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Abstract. We propose a novel two-tiered overlay network design called
plateau. It has two levels: a small upper-level that regulates entry of
new nodes into the network, and a lower-level comprising all nodes. The
lower level is a well-connected expander that is ideal for building peer-to-
peer distributed trust applications. It is designed to be secure despite the
presence of adversarial Byzantine nodes and resilient to large amounts of
churn. The good nodes only need to communicate with their neighbors in
the network, thus making plateau fully distributed. Membership in the
network must be earned through proof-of-work that is verified by the
upper-level nodes. Plateau is robust despite heavy churn controlled by
an adversary, i.e., up to C = poly(n) number of nodes can join and leave
the network per round without disrupting the network structure; n is
the total number of good nodes in the network. As long as the compute
power controlled by the Byzantine adversary is bounded, the number of
Byzantine nodes in the network is kept in check and, more importantly,
they will not be able to disrupt the structure or functioning of the overlay
network. Additionally, we show that all resources needed to operate this
network is bounded polylogarithmically with respect to n.

1 Introduction

Since the invention of Bitcoin by Satoshi Nakamoto [29], we have seen a signifi-
cant increase in peer-to-peer distributed trust systems. A large number of cryp-
tocurrencies have sprouted over the years and a tremendous amount of research
has been invested in this technology in the last decade. The key innovation
in Nakamoto’s work that is driving this surge is blockchains, a technology by
which a peer-to-peer network can maintain a trustworthy record of transactions.
Thus, blockchains appeal to a much wider class of applications that require
trust between parties. An important aspect of all of these applications is the
large volume at which they are intended to operate essentially catering to large
populations at national, continental and global scale.

Current blockchain implementations are unfortunately not built for scale [10].
There are many factors that limit them. While some issues like the energy cost of
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consensus have drawn significant attention, others have been largely ignored. The
actual peer-to-peer network on which the blockchains operate are surprisingly
small when compared to the scope and scale of their applications. For example,
despite significant use of bitcoin, the actual number of peers that operate is
quite small. As of 2018, measurements show that the number of peers is about
14000 [30]. We posit that this small scale of the peer-to-peer network will be
a limiting factor as large countries and economic blocs like USA, EU, China,
and India seek to employ public blockchain based distributed trust applications
for their citizens. If we contrast this with the penetration of the Internet into
households across the globe, we realize that distributed trust applications built
on current peer-to-peer networks are a far cry from the scale we need for the
applications we wish to build on them.

Much of the research in consensus mechanisms abstract away the network
issues by assuming that flooded messages reach most nodes within some time
period. Such convenience assumptions are acceptable for small networks that
are currently deployed. The widely used approach is to maintain the peer-to-
peer network as an unstructured random graph. New nodes that wish to join
the network connect to random peers obtained from established seeders who
crawl through the network and maintain current a list of peers [8]. Such seeders
have two drawbacks. Firstly, while they operate well in small networks, their
performance in large systems is more challenging. It will be very hard for seeders
to publish a list of current nodes at billion nodes scale. Secondly, there is very
little mathematical basis for their guarantees. With large amounts of churn,
the data they hold can quickly become stale. This, in turn, can lead to poorly
connected or even disconnected networks.

Thus, we need to design peer-to-peer networks that can scale well in practice
to reach close to Internet scale. At the same time, given the high stakes, we also
require strong guarantees backed by rigorous mathematical proofs. A peer-to-
peer network capable of hosting large scale distributed trust applications must
reliably and efficiently provide some basic functions and properties. Perhaps,
the most important function is efficient information spreading, which requires
the network to be well connected with good network expansion [25] and of low
diameter. The (vertex) expansion of a network graph G = (V,E) is defined as
minS⊂V,|S|≤|V |/2 |N(S)|/|S|, where N(S) is the open neighborhood of S (i.e.,
excluding S). G is said to be an expander if its expansion is bounded from
below by a constant. Creating such expander networks with efficient information
spreading properties require fast and reliable sampling of random peer nodes [27].
Sampling is straightforward in small networks because the full list of nodes can
be effectively maintained by seeders (as it is currently done). However, when
the network becomes large, we will need a more distributed mechanism typically
employing random walks [14].

