
Stéphane Devismes · Franck Petit · 
Karine Altisen · Giuseppe Antonio Di Luna · 
Antonio Fernandez Anta (Eds.)

LN
CS

 1
37

51 Stabilization, Safety, 
and Security 
of Distributed Systems
24th International Symposium, SSS 2022
Clermont-Ferrand, France, November 15–17, 2022
Proceedings



Lecture Notes in Computer Science 13751

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558


Stéphane Devismes · Franck Petit ·
Karine Altisen · Giuseppe Antonio Di Luna ·
Antonio Fernandez Anta (Eds.)

Stabilization, Safety,
and Security
of Distributed Systems
24th International Symposium, SSS 2022
Clermont-Ferrand, France, November 15–17, 2022
Proceedings



Editors
Stéphane Devismes
University of Picardie Jules Verne
Amiens, France

Karine Altisen
Grenoble Alpes University
Saint-Martin-d’Hères, France

Antonio Fernandez Anta
IMDEA Networks Institute
Madrid, Spain

Franck Petit
Sorbonne University
Paris, France

Giuseppe Antonio Di Luna
Sapienza University of Rome
Rome, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-21016-7 ISBN 978-3-031-21017-4 (eBook)
https://doi.org/10.1007/978-3-031-21017-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8032-9732
https://orcid.org/0000-0001-8344-1853
https://orcid.org/0000-0001-6501-2377
https://orcid.org/0000-0002-0948-7842
https://orcid.org/0000-0002-7150-0972
https://doi.org/10.1007/978-3-031-21017-4


Preface

The papers in this volume were presented at the 24th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), held during November
15–17, 2022 in Clermont-Ferrand, France.

SSS is an international forum for researchers and practitioners in the design and
development of distributed systems with a focus on systems that are able to provide
guarantees on their structure, performance, and/or security in the face of an adverse
operational environment.

SSS started as a workshop dedicated to self-stabilizing systems, the first two editions
were held in 1989 and 1995, in Austin (USA) and Las Vegas (USA), respectively. From
then, the workshop was held biennially until 2005 when it became an annual event.
It broadened its scope and attracted researchers from other communities. In 2006, the
name of the conference was changed to the International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS).

This year the Program Committee was organized into three tracks reflecting major
trends related to the conference: (i) Self-stabilizing Systems: Theory and Practice, (ii)
Concurrent and Distributed Computing: Foundations, Fault-tolerance, and Security, and
(iii) Dynamic, Mobile, and Nature-Inspired Computing.

We received 58 submissions. Each submission was reviewed in a double blind
fashionbyat least threeProgramCommitteememberswith thehelpof external reviewers.
Out of the 58 submitted papers, four were (reviewed) invited papers and 17were selected
as regular papers. The proceedings also included seven brief announcements. Selected
papers from the symposiumwill be published in a special issue of Theoretical Computer
Science (TCS) journal.

We are grateful to the external reviewers for their valuable and insightful comments.
We also thank the members of the Steering Committee for their invaluable advice.
We gratefully acknowledge the Local Organization Chairs, Anaïs Durand and Pascal
Lafourcade, both from Université Clermont Auvergne (France) for their time and
invaluable effort that greatly contributed to the success of this symposium. Last but
not least, on behalf of the Program Committee, we thank all the authors who submitted
their work to SSS 2022.

Finally, the process of paper submission, selection, and compilation in the
proceedings was greatly simplified due to the strong and friendly interface of the
EasyChair system (http://www.easychair.org).

November 2022 Karine Altisen
Stéphane Devismes

Giuseppe Antonio Di Luna
Antonio Fernández Anta

Franck Petit

http://www.easychair.org
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Invited Paper: Simple, Strict, Proper,
Happy: A Study of Reachability in

Temporal Graphs

Arnaud Casteigts1(B), Timothée Corsini1, and Writika Sarkar2

1 LaBRI, CNRS, Univ. Bordeaux, Bordeaux INP, Talence, France
{arnaud.casteigts,timothee.corsini}@labri.fr
2 Chennai Mathematical Institute, Chennai, India

writika@cmi.ac.in

Abstract. Dynamic networks are a complex topic. Not only do they
inherit the complexity of static networks (as a particular case) while
making obsolete many techniques for these networks; they also happen
to be deeply sensitive to specific definitional subtleties, such as strictness
(can consecutive edges of a same path be used at the same time instant?),
properness (can adjacent edges be present at the same time?) and simple-
ness (can an edge be present more than once?). These features, it turns
out, have a significant impact on the answers to various questions, which
is a frequent source of confusion and incomparability among results. In
this paper, we explore the impact of these notions, and of their interac-
tions, in a systematic way. Our conclusions show that these aspects really
matter. In particular, most of the combinations of the above properties
lead to distinct levels of expressivity of a temporal graph in terms of
reachability. Then, we advocate the study of an extremely simple model
– happy graphs – where these distinctions vanish.

1 Introduction

In the context of this paper, a temporal graph is a labeled graph G = (V,E, λ)
where V is a finite set of vertices, E ⊆ V × V a set of directed or undirected
edges (only undirected, in this paper), and λ : E → 2N a function assigning
at least one time label to every edge, interpreted as presence times. These
graphs can model various phenomena, ranging from dynamic networks – net-
works whose structure changes over the time – to dynamic interactions over
static (or dynamic) networks. They have found applications in fields as vari-
ous as biology, transportation, social networks, robotics, scheduling, distributed
computing, and self-stabilization. Although more complex formalisms have been
defined and extensively studied (see e.g. [13] or [27]), several features of temporal
graphs remain not well understood even in very restricted settings.

A fundamental aspect of temporal graphs is reachability. The reachability
of a temporal graph G is commonly characterized in terms of the existence of

The full version of this paper is available at https://arxiv.org/abs/2208.01720.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-21017-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21017-4_1&domain=pdf
https://arxiv.org/abs/2208.01720
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4 A. Casteigts et al.

temporal paths; i.e., path which traverses edges in chronological order. There
has been a large number of studies related to temporal reachability in the
past decade, seen from various perspectives, e.g. k-connectivity and separa-
tors [18,23,26], components [2,4,6,28], feasibility of distributed tasks [3,8,13,24],
schedule design [10], data structures [9,11,28,30], reachability minimization [20],
reachability with additional constraints [11,14], temporal spanners [2,4,7,15],
path enumeration [21], random graphs [5,16], exploration [19,22,25], and tem-
poral flows [1,29], to name a few (many more exist). Over the course of these
studies, it has become clear that temporal connectivity differs significantly from
classical reachability in static graphs. To start with, it is non-transitive, which
implies that two temporal paths (also called journeys) are not, in general,
composable, and consequently, connected components do not form equivalence
classes. This explains, in part, why many tractable problems in static graphs
become hard when transposed to temporal graphs. Further complications arise,
such as the conceptual impact of having an edge appearing multiple times, and
that of having adjacent edges appearing at the same time. These aspects, while
innocent-looking, have a deep impact on the answers to many structural and
algorithmic questions.

In this paper, we take a step back, and examine methodically the impact
of such aspects; in particular strictness (can consecutive edges of a same path
be used at the same time instant?), properness (can adjacent edges be present
at the same time?) and simpleness (can an edge have more than one presence
times?) in the case of undirected temporal graphs. We look at these aspects
from the point of view of temporal reachability. The central tool is the notion
of closure of journeys, defined as the static directed graph where an arc exists
if and only if a journey exists in the original temporal graph. It turns out that
each of these aspects has a strong impact on reachability. Precisely, we prove a
number of separations (four) between the sets of closures that such combinations
(or settings) can produce. We also present three constructions that transform
temporal graphs from a certain setting into another, while preserving various
aspects of its reachability. By combining the separations and transformations
with arguments of containment among temporal graph classes, we obtain an
almost complete hierarchy of expressivity of these settings in terms of closures.

All these aspects are a frequent source of confusion and of incomparability
of results in the literature. Since many basic questions remain unresolved at
this stage, we advocate the study of a particular setting, called happy temporal
graphs, where all the above subtleties vanish. To motivate further research in this
direction, we show that happy graphs, despite being the least expressive setting,
remain general enough to capture several negative results from the literature, in
particular, the non-existence of o(n2)-sparse temporal spanners and the compu-
tational hardness of finding maximum temporal components. We conclude with
a list of open questions related to happy graphs, and to some missing relations
in the above hierarchy.

The paper is organized as follows. In Sect. 2, we give some definitions and
motivation. In Sect. 3, we present the separations and the transformations,
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together with the resulting hierarchy. In Sect. 4, we focus on the particular case
of happy temporal graphs. Finally, we conclude in Sect. 5 with some remarks
and open questions.

2 Temporal Graphs

Given a temporal graph G, the static graph G = (V,E) is called the footprint
of G. Similarly, the static graph Gt = (V,Et) where Et = {e ∈ E | t ∈ λ(e)}
is the snapshot of G at time t. A pair (e, t) such that e ∈ E and t ∈ λ(e) is a
contact (or temporal edge). The range of λ is called the lifetime of G, and τ its
length. A temporal path (or journey) is a sequence of contacts 〈(ei, ti)〉 such that
〈ei〉 is a path in G and 〈ti〉 is non-decreasing.

A central concept in temporal graphs is the one of temporal reachability,
which defines reachability in terms of temporal paths. This relation can be cap-
tured by the closure of journeys [6], i.e. a static directed graph closure(G) =
(V,Ec), such that (u, v) ∈ Ec if and only if u can reach v by a journey in G. A
graph G is temporally connected if all the vertices can reach each other at least
once. The class of temporally connected graphs (TC) is arguably one of the most
basic classes of temporal graphs. The distributed community is perhaps more
familiar with TCR, its infinite lifetime analog where temporal connectivity is
achieved infinitely often (i.e. recurrently).

2.1 Strictness/Properness/Simpleness

The above definitions can be restricted in various ways. In particular, one can
identify three restrictions which are common in the literature, although they are
sometimes considered implicitly and/or under various names:

– Strictness: A temporal path 〈(ei, ti)〉 is strict if 〈ti〉 is increasing.
– Properness: A temporal graph is proper if λ(e) ∩ λ(e′) = ∅ whenever e and e′

are incident to a same vertex.
– Simpleness: A temporal graph is simple if λ is single-valued; i.e., every edge

has a single presence time.

Strictness is perhaps the easiest way of accounting for non-zero traversal
time for the edges. Without such restriction (i.e., in the non-strict setting),
a journey could use an arbitrary number of consecutive edges having the same
time label, whereas this is not allowed for strict journeys (the times must strictly
increase). The notion of properness is related to the one of strictness, although
not equivalent. Properness forces all the journeys to be strict, because adjacent
edges always have different time labels. However, if the graph is non-proper, then
considering strict or non-strict journeys does have an impact.

Application-wise, proper temporal graphs arise naturally in some distributed
settings, when the contacts correspond to mutually exclusive pairwise interac-
tions (such as with population protocols). Proper graphs also have the advantage
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that λ induces a proper coloring of the contacts (interpreting the labels as col-
ors). Finally, simpleness naturally accounts for distributed scenarios where two
entities interact only once. It is somewhat unlikely that a real-world system has
this property; however, this restriction has been extensively considered in well-
known areas (e.g. in gossip theory), and these graphs capture many interesting
features of general temporal graphs.

Note that simpleness and properness are properties of the graphs, whereas
strictness is a property of the journeys. Therefore, one may either consider a
strict or a non-strict setting for the same temporal graph. The three notions (of
strictness, simpleness, and properness) interact in subtle ways, these interactions
being a frequent source of confusion and incomparability among results. Before
focusing on these interactions, let us make a list of the possible combinations.
The naive cartesian product of these restrictions leads to eight combinations.
However, not all of them are meaningful, since properness removes the distinction
between strict and non-strict journeys. Overall, this results in six meaningful
combinations, illustrated in Fig. 1.

– Non-proper, non-simple, strict (1)
– Non-proper, non-simple, non-strict (2)
– Non-proper, simple, strict (4)
– Non-proper, simple, non-strict (5)
– Proper, non-simple (3)
– Proper, simple (= happy) (6)

Happy
(6)

Simple
(4)

(5)

Proper
(3)

Strict
(1)

(2)
Non-strict

Fig. 1. Settings resulting from combining the three properties

In the name of the settings, “non-proper” refers to the fact that proper-
ness is not required, not to the fact that it is necessarily not satisfied. In other
words, proper graphs are a particular case of non-proper graphs, and similarly for
“non-simple”, as simple graphs are also a particular case of non-simple graphs.
Thus, whenever non-proper or non-simple graphs are considered, we will omit
this information from the name. For instance, setting (1) will be referred to as
the (general) strict setting. We do not use this terminological simplification for
strictness, as it does not correspond to different temporal graph classes and may
actually result in two orthogonal settings.

2.2 Does It Really Matter? (Example of Spanners)

While innocent-looking, the choice for a particular setting may have tremendous
impacts on the answers to basic questions. For illustration, consider the spanner
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problem. Given a graph G = (V,E, λ) such that G ∈ TC, a temporal spanner of
G is a graph G′ = (V,E′, λ′) such that G′ ∈ TC, E′ ⊆ E, and for all e in E′,
λ′(e) ⊆ λ(e). In other words, G′ is a temporally connected spanning subgraph
of G. A natural goal is to minimize the size of the spanner, either in terms of
number of labels or number of underlying edges. More formally,

Min-Label Spanner
Input: A temporal graph G, an integer k
Output: Does G admit a temporal spanner with at most k contacts?

Min-Edge Spanner
Input: A temporal graph G, an integer k
Output: Does G admit a temporal spanner of at most k edges (keeping all
their labels)?

The search and optimization versions of these problems can be defined anal-
ogously. Observe that, unlike spanners in static graphs, this definition does not
consider stretch factors, due to the fact that it is not even guaranteed that small
spanners exist without additional constraints. In the following, we illustrate the
impact of the notions of strictness, simpleness, and properness (and their inter-
actions) using such problems. The impact of strictness is pretty straightforward.
Consider the graph G1 on Fig. 2. If non-strict journeys are allowed, then this
graph admits G2 as a spanner, this spanner being optimal for both versions of
the problem (3 labels, 3 edges). Otherwise, the minimum spanners are bigger
(and different) for both versions: G3 minimizes the number of labels (4 labels,
4 edges), while G4 minimizes the number of edges (3 edges, 5 labels). If strict-
ness is combined with non-properness, then there exist a pathological scenario
(already identified in [26]) where the input is a complete temporal graph (see G5,
for example) no edges of which can be removed without breaking temporal con-
nectivity! Observe that G5 is also a simple temporal graph. Independently from
this particular scenario, simpleness has strong consequences. For example, if the
input graph is simple and proper, then it cannot admit a spanning tree (i.e. a
spanner of n−1 edges) and requires at least 2n−4 edges (or labels, equivalently,
since the graph is simple) [12]. If the input graph is simple and non-proper, then
it does not admit a spanning tree if strictness is required, but it does admit
one otherwise if and only if at least one of the snapshots is a connected graph.
Finally, none of these affirmations hold in general for non-simple graphs.

1,3

2,3 1,2

1,3

3

3

3

1

2 2

1

1,3

2

1,3

1

1 1

1

11

G1 G2 G3 G4 G5

Fig. 2. Some temporal graphs on four vertices
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If the above discussion seems confusing to the reader, it is not because we
obfuscated it. The situation is intrinsically subtle. In particular, one should bear
in mind the above subtleties whenever results from different settings are com-
pared with each other. To illustrate such pitfalls, let us relate a recent mistake
(fortunately, without consequences) that involved one of the authors. In [4],
Axiotis and Fotakis construct a (non-trivial) infinite family of temporal graphs
which do not admit o(n2)-sparse spanners. Their construction is given in the
setting of simple temporal graphs, with non-proper labeling and non-strict jour-
neys allowed. The same paper actually uses many constructions formulated in
this setting, and a general claim is that these constructions can be adapted to
proper graphs (and so strict journeys). Somewhat hastily, the introduction of [16]
infers that the counterexample from [4] holds in the same model as in [16], which
is that of proper and simple temporal graphs. (A similar comment holds for the
introduction of [15]). The pitfall is that, for some of the constructions in [4], giv-
ing up on non-properness (and non-strictness) is only achievable at the cost of
using multiple labels per edge – a conclusion that we reached after several failed
attempts. To be fair, the authors of [4] never claimed that these adaptations
could preserve simpleness, so their claim is actually correct.

Apart from illustrating the inherent subtleties of these notions, the previ-
ous observations imply that the question of worst-case instances for temporal
spanners in temporal graphs that are both proper and simple was in fact still
open. In Sect. 4, we show that the spanner construction from [4] can indeed be
adaptated to proper and simple graphs.

2.3 Happy Temporal Graphs

A temporal graph G = (V,E, λ) is happy if λ is both single-valued and locally
injective (no two adjacent edges have the same presence time); in other words,
if it is both simple and proper. These graphs have sometimes been referred to as
simple temporal graphs without further mention of their proper nature, which
the present paper argues is insufficiently precise. Happy graphs are “happy” for
a number of reasons. First, the distinction between strict journeys and non-strict
journeys can be safely ignored (due to properness), and the distinction between
contacts and edges can also be ignored (due to simpleness). Clearly, these restric-
tions come with a loss of expressivity, but this does not prevent happy graphs
from being relevant more generally in the sense that negative results carry on
by containment of happy graphs in more general settings. For instance, if a
certain substructure – say, a particular kind of spanner – is not guaranteed in
happy graphs, then it is also not guaranteed in general. Similarly, if a prob-
lem is computationally hard for happy graphs, then it is so in general. Thus, it
seems good practice to try to prove negative results in happy graphs, whenever
possible. Positive results, on the other hand, are not generally transferable; in
particular, a hard problem in general temporal graphs could become tractable
in happy graphs. This being said, if a certain graph contains a happy subgraph,
then whatever pattern can be found in the latter also exists in the former, which
enables some form of transferability for structural results.
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In fact, happy graphs coincide with a vast body of literature. Many studies
in gossip theory consider the same restrictions, and the so-called edge-ordered
graphs [17] can also be seen as a particular case of happy graphs. In addition,
a number of existing results in temporal graphs, independently from these two
fields, actually consider the same restrictions. Finally, up to time-distortion that
preserve the local ordering of the edges, the number of happy graphs on a certain
number of vertices is finite – a convenient property for verifying experimentally
that certain properties hold for all happy graphs of a certain size.

The above arguments, together with the fact that many basic questions
remain unsolved even in this restricted model, makes happy graphs a compelling
class of temporal graphs to be studied in the current state of knowledge.

3 Expressivity in Terms of Reachability

As already said, a fundamental aspect of temporal graphs is the reachability
induced by temporal paths. There are several ways of characterizing the extent
to which two temporal graphs G1 and G2 have similar reachability. The first
three, below, are presented in gradual order of strength. The fourth is weaker.

Definition 1 (Closure equivalence). Let G1 and G2 be two temporal graphs
built on the same set of vertices. These graphs are closure-equivalent if
closure(G1) 	 closure(G2) (i.e. both closures are isomorphic). By abuse of lan-
guage, we say that G1 and G2 have the “same” closure.

Definition 2 (Support equivalence). Let G1 and G2 be two temporal graphs
built on the same set of vertices. These graphs are support-equivalent if for
every journey in either graph, there exists a journey in the other graph whose
underlying path goes through the same sequence of vertices. By abuse of language,
we say that both journeys have the “same” underlying path.

Definition 3 (Bijective equivalence). Let G1 and G2 be two temporal graphs
built on a same set of vertices. These graphs are bijectively equivalent if there is
a bijection σ between the set of journeys of G1 and that of G2, and σ is support-
preserving (the journeys in bijection have the same underlying path).

Definition 4 (Induced-closure equivalence). Let G1 and G2 be two temporal
graphs built on vertices V1 and V2, respectively, with V1 ⊆ V2. G2 is induced-
closure equivalent to G1 if closure(G2)[V1] 	 closure(G1). In other words, the
restriction of closure(G2) to the vertices of V1 is isomorphic to closure(G1).

Observe that bijective equivalence implies support-equivalence, which implies
closure equivalence, which implies induced-closure equivalence. Furthermore,
support-equivalence forces both footprints to be the same (the converse is not
true). In this section, we show that some of the settings presented in the previ-
ous section differ in terms of reachability, whereas others coincide. We first prove
a number of separations, by constructing temporal graphs in a setting, whose
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closure cannot be obtained in another setting. Then, we present three trans-
formations that establish various levels of equivalences. Finally, we infer more
relations by combining separations and transformations, together with further
discussions. A complete diagram illustrating all the relations is given in the end
of the section (Fig. 3 on page 12).

3.1 Separations

In view of the above discussion, a separation in terms of closure is pretty general,
as it implies a separation for the two stronger forms of equivalences (support-
preserving and bijective ones). Before starting, let us state a simple lemma used
in several of the subsequent proofs.

Lemma 1. Unless strict journeys are required, if two vertices are at distance
two in the footprint, then at least one of them can reach the other (i.e. the
closure must have at least one arc between these vertices).

3.1.1 “Simple & Strict” vs. “Strict”

Lemma 2. There is a graph in the “non-simple & strict” setting whose closure
cannot be obtained from a graph in the “simple & strict” setting.

Proof. Consider the following non-simple graph G (left) in a strict setting and the
corresponding closure (right). We will prove that a hypothetical simple temporal
graph H with same closure as G cannot be built in the strict setting. First,
observe that the arc (a, c) in closure(G) exists only in one direction. Thus, a and
c cannot be neighbors in H. Since H is simple and the journeys are strict (and
a has no other neighbors in closure(G)), the arc (a, c) can only result from the
label of ab being strictly less than bc. The same argument holds between bc and
cd with respect to the arc (b, d) in closure(G). As a result, the labels of ab, bc,
and cd must be strictly increasing, which is impossible since (a, d) does not exist
in closure(G).

G =
a b c d1 1,2 2

closure(G) =

a b
c d


�
As simple graphs are a particular case of non-simple graphs, the following

corollary follows.

Corollary 1. The “simple & strict” setting is strictly less expressive than the
“strict” setting in terms of closure.
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3.1.2 “Non-strict” vs. “Simple & Strict”
Lemma 3. There is a graph in “simple & strict” whose closure cannot be
obtained from a graph in “non-strict”.

Proof. Consider the following simple temporal graph G (left) in a strict setting
and the corresponding closure (right). Note that a and c are not neighbors in
the closure, due to strictness. For the sake of contradiction, let H be a temporal
graph whose non-strict closure is isomorphic to that of G. First, observe that
the footprint of H must be isomorphic to the footprint of G, as otherwise it
is either not connected or complete. Call b the vertex of degree two in H. If
λH(ab) �= λH(bc), then either a can reach c or c can reach a, and if λH(ab) =
λH(bc), then both can reach each other through a non-strict journey. In both
cases, closure(H) contains more arcs than closure(G).

G =
a b c1 1

closure(G) =
a b c


�

3.1.3 “Simple & Non-strict” vs. “Proper”
Lemma 4. There is a proper graph whose closure cannot be obtained from a
simple graph in the non-strict setting.

Proof. Consider the following proper temporal graph G (left). Its closure (right)
is a graph on four vertices, with an edge between any pair of vertices except a
and d (i.e., a diamond). For the sake of contradiction, let H be a simple temporal
graph in the non-strict setting, whose closure is isomorphic to that of G. First,
observe that no arcs exist between a and d in the closure, thus a and d must
be at least at distance 3 in the footprint (Lemma 1), which is only possible if
the footprint is a graph isomorphic to P4 (i.e. a path graph on four vertices)
with endpoints a and d. Now, since {a, b, c} is a clique in the closure (whatever
the way identifiers b and c are assigned among the two remaining vertices), they
must be temporally connected in H, which forces that t1 = t2 (otherwise both
edges could be travelled in only one direction). Similarly, the fact that {b, c, d}
is a clique in the closure forces t2 = t3. As a result, there must be a non-strict
journey between a and d, which contradicts the absence of arc between a and d
in the closure.

G =
a b c d2 1,3 2

closure(G) =

a b
c d


�
The next corollary follows by inclusion of proper graphs in the non-strict setting.

Corollary 2. The “simple & non-strict” setting is strictly less expressive than
the “non-strict” setting in terms of closure.
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3.1.4 “Simple & Proper (i.e. Happy)” vs. “Simple & Non-strict”
Lemma 5. There is a graph in the “simple & non-strict” setting whose closure
cannot be obtained from a happy graph.

Proof. Consider the following simple temporal graph G (left) in a non-strict
setting and the corresponding closure (right). For the sake of contradiction, let
H be a happy temporal graph whose closure is isomorphic to that of G.

G =

a

b c d e

1 1

2 3 2

closure(G) =

a

b c d e

Since a is not isolated in the closure, it has at least one neighbor in H. Vertices
b and e cannot be such neighbors, the arc being oneway in the closure, so its
neighbors are either c, d, or both c and d. Wlog, assume that c is a neighbor (the
arguments hold symmetrically for d), we first prove an intermediate statement

Claim. The edge bd does not exists in the footprint of H.

Proof (by contradiction). If bd ∈ H, then de /∈ H, as otherwise d and e would
be at distance 2 and share at least one arc in the closure (Lemma 1). However,
e must have at least one neighbor, thus ce ∈ H, and by Lemma 1 again bc /∈ H.
At this point, the footprint of H must look like the following graph, in which
the status of ad and cd is not settled yet.

a

b c d e

In fact, ad must exist, as otherwise there is no way of connecting d to a and
a to d. Also note that the absence of (e, a) in the closure forces λ(ac) < λ(ce)
(remember that H is both proper and simple), which implies that no journey
exists from e to d unless cd is also added to H with a label λ(cd) > λ(ce). In
the opposite direction, d needs that λ(ad) < λ(ac) to be able reach e. Now, c
needs that λ(cd) < λ(bd) to reach b. In summary, we must have λ(ad) < λ(ac) <
λ(ce) < λ(cd) < λ(bd), which implies that b cannot reach c. 
�

By this claim, bd /∈ H, thus bc ∈ H and consequently cd /∈ H (by Lemma 1).
From the absence of (b, a) in the closure, we infer that λ(bc) > λ(ac). In order
for b to reach d, we need that cd exists with label λ(cd) > λ(bc). To make d to b
mutually reachable, there must be an edge ad with time λ(ad) < λ(ac). Now, the
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only way for c to reach e is through the edge de, and since there is no arc (e, a),
its label must satisfy λ(de) > λ(ad). Finally, c can reach e (but not through a),
so λ(de) > λ(cd) and c cannot reach e, a contradiction. 
�

By inclusion of happy graphs in the “simple & non-strict” setting, we have

Corollary 3. The “simple & proper (i.e. happy)” setting is strictly less expres-
sive than the “simple & non-strict” setting in terms of closure.

3.2 Transformations

In this section, we present three transformations. First, we present a transfor-
mation from the general non-strict setting to the setting of proper graphs, called
the dilation technique. Since proper graphs are contained in both the non-strict
and strict setting, this transformation implies that the strict setting is at least as
expressive as the non-strict setting. This transformation is support-preserving,
but it suffers from a significant blow-up in the size of the lifetime. Another
transformation called the saturation technique is presented from the (general)
non-strict setting to the (general) strict setting, which is only closure-preserving
but preserves the size of the lifetime. Finally, we present an induced-closure-
preserving transformation, called the semaphore technique, from the general
strict setting to happy graphs. If the original temporal graph is non-strict, one
can compose it with one of the first two transformations, implying that all tem-
poral graphs can be turned into a happy graph whose closure contains that of
the original temporal graph as an induced subgraph, which makes happy graphs
universal in a weak sense. Due to space limitations, the content of the section is
available only in the full version of the paper.

3.3 Summary and Discussions

Let S1 and S2 be two different settings, we define an order relation  so that
S1  S2 means that for any graph G1 in S1, one can find a graph G2 in S2 such
that closure(G1) 	 closure(G2). We write S1 ≺� S2 if the containment is strict
(i.e., there is a graph in S2 whose closure cannot be obtained from a graph in
S1). Finally, we write S1 ≈ S2 if both sets of closures coincide. Several relations
follow directly from containment among graph classes, e.g. the fact that simple
graphs are a particular case of non-simple graphs. The above separations and
transformations also imply a number of relations, and their combination as well.
For example, proper graphs are contained both the strict and non-strict settings,
and since there is a transformation from non-strict graphs (in general) to proper
graphs, we have the following striking relation:

Corollary 4. “Proper” ≈ “non-strict”.

Similarly, combining the fact that “simple & non-strict” is contained in “non-
strict”, and there exists a closure-preserving (in fact, support-preserving) trans-
formation from “non-strict” to “proper”, we also have that
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Corollary 5. “Simple & non-strict” ≺� “proper”.

Finally, the fact that there is a closure-preserving transformation from “non-
strict” to “strict” (the saturation technique), and some closures from “simple &
strict” are unrealizable in “non-strict” (by Lemma 3), we also have

Corollary 6. “Non-strict” ≺� “strict”.

A summary of the relations is shown in Fig. 3, where green thick edges repre-
sent the transformations that are support-preserving, green thin edges represent
transformations that are closure-preserving, red edges with a cross represent sep-
arations (i.e. the impossibility of such a transformation), black dashed edges rep-
resent the induced-closure-preserving transformation to happy graphs. Finally,
inclusions of settings resulting from containment of graph classes are depicted
by short blue edges. Some questions remain open. In particular,

Fig. 3. Separations, transformations, and inclusions among settings. (Color figure
online)

Question 1. Does “non-strict”  “simple & strict”? In other words, is there a
closure-preserving transformation from the latter to the former?

By Lemma 3, we know that both settings are not equivalent, but are they
comparable? If not, a similar question holds for “simple & non-strict”:

Question 2. Does “simple & non-strict”  “simple & strict”? In other words, is
there a closure-preserving transformation from the latter to the former?

To conclude this section, Fig. 4 depicts a hierarchy of the settings ordered by
the above relation ; i.e. by the sets of closures they can achieve.



Invited Paper: Simple, Strict, Proper, Happy: A Study of Reachability 15

Fig. 4. Ordering of temporal graph settings by sets of realizable closures.

4 More Facts About Happy Temporal Graphs

From the previous section, happy graphs are the least expressive setting. In this
section, however, we argue that they remain expressive enough to strengthen
existing negative results for well-studied problems. First, we show that the con-
struction from [4] can be made happy, which implies that o(n2)-sparse spanners
do not always exist even in happy graphs. We also show that the reduction from
clique to maximum components in [6] can be made happy, which implies that
finding maximum components is NP-hard problem even in happy graphs. Due to
space limitations, the content of the section is available only in the full version
of this paper.

5 Concluding Remarks and Open Questions

This paper explored the impact of three particular aspects of temporal graphs:
strictness, properness, and simpleness. We showed, through a number of sepa-
rations, that these aspects have a concrete impact on reachability. On the other
hand, our results imply the striking fact that the “proper” setting is as expressive
as the “non-strict” setting. Some relations remain unknown, such as the relative
status of the “non-strict” setting and the “simple & strict” setting.

Clearly, happy graphs are the most basic setting. Yet, several fundamental
questions remain open about them. In particular, our adaptation of Axiotis and
Fotakis result implies that spanners of size o(n2) do not always exist in happy
graphs. On the positive side, spanners of size O(n log n) always exist when the
footprint is a clique [15], which raises the following natural question.

Question 3 (also in [15]). Do happy graphs always admit spanners of size O(n)
when the footprint is a clique? If so, do they admit spanners of size 2n − 3?

On the algorithmic side, two independent results [2,4] establish that Min-
Label Spanner is hard in general temporal graphs (indeed, APX-hard). How-
ever, the techniques do not seem to carry over to happy graphs (at least, not
straightforwardly), which suggests the following important question:



16 A. Casteigts et al.

Question 4. Is Min-Edge Spanner NP-hard in happy graphs? Note that Min-
Edge Spanner and Min-Label Spanner coincide in this case.

Let us now state some questions related to the reachability graphs themselves:

Question 5 (Realizability of a closure). Given a static digraph G, how hard is
it to decide whether G is the closure of some temporal graph?

Question 6 (Characterization of the closures). Characterize the set of static
digraphs that are the closure of some temporal graph.

Questions 5 and 6 can be declined into several versions, one for each setting.
To conclude, the work in this paper considered only temporal graphs which are
undirected. It would be interesting to see if the expressivity of directed temporal
graphs shows similar separations and transformation.

Question 7 (Directed temporal graphs). Does the expressivity of directed tem-
poral graphs admit similar separations and transformations as in the case of
undirected temporal graphs?
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7. Bilò, D., D’Angelo, G., Gualà, L., Leucci, S., Rossi, M.: Sparse temporal spanners
with low stretch. arXiv preprint arXiv:2206.11113 (2022)

8. Bramas, Q., Tixeuil, S.: The complexity of data aggregation in static and dynamic
wireless sensor networks. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS,
vol. 9212, pp. 36–50. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21741-3 3

9. Brito, L.F.A., Albertini, M.K., Casteigts, A., Travençolo, B.A.N.: A dynamic data
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Abstract. This paper considers perpetual exploration of anonymous
cactus graphs with distinguishable cycles by a single mobile agent
under the restriction that nodes have no storage (e.g., whiteboards or
token places). A cactus with distinguishable cycles allows the agent
to distinguish at each node the two incident edges contained in each
cycle from other incident edges. This paper introduces the concept of
snap-stabilization into the perpetual exploration and shows that snap-
stabilizing perpetual exploration is possible when the agent has one-
bit persistent memory. The exploration time of the presented algorithm
exactly matches a trivial lower bound. This paper also shows the neces-
sity of one-bit agent memory by showing that any oblivious (or memory-
less) agent cannot explore a cactus graph even when it has only a single
distinguishable cycle. Finally, this paper shows that snap-stabilizing per-
petual exploration by an oblivious agent is possible when a cactus graph
with distinguishable cycles has a sense of direction.
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1 Introduction

Distributed computing by mobile entities called agents or robots has been much
investigated in the last two decades [14]. Graph exploration by mobile entities,
which requires that each node of a graph be visited by at least one entity, is one
of the most fundamental problems in this field [7,19]. This paper considers the
exploration of port-numbered anonymous graphs (where nodes have no identifiers
but incident edges at each node are distinguished by port numbers) by a single
mobile agent under the restriction that nodes have no storage (e.g., whiteboards
or token places) to store information the agent can read from and write into.
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Exploration of anonymous graphs without node storage is practically important
since some applications prohibit agents from accessing the node identifiers and
storage for security reasons.

The graph exploration is classified into terminating exploration (sometimes
further classified into exploration with stop and exploration with return) and
perpetual exploration [9]. The terminating exploration requires agents to termi-
nate after all nodes are visited and the perpetual exploration requires agents to
keep visiting all nodes periodically.

This paper considers the perpetual exploration by a single agent since the
terminating exploration is impossible regardless of the agent memory size even in
anonymous rings when nodes have no storage and the agent has no knowledge of
the ring size [7]. A perpetual exploration algorithm for a single agent allows the
agent regardless of its starting node to visit all nodes periodically. Its efficiency
is mainly measured by the exploration time, the agent (persistent) memory size
and the node storage size. The exploration time is the maximum length of the
interval between two consecutive visits of the same node.

Self-stabilization is a promising paradigm for designing distributed algo-
rithms with high adaptability to transient faults and dynamical changes of
graphs. It is originally introduced by Dijkstra [8] for token circulation in rings
and has been extensively investigated for a wide range of problems [1,12]. A self-
stabilizing algorithm eventually realizes its intended behavior even when starting
from an arbitrary initial configuration (or global state). Thus, it can tolerate any
finite number and type of transient faults in the sense that it can recover in a
finite time a correct behavior from the corrupted configuration. A self-stabilizing
perpetual exploration algorithm for a single agent allows the agent to eventually
start visiting every node periodically with some exploration time regardless of
the initial configuration. But it may require the stabilization time longer than
the exploration time before starting the periodical exploration. Snap-stabilization
was first introduced by Bui et al. [4] as a desired extreme of self-stabilization,
which is self-stabilization with stabilization time of zero. Thus, a snap-stabilizing
perpetual exploration algorithm allows the agent to immediately (not eventually)
start visiting every node periodically with some exploration time.

Our Contribution. This paper focuses on the perpetual exploration by a single
agent of cactus graphs with distinguishable cycles under the restriction that nodes
have no storage. A cactus graph can contain cycles but only allows any two
distinct cycles to share at most one node, which implies that any edge is never
contained in two or more cycles. For each cycle of a cactus graph, each node in
the cycle has exactly two incident edges of the cycle. A cactus graph is called
the one with distinguishable cycles when, at each node, every pair of incident
edges contained in the same cycle can be recognized using the port numbers.

This paper introduces for the first time the concept of snap-stabilization into
the perpetual graph exploration and shows the following results on the perpetual
exploration by a single agent of cactus graphs with distinguishable cycles.

1. Snap-stabilizing perpetual exploration is possible when one-bit agent persis-
tent memory is available. The exploration time of the presented algorithm



One-Bit Agent Memory is Enough 21

is c + 2t where c (resp. t) is the number of edges in cycles (resp. not in any
cycle), which exactly matches a trivial lower bound.

2. Exploration is impossible for an oblivious (or memory-less) agent even when
a cactus graph contains only a single distinguishable cycle.

3. Snap-stabilizing perpetual exploration is possible for an oblivious agent when
a cactus graph with distinguishable cycles has a sense of direction.

Related Works. Exploration of port-numbered graphs by a single agent has
been extensively investigated in much literature [7]. When each node has a unique
identifier, a depth-first-traversal realizes terminating exploration in time 2m (or
2m moves) where m is the number of edges in the graph. Panaite et al. improved
the time for exploration to m + 3n where n is the number of nodes [23].

Terminating exploration of anonymous graphs in time 2m is possible by the
depth-first traversal when O(logΔ)-bit storage is available at each node or the
agent has a single token (or pebble) and O(D logΔ)-bit memory [16], where Δ
is the maximum node degree and D is the diameter of the graph.

For exploration of anonymous graphs with no node storage, Reingold [25]
proposed a universal exploration sequence that allows an agent with O(log n)-bit
memory to explore any graph. The matching lower bound of the agent memory
was proved by Fraigniaud et al. [15]. Disser et al. [10] showed that the agent
memory size can be reduced to O(1) when the agent can use O(log log n) distin-
guishable tokens and that Ω(log log n) tokens are necessary for the agent with
sublogarithmic-bit memory. Exploration of specific graph classes has been inves-
tigated, e.g., trees [2,9], grids and tori [3], hypercubes [13] and so on.

Label-guided exploration introduced by Cohen et al. [5] and Dobrev et al. [11]
uses preprocessing for leaving some fixed information at each node to guide the
agent to efficient exploration. Cohen et al. [5] showed that assigning appropriate
2-bit label (actually taking three different values) to each node enables explo-
ration in O(m) time by an O(1)-bit agent and appropriate 1-bit node label
enables exploration in O(ΔO(1)m) time by an O(logΔ)-bit agent. Most of lit-
erature including the above all assumes that the port number assignment (also
called local orientation) at each node is arbitrary and considers the complexities
of the worst case of the assignments. Dobrev et al. [11] showed that appropriate
assignment of port numbers at each node enables an oblivious agent to per-
petually explore any graph with exploration time 10n. Following the works of
[17,18], the exploration time using appropriate port numbers was improved to
3.5n−1 at the cost of O(1) agent memory by Czyzowicz et al. [6]. The exploration
time for an oblivious agent was investigated in [6,20] and improved to 4n − 2
by Kosowski et al. [20]. The label-guided approach using the appropriate port
numbers is closely related to this paper since cactus graphs with distinguishable
cycles allow arbitrary assignment of port numbers under some restriction.

The well-known right-hand-on-the-wall traversal (e.g., [9]) on trees realizes
snap-stabilizing perpetual exploration by an oblivious agent. The rotor-router
(originally called the Eulerian walkers model) introduced by Priezzhev et al. [24]
realizes self-stabilizing perpetual exploration of any graph by an oblivious agent.
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It uses O(logΔ)-bit storage and its exploration time is 2m. Yanovski et al. [26]
showed its stabilization time is O(mD). Optimality of the storage space and sta-
bilization time was proved by Menc et al. [22]. Another self-stabilizing perpetual
exploration algorithm is proposed by Masuzawa et al. [21] to realize gossip-
ing among multiple agents. The label-guided perpetual exploration proposed by
Ilcinkas [18] is also self-stabilizing.

2 Preliminaries

2.1 Cactus Graph

A (simple) graph (or network) G = (V,E) consists of a node set V and an edge
set Ewhere an edge connects two distinct nodes. An edge connecting u, v ∈ V
is denoted by {u, v} and no two edges connect the same pair of nodes. Node u
is called a neighbor of v (and vice versa) when G has edge {u, v}. The degree
of a node v is the number of edges incident to v and is denoted by δv. A walk
is a sequence of nodes (v0, v1, . . . , vk) satisfying {vi, vi+1} ∈ E for each i (0 ≤
i ≤ k − 1). This walk is called a closed walk if v0 = vk. A cycle is a closed walk
(v0, v1, . . . , vk(= v0)) satisfying k ≥ 3 and vi �= vj for any 0 ≤ i < j ≤ k − 1.

A graph G is a cactus graph if any two distinct cycles of G share at most
one node in common. Edges of a cactus graph can be partitioned into two sets,
cycle edges and tree edges. An edge is called a cycle edge if it is included in a
cycle and is called a tree edge otherwise. The number of the cycle edges (resp.
the tree edges) in G is denoted by c(G) (resp. t(G)). Figure 1 presents a cactus
graph G with three cycles. Edges {f, b}, {f, g}, {f, h} and {f, k} are cycle edges
and {f, a} and {f, d} are tree edges incident to node f . Graph G has 10 cycle
edges and 11 tree edges (i.e., c(G) = 10 and t(G) = 11).

A port-numbered graph G = (V,E, PN) is a graph G = (V,E) such that a
connecting point called a port is virtually introduced between a node and each
of its incident edges and port numbering PN assigns the ports of each node v
distinct port numbers chosen from {0, 1, . . . , δv − 1}. The port set of node v is
denoted by Pv. In the following, a port-numbered graph is simply called a graph.

This paper considers only a (port-numbered) cactus graph as a target of
perpetual exploration by a single agent. Similarly to edges, a port is called a
cycle port if it is connecting to a cycle edge and is called a tree port otherwise.
The number of cycle ports (resp. tree ports) of node v is denoted by c(v) (resp.
t(v)). Thus δv = c(v)+ t(v), c(G) =

∑
v∈V c(v)/2 and t(G) =

∑
v∈V t(v)/2 hold.

Notice that c(v) is even since node v is incident to exactly two edges included
in the same cycle.

We assume that cycle ports of v can be distinguished from tree ports of v.
Moreover, for each cycle port a ∈ Pv, the other cycle port b ∈ Pv \{a} connecting
to the same cycle as a can be identified. More precisely, function fv : Pv → Pv ∪
{⊥} is available at node v such that fv(a) = b (also fv(b) = a) holds for distinct
cycle ports a, b ∈ Pv included in the same cycle (if exist), and fv(c) = ⊥ holds
for tree port c ∈ Pv. A cactus graph is called a cactus graph with distinguishable
cycles if the function fv is available at every node v. We consider only cactus
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Fig. 1. A cactus graph with distinguishable cycles G

graphs with distinguishable cycles and simply call them cactus graphs. Without
loss of generality, we assume that ports {0, 1, . . . , c(v)− 1} ⊆ Pv are cycle ports
and satisfy fv(2i) = 2i + 1 for each i (0 ≤ i ≤ c(v)/2 − 1). The remaining ports
{c(v)(= δv − t(v)), c(v) + 1, . . . , δv − 1} ⊆ Pv are tree ports. Figure 1 presents
such a cactus graph.

2.2 Mobile Agent and Graph Exploration

A mobile agent operating on a graph G = (V,E, PN) is a mobile state machine
that can move from node to node along edges of the graph. Nodes are anonymous,
that is, nodes have no identifiers that an agent can refer to. Nodes have no storage
(e.g., whiteboard or token place) to store information that an agent can read
from and write into. When an agent reaches a node v, it can recognize the degree
δv of v and the incoming port through which it has entered v. Thus, the agent
action at node v depends only on its current state, the incoming port and the
degree δv, which changes the agent state and chooses the outgoing port through
which the agent leaves v. The agent action is precisely defined by an agent
algorithm (shortly an algorithm). An agent has agent memory whose contents
define the agent state. The agent memory is persistent, that is, it can keep the
contents when the agent moves from a node to another.

The graph exploration problem (shortly exploration problem) requires agents
in a graph to visit all nodes. We consider the perpetual exploration by a single
agent that requires the agent to visit every node periodically. One of efficiency
measures of perpetual exploration is the exploration time, which is the maximum
length of the time interval between two consecutive visits of the same node
under the assumption that the agent can move from a node to its neighbor
in one time unit called a step and the time required to execute an action at
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a node can be ignored. A typical solution of the perpetual exploration is that
the agent repeatedly circulates along a closed walk containing all nodes of the
graph. Actually the algorithms presented in this paper as well as several previous
ones (e.g., the right-hand-on-the-wall traversal and those proposed in [21,24])
are such solutions. Another efficiency measure is the agent memory size (or the
number of bits of the agent persistent memory). Notice that the working memory
required to execute an action at a node is ignored. Remind that node storage is
not allowed in this paper.

For ease of definition, self-stabilization and snap-stabilization in perpetual
exploration are defined as follows for the typical algorithms such that the agent
eventually repeats circulation along a closed walk containing all nodes.

Definition 1 (Snap-stabilizing perpetual exploration). A self-stabilizing
algorithm for perpetual exploration guarantees, regardless of the initial state,
the initial incoming port (if recognized) and the initial location (or the starting
node) of the agent, that the agent eventually starts repeating circulation along a
closed walk containing all nodes. The time required before starting the repeated
circulation along the closed walk is called the stabilization time.

A snap-stabilizing algorithm for perpetual exploration is a self-stabilizing one
with stabilization time of zero. 
�

Let G be a class of port-numbered graphs. We say that an algorithm solves
the perpetual exploration problem in G when it can solve the problem in any
graph G ∈ G. Self- or snap-stabilizing algorithms for G are similarly defined.

3 Snap-Stabilizing Perpetual Exploration

This section presents a snap-stabilizing perpetual exploration algorithm for a
single agent with one-bit agent memory in a cactus graph G. Its exploration
time is c(G) + 2t(G), which exactly matches an obvious lower bound.

3.1 Port Traversal Graph

The strategy of the proposed algorithm is to traverse a cactus graph G by cir-
culating a ring graph called a port traversal graph that is virtually constructed
from G. Before presenting the algorithm, we introduce the port traversal graph.

Definition 2 (Port traversal graph). For a given cactus graph G =
(V,E, PN), the port traversal graph P (G) = (P (V ), P (E)) is defined as fol-
lows.

– P (V ) = {p | p is a cycle port}∪{p� | p is a tree port}∪{p⊕ | p is a tree port}.
That is, P (V ) contains all cycle ports of G, and p� and p⊕ for each tree
port p. Nodes of P (G) are called p-nodes to distinguish them from nodes and
ports in G, and are also called cycle p-nodes or tree p-nodes depending on
the corresponding ports in G.
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For each node v ∈ V , its port with port number i (0 ≤ i ≤ δv − 1) is denoted
by vi. The cycle p-node corresponding to vi (0 ≤ i ≤ c(v)− 1) is also denoted
by vi. The tree p-nodes corresponding to vj(c(v) ≤ j ≤ δv − 1) are denoted by
vj� and vj⊕.

– P (E) is the set constituted by the following edges. Edges in P (G) are called
p-edges to distinguish them from edges in G.
1. For every cycle edge {u, v} ∈ E connecting ports ui ∈ Pu and vj ∈ Pv,

p-edge {ui, vj} is in P (E). This p-edge is called a cycle p-edge.
2. For every tree edge {u, v} ∈ E connecting ports ui ∈ Pu and vj ∈ Pv, two

p-edges {ui�, vj⊕} and {ui⊕, vj�} are in P (E). These p-edges are called
tree p-edges.

3. For every node v and every cycle port vi with an odd port number i (∈
{1, 3, . . . , c(v) − 1}, a single p-edge {vi, vi+1 mod δv} (when vi+1 mod δv is
a cycle port) or {vi, v(i+1 mod δv)⊕} (when vi+1 mod δv is a tree port) is in
P (E). This p-edge is called an intra-node edge.

4. For every node v and every tree port vj (c(v) ≤ j ≤ δv − 1), a single
p-edge {vj�, v(j+1 mod δv)⊕} (when vj+1 mod δv is tree port) or {vj�, v0}
(when j = δv − 1 and v0 is a cycle port) is in P (E). This edge is also
called an intra-node edge. 
�

Figure 2 shows (a) node v in a cactus graph and (b) the part of the
port traversal graph corresponding to node v. Node v has four cycle ports
v0, v1, v2, v3 and four tree ports v4, v5, v6, v7. To construct the port traver-
sal graph, cycle ports v0, v1, v2, v3 become members of P (V ) as well as
v4�, v5�, v6�, v7�, v4⊕, v5⊕, v6⊕, v7⊕ that are obtained from the tree ports. Each
of the cycle p-nodes is connected by a cycle p-edge to a cycle p-node of a neighbor
in G. Similarly, each of the tree p-nodes is connected by a tree p-edge to a tree
p-node of a neighbor in G. Notice that two tree p-nodes vi�, vi⊕ are introduced
in P (G) for tree port vi of G and vi� (resp. vi⊕) is connected to a tree p-node
uj⊕ (resp, uj�) of the neighbor, say u. The meaning of the two tree p-nodes,
one with � and the other with ⊕, and their connection pattern by tree p-edges
(i.e., a tree p-node with � is connected to the one with ⊕) is explained in the
next subsection.

Figure 3 shows the port traversal graph of the cactus graph of Fig. 1. In
the following, we omit “mod δv” in the port number at node v. The following
Proposition summarizes some properties of the port traversal graph.

Proposition 1. The port traversal graph P (G) = (P (V ), P (E)) of any cactus
graph G = (V,E, PN) has the following properties.

(1) Each cycle p-node vi is incident to one cycle p-edge and one intra-node edge
connecting to vi−1 or v(i−1)� (if i is even), or vi+1 or v(i+1)⊕ (if i is odd).

(2) Each tree p-node vi� (resp. vi⊕) is incident to one tree p-edge and one
intra-node edge connecting to vi+1 or v(i+1)⊕ (resp. vi−1 or v(i−1)�).

The following lemma shows that the port traversal graph is a ring graph.
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Fig. 2. The part of the traversal graph corresponding to node v

Lemma 1. The port traversal graph P (G) = (P (V ), P (E)) of any cactus graph
G = (V,E, PN) is a ring graph.

Proof. From Proposition 1, the degree of every p-node is two. It remains to show
that the port traversal graph P (G) is a connected graph.

We first show that all the p-nodes of each node v ∈ V are connected. Consider
two cycle p-nodes (if exist) v2a and v2a+1 for each a (0 ≤ a ≤ c(v)/2−1). These
two p-nodes are not neighbors in P (G) if v has a port other than these ports, but
they are incident to cycle p-edges constituting the same cycle CG of G. Consider
the cycle CP of P (G) that contains v2a and traverse CP from p-node v2a and
its incident cycle p-edge. The traversal of CP returns to a p-node of v and the
structure of the cactus graph implies that the first return to v should come
through the cycle p-edge that is contained in CG, which is incident to v2a+1 in
P (G). Thus, p-nodes v2a and v2a+1 are connected (or reachable each other) in
P (G). Since cycle p-node v2a is connected to cycle p-node v2a−1 (if exists) by
an intra-node edge, all the cycle p-nodes of v are connected. Similarly, we can
show that two tree p-nodes (if exist) vb� and vb⊕ for each b (c(v) ≤ b ≤ δv − 1)
are connected, and thus, all the tree p-nodes of v are connected. If v has both
a cycle p-node and a tree p-node, cycle p-node v0 is connected to tree p-node
v(δv−1)� by an intra-node edge, which implies that all the p-nodes in P (G) of
each node v ∈ V are connected.

For any neighbors u, v ∈ V of G, there exist p-nodes neighboring in P (G),
one from u and the other from v, since all edges of G are also p-edges of
P (V ) (although each tree edge, say {wa, xb}, are replaced with two tree p-edges
{wa�, xb⊕} and {wa⊕, xb�}). This implies that any two p-nodes of neighbors u
and v of G are connected since all the p-nodes of a node are connected as proved
above. It follows that all p-nodes of P (G) are connected since G is a connected
graph. Consequently, P (G) is a connected graph. 
�
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Fig. 3. The port traversal graph of the cactus in Fig. 1

From Proposition 1 and Lemma 1, the following proposition clearly holds.

Proposition 2. The port traversal graph (or a ring) P (G) = (P (V ), P (E)) of
any cactus graph G = (V,E, PN) is a ring formed by an alternating sequence of
cycle/tree p-edges and intra-node edges. 
�
Proposition 3. In the port traversal graph (or a ring) P (G) = (P (V ), P (E))
of any cactus graph G = (V,E, PN), p-nodes of node v appear in a cyclic shift
order of

v0, v1, . . . , vc(v)−1, vc(v)⊕, vc(v)�, v(c(v)+1)⊕, v(c(v)+1)�, . . . , v(δv−1)⊕, v(δv−1)�

or its reverse. 
�
In the port traversal graph of Fig. 3, when the ring starts with a p-node of

node a and goes in the counter-clockwise direction, p-nodes of node f appear
in the order of f4�, f5⊕, f5�, f0, f1, f2, f3, f4⊕ (or in ascending order of port
numbers) and p-nodes of node h appear in the order of h0, h2�, h2⊕, h1 (or in
descending order of port numbers).

3.2 Algorithm for a Single Agent with One-Bit Agent Memory

The fundamental strategy of the snap-stabilizing perpetual exploration algo-
rithm for a cactus graph G is to traverse the edges of G in the order that they
appear in the port traversal graph P (G). In other words, the agent traverses
P (G) with skipping the intra-node edges.
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Algorithm 1. Snap-stabilizing perpetual exploration for cactus graphs
algorithm (agent action at node v):
1: if IN is a cycle port with an even port number then
2: dir ←′ �′

3: OUT ← IN − 1 mod δv
4: else if IN is a cycle port with an odd port number then
5: dir ←′ ⊕′

6: OUT ← IN + 1 mod δv
7: else if dir =′ �′ then � IN is a tree port
8: OUT ← IN − 1 mod δv
9: else � IN is a tree port and dir =′ ⊕′

10: OUT ← IN + 1 mod δv
11: end if

When the agent enters node v through a cycle port va of G, it can easily
determine, from Proposition 1, the next outgoing port (through which it leaves
v): va−1 when a is even, or va+1 when a is odd. Consider the case that the agent
enters v through a tree port vb of G. The port traversal graph P (G) has two
tree p-nodes vb� and vb⊕ corresponding to port vb of G. From Proposition 1, the
agent should leave v through port vb+1 of G when the arrival p-node is vb�, or
through port vb−1 when the arrival p-node is vb⊕. However, G has only port vb

corresponding to vb� and vb⊕. Thus we use a binary agent state to distinguish
vb� and vb⊕. More precisely in G, when the agent enters v through a tree port
vb, the next outgoing port depends on the incoming port of v previous to vb:
from Proposition 3 the agent should leave through vb−1 if the previous incoming
port was vb+1 (i.e., the ports of v are used in descending order), or through
vb+1 otherwise (i.e., the ports of v are used in ascending order). In the proposed
algorithm, the agent has only a single binary variable dir to store the order. The
variable dir is overwritten every time the agent enters a node through a cycle
port. But when the agent comes back to node v through a tree port, variable
dir stores the correct direction for v as we prove later.

