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Abstract. Distributed Shared Storage Services may serve as building
blocks to yield complex, decentralized, cloud applications in emerging
technologies (e.g., IoT, VR/AR), as they offer a transparent cloud stor-
age space where distributed applications can store, retrieve, and coor-
dinate over shared data. Ideally, distributed applications would like to
communicate through a “cloud” memory layer that may provide simi-
lar guarantees as a centralized sequential memory. Atomic Distributed
Shared Memory (ADSM) provides the illusion of a sequential memory
space despite asynchrony, network perturbations, and device failures. A
plethora of algorithmic solutions along with proven correctness guaran-
tees have been proposed to provide ADSM in a message passing system.
None of them, however, has been adopted in a real working solution: com-
mercial solutions avoid the use of ADSM algorithms, mainly due to their
communication overhead. But what is exactly the performance overhead
of an ADSM algorithm over existing commercial solutions? In this work
we want to provide a first answer to this question by performing an in-
depth experimental comparison of the state-of-the-art dynamic ADSM
algorithm ARES, with two well-established open-source distributed stor-
age solutions, Cassandra and Redis. The results show that ARES’s
performance is comparable with the commercial systems, with respect
to scalability, object size and throughput.

Keywords: Distributed storage · Strong consistency · Erasure code ·
Reconfiguration · Fault-tolerance

1 Introduction

Motivation and Prior Work. Emulating a shared memory over a set of
distinct, often geographically dispersed devices, is a fundamental problem in
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distributed computing, and an important tool for the development of depend-
able and robust distributed applications [6,14]. A Distributed Shared Memory
(DSM) service promises to provide an available, accessible, and survivable shared
memory space over an asynchronous, fail prone, message passing environment.
To preserve these properties, data are replicated in multiple devices, referred
to as servers or replica hosts, raising the challenge on how to preserve consis-
tency between the replica copies. Different consistency guarantees were rigor-
ously defined over the years [16]. Atomicity is a venerable notion of consistency,
introduced by Lamport [19]. To this day it remains the most natural type of con-
sistency because it provides an illusion of equivalence with the serial object type
that software designers expect. For more than two decades, a series of works,
e.g., [4,7,9–11,13,20,21], suggested solutions for building Atomic DSM (ADSM)
emulations, for both static, i.e., where replica participation does not change over
time, and dynamic (reconfigurable) environments, i.e., where failed replicas may
retire and new replicas may join the service in a non-blocking manner.

It is apparent that those solutions cannot be found readily and were not
adopted by commercial distributed storage applications. Commercial Distributed
Storage Systems (DSS), such as Dropbox, HDFS, Cassandra and Redis, avoid
providing strong consistency guarantees (such as atomicity) as they are consid-
ered costly and difficult to implement in an asynchronous, fail prone, message
passing environment. Hence, such solutions either choose to offer weaker or tun-
able guarantees to achieve better performance when atomicity is not preserved.

Indeed, initial implementations of ADSM had high demands in communica-
tion, storage, and sometimes computation. Recent works, however, e.g., [12,21],
invest in algorithms that may reduce the overheads on the aforementioned
parameters. ARES [21] is a recent ADSM algorithm, which proposes a modular
approach for providing a dynamic shared memory space. ARES may use any
ADSM algorithm at its core, providing the flexibility to adjust its performance
based on the application demands. Fragmented ARES [12] is an extension of
ARES that supports versioning and fragmentation for efficiently handling large
objects, such as files.

Experimental results presented in [12,21], demonstrated a promising perfor-
mance of the algorithm under various environmental conditions and data loads.
But how such an algorithm may compare to commercially used solutions? That
is, no evidence exists to date to examine what are the gains from commercial
solutions to adopt less than intuitive guarantees. In this work we set to put
ADSM and chosen open-source, commercial solutions in a head-to-head com-
parison in order to answer the question: Is it worth to trade consistency for
performance?

