalized noninterference [26] property
crucially depends on the behavior of randB: if the attacker knows this function
always returns 3, for example, they can decipher any encoded message. We can
again frame this behavior as a relational property between the executions of
two programs (in this case calls to encode with arbitrary arguments msgH1 and
msgH2): every execution of encode(msgH1) must have a corresponding execution
of encode(msgH2) that returns the same low-security encoded value.

In both examples, the desired behavior has the shape for all executions of some
program, there exists a corresponding execution of a second program that is some-
how related. Thus, we call these properties relational ∀∃ properties. While several
relational program logics have been developed for reasoning about the behavior of
multiple programs [8,9,36], all have focused on relational safety properties, i.e.,
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n ∈ N x, y ∈ V
f, g ∈ N σ ∈ V N

a ::= n | x | a + a | a − a | a ∗ a

b ::= true | false
a = a a < a b b b

s ::= skip | s; s

| if b then s else s

| while b do s end

| x := a | x := havoc | x := f(a)

FD ::= def f(x) s; return a

Fig. 2. Syntax of FunIMP.

that all the final states of multiple programs satisfy some relational postcondi-
tion. Unfortunately, in the presence of nondeterminism, none of these logics are
capable of verifying relational ∀∃ properties such as refinement and generalized
noninterference. The need to reason about nondeterminism naturally arises in the
presence of external functions like permute in Fig. 1, where specifications are used
to approximate the behavior of multiple possible implementations.

This paper addresses this gap by introducing RHLE, a relational program
logic for reasoning about ∀∃ properties. Key to our approach is a novel form of
function specifications which approximate the set of behaviors a valid implemen-
tation must exhibit. These specifications use a novel variant of ghost variables,
which we call choice variables, that guarantee the existence of required behav-
iors. RHLE admits a modular reasoning principle, where any properties verified
against a set of function specifications continue to hold whenever the program is
linked to any satisfying implementation. While techniques based on Constrained
Horn Clauses [38] and model checking [25] have recently been developed that are
capable of reasoning about ∀∃ properties, RHLE is, to the best of our knowledge,
the first Hoare-style program logic for doing so. We have used a verifier based on
RHLE to verify a range of ∀∃ properties including refinement, noninterference
(with and without delimited release), semantic parameter usage, and flaky tests.

We begin by defining a core imperative language with function calls (Sect. 2)
equipped with semantics for both over- and under-approximating function behav-
iors (Sect. 3). We next present RHLE, and a corresponding verification algorithm
for verifying ∀∃ properties (Sect. 5). We evaluate our approach by applying an
implementation of this algorithm to verify a diverse set of relational properties
(Sect. 6). We conclude with an examination of related work (Sect. 7). We have for-
malized the details of our approach in the Coq proof assistant; this development
is available in the supplementary materials of this paper [16]. Our verification tool
and benchmark suite are also publicly available [16,17].

2 The FunIMP Language

We begin with the definition of FunIMP, a core imperative language with func-
tion calls x := f(a) and nondeterministic variable assignment x := havoc. The
full syntax of FunIMP is presented in Fig. 2. The calculus is parameterized
over disjoint sets of identifiers for program variables V and function names N .
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Functions have a fixed arity. Function definitions consist of a sequence of state-
ments followed by an expression that computes the result of the function. For
brevity, we denote sequences x1, . . . , xn as x. For ease of presentation, we treat
functions as returning a single value, although it is straightforward to extend
FunIMP to allow for multiple return values: (x, y, . . .) := f(a). Our verifica-
tion tool, ORHLE (see Sect. 6), uses such an extension to model functions which
mutate their arguments.

The semantics of FunIMP programs are defined via a standard big-step
evaluation relation from initial to final program states. States are mappings
from variables to integers, and are usually notated as σ. We write [x �→ a]σ to
refer to state σ updated with a mapping from x to a. The evaluation rules are
parameterized over an implementation context, a mapping I ∈ N → FD from
function names to their definitions, which is used to evaluate function calls:

I(f) = def f(x) {s; return e}
I � σ, a ⇓ v I � [x �→ v], s ⇓ σ′ I � σ′, e ⇓ r

I � σ, y := f(a) ⇓ [y �→ r]σ
ECall

We use ⇓ for the evaluation relation of both expressions and statements; σ, e ⇓ σ′

holds when executing e on state σ can result in state σ′. Since programs may
be nondeterministic, there may be multiple final states related to a single initial
state for a given program. Note that havoc is the only source of nondetermin-
ism when evaluating a FunIMP program. The remaining evaluation rules for
FunIMP are standard and can be found in the extended version of the paper [15].

3 Approximating FUNIMP Behaviors
In order to modularly reason about relational ∀∃ properties, we first present
semantics for capturing the possible executions of a FunIMP program in any
valid implementation context. In order to account for both “for all” and “there
exists” behaviors of functions, we rely on two kinds of specifications. To reason
about all possible executions of a valid implementation, i.e., a standard safety
property, we use a universal specification. For guarantees about the existence of
certain executions, we use an existential specification.

3.1 Universal Executions

Both kinds of specifications are parameterized over an assertion language A on
program states and a mechanism for judging when a state satisfies an assertion.
We write σ |= P to denote that a state σ satisfies the assertion P . The universal
specifications used to reason about programs on the “for all” side of ∀∃ properties
are written as FA:: = ax∀ f(x) {P}{Q}, where P ∈ A is a precondition with free
variables in x and Q ∈ A is a postcondition with free variables in x ∪ {ρ}. The
postcondition uses the distinguished variable ρ to refer to the value returned by
f . Universal specifications promise client programs that the valid implementa-
tions of a function will only evaluate to states satisfying the postcondition when
evaluated in a starting state that satisfies the precondition.
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Definition 1 (∀ − Compatibility). A function definition def f(x){s; return r}
is ∀-compatible with a universal specification ax∀ f(x){P}{Q} if only values
satisfying Q may be returned whenever f is called with arguments satisfying P :

∀σ, σ′. (σ |= P ) ∧ (I � σ, s ⇓ σ′) ∧ (σ′, r ⇓ v) =⇒ ([ρ �→ v]σ |= Q)

We say that an implementation context I is ∀-compatible with a context of
universal specifications S∀ ∈ N → FA when every definition in I is ∀-compatible
with the corresponding specification in S∀.

To characterize the set of possible behaviors of a program under any ∀-
compatible implementation context, we define a new overapproximate semantics
for FunIMP, ⇓∀. The evaluation rules of this semantics are based on ⇓, but they
use a universal specification context, S∀, instead of an implementation context,
and replace ECall with the following two evaluation rules:

S∀(f) = ax∀ f(x) {P} {Q}
S∀ � σ, a ⇓∀ v [x �→ v] |= P [ρ �→ r, x �→ v] |= Q

S∀ � σ, y := f(a) ⇓∀ [y �→ r]σ
ECall∀1

S∀(f) = ax∀ f(x) {P} {Q} S∀ � σ, a ⇓∀ v [x �→ v] �|= P

S∀ � σ, y := f(a) ⇓∀ [y �→ r]σ
ECall∀2

The first rule states that if a function is called with arguments satisfying its
precondition, it will return a value satisfying its postcondition; otherwise, the
second rule states that it can return any value. The latter case allows the overap-
proximate semantics to capture evaluations where a function is called with argu-
ments that do not meet its precondition. The extended version of this paper [15]
includes a complete listing of the ⇓∀ relation.

Any final state of a program evaluated under an implementation context I
which is ∀-compatible with S∀ can also be produced using ⇓∀ and S∀. Appealing
to this intuition, we call the evaluations of a FunIMP program p using ⇓∀ the
overapproximate executions of p under S∀.

Theorem 1. When run under an implementation context I that is ∀-compatible
with specification context S∀ and an initial state σ, a program p will either diverge
or evaluate to a state σ′ which is also the result of one of its overapproximate
executions under S∀.

3.2 Existential Executions

Universal specifications approximate function calls on the “for all” side of ∀∃
properties by constraining what a compatible implementation can do. Existen-
tial specifications approximate the “there exists” executions by describing the
required values a valid implementation must be able to return. In order to flex-
ibly capture these behaviors, existential pre- and post-conditions are indexed
by a set of choice variables c ⊆ V. Each instantiation of these variables defines
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def randB(x)
skip;
return 0

def randB(x)
r := havoc;
while (x ≤ r) do r := r x end;
return

def randB(x)
r := havoc;
return r

Fig. 3. Implementations of a function which returns an integer within a bound.

a particular behavior that an implementation has to exhibit. The syntax for
writing an existential specification is: FE :: = ax∃ f(x) [c] {P}{Q}.

We write A[x/y] to denote the predicate A with all free occurrences of x
replaced with y. Intuitively, for any instantiation v of choice variables c, an
existential specification requires an implementation to produce at least one value
satisfying the specialized postcondition Q[v/c], when called with arguments that
satisfy the corresponding precondition P [v/c]. This intuition is embodied in our
notion of compatibility for existential specifications:

Definition 2 (∃-Compatibility). A function definition def f(x){s; return r}
is ∃-compatible with an existential specification ax∃ f(x)[c]{P}{Q} if, for every
selection of choice variables v, calling f with arguments that satisfy P [v/c] can
return at least one value satisfying Q[v/c]:

∀σ, v. (σ |= P [v/c]) =⇒ ∃σ′. (I � σ, s ⇓ σ′) ∧ (σ′, r ⇓ v) ∧ ([ρ �→ v]σ |= Q[v/c])

Example 1. To see how universal and existential specifications work together to
describe a function’s behavior, consider a function randB(x) which is intended
to return some integer between 0 and its argument x. We can write a universal
specification requiring all return values to be within the desired bound: ax∀
randB(x) {0 < x} {0 ≤ ρ < x}. This does not, however, guarantee every value
in this range is possible. To express this requirement, we reify the choice of the
random value using an existential specification: ax∃ randB(x) [c] {0 < x∧0 ≤ c <
x} {ρ = c}. Figure 3 lists a variety of possible randB implementations; the first
implementation is compatible with the aforementioned universal specification
and the third definition is compatible with the existential specification, but only
the middle one satisfies both. Note how c acts as a ghost variable which constrains
the choice of the random number. Thus, when reasoning about a client of randB,
we can select a concrete value for c that forces the desired result.

Equipped with a context of existential specifications S∃ ∈ N → FE , we char-
acterize the set of behaviors a program must exhibit under every ∃-compatible
implementation context via an underapproximate semantics for FunIMP pro-
grams. The judgements of this semantics are denoted as S∃ � σ, p ⇓∃ Σ, which
reads as: under context S∃ and initial state σ, the program p will produce at
least one final state in the set of states Σ. The evaluation rules of this semantics
are given in Fig. 4. Most of the rules in Fig. 4 adapt the FunIMP evaluation
rules to account for the fact that commands now produce sets of states from an
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S∃ σ, skip ⇓∃ {σ} ESkip∃
S∃ σ, x := havoc ⇓∃ {σ | ∃v.[x v]σ } EHavoc∃

σ, a ⇓ v

S∃ σ, x := a ⇓∃ {[x v]σ} EAssn∃
S∃ σ, s ⇓∃ Σ Σ ⊆ Σ

S∃ σ, s ⇓∃ Σ
EConsq∃

S∃ σ, s1 ⇓∃ Σ ∀σ ∈ Σ. S∃ σ , s2 ⇓∃ Σ

S∃ σ, s1; s2 ⇓∃ Σ
ESeq∃

σ, b ⇓ true S∃ σ, c ⇓∃ Σ
∀σ ∈ Σ. S∃ σ ,while b do c end ⇓∃ Σ

S∃ σ,while b do c end ⇓∃ Σ
ELpT∃

σ, b ⇓ false

S∃ σ,while b do c end ⇓∃ {σ} ELpF∃
σ, b ⇓ true S∃ σ, s1 ⇓∃ Σ

S∃ σ, if b then s1 else s2 ⇓∃ Σ
EIfT∃

σ, b ⇓ ⊥ S∃ σ, s2 ⇓∃ Σ

S∃ σ, if b then s1 else s2 ⇓∃ Σ
EIfF∃

S∃(f) = ax∃ f(x) [c] {P} {Q} S∃ σ, a ⇓ v [x v] |= P [k/c]

S σ, y := f(a) σ r. σ = [y r]σ [ρ r, x v] = Q[k/c]
ECall∃

Fig. 4. The existential evaluation relation.

initial state. For example, the evaluation rule for sequences, ESeq∃, states that
s2 produces a final state corresponding to every state in the set produced by s1.
The rule for function calls, ECall∃, is the most interesting: it chooses one of the
behaviors guaranteed by the existential specification of a function and produces
a set of final states for every return value consistent with that choice.

Every set of final states for a program p produced by these semantics under
S∃ includes a possible final state of p when evaluated under any ∃-compatible
implementation context. For this reason, we term the evaluations of p using ⇓∃
the underapproximate executions of p under S∃.

Theorem 2. If there is an underapproximate evaluation of program p to a set
of states Σ from an initial state σ under S∃, then p must terminate in at least
one final state σ′ ∈ Σ when it is run from σ under an implementation context I
that is ∃-compatible with S∃.

3.3 Approximating ∀∃ Behaviors

Taken together, the over- and under-approximate semantics allow us to relate
the ∀∃ behaviors of multiple client programs under every ∀- and ∃-compatible
implementation context. This admits a modular reasoning principle, where if a
set of clients can be shown to exhibit some behaviors using the overapproximate
and underapproximate semantics, linking the client with any compatible envi-
ronment will continue to exhibit those behaviors. The key challenge to ensuring
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these ∀∃ behaviors is identifying, for every overapproximate execution, an appro-
priate selection of choice variables that cause the underapproximate executions
to evaluate to a collection of final states satisfying a desired ∀∃ property.

Example 2. Consider the second example from the introduction, and assume
that randB has the universal and existential specifications from Example 1.
To ensure that encode does not reveal anything about its secret input via its
public output, it suffices to establish that for any universal execution of encode
on a specific input, every other possible input to encode could produce the
same encoded message under the existential semantics. The first execution begins
with the statement int keyH∀= randB(MAX_INT) (for convenience, we annotate
program variables from the first and second executions with the subscripts ∀ and
∃, respectively). By ECall∀1, this statement will update keyH∀ to hold a value
between 0 and MAX_INT. The function then encodes the message using this key,
and returns the result. In order to show this leaks nothing, we need to establish
a corresponding execution of encode that returns this same result regardless
of the value of its argument. In effect, this amounts to finding a strategy for
instantiating the choice variable in ECall∃ to assign an appropriate value to
keyH∃. In this case, the choice is straightforward: we need a c such that c xor
msgH∃ =encL∀. Using msgH∃ xor enc

L
∀ for c in ECall∃ achieves the desired result.

Using this strategy, we can construct an appropriate execution in response to
every execution of encode. In contrast, if our existential specification were ax∃
randB(x) [ ] {0 < x} {0 ≤ ρ < x}, it would only guarantee the existence of a
single result, and there would be no workable strategy. Indeed, the first definition
of randB in Fig. 3 satisfies this specification, and encode will always leak the
full message when using this implementation!

4 RHLE
We now present RHLE, a relational program logic for proving that a collection
of FunIMP programs exhibit some desired set of ∀∃ behaviors. As a conse-
quence of Theorem 1 and Theorem 2, this entails that properties established in
RHLE will continue to hold when the programs are linked with any compatible
implementation context.

RHLE specifications use relational assertions (denoted Φ, Ψ ∈ A) to relate
the execution of multiple programs. As normal assertions are predicates on a
single state, a relational assertion is a predicate on multiple states. Each program
in a RHLE triple operates over a distinct state space. To disambiguate between
variables that occur in multiple copies, shared variable names are annotated
with an identifier unique to each program. Following existing convention [9,36],
we use a natural number to identify which state a variable belongs to. As an
example, the relational assertion x1 ≤ x2 is a binary predicate over (at least)
two states. This assertion is satisfied by any set of two (or more) states where
the value of x in the first state is less than or equal to the value of x in the
second.
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Table 1. Example RHLE assertions. In the second row, lowx refers to the low security
state in program px; note the ∀∃ relationship must hold for any pair of initial high
security values, so highx is not constrained in the precondition.

Property RHLE Assertion

Refinement S∀, S∃ |= 〈x1 = x2〉 y1 := f(x1) ∼∃ y2 := f(x2) 〈y1 = y2〉
Noninterference S∀, S∃ |= 〈low1 = low2〉 p1 ∼∃ p2 〈low1 = low2〉
Injectivity S∀, S∃ |= 〈x1 �= x2〉 y1 := f(x1) � y2 := f(x2) ∼∃ skip 〈y1 �= y2〉
Nondeterminism S∀, S∃ |= 〈x1 = x2〉 skip ∼∃ y1 := f(x1) � y2 := f(x2) 〈y1 �= y2〉

RHLE triples have the form S∀, S∃ |= 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 and assert that for
all universal executions of the programs p∀, there exist existential executions of
the programs p∃ satisfying the relational pre- and post-condition Φ and Ψ :

S∀, S∃ |= 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 ≡ ∀σ∀ σ∃ σ′
∀. σ∀, σ∃ |= Φ ∧ S∀ � σ∀, p∀ ⇓∀ σ′

∀ =⇒
∃Σ. S∃ � σ∃, p∃ ⇓∃ Σ ∧ ∀σ′

∃ ∈ Σ. σ′
∀, σ′

∃ |= Ψ

We use � to delineate different programs on the universal and existential sides of
∼∃ so that, e.g., a sequence of n programs p is also denoted as p1 � . . .� pn. For
example, to assert the program x := havoc is nondeterministic, we write a RHLE
triple with two copies of the program, adding a subscript to the variable x in each
for clarity: · |= 〈�〉 skip ∼∃ x1 := havoc � x2 := havoc 〈x1 �= x2〉. This triple says
that, for all starting states and all executions of the trivial program skip, there
exist executions of the programs x1 := havoc and x2 := havoc such that x1 �= x2

after both programs have executed. Note that � is not a concatenation operator;
it does nothing more than delineate multiple programs in a RHLE triple. Table 1
gives some additional examples of RHLE assertions.

S∀, S∃ Φ skip ∼∃ skip Φ
Finish S∀, S∃ Φ p∀; skip ∼∃ p∃; skip Ψ

S∀, S∃ Φ p∀ ∼∃ p∃ Ψ
SkipI

∀σ σ∃. S∀ Φ |i σ, σ∃} si {Φ |i σ, σ∃}
S∀, S∃ Φ p1 . . . si . . . sn ∼∃ p∃ Ψ

S∀, S∃ Φ p1 . . . si; si . . . pn ∼∃ p∃ Ψ
Step∀

∀σ∀ σ. S∃ [Φ |i σ∀, σ] si Φ |i σ∀, σ ∃
S∀, S∃ Φ p∀ ∼∃ p1 . . . si . . . pn Ψ

S , S Φ p p1 . . . si; si . . . pn Ψ
Step∃

Fig. 5. Core RHLE proof rules.

The core logic of RHLE is given in Fig. 5. Relational proofs are built by
reasoning about the topmost statement of either one of the universally quantified
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programs via the Step∀ rule or one of the existentially quantified programs
using the Step∃ rule. Once all program statements have been considered, final
proof obligations can be discharged using the Finish rule. The SkipI rule is
used to ensure that all programs end with skip, so that Finish can be applied.
Both Step rules rely on non-relational logics for reasoning about the universal
S∀ � {P} p {Q} and existential S∃ � [P ] p [Q]∃ behaviors of single statements;
we will present the details of both logics shortly. The Step rules employ a
projection operation, σ|iΨ , which maps a relational assertion to a non-relational
one. Given a collection of n states, Ψ |iσ is satisfied by any state σ′ which satisfies
Ψ when inserted at the ith position:

σ′ |= Ψ |i σ ≡ σ1, . . . , σi−1, σ
′, σi+1, . . . , σn |= Ψ

In effect, this operation ensures the states of the other programs remain
unchanged when reasoning about the ith program in the triple.

Universal Hoare Logic. The program logic for universal executions has a stan-
dard partial correctness semantics:

S∀ |= {P} p {Q} ≡ ∀σ, σ′. σ |= P ∧ S∀ � σ, p ⇓∀ σ′ =⇒ σ′ |= Q

The rules of this logic are largely standard1, except for the rule for function calls,
which uses a context of universal function specifications:

S∀(f) = ax∀ f(x){P}{Q}

S∀ �
{

P [a/x] ∧
∀v.Q[v/ρ; a/x] =⇒ R[v/y]

}
y := f(a) {R}

∀Spec

Existential Hoare Logic. The assertions of our program logic for existential execu-
tions say that, for any state meeting the precondition, there exists an execution
of the program ending in a set of states meeting the post-condition:

S∃ |= [P ] p [Q]∃ ≡ ∀σ. σ |= P =⇒ ∃Σ. S∃ 
 σ, p ⇓∃ Σ ∧ ∀σ′ ∈ Σ. σ′ |= Q

These rules are largely standard total Hoare logic rules2, augmented with a rule
for calls to existentially specified functions:

S∃(f) = ax∃f(x) [c] {P} {Q}

S∃ �

⎡
⎢⎢⎢⎢⎢⎢⎣

∃k. ([x �→ a] |= P [k/c]

∧ ∃v.[ρ �→ v, x �→ a] |= Q[k/c]

∧ ∀v.[ρ �→ v, x �→ a] |= Q[k/c]

=⇒ R[v/y])

⎤
⎥⎥⎥⎥⎥⎥⎦

y := f(a) [R]∃

∃Spec

1 The extended version of this paper [15] gives a full listing of the rules of this logic.
2 The full existential logic is presented in the extended version of this paper [15].
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The precondition of this rule is quantified over instantiations k of the specifi-
cation’s choice variables. The first of the three conjuncts under this quantifier
ensures that the statement is executed in a state satisfying the function’s precon-
dition. The next conjunct ensures that the function’s post-condition is inhabited.
The final conjunct requires that every possible return value satisfying the func-
tion’s post-condition also satisfies the triple’s post-condition.

Example 3. Given the existential specification ax∃ zeroOrOne() [c] {c = 0∨c = 1}
{ρ = c}, we can use ∃Spec (along with the standard rule for while loops, see the
extended paper [15]) to prove the existential assertion S∃ � [k = 0] while k <
4 do k := k+zeroOrOne() end [k = 4]∃. This loop could loop forever by choosing
to add 0 to k at every iteration. Nevertheless, by using measure 4 − k with the
well-founded relation < and instantiating the choice variable with 1 at each
iteration, we can prove a terminating path through the program exists.

4.1 Synchronous Rules

While the rules in Fig. 5 are sufficient to reason about relational properties, it
is possible to lessen the verification burden for structurally similar programs by
employing synchronous rules which exploit structural similarities between the
programs being verified [27]. Reasoning over similar control flow structures in
lockstep can reduce the space of states verification must consider and simplify
loop invariants. This is particularly useful when reasoning about hyperproper-
ties [12], or relational properties on multiple executions of the same program.
In order to more easily reason about structurally similar programs, RHLE also
includes synchronous rules inspired by the Cartesian loop logic presented by
Sousa and Dillig [36]. The extended version of this paper [15] includes a full
listing of these rules.

Example 4. Consider proving that while (x < 10) do y := y + randB(9) end
refines while (x < 10) do y := y + randB(5); y := y + randB(6) end. Intu-
itively, the first program refines the second because the bodies of the loops are
themselves refinements. A proof using only the rules in Fig. 5 is unable to take
advantage of this intuition, however. Instead, the proof requires a sufficiently
strong invariant characterizing the behavior of the entire loop on the left, and
then an invariant for the righthand program that accounts for the behavior of
individual iterations of the lefthand loop.

The SyncLoops rule is designed for this situation:

S∀, S∃ � 〈I ∧
∧

0≤i≤n

bi〉 s0 � · · · � sk ∼∃ sk+1 � · · · � sn 〈I〉

I ∧
∧

0≤i≤n

¬bi =⇒ Ψ I ∧ ¬
∧

0≤i≤n

bi =⇒
∧

0≤i≤n

¬bi

S∀, S∃ � 〈I〉 while b0 do s0 end � · · · � while bk do sk end
∼∃ while bk+1 do sk+1 end � · · · � while bn do sn end 〈Ψ〉

SyncLoops
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The first premise of this rule says that executing all loop bodies preserves some
invariant I, the second ensures the invariant is strong enough to imply the post-
condition, and the third requires all loops to end on the same iteration. Since this
invariant is reestablished after the execution of every loop body; the invariant
that y1 and y2 are equal at each iteration suffices to verify this example.

4.2 Soundness

The combination of the core and synchronous rules provide a sound methodology
for reasoning about ∀∃ properties:

Theorem 3 (RHLE is Sound). Suppose S∀, S∃ � 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉. Then,
for any function context I compatible with S∀ and S∃, any set of initial states
σ∀ and σ∃ satisfying Φ, and every collection of final states σ′

∀ of p∀, there must
exist a collection of final states produced by p∃ that, together with σ′

∀, satisfies
the relational post-condition Ψ .

5 Verification

Algorithm 1: RHLEVerify
Inputs : Φ, relational precondition

p∀, universal programs
p∃, existential programs
Ψ , relational postcondition

Output: 〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 validity
1 begin
2 Ψ ← (∅, ∅, Ψ)
3 (a, e, Ψ ′) ←

VCGen(skip; p∀, skip; p∃, Ψ)
4 return

Verify(∀a∃e. Φ =⇒ Ψ ′)

We now turn to the relational
verification algorithm based on
RHLE, presented in Algorithm 1.
The algorithm is implicitly param-
eterized over a pair of univer-
sal and existential contexts, and
Verify, a decision procedure for
checking validity of a formula in
the underlying assertion logic. The
bulk of the work is delegated to
VCGen, presented in Algorithm 2,
which builds a weakest relational
precondition for the input RHLE
triple. The algorithm then checks

that the RHLE triple’s precondition entails the calculated weakest precondi-
tion.

The body of VCGen builds a formula by recursively generating verification
conditions for the input programs statement by statement. This loop tries to
maximize opportunities to apply synchronous rules at each step, as these rules
allow us to simultaneously generate proof obligations for multiple subprograms,
as discussed in Sect. 4.1. After establishing there are still program statements
to step over (lines 3–4), VCGen looks for and processes any trailing program
statements which are not loops (lines 5–8), as such statements are not subject
to synchronous rule applications. To process individual program statements,
VCGen relies on a pair of verification condition generators, VC∀ and VC∃, for
the non-relational program logics. These functions are largely standard weakest
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Algorithm 2: VCGen
Inputs : p∀, a set of universal programs

p∃, a set of existential programs
Ψ = (Q∀, Q∃, Ψ), Ψ a postcondition with quantified variables Q∀, Q∃

Output: ({v0, . . . , vn}, {w0, . . . , wn}, Φ) such that vi, wi free in Φ and
〈Φ〉 p∀ ∼∃ p∃ 〈Ψ〉 is valid if ∀v0, . . . , vn ∃w0, . . . wn. Φ =⇒ Ψ

1 begin
2 match p∀ ∼∃ p∃:
3 case skip ∼∃ skip do
4 return Ψ

5 case p′
∀ � (s1; s2) � p′′

∀ ∼∃ p∃ where s2 not a loop do
6 VCGen(p′

∀ � s1 � p′′
∀, p∃,VC∀(s2, Ψ))

7 case p∀ ∼∃ p′
∃ � (s1; s2) � p′′

∃ where s2 not a loop do
8 VCGen(p∀, p′

∃ � s1 � p′′
∃,VC∃(s2, Ψ))

9 case p′
∀ � s1; if b then st else se � p′′

∀ ∼∃ p′
∃ do

10 (Q∀, Q∃, ΨT ) ← VCGen(p′
∀ � s1; st � p′′

∀, p∃, b =⇒ Ψ))
11 (Q′

∀, Q′
∃, ΨE) ← VCGen(p′

∀ � s1; se � p′′
∀, p∃, ¬b =⇒ Ψ))

12 return (Q∀ ∪ Q′
∀, Q∃ ∪ Q∃, ΨT ∧ ΨE)

13 case p0;while b0 do s0 � · · · � pi−1;while bi−1 do si−1 ∼∃
p′
i;while bi do si � · · · � p′

n;while bn do sn do
14 I ← FindInvariant(while b0 do s0 � · · · � while bi−1 do si−1 ∼∃

while bi do si � · · · � while bn do sn)
15 (Q′

∀, Q′
∃, Ψbody) ← VCGen(s0 � · · · � si−1 ∼∃ si � · · · � sn, I)

16 inductive ← I ∧ ∧
0≤i≤n bi =⇒ Ψbody

17 lockstep ← I ∧ ¬ ∧
0≤i≤n bi =⇒ ∧

0≤i≤n ¬bi

18 post ← I ∧ ∧
0≤i≤n ¬bi =⇒ Ψ

19 (Q∀, Q∃, Ψ) ← Ψ
20 if Verify(Q∀ ∪ Q′

∀, Q∃ ∪ Q′
∃, inductive ∧ lockstep ∧ post) then

21 VCGen(p, p′, (Q∀, Q∃, I))

22 else
23 next case

24 case p′
∀ � (s1; s2) � p′′

∀ ∼∃ p∃ do
25 VCGen(p′

∀ � s1 � p′′
∀, p∃, vc∀(s2, Ψ))

26 case p∀ ∼∃ p′
∃ � (s1; s2) � p′′

∃ do
27 VCGen(p∀, p′

∃ � s1 � p′′
∃, vc∃(s2, Ψ))

precondition generators extended with support for existential function calls. The
consequents of ∀Spec and ∃Spec immediately yield weakest precondition rules,
so that if S∀(f) = ax∀ f(x){P}{Q} and S∃(f) = ax∃f(x) [c] {P} {Q}, then:

VC∀(Ψ, y := f(a)) = P [a/x] ∧ ∀v.Q[v/ρ; a/x] =⇒ Ψ [v/y]

VC∃(Ψ, y := f(a)) = ∃k. ([x �→ a] |= P [k/c] ∧ ∃v.[ρ �→ v, x �→ a] |= Q[k/c]

∧ ∀v.[ρ �→ v, x �→ a] |= Q[k/c] =⇒ Ψ [v/y])
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If the first three cases fail, the final statements of all the remaining programs are
loops. In this case, VCGen attempts to simultaneously process the loops (lines
9–19) à la the SyncLoops rule in Example 4. To be eligible for fusion, loops
must execute in lockstep. This condition is checked (line 16) before returning;
if loops may execute different numbers of times, the algorithm proceeds to the
next match case. If no synchronized reasoning is possible, VCGen defaults to
stepping over an arbitrary loop in one of the programs (lines 20–23).

VCGen is parameterized over a procedure called FindInvariant, which
acts as an oracle for relational loop invariants. Our prototype implementation of
Algorithm 1 currently requires loops to be annotated with their invariants; these
annotations are used to implement FindInvariant. We have experimented
with adapting both purely logical [18,19] and data-driven approaches [30,31] for
invariant inference, but have yet to discover one that is effective for our larger
benchmarks. Unlike traditional loop invariants, which must be re-established on
every possible execution of the loop body, invariants in existentially quantified
executions need only be re-established on a subset of the possible executions
of the body. A robust invariant inference approach thus requires finding not
only the invariant itself, but a strategy for instantiating choice variables that
consistently re-establish the chosen invariant. Scalable invariant inference for
existentially quantified executions is an important and interesting direction for
future work.

See the extended version of this paper [15] for an example application of
Algorithm 1 to RandB.

6 Implementation and Evaluation
To evaluate our approach, we have implemented ORHLE, a publicly avail-
able [16] automatic program verifier based on Algorithm 1. ORHLE is imple-
mented in Haskell, and uses Z3 as a backend solver to fill the role of Verify.
As previously mentioned, invariants are provided by the programmer via anno-
tations in the code. Input to ORHLE consists of a collection of FunIMP pro-
grams, a declaration of how many copies of each program should be included in
the universal and existential contexts, and a collection of function specifications
expressed using the SMT-LIB2 format. Functions can have both universal and
existential specifications, with the latter containing declarations of choice vari-
ables. See the extended version of this paper [15] for example ORHLE input
listings. ORHLE outputs a set of verification conditions along with a success or
failure message. When a property fails to verify, ORHLE outputs a falsifying
model.

Our evaluation addresses the following questions:

(R1) Is RHLE expressive enough to represent a variety of interesting properties?
(R2) Is our approach effective; that is, can it be used to verify or invalidate

relational assertions about a diverse corpus of programs?
(R3) Is it possible to realize an efficient implementation of our verification app-

roach which returns results within a reasonable time frame?
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To answer these questions, we have developed a suite of 41 programs over
5 kinds of relational specifications drawn from the literature. We have also
compiled an additional set of 12 benchmarks over two non-relational existen-
tially quantified properties in order to evaluate similar questions about the non-
relational existential logic from Sect. 4. Both sets of benchmarks contain a mix of
valid and invalid properties. We have made these benchmarks publicly available3
via GitHub [17].

Our benchmarks for the non-relational existential logic from Sect. 4 fall into
two categories:

Winning Strategy. Programs in this category play a simplified version of the card
game twenty-one. Players start with two cards valued between 1 and 10, and can
then request any number of additional cards. The goal is to get a hand value as
close to 21 as possible without going over. The property of interest is whether
an algorithmic strategy for this game permits the possibility of achieving the
maximum hand value of 21 given any starting hand.

Branching Time Properties. Our next set of benchmarks are taken from work
by Cook and Koskinen [14] which considered verification of properties of single
programs expressed in CTL. The programs in this category are adaptations of
the subset of those benchmarks which assert the existence of desirable final states
and are thus expressible in RHLE.

Our set of relational benchmarks cover program refinement in addition to:

Noninterference. Generalized noninterference is a possibilistic information secu-
rity property which ensures that programs do not leak knowledge about high-
security state via low-security outputs. Our formalization of this property is
based on Mclean [26] and requires that, for any execution of a program p whose
state is divided into high security pH and low security pL partitions, any other
starting state with the same initial low partition can potentially yield the same
final low partition, regardless of the high partition.

Delimited Release. Delimited release is a relaxation of generalized noninterfer-
ence which allows for limited information about secure state to be released. For
example, given a confidential list of employee salaries, it may be acceptable to
publicize the average salary as long as no other salary information is leaked.
We formulate delimited release as a noninterference property with an additional
condition requiring that the programs agree on the values of the released infor-
mation. For the previous example, we would add a precondition asserting the
average salary across all executions is equal.

Parameter Usage. Our parameter usage benchmarks check whether a function
parameter is semantically unused, in that the existence of the parameter does

3 Branching time property benchmarks are adapted from a proprietary source, and
are thus omitted from the publicly available benchmarks.
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Property Shape Pos Neg Unk Med(ms) Max(ms)
Delimited Release ∀p1∃p2 7 6 0 222 253
Flaky Tests ∃p1p2 2 0 0 231 245
Generalized Noninterference ∀p1∃p2 4 6 0 222 229
Parameter Usage ∀p1∃p2 4 3 0 220 245
Program Refinement ∀p1∃p2 4 4 1 224 1367

Winning Strategy ∃p 1 2 0 228 230
Branching Time p 7 2 0 226 259

Fig. 6. ORHLE verification results over a set of relational and non-relational proper-
ties. The Shape column gives the execution quantification pattern for the property;
each property is of the form ∀p0 . . . pn∃qo . . . qn, where pi’s and qi’s are (possibly empty)
sets of executions. The Pos and Neg columns give the number of benchmarks over
which the property holds or does not hold, respectively. The Unk column gives the
number of benchmarks whose verification conditions could not be decided by the SMT
solver. The Med and Max columns give (respectively) the median and maximum
verification times in milliseconds over each set of benchmarks.

not affect the program’s reachable final states. For example, the flag parameter
in f(flag) = if flag then return 1 else return 1 is syntactically
used in f, even affecting its control flow, but does not have any effect on f’s
possible outputs; we therefore consider flag to be semantically unused. For an
n-ary function f(p1, . . . , pn), we say parameter pi is semantically unused if

〈vi �= wi ∧
∧
j �=i

vj = wj〉 a := f(v1, . . . , vn) ∼∃ b := f(w1, . . . , wn) 〈a = b〉

Flaky Tests. Tests of program behavior which can nondeterministically pass or
fail pose a significant hazard as they can trigger false alarms or allow regres-
sions to go undetected. We modeled representative nondeterministic tests in
FunIMP based on examples from The Illinois Dataset of Flaky Tests (IDoFT)
[24,35], framing flakiness as a ∀∃ property containing only existential execu-
tions. We consider a test verifiably flaky when there exists both a test execution
that succeeds and one that fails. We model nondeterminsitic system behavior
(e.g., getCurrentTimeMs() or the results of network calls) as function calls.
For example, to model the imprecision of thread sleeps, we give the verifier
leeway to sleep within a ±20 ms window around the requested interval: ax∃
sleep(interval, currentTime) [sleepTime] {0 ≤ sleepTime ∧ interval − 20 ≤
sleepTime ≤ interval + 20} {ρ = currentTime + sleepTime}.