Algorithm1 presents a snap-stabilizing perpetual exploration algorithm for
a cactus graph G, which describes the action of the agent when it enters node
v. We regard the agent action at a node as an atomic action. This implies that
Algorithm1, though it is snap-stabilizing, is executed from line 1 (not from
the middle) every time the agent enters a node. The agent determines by the
algorithm the outgoing port based on the agent state, the incoming port and
the degree δv of v. Locally-working (not persistent) variables IN and OUT in
Algorithm1 denote the incoming and the outgoing ports respectively. The agent
has only one binary variable dir ∈ {�,⊕} as its persistent variable, that is, the
agent has only two states. When the agent enters v through a tree port, value �
(resp. ⊕) in variable dir implies that the ports of v are used in descending (resp.
ascending) order of the port numbers.

Let G be any cactus graph, P (G) be the port traversal graph of G, and CP

be the alternating sequence of cycle/tree p-edges and intra-node edges forming
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the ring of P (G). A traversal walk of G is defined as the edge sequence obtained
from CP by removing the intra-node edges.

Theorem 1. Algorithm1 presents a snap-stabilizing perpetual exploration algo-
rithm for a single agent in any cactus graph G. The agent uses one-bit agent
memory and the exploration time is c(G)+2t(G), which exactly matches a lower
bound.

Proof. We transform the traversal route of the agent in G into a sequence W
of edges in its port traversal graph P (G) and shows that W is a walk in P (G)
repeatedly circulating the ring of P (G). The transformation is done as follows.

Initially, W is an empty sequence. We trace the traversal route of the agent
in G from the beginning. When the agent executes Algorithm 1 at node v and
moves to a neighbor u, a pair of an intra-edge and a cycle/tree p-edge of P (G) is
appended to W as follows. In the following, let IN = va hold when Algorithm1
is executed at v and ub be the port of u that connects to edge {u, v}.

(a) Case that the agent executes lines 2–3 (and leaves through va−1):
When va−1 is a cycle port, {va, va−1}, {va−1, ub} are appended to W .
When va−1 is a tree port, {va, v(a−1)�}, {v(a−1)�, ub⊕} are appended to W .

(b) Case that the agent executes lines 5–6 (and leaves through va+1):
When va+1 is a cycle port, {va, va+1}, {va+1, ub} are appended to W .
When va+1 is a tree port, {va, v(a+1)⊕}, {v(a+1)⊕, ub�} are appended to W .

(c) Case that the agent executes line 8 (and leaves through va−1):
When va−1 is a cycle port, {va⊕, va−1}, {va−1, ub} are appended to W .
When va−1 is a tree port, {va⊕, v(a−1)�}, {v(a−1)�, ub⊕} are appended to
W .

(d) Case that the agent executes line 10 (and leaves through va+1):
When va+1 is a cycle port, {va�, va+1}, {va+1, ub} are appended to W .
When va+1 is a tree port, {va�, v(a+1)⊕}, {v(a+1)⊕, ub�} are appended to
W .

First, we show the following claim by induction on the number k of agent
moves (i.e., the number of the pair appendices described above).

Claim. The p-edge sequence Wk (of length 2k) obtained by applying the above
appendices k times is a walk in P (G) and ends with an p-edge connecting to
the node the agent currently stays at. Moreover, when the last p-edge of Wk is
a tree p-edge, the last p-node is ub⊕ (resp. ub�) for some b if dir =′ �′ (resp.
dir = ”⊕′) holds immediately after the k-th move of the agent.

When k = 1, we consider the four cases of the first appendix. In case (a),
va (= IN) is a cycle port with an even port number. From Proposition 1 (1),
the first p-edge {va, va−1} or {va, v(a−1)�} of W1 is an intra-edge of P (G). The
second p-edge {va−1, ub} (resp. {v(a−1)�, ub⊕}) of W1 is a cycle p-edge (resp.
a tree p-edge) of P (G) from the definition of P (G). Moreover, when tree p-
edge {v(a−1)�, ub⊕} is appended, dir =′ �′ holds after the first move, which
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verifies the claim for case (a). The claim holds similarly for case (b). In case (c),
va (= IN) is a tree port and dir =′ �′ initially holds (and remains unchanged
in the first action of the agent). We can see that W1 is a walk of P (G) and the
last p-node is ub⊕ when the last p-edge is a tree p-edge, which verifies the claim
for case (c). The claim holds similarly for case (d).

Assume that the claim holds for Wk, we prove that the claim holds for Wk+1.
In case (a), the inductive assumption implies that Wk is a walk of P (G) ending
with a cycle port va such that IN = va holds at the beginning of the (k + 1)-
st agent action. Thus, Wk+1 obtained by appending {va, va−1}, {va−1, ub} or
{va, v(a−1)�}, {v(a−1)�, ub⊕} to Wk is a walk in P (G). Moreover, when tree p-
edge {v(a−1)�, ub⊕} is appended, dir =′ �′ holds after the (k+1)-st move, which
verifies the claim for case (a). The claim holds similarly for the other cases.

The claim we’ve just proved implies that the traversal of G by the agent can
be considered as a walk W in P (G). Notice that W is a walk in a ring since P (G)
is a ring. Proving that the agent never changes the direction in W suffices for
showing that Algorithm1 is a snap-stabilizing perpetual exploration algorithm
with exploration time c(G) + 2t(G). To change the direction in ring traversal,
the same edge has to be used consecutively. However, the construction of W
guarantees that W is an alternating sequence of intra-node edges and cycle/tree
p-edges, which implies that W is a walk repeatedly traversing P (G) in a fixed
direction.

We can show by considering a cactus graph consisting of a ring and a line
that the exploration time c(G) + 2t(G) exactly matches a lower bound. 
�

4 Exploration by an Oblivious Agent

This section considers exploration of cactus graphs by an oblivious (or memory-
less) agent. We first show impossibility of exploration even for a cactus graph
containing only a single cycle where the cycle ports are distinguishable. This
impossibility result shows the one-bit agent memory used in Algorithm 1 is nec-
essary for exploration of cactus graphs.

Theorem 2. No exploration algorithm exists for an oblivious agent in a graph
containing only a single cycle.

Proof. Since the agent is oblivious, the outgoing port OUT from node v is deter-
mined from the incoming port IN and the numbers of cycle ports c(v) and tree
ports t(v). Consider the graphs G1 and G2 in Fig. 4 and the case that the initial
node of the agent is x. The agent executes the same action at node u, v and w
since each of them has two cycle ports and one tree port. We define function
OUT : {0, 1, 2} → {0, 1, 2} that determines at these nodes the outgoing port
from the incoming port.

When agent reaches u from x in G1, it has to move v or w, otherwise it
repeatedly moves only between u and x. We assume that the agent moves to
v, that is, OUT (2) = 0 holds. When the agent moves to w, we exchange the
port numbers 0 and 1 in the following proof. Thus this assumption does not lose
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Fig. 4. The graphs for proving the impossibility of exploration by an oblivious agent

generality. Now consider the agent action when it reaches v in G1. It can move
to u,w or y next (or OUT (1) = 1, 0 or 2 respectively).

(a) Case of OUT (1) = 0: The agent repeatedly circulates w, u and v in this
order. It cannot visit y or z.

(b) Case of OUT (1) = 1: The agent moves back to u and then has to move to w
(or OUT (0) = 1), otherwise it repeatedly moves between u and v or among
x, u and v. Setting OUT (0) = 1 makes the agent repeatedly circulates u,w
and v in this order, and the agent cannot visit y or z.

(c) Case of OUT (1) = 2: The agent succeeds to make perpetual exploration in
G1. But in G2, it will never visit z irrespective of setting OUT (0), thus it fails
to explore G2. This is because, if we set OUT (0) = 0 (resp. OUT (0) = 1, and
OUT (0) = 2), the agent repeatedly moves between u and v (resp., among
x, u, v and w, and among x, u, v and y).

Thus, we have no function OUT for u, v and w that allows exploration in
both G1 and G2. 
�

The above impossibility is proved for exploration that requires that each
node be visited at least once, and thus holds for (snap-stabilizing) perpetual
exploration.

In the remaining part of this section, we introduce the restriction on the port
numbering, a sense of direction, into a cactus graph G so that an oblivious agent
can perpetually explore G in a snap-stabilizing fashion.

As in the previous section, we assume for a cactus graph G that cycle ports
at each node v are assigned port numbers from 0, 1, . . . , c(v)−1 so that the ports
numbered with 2a and 2a+1 are connecting to edges in the same cycle of G for
each a (0 ≤ a ≤ c(v)/2 − 1). We say G has a sense of direction if, for each cycle
edge {u, v}, the port of u connecting to {u, v} is assigned an even port number
if and only if the port of v connecting to {u, v} is assigned an odd port number.
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Algorithm 2. Snap-stabilizing perpetual exploration for a cactus graph with
sense of direction
algorithm (agent action at node v):
1: if IN is a cycle port with an odd port number then
2: IN ← IN − 1 � Adjustment only in the initial configuration
3: end if
4: OUT ← IN − 1 mod δv

This is a generalization of the well-known sense of direction in a ring as that in
a ring satisfies the above definition.

Consider execution of Algorithm 1 in a cactus graph with a sense of direction.
Remind that variable dir is assigned value � or ⊕ every time the agent enters
a node through a cycle port. We can show by argument similar to the proof of
Theorem 1 that the agent leaves a node through an odd-numbered cycle port
if and only if dir = � holds. The sense of direction guarantees that the agent
leaving through an odd-numbered (resp. even-numbered) cycle port enters the
next node through an even-numbered (or odd-numbered) cycle port. Proposi-
tion 3 guarantees that the next cycle port through which the agent leaves after
entering through an even-numbered (or odd-numbered) cycle port has an odd
(resp. even) port number. The above implies that variable dir remains unchanged
during the perpetual exploration, and thus variable dir is unnecessary.

Algorithm2 presents a snap-stabilizing perpetual exploration for cactus
graphs assuming a sense of direction. The traversal route of the agent is exactly
same as that in Algorithm1 with keeping dir = �. When the initial value of
IN (the incoming port) designates an odd-numbered cycle port, the algorithm
adjusts the initial value of IN so that the traversal direction coincides with that
in Algorithm1 with dir = �. This determines the next outgoing port as IN − 1
when the agent enters a node through a tree port.

Theorem 3. Algorithm2 presents a snap-stabilizing perpetual exploration algo-
rithm for a single oblivious agent in any cactus graph G with a sense of direction.
Its exploration time is c(G) + 2t(G), which exactly matches a lower bound.
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Abstract. Distributed Shared Storage Services may serve as building
blocks to yield complex, decentralized, cloud applications in emerging
technologies (e.g., IoT, VR/AR), as they offer a transparent cloud stor-
age space where distributed applications can store, retrieve, and coor-
dinate over shared data. Ideally, distributed applications would like to
communicate through a “cloud” memory layer that may provide simi-
lar guarantees as a centralized sequential memory. Atomic Distributed
Shared Memory (ADSM) provides the illusion of a sequential memory
space despite asynchrony, network perturbations, and device failures. A
plethora of algorithmic solutions along with proven correctness guaran-
tees have been proposed to provide ADSM in a message passing system.
None of them, however, has been adopted in a real working solution: com-
mercial solutions avoid the use of ADSM algorithms, mainly due to their
communication overhead. But what is exactly the performance overhead
of an ADSM algorithm over existing commercial solutions? In this work
we want to provide a first answer to this question by performing an in-
depth experimental comparison of the state-of-the-art dynamic ADSM
algorithm ARES, with two well-established open-source distributed stor-
age solutions, Cassandra and Redis. The results show that ARES’s
performance is comparable with the commercial systems, with respect
to scalability, object size and throughput.

Keywords: Distributed storage · Strong consistency · Erasure code ·
Reconfiguration · Fault-tolerance

1 Introduction

Motivation and Prior Work. Emulating a shared memory over a set of
distinct, often geographically dispersed devices, is a fundamental problem in

Supported by the EU’s NGIAtlantic.eu cascading grant agreement no. OC4-347;
https://projects.algolysis.com/ares-ngi/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 35–50, 2022.
https://doi.org/10.1007/978-3-031-21017-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21017-4_3&domain=pdf
https://projects.algolysis.com/ares-ngi/
https://doi.org/10.1007/978-3-031-21017-4_3


36 A. Trigeorgi et al.

distributed computing, and an important tool for the development of depend-
able and robust distributed applications [6,14]. A Distributed Shared Memory
(DSM) service promises to provide an available, accessible, and survivable shared
memory space over an asynchronous, fail prone, message passing environment.
To preserve these properties, data are replicated in multiple devices, referred
to as servers or replica hosts, raising the challenge on how to preserve consis-
tency between the replica copies. Different consistency guarantees were rigor-
ously defined over the years [16]. Atomicity is a venerable notion of consistency,
introduced by Lamport [19]. To this day it remains the most natural type of con-
sistency because it provides an illusion of equivalence with the serial object type
that software designers expect. For more than two decades, a series of works,
e.g., [4,7,9–11,13,20,21], suggested solutions for building Atomic DSM (ADSM)
emulations, for both static, i.e., where replica participation does not change over
time, and dynamic (reconfigurable) environments, i.e., where failed replicas may
retire and new replicas may join the service in a non-blocking manner.

It is apparent that those solutions cannot be found readily and were not
adopted by commercial distributed storage applications. Commercial Distributed
Storage Systems (DSS), such as Dropbox, HDFS, Cassandra and Redis, avoid
providing strong consistency guarantees (such as atomicity) as they are consid-
ered costly and difficult to implement in an asynchronous, fail prone, message
passing environment. Hence, such solutions either choose to offer weaker or tun-
able guarantees to achieve better performance when atomicity is not preserved.

Indeed, initial implementations of ADSM had high demands in communica-
tion, storage, and sometimes computation. Recent works, however, e.g., [12,21],
invest in algorithms that may reduce the overheads on the aforementioned
parameters. ARES [21] is a recent ADSM algorithm, which proposes a modular
approach for providing a dynamic shared memory space. ARES may use any
ADSM algorithm at its core, providing the flexibility to adjust its performance
based on the application demands. Fragmented ARES [12] is an extension of
ARES that supports versioning and fragmentation for efficiently handling large
objects, such as files.

Experimental results presented in [12,21], demonstrated a promising perfor-
mance of the algorithm under various environmental conditions and data loads.
But how such an algorithm may compare to commercially used solutions? That
is, no evidence exists to date to examine what are the gains from commercial
solutions to adopt less than intuitive guarantees. In this work we set to put
ADSM and chosen open-source, commercial solutions in a head-to-head com-
parison in order to answer the question: Is it worth to trade consistency for
performance?

Contributions. In this work we perform an in-depth experimentation on
ARES [21] and we present extensive comparison with two open-source widely
used distributed storage solutions: (i) Cassandra [1], and (ii) Redis [2]. To
this respect, we have developed our own implementation of ARES, and we have
utilized the open source code of Cassandra and Redis.

Our experimental study focuses on measuring the average operation latency
(communication and computation), in the following three test categories:
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– Scalability Tests: Aim to test the ability of the service while the set of
service participants grows.

– Stress Tests: Aim to test the performance of the service under various loads,
concurrency patterns, and topology deployments.

– Fault-Tolerance Tests: Aim to test the tolerance of the service to node
failures and its performance in necessary reconfigurations.

We deployed our experiments in real testbeds, distributed in the European
Union (EU) and the USA. Such deployment helped us obtain real-condition
results and evaluate the algorithms over cross-Atlantic setups. To the best of our
knowledge, this is the first work to conduct such comparison. Our experimenta-
tion results suggest, perhaps surprisingly, that ARES has a similar or sometimes
better performance than the competition, even without any optimization.

2 Algorithms Overview

In this section we provide a high-level description of the algorithms we examine
in this work, highlighting their main differences.

2.1 ARES

ARES [21] is a modular framework, designed to implement dynamic, recon-
figurable, fault-tolerant, read/write distributed atomic shared memory objects.
Similar to traditional implementations, ARES uses 〈tag, value〉 pairs to order
the operations on a shared object. In contrast to existing solutions, ARES does
not define the exact methodology to access the object replicas. Rather, it relies
on three, so called, data access primitives (DAPs): (i) the get-tag, which returns
the tag of an object, (ii) the get-data, which returns a 〈tag, value〉 pair, and (iii)
the put-data(〈tag,v〉), which accepts a 〈tag, value〉 as an argument.

DAPs. As detailed in [21], these DAPs may be used to express the data access
strategy, i.e., how they retrieve and update the object data, of different shared
memory algorithms (e.g., [6]). Using the DAPs, ARES achieves a modular design,
agnostic of the data access strategies, and enables the use of different DAP
implementation per configuration (something impossible for other solutions).
For the DAPs to be useful, they need to satisfy Property 1 [21], which informally
states that a get-data (or get-tag) DAP returns a value (or tag) at least as recent
as the one written by a put-data.

To demonstrate the flexibility that DAPs provide, the authors in [21]
expressed two different atomic shared R/W algorithms in terms of DAPs. These
are the DAPs for the well celebrated ABD [7] algorithm, and the DAPs for
an erasure coded based approach presented for the first time in [21]. In the
rest of the manuscript we refer to the two DAP implementations as ABD-DAP
and EC-DAP. In EC-DAP, an [n, k]-MDS erasure coding algorithm (e.g., Reed-
Solomon [25]) encodes k object fragments into n coded elements, which consist
of the k encoded data fragments and m encoded parity fragments. The n coded



38 A. Trigeorgi et al.

fragments are distributed among a set of n different servers. Any k of the n coded
fragments can then be used to reconstruct the initial object value. As servers
maintain a fragment instead of the whole object value, EC-based approaches
claim significant storage benefits. To reduce the communication overhead and
yet preserve atomicity, servers maintain the last δ values they have seen, such
that δ = |W | the set of writers, and thus the number of concurrent write opera-
tions. By utilizing the EC-DAP, ARES became the first erasure coded dynamic
algorithm to implement an atomic R/W object. We refer as ARES-ABD and
ARES-EC the versions of ARES using ABD-DAP and EC-DAP, respectively.

We now provide a high-level description of the two main functionalities sup-
ported by ARES: (i) the reconfiguration of the servers, and (ii) the read/write
operations on the shared object.

Reconfiguration. Reconfiguration is the process of changing the set of servers.
In high-level, ARES maintains a sequence of configuration ids. Whenever a
server wants to introduce a new configuration, it performs the following steps:
(1) it parses the configuration sequence to find the last configuration id proposed,
(2) it proposes a new configuration to extend the sequence via an external con-
sensus service, and (3) if its proposal is accepted, it moves the value of the object
from the old configurations to the new, and then appends the id of the new con-
figuration to the end of the sequence. The reconfiguration protocol ensures that
the sequence remains connected, does not have any gaps, and it is the same for
any participant in the system. The whole process is non-blocking, that it, the
reconfiguration does not block the read/write operations on the object.

Reads/Writes. Read and write operations act as follows: (1) parse the sequence
to find the latest configuration (read-config), (2) read the “latest” (based on the
tag) value (if it is a read) or only the tag (if it is a write) of the object from
that configuration (using DAPs), (3) get in a loop to propagate the latest (if
its a read) or the new (if its a write) value to the latest configuration in the
sequence (using DAPs and read-config), (4) terminate if no new configuration is
discovered. The last two steps serve to propagate the value to new configurations
as they become available. Essentially read and writes catch up with the latest
configuration. Detailed analysis appears in [21].

Implementation. As we already mentioned, for the purposes of this study we
have developed our own implementation of ARES. Our implementation is based
on the architecture depicted in Fig. 1. This includes the modules composing the
infrastructure as well as the communication layer between these modules. The
system is composed of two main modules: (i) a Manager, and (ii) a Distributed
Shared Memory Module (DSMM). The manager provides an interface to each
client for accessing the DSM (in our case a command line interface - CLI).
Following this architecture, clients may access the file system through the Man-
ager, while the shared objects are maintained by the servers through the DSMM.
Notice that the Manager uses the DSMM as an external service to write and read
objects to the shared memory. To this respect, our architecture is flexible enough
to utilize any underlying DSM algorithm to implement the DSMM. In our case
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Fig. 1. The architecture of our ARES implementation.

we implemented two algorithms. At first, we integrated algorithm ABD to our
DSM Module. Next, we implemented algorithm ARES with two different DAPs
(ABD and EC) and then we integrated that implementation to the DSM Module.
Python was chosen as the programming language and ZeroMQ [27] messaging
library written in Python (the Dealer-Router paradigm) for the underlying com-
munication. For the EC algorithm, we use the standard Reed-Solomon imple-
mentation provided by liberasurecode from the PyEClib Python library [23].
Notice that the implementation of ARES requires a consensus algorithm to be
implemented as well. So, we implemented the RAFT [22] consensus algorithm,
utilizing an open-source implementation of RAFT, also written in Python [24].

2.2 Cassandra

Cassandra [1] is a NoSQL distributed database offering continuous availabil-
ity, high performance, horizontal scalability, and a flexible approach with tunable
parameters. It was initially developed by Facebook for their inbox search feature.
Today, it is an open-source application of Apache Hadoop. Cassandra uses
peer-to-peer communication where each node is connected to all other nodes.
The protocol used to achieve this communication is gossip, in which nodes peri-
odically exchange state information about themselves. All the nodes in a cluster
can serve read and write requests. Thus, when a request is sent to any node, this
node acts as the coordinator. The coordinator distributes execution around the
cluster, gathers the responses from the replicas, and responds back to the client.
By default, Cassandra guarantees eventual consistency, which implies that all
updates reach all replicas eventually. However, Cassandra offers tunable con-
sistency for read and write operations, so that the system can guarantee weaker
or stronger consistency, as required by the client application. The required con-
sistency can be achieved by tuning the consistency level (CL) and the replication
factor (RF) parameters. RF specifies how many copies of a store object (i.e., a
row in Cassandra’s Database) is kept among the participants. Given the value
of the RF, the CL controls how many responses the coordinator waits for before
the operation is considered complete. Finally, Cassandra allows the removal
and addition of a single node at a time, in contrast to ARES that allows a com-
plete modification of the configuration (reconfiguration) in a single operation.
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Implementation. We deployed the Apache Cassandra 4 on multiple nodes with
Ubuntu 18.04.1 LTS or 20.04 LTS. In order to guarantee atomicity, as in ARES
and ABD, we set the CL parameter of Cassandra to “quorum”. This means
that a majority of nodes of the replicas must respond. Thus, if n is the total
number of available replicas, and RF is n, then n/2 +1 must respond. To send
read and write request we created a script using the Cassandra-driver Python
library. First, the script creates connections to the cluster nodes, giving their IPs
and ports. Then we specify a keyspace (a namespace that defines data replication
on nodes) and create a table (a list of key-value pairs). Once that is done, the
client can send write and read requests, using the insert and select statements,
respectively. A writer inserts a tuple (fileid, value), where the value is a byte
string of type blobs (binary large objects) in Cassandra. A reader selects the
value providing the file’s id.

2.3 Redis

Redis [2] is an open source, in-memory key-value store. The read/write response
time for Redis is extremely fast since all the data is in memory. Redis is based on
a Master-Slave architecture, i.e., it enables replication of master Redis instances
in replica Redis instances. The use of Redis is rather easy; Redis will internally
store the key and value when users execute commands like set key value. Redis
returns the value with a simple get key command from the user. The data size
cannot exceed the main memory limit because all the data are in main mem-
ory. Redis has two persistence mechanisms: RDB (Redis Database Backup) and
AOF (Append Only File). RDB persistence provides point-in-time snapshots
of the database at specified intervals. AOF persistence logs every write opera-
tion. When the database server starts, Redis reads the AOF log to reconstruct
the database. RDB is perfect for backup, but if RDB stops working all data
changes since the last snapshot are lost. In comparison, AOF has better durabil-
ity, although adopting AOF persistence may result in performance loss. Redis
has a command called “WAIT” in order to implement synchronous replication.
This command blocks the current client until all the previous write commands
are successfully transferred and acknowledged by at least the specified number
of replicas. Redis provides eventual consistency. Even though a write may wait
until all replicas reply, reads do not wait and always terminate as soon as they
receive messages from the master. So, we consider Redis as a benchmark pro-
viding eventual consistency, however, due to the use of the “WAIT” function, in
most scenarios (as claimed in [2]), it may provide atomic consistency.

Implementation. We deployed Redis 5 on multiple nodes with Ubuntu 18.04.1
LTS or 20.04 LTS. We implement two variants of Redis, with and without the
WAIT command during a write operation, i.e., Redis_W and Redis, respec-
tively. For the Redis_W, we specified the number of waiting write acknowledg-
ments with a majority, i.e., n/2+ 1, to match the ABD algorithm. To send read
and write requests we created a script using the Redis-driver Python library.
First, the script creates a connection to Redis, giving the IP and port of the
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master node. Once connected to Redis, the client can write and read with Redis
command functions, set and get respectively. A writer assigns a file’s byte string
value to the Redis key; it uses the file’s id as the key, while a reader gets the
value giving the file’s id. We note that the number of reader clients can dynam-
ically increase or decrease. However, if the Master crashes, the writes will be
blocked, as the replica nodes are read only, until a new replica becomes the new
master; with this respect, reconfiguration in Redis is blocking.

3 Experimental Evaluation

In this section we provide a description of our experiments and the results we
have obtained in this study. Section 3.1 presents the setup of the distributed
system we considered and the tools we used for the experiment deployment.
Section 3.2 presents the different scenarios we examined and the purpose of each
scenario. We conclude with our results and their analysis in Sect. 3.3. The col-
lected data are available in [3], in case one would like to validate our analysis.

3.1 Experimentation Setup

Our main goal was to conduct real-life experiments, exposed to the perturba-
tions, delays, and uncertainty of network communication. We picked devices both
in the EU and the USA, thus, examining the impact of long (cross-Atlantic) com-
munication on the performance of each algorithm. We used two main tools to
deploy and execute our experiments: (i) jFed [18], and (ii) Ansible [5].

Experiment Deployment. jFed is a GUI tool that was developed within the
Fed4FIRE+ project and was used to get access and reserve virtual and physical
machines in various experimental testbeds. Through the tool we were able to
define our node deployment strategy, and specify the connectivity between the
reserved nodes, their external interfaces, the resources and the OS image to use,
and launch those machines in their respective testbeds, for all algorithms.

We used machines from four different testbeds (in the EU and the USA),
that are supported by JFed: (i) imec Virtual Wall 1/2 [26] (Belgium – EU), (ii)
Cloudlab [8] (Utah – USA), (iii) InstaGENI [17] (NYU, UCLA, and Utdallas –
USA) and (iv) Grid5000 [15] (France – EU). In total, we used 39 nodes, where
the InstaGENI ones are XEN VMs with Ubuntu 18.04.1 LTS and routable IPs,
and the rest are physical machines with Ubuntu 20.04 LTS. Due to the similarity
on machine specifications and the high demands in those testbeds we did not use
a specific set of spec configuration but rather we were reserving random available
nodes for each experiment. A reserved machine can either act as a client or a
server in any given experimental run. We avoided having a machine with both
roles, preventing giving a communication advantage to clients residing in the
same machine with a server. Each server is deployed on a different machine, and
clients are all deployed in the remaining machines in a round robin fashion (i.e., a
machine may execute multiple client instances). For example, with 10 machines,
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4 servers, 6 writers and 6 readers, servers would have been deployed on the first
4 machines and each other machine would contain one writer and one reader.

Experiment Execution. Ansible was mainly used for the execution of the
experiments as it is a tool to automate different IT tasks, such as cloud pro-
visioning, configuration management, application deployment, and intra-service
orchestration. There are two main steps to run an experiment: (i) booting up
the client (either writer or reader) and the server nodes, and (ii) executing each
scenario using Ansible Playbooks, scripts written in the YAML language. The
scripts get pushed to target machines, they are executed, and then get removed.
In our experiments, one instance node was dedicated as a controller to orches-
trate the experiments. For the execution of the experiment, Ansible automated
the provision of the executables in each machine, the execution of the operations
in the experiment, and the collection of the logs for our analysis.

Operations. In throughput experiments, operations are invoked without any
delay (i.e., an operation is invoked once the previous operation by the same
client is completed), and the clients perform 1000 operations each. For all other
experiments we use a stochastic invocation scheme: each client waits a random
interval each time it terminates an operation and before invoking the next
one. Reads and writes are scheduled at a random interval between [1 . . . 3] s. In
total, each writer performs 50 writes and each reader 50 reads. Each reconfigurer
invokes one operation every 15 s and performs a total of 15 reconfigurations.

Performance Metric. The performance of the algorithms is measured in terms
of the time it takes for their operations to terminate. Thus, for each algorithm, we
measure the average operation latency, starting at the invocation to the response,
and taking into account both the communication as well as the computation
overhead. Notice that the operation latency is computed as the average of all
clients’ average operation latencies. Note that in the case of Cassandra, we
omitted to account some “unsuccessful operations”, i.e., operations where the
client invoking them did not receive replies from a majority of servers.

3.2 Scenarios

Scenarios aim to capture the performance of the algorithms in the three perfor-
mance parameters (tests) we mentioned in Sect. 1. Our scenarios are:

Scalability Test – Participation (All Algorithms). This scenario is con-
structed to compare the read and write latencies of the algorithms, as the number
of the service participants increases. We varied the number of readers |R| from
5 to 250 and the number of writers |W | from 5 to 20. The number of servers |S|
is set to two different values, 3 and 11. To reduce the amount of combinations,
we fixed the number of writers to 5 when testing all possible values of readers,
and the readers to 5 when testing all possible combinations of writers. The size
of the object is 1 MB. We used a different parity for ARES-EC, m, based on the
number of servers used: m is set to m = 1 for |S| = 3 and m = 5 for |S| = 11.



Invited Paper: Towards Practical ADSM: An Experimental Evaluation 43

Stress Test – Topology (All Algorithms). This scenario aims to measure
how the performance of the algorithms is affected under different topologies and
server participation. In this case we measure the throughput (average number of
operations per second) of each algorithm. To avoid any delays due to operation
contention, we chose to use 2 clients (1 reader and 1 writer), the minimum
number of servers to form a majority, i.e. 3, and a simple object of 32 B. As we
deployed machines on both EU and USA, our servers are split in such a way to
either force all of them or their majority to be in a single continent. In particular,
the 3 servers selected based the following topologies: 0E+3U , 1E+2U , 2E+1U ,
3E+0U , where xY means that x servers are deployed in Y continent for E = EU
and U = USA. Similarly we deployed the clients either close (i.e., to the same
continent) or away from the server majority. Last, we tested the throughput of
the algorithms when the number of servers is growing from 3 to 15. In this case,
for every server deployed in EU, we deployed 2 servers in the USA.

Stress Test – Object Size (All Algorithms). This scenario is made to evalu-
ate how the read and write latencies are affected by the size of the shared object.
The file size doubled from 64 kB to 8 MB. The number of servers is fixed to 11.
The number of writers and the number of readers is fixed to 5. For ARES, there
are two separated runs, one for ARES-ABD and one for ARES-EC. The parity
value of ARES-EC is set to m = 5, and thus the fragmentation parameter is
k = 6. The quorum size of the ARES-EC is

⌈
|S|+k

2

⌉
=

⌈
11+6

2

⌉
= 9, while the

quorum size of ARES-ABD is
⌊

|S|
2

⌋
+ 1 =

⌊
11
2

⌋
+ 1 = 6. For Cassandra, we

set the consistency level (CL) to the majority, i.e., 6. The writers of Redis_W
also wait for a majority (6) servers to reply.

Stress Test – Fragmentation Parameter k (Only ARES-EC). This sce-
nario applies only to ARES-EC since we examine how the read and write laten-
cies are affected as we modify the erasure-code fragmentation parameter k (a
parameter of Reed-Solomon). We assume 11 servers and we increase k from 2 to
10. The number of writers (and hence the value of δ) are set to 5. The number
of readers is fixed to 15. The size of the object used is 4 MB.

Fault-Tolerance Test – Node Crashes (Only ARES). In this scenario,
we introduced server fail-crashes in the ARES algorithm to verify the fault-
tolerance guarantees and the responsiveness of the system, especially with respect
to reconfigurations. The number of servers |S| is set to 11 with m = 5. The
number of writers and readers are fixed to 5 and 15, respectively. The size of the
file used is 1 MB. We execute 2 crashes during each experimental run, server s0
crashes 100 s within the experiment and s3 crashes 200 s after. Both failed servers
are from the imec Virtual Wall 2 testbed (EU), since we observed that they are
included in the most quorum replies. We assign a unique id to each quorum.
However, the quorum of each DAP differs in size. The size of each quorum
(majority) in ARES-ABD is 6, while the quorum size of ARES-EC is 9. In total,
ARES-ABD has 462 quorums and ARES-EC has 55. For ease of visualization,
we categorize the quorums of the two DAPs into three groups: (i) one which
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includes all quorums, (ii) one which excludes quorums involving s0; and (iii)
one which excludes quorums involving either s0 or s3. During the same scenario
we tested the reconfiguration ability of the algorithm. In particular, we varied
the number of reconfigurers with values in {1, 3, 5} and each reconfiguration was
switching between the two DAPs.

3.3 Experimental Results

Our analytical results aim to expose how a strongly consistent, reconfigurable
service like ARES, compares in performance with the two commercial storages
of our choice, namely Cassandra and Redis. Moreover, it helps us identify
bottlenecks and shortcomings of ARES for future optimizations, and, in some
scenarios, we demonstrate the ability of ARES to utilize erasure-coding and to
cope with failures and dynamic reconfiguration.

Table 1 provides a comprehensive list of the variables we used in our scenarios.
Experiments were conducted for a selection of those parameters. In this section
we highlight some representative outcomes in each scenario. More results may be
found in the website of the project1 presented in interactive plots where the user
may choose the parameters to apply. The results shown are compiled as averages
over 3 samples per each scenario and 5 samples for the topology scenario.

Table 1. Experimental variables

Variable Possible values Description

Topology { 0E+3U, 1E+2U, 2E+1U,
3E+0U }

Distribution of servers in EU and
US. For the scenarios with more
than 3 servers we use two servers
in US for every server in EU

ClientContinent { EU, US } Location of the clients (for
throughput scenario)

S { 3, 5, 7, 9, 11 } The number of servers

W { 0, 1, 5, 10, 15, 20 } The number of writers

R { 0, 1, 5, 15, 50, 100, 150, 250 } The number of readers

G { 0, 1, 3, 5 } The number of reconfigurers

k { 1, 2, 3, 4, 5, 6, 7, 8, 9 } Erasure-coding data fragments

fsize { 64 kB, 128 kB, 256 kB, 512 kB,
1 MB, 2 MB, 4 MB, 8 MB }

The size of the file (object)

Recontype { sameDAP, switchingDAP,
switchingDAP & andomServers }

The way the reconfigurers work:
(i) reconfiguring to the same DAP,
(ii) reconfiguring the DAP
alternately, (iii) reconfiguring the
DAP alternatively and servers
randomly

1 https://projects.algolysis.com/ares-ngi/results/.

https://projects.algolysis.com/ares-ngi/results/
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Scalability Tests. Some of the results obtained while increasing the number of
participants in the system appear in Figs. 2, 3 and 4. At a first glance,Cassandra
seems to struggle to keep up as the readers grow in all cases, while Redis_W does
not seem to be affected. Similar observation can be made for the two ABD based
algorithms (ABD and ARES-ABD) as they remain at low levels as |R| increases.
ARES-EC exposes an interesting behavior as it is the worst performing algorithm
when few servers are used, and becomes faster when more servers are deployed.
This can be seen in Figs. 3 and 4. The more the servers the more the encoded
elements to be distributed and the bigger can be the fragmentation parameter
k. Thus, each object fragment becomes smaller, resulting in tremendous benefits
on the communication delays. Worth observing is that the latency of the write
operation of ARES-EC matches the one of Redis_W when |S| = 11.

Similar findings can be seen as the number of writers |W| grows. Cassandra
has the larger write latency despite the fact that it shows a more stable behavior,
and the read latency of ARES-EC is the worst when |S| = 3.

Fig. 2. Readers scalability vs write latency, |S| = 3.

Fig. 3. Readers scalability vs read latency, |S| = 3.
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Fig. 4. Readers scalability vs read latency, |S| = 11.

Fig. 5. Throughput vs algorithm. Topology: 3E + 0U

Fig. 6. Performance vs algorithm. Topology: 0E + 3U (Color figure online)

Stress Tests – Topology. Some results from these experiments appear in
Figs. 5 and 6. Overall the topology played a major role on the performance, and
in particular throughput, of all the algorithms we studied. All of the algorithms
(including the ADSM algorithms we implemented, i.e., ABD, ARES-ABD, and
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ARES-EC), achieve their maximum read and write throughput when the servers
and the clients are deployed in the same continent.

For the ADSM algorithms, there appears to be no difference when the experi-
ment contains non-concurrent or concurrent operations. The small fsize (32 B),
amplified the impact of the stable overhead of read-config operations, and they
constitute a significant percentage of the total operation latency (see blue bar
in Fig. 6). From the same figure we interestingly observe that the setup where
all servers and clients are deployed in the USA, favored the ADSM algorithms
over both Cassandra and Redis.

On the other hand, Cassandra shows different behavior. It achieves the
maximum read throughput when both servers and clients are deployed in the
EU. It demonstrates a small lead over the ADSM algorithms in most cases on
both operations. However, it shows some performance degradation when write
and read operations are invoked concurrently.

Finally, Redis and Redis_W outperform the rest of the algorithms in most
scenarios. Redis shows consistent performance for both reads and writes due to
the weaker consistency requirements and thus smaller communication footprint.
The impact of the communication overhead is obvious in Redis_W, where the
writer waits before completing.

Stress Tests – Object Size. The results for the write performance in these
experiments are captured in Fig. 7. We observe that the write latencies of all
operations, except ARES-EC and Redis_W, grow significantly, as the fsize
increases. The fragmentation applied by the ARES-EC benefits its write oper-
ations, which follow a slower increasing curve like the Redis_W. The write
latencies of all other algorithms are close to each other. Results show that the
read operations of ARES-EC suffer the most delays until 4 MB. The first phase
of the read operation does decoding, which is slower than the first phase of the
write, which simply finds the maximum tag, contributed to this overhead. How-
ever, at larger file sizes (8 MB) Cassandra has the slowest read operations. As

Fig. 7. Filesize results.



48 A. Trigeorgi et al.

expected, the Redis_W read operations provide the best results, and its write
operations with the WAIT command have higher latency compared to the read
operations. However, both of them remain at low levels as the fsize increases.

Fig. 8. k scalability results.

Stress Tests – Fragmentation Parameter k. From Fig. 8 we can infer that
when smaller k are used, the write and read latencies reach their highest values.
In both cases, small k results in the generation of a smaller number of data
fragments and thus bigger sizes of the fragments and higher redundancy. For
example, we can see that for RS(11, 7) and RS(11, 6) we have the same size
of quorum, equal to 9, whereas the latter has more redundant information. As
a result, with a higher number of m (i.e., smaller k) we achieve higher levels
of fault-tolerance. The write latency seems to be less affected by the value of
k since the write operation does only encoding, and not decoding, while the
read operation does both. In conclusion, there appears to be a trade-off between
operation latency and fault-tolerance in the system: the further increase of k (and
thus lower fault-tolerance), the smaller the latency of read/write operations.

Fault-Tolerance. Figure 9 shows to which quorum group (0, 1, or 2) the
responding servers belong when only 1 reconfigurer exists. That is, Fig. 9 shows

Fig. 9. Quorum replies to reader6. Fig. 10. Reconfiguring DAP alternately
and 2 server fails.
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the quorum group that sends to reader6 every 1 s interval. Until the first 100 s of
each operation, quorum group is 0, e.g., all quorums were active. From that
moment on, the clients receive responses only from group 1, e.g., quorums
excluded server0. With the second kill, after 200 s, only the quorums included in
group 2 remain active. Figure 10 shows the read, write, and reconfig operation
latency as the number of reconfigurers increases. During each experiment, the
two server failures took place, but our system kept running without interrup-
tions.

4 Conclusions

As a general finding, achieving strong consistency is more costly than providing
weaker semantics as we experienced with Redis and Redis_W. However, the
performance gap is not prohibitively large and future optimizations of ARES
may close it enough so as to substantiate trading performance for consistency.
Compared to the atomic version of Cassandra, ADSM algorithms seem to
scale better, but lack behind in the throughput when dealing with small objects.
Both approaches seem to be affected by the object size, but ARES-EC suggests
that fragmentation may be the solution to this problem. Finally, we demon-
strated that ARES may handle efficiently failures in the system, and reconfigur-
ing from one DAP to another without service interruptions. Also, by examining
the fragmentation parameter, we exposed trade-offs between operation latency
and fault-tolerance in the system: the further increase of the parity (and thus
higher fault-tolerance), the larger the latency.

ARES, an algorithm that always offers provable guarantees, competes closely
and in many cases outperforms existing DSS solutions (even when offering weaker
consistency guarantees). It would be interesting to study how optimizations may
improve the performance of ARES. For example, fragmentation techniques as
presented in [12] may have a positive impact on the performance of the algorithm.
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Abstract. This paper considers the classical state machine replication
(SMR) problem in a distributed system model inspired by cross-chain
exchanges. We propose a novel SMR protocol adapted for this model.
Each state machine transition takes O(n) message delays, where n is the
number of active participants, of which any number may be Byzantine.
This protocol makes novel use of path signatures [8] to keep replicas
consistent. This protocol design cleanly separates application logic from
fault-tolerance, providing a systematic way to replace complex ad-hoc
cross-chain protocols with a more principled approach.

1 Introduction

In the state machine replication (SMR) problem, a service, modeled as a state
machine, is replicated across multiple servers to provide fault tolerance. SMR
has been studied in models of computation subject to crash failures [10] and
Byzantine failures [2].

This paper proposes an SMR protocol for a model of computation inspired
by, but not limited to, transactions that span multiple blockchains. The service’s
state is replicated across multiple automata. These replicas model smart con-
tracts on blockchains: they are trustworthy, responding correctly to requests, but
passive, meaning they undergo state changes only in response to outside requests.
Like smart contracts, replicas cannot communicate directly with other replicas
or observe their states. Active agents initiate replica state changes by communi-
cating with the replicas over authenticated channels. Agents model blockchain
users: any number of them may be Byzantine, eager to cheat other agents in
arbitrary (but computationally-bounded) ways.

This SMR protocol guarantees safety, meaning that Byzantine agents cannot
victimize honest agents, and liveness, meaning that if all agents are honest, then
all replicas change state correctly.

Although cross-chain SMR and conventional SMR have (essentially) the same
formal structure, their motivations differ in important ways. Conventional SMR
embraces distribution to make services fault-tolerant. By contrast, individual
blockchains are already fault-tolerant. Instead, cross-chain SMR is motivated by
the need for interoperability across multiple independent chains. For example,
suppose Alice and Bob have euro accounts on a chain run by the European
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Central Bank, and dollar accounts on a chain run by the Federal Reserve. They
agree to a trade: Alice will transfer some euros to Bob if Bob transfers some
dollars to Alice. Realistically, however, Alice and Bob will never be able to
execute their trade on a single chain because for political reasons the dollar
chain and the euro chain will always be distinct. They could use an ad hoc cross-
chain swap protocol [8,15], but an SMR protocol has a cleaner structure, and
generalizes more readily to more complex exchanges. So Alice and Bob codify
their trade as a simple, centralized state machine that credits and debits their
accounts. They place a state machine replica on each chain, and execute the
trade through an SMR protocol that keeps those replicas consistent. While both
replicas formally execute the same steps, the euro chain replica actually transfers
the euros, the dollar chain replica actually transfers the dollars, and the SMR
protocol ensures these transfers happen atomically.

A conceptual benefit of SMR over ad-hoc protocols is separation of concerns.
Expressing a complex financial exchange as a (non-distributed) state machine
frees the protocol designer to focus on the exchange’s incentives, payoffs, and
equilibria, without simultaneously having to reason about distributed issues such
as timeout durations or faulty communication.

Prior SMR protocols assume some fraction of the participants (usually more
than one-half or two-thirds) to be non-faulty. By contrast, for cross-chain appli-
cations it does not make sense to assume a limit on the number of Byzantine
agents. Instead, this model’s SMR protocol protects agents who honestly follow
the protocol from those who don’t, all while ensuring progress when enough
agents are honest.

This paper makes the following contributions. We are the first to consider
the classical SMR coordination problem in a distributed system model inspired
by cross-chain exchanges. The model itself is a formalization of models implicit
in earlier, more applied works [8,9]. Fundamental coordination problems in this
model have received little formal analysis. We propose a novel SMR protocol
adapted for this model. Each state machine transition takes O(n) message delays,
where n is the number of agents, of which any number may be Byzantine. This
protocol makes novel use of path signatures [8] to keep replicas consistent. This
SMR structure cleanly separates application logic from fault-tolerance, providing
a systematic way to replace complex ad-hoc cross-chain protocols with a more
principled approach.

This paper is organized as follows. Section 2 describes the cross-chain model
of computation, Sect. 3 gives examples of automata representing various kinds
of cross-chain exchanges, Sect. 4 describes our cross-chain SMR protocol, Sect. 5
discusses optimizations and extensions, and Sect. 6 surveys related work.

2 Model of Computation

Our model is motivated by today’s blockchains and smart contracts, but it
does not assume any specific blockchain technology, or even blockchains as
such. Instead, we focus on computational abstractions central to any systematic
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approach to exchanges of value among untrusting agents, whatever technology
underlies the shared ledger.

The system consists of a set of communicating automata. An automaton
is either an active, untrusted agent, or a passive, trusted replica. An agent
automaton models a blockchain client such as a person or an organization, and is
untrusted. A replica automaton models a smart contract (or contract), a chain-
resident program that manipulates ledger state. Contract code and state are
public, and that code is reliably executed by validators who reach consensus on
each call. Replicas are trusted because they model trusted contracts.

Reflecting the limitations of today’s blockchains, agents communicate only
with replicas (clients can only call contract functions), and replicas do not com-
municate with other replicas (contracts on distinct chains cannot communicate).
Replica A can learn of a state change at replica B only if some agent explicitly
informs A of B’s new state. Of course, A must decide whether that agent is
telling the truth.

Like prior work [8,9,15], we assume a synchronous network model where
communication time is known and bounded. There is a time bound Δ > 0,
such that when an agent initiates a state change at a replica, that change will
observed by all agents within time Δ. We do not assume clocks are perfectly
synchronized, only that clock drifts are kept small in comparison to Δ.

We make standard cryptographic assumptions. Each agent has a public and a
private key, with public keys known to all. Messages are signed so they cannot be
forged, and they include single-use labels (“nonces”) so they cannot be replayed.

The agents participating in an exchange agree on a common protocol : rules
that dictate when to request replica state changes. Instead of distinguishing
between faulty and non-faulty agents, as in classical SMR models, we distinguish
only between compliant (i.e. honest) agents who honestly follow the common
protocol, and deviating (i.e. Byzantine) agents who do not. Unlike prior SMR
models, which require some fraction of the agents to be compliant, we tolerate
any number of Byzantine agents1.

3 State Machines

Because applications such as cross-chain auctions or swaps are typically struc-
tured as multi-step protocols where agents take turns transferring assets in and
out of escrow accounts [9,15], the state machine is structured as a multi-agent
game. For simplicity, agents make moves in round-robin order. (In practice,
agents can sometimes skip moves or move concurrently, discussed in Remarks in
full version paper [19].)

Formally, a game is defined by a decision tree G =
(A,M,S,F ,moves , enabled , succ, util), where A is a set of n > 1 agents,
M is a set of moves, S is a set of non-final states, and F is a set of final
states disjoint from S. S includes a distinguished initial state s0. The function

1 If all agents are Byzantine, then correctness becomes vacuous.
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moves : S → 2M defines which moves are enabled at each non-final state,
enabled : S → A defines which agent chooses the next move at each non-final
state, succ : S × M → S ∪ F , defines which state is reached following a move
in a non-final state. This successor function induces a tree structure on states:
for s1, s2 ∈ S and m1,m2 ∈ M, if succ(s1,m1) = succ(s2,m2) then s1 = s2 and
m1 = m2. Finally, the utility function util : A × F → R

n is given by a vector of
real-valued functions on final states, indexed by agent: (utilP : F → R | P ∈ A).
For each agent P ∈ A and state z ∈ F , utilP (z) measures P ’s preference for z
compared to its preference for the initial state. Informally, utilP (z) is negative
for states where P ends up “worse off” than it started, positive for states
where P ends up “better off”, and zero for states where P is indifferent. An
execution from state s0 is a sequence (s0, P1, μ1, . . . , si−1, Pi, μi, . . . , sk) where
each Pi = enabled(si−1), μi ∈ moves(si−1), si = succ(si−1, μi), and sk ∈ F . We
divide executions into rounds: move μi takes place at round i. Game trees are
finite and deterministic, hence so are executions.

Not all game trees make sense as abstract state machines. We are not inter-
ested in games like chess or poker where one agent’s gain is another agent’s loss.
Instead, we are interested in games where all agents stand to gain. A protocol
Π : S → 2M is a rule for choosing among enabled moves. As mentioned, agents
that follow the protocol are compliant, while those who do not are deviating. More
precisely, P is compliant in an execution (s0, P1, μ1, . . . , si−1, Pi, μi, . . . , sk) if it
follows the protocol: if P = enabled(si−1), then μi ∈ Π(si−1). An execution is
compliant if every agent follows the protocol: for i ∈ 1 . . . k, μi ∈ Π(si−1).

A mutually-beneficial protocol guarantees:

– Liveness: Every compliant execution leads to a final state z where utilP (z) >
0 for all P ∈ A.

– Safety : Every execution in which agent P is compliant leads to a final state
z where utilP (z) ≥ 0.

The first condition says that if all agents are compliant, they all end up strictly
better off. The second says that a compliant agent will never end up worse off,
even if others deviate. Establishing these properties is the responsibility of the
game designer, and preserving them is the responsibility of the SMR protocol.

Both agents and the state machine itself can own and exchange assets. We
keep track of ownership using addresses: each agent P has an address, addr(P ),
and the state machine has an address Self . Let ADDR be the domain of
addresses, and ASSET the domain of assets.

We represent state machines in procedural pseudocode. The block marked
State defines the machine’s state components. The state includes an account
map, account : ADDR×ASSET → Z, mapping addresses and assets to account
balances. We will often abuse notation by writing account(P,A) in place of
account(addr(P ), A) when there is no danger of confusion. Other state compo-
nents may include counters, flags, or other bookkeeping structures.

At the start of the state machine execution, the agents (optionally) initialize
the state by executing the block marked Initialize(. . .). An agent triggers a
state transition by issuing a move, which may take arguments. Each move has an
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implicit Sender argument that keeps track of which agent originated that move.
In examples, a move is defined by a Move block, which checks preconditions and
enforces postconditions. To capture the Byzantine nature of agents, every non-
final state has an implicit enabled Skip move, which leaves the state unchanged,
except for moving on to the next turn. (Usually, Skip deviates from the protocol.)
The keyword halt ends the execution for the sender.

The example state machines illustrated in this section favor readability over
precision when meanings are clear. For clarity and brevity, we omit some routine
sanity checks and error cases. Our examples are all applications that exchange
assets because these are the applications that make the most sense for the cross-
chain model.

3.1 Example: Simple Swap

State Machine 1 Simple Swap
State:
1: account : ADDR × ASSET → Z

2: AliceYes, BobYes, AllDone: bool := false, false, false
Move: Agree() � Each agent agrees to swap
3: if Sender = Alice ∧ account(Alice, florin) ≥ 1 then
4: AliceYes := true
5: else if Sender = Bob ∧ account(Bob, ducat) ≥ 1 then
6: BobYes := true
Move: Complete() � Any agent can complete the swap
7: if ¬AllDone then � Not yet completed?
8: if AliceYes ∧ BobYes then � Both agents agreed?
9: account(Alice, florin) := account(Alice, florin) − 1

10: account(Bob, florin) := account(Bob, florin) + 1
11: account(Bob, ducat) := account(Bob, ducat) − 1
12: account(Alice, ducat) := account(Alice, ducat) + 1

13: AllDone = true
14: halt

Algorithm 1 shows pseudocode for a simple swap state machine, where Alice
and Bob swap one of her florins for one of his ducats. The block marked State
defines the state components: the accounts map, and various control flags. Each
agent agrees to the swap (Line 3, Line 5), checking that the caller has sufficient
funds. After both have agreed, either agent can complete the transfers (Line 8).
If either agent tries to complete the transfer before both have agreed, the transfer
fails, and no assets are exchanged.
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State Machine 2 DAO State Machine
State:
1: account : ADDR × ASSET → Z � Initially 0
2: yesVotes : A → Z,noVotes : A → Z � Initially 0
3: voted : A → {true, false} � Initially false
Initialize():
4: if account(Self , florin) < 100 then � Make sure DAO has funds
5: halt
Move: VoteYes(k : Z) � LP casts k votes
6: if Sender is enabled then
7: if account(Sender , token) ≥ k then � Sender has enough tokens
8: yesVotes(Sender) := k
9: voted(Sender) := true

Move: VoteNo(k : Z) . . . � Symmetric with VoteYes
Move: Skip()
10: do nothing
Move: Resolve()
11: if Sender is enabled and threshold voted yes then � Fund 100 to Alice
12: account(Self , florin) := account(Self , florin) − 100
13: account(Alice, florin) := account(Alice, florin) + 100
14: halt

3.2 Example: Decentralized Autonomous Organization (DAO)

Consider a venture fund organized as a decentralized autonomous organization
(DAO), where liquidity providers (LPs) vote on how to invest their funds. Algo-
rithm 2 shows a state machine where the DAO’s LPs vote on whether to fund
Alice’s request for 100 florins. Each LP holds some number of governance tokens,
each of which can be converted to a vote. After the LPs vote, a director tallies
their votes, and if there are enough yes votes, transfers the funds. The state con-
sists of accounts, account : ADDR× ASSET → Z, and maps yesVotes : A → Z

and noVotes : A → Z counting yes and no votes.
Initialization (Line 4) ensures that the DAO’s own account is funded. Each

LP votes in turn whether to approve Alice’s request (Lines 6 to 9). (As discussed
in full version paper [19], these votes could be concurrent.) If an LP skips its turn,
the tallies are unchanged (Line 10). After every LP has had a chance to vote,
the director can ask for a resolution (Lines 11 to 14). If the caller is authorized
and if a threshold number of votes were yes (Line 11), the funds are transferred
to Alice from the DAO’s account. In either case, the execution ends.

An example for sealed-bid auction can be found in our full version paper [19].

4 State Machine Replication Protocol

In this section, we define an SMR protocol by which multiple replica automata
emulate a (centralized) state machine as defined in the previous section.
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There are n agents and m assets, where each asset is managed by its own
replica. Each replica maintains its own copy of the shared state. The SMR pro-
tocol’s job is to keep those copies consistent. We assume that agents have some
way to find one another, to agree on the state machine defining their exchange,
and to initialize replicas that begin execution with synchronized clocks.

The core of the SMR protocol is a reliable delivery service that ensures that
the moves issued by the agents are delivered to the replicas reliably, in order. Reli-
able ordered delivery in the presence of Byzantine failures is well-studied [7,12],
but the cross-chain model requires new protocols because the rules are different.
The principal difference is the asymmetry between agents, active automata who
cannot be trusted, and replicas, purely reactive automata who can observe only
their own local states, but who can be trusted to execute their own transitions
correctly.