Contributions. In this work we perform an in-depth experimentation on
ARES [21] and we present extensive comparison with two open-source widely
used distributed storage solutions: (i) Cassandra [1], and (ii) Redis [2]. To
this respect, we have developed our own implementation of ARES, and we have
utilized the open source code of Cassandra and Redis.

Our experimental study focuses on measuring the average operation latency
(communication and computation), in the following three test categories:
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– Scalability Tests: Aim to test the ability of the service while the set of
service participants grows.

– Stress Tests: Aim to test the performance of the service under various loads,
concurrency patterns, and topology deployments.

– Fault-Tolerance Tests: Aim to test the tolerance of the service to node
failures and its performance in necessary reconfigurations.

We deployed our experiments in real testbeds, distributed in the European
Union (EU) and the USA. Such deployment helped us obtain real-condition
results and evaluate the algorithms over cross-Atlantic setups. To the best of our
knowledge, this is the first work to conduct such comparison. Our experimenta-
tion results suggest, perhaps surprisingly, that ARES has a similar or sometimes
better performance than the competition, even without any optimization.

2 Algorithms Overview

In this section we provide a high-level description of the algorithms we examine
in this work, highlighting their main differences.

2.1 ARES

ARES [21] is a modular framework, designed to implement dynamic, recon-
figurable, fault-tolerant, read/write distributed atomic shared memory objects.
Similar to traditional implementations, ARES uses 〈tag, value〉 pairs to order
the operations on a shared object. In contrast to existing solutions, ARES does
not define the exact methodology to access the object replicas. Rather, it relies
on three, so called, data access primitives (DAPs): (i) the get-tag, which returns
the tag of an object, (ii) the get-data, which returns a 〈tag, value〉 pair, and (iii)
the put-data(〈tag,v〉), which accepts a 〈tag, value〉 as an argument.

DAPs. As detailed in [21], these DAPs may be used to express the data access
strategy, i.e., how they retrieve and update the object data, of different shared
memory algorithms (e.g., [6]). Using the DAPs, ARES achieves a modular design,
agnostic of the data access strategies, and enables the use of different DAP
implementation per configuration (something impossible for other solutions).
For the DAPs to be useful, they need to satisfy Property 1 [21], which informally
states that a get-data (or get-tag) DAP returns a value (or tag) at least as recent
as the one written by a put-data.

To demonstrate the flexibility that DAPs provide, the authors in [21]
expressed two different atomic shared R/W algorithms in terms of DAPs. These
are the DAPs for the well celebrated ABD [7] algorithm, and the DAPs for
an erasure coded based approach presented for the first time in [21]. In the
rest of the manuscript we refer to the two DAP implementations as ABD-DAP
and EC-DAP. In EC-DAP, an [n, k]-MDS erasure coding algorithm (e.g., Reed-
Solomon [25]) encodes k object fragments into n coded elements, which consist
of the k encoded data fragments and m encoded parity fragments. The n coded
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fragments are distributed among a set of n different servers. Any k of the n coded
fragments can then be used to reconstruct the initial object value. As servers
maintain a fragment instead of the whole object value, EC-based approaches
claim significant storage benefits. To reduce the communication overhead and
yet preserve atomicity, servers maintain the last δ values they have seen, such
that δ = |W | the set of writers, and thus the number of concurrent write opera-
tions. By utilizing the EC-DAP, ARES became the first erasure coded dynamic
algorithm to implement an atomic R/W object. We refer as ARES-ABD and
ARES-EC the versions of ARES using ABD-DAP and EC-DAP, respectively.

We now provide a high-level description of the two main functionalities sup-
ported by ARES: (i) the reconfiguration of the servers, and (ii) the read/write
operations on the shared object.