To make matters worse, there are several security challenges. Peer-to-peer
networks are permissionless allowing any node to participate – including those
that are potentially malicious (also called Byzantine nodes). Such Byzantine
nodes can affect the network in many ways. They can create cuts in the net-
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work and hinder the flow of information across the cut, thereby causing eclipse
attacks [18]. It can also be hard to pin down the true identity of participants
because of Sybil attacks whereby multiple IP addresses can be created [16,17].
Furthermore, a large number of malicious nodes can engage in a denial-of-service
attack wherein they target some nodes and send repeated messages that over-
whelm those nodes and render them unresponsive.

Finally, any peer-to-peer network must be able to tolerate large amounts of
churn and other forms of network dynamics. Studies have shown that up to 97%
of the nodes exhibit intermittent network connectivity [19]. Moreover, nodes
will only participate as long as there is an immediate benefit to them and will
leave when there is none. In fact, it has long been established that up to 50% of
the nodes can be renewed within an hour, but the number of active peers does
not change dramatically because the number of joins and leaves are about the
same within small time frames [37]. It is therefore in the interest of peer-to-peer
network designers to allow peers to efficiently join and leave without disrupting
the network. Sybil attacks and churn coupled together can be quite damaging
because the mechanisms in place to let new nodes join the network must be
smart enough to ensure that sybils do not abuse the churn facility.

The key mechanism that researchers have used in order to tackle this combi-
nation of malicious behavior and churn is to make the participants pay a price
in the form of resource burning [17]. This is a mechanism by which the partic-
ipants are able to prove that they spent some effort or resource to earn their
place in the peer-to-peer network. In fact, Gupta et al. [16,17] argue game the-
oretically that resource burning is a crucial requirement that cannot be avoided
when dealing with malice and churn, a position that we share as well. The most
common form of resource burning is a mechanism called proof-of-work where a
computational puzzle is solved – typically, one that is hard to solve but easy to
verify. It is of course a widely used technique for consensus in bitcoin and other
cryptocurrencies. Of course, while we may not be able to avoid resource burning,
from a sustainability point of view, it is imperative that we minimize its use.
In the rest of the paper, we use the term proof-of-work out of deference to its
familiarity, but our ideas will go through under any other reasonable form of
resource burning as well. Finally, we note that – as in every other proof-of-work
based system – we must limit the computation power of the Byzantine adversary
to within a fraction of the computational power vested with good participants.

1.1 Our Contribution

In this work, we have made first steps towards designing a secure peer-to-peer
overlay network called Plateau that can arguably scale well, handle large amounts
of churn, and resilient to Byzantine nodes. Our emphasis is on ensuring that the
desired properties can be formally proved. Towards this goal, we empower a sin-
gle adversary to orchestrate the behavior of Byzantine nodes and the nature of
churn. We assume that the adversary is vested with 1/4 fraction of the com-
pute power that good nodes possess. Section 2 provides a detailed description of
our model. The only cryptographic tools assumed are private channels between
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nodes and a proof-of-work mechanism. We do not assume public key infrastruc-
ture. The non-triviality of this work comes from carefully designing network and
the maintenance protocols so that the properties described below (and formally
stated in Theorem 2) hold with high probability (whp)1.

Plateau is fully distributed. Nodes need to only be aware of their neighbors’
IDs and interact with them. Nevertheless, membership is globally secure in the
sense that nodes cannot arbitrarily enter the network. Membership in the net-
work must be earned through proof-of-work that is verified by the nodes in the
upper level.

The overlay has low diameter and is sparse with both diameter and degree
at most logarithmic in the size of the network. The network graph induced by
the good nodes is well-connected in the form of an expander, specifically in
the sense that its vertex expansion is lower bounded by a constant. Thus, our
network is resistant to eclipse attacks. We exploit this expansion to provide
a sampling mechanism based on random walks that is resilient to Byzantine
behavior. Furthermore, Plateau is designed with judicious use of proof-of-work
that makes it resilient to Sybil and DoS attacks. Plateau is robust despite heavy
churn controlled by the adversary. Up to C ∈ O(n/ polylog(n)) nodes can join
and leave the network per round without disrupting the network.