For example, suppose the protocol calls for Alice to send a move to replicas
A and B, instructing them to transition to state s. Each replica that receives
the move validates Alice’s signature, checks that it is Alice’s turn, and that the
move is enabled in the current state.

There are several ways Alice might deviate. First, she might send her move to
replica A but not B. In the SMR protocol, however, agents monitor one another.
Another compliant agent, Bob, will notice that B has not received Alice’s move.
Bob will sign and relay that move from A to B, causing B to receive that move
at most Δ later than A. As long as there is at least one compliant agent, each
move will be delivered to each replica within a known duration.

Second, Alice might deviate by sending conflicting moves, such as “transition
to s” to A, but “transition to s′” to B. Here, too, Bob will notice the discrepancy
and relay both moves to A and B, presenting each replica with proof that Alice
deviated. Each replica will discard the conflicting moves, acting as if Alice had
skipped her turn.

Third, Alice might send a move to A that is not enabled in the current state.
Replica A simply ignores that move, acting as if Alice had skipped her turn.

Finally, Alice might not send her move to either replica. Each replica that
goes long enough without receiving a move will act as if Alice had skipped her
turn. In short, reliable delivery has only two outcomes: a valid move from Alice
delivered to every replica, or no valid move delivered, interpreted as a Skip, all
within a known duration.

To summarize, the SMR protocol consists of three modules.

– The front-end automata (Algorithm 5), one for each agent, provide functions
called by agents, including initial asset transfers into the state machine, the
moves, and final asset transfers out of the state machine. (Every compliant
agent is in charge of ensuring that final asset transfers take place.)

– The relay service (Algorithm 3) guarantees that moves issued by front-ends
are reliably delivered to the replicas as long as at least one agent is compliant.

– The replicas (Algorithm 4), one for each asset, process function calls sent by
agents from front-end, maintain copies of the state, and manage individual
assets.
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4.1 Path Signatures

A request req is a triple (P, μ, r), used to indicate that agent P requests move
μ at the start of round r. Let sigP (P,m) denote the result of signing a mes-
sage m with P ’s secret key. A path p of length k is a sequence [P1, . . . , Pk] of
distinct agents. We use [] for the empty sequence, and [p,Q] to append Q to
the sequence p: [[P1, . . . , Pk], Q] = [P1, . . . , Pk, Q]. A path signature [8,9] for p is
defined inductively:

p(P, μ, r) :=

{
(P, μ, r) If p = [],
sigQ(Q, q(P, μ, r)) if p = [q,Q]

Informally, path signatures work as follows. The rth round starts at time
t = (r − 1)nΔ after initialization. Within time t + Δ after the start of round
r, a receiver accepts the path signature [Alice](Alice, μ, r) directly from Alice.
Within time t + 2Δ, a receiver accepts [Alice,Bob](Alice, μ, r) originating from
Alice and relayed through Bob, and within time t + kΔ, a receiver accepts a
message originating from Alice and relayed through k − 1 distinct agents. A
path signature of length k is live for a duration of kΔ after t. If no message is
received for a duration of nΔ after t, then no message was sent.

Function now() returns the current time. Define the following functions and
predicates on path signatures of length k:

age(p(P, μ, r)) := now() − (r − 1)nΔ

live(p(P, μ, r)) := age(p(P, μ, r)) ≤ kΔ

ready(p(P, μ, r)) := age(p(P, μ, r)) > nΔ

The age() function is the time elapsed since the start of the current round. The
SMR protocol uses live() to determine whether a message should be accepted by
replicas, and ready() to determine whether the accepted message’s move can be
applied. A path signature is well-formed if the signatures are valid and the signers
are distinct. For brevity, replica pseudocode omits well-formedness checks. We
use REQ = A × M × Z for the domain of requests, and PS for the domain of
path signatures.

4.2 Reliable Delivery

The n agents act as senders (indexed by A) and the m replicas act as receivers
(indexed by ASSET ).

Each receiver A has a component: bufferA : A → 2PS , where bufferA(P )
holds path signatures for moves originally issued by agent P and received at
chain A.

Property 1. Here is the specification for the reliable delivery protocol.
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– Authenticity : Every move contained in a path signature in bufferA(P ) was
signed by P .

– Consistency : If any receiver receives a path signature indicating P ’s move,
then, within Δ, so does every other receiver.

– Fairness: If a compliant P issues a move, then every receiver receives a path
signature containing that move within Δ.

Note that a deviating sender may deliver multiple moves to the same receiver.

Before issuing a move, a compliant agent P waits until that move is enabled
at some replica’s state (not shown in pseudocode). To issue the move, P sends
the path signature [P ](P, μ, t) to every replica (Algorithm 5 Line 10). When
replica A receives a live path signature with a move originally issued by P , A
places that message in bufferA(P ) (Algorithm 4 Line 12). From that point, the
relay service is in charge of delivery.

A natural way to structure the relay service is to have each (compliant) sender
run a dedicated thread that repeatedly reads replica buffers and selectively relays
messages from one replica to the others (Algorithm 3). Lines 3 to 8 shows the
pseudocode for relaying moves. Each relaying agent Q reads each receiver’s buffer
(Line 4), and selects messages (more specifically, requests of moves) (P, μ, r)
which are not already relayed by Q (Line 5). Each such message is sent to the
other receivers (Line 6) by adding Q to the path p and produces [p,Q](P, μ, r),
and the message is recorded to avoid later duplication (Line 7). After reading
the buffers, Q calls each replica’s deliver() function (Line 8) which causes the
replica to check whether it can execute a move (see below).

State Machine 3 Relay Protocol for Q ∈ A
1: seen : 2REQ � Initially empty
2: while Exchange is in progress do
3: for all A ∈ ASSET , P ∈ A do
4: for all p(P, μ, r) ∈ bufferA(P ) do � Inspect every path signature
5: if (P, μ, r) �∈ seen then � Does it need to be relayed?
6: for all B ∈ ASSET do B.send([p, Q](P, μ, r)) � Append signature

and relay

7: seen := seen ∪ {(P, μ, r)} � Don’t relay again

8: for all A ∈ ASSET do A.deliver() � Wake up replicas

Properties of our relay protocol and proof can be found in our full version
paper [19].

4.3 Initialization, Moves, and Settlement

Each replica manages a unique asset. On the replica that manages asset A, each
agent P has a long-lived account, denoted LongAccountA(P ), that records how
many units of A are owned by P . While an execution is in progress, each agent
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P has a short-lived account at A, denoted ShortAccountA(P,B), tracking how
many units of asset B have been tentatively assigned to P at replica A. Each
replica A has address Self A. Long-lived and short-lived accounts are related by
the following invariant:

LongAccountA(Self A) =
∑
P∈A

ShortAccountA(P,A).

We assume replica A is authorized to transfer A assets, in either direction,
between the calling agent’s long-lived account: LongAccountA(Sender), and the
replica’s own long-lived account: LongAccountA(Self ).

At the start of the execution, each agent P escrows funds by transferring
some quantity of each asset A from LongAccountA(P ) to LongAccountA(Self )
(Algorithm 4, Line 6). If that transfer is successful, the replica credits P ’s short-
lived accounts: for all B ∈ ASSET , P sets ShortAccountB(P,A) equal to the
amount funded (Line 8). Agent P is then marked as funded (Line 9). Only
properly funded agents can execute moves (Line 11).

What could go wrong? The transfer from LongAccountA(P ) to
LongAccountA(Self ) might fail because LongAccountA(P ) has insufficient funds.
The replica at A can detect and react to such a failure, but the other repli-
cas cannot. To protect against such failures, each agent calls the function
verifyAccounts() (Algorithm 5, Lines 6 to 8), which checks that all replicas’
account balances are consistent. Finally, each agent checks that every other agent
has transferred the agreed-upon amounts (Line 3). This last test is application-
specific: for the swap example, agents would check that the others transferred
a specified amount of coins, while in the DAO example, LPs can transfer as
many governance tokens as they like. If either test fails, the front-end refunds
that agent’s assets (by invoking redeem() in Algorithm 5). In this way, if some
agents drop out before initialization, they are marked as unfunded, and the
remaining funded agents may or may not choose to continue. In the meantime,
safety is preserved since each compliant agent who continues sees a consistent
state across all replicas. Each compliant agent who leaves the execution gets
their funds back, ensuring they end up no worse off.

This funding step takes time at most Δ. Each agent then verifies that replicas
are funded consistently. If not, the agent calls redeem() to reclaim its funding,
and drops out. This verification takes time nΔ, like any other move. For an
execution starting at time t, initialization completes before t + (n + 1)Δ.

While the execution is in progress, transfers of asset A between P and Q are
expressed as transfers between ShortAccountA(P,A) and ShortAccountA(Q,A),
leaving the balance of LongAccountA(Self ) unchanged. Replica A also tracks
P ’s balances for other assets: ShortAccountA(P,B) is A’s view of P ’s current
short-lived balance for each asset B �= A.

When the execution ends, each P calls each replica’s redeem() func-
tion (Algorithm 5, Line 20), to get its assets back. This function trans-
fers ShortAccountA(P,A) units of asset A from LongAccountA(Self ) to
LongAccountA(P ) (Algorithm 4, Line 31). Once an agent’s funds are redeemed,
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that agent is marked as not funded (Line 32). The redeem() function serves two
roles: it can refund an agent’s original assets if the exchange fails, or it can claim
an agent’s new assets if the exchange succeeds. If all agents are conforming and
no one drops out, the execution proceeds and every agent ends up with a better
payoff, ensuring liveness. Any compliant agent can drop out, either early with a
refund (say, if it observes inconsistent funding), or at the execution’s end. Both
choices ensure that all assets in short-lived accounts are moved to long-lived
accounts.

Each replica (Algorithm 4) has its own copy of the state machine (Line 3).
The replica can apply moves to the copy (Line 15), and the replica can determine
whether a proposed move by a particular agent is currently enabled (Line 13).

Replica A’s deliver() function determines whether there is a unique move in
bufferA(P ) to execute. Each time replica A starts a round, it records the time
(Line 16). If nΔ time then elapses without delivering the next move (Line 17),
the missing move is deemed to be a Skip (Line 18).

4.4 Dynamic Funding

The protocol provided above assumes no additional funding after initialization.
However, sometimes, it is good to allow parties to add more funding during
the execution of the game, for example, in auctions. We provide protocols for
dynamic funding. Our full version paper [19] provides more details.

5 Remarks

In this paper, we present a cross-chain state machine replication protocol
for cross-chain transactions. Cross-chain transactions are formalized as state
machines and each blockchain’s smart contract represents a replica. Although
it is mostly straightforward to implement replica automata as smart contracts,
there are practical, blockchain-specific details (such as analyzing gas prices) that
are beyond the scope of this paper. See more discussions on optimization in our
full version paper [19].

6 Related Work

State machine replication is a classic problem in distributed computing. Proto-
cols such as Paxos [10], Raft [4], and their immediate descendants were designed
to tolerate crash failures. Later protocols (see Distler’s survey [5]) tolerate Byzan-
tine failures. These protocols are not applicable to cross-chain exchanges because
of differences in the underlying trust and communication models.

Prior Byzantine fault-tolerant (BFT) SMR protocols [5] assume replicas may
be Byzantine but clients are honest. By contrast, in our cross-chain model, repli-
cas are correct (because they represent blockchains), but clients can be Byzantine
(because they may try to steal one another’s assets). Most prior BFT-SMR pro-
tocols assign one replica to be the leader, and the rest to be followers (sometimes
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State Machine 4 Replica for asset A

State:
1: bufferA : A → 2PS � initially all ∅
2: fundedA : A → {true, false} � initially all false
3: machine � Replica of state machine
4: deliveredA : 2REQ � Next move to execute
5: startTime : Z → Z � Each round’s start time
Initialize(fund : ASSET → Z): � Initial funding
6: transfer fund(A) units of A from LongAccountA(Sender) to LongAccountA(Self )
7: if transfer was successful then
8: for all B ∈ ASSET do ShortAccountB(Sender , A) := fund(A)

9: fundedA(Sender) := true

10: startTime(1) := (n + 1)Δ � Set start time for round 1
Move: send p(P, μ, t) � Forward move to relay protocol
11: if live(p(P, μ, t) and fundedA(P ) then � Relay only live moves by funded agents
12: bufferA(P ) := bufferA(P ) ∪ {p(P, μ, r)}
Move: deliver() � Relayer: check for executable move
13: delivered := {(P, μ, r) | p(P, μ, r) ∈ bufferA(P ) ∧ ready(p(P, μ, r)) ∧ P ∈

enabled(machine) ∧ μ ∈ moves(machine)} � Execute if enough time has elapsed
14: if delivered = {(P, μ, t)} then � Unique executable move?
15: machine.μ() � Execute it
16: startTime(r + 1) := startTime(r) + nΔ � Set the start time of next round
17: else if now() − startTime(r) > nΔ then � Did we time out?
18: machine.Skip() � Agent chose not to move
19: startTime(r + 1) := startTime(r) + nΔ � Set the start time of next round

Move: topUp(fund : ASSET → Z) � Dynamically add funding
20: if fundedA(Sender) then
21: transfer fund(A) units of A from LongAccountA(Sender) to

LongAccountA(Self )
22: if transfer was successful then
23: (∀B ∈ ASSET )ShortAccountB(Sender , A) := ShortAccountB(Sender , A) +

fund(A) � Credit accounts
24: else
25: fundedA(Sender) := false � Freeze accounts

Move: defund(defundVote : A → {true, false})
26: if Sender = leader then � check authorization
27: for all P ∈ A do
28: if defundVote(P ) then
29: fundedA(P ) := false

Move: redeem() � Settle accounts at end
30: if fundedA(Sender) then
31: transfer ShortAccountA(A,Sender) units of A from LongAccountA(Self ) to

LongAccountA(Sender)
32: fundedA(Sender) := false � No moves allowed after cashing out
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State Machine 5 Front-end for agent P

Initialize(fundP : ASSET → Z):
1: for all A ∈ ASSET do A.Initialize(fundP )

2: verifyAccounts()
3: if (∃A ∈ ASSET , P ∈ A)ShortAccountA(P, A) is not the agreed-upon amount

then
4: redeem() � Get assets refunded
5: halt
Move: verifyAccounts() � Check for malformed funding data
6: if (∃A, B ∈ ASSET , Q ∈ A) fundedA(Q) ∧ (ShortAccountA(Q, A) �=

ShortAccountB(Q, A)) then
7: redeem() � Ask for asset refund
8: halt
Move: send(μ)
9: for all A ∈ ASSET do

10: A.send([P ](P, μ, t)) � Add path sig and broadcast

Move: topUp(fundP : ASSET → Z)
11: for all A ∈ ASSET do A.topUp(fundP ) � Send path sig

12: verifyAccounts()
Move: topUpVerified(fund : ASSET → Z)
13: topUp(fundp) � Call regular top-up
14: if Self = leader then � Authorized to accept or reject top-up
15: for all P ∈ A do
16: defundVote(P ) := (∃A, B ∈ ASSET )ShortAccountA(P, A) �=

ShortAccountB(P, A)

17: for all A ∈ ASSET do A.defund(defundVote)

18: else
19: wait for leader to deliver defund votes
20: verifyAccounts()
Move: redeem() � Reclaim assets
21: for all A ∈ ASSET do A.redeem() � Redeem assets from each replica

“validators”). These protocols tolerate only a certain fraction of faulty replicas.
Our cross-chain SMR protocol, by contrast, does not distinguish between leaders
and followers, and tolerates any number of faulty agents.

An individual blockchain’s consensus protocol can be viewed as an SMR
protocol, where the ledger state is replicated among the validators (miners).
Validators are typically rewarded for participating [18]. Validators might deviate
in various ways, including selfish mining [6], front-running [3], or exploiting the
structure of consensus rewards [1]. Individual blockchain SMR protocols are not
applicable for cross-chain SMR because of fundamental differences in models and
participants’ incentives.

An alternative approach to cross-chain interoperability is allowing
blockchains to communicate states to one another. As shown in a recent survey
[17], these protocols usually adopt external relayers/validators to relay/validate
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messages across chains. Any failure of those external players can harm the safety
of the cross-chain system.

In failure models of some prior work, parties are classified as either ratio-
nal, seeking to maximize payoffs, or Byzantine, capable of any behavior. First
proposed for distributed systems [14], this classification has been used for chain
consensus protocols [11]. The rational vs Byzantine classification is equivalent to
our compliant vs deviating classification for cross-chain exchanges where com-
pliance is rational, a property one would expect in practice.

The notion of replacing an ad-hoc protocol with a generic, replicated state
machine was anticipated by Miller et al. [13], who propose generic state channels
as a cleaner, systematic replacement for prior payment channels of the kind used
in the Lightning network [16].
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Abstract. We propose a novel two-tiered overlay network design called
plateau. It has two levels: a small upper-level that regulates entry of
new nodes into the network, and a lower-level comprising all nodes. The
lower level is a well-connected expander that is ideal for building peer-to-
peer distributed trust applications. It is designed to be secure despite the
presence of adversarial Byzantine nodes and resilient to large amounts of
churn. The good nodes only need to communicate with their neighbors in
the network, thus making plateau fully distributed. Membership in the
network must be earned through proof-of-work that is verified by the
upper-level nodes. Plateau is robust despite heavy churn controlled by
an adversary, i.e., up to C = poly(n) number of nodes can join and leave
the network per round without disrupting the network structure; n is
the total number of good nodes in the network. As long as the compute
power controlled by the Byzantine adversary is bounded, the number of
Byzantine nodes in the network is kept in check and, more importantly,
they will not be able to disrupt the structure or functioning of the overlay
network. Additionally, we show that all resources needed to operate this
network is bounded polylogarithmically with respect to n.

1 Introduction

Since the invention of Bitcoin by Satoshi Nakamoto [29], we have seen a signifi-
cant increase in peer-to-peer distributed trust systems. A large number of cryp-
tocurrencies have sprouted over the years and a tremendous amount of research
has been invested in this technology in the last decade. The key innovation
in Nakamoto’s work that is driving this surge is blockchains, a technology by
which a peer-to-peer network can maintain a trustworthy record of transactions.
Thus, blockchains appeal to a much wider class of applications that require
trust between parties. An important aspect of all of these applications is the
large volume at which they are intended to operate essentially catering to large
populations at national, continental and global scale.

Current blockchain implementations are unfortunately not built for scale [10].
There are many factors that limit them. While some issues like the energy cost of
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consensus have drawn significant attention, others have been largely ignored. The
actual peer-to-peer network on which the blockchains operate are surprisingly
small when compared to the scope and scale of their applications. For example,
despite significant use of bitcoin, the actual number of peers that operate is
quite small. As of 2018, measurements show that the number of peers is about
14000 [30]. We posit that this small scale of the peer-to-peer network will be
a limiting factor as large countries and economic blocs like USA, EU, China,
and India seek to employ public blockchain based distributed trust applications
for their citizens. If we contrast this with the penetration of the Internet into
households across the globe, we realize that distributed trust applications built
on current peer-to-peer networks are a far cry from the scale we need for the
applications we wish to build on them.

Much of the research in consensus mechanisms abstract away the network
issues by assuming that flooded messages reach most nodes within some time
period. Such convenience assumptions are acceptable for small networks that
are currently deployed. The widely used approach is to maintain the peer-to-
peer network as an unstructured random graph. New nodes that wish to join
the network connect to random peers obtained from established seeders who
crawl through the network and maintain current a list of peers [8]. Such seeders
have two drawbacks. Firstly, while they operate well in small networks, their
performance in large systems is more challenging. It will be very hard for seeders
to publish a list of current nodes at billion nodes scale. Secondly, there is very
little mathematical basis for their guarantees. With large amounts of churn,
the data they hold can quickly become stale. This, in turn, can lead to poorly
connected or even disconnected networks.

Thus, we need to design peer-to-peer networks that can scale well in practice
to reach close to Internet scale. At the same time, given the high stakes, we also
require strong guarantees backed by rigorous mathematical proofs. A peer-to-
peer network capable of hosting large scale distributed trust applications must
reliably and efficiently provide some basic functions and properties. Perhaps,
the most important function is efficient information spreading, which requires
the network to be well connected with good network expansion [25] and of low
diameter. The (vertex) expansion of a network graph G = (V,E) is defined as
minS⊂V,|S|≤|V |/2 |N(S)|/|S|, where N(S) is the open neighborhood of S (i.e.,
excluding S). G is said to be an expander if its expansion is bounded from
below by a constant. Creating such expander networks with efficient information
spreading properties require fast and reliable sampling of random peer nodes [27].
Sampling is straightforward in small networks because the full list of nodes can
be effectively maintained by seeders (as it is currently done). However, when
the network becomes large, we will need a more distributed mechanism typically
employing random walks [14].

To make matters worse, there are several security challenges. Peer-to-peer
networks are permissionless allowing any node to participate – including those
that are potentially malicious (also called Byzantine nodes). Such Byzantine
nodes can affect the network in many ways. They can create cuts in the net-
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work and hinder the flow of information across the cut, thereby causing eclipse
attacks [18]. It can also be hard to pin down the true identity of participants
because of Sybil attacks whereby multiple IP addresses can be created [16,17].
Furthermore, a large number of malicious nodes can engage in a denial-of-service
attack wherein they target some nodes and send repeated messages that over-
whelm those nodes and render them unresponsive.

Finally, any peer-to-peer network must be able to tolerate large amounts of
churn and other forms of network dynamics. Studies have shown that up to 97%
of the nodes exhibit intermittent network connectivity [19]. Moreover, nodes
will only participate as long as there is an immediate benefit to them and will
leave when there is none. In fact, it has long been established that up to 50% of
the nodes can be renewed within an hour, but the number of active peers does
not change dramatically because the number of joins and leaves are about the
same within small time frames [37]. It is therefore in the interest of peer-to-peer
network designers to allow peers to efficiently join and leave without disrupting
the network. Sybil attacks and churn coupled together can be quite damaging
because the mechanisms in place to let new nodes join the network must be
smart enough to ensure that sybils do not abuse the churn facility.

The key mechanism that researchers have used in order to tackle this combi-
nation of malicious behavior and churn is to make the participants pay a price
in the form of resource burning [17]. This is a mechanism by which the partic-
ipants are able to prove that they spent some effort or resource to earn their
place in the peer-to-peer network. In fact, Gupta et al. [16,17] argue game the-
oretically that resource burning is a crucial requirement that cannot be avoided
when dealing with malice and churn, a position that we share as well. The most
common form of resource burning is a mechanism called proof-of-work where a
computational puzzle is solved – typically, one that is hard to solve but easy to
verify. It is of course a widely used technique for consensus in bitcoin and other
cryptocurrencies. Of course, while we may not be able to avoid resource burning,
from a sustainability point of view, it is imperative that we minimize its use.
In the rest of the paper, we use the term proof-of-work out of deference to its
familiarity, but our ideas will go through under any other reasonable form of
resource burning as well. Finally, we note that – as in every other proof-of-work
based system – we must limit the computation power of the Byzantine adversary
to within a fraction of the computational power vested with good participants.

1.1 Our Contribution

In this work, we have made first steps towards designing a secure peer-to-peer
overlay network called Plateau that can arguably scale well, handle large amounts
of churn, and resilient to Byzantine nodes. Our emphasis is on ensuring that the
desired properties can be formally proved. Towards this goal, we empower a sin-
gle adversary to orchestrate the behavior of Byzantine nodes and the nature of
churn. We assume that the adversary is vested with 1/4 fraction of the com-
pute power that good nodes possess. Section 2 provides a detailed description of
our model. The only cryptographic tools assumed are private channels between
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nodes and a proof-of-work mechanism. We do not assume public key infrastruc-
ture. The non-triviality of this work comes from carefully designing network and
the maintenance protocols so that the properties described below (and formally
stated in Theorem 2) hold with high probability (whp)1.

Plateau is fully distributed. Nodes need to only be aware of their neighbors’
IDs and interact with them. Nevertheless, membership is globally secure in the
sense that nodes cannot arbitrarily enter the network. Membership in the net-
work must be earned through proof-of-work that is verified by the nodes in the
upper level.

The overlay has low diameter and is sparse with both diameter and degree
at most logarithmic in the size of the network. The network graph induced by
the good nodes is well-connected in the form of an expander, specifically in
the sense that its vertex expansion is lower bounded by a constant. Thus, our
network is resistant to eclipse attacks. We exploit this expansion to provide
a sampling mechanism based on random walks that is resilient to Byzantine
behavior. Furthermore, Plateau is designed with judicious use of proof-of-work
that makes it resilient to Sybil and DoS attacks. Plateau is robust despite heavy
churn controlled by the adversary. Up to C ∈ O(n/ polylog(n)) nodes can join
and leave the network per round without disrupting the network.

Its scalability is highlighted by the fact that all resources used are small
compared to the overall size of the network and more importantly competitive
with the amount of churn. Communication between nodes is via small messages
of polylog(n) bits. Each node has at most polylog(n) neighbors at any point in
time and only needs to communicate with its neighbors. The total number of
messages sent/received by all nodes during any round is at most Õ(C).

Prior works typically assume that the new nodes are automatically connected
to appropriate nodes within the network. This is in stark contrast to reality
where new nodes must depend on information provided by seeders [8]. Our work
formally includes this aspect in that our protocol requires a dynamic whiteboard2

with Õ(C) bits that is visible to any new node that seeks to join the network.
Each new node samples (from the whiteboard) a random polylog(n) sized chunk
of information that includes a suitable proof-of-work puzzle that the new node
must solve. It also includes IDs of the appropriate nodes within the network that
it must connect to and submit the solution to the puzzle in order to gain entry
into the network. Our protocol updates the whiteboard at the rate of Õ(C2/n)

1 We say that an event E holds with high probability (whp) if Prob[E] ≥ 1− 1/nη for
any fixed parameter η that is independent of n, but may depend on constants used
in the algorithm.

2 We use the term whiteboard to abstract out the ability to expose information about
the network to the world. This is a crucial requirement for any network to handle
churn. Otherwise, new nodes will not know where to connect. In current cryptocur-
rency systems like Bitcoin, we have specialized servers called seeders that provide
this service [8]. Other alternatives include using the blockchain itself to expose this
information [1]. The main design issue is to ensure that the whiteboard only needs
to store a bounded amount of information and that updates to the whiteboard are
not too fast.
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bits per round in order to keep up with the dynamic updates within the network.
Thus, as long as the churn rate is Õ(

√
n), the update rate is at most polylog(n).

When C is larger, the whiteboard must be updated at a commensurately larger
rate. This is essentially the best we can do because we prove a matching lower
bound (within polylog(n) factor) for the update rate.

Importantly, our work assumes that an adversary controls the behavior of
all Byzantine nodes including when to seek membership, when to exit, whether
to send messages, and what messages to send. The adversary controls churn
amongst good nodes in the following oblivious manner that models the worst
case (but not malicious) behavior. At the time when a new good node enters the
network, the adversary decides how long it will stay in the network. This choice
must not violate the churn rate C. Specifically, the adversary is not allowed
to churn out more than C nodes per round. Thus, the adversary can impose
worst case patterns by which good nodes can churn in and out, but it cannot
maliciously and/or adaptively decide when to churn out good nodes.

The main novelty in plateau’s design is its two levels. The upper-level is
smaller and commensurate in size with the rate at which new nodes join. It con-
sists nodes that act as juries and regulate entry into the network. The lower-level
is the essential peer-to-peer (P2P) network that is scalable to large sizes. It is
well-connected with good expansion (thereby allowing us to spread information
fast and also sample random nodes via random walks) making it ideal for build-
ing peer-to-peer distributed trust applications. We show that Plateau can be
maintained despite the Byzantine adversary possessing up to a fixed β < 1/4 of
the computational power possessed by good nodes.

1.2 Related Works

In the early years of P2P networks, several prominent overlay network designs
like Chord [36], CAN [34], Pastry [35], Tapestry [39] were proposed. Following
those early proposals, there has been extensive research on designing robust
overlay networks with a variety of useful and rigorously proved characteristics
like well-connectedness, low diameter, expansion, low degree, and robustness to
network churn and malicious behaviour [3–5,9,11,20,21,24–26,31–33]. For our
purpose, we will highlight a few works that are relevant to our goals and design
principles of maintaining large scale well connected overlay networks that are
robust against Byzantine behavior and adversarial churn.

One of the earliest works in this regard was by Fiat and Saia [13] where items
can be stored in a network and most items can be retrieved efficiently despite an
adversarial removal of a large fraction of the nodes. In fact, their solution can
be adapted to situations where the adversary takes control of a fraction of the
nodes (not just remove them). Unfortunately, it is unclear how their overlay can
be maintained in the presence of heavy churn. More recently, Guerroui et al. [15]
presented a Byzantine resilient overlay maintenance protocol called Neighbors
on Watch (NOW) that bears significant resemblance to our protocol. They also
maintain a expander graph on supernodes (containing Θ(log n) peer nodes) and
ensure random distribution of peers within the supernodes. They show how a
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new node can join or an old node can leave. To the best of our understanding,
their design and analysis is limited to just a few nodes (up to O(log n) nodes)
joining or leaving at a time. To their credit, they employ a much strong form of
adversary that can churn out any choice of nodes at any time.

Several gossip based sampling protocols have been studied in the past [9,
22,23]. The work by Bortnikov et al. [9] is quite relevant to ours. It has two
components: the sampling component and the gossiping component. The sam-
pling component maintains a list of uniform samples from the set of IDs that
passed through the node. The gossiping component spreads IDs across the net-
work and maintains the dynamic view of the system. There are, however, two
significant drawbacks. Firstly, the protocol requires each node to store Θ(n1/3)
IDs locally. Secondly, the analysis of convergence to uniform random samples
holds only when the churn ceases, which is unfortunately not the case in the real
world. Jesi et al. [22] provide a Byzantine resilient peer sampling mechanism that
employs identifying and blacklisting nodes that behave maliciously. Johansen et
al. [23] provide a robust pseudorandom structure that is useful for good nodes
to maintain correct membership views. Their work maintains a complete mem-
bership view, which is unfortunately unscalable for very large networks.

Peer-to-peer networks, as we have mentioned before, experience heavy net-
work churn [19,37]. Quite a bit of research has gone into designing overlays that
are resilient to heavy churn [3,4,6,11]. Awerbuch and Scheideler [6] employed
the cuckoo rule by which new nodes can join with minimum displacement of
existing nodes. An interesting deterministic P2P overlay network was proposed
by Kuhn et al. [24], but the price of determinism is that their approach only
works with a very small rate of joins and leaves. Augustine et al. [3] show how
to maintain an overlay network with good expansion despite heavy churn. They
employ random walks to sample random nodes and place new nodes in random
locations in order to maintain good expansion. Drees et al. [11] design an overlay
network that can handle heavy adversarial churn, but their model requires nodes
to join and leave gracefully with a forewarning of at least Ω(log log n) rounds.
Augustine and Sivasubramanian [4] provide an overlay design called Spartan
that has many similarities to our approach. Both [24] and [4] employ supernodes
(or committees) of size Θ(log n) nodes. The major drawback of all these works
is that they are not shown to be resilient to Byzantine failures.

In a recent work [1], Aradhya et al. show how to maintain a Byzantine resilient
blockchain overlay network using the blockchain itself as a means to share infor-
mation among the peers. This work bears many common features with ours.
They also show how the network can tolerate churn. While our work uses arbi-
trary expander graph structure, they use a hypercubic network structure for
the overlay. Their work is specific to blockchain systems, but our work is more
general and applicable to any secure peer-to-peer network.

Organization. We begin with a formal description of the model in Sect. 2 and
also describe a few important tools that we use in our design. We then present a
detailed description of Plateau’s design in Sect. 3. Proofs and pseudocode have
not been included due to insufficient space.
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2 Model and Preliminaries

We begin with a formal description of our network model. Our goal is to design a
sustainable peer-to-peer overlay network that can serve as a platform for building
large scale distributed trust applications. See Fig. 1 for a schematic. We use
the term node to refer to the peers that participate in the system. Some of
these nodes will be Byzantine (i.e., malicious) while others are good. Moreover,
network must also tolerate churn whereby nodes can join and leave. The System
comprises both the network and all the nodes (both Byzantine and good) that
are actively seeking membership within the network. For simplicity, we assume
that the number of good nodes n in the system at any point in time is stable.

For simplicity, we assume that the system operates synchronously with
rounds being the basic unit of time. Due to churn, up to C good nodes, for
some C ∈ [0, n/polylog(n)], can leave the system per round and an equal num-
ber3 must enter the system per round in order to maintain a stable number of
good nodes in the system. When a node enters the system, it must be integrated
into the network by a protocol that maintains the network (and this may take
some time). The nodes in the system, but not yet integrated into the network are
called seekers because they are nodes seeking membership within the network.

We assume that each good node has a unique ID – typically its IP address
– that can be used both to uniquely identify it as well as to form network
connections. Moreover, each good node is capable of a bounded amount of com-
putational work (or just work). The Byzantine nodes are controlled by a single
Byzantine adversary that can create as many Byzantine nodes as it needs, but
the overall computational power of the Byzantine adversary is limited to a pos-
itive fraction β < 1/4 (known as the Byzantine power parameter) of the total
compute power of good nodes.

Fig. 1. The Plateau System and the
Plateau network.

The goal is to design a network that
is robust despite churn and Byzantine
nodes. In particular, the good nodes must
maintain a degree of at most O(log n) and
must induce an expander graph with ver-
tex expansion bounded from below by a
constant. The specific network we present
is called the Plateau network (or just net-
work) and for this reason, we refer to
the system as the Plateau system. Plateau
must ensure that, at any point in time, all
but O(C) good seekers are integrated into the network. It is inevitable that the
network may have integrated some Byzantine nodes as well but we wish to ensure
that they are at most β∗n at any point in time for some fixed fraction β∗ < 1/2.
Moreover, those Byzantine nodes must be incapable of compromising the guar-

3 Our design is sufficiently robust to admit variation between the number of nodes
joining and leaving as long as the total number of good nodes stays bounded within
some reasonable Θ(n).
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antees offered by the network. The term Plateau system (or just system) denotes
the network and the seekers; see Fig. 1 for a schematic of the system and the
network.

Churn Model. We now describe the churn process in bit more detail. A node
that is neither a member nor a seeker is called an external node and such an
external node can become a seeker at any time; we call this churning in. Likewise,
a node in the system (regardless of whether it is a member or a seeker) can
leave the system and become an external node; we call this churning out. The
Byzantine adversary controls nodes churning in and out subject to the following
constraints.

At most C good nodes can be churned in per round and an equal number
churned out. Any number of Byzantine nodes can be churned in and churned
out. An epoch is defined to be n/C rounds and corresponds to the time required
by an adversary to completely replace the current set of nodes with a new set of
nodes. The network must ensure that good seekers gain entry into the network
in a timely fashion through a process called integration. Specifically, we wish to
ensure that the number of good seekers is no more than O(C) at any time (whp).
Moreover, every good seeker node should be integrated into the network within
O(log n) rounds (whp).

Nodes can be churned out either by the protocol or by the adversary. When all
good nodes drop their connections with a node u, then it is considered churned
out by the protocol (as long as it is clear that good nodes cannot be tricked into
forming connections with u later on). Such churn outs are expected to happen
when a node is unable to provide proof of work that the protocol may require of
it from time to time. The protocol must be designed to ensure that good nodes
are not churned out in this manner because they are expected to be willing to
spend one unit of computational power per epoch. The time when a good node
v is churned out by the adversary must be specified when the node is churned
in. (A good node will not be aware of its churn out time.) There is no incentive
for the adversary to actively churn out Byzantine nodes. However, since the
computational power of the adversary is bounded, Byzantine nodes that are
unable to provide proof-of-work must be churned out by the protocol.

Communication Model. Nodes can communicate with each other in one of two
modes: either through established overlay links (e.g., TCP sessions) or through
ports that are open. Formation of an overlay link between two nodes u and v
must be initiated by one node and consented by the other; such a link can be
formed in one round. We assume that each node can maintain O(log n) overlay
links. Alternatively, each node has O(log n) ports numbered {1, 2, . . . , O(log n)}
through which it can listen for new messages or new connections. Thus, if a node
u knows the ID of node v, then u can send v a message through some port x.
The message will be delivered to v if no other node is also attempting to send a
message to v through x at the same time. Messages will be dropped when such
conflicts occur. We assume that u will be aware of whether the message reached
v or not. We require each message (sent through either mode) to be small in
size, i.e., at most O(polylog n) bits. Furthermore, We wish to ensure that the
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total number of messages sent by good nodes are at most M ∈ O(C log n) per
round. We similarly limit the number of messages sent by Byzantine nodes to
also be within the same limit M .

Public Whiteboard. To facilitate integration, the network is allowed to publish
information on a whiteboard that is available for public viewing. For the purpose
of this paper, we abstract away the details of how such a whiteboard may be
implemented. The whiteboard, however, must be limited to displaying Õ(C) bits
of information that is updated at the rate of o(C) bits per round, i.e., at most
o(C) bits can be erased and at most o(C) bits can be written per round.

Proof-of-Work. We assume that proof-of-work puzzles can be solved by
expending one unit of compute power4. To solve such a puzzle, a node u requires
an input bit string r and its own ID and computes a nonce bit string q such that
h(r|ID(u)|q) has sufficiently many leading zeros, where h is a random oracle
hash function. Each good node must be willing to spend 1 unit of computational
power for integration and subsequently spend one unit of computational power
per epoch. The number of rounds required to solve one proof of work puzzle is
assumed to be within O(log n) rounds. The total computational power of the
Byzantine adversary is assumed to be βn per epoch, where β > 0 known as the
Byzantine power parameter is a fixed constant bounded strictly below 1/4. I.e.,
the Byzantine nodes, in total, can solve n/4 proof-of-work puzzles per epoch.
Additionally, whenever a good node is churned in, the Byzantine adversary is
credited with β units of computational power that must be spent within O(log n)
rounds. This is to ensure that the Byzantine adversary is empowered to churn
in Byzantine nodes into the network.

Useful Tools and Techniques. We use several standard tools and techniques
that we explain in greater detail in the full version. We rely on expander
graphs [38] for fast mixing time, low diameter (i.e., both logarithmig in the
size of the network) and established tools for creating and maintaining them
in dynamic environments [3,32]. Furthermore, we assume that Byzantine agree-
ment [12] and collective coin tossing [28] can be executed O(log n) rounds whp.

3 The Plateau Network Design and Statement of Results

We now describe our proposed network design. It relies crucially on sets of
Θ(log n) nodes called supernodes that are interconnected to form the Plateau
network. The supernodes partition the set of nodes, thus there are n/c log n
supernodes for some sufficiently large constant c. We say that a supernode is b-
Byzantine-Bounded for some b ∈ [0, 1] if fewer than b fraction of the nodes in it
are Byzantine. The network is said to be b-Byzantine-Bounded if all supernodes
in it are b-Byzantine-Bounded. Our goal is to guarantee that the Plateau network
is (1/3)-Byzantine-Bounded (i.e., every supernode is (1/3)-Byzantine-Bounded).

4 This is a simplifying assumption. We can also model the compute power required to
solve a puzzle as an exponential random variable.
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Thanks to this limited influence by the Byzantine adversary, supernodes can
serve as committees that decisively act by invoking Byzantine Agreement [12].

The list of nodes in a supernode s is maintained as common knowledge among
all nodes in s. Thus, whenever all good nodes in s unanimously propose a value,
they can initiate Byzantine Agreement and ensure that s (as a single entity) will
be able to decide on one of those values. Moreover, each supernode can execute
Micali and Rabin’s unbiased coin tossing protocol and generate unbiased random
bits that all good nodes within s agree upon.

Two supernodes s1 and s2 are said to be connected by a logical link if every
good node in s1 (resp., s2) is aware of all members in s2 (resp., s1) and has
successfully established an overlay link with every good node in s2 (resp., s1).

Fig. 2. The Plateau network architecture comprising (1/3)-Byzantine-Bounded supern-
odes in two levels. Each jury supernode is also a supernode in the lower level. The
supernodes in the lower level (resp., juries in the upper level) are connected via logical
links (not shown) to form an expander graph G (resp., H).

The Two-Tier Plateau Structure. As mentioned before, Plateau comprises
two levels: the lower level comprising the set of all supernodes S and the upper
level comprising a (dynamic) set of Θ(M) supernodes J called juries. Note that
juries will have to continue their role in the lower level even while serving as
juries. See Fig. 2 for a schematic of the Plateau architecture.

The supernodes at both levels are connected via logical links in the form
of (constant degree) expander graphs: G = (S,E) for the lower level and H =
(J,E′) for the upper level. Our design therefore ensures that each supernode has
established logical links to at most O(1) other supernodes. Thus, the number of
overlay links at each individual node is at most O(log n).

Secure Messages. Two supernodes s1 and s2 that are connected by a logical
link can communicate with each other at will via secure messages (explained
shortly) with the twin security guarantees of authentication and integrity. When
the (good) nodes in (say) s1 wish to send a secure message to the nodes in s2, they
individually send the same message to every node in s2. At the receiving end,
i.e., at s2, the good nodes accept all messages sent by at least a 2/3 fraction of
the nodes in s1. Any message sent by fewer than a 2/3 fraction is discarded. Such
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a message sent by all good nodes in s1 to all good nodes in s2 in this coordinated
manner is deemed a secure message. Notice that s2 receives a secure message
from s1 iff s1 sends a secure message to s2. Thus, as long as all the good nodes in
s1 are agreed on what message to send, the recipient s2 knows that the message
indeed originated at s1 (i.e., the sender’s authenticity is guaranteed) and that
the message has not been tampered with (i.e., its integrity is guaranteed). Notice
however that these secure messages are not guaranteed to be private. If either
s1 or s2 has even one Byzantine node, the Byzantine adversary will be able to
learn the contents of the secure message.

A node u cannot become a member of a supernode without proper credentials.
If u is a seeker and has performed the requisite proof-of-work, a jury supernode
will admit it into the network and move u to a random supernode s via a secure
random walk (described shortly). Importantly, u cannot influence the choice
of s. Subsequently u may be moved around via secure random walks roughly
once every epoch. Thus, there is no provision for a node u to join an arbitrary
supernode. Node u can only join a supernode s as a consequence of secure random
walks that explicitly introduce u to s.

Plateau Maintenance. To maintain Plateau, we operate in maintenance cycles
of m ∈ Θ(log n) rounds. In each cycle, Θ̃(1 + C2 log3 n

n ) juries are replaced by
randomly chosen supernodes from the lower level and an expected C nodes are
moved to random locations. Simultaneously, new nodes that wish to join are
integrated into Plateau after proper vetting of their proof of work.

Replacement of Juries. The juries J ⊂ S (chosen uniformly at random) regu-
late the entry of new nodes into the network. We rotate in new jury supernodes
during each maintenance cycle and simultaneously evict an equal number from
the upper level. All the IDs of nodes in the newly inducted juries are added to
the whiteboard and the IDs of nodes in the evicted juries are deleted from the
whiteboard. The rotation of juries ensures that the list of nodes in juries written
to the whiteboard are sufficiently current.

Let r = Θ̃(1 + C2 log3 n
n ) denote the refresh rate, i.e., the rate at which juries

are rotated in and out of the upper level per round. At the start of every main-
tenance cycle, the protocol picks rm ∈ O(r log n) random juries j and marks
them for replacement. Simultaneously, an equal number of random lower level
supernodes s are called for jury duty and are installed in H, with each s in the
same neighborhood of a corresponding j in H; juries marked for deletion can
now be deleted from H. Thus, the topology of H remains stable, but its vertices
are rotated in and out regularly. Note that the random choices of j and s can
be made via secure random walks of length Θ(log n) performed on H and G,
respectively. The full version contains formal pseudocode.

Information Published on the Whiteboard. The whiteboard maintains a
current list of juries and the constituent nodes within those juries (including
Byzantine nodes). It also includes a random bit string r that is updated every
cycle. The whiteboard will only accept updates given by secure messages from
current juries. Whenever a jury j leaves the upper level, it informs the whiteboard



80 J. Augustine et al.

and is erased from the whiteboard. When a new jury j enters the upper level, a
pre-existing jury j′ (typically a neighbor of j in H) must inform the whiteboard
so that j and its constituent members can be included in the whiteboard. We
also maintain a designated lead jury j∗ that generates a random bit string r in
each cycle and updates the whiteboard with r (while the earlier string is erased).

Reassignment of Nodes. Byzantine nodes can selectively sever ties with nodes
both within its own supernode as well as neighboring supernodes. Moreover, we
must ensure that Byzantine nodes don’t freeload or selectively stagnate and pile
up in some supernode. To avoid these issues, each node u in each supernode s is
reassigned once every (expected) n/mC cycles to a new supernode s′ chosen ran-
domly through a secure random walk. The choice of u is via collective coin tossing
by nodes within s such that the time between two consecutive reassignments for
u is geometrically distributed with p = mC/n. When chosen for reassignment,
u must first show proof of work requiring a one unit of computation. Then the
nodes in s vote on whether (i) u has shown the correct proof of work and (ii) has
correctly executed all protocols during the last epoch and perform a Byzantine
agreement to decide whether to retain u or churn it out. If the agreement is not
in favor of u, all good nodes in s will sever their links with u and also inform all
neighboring supernodes through secure messages, thereby effectively churning
out u. If u survives, it is forced to make a secure random walk for �G ∈ Θ(log n)
steps where u will be chaperoned to a new random supernode s′.

Integrating Seekers into the Network. Each seeker x reads the current ran-
dom string r from the whiteboard and solves the puzzle pertaining to (r|ID(x)).
The solution is a nonce bit string t such that h(r|ID(x)|t) has at least � leading
zeros for some predefined � and a commonly agreed random oracle hash function
h. This requires a 1 unit of compute power and time that is at most O(log n)
rounds. The seeker x then picks a random jury j and sends its proof of work
to every node in j (listed in the whiteboard) through randomly chosen ports.
If more than half of the members of j receive the proof and acknowledge it,
then x sends an accept message to nodes in j and waits for j to integrate x into
the network. Otherwise, x sends a reject message to nodes in j and repeats the
process with a new random jury. The juries wait for seekers to send proof and
acknowledge them. When a seeker x sends an accept, the jury begins Byzantine
agreement to either approve or reject the request. If approved, a secure random
walk is initiated and x is chaperoned to a random supernode in G.

Our results are formalized by the following two theorems.

Theorem 1. Any whiteboard based P2P network (with whiteboard size O(C))
that experiences churn at the rate of C nodes per round must update the white-
board at the rate of Ω̃(C2/n) bits per round.

Theorem 2. The Plateau system is designed with the following guarantees
that hold with high probability as long as the Byzantine power parameter β
is a fixed constant that is bounded strictly below 1/4 and the churn rate C ∈
[0, n/polylog(n)].
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Byzantine Boundedness. The Plateau network will be (1/3)-Byzantine-
Bounded for at least T ∈ Ω(nk) rounds for fixed k.

Network Properties. The network induced by the good nodes within the
Plateau network forms an expander with vertex expansion bounded from below
by a constant. Thus, its diameter is O(log n). Moreover, the number of overlay
edges incident to any good node is at most O(log n).

Quick Integration. Seekers will integrate within O(1) rounds on expectation
and the expected number of seekers waiting to be integrated will be at most
O(C) at any time.

Efficient Whiteboard. The whiteboard employed by Plateau is of size at most
Õ(C) and is updated at the rate of Õ(C2/n) ∈ o(C) bits per round when C is
at most n/polylog(n). In fact, the update rate is at most Õ(1) if C ∈ Õ(

√
n)

and this is optimal to within a polylog(n) factor.

4 Concluding Remarks and Future Work

We have presented a P2P network architecture called Plateau that is able to reg-
ulate the entry and exit of nodes even at high churn rates. Our design is quite
generic and can be easily adapted in a variety of ways. Our choice of expander
graph structure is in keeping with the long line of works on P2P networks that
rely on expansion [15,25,31]. Moreover, it closely resembles the P2P networks
we see in practice and they are known to be robust even under adversarial dele-
tions [7]. However, expander graphs can be replaced by other structures that
have good sampling properties (e.g., hypercubes [2] and butterflies) with poten-
tial benefits. For example, the Spartan structure [4] that is based on the butterfly
network facilitates addressable supernodes and efficient routing between them.
This can be used to build distributed hash tables.

Furthermore, for simplicity, we assumed that the number of good nodes is
stable at n. However, we can easily adapt Plateau’s design to varying values of
n. This can be done very robustly when the rate of change of n is polylog(n) per
round by adapting G using [32]. For more dramatic changes, we can use a more
structured approach wherein G is a hypercube or a butterfly. When n increases
or decreases dramatically, such structures can be expanded or contracted by
incrementing or decrementing their dimension using ideas from [2].

We believe that a thorough simulation of Plateau will greatly help in under-
standing its viability in practice. Moreover, the current paper is limited to syn-
chronous systems. Extending these ideas to asynchronous systems is an impor-
tant next step. Finally, the current work abstracts away the details pertaining to
implementing a whiteboard, but these details need to be worked out for Plateau
to work in practice.
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Abstract. Linearizability, the traditional correctness condition for con-
current data structures is considered insufficient for the non-volatile
shared memory model where processes recover following a crash. For
this crash-recovery shared memory model, strict-linearizability is consid-
ered appropriate since, unlike linearizability, it ensures operations that
crash take effect prior to the crash or not at all. This work formalizes
and answers the question of whether an implementation of a data type
derived for the crash-stop shared memory model is also strict-linearizable
in the crash-recovery model.

This work presents a rigorous study to prove how helping mechanisms,
typically employed by non-blocking implementations, is the algorith-
mic abstraction that delineates linearizability from strict-linearizability.
We first formalize the crash-recovery model and how explicit process
crashes and recovery introduces further dimensionalities over the stan-
dard crash-stop shared memory model. We make the following technical
contributions that answer the question of whether a help-free linearizable
implementation is strict-linearizable in the crash-recovery model: (i) we
prove surprisingly that there exist linearizable implementations of object
types that are help-free, yet not strict-linearizable; (ii) we then present
a natural definition of help-freedom to prove that any obstruction-free,
linearizable and help-free implementation of a total object type is also
strict-linearizable. The next technical contribution addresses the ques-
tion of whether a strict-linearizable implementation in the crash-recovery
model is also help-free linearizable in the crash-stop model. To that end,
we prove that for a large class of object types, a non-blocking strict-
linearizable implementation cannot have helping. Viewed holistically, this
work provides the first precise characterization of the intricacies in apply-
ing a concurrent implementation designed for the crash-stop model to the
crash-recovery model, and vice-versa.

1 Introduction

Concurrent data structures for the standard volatile shared memory model typi-
cally adopt linearizability as the traditional safety property [11]. The emergence
of systems equipped with non-volatile shared memory draws attention to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 84–98, 2022.
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crash-recovery model [5] where processes recover following a crash. In such sys-
tems linearizability is considered insufficient since it allows object operations
that crash to take effect anytime in the future. Aguilera and Frølund proposed
to strengthened linearizability to force crashed operations to take effect before
the crash or not take effect at all, so-called strict-linearizability [1]. While there
exists a well-studied body of linearizable data structure implementations in the
crash-stop model [3], concurrent implementations in the crash-recovery model
are comparatively nascent. Consequently, it is natural to ask: under what con-
ditions is a linearizable implementation in the crash-stop also strict-linearizable
in the crash-recovery model?

Non-blocking implementations in the crash-stop model employ helping : i.e.,
apart from completing their own operation, processes perform additional work
to help linearize concurrent operations and make progress. It has been shown
that for many objects, any linearizable implementation using a set of well-
known atomic operations must introduce helping [6]. This helping mechanism
enables an operation invoked by a process pi to be linearized by an event per-
formed by another process pj , but possibly after the crash of pi. However, strict-
linearizability stipulates that the operation invoked by pi be linearized before
the crash event. Intuitively, this suggests that a linearizable implementation with
helping mechanism is not strict-linearizable (also conjectured in [5]: section 2),
while one that is help-free must be strict-linearizable. This work formalizes and
answers this precise question: whether a help-free implementation of a data type
derived for the crash-stop model can be used as it is in the crash-recovery model.
Answering this question could be very important from a practical standpoint as
we transition towards byte-addressable non-volatile memory: if the answer is
in the affirmative, then we could take a linearizable concurrent data structure
that is provably help-free and it would be correct (i.e. strict-linearizable) when
deployed for non-volatile shared memory.

Precisely answering this question necessitates the formalization of the crash-
recovery shared memory model. Explicit process crashes introduce further
dimensionalities to the set of executions admissible in the crash-recovery model
over the well formalized crash-stop shared memory [3]. Processes may crash on
an individual basis, i.e., an event in the execution corresponds to the crash of a
single process (we refer to this as the individual crash-recovery model). An event
may also correspond to m (1 < m ≤ n), process crashes where n is total number
of processes participating in the concurrent implementation (when m = n it
is the full-system crash-recovery model). Following a crash event in this model,
the local state of the process is reset to its initial state when it recovers and
restarts an operation assuming the old identifiers crash-recovery model (and
resp. new identifiers crash-recovery model) with the original process identifier
(and resp. new process identifier). Our contributions establish equivalence and
separation results for crash-stop and the identified crash-recovery models, thus
providing a precise characterization of the intricacies in applying a concurrent
implementation designed for the crash-stop model to the crash-recovery model,
and vice-versa.
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1.1 Contributions

First, we define the crash-recovery model and its characteristics. We show
that there exist sequential implementations of object types in the crash-stop
model that have inconsistent sequential specifications in the old identifiers crash-
recovery model (Lemma 1). The result is intuitive, since stopping and restarting
an operation execution may cause inconsistency.

We then consider how data structures use helping in the crash-stop model
by adopting the definitions of linearization-helping [6] and universal-helping [2].
When considering an execution with two concurrent operations, the linearization
of these operations dictates which operation takes effect first. The definition of
linearization-helping considers a specific event e, in which it is decided which oper-
ation is linearized first. In an implementation that does not have linearization-
helping, e is an event by the process whose operation is decided to be the one that
comes first. Universal-helping requires that the progress of some processes even-
tually ensures that all pending invocations are linearized, thus forcing a process
to ensure concurrent operations of other processes are eventually linearized.

The first technical contribution of this paper is proving that some pairs of
conditions are incomparable. That is, satisfying one of the conditions does not
imply the other condition holds as well. For that, we present an implementation
such that one condition holds while the other does not hold. Moreover, we also
present implementations such that both conditions hold, and such that none
holds. As a result, arguing about one of the conditions does not imply any result
regarding the other condition.
– There exists an implementation that satisfies universal-helping (and resp.

linearization-helping) but does not satisfy linearization-helping (and resp.
universal-helping) (Lemma 2).

– A strict-linearizable implementation in the crash-recovery model can either
have or not have linearization-helping in the crash-stop model (Lemma 4).

– A strict-linearizable implementation in the crash-recovery model can either
have or not have universal-helping in the crash-stop model (Lemma 6).

We find this set of results to be somewhat counter intuitive. It is known that
linearization-helping does not imply universal-helping. However, the other direc-
tion may be misleading, since in most cases universal-helping implies linearization-
helping. As we prove, this is not always the case, and one can use different lin-
earization orders for the same set of executions in order to prove universal-helping
does hold, while linearization-order does not hold. In addition, it was speculated
that strict-linearizability precludes any kind of helping [5]. Surprisingly, there is an
implementation that is strict-linearizable in the crash-recovery model while also
having linearization-helping or universal-helping in the crash-stop model.