Reconfiguration. Reconfiguration is the process of changing the set of servers.
In high-level, ARES maintains a sequence of configuration ids. Whenever a
server wants to introduce a new configuration, it performs the following steps:
(1) it parses the configuration sequence to find the last configuration id proposed,
(2) it proposes a new configuration to extend the sequence via an external con-
sensus service, and (3) if its proposal is accepted, it moves the value of the object
from the old configurations to the new, and then appends the id of the new con-
figuration to the end of the sequence. The reconfiguration protocol ensures that
the sequence remains connected, does not have any gaps, and it is the same for
any participant in the system. The whole process is non-blocking, that it, the
reconfiguration does not block the read/write operations on the object.

Reads/Writes. Read and write operations act as follows: (1) parse the sequence
to find the latest configuration (read-config), (2) read the “latest” (based on the
tag) value (if it is a read) or only the tag (if it is a write) of the object from
that configuration (using DAPs), (3) get in a loop to propagate the latest (if
its a read) or the new (if its a write) value to the latest configuration in the
sequence (using DAPs and read-config), (4) terminate if no new configuration is
discovered. The last two steps serve to propagate the value to new configurations
as they become available. Essentially read and writes catch up with the latest
configuration. Detailed analysis appears in [21].

Implementation. As we already mentioned, for the purposes of this study we
have developed our own implementation of ARES. Our implementation is based
on the architecture depicted in Fig. 1. This includes the modules composing the
infrastructure as well as the communication layer between these modules. The
system is composed of two main modules: (i) a Manager, and (ii) a Distributed
Shared Memory Module (DSMM). The manager provides an interface to each
client for accessing the DSM (in our case a command line interface - CLI).
Following this architecture, clients may access the file system through the Man-
ager, while the shared objects are maintained by the servers through the DSMM.
Notice that the Manager uses the DSMM as an external service to write and read
objects to the shared memory. To this respect, our architecture is flexible enough
to utilize any underlying DSM algorithm to implement the DSMM. In our case
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Fig. 1. The architecture of our ARES implementation.

we implemented two algorithms. At first, we integrated algorithm ABD to our
DSM Module. Next, we implemented algorithm ARES with two different DAPs
(ABD and EC) and then we integrated that implementation to the DSM Module.
Python was chosen as the programming language and ZeroMQ [27] messaging
library written in Python (the Dealer-Router paradigm) for the underlying com-
munication. For the EC algorithm, we use the standard Reed-Solomon imple-
mentation provided by liberasurecode from the PyEClib Python library [23].
Notice that the implementation of ARES requires a consensus algorithm to be
implemented as well. So, we implemented the RAFT [22] consensus algorithm,
utilizing an open-source implementation of RAFT, also written in Python [24].

2.2 Cassandra

Cassandra [1] is a NoSQL distributed database offering continuous availabil-
ity, high performance, horizontal scalability, and a flexible approach with tunable
parameters. It was initially developed by Facebook for their inbox search feature.
Today, it is an open-source application of Apache Hadoop. Cassandra uses
peer-to-peer communication where each node is connected to all other nodes.
The protocol used to achieve this communication is gossip, in which nodes peri-
odically exchange state information about themselves. All the nodes in a cluster
can serve read and write requests. Thus, when a request is sent to any node, this
node acts as the coordinator. The coordinator distributes execution around the
cluster, gathers the responses from the replicas, and responds back to the client.
By default, Cassandra guarantees eventual consistency, which implies that all
updates reach all replicas eventually. However, Cassandra offers tunable con-
sistency for read and write operations, so that the system can guarantee weaker
or stronger consistency, as required by the client application. The required con-
sistency can be achieved by tuning the consistency level (CL) and the replication
factor (RF) parameters. RF specifies how many copies of a store object (i.e., a
row in Cassandra’s Database) is kept among the participants. Given the value
of the RF, the CL controls how many responses the coordinator waits for before
the operation is considered complete. Finally, Cassandra allows the removal
and addition of a single node at a time, in contrast to ARES that allows a com-
plete modification of the configuration (reconfiguration) in a single operation.
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Implementation. We deployed the Apache Cassandra 4 on multiple nodes with
Ubuntu 18.04.1 LTS or 20.04 LTS. In order to guarantee atomicity, as in ARES
and ABD, we set the CL parameter of Cassandra to “quorum”. This means
that a majority of nodes of the replicas must respond. Thus, if n is the total
number of available replicas, and RF is n, then n/2 +1 must respond. To send
read and write request we created a script using the Cassandra-driver Python
library. First, the script creates connections to the cluster nodes, giving their IPs
and ports. Then we specify a keyspace (a namespace that defines data replication
on nodes) and create a table (a list of key-value pairs). Once that is done, the
client can send write and read requests, using the insert and select statements,
respectively. A writer inserts a tuple (fileid, value), where the value is a byte
string of type blobs (binary large objects) in Cassandra. A reader selects the
value providing the file’s id.