Its scalability is highlighted by the fact that all resources used are small
compared to the overall size of the network and more importantly competitive
with the amount of churn. Communication between nodes is via small messages
of polylog(n) bits. Each node has at most polylog(n) neighbors at any point in
time and only needs to communicate with its neighbors. The total number of
messages sent/received by all nodes during any round is at most Õ(C).

Prior works typically assume that the new nodes are automatically connected
to appropriate nodes within the network. This is in stark contrast to reality
where new nodes must depend on information provided by seeders [8]. Our work
formally includes this aspect in that our protocol requires a dynamic whiteboard2

with Õ(C) bits that is visible to any new node that seeks to join the network.
Each new node samples (from the whiteboard) a random polylog(n) sized chunk
of information that includes a suitable proof-of-work puzzle that the new node
must solve. It also includes IDs of the appropriate nodes within the network that
it must connect to and submit the solution to the puzzle in order to gain entry
into the network. Our protocol updates the whiteboard at the rate of Õ(C2/n)

1 We say that an event E holds with high probability (whp) if Prob[E] ≥ 1− 1/nη for
any fixed parameter η that is independent of n, but may depend on constants used
in the algorithm.

2 We use the term whiteboard to abstract out the ability to expose information about
the network to the world. This is a crucial requirement for any network to handle
churn. Otherwise, new nodes will not know where to connect. In current cryptocur-
rency systems like Bitcoin, we have specialized servers called seeders that provide
this service [8]. Other alternatives include using the blockchain itself to expose this
information [1]. The main design issue is to ensure that the whiteboard only needs
to store a bounded amount of information and that updates to the whiteboard are
not too fast.



Plateau: A Secure and Scalable Overlay Network 73

bits per round in order to keep up with the dynamic updates within the network.
Thus, as long as the churn rate is Õ(

√
n), the update rate is at most polylog(n).

When C is larger, the whiteboard must be updated at a commensurately larger
rate. This is essentially the best we can do because we prove a matching lower
bound (within polylog(n) factor) for the update rate.

Importantly, our work assumes that an adversary controls the behavior of
all Byzantine nodes including when to seek membership, when to exit, whether
to send messages, and what messages to send. The adversary controls churn
amongst good nodes in the following oblivious manner that models the worst
case (but not malicious) behavior. At the time when a new good node enters the
network, the adversary decides how long it will stay in the network. This choice
must not violate the churn rate C. Specifically, the adversary is not allowed
to churn out more than C nodes per round. Thus, the adversary can impose
worst case patterns by which good nodes can churn in and out, but it cannot
maliciously and/or adaptively decide when to churn out good nodes.

The main novelty in plateau’s design is its two levels. The upper-level is
smaller and commensurate in size with the rate at which new nodes join. It con-
sists nodes that act as juries and regulate entry into the network. The lower-level
is the essential peer-to-peer (P2P) network that is scalable to large sizes. It is
well-connected with good expansion (thereby allowing us to spread information
fast and also sample random nodes via random walks) making it ideal for build-
ing peer-to-peer distributed trust applications. We show that Plateau can be
maintained despite the Byzantine adversary possessing up to a fixed β < 1/4 of
the computational power possessed by good nodes.

1.2 Related Works

In the early years of P2P networks, several prominent overlay network designs
like Chord [36], CAN [34], Pastry [35], Tapestry [39] were proposed. Following
those early proposals, there has been extensive research on designing robust
overlay networks with a variety of useful and rigorously proved characteristics
like well-connectedness, low diameter, expansion, low degree, and robustness to
network churn and malicious behaviour [3–5,9,11,20,21,24–26,31–33]. For our
purpose, we will highlight a few works that are relevant to our goals and design
principles of maintaining large scale well connected overlay networks that are
robust against Byzantine behavior and adversarial churn.

One of the earliest works in this regard was by Fiat and Saia [13] where items
can be stored in a network and most items can be retrieved efficiently despite an
adversarial removal of a large fraction of the nodes. In fact, their solution can
be adapted to situations where the adversary takes control of a fraction of the
nodes (not just remove them). Unfortunately, it is unclear how their overlay can
be maintained in the presence of heavy churn. More recently, Guerroui et al. [15]
presented a Byzantine resilient overlay maintenance protocol called Neighbors
on Watch (NOW) that bears significant resemblance to our protocol. They also
maintain a expander graph on supernodes (containing Θ(log n) peer nodes) and
ensure random distribution of peers within the supernodes. They show how a
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new node can join or an old node can leave. To the best of our understanding,
their design and analysis is limited to just a few nodes (up to O(log n) nodes)
joining or leaving at a time. To their credit, they employ a much strong form of
adversary that can churn out any choice of nodes at any time.

