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Abstract. Proving to someone else the knowledge of a secret without
revealing any of its information is an interesting feature in cryptography.
The best solution to solve this problem is a Zero-Knowledge Proof (ZKP)
protocol.

Nurimisaki is a Nikoli puzzle. The goal of this game is to draw a kind
of abstract painting (“Nuri”) that represents the sea with some capes
(“Misaki”) of an island (represented by white cells). For this, the player
has to fulfill cells of a grid in black (representing the sea) in order to draw
some capes while respecting some simple rules. One of the specificity of
the rules of this game is that the cells called “Misaki” can only have one
white neighbour and all white cells need to be connected. In 2020, this
puzzle has been proven to be NP-complete.

Using a deck of cards, we propose a physical ZKP protocol to prove
that a player knows a solution of a Nurimisaki grid without revealing
any information about the solution.

Keywords: Zero-knowledge proof + Pencil Puzzle - Card-based
cryptography - Nurimisaki

1 Introduction

The democratization of computers and network systems has fuelled the virtu-
alization of interactions and processes such as communication, payments, and
elections. Proving the knowledge of some secret without revealing any bit of
information from that secret is crucial in our today’s society. This issue can be
applied to numerous contexts.
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For instance, a client would like to connect to a server via a password without
revealing the password. Another example is database management, where an
entity could ask if a piece of information is in a database without asking for
factual data. A third example can be given in the electronic voting system where
the voters want to be sure that the ballots are correctly mixed (without revealing
how the mix was done).

A cryptographic tool exists for all the previous examples, called a Zero-
Knowledge Proof (ZKP) protocol. It enables a prover P to convince a verifier
V that P knows a secret s without revealing anything other than it. A ZKP
protocol must verify the following three properties:

— Completeness: If P knows s then the protocol ends without aborting (mean-
ing that V is convinced that P has s);

— Soundness: If P does not have s then V will detect it;

— Zero-Knowledge: V learns nothing about s.

In practice, ZKP protocols are typically executed by computers. However,
their understanding is difficult for the uninitiated. We take a more direct app-
roach to the notion of ZKP and construct a protocol using physical objects like
playing cards and envelopes. It allows us to present the notion of ZKP proto-
cols without deep mathematical backgrounds and also to extend the existing
literature.

The first physical ZKP protocol [7] for a Sudoku grid was constructed using
a deck of cards. Since this novel protocol was devised, several teams in the world
have proposed physical ZKP protocols using a deck of cards for pencil puz-
zles, such as Sudoku [19,25], Akari [1], Takuzu [1], Kakuro [1,13], KenKen [1],
Makaro [2], Norinori [5], Slitherlink [11], Suguru [16], Nurikabe [17], Ripple
Effect [22], Numberlink [20], Bridges [21], Cryptarithmetic [8], Shikaku [23], and
Nonogram [3,18].

Why shall we propose a new card-based ZKP protocol for another Nikoli
puzzle? For us, it is similar to the question: Why shall we prove that a puzzle is
NP-complete? People want to know if a puzzle is NP-complete in order to know if
the puzzle is difficult or not for a computer to solve it. Card-based ZKP protocols
are quite similar; once a puzzle is shown to be NP-complete, a natural question
is: Can we design a physical ZKP protocol? This is an intellectual challenge
on the puzzle. Moreover, each puzzle has different rules and specificity, which
force us to imagine new physical ZKP techniques. For instance, consider a Nikoli
puzzle, Nurimisaki, which we will deal with in this paper; then, its rules combine
for the first time some connectivity, neighbourhood restriction, and straight line
with counting, as seen later. A previous work [24] (in Japanese, unpublished)
proposed a card-based ZKP protocol for Nurimisaki. Yet, the protocol is not
optimal since it prepares another grid to verify the rules (so the number of
cards is large). Moreover, elaborate but complex techniques are used (e.g., using
another grid to represent the in-spanning-tree of P’s solution). In contrast, our
protocol has a more direct approach with closer interaction to the real game.
Before giving our contributions, let us define the rules of the Nurimisaki puzzle.
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Fig. 1. Nurimisaki example (left) with its solution (right).