2.3 Redis

Redis [2] is an open source, in-memory key-value store. The read/write response
time for Redis is extremely fast since all the data is in memory. Redis is based on
a Master-Slave architecture, i.e., it enables replication of master Redis instances
in replica Redis instances. The use of Redis is rather easy; Redis will internally
store the key and value when users execute commands like set key value. Redis
returns the value with a simple get key command from the user. The data size
cannot exceed the main memory limit because all the data are in main mem-
ory. Redis has two persistence mechanisms: RDB (Redis Database Backup) and
AOF (Append Only File). RDB persistence provides point-in-time snapshots
of the database at specified intervals. AOF persistence logs every write opera-
tion. When the database server starts, Redis reads the AOF log to reconstruct
the database. RDB is perfect for backup, but if RDB stops working all data
changes since the last snapshot are lost. In comparison, AOF has better durabil-
ity, although adopting AOF persistence may result in performance loss. Redis
has a command called “WAIT” in order to implement synchronous replication.
This command blocks the current client until all the previous write commands
are successfully transferred and acknowledged by at least the specified number
of replicas. Redis provides eventual consistency. Even though a write may wait
until all replicas reply, reads do not wait and always terminate as soon as they
receive messages from the master. So, we consider Redis as a benchmark pro-
viding eventual consistency, however, due to the use of the “WAIT” function, in
most scenarios (as claimed in [2]), it may provide atomic consistency.

Implementation. We deployed Redis 5 on multiple nodes with Ubuntu 18.04.1
LTS or 20.04 LTS. We implement two variants of Redis, with and without the
WAIT command during a write operation, i.e., Redis_W and Redis, respec-
tively. For the Redis_W, we specified the number of waiting write acknowledg-
ments with a majority, i.e., n/2+ 1, to match the ABD algorithm. To send read
and write requests we created a script using the Redis-driver Python library.
First, the script creates a connection to Redis, giving the IP and port of the
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master node. Once connected to Redis, the client can write and read with Redis
command functions, set and get respectively. A writer assigns a file’s byte string
value to the Redis key; it uses the file’s id as the key, while a reader gets the
value giving the file’s id. We note that the number of reader clients can dynam-
ically increase or decrease. However, if the Master crashes, the writes will be
blocked, as the replica nodes are read only, until a new replica becomes the new
master; with this respect, reconfiguration in Redis is blocking.

3 Experimental Evaluation

In this section we provide a description of our experiments and the results we
have obtained in this study. Section 3.1 presents the setup of the distributed
system we considered and the tools we used for the experiment deployment.
Section 3.2 presents the different scenarios we examined and the purpose of each
scenario. We conclude with our results and their analysis in Sect. 3.3. The col-
lected data are available in [3], in case one would like to validate our analysis.

3.1 Experimentation Setup

Our main goal was to conduct real-life experiments, exposed to the perturba-
tions, delays, and uncertainty of network communication. We picked devices both
in the EU and the USA, thus, examining the impact of long (cross-Atlantic) com-
munication on the performance of each algorithm. We used two main tools to
deploy and execute our experiments: (i) jFed [18], and (ii) Ansible [5].