Several gossip based sampling protocols have been studied in the past [9,
22,23]. The work by Bortnikov et al. [9] is quite relevant to ours. It has two
components: the sampling component and the gossiping component. The sam-
pling component maintains a list of uniform samples from the set of IDs that
passed through the node. The gossiping component spreads IDs across the net-
work and maintains the dynamic view of the system. There are, however, two
significant drawbacks. Firstly, the protocol requires each node to store Θ(n1/3)
IDs locally. Secondly, the analysis of convergence to uniform random samples
holds only when the churn ceases, which is unfortunately not the case in the real
world. Jesi et al. [22] provide a Byzantine resilient peer sampling mechanism that
employs identifying and blacklisting nodes that behave maliciously. Johansen et
al. [23] provide a robust pseudorandom structure that is useful for good nodes
to maintain correct membership views. Their work maintains a complete mem-
bership view, which is unfortunately unscalable for very large networks.

Peer-to-peer networks, as we have mentioned before, experience heavy net-
work churn [19,37]. Quite a bit of research has gone into designing overlays that
are resilient to heavy churn [3,4,6,11]. Awerbuch and Scheideler [6] employed
the cuckoo rule by which new nodes can join with minimum displacement of
existing nodes. An interesting deterministic P2P overlay network was proposed
by Kuhn et al. [24], but the price of determinism is that their approach only
works with a very small rate of joins and leaves. Augustine et al. [3] show how
to maintain an overlay network with good expansion despite heavy churn. They
employ random walks to sample random nodes and place new nodes in random
locations in order to maintain good expansion. Drees et al. [11] design an overlay
network that can handle heavy adversarial churn, but their model requires nodes
to join and leave gracefully with a forewarning of at least Ω(log log n) rounds.
Augustine and Sivasubramanian [4] provide an overlay design called Spartan
that has many similarities to our approach. Both [24] and [4] employ supernodes
(or committees) of size Θ(log n) nodes. The major drawback of all these works
is that they are not shown to be resilient to Byzantine failures.

In a recent work [1], Aradhya et al. show how to maintain a Byzantine resilient
blockchain overlay network using the blockchain itself as a means to share infor-
mation among the peers. This work bears many common features with ours.
They also show how the network can tolerate churn. While our work uses arbi-
trary expander graph structure, they use a hypercubic network structure for
the overlay. Their work is specific to blockchain systems, but our work is more
general and applicable to any secure peer-to-peer network.

Organization. We begin with a formal description of the model in Sect. 2 and
also describe a few important tools that we use in our design. We then present a
detailed description of Plateau’s design in Sect. 3. Proofs and pseudocode have
not been included due to insufficient space.



Plateau: A Secure and Scalable Overlay Network 75

2 Model and Preliminaries

We begin with a formal description of our network model. Our goal is to design a
sustainable peer-to-peer overlay network that can serve as a platform for building
large scale distributed trust applications. See Fig. 1 for a schematic. We use
the term node to refer to the peers that participate in the system. Some of
these nodes will be Byzantine (i.e., malicious) while others are good. Moreover,
network must also tolerate churn whereby nodes can join and leave. The System
comprises both the network and all the nodes (both Byzantine and good) that
are actively seeking membership within the network. For simplicity, we assume
that the number of good nodes n in the system at any point in time is stable.

For simplicity, we assume that the system operates synchronously with
rounds being the basic unit of time. Due to churn, up to C good nodes, for
some C ∈ [0, n/polylog(n)], can leave the system per round and an equal num-
ber3 must enter the system per round in order to maintain a stable number of
good nodes in the system. When a node enters the system, it must be integrated
into the network by a protocol that maintains the network (and this may take
some time). The nodes in the system, but not yet integrated into the network are
called seekers because they are nodes seeking membership within the network.