Nurimisaki Rules. Figure 1 shows a puzzle instance of Nurimisaki. The goal for
Nurimisaki puzzle is to color in black some cells on the grid, under the following
rules:

1. A cell with a circle is called a “Misaki”. A Misaki has only one cell of its
neighbours (vertically or horizontally) remaining white and the rest black.

2. The number written in a Misaki cell indicates the number of white cells in

straight line from the Misaki. If there is no number, any number of white cells

is allowed.

White cells without a circle cannot be a Misaki.

A 2 x 2 square cannot be composed of only black or white cells.

5. White cells are connected.

Ll

Nurimisaki puzzle was recently proven NP-complete in [9]; hence, it is a nat-
ural question to construct a physical ZKP protocol for this fun puzzle. Although
Goldwasser et al. [6] proved that any NP-complete problem has its corresponding
interactive ZKP protocol, simple physical ZKP protocols are always sollicited as
mentioned above.

Contributions. We propose a physical ZKP protocol that only uses cards and
envelopes. We rely on some classical existing card-based sub-protocols in order
to be able to construct our ZKP protocol. The main difficulty in this Nurim-
isaki game that seems to be simple, is that existing techniques proposed in the
literature since few years cannot be applied directly. The main trick is to find
an encoding that allows us to apply several sub-protocols in the right order to
obtain a secure ZKP protocol. For this, we propose an original way to combine
several techniques to design our ZKP protocol with a reasonable amount of cards
and manipulations.

QOutline. In Sect. 2, we introduce our encoding scheme using cards in order to
represent a gird of the game and a solution. We also give some sub-protocols that
are used in our construction. In Sect. 3, we give our ZKP protocol for Nurimisaki.
Before concluding in the last section, we give the security proof of our ZKP
protocol in Sect. 4.



288 L. Robert et al.

2 Preliminaries
We explain the notations and sub-protocols used in our constructions.

Cards and Encoding. The cards we use in our protocols consist of clubs @@ R

hearts @@ -+, and numbered cards -+, whose backs are identical .

We encode three colors {black, white, red} with the order of two cards as follows:

[&]0] — black, [O]&] — white, [Q[0] - red. (1)

We call a pair of face-down cards corresponding to a color according
to the above encoding rule a commitment to the respective color. We also use
the terms, a black commitment, a white commitment, and a red commitment.
We sometimes regard black and white commitments as bit values, based on the
following encoding scheme:

@@H 0, @@—» 1. (2)

For a bit x € {0,1}, if a pair of face-down cards satisfies the encoding (2), we
say that it is a commitment to x, denoted by .
——

x

We also define two other encoding [22,26]:

—  &-scheme: for x € Z/pZ, there are p cards composed of p — 1 Us and one &,
where the & is located at position (x + 1) from the left. For example, 2 in

7 /47 is represented as @@@@

— O-scheme: it is the same encoding as above but the © and & are reversed.
For instance, 2 in Z/4Z is represented as @@@@

2.1 Pile-Shifting Shuffle [15,26]

This shuffling action means to cyclically shuffle piles of cards. More for-
mally, given m piles, each of which consists of the same number of face-down
cards, denoted by (p1,Pa;,---,P,), applying a pile-shifting shuffle (denoted by

¢l - I-)) results in (Pyyqs Psjos - - > Popm):

d |||| H
SN~~~
ps+m

~—
P: P5+1 Pﬁz

where s is uniformly and randomly chosen from Z/mZ. Implementing a pile-
shifting shuffle is simple: we use physical cases that can store a pile of cards, such
as boxes and envelopes; a player (or players) cyclically shuffles them manually
until everyone (i.e., the prover P and the verifier V') loses track of the offset.
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2.2 Input-Preserving Five-Card Trick [12]

Given two commitments to a, b € {0, 1} based on the encoding rule (2), this sub-
protocol [4 12] reveals only the value of a Vb as well as restores commitments to

aandb - a\/b&

The original sub—protocol [4,12] was designed for computing AND (a A b),

but we adjust it to compute OR (a V b):

1.

Add helping cards and swap the two cards of the commitment to b so that
we have the negation b, as follows:

27 2] — (22 @ (2] CIaaTaTs)

a b a b

. Rearrange the sequence of cards and turn over the face-up cards as:

HENHENODDODEHEMNAEEEIHHEHEE
MCICICIE] 20?0?0177

Regarding cards in the same column as a pile, apply a pile-shifting shuffle to
the sequence:

HIE
HiE

Reveal all the cards in the first row.