Experiment Deployment. jFed is a GUI tool that was developed within the
Fed4FIRE+ project and was used to get access and reserve virtual and physical
machines in various experimental testbeds. Through the tool we were able to
define our node deployment strategy, and specify the connectivity between the
reserved nodes, their external interfaces, the resources and the OS image to use,
and launch those machines in their respective testbeds, for all algorithms.

We used machines from four different testbeds (in the EU and the USA),
that are supported by JFed: (i) imec Virtual Wall 1/2 [26] (Belgium – EU), (ii)
Cloudlab [8] (Utah – USA), (iii) InstaGENI [17] (NYU, UCLA, and Utdallas –
USA) and (iv) Grid5000 [15] (France – EU). In total, we used 39 nodes, where
the InstaGENI ones are XEN VMs with Ubuntu 18.04.1 LTS and routable IPs,
and the rest are physical machines with Ubuntu 20.04 LTS. Due to the similarity
on machine specifications and the high demands in those testbeds we did not use
a specific set of spec configuration but rather we were reserving random available
nodes for each experiment. A reserved machine can either act as a client or a
server in any given experimental run. We avoided having a machine with both
roles, preventing giving a communication advantage to clients residing in the
same machine with a server. Each server is deployed on a different machine, and
clients are all deployed in the remaining machines in a round robin fashion (i.e., a
machine may execute multiple client instances). For example, with 10 machines,
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4 servers, 6 writers and 6 readers, servers would have been deployed on the first
4 machines and each other machine would contain one writer and one reader.

Experiment Execution. Ansible was mainly used for the execution of the
experiments as it is a tool to automate different IT tasks, such as cloud pro-
visioning, configuration management, application deployment, and intra-service
orchestration. There are two main steps to run an experiment: (i) booting up
the client (either writer or reader) and the server nodes, and (ii) executing each
scenario using Ansible Playbooks, scripts written in the YAML language. The
scripts get pushed to target machines, they are executed, and then get removed.
In our experiments, one instance node was dedicated as a controller to orches-
trate the experiments. For the execution of the experiment, Ansible automated
the provision of the executables in each machine, the execution of the operations
in the experiment, and the collection of the logs for our analysis.

Operations. In throughput experiments, operations are invoked without any
delay (i.e., an operation is invoked once the previous operation by the same
client is completed), and the clients perform 1000 operations each. For all other
experiments we use a stochastic invocation scheme: each client waits a random
interval each time it terminates an operation and before invoking the next
one. Reads and writes are scheduled at a random interval between [1 . . . 3] s. In
total, each writer performs 50 writes and each reader 50 reads. Each reconfigurer
invokes one operation every 15 s and performs a total of 15 reconfigurations.

Performance Metric. The performance of the algorithms is measured in terms
of the time it takes for their operations to terminate. Thus, for each algorithm, we
measure the average operation latency, starting at the invocation to the response,
and taking into account both the communication as well as the computation
overhead. Notice that the operation latency is computed as the average of all
clients’ average operation latencies. Note that in the case of Cassandra, we
omitted to account some “unsuccessful operations”, i.e., operations where the
client invoking them did not receive replies from a majority of servers.

3.2 Scenarios

Scenarios aim to capture the performance of the algorithms in the three perfor-
mance parameters (tests) we mentioned in Sect. 1. Our scenarios are:

Scalability Test – Participation (All Algorithms). This scenario is con-
structed to compare the read and write latencies of the algorithms, as the number
of the service participants increases. We varied the number of readers |R| from
5 to 250 and the number of writers |W | from 5 to 20. The number of servers |S|
is set to two different values, 3 and 11. To reduce the amount of combinations,
we fixed the number of writers to 5 when testing all possible values of readers,
and the readers to 5 when testing all possible combinations of writers. The size
of the object is 1 MB. We used a different parity for ARES-EC, m, based on the
number of servers used: m is set to m = 1 for |S| = 3 and m = 5 for |S| = 11.
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Stress Test – Topology (All Algorithms). This scenario aims to measure
how the performance of the algorithms is affected under different topologies and
server participation. In this case we measure the throughput (average number of
operations per second) of each algorithm. To avoid any delays due to operation
contention, we chose to use 2 clients (1 reader and 1 writer), the minimum
number of servers to form a majority, i.e. 3, and a simple object of 32 B. As we
deployed machines on both EU and USA, our servers are split in such a way to
either force all of them or their majority to be in a single continent. In particular,
the 3 servers selected based the following topologies: 0E+3U , 1E+2U , 2E+1U ,
3E+0U , where xY means that x servers are deployed in Y continent for E = EU
and U = USA. Similarly we deployed the clients either close (i.e., to the same
continent) or away from the server majority. Last, we tested the throughput of
the algorithms when the number of servers is growing from 3 to 15. In this case,
for every server deployed in EU, we deployed 2 servers in the USA.

Stress Test – Object Size (All Algorithms). This scenario is made to evalu-
ate how the read and write latencies are affected by the size of the shared object.
The file size doubled from 64 kB to 8 MB. The number of servers is fixed to 11.
The number of writers and the number of readers is fixed to 5. For ARES, there
are two separated runs, one for ARES-ABD and one for ARES-EC. The parity
value of ARES-EC is set to m = 5, and thus the fragmentation parameter is
k = 6. The quorum size of the ARES-EC is

⌈
|S|+k

2

⌉
=

⌈
11+6

2

⌉
= 9, while the

quorum size of ARES-ABD is
⌊

|S|
2

⌋
+ 1 =

⌊
11
2

⌋
+ 1 = 6. For Cassandra, we

set the consistency level (CL) to the majority, i.e., 6. The writers of Redis_W
also wait for a majority (6) servers to reply.

Stress Test – Fragmentation Parameter k (Only ARES-EC). This sce-
nario applies only to ARES-EC since we examine how the read and write laten-
cies are affected as we modify the erasure-code fragmentation parameter k (a
parameter of Reed-Solomon). We assume 11 servers and we increase k from 2 to
10. The number of writers (and hence the value of δ) are set to 5. The number
of readers is fixed to 15. The size of the object used is 4 MB.

Fault-Tolerance Test – Node Crashes (Only ARES). In this scenario,
we introduced server fail-crashes in the ARES algorithm to verify the fault-
tolerance guarantees and the responsiveness of the system, especially with respect
to reconfigurations. The number of servers |S| is set to 11 with m = 5. The
number of writers and readers are fixed to 5 and 15, respectively. The size of the
file used is 1 MB. We execute 2 crashes during each experimental run, server s0
crashes 100 s within the experiment and s3 crashes 200 s after. Both failed servers
are from the imec Virtual Wall 2 testbed (EU), since we observed that they are
included in the most quorum replies. We assign a unique id to each quorum.
However, the quorum of each DAP differs in size. The size of each quorum
(majority) in ARES-ABD is 6, while the quorum size of ARES-EC is 9. In total,
ARES-ABD has 462 quorums and ARES-EC has 55. For ease of visualization,
we categorize the quorums of the two DAPs into three groups: (i) one which
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includes all quorums, (ii) one which excludes quorums involving s0; and (iii)
one which excludes quorums involving either s0 or s3. During the same scenario
we tested the reconfiguration ability of the algorithm. In particular, we varied
the number of reconfigurers with values in {1, 3, 5} and each reconfiguration was
switching between the two DAPs.

3.3 Experimental Results

Our analytical results aim to expose how a strongly consistent, reconfigurable
service like ARES, compares in performance with the two commercial storages
of our choice, namely Cassandra and Redis. Moreover, it helps us identify
bottlenecks and shortcomings of ARES for future optimizations, and, in some
scenarios, we demonstrate the ability of ARES to utilize erasure-coding and to
cope with failures and dynamic reconfiguration.