We assume that each good node has a unique ID – typically its IP address
– that can be used both to uniquely identify it as well as to form network
connections. Moreover, each good node is capable of a bounded amount of com-
putational work (or just work). The Byzantine nodes are controlled by a single
Byzantine adversary that can create as many Byzantine nodes as it needs, but
the overall computational power of the Byzantine adversary is limited to a pos-
itive fraction β < 1/4 (known as the Byzantine power parameter) of the total
compute power of good nodes.

Fig. 1. The Plateau System and the
Plateau network.

The goal is to design a network that
is robust despite churn and Byzantine
nodes. In particular, the good nodes must
maintain a degree of at most O(log n) and
must induce an expander graph with ver-
tex expansion bounded from below by a
constant. The specific network we present
is called the Plateau network (or just net-
work) and for this reason, we refer to
the system as the Plateau system. Plateau
must ensure that, at any point in time, all
but O(C) good seekers are integrated into the network. It is inevitable that the
network may have integrated some Byzantine nodes as well but we wish to ensure
that they are at most β∗n at any point in time for some fixed fraction β∗ < 1/2.
Moreover, those Byzantine nodes must be incapable of compromising the guar-

3 Our design is sufficiently robust to admit variation between the number of nodes
joining and leaving as long as the total number of good nodes stays bounded within
some reasonable Θ(n).
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antees offered by the network. The term Plateau system (or just system) denotes
the network and the seekers; see Fig. 1 for a schematic of the system and the
network.

Churn Model. We now describe the churn process in bit more detail. A node
that is neither a member nor a seeker is called an external node and such an
external node can become a seeker at any time; we call this churning in. Likewise,
a node in the system (regardless of whether it is a member or a seeker) can
leave the system and become an external node; we call this churning out. The
Byzantine adversary controls nodes churning in and out subject to the following
constraints.

At most C good nodes can be churned in per round and an equal number
churned out. Any number of Byzantine nodes can be churned in and churned
out. An epoch is defined to be n/C rounds and corresponds to the time required
by an adversary to completely replace the current set of nodes with a new set of
nodes. The network must ensure that good seekers gain entry into the network
in a timely fashion through a process called integration. Specifically, we wish to
ensure that the number of good seekers is no more than O(C) at any time (whp).
Moreover, every good seeker node should be integrated into the network within
O(log n) rounds (whp).

Nodes can be churned out either by the protocol or by the adversary. When all
good nodes drop their connections with a node u, then it is considered churned
out by the protocol (as long as it is clear that good nodes cannot be tricked into
forming connections with u later on). Such churn outs are expected to happen
when a node is unable to provide proof of work that the protocol may require of
it from time to time. The protocol must be designed to ensure that good nodes
are not churned out in this manner because they are expected to be willing to
spend one unit of computational power per epoch. The time when a good node
v is churned out by the adversary must be specified when the node is churned
in. (A good node will not be aware of its churn out time.) There is no incentive
for the adversary to actively churn out Byzantine nodes. However, since the
computational power of the adversary is bounded, Byzantine nodes that are
unable to provide proof-of-work must be churned out by the protocol.

Communication Model. Nodes can communicate with each other in one of two
modes: either through established overlay links (e.g., TCP sessions) or through
ports that are open. Formation of an overlay link between two nodes u and v
must be initiated by one node and consented by the other; such a link can be
formed in one round. We assume that each node can maintain O(log n) overlay
links. Alternatively, each node has O(log n) ports numbered {1, 2, . . . , O(log n)}
through which it can listen for new messages or new connections. Thus, if a node
u knows the ID of node v, then u can send v a message through some port x.
The message will be delivered to v if no other node is also attempting to send a
message to v through x at the same time. Messages will be dropped when such
conflicts occur. We assume that u will be aware of whether the message reached
v or not. We require each message (sent through either mode) to be small in
size, i.e., at most O(polylog n) bits. Furthermore, We wish to ensure that the
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total number of messages sent by good nodes are at most M ∈ O(C log n) per
round. We similarly limit the number of messages sent by Byzantine nodes to
also be within the same limit M .

Public Whiteboard. To facilitate integration, the network is allowed to publish
information on a whiteboard that is available for public viewing. For the purpose
of this paper, we abstract away the details of how such a whiteboard may be
implemented. The whiteboard, however, must be limited to displaying Õ(C) bits
of information that is updated at the rate of o(C) bits per round, i.e., at most
o(C) bits can be erased and at most o(C) bits can be written per round.