(a) If it is || & | Q| Q||| (up to cyclic shifts), then a vV b = 0.

(b) If it is ||| V| | V| (up to cyclic shifts), then a V b = 1.

After turning over all the face-up cards, apply a pile-shifting shuffle.

Reveal all the cards in the second row; then, the revealed cards should include
exactly one @

Shift the sequence of piles so that the revealed @ is the leftmost card and
swap the two cards of the commitment to b to restore commitments to a
and b.

> 22z =]
HiEHE|E
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2.3 Mizuki-Sone Copy Protocol [14]
Given a commitment to a € {0, 1} along with four cards @@@@, the Mizuki-
Sone copy protocol [14] outputs two commitments to a:

212] [#]0]#]0] — [2]2][2] 2]

- _— ——

a a a

1. Turn all cards face-down and set the commitments as follows:

/\

3. Reveal the two above cards to obtain elther a or a as follows:
@-} .} @.}Q -}
(o8]~ f [ R EaE

2.4 How to Form a White Polyomino [17]

We introduce the generic method of [17] to address the connectivity constraint
(rule 5). Given a grid where all cells are black, it enables P to make white
connected cells, i.e., white-polyomino, without revealing anything to V. We first
describe two crucial sub-protocols: the chosen pile protocol and the 4-neighbor
protocol.

2. Apply a pile-shifting shuffle as follows

Chosen Pile Protocol [5]. The chosen pile protocol allows P to choose a pile of
cards without V knowing which one. This pile can be manipulated and all the
commitments are replaced to their initial order afterward.

This protocol is an extended version of the “chosen pile cut” proposed in [10].
Given m piles (py, P, - - -, P,,) With 2m additional cards, the chosen pile protocol
enables a prover P to choose the i-th pile p, (without revealing the index 1)
and revert the sequence of m piles to their original order after applying other
operations to p;.

1. Using m — 1 @s and one @, P places m face-down cards encoding i — 1
in the O-scheme (denoted by row 2) below the given piles, i.e., only the i-th
card is @ We further put m cards encoding 0 in the O-scheme (denoted by

row 3):
H|E B | |||| - ||||
N~~~

P: P2 P1 1

BREENE

~
~

P1+1

<—rovv2

«— row 3
4.

-]
i-HGH k&

Qe
w2
#[=[] 7
a-Ha-
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2. Considering the cards in the same column as a pile, apply a pile-shifting
shuffle to the sequence of piles.

3. Reveal all the cards in row 2. Then, exactly one @ appears, and the pile
above the revealed @ is the i-th pile (and hence, P can obtain p;). After
this step is invoked, other operations are applied to the chosen pile. Then,
the chosen pile is placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in row 2. (Note, therefore, that we
do not use the card @ revealed in Step 3.) Then, apply a pile-shifting shuffle.

5. Reveal all the cards in row 3. Then, one @ appears, and the pile above the
revealed @ is p;. Therefore, by shifting the sequence of piles (such that p;
becomes the leftmost pile in the sequence), we can obtain a sequence of piles
whose order is the same as the original one without revealing any information
about the order of the input sequence.

Sub-protocol: 4-Neighbor Protocol [17]. Given pg commitments placed on a p x ¢
grid, a prover P has a commitment in mind, which we call a target commitment.
The prover P wants to reveal the target commitment and another one that lies
next to the target commitment (without revealing their exact positions). Here,
a verifier V' should be convinced that the second commitment is a neighbor of
the first one (without knowing which one) as well as V' should be able to confirm
the colors of both the commitments. To handle the case where the target com-
mitment is at the edge of the grid, we place commitments to red (as “dummy”
commitments) in the left of the first column and below the last row to prevent
P from choosing a commitment that is not a neighbor. Thus, the size of the
expanded grid is (p 4+ 1) x (¢ 4+ 1). This sub-protocol proceeds as follows.