The variety of properties we were able to represent in ORHLE provides evi-
dence that it is sufficiently expressive (R1). To show that ORHLE is both effec-
tive and efficient (R2)-(R3), we have used it to verify and/or invalidate exam-
ples of the benchmark properties described above. All of these experiments were
done using an Intel Core i7-6700K CPU with 8 4GHz cores. Figure 6 presents the
results of these experiments. ORHLE yielded the expected verification result in
all cases except for one refinement benchmark, where the backing SMT solver
(Z3) was unable to determine the validity of the verification conditions. While
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most benchmarks’ verification conditions fell within the theory of linear integer
arithmetic, verification conditions fell in a non-decidable fragment of arithmetic
in this benchmark. This undecidable instance accounts for the outlier maxi-
mum verification time in the refinement benchmarks. Overall, these results offer
evidence that ORHLE is both effective and efficient for verifying a variety of
existential and ∀∃ properties.

7 Related Work
Relational Program Logics. Relational program logics are a common approach to
verifying relational specifications. Relational Hoare Logic [9] (RHL) was one of
the first examples of these logics, and is capable of proving 2-safety properties.
Relational Higher-order Logic [2] is a higher-order relational logic for reasoning
about higher-order functional programs expressed in a simply-typed λ-calculus.
Probabilistic RHL [8] is a logic for reasoning about probabilistic programs in
order to prove security properties of cryptographic schemes. The relational logic
closest to RHLE is Cartesian Hoare Logic [36] (CHL) developed by Sousa and
Dillig. This logic which provides an axiomatic system for reasoning about k-
safety hyperproperties along with an automatic verification algorithm. RHLE
can be thought of as an extension of CHL for reasoning about the more general
class of ∀∃ properties. Nagasamudram and Naumann [27] examine alignment
completeness for relational Hoare logics, which classifies the ability of these logics
to reason about programs in lockstep. Banerjee et al. [4] introduce a relational
Hoare logic capable of reasoning about encapsulation and invariant hiding, but
which is confined to 2-safety properties.

Underapproximate Program Logics. Several program logics have been proposed
to reason about the existence of particular executions of a single program, sim-
ilar to the non-relational existential logic presented in Sect. 4. Reverse Hoare
Logic [39] is a program logic for reasoning about reachability over single exe-
cutions of programs which have access to a nondeterministic binary choice (�)
operator. Incorrectness Logic [29] is a recent adaptation of Reverse Hoare Logic
to a more realistic programming language. While these logics express the exis-
tence of a satisfying start state for all satisfying end states (∀σ′∃σ), the exis-
tential logic presented in Sect. 4 requires there to exist a satisfying end state
for all satisfying start states (∀σ∃σ′). Reverse Hoare Logic and Incorrectness
Logic both reason about reachability over single executions, but properties in
these logics are pure underapproximations: every state in a given postcondition
must be reachable. In contrast, our reasoning over existential specifications is
underapproximate with respect to the choice variables only. While every valid
choice value must correspond to a reachable set of final states, each of these sets
are still overapproximate. This feature of our existential specifications enables a
natural integration with standard Hoare logics.

First-order dynamic logic [33] is a reinterpretation of Hoare logic in first-
order, multi-modal logic. For a program p, the modal operators [p] and 〈p〉
capture universal and existential quantification over program executions. Our
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universal Hoare triple � {P}p{Q} corresponds to P =⇒ [p]Q, and our existen-
tial Hoare triple � [P ]p[Q]∃ corresponds to P =⇒ 〈p〉Q. In contrast to RHLE,
dynamic logic reasons about properties of single program executions.

Prophecy Variables. Prophecy variables were originally introduced by Abadi and
Lamport [1] in order to establish refinement mappings between state machines.
Choice variables in our existential specifications are similar to prophecy variables
in that they capture the required value of some “future” state, although we use
them as part of a program logic rather than to reason about refinement map-
pings between state machines. Jung et al. [22] incorporate prophecy variables
into a separation Hoare logic to reason about nondeterminism in concurrent
programs, but differ from our approach in that the program logic operates in a
non-relational setting and is designed for interactive and not automated verifi-
cation.

Relational Verification. The concept of a hyperproperty was originally intro-
duced by Clarkson and Schneider [12], building on earlier work by Terauchi and
Aiken [37]. The initial work discusses verification but it does not offer an algo-
rithm; numerous program techniques have been subsequently proposed to verify
hyperproperties. Product programs are an alternative approach to relational ver-
ification [5]. This approach can leverage existing non-relational verification tools
and techniques when verifying the product program, but the large state space of
product programs can make verification difficult in practice. Product programs
have been used to verify k-safety properties and reason about noninterference
and secure information flow [7,23]. Barthe et al. [6] have developed a set of nec-
essary conditions for “left-product programs”; these product programs can be
used to verify hyperproperties outside of k-safety, including our ∀∃ properties,
although the work does not address how to construct left-product programs.

Unno et al. [38] have developed a technique for verifying ∀∃ properties
including program refinement, generalized noninterference, and cotermination
by encoding a constraint satisfaction problem expressed using a generalization
of constrained Horn clauses. The approach solves constraints using a strati-
fied CEGIS approach, and can synthesize non-trivial alignment predicates for
interleaving executions of loop bodies. This work is not based on a Hoare-style
program logic, but rather develops per-property embeddings of ∀∃ verification
problems in a novel adaptation of constrained Horn clauses.

There are several modal logics which support a style of existential reason-
ing similar to our existential logic. Temporal logics like HyperLTL and Hyper-
CTL [11] can be used to reason about hyperproperties, although verification
tooling [10] is focused on model checking state transition systems rather than
program logics. Coenen et al. [13] examine verification and synthesis of compu-
tational models using HyperLTL formulas with alternating quantifiers. Cook et
al. [14] examine existential reasoning in branching-time temporal logics by way
of removing state space until universal reasoning methods can be used. Lamport
and Schneider [25] examine using TLA to verify ∀∃ properties including refine-
ment and GNI. While the above approaches are capable of reasoning about the
kinds of liveness properties we consider in this paper, they all focus on model
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checking state transition systems rather than using a Hoare-style logic to reason
directly over programs as in our approach.

8 Conclusion
This paper presented RHLE, a novel relational Hoare-style program logic for
reasoning about ∀∃ properties. These properties can capture a variety of inter-
esting behaviors of multiple program executions, including program refinement
and information flow properties. Key to our logic is a novel form of function spec-
ifications which constrain the set of behaviors that a valid implementation of a
function must exhibit. We have developed an automated verification algorithm
based on RHLE, and we demonstrated that an implementation of this algorithm
is able to check the validity of a variety of ∀∃ properties over a benchmark suite
of programs.
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Abstract. Although effect handlers offer a versatile abstraction for
user-defined effects, they produce complex and less restricted execution
traces due to the composable non-local control flow mechanisms. This
paper is interested in the temporal behaviors of effect sequences, such
as unhandled effects, termination of the communication, safety, fairness,
etc. Specifically, we propose a novel effects logic ContEffs, to write precise
and modular specifications for programs in the presence of user-defined
effect handlers and primitive effects. As a second contribution, we devise
a forward verifier together with a fixpoint calculator to infer the behav-
iors of such programs. Lastly, our automated verification framework pro-
vides a purely algebraic term-rewriting system (TRS) as the back-end
solver, efficiently checking the entailments between ContEffs assertions.
To demonstrate the feasibility, we prototype a verification system where
zero-shot, one-shot, and multi-shot continuations coexist; prove its cor-
rectness; present experimental results; and report on case studies.

1 Introduction

User-defined effects and effect handlers are advertised and advocated as a rel-
atively easy-to-understand and modular approach to delimited control. They
offer the ability to suspend and resume computations, allowing information to
be transmitted both ways. More specifically, an effect handler resembles an
exception handler, i.e., control is transferred to an enclosing handler. Unlike
the exception handlers, the key difference is that effects handlers have access to
a continuation. By invoking this continuation, the handler can communicate a
reply to the suspended computation and resume its execution.

For example, effect Yield : int -> unit, declares the Yield effect, to be
used in the generator functions. When it is performed, the program suspends
its current execution and returns the yielded int value to the handler. Such
usages separate the logic, e.g., iterating a list, from the effectful operations, such
as “printing on the console” or “sending an element to a consumer”, thereby
improving code reuse and memory efficiency. Functions perform effects without
needing to know how the handlers are implemented, and the computation may
be enclosed by different handlers that handle the same effect differently.

Recently, effect handlers are found in several research programming lan-
guages, such as Eff [1], Frank [2], Links [3], Multicore OCaml [4], and Scala [5],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Sergey (Ed.): APLAS 2022, LNCS 13658, pp. 88–109, 2022.
https://doi.org/10.1007/978-3-031-21037-2_5
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etc. There is a growing need for programmers and researchers to reason about
the combination of primitive effects and user-defined handlers. In particular, we
are interested in the techniques for inferring and verifying temporal behaviors
of such non-local control flows, which have not been extensively studied. In this
paper, we tackle the following verification challenges:
1. The coexistence of zero-shot, one-shot and multi-shot continuations. The
design decisions of various implementations [4,6] and verification solutions [7,8]
diverge upon the question that, should it be permitted or forbidden to invoke a
captured continuation more than once? In this paper, our forward inference rules
shows the generality to incorporate both one-shot and multi-shot continuations.
Furthermore, it naturally supports reasoning on exceptions by treating them as
zero-shot, i.e., that abandon the continuations completely.
2. Non-terminating behaviors. Figure 1 presents the so-called “recursive cow”
program drawn from the benchmark [9], which looks like it is terminating but
it actually cycles. Function f() performs the predefined effect Foo; then loop

() handles effect Foo by resuming a closure which in turn performs Foo when
applied.

1 effect Foo : (unit -> unit)

2

3 let f() = perform Foo ()

4

5 let loop()

6 = match f () with

7 | _ -> () (*normal return*)

8 | effect Foo k -> continue k

9 (fun () -> perform Foo ())

Fig. 1. A loop.

With higher-order effect signa-
tures and in the setting of deep han-
dlers1, the communications between
the computation and handlers poten-
tially lead to infinite traces. It is
useful yet challenging to automati-
cally infer/verify the termination of
the communication. In this paper,
we devise ContEffs, i.e., extended
regular expressions with arithmetic
constraints, to provide more precise
specifications by integrating: � for finite traces; ω for infinite traces; ∞ for pos-
sibly finite or infinite traces.
3. Linear temporal properties. For decades monads have dominated the scene
of pure functional programming with effects, and the recent popularization of
algebraic effects and handlers promises to change the landscape. However, with
rapid change also comes confusion. In monads, the effectful behavior is defined in
bind and return, statically determining the behavior inside the do block. Whereas
algebraic effects call effectful operations with no inherent behavior. Instead, the
behavior is determined dynamically by the encompassing handler. Although this
gives greater flexibility in the composition of effectful code, it requires further
specifications and verification to enforce the temporal requirements.

In this work, ContEffs smoothly encode and go beyond the linear temporal
logic (LTL). For examples: “Effect A will never be followed by effect B” is a fair-
ness property, and it is expressed as: ( � · A · B)�, where is a wildcard matching
to any events; � denotes a repeated pattern; B denotes the negation of an effect

1 A deep handler is persistent: after it has handled one effect, it remains installed, as
the topmost frame of the captured continuation [10,11].
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B . “Function send(int n) terminates when n is non-negative, otherwise it does
not terminate” is expressed as: n≥0∧( )� ∨ n<0∧( )ω, which is beyond LTL.

Having ContEffs as the specification language, we are interested in the fol-
lowing verification problem: Given a program P, and a temporal property Φ′,
does ΦP � Φ′ hold2? In a typical verification context, checking the inclusion/en-
tailment between the program effects ΦP and the valid traces Φ′ proves that:
the program P will never lead to unsafe traces which violate Φ′.

To effectively check ΦP � Φ′, we deploy a purely algebraic TRS inspired by
Antimirov and Mosses’ algorithm [12], which was originally designed for decid-
ing the inequalities of regular expressions. Our TRS shows the ability to solve
inclusions beyond the expressiveness of finite-state automata, also suggests that
it is a better average-case algorithm than those based on automata theory.

We aim to lay the foundation for a practical verification system that is pre-
cise, concise, and modular to prove temporal properties of effectful programs.
To the best of the authors’ knowledge, this work is the first to provide an exten-
sive temporal verification framework for programs with user-defined effects and
handlers. We summarize our main contributions as follows:

1. The Continuous Effect (ContEffs): We define the syntax and semantics
of ContEffs, to be the specification language, which captures the temporal
behaviors of given higher-order programs with algebraic effects.

2. Front-End Effects Inference: Targeting a ML-like language with the pres-
ence of algebraic effects [4,13], we establish a set of forward rules, to composi-
tionally infer the program’s temporal behaviors. The inference process makes
use of a fixpoint calculator and the back-end solver TRS.

3. The Term Rewriting System (TRS): To check the entailments (i.e., the
language inclusion relation) between two ContEffss, we present the rewriting
rules, to prove the inferred effects against given temporal specifications.

4. Implementation and Evaluation: We prototype the proposed verification
system based on the latest Multicore OCaml (4.12.0) implementation. We
prove its correctness and present case studies investigating ContEffs ’ expres-
siveness and the potential for various extensions.

2 Overview

2.1 A Sense of ContEffs in File I/O

We define Hoare-triple style specifications, marked in lavender, for each pro-
gram, which leads to a compositional verification strategy, where temporal rea-
soning can be done locally. We model an abstract form of file I/O in Fig. 2.
Effects Open and Close are both declared to be performed with a value of type
int, indexing the operated file.

2 The inclusion notation � is formally defined in Definition 3.
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8 let close_file n

9 (*@ req _^*.Open(n)!

10 .(~Close(n)!)^* @*)

11 (*@ ens Close(n)! @*)

12 = perform (Close n)

13

14 let file_9 ()

15 (*@ req emp @*)

16 (*@ ens Open(9)!.Close(9)!@*)

17 = open_file 9;

18 close_file 9

1 effect Open : int -> unit

2 effect Close: int -> unit

3

4 let open_file n

5 (*@ req _^* @*)

6 (*@ ens Open(n)! @*)

7 = perform (Open n)

Fig. 2. A simple file I/O example.

Function open file takes an argu-
ment n. Its precondition uses a wild-
card ‘ ’ under a Kleene star, indicating
that any finite number/kind of effects
is allowed to have occurred before the
call to open file. In other words, it is
always possible to open a file. Its post-
condition indicates that it performs
the effect Open applied with n.

The precondition of close file
states that it can only be called after
such a history trace where the nth file
has been requested to be Opened, and
not been requested to be Closeed3.

We use . to denote the sequential
composition of effect traces, ! denotes
the emission of a certain effect, and ~
denotes the negation of a certain effect
label.

The precondition of file 9: emp, stands for an empty trace, which means no
history trace is allowed by the calling site of function file 9. We formalize this
idea of being allowed as an entailment relation between specifications in Sec. 5.
The verification fails when the real implementation violates the specifications.

2.2 Effects Inferences via a Fixpoint Calculation

1 effect Goo : (unit -> unit)

2

3 let f_g ()

4 (*@ req _^* @*)

5 (*@ ens Foo!.Goo!.Foo?() @*)

6 = let f = perform Foo in

7 let g = perform Goo in

8 f () (* g is abandoned *)

9

10 let loop ()

11 (*@ req _^* @*)

12 (*@ ens _^*.(Foo.Goo)^w @*)

13 = match f_g () with

14 | _ -> ()

15 | effect Foo k -> continue k

16 (fun () -> perform Goo ())

17 | effect Goo k -> continue k

18 (fun () -> perform Foo ())

Fig. 3. Another Loop.

We continue to examine a vari-
ant of the so-called “recursive cow”
benchmark program [9] in Fig. 3.,
which generates an infinite trace.
The handling of effects Foo and Goo
are notable because their resumption
carry closures back to the suspended
points, which in turn perform effects
when fully applied.

We argue informally that loop is
non-terminating. This is because the
invocation of f g () performs Foo,
which obtains the resumed closure
(defined in line 16) and stores it in the
variable f. Then the application to f
in turn performs Goo. The performing
of Goo brings us to the handler at line

3 close file’s precondition prevents closing files that are not opened. The constraints
can be strengthened or loosened as needed. For example, to prevent opening a file
which is already opened, we need to strengthen open file’s precondition accordingly.
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18, which resumes a closure that performs Foo when applied. The resulting post-
condition, deploys the ω operator, states that loop finally performs an infinite
succession of alternating Foo and Goo effects. In fact, our fixpoint calculator
computes the final effects for loop as Foo · Goo · Goo · Foo · (Goo · Foo)ω, which
entails the declared postcondition (c.f. Fig. 4.).

Loops like these between handler and callee are generally caused by per-
forming effects in the recovery closure when handling an effect, that results in a
cycle back to that same (deep) handler. However, resuming with a closure, is a
useful pattern for inverting control between handler and callee, does give rise to
this trap. Our fixpoint analysis and specifications are aimed at capturing such
situations, which have not been extensively explored.

2.3 The TRS: To Prove Effects Inclusions

The rewriting system proposed by Antimirov and Mosses [14] decides inequal-
ities of regular expressions (REs) through an iterated process of checking the
inequalities of their partial derivatives [15]. There are two basic rules: [DISPROVE
], which infers false from trivially inconsistent inequalities; and [UNFOLD], which
applies Definition 1 to generate new inequalities. In detail, given Σ is the whole
set of the alphabet, DA(r) is the partial derivative of r w.r.t the event A.

Definition 1 (REs Inequality). For REs r, s, r � s ⇔ ∀(A ∈ Σ). DA(r) � DA(s).

Similarly, we formally define the inclusion of ContEffs in Definition 3.
Next we present the effects inclusion, generated from Fig. 3, proving process

for the post condition checking in Fig. 4. Termination is guaranteed because
the set of derivatives to be considered is finite, and possible cycles are detected
using memorization. We use ♠ to indicate such pairings. The rewriting rules are
defined in Sec. 5. In particular, the rule [Reoccur ] finds the syntactic identity
from the internal proof tree, for the current open goal [16].

Foo · (Goo · Foo )ω · (Goo · Foo )ω ♠ ∨ (Foo · Goo )ω
fst=Goo

Goo · Foo · (Goo · Foo )ω · (Goo · Foo )ω ∨ Goo · (Foo · Goo )ω
fst=Foo

Foo · (Goo · Foo )ω · (Goo · Foo )ω ♠
fst=Goo

Goo · Foo · (Goo · Foo )ω · (Foo · Goo )ω ∨ (Foo · Goo )ω
fst=Goo

Goo · Goo · Foo · (Goo · Foo )ω · (Foo · Goo )ω ∨ Goo · (Foo · Goo )ω
fst=Foo

Foo Goo Goo Foo (Goo Foo )ω (Foo Goo )ω

Fig. 4. Proving the postcondition of loop ().

3 Language and Specifications

3.1 The Target Language

Syntax. We target a minimal, ML-like (typed, higher-order, call-by-value) core
pure language, defined in Fig. 5. Here, c, x and A are meta-variables ranging
respectively over integer constants, variables, and labels of effects.
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A program P comprises a list of effect declarations eff ∗ and a list of method
definitions meth∗; the ∗ superscript denotes a finite, possibly empty list of items.
Programs are typed according to basic types τ . Each method meth has a name
mn, an expression body e, and pre- and postconditions Φpre and Φpost (the
syntax of effect specifications Φ is given in Fig. 7). Constructs like sequencing
are defined via elaboration to more primitive forms.

(Program) P ::= eff ∗ meth∗

(Effect Declarations) eff ::= A : τ
(Method Definition) meth ::= τ mn (τ v) [req Φpre ens Φpost ] {e}
(Types) τ ::= bool | int | unit | τ1 τ2
(Values) v ::= c | x | λx ⇒ e
(Handler) h ::= (return x e | ocs)
(Operation Cases) ocs ::= ∅ | {effect A(x, κ) e ocs
(Expressions) e ::= v | v1 v2 | let x=v in e | if v then e1 else e2 |

perform A(v, λx ⇒ e) | match e with h | resume v
(Selected Elaborations)

e1; e2 =⇒ let ()=e1 in e2
e1 e2 =⇒ let f=e1 in let x=e2 in (f x)

perform A(e1, λy ⇒ e2) =⇒ let x=e1 in perform A(x, λy ⇒ e2)
let x=perform A(v, λy ⇒ e1) in e2 =⇒ perform A(v, λy ⇒ let x=e1 in e2)

perform A(v) =⇒ perform A(v, λx ⇒ x)

c ∈ Z ∪ B ∪ unit x , y ,mn, κ ∈ var A ∈ Σ

Fig. 5. Syntax of expressions.

(Evaluation contexts) E ::= | let x=E in e | match E with h

(Reduction rules) E [e1 ] E[e2] if e1 e2
let x=v in e e[v/x]
(λx ⇒ e) v e[v/x]

if true then e1 else e2 e1
if false then e1 else e2 e2

match v with h e[v/x] if (return x e) ∈ h
match (perform A(v, λy ⇒ e1)) with h e2[v/x][(λy ⇒ match e1 with h)/κ]

if (effect A(x, κ) e2) ∈ h
match (perform A(v, λy ⇒ e1)) with h perform A(v, λy ⇒ match e1 with h)

if A /∈ h

Fig. 6. Evaluation contexts and reduction rules

Operational Semantics. The reduction rules up to those for match are stan-
dard. Matching on a pure value results in the body of the always-present return
handler being executed, with x bound to the value. The next two cases define how
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effects are performed and handled, but before covering them, we first explain how
the expression perform A(v , λx ⇒ e) works informally: it performs the effect A
(e.g. a shared-memory read) with argument v (e.g. the memory location to be
read). The result value of the effect (e.g. the contents of the memory location)
is then bound to x and evaluation resumes with the continuation e. Note that
how exactly the read is implemented is defined by handlers which enclose the
perform.

With that in mind, there are two cases when matching on an effectful expres-
sion. If the effect A is handled by an appropriate case in an enclosing handler,
both value and continuation are substituted into the body of the case – note
that the continuation contains an identical handler (making the enclosing han-
dler deep). Otherwise, if the effect is unhandled, reduction proceeds with the
current match “pushed” into the continuation, to handle subsequent performs.

3.2 The Specification Language

Syntax. We enrich a Hoare-style verification system with effect specifications,
using the notation {req Φpre ens Φpost} for function pre- and postconditions.
As defined in Fig. 7, Φ is a set of disjunctive tuples including a pure formula π,
an event sequence θ, and a return value v.

( ) Φ ::= (π, θ, v)
(Parameterized Label) l ::= Σ(v)

(Event Sequences) θ ::= ⊥ | | ev | Q | θ1 ·θ2 | θ1∨θ2 | θ | θ∞ | θω

(Single Events) ev ::= | l | l
(Placeholders) Q ::= l ! | l?(v)

(Pure formulae) π ::= True | False | R(t1 , t2 ) | π1∧π2 |π1∨π2 |¬π |π1⇒π2

(Terms) t ::= n | x | t1+t2 | t1 -t2

x var (Finite Kleene Star) (Finite/Infinite) (Infinite) ω

Fig. 7. Syntax of ContEffs.

A is an effect label drawn from Σ , a finite set of user-defined effect labels. A
parameterized label is an effect label together with a value argument v. An event
ev is an assertion about the (non-)occurrence of an individual, handled effect.

Placeholders Q stand for traces (sequences of events). The two kinds of place-
holders are unhandled effects l!, which may give rise to further effects upon being
handled, and l?(v), which describes the trace that results when l is resumed with
a higher-order function, and this function is applied to v. Placeholders enable
modular verification, allowing higher-order perform sites to be described inde-
pendently of any particular handler. They are only instantiated while verifying
handlers, using the fixed-point reasoning (Sect. 4.2).

Effect sequences θ can be constructed by false (⊥); the empty trace ε; a
single event ev ; a placeholder Q ; a sequence concatenation θ1 ·θ2 ; and sequence
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disjunction θ1∨θ2 . Effect sequences can be also constructed by �, representing
finite (zero or more) repetition of a trace; by ω, representing an infinite repetition
of a trace; or by ∞, representing an overapproximation of both finite and infinite
possibilities [17]. Although θ� and θω are subsumed by θ∞, integrating all of the
operators makes the specification language more flexible and precise. It also
makes the logic conveniently fuse traditional linear temporal logics.

Pure formulae π are Presburger arithmetic formulae. R(t1 , t2 ) is a binary
relation (R ∈ {=, >,<,≥,≤}). Terms are constant integer values n, integer
variables x , and additions and subtractions of terms.

Semantic Model of Effect Sequences. To define the model, var is the set
of program variables, val is the set of primitive values, α is the set of concrete
events drawn from single events l or placeholders Q . Let E , ϕ |= Φ denote the
models relation, i.e., the context E and linear temporal events ϕ satisfy the effect
specification Φ, where E records the stack status and the bindings from variables
to placeholders, E � var→(val ∪ Q); and ϕ is a list of events, ϕ � [α].

Since the return value in effect specifications is irrelevant to the semantic
model, we define E , ϕ |= (π, θ) to be E , ϕ |= (π, θ, v) for some return value v .

The semantics of effect sequences is defined in Fig. 8. [] is an empty sequence;
[l] is the sequence that contains one parameterized label l; ++ is the append
operation of two effect sequences; and

∨
j is a disjunction of parameterized

labels j . Comparisons between labels use simple lexical equivalence.

E , ϕ |= Φ iff ∃(π, θ, v) ∈ Φ. E , ϕ |= (π, θ, v)

E , ϕ |= ( ) iff π E=True and ϕ=[]

E , ϕ |= (π, ) iff π E=True and ∃l ∈ Σ(v), ϕ=[l ]

E , ϕ |= (π, l) iff π E=True and ϕ=[l ]

E , ϕ |= (π, l) iff π E=True and E , ϕ |= j where j ∈ Σ(v) and j=l

E , ϕ |= (π,Q) iff π E=True and ϕ=[Q ]

E , ϕ |= (π, θ1 ·θ2 ) iff ∃ϕ1 , ϕ2 . ϕ=ϕ1++ϕ2 and E , ϕ1 |=(π, θ1 ) and E , ϕ2 |=(π, θ2 )

E , ϕ |= (π, θ1∨θ2 ) iff E , ϕ |= (π, θ1 ) or E , ϕ |= (π, θ2 )

E , ϕ |= (π, θ ) iff E , ϕ |= ( ) or E , ϕ |= (π, θ · θ )

E , ϕ |= (π, θ∞) iff E , ϕ |= (π, θ ) or E , ϕ |= (π, θω)

E , ϕ |= (π, θω) iff E , ϕ |= (π, θ · θω)

E , ϕ |= (False, ⊥) iff false

Fig. 8. Semantics of effect sequences.
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3.3 Instrumented Semantics

To facilitate the soundness proof in Theorem 1 for the verification rules presented
in Sect. 4, we also define an instrumented reduction relation i−−→, which operates
on program states of the form

⌈
e, E , ϕ

⌉
, where an expression is associated with

a context and the trace of effects performed in the course of its execution. i−−→∗

denotes its reflexive, transitive closure. Here, given e −→ e ′ and a most general
high-order effects signature (A : τ1→(τ2→τ3 )) ∈ P:

e = v1 v2 E(v1)=A(v)?
⌈
e, E , ϕ

⌉ i−−→⌈
e′, E , ϕ++[A(v)?(v2)]

⌉ [Inst-App]
e = let x=v in e1

⌈
e, E , ϕ

⌉ i−−→⌈
e′, (x�→v)::E , ϕ

⌉ [Inst-Bind ]

e = match perform A(v, λx⇒e1) with h A /∈ h
⌈
e, E , ϕ

⌉ i−−→⌈
e′, (x�→A(v)?)::E , ϕ++[A(v)!]

⌉ [Inst-Escape]

e = match perform A(v, λx⇒e1) with h A ∈ h
⌈
e, E , ϕ

⌉ i−−→⌈
e′, E , ϕ++[A(v)]

⌉ [Inst-Caught ]

4 Forward Verification

An overview of our automated verification system is given in Fig. 9. It consists
of a Hoare-style forward verifier and a TRS. The input of the forward verifier is
a target program annotated with temporal specifications written in ContEffs.

The input of the TRS is a pair of effects LHS and RHS, referring to the
inclusion LHS � RHS to be checked (LHS for left-hand-side trace, and RHS for
right-hand-side trace). The verifier calls the TRS to prove produced inclusions.

Higher-order

Hoare-style

Two
LHS RHS

Inclusion
Prover (TRS) Sec. 5

Proof Obligations

Fig. 9. System overview. Rounded boxes are the main procedures. Rectangular boxes
describe the inputs to the procedures. The verification relies on the TRS (dash line).

We formalize a set of syntax-directed forward verification rules for the
core language. P denotes the program being checked. With pre/postconditions
declared for each method in P, we apply modular verification to a method’s body
using Hoare-style triples E � {Φ} e {Φ′} where E is the context; if Φ describes
the effects which have been performed since the beginning of P, if e terminates,
Φ′ describes the effects that will have been performed after.
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4.1 Forward Verification Rules

In [FV -Meth], the rule computes the final effects Φ from the method body, and
checks the inclusion between Φ and the declared specifications. Note that for
succinctness, the user-provided Φpost only denotes the extension of the effects
from executing the method body. Formally, E � {Φpre} e {Φpre ·Φpost} is a valid
triple.

E 
 {Φpre} e {Φ} Φ � Φpre · Φpost


 τ mn (τ v) [req Φpre ens Φpost] {e} [FV -Meth]

Definition 2 (ContEffs Concatenation). Given two ContEffs Φ1 and Φ2 ,
Φ1 · Φ2 = {(π1 ∧ π2 , θ1 · θ2 , v2 ) | (π1 , θ1 , v1 ) ∈ Φ1 , (π2 , θ2 , v2 ) ∈ Φ2}

[FV -Perform] concatenates a placeholder to the current effects, where Φ·A(v)!
≡ {(π, θ · A(v)!, v) | (π, θ, v) ∈ Φ}, then extends the environment by binding x
to A(v)?, referring to the resumed value of performing A(v).

Φ′=Φ · A(v)! (x�→A(v)?)::E 
 {Φ′} e {Φ′′}
E 
 {Φ} perform A(v, λx⇒e) {Φ′′} [FV -Perform]

For applications v1 v2 , if v1 is a function definition with annotated specifica-
tions, [FV -Call ] checks whether the instantiated precondition of callee, Φpre [v2/v ],
is satisfied by the current effects state, then it obtains the next effects state by
concatenating the instantiated postcondition, Φpost [v2/v ], to the current effects
state; if v1 maps to l?, [FV -App] concatenates l?(v2 ) into the current effect
state, referring to the effects generated by applying v2 to the value resumed
from performing l . [FV -Value] updates the current return value.

E(v1)=τ mn (τ v) [req Φpre ens Φpost] {e} Φ � Φpre[v2/v]

E 
 {Φ} v1v2 {Φ · Φpost[v2/v]} [FV -Call ]

E(v1)=l? θ′=l?(v2)

E 
 {Φ} v1v2 {Φ · θ′} [FV -App]
Φ′ = {(π, θ, v′) | (π, θ, v) ∈ Φ}

E 
 {Φ} v′ {Φ′} [FV -Value]

[FV -If -Else] unions the effects from both branches, where Φ ∧ π′ ≡ {(π ∧ π′,
θ, v) | (π, θ, v) ∈ Φ}. [FV -Let ] extends E with x binding to v .

E 
 {Φ∧(v=true)} e1 {Φ1} E 
 {Φ∧(v=false)} e2 {Φ2}
E 
 {Φ} if v then e1 else e2 {Φ1} ∪ {Φ2} [FV -If -Else]

(x�→v)::E 
 {Φ} e {Φ′}
E 
 {Φ} let x=v in e {Φ′} [FV -Let ]
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[FV -Match] computes the effects of e using the initial state {(True, ε, ())},
then deploys the fixpoint algorithm to compute the final effects after been han-
dled by h. The notion ♥ is a special event marking the end of the traces, which
is essential when distinguishing the zero/one/multi-shots continuations.

E 
 {(True, ε, ())} e {Φ′} Φ′′={(π, θ · ♥, v) | (π, θ, v) ∈ Φ′}
E , h 
fix Φ′′ � Φfix (cf. Sec. 4.2)

E 
 {Φ} match e with h {Φ · Φfix} [FV -Match]

4.2 Fixpoint Computation

Given any effect Φ and fixed environment E and handler H, the relation
E ,H �fix Φ � Φfix concludes the fixpoint effects Φfix via the following rule, where

∀(π, θ, v) ∈ Φ. ‖E , ε, H‖ 
fix (π, θ, v) � Φ′

E , H 
fix Φ �
⋃

Φ′ [Fix -Disj ]

for all execution tuples (π, θ, v) from Φ, given E and H, it is reduced to Φ′. Their
relation is captured by: ‖E , θhis ,H‖ �fix (π, θ, v) � Φ′, where θhis is the history
trace and initialized by ε. The final result Φfix is a union set of all the Φ′.

Rule [Fix -Normal ] is applied when the trace is reduced to the ending mark
♥, which indicates that the execution of the handled program is finished. In this
case, the resulting state Φ′ is achieved by computing the strongest post condition
of eret [v/x ] from the starting state {(π, θhis , v)}.

(return x �→ eret) ∈ H ([x�→v])::E 
 {(π, θhis , v)} eret {Φ′}
‖E , θhis , H‖ 
fix (π, ♥, v) � Φ′ [Fix -Normal ]

Rule [Fix -Unfold-Skip] is applied when the starting events α are handled
effects ev , or placeholders corresponding to the effects cannot be handled by
the current handler. In this case, the rule simple achieves α into the history
context θhis and continues to reason about the tail of the trace, i.e., θ.

α ∈ {ev, l !, l?(v′)} (l /∈ H) ‖E , θhis · α, H‖ 
fix (π, θ, v) � Φ′

‖E , θhis , H‖ 
fix (π, α · θ, v) � Φ′ [Fix -Unfold-Skip]

Rule [Fix -Unfold-Handle] is applied when the starting events α are unhandled
effects l ! which can be handled by the current handler. In this case, the rule uses
the relation E ′,H,D �h 〈Φ〉 e 〈Φ′〉 to reason about the handling code e, where E ′
extends E with x�→v. Note that, here the rule achieves l into the history context,
indicating that the emission l ! is handled.
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α ∈ {l !} (effect A(x, κ) �→ e) ∈ H (l=A(v′))
E ′=(x�→v)::E E ′, H, θ 
h 〈(π, θhis · l , v)〉 e 〈Φ′〉 (cf. Sec. 4.3)

‖E , θhis , H‖ 
fix (π, α · θ, v) � Φ′ [Fix -Unfold-Handle]

4.3 Reasoning in the Handling Program

Rules for E ,H,D �h 〈Φ〉 e 〈Φ′〉 (where D stands for the not-yet-handled con-
tinuation, of the type θ) are mostly similar to the top-level forward relation
E � {Φ} e {Φ′}, except for the rules:

∀(π, θ, v) ∈ Φ ‖E , θ, H‖ 
fix (π, D[v′/l?], v) � Φ′

E , H, D 
h 〈Φ′〉 e 〈Φ′′〉
E , H, D 
h 〈Φ〉 let x=κ v′ in e 〈Φ′′〉 [Handle-Resume]

Φ′={(π, θ, v′) | (π, θ, v) ∈ Φ}
E , H, D 
h 〈Φ〉 v′ 〈Φ′〉 [Handle-Value]

In [Handle-Resume], all the placeholders l? shown in the continuation D can be
finally instantiated by κ’s argument value, v ′. Possible loops are also captured
in this step, when D[v ′/l?] produces the effects’ emissions which has already
been handled. The final result Φ′′ is achieved by reasoning e after handling the
rest continuation. Note that if the handling program directly returns a single
value, the rule [Handle-Value] abandons the continuation D completely, which is
intuitively why we are able to handle exceptions (zero-shot continuations). The
rest of the rules and a demonstration example are presented in Appendix A.

Lemma 1 (Soundness of the Fixpoint Computation). Given an effect Φ,
with the environment E and handler H. Φfix is the updated version of Φ, where
all Φ’s placeholders – which can be handled by H – are handled as H defines.

Formally , ∀E , ∀H, ∀Φ, if E , H 
fix Φ � Φfix is valid, then:

when Φ is a set, Φfix={‖E , ε, H‖ 
fix (π, θ, v) � Φ′ | (π, θ, v) ∈ Φ}; (1)
when Φ=(π, θ, v), α=fst(θ), θhis is the handled trace,

if α=♥ : ([x�→v])::E
{(π, θhis , v)}eret{Φ′} is valid , given (return x�→eret)∈H; (2)
if α∈{ev, l !, l?(v′)} (l /∈H) : ‖E , θhis · α, H‖ 
fix (π, Dα(θ), v) � Φ′ is valid ; (3)
if α∈{l !} (l∈H) : (x�→v)::E , H, Dα(θ) 
h 〈(π, θhis · l , v)〉 e 〈Φ′〉 is valid , given

(effect A(x, κ) �→ e)∈H. (4)

Proof. See Appendix B.

Theorem 1 (Soundness of Verification Rules). Given an expression e, the
linear effect trace produced by the real execution of e satisfies the effect specifi-
cation derived via the forward verification rules.
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Formally , ∀e, ∀E , ∀ϕ, ∀Φ given
⌈
e, E , ϕ

⌉ i−−→∗ ⌈
v, E ′, ϕ′⌉ and E 
 {Φ} e {Φ′},

if E , ϕ|=Φ then E ′, ϕ′|=Φ′.

Proof. See Appendix B.