Proof-of-Work. We assume that proof-of-work puzzles can be solved by
expending one unit of compute power4. To solve such a puzzle, a node u requires
an input bit string r and its own ID and computes a nonce bit string q such that
h(r|ID(u)|q) has sufficiently many leading zeros, where h is a random oracle
hash function. Each good node must be willing to spend 1 unit of computational
power for integration and subsequently spend one unit of computational power
per epoch. The number of rounds required to solve one proof of work puzzle is
assumed to be within O(log n) rounds. The total computational power of the
Byzantine adversary is assumed to be βn per epoch, where β > 0 known as the
Byzantine power parameter is a fixed constant bounded strictly below 1/4. I.e.,
the Byzantine nodes, in total, can solve n/4 proof-of-work puzzles per epoch.
Additionally, whenever a good node is churned in, the Byzantine adversary is
credited with β units of computational power that must be spent within O(log n)
rounds. This is to ensure that the Byzantine adversary is empowered to churn
in Byzantine nodes into the network.

Useful Tools and Techniques. We use several standard tools and techniques
that we explain in greater detail in the full version. We rely on expander
graphs [38] for fast mixing time, low diameter (i.e., both logarithmig in the
size of the network) and established tools for creating and maintaining them
in dynamic environments [3,32]. Furthermore, we assume that Byzantine agree-
ment [12] and collective coin tossing [28] can be executed O(log n) rounds whp.

3 The Plateau Network Design and Statement of Results

We now describe our proposed network design. It relies crucially on sets of
Θ(log n) nodes called supernodes that are interconnected to form the Plateau
network. The supernodes partition the set of nodes, thus there are n/c log n
supernodes for some sufficiently large constant c. We say that a supernode is b-
Byzantine-Bounded for some b ∈ [0, 1] if fewer than b fraction of the nodes in it
are Byzantine. The network is said to be b-Byzantine-Bounded if all supernodes
in it are b-Byzantine-Bounded. Our goal is to guarantee that the Plateau network
is (1/3)-Byzantine-Bounded (i.e., every supernode is (1/3)-Byzantine-Bounded).

4 This is a simplifying assumption. We can also model the compute power required to
solve a puzzle as an exponential random variable.
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Thanks to this limited influence by the Byzantine adversary, supernodes can
serve as committees that decisively act by invoking Byzantine Agreement [12].

The list of nodes in a supernode s is maintained as common knowledge among
all nodes in s. Thus, whenever all good nodes in s unanimously propose a value,
they can initiate Byzantine Agreement and ensure that s (as a single entity) will
be able to decide on one of those values. Moreover, each supernode can execute
Micali and Rabin’s unbiased coin tossing protocol and generate unbiased random
bits that all good nodes within s agree upon.

Two supernodes s1 and s2 are said to be connected by a logical link if every
good node in s1 (resp., s2) is aware of all members in s2 (resp., s1) and has
successfully established an overlay link with every good node in s2 (resp., s1).

Fig. 2. The Plateau network architecture comprising (1/3)-Byzantine-Bounded supern-
odes in two levels. Each jury supernode is also a supernode in the lower level. The
supernodes in the lower level (resp., juries in the upper level) are connected via logical
links (not shown) to form an expander graph G (resp., H).

The Two-Tier Plateau Structure. As mentioned before, Plateau comprises
two levels: the lower level comprising the set of all supernodes S and the upper
level comprising a (dynamic) set of Θ(M) supernodes J called juries. Note that
juries will have to continue their role in the lower level even while serving as
juries. See Fig. 2 for a schematic of the Plateau architecture.

The supernodes at both levels are connected via logical links in the form
of (constant degree) expander graphs: G = (S,E) for the lower level and H =
(J,E′) for the upper level. Our design therefore ensures that each supernode has
established logical links to at most O(1) other supernodes. Thus, the number of
overlay links at each individual node is at most O(log n).