1. P and V pick the (p + 1)(¢ + 1) commitments on the grid from
left-to-right and top-to-bottom to make a sequence of commitments:
[207] [z]2] [2]2] 2] 2] - [2]2]

2. P uses the chosen pile protocol to reveal the target commitment.

3. P and V pick all the four neighbors of the target commitment. Since a pile-
shifting shuffle is a cyclic reordering, the distance between commitments are
kept (up to a given modulo). That is, for a target commitment (not at any
the edge), the possible four neighbors are at distance one for the left or right
one, and p+ 1 for the bottom or top one so that P and V' can determine the
positions of all the four neighbors.

4. Among these four neighbors, P chooses one commitment using the chosen
pile protocol and reveals it.

5. P and V end the second and first chosen pile protocols.

Forming White-Polyomino. Assume that there is a grid having p x ¢ cells. P
wants to arrange white commitments on the grid such that they form a white-
polyomino while V' is convinced that the placement of commitments is surely a
white-polyomino. The sub-protocol proceeds as follows.

1. P and V place a commitment to black (i.e., @@) on every cell and commit-
ments to red as mentioned above so that they have (p+1)(¢+1) commitments
on the board.
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2. P uses the chosen pile protocol to choose one black commitment that P wants

to change.

(a) V swaps the two cards constituting the chosen commitment so that it
becomes a white commitment (recall the encoding (1)).

(b) P and V end the chosen pile protocol to return the commitments to their
original positions.

3. P and V repeat the following steps exactly pg — 1 times.

(a) P chooses one white commitment as a target and one black commitment
among its neighbors using the 4-neighbor protocol; the neighbor is chosen
such that P wants to make it white.

(b) V reveals the target commitment. If it corresponds to white, then V
continues; otherwise V' aborts.

(¢) V reveals the neighbor commitment (chosen by P). If it corresponds to
black, then P makes the neighbor white or keep it black (depending on
P’s choice) by executing the following steps; otherwise V' aborts.

i. If P wants to change the commitment, P places face-down club-to-
heart pair below it; otherwise, P places a heart-to-club pair: —

or [2][?].
ii. Regarding cards in the same columﬁis a.pile, v a;ﬁii a pile-shifting
~ ?
shuffle to the sequence of piles: < > —
iii. V reveals the two cards in the secgd rg. If the Eve.aled right card
is @, then V swaps the two cards in the first row; otherwise V' does

nothing.
(d) P and V end the 4-neighbor protocol.

V is now convinced that all the white commitments represent a white-polyomino.
Therefore, this method allows a prover P to make a solution that only P has in
mind, guaranteed to satisfy the connectivity constraint.

2.5 Sum in Z [22]

We give a brief overview of the protocol described in [22] for the addition of
elements in Z/2Z with a result in Z. This allows to compute S = Y I ;
with S € Z and z; € Z/2Z for i € {1,...,n}. The idea is to compute the
sum inductively; when starting by the two first elements x; and x5, they are
transformed into 21 — r and x5 + r for uniformly random r € Z/27Z. Then xs +r
is revealed (no information about xs leaks since r is random), and the cards of
21 —r is shifted by xo +r positions to encode value (x1 —r)+ (z2 +7) = x1 + x2.
Note that this result is in Z/(p + 1)Z (or simply Z since the result is less than
p) for elements x1,x9 in Z/pZ.

3 ZKP Protocol for Nurimisaki

We present our ZKP protocol for Nurimisaki. Hereinafter, we consider an
instance of Nurimisaki as a rectangular grid of size p X q.
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3.1 Setup Phase

The verifier V' and the prover P place black commitments on all the cell of the
p % g grid and place red commitments (“dummy” commitments) around the grid
so that we have (p 4+ 1)(¢ + 1) commitments.

3.2 Connectivity Phase

P and V apply the protocol given in Sect.2.4: a white-polyomino is formed
according to P’s solution. Now, V reveals all the commitments corresponding
to Misaki to check that they are indeed white. After this phase, V is convinced
that white commitments are connected (rule 5).

3.3 Verification Phase

The verifier V' is now checking that the other rules are satisfied.

No 2x2 square (rule 4). We use an adapted verification phase of the one in [17] for
checking that 2 x 2 square are not composed of only white (black) commitments.
Note that for an initial grid p x ¢, there are (p —1)(g — 1) possible squares of size
2 x 2. Thus P and V consider each of those squares (in any order) and apply
the following:

1. P chooses a white commitment and a black one among the four commitments
via the chosen-pile protocol (Sect.2.4).

2. V reveals both commitments marked by P in the previous step. If there are
exactly a white commitment and a black one, V' continues; otherwise, abort.