Table 1 provides a comprehensive list of the variables we used in our scenarios.
Experiments were conducted for a selection of those parameters. In this section
we highlight some representative outcomes in each scenario. More results may be
found in the website of the project1 presented in interactive plots where the user
may choose the parameters to apply. The results shown are compiled as averages
over 3 samples per each scenario and 5 samples for the topology scenario.

Table 1. Experimental variables

Variable Possible values Description

Topology { 0E+3U, 1E+2U, 2E+1U,
3E+0U }

Distribution of servers in EU and
US. For the scenarios with more
than 3 servers we use two servers
in US for every server in EU

ClientContinent { EU, US } Location of the clients (for
throughput scenario)

S { 3, 5, 7, 9, 11 } The number of servers

W { 0, 1, 5, 10, 15, 20 } The number of writers

R { 0, 1, 5, 15, 50, 100, 150, 250 } The number of readers

G { 0, 1, 3, 5 } The number of reconfigurers

k { 1, 2, 3, 4, 5, 6, 7, 8, 9 } Erasure-coding data fragments

fsize { 64 kB, 128 kB, 256 kB, 512 kB,
1 MB, 2 MB, 4 MB, 8 MB }

The size of the file (object)

Recontype { sameDAP, switchingDAP,
switchingDAP & andomServers }

The way the reconfigurers work:
(i) reconfiguring to the same DAP,
(ii) reconfiguring the DAP
alternately, (iii) reconfiguring the
DAP alternatively and servers
randomly

1 https://projects.algolysis.com/ares-ngi/results/.

https://projects.algolysis.com/ares-ngi/results/
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Scalability Tests. Some of the results obtained while increasing the number of
participants in the system appear in Figs. 2, 3 and 4. At a first glance,Cassandra
seems to struggle to keep up as the readers grow in all cases, while Redis_W does
not seem to be affected. Similar observation can be made for the two ABD based
algorithms (ABD and ARES-ABD) as they remain at low levels as |R| increases.
ARES-EC exposes an interesting behavior as it is the worst performing algorithm
when few servers are used, and becomes faster when more servers are deployed.
This can be seen in Figs. 3 and 4. The more the servers the more the encoded
elements to be distributed and the bigger can be the fragmentation parameter
k. Thus, each object fragment becomes smaller, resulting in tremendous benefits
on the communication delays. Worth observing is that the latency of the write
operation of ARES-EC matches the one of Redis_W when |S| = 11.

Similar findings can be seen as the number of writers |W| grows. Cassandra
has the larger write latency despite the fact that it shows a more stable behavior,
and the read latency of ARES-EC is the worst when |S| = 3.

Fig. 2. Readers scalability vs write latency, |S| = 3.

Fig. 3. Readers scalability vs read latency, |S| = 3.
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Fig. 4. Readers scalability vs read latency, |S| = 11.

Fig. 5. Throughput vs algorithm. Topology: 3E + 0U

Fig. 6. Performance vs algorithm. Topology: 0E + 3U (Color figure online)

Stress Tests – Topology. Some results from these experiments appear in
Figs. 5 and 6. Overall the topology played a major role on the performance, and
in particular throughput, of all the algorithms we studied. All of the algorithms
(including the ADSM algorithms we implemented, i.e., ABD, ARES-ABD, and
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ARES-EC), achieve their maximum read and write throughput when the servers
and the clients are deployed in the same continent.

For the ADSM algorithms, there appears to be no difference when the experi-
ment contains non-concurrent or concurrent operations. The small fsize (32 B),
amplified the impact of the stable overhead of read-config operations, and they
constitute a significant percentage of the total operation latency (see blue bar
in Fig. 6). From the same figure we interestingly observe that the setup where
all servers and clients are deployed in the USA, favored the ADSM algorithms
over both Cassandra and Redis.

On the other hand, Cassandra shows different behavior. It achieves the
maximum read throughput when both servers and clients are deployed in the
EU. It demonstrates a small lead over the ADSM algorithms in most cases on
both operations. However, it shows some performance degradation when write
and read operations are invoked concurrently.