Secure Messages. Two supernodes s1 and s2 that are connected by a logical
link can communicate with each other at will via secure messages (explained
shortly) with the twin security guarantees of authentication and integrity. When
the (good) nodes in (say) s1 wish to send a secure message to the nodes in s2, they
individually send the same message to every node in s2. At the receiving end,
i.e., at s2, the good nodes accept all messages sent by at least a 2/3 fraction of
the nodes in s1. Any message sent by fewer than a 2/3 fraction is discarded. Such
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a message sent by all good nodes in s1 to all good nodes in s2 in this coordinated
manner is deemed a secure message. Notice that s2 receives a secure message
from s1 iff s1 sends a secure message to s2. Thus, as long as all the good nodes in
s1 are agreed on what message to send, the recipient s2 knows that the message
indeed originated at s1 (i.e., the sender’s authenticity is guaranteed) and that
the message has not been tampered with (i.e., its integrity is guaranteed). Notice
however that these secure messages are not guaranteed to be private. If either
s1 or s2 has even one Byzantine node, the Byzantine adversary will be able to
learn the contents of the secure message.

A node u cannot become a member of a supernode without proper credentials.
If u is a seeker and has performed the requisite proof-of-work, a jury supernode
will admit it into the network and move u to a random supernode s via a secure
random walk (described shortly). Importantly, u cannot influence the choice
of s. Subsequently u may be moved around via secure random walks roughly
once every epoch. Thus, there is no provision for a node u to join an arbitrary
supernode. Node u can only join a supernode s as a consequence of secure random
walks that explicitly introduce u to s.

Plateau Maintenance. To maintain Plateau, we operate in maintenance cycles
of m ∈ Θ(log n) rounds. In each cycle, Θ̃(1 + C2 log3 n

n ) juries are replaced by
randomly chosen supernodes from the lower level and an expected C nodes are
moved to random locations. Simultaneously, new nodes that wish to join are
integrated into Plateau after proper vetting of their proof of work.

Replacement of Juries. The juries J ⊂ S (chosen uniformly at random) regu-
late the entry of new nodes into the network. We rotate in new jury supernodes
during each maintenance cycle and simultaneously evict an equal number from
the upper level. All the IDs of nodes in the newly inducted juries are added to
the whiteboard and the IDs of nodes in the evicted juries are deleted from the
whiteboard. The rotation of juries ensures that the list of nodes in juries written
to the whiteboard are sufficiently current.

Let r = Θ̃(1 + C2 log3 n
n ) denote the refresh rate, i.e., the rate at which juries

are rotated in and out of the upper level per round. At the start of every main-
tenance cycle, the protocol picks rm ∈ O(r log n) random juries j and marks
them for replacement. Simultaneously, an equal number of random lower level
supernodes s are called for jury duty and are installed in H, with each s in the
same neighborhood of a corresponding j in H; juries marked for deletion can
now be deleted from H. Thus, the topology of H remains stable, but its vertices
are rotated in and out regularly. Note that the random choices of j and s can
be made via secure random walks of length Θ(log n) performed on H and G,
respectively. The full version contains formal pseudocode.

Information Published on the Whiteboard. The whiteboard maintains a
current list of juries and the constituent nodes within those juries (including
Byzantine nodes). It also includes a random bit string r that is updated every
cycle. The whiteboard will only accept updates given by secure messages from
current juries. Whenever a jury j leaves the upper level, it informs the whiteboard
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and is erased from the whiteboard. When a new jury j enters the upper level, a
pre-existing jury j′ (typically a neighbor of j in H) must inform the whiteboard
so that j and its constituent members can be included in the whiteboard. We
also maintain a designated lead jury j∗ that generates a random bit string r in
each cycle and updates the whiteboard with r (while the earlier string is erased).

Reassignment of Nodes. Byzantine nodes can selectively sever ties with nodes
both within its own supernode as well as neighboring supernodes. Moreover, we
must ensure that Byzantine nodes don’t freeload or selectively stagnate and pile
up in some supernode. To avoid these issues, each node u in each supernode s is
reassigned once every (expected) n/mC cycles to a new supernode s′ chosen ran-
domly through a secure random walk. The choice of u is via collective coin tossing
by nodes within s such that the time between two consecutive reassignments for
u is geometrically distributed with p = mC/n. When chosen for reassignment,
u must first show proof of work requiring a one unit of computation. Then the
nodes in s vote on whether (i) u has shown the correct proof of work and (ii) has
correctly executed all protocols during the last epoch and perform a Byzantine
agreement to decide whether to retain u or churn it out. If the agreement is not
in favor of u, all good nodes in s will sever their links with u and also inform all
neighboring supernodes through secure messages, thereby effectively churning
out u. If u survives, it is forced to make a secure random walk for �G ∈ Θ(log n)
steps where u will be chaperoned to a new random supernode s′.