5 Temporal Verification via a TRS

A TRS checks inclusions among logical terms, via an iterated process of checking
the inclusions of their partial derivatives [15]. It is triggered i) prior to function
calls for the precondition checking; and ii) at the end of verifying a function
for postcondition checking. Given two effects Φ1 and Φ2 , the TRS decides if
the inclusion Φ1 � Φ2 is valid. During the rewriting process, the inclusions are
of the form Ω � Φ1�θΦ2 , a shorthand for: Ω � θ · Φ1 � θ · Φ2 . To prove such
inclusions amounts to checking whether all the possible traces in the antecedent
Φ1 are legitimately allowed in the possible traces from the consequent Φ2 . Ω is
the proof context, i.e., a set of effect inclusion hypotheses, and θ is the history
of effects from the antecedent that have been used to match the effects from the
consequent. The inclusion checking is initially invoked with Ω={} and θ=ε.

Effect Disjunction. An inclusion with a disjunctive antecedent succeeds if both
disjunctions entail the consequent. An inclusion with a disjunctive consequent
succeeds if the antecedent entails any of the disjunctions. Note that the event
sequences’ entailment checking is irrelevant to the returning values.

[LHS -OR]
Ω 
 (π, θ) � Φ′ and Ω 
 Φ � Φ′

Ω 
 (π, θ, v) :: Φ � Φ′

[RHS -OR]
Ω 
 (π, θ) � (π′, θ′) or (π, θ) � Φ′

Ω 
 (π, θ) � (π′, θ′, v ′) :: Φ′

Definition 3 (ContEffs Inclusion). For effects (π1 , θ1 ) and (π2 , θ2 ),
(π1 , θ1 ) � (π2 , θ2 ) ⇔ π1⇒π2 and (∀α ∈ Σ ). Dα(θ1 ) � Dα(θ2 ).

Next we provide the definitions and implementations of auxiliary functions4

Nullable(δ), Infinitable(κ), First(fst) and Derivative(D) respectively. Intuitively,
the Nullable function δ(Φ) returns a boolean value indicating whether θ contains
the empty trace; the Infinitable function κ(θ) returns a boolean value indicating
whether θ is possibly infinite; the First function fst(θ) computes possible initial
elements of θ; and the Derivative function Dα(θ) eliminates an event α5 from
the head of θ and returns what remains.

4 The definitions are extended from [15], to be able to deal with placeholders and
infinite traces, proposed in this work.

5 α could be a single label l , a negated label l , a wildcard , or a placeholder Q .
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Definition 4 (Nullable). Given any sequence θ, we recursively define δ(θ)6

δ(ε)=δ(θ�)=δ(θ∞)=true δ(θ1 ·θ2 )=δ(θ1 )∧δ(θ2 ) δ(θ1∨θ2 )=δ(θ1 )∨δ(θ2 )

Definition 5 (Infinitable). Given any sequence θ, we recursively define κ(θ)7

κ(θ∞)=κ(θω)=true κ(θ1 ·θ2 )=κ(θ1 )∨κ(θ2 ) κ(θ1∨θ2 )=κ(θ1 )∨κ(θ2 )

Definition 6 (First). Let fst(θ) be the set of initial elements derivable from
sequence represents all the traces contained in θ.

fst(⊥)=fst(ε)={} fst(ev)={ev} fst(Q)={Q} fst(θ1∨θ2 )=fst(es1 ) ∪ fst(es2 )

fst(θ1 ·θ2 )=

{
fst(es1) ∪ fst(es2) if δ(θ1 )=true

fst(θ1) if δ(θ1 )=false
fst(θ�)=fst(θ∞)=fst(θω)=fst(θ)

Definition 7 (Partial Derivative). The partial derivative Dα(θ) of effects θ
w.r.t. an element α computes the effects for the left quotient, α-1 �θ�8.

Dα(⊥)=⊥ Dα(ε)=⊥ Dα(θ1∨θ2 )=Dα(θ1 ) ∨ Dα(θ2 ) Dα(θ�)=Dα(θ) · θ�

Dα(ev)=

{
ε if α ⊆ ev

⊥ else
Dα(Q)=

{
ε if α=Q

⊥ else
Dα(θ∞)=Dα(θ) · θ∞

Dα(θ1 ·θ2 )=

{
(Dα(θ1) · θ2) ∨ Dα(θ2) if δ(θ1 )=true

Dα(θ1) · θ2 if δ(θ1 )=false
Dα(θω)=Dα(θ) · θω

5.1 Rewriting Rules

1. Axioms. Analogous to the standard propositional logic, ⊥ (referring to false)
entails any effects, while no non-false effects entails ⊥.

π1⇒π2

Ω 
 (π1 , ⊥) � (π2 , θ)
[Bot-LHS ]

θ �= ⊥
Ω 
 (π1 , θ) �� (π2 , ⊥)

[Bot-RHS ]

2. Disprove (Heuristic Refutation). These rules are used to disprove the
inclusions when the antecedent obviously contains more traces than the con-
sequent. Here nullable and infinitable witness the empty trace and infinite
traces respectively.

δ(θ1 ) ∧ ¬δ(θ2 )

Ω 
 (π1 , θ1 ) �� (π2 , θ2 )
[Dis-Nullable]

κ(θ1 ) ∧ ¬κ(θ2 )

Ω 
 (π1 , θ1 ) �� (π2 , θ2 )
[Dis-Infinitable]

6 false for unmentioned constructs.
7 false for unmentioned constructs.
8 �θ� represents all the traces contained in θ.
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3. Prove. We use the rule [Reoccur ] to prove an inclusion when there exist
inclusion hypotheses in the proof context Ω , which are able to soundly prove
the current goal. One of the special cases of this rule is when the identical
inclusion is shown in the proof context, we then prove it valid.

(π1 , θ1 )�(π3 , θ3 ) ∈ Ω (π3 , θ3 )�(π4 , θ4 ) ∈ Ω (π4 , θ4 )�(π2 , θ2 ) ∈ Ω

Ω 
 (π1 , θ1 ) � (π2 , θ2 )
[Reoccur ]

4. Unfolding (Induction). This is the inductive step of unfolding the inclu-
sions. Firstly, we make use of the auxiliary function fst to get a set of effects
F , which are all the possible initial elements from the antecedent. Secondly,
we obtain a new proof context Ω ′ by adding the current inclusion, as an
inductive hypothesis, into the current proof context Ω . Thirdly, we iterate
each element α ∈ F , and compute the partial derivatives (next-state effects)
of both the antecedent and consequent w.r.t α. The proof of the original
inclusion succeeds if all the derivative inclusions succeed.

F = fst(θ1 ) π1⇒π2 ∀α ∈ F . (θ1�θ2 ) :: Ω 
 Dα(θ1 ) � Dα(θ2 )

Ω 
 (π1 , θ1 ) � (π2 , θ2 )
[Unfold ]

Theorem 2 (TRS-Termination). The rewriting system TRS is terminating.

Proof. See Appendix C.

Theorem 3 (TRS-Soundness). Given an inclusion Φ1 � Φ2 , if the TRS
returns TRUE when proving Φ1 � Φ2 , then Φ1 � Φ2 is valid.

Proof. See Appendix D.

6 Implementation and Evaluation

To show the feasibility of our approach, we have prototyped our automated veri-
fication system using OCaml (See Zenodo [18]). The proof obligations generated
by the verifier are discharged using Z3 [19]. We prove termination and sound-
ness of the TRS. We validate the front-end forward verifier against the latest
Multicore OCaml (4.12.0) implementation for conformance.

Table 1 presents the evaluation results of a microbenchmark, to demonstrate
how verification scales with program size. We annotate 12 synthetic test pro-
grams with temporal specifications, half of which fail to verify. The experiments
were done on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor. The
table records: No., the index of the program; LOC, lines of code; Infer(ms),
effects inference time; #Prop(✓), number of valid properties; Avg-Prove(ms),
average proving time for the valid properties; #Prop(✗), number of invalid prop-
erties; and Avg-Dis(ms), average disproving time for the invalid properties.
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Table 1. Experimental results.

No. LOC Infer(ms) #Prop(✓) Avg-Prove(ms) #Prop(✗) Avg-Dis(ms)

1 32 14.128 5 7.7786 5 6.2852

2 48 14.307 5 7.969 5 6.5982

3 71 15.029 5 7.922 5 6.4344

4 98 14.889 5 18.457 5 7.9562

5 156 14.677 7 10.080 7 4.819

6 197 15.471 7 8.3127 7 6.8101

7 240 18.798 7 18.559 7 7.468

8 285 20.406 7 23.3934 7 9.9086

9 343 26.514 9 16.5666 9 13.9667

10 401 26.893 9 18.3899 9 10.2169

11 583 49.931 14 17.203 15 10.4443

12 808 75.707 25 21.6795 24 16.9064

Discussion: Generally, inference and proving time increase linearly with pro-
gram length. Furthermore, we notice that disproving times for invalid properties
are consistently lower than those for proved properties, regardless of program
complexity. This finding echos the insights from prior TRS-based works [14,20–
23], which suggest that TRS is a better average-case algorithm than those based
on the comparison of automata.

A summary: A TRS is efficient because it only constructs automata as far as
it needs, which makes it more efficient when disproving incorrect specifications,
as we can disprove it earlier without constructing the whole automata. In other
words, the more invalid inclusions are, the more efficient our solver is.

6.1 Case Studies

I. Encoding LTL. Classical LTL uses the temporal operators G (“globally”)
and F (“in the future”), which we also write � and ♦, respectively; and intro-
duced the concept of fairness, which places additional constraints on infinite
paths. LTL was subsequently extended to include the U (“until”) operator and
the X (“next time”) operator. As shown in Fig. 2, we encode these basic opera-
tors into our effects, making the specification more intuitive and readable, mainly
when nested operators occur. Furthermore, by putting the effects in the precon-
dition, our approach naturally subsumes past-time LTL along the way9.

9 Our implementation supports specifications written in LTL formulae, by providing
a translator from LTL to ContEffs. The translation schema is taken from [17].
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Table 2. Examples for converting LTL formulae into Effects. (l , j are labels.)

�l ≡ l∞ ♦l ≡ � · l l U j ≡ l� · j l → ♦j ≡ ¬l ∨ � · j
X l ≡ · l �♦l ≡ ( � · l)∞ ♦�l ≡ � · l∞ ♦l ∨ ♦j ≡ � · l ∨ � · j

1 effect Exc: unit

2 effect Other: unit

3

4 let raise ()

5 (*@ req _^* @*)

6 (*@ ens Exc!.Other! @*)

7 = perform Exc;

8 perform Other

9

10 let excHandler

11 (*@ req _^* @*)

12 (*@ ens Exc @*)

13 = match raise () with

14 | _ -> (* Abandoned *)

15 | effect Exc k -> ()

Fig. 10. Encoding Exceptions.

II. Encoding Exceptions. Exceptions
are a special case of algebraic effects which
never resume, and Fig. 10 demonstrates
how our framework soundly reasons about
exceptions together with other kinds of
effects. Here raise() performs Exc first,
then does some other operations after-
wards, represented by performing effect
Other.

The handler on line 15 discharges Exc
and returns, leaving the continuation k
completely unused. Our fixpoint calculator
computes the final trace of excHandler as
simply Exc. We observe that the handler
defined in the normal return (line 14) will
be completely abandoned – because execu-
tion flow does not go back to raise() after
handling Exc. The verified postcondition of excHandler matches how we would
intuitively expect exceptions to work10.

7 Related Work

Verification Framework: This work is a significant extension of [20,25], which
deploys the verification framework, i.e., a forward verifier with a TRS. However,
the goal of this paper is to reason about algebraic effects, which are octagonal and
have different features from the sequential programs targeted in [20,25]. More
specifically, our proposal handles coexistence of zero/one/multi-shot continua-
tions; detects non-terminating behaviors; enforces static temporal properties of
algebraic effects. None of these challenges has been tackled before.

Temporal Verification: One of the leading communities of temporal verifica-
tion is automata-based model checking, mainly for finite-state systems. Various
model checkers are based on some temporal logic specifications, such as LTL and
CTL. Such tools extract the logic design from the program using modeling lan-
guages and verify specific assertions to guarantee various properties. Meanwhile,

10 In general, each procedure has a set of circumstances for which it will terminate
normally. An exception breaks the normal flow (these circumstances) of execution
and executes a pre-registered exception handler instead [24].
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to conduct temporal reasoning locally and for higher-order program, there is a
sub-community whose aim is to support temporal specifications in the form of
effects via the type-and-effect system. The inspiration from this approach is that
it leads to a modular and compositional verification strategy, where temporal rea-
soning can be combined together to reason about the overall program [13,26,27].
However, the temporal effects in prior work tend to coarsely over-approximate
the behaviors either via ω-regular expressions [26] or Büchi automata [27]. The
conventional effects [13] have the form (Φu ,Φv ), which separates the finite and
infinite effects. In this work, by integrating finite, infinite, and possibly both
into a single disjunctive form, our effects eliminate the finiteness distinction,
and enable an expressive modular temporal verification.

Type-and-effect Systems: Many languages with algebraic effects are
equipped with type-and-effect systems – which enrich existing types with infor-
mation about effects – to allow the effect-related behaviors of functions to be
specified and checked. A common method of doing this is row-polymorphic effect
types, used by languages such as Koka [6,28], Helium [29,30], Frank [31], and
Links [32]. An effect row specifies a multiset of effects a function may perform,
and is popular for its simplicity, expressiveness (naturally enabling effect poly-
morphism), and support for inference of principal effects [6]. There are numerous
extensions to this model, including presence types attached to effect labels, allow-
ing one to express the absence of an effect [32], existential and local effects for
modularity [29], and linearity [33]. Other choices include sets of (instances of)
effects [30], and structural subtyping constraints [34]. We consider finer-grained
specifications of program behavior outside the realm of effect systems and discuss
them separately.

Trace-based Effect Systems: Combining program events with a temporal
program logic for asserting properties of event traces yields a powerful and gen-
eral engine for enforcing program properties. Several works [35–37] have demon-
strated that static approximations of program event traces can be generated by
type and effect analyses [38,39], in a form amenable to existing model-checking
techniques for verification. Trace-based analyses have been shown capable of stat-
ically enforcing flow-sensitive security properties such as safe locking behavior
[40]; resource usage policies such as file usage protocols and memory management
[37]; and enforcement of secure service composition [41].

More related to our work, prior research has been extending Hoare logic
with event traces. Malecha et al. [42] focuses on finite traces (terminating) for
web applications, leaving the divergent computation, which indicates false, ver-
ified for every specification. Nakata et al. [43] focuses on infinite traces (non-
terminating) by providing coinductive trace definitions. Moreover, this paper
draws similarities to contextual effects [44], which computes the effects that have
already occurred as the prior effects. The effects of the computation yet to take
place as the future effects. Besides, prior work [45] proposes an annotated type
and effect system and infers behaviors from Concurrent ML [46] programs for
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channel-based communications, though it did not provide any inclusion solving
process.

8 Conclusion

This work is mainly motivated by how to modularly specify and verify programs
in the presence of both user-defined primitive effects and effect handlers.

To provide a practical proposal to verify such higher-order programs with
crucial temporal constraints, we present a novel effects logic, ContEffs, to specify
user-defined effects and effect handlers. This logic enjoys two key benefits that
enable modular reasoning: the placeholder operator and the disjunction of finite
and infinite traces. We demonstrate several small but non-trivial case studies to
show ContEffs’ feasibility. Our code and specification are particularly compact
and generic; furthermore, as far as we know, this is the first temporal specification
and proof of correctness of control inversion with the presence of algebraic effects.

Acknowledgement. We would like to thank the referees of APLAS 2022 for their
helpful advice. This work is supported by grants NSOE-TSS2019-06 and MoE Tier-1
251RES1822.
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Abstract. Intensive testing using model-based approaches is the stan-
dard way of demonstrating the correctness of automotive software. Unfor-
tunately, state-of-the-art techniques leave a crucial and labor intensive
task to the test engineer: identifying bugs in failing tests. Our contribu-
tion is a model-based classification algorithm for failing tests that assists
the engineer when identifying bugs. It consists of three steps. (i) Fault
localization replays the test on the model to identify the moment when
the two diverge. (ii) Fault explanation then computes the reason for the
divergence. The reason is a subset of messages from the test that is suf-
ficient for divergence. (iii) Fault classification groups together tests that
fail for similar reasons. Our approach relies on machinery from formal
methods: (i) symbolic execution, (ii) Hoare logic and a new relationship
between the intermediary assertions constructed for a test, and (iii) a new
relationship among Hoare proofs. A crucial aspect in automotive software
are timing requirements, for which we develop appropriate Hoare logic
theory. We also briefly report on our prototype implementation for the
CAN bus Unified Diagnostic Services in an industrial project.

Keywords: Fault explanation · Fault classification · Hoare proofs

1 Introduction

Intensive testing is the de-facto standard way of demonstrating the correctness
of automotive software, and the more tests the higher the confidence we have in
a system [42]. Model-based approaches have been instrumental in pushing the
number of tests that can be evaluated, by increasing the degree of automation for
the testing process. Indeed, all of the following steps are fully automated today:
determining the test cases including the expected outcome, running them on
the system, and comparing the outcome to the expectation [45]. Yet, there is a
manual processing step left that, so far, has resisted automation. If the outcome
of the test and the expectation do not match, the bug has to be identified. This
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Test-1 A

[ 5ms] req CTR set 5

[ 2ms] res CTR ack 5

[ 14ms] req CTR get

[ 4ms] res CTR ret 0

Test-2 A

[ 0ms] req CTR set 5

[ 5ms] res CTR ack 5

[ 12ms] req CTR log <data>

[ 11ms] res CTR done

[ 1ms] req CTR get

[ 3ms] res CTR ret 0

Test-3 B

[ 4ms] req CTR set 5

[ 3ms] res CTR ack 5

[ 2ms] req CTR log <data>

[ 12ms] res CTR done

[ 56ms] req CTR get

[ 4ms] res CTR ret 5

Fig. 1. Traces of an ECU CTR with operations set, get, and log. Faults are marked
with �, relevant events with ○. Labels A and B indicate distinct causes for the faults.

is the moment the test engineer comes into play, and also the moment when
automation strikes back. The bug will not only show up in one, but rather in
a large number of test cases, and the engineer has to go through all of them to
make sure not to miss a mistake. This is the problem we address: assist the test
engineer when searching for bugs among a large number of failing tests.

Though our ideas may apply more broadly, we develop them in the context of
hardware-in-the-loop testing for embedded controllers (ECUs) in the automotive
industry [5]. The final ECU with its software is given to the test engineer as a
black box. During testing, the ECU interacts with a (partly simulated) physi-
cal environment. This interaction is driven by a test suite derived from a test
model. There are several characteristics that make hardware-in-the-loop testing
substantially different from the earlier steps in the continuous integration and
testing process (model/software/processor-in-the-loop testing). The first is the
importance of timing requirements [2]. Second, the ECU with its software is a
black-box. Indeed, in our setting it is provided by a supplier and the testing unit
does not have access to the development model. Third, there is a test model cap-
turing the product requirements document (PRD). It is a complex artifact that
specifies the intended system behavior at a fine level of detail, including logical
states, transitions, timing requirements, and message payloads. Indeed, “testing
automotive systems often requires test scenarios with a very precise sequence of
time-sensitive actions” [5]. As is good practice [5,42,45], the test model is differ-
ent from the development model (it is even developed by a different company).
Lastly, there are hundreds to thousands of tests, which is not surprising as it is
known that real-time requirements “are notoriously hard to test” [45].

Example 1. Figure 1 illustrates the task at hand (ignore the ○ marks for now).
The figure shows three traces derived from the Unified Diagnostic Services [25].
A trace is a recording of the requests and responses resulting from executing a
test case (pre-defined request sequence) on the ECU under test. Each line of the
trace contains one message, carrying: (i) a time stamp indicating the time since
the last message resp. the start, (ii) the type of message, req for requests and res
for responses, (iii) an ECU identifier, the recipient for requests and the sender
for responses, (iv) the name of an operation, e.g., set, and (v) optional payload.

In the first trace, the ECU with identifier CTR is requested to perform the set
operation with value 5. The ECU acknowledges that the operation was executed
successfully, repeating value 5. Subsequently, CTR receives a get request to which
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it responds with (returns) value 0. The second trace additionally requests a log
operation between set and get. In the third trace, get returns 5 instead of 0.

The get responses in all traces are marked with � because they are faulty.
Our example PRD requires get to return the value of the latest set, unless more
than 50ms have passed since the latest (response to) set, in which case 0 has to
be returned. Assume the PRD does not specify any influence of log on set/get,
and vice versa. The first two traces expose the same fault, indicated by A :
the set appears to have been ignored. The last trace exposes a different fault,
indicated by B : CTR appears to have ignored that 50ms have passed. ��

Our contribution is an algorithm that classifies failing test cases according
to their causes. The algorithm expects as input the same information that is
available to the test engineer: the test model and the traces of the failing tests.
It consists of three steps: fault localization, fault explanation, and fault classi-
fication. The fault localization can be understood as replaying a trace on the
model to identify the moment when the two diverge. In Example 1, this yields
the � marks. The fault explanation then computes the reason for the diver-
gence. The reason can be understood as a small set of messages in the trace that
is sufficient for the divergence. In the example, this set is marked with ○. Even
when removing the remaining messages, we would still have a bug. The fault
classification groups together traces that are faulty for similar reasons. In the
example, labels A and B .

Our approach relies on machinery from formal methods, following the slogan
in [5]: “more formal semantics are needed for test automation”. Behind the fault
localization is a symbolic execution [14,29]. The challenge here is to summarize
loops in which time passes but no visible events are issued. We solve the problem
with a widening approach from abstract interpretation [7]. Our fault explana-
tion [3,18–20,28,40,52] is based on Hoare logic [6,44]. The challenge is to identify
messages as irrelevant (for making the test fail), if they only let time pass but
their effect is dominated by earlier parts of the test. We achieve this using a
new relationship between the assertions in the Hoare proof that is constructed
for the test at hand. The fault classification [50,51] equates Hoare proofs [38].
The challenge is again related to timing: the precise moments in which messages
arrive will be different from test to test. We propose a notion of proof template
that allows us to equate Hoare proofs only based on timing constraints satisfied
by the underlying tests. The precise timing does not matter.

We implemented the classification in a project with the automotive industry,
targeting the CAN bus Unified Diagnostic Services. The test model has all the
features mentioned above: real time, messages, and numerical payloads. It is
derived from a PRD with 350 pages of natural language and has 12k states and
70k transitions. Our approach is practical: in 24min we process test suites of up
to 1000 tests with an average of 40 and outliers of up to 2500 messages in length.

One may wonder why we classify tests at all. Since they are derived from a test
model, why not group them by the functionality they test or coverage they achieve?
The point is that functionality and coverage are only means of exposing faults [50].
The faults are what matters for the test engineer, and the same fault will show up in
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tests for different functions. Our experiments confirm this: we discover previously
undetected faults in tests that targeted functions different from the failing one. We
are particularly successful with faults involving timing, which are largely function
independent and therefore admit a high degree of non-determinism. Taking a step
back, tests are designedby functionality or coverage, because it is hard to anticipate
or even formulate possible faults in advance [45,47,50,51]. Our explanation step
makes the notion of a fault precise, and allows us to obtain the classification that
the engineer needs for writing a test report.

Another question is whether we approach the problem from the wrong side.
There is a large body of work on test suite minimization [36,50]. So why classify
tests a posteriori when we could have executed fewer tests in the first place? The
answer is that test suite minimization techniques are known to reduce the fault
detection effectiveness, as demonstrated in the famous WHLM [48], WHMP [49],
and Siemens [41] studies. This is unacceptable in the automotive sector.

A companion technical report containing missing details is available as [4].

2 Formal Model

We introduce a class of automata enriched by memory and clocks to model PRDs.
A so-called PRD automaton is a tuple A = (Q ,→,S ,E ,V ,C ) with a finite set
of states Q , a finite transition relation → among states, initial states S ⊆ Q ,
a finite set of events E , a finite set of memory variables V , and a finite set of
clocks C . Variables and clocks are disjoint, V ∩C = ∅. Transitions take the form
p−−−−→e, g, up q with states p, q ∈ Q , event e ∈ E , guard g , and update up. Addition-
ally, there are transitions p−−−−−→Δ, g, up q that react on time progression, denoted by
the special symbol Δ /∈ E . Guards are Boolean formulas over (in)equalities of
memory variables, clocks, and constants. We assume a strict typing and forbid
(in)equalities among memory variables and clocks. Updates are partial functions
that may give new values to variables v , up(v) ∈ Z, or reset clocks c, up(c) = 0.
Lifting variable updates from values to terms (over variables) is straightforward.

The runtime behavior of PRD automata is defined in terms of labeled transi-
tions between configurations. A configuration of A is a tuple cf = (p, ϕ) consist-
ing of a state p ∈ Q and a total valuation ϕ : V → Z ∪ C → R≥0 of variables
and clocks. The configuration is initial if p ∈ S is initial (no constraints on ϕ).

Valuations ϕ are affected by the progression of time t and updates up. Pro-
gressing ϕ by t yields a new valuation ϕ + t , coinciding with ϕ on all variables
v and advancing all clocks c by t, (ϕ + t)(c) = ϕ(c) + t . To apply up to ϕ, we
introduce the transformer �up�. It yields a new valuation �up�(ϕ) = ϕ′ such that

ϕ′(v) = up(v) 	= ⊥ ? up(v) : ϕ(v) and ϕ′(c) = up(c) 	= ⊥ ? 0 : ϕ(c) .

PRD automata A process finite traces w = s1 . . . sn of events and time pro-
gressions, si ∈ E ∪ R≥0. Events are instantaneous and time progressions make
explicit the passing of time. A basic run (p1, ϕ1)−−→s1 · · · −−→sn (pn+1, ϕn+1) of A on
w is a sequence of steps where (p1, ϕ1) is initial. Steps (p, ϕ)−→e (q , ϕ′) for events
e ∈ E are due to transitions in A, so they satisfy the following two conditions:
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(i) There is a transition p−−−−→e, g, up q such that g is enabled. Enabledness means
that ϕ is a model of g , written ϕ |=g .

(ii) The valuation ϕ′ is induced by the transformer for up, ϕ′ = �up�(ϕ).

Similarly, steps (p, ϕ)−→t (q , ϕ′) taking time t ∈ R≥0 require:

(i) There is a Δ-transition p−−−−−→Δ, g, up q enabled after waiting t time, ϕ + t |= g .
(ii) Valuation ϕ′ is induced by clock progression plus up, ϕ′ = �up�(ϕ + t).

Finally, there are stuttering steps (p, ϕ)−→0 (p, ϕ) which have no requirements.
Next, we lift basic runs to allow for multiple Δ-transitions during a single time

progression t in w . This is needed to support complex behavior while waiting,
as seen in Example 1. We rewrite w by splitting and merging time progressions.
More precisely, we rewrite w into w ′ along these equivalences:

w1.w2 ≡ w1.0.w2 and w1.t .w2 ≡ w1.t1.t2.w2 if t = t1 + t2 . (TEQ)

Then, we say that A has a run on w if there is w ′ with w ′ ≡ w so that A has a
basic run on w ′. The specification L(A) induced by A is the set of all traces w on
which A has a run. Readers familiar with hybrid systems will observe that our
rewriting produces finite decompositions only, thus excludes zeno behavior [1].

To simplify the exposition, we hereafter implicitly assume that traces w are
normalized in the sense that every event is preceded and succeeded by exactly
one time progression. This normalization is justified by the (TEQ) equivalences.

In practice, models have many transitions between two states in order to
capture state changes that ignore parts of the event or accept a large number
of possible values. To avoid PRD automata growing unnecessarily large, we use
regular expressions instead of single events as transition labels. The automaton
model presented so far naturally extends to such a lift. Our implementation inte-
grates this optimization, see Sect. 7. For simplicity, we stick to vanilla automata
hereafter.

Example 2. The automata AE ,AΔ from Fig. 2 specify CTR from Example 1.
Automaton AE addresses get, log, and set. The set request takes an arbi-
trary value <val> as a parameter. As discussed above, we use <val> as shorthand
which can be translated on-the-fly into vanilla automata. The set request is
always enabled and does not lead to updates. It may be followed by an ack,
indicating success, or a fail response. If successful, variable ctx is updated to
<val>. The reset of ctx after 50ms is implemented by AΔ. Operations get and
log are similar.

Automaton AE does not specify any timing behavior, all its states have an
always-enabled Δ-self-loop without updates. The timing behavior is specified by
automaton AΔ. It uses ack responses as a trigger to reset the timer clk and then
waits until clk holds a value of at least 50. Once the threshold is reached, the
Δ-transition from p4 to p5 setting ctx to 0 becomes enabled. Here, AΔ allows
for slack: the reset must happen within 5ms once 50ms have passed. Within
these 5ms, AΔ may choose to cycle in p4 without resetting or move to p5 while
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p0

AE

p1

p3

p2

p0

Δ

Δ

Δ

Δreq CTR set <val>, true, ∅ res CTR ack <val>, true, {ctx <val>}

res CTR fail <val>, true, ∅

req CTR log <data>, true, ∅ res CTR done, true, ∅

req CTR get, true, ∅ res CTR ret <val>, ctx = <val>, ∅

p4

AΔ

p5 p4

Δ

clk < 55, ∅

Δ

E ′
Δ, 50 ≤ clk < 55, {ctx 0}

res CTR ack <val>, true, {clk 0}

Δ, true, ∅

Fig. 2. Model AE × AΔ for the ECU CTR from Example 1. Automaton AE specifies
operations log, get, and set. Automaton AΔ specifies how variable ctx is reset. We
omit the guards true and updates ∅ on Δ-loops. We use E ′ � E\{res CTR ack <val>}.

resetting ctx . In practice, this kind of slack is common to account for the inability
of hardware to execute after exactly 50ms, as a guard like clk ≤ 50 would require.

The overall specification of our example is the composition AE × AΔ. The
cross-product is standard: a step can be taken only if both AE and AΔ can take
the step. We do not go into the details of operations over automata. ��

3 Fault Localization

We propose a method for localizing faults in traces w . Intuitively, we do so by
letting A run on w . If for some prefix w ′.s of w there is no step to continue the
run, i.e., w ′ ∈ L(A) but w ′.s /∈ L(A), then s is a fault and w ′.s is its witness.
Witnesses play an integral role in our approach: a Hoare proof for a witness yields
a formal reason for the fault. In Sect. 4, we will refine this reason by extracting
a concise explanation for the fault. This explanation then allows us to classify
faults in Sect. 5.

Technically, identifying faults s in w is more involved. Establishing w ′ ∈ L(A)
requires us to find w ′′ ≡ w ′ and a basic run of A on w ′′. Establishing w ′.s /∈ L(A),
however, requires us to show that there exists no basic run of A on w ′.s at all. It
is not sufficient to show that the single basic run witnessing w ′ ∈ L(A) cannot
be extended to w ′.s. We have to reason over all w̃ ≡ w ′.s and over all basic runs
on them. To cope with this, we encode symbolically all such basic runs of A as
a Hoare proof. The Hoare proof can be thought of as a certificate for the fault.

Interestingly, our techniques for fault localization (Sect. 3), explana-
tion (Sect. 4), and classification (Sect. 5) do not rely on the exact form of Hoare
proofs or how they are obtained—any valid proof will do. Hence, we prefer to
stay on the semantic level. We discuss how to efficiently generate the necessary
proofs in Sect. 6. Note that the timing aspect of our model requires us to develop
novel Hoare theory in Sect. 6.

Symbolic Encoding. We introduce a symbolic encoding to capture infinitely
many configurations in a finite and concise manner.
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Test-1 A

{true} [ 5ms] {true} req CTR set 5 {true} [ 2ms] {true} res CTR ack 5

{(p0, p4 : ctx �= 0 ∧ clk < 32)} [14ms] {(p0, p4 : ctx �= 0 ∧ clk < 46)} req CTR get

{(p2, p4 : ctx �= 0 ∧ clk < 46)} [ 4ms] {(p2, p4 : ctx �= 0)} res CTR ret 0 {false}

Test-2 A

{true} [ 0ms] {true} req CTR set 5 {true} [ 5ms] {true} res CTR ack 5

{(p0, p4 : ctx �= 0 ∧ clk < 23)} [12ms] {(p0, p4 : ctx �= 0 ∧ clk < 35)} req CTR log <data>

{(p3, p4 : ctx �= 0 ∧ clk < 35)} [11ms] {(p3, p4 : ctx �= 0 ∧ clk < 46)} res CTR done

{(p0, p4 : ctx �= 0 ∧ clk < 46)} [ 1ms] {(p0, p4 : ctx �= 0 ∧ clk < 47)} req CTR get

{(p2, p4 : ctx �= 0 ∧ clk < 47)} [ 3ms] {(p2, p4 : ctx �= 0)} res CTR ret 0 {false}

Fig. 3. Hoare proofs for Test-1 and Test-2.

A symbolic configuration is a pair cf� = (p,F ) where p is a state and F is a
first-order formula. We use F to encode potentially infinitely many variable/clock
valuations ϕ. We say F denotes ϕ if ϕ is a model for F , written ϕ |= F .

A condition P is a finite set of symbolic configurations. We write (p, ϕ) |= P
if there is (p,F ) ∈ P with ϕ |= F . We also write P  R if cf |= P implies cf |= R
for all cf . If P  R and R  P , we simply write P = R. The initial condition is
Init � { (p, true) | p ∈ S } and the empty condition is false = ∅. For simplicity,
we assume that conditions contain exactly one symbolic configuration per state,
as justified by the next lemma. With that assumption, checking P  R can be
encoded as an SMT query and discharged by an off-the-shelf solver like Z3 [35].

Lemma 1. P ∪ {(p,F ), (p,G)} = P ∪ {(p,F ∨ G)} and P ∪ {(p, false)} = P .

Later, we will use conditions P below quantifiers ∃x.P and in the standard
Boolean connectives G ⊕ P with formulas G . We lift those operations to condi-
tions by pushing them into the symbolic configurations of P as follows:

∃x. P � {(p,∃x. F ) | (p,F ) ∈ P} and G ⊕P � {(p,G ⊕F ) | (p,F ) ∈ P} .

Finding Faults. We localize faults in traces w = s1 . . . sn. This means we check
whether or not A has a run on w . To do so, we rely on a Hoare proof for w
which takes the form

{P0 } s1 · · · {Pi−1 } si {Pi } · · · sn {Pn } ,

where every triple {Pi } si {Pi+1 } is a Hoare triple. Intuitively, the Hoare triple
means: every step for si starting in a configuration from Pi leads to a configura-
tion in Pi+1. Hoare triples are defined to be insensitive to trace equivalence:

|= {P } s {R } :⇐⇒ ∀cf , cf ′,w ′. cf |= P∧s ≡ w ′∧cf −−→w ′ cf ′ =⇒ cf ′ |= R .

If the condition is satisfied, we call the Hoare triple valid. For brevity, we write
{P }w ′.s {S } if there is R so that {P }w ′ {R } and {R } s {S } are both valid.
Strengthening resp. weakening the precondition P resp. postcondition R pre-
serves validity: P ′  P and |= {P } s {R } and R  R′ implies |= {P ′ } s {R′ }.
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Now, finding faults boils down to checking the validity of Hoare triples. It is
easy to see that A has no run on w ′.s if and only if |= { Init }w ′.s { false }.

Lemma 2. If |= {Init }w ′{P } s {false} and P 	= false, then w ′.s witnesses
fault s.

Example 3. Figure 3 gives proofs that perform fault localization in Test-1 and
Test-2 from Fig. 1. The beginning of both traces is irrelevant for the fault, so
true is used as precondition. Then, the conditions track the amount of time that
passes in the form of an upper bound on clock clk . Since clk stays below 50ms,
variable ctx is never reset by AΔ. Hence, get must not return 0. But because
get does return 0 in the trace, we arrive at false—the response is a fault. ��

The Hoare proof certifying witness w ′.s is input to the fault explanation and
classification in the next sections. As stated earlier, we defer the generation of
Hoare proofs (by means of strongest postconditions and weakest preconditions)
to Sect. 6, as it is orthogonal to fault explanation and classification.

4 Fault Explanation

We analyze the Hoare proof generated in Sect. 3 which certifies the fault in a
witness. Our goal is to extract the events that contribute to the fault and dispose
of those that are irrelevant. The result will be another valid Hoare proof that
concisely explains the fault. On the one hand, the explanation will help the test
engineer understand the fault and ultimately prepare the test report alluded to
in Sect. 1. On the other hand, explanations of distinct test cases may be similar
in terms of our classification approach from Sect. 5 while the original test cases
are not, thus improving the effectiveness of the classification.

To determine a concise explanation, assume the Hoare proof certifying the
fault can be partitioned into { Init }w1 {P }w2 {R }w3 {Pk }. If P denotes fewer
configurations than R, P  R, we say that w2 is irrelevant (the events therein).
To see this, consider some configuration cf |= P . Executing w2 from cf leads
to some cf ′ |= R which in turn leads to the fault by executing w3. However,
cf |= R already holds. So, we can just execute w3 from cf to exhibit the fault—
w2 is irrelevant indeed.

When timing plays a role in the fault, one might not be able to establish the
simple inclusion P  R because removing w2 altogether also removes the time
that passes in it. However, it might be this passing of time, rather than the events,
that leads to the fault. Therefore, we also check if the events (and the events only)
in w2 are irrelevant. This is the case if waiting has the same effect as performing
full w2. Technically, we check the validity of the triple {P }w2|R≥0 {R }. The
projection w2|R≥0 removes all events E from w2: e|R≥0 = ε and t |R≥0 = t . The
validity of the triple captures our intuition: any configuration cf |= P can simply
wait (taking Δ-transitions) for the same amount as w2 and arrive in cf ′ |= R from
which w3 and the fault are executable—the removed events w2|E are irrelevant.