Finally, Redis and Redis_W outperform the rest of the algorithms in most
scenarios. Redis shows consistent performance for both reads and writes due to
the weaker consistency requirements and thus smaller communication footprint.
The impact of the communication overhead is obvious in Redis_W, where the
writer waits before completing.

Stress Tests – Object Size. The results for the write performance in these
experiments are captured in Fig. 7. We observe that the write latencies of all
operations, except ARES-EC and Redis_W, grow significantly, as the fsize
increases. The fragmentation applied by the ARES-EC benefits its write oper-
ations, which follow a slower increasing curve like the Redis_W. The write
latencies of all other algorithms are close to each other. Results show that the
read operations of ARES-EC suffer the most delays until 4 MB. The first phase
of the read operation does decoding, which is slower than the first phase of the
write, which simply finds the maximum tag, contributed to this overhead. How-
ever, at larger file sizes (8 MB) Cassandra has the slowest read operations. As

Fig. 7. Filesize results.



48 A. Trigeorgi et al.

expected, the Redis_W read operations provide the best results, and its write
operations with the WAIT command have higher latency compared to the read
operations. However, both of them remain at low levels as the fsize increases.

Fig. 8. k scalability results.

Stress Tests – Fragmentation Parameter k. From Fig. 8 we can infer that
when smaller k are used, the write and read latencies reach their highest values.
In both cases, small k results in the generation of a smaller number of data
fragments and thus bigger sizes of the fragments and higher redundancy. For
example, we can see that for RS(11, 7) and RS(11, 6) we have the same size
of quorum, equal to 9, whereas the latter has more redundant information. As
a result, with a higher number of m (i.e., smaller k) we achieve higher levels
of fault-tolerance. The write latency seems to be less affected by the value of
k since the write operation does only encoding, and not decoding, while the
read operation does both. In conclusion, there appears to be a trade-off between
operation latency and fault-tolerance in the system: the further increase of k (and
thus lower fault-tolerance), the smaller the latency of read/write operations.

Fault-Tolerance. Figure 9 shows to which quorum group (0, 1, or 2) the
responding servers belong when only 1 reconfigurer exists. That is, Fig. 9 shows

Fig. 9. Quorum replies to reader6. Fig. 10. Reconfiguring DAP alternately
and 2 server fails.
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the quorum group that sends to reader6 every 1 s interval. Until the first 100 s of
each operation, quorum group is 0, e.g., all quorums were active. From that
moment on, the clients receive responses only from group 1, e.g., quorums
excluded server0. With the second kill, after 200 s, only the quorums included in
group 2 remain active. Figure 10 shows the read, write, and reconfig operation
latency as the number of reconfigurers increases. During each experiment, the
two server failures took place, but our system kept running without interrup-
tions.

4 Conclusions

As a general finding, achieving strong consistency is more costly than providing
weaker semantics as we experienced with Redis and Redis_W. However, the
performance gap is not prohibitively large and future optimizations of ARES
may close it enough so as to substantiate trading performance for consistency.
Compared to the atomic version of Cassandra, ADSM algorithms seem to
scale better, but lack behind in the throughput when dealing with small objects.
Both approaches seem to be affected by the object size, but ARES-EC suggests
that fragmentation may be the solution to this problem. Finally, we demon-
strated that ARES may handle efficiently failures in the system, and reconfigur-
ing from one DAP to another without service interruptions. Also, by examining
the fragmentation parameter, we exposed trade-offs between operation latency
and fault-tolerance in the system: the further increase of the parity (and thus
higher fault-tolerance), the larger the latency.

ARES, an algorithm that always offers provable guarantees, competes closely
and in many cases outperforms existing DSS solutions (even when offering weaker
consistency guarantees). It would be interesting to study how optimizations may
improve the performance of ARES. For example, fragmentation techniques as
presented in [12] may have a positive impact on the performance of the algorithm.
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