The key implications of these results is that, in general, it is not the case that
a help-free implementation of a data type derived for the crash-stop model can be
used as it is in the crash-recovery model and still be strict-linearizable. However,
our second technical contribution is to show that under certain restrictions there
is a correlation between some of the above conditions for an important class of
concurrent data structures.
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– Note that as part of Lemma 4, we present a linearizable implementation of
a sticky-bit object that does not satisfy linearization-helping (Claim 4.1),
yet is not strict-linearizable. This result is surprising and made possible
because linearization-helping permits some unintuitive linearizations: it may
linearize operations of some history H in different order for different exten-
sions of H. Restricting the definition of linearization-helping to be prefix-
respecting, we prove that linearization-help free implies strict-linearizability.
More specifically, any obstruction-free implementation of a total object type
that is linearizable and has no linearization-helping in the crash-stop model is
also strict-linearizable in the new identifiers individual crash-recovery model
(Corollary 1). Thus, from a practical standpoint, this result establishes an
important equivalence between linearizability and strict-linearizability for a
large class of concurrent implementations.

– We prove that any non-blocking implementation of an order-dependent type
that is strict-linearizable in the crash-recovery model has no universal-helping
in the crash-stop model (Lemma 7). Order-dependent types are closely related
to exact-order types [6] and include popular objects like queues and stacks
(Sect. 3). From a practical standpoint, our result implies that if an order-
dependent object has universal-helping in the crash-stop model, then it is not
going to be strict-linearizable in the crash-recovery model.

Roadmap. The contributions in this paper are structured as follows: Sect. 2
presents our characterization of the dimensionalities of the crash-recovery
shared memory model (for the standard crash-stop shared memory model
please see [4]) Sect. 3 recalls universal-helping, linearization-helping, valency-
helping and presents new results on implementations satisfying these definitions.
Section 4 discusses the correlation between strict-linearizable implementations
and linearization-helping, and proves that help-freedom does not imply strict-
linearizability in general, but under a natural definition of help-freedom it does fol-
low. Section 5 proves that strict-linearizability and universal-helping are incompa-
rable . However, for a large class of objects, strict-linearizability implies universal-
help freedom.

The full paper [4] contains full proofs and detailed results that are omit-
ted from the main paper due to space constraints. It also expends the results
as follows. We consider the implications of our results for weaker (than strict-
linearizability) conditions [5,12] which, unlike strict-linearizability, do not pre-
clude helping. For the sake of completion, we also study the relationship between
strict-linearizability and valency-helping [2] which unlike linearization-helping
and universal-helping is defined on operation responses.

1.2 Related Work

Strict-linearizability was proposed by Aguilera et al. [1] which proved that it
precludes wait-free implementations of multi-reader single-writer registers from
single-reader single-writer registers. [5] showed that this is in fact possible with
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linearizability thus yielding a separation between the crash-stop and crash-
recovery models. That helping mechanisms, typically employed by non-blocking
implementations, is the algorithmic abstraction that may delineate linearizabil-
ity from strict-linearizability was also conjectured in [5]. This is the first work to
conclusively answer this question by providing the first precise characterization of
the intricacies in applying a shared memory concurrent implementation designed
for the crash-stop model to the crash-recovery model, and vice-versa. We prove
that although in general helping does not contradict strict-linearizability, under
very natural definitions and in many cases helping does not go hand in hand
with strict-linearizability.

Censor-Hillel et al. [6] formalized linearization-helping and showed that with-
out it, certain objects called exact-order types lack wait-free linearizable imple-
mentations (assuming only read, write, compare-and-swap, fetch-and-add prim-
itives) in the standard crash-stop shared memory model. Universal-helping and
valency-helping were defined by Attiya et al. [2]. Informally, it was shown in [2]
that a non-blocking n-process linearizable implementation of a queue or a stack
with universal-helping can be used to solve n-process consensus. This result was
also extended to strong-linearizability [8] which requires that once an operation is
linearized, its linearization order cannot be changed in the future. The definition
of strong-linearizability does bear resemblance with the proposed helping defini-
tions in [2,6]; however, it is defined as restriction of linearizability and is incom-
parable to helping. Indeed, [6] makes the observation that strong-linearizability
is incomparable with linearization-helping. The results in this paper study the
implications of the universal, linearization and valency helping definitions for
strict-linearizability in the crash-recovery, which has not been studied carefully
thus far.

2 Characterization of the Crash-Recovery Model

Processes and Non-volatile Shared Memory. We extend the standard
crash-stop model (for formal definitions please see [4]) by allowing any process
pi to fail by crashing ; following a crash, process pi does not take any steps until
the invocation of a new operation. Following a crash, the state of the shared
objects remains the same as before the crash; however, the local state of crashed
process is set to its initial state.

Executions and Configurations. An event of a process pi in the crash-
recovery model is any step admissible in the crash-stop model as well as a special
⊥P crash step; P is a set of process identifiers. The ⊥P step performs the follow-
ing actions: (i) for each i ∈ P, the local state of pi set to its initial state, (ii) the
execution E1 · ⊥P · E2 where E2 is P-free, is indistinguishable to every process
j /∈ P from the execution E1 · E2. In other words, processes are not aware of
crash events.

Process Crash Model. We say that an execution E is admissible in the indi-
vidual crash-recovery model if for any event ⊥P in E, |P| = 1. If |P| = N for any
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event ⊥P in E, we refer to it as the system-wide crash-recovery model. We say
that an implementation I is admissible in the system-wide crash-recovery model
(resp. system-wide crash-recovery model) if every execution of I is admissible in
the individual crash-recovery model (resp. system-wide crash-recovery model).

We note that the system-wide crash-recovery model is closer in nature to real-
world systems, where in case of a crash such as power loss all processes crash
together. However, in this paper we use the individual crash-recovery model in
order to derive stronger results which hold for both models.

Safety Property: Strict-Linearizability. A history H is strict-linearizable
with respect to an object type τ if there exists a sequential history S equivalent
to Hc, a strict completion of H, such that (1) →Hc⊆→S and (2) S is consistent
with the sequential specification of τ .

A strict completion of H is obtained from H by inserting matching responses
for a subset of pending operations after the operation’s invocation and before the
next crash step (if any), and finally removing any remaining pending operations
and crash steps.

Liveness. An object implementation is obstruction-free if for any execution E
and any pending operation πi by process pi, π returns a matching response in
E ·E′ or crashes where E′ is the complete solo-run (E′ only contains steps of pi
executing π) execution fragment of π by pi. An object implementation is non-
blocking if in every execution, at least one of the correct processes completes its
operation in a finite number of steps or it crashes. An object implementation
is wait-free if in every execution, every correct process completes its operation
within a finite number of its own steps or crashes. Obviously, liveness in the
crash-stop model is identical to the above without the option of process crashing.

Old Identifiers Crash-Recovery Model. Consider an execution E and a
process pi that crashes in E. We say that an execution E is admissible in the
old identifiers crash-recovery model if for any process pi and any event ⊥P in E
such that i ∈ P, pi takes its first step in E after the crash by invoking a new
operation.

New Identifiers Crash-Recovery Model. We say that an execution E is
admissible in the new identifiers crash-recovery model if for any process pi and
any event ⊥P in E such that i ∈ P, process pi no longer takes steps following ⊥P

in E. Note that even in this model, there are at most N active processes in an
execution, i.e., processes that have not crashed.

Aguilera and Frølund [1] showed that there exist object types for which
there exists a wait-free linearizable implementation in the crash-stop model,
while there exists no wait-free strict-linearizable implementation in the crash-
recovery model. Lemma 1 further strengthen this result by proving that given
an implementation in the crash-stop model, using it as is in the old identifiers
crash-recovery model may result a sequential execution (i.e., an execution with
no concurrency) in which a process returns an invalid response. For lack of
space, a proof can be found in [4]. These results suggest that it is not trivial to
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transform an implementation from the crash-stop model to the old identifiers
crash-recovery model.

Izraelevitz et al. defined the new-identifiers crash-recovery model as it is
closer to real-world systems [12]. Under the new identifier crash-recovery model
any execution with crash events is indistinguishable to all non-crashed processes
from an execution in the crash-stop model in which every crashed process simply
halts, and vice-versa. Thus, and by abuse of notation, we can consider the same
execution in both models in the context of deriving proofs for a given imple-
mentation. Notice however that although we can consider the same executions
in both models, the correctness conditions are different.

For this reason, all results in this work concern the new identifiers crash-
recovery model, thus we do not state the model explicitly. We note that all
impossibility results in this paper hold also for the old identifiers crash-recovery
model. This stems from the fact that given an execution in the new identifiers
crash-recovery model, it can be seen as an execution in the old identifiers crash-
recovery model when N, the total number of processes in the system, is larger
than the number of processes taking steps in the execution.

Lemma 1. There exists a sequential implementation A of a type τ in the crash-
stop model providing sequential liveness, such that A is not consistent with τ ’s
sequential specification in the old identifiers system-wide crash-recovery model.

3 Process Helping

In this section we present the various variants of helping based on previous
works [2,6]. We then show that linearization-helping and universal-helping are
not comparable, i.e., one does not imply the other.

Linearization-Helping ([6], Rephrased). We say that f is a linearization
function over a set of histories H, if for every H ∈ H, f(H) is a linearization of
H. We say that operation π1 is decided before π2 in H with respect to f and
a set of histories H, if there exists no S ∈ H such that H is a prefix of S and
π2 <f(S) π1. Throughout the paper, the binary relation < is used to denote that
the linearization of one operation precedes another.

A set of executions E is linearization-help free if there exists a linearization
function f over E , such that for any execution E ∈ E , and for any two operations
π1, π2 ∈ E and a single step γ such that E · γ ∈ E , it holds that if π1 is decided
before π2 in E · γ and π1 is not decided before π2 in E, then γ is a step of π1 by
the process that invoked π1. We say that an implementation is linearization-help
free if the set of admissible histories is linearization-help free.

Universal-Helping ([2], Rephrased). For simplicity and without loss of gen-
erality, for the purposes of defining universal-helping, we assume that the first
step of every operation is to publish its signature (i.e., the operation type and
its operands). Consider an n-process linearizable implementation A of an object
type τ and a function t : N �→ N. Then, A has t-universal-helping (when t is
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clear from the context, we leave it out) if for every finite execution E · E′ such
that some process completes t(n) or more operations in E′ whose invocations
are contained in E′, there is a linearization of E · E′ satisfying the following
conditions:

– the linearization of E · E′ contains every operation that is incomplete in E
– for every extension E′′, the execution E ·E′ ·E′′ has a linearization such that

the linearization of E · E′ is the same

Otherwise, we say that A is universal-help free.
[2] proved that universal-helping implies linearization-helping. However, a

careful inspection of the proof reveals an implicit assumption on the object type
was made. Roughly speaking, [2] conclude that if a pending operation needs to be
linearized by steps of another process due to universal helping then this implies
linearization-helping. Although it is the case for many objects, the key point to
consider is that universal-helping and linearization-help free definitions requires
the existence of a linearization function satisfying specific conditions. Exploiting
this flexibility we prove an implementation has universal-helping using some
linearization function, while proving it is also linearization-help free using a
different linearization function.

Claim. There exists a wait-free strict-linearizable implementation A of an object
type τ in the individual crash-recovery model, such that A has universal-helping
and it is linearization-help free in the crash-stop model.

Proof. A k-bounded Counter τ is an object type supporting a single operation
Fetch&Increment (F&I). The initial value of τ is 0. A F&I operation π
applied to τ with value l changes the value of the object to l+1 and returns l if
l < k, otherwise l = k and π returns k without changing τ ’s value. Algorithm1 is
a wait-free implementation of a k-bounded Counter using CAS (compare-and-
swap) primitive.

Linearization-Help Free. To prove Algorithm1 is linearization-help free, it is
enough to present a linearization function such that each operation π is lin-
earized at a step by the process performing it. Consider the following lineariza-
tion function: for any execution E and an operation π ∈ ops(E), π is linearized
at its successful CAS event, if such exists. Otherwise, if π reads the value k in
Line 2, this is the linearization point of π.

Universal-Helping. We present a linearization function satisfying the conditions
of the definition for universal-helping. An operation π performing a successful
CAS operation is linearized at the point of the CAS . In addition, once some
operation π changes the value of count to k, any other pending operation that
is yet to be linearized, is linearized (in an arbitrary order) immediately after π.
From that point on, any new invoked operation is linearized on its first step. Let
π be a pending F&I operation in an execution E. The following holds – either
π already have a linearization point in E; or if any other process completes
k operations starting from E then π have a linearization point. Moreover, the
assignment of linearization points is the same for any extending execution.
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Strict-Linearizability. The linearization function presented above to prove Algo-
rithm1 is linearization-help free, can also be used to prove it is strict-linearizable,
that is, the same linearization points can be used even if the execution contains
crash events. Any operation π is linearized on a step by its owner. Hence, if
process pi crashes while executing an operation π, either the operation was lin-
earized before the crash of pi, or π has no linearization point in any extending
execution.

Algorithm 1: k-bounded Counter. Code for process pi
Shared variables: count := 0

Procedure Fetch&Increment()

1 while true do
2 val := count
3 if val = k then return k if CAS(count, val, val + 1) then
4 return val
5

Lemma 2. There exists an implementation of a data type that satisfies
universal-helping (resp. linearization-helping), but does not satisfy linearization-
helping (resp. universal-helping).

Proof Sketch. The bounded counter implementation from Claim 3 gives the proof
for one direction of Lemma 2. To prove the other direction, we observe that any
implementation in which only a subset of the operations are getting help has
linearization-helping but no universal-helping. For example, in the Binary Search
Tree implementation of Ellen et al. [7] update operations help each other to com-
plete, while find operations do not complete any incomplete update operation.
Therefore, intuitively two update operations can prove linearization-helping.
However, an infinite sequence of find operations does not complete any pending
update operation; thus denying universal-helping since every pending operation
must be eventually linearized. [2] also describes an implementation satisfying
linearization-helping, but not universal-helping. �	

The main results in this work focus on universal and linearization-helping.
However, [2] also introduced the definition of valency-helping which unlike
linearization-helping and universal-helping is defined on operation responses.
Since correctness conditions like strict-linearizability only care about lineariza-
tion order, it is more relevant to discuss help definitions that are defined using
the linearization order of operations, and not using the response values. Nonethe-
less, the full paper discusses also the relation between strict-linearizability and
valency-helping [4].
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4 Strict-Linearizability vs. Linearization-Helping

We first prove that strict-linearizability and linearization-helping are incompa-
rable. That is, a strict-linearizable implementation in the crash-recovery model
can either have or not have linearization-helping in the crash-stop model.

Claim 3 proves that an implementation can be strict-linearizable in the crash-
recovery model while being linearization-help free in the crash-stop model.
Claim 4 below proves that there in fact exist linearizable object type implemen-
tations that are wait-free with both linearization-helping and universal-helping,
but are also strict-linearizable. We find this result to be somewhat surprising,
since intuitively helping seems to contradict strict-linearizability – an operation
can be linearized by steps of other processes, thus if the owner of the operation
crash the linearization point of the crashed operation may be after the crash. As
we show, one can consider different linearization functions to prove the different
properties of the implementation. For lack of space a detailed proof can be found
in [4].

Claim. There exists an implementation A of an object type τ such that A is
linearizable, wait-free and has both linearization-helping and universal-helping
in the crash-stop model. Moreover, A is strict-linearizable in the individual crash-
recovery model.

Lemma 3. An implementation being strict-linearizable in the crash-recovery
model is independent of it satisfying linearization-helping in the crash-stop model.

The proof follows directly from Claims 3 and 4.
Next we prove an implementation can have no helping (both linearization and

universal helping) while still being not strict-linearizable. The result is counter
intuitive, since no linearization-helping seems to imply only the owner of an
operation p can cause it to be linearized by its own step. Hence, in case of a
crash, either the pending operation was already linearized by a step of p, or that
it is yet to be linearized and p takes no more steps after the crash, thus the
operation will have no linearization point. As we prove, forcing a linearization
function to have no decided-before relation between two operations, even after
the operations are linearized and completed, allows us to derive such a counter-
example.

We then preclude such behaviours by posing a condition on the linearization
function. In a nutshell, we consider only functions such that after two opera-
tions are linearized, in any extending execution the linearization function must
linearized both in the same order. We note that to the best of our knowledge,
any known linearizable implementation has such a linearization function. Under
this restriction, linearization-help free indeed implies strict-linearizability.

4.1 Sticky-Bit Object

A Sticky-Bit object type τ is the most simple form of multi-reader multi-writer
register. Its value is initially 0, and it supports Set and Read operations. A
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Set operations returns ack, while a Read operation returns 0 if there is no
Set preceding it in the history, and 1 otherwise. We present a Sticky-Bit
implementation I using single bit registers, such that I is linearizable, wait-free,
linearization-help free, and universal-help free in the crash-stop model. However,
as we prove, I is not strict-linearizable in the system-wide crash-recovery model.

Set operation simply writes 1 to val. However, p0 and p1 executes Set in a
different manner, by first announcing their operation by setting a bit in an ann
array, and only then writing 1 to val. Two different Read implementations are
provided. For clarity, we refer to them as Read1 and Read2. Read1 simply
returns the value stored in val while Read2 first sets val to 1 if both bits in
the ann array set, and then returns the value stored in val. We assume some
processes use only Read1, and all others use only Read2. As we prove, the
claim holds as long as there is at least one process different than p0, p1 using
Read1, and at least one such process using Read2. As such, we assume it holds,
and do not specify the exact set of processes using each of the different Read
implementations. The code together with detailed proofs can be found in [4].
Wait-freedom follows directly from the code.

Linearizability holds since once val is set it remains so for the rest of the
execution and all Read returns 1. The implementation does not satisfy strict-
linearizability since a Read2 operation helps the Set operations of p0 and p1 to
set val. Thus, if both p0 and p1 write to ann followed by a system-wide crash, after
the crash a Read1 still returns 0, while a later Read2 operation will complete
the Set and return 1. This implies the linearization point of at least one of the
Set operations is after the crash. Universal-help free follows from the following
scenario - process p0 invokes a Set operation, write to ann and halts. Then, a
process p 
= p0 performs an infinite sequence of Read1 operations, all returns 0,
implying the Set is pending and have no linearization point.

To prove the implementation is linearization-help free we note that even in
the case where Read2 helps to set val due to Set operations Set0, Set1 by
p0, p1 respectively, we can linearize the operations in any order that we want.
Thus, we can choose a linearization function f such that in different extensions
it sometimes linearizes Set0 before Set1 and vice versa (for example, based on
the number of operations in the execution – odd or even). Hence, by definition
Set0 is not decided before Set1 at any point, and vice versa. In other words,
function f proves the implementation is linearization-help free.

Claim. There exists a wait-free linearizable implementation I of an object type
τ such that I is linearization-help free and universal-help free in the crash-stop
model, while I is not strict-linearizable in the system-wide crash-recovery model.

Remark 1. Implementation I being not strict-linearizable in the system-wide
new identifiers crash-recovery model imply I is also not strict-linearizable in
all other crash-recovery models - individual (system-wide) new (old) identifiers
crash-recovery model. Therefore, Claim 4.1 holds for all crash-recovery models.

Lemma 4. Strict-linearizability and linearization-helping are incomparable
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Proof Sketch. Lemma 3 proves an implementation can be strict-linearizable in
the crash-recovery model while having or not linearization-helping in the crash-
stop model. For the not strict-linearizable case, Claim 4.1 proves an implemen-
tation can be not strict-linearizable in the crash-recovery model, while being
linearization-help free in the crash-stop model. The last case to consider is an
implementation being not strict-linearizable in the crash-recovery model, while
satisfying linearization-helping in the crash-stop model. This case is almost triv-
ial, and can be proven using many known implementations with linearization-
helping. For example, in the Binary Search Tree implementation of Ellen et
al. [7], an update operation may mark a node, and later in the execution the
operation can be completed by a different process. To prove the implementation
is not strict-linearizable, consider the scenario where a process crash after the
marking. The operation will be completed and linearized after the crash by a
different process. �	

4.2 An Equivalence Between Linearizability and Strict-
Linearizability

The formalization of linearization-helping specifies a linearization function f such
that for any history H it produce its linearization order f(H). As the sticky-bit
implementation demonstrates, the formalization of linearization-helping leads
to executions where the decided-before order is not well-defined, and this may
break the concept of helping leading to non-intuitive results. Specifically, f can
linearize operations of some history H in different order for different extensions
of H. For example, consider a stack implementation, and a history H where
two pop operations π1, π2 are executed concurrently to completion starting from
the initial configuration. Both operations returns empty and can be linearized
in any order. Therefore, f may linearize π1 before π2 or vice versa for different
extensions of H. Thus, although both operations completed, there is no decided-
before order between the two.

In this section we restrict the discussion to a more natural prefix-respecting
linearization function precluding such a behaviour. To the best of our knowledge,
any known implementation has such a linearization function.

Definition 1. We say that a linearization function f is prefix-respecting if for
any execution E and an execution F extending it, <f(E)⊆<f(F ). In other words,
for any two operations π1, π2 ∈ E, if π1 <f(E) π2 then π1 <f(F ) π2.

Strong-linearizability [8] requires the linearization order of an execution E to be
a prefix of the linearization order of any extension of E. Although this seems
to bear similarity to prefix-respecting, strong-linearizability is a more restrictive
requirement. Given an execution E, strong-linearizability requires that if an
operation π is linearized in f(E), then in any extending execution no operation
σ that is pending in E can be linearized before π, even if σ was invoked before π
and it is not linearized in f(E). On the other hand, prefix-respecting allows such
a scenario, as long as one does not change the linearization order of operations
that are already linearized in f(E).
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A key feature of prefix-respecting linearization function is that given an exe-
cution E, if some operation π1 is linearized before π2 in f(E), then it holds
that π1 is decided before π2 in E (with respect to f). Hence, and by abuse of
notation, we may say π1 is linearized before π2 while referring to the decided
before order. Restricting our discussion to linearization-helping based on prefix-
respecting linearization functions only, we prove that a linearization-help free
implementation A of an object type τ in the crash-stop model is also strict-
linearizable in the crash-recovery model. Roughly speaking, under this restric-
tion, if A is linearization-help free and some operation π crashes, then either it
has a linearization point before the crash, or that it has no linearization point
in any extending execution, as steps by other processes can not cause it to be
linearized. For a full proof we refer the reader to [4].

Lemma 5. Let A be an obstruction-free implementation of a total object type
τ such that A is not strict-linearizable in the individual crash-recovery model.
Then, any prefix-respecting linearization function f of A imply linearization-
helping in the crash-stop model.

Corollary 1. Let A be an obstruction-free implementation of a total object type
τ such that A is linearizable and linearization-help free in the crash-stop model.
Then A is strict-linearizable in the individual crash-recovery model.

5 Strict-Linearizability vs. Universal-Helping

In this section we prove that strict-linearizability and universal-helping are
incomparable. We then prove that for a large class of object types, any strict-
linearizable implementation in the crash-recovery model is universal-help free in
the crash-stop model.

Lemma 6. Strict-linearizability and universal-helping are incomparable

Proof Sketch. We prove the existence of each of the four combinations separately.

Strict-Linearizability + Universal-Helping. Follows from Claim 3 and 4.

Strict-Linearizability + Universal-Help Free. This direction is intuitive, since
naturally strict-linearizability seems to contradict universal-helping. Indeed, any
strict-linearizable implementation we are familiar with is universal-help free in
the crash-stop model. For example, consider the well-known Harris linked-list
[9]. It is strict-linearizable in the crash-recovery model since any operation is
linearized on a step by its owner process. However, it is universal-help free in
the crash-stop model since processes do not help each other (except for physical
removal of nodes), thus an insert operation will never be completed if its owner
halts before adding the key to the list.

not Strict-Linearizable + Universal-Helping. This direction is intuitive as well,
since in most cases universal-helping contradicts strict-linearizability. Con-
sider Herlihy universal-construction [10] applied to a stack object type. It has
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universal-helping in the crash-stop model. However, it is not strict-linearizable
in the crash-recovery model, since a process may crash after announcing a pop
operation, and later that operation can be completed by a different process. This
may affect a return value of a push operation which was invoked after the crash.
This implies the linearization point of the pop operation must be after the crash.

not Strict-Linearizable + Universal-Help Free. Follows from Claim 4.1 �	

5.1 Equivalence Between Strict-Linearizability and Universal-Help
Freedom

Notation. Given a sequential history H and an operation π, we denote by H +π
the set of all sequential histories obtained by including π (i.e., its invocation and
response) in H. The same is defined for more than one operation. Two sequential
histories H1,H2 are distinct if there exists an operation π in both such that its
response is different. If π is in some (common) sub-history H, we say that H1,H2

are distinct for an operation in H.

Definition 2 (Order-dependent type). An object type τ is order-dependent
if there exists an infinite sequential history H and two operations π1, π2 such that
the following holds:

OD1: For any histories H1 ∈ (H + π1)∪ (H + π2), H2 ∈ H + π1 + π2, any two
histories in {H,H1,H2} are distinct for some operation in H.
OD2: π1 · π2 · H and π2 · π1 · H are distinct for some operation in H.

Order-dependant types include many known objects, such as queue and stack. In
a nutshell, an order-dependent type has two operations such that adding exactly
one of them or both changes the response of some other operation. Moreover,
the order in which both operations are performed (starting from the initial con-
figuration) effects the response of some other operation.

Order-dependant are closely related to exact-order types [6]. Roughly speak-
ing, exact-order types are types in which operations are non-commutative, that
is, switching the order of two operations changes the response of future oper-
ations. [6] proved that an exact-order type precludes a linearizable wait-free
and linearization-help free implementation using read, write, compare-and-swap
and fetch-and-add primitives. Order-dependant type and exact-order type are
incomparable [4].

Lemma 7 below proves that for an order-dependent object type, strict-
linearizability implies universal-help free. The full proof can be found in [4].

Lemma 7. Let A be a non-blocking implementation of an order-dependent total
type τ , such that A is strict-linearizable in the system-wide crash-recovery model.
Then A is linearizable and universal-help free in the crash-stop model.

Corollary 2. Let A be a non-blocking implementation of an order-dependent
total object τ such that A has universal-helping in the crash-stop model. Then A
is not strict-linearizable in the system-wide crash-recovery model.
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Remark 2. An implementation I that is not strict-linearizable in the system-
wide new identifiers crash-recovery model imply I is also not strict-linearizable
in all other crash-recovery models - individual (system-wide) new (old) identifiers
crash-recovery model. Therefore, Lemma 7 and Corollary 2 holds for all crash-
recovery models.
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Abstract. In this paper, we study the treasure hunt problem in a graph
by a mobile agent. The nodes in the graph G = (V, E) are anonymous
and the edges incident to a vertex v ∈ V whose degree is deg(v) and
they are labeled arbitrarily as 0, 1, . . . , deg(v) − 1. At a node t in G a
stationary object, called treasure is located. The mobile agent that is
initially located at a node s in G, the starting point of the agent, must
find the treasure by reaching the node t. The distance from s to t is D.
The time required to find the treasure is the total number of edges the
agent visits before it finds the treasure. The agent neither have any prior
knowledge about the graph nor the position of the treasure. An oracle
that knows the graph, the agent’s initial position, and the position of the
treasure, places some pebbles on the nodes, at most one per node, of the
graph to guide the agent towards the treasure.

This paper aims to study the trade-off between the number of pebbles
provided and the time required to find the treasure. To be specific, we
aim to answer the following question:

– “What is the minimum time for treasure hunt in a graph with max-
imum degree Δ and diameter D if k pebbles are placed?”

We answer the above question when k < D and k = cD for some positive
integer c. We design efficient algorithms for the agent for different values
of k. We also propose an almost matching lower bound result for k < D.

Keywords: Treasure hunt · Mobile agent · Anonymous graph ·
Pebbles · Deterministic algorithms

1 Introduction

1.1 Background and Motivation

Treasure hunt problem is well studied in varying underlying topologies such as
graphs and planes [2,3,6–9]. In this paper, we have delved into the treasure hunt
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problem using mobile agents on graphs. The main idea of this problem is that
the mobile agent starting from a position, has to find a stationary object, called
treasure, placed at some unknown location in the underlying topology. There are
many real-life applications to this problem. Consider a scenario where a miner
is stuck inside a cave and needs immediate assistance. In network applications,
consider a network containing a virus, the agent being a software agent has the
task assigned to find the virus in an unknown location inside the network. For
any graph with maximum degree Δ, the agent can find the treasure located at
a distance D, by performing a breadth-first search (BFS) technique in O(ΔD)
time. But this naive strategy is expensive as many real-life problems require a
much more efficient solution. Suppose a person is stuck inside a building that
has caught fire. He needs to find the fire exit and then evacuate within a short
period time. These kind of emergencies require a faster solution. The person
needs external help guiding him toward the fire exit. Similar to that finding
the treasure, the agent needs some external help to guide the agent toward the
treasure. This external help is provided to the mobile agent by the oracle. The
external information provided by the oracle is in the form of pebbles placed at
the graph’s vertices (nodes) [6], also termed as advice. This advice guides the
agent towards the treasure. The pebbles are placed at the nodes, so the agent
visiting those nodes gains some knowledge and finds the treasure using that
information. The oracle places pebbles, at most one at a node, by knowing the
underlying graph topology, initial position of the agent, and treasure’s location.
Gorain et al. [6] recently studied the treasure hunt problem in an anonymous
graph. They studied the question, what is the fastest treasure hunt algorithm
regardless of any number of pebbles placed? In that paper, they obtained an
efficient algorithm that finds the treasure, irrespective of the number of pebbles
placed. So, now a natural question arises that they did not address. Given k many
pebbles, what is the fastest possible treasure hunt algorithm. In this paper, we
find the solution to the question: Given k pebbles, what is the fastest algorithm
which solves the treasure hunt problem in an anonymous graph?

1.2 Model and Problem Definition

The search domain by the agent for finding the treasure is considered as a sim-
ple undirected connected graph G = (V,E) having n = |V | vertices that are
anonymous, i.e., unlabeled. The vertices are also termed as nodes in this paper.
An edge e = (u, v) must have two port numbers one adjacent to u, which is
termed as outgoing port from u and the other adjacent to v, termed as incom-
ing port of v (refer the edge (vi, vi+1) in Fig. 3, where ρ4 is the outgoing port
from vi and ρ0 is the incoming port of vi+1). Δ is denoted as the maximum
degree of the graph. A node u ∈ V with deg(u) is connected with its neigh-
bors u0, u1, · · · , udeg(u)−1 via outgoing port numbers which have arbitrary but
fixed labeling ρ0, ρ1, · · · , ρdeg(u)−1, respectively. Initially, the agent only knows
the degree of the initial node. Further, while the agent visits a node it can read
the port numbers when entering and leaving a node, as stated in the paper
[4]. Moreover, when the agent reaches a node v from a node u, it learns the
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outgoing port from u and the incoming port at v, through which it reaches v.
The first half of u’s neighbors are the nodes corresponding to the outgoing port
numbers ρ0, ρ1, · · · , ρ deg(u)

2 −1
, whereas the second half of u’s neighbors are the

nodes corresponding to the outgoing port numbers ρ deg(u)
2

, · · · , ρdeg(u)−1. The
agent is initially placed at a node s and the treasure t is located on a node of
G at a distance D from s, which is unknown to the agent. The oracle places the
pebbles at the nodes of the graph G, in order to guide the agent towards the
treasure. Moreover, at most one pebble is placed at a node. The agent has no
prior knowledge about the underlying topology, nor any knowledge about the
position of treasure, pebble positions, and the number of pebbles deployed by
the oracle. Further, it has no knowledge about the value of D as well. The agent
has unbounded memory and it can only find the treasure or a pebble whenever
it reaches the node containing the treasure or a pebble. Distance is considered
as the number of edge traversal. We denote the shortest distance between any
two nodes u, v ∈ G by dist(u,v), hence dist(s, t) = D. The time of the treasure
hunt is defined as the number of edges traversed by the agent from its initial
position until it finds the treasure.

1.3 Contribution

We study the trade-off between the number of pebbles (k) provided by the oracle
and the associated time required to find the treasure. The contributions in this
paper are mentioned below.

– For k < D
2 pebbles, we propose an algorithm that finds the treasure in a

graph at time O(DΔ
D

(2η+1) ), where η = k
3 .

– For D
2 ≤ k < D, we propose a treasure hunt algorithm with time complexity

O(kΔ
D

k+1 ).
– In case of bipartite graphs, the proposed algorithm for treasure hunt has time

complexity O(kΔ
D
k ) for 0 < k < D.

– For k = cD where c is any positive integer, we give an algorithm that finds
the treasure in time O

[
cD( Δ

2c/2 )
2

+ cD
]

– We propose a lower bound result Ω((k
e )

k
k+1 (Δ − 1)

D
k+1 ) on time of treasure

hunt for 0 < k < D.

1.4 Related Work

Several works have been done on searching for a target by one or many mobile
agents under varied underlying environments. The underlying environment can
be a graph or a plane. Also the search algorithm can be deterministic or random-
ized. The paradigm of algorithm with advice was mainly studied for networks,
where this advice (or information) enhances the efficiency of the solutions in [5].
In the past few decades, the problem of treasure hunt has been explored in many
papers, some of them are [3,9]. The treasure hunt problem is mainly studied in a
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continuous and discrete model. Bouchard et al. [3] studied the problem of trea-
sure hunt in the Euclidean plane, where they showed an optimal bound of O(D)
with angular hints at most π. Pelc et al. [8] provided a trade-off between time
and information of solving the treasure hunt problem in the plane. Pelc et al.
[9] gave an insight into the amount of information required to solve the treasure
hunt in geometric terrain at O(L) time, where L is the shortest path of the
treasure from the initial point. Further, Pelc [7] investigated the treasure hunt
problem in a plane with no advice for static and dynamic cases. Gorain et al.
[6] studied the treasure hunt problem in the graphs with pebbles and provided
a lower bound of the run time complexity using any number of pebbles. Our
problem is a more generalized version of the paper by Gorain et al. [6], where
they have used an infinite number of pebbles to give a θ(D log Δ) time algorithm.
This paper tries to find an efficient algorithm for a given number of pebbles.

The rest of the paper is organized as follows. In Sect. 2, given k < D pebbles,
we provide a treasure hunt algorithm for a general graph. Further, in Sect. 3,
given k ≥ D, we propose the treasure hunt algorithm for a general graph. In
Sect. 4, we propose a lower bound for the case k < D. Finally, concluded in
Sect. 5. All proofs are available in the full version of the paper [1]. In the following
sections, we propose different algorithms for different graph topology and their
analysis.

2 Treasure Hunt Algorithm When k < D

In this section, we provide algorithms and their analysis for the case when the
number of pebble k is less than D. We introduce our idea for the general graph,
with the help of a new paradigm termed as markers.

As the nodes in the graph are anonymous, i.e., there is no id for the nodes.
The agent can’t distinguish between a node that is visited or not, this creates
an issue. Suppose the agent is currently searching from some node containing a
pebble at level Li (where Li is the i-th level in the BFS tree corresponding to the
graph G), then how to determine the fact that the pebble found is at level Lj ,
where i < j but not j < i or j = i. Hence if these two issues are not resolved, the
agent may move inside a cycle for infinite time in the worst case. So, in the next
two sections, we deal with the issues related to the general graph. We provide
algorithms and their analysis for the agent to find treasure when D

2 ≤ k < D

and k < D
2 .

2.1 D
2

≤ k < D

In this case, the oracle places a pebble along the path P at alternative levels,
i.e., at the nodes vj , where 1 ≤ j ≤ D and j is even. The agent searches every
possible path of length D

k+1 (=l) until a pebble or the treasure is encountered
from SearchNode. The path length between two pebbles, in this case is at most 2,
i.e., l ≤ 2 as k ≥ D

2 . So, by searching a path of length at most 2 from SearchNode,
the agent cannot return to itself, i.e., the current SearchNode. The reason is that
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G has no multiple edges and self-loops. Further, the agent cannot go to the
previous SearchNode as well. The reason is, suppose the SearchNode is at level
Li, then all the incoming ports from the level Li−1 to the SearchNode is already
saved. Further, the agent cannot use these saved ports while searching a BFS
of length l from SearchNode. Hence the length of the path from Li to any node
in Lk (where k < i) containing pebble is at least l + 1. So, the issue of circling
it’s way back to itself (i.e. SearchNode) and going back to the previous level
is restricted. Hence, the agent can only move forward along P and ultimately
finds the treasure. The time taken to search all possible paths of length D

k+1 is

O(Δ
D

k+1 ) and it is done from each k pebbles. Hence the total time to find the
treasure is at most O(kΔ

D
k+1 ).

Now in the case of a general graph with D
2 ≤ k < D pebbles, the placement

of pebbles at alternate levels ensures that there is no returning back to previous
level and also to the SearchNode. But this fact is not valid for general graphs
with k < D

2 pebbles. This is explained with the help of the following example.

Fig. 1. Impossibility case in General
Graph

Fig. 2. Pebble Placement in General
Graph with Multiple Markers

Example: Consider the example in Fig. 1, where the SearchNode is v3 and l = 3.
The correct path from v3 to the treasure is along v3 −→ v4 −→ v5 · · · vj · · · −→ t.
But when it performs a BFS of length l from SearchNode, it is not possible
for the agent to distinguish between the paths v3 −→ v4 −→ v5 −→ v6 and
v3 −→ u4 −→ u5 −→ v3. In both the cases after traversing a dist of l from v3,
the agent encounters a pebble. In the worst case, the agent may traverse this
wrong path each time and never reach the treasure. Moreover, the number of
pebbles must be at least 2, as with a single pebble, the agent can’t find the
treasure. Consider the Fig. 1, where a pebble is placed at v3 only. In this case,
the agent may never find the treasure. It is because, for every search from v3, the
agent may circle its way back to v3 again and again (as the nodes and pebbles
are anonymous) rather than encountering the treasure. Now this can be resolved
with the help of Markers, which is defined as follows.
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Marker: To deal with this scenario, we create a notion of markers. The idea
of markers came from the concept of colors. Colors are always helpful in dis-
tinguishing certain characteristics. In our case, it helps to identify whether a
node is already visited or not, but no concept of colors is used in our model.
We replicate the idea of colors by using a certain combination of pebbles, and
this combination is termed as Marker. To denote a marker, the oracle places two
pebbles adjacent to each other along the path P . When the agent finds a pebble
in one of the adjacent nodes of the current pebble, it understands that it has
found a marker. We generalize our idea in general graphs with markers.

2.2 k < D
2

In this section, we discuss how multiple marker helps the agent, find the treasure
in a general graph. The pebble placement strategy is discussed as follows.

We define a group as a marker together with the immediate next pebble.
Markers and pebbles are placed alternatively, as shown in Fig. 2. Let l be the
distance between a marker and a pebble in a group. Further, two such groups are
also placed at l distance apart. We denote η to be the number of such groups.
We can differentiate the following cases. Case-1 (k = 3η): In this case, the oracle
places the markers and the pebbles l distance apart along the path P (refer
Fig. 2), where l = D−η

2η+1 . Case-2 (k = 3η + 1): Similarly, in this case l = D−η
2η+2 .

Case-3 (k = 3η + 2): Similarly, in this case as well, l = D−η−1
2η+2 .

Below is a detailed description of the algorithm TreasureHuntForGraph-
WithMarker that the agent executes to find the treasure.

1. The agent starting from s, sets SearchNode = s and performs a BFS in
increasing lexicographic order of outgoing port numbers until the treasure
or a pebble is found.

2. If the treasure is found, the algorithm terminates.
3. If the treasure is not found and a pebble is found. Then the agent sets the

dist between s and this node containing the pebble as l − 1. Also consider
that the node containing the pebble is vl−1 at Ll−1-th level.

4. Further from vl−1, the agent performs two tasks. Firstly it searches the
neighbors of vl−1, and finds another pebble at the node vl in level Ll. Fur-
ther, it stores the path length l from SearchNode to vl and identifies that
a marker is found. Secondly it stores the incoming port number ρl−1 of the
edge (vl−1, vl).

5. Reset SearchNode = vl.
6. The agent performs a BFS of length l from SearchNode until the treasure or

a pebble is found.
7. If the treasure is found, then the algorithm terminates.
8. If the treasure is not found and whenever a pebble is found, there are two

possibilities: P1 and P2. P1: The agent has returned to SearchNode as the
underlying graph topology is a general graph. P2: The agent has encountered
a new pebble along path P . Now to understand which of these possibilities
the agent has encountered. The agent travels the stored sequence of port
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numbers, in this case ρl of length 1. If in this traversal, a marker is found,
then the agent has encountered P1 and searches a different path. Otherwise,
if the marker is not found then it is possibility P2.

9. If the agent encounters P2, i.e., it has found a pebble for the first time at
the node v2l in L2l-th level. The agent performs the following tasks. Firstly,
it stores the sequence of incoming port numbers of the shortest path from
vl−1 −→ SearchNode −→ v2l of length l + 1. Secondly, it completes the
BFS search at the L2l−1 level. Whenever another pebble is encountered, the
agent stores the incoming port number of the incoming edge of that node
containing a pebble, i.e., the edge from the node with pebble in level L2l−1

and v2l. Sets SearchNode = v2l.
10. From SearchNode, it performs a BFS of length l using the ports except for

the stored incoming ports until the treasure or a pebble is encountered. If the
treasure is encountered, go to step 7. If a pebble is encountered, then perform
only step 8. Further if P2 arises then search the neighbor of SearchNode (i.e.,
v3l).

11. If a pebble is found at one of its neighbor node v3l+1, then identify a
new marker is found and store the incoming port ρ3l of the incoming edge
(v3l, v3l+1). Then go to step 5. If no pebble is found, go to step 9.

Lemma 1. Given k < D
2 pebbles, the agent following TreasureHuntFor-

GraphWithMarker algorithm successfully finds the treasure in a general
graph with the help of multiple markers.

Theorem 1. The agent finds the treasure in O(DΔ
D

(2η+1) ) time, where η = k
3 .

Lemma 2. Given k < D
2 pebbles, the agent following TreasureHuntFor-

BipartiteGraph algorithm successfully finds the treasure in a bipartite graph.

Theorem 2. Given k < D
2 , the agent finds the treasure in O(kΔ

D
k ) time in a

bipartite graph.

3 Treasure Hunt Algorithm When k ≥ D

In this section, we explore the case when k = cD pebbles are provided by the
oracle, where c is any positive integer. We propose an algorithm that finds the
treasure in O

[
cD( Δ

2c/2 )
2

+ cD
]

time.
Let G be a graph with maximum degree Δ ≥ 10(c+1)+6 [1]. Let us consider

β = 10(c+1)+6. The case where Δ < β is dealt with a different strategy, which
is explained ahead. The path P from s to t may have two scenarios. Scenario-1:
The path P may not contain any node of degree β which is similar to solving the
case in which G has maximum degree Δ < β. Scenario-2: The path P contains
at least one node of degree β.

All these cases are dealt separately and are discussed ahead. So, before pro-
ceeding to general graphs, we first describe our algorithm and pebble placement
strategy in trees and then further extend our idea for general graphs keeping in
mind the additional difficulties.
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3.1 Idea of Treasure Hunt in Tree for k = cD Pebbles

Let G be a rooted tree, where initial node s is the root of the tree. The nodes
at the level Li are located at a distance i from s. The treasure t is located at
a distance D from s at the level LD. Let P = v0, v1, · · · , vD (where v0 = s and
vD = t) be the shortest path from s to t.

If k = D pebbles are given, then the oracle places a pebble on each D many
nodes along P , i.e., one pebble is placed on each vi, where 0 ≤ i ≤ D − 1 and
vi ∈ P . Now if more than D pebbles are provided, i.e., k > D, then along
with placing D pebbles on each node vi, the oracle further places the remaining
pebbles along the neighbors of vi’s. These remaining pebbles help the agent to
reduce its search domain to find the next node vi+1 along P . The agent from
vi, obtains a binary string by visiting the neighbors of vi along which some of
the remaining k − D pebbles are placed. This binary string gives the knowledge
to the agent, about the collection of outgoing ports along which the agent must
search in order to encounter the pebble placed at the node vi+1. Next, we discuss
how a string is represented with respect to the pebbles placed.

String Representation with Pebbles: Among the neighbors of vi which are
used for encoding a string: if the node contains a pebble, it is termed as ‘1’ in
the j-th bit of the binary string, whereas no pebble represents ‘0’. Now suppose
all the neighbors are not used for encoding. So, to learn where the encoding has
ended, the following strategy is used [6]. Instead of a simple binary represen-
tation, we provide a transformed binary representation in which we replace ‘1’
by ‘11’ and ‘0’ by ‘10’. This transformation ensures no ‘00’ substring exists in
the transformed binary string. As an example γ = 0010 will be transformed to
γt = 10101110. So, when the agent finds two consecutive ‘0’s, it learns that the
encoding has ended. The process is explained with the following example.

Example: Given k = 2D pebbles, the example shown in Fig. 3 explains the
algorithm’s execution when the agent reaches the node vi ∈ P along the incom-
ing port ρ0. Let deg(vi) = 12 and the node vi+1 is connected to vi with the edge
having outgoing port number ρi, where ρi ∈ {ρ1, · · · , ρ deg(vi)

2 −1
} (i.e., ρ4 to be

exact). Further, the pebbles for encoding are placed along the nodes correspond-
ing to the outgoing ports {ρ deg(vi)

2
, · · · , ρdeg(vi)−1}. The j-th bit of the binary

string is ‘1’ if the node corresponding to the outgoing port number ρ
(

deg(vi)
2 +(j−1))

contains a pebble otherwise, if no pebble is found then the j-th bit is ‘0’. So,
the agent currently at vi obtains the transformed binary string γt = 11 (as
the ‘00’ obtained stops the agent from further search) by searching the nodes
corresponding to the outgoing ports {ρ deg(vi)

2
, · · · , ρdeg(vi)−1}. Hence the binary

string is γ = 1. Now as the length of γ obtained is 1, it divides the first deg(vi)
2

neighbor nodes of vi into 2|γ| (where |γ| = 1) partitions each of size at most
�deg(vi)

21+1 � = � 12
4 � = 3. Further, it searches the outgoing ports corresponding to

the 2nd partition (as the value 0 represents the 1st partition, whereas the value
1 represents the second partition of deg(vi)

2 neighbors of vi) out of 21 partitions
each consisting of exactly 3 ports. This means the agent searches only the nodes



Treasure Hunt in Graph Using Pebbles 107

corresponding to the outgoing ports ρ4, ρ5 and ρ6 and finds the desired node
vi+1 containing a pebble via the outgoing port ρ4.

Fig. 3. Represents the encoding to reach vi+1 from vi. Pebbles are placed at the nodes
u1 and u2, to represent the transformed binary string 11, which the agent obtains.
This string localizes the search of only the outgoing ports ρ3, ρ4 and ρ5. The node vi+1

corresponds to the port ρ4.

This idea is simple for trees, but it will not work for any arbitrary graph. So,
we make necessary modifications and explain them in the next section.

3.2 Extending the Idea for General Graphs

The above idea for trees cannot be directly extended to general graphs. The
reason being any tree can be transformed into a rooted tree with root s, in
which the edges go from level Li to Li+1 (where i ≥ 0), creating an acyclic
structure. It is because there is a unique path between two nodes in a tree, i.e.,
no two nodes have common children. Similarly, we can create a BFS tree of
any arbitrary graph rooted at s. But any arbitrary graph may contain cycles.
So, there may also be edges in between levels in the BFS tree. Now recalling
the pebble placement idea for trees, the encoding in the neighbors of a node v
does not affect the encoding in the neighbors of node u as there are no common
children. But this is not true for general graphs. The encoding done for the node
u can hamper the encoding for the node v. To resolve this issue, we place the
pebbles for encoding on high degree nodes that are not ‘close’. We call these
high degree nodes fat nodes, which are defined below. A node is fat if its degree
is at least β, where β = 10(c + 1) + 6. Otherwise, it is light.

Now we have the following cases, and we deal with them separately. Case-1:
Every node vi ∈ P , 0 ≤ i ≤ D − 1, is light. Case-2: There exists at least one
node in P , which is fat.

Case-1: In this case no encoding is needed. The oracle places a single pebble at
each level of the BFS tree along the path P . So, the agent starting from s, sets
SearchNode = s. If a pebble is found at s then it searches the neighbors having
a pebble along the outgoing port {ρ0, . . . , ρ( deg(s)

2 −1)
}. Otherwise if no pebble is

found at s then it searches the neighbors having a pebble along the outgoing
ports {ρ

(
deg(s)

2 )
, . . . , ρdeg(s)−1}. Whenever the next pebble is found at a node
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v1, it sets the SearchNode = v1. At each subsequent steps the agent visits all
the neighbors of the SearchNode for a pebble, except the incoming port which
connects the current SearchNode to the previous SearchNode (i.e., except the
port ρ0 for the node vi in Fig. 3). This process will continue until the treasure is
found. Now, since all the nodes along P are light, their degree is less than β. So,
the time required to find the treasure is at most βD, where β = 10(c + 1) + 6.

Case-2: In this case, encoding is needed as all the nodes along the path P are not
light. The encoding is done on the children of a set of nodes termed as milestone.
The presence of each milestone helps the agent to localize the search domain for
the next few nodes along the path P . To define the first milestone node, we have
the following cases in the BFS tree corresponding to G. Case-A: The node s is
fat. This implies the first milestone is s. Case-B: The node s is light but the
node v1 ∈ P at level L1 is fat. This implies the first milestone is v1. Case-C:
The nodes s, · · · , vj ∈ P (where j ≥ 2) are light whereas the node vj+1 at level
Lj+1 is fat. This implies the first milestone is vj+1 along P .

The subsequent milestones are defined recursively. For i ≥ 1, let the i-th
milestone is at the level Lj (where j ≥ 0). Then the (i + 1)-th milestone node
should be at level Lk, where k − j ≥ 5, i.e., the distance between any two
milestones is at least 5. This distance is maintained to avoid having a common
neighbor between any two pair of milestones. Since the agent does not know
the underlying topology, hence it cannot distinguish between light or milestone
nodes. The placement of pebbles for encoding not only gives the binary repre-
sentation but also determines whether a node is a milestone node or a light node
(refer CheckerForMilestone algorithm). The pebble placement strategy is
discussed below.

Pebble Placement: There are two reasons for pebble placement. One is for
giving the direction to the treasure along P . The other is for encoding, that
reduces the search domain for the next node along P . Pebbles are placed at
every node along the path P , except at a node which is 2 dist apart from a
milestone node. More precisely, if vi is a milestone node at level Li along P ,
then no pebble is placed at the node vi+2 at level Li+2 along P (refer the node
v2 in Fig. 4, where s is the first milestone). The agent’s goal is to locate the
next pebble along P . In the worst case, the agent may have to search all the
neighbors. To reduce this search domain, encoding is incorporated. So, encoding
will be done only at the neighbors of the milestone. Now the question is, which
neighbors of the milestone are used for encoding. As the oracle knows which
neighbor of the milestone a pebble is placed for the desired path. It accordingly,
uses the other half of the neighbors to place the pebbles for encoding. As shown
in the Fig. 4, where s is a milestone and v1 is the next node along P , the pebbles
for encoding are placed along the other half of neighbors of s.

Strategy for Encoding: The number of available neighbors for encoding is deg(v)
2 ,

where v is a milestone. Out of cD pebbles, D many pebbles are placed along
P . The remaining (c − 1)D pebbles are used for encoding. The length of each
encoding should be at most c − 1. The oracle leaves two consecutive neighbors
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Fig. 4. Directed graph representing the
possible path traversal of an agent from
a mileston

Fig. 5. Flow Chart representing possible
traversals from a milestone s

without pebbles to distinguish between two separate encoding. To understand
the termination of the encoding, another three consecutive neighbors are kept
empty. To encode α many binary strings, we need at least α((c − 1) + 2) + 3
neighbors. So, the relation between deg(v) and α is deg(v)

2 ≥ α(c+1)+3. Further,
we define the set R, as the set of two outgoing port numbers and all the incoming
port numbers of the neighbors of the milestone node along which pebbles are
placed. The cardinality of R is at most α(c − 1) + 2. The reason is, from a
milestone α binary strings are encoded, each having a length at most (c − 1),
and a single pebble is placed at the desired node along the desired path. As shown
in Fig. 3 the set R = {ρ4, ρ6, ρ0, ρ0, ρ0}, corresponding to the nodes vi+1, u1 and
u2, respectively.

Below is a detailed description of the CheckerForMilestone algorithm,
for the agent to determine whether a node is a milestone or light.

1. The agent is at a node v. It checks the node along the outgoing port ρ1.
2. If a pebble is found, then it searches the next four consecutive neighbors,

i.e., the nodes with outgoing ports ρ2, ρ3, ρ4 and ρ5, respectively. If more
than one pebble is found, then the agent concludes v is a milestone, and the
encoding is done along the first half of its neighbors, except the parent. It
further concludes that the next node along P is present in the other half of its
neighbors. Otherwise, if a single pebble is found, corresponding to the nodes
with outgoing ports ρ1, ρ2, ρ3, ρ4 and ρ5, then the node having a pebble is the
next node along P . It further checks the node with outgoing port ρ deg(v)

2 +1
,

if a pebble is found, then v is a milestone, otherwise v is light.
3. Moreover if no pebble is found at the node with outgoing port ρ1, then

the agent checks the nodes with outgoing port ρ deg(v)
2

, ρ deg(v)
2 +1

, ρ deg(v)
2 +2

,

ρ deg(v)
2 +3

and ρ deg(v)
2 +4

, respectively. If more than one pebble is found, then
the agent concludes v is a milestone and the encoding is done along the sec-
ond half of its neighbors, except the parent. It further concludes that the
next node along P is present in the other half of its neighbors. Otherwise,
if a single pebble is found, corresponding to the nodes with outgoing ports
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ρ deg(v)
2

, ρ deg(v)
2 +1

, ρ deg(v)
2 +2

, ρ deg(v)
2 +3

and ρ deg(v)
2 +4

, then the node having peb-
ble is the next node along P . Moreover, conclude that the node v is light.

As shown in Fig. 4 (in detail described in Fig. 5), we create a directed graph
representation consisting of all the possible paths that the agent can travel from
a milestone node s towards the treasure t. The pebbles for encoding are placed
along the neighbors of s. The set U is a collection of nodes {u1, u2 · · · }, which
represent the nodes where pebbles are placed for encoding. The set W is the
collection of nodes {w1, w2, · · · }, which are at the same level as v1 and no pebbles
are placed on them. The nodes along the desired path from s to t are depicted
by circles, in which pebbles are placed at every node, except at v2 (marked by a
red circle) and t. Let Γi be the integer value of the binary string γi (where 1 ≤
i ≤ α) encoded along the neighbors of s. The edge (u, v) denoted by Γ |n implies
that the agent after searching some Γ partition of u’s neighbor, encountered
n many pebbles. The edge (u, v) denoted by R|n implies that the agent after
searches the nodes corresponding to the set R of u’s neighbor, encountered n
many pebbles. The notation R|0|Γ |n along an edge (u, v), represents the fact that
the agent after searching the nodes corresponding to the set R of u’s neighbor
and encounters no pebble, further it searches its Γ partition of neighbors and
encounters n many pebbles. The red cross on edge denotes a path in which the
agent detects inconsistency and stops further exploration along this path. As
shown in Fig. 4, z is an integer greater than 1.

Below is a detailed description of the TreasureHuntForGraph algorithm
for the agent to find the treasure.

1. The agent starting from s, sets SearchNode = s, checks for a pebble at s.
If no pebble is found at s, then it searches the first half of its neighbors
for a node with a pebble. If a pebble is found at s, then it performs the
CheckerForMilestone algorithm to check whether the node is light or a
milestone.