We apply the above reasoning—both P  R as well as |= {P }w2|R≥0 {R }—
to all partitionings of the given proof to identify the irrelevant sequences. The
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remaining events and time progressions all contribute to the fault. The result is
the most concise explanation of the fault.

Unfortunately, our pruning rules are not confluent, meaning that different
sequences of irrelevance checks may lead to different explanations. A witness may
have more than one explanation if two irrelevant sequences partially overlap. To
see this, consider the following (special case) partitioning of the witness’ proof

Here, we deem irrelevant w2.w3 and w3.w4. However, we cannot remove
w2.w3.w4 entirely because the resulting proof might not be valid, which requires
P  R. Even removing the intersection w3 of the irrelevant sequences may not
produce a valid proof as R  P might not hold either. The same problems arise
if only (w2.w3)|E and/or (w3.w4)|E is irrelevant. We argue that this is desired:
the witness is, in fact, a witness for two different faults, explained by w1.w4.w5

resp. w1.w2.w5. Overall, we compute all explanations in case there are overlap-
ping irrelevant sequences. While this gives exponentially many explanations in
theory, we rarely find overlaps in practice.

Example 4. We give the fault explanation for the proof of Test-2 from Fig. 3. As
expected, both events req CTR log <data> and res CTR done are irrelevant. The
condition P = { (p0, p4 : ctx 	= 0 ∧ clk < 23) } before the log request reaches con-
dition R = { (p0, p4 : ctx 	= 0 ∧ clk < 47) } after the log response. This remains
true after removing both events. Indeed, {P } [12ms][11ms][ 1ms] {R } is a valid
Hoare triple and thus justifies removing the events. ��

5 Fault Classification

We propose a classification technique that groups together witnesses exhibiting
the same or a similar fault. Grouping together similar faults significantly reduces
the workload of test engineers when preparing a test report for a large number
of failing tests since only one (representative) test case per group needs to be
inspected. The input to our classification is a set W of witness explanations as
constructed in Sect. 4. The result of the classification is a partitioning of W into
disjoint classes W =W1�· · ·�Wm. The partitioning is obtained by factorizing W
along an equivalence ∼ that relates witness explanations which have similar
faults. If ∼ is effectively computable, so is the factorization. We focus on ∼.

Intuitively, two explanations are similar, and thus related by ∼, if comprised
of the same sequence of Hoare triples, that is, the same sequence of events and
intermediary assertions. This strict equality, however, does not work well when
timing is involved. Repeatedly executing the same sequence of events is expected
to observe a difference in timing due to fluctuations in the underlying hardware.
Moreover, explanations have already been stripped by irrelevant sequences the
events and duration of which might differ across explanations.
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To make up for these discrepancies, we relate explanations that are equal
up to similar clocks. Consider an (in)equality F over clocks C . We can think
of F , more concretely its solutions, as a polytope M ⊆ R

|C |. Then, two clock
assignments ϕ,ϕ′ ∈ R

|C | are similar if they agree on the membership in M . That
is, ϕ and ϕ′ are similar if ϕ,ϕ′ ∈ M or ϕ,ϕ′ /∈ M . The polytope M we consider
will stem from the transition guards in A. Similarity thus means that A cannot
distinguish the two clock assignments—they fail for the same reason.

Clock similarity naturally extends to sets of polytopes. The set of polytopes
along which we differentiate clock assignments is taken from a proof template. A
proof template for a trace is a unique Hoare proof where placeholders are used
instead of actual time progressions. Hence, the explanations under consideration
are instances of the template, i.e., can be obtained by replacing the placeholders
with the appropriate time progressions. More importantly, the template gives
rise to a set of atomic constraints from which all polytopes appearing in the
explanations can be constructed (using Boolean connectives). Overall, this means
that two explanations are similar if the clocks they allow for are similar wrt. the
polytopes of the associated proof template, meaning that A cannot distinguish
them and thus fails for the same reason.

A proof template for events e1 . . . ek is a Hoare proof of the form

{ Init } u0 · · · {P2i−1 } ei {P2i } ui {P2i+1 } · · · uk { false } .

This proof is a template because u = u0, . . . , uk are symbolic time progressions,
i.e., they can be thought of as variables rather than actual values from R≥0. An
instance of the template is a valid Hoare proof

{ Init } t0 · · · {R2i−1 } ei {R2i } ti {R2i+1 } · · · tk { false }

with actual time progressions t = t0, . . . , tk such that the Pi subsume the Ri for
the given choice of symbolic time progressions, Ri  Pi[u �→ t ].

For the classification to work, we require the following properties of templates:

(C1) the template is uniquely defined by the sequence u0.e1 . . . ek.uk, and
(C2) the symbolic configurations appearing in the Pi are quantifier-free.

The former property associates a unique template to every trace. This is neces-
sary for a meaningful classification via templates. The latter property ensures
that the atomic constraints we extract from the template (see below) will contain
only clocks from C . This is necessary for equisatisfiability to be meaningful. In
Sect. 6 we show that weakest preconditions generate appropriate templates.

An atomic clock constraint is an (in)equality over symbolic time progressions
and ordinary clocks (from C ). We write acc(P) for all such constraints syntac-
tically occurring in P . For Pi from the above proof template, acc(Pi) is a set
of building blocks from which the Ri of all instantiations can be constructed.
Moreover, A cannot distinguish time progression beyond acc(Pi), making them
ideal candidates for judging similarity.
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We turn to the definition of the equivalence relation ∼. To that end, consider
two explanations α, β of the following form

α: { Init } · · · {R2i−1 } ei {R2i } ti {R2i+1 } · · · { false }
β: { Init } · · · {R′

2i−1 } ei {R′
2i } t ′

i {R′
2i+1 } · · · { false } .

The events e1, . . . , ek match in both explanations, but the time progressions t
and t ′ may differ. (Explanations with distinct event sequences are never related
by ∼.) Both explanations are instances of the same proof template σ,

σ: { Init } · · · {P2i−1 } ei {P2i } ui {P2i+1 } · · · { false } .

Now, for α and β to be similar, α ∼ β, we require the Ri and R′
i to satisfy the

exact same atomic clock constraints appearing in Pi relative to the appropriate
instantiation of the symbolic clock values. It is worth stressing that we require
satisfiability, not logical equivalence, because we want the clocks to be similar,
not equal. We write SAT(F ) if F is satisfiable, that is, if there is an assignment ϕ
to the free variables in F such that ϕ |= F . Formally then, we have:

α ∼ β iff ∀i ∀F ∈acc(Pi). SAT(F [u �→ t ]) ⇐⇒ SAT(F [u �→ t ′]) .

It is readily checked that ∼ is an equivalence relation, that is, is reflexive, sym-
metric, and transitive, as alluded to in the beginning. Transitivity, in particular,
is desirable in our use case. First, it means that all explanations from a class Wi

of W are pairwise similar, that is, exhibit the same fault. Second, the partitions
are guaranteed to be disjoint. Finally, it allows for the partitioning of W to be
computed efficiently (by tabulating the result of the SAT queries), provided the
SAT queries are efficient for the type of (in)equalities used.

Lemma 3. Relation ∼ is an equivalence relation.

Example 5. We classify the explanations of
Test-1 and Test-2, which correspond to
the proofs from Fig. 3 with the log events
removed (cf. Example 4). Both explanations
agree on the sequence of events. Figure 4 gives
their common template. The atomic clock
constraints are u1 + u2 < 50, clk + u1 < 50,
and clk+u1+u2 < 50. Test-1 and Test-2 are
similar because each clock constraint is sat-
isfiable after instantiating the symbolic time
progressions with the values in the respective
trace. Hence, our classification groups these
explanations together, Test-1∼ Test-2. ��

Template<Test-1, Test-2> A

{(p1, p4 : u1+u2 <50)}
res CTR ack 5

{(p0, p4 : ctx �=0 ∧ clk+u1+u2 <50)}
[ u2ms]

{(p0, p4 : ctx �=0 ∧ clk+u1 <50)}
req CTR get

{(p2, p4 : ctx �=0 ∧ clk+u1 <50)}
[ u1ms]

{(p2, p4 : ctx �=0)}
res CTR ret 0

{false}

Fig. 4. Proof template for the
explanations of Test-1 and Test-2.

6 Hoare Proofs with Timing

For the techniques presented so far to be useful, it remains to construct Hoare
proofs for traces w . Strongest postconditions and weakest preconditions are the
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standard way of doing so. The former yields efficient fault localization (Sect. 3).
The latter satisfies the requirements for templates (Sect. 5). Moreover, interpo-
lation between the two produces concise proofs beneficial for fault explanations
(Sect. 4).

It is worth pointing out that the aforementioned concepts are well-understood
for programs and ordinary automata. However, they have not been generalized
to a setting like ours where timing plays a role. Indeed, works like [21,23,24,43]
involve timing, but do not develop the Hoare theory required here.

Strongest Postconditions. We compute the post image, that is, make precise
how A takes steps from symbolic configurations. A step from a symbolic config-
uration (p,F ) due to transition p−−−−−→Δ, g, up q on time progression t can be taken
if the guard is enabled after waiting for t time. After waiting, all clocks c are
c′ = c + t . This means before waiting we have c = c′ − t . However, clocks are
always non-negative, c′ − t ≥ 0. Overall, we replace in F all clocks by their old
versions and enforce non-negativity, F ′ = F [C �→ C − t ] ∧ C ≥ t . It remains to
check guard g and apply update up. It is easy to see that the set of valuations in
F ′ satisfying g is precisely G = F ′ ∧ g . To perform a singleton update {x �→ y },
we capture the new valuation of x by the equality x = y. To avoid an influence
of the update of x on other variables/clocks, we have to rewrite G to not con-
tain x. This is needed as G might use x to correlate other variables/clocks—we
want to preserve these correlations without affecting them. We use an existential
abstraction that results in G ′ = ∃z. G [x �→ z] ∧ x = y. Then, the post image is
(q ,G ′). For stuttering steps, we add the original configuration (p,F ) to the post
image. Steps due to events from E are similar.

We define a symbolic transformer that implements the above update of the
symbolic encoding F to G ′ in the general case:

�g |{x �→ y}��
t(F ) � ∃z. (F [C �→ C − t ] ∧ C ≥ t ∧ g)[x �→ z ] ∧ x = y ,

where x is short for a sequence x1, . . . , xm of variables/clocks. We arrive at:

post�
t(P) � { (q , �g |up��

t(F )) | (p,F ) ∈ P ∧ p−−−−−→Δ, g, up q } ∪ (
t = 0 ? P : ∅

)

post�
e(P) � { (q , �g |up��

0(F )) | (p,F ) ∈ P ∧ p−−−−→e, g, up q } .

The post image is sound and precise in the sense that it captures accurately the
steps the configurations denoted by P can take. The lemma makes this precise.

Lemma 4. cf ′ |= post�
s(P) iff there is cf |= P with cf −→s cf ′.

Example 6. We apply post� to P = {(p4, 49 ≤ clk ≤ 52)} for AΔ from Fig. 2.
Recall that AΔ resets variable ctx within 5ms after clk has reached the 50ms
mark. Indeed, post�

1(P) for 1ms contains both the resetting and the non-resetting
case: (p5, 50 ≤ clk ≤ 53 ∧ ctx = 0) and (p4, 50 ≤ clk ≤ 53).

The post image still lacks a way to commute with the (TEQ) congruences.
While post�

5(post
�
1(P)) witnesses the reset via condition 55 ≤ clk ≤ 58∧ ctx = 0

for both p4 and p5, it is not equivalent to post�
6(P), which is false since all

transitions in p4 are disabled for a full 6ms wait. ��
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While the post image captures the individual steps of basic runs on traces w ,
we have to consider the basic runs of all traces w ′ ≡ w to generate a Hoare
proof for w . Basically, the (TEQ) equivalences state that the time progres-
sions between events can be split/merged arbitrarily. To that end, we define the
strongest postcondition sp which inspects all basic runs simultaneously, intu-
itively, by rewriting according to the (TEQ) equivalences on-the-fly. (Note that
normalization according to Sect. 2 avoids the merging case of (TEQ).) Then,
for events e the strongest postcondition merely applies the post image to e. For
time progressions t , the strongest postcondition considers all decompositions of t
into fragments t1, . . . , tk that add up to t and applies the post image iteratively
to all the ti. This includes stuttering where 0 is rewritten to 0. . . 0. If there
are loops in A, the strongest postcondition might need to consider infinitely
many decompositions. We address this problem by enumerating decompositions
of increasing length and applying to each decomposition a widening ∇ with the
following properties: (i) the result of the widening is -weaker than its input,
Pi  ∇(P1, · · ·,Pk) for all i, and (ii) the widening stabilizes after finitely many
iterations for -increasing sequences, P1  P2  · · · implies that there is k so
that ∇(P1, · · ·,Pi) = ∇(P1, · · ·,Pi+1) for all i ≥ k. We write ∇(Pi)i∈N and mean
the stabilized ∇(P1, · · ·,Pk). Given a widening, the strongest postcondition is:

spt(P) � ∇
(
∃t1, · · ·, ti. t = t1 + · · · + ti ∧ post�

ti ◦ · · · ◦ post�
t1(P)

)

i∈N

spe(P) � post�
e(P) sps.w (P) � spw ◦ sps(P) sp(P , w) � spw (P)

where the t1, . . . , ti are fresh. Observe that the sequence of post images in spt is
-increasing: one can always extend the decomposition by additionally waiting
for 0 time, post�

ti(P)  post�
0 ◦ post�

ti(P). The strongest postcondition considers
all basic runs and ∇ overapproximates the reachable configurations. It is sound.

Lemma 5. If sp(P , w)  R, then |= {P }w {R }.
For the lemma to be useful, an appropriate widening ∇ is required. In gen-

eral, finding such a widening is challenging—after all, it resembles finding loop
invariants—and for doing so we refer to existing works, like [8,12,13], to name a
few. In practice, a widening may be obtained more easily. In case A is free from
Δ-cycles, stabilization is guaranteed after k iterations, where k is the length of
the longest simple Δ-path. If there are Δ-cycles, stabilization is still guaran-
teed after k iterations if all Δ-cycles are idempotent. A Δ-cycle is idempotent if
repeated executions of the cycle produce only configurations that already a single
execution of the cycle produces. Interestingly, idempotency can be checked while
computing the widening: if the (k+1)st iteration produces new configurations,
idempotency does not hold. In our setting, idempotency was always satisfied.
For the remainder of this paper, we assume an appropriate widening is given.

Weakest Preconditions. We also compute weakest preconditions, the time-
reversed dual of strongest postconditions. Our definition will satisfy the template
requirements (C1) and (C2) from Sect. 5.
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The pre image is the set of symbolic configurations that reach a given config-
uration in automaton A. Consider some (q ,G) and p−−−−−→Δ, g, up q . The pre image
first rewinds updates up={x �→ y } by replacing x with y. Then, it adds a dis-
junct H =G [x �→ y] ∨ ¬g . Adding the disjunct makes the pre image weaker; it
does not affect soundness in Lemma 6 which ignores the stuck configurations
denoted by (p,¬g). Finally, we rewind the clock progression t by replacing all
clocks c in H with c + t . We arrive at the pre image F = H [C �→ C + t ].
Transitions due to events are similar. We define a symbolic transformer to apply
the above process:

�g |{x �→ y}�
�

t(G) � (G [x �→ y] ∨ ¬g)[C �→ C + t ] .

To account for other transitions leaving p that are enabled in H , we compute
the meet � of the per-transition pre images. Intuitively, this intersects symbolic
configurations on a per-state basis, ensuring that any configuration from the pre
image either gets stuck or steps to one of the configurations we computed the
pre image for. Technically, the meet � for sets M of symbolic configurations is:

�
M � { (p,

∧
(p,F)∈M F ) | p ∈ Q } .

Notably, when considering the meet of M , we cannot understand M as a condi-
tion. This is because conditions treat symbolic configurations disjunctively and
can be normalized by Lemma 1. However, the meet is not preserved under these
transformations. We write M1 � M2 to mean

�
(M1 ∪ M2).

The discussion yields the following definition of the pre image:

pre�
t(P) �

�
{(p, �g |up�

�

t(G)) | (q ,G) ∈ P ∧ p−−−−−→Δ,g,up q} � (
t = 0 ? P : ∅

)

pre�
e(P) �

�
{(p, �g |up�

�

0(G)) | (q ,G) ∈ P ∧ p−−−−→e,g,up q} ,

capturing precisely the forced reachability in A, as stated by the next lemma.

Lemma 6. cf |= pre�
s(P) iff for all cf ′, cf −→s cf ′ implies cf ′ |= P .

Example 7. We apply pre� to P = {(p4, 49 ≤ clk ≤ 52)} for AΔ from Fig. 2.
Computing pre�

1(P) highlights the need for the meet. The Δ-loop on p4 does not
give (p4, 48 ≤ clk ≤ 51) as precondition. Instead, it is (p4, 48 ≤ clk < 49) which
is the result of {(p4, 48 ≤ clk ≤ 51)} � {(p4, clk ≥ 54 ∨ clk < 49)}. Indeed, AΔ

reaches a non-P configuration via the resetting transition to p5 if clk = 49. ��
The weakest precondition wp(s, R) denotes all configurations that either

step to R under s or have no step at all. Technically, the weakest precondition
repeatedly applies the pre image for all decompositions of time progressions. For
termination, we again rely on the widening ∇. Since the pre image sequence
is -decreasing, we turn it into an increasing sequence by taking complements.
More precisely, we use the widening ∇(P1, · · · ,Pm) � ¬∇(¬P1, · · ·,¬Pm). The
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weakest precondition is defined by:

wpt(P) � ∇
(
∀t1, · · ·, ti. t = t1 + · · · + ti =⇒ pre�

t1 ◦ · · · ◦ pre�
ti(P)

)

i∈N

wpe(P) � pre�
e(P) wpw .s(P) � wpw ◦ wps(P) wp(w , P) � wpw (P) .

Note that wpt applies to ordinary time progressions t as well as symbolic time
progressions u appearing in proof templates. The weakest precondition is sound.

Lemma 7. If P  wp(w , R), then |= {P }w {R }.

Concise Hoare Proofs. The developed theory allows for an efficient way to
produce concise Hoare proofs. We first apply strongest postconditions to generate
an initial proof. Then, starting from the back, we apply weakest preconditions
and interpolation [9] to simplify the initial proof. We make this precise.

Combining Lemmas 2 and 5 gives an effective way of finding faults in traces
w = s1 . . . sn and extracting a witness: iteratively compute the strongest postcon-
dition for increasing prefixes of w and check if the result is unsatisfiable. That is,
compute P = sp(s1. · · · .sk, Init) and check if P = false. If so, then ŵ = s1 . . . sk
is a witness for fault sk. Otherwise, continue with the prefix s1 . . . sk.sk+1 which
can reuse the previously computed P : sp(s1 . . . sk.sk+1, Init) = sp(sk+1, P). As
per Lemma 5, the approach gives rise to the valid Hoare proof

{ Init } s1 · · · {Pi } si+1 {Pi+1 } · · · sk { false } with Pi+1 = sp(Pi, si+1) .

It is well-known that strongest postconditions produce unnecessarily complex
proofs [34]. To alleviate this weakness, we use interpolation [9]. For two formulas
F and G with F =⇒ G , an interpolant is a formula I with F =⇒ I and I =⇒ G .
The interpolant for conditions P and R with P  R, denoted I (P ,R), results
from interpolating the symbolic configurations in P with the corresponding ones
in R. Interpolants exist in first-order predicate logic [9,32].

From the above sp - generated proof we construct an interpolated proof

{ Init } s1 · · · { I (Pi,Ri) } si+1 { I (Pi+1,Ri+1) } · · · sk { false }
using wp as follows. Assume we already constructed, starting from the back,
the interpolants I (Pk,Rk) through I (Pi+1,Ri+1). Now, the goal is to obtain an
interpolant I so that { I } si+1 { I (Pi+1,Ri+1) } is valid. The weakest precondi-
tion for the latest interpolant yields Ri = wp(si, I (Pi+1,Ri+1)). This gives a
valid Hoare triple |= {Ri } si+1 { I (Pi+1,Ri+1) }. Our goal is to interpolate Pi

and Ri. If Pi  Ri, we can interpolate Pi and Ri to obtain I = I (Pi,Ri).1
Otherwise, we simply choose I = Ri. By Lemma 7 together with I  Ri, we
know that |= { I } si+1 { I (Pi+1,Ri+1) } is valid. Overall, this constructs a valid
proof.
1 One can show that the inclusion Pi � Ri is always satisfied in our setting where

Δ-cycles are idempotent and the widenings ∇ and ∇ simply enumerate all necessary
decompositions of time progressions. Refer to [4] for a more general property.
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7 Application in Automotive Software

We implemented and tested our approach on benchmarks provided by our project
partner from the automotive industry. The implementation parses, classifies, and
annotates traces of ECUs running the Unified Diagnostic Services (UDS). We
turned a PRD with 350 pages of natural language specifying 23 services into a
PRD automaton of 12.5k states and 70k transitions. We evaluated our tool on
1000 traces which are processed within 24 minutes. Our tool is implemented in
C# and processes traces in the three stages explained below. It naturally supports
multi-threading for the localization, explanation, and classification since they are
agnostic to the (set of) other traces being analyzed.

Preprocessing Stage. The first stage parses trace files and brings them into
a shape similar to Fig. 1. UDS specify a request-response protocol for ECUs
communicating over a CAN bus. The traces are a recording of all messages seen
on the bus during a test run. We found the preprocessing more difficult than
expected, because the trace files have a non-standard format. These problems
stem from the fact that our industrial partner creates tests partly manually and
inserts natural language annotations. A useful type of annotation that we could
extract are the positions deemed erroneous by the test environment.

Modeling Stage. The second stage creates the test model, a PRD automaton
as defined in Sect. 2. Modeling a natural language PRD is a non-trivial and time-
consuming process. To translate the PRD into an automaton, we developed an
API capable of programmatically describing services and their communication
requirements. The API supports a declarative formulation of the communication
requirements which it compiles down into an automaton. The compilation is
controlled by a set of parameters because the PRD prescribes different behavior
depending on the ECU version (and related static parameters). There are further
high-level modeling constructs such as regular expressions, as alluded to in Sect. 2
and seen in Fig. 2.

Unfortunately, not all requirements from the PRD are restricted to the trace:
they may refer to events internal to the ECU that are not contained in the
trace files. While our API and PRD automata are capable of expressing these
requirements, the test environment is unable to detect them. To circumvent the
problem of missing information, we over-approximated our model using non-
determinism. That is, we simply allow our model to do any of the specified
behaviors for unobservable internal events. A downside of this is that errors
dependent on these events cannot be found during fault localization.

Analysis Stage. The last stage performs fault localization (Sect. 3), expla-
nation (Sect. 4), and classification (Sect. 5). We carefully inspected 86 traces
curated by our industrial partner. The tests targeted one of the 23 services,
yet they contain requests and responses to a multitude of services responsible
for setting up the ECU configuration. The annotations of the test environment
marked 100 faults, 95 of which are also found by our fault localization. Our
tool finds and explains another 10 undetected faults, which totals to 105 fault
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explanations. The five faults missed by our localization are actually incorrect
annotations by the test environment, which we will explain in a moment.

Figure 5 gives the lengths of the found witnesses and the average lengths of
their explanations. The explanation lengths are closely tied to the kinds of faults
in the test set. In our set, long witnesses tend to have a long prefix unimportant
to the fault. This is reflected in the partitioning found by our classification.

The classification divides the faults into six partitions. We found that each
partition belongs to one of the following three error types: (i) ECU responds too
late (1+8); (ii) ECU fails to reset a variable upon restart (2); (iii) ECU responds
when it should not (2+1+91). Here, 1+8 means we have two partitions and
one with a single witness, one with eight equivalent witnesses. Each error type
consists of at most two relevant events. Unrelated events in-between those two
events are dropped by fault explanation. The relevant events are: (i) the request
and the late response, (ii) the response event which revealed that the variable
has not been reset, and (iii) the request and the incorrectly given response.

There are two partitions with error type (i). This is because the late response
is given by another service and thus leads to different control flow in the automa-
ton. Indeed, there might be distinct root causes: different services are likely con-
trolled by different pieces of code. A similar reason produces three partitions of
error type (iii). Interestingly, the singleton partition for (i) is completely missed
by the test environment (no fault was marked). This supports our claim that
the test environment only detects faults targeted by the tests and ignores other
faults. The other partition of (i) was detected by the test environment by acci-
dent: in some traces, the ECU response is so late that the test environment
incorrectly marks the response as missing. These incorrect marks represent no
faults and are not considered by our localization. Instead, our localization actu-
ally detects the late responses and marks them correctly.
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Fig. 5. Statistics on witnesses: number (left) and average explanation length (right).

Our tool provides a partitioning file with direct links to the trace files. It also
modifies the trace files to highlight the events related to the fault (cf. Sect. 4)
and provides an intuitive explanation of the fault. As for the latter, the user is
informed about the difference between the observed and the automaton-expected
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behavior. Our manual inspection showed no incorrect classification. That is, our
tool has never grouped together traces which test engineers would deem caused
by distinct faults. This is promising feedback because incorrect classification
is dreaded: a single missed flaw of an ECU can cause large costs. Overall, we
reduced the workload of manually inspecting 86 traces with 100 fault marks to
inspecting six representative faults that expose more misbehavior than marked
by the test environment.

8 Related Work

Fault Explanation. Our work on fault explanation is related to minimizing
unit tests in [30]: tests are pruned by removing the commands that are not con-
tained in a backward slice from a failing instruction. With timing constraints,
slicing does not work (every command is relevant), which is why we have devel-
oped our approach based on Hoare logic. The assertions provided by a Hoare
proof have the additional advantage of being able to prune even dependent com-
mands inside a slice (based on the relationship between intermediary assertions),
which leads to higher reduction rates. Similar to our approach is the fault local-
ization and explanation from [6,44]. That work also makes use of interpola-
tion [33] and is able to strip infixes from a trace despite dependencies. Our
fault localization can be understood as a generalization to a timed setting where
every command contributes to the progression of time and therefore is delicate
to remove.

A popular fault explanation approach that can be found in several variants in
the literature [3,18–20,28,40,52] is Delta debugging: starting from a failing test,
produce a similar but passing test, and take the difference in commands as an
explanation of the fault. In [18–20,40,52], the passing test is found by repeatedly
testing the concrete system [19], which is impossible in our in-vitro setting.
In [3,18,28], a model checker resp. a solver is queried for a passing test resp. a
satisfiable subset of clauses. Our Hoare proof can be understood as building up
an alternative and valid execution. Different from a mere execution, however,
intermediary assertions provide valuable information about the program state
that we rely on when classifying tests.

The explanation from [26] divides a computation into fated and free segments,
the former being deterministic reactions to inputs and the latter being inputs
that, if controlled appropriately, avoid the fault and hence should be considered
responsible for it. The segments are computed via rather heavy game-theoretic
techniques, which would be difficult to generalize to timed systems. A more
practical variant can be found in [46,53]. These works modify tests in a way
that changes the evaluation of conditionals. Neither can we re-run tests in an
in-vitro setting, nor would we be able to influence the timing behavior.

There is a body of literatur on statistical approaches to finding program
points that are particularly prone to errors, see the surveys [47,50]. We need to
pinpoint the precise as possible cause of a bug, instead.
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Fault Classification. Previous works on test case classification follow the same
underlying principle [10,11,15–17,27,31,37,39]: devise a distance metric on test
cases that is used to group them. The metrics are based on properties like the
commonality/frequency of words in comments and variables in the code [11]
or the correlation of tests failing/passing in previous test runs [15]. Symbolic
execution has been used to derive more semantic properties based on the source
code location of faults [31] and the longest prefix a failing trace shares with some
passing trace [37]. The problem is that the suggested metrics are at best vague
surrogates for the underlying faults. Using a model-based approach, we compare
traces not against each other but against a ground truth (the PRD automaton).

Another related line of work is test case prioritization, test case selection,
and test suite minimization [50]. Although formulated differently, these prob-
lems share the task of choosing tests from a predefined pool. Experiments have
shown that manually chosen test suites outperform automatically selected ones
in their ability to expose bugs [51]. To increase the number of tests that can be
evaluated manually by an expert, the literature has proposed the use of cluster-
ing algorithms to group together tests with similar characteristics (so that the
expert only has to evaluate clusters). The clustering is computed from syntactic
information (a bitwise comparison of test executions). As argued before, we use
semantic information and compute the classification wrt. a ground truth.

On the automatic side, [38] suggests the use of Hoare proofs to classify error
traces. Our approach follows this idea and goes beyond it with the proposal of
proof templates. Proof templates seem to be precisely the information needed
to classify tests that are subject to real-time constraints. Harder et al. suggest
to minimize test suites based on likely program invariants inferred from sample
values obtained in test runs [22]. Hoare triples are more precise than invariants,
even more so as we work with a ground truth rather than sample values.
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lyzer I – III”, conducted in collaboration with IAV GmbH. The last author is supported
by a Junior Fellowship from the Simons Foundation (855328, SW).
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Abstract. It is well-known that GADTs do not admit standard map
functions of the kind supported by ADTs and nested types. In addition,
standard map functions are insufficient to distribute their data-changing
argument functions over all of the structure present in elements of deep
GADTs, even just deep ADTs or nested types. This paper develops an
algorithm that characterizes those functions on a (deep) GADT’s type
arguments that are mappable over its elements. The algorithm takes as
input a term t whose type is an instance of a (deep) GADT G, and returns
a set of constraints a function must satisfy to be mappable over t. This
algorithm, and thus this paper, can in some sense be read as defining
what it means for a function to be mappable over t: f is mappable over
an element t of G precisely when it satisfies the constraints returned when
our algorithm is run on t and G. This is significant: to our knowledge,
there is no existing definition or other characterization of the intuitive
notion of mappability for functions over GADTs.

Keywords: GADTs · Map functions · Initial algebra semantics

1 Introduction

Initial algebra semantics [5] is one of the cornerstones of the modern theory of
data types. It has long been known to deliver practical programming tools—such
as pattern matching, induction rules, and structured recursion operators—as
well as principled reasoning techniques—like relational parametricity [15]—for
algebraic data types (ADTs). Initial algebra semantics has also been developed
for the syntactic generalization of ADTs known as nested types [6], and it has
been shown to deliver analogous tools and techniques for them as well [11].
Generalized algebraic data types (GADTs) [14,16,17] generalize nested types—
and thus further generalize ADTs—syntactically:

ADTs nested types GADTs
syntactically
generalized by

syntactically
generalized by

(1)

Given their ubiquity in modern functional programming, an important open
question is whether or not an initial algebra semantics can be defined for GADTs
in such a way that a semantic analogue of (1) holds as well.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Sergey (Ed.): APLAS 2022, LNCS 13658, pp. 135–154, 2022.
https://doi.org/10.1007/978-3-031-21037-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21037-2_7&domain=pdf
http://orcid.org/0000-0003-3990-726X
https://doi.org/10.1007/978-3-031-21037-2_7


136 P. Johann and P. Cagne

The standard initial algebra semantics of ADTs provides a functor D : Set →
Set interpreting each such data type D, where Set is the category of sets and func-
tions between them interpreting types [4]. The construction of D is sufficiently uni-
form in its set argument to ensure not only that the data constructors of D are
interpreted as natural transformations, but also that the standard map function1

mapD : ∀AB → (A → B) → (DA → DB)

forD is interpreted byD’s functorial action.The naturality of the interpretations of
D’s constructors, which captures their polymorphic behavior, is reflected in syntax
by the pattern-matching clauses defining mapD on data constructed using them.

As a concrete example, consider the standard data type

data List : Set → Set where
nil : ∀A → List A
cons : ∀A → A → List A → List A

(2)

The data type List is interpreted as a functor List : Set → Set mapping each
set A to the set of finite sequences of elements of A. The data constructor nil
is interpreted as the natural transformation whose component at a set A is the
function of type 1 → List A mapping the single element of the singleton set 1 to
the empty sequence, and the data constructor cons is interpreted as the natural
transformation whose component at a set A is the function of type A×List A →
List A mapping the pair (a, (a1, . . . , an)) to (a, a1, . . . , an). The functorial action
of List on a function f : A → B is the function of type List A → List B
taking a sequence (a1, . . . , an) to the sequence (f a1, . . . , f an). This functorial
action indeed interprets the standard map function for lists, defined by pattern
matching as follows:

mapList : ∀AB → (A → B) → (List A → List B)
mapList f nil = nil
mapList f (cons a l) = cons (f a) (mapList f l)

Nested types generalize ADTs by allowing their constructors to take as argu-
ments data whose types involve instances of the nested type other than the one
being defined. The return type of each of its data constructors must still be
precisely the instance being defined, though. This is illustrated by the following
definitions of the nested types PTree of perfect trees and Bush of bushes:

data PTree : Set → Set where
pleaf : ∀A → A → PTree A
pnode : ∀A → PTree (A × A) → PTree A

1 Although our results apply to GADTs in any programming language, we use Agda
syntax for code in this paper. But while Agda allows type parameters to be implicit,
we always write all type parameters explicitly. Throughout, we use sans serif font for
code snippets and italic font for mathematics (specifically, for meta-variables).
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data Bush : Set → Set where
bnil : ∀A → Bush A
bcons : ∀A → A → Bush (Bush A) → Bush A

A nested type N with at least one data constructor at least one of whose argument
types involves an instance of N that itself involves an instance of N is called a truly
nested type. The type of the data constructor bcons thus witnesses that Bush is a
truly nested type. Because the recursive calls to a nested type’s type constructor
can be at instances of the type other than the one being defined, a nested type thus
defines an entire family of types that must be constructed simultaneously. That is,
a nested type defines an inductive family of types. By contrast, an ADT is usually
understood as a family of inductive types, one for each choice of its type arguments.
This is because every recursive call to an ADT’s type constructor must be at the
very same instance as the one being defined.

The initial algebra semantics of nested types given in [11] provides a seman-
tic analogue of the first inclusion in (1). Every nested type N has a map function
mapN : ∀AB → (A → B) → (NA → NB), and mapN coincides with the standard
map function when N is an ADT. If we think of each element of a nested type N
as a “container” for data arranged at various “positions” in the underlying “shape”
determined by the data constructors of N used to build it, then, given a function f
of typeA → B, the functionmapN f is the expected shape-preserving-but-possibly-
data-changing function that transforms an element of N with shape S containing
data of type A into another element of N also of shape S but containing data of
type B by applying f to each of its elements. The function mapN is interpreted by
the functorial action of the functor N : Set → Set interpreting N whose existence
is guaranteed by [11]. Like mapN itself, this functor specializes as expected when
N is an ADT.

Since GADTs, like nested types, can also be regarded as containers in which
data can be stored, we might expect every GADT G to support a shape-
preserving-but-possibly-data-changing map function

mapG : ∀AB → (A → B) → (GA → GB) (3)

We might also expect to have initial algebra semantics interpreting G’s construc-
tors as natural transformations and mapG as the functorial action of the functor
interpreting G. But this exception is perhaps too ambitious; see Sect. 5 for a
discussion. In particular, a proper GADT—i.e., a GADT that is not a nested
type (and thus is not an ADT)—need not support a map function as in (3). For
example, the GADT2

2 The type of Seq is actually Set → Set1, but to aid readability we elide the explicit
tracking of Agda universe levels in this paper. The data type Seq may be familiar
to Haskell programmers as a fragment of the GADT Term introduced in [14] to
represent terms in a simply-typed language. This fragment of Term is enough for the
purposes of our discussion.
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data Seq : Set → Set where
const : ∀A → A → SeqA
pair : ∀AB → SeqA → SeqB → Seq (A × B)

of sequences does not. If it did, then the clause of mapSeq for an element of Seq of
the form pair x y for x : SeqA and y : SeqB would be such that if f : (A × B) → C
then mapSeq f (pair x y) = pair u v : SeqC for some appropriately typed u and v.
But there is no way to achieve this unless C is of the form A′ × B′ for some
A′ and B′, u : SeqA′ and v : SeqB′, and f = f1 × f2 for some f1 : A → A′

and f2 : B → B′. The non-uniformity in the type-indexing of proper GADTs—
which is the very reason a GADT programmer is likely to use GADTs in the
first place—thus turns out to be precisely what prevents them from supporting
standard map functions.

Although not every function on a proper GADT’s type arguments is map-
pable over its elements, it is nevertheless reasonable to ask: which functions
can be mapped over an element of a proper GADT in a shape-preserving-but-
possibly-data-changing way? To answer this question we first rewrite the type of
mapG in (3) as ∀AB → GA → (A → B) → GB. This rewriting mirrors our obser-
vation above that those functions that are mappable over an element of a GADT
can depend on that element. More precisely, it suggests that the type of the map
function for G should actually be

mapG : ∀AB → (e : GA) → (A →e B) → GB (4)

where A →e B is a type, dependent on an element e : GA, containing exactly
those functions from A to B that can be successfully mapped over e.