Misaki (rule 1 and 2). V wants to check that each Misaki cell (cell with a circle)
has only one of its neighbours white and others black. Moreover, when a Misaki
has a number in it, V wants to check that the straight line formed by white cells
starting from the Misaki cell has the corresponding number of white cells.

P and V first consider Misaki cells with a number. For each Misaki cell (not
at a border) with a number ¢ in it, apply the following:

)

1. P and V add black commitments (i.e., “dummy” commitments) at the bor-
der of the grid. This ensures that we delimit correctly the number of white
commitments in a straight line.

2. For each of the four neighbours, P and V form a pile composed of i + 1
commitments for each direction (top, bottom, left, right).

— D2
1 1.2 3

TR~ @ ps
— Y2
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3. P and V puts numbered cards under each pile as follows:

4. P and V shuffle the piles and reveal the first commitment of each pile. If
there is exactly one commitment corresponding to white then V' continues.
Otherwise, V' aborts.

5. V reveals the next ¢ commitments of the pile with the first white commitment.
If there are only white commitments for the first ¢ — 1 commitments and a
black commitment for the last one, then V' continues; otherwise, aborts.

=]

After this step, V' is convinced that Misaki cells with a number are well-
formed. In the case where there is no number, the first step consists of forming a
pile with only one commitment. Hence, V' is convinced that Misaki cells without
a number satisfy only rule 1 but not rule 2 since any number of white cells could
form the straight line!.

No circle, no Misaki (rule 3). V needs to check that white cells without a circle
are not Misaki, meaning that any white cell of the grid has at least two of its
neighbours white. This rule is somewhat challenging to verify without leaking
information on the solution because the number and location of white cells are
part of the solution (and must not be publicly revealed).

If the targeted cell is black then there is nothing to verify since any configu-
rations could occur. Yet, if the targeted cell is white then there are at least (but
it could be more) two neighbours that are white. The idea is to set the value of
targeted cell being 5 if it is white and 0 if it is black. Then we add the neighbours
to it (white is 0, and black is 1). If the cell is black then the sum is always less
than or equal to 4 (which is permitted by the rules to have all black). But if the
cell is white then the permitted value for the sum is less than or equal to 7 (a
Misaki is equal to 8) for a targeted cell that is not at a border.

For a given cell, called targeted cell ¢;, we look at its neighbors (up to 4). The
idea of verifying that a white cell is not a Misaki is to first sum the four neighbors
(where a white cell is equal to 0 and a black cell is 1). Then by choosing another
encoding, the targeted cell can be equal to 5 for white and 0 for black. Finally,
adding the sum of the neighbors with ¢; gives at most 4 for black ¢; (which is
permitted by the rules) and at most 7 for white ¢; in a valid configuration and
8 or 9 for invalid configuration.

1. Copy all the commitments using the copy protocol (Sect.2.3). The number
of copies for a p x ¢ grid is 2(2pq — p — q);

2. Sum the four neighbours by considering that a white commitment is equal to
0 and a black commitment is equal to 1. The result is given in the O-scheme
(i.e., there are four @s and one @ at position corresponding to the result of
the sum).

! Note that we described the protocol for Misaki cell not at the border of the grid. If
a Misaki cell is at a border (but not a corner) then the 4-neighbours becomes the
3-neighbours and the protocol is the same (there will be only three piles instead of
four). For Misaki cells at a corner, P and V consider the 2-neighbours (thus only
two piles).
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For the targeted cell, add 3 @s in the middle of the commitment as:

white: [O]8] - [P O[OI[#] = 5
black: [#]0] ~ [#]O[O[T[T)= o0

White is now 5 and black is 0 in the &-scheme.
Sum the result of the two previous steps (the sum of the four neighbours and

the inner cell). The result is encoded in the O-scheme.

4

Reveal the last and penultimate cards. If a @ appears then abort; otherwise,
continue.

Security Proofs

Our protocol needs to verify three security properties given as theorems.

Theorem 1 (Completeness). If P knows the solution of a Nurimisaki grid,
then P can convince V.

Proof. First, notice that P convinces V in the sense that the protocol does not
abort which mean that all the rules are satisfied. The protocol can be split in
two: (1) the connectivity and (2) the verification phases.