2. If s is light, then it searches the second half of its neighbors until a treasure or a
pebble is encountered. If the treasure is found, then the algorithm terminates.
Otherwise if a pebble is found at a node v1, then set SearchNode = v1.

3. If s is a milestone, then it decodes the α many binary strings by visiting the
second half of its neighbors (node ui’s in Fig. 3) and accordingly updates the
set R and performs the following task.
(a) The agent first obtains the binary strings γ1, · · · , γα (of size at most c−1

2 )
from the transformed binary strings (of size at most c − 1), as explained
in pebble placement strategy of Sect. 3.2.

(b) The agent divides the first half of neighbors of SearchNode into 2|γ1| par-
titions. Each partition consisting of deg(SearchNode)

2|γ1| neighbors. Then it
searches Γ1-th partition, where Γ1 is the integer value of γ1. If the trea-
sure is found, then the algorithm terminates. Otherwise a pebble is found
at a node v1 (say), set SearchNode = v1 (as shown by the edge (s, v1) in
Fig. 5).
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(c) The agent searches Γ2 partition of SearchNode neighbors. The agent finds
either no pebble or at least one pebble (refer the edges (v1, v2), (v1, ui)
and (v1, wi) in Fig. 4).
Irrespective of the number of nodes encountered without pebbles, after
searching Γ2 partition of its neighbors. The agent visits each such node
without a pebble one at a time, by maintaining a stack. Then it searches
its Γ3 partition of its neighbors. If no pebble is encountered, then the agent
returns to its parent. Otherwise, there can be a single or multiple pebbles
encountered (refer to the edges with notation Γ3|1 and Γ3|z, respectively
in Fig. 4).
If a single pebble is found, then there are multiple possibilities, as shown
by the edges denoted by Γ3|1 in the Fig. 5.

P1: The agent is currently at some node wi ∈ W , encounters a pebble
at a node in the previous level (refer the edge (wi, s) with notation
Γ3|1 in Fig. 4).
P2: The agent is currently at some node wi ∈ W , encounters a pebble
at a node in the same level (refer the edge (wi, ui) with notation Γ3|1
in Fig. 4).
P3: The agent is currently at the node v2, encounters a pebble at a
node in the next level of v2, i.e., at v3 (refer the edge (v2, v3) denoted
by Γ 3|1 as shown in Fig. 4) which is indeed the desired path towards
the treasure.

Otherwise, if multiple pebbles are found, then we have further possibilities,
as shown by the edges denoted by Γ3|z in Fig. 5.

P1: The agent is currently at some node wi ∈ W , encounters a pebble
at a node in the previous level, i.e., at s (refer the edge (wi, s) with
notation Γ3|z in Fig. 4) and all the remaining pebbles along the nodes
in the same level, i.e., along ui (refer the edge (wi, ui) with notation
Γ3|z in Fig. 4).
P2: The agent is currently at some node wi ∈ W , encounters all the
pebbles at a node in the same level, i.e., along ui (refer the edge
(wi, ui) with notation Γ3|z in Fig. 4).
P3: The agent is currently at v2, encounters a pebble at a node in
the next level, i.e., at v3 (refer the edge (v2, v3) with notation Γ3|z as
shown in Fig. 4) which is indeed the desired path towards the treasure.
The remaining pebbles are found along the nodes in the previous level,
as shown by the edge (v2, ui) with notation Γ3|z in Fig. 4.

So, irrespective of the number of pebbles encountered, the agent visits
each one of them and searches the nodes corresponding to the ports in
the set R. If no pebble is encountered, then the agent is at v3 and it
searches the Γ4 partition of its neighbors and encounters v4 (refer the edge
(v3, v4) with notation R4|0|Γ4|1 in Fig. 4). From v4, it further searches Γ5

partition of its neighbors and finds v5. It sets SearchNode = v5.
If a single pebble is found then we have the following possibilities.

P1: If the agent is currently at some node ui ∈ U , then the pebble
encountered is at the node s (refer the edge (ui, s) in Fig. 4).
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P2: If the agent is at a node v3, then the pebble encountered is at the
node v4 (refer the edge (v3, v4) with notation R4|1 in Fig. 4) which is
the desired path.

In this case, the agent searches the nodes corresponding to the ports in
the set R, from the node where a single pebble is encountered. Then we
have further possibilities:

P1: If no pebble is encountered, then the agent is at v4. In this
case, the agent further searches the Γ5 partition of its neighbors
and encounters v5 (refer the edge (v4, v5) with notation R5|0|Γ5|1
in Fig. 4). It sets SearchNode = v5.
P2: If a single pebble is encountered (refer the edge (v4, v5) with
notation R5|1 in Fig. 4), then this is the correct path, and the agent
will reach to the node v5, and set SearchNode = v5.
P3: If multiple pebbles are encountered, then return to its parent
(refer to all the crossed edges denoted by R5|z in Fig. 4 and in Fig. 5).

If multiple pebbles are found along this search, then the agent returns
to its parent, as referred by the crossed red edges denoted by R4|z in
Fig. 4 and Fig. 5.
In each case, by rejecting every wrong path (referred as crossed red edges
in Fig. 5), the agent will ultimately return to the node v5 (refer all the
edges denoted as R5|1 and R5|0|Γ5|1 in Fig. 5) and set SearchNode = v5.

(d) Further from v5, i.e., SearchNode. The agent searches the Γ6 partition of
v5 and encounters a pebble at the node v6. Then it sets SearchNode = v6.
This process continues until SearchNode = vα

4. If SearchNode is light, search all its neighbor until a pebble or the treasure
is encountered. If the treasure is found, then the algorithm terminates. If a
pebble is found at a node vj , set SearchNode = vj , where (j ≥ 2).

5. If SearchNode is a milestone, then it searches its corresponding half of neigh-
bors determined by the algorithm CheckerForMilestone, and then go to
step 3.

Lemma 3. Given k = cD pebbles, the agent following the TreasureHunt-
ForGraph algorithm successfully finds the treasure.

Lemma 4. The agent following TreasureHuntForGraph algorithm takes
O

(
c( Δ

2c/2 )
2

+ c
)
time to reach from a milestone to another milestone.

Theorem 3. Given k = cD pebbles, the agent following the TreasureHunt-

ForGraph algorithm finds the treasure in O
[
cD( Δ

2c/2 )
2

+ cD
]
time.

4 Lower Bound

In this section, we provide a lower bound result on time of treasure hunt for the
case when the number of pebbles k is at most D − 1.

Let T be a complete tree with n nodes and of height D where the degree of
the root r and each internal node is Δ. There are Δ · (Δ − 1)D−1 leaves in T .
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Let p = Δ · (Δ − 1)D−1 and u1, . . . , up be the leaves of T in the lexicographical
ordering of the shortest path from the root r to the leaves. For 1 ≤ i ≤ p, we
construct an input Bi as follows. The tree T is taken as the input graph, r as
the starting point of the agent, and ui as the position of the treasure. Let B be
the set of all inputs Bi, 1 ≤ i ≤ p. Let A be any deterministic treasure hunt
algorithm executed by the mobile agent and, let L be any pebble placement
algorithm for the set of instances B. We prove the following theorem.

Theorem 4. There exists a tree with maximum degree Δ and diameter D such
that any deterministic algorithm must require Ω((k

e )
k

k+1 (Δ−1)
D

k+1 )-time for the
treasure hunt using at most k pebbles placed on the nodes of T .

5 Conclusion

In this paper, we study the trade-off between the number of pebbles k and the
time for a treasure hunt for k = cD, where c ≥ 1. For k < D, our proposed
upper bound and lower bound on time of treasure hunt are close. For k = cD,
we propose an algorithm for the treasure hunt. Therefore, proving a tight lower
bound result for both of the above cases is a natural problem to solve in the
future. On the other hand, as the previous result [6] proves that the fastest
possible treasure hunt algorithm can be achieved with O(D log Δ) pebbles, it
will be interesting to investigate the case when k ∈ w(D) and k ∈ o(D log Δ).
We propose algorithms which have close upper and lower bounds when k < D.
In the future, we will like to provide a more tighter lower bound. Further, when
k ≥ D, we have given only the upper bound. A possible future work will be to
propose a lower bound for this proof.
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Abstract. We consider blockchain in dynamic networks. We define
the Blockchain Decision Problem. It requires miners that maintain the
blockchain to confirm whether a particular block is accepted. We estab-
lish the necessary conditions for the existence of a solution. We, how-
ever, prove that the solution, even under these necessary conditions is,
in general, impossible. We then present two algorithms that solve the
Blockchain Decision Problem under either the knowledge of the maxi-
mum source pool propagation time or the knowledge of the source pool
membership. We evaluate the performance of the two algorithms.

Keywords: Dynamic networks · Blockchain · Consensus

1 Introduction

Blockchain is a means of organizing a decentralized public ledger. The lack of
centralized controller potentially makes the blockchain more resilient to network
failures and attacks. Blockchain is a popular architecture for a number of appli-
cations such as cryptocurrency [17,22], massive Internet-of-Things storage [2]
and electronic voting [9].

The major problem of maintaining this ledger is for the participants to
achieve consensus on its records despite faults or hostile environment. Classic
robust consensus algorithms [5,15] use cooperative message exchanges between
peer processes to arrive at a joint decision. However, such algorithms require that
each process is aware of all the other processes in the network. In a system with
unstable membership, such requirement may be excessive. An alternative is com-
petitive consensus [17] where processes race to have records that they generated
added to the blockchain. This competition does not require fixed membership or
explicit fault handling. Instead, it organically provides defense against attacks
and faults so long as the computing power of correct nodes exceeds those of
faulty nodes or adversaries.

Ordinarily, the network underlying the blockchain is considered to be always
connected. However, as blockchain finds greater acceptance and new applica-
tions, this assumption may no longer be considered as a given. Instead, the
blockchain operation under less reliable communication conditions needs to be
examined. This requires the study of relation between block generation and its
propagation throughout the network.
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We use dynamic network to study it. Such network assumes that a connection
between any two processes may appear and disappear at any moment. We thus
explore how blockchain behaves at the boundaries of connectivity: where message
delay and miner participation is tenuous while connection and communication
speeds vary greatly.

Related Work. An area related to dynamic networks is population protocols,
where passive agents do not control their movement but may exchange informa-
tion as they encounter each other. See Michail et al. [16] for an introduction to
the topic. A system with arbitrary link failures was considered by Santoro and
Widmayer [20]. There are several papers that explore the model of link failures
in greater detail [1,6,8].

The network that dynamically changes in an arbitrary manner, possibly to
the detriment of the problem to be solved, was first formally studied by O’Dell
and Wattenhofer [18]. This topic is explored in Kuhn et al. [13]. Several stud-
ies [4,10] investigate reliable broadcast in dynamic networks with Byzantine
faults. There is a large body of literature on cooperative consensus in dynamic
networks [3,14,21]. In particular, Winkler et al. [21] explored the concept of an
eventually stably communicating root component necessary for consensus. This
is similar to the concept of source communication pool that we introduce in this
paper.

Let us discuss the related blockchain research. There are some applied stud-
ies [7,12] that consider the operation of blockchain that tolerates extensive delays
or temporary disconnections. Hood et al. [11] explores in detail the blockchain
operation under network partitioning. However, to the best of our knowledge,
this paper is the first to study blockchain in dynamic networks.

Paper Organization and Contribution. In Sect. 2, we introduce the notation
and state the Blockchain Decision Problem for dynamic networks: every network
miner needs to confirm the acceptance of each block.

In Sect. 3, we establish the conditions for blockchain and the dynamic network
so that the problem is at all solvable: there needs to be a single source pool of
continuously interacting miners that propagate the blocks they generate to the
rest of the network and none of the other miners may generate infinitely many
blocks and propagate them back to the source pool. In Sect. 4, we prove that,
in general, even if these conditions are met, the problem is impossible to solve.
Intuitively, miners may not determine when these outside blocks stop coming.

On the constructive side, in Sect. 5, we present two algorithms that solve
the problem with restrictions: KPT—if maximum message propagation time is
known to all miners, KSM—if source pool membership is known to all miners.
We evaluate the performance of the two algorithms in Sect. 7. We conclude the
paper by Sect. 8.

2 Notation, Definitions and Problem Statement

Network. A network N consists of a fixed number of processes or miners. Each
miner has a unique identifier which may or may not be known to the other miners
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in the beginning. The alternative interpretation is that the network membership
is either fixed or dynamic.

The network computation proceeds in synchronous rounds. Miners commu-
nicate via message passing over uni-directional links connecting the sender miner
ms and receiver miner mr. This is denoted as ms → mr. The network is dynamic
as links may appear or disappear. Existing link is reliable. If there is no link, no
messages may be sent.

More specifically, at the beginning of each round i, the receiver miner receives
all messages sent to it during the previous round, then carries out calculations
and submits messages over the links that exist in round i to be received in the
next round. A computation is a, possibly infinite, sequence of such rounds.

To simplify the presentation, we first assume that the communication is
instantaneous. That is, all the information sent over the link is received in the
same round. We also assume that arbitrary amount of information may be com-
municated in one message. We relax these assumptions later in the paper.

A journey in a computation is a sequence of miners and communication
links m1 → · · · → mi → mi+1 → mi+2 → · · · → mx such that each round i
of the computation, where link mi → mi+1 exists, precedes the round with link
mi+1 → mi+2. Journey time is the number of computation rounds between the
first and last link in the journey. Note that journey time may be greater than
the total number of links in the journey since it may take more than one round
for each subsequent link in the journey to appear.

Fig. 1. Blockchain notation illustration. Block g is genesis. It is the ancestor of all
blocks. It is accepted if the blockchain is infinite. Block a is rejected because it is an
ancestor to only finitely many blocks. Alternatively, a belongs to finite branches only.
Block b is accepted since it is an ancestor to infinitely many blocks. That is, b belongs
to infinite branches. Block a is a cousin of block of b. In an infinite blockchain, b is
accepted if all its cousin branches are finite.

Blockchain. The introduced terms are illustrated in Fig. 1. Blockchain is a tree
of linked blocks. Each mined block is unique and can be distinguished from the
others. Further block contents is immaterial. A block may be linked to a single
parent block. A child is a block linked to a parent. Genesis is the root of the tree
and the only block without a parent. A leaf is the block with no children. An
ancestor of a block b is either a parent of b or, recursively, an ancestor of b. A
descendant of a block b is any block whose ancestor is b. The depth of a block is
the number of its ancestors.
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A branch is the maximal sequence of blocks b1, · · · , bi, bi+1, · · · such that b1
is the genesis and for each i, bi is the parent of bi+1. By this definition, either a
branch is infinite or it ends with a leaf. Given a block b that belongs to a branch,
all blocks preceding b in this branch are its ancestors and all blocks following b
are its descendants. The length of a finite branch is the depth of its leaf. The
length of an infinite branch is infinite.

A trunk of two branches is their longest shared prefix. Thus, the trunk of any
two branches is at least the genesis. A branch is a trunk of itself. The blocks of
the trunk belong to the branches that share this trunk. Consider a block b that
does not belong to the shared trunk of the two branches. Cousins of b are the
blocks that belong to these branches but neither descendants nor ancestors of b.
These blocks belong to a cousin branch.

The blockchain of a computation is the collection of all blocks mined during
this computation. In the beginning of each computation, each miner stores the
same genesis. Each miner in the network stores all the blockchain blocks known
to it. That is, miners maintain local copies of the blockchain. However, due to the
haphazard link appearance in a dynamic network, local copies of the blockchain
may be out of sync.

In an arbitrary round, a miner m may generate or mine a new block b linked
to the longest branch of the local copy of the blockchain. If m has several branches
of the same length, the new block may be mined on any one of them. Multiple
processes may mine blocks in the same round. Once linked, the sender sends its
entire copy of the blockchain to the receiver. We discuss how to limit the amount
of transmitted information later in the paper. By this operation, the number of
children for any block, i.e. the arity of the blockchain, is at most |N |.

We place few assumptions on the relationship between the relative speed of
communication and block mining. However, we assume the following fairness:
throughout the computation, a miner either receives infinitely many new blocks
or mines infinite many blocks itself.

The Blockchain Decision Problem. A block is accepted if it is the ancestor
of all but finitely many blocks. A block is rejected if it is the ancestor of finitely
many blocks.

In the attempt to agree on the common state of the blockchain, each miner
decides whether the block is accepted by outputting a confirm decision. The
decision about block rejection is implied and is not required. To arrive at this
decision, the miners may store and exchange arbitrary information. We use the
term computation for block mining and blockchain maintenance as well as for
the operation of the algorithm that allows the miners to output decision about
the blocks of this blockchain. We formulate the decision problem as follows.

Definition 1 (The Blockchain Decision Problem BDP). A solution to the
Blockchain Decision Problem satisfies the following properties:

Decision: each miner eventually confirms every accepted block;
Confirmation Validity: each miner confirms only accepted blocks.
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We explore the solvability of this problem under various connectivity conditions
in dynamic networks.

3 Decisive Computations

Globally Decisive Computations. A computation is globally decisive if every
block of its blockchain is uniquely categorized: either accepted or rejected but
not both at once.

Lemma 1. The blockchain of a globally decisive computation has exactly one
infinite branch.

To put the lemma another way: in a decisive computation, all branches except
for one are finite.

Proof. The blockchains that do not conform to the conditions of the lemma
either have no infinite branches or have more than one. If a blockchain does
not have infinite branches at all, then it has a finite number of blocks. In this
case, every block b is the ancestor of finitely many blocks. That is, b is rejected.
However, b is also an ancestor of all but finitely many blocks. That is, b is also
simultaneously accepted. In a globally decisive computation, a block may be
either accepted or rejected but not both.

Let us consider the second case of a blockchain not conforming to the condi-
tions of the lemma: it has multiple infinite branches. Let block b belong to one
such branch but not to the shared trunk of all the branches. Since b belongs to
an infinite branch, it is an ancestor to an infinite number of blocks. Therefore,
b is not rejected. However, there are infinite number of blocks in the infinite
cousin branches, i.e. the branches to which b does not belong. That is, b is not
an ancestor to an infinite number of blocks. Hence, b is not accepted either.

That is, a blockchain with unique categorization of acceptance and rejection
has exactly one infinite branch. A computation must have such a blockchain to
be decisive. The lemma follows. ��

Mining Pools. In a certain computation, a mining pool M is a maximal set of
miners such that each miner m ∈ M has an infinite number of journeys to every
other miner in M . That is, each miner in a pool is reachable from every other
miner in this pool infinitely often. If, for some miner m, there are no other miners
that are mutually reachable infinitely often, then m forms a pool by itself.

A pool graph PG for a computation C is a static directed graph formed as
follows. Each node in PG corresponds to a mining pool in C. An edge from node
P1 ∈ PG to node P2 ∈ PG exists if there is an infinite number of journeys from
miners of pool P1 to the miners of the pool P2.

Let us observe that any pool graph PG is a DAG. Indeed, if there is cycle in
PG, then any miner m1 has an infinite number of journeys to any other miner
m2 in this cycle. Since mining pools are maximal, these miners belong to the
same pool. If PG has a path from pool P1 to pool P2, then any miner m1 ∈ P1
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has an infinite number of journeys to any miner m2 ∈ P2. If it does not, then
the number of journeys between P1 and P2 is finite.

A node in a static graph is a source if it has no incoming edges. Since a DAG
has no cycles, it has at least one source. A source pool is a pool that corresponds
to a source in PG. An infinite branch belongs to a pool if it contains a suffix of
blocks where every block is mined by a member of this pool.

Lemma 2. If the blockchain of a computation contains an infinite branch, this
branch belongs to a single pool.

Proof. Assume that there is a computation C whose blockchain has an infinite
branch BR that does not belong to a single pool. That is, branch BR contains
infinitely many blocks mined by miners in at least two separate pools P1 and
P2. The pool graph PG of C contains no cycles. That means that if there is a
path from one pool to the other, there is no path in the other direction. Suppose,
without loss of generality, that there is no path from P1 to P2. This means that
there is a finite number of journeys from miners of P1 to P2 in C. Let round
r be a round of C after the last journey from P1 to P2 ends. However, there
are infinitely many blocks in BR that are mined by miners in P1 and in P2.
Consider two blocks b1 and b2 of BR mined after round r such that b1 is mined
by miner m1 ∈ P1 and b2 by miner m2 ∈ P2. Moreover, b1 is the ancestor of b2.
If this is the case, there is a journey from m1 to m2 in C. However, we assumed
that there are no such journeys after round r in C. That is, our assumption is
incorrect and C does not exist. This proves the lemma. ��

Locally Decisive Computations. A computation is locally decisive if it is
globally decisive and each miner receives every accepted block.

Lemma 3. In a locally decisive computation, infinite branches belong to a source
pool.

Proof. Assume that there is a locally decisive computation C whose blockchain
contains an infinite branch BR that does not belong to the source pools of C.
According to Lemma 2, BR belongs to some pool P . Since the pool graph of C
is a DAG, it must have a source pool SP . A source pool has a finite number of
journeys from the miners outside itself.

Computation C is locally decisive. This means that all miners, including the
miners in SP , receive all blocks in BR. Yet, BR is infinite. This means that
there are infinitely many journeys from miners in P to the miners in SP . This
means, contrary to our initial assumption, that SP is not a source pool. ��
Lemma 4. In a locally decisive computation, there is a single source pool.

Proof. Assume the opposite: there is a locally decisive computation C with at
least two source pools: SP1 and SP2. Since a locally decisive computation is
also a globally decisive computation, according to Lemma 1, C contains a single
infinite branch. According to Lemma 2, this branch belongs to a single pool
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and, according to Lemma 3, this pool is a source. That is, the infinite branch
belongs to either SP1 or SP2. Let it be SP1. This means that miners of SP1

mine infinitely many blocks that belong to the infinite branch. Since C is globally
decisive, these blocks are accepted.

However, SP2 is also a source, this means that it has a finite number of
journeys from miners outside itself. Yet, since C is locally decisive, the miners in
SP2 need to receive the infinite number of blocks mined in SP1. That is, there
are infinite number of journeys from the miners of SP1 to the miners of SP2.
That is, SP2 is not a source. ��
The following theorem summarizes the results proven in Lemmas 1, 2, 3 and 4.

Theorem 1. If a computation is globally and locally decisive, then it has exactly
one infinite branch and one source pool. Moreover, this infinite branch belongs
to this source pool.

4 Impossibility

In a solution to the Blockchain Decision Problem, every miner is required to
confirm each accepted block. Theorem 1 states necessary conditions for the pos-
sibility of the solution. Yet, even if these conditions are satisfied, a miner may
make a mistake. Indeed, assume a miner m determines that a certain block b
belongs to the longest branches of all processes in the source pool. Miner m
confirms it. Yet, a non-source pool miner may later mine a longer cousin branch
to b, communicate it to the source pool forcing rejection of b. This makes m’s
confirmation incorrect. Even though, by definition of the source pool, such links
from the outside happen only finitely many times, the time they stop is not
predictable. This makes the solution, in the general case, impossible. The below
theorem formalizes this intuition.

Theorem 2. There does not exist a solution to the Blockchain Decision Problem
even for globally and locally decisive computations.

Proof. Assume there is an algorithm A that solves BDP for globally and locally
decisive computations. Consider a globally and locally decisive computation Cx

which contains mining pools P1 and P2 such that P1 is the source pool.
Since Cx is globally and locally decisive, according to Theorem 1, it has a

single source pool and a single infinite branch that belongs to this source pool.
This means that there are infinite number of blocks in the infinite branch. All
these blocks are accepted. After some round r1 they must be mined in P1. Let
block b be one such block. Since the computation is locally decisive, b has to reach
miners in P2. The Decision Property of BDP requires that all miners eventually
confirm accepted blocks. This means that miners of P2 have to eventually confirm
b. Let r2 be the round where some miner m2 ∈ P2 confirms b in Cx.

Consider a computation Cy that has an extra pool P3. Communication in Cy

is as follows. Miners of pool P3 have no links to the outside miners until round
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Algorithm 1: Known Source Pool Propagation Time Algorithm KPT.
1 Constants:
2 p // miner identifier
3 PT // source pool propagation time, integer

4 Variables:
5 T // blockchain tree, initially genesis
6 L // set of tuples 〈b, l〉, where b ∈ T and l is either accept or reject initially ∅, if

b ∈ T and b �∈ L, then b is unlabeled

7 Actions:
8 if mined block b then
9 add b to T

10 if available link to miner q then
11 send T to q

12 if receive Tq from miner q then
13 merge T and Tq

14 if exists unlabeled b1 such that for every BR(b1), there is a cousin bock b2 such that
depth(b2) > length(BR(b1)) for at least 2 · PT rounds then

15 add 〈b1, reject〉 to L

16 if exists unlabeled b such that for its every cousin c: 〈c, reject〉 ∈ L then
17 add 〈b, accept〉 to L
18 confirm b

r2. Since the miners of P3 do not influence other miners, we construct Cy such
that up to the round r2, the actions of miners of P1 and of P2 are the same
as in Cx. This includes m2 confirming block b. We construct the remainder of
Cy as follows. Miners of P3 have only outgoing links to miners of P1 and P2 for
the remainder of Cy. That is, P3 is a source. We construct Cy to be locally and
globally decisive. That is, we make P3 its own single infinite branch.

By construction, miners of P1 never send messages to miners of P3. This
means that block b mined in P2 does not reach P3. Hence, b does not belong
to the infinite branch. Therefore, b is rejected. However, miner m2 confirms
it in Cx and, therefore, in Cy. This is contrary to the Confirmation Validity
property of BDP, which stipulates that miners may confirm only accepted blocks.
Thus, despite our initial assumption, algorithm A does not solve the Blockchain
Decision Problem. Hence, the theorem. ��

5 Solutions

Previously, we considered completely formed infinite blockchain trees. However,
to solve the Blockchain Decision Problem, individual miners have to make deci-
sions whether a particular block is accepted or rejected on the basis of a tree that
is not yet complete. Moreover, a miner may not be aware of some already mined
blocks due to propagation delays. To describe this uncertainty, we introduce
additional notation.

A branch BR is dead if all miners are mining on cousin branches longer than
BR. A branch is live otherwise. Notice that once a branch is dead, it may not
become live. Thus, if a block belongs to dead branches only, it is rejected. In
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an infinite computation, a block is accepted if it belongs to all infinite branches.
To put another way, a block is accepted if all its cousin branches are dead. The
algorithms in this section exploit the miners’ ability to detect dead branches for
accepted block confirmation.

Per Theorem 2, the solution to the Blockchain Decision Problem is impossible
if non-source-pool miners are able to send their mined blocks to the source pool.
Alternatively, the miners are not aware whether they are in the source pool or
not. We, therefore, consider the following restriction. A mining pool is initially
closed if its members do not have incoming edges from non-pool members. If
source pool is initially closed, to evaluate whether the branch is dead, it is
sufficient to consider blocks generated by source pool miners only.

Known Propagation Time. Let m be an arbitrary miner in the source pool.
Source pool propagation time PT is the time of the longest journey from m to
any other miner in the network. If PT is fixed, it takes at most PT rounds
for a message sent by m to reach all miners. If PT is known, the solution to
BDP seems straightforward as dead branches eventually become shorter than
live ones so a miner may just have to wait for one of the branches to outgrow
the others. However, this solution is not immediate since, even with fixed PT ,
the length difference between live branches may be arbitrarily large. Indeed, a
miner may mine a number of blocks extending its branch length significantly.
However, other miners may subsequently mine on their branches catching up
and keeping their branches live. Thus, the solution needs to determine how long
a miner waits before it determines whether the particular branch is dead.

Instead, to detect a dead branch, the algorithm that solves BDP, relies on
the branch length difference over a certain period of time. We call this algorithm
KPT. Its code is shown in Algorithm 1. The algorithm operates as follows. Each
miner p maintains the local copy of the blockchain tree T and a set of per-block
labels L where it stores decisions whether the block is accepted or rejected. If
the decision is not reached, the block is unlabeled. Once block b is mined, it is
added to the tree T . If a link to some miner q appears, miner p sends its entire
blockchain to q.

The decisions are reached as follows. An unlabeled block b1 is labeled rejected
if for its every branch BR(b1) the following happens. There is a cousin block b2
such that the depth of b2 is greater than the length of this branch BR(b1) for
at least 2 · PT rounds. An unlabeled block b is accepted if all its cousins are
rejected. In the latter case, b is confirmed.

Lemma 5. Let, at some round r, some miner m observe that there is a block b
whose depth is greater than the length of its cousin branch BR. If b’s depth is
still greater than the length of BR at round r + 2 · PT , then BR is dead.

Proof. Assume some block b is mined by miner mb of the source pool in round
rb. Let us consider an arbitrary miner in the source pool mc mining on BR. If,
at the time of receipt of rb, the length of BR is less than the depth of rb, then
mc switches to the branch with rb. That is, if miners do not mine enough blocks
on BR to extend it past rb before it arrives, the branch is dead. The latest round
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mc may receive b is rb + PT . This is how long the miners may potentially mine
blocks on short branch BR before it dies.

Let us now consider another miner md that observes block arrival. The ear-
liest round when md may receive b is also rb. The miners may mine blocks on
BR for PT more rounds. These blocks reach md in another PT rounds. Hence,
if md observes the depth of b is greater than the length of BR for 2 ·PT rounds,
then BR is dead. ��

Algorithm 2: Known Source Pool Membership Algorithm KSM.
1 Constants:
2 p // miner identifier
3 SM // set of ids of source pool miners

4 Variables:
5 T // blockchain tree, initially genesis
6 P // set of tuples 〈b,m〉, where b ∈ T and m ∈ SM, initially ∅, positions of source

pool miners
7 L // set of tuples 〈b, l〉, where b ∈ T and l is either accept or reject initially ∅, if

b ∈ T and b �∈ L, then b is unlabeled, block labels

8 Actions:
9 if mined block b then

10 add b to T
11 if p ∈ SM then
12 update p’s entry in P to 〈b, p〉

13 if available link to miner q then
14 send T, P to q

15 if receive Tq, Pq from miner q then
16 merge T and Tq , merge P and Pq

17 if p ∈ SM then
18 let b be the deepest block in T
19 update p’s entry in P to 〈b, p〉

20 if exists unlabeled b1 such that for every BR(b1), for all m ∈ SM there exists 〈b2,m〉 ∈ P
such that depth(b2) > length(BR(b1)) then

21 add 〈b1, reject〉 to L

22 if exists unlabeled b such that all cousins of b are reject then
23 add 〈b, accept〉 to L
24 confirm b

Theorem 3. Known Source Pool Propagation Time Algorithm KPT solves the
Blockchain Decision Problem with initially closed source pool.

Proof. Let us consider the Confirmation Validity Property of BDP. According
to Lemma 5, If PT is known and if miner p observes that some block is deeper
than the height of a branch for longer than 2 · PT rounds, then this branch is
dead. If some block belongs to dead branches only, it is rejected. This is the
exact condition under which blocks are labeled rejected in KPT (see Line 14).
If all cousins are rejected, the block is accepted. This is how the is block is
labeled accepted and confirmed in KPT (see Line 16). To put another way,
KPT confirms only accepted blocks which satisfies the Confirmation Validity
Property of BDP.
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Let us now discuss the Decision Property and show that every accepted block
is eventually confirmed. Indeed, according to Lemma 5, a miner determines that
a branch is dead in at most 2 · PT rounds. A block is rejected once all branches
that it belongs to are dead. That is, a block rejection is determined in this many
rounds after the last branch of the block is dead.

A block is labeled accepted and then confirmed after all its cousins are
rejected. To put another way, a block is accepted after at most 2 ·PT rounds of
the rejection of the last cousin block. This proves that all accepted blocks are
eventually confirmed and KPT satisfies the Decision Property of BDP. ��

Let us describe a couple of simple enhancements of KPT. Since miners never
make mistakes in their classification of reject and accept, a miner may send its
label set L to help its neighbors make their decisions faster. Also, a miner may
determine dead branches quicker if each block is labeled with the round of its min-
ing. In this case, to ascertain that a certain branch BR is dead, it is sufficient to
check if there is a cousin block b2 such thatBR does not outgrow b2 for PT rounds.

Known Source Pool Membership. Miner position in a blockchain tree is
the block on which it is currently mining. Note that the depth of a miner’s
position throughout the computation may only increase. Once it is observed
that all source pool miners moved to positions longer than a particular branch,
the source pool miners may not mine on this branch. That is, the branch is dead.
We state this formally in the following lemma.

Lemma 6. If some miner m observes that there is a branch BR such that the
depth of the position of every source pool miner is greater than the length of BR,
then BR is dead.

Determining source pool miner positions directly from mined blocks in the
blockchain is not always possible: some source pool miner, even if it is fair,
may never mine a block if it keeps receiving longer branches. Instead, the below
algorithm relies on miners directly reporting their positions. We call this algo-
rithm KSM. Its code is shown in Algorithm 2. Similar to KPT, it maintains the
blockchain tree T and a set of accept/reject labels per each block L. Besides those,
KSM also maintains set P where it records the positions of all miners in the
source pool. Each miner sends its collected positions together with the blockchain
along all outgoing links. A block is rejected if all its branches are shorter than the
known positions of the source pool miners. Note that non-source pool miners may
still mine on the dead branches and extend them. However, since the source pool
is closed and the source pool miners never see these non-source pool generated
blocks, they are never added to the live branches. The block labeling is similar to
KPT. Once the dead branches are determined and the rejected blocks are labeled,
the blocks whose cousins are dead are accepted and confirmed. The correctness
argument is similar to that of KPT. It is stated in Theorem 4.

Theorem 4. Known Source Pool Membership Algorithm KSM solves the
Blockchain Decision Problem with initially closed source pool.
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Fig. 3. Confirmation time vs. maximum
neighborhood size.

Observe that in KSM, all miners know the source pool membership. Thus, a
miner that is not in the source pool knows that all the blocks that it mines are
rejected. So this miner may either not mine its own blocks at all or discard them
as soon as they are mined.

6 Extensions and Optimizations

The algorithm presentation and discussion in the previous sections focused on
simplicity. However, there are optimizations that can be implemented to make
the algorithms more applicable and more generic. We are going to list them here.

In the previous section, we assumed that the pool is initially closed. However,
both algorithms could be modified to operate correctly if there is a known upper
bound when the source pool is closed. That is, all miners are aware of the round
number after which there are no incoming links for source pool miners from
non-source pool miners.

Also, we assumed that each miner is sending the entire copy of its blockchain.
This is unnecessary. First, with no modifications, both algorithms operate cor-
rectly even if each miner sends only its longest branch. That is, the branch
that it is currently mining on. However, further sending optimization is possible.
Observe that the operation of the algorithms hinges on the miners communicat-
ing infinitely often. Thus, if a miner keeps track of the blocks it already sent, it
is sufficient to send only the oldest, i.e. the deepest unsent block over each link.
With this modification, the two algorithms, KPT and KSM, transmit only logN
bytes in every message. That is, the two algorithms use constant size messages.

We assumed that link communication is instantaneous. However, the algo-
rithms remain correct even if a message in each link is delayed arbitrarily long.

It is interesting to consider message loss. If there is fair message loss that
allows ultimate progress, the two algorithms operate correctly if each miner sends
the entire blockchain or the longest branch in every message. However, since
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the feedback communication between receiver and sender is not guaranteed, we
suspect that constant message size algorithm for either known pool membership
or known propagation time does not exist.

7 Performance Evaluation

For our performance evaluation studies, we used QUANTAS abstract simula-
tor [19]. We generated dynamic topologies as follows. The maximum number of
potential neighbors mx ≤ |N | − 1 was fixed. Each round, for every miner, the
number of actual neighbors was selected uniformly at random from 0 to mx; the
neighbor identifiers were also selected randomly. Miners generated blocks at the
rate of 2.5%.

In the first experiment, we studied the dynamics of block acceptance as the
source pool membership changed. The results are shown in Fig. 2. We ran the
computations for 300 rounds. In the first 100 rounds, the neighbors were selected
from the whole network. That is, the complete network was the source pool. In
the second 100 rounds, �25�% of miners were selected to be the source pool.
Specifically, the source pool miners may connect to arbitrary neighbors, i.e. they
have no connection restrictions. The remaining miners may connect only to non-
source pool miners. In the remaining 100, the restrictions were lifted and all
miners formed the single source pool again.

In a particular state of the computation, some block is accepted if it is in
the longest branch of every miner. That is, every miner is mining on top of
this block. The acceptance rate is the ratio of accepted vs. generated blocks.
We ran experiments for the network size of 100, 250 and 500 miners. We did 10
experiments per network size and averaged our results.

The results indicate that, as the source pool size is restricted, the block
acceptance rate declines. This is due to the source pool neighbors not receiving
the blocks from non-source pool neighbors. The acceptance rate sharply rises as
the source pool is enlarged to incorporate all miners and long chains of blocks
mined outside the source pool are propagated throughout the network. The
acceptance rate is lower in the networks of larger size. Indeed, as more concurrent
blocks are generated, fewer of them are accepted.

In the next experiment, we observed how the neighborhood size affects the
time it takes our algorithms to confirm the blocks. We implemented KSM and
KPT and measured their confirmation time. The confirmation time for a partic-
ular block is the number of rounds from the round when the block was generated
till the round when the last miner outputs the confirmation decision. We counted
confirmation time for accepted blocks only. We varied the maximum number of
neighbors mx and observed average confirmation time for KSM and KPT. The
network size was 100, the source pool was fixed at 75 miners.

Algorithm KPT, needs maximum propagation time PT to be known in
advance. To determine PT we ran preliminary computations. For a fixed mx,
we computed PT by running 100 computations with this mx and computing the
longest recorded propagation time. These preliminary computation lengths were
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set between 10, 000 and 15, 000 rounds. Then, for measurement computations, to
collect sufficiently many confirmed blocks, we set computation lengths to 12 ·PT
rounds. We ran 10 experiments per data point.

The results are shown in Fig. 3. They indicate that, as the maximum possible
number of neighbors increases, the blocks are propagating faster and the confir-
mation time drops. Perhaps surprisingly, KSM performed better because each
miner can confirm a block as soon as it receives the data from all the known
source pool miners, while, in KPT, a miner has to wait for twice the maximum
propagation time PT. This holds even though we ran preliminary computations
to select the shortest possible maximum propagation time PT.
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Fig. 5. Confirmation time vs. network size.

For the same experiment, we computed average acceptance rate. We show
the results in Fig. 4. Algorithm KSM has lower confirmation time and, therefore,
higher acceptance rate. In the final experiment, we observed the performance of
the two algorithms as the network scale changes. The number of source pool
members is fixed at �75�% of the network size. The computation lengths were
set to 12 · PT rounds. We ran 10 computations per data point. The results are
shown in Fig. 5. As the network scale increases, mx increases also. This increases
the number of potential journeys and decreases PT , which, in turn, decreases
the confirmation time of KPT that depends on PT . KSM exhibits the opposite
dynamics. With larger scale, the number of source pool miners increases also.
This makes KSM run slightly slower as every miner has to wait to hear from a
greater number of source pool miners.

Our performance evaluation shows that KSM outperforms KPT under all
conditions. Therefore, KPT should be considered only when the source pool
membership is not available and KSM is not implementable.

8 Conclusion

In this paper we determine that Blockchain Decision Problem is, in general, not
solvable in the dynamic network. To overcome this, the two algorithms that we
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present place rather strict assumptions on either membership or communica-
tion delay. This makes them similar to cooperative consensus. Weakening these
assumptions and closing the gap between the impossible and the achievable that
we establish in this paper is left to future studies.
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Abstract. Ring signatures allow signers to produce verifiable signatures
and remain anonymous within a set of signers (i.e., the ring) while doing
so. They are well-suited to protocols that target anonymity as a primary
goal, for example, anonymous cryptocurrencies. However, standard ring
signatures do not ensure that signers are held accountable if they act mali-
ciously. Fraser and Quaglia (CANS’21) introduced a ring signature vari-
ant that they called report and trace ring signatures which balances the
anonymity guarantee of standard ring signatures with the need to hold
signers accountable. In particular, report and trace ring signatures intro-
duce a reporting system whereby ring members can report malicious mes-
sage/signature pairs. A designated tracer can then revoke the signer’s
anonymity if, and only if, a ring member submits a report to the tracer.
Fraser and Quaglia present a generic construction of a report and trace
ring signature scheme and outline an instantiation for which it is claimed
that the complexity of signing is linear in the size of the ring |R|.

In this paper, we introduce a new instantiation of Fraser and Quaglia’s
generic report and trace ring signature construction. Our instantiation
uses a pairing-based variant of ElGamal that we define. We demonstrate
that our instantiation is more efficient. In fact, we highlight that the effi-
ciency of Fraser and Quaglia’s instantiation omits a scaling factor of λ
where λ is a security parameter. As such, the complexity of signing for
their instantiation grows linearly in λ · |R|. Our instantiation, on the other
hand, achieves signing complexity linear in |R|.

We also introduce a new pairing-free report and trace ring signature
construction reaching a similar signing complexity. Whilst this construc-
tion requires some additional group exponentiations, it can be instanti-
ated over any prime order group for which the Decisional Diffie-Hellman
assumption holds.

1 Introduction

In the context of distributed systems, it is often necessary to balance the com-
peting goals of anonymity and accountability. On the one hand, there is an
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expectation of privacy by the system’s users; on the other, the system must be
able to hold misuse accountable. The need to balance these goals is particularly
true for cryptocurrencies, which are typically deployed atop a distributed ledger.
Indeed, several cryptocurrencies target user anonymity as a primary security
goal [3,12,23,24,28], ensuring that users can transact without revealing their
identity. In particular, Monero [24] uses a ring signature [26], a cryptographic
tool that allows users to sign transactions within a group of users known as the
ring, thus ensuring that the signer is anonymous within the ring. However, using
a standard ring signature means that tracing a fraudulent transactor is difficult.
As such, Monero cannot provide a guarantee of accountability.

The notion of a standard ring signature has been extended to incorporate
accountability. Specifically, Xu and Yung introduced accountable ring signa-
tures [32], which introduce a designated tracer that can revoke the anonymity
of signers. More recently, Fraser and Quaglia presented report and trace ring
(RTR) signatures [14]. This new ring signature variant builds upon the func-
tionality of accountable ring signatures, requiring that the designated tracer
can revoke anonymity only if a ring member first sends a report of malicious
behaviour to the designated tracer1.

Report and Trace Ring Signatures. Similar to standard ring signatures, RTR
signatures allow signers to generate signatures with respect to a group (i.e.,
ring) of users, and the signer is anonymous within the ring. Additionally, RTR
signatures provide a mechanism whereby ring members can produce a report
for a signed message. Upon receiving a report, a designated tracer can trace
the signer’s identity. Fraser and Quaglia defined report and trace ring signatures
in [14], and provided a complete security model for the primitive. Accompanying
this formalisation, the authors present a provably secure generic construction and
concrete instantiation of an RTR signature.

With respect to the instantiation, we note two drawbacks that we aim to
address. Firstly, the instantiation is not as efficient as claimed. In fact, during
signing, the instantiation uses Stadler’s zero-knowledge proof [30] to prove cor-
rect encryption of a reporter token. Stadler’s proof must be repeated λ times
to be secure, where λ is the security parameter. As such, the complexity of the
proof is linear in the security parameter. The efficiency analysis of the instanti-
ation presented in [14] omits the security parameter. That is, signing is claimed
to be linear in the size of the ring |R| but is, in fact, linear in λ · |R|. Secondly,
the instantiation relies on a number theoretical group. As a consequence, the
instantiation does not reap the efficiency benefits of the most efficient groups
such as those based on elliptical curves.

Our Contributions. This work addresses the limitations of the existing RTR sig-
nature instantiation. Namely, we introduce a new instantiation of the generic

1 For simplicity, we also consider a single designated tracer in this work. We note,
however, that this role can be distributed using standard secret sharing techniques,
making it more suitable for decentralised applications.
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construction in [14] (Sect. 4) that is more efficient than the instantiation in [14]
with respect to signing. Then, we introduce a new RTR signature scheme con-
struction (Sect. 5) that can be instantiated with any group for which the Deci-
sional Diffie-Hellman assumption holds. Here, we provide a brief overview of our
results.

In the generic construction of [14], during signing, the signer generates a
reporter token that is encrypted to each ring member. The signer also generates
a proof of correct encryption of the reporter token. In the instantiation of [14],
this functionality is realised with standard ElGamal encryption and Stadler’s
zero-knowledge proof [30]. In this paper, we introduce a new instantiation which
relies on a bespoke pairing-based variant of the ElGamal public-key encryption
scheme. Furthermore, we demonstrate that the zero-knowledge proof of correct
encryption, which requires proof of equality of pairings for our new variant,
can be instantiated using the Fiat-Shamir transformation [13] on the variant of
the Schnorr protocol from [10]. Accordingly, the complexity of signing for our
instantiation grows linearly only in the size of the ring, improving upon the
efficiency of the instantiation from [14]. In Sect. 3, we introduce our new pairing-
based public-key encryption scheme and demonstrate how to prove correctness
of encryption for our new scheme. We also discuss the security and efficiency of
our instantiation.

We then propose a new RTR signature scheme construction in Sect. 5. This
new scheme follows the syntax of an RTR signature, as outlined in Sect. 2, but
differs from existing constructions, namely, the construction of [14]. Our new
construction is pairing-free and can be instantiated with any group in which the
Decisional Diffie Hellman assumption holds. Thus, our new construction allows
for the use of more efficient and standard prime order groups (e.g., elliptic curves)
than our instantiation (Sect. 4) and Fraser and Quaglia’s instantiation [14]. We
demonstrate that our new construction is secure and can be instantiated using
standard cryptographic protocols from the literature. We conclude with a brief
discussion of its efficiency, showing that although it requires more group expo-
nentiations for signing and produces signatures that contain more group elements
than our instantiation in Sect. 3, it achieves signing complexity that is linear in
the size of the ring.

Other Related Work. Several ring signatures [26] variants aim to balance
anonymity with accountability. As mentioned in introduction, accountable ring
signatures [4,32] allow signers to generate ring signatures and remain anonymous
within the ring, unless a designated tracer reveals the signer’s identity. More-
over, linkable [22] and traceable [15] ring signatures allow tracers to determine
whether two signatures are generated by the same, or different, users. Addressing
the balance of anonymity and accountability has frequently arisen with respect
to other cryptographic protocols. Notably, many group signature [9] variants
introduce measures whereby signer anonymity can be revoked [19,20,27]. Addi-
tionally, anonymity and accountability has been discussed in relation to end-
to-end encryption [31] and systems that permit the reporting of malicious, and
perhaps criminal, behaviour [1,18,21,25].



Improving the Efficiency of Report and Trace Ring Signatures 133

2 Preliminaries

In this section, we define the notations and the tools that we use in this paper.
More detailed and formal definitions are given in the full version of this paper [5].
We also recall the ElGamal encryption scheme and the IND-CPA security defi-
nition in the full version.

The Decisional Diffie-Hellman (DDH) assumption. Let G = 〈g〉 be a group of
prime order p. Picking b

$← {0, 1} and (x, y, z1)
$← (Z∗

p)
3, and setting z0 = a·b and

(X,Y,Z) = (gx, gy, gzb), the DDH assumption in G states that no Probabilistic
Polynomial Time (PPT) algorithm is able to return b on input (X,Y,Z) with
non-negligible advantage.

Non-interactive Zero-Knowledge Proof of Knowledge (NIZKP). Let R be a
binary relation and let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R).
According to the Camenisch-Stadler notation [6], NIZK{w : (s, w) ∈ R} denotes
a NIZKP of w for the langage L. A NIZKP is said to be extractable when there
exists a PPT knowledge extractor that efficiently extracts a witness w from any
PPT algorithm that forges valid proofs of knowledge for a given statement s
such that (s, w) ∈ R. Moreover, a NIZKP is said to be zero-knowledge when
there exists a PPT simulator that takes a statement s as input and that pro-
duces proofs that are indistinguishable from those outputted by the real NIZKP
protocol on s.

Signature of Knowledge (SoK). A SoK [7] on a message m, denoted by SoKm{w :
(s, w) ∈ R}, is similar to a NIZKP except that the message m is embedded in
the proof. w is seen as a secret key and s as the corresponding public key. Since
the knowledge of w is required to generate a valid SoK on a message m, a SoK is
unforgeable, which is the standard security requirement the digital signatures.

3 Syntax and Security Model

We recall the syntax and security model of a report and trace ring (RTR) signa-
ture scheme as presented in [14]. In an RTR signature, users sign messages with
respect to a ring. The signer cannot be identified (i.e., is anonymous within the
ring) unless a ring member generates an anonymous report and transmits the
report to the designated tracer, who can then reveal the signer’s identity. We
adopt the notation conventions of [14], writing T to denote the tracer and U to
denote a user from a set of users U .

Definition 1 (RTR signature). An RTR signature scheme is a tuple of algo-
rithms (Setup, T.KGen, U.KGen, Sign, Verify, Report, Trace, VerTrace) defined
as follows:

Setup(1λ) → pp: On input security parameter 1λ, outputs public parameters pp.
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T.KGen(pp) → (pkT, skT): On input pp, outputs a tracer public key pkT and
secret key skT.

U.KGen(pp) → (pkU, skU): On input pp, outputs a user public key pkU and secret
key skU.

Sign(pp, skU, pkT,m,R) → σ: On input pp, skU, pkT, message m and ring R,
outputs a signature σ.

Verify(pp, pkT,m,R, σ) → {0, 1}: On input pp, pkT, m, R and σ, outputs 1 if σ
is a valid signature on m with respect to R, and 0 otherwise.

Report(pp, pkT, skU,m,R, σ) → Rep: On input pp, pkT, skU, m, R and σ, outputs
a reporter token Rep.

Trace(pp, skT,m,R, σ, Rep) → (pkU, Tr, ρt): On input pp, skT, m, R, σ and Rep,
outputs the signer’s identity pkU, auxiliary information Tr consisting of the
reporter token, and a proof of correct trace ρt.

VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt) → {0, 1}: On input pp, pkT, m, R, σ, pkU,
Tr and ρt, outputs 1 if the trace is valid, and 0 otherwise.

An RTR signature must satisfy correctness and trace correctness. Informally, cor-
rectness requires that algorithm Verify outputs 1 if the signature is the output of
algorithm Sign (and setup/key generation is honestly executed) with overwhelm-
ing probability. Trace correctness necessitates that algorithm VerTrace outputs
the correct signer’s identity for a signature output by algorithm Sign with over-
whelming probability. Correctness and trace correctness for RTR signatures are
introduced and formally defined in [14].

3.1 Security Model

RTR signatures must satisfy anonymity, unforgeability, non-frameability, trace
soundness and reporter anonymity. These properties are defined in [14]. Here, we
provide an overview of these properties, and present the detailed formal security
model in the full version of this paper [5] for reference. The security experiments
model an attacker that can register and corrupt/control users (i.e., obtain their
honestly-generated secret keys/generate keys on their behalf), and generate sig-
natures, reports and traces through access to several oracles. We present these
oracles in detail in the full version [5]. alongside the formal definition of the
security model.

Anonymity. Anonymity requires that, on the condition that a signature is not
reported and the signer traced, a signature does not reveal the signer’s iden-
tity. Anonymity for RTR signatures, as defined in [14], adjusts the definition of
anonymity against adversarially generated keys in [2]. In doing so, it is assumed
that the attacker can control users and reporters. However, the tracer is assumed
to be honest. In the anonymity experiment, the adversary outputs a message,
ring and two potential signers (who are assumed to be honest). The adversary
obtains a signature and outputs a bit to indicate which signer produced the
signature. An RTR signature is anonymous if the adversary cannot determine
which of the two potential signers generated the signature.
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Unforgeability. Unforgeability for RTR signatures is adapted from the standard
definition of unforgeability for ring signatures presented in [2]. It requires that
an attacker cannot produce a valid ring signature on behalf of a member of an
honest ring. An attacker is assumed to control the tracer, and can corrupt and
control users. In the security experiment, the adversary outputs a message, ring
and signature (which is not obtained via a signing oracle). If the signature is
valid, we say that the adversary has produced a valid forgery. An RTR signature
scheme satisfies unforgeability if the adversary cannot construct a valid forgery.

Non-frameability. Intuitively, non-frameability captures the property that a non-
signer cannot be identified as the signer by the designated tracer. The formal
non-frameability experiment models an attacker that can control the tracer, and
can corrupt and control signers. The adversary outputs a message, ring, signature
and trace, where the traced signer is assumed to be honest. An RTR signature
scheme satisfies non-frameability if algorithm VerTrace returns 0.

Trace Soundness. In [4], trace soundness was introduced as a new security prop-
erty for accountable ring signatures. Trace soundness states that the signer iden-
tified by the tracer must be unique. In other words, two users can be verifiably
identified as signers. In [14], the trace soundness property is adapted to the
syntax of an RTR signature, and, like the original definition in [4], models an
attacker that controls the tracer and can corrupt and control all signers. In the
formal security experiment, the adversary outputs two traces (where each trace
identifies a different ring member as the signer) alongside a message, ring and
signature. The trace soundness property is satisfied if algorithm VerTrace does
not output 1 for both traces.

Reporter Anonymity. Reporter anonymity requires that a report does not reveal
the ring member that produced it, if it is assumed that the reporter is honest.
The attacker can control the tracer and corrupt/control a subset of users. In the
reporter anonymity experiment, the adversary outputs a message, ring, signature
and the two ring members (i.e., two potential reporters). The adversary obtains
a report and outputs a bit to indicate which reporter generated the report. An
RTR signature satisfies reporter anonymity if the adversary cannot determine
which reporter produced the report.

4 An Efficient Instantiation of Fraser and Quaglia’s
Protocol

Fraser and Quaglia present a generic construction for an RTR signature in [14].
We provide a brief intuition into their construction here and refer the reader
to [14] for full details. During key generation, users (i.e., ring members) and the
tracer generate a keypair for a public-key encryption (PKE) scheme. To sign a
message, signers generate a fresh key pair for a PKE scheme. The fresh secret
key is known as the reporter token. The reporter token is encrypted under the
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public key of each ring member. Then, the signer encrypts their identity under
the public key of the tracer and then again under the fresh public key. The
signer also constructs a zero-knowledge proof (NIZK) that the reporter token
is encrypted to all ring members, and a signature of knowledge (SoK) that the
signer’s identity is encrypted to the tracer. Ring members can report signatures
by decrypting the reporter token using their decryption key for the PKE scheme.
A tracer can decrypt the signer’s identity using their decryption key and the
reporter token.

Fraser and Quaglia also present a concrete instantiation of their construc-
tion. A central requirement of their construction is that the signer must prove
that a ciphertext encrypts a secret key (i.e., the reporter token) that corre-
sponds to a given public key. Fraser and Quaglia propose to instantiate their con-
struction with the original ElGamal cryptosystem and Stadler’s zero-knowledge
proof [30], which ensures that an ElGamal ciphertext encrypts a discrete log-
arithm in a zero-knowledge way. However, this approach has two drawbacks.
Firstly, Stadler’s proof has complexity linear in the security parameter as the
proof must be repeated λ times. Secondly, the proof only works for number-
theoretic groups of prime order, and cannot be extended to groups based on
elliptic curves.

In what follows, we propose an instantiation of Fraser and Quaglia’s con-
struction using a variant of ElGamal based on bilinear maps, overcoming the
first drawback (we address the second drawback in Sect. 5). Our new instantia-
tion differs from Fraser and Quaglia’s instantiation in the following respect. We
use our ElGamal variant to generate the reporter token and encrypt the signer’s
identity under the reporter token. Then, we modify the zero-knowledge proof
for our ElGamal variant. In all other respects, our instantiation is identical. In
particular, we use a one-way function to generate the signer’s public identity,
the SoK of [4], and we use standard ElGamal encryption to encrypt the reporter
token to the ring members and the signer’s identity to the tracer. Now, we intro-
duce our new ElGamal variant, and then discuss the security and efficiency of
our new instantiation.