In this paper we develop an algorithm characterizing those functions that
should be in the type A →e B. Our algorithm takes as input a term t whose
type is (an instance of) a GADT G at type A, and returns a set of constraints a
function must satisfy in order to be mappable over t. Our algorithm, and thus
this paper, can in some sense be read as defining what it means for a function
to be mappable over t. This is significant: to our knowledge, there is no existing
definition or other characterization of the intuitive notion of mappability for
functions over GADTs.

The crux of our algorithm is its ability to separate t’s “essential structure”
as an element of G—i.e., the part of t that is essential for it to have the shape
of an element of G—from its “incidental structure” as an element of G—i.e., the
part of t that is simply data in the positions of this shape. The algorithm then
ensures that the constraints that must be met in order for f to be mappable
come only from t’s essential structure as an element of G. The separation of a
term into essential and incidental structure is far from trivial, however. In par-
ticular, it is considerably more involved than simply inspecting the return types
of G’s constructors. As for ADTs and other nested types, a subterm built using
one of G’s data constructors can be an input term to another one (or to itself
again). But if G is a proper GADT then such a dependency between constructor
inputs and outputs can force structure to be essential in the overall term even
though it would be incidental in the subterm if the subterm were considered
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in isolation, and this can impose constraints on the functions mappable over it.
This is illustrated in Examples 2 and 3 below, both of which involve a GADT G
whose data constructor pairing can construct a term suitable as input to projpair.

Our algorithm is actually far more flexible than just described. Rather than
simply considering t to be an element of the top-level GADT in its type, the algo-
rithm instead takes as an additional argument a specification—i.e., a type expres-
sion over designated variables—one of whose instances t should be considered an
element of. The specification D can either be a “shallow” data type of the form
Gβ (with designated variable β) indicating that t is to be considered an element
of a simple variable instance of G, or a deep3 data type such as G (Gβ) (with des-
ignated variable β) indicating that t should be considered an element of a more
complex instance of G. The algorithm then returns a set of constraints a function
must satisfy in order to be mappable over t relative to that given specification. We
emphasize that the separation of essential and incidental structure in terms can
become quite complicated when D is a deep data type. For example, if D is G (Gβ)
then those functions that are mappable over its relevant subterms relative to Gβ
must be computed before those that are mappable over the term itself relative to
G (Gβ) can be computed. Runs of our algorithm on deep specifications are given
in Examples 5 and 10 below, as well as in our accompanying artifact [7].

Although we use Agda syntax in this paper for convenience, the overarching
setting for this work is not intended to be dependent type theory, but rather
a language akin to a small pure fragment of Haskell. We deliberately remain
language-agnostic, but the intended type system should be an impredicative
extension of System F containing a fixpoint operator data_where as described
in (5) and (6) below.

This paper is organized as follows. Motivating examples highlighting the del-
icacies of the problem our algorithm solves are given in Sect. 2. Our algorithm is
given in Sect. 3, and fully worked out sample runs of it are given in Sect. 4. Our con-
clusions, related work, and some directions for future work are discussed in Sect. 5.
An Agda implementation of our algorithm is available at [7], along with a collec-
tion of examples on which it has been run. This includes examples involving deep
specifications and mutually recursively defined GADTs, as well as other examples
that go beyond just the illustrative ones appearing in this paper.

2 The Problem and Its Solution: An Overview

In this section we use well-chosen example instances of the mapping problem for
GADTs and deep data structures both to highlight its subtlety and to illustrate
the key ideas underlying our algorithm that solves it. For each example consid-
ering a function f to be mapped over a term t relative to the essential structure
specified by D we explain, intuitively, how to obtain the decomposition of t into
3 An ADT/nested type/GADT is deep if it is (possibly mutually inductively) defined

in terms of other ADTs/nested types/GADTs (including, possibly, itself). For exam-
ple, List (ListN) is a deep ADT, Bush (List (PTreeA)) is a deep nested type, and
Seq (PTreeA), and List (SeqA) are deep GADTs.
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the essential and incidental structure specified by D and what the constraints
are that ensure that f is mappable over t relative to it. Example 1 illustrates
the fundamental challenge that arises when mapping functions over GADTs.
Example 2 and Example 3 highlight the difference between a term’s essential
structure and its incidental structure. Example 4 and Example 5 show why the
specification is an important input to the algorithm. By design, we handle the
examples only informally in this section to allow the reader to build intuition.
The results obtained by running our algorithm on their formal representations
are given in Sect. 4.

Our algorithm will treat all GADTs in the class G, whose elements have the
following general form when written in Agda:

data G : Setk→ Set where
c1 : t1
...
cm : tm

(5)

Here, k and m can be any natural numbers, including 0. Writing v for a tuple
(v1, ..., vl) whose length l is clear from context, and identifying a tuple (a) with
the element a, each data constructor ci, i ∈ {1, ...,m}, has type ti of the form

∀α → F ci
1 α → ... → F ci

ni
α → G (Kci

1 α, ...,Kci
k α) (6)

Here, for each j ∈ {1, ..., ni}, F ci
j α is either a closed type, or is αd for some

d ∈ {1, ..., |α|}, or is Dci
j (φci

j α) for some user-defined data type constructor Dci
j

and tuple φci
j α of type expressions at least one of which is not closed. The types

F ci
j α must not involve any arrow types. However, each Dci

j can be any GADT
in G, including G itself, and each of the type expressions in φci

j α can involve
such GADTs as well. On the other hand, for each � ∈ {1, ..., k}, Kci

� α is a type
expression whose free variables come from α, and that involves neither G itself
nor any proper GADTs.4 When |α| = 0 we suppress the initial quantification
over types in (6). All of the GADTs appearing in this paper are in the class G;
this class is implemented in the accompanying code [7] as part of type-expr, with
formation constraints as described immediately following the definition of _‖_�_.
All GADTs we are aware of from the literature whose constructors’ argument
types do not involve arrow types are also in G. Our algorithm is easily extended
to GADTs without this restriction provided all arrow types involved are strictly
positive.

Our first example picks up the discussion for Seq on page 3. Because the
types of the inputs of const and pair are not deep, it is entirely straightforward.

4 Formally, a GADT is a proper GADT if it has at least one restricted data constructor,
i.e., at least one data constructor ci with type as in (6) for which Kci

� α �= α for at
least one � ∈ {1, ..., k}.



Characterizing Functions Mappable over GADTs 141

Example 1. The functions f mappable over

t = pair (pair (const tt) (const 2)) (const 5) : Seq ( (Bool × Int) × Int) (7)

relative to the specification Seqβ are exactly those of the form (f1 × f2) × f3
for some f1 : Bool → X1, f2 : Int → X2, and f1 : Int → X3, and some types X1,
X2, and X3. Intuitively, this follows from two analyses similar to that on page 3,
one for each occurrence of pair in t. Writing the part of a term comprising its
essential structure relative to the given specification in blue and the parts of the
term comprising its incidental structure in black, our algorithm also deduces the
following essential structure for t:

pair (pair (const tt) (const 2)) (const 5) : Seq ( (Bool × Int) × Int)

The next two examples are more involved: G has purposely been crafted so
that its data constructor pairing can construct a term suitable as the second
component of a pair whose image by inj can be input to projpair.

Example 2. Consider the GADT

data G : Set → Set where
const : GN
flat : ∀A → List (GA) → G (List A)
inj : ∀A → A → GA
pairing : ∀AB → GA → GB → G (A × B)
projpair : ∀AB → G (GA × G (B × B)) → G (A × B)

The functions mappable over

t = projpair ( inj (inj (cons 2 nil), pairing (inj 2) const) ) : G (ListN × N)

relative to the specification Gβ are exactly those of the form f1 × idN for some
type X and function f1 : ListN → X. This makes sense intuitively: The call
to projpair requires that a mappable function f must at top level be a product
f1 × f2 for some f1 and f2, and the outermost call to inj imposes no constraints
on f1×f2. In addition, the call to inj in the first component of the pair argument
to the outermost call to inj imposes no constraints on f1, and neither does the
call to cons or its arguments. On the other hand, the call to pairing in the second
component of the pair argument to the second call to inj must produce a term
of type G (N × N), so the argument 2 to the rightmost call to inj and the call
to const require that f2 is idN. Critically, it is the naturality of the constructor
const that forces f2 to be idN and not just any function of type N → N here. Our
algorithm also deduces the following essential structure for t:

projpair ( inj (inj (cons 2 nil), pairing (inj 2) const) ) : G (ListN × N) (8)
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Note that, although the argument to projpair decomposes into essential structure
and incidental structure as inj (inj (cons 2 nil), pairing (inj 2) const) when consid-
ered as a standalone term relative to the specification Gβ, the fact that the
output of pairing can be an input for projpair ensures that t has the decompo-
sition in (8) relative to Gβ when this argument is considered in the context of
projpair. Similar comments apply throughout this paper.

Example 3. The functions f mappable over

t = projpair ( inj (flat (cons const nil), pairing (inj 2) const) ) : G (ListN × N)

relative to the specification Gβ for G as in Example 2 are exactly those of the
form mapList idN × idN. This makes sense intuitively: The call to projpair requires
that a mappable function f must at top level be a product f1×f2 for some f1 and
f2, and the outermost call to inj imposes no constraints on f1 × f2. In addition,
the call to flat in the first component of the pair argument to inj requires that
f1 is mapList f3 for some f3, and the call to cons in flat’s argument imposes no
constraints on f3, but the call to const as cons’s first argument requires that f3
is idN. On the other hand, by the same analysis as in Example 2, the call to
pairing in the second component of the pair argument to inj requires that f2 is
idN. Our algorithm also deduces the following essential structure for t:

projpair ( inj (flat (cons const nil), pairing (inj 2) const) ) : G (ListN × N)

Again, the fact that the output of pairing can be a input for projpair in the
previous two examples highlights the importance of the specification relative to
which a term is considered. But this can already be seen for ADTs, which feature
no such loops. This is illustrated in Examples 4 and 5 below.

Example 4. The functions f mappable over

t = cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (ListN)

relative to the specification Listβ are exactly those of the form f : ListN → X for
some type X. This makes sense intuitively since any function from the element
type of a list to another type is mappable over that list. The function need
not satisfy any particular structural constraints. Our algorithm also deduces the
following essential structure for t:

cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil)

Example 5. The functions f mappable over

t = cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (ListN)
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relative to the specification List (Listβ) are exactly those of the form mapList f
′

for some type X ′ and function f ′ : N → X ′. This makes sense intuitively: The
fact that any function from the element type of a list to another type is mappable
over that list requires that f : ListN → X for some type X as in Example 4. But
if the internal list structure of t is also to be preserved when f is mapped over
it, as indicated by the essential structure List (Listβ), then X must itself be of
the form ListX ′ for some type X ′. This, in turn, entails that f is mapListf

′ for
some f ′ : N → X ′. Our algorithm also deduces the following essential structure
for t:

cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (ListN)

The specification List (Listβ) determining the essential structure in Exam-
ple 5 is deep by instantiation, rather than by definition. That is, inner occurrence
of List in this specification is not forced by the definition of the data type List
that specifies its top-level structure. The quintessential example of a data type
that is deep by definition is the ADT

data Rose : Set → Set where
rnil : ∀A → Rose A
rnode : ∀A → A → List (RoseA) → Rose A

of rose trees, whose data constructor rnode takes as input an element of Rose at
an instance of another ADT. Reasoning analogous to that in the examples above
suggests that no structural constraints should be required to map appropriately
typed functions over terms whose specifications are given by nested types that
are deep by definition. We will see in Example 9 that, although the runs of our
algorithm are not trivial on such input terms, this is indeed the case.

With more tedious algorithmic bookkeeping, results similar to those of the
above examples can be obtained for data types—e.g., Bush (List (PTreeA)),
Seq (PTreeA), and List (SeqA)—that are deep by instantiation [7].

3 The Algorithm

In this section we give our algorithm characterizing the functions that are map-
pable over GADTs. The algorithm adm takes as input a data structure t, a tuple
of type expressions f representing functions to be mapped over t, and a specifi-
cation Φ. Recall from the introduction that a specification is a type expression
over designated variables in the ambient type calculus. It recursively traverses
the term t recording the set C of constraints f must satisfy in order to be map-
pable over t viewed as an element of an instance of Φ. The elements of C are
ordered pairs of the form 〈_,_〉, whose components are compatible in the sense
made precise in the paragraphs immediately following the algorithm. A call

adm t f Φ

is made only if there exists a tuple (Σ1β, ..., Σkβ) of type expressions such that
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– Φ = G (Σ1β, ..., Σkβ) for some data type constructor G ∈ G ∪ {×,+} and
some type expressions Σ�β, for � ∈ {1, ..., k}

and

– if Φ = ×(Σ1β,Σ2β), then t = (t1, t2), and k = 2, f = (f1, f2)
– if Φ = +(Σ1β,Σ2β) and t = inl t1, then k = 2, f = (f1, f2)
– if Φ = +(Σ1β,Σ2β) and t = inr t2, then k = 2, f = (f1, f2)
– if Φ = G (Σ1β, ..., Σkβ) for some G ∈ G then

1) t = c t1...tn for some appropriately typed terms t1, ..., tn and some data
constructor c for G with type of the form in (6),

2) t : G (Kc
1w, ...,Kc

kw) for some tuple w = (w1, ..., w|α|) of type expres-
sions, and G (Kc

1w, ...,Kc
kw) is exactly G (Σ1s, ..., Σks) for some tuple

s = (s1, ..., s|β|) of types, and
3) for each � ∈ {1, ..., k}, f� has domain Kc

�w

These invariants will be preserved by each recursive call to adm below.
The free variables in the type expressions Σ�β for � ∈ {1, ..., k} can be taken

to be among the variables in β, since the calls adm t f G (Σ1β, ..., Σkβ) and
adm t f G (Σ1β+, ..., Σkβ+) return the same set C (up to renaming) whenever
β is a subtuple of the tuple β+. We can therefore take β to have minimal length.

The algorithm is given as follows by enumerating each of its legal calls. Each
call begins by initializing a set C of constraints to ∅.

A. adm (t1, t2) (f1, f2) ×(Σ1β,Σ2β)
1. Introduce a tuple g = g1, ..., g|β| of fresh variables, and add the constraints

〈Σ1g, f1〉 and 〈Σ2g, f2〉 to C.
2. For j ∈ {1, 2}, if Σjβ = βi for some i then do nothing and go to the

next j if there is one. Otherwise, Σjβ = D (ζ1β, ..., ζrβ), where D is a
data type constructor in G ∪ {×,+} of arity r, so make the recursive call
adm tj (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) and add the resulting constraints to
C.

3. Return C.
B. adm (inl t) (f1, f2) +(Σ1β,Σ2β)

1. Introduce a tuple g = (g1, ..., g|β|) of fresh variables, and add the con-
straints 〈Σ1g, f1〉 and 〈Σ2g, f2〉 to C.

2. If Σ1β = βi for some i then do nothing. Otherwise, Σ1β = D (ζ1β, ..., ζrβ),
where D is a data type constructor in G ∪ {×,+} of arity r, so make the
recursive call adm t (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) and add the resulting
constraints to C.

3. Return C.
C. adm (inr t) (f1, f2) +(Σ1β,Σ2β)

1. Introduce a tuple g = (g1, ..., g|β|) of fresh variables, and add the con-
straints 〈Σ1g, f1〉 and 〈Σ2g, f2〉 to C.

2. If Σ2β = βi for some i then do nothing. Otherwise, Σ2β = D (ζ1β, ..., ζrβ),
where D is a data type constructor in G ∪ {×,+} of arity r, so make the
recursive call adm t (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) and add the resulting
constraints to C.
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3. Return C.
D. adm (c t1, ..., tn) (f1, ..., fk) G (Σ1β, ..., Σkβ)

1. Introduce a tuple g = (g1, ..., g|β|) of fresh variables and add the con-
straints 〈Σ�g, f�〉 to C for each � ∈ {1, ..., k}.

2. If c t1, ..., tn : G (Kc
1w, ...,Kc

kw) for some tuple w = (w1, ..., w|α|) of types,
let γ = (γ1, ..., γ|α|) be a tuple of fresh type variables and solve the system
of matching problems

Σ1β ≡ Kc
1γ

Σ2β ≡ Kc
2γ

...

Σkβ ≡ Kc
kγ

to get a set of assignments, each of the form β ≡ ψγ or σβ ≡ γ for
some type expression ψ or σ. This yields a (possibly empty) tuple of
assignments βi ≡ ψiγ for each i ∈ {1, ..., |β|}, and a (possibly empty)
tuple of assignments σi′β ≡ γi′ for each i′ ∈ {1, . . . , |γ|}. Write βi ≡ ψi,pγ
for the pth component of the former and σi′,qβ ≡ γi′ for the qth component
of the latter. An assignment βi ≡ γi′ can be seen as having form βi ≡ ψγi′

or form σβi ≡ γi′ , but always choose the latter representation. (This is
justified because adm would return an equivalent set of assignments—
i.e., a set of assignments yielding the same requirements on f—were the
former chosen. The latter is chosen because it may decrease the number
of recursive calls to adm.)

3. For each i′ ∈ {1, . . . , |γ|}, define τi′βγ to be either σi′,1β if this exists, or
γi′ otherwise.

4. Introduce a tuple h = (h1, ..., h|γ|) of fresh variables for i′ ∈ {1, ..., |γ|}.
5. For each i ∈ {1, . . . , |β|} and each constraint βi ≡ ψi,pγ, add the con-

straint 〈ψi,ph, gi〉 to C.
6. For each i′ ∈ {1, . . . , |γ|} and each constraint σi′,qβ ≡ γi′ with q > 1, add

the constraint 〈σi′,qg, σi′,1g〉 to C.
7. For each j ∈ {1, . . . , n}, let Rj = F c

j (τ1βγ, ..., τ|γ|βγ).
– if Rj is a closed type, then do nothing and go to the next j if there

is one.
– if Rj = βi for some i or Rj = γi′ for some i′, then do nothing and go

to the next j if there is one.
– otherwise Rj = D (ζj,1βγ, ..., ζj,rβγ), where D is a type constructor in

G ∪ {×,+} of arity r, so make the recursive call

adm tj (ζj,1gh, ..., ζj,rgh) Rj

and add the resulting constraints to C.
8. Return C.
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We note that the matching problems in Step D.2 above do indeed lead to a
set of assignments of the specified form. Indeed, since invariant 2) on page 10
ensures that G (Kc

1w, ...,Kc
kw) is exactly G (Σ1s, ..., Σks), each matching problem

Σ�β ≡ K�γ whose left- or right-hand side is not already just one of the βs or one
of the γs must necessarily have left- and right-hand sides that are top-unifiable [8],
i.e., have identical symbols at every position that is a non-variable position in
both terms. These symbols can be simultaneously peeled away from the left-
and right-hand sides to decompose each matching problem into a unifiable set
of assignments of one of the two forms specified in Step D.2. We emphasize that
the set of assignments is not itself unified in the course of running adm.

It is only once adm is run that the set of constraints it returns is to be solved.
Each such constraint must be either of the form 〈Σ�g, f�〉, of the form 〈ψi,ph, gi〉,
or of the form 〈σi′,qg, σi′,1g〉. Each constraint of the first form must have top-
unifiable left- and right-hand components by virtue of invariant 2) on page 10.
It can therefore be decomposed in a manner similar to that described in the
preceding paragraph to arrive at a unifiable set of constraints. Each constraint
of the second form simply assigns a replacement expression ψi,ph to each newly
introduced variable gi. Each constraint of the third form must again have top-
unifiable left- and right-hand components. Once again, invariant 2) on page 10
ensures that these constraints are decomposable into a unifiable set of constraints
specifying replacements for the gs.

Performing first-order unification on the entire system of constraints resulting
from the decompositions specified above, and choosing to replace more recently
introduced gs and hs with ones introduced later whenever possible, yields a
solved system comprising exactly one binding for each of the fs in terms of
those later-occurring variables. These bindings actually determine the collection
of functions mappable over the input term to adm relative to the specification Φ.
It is not hard to see that our algorithm delivers the expected results for ADTs
and nested types (when Φ is the type itself), namely, that all appropriately
typed functions are mappable over each elements of such types. (See Theorem 1
below.) But since there is no already existing understanding of which functions
should be mappable over the elements of GADTs, we actually regard the solved
system’s bindings for the fs as defining the class of functions mappable over a
given element of a GADT relative to a specification Φ.

Theorem 1. Let N be a nested type of arity k in G, let w = (w1, . . . , wk) com-
prise instances of nested types in G, let t : Nw where Nw contains n free type
variables, let β = (β1, . . . , βn), and let N (Σ1β, . . . , Σkβ) be in G. The solved
system resulting from the call

adm t (Σ1f, . . . , Σkf) N (Σ1β, . . . , Σkβ)

for f = (f1, . . . , fn) has the form
⋃n

i=1{〈gi,1, fi〉, 〈gi,2, gi,1〉, . . . , 〈gi,ri−1, gi,ri
〉},

where each ri ∈ N and the gi,j are pairwise distinct variables. It thus imposes no
constraints on the functions mappable over elements of nested types.
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Proof. The proof is by cases on the form of the given call to adm. The con-
straints added to C if this call is of the form A, B, or C are all of the form
〈Σjg,Σjf〉 for j = 1, 2, and the recursive calls made are all of the form
adm t′ (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) for some t′, some (ζ1, ..., ζr), and some
nested type D. Now suppose the given call is of the form D. Then Step D.1
adds the constraints 〈Σig,Σif〉 for i = 1, . . . , k to C. In Step D.2, |α| = k, and
Kc

i w = wi for i = 1, . . . , k for every data constructor c for every nested type,
so that the matching problems to be solved are Σiβ ≡ γi for i = 1, . . . , k. In
Step D.3 we therefore have τiβγ = Σiβ for i = 1, . . . , k. No constraints involv-
ing the variables h introduced in Step D.4 are added to C in Step D.5, and no
constraints are added to C in Step D.6 since the γs are all fresh and therefore
pairwise distinct. For each Rj that is of the form D (ζj,1βγ, . . . , ζj,rβγ), where
D is a nested type, the recursive call added to C in Step D.7 is of the form
adm tj (ζj,1gh, . . . , ζj,rgh) D (ζj,1βγ, . . . , ζj,rβγ), which is again of the same
form as in the statement of the theorem. For Rjs not of this form there are no
recursive calls, so nothing is added to C. Hence, by induction on the first argu-
ment to adm, all of the constraints added to C are of the form 〈Ψφ, Ψψ〉 for some
type expression Ψ and some φs and ψs, where the φs and ψs are all pairwise
distinct from one another.

Each constraint of the form 〈Ψφ, Ψψ〉 is top-unifiable and thus leads to a
sequence of assignments of the form 〈φi, ψi〉. Moreover, the fact that τiβγ = Σiβ
in Step D.3 ensures that no hs appear in any ζj,igh, so the solved constraints
introduced by each recursive call can have as their right-hand sides only gs
introduced in the call from which they spawned. It is not hard to see that the
entire solved system resulting from the original call must comprise the assign-
ments 〈g1,1, f1〉, ..., 〈g1,n, fn〉 from the top-level call, as well as the assignments
〈gji+1,1, gji,1〉, ..., 〈gji+1,n, gji,n〉, for ji = 0, ...,mi − 1 and i = 1, ..., n, where mi

is determined by the subtree of recursive calls spawned by fi. Re-grouping this
“breadth-first” collection of assignments “depth-first” by the trace of each fi for
i = 1, ..., n, we get a solved system of the desired form.

4 Examples

Example 6. For t as in Example 1, the call adm t f Seqβ1 results in the
sequence of calls:

call 1 adm t f Seqβ1

call 2.1 adm pair (const tt) (const 2) h1
1 Seq γ1

1

call 2.2 adm const 5 h1
2 Seq γ1

2

call 2.1.1 adm const tt h2.1
1 Seq γ2.1

1

call 2.1.2 adm const 2 h2.1
2 Seq γ2.1

2

The steps of adm corresponding to these calls are given in the table below, with
the most important components of these steps listed explicitly:
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Step no.Matching problems τ R ζ Constraints
added to C

1 β1 ≡ γ1
1 × γ1

2 τ1β1γ1
1γ1

2 = γ1
1 R1 = Seq γ1

1 ζ1,1β1γ1
1γ1

2 = γ1
1 〈g1

1 , f〉
τ2β1γ1

1γ1
2 = γ1

2 R2 = Seq γ1
2 ζ2,1β1γ1

1γ1
2 = γ1

2 〈h1
1 × h1

2, g1
1〉

2.1 γ1
1 ≡ γ2.1

1 × γ2.1
2 τ1γ1

1γ2.1
1 γ2.1

2 = γ2.1
1 R1 = Seq γ2.1

1 ζ1,1γ1
1γ2.1

1 γ2.1
2 = γ2.1

1 〈g2.1
1 , h1

1〉
τ2γ1

1γ2.1
1 γ2.1

2 = γ2.1
2 R2 = Seq γ2.1

2 ζ2,1γ1
1γ2.1

1 γ2.1
2 = γ2.1

2 〈h2.1
1 ×

h2.1
2 , g2.1

1 〉
2.2 γ2

1 ≡ γ2.2
1 τ1γ1

2γ2.2
1 = γ1

2 R1 = γ1
2 〈g2.2

1 , h1
2〉

2.1.1 γ2.1
1 ≡ γ2.1.1

1 τ1γ2.1
1 γ2.1.1

1 = γ2.1
1 R1 = γ2.1

1 〈g2.1.1
1 , h2.1

1 〉
2.1.2 γ2.1

2 ≡ γ2.1.2
1 τ1γ2.1

2 γ2.1.2
1 = γ2.1

2 R1 = γ2.1
2 〈g2.1.2

1 , h2.1
2 〉

Since the solution to the generated set of constraints requires that f has the form
(g2.1.1

1 ×g1.2.1
1 )×g2.2

1 , we conclude that the most general functions mappable over
t relative to the specification Seqβ1 are those of the form (f1 ×f2)×f3 for some
types X1, X2, and X3 and functions f1 : Bool → X1, f2 : Int → X2, and
f3 : Int → X3. This is precisely the result obtained informally in Example 1.

Example 7. For G and t as in Example 2 the call adm t f Gβ1 results in the
sequence of calls:

call 1 adm t f Gβ1

call 2 adm t2 Gh1
1 × G(h1

2 × h1
2) G(Gγ1

1 × G(γ1
2 × γ1

2))

call 3 adm t3 (Gg2
1 ,G(g2

2 × g2
2)) Gγ1

1 × G(γ1
2 × γ1

2)

call 4.1 adm inj (cons 2 nil) g3
1 Gγ2

1

call 4.2 adm pairing (inj 2) const g3
2 × g3

2 G(γ2
2 × γ2

2)

call 4.2.1 adm inj 2 g4.2
1 Gγ2

2

call 4.2.2 adm const g4.2
1 Gγ2

2

where
t = projpair ( inj ( inj (cons 2 nil), pairing (inj 2) const ) )
t2 = inj ( inj (cons 2 nil), pairing (inj 2) const )
t3 = ( inj (cons 2 nil), pairing (inj 2) const )

The steps of adm corresponding to these calls are given in Table 1, with the most
important components of these steps listed explicitly. Since the solution to the
generated set of constraints requires that f has the form g4.1

1 × N, we conclude
that the most general functions mappable over t relative to the specification Gβ1

are those of the form f ′ × idN for some type X and some function f ′ : ListN → X.
This is precisely the result obtained intuitively in Example 2.

Example 8. For G and t as in Example 3 we have

Kconst = N
Kflat α = Listα
K inj α = α
Kpairing α1 α2 = α1 × α2

Kprojpair α1 α2 = α1 × α2
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The call adm t f Gβ1 results in the sequence of calls:

call 1 adm t f Gβ1

call 2 adm t2 Gh1
1 × G(h1

2 × h1
2) G(Gγ1

1 × G(γ1
2 × γ1

2))

call 3 adm t3 (Gg2
1 ,G(g2

2 × g2
2)) Gγ1

1 × G(γ1
2 × γ1

2)

call 4.1 adm flat (cons const nil) g3
1 Gγ2

1

call 4.2 adm pairing (inj 2) const g3
2 × g3

2 G(γ2
2 × γ2

2)

call 4.1.1 adm cons const nil Gh4.1
1 List (Gγ4.1

1 )

call 4.2.1 adm inj 2 g4.2
1 Gγ2

2

call 4.2.2 adm const g4.2
1 Gγ2

2

call 4.1.1.1 adm const g4.1.1
1 G γ4.1

1

call 4.1.1.2 adm nil Gg4.1.1
1 List(Gγ4.1

1 )

where

t = projpair ( inj ( flat (cons const nil), pairing (inj 2) const ) )
t2 = inj ( flat (cons const nil), pairing (inj 2) const )
t3 = ( flat (cons const nil), pairing (inj 2) const )

The steps of adm corresponding to these call are given in Table 2, with the
most important components of these steps listed explicitly. Since the solution
to the generated set of constraints requires that f has the form ListN × N, we
conclude that the only function mappable over t relative to the specification Gβ1

is idListN × idN. This is precisely the result obtained informally in Example 3.

Example 9. For t as in Example 4 the call adm t f Listβ1 results in the
sequence of calls:

call 1 adm t f Listβ1

call 2 adm cons (cons 3 nil) nil) g1
1 Listβ1

call 2.1 adm nil g2
1 Listβ1

The steps of adm corresponding to these call are given in the table below, with
the most important components of these steps listed explicitly:
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Step no.Matching problems τ R ζ Constraints
added to C

1 β1 ≡ γ1
1 τ1β1γ1

1 = β1 R1 = β1 ζ2,1β1γ1
1 = β1 〈g1

1 , f〉
R2 = List β1

2 β1 ≡ γ2
1 τ1β1γ2

1 = β1 R1 = β1 ζ2,1β1γ2
1 = β1 〈g2

1 , g1
1〉

R2 = List β1

2.1 β1 ≡ γ2.1
1 τ1β1γ2.1

1 = β1 R1 = 1 〈g2.1
1 , g2

1〉

Since the solution to the generated set of constraints requries that f has the
form g2.1

1 , we conclude that any function of type ListN → X (for some type X)
is mappable over t relative to the specification Listβ1.

Example 10. For t as in Example 5 the call adm t f List (Listβ1) results in
the following sequence of calls:

call 1 adm t f Listβ1

call 2.1 adm cons 1 (cons 2 nil) g1
1 Listβ1

call 2.2 adm cons (cons 3 nil) nil) List g1
1 List (Listβ1)

call 2.1.1 adm cons 2 nil g2.1
1 Listβ1

call 2.2.1 adm cons 3 nil g2.2
1 Listβ1

call 2.2.2 adm nil List g2.2
1 List (Listβ1)

call 2.1.1.1 adm nil g2.1.1
1 Listβ1

call 2.2.1.1 adm nil g2.2.1
1 Listβ1

The steps of adm corresponding to these calls are given in the table below, with
the most important components of these steps listed explicitly:

Step no.Matching problems τ R ζ Constraints added
to C

1 List β1 ≡ γ1
1 τ1β1γ1

1 = List β1 R1 = List β1 ζ1,1β1γ1
1 = β1 〈List g1

1 , f〉
R2 = List (List β1) ζ2,1β1γ1

1 = List β1

2.1 β1 ≡ γ2.1
1 τ1β1γ2.1

1 = β1 R1 = β1 ζ2,2β1γ2.1
1 = β1 〈g2.1

1 , g1
1〉

R2 = List β1

2.2 List β1 ≡ γ2.2
1 τ1β1γ2.2

1 = List β1 R1 = List β1 ζ1,1β1γ2.2
1 = β1 〈List g2.2

1 , List g1
1〉

R2 = List (List β1) ζ2,1β1γ2.2
1 = List β1

2.1.1 β1 ≡ γ2.1.1
1 τ1β1γ2.1.1

1 = β1 R1 = β1 ζ2,2β1γ2.1.1
1 = β1 〈g2.1.1

1 , g2.1
1 〉

R2 = List β1

2.2.1 β1 ≡ γ2.2.1
1 τ1β1γ2.2.1

1 = β1 R1 = β1 ζ2,2β1γ2.2.1
1 = β1 〈g2.2.1

1 , g2.2
1 〉

R2 = List β1

2.2.2 List β1 ≡ γ2.2.2
1 τ1β1γ2.2.2

1 = List β1 R1 = 1 〈List g2.2.2
1 , List g2.2

1 〉
2.1.1.1 β1 ≡ γ2.1.1.1

1 τ1β1γ2.1.1.1
1 = β1 R1 = 1 〈g2.1.1.1

1 , g2.1.1
1 〉

2.2.1.1 β1 ≡ γ2.2.1.1
1 τ1β1γ2.2.1.1

1 = β1 R1 = 1 〈g2.2.1.1
1 , g2.2.1

1 〉

Since the solution to the generated set of constraints requires that f has the
form List g2.2.1.1

1 , we conclude that the most general functions mappable over t
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relative to the specification List (Listβ1) are those of the form mapList f
′ for some

type X and function f ′ : N → X.

5 Conclusion, Related Work, and Future Directions

This paper develops an algorithm for characterizing those functions on a deep
GADT’s type arguments that are mappable over its elements. This algorithm,
and thus this paper, can in some sense be read as defining what it means for a
function to be mappable over t. It thus makes a fundamental contribution to the
study of GADTs since there is to our knowledge, no already existing definition of
characterization of the intuitive notion of mappability for functions over them.
More generally, we know of no other careful study of mappability for GADTs.

The work reported here is part of a larger effort to develop a single, unified
categorical theory of data types: understanding mappability for GADTs can be
seen as a first step toward an initial algebra semantics for them that specializes
to the standard one for nested types (which itself subsumes the standard such
semantics for ADTs) whenever the GADTs in question is a nested type (or ADT).

Initial algebra semantics for GADTs have been studied in [10] and [12]. Both
of these works interpret GADTs as discrete functors; as a result, the functorial
action of the functor interpreting a GADT G cannot correctly interpret appli-
cations of G’s map function to non-identity functions. In addition, [10] cannot
handle truly nested data types such as Bush or the GADT G from Example 2.
These discrete initial algebra semantics for GADTs thus do not recover the usual
initial algebra semantics of nested types when instantiated to them.

The functorial completion semantics of [13], by contrast, does interpret
GADTs as non-discrete functors. However, this is achieved at the cost of adding
“junk” elements, unreachable in syntax but interpreting elements in the “map
closure” of its syntax, to the interpretation of every proper GADT. Func-
torial completion for Seq, e.g., adds interpretations of elements of the form
mapSeq f (pair x y) even though these may not be of the form pair u v for any
terms u and v. Importantly, functorial completion adds no junk to interpreta-
tions of nested types or ADTs, so unlike the semantics of [12], that of [13] does
extend the usual initial algebra semantics for them. But since the interpreta-
tions of [13] are bigger than expected for proper GADTs, this semantics, too, is
unacceptable.

A similar attempt to recover functoriality is made in [9] to salvage the method
from [10]. The overall idea is to relax the discreteness of the functors interpreting
GADTs by replacing the dependent products and sums in the development of [10]
with left and right Kan extensions, respectively. Unfortunately, this entails that
the domains of the functors interpreting GADTs must be the category of all
interpretations of types and all morphisms between them, which again leads to
the inclusion of unwanted junk elements in the GADT’s interpretation.

Containers [1,2] provide an entirely different approach to describing the func-
torial action of an ADT or nested type. In this approach an element of such a
data type is described first by its structure, and then by the data that structure
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contains. That is, a ADT or nested type D is seen as comprising a set of shapes
and, for each shape S, a set of positions in S. The functorial action of the func-
tor D interpreting D action does indeed interpret mapD: given a shape and a
labeling of its position by elements of A, we get automatically a data structure
of the same shape whose positions are labeled by elements of B as soon as we
have a function f : A → B to translate elements of A to elements of B.

GADTs that go beyond ADTs and nested types have been studied from the
container point of view as indexed containers, both in [3] and again in [10]. The
authors of [3] propose encoding strictly positive indexed data types in terms of
some syntactic combinators they consider “categorically inspired”. But as far as
we understand their claim, map functions and their interpretations as functo-
rial actions are not worked out for indexed containers. The encoding in [3] is
nevertheless essential to understanding GADTs and other inductive families as
“structures containing data”. With respect to it, our algorithm actually discovers
the shape of its input element, and thus can be understood as determining how
“containery” a given GADT is.
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Abstract. Calculi with intersection types have been used over the years
to model various features, including: overloading, extensible records and,
more recently, nested composition and return type overloading. Neverthe-
less no previous calculus supports all those features at once. In this paper
we study expressive calculi with intersection types and a merge operator.
Our first calculus supports an unrestricted merge operator, which is able
to support all the features, and is proven to be type sound. However, the
semantics is non-deterministic. In the second calculus we employ a previ-
ously proposed disjointness restriction, to make the semantics determin-
istic. Some forms of overloading are forbidden, but all other features are
supported. The main challenge in the design is related to the semantics of
applications and record projections. We propose an applicative subtyp-
ing relation that enables the inference of result types for applications and
projections. Correspondingly, there is an applicative dispatching relation
that is used for the dynamic semantics. The two calculi and their proofs
are formalized in the Coq theorem prover.

1 Introduction

Calculi with intersection types [3,7,19,22] have a long history in programming
languages. Reynolds [21] was the first to promote the use of intersection types
in practical programming. He introduced a merge operator that enables building
values with multiple types, where the multiple types are modelled as intersec-
tion types. Dunfield [9] refined the merge operator, to add significant additional
expressive power over the original formulation by Reynolds. Over the years there
have been several calculi with intersection types equipped with a merge operator,
and enabling different features: overloaded functions [6,9], return type overload-
ing [16], extensible records [9,21] and nested composition [4,14].