(1)

(2)

Since P knows the solution, the white cells are connected and hence can
always choose a black commitment at step 2 to swap it to white. Notice
that there exists a proof for the connectivity in [17].

The verification of 2 x 2 square will not abort since if P has the solution then
for any given 2 x 2 square there always exist a white commitment and a black
commitment. For the Misaki rules, each Misaki cell has three of its neighbors
black and one white; thus, the first commitment of piles p1, po, p3, ps will
reveal exactly three black and one white commitments. Then, when looking
at pile p; of the first commitment corresponding to white, the number of
white commitments corresponds to the number in the inner cell. Thus the
protocol will continue. Finally, the non-Misaki rule is verified. Since P has
the solution, any white cell (with no circle in it) has at least two white
neighbors. Thus if the inner cell is white then the sum will start to 5 and
the maximal value is 7 because a solution has at least two whites so at
most two black commitments (of value 1 in this step). So the protocol will
continue and hence V' will be convinced that P has the solution. O

Theorem 2 (Soundness). If P does not provide a solution of the px q Nurim-
isaki grid, P is not able to convince V.

Proof. Suppose that P does not know the solution, hence at least one of the
rules is not verified. If the white cells are not connected then P cannot choose a
black commitment at step 2 hence V' will detect it. Notice that there is also the
proof of this phase in [17].
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If P does not have the solution, then one of the verification phase will fail.
We apply a case distinction for those verifications. Assume first that there is
a block of 2 x 2 square composed of only white (black) commitments, then P
cannot choose, during the chosen-pile protocol, two distinct commitments (i.e.,
a black and a white) thus the revealed commitments will attest to V that P does
not have the solution. Second, assume that a Misaki cell is not well-formed in
the sense that either (1) the number of white neighbour is not equal to 1 or that
(2) the number of white cells in straight line does not correspond to the number
of the Misaki cell. For (1) the neighbours are revealed (after a shuffle) so V' will
notice the number of white commitments; for (2) all the commitments next to
the white neighbour are revealed thus V will also notice if there is a flaw. The
last verification is for white cells which are not Misaki. It is equivalent of saying
that any white cell (without a circle in it) has at least two white neighbours. If a
white cell has only one white neighbour then during the sum process, then ¢; =5
(because the central cell is white) and the total for its neighbours is 3 (because
there are 3 black commitments and 1 white). The final sum is then equal to 8,
since V' will look at the last and penultimate card of the sum (corresponding to
a sum equal to 9 and 8) then V will detect that a white card is a Misaki. Notice
that a sum equals to 9 means the white cell is surrounded by 4 black cells. It is
not possible since white cells are connected. O

Theorem 3 (Zero-knowledge). V learns nothing about P’s solution of the
given grid G.

Proof. We use the same proof technique as in [7], namely the description of an
efficient simulator which simulates the interaction between an honest prover and
a cheating verifier. The goal is to produce an indistinguishable interaction from
the verifier’s view (with the prover). Notice that the simulator does not have
the solution but it can swap cards during shuffles. Informally, the verifier cannot
distinguish between two protocols, one that is run with the actual solution and
one with random commitments. The simulator acts as follows: The simulator
constructs a random connected white polyomino. During the 2 x 2 square veri-
fication, the simulator will swap cards to choose white and black commitments.
For the Misaki verification, the simulator swaps three commitments to black for
three piles and one to white for the last pile. The latter will also be modified
by the simulator to contain the correct numbers of white commitments (and the
last commitment to black). During the non-Misaki verification, when the sum is
computed, the simulator swaps the cards to always put @ cards in position 8
and 9 (for the cell not at the edge, but the latter is done the same way).

The simulated and real proofs are indistinguishable hence V' learns noth-
ing from the connectivity and verification phases. Finally, we conclude that the
protocol is zero-knowledge. a

5 Conclusion

We proposed a physical ZKP protocol for Nurimisaki that uses only cards and
envelopes. The most difficult part was to prove that cells are not Misaki without
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leaking their color. Of course, we combined this part with the rest of the verifi-
cations that are stated by other rules. This new approach clearly demonstrates
that showing that some cells do not have some properties is often more difficult
than proving an explicit property without leaking any information.
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