4.1 A Pairing-Based ElGamal Variant

Let G1, G2 and Gt be groups of prime order p, g1 ∈ G1 and g2 ∈ G2 be
generators, and e : G1 × G2 → Gt be a type-3 bilinear pairing. We first recall
the standard ElGamal cryptosystem in G1, which is used by each ring member
to generate their key pair and is specified as follows.

– Choose secret key skPKE ∈ Z
∗
p and let public key pkPKE = gskPKE1 .

– To encrypt a message m with randomness r, run PKE.Enc(pkPKE,m; r), which
retruns (c1, c2) = (gr

1, pk
r
PKE · m).

– To decrypt, run PKE.Dec(skPKE, (c1, c2)), which returns m = c2

c
skPKE
1

.

Our new ElGamal variant, used by the signer during the signature algorithm to
generate a fresh PKE key pair, is defined as follows.
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– Generate fresh secret key skSign ∈ G1 and define the fresh public key as
pkSign = e(skSign, g2).

– PKE.Enc(pkSign,m; r) returns (c1, c2) = (gr
2, pk

r
Sign · m).

– PKE.Dec(skSign, c) returns m = c2
e(skSign,c1)

.

Note that anyone can transform a ciphertext (c1, c2) = (gr
2, pk

r
Sign · m) of

this ElGamal variant into a standard ElGamal ciphertext in Gt by computing
(e(g1, c1), c2).

We show the following result.

Theorem 1. The proposed variant of ElGamal satisfies IND-CPA security under
the Decisional Diffie-Hellman (DDH) assumption in G2.

Proof. Assume that there exists a Probabilistic Polynomial Time (PPT) adver-
sary A that breaks the IND-CPA security of our ElGamal variant with a non-
negligible advantage εA(λ). We show how to build a PPT adversary B that breaks
the DDH assumption in G2 with a non-negligible advantage εB(λ) (where λ is
the security parameter used to generate G2).

B receives the DDH challenge (X,Y,Z) = (gx
2 , gy

2 , gzb
2 ) and picks b′ $← {0, 1}.

It sets pkSign ← e(g1,X) and sends it to A, which returns a pair of chosen
plaintexts (m0,m1). B computes c1 ← Y and c2 = e(g1, Z) ·mb′ . It sends (c1, c2)
to A, which returns b′′. If b′ = b′′, then B returns 0, else it returns 1.

We remark that c1 = Y = gy
2 , and c2 = e(g1, Z) · mb′ = e(g1, g2)zb · mb′ .

If b = 0, then c2 = e(g1, g2)x·y · mb′ = e(g1, gx
2 )y · mb′ = e(g1,X)y · mb′ =

pky
Sign · mb′ . In this case, the IND-CPA experiment is perfectly simulated for A,

so A returns b′′ = b′ with the non-negligible advantage εA(λ). If b = 1, then
c2 = e(g1, g2)z1 · mb′ seems to be random from the point of view of A. In this
case, A has no information about b′, so it returns b′′ = b′ with probability 1/2 (its
advantage is null). Finally, εB(λ) = εA(λ)/2, so εB(λ) is non-negligible, which
concludes the proof. 	


We will now show how to prove that an ElGamal ciphertext in G1 encrypts
a secret key of our ElGamal variant in a zero-knowledge way. We consider the
key pair of our ElGamal variant skSign ∈ G1 and pkSign = e(skSign, g2), and the
ciphertext (c1, c2) = (gr

1, pk
r
PKE ·skSign) ∈ G

2
1 which encrypts skSign with the public

key pkPKE.
We have to prove that pkSign = e (PKE.Dec(ppPKE, skPKE, (c1, c2)), g2). We

have the following equivalences:

pkSign = e (PKE.Dec(ppPKE, skPKE, (c1, c2)), g2)

⇔pkSign = e

(
c2

cskPKE1

, g2

)
=

e (c2, g2)

e
(
cskPKE1 , g2

) =
e (c2, g2)

e
(
gr·skPKE
1 , g2

) =
e (c2, g2)

e (pkPKE, g2)
r

⇔e (pkPKE, g2)
r =

(
e (c2, g2)
pkSign

)
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On the other hand, we have e(c1, g2) = e(gr
1, g2) = e(g1, g2)r. Finally, in order to

prove that the ElGamal ciphertext in G1 encrypts the secret key of our ElGamal
variant in zero-knowledge, we have to prove the following relation, knowing r:

NIZK

{
r : e(c1, g2) = e(g1, g2)r ∧ e (pkPKE, g2)

r =
(

e (c2, g2)
pkSign

)}
(1)

This is a proof of discrete logarithm equality in Gt. This zero-knowledge proof
can be instantiated with the Fiat-Shamir transform [13] on the variant of the
Schnorr protocol given in [10].

4.2 Discussion

We propose to use the above encryptions and NIZK proof to build an efficient
RTR signature scheme following the generic construction in [14]. We recall that
in a type 3 pairing, the DDH assumption holds in G1, G2, and Gt, which implies
that any construction based on the discrete logarithm assumption, the compu-
tational Diffie-Hellman assumption, or the decisional Diffie-Hellman assumption
remains secure in each of these groups. The construction of Fraser and Quaglia
uses only discrete logarithm-based building blocks, so it remains secure in our
new pairing setup. Moreover, in order to prove relations among different ele-
ments of the signature, this construction uses Schnorr-based proofs of discrete
logarithm relation and discrete logarithm knowledge, which work in any group of
prime order, even when the relation is proved over different groups of the same
order. Since our new encryption instantiation keep the structure of ElGamal,
the other zero-knowledge proofs can be instantiated as in [14].

The NIZK proof outlined above is more efficient than the NIZK used in the
instantiation in [14]. More specifically, the above NIZK proof requires a constant
number of group exponentiations and pairings2 (2 and 3, respectively) to prove.
Similarly, verification of the NIZK proof requires 4 group exponentiations and
3 pairings. The size of the proof is also constant in size: it consists of 2 group
elements and 1 field element. Comparatively, the size of the NIZK proof used in
Fraser and Quaglia’s instantiation, and the computational costs associated with
proving and verification, are linear in |R| ·λ (where λ is the security parameter).
With respect to other costs associated with signing and verification, the two
instantiations are identical, as shown above. As such, with respect to signature
generation and verification, our instantiation has linear space and time com-
plexity in the size of the ring. Therefore, our approach implies that the generic
construction can be instantiated more efficiently than originally proposed, i.e.,
avoiding the linear increase in the security parameter.

To conclude, as a consequence of the security proofs for the generic construc-
tion in [14], our pairing instantiation is secure if our new ElGamal variant satisfies
2 According to [8], type 3 pairings are more efficient than type 1 and 2 pairings, and

the computation time of a type 3 pairing is equivalent to 4 exponentiations for the
best implementation.
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IND-CPA security [16] and our NIZK proof of correct encryption (Eq. 1) satisfies
completeness, knowledge soundness and zero-knowledge, as defined in [17]. As
such, our instantiation satisfies the RTR signature security model.

5 A New RTR Signature Construction

In this section, we present a new RTR signature construction. We describe our
protocol and present an instantiation. We conclude this section with a security
analysis of our protocol and a brief discussion of its efficiency.

5.1 Description of Our Protocol

We outline our protocol following the syntax of an RTR scheme introduced in
Definition 1.

Setup and Key Generation. Our construction uses ElGamal-based keys. Each
ElGamal encryption key ek is provided together with a proof of knowledge π of
the corresponding secret key sk. We will see why these proofs of knowledge are
required later in this section. The public key is the pair pk = (ek, π) and the
secret key is sk. We use the part ek of the user public key as their identity.

Setup(1λ): Generates a prime order group setup pp = (G, p, g) such that the
Decisional Diffie-Hellman assumption holds in G.

T.KGen(pp): Picks skT
$← Z

∗
p, sets ekT ← gskT , sets πT ← NIZK

{
skT : ekT = gskT

}
and outputs pkT ← (ekT, πT).

U.KGen(pp): Picks skU
$← Z

∗
p, sets ekU ← gskU , sets πU ← NIZK

{
skU : ekU = gskU

}
and outputs pkU ← (ekU, πU).

Signature Generation and Verification. The idea of the signature is to separate
the public key ek of the signer into two shares S1 and S2 such that S1 · S2 = ek.
The signer picks a coin α at random and uses it to encrypt (using ElGamal)
S2 for each public encryption key eki in the ring, outputting |R| ciphertexts
denoted ci. The signer then encrypts S1 for the tracer encryption key ekT, out-
putting ciphertext c. The signer then proves that the ring members’ ciphertexts
encrypt the same message in zero-knowledge. Note that due to the homomor-
phic properties of ElGamal, each ci · c encrypts S1 · S2 = ek. Finally, the signer
signs the message using a signature of knowledge that proves in zero-knowledge
that it knows the secret key ski for a secret index i (which is its own secret key
ski = skU) that decrypts ci · c on the message eki = ekU.

Sign(pp, skU, pkT,m,R): Parses pkT as (ekT, πT). Sets n ← |R|, parses R as
{pki}n

i=1 and each pki as (eki, πi). Verifies each πi (this step preempts a sub-
tle attack on anonymity that we will detail later). If there are two indices
i and j such that pki �= pkj and eki = ekj , or if there is no index i such
that pkU = pki, then it aborts and returns the failure symbol ⊥. Picks
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α
$← Z

∗
p and sets h ← gα. Picks S1

$← G and sets S2 ← ekU/S1. Note
that S1 and S2 are two shares of the secret identity ekU = S1 · S2. Sets
c ← ekα

T · S1. For each i ∈ �n�, sets ci ← ekα
i · S2, if i > 1, then sets

π′
i ← NIZK

{
α :

(
h = gα ∧

(
ci

ci−1

)
=

(
eki

eki−1

)α)}
, else π′

i ←⊥.
The proofs π′

i ensure that each ElGamal ciphertext (h, ci) encrypts the same
message. Note that (h, c · ci) is the ElGamal encryption of S1 · S2 = ekU for
the public key (ekT · eki). Sets M ← (pp, pkT,m,R, h, c, (ci, π

′
i)

n
i=1), and sets

σM ← SoKM

{
(α, skU) :

∨n
i=1

(
h = gα ∧ c·ci

eki
= (ekT · eki)

α ∧ eki = gskU
)}

.
The signature of knowledge σM ensures that (h, c · ci) is an ElGamal encryp-
tion of one eki, and that the signer knows the secret key corresponding to
eki, which means that eki is the identity of the signer. Finally, the algorithm
returns σ = (h, c, (ci, π

′
i)

n
i=1, σM ).

Verify(pp, pkT,m,R, σ): Verify each πi and σM .

Note that, if the keys are honestly generated, the probability that the signature
aborts because two encryption keys eki and ekj are equal is negligible.

Report and Trace. To report a signature, a user decrypts the ciphertext ci that
corresponds to their public key in order to learn S2, and proves the correct-
ness of the decryption using a zero-knowledge proof. To trace the signature, the
tracer decrypts c in order to learn S1, proves the correctness of the decryption
using a zero-knowledge proof, and returns the identity that corresponds to the
encryption key ek = S1 · S2.

Report(pp, pkT, skU,m,R, σ): Verifies the signature σ. Sets n ← |R|, parses R
as {pki}n

i=1 and each pki as (eki, πi). Let j be the index that verifies pkj =
(ekU, πj). Parses σ as (h, c, (ci, π

′
i)

n
i=1, σM ). Sets S2 ← cj/hskU and πRep ←

NIZK
{
skU :

∨n
i=1

((
ci

S2

)
= hskU ∧ eki = gskU

)}
. The proofs πRep ensures that

one (h, ci) encrypts S2. This algorithm returns Rep ← (S2, πRep)

Trace(pp, skT,m,R, σ, Rep): Verifies the signature σ. Parses Rep as (S2, πRep)
and σ as (h, c, (ci, π

′
i)

n
i=1, σM ). Verifies the proof πRep. Sets S1 ← c/hskT , and

πρt
← NIZK

{
skT :

(
c

S1

)
= hskT ∧ ekT = gskT

}
.

The proof πρt
ensures that one (h, c) encrypts S1. This algorithm returns

ρt ← (S1, πρt
)

VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt):] Sets n ← |R|, parses R as {pki}n
i=1 and

each pki as (eki, πi). Verifies πRep and πρt
. If one of these proofs is not valid,

then it returns the failure symbol ⊥, else it returns the key pki that verifies
eki = S1 · S2.

Instantiation. In the following, we propose an instantiation for each
of the proofs and signatures of knowledge used in our protocol. The
proof NIZK {x : h = gx} used in πU and πT can be instantiated with
the Fiat-Shamir transform on the Schnorr protocol [29]. The proof



Improving the Efficiency of Report and Trace Ring Signatures 141

NIZK {x : h1 = gx
1 ∧ h2 = gx

2} used in πρt
and each π′

i can be instantiated
with the Fiat-Shamir transform on the variant of the Schnorr protocol
given in [10]. The proof NIZK

{
x :

∨n
i=1

(
hi,1 = gx

i,1 ∧ hi,2 = gx
i,2

)}
used in

πRep can be instantiated with the Cramer-Damg̊ard-Schoenmakers trans-
form [11] (which transforms a zero-knowledge proof of a statement into a
zero-knowledge proof of 1-out-of-n statements) and the Fiat-Shamir trans-
form applied on the variant of the Schnorr protocol given in [10]. Finally,
the proof NIZK

{
(x, y) :

∨n
i=1

(
hi,1 = gx

i,1 ∧ hi,2 = gx
i,2 ∧ hi,3 = gy

i,3

)}
used in σM

can be instantiated with the Fiat-Shamir transform and the Cramer-Damg̊ard-
Schoenmakers transform [11] applied on the successive executions of the Schnorr
protocol [29] and the variant of the Schnorr protocol given in [10]. To transform
this proof into a signature of knowledge, it suffices to add the message to the
hashed elements during the creation of the challenge (this method works with
any protocol resulting from the Fiat-Shamir transform [7]).

All these proofs of knowledge use only group operations and do not require
any specific tool to be instantiated. The non-interactive version of the proofs
and the signature of knowledge require a hash function modeled by a random
oracle.

5.2 Security Analysis

Our new construction satisfies the security properties for an RTR signature
scheme and, as such, we obtain Theorem 2. The formal proof of this theorem is
given in the full version of this paper [5] and we informally explain why these
properties hold here.

Theorem 2. Our protocol instantiated with extractable and zero-knowledge
proofs and signatures of knowledge is unforgeable, anonymous, non-frameable,
trace sound, and reporter anonymous under the Decisional Diffie-Hellman
assumption in the standard model.

Unforgeability: To forge a signature, an adversary must forge a signature of
knowledge σM , which requires the knowledge of one of the secret keys of the
ring, which is the discrete logarithm of one of the public encryption keys. If
an adversary produces such a signature, then the extractor of the signature
of knowledge can be used to break the discrete logarithm assumption (which
is hard under the Decisional Diffie-Hellman assumption).

Anonymity: To deduce the identity of the signer, the share S1 of the signer
identity is required by the adversary. This share is encrypted using the ElGa-
mal encryption on the honest tracer public key. Thus, breaking the anonymity
is at least as difficult as breaking the IND-CPA security of ElGamal, which
depends on the Decisional Diffie-Hellman assumption.

Trace soundness: The proofs and signatures of knowledge ensure that the
identity of the signer ek is actually S1 · S2 (from σM ), each ci encrypts the
same S2 (from π′

i), the reporter returns S2 (from πRep), and the tracer returns
S1 (from πρt

). If an adversary is able to report the same signature for two
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different identities, then it forges a proof on a false statement that cannot be
correctly extracted, which contradicts the extractability.

Non-frameability: As it is shown for the trace soundness, the proofs ensure
that the report and trace mechanism are sound. Thus, to attack non-
frameability the adversary must produce a fresh valid and traceable signature
for an honest user. As for unforgeability, such an adversary can be used to
extract the discrete logarithm of the public encryption key of an honest user,
which is hard under the Decisional Diffie-Hellman assumption.

Reporter anonymity: Each reporter returns the same S2 (according to the
proofs of knowledge that we use in the protocol), and a zero-knowledge proof
that gives no information about their identity. Therefore, an adversary cannot
deduce the identity of the reporter.

The Role of the Zero-Knowledge Proofs on the Public Keys. We recall
that each public key is associated with a proof of correctness, and that these
proofs are verified before each signature. In what follows, we will show that
this mechanism avoids a subtle attack on anonymity. Assume that the users
do not prove the knowledge of their secret keys (i.e. pk = ek). In this case,
an attacker A can break the anonymity of our construction using the follow-
ing attack. A chooses the public keys (pk0, pk1) of two honest users, picks
sk2

$← Z
∗
p, sets ek2 ← gsk2 , and sets pk2 ← ek2. A then picks γ

$← Z
∗
p,

sets ek3 ← ekγ
T, and sets pk3 ← ek3. A chooses a message m, sets R ←

{pk0, pk1, pk2, pk3} sends (m,R, pk0, pk1, st) to the challenger, and receives a
signature σ = (h, c, (ci, π

′
i)

n
i=1, σM ). Since σ has been generated correctly, we

have that c = ekα
T · S1 and ∀ i, ci = ekα

i · S2 (where α denotes the discrete loga-

rithm of h). A computes S2 ← c2/hsk2 and S′
1 ← c/

(
c3
S2

) 1
γ . If S′

1 · S2 = ek0, then
A returns 0, else if S′

1 · S2 = ek1, then A returns 1. We observe that:

S′
1 =

c(
c3
S2

) 1
γ

=
ekα

T · S1(
ekα

3 ·S2

S2

) 1
γ

=
ekα

T · S1

(ekα
3 )

1
γ

=
ekα

T · S1

((ekγ
T)α)

1
γ

=
ekα

T · S1

ek
α· γ

γ

T

=
ekα

T · S1

ekα
T

= S1.

Thus, S′
1 · S2 gives the identity of the signer with probability 1.

Efficiency of Our Protocol and Comparison. Similarly to our instantiation
in Sect. 4, the protocol presented and instantiated in Sect. 5.1 has space and time
complexity that is linear in the size of the ring. More explicitly, a signature can
be computed with 11|R| − 3 group exponentiations and verified with 10|R| − 4
group exponentiations. A signature consists of 6|R| group elements and 4|R| − 2
field elements. On the other hand, in our instantiation in Sect. 4, a signature can
be computed with 5|R| + 21 group exponentiations and 4 pairings, and verified
with 3|R| + 23 group exponentiations and 3 pairings. A signature consists of
2|R| + 20 group elements and |R| + 7 field elements. Thus, our instantiation
from Sect. 4 requires less group exponentiations, moreover, it generates reporter



Improving the Efficiency of Report and Trace Ring Signatures 143

tokens of constant size, while the size of the tokens grows linearly with the
number of users in the new construction. In return, our new construction can be
instantiated with any prime order group, including pairing-free groups based on
elliptic curves, which are known to optimize the size of the group elements and
the computation cost of the operations for an equivalent level of security.

6 Concluding Remarks

We introduced a new instantiation of an RTR signature scheme that follows the
generic construction in [14]. Our instantiation has space and time complexity lin-
ear in the size of the ring. Consequently, our instantiation significantly increases
the efficiency of the construction in [14], but requires pairings. We also introduce
a new RTR signature construction with similar complexity that does not require
pairings and can be instantiated with any prime order group. In return, our con-
struction requires more group exponentiations than our instantiation of [14]. An
interesting open question is whether it is possible to design an RTR signature
that simultaneously reaps the benefits of our instantiation and new construction.
That is, we ask, is it possible to design an RTR signature that is (at least) as effi-
cient as our instantiation of the construction from [14] and can be instantiated
with any group?
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Abstract. We study the efficiency of executing transactions in a dis-
tributed transactional memory system. The system is modeled as a wired
network with the topology of a tree. Contrary to previous approaches,
we allow the flexibility for both transactions and their requested objects
to move simultaneously among the nodes in the tree. Given a batch of
transactions and objects, the goal is to produce a schedule of execut-
ing the transactions that minimizes the cost of moving the transactions
and the objects in the tree. We consider both techniques for accessing a
remote object with respect to a transaction movement. In the first tech-
nique, instead of moving, transactions send control messages to remote
nodes where the requested objects are gathered. In the second technique,
the transactions migrate to the remote nodes where they execute. When
all the transactions use a single object, we give an offline algorithm that
produces optimal schedules for both techniques. For the general case
of multiple objects per transaction, in the first technique, we obtain a
schedule with a constant-factor approximation of optimal. In the second
technique, with transactions migrating, we give a k factor approximation
where k is the maximum number of objects per transaction.

Keywords: Distributed system · Transactional memory · Shared
object · Network · Communication cost

1 Introduction

Threads executed concurrently require synchronization to prevent inconsisten-
cies while accessing shared objects. Traditional low-level thread synchronization
mechanisms such as locks and barriers are prone to deadlock and priority inver-
sion, among multiple vulnerabilities. The concept of transactional memory has
emerged as a high-level abstraction of the functionality of distributed systems;
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see Herlihy and Moss [10] and Shavit and Touitou [25]. The idea is to designate
blocks of program code as transactions to be executed atomically. Transactions
are executed speculatively, in the sense that if a transaction aborts due to syn-
chronization conflicts or failures then the transaction’s execution is rolled back
to be restarted later. A transaction commits if there are no conflicts or failures,
and its effects become visible to all processes. If multiple transactions concur-
rently attempt to access the same object, then this creates a conflict for access
and could trigger aborting some of the involved transactions. Scheduling trans-
actions to minimize conflicts for access to shared objects improves the system’s
performance.

The processing units of a distributed transactional memory system are the
nodes of a communication network, which is an integral part of the system. A
transaction executing at a node may want to access shared memory objects resid-
ing in other nodes. This could be implemented such that the transaction coor-
dinates access to the needed shared objects with the nodes hosting the objects.
Such systems were studied by Herlihy and Sun [11], Sharma and Busch [23],
and Siek and Wojciechowski [26]. The efficiency of executing a specific transac-
tion may reflect the topology of the communication network that is part of a
distributed system. For example, the amount of communication needed to exe-
cute a transaction interacting with some objects could be proportional to the
distances in the network between all the nodes hosting the transaction and the
objects.

To improve efficiency of processing transactions on shared objects, we may
preemptively move objects and transactions among the nodes to schedule their
presence at specific nodes at specific times. Moving transactions or program
code among network nodes is currently used in several real-world applications.
For example, Erlang Open Telecom Platform aids dynamic code upgrade by sup-
porting transactional servers with hot code swapping whose call-back modules
may be changed on the fly [1]. A job management system for a computer clus-
ter may migrate a job to a different node, if the target nodes load is below the
migration threshold and the migration overhead is acceptable, in order to achieve
better load balancing among the nodes, see Hwang et al. [13]. A related system
that uses live virtual machine migration to support autonomic adaptation of
virtual computation environments is described by Ruth et al. [20].

Coordinating accessing objects to execute transactions may involve reloca-
tion of objects or transactions. Efficiency of such coordination may depend on
additional model’s specification which determines the very feasibility of moving
transactions and objects across the network. In the data-flow model, transac-
tions are static and objects move from one node to another to reach the nodes
hosting transactions that require interacting with them; see Tilevich and Smarag-
dakis [27] and Herlihy and Sun [11]. In that model, a transaction initially requests
the objects it needs, and executes after assembling them. After a transaction
commits, it releases its objects, possibly forwarding them to pending transac-
tions. In the control-flow model, objects are static and transactions move from
one node to another to access the objects. Control-flow allows transactions to
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send control requests, in a manner similar to remote procedure calls, to the
nodes where the required objects are located; see Arnold et al. [2] and Saad and
Ravindran [22].

Contributions. We consider a flexible scheduling approach that combines the
benefits of the data-flow and control-flow models. We study the dual-flow model
that allows for both transactions and objects to move among the nodes to syn-
chronize transactions and objects. We consider distributed systems whose net-
works interpreted as graphs have tree topologies. This represents many real-world
networks. For example, the internet cloud consists of the cloud network, repre-
senting a root, the fog network gateways and/or the edge network gateways, as
internal nodes, and the IoT devices as leaves, see Comer [8].

We study the efficiency of executing transactions by a distributed system
represented as a tree in the dual-flow model. The efficiency is measured by the
cost of communication. Scheduling transactions is considered in a batch setting,
in which all the transactions are given at the outset, subject to the constraint
that each node is assigned at most one original transaction. The initial posi-
tion of shared objects are distributed arbitrarily among the nodes. We consider
scheduling transactions in the general case of arbitrarily many shared objects,
and also in a special case of a single shared object that needs to be accessed
by all the transactions. Given a batch of transactions and objects residing at
nodes of the system, the goal is to produce a schedule of executing transactions
that minimizes the cost of moving transactions and objects among the nodes
and sending control messages to facilitate executing the transactions. Such a
schedule is computed by a centralized offline algorithm to be executed by the
distributed system. We develop a centralized algorithm finding an optimal sched-
ule in the case when all the transactions use a single object. The general case
of multiple objects is studied in two models that determine if executing a trans-
action may involve sending control messages. For multiple shared objects and
with transactions sending control messages, we give a centralized algorithm that
finds a schedule with a constant-factor approximation of communication cost
with respect to an optimal schedule. For multiple shared objects and with trans-
actions migrating and not using control messages, we give a centralized algorithm
that finds a schedule approximating an optimal one by a factor k that equals
the maximum number of shared objects requested by a transaction.

Related Work. Attiya et al. [3], Busch et al. [5–7], and Sharma and Busch [23,24]
considered transaction scheduling with provable performance bounds in the
data-flow model. Saad and Ravindran [22], Palmieri et al. [17], Siek and
Wojciechowski [26] studied scheduling transactions in the control-flow model.
Palmieri et al. [17] also gave a comparative study of data-flow versus control-flow
models for distributed transactional memory. A prototype distributed transac-
tional memory system described by Saad and Ravindran [21] supports experi-
mentation for both data-flow and control-flow models. Bocchino et al. [4] con-
sidered the dual-flow model by allowing programmers to either bring the data
to the code of computation (transaction) or send the code of computation to the
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data. Hendler et al. [9] studied a lease based dual-flow model which dynamically
determines whether to migrate transactions to the nodes that own the leases
or to demand the acquisition of these leases by the node that originated the
transaction.

Transaction scheduling in a distributed system with the goal of minimiz-
ing execution time was first considered by Zhang et al. [28]. Busch et al. [5]
considered minimizing both the execution time and communication cost simul-
taneously. They showed that it is impossible to simultaneously minimize execu-
tion time and communication cost for all the scheduling problem instances in
arbitrary graphs even in the offline setting. Specifically, Busch et al. [5] demon-
strated a tradeoff between minimizing execution time and communication cost
and provided offline algorithms optimizing execution time and communication
cost separately. Busch et al. [7] considered transaction scheduling tailored to
specific popular topologies and provided offline algorithms that minimize simul-
taneously execution time and communication cost. In a follow-up work, Poudel
and Sharma [19] provided an evaluation framework for processing transactions in
distributed systems. Busch et al. [6] studied online algorithms to schedule trans-
actions arriving continuously. Distributed directory protocols have been designed
by Herlihy and Sun [11], Sharma and Busch [23], and Zhang et al. [28], with the
goal to optimize communication cost in scheduling transactions.

Alternative approaches to distributed transactional memory systems have
been proposed in the literature by way of replicating transactional memory on
multiple nodes and providing means to guarantee consistency of replicas. This
includes work by Hirve et al. [12], Kim and Ravindran [14], Kobus et al. [15],
Manassiev et al. [16], and Peluso et al. [18]. In this work, we use a single copy of
each object. Replicas of objects help to improve reliability of the systems rather
than decrease the communication overhead.

2 Technical Preliminaries

A distributed system can be modeled as weighted graph G = (V,E,w) which in
our case is a tree. There are n vertices in the set V , each representing a processing
node. Edges in the set E ⊆ V × V represent communication links between
nodes. The function w : E → Z

+ assigns a weight to each edge representing a
communication delay. We let dist(u, v) denote the shortest path distance between
two vertices u and v.

The initial configuration of the distributed system consists of a set of trans-
actions and shared objects distributed among the nodes. Each node hosts at
most one transaction. During executing transactions, both shared objects and
transactions can move among the nodes of a network, which we call the dual-
flow model. If a transaction requests access to an object, that object may move
to a different node, possibly closer to the requesting transaction. At the same
time, the transaction can also migrate to the object’s new location, or send a
control message to that new location to access the object. The combined cost of
executing a transaction is measured with relation to the distances traversed by
shared objects, transaction code and control messages.
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We consider the following two specializations of the dual-flow model for
remote object access: (i) Control-message technique, where a transaction sends
a control message to access the remote object. The control-message technique
is motivated by a scenario in which each transaction performs a number of
updates to an object bounded by a constant, with each update requiring a con-
trol message, for a total of a constant number of such messages. (ii) Transaction-
migration technique, in which a transaction moves to the node where objects
are located and no control messages are sent. This technique is motivated by the
scenarios in which a transaction may issue a variable number of requests to an
object, in which case it is advantageous to migrate the transaction to the object
location to avoid potentially unbounded communication overhead.

We parameterize the costs of transmitting messages that carry transactions,
objects, or control instructions. The cost of moving an object of size α over a unit
weight edge is denoted by α. We denote the cost of sending a control message
over a unit weight edge by β. The cost of moving a transaction over a unit weight
edge is denoted by γ.

A scheduling algorithm determines a schedule to execute transactions, includ-
ing movements of objects and transactions. A centralized algorithm takes as
input a configuration of transactions and objects in the system as arranged at
the outset. We assume that each node has this input available so that it can
execute it locally. Formally, a schedule of executing transactions is a sequence
of actions s1, s2, . . . to be performed by the nodes. An action si is a set of
instructions to be performed by a node to facilitate processing transaction Ti.
The communication cost of executing such a schedule is the sum of distances
traversed by the shared objects, control messages, and transactions according to
the schedule, weighted by the corresponding parameters α, β, and γ.

3 A Single Object

We assume a single shared object o of size α > 1 positioned at the root node of a
tree G. We develop an optimal scheduling algorithm denoted as Single-Object
in the dual-flow model considering both techniques for accessing a remote object:
control-message and transaction-migration.

A general idea of the algorithm in the control-message technique is as fol-
lows. First we find a set of intermediate nodes in G to move the object o to.
These nodes are referred to as supernodes. An intermediate node v becomes a
supernode if the cost of moving o from v to one of its children is greater than the
cost of sending control messages from the transactions contained by the sub-tree
of that child to v. Each supernode contains a set of transactions in its sub-tree
which send control messages to that supernode to access object o. These trans-
actions are added to the local execution schedule of the supernode following an
iterative pre-order tree traversal in the sub-tree. We determine a subtree P con-
taining paths in G that reach the supernodes from the root of G. Starting from
the root, object o travels all the supernodes following the iterative pre-order
tree traversal of P . Any transaction that lies along the path is added to the
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execution schedule E as soon as o reaches the respective node. When o reaches
some supernode, the transactions from its local execution schedule get added
to E in the respective order. The execution ends when all the transactions have
been added to E . The algorithm can be modified as follows if performed in the
transaction-migration technique. Determine supernodes with respect to trans-
action migration cost rather than control messages cost. Migrate transactions
to the corresponding supernodes instead of sending control messages to access
the object. These modifications result in creating an algorithm of a comparable
communication performance.

We elaborate on the details of the algorithm next. The cost of moving o
over an edge of unit length is α. Let β represents the control message cost
for a transaction to access object o at one unit away and α > β. Let T =
{T1, T2, . . . Tn} be the set of n transactions issued to the nodes of G, one at each
node. The first objectives are to determine the walk the object traverses and to
find transaction execution schedule. Intuitively, since it costs more to move the
object across a link than to send a control message through the link, we strive
to move the object minimally, only when when this pays, and this approach is
captured by the concept of supernodes. The object o first travels from the root up
to a supernode. Transactions that lie along the path the object traverses execute
as soon as the object reaches the respective nodes. The remaining transactions
beyond that supernode and towards the leaves send control messages to the
supernode to access the object. Then the object moves to the next supernode
and transactions get executed following a similar approach.

The communication cost of an execution of the algorithm is determined by
the location of supernodes. The set of supernodes is selected by referring to
transaction loads and transaction counts at all nodes, which are defined as fol-
lows. A transaction load of a node v, denoted txload(v), is the sum of distances
from v to the positions of transactions contained in the sub-tree of v, including v.
The transaction load of v represents the cost of sending control messages due to
the transactions contained in its sub-tree, assuming o is moved to v. A trans-
action count at node v, denoted txnum(v), is the total number of transactions
contained in the sub-tree of node v, including v.

To identify supernodes, we start from the leaves of G and work through the
ancestors towards the root. Let vcur be a leaf node and vnext be the parent
of vcur. During the computation of supernodes, we can assume that the object
is at the parent node vnext and check if it pays to move the object down to
vcur, since object moves away from the root. Let txload(vcur) denote the control
message cost incurred by the txnum(vcur) number of transactions contained in
the sub-tree of vcur, including vcur. If the object o moves to vcur, the transactions
contained in the sub-tree of vcur can access o at vcur and the cost becomes
txload(vcur) + α · dist(vcur, vnext). Here, α · dist(vcur, vnext) is the cost incurred
by the movement of object o from vnext to vcur. Otherwise, these transactions
send control messages to vnext to access o and the cost becomes txload(vcur) +
txnum(vcur) · β · dist(vcur, vnext). Object o will move to vcur from vnext only if
the control message cost from vcur to vnext, due to the transactions contained
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Fig. 1. Identification of supernodes by algorithm Single-Object. The tree on the
left is G. The tree on the right is the same G after determining the status of nodes.
Supernodes are colored blue. Nodes on the path from the root to a blue node are
colored black. The dashed line delineates P obtained from G by pruning G of vertices
beyond the supernodes, which are colored orange. (Color figure online)

in the sub-tree of vcur, is more than or equal to the object movement cost from
vnext to vcur. After reaching a supernode, object o may need to move back to
the root or intermediate nodes to visit other supernodes. To account for this and
simplify the argument, we assume that the object moves over each edge twice,
but this assumption will be revisited when we optimize the algorithm. If the
following inequality holds

txload(vcur) +2 α · dist(vcur, vnext) ≤ txload(vcur) + txnum(vcur) · β · dist(vcur, vnext),

then we choose vcur as a supernode. Otherwise, if vcur is not the root, a new
pair of vcur and vnext is checked such that current vnext becomes new vcur and
the parent of current vnext becomes a new node vnext. If vcur is the root, then
it becomes a supernode.

Let P denote the pruned tree, which contains only the supernodes and nodes
that need to be traversed on the way from the root to a supernode. Tree P is
rooted the root of G. Figure 1 illustrates such a tree P . The object o is origi-
nally located at the root, from which it moves to the supernodes in a pre-order
traversal manner. The transactions are executed along the way of the object’s
movement. Transactions at the nodes beyond the pruned tree P , marked by color
orange in Fig. 1, either send control messages or move to access o to their closest
supernodes. When object o reaches the respective supernode, these transactions
are executed in order.

After computing the set of supernodes, the object performs a pre-order tree
traversal starting from the root to visit all the supernodes. The transaction
execution schedule E is computed as follows. First add transaction at the root
to E . During the pre-order tree traversal to visit the supernodes, if E does not
contain the transaction at a visited node v, then add it to E . If the visited node
v is a supernode, add to E the transactions that sent control messages to v from
the subtree rooted at v.

Next we show how to refine this approach, which is based on the assumption
that during the computation of supernodes if the object moves from some parent
node to the child node then it will ultimately move back from that child node to
the parent. When the object reaches the last supernode, it does not move back
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because there is no any other supernode remained to visit. We define a one-way
path to be such a path from vroot to the last supernode vlast, all the edges of
which the object traverses only once. This vlast must be chosen in such a way
that the total communication cost is minimized. A condition for computing a
supernode is

2α · dist(vcur, vnext) > txnum(vcur) · β · dist(vcur, vnext) (1)

so it accounts for the object traversing each edge twice, which is not required
for vlast. The object can move further down until the following holds

α · dist(vcur, vnext) > txnum(vcur) · β · dist(vcur, vnext) (2)

We find the last supernode vlast and the one-way path as follows. Let S be
the initial set of supernodes computed considering that the object moves twice
on each edge up to the supernode. In a one-way path, the object may move
further down towards the leaf node satisfying the condition in Inequality (2).
For each node v ∈ S, if the sub-tree of v contains multiple branches, there could
be a number of possible paths for the object to move. There will always be a
unique one-way path that minimizes the total cost. In each sub-tree of v ∈ S,
we find the set of nodes D(v) that are candidates for vlast using the condition in
Inequality (2). Then the difference between the cost of selecting v as a supernode
and vj ∈ D(v) as a supernode is computed. Among these differences for every
v ∈ S, the one with the highest difference is chosen as the last supernode. Let
vref ∈ S and vk ∈ D(vref ) be the set of two nodes that provided the highest
difference. Then vk becomes vlast and is added to S. The path from vroot to
vlast becomes the one-way-path and is visited at last following the pre-order
tree traversal. Moreover, if a node between vref and vlast (including vref ) in the
one-way-path contains transactions in its sub-tree other than the one-way-path
branch, it becomes a supernode to serve control requests to the transactions in
those branches and is added to S.

We state following three lemmas whose proofs are immediate from the dis-
cussion:

Lemma 1. If a node v does not belong to the pruned tree P , then the total
number of transactions contained in the sub-tree of v is less than 2α.

Lemma 2. If v is a descendant of vlast, then the total number of transactions
contained in the sub-tree of v is always less than α.

Lemma 3. For any transaction, the corresponding supernode for accessing the
object always lies at or above its position along the path towards the root of G.

Theorem 1. Algorithm Single-Object schedules transactions with the opti-
mal communication cost.

Proof. Let S be the set of supernodes found for a tree G with respect to object o.
We will show that any other selection of supernodes gives strictly higher com-
munication cost and hence, S provides optimal communication cost.
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To simplify the problem, without loss of generality, we assume that each edge
of G has weight 1, β = 1 and α > β. Let P be the pruned tree containing nodes
only up to the supernodes starting from the root of G. Let vlast ∈ S be the
last supernode for object o to visit. Let C be the total communication cost of
Algorithm Single-Object. Let v ∈ S be a supernode in G, vp be an ancestor of
v with distance dist(vp, v) ≥ 1, and vq be a descendant of v with dist(v, vq) ≥ 1.
Based on the positions of v and vq, it can have one of the following three cases:

Case (a): v = vlast. Then, by Lemma 2, we have that

txnum(vp) ≥ txnum(v) ≥ α > txnum(vq) (3)

Case (b): v �= vlast, vq /∈ P , and the path from v to vq contains no other
supernode, in that v is the bottommost supernode in the current branch. Then,
by Lemma 1, we have

txnum(vp) ≥ txnum(v) ≥ 2α > txnum(vq) (4)

Case (c): Either vq ∈ P or vq /∈ P and the path from v to vq contains at least
one other supernode. Let z ≥ 1 be the transactions that send control messages
to v to access o.

We have following four subcases with respect to each supernode v ∈ S:

(i) Choosing an ancestor of v as a supernode instead of v increases communi-
cation:
Let Sp be the set of nodes contained between v and vp (excluding both).
Suppose vp be selected as a supernode instead of v. Then in Case (a) and
Case (b), o moves only up to vp, and in addition to the transactions issued
to the sub-tree of v, all the transactions between v and vp send control
messages to vp. But, in Case (c), since the sub-tree of v (excluding v) still
contains another supernode vk ∈ S, o still moves to vk passing through v.
When v was the supernode, z ≥ 1 transactions could access o at v. Now,
since vp is selected as the supernode instead of v, all those z transactions
send control messages to vp to access o. So, the total communication cost
Cvp

of selecting vp as a supernode compared to that of selecting v in each
case becomes:

Cvp
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C − α · dist(vp, p) + txnum(v) · dist(vp, v)
+

∑
vk∈Sp

(txnum(vk) − txnum(v)), Case (a)
C − 2α · dist(vp, p) + txnum(v) · dist(vp, v)
+

∑
vk∈Sp

(txnum(vk) − txnum(v)), Case (b)
C + z · dist(vp, v), Case (c)

In Case (a), from Inequality (3), since txnum(v) ≥ α, Cvp
> C. In Case

(b), from Inequality (4), since txnum(v) ≥ 2α, Cvp
> C. Also, in case (c),

Cvp
> C.
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(ii) Choosing a descendant of v as a supernode instead of v increases commu-
nication:
Now, we analyze the communication cost of selecting a descendant node
vq as a supernode instead of v ∈ S. Let Sq be the set of nodes contained
between v and vq (excluding both). As vq is a new supernode, object moves
up to it. So, in Case (a) and Case (b), to get the change in total communi-
cation cost compared to C, we have to add object movement cost of o from
v to vq and subtract the control message cost for the transactions between
v and vq. Moreover, the transactions in the sub-tree of vq will also send
control messages only up to vq. Thus, the total communication cost Cvq

of
selecting node vq as a supernode compared to C in Case (a) and Case (b)
becomes:

Cvq
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C + α · dist(v, vq) − txnum(vq) · dist(v, vq)
−

∑
vk∈Sq

(txnum(vk) − txnum(vq)), Case (a)
C + 2α · dist(v, vq) − txnum(vq) · dist(v, vq)
−

∑
vk∈Sq

(txnum(vk) − txnum(vq)), Case (b)

Let dist(v, vq) = k where k ≥ 1. In Case (a), from Inequality (3),
txnum(vq) < α. Let txnum(vq) = α − j, 1 ≤ j < α. Following Lemma 2,
the nodes between v and vq (i.e., Sq) contain at most j number of trans-
actions. The control message cost sent to v due to these transactions is:∑

vk∈Sq
(txnum(vk) − txnum(vq)) < j · k. Thus,

Cvq
> C + α · k − (α − j) · k − j · k > C.

In Case (b), txnum(vq) < 2α by the Inequality (4). Let txnum(vq) = 2α− l,
for 1 ≤ l < 2α. By Lemma 1, there are at most l transactions between v and
vq, and control message cost sent to v due to them is:

∑
vk∈Sq

(txnum(vk)−
txnum(vq)) < l · k. Thus

Cvq
> C + 2α · k − (2α − l) · k − l · k > C.

Now, we analyze Case (c). Based on the position of vq, it can have two
sub-cases:
Case (c.1): vq ∈ P . There is no extra movement of o and the z ≥ 1 number
of transactions that previously depend on v now send control messages to vq

to access o. So, the total communication cost Cvq
compared to C becomes:

Cvq
= C + z · dist(v, vq) > C.

Case (c.2): vq /∈ P but the path from v to vq contains at least one other
supernode in S. The node vq lies below the bottommost supernode of cur-
rent branch. Let vbot ∈ S be the bottommost supernode in the path between
v and vq. When vq is selected as a supernode, there will be extra move-
ment of object o from vbot up to vq. If vbot = vlast, and o moves up to
vq. Otherwise, object o also needs to return back at vbot. Let M repre-
sents the cost due to the movement of object o between vbot and vq, then,
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M > α · dist(vbot, vq). Thus, the total communication cost Cvq
compared

to C in this case becomes: Cvq
= C + z · dist(v, vq) + M > C.

(iii) Merging multiple supernodes at some ancestor node increases communica-
tion cost:
Consider two supernodes vr, vs ∈ S have a common ancestor vy. Instead of
vr and vs, let vy be chosen as a supernode. Since vy is ancestor of both vr

and vs, following argument (i), total communication cost Cvy
of selecting

vy as a supernode instead of vr and vs is more compared to C.
(iv) Splitting any supernode into multiple supernodes increases communication

cost:
Consider a supernode vj ∈ S. Let vx, vz be two descendant nodes of vj at
two different sub-branches. Let vx and vz are chosen as two different supern-
odes instead of vj . Since both vx and vz are descendants of vj , following
argument (ii), total cost Cvxz

of selecting vx, vz as supernodes instead of vj

is more compared to C.
The set of supernodes S computed in algorithm Single-Object is unique.
If any new node is added to S or any node in S is removed or replaced by
another node, the total communication cost increases. This means that
scheduling by algorithm Single-Object minimizes the communication
cost. �	

Next we consider the transaction-migration technique. Let γ be the cost of
moving a transaction over a unit weight edge of G. Consider algorithm Single-
Object modified such that transactions are moved to supernodes instead of
sending control messages and the cost of moving transaction replaces the cost of
sending control messages, in that we use the parameter γ instead of β. After these
modification in algorithm Single-Object and its analysis, we obtain optimality
similarly as stated in Theorem 1.

Theorem 2. Algorithm Single-Object provides 2-approximation in commu-
nication cost without optimization.

4 Multiple Objects

We provide two scheduling algorithms for multiple shared objects, which extend
the single object algorithm above. For the control message technique, we present
the algorithm denoted as MultipleObjects-CtrlMsg, which provides an
O(1)-approximation. For the transaction-migration technique, our algorithm is
denoted as MultipleObjects-TxMigr, which provides O(k)-approximation,
where k is the maximum number of shared objects accessed by a transaction.

We consider a set of shared objects O = {o1, o2, . . . , oδ} initially positioned
at arbitrary nodes of G. We assume that each object has size α. Each transaction
in T accesses a subset of objects in O. Let objs(Ti) ⊆ O be the set of objects
accessed by transaction Ti. We assume that each object has a single copy and
home(oi) ∈ V represents the home node at which object oi is originally posi-
tioned. The ownership of an object is also transferred with the movement of that
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object. Similarly, home(Ti) ∈ V represents the node at which transaction Ti is
positioned.

The idea in the algorithms is to provide synchronized accesses to the objects
with minimum cost while executing the transactions in order. We achieve this
extending the techniques used in algorithm Single-Object. In particular, we
compute supernodes w.r.t. each object and the transactions requiring those
objects. We then perform iterative pre-order tree traversal to move each object
to the respective supernodes and execute transactions in order.

For brevity, let Ti be a transaction that requires objects in objs(Ti) =
{ox, . . . , oz}. Let svi(ox), . . . , svi(oz) be the respective supernodes (computed
using algorithm Single-Object w.r.t. each object) at which Ti can access
ox, . . . , oz, respectively. Then, one way of providing synchronised access to the
required objects by Ti is to bring each object in objs(Ti) at the respective supern-
ode (i.e., svi(ox), . . . , svi(oz)) at the same time so that Ti can access them by
sending control messages. This approach is used in the control-message tech-
nique. The other way is to gather all the objects in objs(Ti) at a single node
sv(Ti) (i.e., common supernode for Ti) and access them at that node by migrat-
ing Ti. This approach is used in the transaction-migration technique.

We now describe how transactions are executed in order and the objects are
moved from one supernode to the next minimizing the communication cost. As
in algorithm Single-Object, this can be achieved using iterative pre-order tree
traversal algorithm in G, provided that there is a single reference point, i.e., root
node. We find a virtual root (v′

root) of tree G as a single reference point.
In the control-message technique, any node of G can be selected as the virtual

root (v′
root). In the transaction-migration technique, if all the objects are initially

positioned at the same node, that node is selected as the virtual root of G. If
objects are positioned at different nodes initially, we compute the virtual root
with respect to the initial positions (home nodes) of transactions and the objects
they access. The virtual root of tree G is the node in G from which the sum of
distances to home nodes of all the transactions and the objects they access is
the minimum, that is,

v′
root = vi : W (vi) = min

v∈V
W (v), (5)

where

W (v) =
n∑

j=1

(
dist(v,home(Tj)) +

∑

o∈objs(Tj)

dist(v,home(o))
)
.

Multiple Objects with Control Messages. The algorithm for the control-
message technique is named MultipleObjects-CtrlMsg. The algorithm runs
in two phases.

Phase 1: We compute sets of supernodes S(oi) w.r.t. each object oi ∈ O indi-
vidually following algorithm Single-Object without optimization. For each
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oi, home(oi) is assumed as the root of G during the computation of respective
supernodes S(oi). If a transaction Ti requires an object oj , Ti accesses oj at
supernode sv(Ti(oj)) ∈ S(oj).

Phase 2: We find transaction execution schedule E and paths of movement for
each object oi ∈ O along their respective supernodes. For this, let a random
node in G be selected as the virtual root v′

root of G. We perform an iterative
pre-order tree traversal in G starting from v′

root. During the traversal, if there
is a transaction Tj at current node vcur, Tj is added to the schedule E and each
object ok required by Tj . In notation, ok ∈ objs(Tj)) is scheduled to move to
the respective supernode svj(ok). When the traversal of G completes, all the
transactions get scheduled and the execution ends.

Lemma 4. An object o may traverse an edge along the path from home(oi) to
v′

root at most three times.

Theorem 3. Algorithm MultipleObjects-CtrlMsg provides a 3-approxim-
ation of communication cost.

Proof. Let S(oi) be the set of supernodes computed with respect to object oi ∈ O
following algorithm Single-Object without optimization. Let Pi be the pruned
tree containing nodes only up to the supernodes S(oi) starting from home(oi) in
G. Let Cobj denotes the cost of moving object oi at each edge inside Pi only once
and Cctrl denotes the communication cost incurred due to the control messages
sent from transactions beyond Pi in G. By the analysis of algorithm Single-
Object, oi visits each edge of Pi at most twice during the execution. Theo-
rem 1 shows that the set of supernodes computed in algorithm Single-Object
provides the minimum communication cost and Theorem 2 shows that algo-
rithm Single-Object without optimization provides 2-approximation. Thus,
if COPT (oi) be the optimal communication cost for accessing oi by a set of
transactions T , then,

Cobj + Cctrl ≤ COPT (oi) ≤ 2(Cobj + Cctrl) (6)

and COPT =
∑

oi∈O COPT (oi).
The algorithm in MultipleObjects-CtrlMsg uses the same set of

supernodes S(oi) computed in algorithm Single-Object without optimiza-
tion and object oi does not move beyond the pruned tree Pi. So, Cctrl for
MultipleObjects-CtrlMsg remains the same. From Lemma 4, object oi may
traverse an edge inside Pi at most 3 times. Thus, if CALG(oi) represents the total
communication cost for accessing oi by a set of transactions T , then,

CALG(oi) ≤ 3Cobj + Cctrl (7)

Equations (6) and (7) imply

CALG(oi) ≤ 3 · COPT (oi) (8)
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This gives the estimate

CALG =
∑

oi∈O
CALG(oi) ≤

∑

oi∈O
(3 · COPT (oi)) ≤ 3 · COPT ,

where CALG represents the total communication cost in MultipleObjects-
CtrlMsg for executing all the transactions accessing multiple objects and COPT

represents that of any optimal algorithm. �	

Multiple Objects with Migration of Transactions. The algorithm for
multiple objects implemented in the transaction-migration technique is named
MultipleObjects-TxMigr. First, we discuss the algorithm assuming all the
objects are initially positioned at the same node, the virtual root v′

root, of G.
Later, we relax the algorithm where objects can be positioned initially at arbi-
trary nodes in G.

The algorithm works in four phases. In Phase 1, we compute sets of supern-
odes with respect to individual object oi ∈ O. In Phase 2, we find a common
supernode for each transaction T ∈ T where all the required objects for T can
be gathered together. In Phase 3, we finalize the set of common supernodes.
Finally, in Phase 4, we perform iterative pre-order tree traversal on G to create
transaction execution schedule and object movement paths along the common
supernodes. We describe each phase below.

Phase 1: In this phase, we compute supernodes with respect to each object
oi ∈ O using algorithm Single-Object without optimization where control
message cost β over an edge is replaced with the transaction migration cost γ.
Let S(oi) be the set of supernodes with respect to object oi ∈ O and sv(T (oi)) ∈
S(oi) represents the supernode for transaction T at which T accesses oi. After
this, each transaction Tj ∈ T has a set of respective supernodes sv(Tj(oi)) to
access each required object oi ∈ objs(Tj). Since all the objects in objs(Tj) need
to gather at a single node, a common supernode sv(Tj) for transaction Tj is
selected out of all sv(Tj(oi)) in the next phase.

Phase 2: In this phase, we find a common supernode of objects sv(T ) for each
transaction T ∈ T . The objective of selecting a common supernode for a trans-
action is to allow all the required objects for that transaction to gather together
at the common supernode. After that, the transaction is also migrated at the
common supernode and all the required objects are accessed locally. For a trans-
action T , if all the supernodes sv(T (oi)), oi ∈ objs(T ), computed in Phase 1
are the same, it automatically becomes the common supernode for T . If they
are different, then we select the one among sv(T (oi)), oi ∈ objs(T ), which is the
closest from v′

root.

Phase 3: In this phase, we compute the final set of supernodes FinalSV in G
where respective transactions and the required objects are gathered together.
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From Phase 2, we have a set of common supernodes sv(T ) for each transac-
tion T ∈ T . For each common supernode v ∈ sv(∗), following information is
maintained separately:

– numtxs(v): total number of transactions that selected v as a common supern-
ode.

– objs(v): set of objects with respect to which the node v is a supernode.
– txs(v(oi)), oi ∈ objs(v): set of transactions requiring object oi that have

selected v as the common supernode.

Let P be the pruned tree containing the nodes of G only up to the common
supernodes moving down from v′

root. Starting from every leaf node of P towards
v′

root, we check at each node how many transactions have selected it as a com-
mon supernode. Particularly, if v ∈ P is a leaf node in P and is selected as a
common supernode with respect to the set of objects objs(v), then, we check if
numtxs(v) · γ ≥ 2α · |objs(v)|. If the condition is satisfied, v belongs to FinalSV
with respect to all objects in objs(v). Otherwise, for each object oi ∈ objs(v),
we check how many transactions requiring the object oi have selected v as the
common supernode in Phase 2. Let txs(v(oi)) be the set of transactions requiring
object oi that have selected v as a common supernode. If |txs(v(oi))| · γ ≥ 2α,
v belongs to FinalSV. But if |txs(v(oi))| · γ < 2α, we visit its parent node
parent(v), find the set of transactions txs(parent(v)(oi)) requiring object oi that
have selected parent(v) as the common supernode. At the parent node parent(v),
we again check if (|txs(v(oi))| + |txs(parent(v)(oi))|) · γ ≥ 2α. If the condition
is met, parent(v) belongs to FinalSV and all the transactions in txs(v(oi)) that
previously selected node v as the common supernode now select parent(v) as the
common supernode. Otherwise, if the condition is not met, we repeat the same
procedure by selecting the parent of parent(v) and so on until the inequality

(|txs(v(oi))| + |txs(parent(v)(oi))| + . . . ) · γ ≥ 2α

is satisfied or reach at v′
root. We apply this approach recursively until at each

leaf node v ∈ P , numtxs(v) ·γ ≥ 2α where P is the pruned tree containing nodes
only up to final set of common supernodes FinalSV starting from v′

root.

Phase 4: In this phase, we find the transaction execution schedule E and the
paths of movement for each object oi ∈ O along their respective supernodes. We
find the pruned tree P containing the nodes up to the common supernodes in
FinalSV starting from v′

root. Then we perform iterative pre-order traversal on P
starting from v′

root. At each current visited node v, if v ∈ FinalSV, then all the
transactions which have selected v as their common supernode (i.e., sv(T∗) = v)
are added to the execution schedule E . Additionally, the objects in O for which
v is a common supernode (i.e., objs(v)) are scheduled to move at v. An object
ok ∈ objs(v) remains at v until all the transactions that require ok finish their
executions. After all the transactions that require object ok ∈ objs(v) finish
their executions, ok can move to the next common supernode in the order where
other transactions are waiting for it. When the traversal of P completes, all the
transactions get scheduled and the algorithm ends.
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Theorem 4. Algorithm MultipleObjects-TxMigr provides k-approxim-
ation in communication cost, where k is the maximum number of objects a trans-
action accesses.