Nevertheless, no previous calculus supports all four features together. Some
calculi enable function overloading [6], but preclude return type overloading
and nested composition. On the other hand, calculi with disjoint intersection
types [4,14] support return type overloading and nested composition, but disal-
low conventional functional overloading. Dunfield’s calculus [9] supports the first
three features, but not nested composition. Those features are not completely
orthogonal and the interactions between them are interesting, allowing for new
applications. However, the interactions also pose new technical challenges.

This paper studies expressive calculi with intersection types and a merge
operator. Our goal is to design calculi that deal with all four features at once, and
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study the interaction between these features. Our two main focuses are on type
inference for applications and record projection, and the design of the operational
semantics for such calculi. To enable all the features we introduce a specialized
form of subtyping, called applicative subtyping, to deal with the flexible forms of
applications and record projection allowed by the calculi. Correspondingly, there
is an applicative dispatching relation that is used for the dynamic semantics. In
addition, we explore the interactions between features. In particular, overloading
and nested composition enable curried overloaded functions, while most previous
work [5,6,9,15] only considers uncurried overloaded functions.

Our first calculus supports an unrestricted merge operator. This calculus is
able to support all four features, and is proven to be type sound. However, the
semantics is non-deterministic. In practice, in an implementation of this calculus
we can employ a biased or asymmetric merge operator, which gives a (biased)
preference to values on the left or right side of merges. This approach is similar
to the approach taken by Dunfield in her calculus [9], and asymmetric merge
(or concatenation) operators are also adopted in several calculi with extensible
records [20,27]. In the second calculus we employ a previously proposed disjoint-
ness restriction [17], to make the semantics deterministic. Disjointness enables
a symmetric merge operator, since conflicts in a merge are statically rejected
rather than resolved with a biased semantics. In the second calculus some forms
of overloading are forbidden, but all other features are supported. The two calculi
and their proofs are formalized in the Coq theorem prover.

In summary, the contributions of this paper are:

– Calculi supporting overloading, extensible records and nested com-
position. We propose calculi with intersection types and a merge operator,
which can support various features together, unlike previous calculi where
only some features were supported.

– Applicative subtyping and dispatching. We develop a specialized
applicative subtyping relation to deal with the problem of inferring result
types for applications and record projections. In addition, the dynamic seman-
tics supports a corresponding applicative dispatching relation.

– First-class, curried overloading: We show that the interaction between
overloading and nested composition enables overloaded functions to be first-
class, which allows the definition of curried overloaded functions.

– Mechanical formalization and implementation: All the calculi and
proofs are formalized in the Coq theorem prover. The formalization is avail-
able in the artifact [1] and a prototype implementation can be found at:

https://github.com/juniorxxue/applicative-intersection

2 Overview

This section gives an overview of our work and introduces the key technical ideas.
We then illustrate some problems, challenges and solutions when designing type
systems for such calculi and features.

https://github.com/juniorxxue/applicative-intersection
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2.1 Background

IntersectionTypes andMergeOperator. Intersection types describe expres-
sions that can have multiple types. The intersection type A&B is inhabited by
terms that have both type A and type B. The merge operator (denoted as , ,) has
been introduced by Reynolds [21], and later refined by Dunfield [9], to create terms
with intersection types at the term level. An important feature of Dunfield’s cal-
culus is that it contains a completely unrestricted merge operator, which enables
most of the applications that we will discuss in this paper, except for nested com-
position. However, this expressive power comes at a cost. The semantics of the cal-
culus is ambiguous. For example, 1,,2 : Int can elaborate to both 1 and 2. Note
that intersection types in the presence of the merge operator have a different inter-
pretation from the original meaning [7], where type intersections A & B are only
inhabited by the intersection of the sets of values of A and B. In general, with the
merge operator, we can always find a term for any intersection type, even when the
two types in the intersection are disjoint (i.e. when the sets of values denoted by
the two types are disjoint). For example, 1,,true has the type Int & Bool. In many
classical intersection type systems without the merge operator, such type would
not be inhabited [19]. Thus, the use of the term “intersection” is merely a histori-
cal legacy. The merge operator adds expressive power to calculi with intersection
types. As we shall see, this added expressive power is useful to model several fea-
tures of practical interest for programming languages.

Disjoint Intersection Types. Oliveira et al. [17] solved the ambiguity problem
by imposing a disjointness restriction on merges. Only types that are disjoint can
be merged. For example, Int and Bool are disjoint, so the type Int & Bool is well-
formedand 1,,true is a valid term.Huang et al. [14] improved this calculus by intro-
ducing a type-directed operational semantics where types are used to assist reduc-
tion and proved its type soundness and determinism. Unfortunately, the restriction
todisjoint intersection types,while allowingmanyof the original applications, rules
out traditional function overloading (see Sect. 5 for more details).

2.2 Applications of the Merge Operator

To show that the merge operator is useful, we now cover four applications of
the merge operator that have appeared in the literature: records and record
projections, function overloading, return type function overloading and nested
composition. All applications can be encoded by our calculus in Sect. 4.

Records and Record Projections. The idea of using the merge operator to
model record concatenation firstly appears in Reynold’s work [23]. Records in our
calculi are modelled as merges of multiple single-field records. Multi-field records
can be viewed as syntactic sugar and {x="hello", y="world"} is simply {x =
"hello"},,{y = "world"}. The behaviour of record projection is mostly standard
in our calculi. After being projected by a label, the merged records will return
the associated terms. For instance (↪→ denotes reduce to).
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({x = "hello"},,{y = "world "}).x ↪→ "hello"

Function Overloading. Function overloading is a form of polymorphism where
the implementation of functions can vary depending on different types of argu-
ments that are applied by functions. There are many ways to represent types of
overloaded functions. For example, suppose show is an overloaded function that
can be applied to either integers or booleans. Haskell utilises type classes [25] to
assign the type Show a ⇒ a → String to show with instances defined.

With intersection types, we can employ the merge operator [6,21] to define a
simplified version of the overloaded show function. For instance, the show function
below has type (Int → String) & (Bool → String).

show : (Int → String) & (Bool → String) = showInt ,,showBool

The behaviour of show is standard, acting as a normal function: it can be
applied to arguments and the correct implementation is selected based on types.

show 1 ↪→ "1" show true ↪→ "true"

Return Type Overloading. One common example of return type overloading
is the read :: Read a ⇒ String → a function in Haskell, which is the reverse
operation of show and parses a string into some other form of data. Like show,
we can define a simplified version of read using the merge operator:

read : (String → Int) & (String → Bool) = readInt ,,readBool

In Haskell, because the return type a cannot be determined by the argument,
read either requires programmers to give an explicit type annotation, or needs
to automatically infer the return type from the context. Our calculi work in a
similar manner. Suppose that succ is the successor function on integers and not
is the negation function on booleans, then we can write:

succ (read "1") ↪→ 2 not (read "true") ↪→ false

Nested Composition. Simply stated, nested composition reflects distributiv-
ity properties of intersection types at the term level. When eliminating terms cre-
ated by the merge operator (usually functions and records), the results extracted
from nested terms will be composed. In the context of records, the distributive
subtyping rule enabling this behaviour is {l : A}& {l : B} <: {l : A&B}. With this
rule we can have the following expression:

({x = "hello"},,{x = 1}).x ↪→ "hello",,1

Note that here we allow repeated fields with the same name. One may worry
about ambiguities but, with a disjointness restriction, we can only accept fields
with the same labels if the types of the fields are disjoint. Nested composition is a
key feature in compositional programming [29], which uses it to solve challenging
modularity problems such as the Expression Problem [26], and to model forms
of family polymorphism [11]. We refer interested readers to the work of Zhang
et al. [29] for details.
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Nested composition can also occur with functional intersections, using the
subtyping rule (A → B)& (A → C) <: A → (B &C). With this rule, we can, for
example, write the following program:

(succ ,,intToDigit) 5 ↪→ 6,,'5'

which applies two functions to the integer 5. Note that here intToDigit takes
an integer and returns a corresponding character. We will also see that nested
composition enables overloaded functions to be curried.

2.3 Challenges in the Design of the Semantics

The goal of this work is to design an automatic type inference algorithm for
applications and record projection and the corresponding dynamic semantics,
so that the system supports all applications presented in the previous section.
Unfortunately, designing the semantics of the merge operator poses significant
challenges, which we explain in the rest of this section.

Inference of Projections and Applications. In traditional type systems, in
applications e1 e2 or projections e.l, e1 is expected to have an arrow type and
e is expected to have a record type. Such convention, however, cannot apply
to our system because certain forms of intersection types can also play the role
of arrow or record types. In particular, such use cases of intersection types are
helpful for modelling overloaded functions and multi-field records. For example,
we know that showInt is one branch of show with the subtyping statement:

(Int → String) & (Bool → String) <: Int → String

From this example we can see that the dynamic semantics must somehow be
type-dependent. In our work we follow the type-directed operational semantics
(TDOS) [14] approach, which chooses between merged functions according to
type information during runtime. However, existing TDOS approaches do not
support overloading for two reasons. Firstly, TDOS requires merged functions to
be disjoint with each other, but in this case the merged functions are not disjoint
(i.e., Int → String is not disjoint with Bool → String because of the common
return type String). Secondly, even if we would simply ignore the disjointness
restriction, we would still need to put an explicit type annotation Int → String
and write the program as (show : Int → String) 1 to select the correct imple-
mentation to apply from the overloaded show function. This is because previous
TDOS calculi have restricted application rules that cannot accommodate tradi-
tional overloading. Clearly, in a setting with overloading, having to write such
explicit annotations would be unsatisfying. Therefore we wish to have an app-
roach where we can write overloaded functions naturally.

A similar problem occurs using record projections in existing TDOS calculi.
For instance, the type system of λi+ [14] requires explicit annotations for projec-
tions of multi-field records with distinct labels, such as ({x = 1},,{y = true} : {x
: Int}).x. This is of course, quite unnatural to write. Although source languages
targetting the TDOS calculi can eliminate the explicit use of such annotations at
the source level, it would be better to address this problem directly in the TDOS.
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Dynamic Semantics. Giving a direct semantics to overloaded applications is
a non-trivial problem. Thanks to the merge operator and the call-by-value strat-
egy, our overloaded functions are expected to be in the form of nested merges
according to the structure of types. So we can reason about the dynamic seman-
tics as we deal with the types. Unfortunately, the distributivity of subtyping
complicates the story. The challenge comes from the fact that in our setting
overloaded functions are first-class. That is, they can be taken as arguments or
returned as results. For instance, we can have:

pshow : Unit → (Int → String) & (Bool → String)
pshow = λx. show

In this situation, an overloaded function is wrapped with a lambda abstrac-
tion, while it should also be viewed as an overloaded function. For example, we
expect the following to hold:

pshow unit 1 ↪→ "1" pshow unit true ↪→ "true"

In the last two cases, with a traditional approach to applications, pshow
is expected to have type Unit → Int → String and Unit → Bool → String
respectively. From the perspective of intersection overloading, pshow should be
of type (Unit → Int → String) & (Unit → Bool → String), which, however,
is different from the given type annotation. This alternative view of types and
functions poses challenges to the design of the static as well as the dynamic
semantics.

Ambiguities on the Input Types. In languages like C++ and Java, over-
loading cannot be defined on return types, and ambiguities are detected when
the input types of overloaded functions overlap. This is also a reason why many
works model the inputs of overloaded functions as product types [6,9,15]. The
advantages are obvious: it is easier to resolve the correct branch by only com-
paring the product types and types of arguments. The drawback of this model
is that product types will prevent overloaded functions to be curried. This is
because overloaded functions based on product types expect a tuple containing
all the arguments and reject partial applications. The challenge of modelling
overloaded curried functions is that partial applications may be insufficient to
fully determine the implementation to take from the overloaded function. These
pains can be alleviated using intersection types, the merge operator and the
feature of nested composition.

f : Int → Int → Int g : Int → Bool → Bool

For example, with f,,g, we can simply reason that the result of (f,,g) 1 true is
g 1 true. The problem occurs in the partially applied term (f,,g) 1, for which
there are two possible design choices. The first choice is to reject this application
term since we cannot select between overloads, thus forbidding many use cases
like this. Another choice is to apply f and g in parallel to 1, resulting in (f
1),,(g 1), which has the type (Int → Int) & (Bool → Bool).
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2.4 Key Ideas and Results

Applicative Subtyping. To help with the inference of the result types for appli-
cations and projections, we propose a new specialized subtyping algorithm for
applications and projections. Specifically, conventional subtyping algorithms take
two types as inputs, and return a boolean indicating whether two types are in a
subtyping relation or not. We present an applicative subtyping algorithm, whose
intuition is simple: given a functional type A (which may be an intersection of func-
tions), and the type of an argument B, it tells whether this function can be applied
to this argument and, if yes, it computes the output type. Similarly, given a record
type A, and a label l, applicative subtyping tells whether this record can be pro-
jected by this label, and if yes, it computes the result type associatedwith this label.
Basically, we try to solve the problem in the following subtyping form (denoted as
<:), where we infer the type ? given the argument type Int:

(Int → String) & (Bool → String) <: Int → ?

This problem can be split into two steps: first, check whether the application
is well-typed, and if so, determine its output type. For the above example, ? is
expected to be String, as Int is an argument to Int → String. Record projection
works similarly. String & Int should be derived as the result type for projection
({x = "hello"},,{x = 1}).x.

{x : String} & {x : Int} <: {x : ?}

Applicative subtyping is used when typing applications and projections. Our
algorithm adopts the notion of selectors S that abstract the arguments (as a type
for applications, or a label for projections). The behaviour of applicative subtyping
for intersection types is captured by a simple composition operator � which iso-
lates particular design choices. In applicative subtyping, a possible result is that
the application fails. We denote failure with a . symbol. We illustrate the results of
applicative subtyping (denoted as �) for the above examples next. ïż£

(Int → String) & (Bool → String) � Int = String � .
(String → Int) & (String → Bool) � String = Int � Bool
{x : String) & {y : String) � x = String � .
{x : String) & {x :Int) � x = String � Int

There are two important things to notice here. Firstly, as discussed above, the
second argument of � is just the function argument type or a label, instead of the
complete type that would be normally used in a subtyping comparison. Secondly,
the results are given in terms of the composition operator �. The composition
operator abstracts behaviour that is specific to particular subtyping relations.
When designing applicative subtyping, a desirable property is that it should be
sound and complete with respect to subtyping. The soundness and completeness
properties can be stated as follows (here we show the case for functions):

Lemma 1 (Soundness). If A � B = C, then A <: B → C.

Lemma 2 (Completeness). If A <: B → C, then ∃D,A � B = D ∧ D <: C.
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. . = .

A1 . = A1

. A2 = A2

A1 A2 = A1 &A2

(a) Nested composition semantics.

. . = .

A1 . = A1

. A2 = A2

Amb O = Amb

O Amb = Amb

A1 A2 = Amb

(b) Overloading semantics.

Fig. 1. Two possible composition operators, for calculi with distributive subtyping (on
the left), and without distributive subtyping (on the right). The notation Amb denotes
ambiguity, which represents a type-error, while the meta-variable O denotes any output
type (i.e. either a type, failure or ambiguity).

Depending on the expressive power of the subtyping relation we need different
implementations of � to satisfy soundness/completeness. In particular, whether or
not the subtyping relation includes distributive subtyping rules affects the defini-
tion of �. Figure 1 illustrates this difference. In a relation with distributive subtyp-
ing rules (such as (A → B)& (A → C) <: A → (B & C)), the composition operator
on the left (a) leads to a sound and complete definition of applicative subtyping.
This operator, which is quite simple, allows combining results that arise from mul-
tiple branches. We say that this composition operator implements a nested com-
position semantics, since it allows combining multiple results. For instance, Int �
Bool simply denotes Int & Bool, meaning that an applicative subtyping statement
(String → Int) & (String → Bool) � String succeeds, computing the output type
Int & Bool. Without the distributive subtyping rule the composition operator on
the left (a) is not sound with respect to subtyping. Instead we should use the imple-
mentation on the right (b), which will reject cases like Int � Bool, since such cases
denote a form of ambiguity. We say that the composition operator on the right
implements an overloading semantics, since if multiple implementations in an over-
loaded definition match with an argument (or a label), we reject the application.
This is similar to traditional overloading mechanisms, which reject such cases as
a form of ambiguity. In other words, in the overloading semantics, only one imple-
mentation can be selected from an overloaded definition. Note that the overloading
semantics implementation can also be used in a calculus with distributivity, but
this would lose the completeness property. One counter example is (Int → String)
& (Int → Int) <: Int → (String & Int), which holds according to the distributivity
rule, but the applicative subtyping based on the overloading semantics will derive
an ambiguity Amb error.

TDOS for Overloading. For the semantics, we follow up the idea of typed-
directed operational semantics [14] and define a new judgment that performs
applicative dispatching to support overloading. At a high level, applicative dis-
patch reflects applicative subtyping in the dynamic semantics. As we analyzed
above, distributivity forbids overloaded functions to be exact nested merges, thus
a canonical form of overloaded function should be settled. To solve this problem
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we use an explicit merge with extra annotations that play a role of “runtime
types”, which are used by applicative dispatching to select the correct branch
during runtime.

Two Calculi. We present two calculi to demonstrate the applicative subtyp-
ing and applicative dispatching. Both calculi utilize the composition operator
(Fig. 1a) since we want to allow nested composition, and explore curried and
first-class overloaded functions. The first calculus embraces a simple design and
adopts an unrestricted merge operator. All features mentioned above can be
encoded in this calculus, but the calculus will have a non-deterministic semantics
due to ambiguities. For ambiguities, we present a second calculus, which adopts
a restricted merge operator: only terms with disjoint types can be merged. This
calculus is deterministic but excludes certain forms of overloading, like the show
function. Since Int → String is not disjoint with Bool → String, such merges
will be rejected.

3 Applicative Subtyping

In this section, we first present the normal subtyping algorithm for intersection
types and then present applicative subtyping.

3.1 Types and Subtyping

The types that we consider in this work are:

Types A,B ::= Int | Top | A → B | A&B | {l : A}

Ordinary Types Ao, Bo ::= Int | Top | A → Bo | {l : Ao}

A and B are metavariables which range over types. Int and Top are base types
and Top is the supertype of all types. Compound types are function types A → B,
intersection types A&B, and record types {l : A}. Ordinary types [8,14] are essen-
tially types without intersection types, except for functions where intersection
types can appear in argument types.

Algorithmic BCD Subtyping. Subtyping relations for intersection types can
vary in whether distributivity rules are included or not. For calculi with inter-
section types, a common rule allows the intersection of arrow types to distribute
over arrows. One well-known subtyping relation with such distributivity rule is
BCD subtyping [3]. Huang et al. [14] provide a sound and complete algorithm for
BCD subtyping by eliminating the transitivity rule, and employing the notions
of ordinary types and splittable types. We present that subtyping relation in
Fig. 2. Splittable types describe that types can be split into two simpler types
and ordinary types are those which cannot be split. Rule Sub-And is the most
interesting rule as it captures the distributivity of intersection types over func-
tion types and record types. This rule splits the type B into two types B1 and
B2 and proceeds by testing whether A is a subtype of both B1 and B2.
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A1 A A2 Splittable Types

Sp-And

A A&B B

Sp-Arr
B1 B B2

A B1 A B A B2

Sp-Rcd
A1 A A2

{l : A1} {l : A} {l : A2}

A <: B Subtyping

Sub-Int

Int <: Int

Sub-Top

A <: Top

Sub-Arr
C <: A B <: Do

A B <: C Do

Sub-Rcd
A <: Bo

{l : A} <: {l : Bo}

Sub-And
B1 B B2 A <: B1 A <: B2

A <: B

Sub-And-L
A <: Co

A&B <: Co

Sub-And-R
B <: Co

A&B <: Co

Fig. 2. Splittable Types and Algorithmic Subtyping

A1 A2 B = A2 when B <: A1 (1)

A1 A2 B = . when ¬(B <: A1) (2)

{l = A} l = A (3)

{l1 = A} l2 = . when l1 = l2 (4)

A1 &A2 S = (A1 S) (A2 S) (5)

A S = . otherwise (6)

Fig. 3. Applicative subtyping

3.2 Applicative Subtyping

Applicative subtyping utilises the notion of selectors to find the correct output
type from applicable types. We consider applicable types to be function or record
types. This relation enables the type system to infer the type of applications and
record projections, as shown in Sect. 4. We model the types of arguments and
labels of record projections as selectors, and the outputs as being either a type
or nothing (denoting the failure to find a suitable output type).

Selectors S ::= A | l Outputs O ::= . | A

The definition of applicative subtyping is given in Fig. 3. Selectors are used as
the second parameter and propagate through the subtyping checks, until we
reach arrow or record types. For arrow types, in rules (1) (2), we check the
contravariant subtyping between input type A1 and argument B. If successful,
the output type A2 is returned, otherwise we fail. For record types (3) (4), we
check the equality between labels. If the labels are equal, we return the output
type A, otherwise we fail. For the case of the intersection types A1 &A2 (5), we
introduce a composition operator � to combine two results which are derived
from applying A1 and A2 with the same selector B. Rule (6) covers a number of
missing cases (such as Int � S) which will all fail. For simplicity of presentation
we write those rules as a single rule (6).
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The composition operator accepts output results and returns a new output
result. For systems with BCD subtyping, which include distributivity rules, we
use the composition operator implementing the nested composition semantics in
Fig. 1a.

3.3 Metatheory

We proved the soundness and completeness of our applicative subtyping with
respect to the normal subtyping. The decidability of applicative subtyping is
straightforward since it is modelled as a structurally recursive function. We have
two versions of soundness and completeness lemmas. The first version applies to
the case where the supertype is a function:

Lemma 3 (Soundness (Function)). If A � B = C, then A <: B → C.

Lemma 4 (Completeness (Function)). If A <: B → C, then ∃D,A � B =
D ∧ D <: C.

The soundness lemma is intuitive. If the result of checking applicative subtyping
with a subtype A and input type B computes a type C then it should be the
case that A <: B → C. For completeness we wish to show that if A is a subtype
of a function type B → C then applicative subtyping will always be able to find
some output type D which is a subtype of C.

The second version of the lemma, which applies to the case where the super-
type is a record, is defined in a similar manner.

Lemma 5 (Soundness (Record)). If A � l = B, then A <: {l : B}.

Lemma 6 (Completeness (Record)). If A <: {l : B}, then ∃C,A � l =
C ∧ C <: B.

Remark. Note that, if we would drop the distributivity of intersections over
other constructs by removing the rules Sp-Arr and Sp-Rcd, then to have sound-
ness and completeness we need to employ the composition operator implementing
the overloading semantics to the right of Fig. 1. When using that composition
operator, the soundness lemmas remain the same, but we need to adjust the
completeness lemmas to consider the ambiguous cases. For instance, the com-
pleteness for the case of a function supertype would become:

Lemma 7 (Completeness). If A <: B → C, then (∃D,A � B = D ∧ D <:
C) ∨ A � B = Amb.

4 A Calculus with an Unrestricted Merge Operator

This section presents a type sound calculus that supports both intersection types
and a merge operator. This calculus can be viewed as a variant of Dunfield’s cal-
culus (without union types) [9]. Our calculus employs a type-directed operational
semantics [14] instead of using elaboration semantics as proposed by Dunfield
and adopts applicative subtyping and distributive subtyping.
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Γ e ⇔ A Bidirectional Typing

T-Lit

Γ i ⇒ Int

T-Var
x : A ∈ Γ

Γ x ⇒ A

T-Lam
Γ,x : A e ⇐ B

Γ λx. e : A B ⇒ A B

T-Rcd
Γ e ⇒ A

Γ {l = e} ⇒ {l : A}

T-App
Γ e1 ⇒ A Γ e2 ⇒ B A B = C

Γ e1 e2 ⇒ C

T-Proj
Γ e ⇒ A A l = B

Γ e.l ⇒ B

T-Mrg
Γ e1 ⇒ A Γ e2 ⇒ B

Γ e1 , , e2 A&B

T-Ann
Γ e ⇐ A

Γ e : A A

T-Sub
Γ e ⇒ A A <: B

Γ e B

Fig. 4. Bi-directional typing. The bidirectional mode syntax is ⇔ ::= ⇐|⇒.

4.1 Syntax

The syntax of this calculus is:

Expressions e ::= x | i | e : A | e1 e2 | λx .e : A → B | e1, , e2 | {l = e} | e.l

Raw Values p ::= i | λx .e : A → B

Values v ::=p : Ao | v1, , v2 | {l = v}

Contexts Γ ::= · | Γ, x : A

Most expressions are standard. Lambda expressions λx. e : A → B are fully anno-
tated because the operational semantics is type-directed. The expression e1, , e2
creates a merge of two expressions e1 and e2. The expression {l = e} denotes
a single-field record with label l and field e. The projection of records is repre-
sented by e.l. Raw values include integers and lambdas, and values are defined
on raw values annotated with ordinary types, merges of values and records whose
fields are values. We stratify raw values and values because we need to utilise
annotations to adopt dispatching in the semantics. The ordinary restriction on
values enforces a canonical form for overloaded functions. Overloaded functions
will be reduced to explicit nested merges, even in settings with distribuivity.

4.2 Typing

Figure 4 shows our bi-directional type system. Most of the rules are adapted
from traditional bi-directional typing [10]. The novel rules are rules T-App and
T-Proj, whose inferred type is derived from applicative subtyping.

Typing of Application and Projection. Our approach to type applica-
tions [28] is to infer the type of functions and arguments at the same time,
pass their types into applicative subtyping (A and B in rule T-App), and assign
the computed result C to applications. This is because we allow intersection
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types to distribute over arrow types, thus the type of the function can be an
arrow type or an intersection type. We cannot simply extract the input type of a
function. Since multi-field records are also intersection types in our system, the
typing for projections (rule T-Proj) uses a similar idea to applications.

Examples. We show an example of how the rule T-App works. Suppose that
we have Γ = f : I → I → I, g : I → B → B. (I and B stand for Int and Bool)

Γ � (f, , g) ⇒ (I → I → I)& (I → B → B) Γ � 2 ⇒ I

Γ � (f, , g) 2 ⇒ (I → I)& (B → B)
T-App

Γ � true ⇒ B

Γ � (f, , g) 2 true ⇒ B
T-App

Note that for space reasons we omit the applicative subtyping derivations here,
which are straightforward. To infer the type of (f, , g) 2 true, we first infer both
the type of (f, , g) 2 and true. The type of (f, , g) 2 is (Int → Int)& (Bool →
Bool). This result is computed from applicative subtyping with two inputs: type
of function merges f, , g and type of 2. Later we use the computed result of
(f, , g) 2 to derive our final type Bool.

4.3 Semantics

This calculus adopts a type-directed operational semantics [14], where type anno-
tations are used to cast terms instead of being erased after type checking.

Casting. We introduce the casting judgment in Fig. 5. Judgment v 	−→A v ′

describes that value v is cast to value v ′ by type A, thus forcing the value to
match the type structure of A. The casting rules are essentially the same as the
rules proposed by Huang et al. [14]. Rules Ct-Mrg-L and Ct-Mrg-R state
that merges will be cast to one result by ordinary types. For example, show will
be cast to showInt by type Int → String.

Applicative Dispatching. We introduce a new judgement called applicative
dispatching (Fig. 5), which extends Huang et al.’s [14] parallel application judge-
ment. In contrast to parallel application, we must also deal with overloading.
Judgment (v • vl) ↪→ e describes that value v is applied to value or label vl

(i.e. vl ::= v | l) and then reduced to a term e. Rule App-Lam performs beta-
reduction and appends an extra annotation D to enforce the output type of the
application. Rule App-Proj simply extracts the value from the single record
field. The interesting part is the remaining three rules for merges. The function
〈vl〉 simply extracts out the type of a value, to provide the types to be compared
with applicative subtyping. To deal with overloading we need to introduce rules
App-Mrg-L and App-Mrg-R, which allows a merge to be applied when only
one of the values is applicable. The last rule, rule App-Mrg-P deals with the
parallel application, where both values in the merge can be applied.
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v A v Casting

Ct-Int

i : A Int i : Int

Ct-Top

v Top : Top

Ct-Rcd
v Ao v

{l = v} {l:Ao} {l = v }

Ct-Arr
E <: C Do

(λx. e : A B) : E (C→Do) (λx. e : A Do) : (C Do)

Ct-Mrg-L
v1 Ao v1

v1 , , v2 Ao v1

Ct-Mrg-R
v2 Ao v2

v1 , , v2 Ao v2

Ct-And
A1 A A2 v A1 v1 v A2 v2

v A v1 , , v2

(v • vl) e Applicative Dispatching

App-Lam
v A v

((λx. e : A B) : C D • v) e[x v ] : D

App-Proj

({l = v} • l) v

App-Mrg-L
v2 vl = . (v1 • vl) e

((v1 , , v2) • vl) e

App-Mrg-R
v1 vl = . (v2 vl) e

((v1 , , v2) • vl) e

App-Mrg-P
v1 vl = . v2 vl = . (v1 • vl) e1 (v2 • vl) e2

((v1 , , v2) • vl) e1 , , e2

Fig. 5. Casting and applicative dispatching

Operational Semantics. We present our small-step reduction rules in Fig. 6.
Rules Step-Int-Ann and Step-Arr-Ann append extra annotations to the par-
tial value, in order to preserve the precise types at runtime. Rule Step-Pv-Split
will split terms according to splittable types, forcing the type of each branch in
merges to be ordinary. Rule Step-App,Step-Prj directly call applicative dis-
patching. Rule Step-Val-Ann triggers casting: v is cast to v ′ by type A. Rule
Step-Ann is a congruence rule with a restriction that e cannot be a raw value
p. The remaining rules are normal congruence rules.

4.4 Type Soundness

For type soundness, we employ a proof technique similar to the one by Fan et
al. [12]. First we need a number of results about the auxiliary relations used in
reduction. We show some of the more interesting lemmas next:

Lemma 8 (Preservation (Applications and Projections)).

– If · � v1 v2 ⇒ A and v1 • v2 ↪→ e, then · � e ⇐ A.
– If · � v.l ⇒ A and v • l ↪→ e, then · � e ⇐ A.
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e e Small Step Reduction

Step-Int-Ann

i i : Int

Step-Arr-Ann

λx. e : A B (λx. e : A B) : A B

Step-App
(v1 • v2) e

v1 v2 e

Step-Pv-Split
A1 A A2

p : A p : A1 , , p : A2

Step-Prj
(v • l) v

v.l v

Step-Ann
¬e ∈ p e e

e : A e : A

Step-Val-Ann
v A v

v : A v

Step-App-L
e1 e1

e1 e2 e1 e2

Step-App-R
e2 e2

v1 e2 v1 e2

Step-Mrg-L
e1 e1

e1 , , e2 e1 , , e2

Step-Mrg-R
e2 e2

v1 , , e2 v1 , , e2

Step-Rcd-R
e e

{l = e} {l = e }

Step-Prj-L
e e

e.l e .l

Fig. 6. Operational Semantics

Lemma 9 (Progress (Applications and Projections)).

– If · � v1 v2 ⇒ A, then ∃e, v1 • v2 ↪→ e

– If · � v.l ⇒ A, then ∃e, v • l ↪→ e.

Type soundness is proven via standard preservation and progress theorems.

Theorem 1 (Preservation). If · � e ⇔ A and e 	−→ e ′, then · � e ′ ⇐ A.

Theorem 2 (Progress). If · � e ⇔ A, then e is a value or ∃e ′, e 	−→ e ′.

5 A Calculus with a Disjoint Merge Operator

This section presents a second calculus with a disjointness restriction on
merges [17] to recover determinism. This calculus forbids some cases of con-
ventional overloading, but still supports the other features. We focus on the key
differences to the previous calculus, since most rules and relations are the same.
Compared to previous calculi with disjoint intersection types, the main novelty
is the use of the applicative subtyping and dispatching relations, which enables
support for record projections and a restricted form of overloading naturally
(without redundant type annotations).

5.1 Disjointness

We employ the definition of disjointness proposed by Oliveira et al. [17]. Infor-
mally, if all common supertypes of two types are top-like types, we can conclude
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that the two types are disjoint. Top-like types are those who are supertypes of
all types (e.g., Top, Top & Top) and defined as:

Top-like types �A ::= Top | �A & �B | A →�B | {l :�A}
Note that the including of such types into top-like types is also part of the
classical BCD subtyping relation [3]. A formal specification of disjointness is
given below. There is a sound and complete set of algorithmic disjointness rules
that conform to this specification. The interested reader can check existing work
for the algorithmic rules [14,17]. For space reasons we omit them here.

Definition 1 (Disjointness). A∗B � ∀C if A <: C∧B <: C, then C is top-like.

In our calculus we allow merges of disjoint functions. Thus, types such as
Int → Int or Int → Bool are disjoint. To include function types into our
disjointness, types like Int → Top should be top-like and supertypes of all
types, since otherwise Int → Int and Int → Bool cannot be disjoint accord-
ing to our definition. However, this disjointness definition prevents some forms
of overloading. For example, the type of show is (Int → String) & (Bool →
String), which will be rejected by the disjointness condition since Int → String
is not disjoint with Bool → String. For those two types we can find a common
supertype Int & Bool → String, which is not top-like. To see why we should
prevent such merges assume that show is allowed, then show (1,,true) : String
is ambiguous since the result can be either "1" or "true". Note that some forms
of overloading are still possible. For instance succ,,not will be accepted since
Int → Int is disjoint with Bool → Bool.

We follow previous work on disjoint intersection types [4] and generalize our
subtyping rule for S-Top to be A <:�B where �B means that B is a top-like
type. Disjointness has important properties, which are helpful for the metatheory
of the calculus. In particular, if two types are disjoint, their applicative subtyping
results under the same partial types are also disjoint.

Lemma 10 (Applicative Subtyping and Disjointness). If A∗B, A � S =
C1 and B � S = C2, then C1 ∗ C2.

Soundness and Completeness of Applicative Subtyping. With the more
general subtyping rule for top-like types, applicative subtyping remains sound
(with Lemmas 3, 5 in Sect. 3) with respect to subtyping. However, the complete-
ness of our applicative subtyping needs to be slightly adapted.

Lemma 11 (Completeness of Applicative Subtyping). If A <: B → C,
then (∃D,A � B = D ∧ D <: C) ∨ Top <: C.

In other words, applicative subtyping is complete except for the case where the
output type is top-like. In such case applicative subtyping fails. Note though that
this failure prevents strange programs from being type-checked. For example,
subtyping has instances Top <: A → Top, allowing (1 : Top) 2 to be well-typed,
which would require special treatment in the typing rules. We reject such cases,
making the typing rules simpler, and avoiding type-checking such programs.
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5.2 Typing and Semantics

The main change in typing is that we add a disjoint premise in rule T-Mrg.

Γ � e1 ⇒ A Γ � e2 ⇒ B A ∗ B

Γ � e1, , e2 ⇒ A&B
T-Mrg

Most changes in the dynamic semantics are related to top-like types. Basically
we need some extra conditions in the rules testing whether or not types are top-
like? However, apart from these minor changes, the rules remain essentially the
same. For space reasons we omit the detailed rules here.

5.3 Type Soundness and Determinism

All properties, including subject reduction and type soundness shown in the first
calculus, also hold in this calculus. We only focus on determinism here, which is
the most interesting property of the calculus with disjointness.

Theorem 3 (Determinism). If · � e ⇔ A, e 	−→ e1 and e 	−→ e2, then
e1 = e2.

6 Related Work

Intersection Types, Merges and Overloading. Forsythe, introduced by
Reynolds [21] has a restricted merge operator and its coherent semantics is for-
mally proven. However, it does not account for overloaded functions since mul-
tiple functions are forbidden by merges. Pierce [18] introduced a glue construct
in his calculus F∧ as a language extension to support user-defined overloading
and the types of overloaded functions are also modelled as intersection types.
However his glue operator is unrestricted, leading to a non-deterministic seman-
tics. Castagna et al. [6] gave a formalization to calculus for overloaded functions
with subtyping. In his calculus, overloaded functions are defined as &-terms and
their types are a finite list of arrow types with a consistency restriction. In over-
loaded applications, the “best-match” branch will be selected. The semantics is
type-dependent, and overloaded applications rely on the runtime types, which is
similar to our TDOS approach. Differently to our approach, nested composition
is not supported in his calculus. Moreover, only one branch can be selected in
the overloaded application, thus terms like succ,,intToDigit are rejected, for-
bidding currying on overloaded functions. In their work, records are encoded by
lambda functions and multi-field records are overloaded functions.