Integrating Seekers into the Network. Each seeker x reads the current ran-
dom string r from the whiteboard and solves the puzzle pertaining to (r|ID(x)).
The solution is a nonce bit string t such that h(r|ID(x)|t) has at least � leading
zeros for some predefined � and a commonly agreed random oracle hash function
h. This requires a 1 unit of compute power and time that is at most O(log n)
rounds. The seeker x then picks a random jury j and sends its proof of work
to every node in j (listed in the whiteboard) through randomly chosen ports.
If more than half of the members of j receive the proof and acknowledge it,
then x sends an accept message to nodes in j and waits for j to integrate x into
the network. Otherwise, x sends a reject message to nodes in j and repeats the
process with a new random jury. The juries wait for seekers to send proof and
acknowledge them. When a seeker x sends an accept, the jury begins Byzantine
agreement to either approve or reject the request. If approved, a secure random
walk is initiated and x is chaperoned to a random supernode in G.

Our results are formalized by the following two theorems.

Theorem 1. Any whiteboard based P2P network (with whiteboard size O(C))
that experiences churn at the rate of C nodes per round must update the white-
board at the rate of Ω̃(C2/n) bits per round.

Theorem 2. The Plateau system is designed with the following guarantees
that hold with high probability as long as the Byzantine power parameter β
is a fixed constant that is bounded strictly below 1/4 and the churn rate C ∈
[0, n/polylog(n)].
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Byzantine Boundedness. The Plateau network will be (1/3)-Byzantine-
Bounded for at least T ∈ Ω(nk) rounds for fixed k.

Network Properties. The network induced by the good nodes within the
Plateau network forms an expander with vertex expansion bounded from below
by a constant. Thus, its diameter is O(log n). Moreover, the number of overlay
edges incident to any good node is at most O(log n).

Quick Integration. Seekers will integrate within O(1) rounds on expectation
and the expected number of seekers waiting to be integrated will be at most
O(C) at any time.

Efficient Whiteboard. The whiteboard employed by Plateau is of size at most
Õ(C) and is updated at the rate of Õ(C2/n) ∈ o(C) bits per round when C is
at most n/polylog(n). In fact, the update rate is at most Õ(1) if C ∈ Õ(

√
n)

and this is optimal to within a polylog(n) factor.

4 Concluding Remarks and Future Work

We have presented a P2P network architecture called Plateau that is able to reg-
ulate the entry and exit of nodes even at high churn rates. Our design is quite
generic and can be easily adapted in a variety of ways. Our choice of expander
graph structure is in keeping with the long line of works on P2P networks that
rely on expansion [15,25,31]. Moreover, it closely resembles the P2P networks
we see in practice and they are known to be robust even under adversarial dele-
tions [7]. However, expander graphs can be replaced by other structures that
have good sampling properties (e.g., hypercubes [2] and butterflies) with poten-
tial benefits. For example, the Spartan structure [4] that is based on the butterfly
network facilitates addressable supernodes and efficient routing between them.
This can be used to build distributed hash tables.

Furthermore, for simplicity, we assumed that the number of good nodes is
stable at n. However, we can easily adapt Plateau’s design to varying values of
n. This can be done very robustly when the rate of change of n is polylog(n) per
round by adapting G using [32]. For more dramatic changes, we can use a more
structured approach wherein G is a hypercube or a butterfly. When n increases
or decreases dramatically, such structures can be expanded or contracted by
incrementing or decrementing their dimension using ideas from [2].

We believe that a thorough simulation of Plateau will greatly help in under-
standing its viability in practice. Moreover, the current paper is limited to syn-
chronous systems. Extending these ideas to asynchronous systems is an impor-
tant next step. Finally, the current work abstracts away the details pertaining to
implementing a whiteboard, but these details need to be worked out for Plateau
to work in practice.
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