Proof. After computing the final set of common supernodes FinalSV, at the
bottommost common super v ∈ FinalSV in each branch of G, the number of
transactions that require object o are at least 2α. These 2α number of transac-
tions in the sub-tree of v may require k ≤ δ number of objects in O. Thus node v
can be a common supernode for all those 2α transactions with respect to k ≤ δ
objects. During the execution, these k objects are moved from v′

root to v and the
cost is k ·2α ·dist(v′

root, v). Instead, if we move those 2α transactions up towards
some closest common supernode vj that contains at least k ·2α number of trans-
actions, then the cost due to transaction migration increases by 2α · dist(vj , v)
reducing the object movement cost by k · 2α · dist(vj , v). That means the total
cost may increase by at most a k factor from optimal. �	

Arbitrary Initial Positions of Objects. We discuss algorithm
MultipleObjects-TxMigr with the relaxed setting where objects are located
at arbitrary nodes of G initially. In this case, before Phase 1, we compute the
virtual root v′

root of G using Eq. 5. All the objects in O are then moved to v′
root.

After this, algorithm continues with Phase 1 to Phase 4 as it is. There is an extra
cost incurred before Phase 1 due to the movements of objects from their home
nodes to the virtual root. Let Cextra represents this cost due to the movements
of objects from their home nodes to vroot which is:

Cextra =
∑

oi∈O
α · dist(home(oi), v′

root) (9)

Let FinalSV be the finalized set of common supernodes computed in Phase
3 of algorithm MultipleObjects-TxMigr after moving all objects in O to
v′

root. Let Cmov be the total cost due to the movements of objects from v′
root

to their respective common supernodes in FinalSV following the iterative pre-
order tree traversal. Now, let S(oi) be the sets of supernodes computed with
respect to each object oi ∈ O positioned at the respective home node and using
algorithm Single-Object without optimization. Let Copt−mov denotes the total
cost due to the movements of objects in their respective supernodes in S(o∗)
following iterative pre-order tree traversal. By Theorem 2, we have that Copt−mov

is asymptotically optimal with respect to the objects movement cost.
If Cextra+Cmov ≤ k·Copt−mov, then algorithm MultipleObjects-TxMigr

has performance as in Theorem 4 in the relaxed setting as well. Otherwise, by
Eq. 5, it provides O(α · k · D)-approximation in the relaxed setting because of
the bound dist(home(o), v′

root) ≤ D, where D is the diameter of tree G.
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2014. LNCS, vol. 8576, pp. 54–67. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09620-9 6

https://doi.org/10.1007/978-3-642-24550-3_19
https://doi.org/10.1007/978-3-642-24550-3_19
https://doi.org/10.1007/s00446-014-0214-7
https://doi.org/10.1007/s00446-014-0214-7
https://doi.org/10.1007/3-540-47993-7_8
https://doi.org/10.1007/978-3-319-09620-9_6
https://doi.org/10.1007/978-3-319-09620-9_6


Perpetual Torus Exploration by Myopic
Luminous Robots

Omar Darwich1, Ahmet-Sefa Ulucan2, Quentin Bramas1, Anissa Lamani1(B),
Anaı̈s Durand3, and Pascal Lafourcade3

1 University of Strasbourg, CNRS UMR 7357, ICUBE, Strasbourg, France
alamani@unistra.fr

2 University of Strasbourg, Strasbourg, France
3 University Clermont Auvergne, CNRS UMR 6158, LIMOS, Clermont-Ferrand, France

Abstract. We study perpetual torus exploration for swarm of autonomous,
anonymous, uniform, luminous robots with a common chirality. We consider
robots with only few capabilities. They have a finite limited vision (myopic),
they can only see robots at distance one or two. We show that the problem is
impossible with only two luminous robots and also with three oblivious robots
(without light). We design an optimal algorithm for three luminous robots using
two colors and with visibility one. We also propose an optimal algorithm with
visibility two with four oblivious robots.

Keywords: Perpetual exploration · Luminous robots · Torus-shaped network

1 Introduction

Swarm robotics has drawn a lot of attention the past decade. Inspired by natural systems,
a lot of investigations focused on how to reproduce autonomous behaviors observed in
nature within artificial systems. Given a collection of autonomous mobile entities called
robots, the main focus is to determine the minimum hypothesis in order for the robots to
solve a given task. Robots can evolve either on a continuous 2D plane on which they can
freely move or on a discrete universe, generally represented by a graph, where nodes
indicate possible locations of the robots and the edges the possibility for the robots to
move from one node to another.

In this paper, we assume that the mobile robots are autonomous (i.e. there is no
central authority to coordinate their move), anonymous (i.e. they have no identity), uni-
form (i.e. they all execute the same algorithm) and luminous (i.e. they are endowed with
lights of different colors). Moreover, they cannot communicate directly but are endowed
by visibility sensors allowing them to sense their environment within a certain distance
called visibility range. We assume myopic robots that can only sense at small distances.
Robots operate in the well-known LCM model. That is, they operate in cycles which
comprise three phases: Look, Compute, andMove. During the first phase (Look), robots
take a snapshot of their environment using their visibility sensors. In the second phase
(Compute), based on the taken snapshot, they first decide whether to move or remain
idle and then whether they change their color. If they decide to move, they compute a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 164–177, 2022.
https://doi.org/10.1007/978-3-031-21017-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21017-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-21017-4_11


Perpetual Torus Exploration by Myopic Luminous Robots 165

neighboring destination. Similarly, they compute a new color if they decide to change
it. Finally, in the last phase (Move), they move to the computed destination (if any) and
they change their color (if they decided to). We consider the fully synchronous model
(FSYNC) in which all robots execute the LCM cycle synchronously and atomically.

In the following, we investigate the case in which the robots have to solve the per-
petual exploration problem. In this problem, robots evolve in a discrete universe and
have to ensure that each location (node) is visited by at least one robot infinitely often.
We are interested in torus shaped networks and focus on optimal exclusive solutions
with respect to both the visibility range and the number of robots. Exclusiveness add
an additional constraint on robots behavior as they can neither occupy the same node
simultaneously or traverse the same edge at the same time.

2 Related Work

The exploration problem is considered as one of the benchmarking tasks when it comes
to robots evolving on graphs. Various topologies have been considered: lines [14], rings
[1,9,12,15,16], tori [11], grids [2,4,5,10], cuboids [3], and trees [13]. Two variants of
the problem has been investigated: (i) the perpetual exploration problem [1–3,17], con-
sidered in this paper, which requires the robots to visit each node of the graph infinitely
often and (ii) the terminating exploration problem [9–15] which requires the robots to
visit each node of the graph at least once and then stop moving.

Most of the investigations consider robots with unlimited visibility range allow-
ing them to observe every node of the system [1,2,10–15]. Robots are in this case
oblivious (i.e. they cannot remember past actions) and have to solve the terminating
exploration problem. Myopic robots have also been considered in both variants of the
problem [4,6,8,9,16]. When it comes to the perpetual exploration problem, an addi-
tional assumption has an impact on the feasibility of the task and the optimality of the
proposed solutions. This assumption endow the robots with a common chirality. In fact,
chirality is usually assumed when robots evolve in the continuous 2D Euclidean plan
but some investigations have also considered it recently in the discrete universe. On
finite grids, it has been shown that two (resp. three) synchronous robots with three col-
ors (resp. one color) are sufficient to solve the problem when robots have visibility one
and share a common chirality [6]. The case in which robots have no common chirality
was investigated in [17]. It was proven that the problem is not solvable with only two
robots having any finite number of colors and a finite visibility range. An optimal solu-
tion is also presented using only three robots having visibility range one, using only
three colors. The case in which robots are oblivious and visibility range 2 was solved
using five robots. In the case of infinite grids, assuming robots with visibility range one
and few colors (O(1)), five (resp. six) synchronous robots are necessary and sufficient to
solve the problem with (resp. without) the common chirality assumption [4,5]. Finally,
in the case of cuboids, it has been shown in [3] that three synchronous robots with a
common chirality endowed with five colors are necessary and sufficient to solve the
perpetual exploration problem.

Contribution: We first present two impossibility results: we start by showing that the
perpetual torus exploration problem is not solvable with only two robots if the number
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of colors is finite and their visibility range is limited. We then show that three oblivious
robots are not sufficient to solve the PTE problem. Next, we propose two optimal solu-
tions A2

3 and A1
4 with respect to both the number of robots and the number of colors

for the case of visibility one and two respectively. Table 1 summarizes our contribution:

Table 1. Summary of our results.

Visibility # Robots # Colors Algorithm

Finite 2 Finite Impossible (Theorem 1)

Finite 3 1 Impossible (Theorem 2)

1 3 2 A2
3

2 4 1 A1
4

3 Model

We consider a set R of n > 0 robots located on a torus. A graph G = (V,E) is a
(l, L)-torus (or torus for short) if |V | = l × L and for any v(i,j) ∈ V ; i ∈ [0, l − 1],
j ∈ [0, L − 1]:

– {v(i,j), v((i+1) mod l,j)} ∈ E, and
– {v(i,j), v(i,(j+1) mod L)} ∈ E.

The order on the nodes of G forms a coordinate system. For example node v(i,j) is
at coordinate (i, j), or, the node is at column i and row j. For simplicity we note node
(i, j) instead of v(i,j). This order/coordinate is used for the analysis only, i.e., robots
cannot access it.

At each time instant called a round, the robots synchronously perform a Look-
Compute-Move cycle. In the Look phase, a robot gets a snapshot of the subgraph
induced by the nodes within distance Φ ∈ N

∗ from its position. Φ is called the visibility
range of the robots. The snapshot is not oriented in any way as the robots do not agree
on a common North. However, it is implicitly ego-centered since the robot that performs
a Look phase is located at the center of the subgraph in the obtained snapshot. Robots
agree on a common chirality. Then, each robot computes a destination (either Up, Left,
Down, Right or Idle) based only on the snapshot it received. Finally, it moves towards
its computed destination. We also assume that robots are opaque, i.e., they obstruct the
visibility in such way that if three robots are aligned, the two extremities cannot see
each other. We forbid any two robots to occupy the same node simultaneously. A node
is occupied when a robot is located at this node, otherwise it is empty.

Robots may have lights with different colors that can be seen by robots within dis-
tance Φ from them. We denote by Cl the set of all possible colors. For simplicity, we
assume that all tore has dimensions l × L where l, L ≥ nΦ + 1.

The state of a node is either the color of the light of the robot located at this node,
if it is occupied, or ⊥ otherwise. In the Look phase, the snapshot includes the state of
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the nodes (within distance Φ, including its current node). During the compute phase, a
robot may decide to change the color of its light.

In all our algorithms, we also prevent any two robots from traversing the same edge
simultaneously. Since we already forbid them to occupy the same position simulta-
neously, this means that we additionally prevent robots from swapping their position.
Algorithms verifying this property are said to be exclusive. However, to be as general
as possible, we do not make this additional assumption in our impossibility results.

In the following, we borrow some of the definitions already presented in [17].

Configurations. A configuration C in a torus G(V,E) is a set of pairs (p, c), where
p ∈ V is an occupied node and c ∈ Cl is the color of the robot located at p. A node p is
empty if and only if ∀c, (p, c) /∈ C. We sometimes just write the set of occupied nodes
when the colors are clear from the context.

Views. We denote by Gr the globally oriented view centered at the robot r, i.e., the
subset of the configuration containing the states of the nodes at distance at most Φ from
r, translated so that the coordinates of r is (0, 0). We use this globally oriented view in
our analysis to describe the movements of the robots: when we say “the robot moves
Up”, it is according to the globally oriented view. However, since robots do not agree
on a common North, they have no access to the globally oriented view. When a robot
looks at its surroundings, it instead obtains a snapshot. To model this, we assume that
the local view acquired by a robot r in the Look phase is the result of an arbitrary indis-
tinguishable transformation on Gr. The set IT of indistinguishable transformations
contains the rotations of angle 0 (to have the identity), π/2, π and 3π/2, centered at r.
Moreover, since robots may obstruct visibility, the function that removes the state of a
node u if there is another robot between u and r is systematically applied to obtain the
local view. Finally, we assume that robots are self-inconsistent, meaning that different
transformations may be applied at different rounds.

It is important to note that when a robot r computes a destination d, it is relative
to its local view f(Gr), which is the globally oriented view transformed by some f ∈
IT . So, the actual movement of the robot in the globally oriented view is f−1(d). For
example, if d = Up but the robot sees the torus upside-down (f is the π-rotation), then
the robot movesDown = f−1(Up). In a configuration C, VC(i, j) denotes the globally
oriented view of a robot located at (i, j).

Algorithm. An algorithm A is a tuple (Cl , Init , T ) where Cl is the set of possible
colors, Init is a mapping from any considered torus to a non-empty set of initial config-
urations in that torus, and T is the transition function V iews → {Idle,Up,Left ,Down ,
Right} × Cl , where V iews is the set of local views. When the robots are in Configu-
ration C, a configuration C ′ obtained after one round satisfies: for all ((i, j), c) ∈ C ′,
there exists a robot in C with color c′ ∈ Cl and a transformation f ∈ IT such that one
of the following conditions holds:

– ((i, j), c′) ∈ C and f−1(T (f(VC(i, j)))) = (Idle, c),
– (((i − 1) mod l, j), c′) ∈ C and f−1(T (f(VC((i − 1) mod l, j)))) = (Right, c),
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– (((i + 1) mod l, j), c′) ∈ C and f−1(T (f(VC((i + 1) mod l, j)))) = (Left, c),
– ((i, (j − 1) mod L), c′) ∈ C and f−1(T (f(VC(i, (j − 1) mod L)))) = (Up, c), or
– ((i, (j+1) mod L), c′) ∈ C and f−1(T (f(VC(i, (j+1) mod L)))) = (Down, c).

We denote by C �→ C ′ the fact that C ′ can be reached in one round from C (n.b., �→
is then a binary relation over configurations). An execution of Algorithm A in a torus
G is then a sequence (Ci)i∈N of configurations such that C0 ∈ Init(G) and ∀i ≥ 0,
Ci �→ Ci+1.

Definition 1 (Perpetual Torus Exploration). An algorithm A solves the Perpetual
Torus Exploration (PTE) problem if in any execution (Ci)i∈N of A and for any node
(i, j) ∈ V of the torus and any time t, there exists t′ > t such that (i, j) is occupied in
Ct′ .

Notations. �t(i,j)(C) denotes the translation of the configuration C of vector (i, j).

4 Impossibility Results

Lemma 1. Let A be an algorithm using a set R of n > 0 robots. If A solves the
exploration problem for any torus then, there exists a tori such that for any execution
(Ci)i∈N of A on this torus, there is a configuration Ci such that the distance between
the two farthest robots is at least 2Φ + 3.

Proof. We proceed by contradiction. Assume, there is an algorithm A that solves the
PTE problem and let 0 < B be the farthest any of the robots will be from each other, in
any torus. Let (Ci)i∈N be the execution of A on a very large torus l, L � B. When all
robots are at distance at most B, then the occupied positions are included in a square
sub-grid of size B × B. Since the number of possible configurations included in a sub-
grid of size B × B is finite, there must be two indices t1 and t2, when the positions
and colors of the robots in the corresponding sub-grids are the same, formally, such that
Ct2 = �t(i,j)(Ct1) and t1 < t2 for a given translation �t(i,j). By making the adversary
choose the same rotation, the movements done by the robots in configurations Ct1 and
Ct2 are the same as each robot has the same globally oriented view in both configura-
tions, only their positions on the torus change. Thus Ct2+1 = �t(i,j)(Ct1+1) and so on so
forth, so that ∀x, Ct2+x = �t(i,j)(Ct1+x). We obtain that the configurations are periodic
with period p = t2 − t1, up to translation.

Suppose, that the torus being explored is of dimensions l × L with l =
3np3 max(|i|, 1) and L = 3np3 max(|j|, 1). The dimensions of the torus are propor-
tional to the non-null scalar components of translation �t(i,j) i.e., i3np3 ≡ 0 mod l and
j3np3 ≡ 0 mod L. This means that,

(�t(i,j))3np3
(Ct1) = �t(i3np3,j3np3)(Ct1) = �t(0,0)(Ct1) = Ct1 .

Since translation �t(i,j) is performed in p rounds, after p × 3np3 = 3np4 rounds, all
robots will retake their initial positions, so the whole configuration is periodic with
period 3np4. In this setting, a node is visited infinitely often if and only if it is vis-
ited between round t1 and t1 + 3np4. Now we have to prove that some nodes are left
unvisited between round t1 and t1 + 3np4.
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Between time t1 and t1 + 3np4, each robot visits at most 3np4 nodes, hence all the
robots visit at most n × 3np4 nodes after t1. However, there are at least 9n2p6 ≤ l × L
nodes in the torus. Hence, there exist some nodes which are not visited infinitely often,
which is a contradiction.

Note that we only proved there are some nodes that are not perpetually visited.
Nevertheless, observe that at most nt1 nodes are visited before t1 and we can increase
arbitrarily the chosen period p by a factor f ∈ N

∗ without changing the result (in
particular t1 does not depend on f ). By taking f ≥ 1 such that 9n2(fp)6−3n2(fp)4 >
nt1, we have that the number of visited nodes (before or after t1) is nt1 + 3n2(fp)4

and is smaller than the number of nodes in the torus (9n2(fp)6), hence there is at least
one node that is never visited. This implies that the impossibility also holds for non-
perpetual algorithms as well (where each node must be visited at most once). ��

We restate the following lemma proven in [5].

Lemma 2. A robot with self-inconsistent compass and that sees no other robot, either
stays idle or the adversary can make it alternatively move between two chosen adjacent
nodes.

Theorem 1. It is impossible to solve the exploration problem with two myopic robots
equipped with self-inconsistent compasses that agree on a common chirality.

Proof. By Lemma 1, there is a torus and a configuration where the two robots are at
distance 2Φ + 3 from each other. In this case the two robots are isolated. By Lemma
2, the two robots will remain idle or the adversary can make them alternatively move
between two nodes, never being in vision from each other and never visiting another
node. ��

Theorem 2. It is impossible to solve the exploration problem with three anonymous,
oblivious and myopic robots equipped with self-inconsistent compasses that agree on a
common chirality.

Proof. By Lemma 1, there is a torus and a configuration where the distance between
the two farthest robots is 2Φ + 3 from each other. We have one of the two following
possibilities, (i) there are three isolated robots, or (ii) there is an isolated robot and two
robots in vision from each other.

In the first case, it is easy to see that the three isolated robots cannot explore the
torus because, by Lemma 2, they have to stay idle or the adversary can make them
alternatively move between two nodes, never being in vision from each other and never
visiting another node.

In the second case, the two robots that see each other cannot travel together in a
direction (because they have the same view). All they can do is get either closer to each
other or further from each other. Formally, there is a point P at the middle of the two
robots and, if they stay in vision, they will always be at the same distance from that
point. The two robots can explore a subgrid Φ × Φ centered at a given middle point.
This point is at distance at least 3Φ

2 + 2 from the isolated robots.
If the two robots in vision gets isolated from one another, they will be at distance

Φ
2 + 1 from the middle point. In this case, the closest robot to the originally isolated
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Fig. 1. Rules for moving straight.

robot will be at distance Φ + 1. Now the three robots are isolated, and, as in the first
case, they cannot explore the torus. ��

5 Visibility Range One:A2
3

We present an algorithm, denoted by A2
3 , which assumes a visibility range one and

uses three robots and two colors. By Theorem 1, A2
3 is optimal w.r.t. the number of

robots, and by Theorem 2, A2
3 is also optimal w.r.t. the number of colors. Animations

are made available online [7] to help the reader visualize the algorithm.
The idea of the algorithm is to make the robots alternate between exploring a row

and exploring a column. To explore the whole torus, robots move so that all the nodes of
the torus are explored eventually often. More precisely, after exploring row ri and col-
umn cj , the robots will proceed at exploring row ri−1 mod L and then column cj−1 mod l

and so on.
Initially the robots are co-linear with respectively color L, F , F 1. The line of the

torus on which they are located is considered as a row. The robot with color F which
does not sense the robot of color L moves up changing its color to L while the two other
robots move along their current row in the following manner: the robot initially with
color L moves away from the one with color F and the remaining robot just follows it.

To explore a row (resp. column), one robot stays idle while the two others travel in
a straight line along the nodes of the row (resp. column) being explored until they reach
the idle robot. The idle robot is located on an neighboring row (resp. column). The idle
robot has color L and is called the landmark. The two robots traveling together on a
straight line have different colors. One robot, called the follower, has color F and the
other robot, called the leader, has color L. To explore a row (resp. column), the two
robots have to be next to each other on that row (resp. column). The follower always
follows the leader and leader always moves away from the follower. This is done by
executing the rules presented in Fig. 1.2

The tricky part of this algorithm is how robots switch from exploring a column to
exploring a row and vice versa. When exploring a column, the robot left behind (aka the
landmark) is on the right side of the traveling group. When the leader of the traveling
group reaches the landmark, it moves away from the landmark on its current row and

1 Note that any reachable configuration can be an initial configuration.
2 In all figures, colored letters inside nodes indicate the color of the robots occupying the nodes.
Moreover when a colored letter is given next to a node, it indicates which color the robot will
take in the next round.
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updates its color to F . Meanwhile, the follower continues to follow the leader. In the
next round, the three robots are aligned on the same row. The landmark then moves
away from the follower and remains on its row followed by the follower. These two
robots become the new traveling group. Whereas the leader, moves to the next row so
that it becomes on the left side of the traveling group. That is, the landmark and the
leader switch their roles and the new traveling group proceed at the exploration of the
row on which there are located. The rules relative to this operation are presented in Fig.
2. The corresponding sequence of configurations is illustrated in Fig. 3.

Fig. 2. Rules for switching from moving upward to sideward.

Fig. 3. Sequence of configurations when robots move from exploring a column to exploring a
row.

The traveling group are now exploring a row, when they reach the landmark again,
the landmark is this time, on the right side. The robots proceed to move to the next col-
umn to be explored. More precisely, when the leader reaches the landmark, it continues
forward on its current row and changes its color to F . The follower also continues to
move towards the leader. After one round, the robots will be in a L-shaped form with
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two robots colored F and one robot colored L. In the next round, the two robots on
the left form the new traveling group and they both move to explore the new column.
The robot on the right, moves down and changes its color to L, it becomes the new
landmark. The set of rules relevant to this sequence is in Fig. 4 and the corresponding
sequence of configurations are presented in Fig. 5.

Fig. 4. Rules for switching from moving upward to sideward.

Fig. 5. Sequence of configurations when moving from exploring a row to exploring a column.

It is important to note that every node on a column/row is visited during the explo-
ration of that column/row. Also, the landmark moves two nodes to the left and one node
up when going from exploring a column to exploring a row. And, it moves one node
to the right and two nodes downward when going from exploring a row to exploring
a column. This means that between two consecutive columns (rows) exploration, the
landmark moves one node to the left and one node downward.

Theorem 3. A3
2 solves the PTE problem with three robots and two colors.

Proof. By induction on l × L, where l is the number of columns and L is the number
of rows of the torus.

We have validated the base case, for tori of size 4×4, using our simulation tool. Such
a checking is easy since, from a given initial configuration, there is only one possible
execution (the algorithm is well-defined and the execution is synchronous). So, we just
have to execute the algorithm until reaching an already encountered configuration from
which all the nodes have been visited.
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We assume now that A3
2 solves the PTE problem in all tori x × y with 4 ≤ x ≤ l

and 4 ≤ y ≤ L for some values l, L ≥ 4 and show that A3
2 solves also the PTE problem

in a torus of size l × (L + 1) and (l + 1) × L.
Consider first the torus of size l × (L + 1). Then, it is easy to see that after adding

one row, our algorithm still solves the PTE problem. Indeed, when robots are traveling
upward (i.e. they are exploring a row), they move in a straight line periodically until they
reach the landmark, so adding one row just increases by one the number of times they
perform their periodic movement. And, when robots are traveling sideward (i.e. they
are exploring a column), they visit all the nodes of the corresponding column.

Now, for the torus of size (l + 1) × L. The same argument from the torus of size
l × (L + 1) could be used. When robots are traveling sideward, they will perform an
extra step for the added column. And, when they travel upward, they will revisit the
same nodes visited during the exploration of rows. ��

6 Visibility Range Two: A1
4

We present an algorithm, denoted by A1
4 , which assumes a visibility range two and uses

four oblivious robots. A1
4 is optimal w.r.t. the number of colors. By Theorem 2, A1

4 is
optimal w.r.t. the number of robots, for oblivious robots. Animations are made available
online [7] to help the reader visualize the algorithm.

The idea of the algorithm is to make the robots explore the torus rows by rows in
a given direction. This is achieved as follows: Three robots, referred to as the traveling
group, move to explore three adjacent rows at the same time, and one robot is left behind
to be used as their landmark. When the traveling group reaches the landmark, all four
robots perform a three rounds sequence to move to the next rows to be explored.

When exploring the rows, the traveling group form a > shape. That is, two robots
are located on the same column separated by one empty node, denoted u. And, on the
right of u, the third robot is placed. The three robots move to the right until they sense
the landmark. Note that the direction is pointed by the third mentioned robot. Figure 6
presents the rules executed by the robots part of the traveling group.

R

R

R

R

R

R

R

R

R

Fig. 6. Rules for three robots moving straight.

The landmark is left behind so that the traveling group knows when they are done
exploring the current rows and have to move to the next ones. Note that the landmark
is on the same row as the top most robot. When that robot is one node away from the
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landmark it goes down, same for the landmark since they have the same view. The
bottom robot keeps going right because it does not see the landmark. And, the center
robot stays idle. After one round, the robots form a T-shape. The rules executed by the
robots are presented in Fig. 7.

R R

R

R

R R

R

R

R

R

Fig. 7. Rules executed when robots initiate rows change.

From the T-shape, the robot move to create a reverse L shape i.e. the two robots in
the center of the T-shape move down while the robot on the right goes left. Figure 8
presents the rules executed during this process.

R R R

R

R R

R

R R R

R

Fig. 8. Rules for the creation of the reverse L shape.

Within the reverse L shape, three robots are co-linear (the ones located on the long
side). Among these robots, the one in the middle moves to the right to recreate the >
shape while all the other robots remain idle. Refer to the rule presented Fig. 9. That is,
after three rounds the robots changes rows and the > shape is built again.

R R

R

R

Fig. 9. Rule for restoring the > shape.

Now the three robots on the right form the new traveling group. The robots repeat
the same behavior and hence start moving right until they reach the landmark once
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R R

R

R

R R

R

R

Fig. 10. Rules for the top most robot to keep traveling with the group.

more. There are two more rules to tell the top most robot in the traveling group to keep
following the group even if it sees the landmark at the back. These rules are presented
in Fig. 10.

It is important to note that the landmark changes its position two nodes to the right
and one node down. The fact that it moves down makes the robots always explore a new
row. Figure 11 presents the sequence of configuration during this process.

R R

R

R

R R

R

R

R R R

R

R R

R

R

R R

R

R

R R

R

R

Fig. 11. Sequence for changing rows. The red dashed arrow highlights the movement of the land-
mark. (Color figure online)

Robots form initially the reverse L shape.

Theorem 4. A4
1 solves the PTE problem with four oblivious robots.

Proof. By induction on l × L, where l is the number of columns and L is the number
of rows of the torus.

Similar to the proof of Theorem 3, we have validated one base case for l, L = 9,
using our simulation tool.

We assume now that A4
1 solves the PTE problem in all tori x × y with 9 ≤ x ≤ l

and 9 ≤ y ≤ L for some values l, L ≥ 9. We should show that A4
1 solves the PTE

problem in the tore of size l × (L + 1) and (l + 1) × L.



176 O. Darwich et al.

Consider first the torus of size (l + 1) × L. When we add one column the traveling
group will have to perform an extra round to reach the landmark again as the robots
perform a periodic movement when traveling until they observe the landmark.

Now, consider the torus of size l × (L + 1). When we add a row. The robots will
have to perform an extra row exploration: an additional three round sequence to change
rows followed by the row exploration. ��

7 Conclusion

We presented two optimal solutions for the PTE problem with respect to both the num-
ber of robots and the number of colors when robots share a common chirality and have
visibility one and two respectively. Indeed, we have shown that three robots endowed
with two colors are necessary and sufficient to solve the problem when robots have vis-
ibility one and four oblivious robots are necessary and sufficient to solve the problem
when robots have visibility two.

One direct open question is to extend the study to consider (L, l)-tori such that
l, L < nΦ + 1. Ad-hoc solutions might be needed in this case as robots observe the
same robots on different sides of the torus. Another interesting extension would be to
investigate the case in which robots are completely disoriented, i.e., they do not have
a common chirality. We conjuncture that three robots remain sufficient to solve the
problem with an additional color in the case where robots have visibility one and an
additional robot might be needed in the case of oblivious robots with visibility two.
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Abstract. Considering a system made up of n processes prone to Byzantine
failures, k-set agreement allows each process to propose a value and decide a
value such that at most k different values are decided by the correct (i.e., non-
Byzantine) processes, in such a way that, if all the correct processes propose the
same value v, they will decide v (when k = 1, k-set agreement boils down to
consensus). This paper presents a two-round algorithm that solves Byzantine k-
set agreement on top of a synchronous message-passing system. This algorithm is
based on two new notions denoted by Square and Regions which allow processes
to locally build a global knowledge on which processes proposed some values.
Two instances of the algorithm are presented. Assuming n = 3t, where t is the
maximum number of Byzantine, the first instance solves 2-set agreement. The
second one solves the more general case 2t < n ≤ 3t, where k = n−t

n−2t
is an

integer. These two algorithm instances are optimal with respect to the number of
rounds executed by the processes (namely two rounds). Combined with previous
results, this article “nearly closes” the solvability of Byzantine k-set agreement in
synchronous message-passing systems (more precisely, the only remaining case
for which it is not known whether k-set agreement can or cannot be solved is
when k = n−t

n−2t
is not an integer).

Keywords: Agreement problem · Byzantine process · Knowledge · k-set
agreement · Message-passing · Synchronous system

1 Introduction

Coordination Problems. Coordination problems are central in the design of distributed
systems where a set of n processes have to exchange information and synchronize in
order to agree in one way or another (otherwise, they would behave as independent
Turing machines, and the system would no longer be a distributed system). In such a
context, this paper is about the process coordination captured by k-set agreement (ini-
tially introduced in the context of asynchrony and process crash failures [4]). Notice that
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the value k can be seen as the degree of coordination associated with the corresponding
instance of the k-set agreement problem. The smaller k, the more coordination among
the processes: k = 1 means the strongest possible coordination (namely consensus).

Computing Model. The present paper considers a very adversarial context where,
within the set of n processes, up to t < n processes can commit Byzantine failures [8].
The processes are denoted p1, ..., pn and Π = {p1, ..., pn}.

Let us remind that a Byzantine process is a process whose behavior is not the one
defined by the code it should execute (i.e., it executes an arbitrary code, unknown by the
non-Byzantine processes). The processes that are not Byzantine are said to be correct.
Let us remind that, in the traditional Byzantine failure model adopted here, a process
crash (unanticipated halt) is considered as a Byzantine failure.

In the context of the asynchronous computing model with process crashes, it has
been shown in [6] that consensus cannot be solved even if a single process may crash,
and in [2,7,11] that k-set agreement cannot be solved if k or more processes may crash.
These computability bounds remain trivially true in the asynchronous Byzantine pro-
cess failure model. So, the present article considers the classical fully connected syn-
chronous message-passing computing model with reliable link [1,10]. In this model the
progress of the processes is governed by a sequence of rounds they execute. Each round
is composed of three consecutive steps, such that

– during the first step, each (correct) process sends a message to all the processes,
– during the second step, each (correct) process receives the messages sent to it dur-
ing the current round (let us notice that a Byzantine process can send different
messages–or no message at all– to different correct processes),

– during the third step, each (correct) process executes the same local computation
(involving the set of messages it received).

The fundamental property of the synchronous model lies in the fact that a message sent
by a correct process to a correct process during a round is received and processed by its
receiver during the very same round (this property provides the seed exploited by the
correct processes in order to ensure termination).

k-Set Agreement in Synchronous Byzantine Systems. k-set agreement can be seen as a
concurrent object that provides the processes with a single operation denoted propose().
This operation takes the value proposed by the invoking process as input parameter and
returns the value it decides. The behavior of k-set agreement is defined by the following
properties.

– Validity. If all the correct processes propose the same value v, no correct process
decides a value different from v.

– Agreement. At most k different values are decided by the correct processes.
– Termination. The invocation of propose() by a correct process terminates.

Previous Works and Content of the Article. It is shown in [3,5] that, in the synchronous
Byzantine failure model, there is no algorithm solving k-set agreement when

[
(n − t ≥ k + 1) ∧ (n ≤ 2t +

t

k
)
] ∨ [

(n − t < k + 1) ∧ (k ≤ t)
]
.
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Moreover, on the positive side, a one-round synchronous algorithm is presented in [5]
which solves k-set agreement in the presence of up to t Byzantine processes when

[
(n ≥ 2t + 1) ∧ � n − t

n − 2t
� + 1 ≤ k)

] ∨ [
(n ≤ 2t) ∧ (t < k)

]
.

It follows that, from a t-resilience point of view, the previous conditions cover all the
possible/impossible cases except the case 2t < n ≤ 3t. More precisely, it is shown
in [5] that, when 2t < n ≤ 3t, on one side there exists an algorithm that solves(� n−t

n−2t�+1
)
-set agreement in one round, and on the other side it is impossible to solve(� t

n−2t�
)
-set agreement. Unfortunately, these possibility/impossibility results and the

fact that � n−t
n−2t� + 1 − � t

n−2t� = 2, do not allow us to conclude whether or not it is
possible to solve � n−t

n−2t�-set agreement in two rounds. This case (namely, k = � n−t
n−2t�)

is the target of this article, that presents a generic two-round optimal k-set algorithm in
two different instances:

– one that, assuming n = 3t and t > 1, solves 2-set agreement,
– one that, assuming 2t < n ≤ 3t and that � n−t

n−2t� is an integer, solves k-set agreement
for k = � n−t

n−2t�.
This algorithm relies on new notions denoted by Square and Regions, which allows
a correct process to locally build a global knowledge (obtained in two rounds) on
which each process propose a value. While the algorithm is simple, the proofs of its
two instances are not.

Roadmap. The article is organised as follows. In Sect. 2 we present the basic k-set
algorithm and proves it for n = 3t, k = 2, and t > 1. In Sect. 2.5 we consider the
algorithm in a more general setting, namely 2t < n ≤ 3t and k = n−t

n−2t is an integer. In
Sect. 3 we show that the two instances of the proposed algorithm are also optimal with
respect to the number of rounds. Finally, in Sect. 4 we provide the conclusions. As we
will see, this article introduces new notions (Square and Regions on matrices of values)
and some parts of the proofs are pretty technical.

2 k-Set Agreement for n = 3t, k = 2 and t > 1

2.1 Algorithm: Local Data Structures

Each process pi manages a local matrix Mi[1..n][1..n] such that Mi[i][i] is initialized
with vi, the value it proposes and each other Mi[j][k], where j, k �= i, is initialised to
a default value denoted ⊥. Mi[j][k] contains pi’s knowledge on the value known by pj

as the value proposed by pk [9,12].

2.2 Algorithm: Code of pi

A process pi first builds its local matrix (in two synchronous rounds) and then exploits
its content to decide a value. The code executed by pi is described in Algorithm 1. It
is self-explanatory as far as the rounds are concerned. The statement at the end of the
second round (based on Squares and Regions) is developed in Sect. 2.4.
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operation propose(vi) is
(1) Mi[i][i] ← vi;
—————— round 1 —————————————-
(2) send the value Mi[i][i] to all the processes;
(3) when pi receives value v from pj doMi[i][j] ← v;
—————— round 2 —————————————–
(4) send the vector Vi = Mi[i][∗] to all the processes;
(5) when pi receives a vector V from pj doMi[j] ← V ;
—————— at the end of round 2 ————————–
(6) if pi finds a Square or Regions inMi

(7) then return(vi)
(8) else return(⊥)
(9) end if.

Algorithm 1: Algorithm executed by pi (two synchronous rounds)

2.3 Properties of a Matrix Mi

Claim. If pi and pj are two correct processes then, the row corresponding to process pj

in Mi and the one corresponding to pj in Mj are equal: Mi[j][∗] = Mj [j][∗].
Proof. Since pj is a correct process, it sends Mj [j][∗] to pi in the second round, and as
pi is also a correct process, then it receives this vector and writes it in Mi[j][∗]. Then:
Mi[j][∗] = Mj [j][∗]. �

Claim. Let pi, pj and pk be three correct processes. We have Mi[k][∗] = Mj [k][∗].
Proof. Let pi, pj and pk be three correct processes, then from the previous Claim
we have: Mi[k][∗] = Mk[k][∗] and Mj [k][∗] = Mk[k][∗]. This implies that Mi[k][∗]
= Mj [k][∗]. Which means that pj and pi have the same vision on pk. �

Fig. 1. Matrix M3 (Square example) Fig. 2. MatrixM2 (Regions example)

2.4 Basic Patterns: Squares and Regions

During the second round each process pi will analyze its matrix Mi in order to decide.
This analysis is based on patterns appearing in Mi, that we name Square and Regions.
When a process finds one of the patterns, it will decide its own proposed value, other-
wise it will decide the default value ⊥.
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Finding Square S. We say that pi finds a Square S, when (1) there exists a subset S of
processes of size n− t containing pi, such that (2) for every two processes pj and pk of
S, the value of Mi[j][k] is equal to Mi[i][i], i.e.,

1. |S| = n − t and pi ∈ S,
2. ∀pj , pk ∈ S, Mi[j][k] = Mi[i][i].

Example: Let us take n = 6, t = 2 and k = 3. p3 is a correct process with proposed
value v3 and M3 is its corresponding matrix as presented in Fig. 1. In this example p3
finds the Square S = {p1, p2, p3, p6}.
Finding Regions (R1, R2). We say that pi finds Regions (R1, R2), if it has not found
a Square and there exist two subsets of Π , R1 and R2 such that:

1. pi ∈ R1,
2. |R1| = |R2| = t,
3. R1 ∩ R2 = ∅,
4. ∀ k ∈ R1, ∀ � ∈ Π − R2 : Mi[k][�] = v,

Since pi does not find a Square, one of the Mi[k][�] values for k ∈ R1 and � ∈ R2 is
different from v, let w be that value.

5. ∀ k ∈ R1, � ∈ R2: Mi[k][�] = w,
6. ∀ k ∈ R2, � ∈ Π − R1 : Mi[k][�] = w,
7. ∀ k ∈ R2, � ∈ R1 : Mi[k][�] = v.

If for every k and l, Mi[k][l] is equal to v, then pi finds a Square as it is not the case
by hypothesis, there exists another value. Property (5) says that this value is unique.
Properties (4) and (5) mean that all the lines corresponding to R1 are equals between
them. Properties (6) and (7) mean the same thing for R2. From the properties (4) to (7),
as soon as the lines corresponding to R1 and R2 are concerned, a column contains the
same value but there is a disagreement for the column corresponding to Π − R2 − R1.
These properties do not impose any conditions on the lines corresponding to Π −R2 −
R1.

Example: Let us take n = 6, t = 2 and k = 3, suppose that p2 is a correct process
with initial value v and that M2 is its corresponding matrix, with the values represented
in Fig. 2. In this example p2 finds Regions (R1, R2), with R1 = {p1, p2}, and R2 =
{p5, p6}.

2.5 Proof of Correctness of Algorithm 1

After the construction of its matrix, a process pi checks if its matrix contains a Square
S. If it is the case, pi might be in an execution of the algorithm where all the processes
of S, including itself, are correct and have the same initial value. As the size of S is
n − t, the t remaining may be Byzantine. By validity it has to decide its initial value.
Consequently if a process finds a Square it has to decide its initial value.

It may happen that in fact, we can have an execution, where some processes of S
are byzantine and send a different vector at round two to another correct process pj . In
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this case, even if pj has the same initial values as pi, it does not find a Square. Since this
execution is no longer compatible with an execution where all correct processes have
the same initial value, the validity does not imply that it has to decide a particular value.

Let us now present an example of execution in the case where there are three sets of
processes A1, A2 and Byz of size t (see the examples in Fig. 3, 4 and 5). The processes
of A1 (processes p1 and p2) are correct and have a1 as initial value. The processes of
A2 (processes p3 and p4) are correct and have a2 as initial value. The processes of Byz
(processes p5 and p6) are Byzantine, they send a1 to processes of A1 pretending to
have a1 as initial value and send a2 to processes of A2 pretending to have a2 as initial
value. The processes of Byz sends to a process of A1, say p1, that they received a1
from processes in A1 and Byz, and to a process of A2, say p2, that they received a2

from processes in A2 and Byz. One process of Byz sends to another process of A1
(this is possible as t > 1), say pj , that it has received from at least one process in A1
and Byz a value different from a1. Process p1 finds a Square and decide a1 (Fig. 3), p2
finds a Square and decide a2 (Fig. 4), while pj does not find a Square. To achieve 2-set
agreement it has to decide either a1 or a2. At this point the notion of Region is helpful.
Process pj does not find a Square but it finds Regions (A1, A2) (Fig. 5). This pattern
proves that the processes of Byz are byzantine, and have lied to produce a Square
somewhere else and it decides a1.

Fig. 3. p1’s matrix: square Fig. 4. p2’ matrix: square Fig. 5. pj’matrix: regions

If a process does not find a Square or Regions it decides ⊥.
We show in the next lemmas that if two correct processes decide two different values

different from ⊥ by finding a Square or Regions then all the other processes will decide
by Square or Regions one of these values. This achieves the agreement property of the
2-set agreement.

Lemma 1. If a correct process pi decides a value different from ⊥, then it has found a
Square or Regions, and it decides its initial value.

Proof. Let pi be a correct process, in the second round, pi analyses its corresponding
matrix Mi. If it finds a Square or Regions it decides its initial value, otherwise ⊥. These
instructions correspond to Lines 6, 7 and 8 of Algorithm 1 �

Lemma 2. If a correct process pi finds a Square Si, there is at least one subset of Si of
size t including only correct processes.
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Proof. Let pi find a Square Si such that |Si| = n − t. As there are at most t Byzantine
processes and n = 3t, it follows that at least n − 2t = t processes in Si are correct. �

Let R3 be Π − R2 − R1.

Lemma 3. If a correct process pi finds Regions (R1, R2), then all the processes of R1

are correct and (1) either all the processes of R3 are Byzantine and all the processes
of R2 are correct, (2) or all the processes of R3 are correct and all the processes of R2

are Byzantine.

Proof. We have n = 3t, let pi be a correct process in R1 that finds Regions (R1, R2).
By the definition of Regions (items 2 and 3), R1, R2 and R3 contain t processes and
are disjoint.

If all the processes of R2 are Byzantine, since there are at most t Byzantine pro-
cesses and |R2| = t, then processes of R1 ∪ R3 are correct.

If a process of R2 is correct, let pk be this process and let p� be a process of R3. By
item 4, pi receives v from p� at the first round. By item 6, pk sends to pi at the second
round Mk with Mk[�] = w, which is the value that pk pretends to have received from p�

at the first round. If both the processes are correct then w = v, but by the definition of
Regions, we have v �= w, since pk is correct then p� is Byzantine. Then all processes in
R3 are Byzantine, because we have at most t Byzantine and |R3| = t, thus the processes
of R1 ∪ R2 are correct.

In general, either processes in R2 are Byzantine and the processes of R1 ∪ R3 are
correct, or R3 are Byzantine and the processes of R1 ∪ R2 are correct. �

Lemma 4. If a correct process pi decides v by Regions (R1, R2), then all the processes
of R1 ∪ R2 are correct and the other processes are Byzantine.

Proof. If pi decides by Regions(R1, R2), it means that it did not find a Square. By
Lemma 3, processes of R1 are correct and either processes of R2 are Byzantine or
processes of R3 are byzantine.

Since pi did not find a Square, a M [k][�] value for some pk ∈ R3 and p� in R1 ∪R3

is different from v. Let z be that value.
If p� belongs to R1\{pi}: by Lemma 3, p� is correct then it sends the same value v

to pi and pk at the first round, while pk sends z to pi at the second round, as a received
value from p�. Therefore pk is Byzantine. Thus processes of R3 are Byzantine and
R1 ∪ R2 are correct.

If p� is in R3: pi received v from p� at the first round, and z from pk as a received
value from p� at the second round. Thus at least one of the two processes pk and p� is
Byzantine, since they both belong to R3 from Lemma 3, processes of R3 are Byzantine
and those of R1 ∪ R2 are correct. �

Lemma 5. If a correct process pi decides v by a Square Si, and another correct process
pj decides v′ by a Square Sj , with v �= v′, then all the correct processes decide either
v or v′.

Proof. Let pi (respectively pj) be a correct process that finds a Square Si (resp. Sj) and
let v (resp. v′) be its initial value with v �= v′. Let us show that every correct process
decides either v or v′.



Optimal Algorithms for Synchronous Byzantine k-Set Agreement 185

By Lemma 2, there is a subset SSi of size t of correct processes in Si and there is a
subset SSj of size t of correct processes in Sj . By item (2) of the definition of Square,
all the processes in SSi have v as initial value and all the processes in SSj have v′.
Such that v �= v′, SSi and SSj are disjoint and |Si ∩ Sj | = t

A process in Si ∩ Sj sent v to the processes of SSi, and v′ to those in SSj , so this
process is Byzantine. Consequently correct processes are exactly SSi ∪ SSj .

Let pk be a correct process, without loss of generality, assume that pk is in SSi. As
processes of SSi and SSj are correct, they send the same vector to pk, pi and pj in the
second round, which means that:

1. a correct process may, following its initial value, find the Square Si or the Square
Sj ,

2. if a correct process does not find a Square, it finds, following its initial value, at least
Regions (SSi, SSj) or Regions (SSj , SSi) and decides its initial value.

So either a process decides by the Square or by Regions, in both case it decides its
initial value v or v′. �

We are now ready to prove that for n = 3t and t > 1, Algorithm 1 is a t-resilient
algorithm that solves 2-set agreement, in two rounds.

In the following, we prove separately the three properties, namely Validity, and
Agreement, and Termination.

Lemma 6 [Validity]. If all the correct processes propose the same value, they decide
this value.

Proof. Let C be the set of correct processes that propose v. Since we have at most t
Byzantine, then |C| ≥ 2t. Let pi be a correct process, S a subset of C of size 2t, pi ∈ S.
Then all the processes in S have as initial value v and send v to all the processes at the
first round. For every process ps in S we have Ms[s][s′] = v for all s′ in S and that
value will be send to pi at the second round, then pi will find at least the Square S, and
whatever the Square it finds, it decides v, and all the processes in C will decide v. �

Lemma 7 [Termination]. All the correct processes decide.

Proof. All the correct processes will execute the two synchronous rounds and will
decide at the end of the second round. �

Lemma 8 [Agreement]. At most two values are decided by correct processes.

Proof. Let’s suppose we have three decided values, then at least two of them are dif-
ferent from ⊥. To show the agreement, we need to prove that if two values v and v′

different from ⊥ are decided, then all the correct processes decide v or v′.
Let pi and pj be two correct processes that decide v or v′ different from ⊥ (v �= v′),

by Lemma 1, the decided values are their initial value.

– If pi and pj decide by a Square, then from Lemma 5, all the correct processes decide
v or v′.
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– Else without loss of generality assume that pi decides v by Regions (R1, R2), |R1| =
|R2| = t, R1 ∩R2 = ∅. Furthermore by Lemma 4, processes of R1 ∪R2 are correct
and other processes are Byzantine.
By definition of Regions, a process in R1 has v as initial value. As pj decides v′

its initial value is v′. As it is correct and not in R1, it is in R2. By the definition of
Regions, all the processes of R2 have v′ as initial value.
Let pk be a correct process, then it is in R1 or in R2 and its initial value is v or v′.
Either it finds a Square, and decides its initial value v, or pk does not find a Square
S, in this case pk finds Regions (R1, R2) or (R2, R1), because the correct processes
of R1 ∪ R2 send the same value to pi and to pk. So pk decides its initial value v or
v′. �

Finally, from Lemmas 6, 7 and 8, we have:

Theorem 1. For n = 3t and t > 1, Algorithm 1 is a t-resilient algorithm that solves
2-set agreement in two rounds.

k-set Agreement for for 2t < n ≤ 3t and k = n−t
n−2t is Integer

This section shows that Algorithm 1 works for 2t < n ≤ 3twhen n−t
n−2t is an integer.

Its adaptation to this new setting requires some modifications in the way Regions are
found.

2.6 Finding Regions {R� : � = 1, ..., k}
We say that pi finds Regions {R� : � = 1, . . . , k}, if it has not found a Square and there
exist k subsets of Π , R1, . . . , Rk such as:

1. pi ∈ R1,
2. ∀α ∈ {1, . . . , k}, |Rα| = n − 2t,
3. ∀α, β ∈ {1, . . . , k} and α �= β,Rα ∩ Rβ = ∅, the Regions are disjoint,
4. ∀α ∈ {1, . . . , k}, ∀x, y ∈ Rα, Mi[x][∗] = Mi[y][∗], the lines in each Region are

equal,
5. ∀α ∈ {1, . . . , k}, ∀x, y, x′, y′ ∈ Rα, Mi[x][y] = Mi[x′][y′], all the values of a

certain Region are equal,
Let val.Rα be the value of Mi[x][y] for any x, y ∈ Rα

6. ∀α, β ∈ {1, . . . , k} and α �= β, val.Rα �= val.Rβ , the values of two Regions are
different,

7. ∀α ∈ {1, . . . , k}, ∀y ∈ Rα, ∀x ∈ ⋃k
r=1 Rr, Mi[x][y] = val.Rα,

Let R̄ = Π − ⋃k
r=1 Rr.

8. ∀α ∈ {1, . . . , k}, ∀x ∈ Rα, ∀y ∈ R̄, Mi[x][y] = val.Rα.

The idea behind “finding a Square” is the same that in the previous section. The
Regions are defined in such a way that if k correct processes decide k different values
by Square, then any other processes find Regions.

Lemma 9. If a correct process pi decides a value different from ⊥, then it either finds
a Square S or Regions {R� : � = 1, . . . , k}, and it decides its initial value. �
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Proof. Let pi be a correct process, in the second round, pi has its own matrix Mi, and
decides ⊥ at line 8 if it did not find a Square or Regions at line 6. If it decides at line 7,
it decides its own value. �

Lemma 10. If a correct process pi finds Regions {R� : � = 1, . . . , k}, the size of the
subsets R̄ = Π − ⋃k

�=1 R� and
⋃k

� �=1 R� is t.

Proof. From condition 2 of the definition of Regions |R1| = n − 2t. By hypothesis of
the studied case, we have k = n−t

n−2t since the size of the Regions are equal (condition

2) and we have k distinct Regions (condition 3) then: |⋃k
� �=1 R�| = (k−1)(n−2t) = t

and |R̄| = n − k(n − 2t) = t. �

Lemma 11. If a correct process pi decides by Regions {R� : � = 1, . . . , k}, then
all processes of R1 are correct, and (1) either processes of R̄ = Π − ⋃k

�=1 R� are
Byzantine and processes of

⋃
l �=1 R� are correct, or (2) processes of R̄ are correct and

processes of
⋃

l �=1 R� are Byzantine. �

Proof. Let pi be a correct process that decides vi by Regions {R� : � = 1, . . . , k}, let
T1 be the subset

⋃
r �=1 R�. By definition of Regions {R� : � = 1, . . . , k}, if pj is a

correct process and vj is it’s initial value, from condition 6 we have:

1. ∀ pj ∈ T1, vj �= vi

From the fact that pj sends its initial value to pi and pi puts it in Mi[i][j] and the
condition 8, we have:

2. ∀pj ∈ R̄, vj = vi.

If all processes of T1 are Byzantine, since there is at most t Byzantine processes and
by Lemma 10, |T1| = t, then processes of R̄ and R1 are correct.

Otherwise there is a correct process in T1. Let pr be a correct process of T1 and pm

be a process of R̄, pi receives vi from pm at the first round, and v from pr at the second
round that it puts in Mi[r][∗]. As pr is correct, Mi[r][m] is the value that pm sent to
pr at the first round as it’s initial value, if pm is a correct process then v′ = v but by
definition of Regions v �= v′. Then all processes in R̄ are Byzantine, since we have at
most t Byzantine and by Lemma 10, |R̄| = t, then processes of T1 and R1 are correct.

So either processes in T1 are Byzantine and processes of R̄ and R1 are correct, or
processes of R̄ are Byzantine and processes of T1 and R1 are correct. �

Lemma 12. If a correct process pi decides by Regions R� (line 6), then all the pro-
cesses of

⋃k
�=1 R� are correct and the other are Byzantine.

Proof. Let pi be a correct process that decides v by Regions R�. Let S1 be the subset⋃
l �=1 R�.
By Lemma 11, processes of R1 are correct and either processes of S1 or R̄ are

Byzantine. By condition 6 and 8, if pi decides by a Square S, then S = R̄ ∪ R1. In this
case for pk and pj in R1 ∪ R̄, M [k][j] is equal to v.

Since pi didn’t found a Square, the conditions 4 and 5 imply that some M [k][j]
values for pk ∈ R̄ and pj in R1 ∪ R̄ is different from v. Let w be that value.
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If pj ∈ R1 with pj �= pi, since pj is correct, it sends the same value to pi and pk at
the first round. pk sent w instead of v to pi at the second round, as the received value
from pj , then pk is Byzantine. Thus processes of R̄ are Byzantine and R1 ∪ S1 are
correct.

If pj ∈ R̄, then by condition 7, pi received val.R1 from pj at the first round, and
w �= val.R1 from pk as a received value from pj at the second round. Thus at least one
of the two processes pk and pj is Byzantine, since they belong to R̄ from Lemma 11,
processes of R̄ are Byzantine and those of R1 ∪ S1 are correct. �

Lemma 13. If k correct processes decide distinct {v� : � = 1, ..., k} by Squares S�,
then all the correct processes will eventually decide one of the v� distinct values.

Proof. Let {pi, i = 1, ..., k} be k different correct processes with their k corresponding
distinct initial values {vi, i = 1, ..., k} that decide there own value by finding a Square
{Si, i = 1, ..., k} of size n − t. Then all these sets are disjoint.

As each set Si is of size n − t, there exists there are k subsets {Ti, i = 1, ..., k} of
size n − 2t of correct processes. As a process of Ti and a process of Tj have different
initial value then: ∀i, j; i �= j =⇒ Ti ∩ Tj = ∅.

The size of ∪g=k
g=1Tg is k(n − 2t), then K = Π − ∪g=k

g=1Tg is of size t. So for each i
from 1 to k, Si = Ti ∪ K.

A process of K sends v1 to p1 in T1 and v2 to p2 in T2 (k ≥ 2), so it is a Byzantine
process.

Let us show that any correct process decides one of the vi values. By the claims of
Sect. 2.3 (Identical lines), any two correct processes have the same rows for processes
in ∪g=k

g=1Tg .
By the Byzantine behaviour of K, a correct process pi in Ti:

1. May find a Square Ti ∪ K and decides vi,
2. If it does not find a Square, it finds the Regions thanks to the sets {Ti, i = 1, ..., k}.