Dunfield’s calculus [9] is powerful enough to encode overloaded functions
and record projection. Unlike our calculi, it does not support distributivity
and nested composition. This means that overloaded functions do not inter-
act nicely with currying. For example, to program pshow unit 1 in her calculus,
we should write ((pshow unit) : Int → Bool) 1. As acknowledged by Dunfield,
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the semantics is not deterministic. This is similar to our first calculus in Sect. 4.
To restrict the power of the merge operator and enable determinism, a disjoint-
ness restriction on merges has been proposed [17]. Closest to our work is the
λ+
i calculus [14], which is a deterministic calculus with intersection types and

a disjoint merge operator. There are two major differences between our work
and λ+

i . (1) Our first calculus utilizes an unrestricted merge operator, which
allows any functions and records to be merged. (2) Our second calculus can be
viewed as a variant of λ+

i that employs applicative subtyping and thus avoids
many unnecessary annotations that are required in λ+

i since function overloading
and record projection are not directly supported in λ+

i . In λ+
i , we would need

a term with an explicit type annotation instead: ((succ,,not) : Int → Int) 1.
The rigid form of applications and projections in λ+

i prevents expressions such
as (succ,,not) 1, which are not well-typed in λ+

i .
In recent work, Rioux et al. [24] proposed a calculus with a disjoint merge

operator that deals with union types and overloading. This is achieved with two
more fine-grained disjointness relations called mergeability and distinguishability.
Similarly to our calculus, they consider an expressive type-level dispatch relation
that plays the same role as applicative subtyping in our calculus. Such dispatch-
ing relation supports union types, unlike our calculus. In terms of the operational
semantics, there are significant differences between our work and Rioux et al.’s
work. While their semantics still employs types at runtime, there is no casting
relation. Instead there are patterns and co-patterns, which enforce runtime coer-
cions via η-expansion. While overloading is supported, the disjointness relations
are still not flexible enough to support return type overloading.

Semantic Subtyping. Semantic subtyping [13] takes a different direction to
type overloaded functions with intersection types and union types. In seman-
tic subtyping the semantics of types is set-theoretic and subtyping relations are
derived from the semantics. The type system features intersection types, union
types and negation types. Overloaded functions are defined by a typecase primi-
tive which is similar to the elimination of union types. For example, the type of
show is Int | Bool → String (| denotes union types). The approach to semantic
subtyping of overloaded functions is different from ours, since in our calculi (1)
only intersection types are used to represent types of overloaded functions; and
(2) overloaded functions can be introduced by simply merging functions.

7 Conclusion and Future Work

In this paper, we proposed applicative subtyping, a novel subtyping algorithm to
infer the return types of application and projection. We also designed its corre-
sponding judgment applicative dispatching in the dynamic semantics. Together
these features enable expressive calculi with a merge operator. We present a
type sound calculus that supports all features, but is non-deterministic, and a
second deterministic calculus with a disjointness restriction supporting all fea-
tures except for overloading. Future work includes finding a design that enables



Applicative Intersection Types 173

overloading, while preserving determinism. Furthermore we are interested in
extending the calculus with disjoint polymorphism [2].
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Abstract. Calculi with subtyping, a form of record concatenation and
recursive types are useful to model objects with multiple inheritance. Sur-
prisingly, almost no existing calculi supports the three features together,
partly because the combination of subtyping and record concatenation
is already known to be troublesome. Recently, a line of work on disjoint
intersection types with a merge operator has emerged as a new approach
to deal with the interaction between subtyping and record concatena-
tion. However, the addition of recursive types has not been studied.

In this paper we present a calculus that combines iso-recursive types
with disjoint intersection types and a merge operator. The merge oper-
ator generalizes symmetric record concatenation, and the calculus sup-
ports subtyping as well as recursive types. We build on recent devel-
opments on the theory of iso-recursive subtyping using the so-called
nominal unfolding rules to add iso-recursive types to a calculus with
disjoint intersection types and a merge operator. The main challenge lies
in the disjointness definition with iso-recursive subtyping. We show the
type soundness of the calculus, decidability of subtyping, as well as the
soundness and completeness of our disjointness definition. All the proofs
are mechanized in the Coq theorem prover.

1 Introduction

Record calculi with a concatenation operator have attracted the attention of
researchers due to their ability to give the semantics of object-oriented languages
with multiple inheritance [14,15,19]. The foundational work by Cook and Pals-
berg [19], and Cardelli [14] work on the semantics of the Obliq language are prime
examples of the usefulness of untyped record calculi with record concatenation
to model the semantics of OOP with inheritance.

Unfortunately, typed calculi with record concatenation and subtyping have
proven to be quite challenging to model. An important problem, identified by
Cardelli and Mitchell [15], is that subtyping can hide static type information that
is needed to correctly model (common forms of) record concatenation. Cardelli
and Mitchell illustrate the problem with a simple example:

let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool} = r,,s
in f2 ({x=3, y=4}) ({y=true , x=false })
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Sergey (Ed.): APLAS 2022, LNCS 13658, pp. 175–195, 2022.
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Here f2 is a function that takes two records (r and s) as arguments, and returns
a new record that concatenates the two records (r ,, s). For the return type
of f2 we use record type concatenation (here denoted as R & S). Because of
subtyping it is possible to invoke f2 with records that have more fields than the
fields expected by the static types of the arguments of f2. For instance, while
the static type of the first argument of f2 is : Intx : Int, the record that is
actually provided at the application (= 3, y = 4x = 3, y = 4) also has an extra
field y.

The program above is fine from a typing point of view, but what should the
program evaluate to? There are a few common options for the semantics of record
concatenation.Record concatenation can be symmetric, only allowing the concate-
nation of records without conflicts; or it can be asymmetric, implementing an over-
riding semantics where, in case of conflicts, fields on the left (or the right) record
are given preference. Choosing a naive form of asymmetric concatenation does not
work. For instance, with left-biased concatenation, the example above would eval-
uate to = 3, y = 4x = 3, y = 4, which has the wrong type! Therefore, Cardelli and
Mitchell [15] state that:

we should now feel compelled to define R & S only when R and S are
disjoint: that is when any field present in an element of R is absent from
every element of S, and vice versa.

hinting for an approach with symmetric concatenation, based on disjointness.
But a naive symmetric concatenation operation would result in a record = 3,
y = 4, y = true, x = falsex = 3, y = 4, y = true, x = false with conflicts,
which should not be allowed! Thus, such a naive form of symmetric concate-
nation does not work either.

Recent work on calculi with disjoint intersection types [33] and a merge oper-
ator offers a solution to the Cardelli and Mitchell’s problem for concatenation.
For instance, the λi calculus [33] adopts disjointness and restricts subsumption
to address the challenges of symmetric concatenation/merge. Most importantly,
λi has a type-directed semantics to ensure proper information hiding and the
preservation of the expected modular type invariants. The application of the f2
function in λi results in = 3, y = truex = 3, y = true, which has no conflicts
and is of the right type. Types are used at runtime to ensure that fields hidden
by subtyping are dropped from the record. This is enforced, for example, during
beta-reduction, which uses the type of the argument to filter any hidden fields/-
values from records/merges. Thus, before substitution, the first argument of f2,
for instance, is first filtered using the type : Intx : Int. The actual record that
is substituted in the body of f2 is = 3x = 3 (and not = 3, y = 4x = 3, y = 4).

An important limitation of existing calculi with disjoint intersection types is
that they lack recursive types. For typed model of objects, supporting recursive
types is important, since many object encodings require recursive types [10]. With-
out recursive types binarymethods [9] and other types of methods, that refer to the
current object type cannot be easily modelled. For example, it is hard to support
an equality method in an object. In addition, recursive structures, such as lists or
trees, require recursive types as well.
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This paper studies subtyping relations combining iso-recursive subtyping
with disjoint intersection types and a merge operator. Our calculus λµ

i , extends
λi with recursive types. With λµ

i we can use a standard encoding of objects
using recursive types [10,11,18,19] in λµ

i to model objects with recursive types.
For instance, we can define an interface for arithmetic expressions Exp using a
recursive type:

Exp := μ Exp. {eval : nat, dbl : Exp, eq : Exp → bool}
In Exp there are 3 methods: an evaluation method that returns the value of eval-
uating the expression; a dbl method that doubles all the natural numbers in (the
AST of) an expression; and an equality method that compares the expression
with another expression. In λi it is only possible to express the type of eval.
However, in λµ

i we can also express dbl and eq. Importantly, in λµ
i the record

type {eval : nat, dbl : Exp, eq : Exp → bool} is syntactic sugar for intersections
of single field records [22,40]. In other words, to define the type Exp we need
both intersection types and recursive types.

To add iso-recursive subtyping to λµ
i , we employ a recent formulation of

iso-recursive subtyping based on the so-called nominal unfolding rules [47]. The
nominal unfolding rules have equivalent expressive power to the iso-recursive
Amber rules [12], but they are easier to work with formally. We prove vari-
ous important properties for λµ

i , including transitivity of algorithmic subtyping,
decidability as well as the unfolding lemma. A key technical challenge is how to
define disjointness for iso-recursive types, which turns out to be non-trivial. By
employing the notion of a lower common supertype, we show that it is possible
to obtain a sound and complete formulation of algorithmic disjointness. All the
calculi and lemmas presented in this paper have been mechanically formalized
in the Coq theorem prover [42]. In summary, the contributions of this paper are:

– Iso-recursive subtyping with intersection types: We show the applica-
bility of nominal unfoldings to a subtyping relation that includes intersection
types. The subtyping relation is transitive, decidable and supports the unfold-
ing lemma.

– The λµ
i calculus, which adds iso-recursive types to an existing calculus with

record types, disjoint intersection types and a merge/concatenation operator.
– Algorithmic disjointness for iso-recursive types. The algorithmic for-

mulation of disjointness for iso-recursive types is non-trivial. We introduce an
approach based on lower common supertypes, enabling a sound and complete
algorithm for disjointness.

– Mechanical formalization: Finally, we provide a mechanical formalization
and proofs for all the calculi and proofs in the Coq theorem prover [42]. The
proofs are available in the supplementary material of this submission [46].

2 Overview

2.1 Background: Disjoint Intersection Types

λi and other calculi with disjoint intersection types [2,6,33] have been shown
to provide flexible forms of dynamic multiple inheritance [5,45]. Moreover, they
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enable a highly modular and compositional programming style that addresses
the Expression Problem [43] naturally. For space reasons, here we only illustrate
briefly the ability of such calculi to model first-class traits and a very dynamic
form of inheritance [5]:

addId(super:Trait[Person], idNumber:Int):Trait[Student ]=
trait inherits super => { def id : Int = idNumber }

In this code, written in the SEDEL language [5], there are two noteworthy points.
Firstly, unlike statically typed mainstream OOP languages, traits (which are
similar to OOP classes) are first class. They can be passed as arguments (such
as super), or returned as a result as above. Secondly, the code uses a highly
dynamic form of inheritance. The trait that is inherited (super) is a parameter of
the function. In contrast, in languages like Java, for class A extends B, the class
B must be statically known. We refer the interested reader to the work by [5,45]
for a much more extensive discussion on the applications of calculi with disjoint
intersection types, as well as how to encode source language features, such as
first-class traits.

2.2 λμ
i : Adding Recursive Types to λi

An important limitation of existing calculi with disjoint intersection types is
that they lack recursive types, preventing binary methods [9] and other types
of methods. As we have discussed in Sect. 1, without recursive types we cannot
write object interfaces such as:

Exp := μ Exp. {eval : nat, dbl : Exp, eq : Exp → bool}
where some method signatures refer to the type being defined. In λµ

i we add
recursive types, therefore it becomes possible to define the object interface Exp.
Using a standard object encoding based on records and recursive types [10,18],
we can then model objects. To implement Exp we first need a few auxiliary
functions (eval′ : Exp → nat, dbl′ : Exp → Exp and eq′ : Exp → Exp → bool) that
unfold the recursive type1. Then we define two recursive functions lit : nat → Exp
and add : Exp → Exp → Exp:

eval′ e = (unfold [Exp] e).eval
dbl′ e = (unfold [Exp] e).dbl
eq′ e1 e2 = (unfold [Exp] e1).eq e2
lit n = fold [Exp]{eval = n, dbl = lit(n ∗ 2),

eq = λe′. (eval′ e′ == n) : Exp → bool}
add e1 e2 = fold [Exp]{eval = eval′ e1 + eval′ e2, dbl = add (dbl′ e1) (dbl′ e2),

eq = λe′. (eval′ e′ == eval′ e1 + eval′ e2) : Exp → bool}
In this example the functions lit and add act as encodings of classes or traits. The
function lit is basic: it stores the literal, a double function and equality functions.
1 We assume the presence of recursive functions, and that records are lazy in the

example.
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In add, operations such as eval′ have to be called for subexpressions. To check if
2 ∗ 7 = 2 ∗ (3 + 4), we can define e1 : Exp = lit 7 and e2 : Exp = add (lit 3) (lit 4).
Then, we check if eq′ (dbl′ e1) (dbl′ e2) is satisfied.

2.3 Disjointness for Recursive Types

The disjointness restriction is an essential feature in calculi with disjoint inter-
section types. Such restriction ensures that certain merges of values, that could
lead to ambiguity, are forbidden. For instance, in the example above merges are
used to encode records. A record {x = 1, y = true} is encoded as the merge of
two single field records {x = 1}, , {y = true}. Here the operator , , is the merge
operator [22,40], which can be viewed as a generalization of record concatena-
tion. Ambiguity can arise with the merge operator if the two values in the merge
overlap. For instance, with records, we would like to forbid r = {x = 1, x = 2} (a
record with two fields with the same name and type), since r.x would be ambigu-
ous. With the merge operator we can merge not only records, but also arbitrary
values. Thus, we need to forbid merges such as 1, , 2 which provides two values
of type Int. The disjointness restriction is employed when type-checking merges
to ensure that the types being merged do not overlap. A standard specification
of disjointness [29,33] is:

Definition 1 (Specification of disjointness). Γ � A ∗s B ≡ ∀C, (Γ � A ≤
C ∧ Γ � B ≤ C) ⇒
C�
The intuition is that two types are disjoint when all their supertypes are (iso-
morphic to) �. The notation 
 · � represents toplike types, which are both super-
types and subtypes of �. In essence ambiguity arises from upcasts on values.
For instance if we cast 1, , 2 under type Int there can be two possible results.
Disjointness prevents merges with values having common supertypes (with the
exception of �). Therefore, when such disjoint merges are upcast we can ensure
that only one value will be extracted for any given (non toplike) type.

One of the challenges in the design of λµ
i is to find an algorithmic rule to

check whether two recursive types are disjoint and prove that it is complete
with respect to the specification. As part of the completeness proof we must
be able to find common supertypes of two types, but this is non-trivial for
recursive types due to contravariance. For example, assume that we have two
recursive types μα. ((nat → α) → nat) and μα. ((� → α) → nat), then
μα. ((nat → α)&(� → α) → nat) is not a valid common supertype because
α is contravariant. In contrast, for covariant recursive types and non-recursive
types, finding a common supertype is simpler. For instance, for the recur-
sive types μα. (String → α) and μα. (nat → α), the intersection of the two
inputs types of the function in the recursive type gives us a common supertype
μα. (String&nat → α).

In Sect. 4, we will show that the disjoint rules for recursive types are quite
simple: we only need to check if their one-time finite unfoldings are disjoint or
not. Furthermore, we can address the challenge of finding supertypes using a
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lower common supertype definition, which gives a common supertype even for
contravariant recursive types. This plays a crucial role in the completeness proof
for disjointness.

3 Static Semantics of λμ
i

This section presents the static semantics of λµ
i , covering syntax, subtyping,

disjointness and typing rules. The main novelty over λi is the addition of iso-
recursive types, which requires novel proof techniques to deal with disjointness.
Our subtyping relation supports intersection types and iso-recursive types using
the nominal unfolding rule [47]. Among others, we prove transitivity of sub-
typing, the unfolding lemma and decidability of subtyping. We note that this
subtyping relation is quite general and, while it is used by our specific appli-
cation in Sect. 4, it can be easily adapted to many other calculi with recursive
types and intersection types.

3.1 Syntax and Subtyping

Syntax The syntax of our calculus is:
Types A,B ::= nat | � | ⊥ | A1 → A2 | {α : A} | α | μα. A | A1&A2

Expressions e ::= i | � | x | λx. e : A → B | e1 e2 | fix x : A. e | e : A
| unfold [A] e | fold [A] e | {α = e} | e1, , e2 | e.α

Values v ::= i | � | λx .e : A → B | fold [A] v | v1, , v2 | {α = v}
Contexts Γ ::= · | Γ, α | Γ, x : A
Modes ⇔ ::= ⇐ | ⇒

Meta-variables A,B range over types. Types are mostly standard and consist of:
natural numbers (nat), the top type (�), the bottom type (⊥), function types
(A → B), type variables (α), and recursive types (μα. A). The most interesting
feature is the presence of labelled types {α : A}. Labelled types can be viewed as
a simple form of nominal types. They are essentially a pair that contains a name
(or type variable) α and a type. We use labelled types in two different ways: 1)
we use them with the nominal unfolding rules for iso-recursive subtyping; and
2) we also use them to model records and records types in combination with
intersection types and the merge operator.

Expressions, which are denoted as e, include: a top value (�), lambda expres-
sions (λx. e : A → B) and fixpoints (fix x : A. e). Note that for lambda expres-
sions, we annotate both input and output types, since the output types are
necessary in a Type-Directed Operational Semantics (TDOS) during reduction,
which will be described in Sect. 4.

Values include a canonical top value (�), lambda expressions (λx.e : A → B),
merges of values (v1, , v2) and record values ({α = v}). For proving type-safety,
the contexts also store the types of variables used in the program. We employ
bi-directional type checking in the system, thus ⇐/⇒ represent the checking
mode and synthesis mode, respectively.
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Γ

wfe-nil

·

wfe-sub
Γ fresh α

Γ, α

wfe-typ
Γ fresh x Γ A

Γ, x : A

Γ A

wft-Nat
Γ

Γ nat

wft-Top
Γ

Γ

wft-Bot
Γ

Γ ⊥

wft-var
α ∈ Γ

Γ α

wft-arr
Γ A Γ B

Γ A B

wft-rcd
Γ A

Γ α : A

wft-rec
Γ, α A

Γ μα. A

wft-and
Γ A Γ B

Γ A&B

Fig. 1. Well-formedness.

The syntactic sugar for record types and records is also shown below, illus-
trates the standard encoding [22,40] in terms of intersection types, labelled types
and merges.

{α1 : A1, . . . , αn : An} ≡ {α1 : A1} & . . . & {αn : An}
{α1 = e1, . . . , αn = en} ≡ {α1 = e1} , , . . . , , {αn = en}

Well-Formedness. The definition of well-formed types is mostly standard, as
Fig. 1 shows. An environment is well-formed if all the variables are distinct.

Subtyping. Figure 2 shows the subtyping relation. Rule S-bot states that any
well-formed type A is a supertype of the ⊥ type. Rule S-fvar is a standard rule
for type variables: variable α is a subtype of itself. The rule for function types
(rule S-arrow) and intersection types are standard. Rule S-rcd states that a
labelled type is a subtype of another labelled type if the two types are labelled
with the same name and A ≤ B.

Rule S-rec, the nominal unfolding rule, is the most interesting one. In this
rule, the body of the recursive type is unfolded twice. However, for the innermost
unfolding, the type that we substitute is not the recursive type. Instead, we use
a labelled type, where the label is a fresh name that serves as a unique identifier
for the recursive types being compared. The label is associated to the bodies
of both recursive types. In other words, we substitute the recursive variable by
the labelled type in the recursive type body A: [α �→ {β : A}] A. The label is
useful to identify types that arise from recursive unfolding substitutions and to
give distinct identities to recursive types. We should note that Zhou et al. [47]
present the rule in a slightly different way, by reusing the recursive type variable
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A

top-base top-and
A B

A&B

top-arrow
B Γ A

A B

top-rec
A

μα. A

top-rcd
A

α : A

Γ A ≤ B

S-nat
Γ

Γ nat ≤ nat

S-top
Γ B

Γ A ≤ B

S-bot
Γ Γ A
Γ ⊥ ≤ A

S-rcd
Γ A ≤ B

Γ {α : A} ≤ {α : B}

S-arrow
Γ B1 ≤ A1 Γ A2 ≤ B2

Γ A1 A2 ≤ B1 B2

S-and
Γ A ≤ B1 Γ A ≤ B2

Γ A ≤ B1&B2

S-fvar
Γ α ∈ Γ

Γ α ≤ α

S-andR
Γ A1 Γ A2 ≤ B

Γ A1&A2 ≤ B

S-andL
Γ A2 Γ A1 ≤ B

Γ A1&A2 ≤ B

S-rec
Γ, α [α β : A}] A ≤ [α β : B}] B fresh β

Γ μα. A μα. B

Fig. 2. Subtyping rules.

as a label:

S-oldrec
Γ, α � [α �→ {α : A}]A ≤ [α �→ {α : B}] B

Γ � μα. A ≤ μα. B

The two presentations are equivalent, but the original presentation implicitly
assumes that bound variables and free variables are distinct. Thus, the α that
is bound by the recursive type μα. A and the α used in the label should be
considered distinct (and the α used in the label should be distinct from other
free variables as well). To avoid confusion we make such implicit assumptions
explicit in the rule S-Rec here.

The basic intuition about the nominal unfolding rules is that, in order to
deal with negative occurrences of recursive type variables, such as in μα. α →
nat ≤ μα. α → � we need to unfold the recursive types at least twice to detect
invalid subtyping statements. For instance, unfolding the previous example twice
leads to ((μα. α → nat) → nat) → nat ≤ ((μα. α → �) → �) → �, which is
not a valid subtyping statement. Thus, the original subtyping statement should
be rejected. The nominal unfolding rules leverage on this insight, while being
terminating since the recursive types are replaced by non-recursive types that
are in the same subtyping relation as the original types. The nominal unfolding
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rules have been shown by Zhou et al. [47] to have equivalent expressive power to
the well-known (iso-recursive) Amber rules [12]. However, the nominal unfolding
rules are easier to work with in terms of proofs, which is the reason why we
employ them here. In particular, they enable us to prove transitivity, and to
have a set of algorithmic rules (without transitivity built in). We refer interested
readers to the work by Zhou et al. for the equivalence proofs with respect to the
Amber rules and the theory of the nominal unfolding rules.

A toplike type, whose definition is shown as rule S-top, is both a supertype
and a subtype of �. In calculi with disjoint intersection types, the definition
of toplike types plays an important role, since disjointness is defined in terms
of toplike types. Allowing a larger set of toplike types enables more types to
be disjoint. In particular, the motivation for λi to include rule top-arrow in
subtyping is to allow certain function types to be disjoint [6,28,33]. The rule
top-arrow itself is inspired from the well-known BCD-subtyping [4] relation,
which also states that any function type that returns a toplike type is itself
toplike. Rule top-arrow was first adopted in calculi with disjoint intersection
types by Bi et al. [6], and we follow that approach as well here. Without such
rule two function types can never be disjoint, disallowing more than one function
in a merge (where all expressions must have disjoint types). Similarly, in λµ

i the
rule top-rec enables merges that can contain more than one expression with a
recursive type.

Subtyping is reflexive and transitive:

Theorem 1 (Reflexivity). If � Γ and Γ � A then Γ � A ≤ A.

Theorem 2 (Transitivity). If Γ � A ≤ B and Γ � B ≤ C then Γ � A ≤ C.

Furthermore, we have also proved the unfolding lemma, which plays an
important role in type preservation. The proof strategy is similar to the approach
used in Zhou et al. [47].

Lemma 1 (Unfolding Lemma). If Γ � μα. A ≤ μα. B then Γ � [α �→
μα. A] A ≤ [α �→ μα. B] B.

3.2 Decidability

Decidability of subtyping is a significant property, which is often problematic
in many subtyping relations [27,37]. Fortunately, under our new iso-recursive
subtyping rules with nominal unfoldings, decidability is easy to prove:

Theorem 3 (Decidability of Subtyping). If � Γ , Γ � A and Γ � B, then
Γ � A ≤ B is decidable.

Informally, looking at Fig. 2 we can identify two potential complications in
deriving an algorithm from the subtyping relation and showing its termination.
The first complication comes from the newly added intersection subtyping rules,
which makes the relation not completely syntax directed. In particular, there is
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overlapping between all three intersection rules. However, this problem is well-
known from the literature of intersection types. A standard solution, proposed
by Davies and Pfenning [21], is to only apply rule S-andL and rule S-andR
for Γ � A1&A2 ≤ B when B is ordinary (i.e. not an intersection type). This
removes the overlapping between rule S-and and rules S-andR and S-andL.
For the remaining overlapping between rules S-andR and S-andL backtrack-
ing is needed. The same approach can be adopted in an implementation of our
subtyping relation. The second complication is that the relation is not struc-
turally recursive because of rule S-rec. In rule S-rec the size of the types in
the premise can actually grow. However, the key observation here is that the
number of recursive binders will reach the peak and decreases after some unfold-
ings. We employ the same technique by Zhou et al. [47], to prove decidability
with a nominal unfolding rule.

3.3 Disjointness

One of the core judgments of λµ
i is disjointness. The standard disjointness speci-

fication [33] states that two types A and B are disjoint if all common supertypes
of A and B are toplike, as Definition 1 showed. In other words, A and B are dis-
joint if there are no non-toplike supertypes. While this definition of disjointness
is concise, it is not algorithmic. Thus, a challenge in calculi with disjoint inter-
section types is to find an algorithmic set of rules that is sound and complete to
the disjointness specification.

Figure 3 shows an algorithmic formulation of disjointness. Most rules are
standard and follow from previous work [7,28,33]. Toplike types are disjoint
with other types (rules dis-topL and dis-topR). Intersection types need to
check the disjointness of every component (rules dis-andL and dis-andR). Two
labelled types are disjoint if they have distinct labels or the types of the label
are disjoint (rules dis-RcdRcd and dis-RcdRcdEq). Two different variables
are always disjoint (rule dis-VarVar). Rule dis-ArrArr states that, for two
function types, we just need to check if their output types are disjoint or not.

The most interesting one is the disjointness of recursive types. Without top-
like types, it could be very simple: any two recursive types are not disjoint
because μα. � is a non toplike common supertype for all recursive types. How-
ever, the introduction of toplike types complicates the interaction between any
two recursive types, as we described in Sect. 2. Nevertheless, rule dis-RecRec
is surprisingly simple: two recursive types are disjoint if their bodies are dis-
joint. Finally, two types with different type constructors (e.g. record types and
recursive types) are disjoint (rule dis-axiom).

Disjointness Soundness. The soundness lemma showing that our rules satisfy
the specification is straightforward:

Lemma 2 (Soundness). If Γ � A ∗ B then Γ � A ∗s B.

Proof. By induction on Γ � A ∗ B.
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Γ A ∗ B

dis-topL
B

Γ A ∗ B

dis-topR
A

Γ A ∗ B

dis-andL
Γ A1 ∗ B Γ A2 ∗ B

Γ A1&A2 ∗ B

dis-andR
Γ A ∗ B1 Γ A ∗ B2

Γ A ∗ B1&B2

dis-VarVar
α = β

Γ α ∗ β

dis-ArrArr
Γ A2 ∗ B2

Γ A1 A2 ∗ B1 B2

dis-RcdRcd
α = β

Γ {α : A} ∗ {β : B}

dis-RcdRcdEq
Γ A ∗ B

Γ {α : A} ∗ {α : B}

dis-RecRec
Γ, α A ∗ B

Γ μα. A ∗ μα. B

dis-axiom
Γ A ∗axiom B

Γ A B

Fig. 3. Disjointness.

3.4 Completeness of Disjointness

The most challenging part of the formalization of λµ
i is to show that algorith-

mic disjointness is complete with respect to the specification. The difficulty is
brought by rule dis-RecRec. If two recursive types μα. A and μα. B satisfy the
specification, then for any type C, Γ � μα. A ≤ C ∧Γ � μα. B ≤ C implies that
C is toplike. By rule dis-RecRec, we want to prove that any type D satisfying
Γ, α � A ≤ D ∧ Γ, α � B ≤ D implies that D is toplike. Clearly C and D should
be related since in one case C is the supertype of two recursive types, and in the
other case D is the supertype of the bodies of the two recursive types. However,
the relation between C and D is intricate.

Lower Common Supertype. To help to relate C and D, we define a new function
�, which is shown in Fig. 4. The function � computes a lower supertype of type
A and B. A simplification that we employ in our definition is that types of
common supertypes in contravariant positions are all ⊥. Strictly speaking this
means that the supertype that we find is not the lowest one in the subtyping
lattice. But in our setting this does not matter, because the disjointness of arrow
types (see rule dis-ArrArr) does not account for input types. If the input types
did matter for disjointness then we would likely need a dual definition for finding
greater common subtypes, making the definition more involved. We can prove
some useful properties for �:

Lemma 3 (� is supertype). For any A and B, Γ � A ≤ A�B and Γ � B ≤
A � B.

Lemma 4. If Γ � A ≤ C and Γ � B ≤ C and A � B is toplike, then C is
toplike.
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A =
α α = α

A B&C = A&B A&C
μα. A = μα. ( A)
α : A} = {α : A}

A1 A2 = ( A2)
μα. A μα. B = μα. (A B)

A1 A2 B1 B2 = (A2 B2)

A =
α β = (α = β)

A&B C = A&C B&C
μα. A = μα. (A )
{α : A = {α : A

A1 A2 = (A2 )
{α : A β : B} = (α = β)
{α : A α : B} = {α : A B}

otherwise: A = A, A = A, A A = A, A B = ,

Fig. 4. Lower common supertype.

Lemma 4 is the most important one: A�B is not the least common supertype
of A and B, but if it is toplike then all supertypes of A and B are toplike. With
the previous lemmas we can prove the completeness lemma:

Lemma 5 (Completeness). For types A and B, if Γ � A∗sB then Γ � A∗B.

3.5 Bidirectional Typing

We use bidirectional type checking in λµ
i , following λi [29]. Bi-directional type-

checking is helpful to eliminate a source of ambiguity (and non-determinism)
that arises from an unrestricted subsumption rule in conventional type assign-
ment systems in the presence of a concatenation/merge operator (a point which
was also noted by Cardelli and Mitchell [15]). The typing rules are shown in
Fig. 5. There are two standard modes: Γ � e ⇒ A synthesises the type A of
expression e under the context Γ , and Γ � e ⇐ A checks if expression e has type
A under the context Γ .

Many rules are standard. There are two rules for merge expressions, which fol-
low from previous work [29]. Rule typing-merge employs a disjointness restric-
tion, and only allows two expressions with disjoint types to be merged. The
disjointness restriction prevents ambiguity that could arise merging types with
common (non-toplike) supertypes. For instance, if 1, , 2 would be allowed, then
in an expression like (1, , 2)+ 3 we could have two possible results: 4 and 5. The
merge of duplicated values such as 1, , 1 is not harmful, since no ambiguity arises
in this case, and such values can arise from reduction. Thus, there is also a rule
typing-mergev, which allows merging two consistent values regardless of their
types. The consistency relation is:

Definition 2 (Consistency). v1 ≈spec v2 ≡ ∀A, (v1 ↪→A v′
1 ∧ v2 ↪→A v′

2) ⇒
v′
1 = v′

2

In this relation, two values are consistent if for any type A casting of those two
values under type A produces the same result. We introduce the casting relation
v1 ↪→A v2, which reduces the value v1 to v2 under the type A in Sect. 4.1. A key
property relating consistency and disjointness is:
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Γ e ⇔ A

typing-sub
Γ e ⇒ A Γ A ≤ B

Γ e ⇐ B

typing-top
Γ

Γ

typing-var
Γ x : A ∈ Γ

Γ x ⇒ A

typing-app
Γ e1 ⇒ A1 A2 Γ e2 ⇐ A1

Γ e1 e2 ⇒ A2

typing-nat
Γ

Γ i ⇒ nat

typing-anno
Γ e ⇐ A

Γ e : A ⇒ A

typing-proj
Γ e ⇒ {α : A}

Γ e.α ⇒ A

typing-rcd
Γ e ⇒ A

Γ {α = e} ⇒ {α : A}
typing-abs

Γ, x : A1 e ⇐ A2

Γ λx .e : A1 A2 ⇒ A1 A2

typing-unfold
Γ e ⇐ μα. A

Γ unfold [μα. A] e ⇒ [α μα. A] A

typing-fix
Γ, x : A e ⇐ A

Γ x : A. e ⇒ A

typing-merge
Γ e1 ⇒ A Γ e2 ⇒ B Γ A ∗ B

Γ e1, , e2 ⇒ A&B

typing-mergev
v1 ⇒ A v2 ⇒ B v1 ≈spec v2

Γ v1, , v2 ⇒ A&B

typing-fold
Γ e ⇐ [α μα. A] A Γ μα. A

Γ fold [μα. A] e μα. A

Fig. 5. Typing.

Lemma 6 (Consistency of disjoint values). If � v1 ⇒ A and � v2 ⇒ B
and � A ∗s B then v1 ≈spec v2.

4 Dynamic Semantics of λμ
i

We now introduce the Type-Directed Operational Semantics (TDOS) for λµ
i .

TDOS, originally proposed by Huang et al. [28,29], is a variant of small-step
operational semantics. In TDOS, type annotations are operationally relevant,
since selecting values from merged values is type-directed. We show that λµ

i is
deterministic and type sound.

4.1 A Type-Directed Operational Semantics for λμ
i

The defining feature of a TDOS is a relation called casting (originally called
typed reduction by Huang et al.). Casting plays an important role: based on
the contextual type information, values are further reduced to match the type
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v1 A v2

tred-nat

i nat i

tred-top
ordA A

v A A

tred-mergeL
v1 A v ordA

v1, , v2 A v

tred-mergeR
v2 A v ordA

v1, , v2 A v

tred-rec
μα. B μα. A ≤ μα. B

fold [μα. A] v μα. B fold [μα. B ] v

tred-arrow
B2 B1 ≤ A1 A2 ≤ B2

λx .e : A1 A2 B1 B2 λx .e : A1 B2

tred-and
v A v1 v B v2

v A&B v1, , v2

tred-rcd
v1 A v2 α : A
α = v1 α:A α = v2

Fig. 6. Casting.

structure precisely. In many conventional operational semantics a value is the
final result in a program, but with TDOS further reduction can happen if the
type that is required for the value has a mismatch with the shape of the value.
For example, if we have the merge 1, ,′ c′ at type Int then casting will produce 1.
However, the same value at type Int&Char would remain unchanged (1, ,′ c′).

The rules for casting are shown at the Fig. 6. All non-intersection types are
ordinary types. Casting v1 ↪→A v2 denotes that the value v1 is reduced to v2
under the type A. From the definitions, we can see that the A is the supertype
of the principal type of v1, and v2 is the value compatible with A. The most
special one is rule tred-top: if the type is toplike, then a value will reduce to
the corresponding top value, where the A† is defined as:

(A → B)† = λx .� : A → B
{α : A}† = {α : A†}

(μα. A)† = fold [μα. A] �
(A&B)† = A†, , B†

otherwise:A† = �

4.2 Reduction

The definition of reduction is shown at the Fig. 7. Most rules are standard. Cast-
ing is used in rule step-beta for adjusting the argument value to the expected
type for the input of the function. Casting is also used in rule step-annov for
annotations. Rules step-fld and step-fldt are for unfold expressions. Finally,
there is also a special rule step-fldm for recursive types as well as intersection
types.

4.3 Determinism

One of the properties of our semantics is determinism: expressions will always
reduce to the same value. Lemma 7 says that if a value can be type-checked, then
it reduces to a same value under the type A. Lemma 8 says that if an expression
can be type-checked, then it reduces to a unique expression.
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Fig. 7. Small-step semantics.

Lemma 7 (Determinism of ↪→). If Γ � v ⇒ B and v ↪→A v1 and v ↪→A v2
then v1 = v2.

Proof. By induction on v ↪→A v1.

Lemma 8 (Determinism of �). If Γ � e ⇔ A and e � e1 and e � e2 then
e1 = e2.

Proof. By induction on e � e1.

4.4 Type Safety

We prove type safety following a similar approach to the previous work [29],
and by showing progress and preservation theorems. The following lemmas and
theorems show that our system is type-safe.

Theorem 4 (Preservation). If � e1 ⇔ A and e1 � e2 then � e2 ⇐ A.
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Proof. By induction on � e1 ⇔ A.

Lemma 9. (Progress of ↪→). If � v1 ⇐ A then ∃v2, v1 ↪→A v2.

Proof. By induction on A.

Theorem 5 (Progress). If � e1 ⇔ A then e1 is a value or ∃e2, e1 � e2.

Proof. By induction on � e1 ⇔ A.

5 Discussion and Related Work

Throughout the paper, we have already reviewed some of the closest related
work in detail. In this section, we will discuss other related work.

Disjoint Intersection Types and Record Calculi with Concatenation. Disjoint
intersection types were originally proposed by Oliveira et al. [33]. Such calculi
have intersection types as well as a merge operator [22,40] with a disjointness
restriction to ensure the determinism of the language. Follow-up work [2,5,6]
provides more advanced features, such as disjoint polymorphism and distributive
subtyping and first-class traits, built upon the original work. With all these
features together, an alternative paradigm called Compositional Programming
(CP) is proposed [7,45]. CP allows for a very modular programming style where
the Expression Problem [43] can be solved naturally. A limitation of existing
calculi with disjoint intersection types is that they do not support recursive
types, which are important to encode binary methods [9] or, more generally,
recursive object types. The λµ

i calculus addresses this limitation and shows, for
the first time, a calculus with disjoint intersection types and recursive types.

The merge operator generalizes concatenation by allowing values of any types
(not just record types) to be merged. As we described in the introduction the
interaction between subtyping and record concatenation is quite tricky. Cardelli
and Mitchell observed the problem [15], but did not provide a solution. Instead,
they decided to use record extension and restriction operators instead of con-
catenation. One solution adopted by some calculi [26,34,38,39] is to distinguish
between records that can be concatenated, and records that have subtyping. The
choice is mutually exclusive: records that can be concatenated cannot have sub-
typing and vice-versa. Such an approach would prevent Cardelli and Mitchell’s
f2 example in the introduction from type-checking. Calculi with disjoint inter-
section types, including λµ

i , offer a different solution by adopting a type-directed
semantics, which ensures that fields hidden by subtyping are also hidden at
runtime. This allows concatenation and subtyping to be used together.

As far as we know, no full formalization of a calculus supports subtyping,
record concatenation and recursive subtyping at the same time. In Cardelli’s F<:ρ

calculus [13] equi-recursive subtyping is assumed to be an extension to record
subtyping and record concatenation but no proofs were provided. Palsberg and
Zhao’s work [34] shows supporting subtyping, record concatenation and recursive
types (but no recursive subtyping) together for type inference is NP-complete.
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Alternative Models for Typed Objects. There are alternative ways to model
objects without having records and record concatenation. Perhaps the most
famous one are Abadi and Cardelli’s object calculi [1]. In their work, objects
are modelled directly. No form of concatenation is provided, but the fields of
objects can be updated in object calculi. Besides, they also provide declarative
type systems (with a transitivity rule built-in) to support recursive subtyping.

Another alternative approach, which has received a lot of attention recently,
are calculi with dependent object types (DOT) [41], which aims to capture the
essence of Scala. Many variants of DOT include intersection types, a form of
recursive types and subtyping. However, there are no records and record con-
catenation, since objects are directly modelled rather than being encoded via
records. The subtyping rules for intersection types are similar to ours. More-
over, the rules for recursive types employed in some variants of DOT [25,41,44]
are mostly structural and employ an inductive definition of subtyping. The key
subtyping rules in the DOT variant by [41] are shown next:

Γ, z : T z
1 � T z

1 <: T z
2 BindX

Γ � μz. T z
1 <: μz. T z

2

Γ, z : T z
1 � T z

1 <: T2
BindI

Γ � μz. T z
1 <: T2

Γ � x : T x

VarPack
Γ � x : μz. T z

Γ � x : μz. T z

VarUnpack
Γ � x : T x

We adapt the notation employed by [41] for recursive types to our notation. In the
rules, T z denotes that variable z is free in type T . Rule BindX is in essence a one-
step finite unfolding of the recursive type, leading to an inductive definition of
subtyping. The second rule for recursive types (rule BindI) is a special case where
a recursive type μz. T z

1 is a subtype of another type T2 if T2 does not contain the
recursive variable z. A difference between recursive types μz. T z in DOT and the
ones in this paper is that in DOT z is a term variable instead of a type variable. In
DOT, recursive types can be used in combination with path-dependent types [3],
to denote types such as z.L, where z represents a (possibly recursive) term with
a type member L. Because of this design, the typing rules that introduce and
eliminate recursive types [41], are defined on variables. Unlike our formulation
of subtyping, which is algorithmic, DOT’s formulation of subtyping is usually
presented in a declarative form. Undecidability is an important problem with
DOT’s formulation of subtyping [27], and the existing decidable fragments of
DOT lack transitivity [27,31].

Semantic Subtyping with Intersection Types and Equi-Recursive Types. Seman-
tic subtyping [16,24], provides a set-theoretic point of view for type systems. In
that approach, (equi-)recursive types and intersection types are interpreted as
subsets of the model, the subtyping relation is decidable, and some important
properties, such as transitivity, are derived naturally. Although semantic subtyp-
ing approaches have many advantages, they can be technically more involved,
while the metatheory of syntactic formulations is simpler and generally easier to
extend. Damm [20] explored a type system with equi-recursive types and intersec-
tion types. His subtyping relation is quite expressive, as it supports equi-recursive
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types and distributivity rules for subtyping. However, he does not follow the con-
ventional syntactic formulations of subtyping, such as the one in this paper or
those employed in DOT. Instead, types are encoded as regular tree expression-
s/set constraints. In contrast, our formulation is more conventional and supports
iso-recursive types instead. Unlike our work Damm does not consider extensible
records with concatenation.

Other Languages with Recursive Types and Intersection Types. Some languages
employ recursive subtyping as well as intersection types, like Typescript [32]
and Whiley [36]. Typescript has a rich type system but no formal document
provided. [8] has formalized a subset of Typescript and proved that is safe, but
unfortunately, no intersection types are supported. Whiley is an experimental
language that supports recursive types, intersection types and subtyping. How-
ever, no work formalizes all the features together, lacking either recursive types
[35] or intersection types [30].

6 Conclusion

Recursive types, extensible record types and intersection types are important fea-
tures in many OOP languages, since object types can be modelled with recursive
records and multiple inheritance can be modelled via intersection types [17] and
record concatenation. Our λµ

i calculus illustrates that the 3 features can be put
together in a single calculus and therefore can be used to provide simple encod-
ings for objects. There are a few interesting directions for future work. One is
to add polymorphism and bounded quantification to λµ

i , which is a significant
feature for real world languages. Another one is to investigate distributive sub-
typing for iso-recursive subtyping. With distributivity, we can model a form of
family polymorphism [23].
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Abstract. Strong static type systems help programmers eliminate many
errors without much burden of supplying type annotations. However,
this flexibility makes it highly non-trivial to diagnose ill-typed programs,
especially for novice programmers. Compared to classic constraint solv-
ing and optimization-based approaches, the data-driven approach has
shown great promise in identifying the root causes of type errors with
higher accuracy. Instead of relying on hand-engineered features, this work
explores natural language models for type error localization, which can
be trained in an end-to-end fashion without requiring any features. We
demonstrate that, for novice type error diagnosis, the language model-
based approach significantly outperforms the previous state-of-the-art
data-driven approach. Specifically, our model could predict type errors
correctly 62% of the time, outperforming the state-of-the-art Nate’s
data-driven model by 11%, under a more rigorous accuracy metric. Fur-
thermore, we also apply structural probes to explain the performance
difference between different language models.

Keywords: Type error diagnosis · Language model · Natural language
processing · Type system

1 Introduction

Diagnosing type errors has received much attention from both industry and
academia due to its potential of reducing efforts in computer software develop-
ment. Existing approaches such as standard compilers with type systems, report
type errors through type checking and constraint analysis. Thus, they merely
point to locations where the constraint inconsistencies can occur and such loca-
tions might be far away from the true error source. Moreover, type error localiza-
tion would require programmers to understand the functionality of type systems
and check which part of the code contradicts their intent. Languages such as C
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and Java force programmers to write annotations which make the code neat. It
also makes it easier to find the roots of type errors. Strongly typed functional
languages such as OCaml and Haskell, however, programmers need not bother
with annotations, since type systems automatically synthesize the types. The
absence of type annotation comes at a price: novices could easily get lost in
debugging their programs and locations of constraint inconsistencies from error
messages can be misleading.

Joosten et al. [7] suggests that beginners usually pay more attention to
underlined error locations rather than error messages themselves when fixing
programs. Therefore it is necessary to ameliorate the localizing performance
of these type systems. Let us consider an OCaml ill-type program in Fig. 1a.
Although the programmer intends to write a function that sums up all numbers
from a list, they mistakenly put the empty list, [], at line 3 as a base case. This
should instead be 0 as shown in Fig. 1b. The compiler identifies the type error
in line 5 saying that the head of the list, h, has type list rather than integer as
required by the integer addition operator.

1 let rec sumList xs =

2 match xs with

3 | [] -> [] (* root cause *)

4 | h :: [] -> h

5 | h :: t -> h + sumList t (* misleading complaint *)

6 this expression has type ’a list but was expected of type int

7

(a) an ill-typed OCaml program that aims to sum all the elements from a list

1 match xs with

2 | [] -> 0 (* <= correct fix *)

3 | h :: [] -> h

4 | h :: t -> h + sumList t

(b) the fixed version of the OCaml code above

Fig. 1. A simple example of OCaml type error and its relevant fix.

This illustrates that programmer’s intent plays an important role in localizing
type errors. To tackle this issue, Nate [18] proposes to use data-driven models
to diagnose type errors. In this way, programmers’ intent can be learned and
incorporated into machine learning models. Nate ’s best model could achieve
over 90% accuracy in diagnosing type errors. Although this is an exciting result,
Nate ’s models are evaluated with a rather loose metric and heavily rely on a
considerable amount of hand-designed feature engineering. In addition, these fea-
tures are designed in an ad-hoc fashion which prevents them from being directly
applied to other language compilers.
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Our approach adopts transformer-based language models to avoid consider-
able feature engineering. As we treat programs as natural language texts, these
models do not rely on any knowledge or features about the specific program-
ming language, thus they can be easily applied on any language. This method
may seem to ignore the syntactic structure of a given programming language.
However, we use structural probes [11] to demonstrate the structure is embed-
ded implicitly in the deep learning models’ vector geometry in Sect. 4. We also
propose a more rigorous metric, and show language models outperform not only
standard OCaml compiler and constraints-based approaches but also the state-
of-the-art Nate ’s models under the new metric.

Transformer-based models have achieved great success in a wide range of
domains in computer science including natural language processing. BERT [4]
and GPT [1,15], popular transformer variants, have shown incredible capability
of understanding natural languages. Together with its pre-training and fine-
tuning paradigm, these models can transfer knowledge learned from a large text
corpus to many downstream tasks such as token classification and next sen-
tence prediction. Empirical results suggest that the performance of these lan-
guage models even exceeds the human level in several benchmarks. In this work,
we show how to take advantage of these powerful language models to localize
type errors. First, we process programs as if they were natural language text
and decompose the processed programs at the term or subterm level into token
sequences so that they can be fed to language models. This allows us to turn
the type error diagnosis problem into a token classification problem. In this way,
language models can learn how to localize type errors in an end-to-end fashion.

Contributions. We propose a natural language model-based approach to the
type error localization problem. Our main contributions are as follows:

• Without any feature engineering or constraints analysis, we apply different
language models including BERT, CodeBERT, and Bidirectional LSTM to
type error localization.

• We study training methodology such as positive/negative transfer to improve
our models’ performance. Instead of using a loose evaluation metric as pro-
posed in previous work, we define a more rigorous, yet realistic, accuracy
metric of type error diagnosis.

• Empirical results suggest that our best model can correctly predict expres-
sions responsible for type error 62% of the time, 24 points higher than SHEr-
rLoc and 11 points higher than the state-of-the-art Nate tool.

• We study the interpretability of our models using structural probes and
identify the link between language models’ performance with their ability
of encoding structural information of programs such as AST.

We start by presenting the baseline, our model architecture and the structural
probe in Sect. 2. Section 3 introduces the dataset and evaluation metric, while
Sect. 4 presents the experiential results and our discussion. Then, Sect. 5 gives an
overview of related work. Finally, Sect. 6 concludes the whole paper and proposes
some directions for future work.
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2 Approach

In this section, we introduce deep learning-based language models including
RNN, BERT, and CodeBERT. We take advantage of the pre-training and fine-
tuning paradigm of language models and show how to transform the type error
diagnosis problem to a token classification problem, a common downstream task
in fine-tuning. We also present the structural probe which allows us to find the
embedded structural information of programs from models’ vector geometry.

2.1 Language Models

Deep learning has achieved great success in modelling languages since the inven-
tion of recurrent neural networks (RNNs) [9]. RNNs adopt “internal memory”
to retain information of prior states to facilitate the computation of the current
state. Unlike traditional deep neural networks, the output of RNNs depends on
the prior elements within the sequence which make them ideal for processing
sequential inputs such as natural languages and programs.

In this study, we also choose a bidirectional long-short term memory (Bidi-
rectional LSTM) [16] as our baseline model. However, RNNs are known to have
several drawbacks such as a lack of parallelization and weak long-range depen-
dencies. These two limitations are later addressed by the self-attention mecha-
nism introduced by the transformer. Self attention [20] is an attention mechanism
relating different positions of a single sequence in order to compute a represen-
tation of the sequence. Transformers also follow an encoder-decoder architecture
as other successful neural sequential models. Both its encoder and decoder have
been studied and shown great capabilities for modelling natural languages and
solving many downstream tasks.

BERT, which stands for Bidirectional Encoder Representations from Trans-
formers takes advantage of the encoder part of the transformer while the GPT-n
series are based on the decoder. In this work, we focus on BERT rather than
GPT-3 [1] for several reasons. First, BERT requires a fine-tuning process which
alters the pre-trained model for specific downstream tasks. This fits our formal-
ization of treating type error diagnosis as a downstream task. Second, the size
of GPT-3 is enormous compared to BERT, making it hard to train and infer.
Third, BERT is an open-source tool and easily available for users to access while
GPT-3 is not open-sourced.

2.2 The Pre-training and Fine-Tuning Scheme

The pre-training and fine-tuning scheme allows machine learning models to apply
knowledge gained from solving one task to different yet related tasks. Compared
to fine-tuning, pre-training is more essential as it determines what knowledge
is learned and stored in machine learning models. As a result, there are some
recent works on improving the pre-training scheme of language models.

BERT stands out by proposing two critical unsupervised tasks during pre-
training - Masked Language Modeling (MLM) and Next Sentence Prediction
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(NSP) [4]. MLM requires the model to predict masked-out tokens conditioned
on other tokens within sentences whereas NSP forces the model to predict if the
input two sentences are next to each other in the original document. These two
training tasks or objectives allow the model to understand the natural language
from a statistical perspective, and empirical results of BERT have shown that
pre-training on large text corpus using these two objectives facilitates a wide
range of downstream tasks.

2.3 Type Error Diagnosis as Token Classification

Fig. 2. The type error diagnosis as a token classification task. After an input program
is split into a sequence of tokens by a tokenizer, each token is fed into BERT to get an
embedding representation. A simple classification head takes each token representation
and outputs a predicted probability which indicates the model’s belief of the current
token being related to type error.

Token classification [4] is a downstream task which uses a pre-trained Bert model
with a token classification head on top to make a prediction for each token
in a sentence. One of the most common token classification tasks is Named
Entity Recognition (NER). The goal of NER is to find a label for each entity
in a sentence, such as a person, location or organization. Type error diagnosis
can be naturally viewed as a token classification problem. Note that type error
diagnosis attempts to find type error locations within a piece of code, so we can
reformulate it to a token classification task if we assign label 1 to all the tokens
that contribute to the type error and label 0 to those tokens that are unrelated
to type error. Figure 2 gives an overview of using token classification to achieve
type error diagnosis. As a fine-tuning task, token classification requires labelled
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data to provide ground truth to help the model learn. In the context of type
error diagnosis, this means we need to have a dataset consisting of many ill-
typed programs along with their true type error locations. We will discuss our
dataset more in Sect. 3.

Given that large language models are extremely expensive to train, even
for industrial companies, a common practice is to fine-tune pre-trained large
language models on a new dataset. In our case, we choose different configurations
of BERT to explore the optimal model for type error diagnosis. Our models are
as follows:

– Bidirectional LSTM: The model is trained directly on the fine-tuned
dataset from scratch. This model serves as our baseline.

– BERT from scratch: To compare with Bidirectional LSTM, we train the
BERT to do token classification from scratch, without any pre-training pro-
cess.

– BERT Small, BERT Medium, BERT Base, and BERT Large:
As the name suggests, these four models are different in terms of size.
Although they are pre-trained on the same dataset, we hypothesize that the
size would affect the representation power of models and therefore would
affect the performance of type error diagnosis.

– CodeBERT: CodeBert [5] is a pre-trained bimodal model for programming
language (PL) and natural language (NL). It is pre-trained on several pro-
gramming languages including Ruby, Javascript, Go, Python, Java, and PHP.
As it is pre-trained on such programming languages that ask programmers to
specify the type, we postulate that it may not work well on OCaml programs.
However, we are still curious to see if these programming languages may share
some patterns with OCaml which can enhance its error localization ability
during the fine-tuning process.

– BERT pre-trained on OCaml: Since BERT is pre-trained on natural lan-
guage texts which do not contain OCaml programs, we collect two datasets
of OCaml programs, one from industry and the other one from students’
homework submission. Then we pre-train BERT Base and BERT Large on
them with the same training objectives. This technique is also called domain
shift which could help the model perform better on downstream tasks which
have different data distribution from that of the original input. Together with
CodeBERT, these models allow us to explore how domain shift affects models’
performance.

2.4 Structural Probe

We attempt to use the structural probe method [11] to find structural informa-
tion embedded implicitly in the deep learning models’ vector geometry.

In deep learning, each token has a vector representation after feeding into the
model. The method finds a distance metric that can approximate the result of
the distance metric defined by the syntax tree from applying to any two tokens
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Fig. 3. Syntax tree of example OCaml program “let x = 3 in let y = 4 in x + y”

of a program. More specifically, it defines a linear transform of the space in which
squared L2 distance between vectors best reconstructs tree path distance, and
thus the structure of the tree is demonstrated by the geometry of the vector
space. Figure 3 gives an overview of using the structural probe to reconstruct
tree structure information of programs.

3 Dataset and Evaluation Metric

In this section, we present the datasets and the evaluation metric that we use
in our work. The training datasets that we use are the same ones used in the
baseline. However, we propose a different metric of accuracy. Notice this metric
has been applied to every model, so data produced by Nate’s models may look
different from their original paper. To explore the capability of language mod-
els, we also create two pre-training datasets consisting of over 370,000 OCaml
programs in total.

Table 1. Statistics of pre-training and fine-tuning datasets

Num. of
programs

Average num.
of tokens

Has ground-truth
label

Usage

NATE SP14 2,712 136 Yes Fine-tuning (training
and testing)FA15 2,365 133 Yes

GitHub 350,000 121 N/A Pre-training
Homework 20,000 99 N/A

3.1 Pre-training Dataset

The pre-training procedure plays an important role in transformer-based lan-
guage models. The purpose of pre-training is to train the model on large-text cor-
pus in an unsupervised fashion. After pre-training, models should have weights
that encode the probabilities of a given sequence of words occurring in sentences.
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The success of modern language models is often attributed to large pre-training
datasets. Motivated by this observation, we collect the following two datasets.

– GitHub-OCaml dataset: Based on the default ranking configuration pro-
vided by GitHub, we collected top-500 OCaml GitHub repositories, which has
been identified as an instance of “fair use” [13]. Given that most samples of
our GitHub dataset are from the industry, we perform some post-processing
work by filtering out programs that are automatically generated by lexer and
parser. Even though, some of them are still quite different from programs
written by novice programmers. The resulting dataset contains over 350,000
OCaml programs.

– Student-OCaml dataset: To collect OCaml programs written by novice
programmers, we collected around 2, 000 homework submissions made by over
350 students from an undergraduate programming languages course taught at
McGill University. Each homework submission consists of 10 subtasks (e.g.,
functions for a specific coding question) on average. This gives us 20,000
OCaml data samples.

In Sect. 4, we study how pre-training on these two datasets affects the per-
formance of type error diagnosis.

3.2 Fine-Tuning Dataset

Fine-tuning, on the other hand, requires labelled data as supervision to facili-
tate model learning. This means we need a set of ill-typed programs along with
the correct locations of type errors as ground truth. Manual ground truth anno-
tation and ill-typed program collection can be troublesome. Fortunately, Nate
provides a dataset consisting of 5,000 labelled programs that cover many types
and locations of the errors that beginners make in practice, together with the
corresponding fixes.

Nate’s dataset was collected from an undergraduate Programming Lan-
guages course at UC San Diego in Spring 2014 and Fall 2015, which are named
SP14 and FA15 respectively. Besides providing supervision, Nate’s dataset can
also be used as a test-bed so we can compare our models with Nate’s fairly.

3.3 Evaluation Metric

Nate processes programs to sub-tree sets and then filters the sub-trees that are
not related to type errors to get true error locations — the ground truths. As
a consequence, if a large sub-tree, T, is the ground truth, many of its sub-trees
are treated as true error locations as well. Then, if a model predicts any of these
sub-trees, the prediction accuracy would be 100% under the Nate’s metric.
We illustrate this using an example as shown in Fig. 4. As we can see in 4a,
the model blames the token, clone, which happens to match the error token,
clone, in 4b. It is not easy to see why clone is an error location because we only
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1 let rec clone x n = if n <= 0 then []

2 else x :: (clone x (n - 1))

3 let rec helper x = if x = 0 then 1 else 10 * helper (x - 1)

4 let padZero l1 l2 =

5 if (List.length l1) < (List.length l2)

6 then (( clone "0" List.length l2) - (List.length l1)) :: l1

7 else (( clone "0" List.length l1) - (List.length l2)) :: l2

(a) An ill-typed OCaml program. Highlighted tokens on line 6 and 7 are predictions
made by Nate’s model.

1 let rec clone x n = if n <= 0 then []

2 else x :: (clone x (n - 1))

3 (*let rec helper x = if x = 0 then 1 else 10 * helper (x -

1) *)

4 let padZero l1 l2 =

5 if (List.length l1) < (List.length l2)

6 then (((clone 0 ((List.length l2) - (List.length l1))) @ l1), l2)

7 else (((clone 0 ((List.length l1) - (List.length l2))) @ l2), l1)

(b) Fixed version of the OCaml program above. Highlighted tokens on line 6 and 7
form the ground truth, whereas the change on line 3 does not.

Fig. 4. An ill-typed OCaml program and its corresponding fix.

highlighted the union of all error spans. It ends up to be one since it is a strongly-
related subtree of the ground truth highlighted in blue at line 6. Therefore, the
prediction matches to the ground truth, resulting in an accuracy of 100% under
Nate’s metric. However, such prediction is merely a tiny portion of the union
of all error spans highlighted in blue which makes this an over-evaluation.

As a result, Nate’s metric overestimates the prediction accuracy of not only
its own machine learning models but also our language models. To visualize the
over-evaluation from a data point of view, we test Nate’s models and some of
our models under Nate’s metric. We use BERT Small, Base and Large models,
and they achieve Top-3 accuracies of 80%, 84% and 87% respectively. Generally
speaking, they are comparable to Nate’s models, whose accuracies range from
84% to 90%.

We solve the overestimation issue by treating programs as consecutive token
sequences rather than trees. Hence by counting the number of correctly predicted
tokens, we can get a more precise and strict accuracy between 0% and 100%
rather than just 0 (miss) or 1 (hit). To be more specific, our models estimate
the probabilities of type error blame for each token in a binary classification
setting. By converting predicted probabilities to label 0 or 1 using a default
threshold value of 0.5, gives us a collection of predicted token sequences, P . By
transforming the ground truth denoted by L to token sequences as well, the
correctly predicted token set is simply the intersection of them, P ∧L. However,
a trivial prediction which simply predicates each token as type error, i.e. P =
{1, 1, 1, ..., 1, 1}, could achieve 100% accuracy due to P ∧L = L. To prevent this
from happening, we divide the size of P ∧ L by that of P ∨ L.
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Accuracy(P,L) =
|P ∧ L|
|P ∨ L|

4 Evaluation

In this section, we empirically evaluate several approaches to type error diagnosis
with particular focus on the following research questions:1
RQ1: How well do language models and other baseline methods perform on type
error diagnosis?
RQ2: To what extent do model size and transfer learning affect models’ perfor-
mance?
RQ3: How well do language models generalize to unseen data?
RQ4: Does the model’s ability of encoding structure information contribute to
prediction accuracy?

Implementation and Training. We implement our experiments using
PyTorch, Tensorflow and HuggingFace library. We use a batch size of 32 for both
pre-training and fine-tuning processes. For pre-training, we pre-train BERT Base
and BERT Large on both pre-training datasets for 10 epochs. For fine-tuning, all
BERT models are fine-tuned on Nate’s training dataset for 30 epochs. We set the
initial learning rate to 0.00003 and use a scheduler to alter the learning rate during
fine-tuning. To avoid stochasticity, we run each experiment three times and take
the average. All our models are trained on a Tesla P100-PCIE-16GB GPU.

Configurations of Language Models. We explore different configurations of
BERT to find the best model. We call BERT Base and BERT Large (BERT+)
pre-trained on the homework OCaml dataset OCamlBERT Base (OBERT) and
OCamlBERT Large (OBERT+). As for the BERT Base pretrained on the
GitHub OCaml dataset, we call it BERT pre-GitHub (PBERT). We also trained
a BERT Base from scratch without leveraging pre-trained weights and name it
BERT Init (IBERT).

Baselines. We compare our language model-based approach with three base-
lines as follows:

• OCaml, which extracts the type error location from the error message from
the standard OCaml compiler. It is worth noting that the standard OCaml
compiler stops compiling immediately when any type check fails and thus
cannot report multiple errors.

• SHErrLoc, which identifies the minimum set of locations to patch a type
error using Bayesian inference [10].

• Nate, which predicts the top-K most likely ASTs that contribute to the type
errors based on 282 hand-designed features [18]. Specifically, Nate uses five
different machine learning models — logistic regression (Logistic), decision

1 Our artifact is available at [6].
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tree (Tree), random forests (Forest), and two multi-layer perception mod-
els (MLP-10 and MLP-500) with a single hidden layer of 10 and 500 neurons,
respectively.

4.1 Performance of Different Models (RQ1)

Fig. 5. Comparison of accuracy of type error diagnosis methods.

Figure5 summarizes our main results. We observe that both optimization-based
approaches like SHErrLoc and data-driven based approaches like Nate and
various language models (i.e., BERT, BERT+, OCBERT, OCBERT+) outper-
form the standard OCaml compiler in terms of localizing root causes of type
errors. Furthermore, data-driven approaches generally outperform optimization-
based approaches, indicating that data plays a more important role compared
to the pure optimization algorithm as adopted by SHErrLoc. Among the five
models used by Nate, it is a bit surprising that Logistic achieves similar per-
formance as multi-layer perceptrons. We believe this is due to the rich hand-
designed features which make simple models like logistic regression very effec-
tive.

Nevertheless, we observe that our language model-based approaches signif-
icantly outperform Nate, which suggests that the embeddings learned in an
end-to-end fashion are more effective than hand-designed features.

Both Nate’s and BERTs’ output can be interpreted as a probability. Nor-
mally, we set the threshold to be 0.5, so if the output probability is greater
than 0.5, the prediction will be 1, and 0 otherwise. The change in accuracy of
models along with varying thresholds is reported in Fig. 6. We notice that if we
increase the threshold, BERTs’ accuracy is robust whereas Nate drops signif-
icantly. This suggests that BERT models are much more confident with their
predictions compared to Nate.
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Fig. 6. Impact of different thresholds on accuracy.

4.2 Effectiveness of Model Sizes and Transfer Learning (RQ2)

Larger Model Leads to Higher Accuracy (not overfitting) . To study the
effectiveness of different model sizes, we evaluate four modes of different sizes —
Small (L = 4, H = 256), Medium (L = 8, H = 512), Base (L = 12, H = 768), and
Large (L = 16, H = 1024). Figure 7(a) presents training loss curves of the four
models of different sizes. This is somewhat expected since larger models usually
tend to have lower training loss but may have an overfitting concern. This then
may not lead to better accuracy.

We further evaluate the testing accuracies of models of different sizes, which
is summarized in Table 2. The top half of Table 2 shows the testing accuracies of
four Bert models on four different train/test setups. The accuracy increases con-
sistently when the model size increases on all train/test setups. This is very inter-
esting because the train/test dataset is fixed with only the model size increasing,
that is, with the same dataset, the larger model usually leads to higher accuracy
instead of overfitting.

Positive/Negative Transfer of Learning. To study this objective, we focus
on BERT, BERT pre-GitHub, CodeBERT, and OCamlBERT. Figure 7(b)
presents the training loss curves of these four models. Since OCamlBERT is
pretrained on only 20k code samples whereas BERT pre-GitHub is pretrained
on 350k samples, it is quite surprising to notice that OCamlBERT has the low-
est training loss whereas BERT pre-GitHub has the highest one. This is kind
of counter-intuitive as models usually perform better when trained on a larger
dataset. The bottom part of Table 2 shows the testing accuracies of four Bert
models on four different train/test setups. BERT pre-GitHub reports 51% accu-
racy, 8 points lower than OCamlBERT which is consistent with training loss
curves. The difference in accuracy could be explained by the positive/negative
transfer of learning effect. As OCamlBERT is pretrained on code samples written
by students/novice programmers (although from different universities working
on different programming assignments), the similar data distribution in the fine-
tuning process affects positively on accuracy [22]. On the other hand, transfer
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Fig. 7. Impact on training loss. (a) shows how model size affects training loss while
(b) illustrates how data distribution affects training loss.

learning impacts CodeBERT’s and BERT pre-GitHub’s accuracy due to dis-
parate data distribution.

Table 2. Accuracies of different models evaluated on four train/test setups.

SP14/SP14 FA15/FA15 SP14/FA15 FA15/SP14
(Acc) (Acc) (Acc) (Acc)

Bert Small 68.83 63.05 50.45 51.37
Bert Medium 71.53 65.08 53.39 53.52
Bert Base 74.10 69.89 57.62 57.52
Bert Large 77.57 74.36 59.72 58.89
Bi-LSTM 44.15 40.51 7.25 8.79
Bert Init 60.70 57.02 45.37 43.98
Bert pre-GitHub 68.52 59.59 51.84 51.43
CodeBert 71.94 69.35 56.40 55.98
OCamlBert Base 74.72 70.11 59.24 59.34
OCamlBert Large 78.76 74.78 61.40 61.84

4.3 Generalization Ability of Language Models (RQ3)

The generalization ability is an important property of our models as it measures
how well a trained model performs on unseen program questions [12].

To study this property, we focus on accuracy drops when evaluating different
program problem sets, for instance, training on SP14 yet evaluating on FA15.
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Fig. 8. AST edge reconstruction from learned embeddings (edges in red are recon-
structed by BERT Large model; edges in blue are reconstructed by Bidirectional LSTM
model). (Color figure online)

We calculate accuracy drops using the difference between the first and last two
columns of Table 2. We observe that relatively simple language models such as
the Bidirectional LSTM model (Bi-LSTM) experience a large accuracy drop
of over 30% on unseen data. In addition, it achieves only 7.25% and 8.79%
accuracies on the generalization tasks, which makes it almost useless in the real
world. In contrast, the severest accuracy drop of BERTs accuracy is merely 17%.
This indicates that BERTs may have learned more robust and critical features
which facilitate localizing type errors compared to Bi-LSTM.

In short, we should always consider large and powerful language models
rather than small and simple ones when solving difficult tasks such as type
error diagnosis.

4.4 Explaining Performance Difference by the Structural Probe
(RQ4)

We use the structural probe to reconstruct structural information of programs
based on both BERT’s and Bi-LSTM’s embedding representation. We hypothe-
size the difference in the ability of encoding structure information of programs
could explain the performance gap between these two models. To gain some
insights, we conduct a number of qualitative case studies. Figure 8 shows three
examples of reconstructed AST of OCaml program using the structural probe.
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Although the reconstructed ASTs are not adequate, we observe AST recon-
structed from BERT embeddings turns to have many more meaningful structures
than the AST reconstructed from Bi-LSTM embeddings. To be more specific,
in Fig. 8(a), BERT’s AST connects edge (+, 5), (2, *) and (*, a) whereas
Bi-LSTM’s AST only has one meaningful edge (*, a). Similarly, in Fig. 8(b),
BERT’s AST has an edge (+, y) while Bi-LSTM’s AST fails to do so. In exam-
ple (c), BERT’s AST has an edge (+, x) and (+, y) which Bi-LSTM’s AST
omits. Compared to Bi-LSTM, BERT is able to encode richer structural infor-
mation, which may explain the huge 54% performance gap between these two
models.

5 Related Work

Some recent works on type error diagnosis, such as SHErrLoc [10] and
Mycroft [21], aim to analyze a set of typing constraints to find their mini-
mum weight subsets [8]. A minimum weight subset means omitting this subset
will make the remaining constraints satisfiable and the subterms yielding the
minimum weight subset inherit the blame. However, this approach has a few
disadvantages. First, they are limited in terms of language choice. Different lan-
guages tend to employ different type systems and constraints. Thus, an approach
designed for one type system can be hard to transfer to others. Secondly, the
weights assigned are based on researchers’ prior knowledge of the most likely
errors instead of the most likely mistakes in practice [10]. Moreover, constraint-
based approaches could blame a number of locations equally without taking the
author’s intent into account.

In contrast, data-driven approaches such as Nate employ machine learning
models to learn to localize type error from a large data set. While constraint
analysis is not mandatory, Nate’s machine learning models require considerable
feature engineering. To be more specific, Nate employs over 282 hand-designed
features annotated by human experts which are then fed into machine learn-
ing models to make the final prediction. However, Nate and other data-driven
approaches still suffer from some disadvantages mentioned above. Although
Nate doesn’t perform constraint analysis, feature engineering also requires prior
knowledge, making it difficult to transfer to other type systems. In addition,
data-driven methods may implicitly consider the programmer’s intent when mak-
ing predictions, but there is no guarantee that such intent can be understood
by models. In our study, we also show that the accuracy metric of Nate can be
problematic in certain conditions.

There are also approaches that provide instructions to help novice program-
mers debug. Seidel et al. creates a dynamic model that generates counterexample
witness inputs to show how the program goes wrong [17]. When given a function
with type errors, the algorithm symbolically executes the program and synthe-
sizes witness the wrong values. Then the procedure is extended to a graph that
shows the witness execution. Experimental results suggest their algorithm can
generate witnesses 88% of the time and in these successful programs, the algo-
rithm yields counterexample successfully 81% of the time. The advantage of this
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algorithm is that by using graphs and counterexamples, students can learn how
to write code easily and understand the logic of the programming language.
However, people who are familiar with the language but not that skilled, do not
need such detailed suggestions. All they need is the precise location of the error.
Chen et al. develops a type debugging system that asks programmers to provide
type specifications during the debugging process and then generate suggestions
that help to fix the type error [2]. The advantage of this system is instead of
aiming exclusively at the removal of type errors, it collects user feedback about
result types to give useful suggestions, which include almost all possible correc-
tions. This will help novices to debug more easily as they only need to choose
from options given by the system. However, to achieve their goal, the authors
systematically generate all potential type changes, which, when compared to our
model, is more time-consuming in construction and needs more human judgment
to make corrections.

There are also approaches which adopt SAT and SMT solvers to solve the
type error localization. Pavlinovic et al. designs an algorithm that finds all min-
imum error sources, where ’minimum’ is defined in terms of a compiler-specific
ranking criterion [14]. With these error sources, a compiler is able to offer more
useful reports. Then the authors try to reduce the search for minimum error
sources to an optimization problem by implementing weighted maximum sat-
isfiability modulo theories (MaxSMT). In this way, they leverage SMT solvers,
making it easier to extend to multiple type systems and abstract from the con-
crete criterion that is used for ranking the error sources. The evaluation results on
existing OCaml benchmarks for type error localization are also quite promising.
In another work [8], Jose et al. aims to reduce the error localization problem to a
maximal satisfiability problem (MAX-SAT), which finds the maximum number
of clauses that are simultaneously satisfied by an assignment. Three steps are
involved when an error should be reported. First, it encodes the denotation of a
bounded unrolling of the program to a boolean formula. Then they construct an
unsatisfiable formula for the failing program execution. In the last step, a MAX-
SAT solver is used to find the largest set of clauses that can be satisfied at the
same time, after which they output complement set as result, which is treated as
potential locations of type error. Experimental results suggest the algorithm can
find a few lines of code that are probable to be blamed for type error. Compared
with our algorithm, the location it gives is too general. For novices, it is difficult
for them to find the precise location of the type error when given such a large
span of possible locations.

There are some other works that aim to diagnose the root causes of pro-
grams with typing errors. Chitil et al. uses a compositional type explanation
graph created based on the Hindley-Milner type system [3]. More specifically,
this work relies on structural type information such as trees with principal typ-
ings. Tsushima et al. builds a type debugger without implementing any dedicated
type inferencer [19]. The type debugger avoids re-implementing an independent
type inference algorithm by leveraging the compiler’s type inference engine. In
contrast to their work, we train natural language models to capture patterns in
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code changes. Our models do not require additional information beyond the code
and can predict multiple error locations simultaneously. Our approach provides
an orthogonal angle for (novice) type error diagnosis, and we believe that incor-
porating explicit type information can further improve our current approach.

6 Conclusions and Future Work

Many techniques have been developed to address the type error localization
problem. While most of them employ static analysis on programs such as SHEr-
rLoc, Nate’s success suggests that data-driven methods are also promising. Our
experimental results suggest transformer-based language models outperform the
state-of-art Nate and SHErrLoc under a stricter yet more realistic accuracy
metric.

Although being a black-box model, we show that language models can encode
structural information of programs which may explain their better performance.
Moreover, our models simply view a program as a sequence of tokens, thus they
do not rely on any special knowledge of OCaml. It is the large amount of data
(programs in our context) that plays an essential role in the performance. Since
no feature engineering and constraints analysis are required, our approach can
be transferred to other programming languages easily. We plan to investigate
the effectiveness of our model on new languages like Go and Rust in the future.
Through experiments, we identify several factors which help improve model accu-
racy such as size and positive transfer. We believe these factors may also be
beneficial to solving other programming language-related tasks using language
models.

In this work, our approach treats programs as natural language texts.
This, however, fails to utilize the structural information of programs. Although
we show language models could encode some structures, it is unclear how
the encoded structural information leads to the final prediction. In contrast,
constraint-based approaches such as SHErrLoc take advantage of structural
information and have much better interpretability. We plan to explore how to
combine language models and the structural information of programs in our
future work.
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