Example: Let us take n = 10, k = 3 and t = 4. Let us consider three correct processes
p1, p2 and p3 with their respective distinct initial values v1, v2 and v3, that decide by
Squares S1, S2 and S3 their initial values. Looking at the matrix of Fig. 6, if vα = v1
(resp v2, v3) then this is process p1’s matrix (resp p2, p3).

Let p� be a correct process, and let us suppose that p� ∈ S1 then it has as an initial
value v1. From the matrix we can tell that each correct process will eventually find
the Regions R� thanks to claims of Sect. 2.3 and decides its initial value. And by the
Byzantine behaviour of the faulty processes if vα = v1 then p� will find a Square S1

and decides v1. �

2.7 Proof of Correctness of the Algorithm

We are now ready to prove that when 2t < n ≤ 3t and n−t
n−2t is an integer, General

Algorithm is a t-resilient algorithm for solving n−t
n−2t -set agreement. In the following

we separately prove each the three properties defining k-set agreement in the presence
of Byzantine failures, (Validity, Termination, and Agreement).
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Fig. 6. View of correct processes

Lemma 14 [Validity]. If all the correct processes propose the same value, they decide
that value.

Proof. Let C be the set of correct processes that propose v. Since we have at most t
Byzantine, then |C| ≥ n−t. Let S a subset of size n−t of C. Let pi be a correct process.
Let S a subset of size n − t of C that contains pi. Then all the processes in S have as
initial value v and sends v to all the processes at the first round. All the processes pc

in S have Mc[c][c′] = v for all c′ in S and that value will be send to pi at the second
round, then Mi[c][c′] = v for all c, c′ in S (including pi). So we have:

(1) S = n − t and pi ∈ S, and
(2) ∀ c, c′ ∈ S Mi[c][c′] = Mi[c][c′].

Then pi finds at least the Square S and whatever the Square it finds, it decides v. �

Lemma 15 [Termination]. All the correct processes will eventually decide.

Proof. All the correct processes will execute the two synchronous rounds and will
decide at the end of the second round. �

Lemma 16 [Agreement]. At most k values are decided by correct processes.

Proof. We prove this result by contradiction. Assume we have at least k + 1 decided
values. Therefore k of them are different from⊥. We will show that all correct processes
decide one of these k values. By Lemma 9, if a correct process decides some value
different from ⊥, it is its initial value. So we have k processes, each process decides its
initial value, and all these values are different:

– If these k processes decide different values by a Square, then from Lemma 13, all
the correct processes decide one of the k values.

– Else, if a correct process pi decides by Regions R�, then by Lemma 12, processes of⋃k
�=1 R� are correct and the other processes are Byzantine.

Let pj be a correct process of
⋃k

�=1 R� from Lemma 3, all the lines concerning
processes in {R�} of Mi are equal to the lines concerning processes in {R�} of Mj .
If pj does not find a Square, it finds at least Regions R�. In all the case it decides its
initial value that is one of the k values. �
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It is proved in [5], that it is impossible to achieve
(

t
n−2t

)
-agreement when we have

2t < n ≤ 3t. Note that t
n−2t = n−t

n−2t − 1. So the algorithm is optimal in terms of set
agreement.

By Lemma 16, 14 and 15, we get

Theorem 2. When 2t < n ≤ 3t, n−t
n−2t is an integer, and k = n−t

n−2t , Algorithm 1 is
optimal on the value k of k-set agreement.

3 Optimality

This section proves that the proposed algorithm (together with the algorithm of [5]) is
optimal in term of number of rounds. To this end we first prove the following lemma.

Lemma 17. If a process has v as initial value and receives v from n − t processes
(including itself) then if it decides after one round, it decides v.

Proof. Let p be a process, and v be its initial value. p has to decide in one round, if it
receives v from n − t processes, it may be in an execution where these n − t processes
are correct, so by validity of the k-set agreement, it has to decide v. �

Let us first consider the case t = 1.

Theorem 3. For n ≥ 3, t = 1, there is no algorithm for 2-set agreement in 0 round.

Proof. By contradiction, let A be an algorithm that works in 0 round. A process pi

decides based on its initial value, since it can be in an execution where processes have
the same initial value, to ensure validity, it must decide its own value.

In an execution where 3 processes are correct, each decides its own value. If the
values are different then there are 3 different decided values, thus this algorithm doesn’t
achieve 2-set agreement. �

Theorem 4. For n = 3, t = 1, there is a one-round algorithm A for 2-set agreement.

Proof. Each process sends its own value, if a process receives 2 identical values to its
own, it decides its own value else it decides ⊥.

[Validity] If all the correct processes have the same value, since there is at most
one Byzantine process, each correct process receives at least 2 identical values and by
Lemma 17 decides it.

[Agreement] If the 3 processes are correct, they receive the same values. Let vi be
pi’s initial value. If all the values are different, the processes decide ⊥. If at least 2
values are identical, for example v1 = v2, then, p1 and p2 decide v1, there will be at
most 2 decided values. Finally, if there are exactly 2 correct processes, we will have at
most 2 decided values.

[Termination] All the correct processes execute a single round and decide. �

By Theorem 3 and 4, A is optimal in term of the number of rounds. As it is impos-
sible to achieve consensus for n = 3 and t = 1 [8], we get the following result.
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Theorem 5. For n = 3, t = 1, A is optimal, both in term of set agreement and number
of rounds.

Let us now consider the case t > 1.

Theorem 6. For n = 3t and t > 1, there is no one-round 2-set agreement algorithm.

Proof. We suppose that we have an algorithm that allows to have 2-set agreement in
one round.

We decompose Π in 3 sets of size t: S0, S1 and S2. Let v0, v1 and v2 be three
different initial values. Since t is greater than 2, there are at least two processes in each
set. Let pi and qi be two processes of Si. pi and qi have vi as initial value.

We consider now an execution e where all the processes are correct.
The execution e is indistinguishable for qi from an execution where processes of

S(i+1) mod 3 are byzantine and send vi to pi and v(i+2) mod 3 to p(i+2) mod 3. That
execution, is indistinguishable for pi from an execution, where processes of Si and
S(i+1) mod 3 are correct and processes of S(i+1) mod 3 have vi as initial value. By
Lemma 17, pi decides vi in e. In the same way p(i+2) mod 3 decides v(i+2) mod 3. Thus
by the agreement property of 2-set agreement qi has to decide vi or v(i+2) mod 3.

In the same way, qi has to decide vi or v(i+1) mod 3.
To satisfy both, qi has to decides vi in the execution e.
In execution e, all the processes are correct, for each i = 0, 1, 2, process qi decides

vi. Then there are at least 3 different decisions contradicting the agreement property of
2-set agreement. �

The following theorem can be proved in the same way.

Theorem 7. For 2t < n ≤ 3t and t > 1, there is no one-round algorithm for k-set
agreement, where, n−t

n−2t is an integer and k = n−t
n−2t .

4 Conclusion

We have presented a simple two-round algorithm for synchronous 2-set agreement in
a system of n = 3t processes in which up to t > 1 processes may be Byzantine. This
algorithm is based on new notions (denoted Square and Regions) which allow each
process pi to capture the global knowledge of which every proposed value is known
by each other process (such that “pi knows that pj knows the value proposed by pk”).
Extending the notion of Regions, we have shown that the same two-round algorithm
solves Byzantine k-set agreement for the case where k = n−t

n−2t is a positive integer, in
a system such that 2t < n ≤ 3t. While the statement of the algorithm is simple, its
proofs (based on the notion of Square and Regions) are not.

Combining the results of this article with the results presented in [3,5]1, “nearly
closes” the solvability (possibility and impossibility) of Byzantine k-set agreement in
synchronous message-passing systems. More precisely, the only remaining case is when
k = n−t

n−2t is not an integer for which we do not know whether � n−t
n−2t�-set agreement

is solvable (but we know that we can solve (� n−t
n−2t� + 1)-set agreement in two rounds,

and that it is impossible to solve (� n−t
n−2t� − 1)-set agreement).

1 For k > 1, all these algorithms use at most 2 rounds.
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Abstract. While consensus is at the heart of many coordination problems in
asynchronous distributed systems prone to process crashes, it has been shown
to be impossible to solve in such systems where processes communicate by
message-passing or by reading and writing a shared memory. Hence, these sys-
tems must be enriched with additional computational power for consensus to be
solved on top of them. This article presents a new restriction of the classical basic
computational model that combines process participation and a constraint on fail-
ure occurrences that can happen only while a predefined contention threshold
has not yet been bypassed. This type of failure is called λ-constrained crashes,
where λ defines the considered contention threshold. It appears that when assum-
ing such contention-related crash failures and enriching the system with objects
whose consensus number is k ≥ 1, consensus for n processes can be solved
for any n ≥ k assuming up to k failures. The article proceeds incrementally. It
first presents an algorithm that solves consensus on top of read/write registers if
at most one crash occurs before the contention threshold λ = n − 1 has been
bypassed. Then, it shows that if the system is enriched with objects whose con-
sensus number is k ≥ 1, then
– when λ = n − k, consensus can be solved despite up to k

λ-constrained crashes, for any n ≥ k, and
– when λ = n − 2k + 1, consensus can be solved despite up to 2k − 1

λ-constrained crashes, assuming k divides n.
Finally, impossibility results are presented for the number of λ-constrained fail-
ures that can be tolerated.

Keywords: Consensus algorithm · Asynchronous system · Atomic register ·
Concurrency · Consensus number · Contention · λ-constrained failure ·
Participating process · Process crash failure · Read/write register

1 Introduction

Consensus and Contention-Related Crash Failures. Consensus is one of the most
important problems encountered in crash-prone asynchronous distributed systems. Its
statement is pretty simple. Let us consider a system of n asynchronous sequential pro-
cesses denoted p1, ..., pn. Each process pi is assumed to propose a value and, if it does
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not crash, must decide a value (Termination property) such that no two processes decide
different values (Agreement property) and the decided value is a proposed value (Valid-
ity property). Despite its very simple statement, consensus is impossible to solve in the
presence of asynchrony and process crashes, even if a single process may crash, be the
communication medium message-passing [6], or atomic read/write registers [10].

In a very interesting way, Fischer, Lynch, and Paterson presented in Sect. 4 of [6] an
algorithm for asynchronous message-passing systems that solves consensus if a major-
ity of processes do not crash and the processes that crash do it initially (the num-
ber of crashes being unknown to the other processes [19]). This poses the following
question: Can some a priori knowledge on the timing of failures impact the possibil-
ity/impossibility of consensus in the presence of process crash failures? As the notion
of “timing” is irrelevant in an asynchronous system, Taubenfeld replaced the notion
of time with the notion of contention degree and, to answer the previous question, he
introduced in [18] the explicit notion of weak failures, then renamed contention-related
crash failures in [5].

More precisely, given a predefined contention threshold λ, a λ-constrained crash
failure is a crash that occurs while process contention is smaller or equal to λ. Con-
sidering read/write shared memory systems and λ = n − 1, a consensus algorithm
is presented in [5,18] that tolerates one λ-constrained crash (i.e., at most one process
may crash, which may occur only when the contention degree is ≤ (n − 1)), and it
is shown that this bound (on the number of failures) is tight. 1 In addition, upper and
lower bounds for solving the k-set agreement problem [2] in the presence of multiple
contention-related crash failures for k ≥ 2 are presented in [5,18].

Motivation: Why λ-Constrained Failures? The first and foremost motivation for this
study is related to the basics of computing, namely, increasing our knowledge of what
can (or cannot) be done in the context of asynchronous failure-prone distributed sys-
tems. Providing necessary and sufficient conditions helps us determine and identify
under which type of process failures the fundamental consensus problem is solvable.

As discussed and demonstrated in [5], the new type of λ-constrained failures enables
the design of algorithms that can tolerate several traditional “any-time” failures plus
several additional λ-constrained failures. More precisely, assume that a problem can
be solved in the presence of t traditional failures but cannot be solved in the presence
of t + 1 such failures. Yet, the problem might be solvable in the presence of t1 ≤ t
“any-time” failures plus t2 λ-constrained failures, where t1 + t2 > t.

Adding the ability to tolerate λ-constrained failures to algorithms that are already
designed to circumvent various impossibility results, such as the Paxos algorithm [12]
and indulgent algorithms in general [7,8], would make such algorithms even more
robust against possible failures. An indulgent algorithm never violates its safety prop-
erty and eventually satisfies its liveness property when the synchrony assumptions it
relies on are satisfied. An indulgent algorithm which in addition (to being indulgent)
tolerates λ-constrained failures may, in many cases, satisfy its liveness property even
before the synchrony assumptions it relies on are satisfied.

1 The consensus algorithm described in [5,18] does not use adopt/commit objects as done in the
present article. As we will see, this object is crucial for the present paper.
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When facing a failure-related impossibility result, such as the impossibility of con-
sensus in the presence of a single faulty process, discussed earlier [6], one is often
tempted to use a solution that guarantees no resiliency at all. We point out that there is a
middle ground: tolerating λ-constrained failures enables to tolerate failures some of the
time. Notice that traditional t-resilient algorithms also tolerate failures only some of the
time (i.e., as long as the number of failures is at most t). After all, something is better
than nothing. As a simple example, an algorithm is described in [6], which solves con-
sensus despite asynchrony and up to t < n/2 processes crashes if these crashes occur
initially (hence no participating process crashes).

Content of the Article. This article investigates the interplay between asynchrony, pro-
cess crashes, contention threshold, and the computability power of base objects as mea-
sured by their consensus number [9]. Let us recall that the consensus number of an
object O (denote CN(O)) is the maximal number of processes for which consensus can
be solved despite any number of process crashes (occurring at any time) with any num-
ber of objectsO and read/write registers. If there is no such integer,CN(O) = +∞. An
object the consensus number of which is k is called kCONS object. After a presentation
of the computing model, the article is made up of three main sections.

– Section 3 presents a consensus algorithm built on top of read/write registers (RW),
which tolerates one process crash occurring before the contention degree bypasses
(n − 1).

– Section 4 generalizes the previous algorithm by presenting two (reduction) algo-
rithms that solve consensus on top of objects whose consensus number is k ≥ 1.

• The first algorithm tolerates up to k process crashes that may occur before the
contention degree bypasses n − k.

• The second algorithm, assumes k divides n, and tolerates up to 2k − 1 process
crashes that may occur before the contention degree bypasses n − 2k + 1.

– Finally, Sect. 5 presents impossibility results that address the limits of the proposed
approach.

A Short Look at Consensus Solvability. The article [19] was one of the very first articles
(if not the first one) that considered the case of initial failures for distributed tasks
solvability. The reader will find in [4,13] an approach to task solvability based on the
theory of knowledge. When considering the close case of synchronous network-based
systems the reader will find in [20] an overview of results for the case of consensus
algorithms where links can appear and disappear at every communication step.

The usual notion of fault tolerance states that algorithm is crash-resilient if, in the
presence of crash faults, all the non-faulty processes complete their operations and ter-
minate. The article [17] considers a weaker liveness property namely a limited number
of participating correct processes are allowed not to terminate in the presence of faults.
As stated in [17] “sacrificing liveness for few of the processes allows us to increase the
resiliency of the whole system”.
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2 Computing Model

Process and Communication Model. The system is composed of n asynchronous
sequential processes denoted p1, ..., pn. The index of pi is the integer i. Asynchronous
means that each process proceeds at its own speed, which can vary with time and
remains unknown to the other processes [14,16].

A process can crash (a crash is an unexpected premature halt). Given an execution, a
process that crashes is said to be faulty in that execution, otherwise, it is correct. Let us
call contention the current number of processes that started executing. A λ-constrained
crash is a crash that occurs before the contention degree bypasses λ.

The processes communicate through a shared memory made of the following base
objects:

– Read/write atomic registers (RW).
– Atomic objects with consensus number k ≥ 1 (these objects, denoted kCONS, will
be used in Sect. 4).

– Adopt/commit objects (see below).

The Adopt-Commit Object. This object can be built in asynchronous read/write sys-
tems prone to any number of process crashes. Hence, its consensus number is 1. It was
introduced by Gafni in [11]. It provides the processes with a single operation (that a
process can invoke only once) denoted ac propose(). This operation takes a value as
input parameter and returns a pair 〈tag, v〉, where tag ∈ {commit, adopt} and v is a
proposed value (we say that the process decides a pair). The following properties define
the object.

– Termination. A correct process that invokes ac propose() returns from its invocation.
– Validity. If a process returns the pair 〈−, v〉, then v was proposed by a process.
– Obligation. If the processes that invoke ac propose() propose the same input value

v, only the pair 〈commit, v〉 can be returned.
– Weak agreement. If a process decides 〈commit, v〉 then any process that decides
returns the pair 〈commit, v〉 or 〈adopt, v〉.

Process Participation. As in message-passing systems(see e.g., [1,3,15]), it is assumed
that all the processes participate in the algorithm. (Equivalently, a process that does
not participate is considered as having crashed initially). A process participates in the
algorithm as soon as it has written in the shared memory.

Proposed Values. Without loss of generality, it is assumed that the values proposed in a
consensus instance are non-negative integers, and ⊥ is greater than any proposed value.

3 Base Algorithm (k = 1): Consensus from Read/Write Registers

This section presents an algorithm that solves consensus on top of RW registers2 while
tolerating one crash that occurs before the contention degree bypasses λ = n − 1.
2 As their consensus number is 1, RW registers are 1CONS objects.
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3.1 Presentation of the Algorithm

Shared Base Objects. The processes cooperate through the following shared objects.

– INPUT [1..n] is an array of atomic single-writer multi-reader registers. Each of its
entries is initialized to ⊥, a value that cannot be proposed by the processes and is
greater than any of these values. INPUT [i] will contain the value proposed by pi.

– DEC is a multi-writer multi-reader atomic register, the aim of which is to contain
the decided value. It is initialized to ⊥.

– LAST will contain the index of a process.
– AC is an adopt/commit object.

Local Objects. Each process pi manages:

– three local variables denoted vali, resi and tagi, and
– two arrays denoted input1[1..n] and input2[1..n].

The initial values of the previous local variables are irrelevant. The value proposed by
pi is denoted ini.

operation propose(ini) is code for pi

(1) INPUT [i] ← ini;
(2) repeat input1i ← asynchronous non-atomic reading of INPUT [1..n];

input2i ← asynchronous non-atomic reading of INPUT [1..n]
until

(
input1i = input2i ∧input1i contains at most one ⊥ )

end repeat;
(3) vali ← min

(
values deposited in input1i[1..n]

)
;

(4) if (∃ j such that input1i[j] = ⊥) then LAST ← j end if;
(5) 〈tagi, resi〉 ← AC .ac propose(vali);
(6) if (tagi = commit ∨ LAST = i) then DEC ← resi else wait

(
DEC 
= ⊥)

end if;
(7) return(DEC ).

Algorithm 1: Consensus tolerating one (n − 1)-constrained failure (on top of atomic
RW registers)

Behavior of a Process pi. (Algorithm 1)When a process pi invokes propose(ini), it first
deposits the value ini in INPUT [i] (Line 1) and waits until the array INPUT [1..n]
contains at least (n − 1) entries different from their initial value ⊥ (Line 2). Because at
most one process may crash, and the process participation assumption, the wait state-
ment eventually terminates.

After this occurs, pi computes the smallest value deposited in the array
INPUT [1..n] (Line 3, remind that ⊥ is greater than any proposed value). If
INPUT [1..n] contains an entry equal to ⊥, say INPUT [j], pi observes that pj is a
belated process (or pj the only process that may crash and it crashed before depositing
its value in INPUT [j]) and posts this information in the shared register LAST (Line 4).

Then, pi champions its value vali for it to be decided. To this end, it uses the
underlying adopt/commit object, namely, it invokes AC .ac propose(vali) from which
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it obtains a pair 〈tagi, resi〉 (Line 5). There are three possible cases for a process pi; at
the end of which it decides at Line 7.

– If tagi = adopt, due to the Weak Agreement property of the object AC , no value
different from resi can be decided. Consequently, pi writes resi in the shared reg-
ister DEC (Line 6) and returns it as the consensus value (Line 7).

– The same occurs if, while tagi = adopt, pi is such that LAST = i. In this case,
pi has seen all the entries of the array INPUT [1..n] filled with non-⊥ values and
imposes resi as the consensus value.

– If pi is such that tagi = adopt ∧ LAST 
= i, it waits until it sees DEC 
= ⊥, and
decides.

3.2 Proof of Algorithm 1

Lemma 1. Algorithm 1 satisfies the Validity property of consensus.

Proof. It is easy to see that a value written in DEC is obtained from the adopt/commit
object at Line 5. Moreover, due to Line 1 and Line 3 (where ⊥ is greater than any pro-
posed value), only values proposed to consensus can be proposed to the adopt/commit
object. �Lemma1

Lemma 2. Let us consider an execution in which no process crashes. Algorithm 1 sat-
isfies the Agreement property of consensus.

Proof. Let p� be the last process that writes the value it proposes in INPUT [1..n]. It
follows from Line 3 that p� computes the smallest value in the array, and from Line 2
and Line 4 that, no index different from � can be assigned to LAST . There are then two
cases according to the value of the pair 〈tag, res〉 returned at Line 5.

– If a process pk obtains 〈commit, res〉, it follows from the Weak Agreement prop-
erty of the adopt/commit object that any other process can obtain 〈commit, res〉
or 〈adopt, res〉 only. We then have DEC = res after the execution of Line 6.
This is because the assignment at Line 6 can be executed only by a process that
obtained 〈commit, res〉 or by p� (which is pLAST ) which obtained 〈commit, res〉
or 〈adopt, res〉 from its invocation of the AC object.

– If at Line 5 no process obtains 〈commit,−〉, it follows from Line 6 that only p�

assigns a value to DEC , and consequently, no other value can be decided.

�Lemma2

Lemma 3. Let us consider executions in which one process crashes. Algorithm 1 sat-
isfies the Agreement property of consensus.

Proof. Let us recall that by assumption (namely, contention related crash failures) if a
process pk crashes, it can do it only when the contention is lower or equal to (n − 1).
We consider two cases.
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– If pk crashes initially (i.e., before writing the value it proposes in INPUT [k], this
array will eventually contain (n − 1) non-⊥ entries, and all the correct processes
will consequently compute the same minimal value val that they will propose
to the underlying adopt/commit object (Line 5). It then follows from the Obliga-
tion property of this object that all the correct processes will obtain the same pair
〈commit, res〉, from which we conclude that a single value can be decided.

– The process pk crashes after it writes the value it proposes in INPUT [k]. There are
two cases.

• When exiting the repeat loop (Line 2), the local array input1i of all processes
does not contain ⊥. In this case, we are as in the previous item (replacing
INPUT [1..n] with one ⊥ value by INPUT [1..n] with no ⊥ value).

• There is an entry x such that, when exiting Line 2, there is some process pi

where input1i[x] = ⊥ and all other entries are different than ⊥ (let call A this
set of processes), while other process pj is such that all entries of input1j are
different than ⊥ (set B). px is the last process to write into INPUT and belongs
to B.
Notice that pk is not the last process to write into INPUT since it crashes when
the contention threshold is lower or equal to (n − 1). Thus x 
= k and px is
correct.
Processes of set A write x in LAST at Line 4. Thus LAST contains the iden-
tity of a correct process. The rest of the proof is the same as the proof of
Lemma 2. �Lemma3

Lemma 4. Algorithm 1 satisfies the Termination property of consensus.

Proof. Due to the assumption that all the processes participate and at most one process
can crash, no process can block forever at Line 2.

Hence, all the correct processes invoke AC .ac propose(vali) and, due the Termi-
nation of the adopt/commit object, return from their invocation. If the tag commit is
returned at some correct process pk, this process assigns a value to DEC . If the tag is
adopt, we claim that the process pk such that k = LAST is a correct process. Hence,
it then assigns a non-⊥ value to DEC . So, in all cases, we have eventually DEC 
= ⊥,
which concludes the proof.

Proof of the claim. If LAST = k at Line 6, there is a process pi that wrote k in
LAST at Line 4. This means that pi found input1i[k] = ⊥ at Line 4 and every other
entry of input1i was different than ⊥. Thus, we conclude that the contention threshold
λ = n − 1 was attained when pi wrote k in LAST . But, by assumption, no process
crashes after the contention threshold λ = n − 1 has been attained. So, pk is a correct
process. �Lemma4

Theorem 1. Let λ = n − 1. Considering an asynchronous RW system, Algorithm 1
solves consensus in the presence of at most one λ-constrained failure.

Proof. The proof follows from the previous lemmas. �Theorem1

We notice that this bound is tight. When using only atomic registers, there is no
consensus algorithm for n processes that can tolerate two (n − 1)-constrained crash
failures (Corollary 1, [5,18]).
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4 General Algorithms (k ≥ 1):
Consensus from Objects whose Consensus Number is k

The algorithms described in this section are built of top of RW registers and kCONS
objects. As we are about to see, they are reductions to Algorithm 1. At Line 5, They
exploit the additional power provided by objects whose consensus number is k. We
present below two consensus algorithms:

– Algorithm 2, which tolerates up to k (n − k)-constrained failures, and
– Algorithm 3, which tolerates up to 2k−1 (n−2k+1)-constrained failures, assuming

k divides n.

4.1 Presentation of Algorithm 2

Shared Objects. Algorithm 2 uses the same shared registers DEC , LAST , and AC as
Algorithm 1. It also uses:

– An array INPUT [1..�n/k�] where each entry INPUT [x] (instead of being a simple
read/write register) is a kCONS object, and

– A Boolean array denoted PARTICIPANT [1..n], initialized to [false, ..., false].

Behavior of a Process pi. Algorithm 2 is very close to Algorithm 1.

– The lines N1 and N2 are new. They aim to ensure that no process will block forever
despite up to k crashes.

– The lines with the same number have the same meaning in both algorithms.
– Each set of at most k processes pi, pj , etc. such that �i/k� = �j/k�, defines a cluster

of processes that share the same kCONS object. Consequently, all the processes of
a cluster act as if they were a single process, namely, no two different values can be
written in INPUT [�i/k�] by processes belonging to the same cluster.

4.2 Further Explanations

Before proving Algorithm 2, let us analyze it with two questions/answers.

Question 1. Can Algorithm 2 where k ≥ 1, tolerates (k+1) (n− (k+1))-constrained
process crashes?

The answer is “no.” This is because if (k+1) processes crash, for example, initially
(as allowed by the (n − (k + 1))-constrained assumption), the other processes will
remain blocked forever in the loop of Line N2. This entails the second question.
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operation propose(ini) is code for pi

(N1) PARTICIPANT [i] ← true;
(N2) repeat participanti ← asynchronous reading of PARTICIPANT [1..n]

until participanti[1..n] contains at most k entries with false end repeat;
(1-M) INPUT [�i/k�] ← kCONS [�i/k�].propose(ini);
(2-M) repeat input1i ← asynchronous non-atomic reading of INPUT [1..�n/k�];

input2i ← asynchronous non-atomic reading of INPUT [1..�n/k�]
until input1i = input2i ∧ input1i contains at most one ⊥ end repeat;

(3) vali ← min
(
values deposited in input1i

)
;

(4) if (∃ j such that input1i[j] = ⊥) then LAST ← j end if;
(5) 〈tagi, resi〉 ← AC .ac propose(vali);
(6) if (tagi = commit ∨ LAST = �i/k�)

then DEC ← resi else wait
(
DEC 
= ⊥)

end if ;
(7) return(DEC );

Algorithm 2: Consensus tolerating up to k (n − k)-constrained failures (on top of
kCONS objects)

Question 2. Are the lines N1-N2 needed?
Let us consider Algorithm 2 without the lines N1-N2 and with k = 2, and let us

examine the following possible scenario which involves five processes p1, ..., p5. So, p1
and p2 belong the cluster 1, p3 and p4 belong the cluster 2, and p5 belongs to cluster
3. Let us assume that the value in5 proposed by p5 is smaller than the other proposed
values.

– Process p1 executes Line 1-M and writes in INPUT [1].
– Process p3 executes Line 1-M and writes in INPUT [2].
– Both processes p1 and p3 execute Line 4 and write the cluster number 3 in LAST .
– Then, process p5 executes from Line 1-M until Line 4.
– Then, the processes p1, p3, and p5 execute Line 5, and obtain the tag adopt.
– Then p5 crashes. It follows that p5 will never write in DEC which forever remains
equal to ⊥.

– Then p2 and p4 execute Line 1-M to Line 4, and obtain adopt from the
adopt/commit object.

– It follows that, when the processes p1, p2, p3, and p4 execute Line 6 they remain
forever blocked in the wait statement.

Hence, Lines N1 and N2 cannot be suppressed from Algorithm 2.

4.3 Proof of Algorithm 2

Theorem 2. Let n ≥ k and λ = n − k. Considering an asynchronous RW system
enriched with k-CONS objects, Algorithm 2 solves consensus in the presence of at
most k λ-constrained crash failures.

Proof. Let us first observe that, as at most k processes may crash, no process can block
forever at Line N2.
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Now, let us show that the lines N1-N2 cannot entail a process to block forever at
any line from 1-M to 7. To this end, let us consider the n processes are partitioned
in clusters of at most k processes so that pi belongs to the cluster identified �i/k�. A
cluster crashes if all its processes crash. A cluster is alive if at least one of its processes
does not crash. There are two cases.

– Each cluster contains at least one process that does not crash, so all the clusters are
alive. It follows that, when a process executes Line 4 and assigns a cluster identity to
LAST , it is the identity of an alive cluster, from which follows that (if needed due
to the predicate of Line 4) a correct process will be able to write a value in DEC ,
thereby preventing processes from being blocking forever in the wait statement at
Line 6.

– All the processes in a cluster crash. Let us notice that at most one cluster can crash.3

In this case, considering the clusters (instead of the processes) and replacing n by
�n/k�, we are in the same case as in the proof of Lemma 3.

�Theorem2

4.4 When k Divides n: Tolerating k − 1 Classical Any-Time Failures

Let us consider the case where crash failures are not constrained. Those are the classical
crashes that can occur at any time (they are called any-time failures in [5]). It is known
that there is no consensus algorithm for n ≥ k+1 processes that can tolerate k any-time
failures, using registers and wait-free consensus objects for k processes [9]. In such a
model, Algorithm 2 has the property captured by the following theorem.

Theorem 3. If k divides n, Algorithm 2 tolerates k − 1 any-time failures.

Proof. Using the cluster terminology defined in the previous proof, k divides n, each
cluster contains k processes exactly. As at most (k − 1) processes may crash, it follows
that all the clusters must be alive. The rest of the proof is the same as the proof of
Theorem 2. �Theorem3

4.5 When k Divides n: Tolerating 2k − 1 Contention-Related Crash Failures

Algorithm 3. Let Algorithm 3 be the same as Algorithm 2, except that line 3,
“until participanti[1..n] contains at most k entries with false end repeat;”
is replaced with,
“until participanti[1..n] contains at most 2k − 1 entries with false end repeat;”
Then, the following theorem holds.

Theorem 4. Assume that k divides n, n ≥ 2k−1, and λ = n−2k+1. Considering an
asynchronous RW system enriched with k-CONS objects, Algorithm 3 solves consensus
in the presence of up to (2k − 1) λ-constrained crash failures.

Proof. Using the cluster terminology defined in the proof of Algorithm 2, k divides n,
implies that each cluster contains k processes exactly. As at most 2k − 1 processes may
crash, it follows that all the clusters, except maybe one, must be alive. The rest of the
proof is similar to the proof of Theorem 2. �Theorem4
3 If k does not divides n, and the cluster that crashes contains less than k processes, no other
cluster can crash.
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5 Impossibility Results

This section presents impossibility results for an asynchronous model which supports
atomic read/write registers and kCONS objects, in which λ-constrained and any-time
crash failures are possible. Let an initial crash failure be the crash of a process that
occurs before it executes its first access to an atomic read/write register.

Hence, there are three types of crash failures: initial, λ-constrained, and any-time.
Let us say that a failure type T1 is more severe than a failure type T2 (denoted T1 >
T2) if any crash failure of type T2 is also a crash failure of type T1 but not vice-versa.
Considering an n-process system, the following severity hierarchy follows from the
definition of the failure types: any-time > (n − 1)-constrained > (n − 2)-constrained
· · · > 1-constrained > initial (let us observe that any-time is the same as n-constrained
and initial is the same as 0-constrained).

Consensus with λ-constrained failures.

Theorem 5. For every � ≥ 0, k ≥ 1, n > � + k, and λ = n − �, there is no con-
sensus algorithm for n processes, using atomic RW registers and kCONS objects, that
tolerates (� + k) λ-constrained crash failures (even when assuming that there are no
any-time crash failures).

Proof. Assume to the contrary that for some � ≥ 0, k ≥ 1, n > � + k, and λ = n − �,
there is a consensus algorithm, sayA, that (1) uses atomic registers and kCONS objects,
and (2) tolerates � + k λ-constrained crash failures.

Given any execution of A, let us remove any set of � processes by assuming they fail
initially (this is possible because (n−�)-constrained > initial). It then follows (from the
contradiction assumption) that the assumed algorithm A solves consensus in a system
of n′ = n − � processes, where n′ > k, using atomic registers and k-cons objects.

However, in a system of n′ = n − � processes, process contention is always lower
or equal to n′, from which follows that, in such an execution, n′-constrained crash
failures are the same as any-time failures. Thus, algorithm A can be used to generate
a consensus algorithm A′ for n′ = n − � processes, where n′ > k, that (1) uses only
atomic registers and k-cons objects, and (2) tolerates k any-time crash failures. But, this
is known to be impossible as shown in [9]. A contradiction. �Theorem5

Consensus Using Atomic Registers Only. For the special case of consensus using atomic
registers only, the equation n > � + k becomes n > � + 1. The following corollary is
then an immediate consequence of Theorem 5.

Corollary 1. For every 0 ≤ � < n − 1 and λ = n − �, there is no consensus algorithm
for n processes, using atomicRW registers, that can tolerate (�+1) λ-constrained crash
failures (even when assuming that there are no any-time crash failures). In particular,
when � = 1, there is no consensus algorithm for n processes that can tolerate two
(n − 1)-constrained crash failures.

Consensus with λ-constrained and any-time failures.
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Theorem 6. For every � ≥ 0, k ≥ 1, n > � + k, g ≥ 0, and λ = n − �, there is no
consensus algorithm for n processes, using atomic RW registers and kCONS objects,
that,tolerates (� + k − g) λ-constrained crash failures and g any-time crash failures.

Proof. Follows immediately from Theorem 5 by observing that any-time crash failures
belong to a more severe type of a failure than λ-constrained crash failures when λ < n,
and is the same as a λ-constrained crash failure when λ = n. �Theorem6

6 Conclusion

This article has investigated the computability power of the pair made up of process
participation plus contention-related crashes, when one has to solve consensus in an
n-process asynchronous shared memory system enriched with objects the consensus
number of which is equal to k. It has been shown that for n ≥ k, consensus can be
solved in such a context in the presence of up to k process crashes if these crashes
occur before process contention has attained the value λ = n − k. Furthermore, for
the case where k divides n, it has been shown that consensus can be solved in such a
context in the presence of up to 2k − 1 process crashes if these crashes occur before
process contention bypasses the threshold λ = 2n − k + 1.

The corresponding consensus algorithms have been built in an incremental way.
Namely, a read/write algorithm based on adopt/commit object has first been given, and
then generalized by replacing atomic read/write registers by objects whose consensus
number is k. Developments of the power/limit of this approach have also been pre-
sented, increasing our knowledge on an important topic of fault-tolerant process syn-
chronization in asynchronous distributed systems.
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Abstract. We study a well-known communication abstraction called
Byzantine Reliable Broadcast (BRB). This abstraction is central in the
design and implementation of fault-tolerant distributed systems, as many
fault-tolerant distributed applications require communication with prov-
able guarantees on message deliveries. Our study focuses on fault-tolerant
implementations for message-passing systems that are prone to process-
failures, such as crashes and malicious behaviors.

At PODC 1983, Bracha and Toueg, in short, BT, solved the BRB
problem. BT has optimal resilience since it can deal with up to t < n/3
Byzantine processes, where n is the number of processes. The present
work aims at the design of an even more robust solution than BT by
expanding its fault-model with self-stabilization, a vigorous notion of
fault-tolerance. In addition to tolerating Byzantine and communication
failures, self-stabilizing systems can recover after the occurrence of arbi-
trary transient-faults. These faults represent any violation of the assump-
tions according to which the system was designed to operate (as long as
the algorithm code remains intact).

We propose, to the best of our knowledge, the first self-stabilizing
Byzantine fault-tolerant (SSBFT) solution for repeated BRB (that fol-
lows BT’s specifications) in signature-free message-passing systems. Our
contribution includes a self-stabilizing variation on a BT that solves asyn-
chronous single-instance BRB. We also consider the problem of recycling
instances of single-instance BRB. Our SSBFT recycling for time-free sys-
tems facilitates the concurrent handling of a predefined number of BRB
invocations and, by this way, can serve as the basis for SSBFT consensus.

1 Introduction

Fault-tolerant distributed systems are known to be hard to design and ver-
ify. High-level communication primitives can facilitate such complex challenges.
These primitives can be based on low-level ones, e.g., the one that allows pro-
cesses to send a message to only one other process at a time. Hence, when an
algorithm wishes to broadcast message m to all processes, it can send m individu-
ally to every other process. But, if the sender fails during this broadcast, perhaps
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only some of the processes have received m. Even in the presence of network-
level support for broadcasting or multicasting, failures can cause similar incon-
sistencies. To simplify the design of fault-tolerant distributed algorithms, such
inconsistencies need to be avoided. Fault-tolerant broadcasts can simplify the
development of fault-tolerant distributed systems, e.g., State Machine Replica-
tion [1] and Set-Constrained Delivery Broadcast [2]. The weakest variant, named
Reliable Broadcast, lets all non-failing processes agree on the set of delivered mes-
sages , including all messages they have broadcast. We aim to design a reliable
broadcast that is more fault-tolerant than the state of the art.
The Problem. A process commits a Byzantine failure if it deviates from the
algorithm instructions, say, by deferring (or omitting) messages that were sent
by the algorithm or sending fake messages. Bracha and Toueg [3], BT from now
on, proposed the communication abstraction of Byzantine Reliable Broadcast
(BRB), which allows every process to invoke the brbBroadcast(v) operation and
raise the brbDeliver() event upon message arrival. Following Raynal [1, Ch. 4], we
consider the single-instance BRB problem (Definition 1), whose solution facili-
tates Byzantine Fault-Tolerant (BFT) binary and multivalued consensus [1].
Single-Instance BRB. We require the above operations to satisfy Definition 1.

Definition 1. The operations brbBroadcast(v) and brbDeliver() satisfy:

– BRB-validity. Suppose a correct process BRB-delivers message m from a
correct process pi. Then, pi had BRB-broadcast m.

– BRB-integrity. No correct process BRB-delivers more than once.
– BRB-no-duplicity. No two correct processes BRB-deliver different mes-

sages from pi (who might be faulty).
– BRB-Completion-1. Suppose pi is a correct sender. All correct processes

BRB-deliver from pi eventually.
– BRB-Completion-2. If a correct process BRB-delivers a message from pi

(who might be faulty), all correct processes BRB-deliver pi’s message eventu-
ally.

Repeated BRB. Distributed systems may use, over time, an unbounded number of
BRB instances. However, we require our solution to use, at any time, a bounded
amount of memory. Thus, we also consider the recycling BRB invocations using
bounded memory. We require the single-instance BRB object, O, to have an
operation, called recycle(), that allows the recycling mechanism to locally reset
O after all non-faulty processes had completed the delivery of O’s message.
Also, we require the mechanism to inform (the possibly recycled) O regarding its
availability to take new missions. Specifically, the txAvailable() operation returns
True when the sender can use O for broadcasting, and rxAvailable() returns True
when O’s new transmission has arrived at the receiver.

One may observe that the problem statement does not depend on the fault
model or the design criteria. However, the proposed solution depends on all three.
To clarify, we solve the single instance BRB using the requirements presented by
Raynal [1, Ch. 4]. Then, we solve an extended version of the problem in which
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each BRB instance needs to be recycled so that an unbounded number of BRB
instances can appear.
Fault Models. Recall that our BRB solution may be a component in a system
that solves consensus. Thus, we safeguard against Byzantine failures by following
the same assumptions that are often used when solving consensus. Specifically,
for the sake of deterministic and signature-free solvability [4], we assume there are
at most t < n/3 crashed or Byzantine processes, where n is the total number of
processes. The proposed solutions are for message-passing systems that have no
guarantees on the communication delay and without explicit access to the clock.
These systems are also prone to communication failures, e.g., packet omission,
duplication, and reordering, as long as Fair Communication (FC) holds, i.e., if
pi sends a message infinitely often to pj , then pj receives that message infinitely
often. We use three different fault models with notations following Raynal [1]:

– BAMPn,t[FC, t < n/3]. This is a Byzantine Asynchronous Message-Passing
model with at most t (out of n) faulty nodes. The array [FC, t < n/3] denotes
the assumption list, i.e., FC and t < n/3. We use this model for studying the
problem of single-instance BRB since it has no synchrony assumptions.

– BAMPn,t[FC, t < n/3,BML,♦Pmute]. By Doudou et al. [5], processes commit
muteness failures when they stop sending specific messages, but they may
continue to send “I-am-alive” messages. For studying the repeated BRB prob-
lem, we enrich BAMPn,t[FC, t < n/3] with a muteness detector of class ♦Pmute

and assume Bounded Message Lifetime (BML). That is, in any unbounded
sequence of BRB invocations, at the time that immediately follows the x-th
invocation, the messages associated with the (x−λ)-th invocation (or earlier)
are either delivered or lost, where λ is a known upper-bound.

– AMPn[FC,BML]. Our repeated BRB solution for BAMPn,t[FC, t < n/3,BML,
♦Pmute] is based on this model, which does not consider any node failures.

Raynal [1] refers to an asynchronous system as time-free when it includes syn-
chrony assumptions, e.g., BML. Note that BML does not imply bounded com-
munication delay since an unbounded number of messages can be lost between
any two successful transmissions. At last, our muteness detector implementation
follows an assumption about the number, Θ, of messages that some non-faulty
processes can exchange without hearing from all non-faulty processes.
Self-stabilization. In addition to the failures above, we aim to recover after the
occurrence of the last transient-fault [6,7]. These faults model any temporary
violation of assumptions according to which the system was designed to oper-
ate. This includes the corruption of control variables, e.g., the program counter
and packet payloads, as well as operational assumptions, e.g., at most t < n/3
processes are faulty. When modeling the system, we assume these violations can
bring the system to an arbitrary state from which a self-stabilizing system should
recover. Such a system must satisfy the task requirements only after the system
has finished recovering from the occurrence of the last transient fault, cf [6,7].
Related Work. In the context of reliable broadcast, there are non-self-
stabilizing BFT [1,10–12] and self-stabilizing crash-tolerant solutions [13] (even
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for total order broadcast [13,23–25]). We focus on BT [3] to which we propose a
self-stabilizing variation. BT is the basis for advanced BFT algorithms for solving
consensus [14] and is based on Toueg’s simpler abstraction called no-duplicity
broadcast [15] (ND-broadcast). It includes all of Definition 1’s requirements
except for BRB-Completion-2. Maurer and Tixeuil [16] consider an abstraction
that is somewhat simpler than ND-broadcast since they only consider BRB-no-
duplicity (and none of the other requirements of Definition 1). They provide
a single-instance synchronous SSBFT broadcast, whereas we consider an asyn-
chronous repeated BRB that follows Definition 1, which is taken from Raynal [1].
Raynal studies the exact power of all the essential communication abstractions in
the area of fault-tolerant message-passing systems. We use the more useful defi-
nition provided by Raynal since we wish to connect our solution to all relevant
protocols in the area, such as multivalued consensus.

We also consider a self-stabilizing BFT (SSBFT) mechanism for recycling
BRB instances. This mechanism uses a muteness detector inspired by Doudou
et al. [5]. Even though Doudou et al. consider the consensus problem while we
consider here repeated BRB, both works share the same motivation, i.e., circum-
venting known impossibilities, e.g., the one by Fischer, Lynch, and Paterson [17].
Our Contribution. We present SSBFT BRB—a fundamental module for
dependable distributed systems, which is obtained via a transformation of the
non-self-stabilizing BT algorithm while preserving BT’s resilience optimality.
In the absence of transient-faults, our asynchronous solution for single-instance
BRB achieves operation completion within a constant number of asynchronous
communication rounds. After the occurrence of the last transient-fault, the sys-
tem recovers eventually (while assuming execution fairness among the non-faulty
processes). The amount of memory used by the proposed algorithm is bounded.
The communication costs of the studied and proposed BRB algorithms are sim-
ilar, i.e., O(n2) messages per BRB instance. Our contribution also includes an
SSBFT recycling mechanism for BAMPn,t[FC,♦Pmute,BML] named the indepen-
dent round counter (IRC) algorithm. Implementing an SSBFT IRC is a non-
trivial challenge since this counter should facilitate an unbounded number of
increments, yet it has to use only a constant amount of memory. Using novel tech-
niques for dealing with integer overflow events, the proposed solution recovers
from transient faults eventually and has communication cost of O(n) messages
per BRB instance.

To the best of our knowledge, we propose the first self-stabilizing BFT solu-
tions for the problems of IRC and repeated BRB (that follows BT’s prob-
lem specifications [1, Ch. 4]). As said, BRB and IRC consider different fault
models. Section 2 defines BAMPn,t[FC, t < n/3] and self-stabilization. The non-
self-stabilizing BT algorithm for BAMPn,t[FC, t < n/3] is studied in Sect. 3.
Our SSBFT variation on BT for BAMPn,t[FC, t < n/3] is proposed in Sect. 4.
Our IRC solution is presented in two steps. A self-stabilizing IRC for time-
free node-failure-free systems appears in Sect. 5. We revise these settings into
BAMPn,t[FC,♦Pmute,BML] (Sect. 6) and propose our novel SSBFT IRC solu-
tion. Section 7 compares the overhead of the studied and proposed solutions
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when executing δ BRB instances concurrently. This straightforward extension is
imperative for practical deployments and usage in implementations of solutions
to harder problems, e.g. multivalued consensus [1].

Due to the page limit, a detailed version of this work (which includes the
complete proofs) appears in the complementary technical report [9].

2 System Settings for BAMPn,t[FC, t < n/3]

The fault model considered in this section is for asynchronous message-passing
systems that have no guarantees on the communication delay. Also, the algorithm
cannot explicitly access the clock (or timeouts). The system consists of a set, P,
of n fail-prone nodes (or processes) with unique identifiers. Any pair of nodes
pi, pj ∈ P has access to a bidirectional communication channel, channelj,i, that,
at any time, has at most channelCapacity messages on transit from pj to pi (this
assumption is due to an impossibility [7, Chapter 3.2]).

In the interleaving model [7], the node’s program is a sequence of (atomic)
steps. Each step starts with an internal computation and finishes with a single
communication operation, i.e., a message send or receive. The state, si, of node
pi ∈ P includes all of pi’s variables and incoming channels. The term system state
(or configuration) refers to the tuple c = (s1, s2, · · · , sn). We define an execution
(or run) R = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system states
c[x] and steps a[x], such that each c[x + 1], except for the starting one, c[0], is
obtained from c[x] by a[x]’s execution. The legal executions (LE) set refers to
all the executions in which the task requirements (Sect. 1) hold.
Arbitrary Node Failures. Byzantine faults model any fault in a node including
crashes, and arbitrary malicious behaviors. Here the adversary lets each node
receive the arriving messages and calculate their state according to the algorithm.
However, once a node (that is captured by the adversary) sends a message, the
adversary can modify the message in any way, arbitrarily delay it or omit it.
The adversary can also send fake messages, i.e., not according to the algorithm.
For the sake of solvability [4], the number, t, of Byzantine failures needs to be
less than one-third of the number, n, of nodes. The set of non-faulty indexes is
denoted by Correct , so that i ∈ Correct when pi is a correct node.
Transient-Faults. We consider any temporary violation of the assumptions
according to which the system was designed to operate. We refer to these vio-
lations as transient-faults and assume that they can corrupt the system state
arbitrarily (while keeping the program code intact). The occurrence of a tran-
sient fault is rare. Thus, we assume the last transient fault occurs before the
system execution starts [7]. Also, it leaves the system to start in an arbitrary
state.
Dijkstra’s Self-stabilization. An algorithm is self-stabilizing w.r.t. LE, when
every execution R of the algorithm reaches within a finite period a suffix
Rlegal ∈ LE that is legal. Namely, Dijkstra [8] requires ∀R : ∃R′ : R =
R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ Z+, where the operator ◦ denotes that
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R = R′ ◦ R′′ is the concatenation of R′ with R′′. This work assumes execu-
tion fairness during the period in which the system recovers from the occurrence
of the last arbitrary transient fault. We say that an execution is fair when every
step of a correct node that is applicable infinitely often is executed infinitely
often and fair communication is kept. Since transient faults are rare, this fair-
ness assumption is seldom needed and even then, it is only needed for the period
of recovery.

Algorithm 1: ND;
code for pi.

1 operation ndBroadcast(m)
do broadcast INIT(m);

2 upon INIT(mJ) first
arrival from pj do
broadcast ECHO(j,mJ);

3 upon ECHO(k ,mJ)
arrival from pj begin

4 if ECHO(k ,mJ)
received from at least
(n+t)/2 nodes then
ndDeliver(j,mJ);

Algorithm 2: BRB; code for pi.

5 operation brbBroadcast(m) do broadcast INIT(m);

6 upon INIT(mJ) first arrival from pj do
broadcast ECHO(j,mJ);

7 upon ECHO(k ,mJ) arrival from pj begin
8 if ECHO(k ,mJ) received from at least (n+t)/2

nodes ∧ READY(k ,mJ) not yet broadcast
then broadcast READY(k ,mJ) ;

9 upon READY(k ,mJ) arrival from pj begin
10 if READY(k ,mJ) received from (t+1) nodes

∧ READY(k ,mJ) not yet broadcast then
broadcast READY(k ,mJ);

11 if READY(k ,mJ) received from at least
(2t+1) nodes ∧〈k ,mJ〉 not yet
BRB-Delivered then brbDeliver (k ,mJ);

(When a message arrives from pj to the receiver, we add the suffix J to the field name.)

3 The Non-Self-Stabilizing BT Algorithm

BT [3] is a BRB solution for BAMPn,t[FC, t < n/3], which is based on ND-
broadcast [15]. It includes all of the BRB requirements except BRB-Completion-
2. We review ND-broadcast before BT.
ND-Broadcast. Algorithm 1 presents ND-broadcast, and assumes that every
correct node invokes ND-broadcast at most once. Node pi initiates the ND-
broadcast of mi by sending INIT(mi) to all nodes (line 1). Upon this message’s
first arrival to pj , it disseminates the fact that pi has initiated m’s ND-broadcast
by sending ECHO(i,m) to all nodes (line 2). Upon this message arrival to pk

from more than (n+t)/2 different nodes, pk is ready to ND-deliver 〈i,mi〉 (line 4).
BRB-Broadcast. Algorithm 2 satisfies the BRB requirements. The first dif-
ference between the ND-broadcast and BRB algorithms is when ND-delivery
of 〈j,m〉 is replaced with the broadcast of READY(j,m). This broadcast indi-
cates that pi is ready to BRB-deliver 〈j,m〉 as soon as it receives sufficient
support, i.e., the arrival of READY(j,m), which tells that 〈j,m〉 can be BRB-
delivered. Note that BRB-no-duplicity protects from the case in which pi broad-
casts READY(j,m) while pj broadcasts READY(j,m′), such that m 
= m′.

The new part of the BRB algorithm (lines 9 to 11) includes two if-statements.
The first one (line 10) makes sure that every correct node receives READY(j,m)
from at least one correct node before BRB-delivering 〈j,m〉. This is done via
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Algorithm 3: SSBFT BRB with instance recycling interface; pi’s code

12 types: brbMSG := {init, echo, ready};
13 variables: msg[P][brbMSG] := [[∅, . . . , ∅]] /* most recently sent/received message */
14 wasDelivered[P] := [False, . . . , False] /* indicates whether the message was delivered */

15 required interfaces: txAvailable() and rxAvailable(k)

16 provided interfaces: recycle(k) do {(msg[k], wasDelivered[k]) ← ([∅, ∅, ∅], False)};
17 mrg(mJ , j) do {foreach s ∈ brbMSG, pk ∈ P do if s 
= init∨ �s = init, (k, m), (k, m′) ∈

(msg[j][s] ∪ mJ [s]) : m 
=m′ then msg[j][s] ← msg[j][s]∪ mJ [s]};
18 operations: brbBroadcast(v) do {if txAvailable() then recycle(i); msg[i][init] ← {v}}
19 brbDeliver(k) do {if ∃m(2t+1) ≤ |{p� ∈ P : (k, m) ∈ msg[�][ready]}| ∧rxAvailable(k) then

wasDelivered[k] ← wasDelivered[k] ∧ m 
= ⊥; return m else return ⊥};
20 brbWasDelivered(k) do return wasDelivered[k];

21 do-forever begin
22 if ∃(j,m)∈msg[i][echo]m /∈ msg[j][init]∨ ∃(j,m)∈msg[i][ready]¬((n+t)/2 < |{p� ∈ P :

(j, m) ∈ msg[�][echo]}| ∨ (t+1) ≤ |{p� ∈ P : (j, m) ∈ msg[�][ready]}|) then recycle(i);
23 foreach pk ∈ P do
24 if |msg[k][init]| > 1 ∨ ∃s �=init∃pj∈P ∃(j,m),(j,m′)∈msg[k][s]m 
= m′ then

25 msg[k][s] ← ∅
26 if ∃m∈msg[k][init]msg[i][echo] = ∅ then msg[i][echo] ← {(k, m)};
27 if ∃m(n+t)/2 < |{p� ∈ P : (k, m) ∈ msg[�][echo]}| then
28 msg[i][ready] ← msg[i][ready] ∪ {(k, m)}
29 if ∃m(t+1) ≤ |{p� ∈ P : (k, m) ∈ msg[�][ready]}| then
30 msg[i][ready] ← msg[i][ready] ∪ {(k, m)}

31 broadcast MSG(brb = msg[i], irc = txMSG());

32 upon MSG(brbJ, ircJ) arrival from pj do {mrg(brbJ, j); rxMSG(brbJ, ircJ, j)}

the broadcasting of READY(j,m) as soon as pi received it from at least (t+1)
different nodes (since t of them can be Byzantine).

The second if-statement (line 11) makes sure that no two correct nodes BRB-
deliver different pairs (in the presence of plausibly fake READY(j, -) messages
sent by Byzantine nodes, where the symbol ‘-’ stands for any legal value). That
is, the delivery of a BRB-broadcast is done only after the first reception of the
pair 〈j,m〉 from at least (2t+1) (out of which at most t are Byzantine). The
receiver then knows that there are at least t+1 correct nodes that can make sure
that the condition in line 10 holds eventually for all correct nodes.

4 Self-stabilizing Byzantine-Tolerant Single-Instance
BRB

Algorithm 3 proposes our SSBFT BRB solution for BAMPn,t[FC, t < n/3]. The
key idea is to offer (i) a variation of Algorithm 2 so that its operations always
complete even when starting from an incorrect state, (ii) interfaces for access-
ing the current status and value of the broadcast, as well as (iii) interfaces for
coordinating the recycling of a given BRB object. This way, the recycling coor-
dination mechanism (Sect. 5 and Sect. 6) can make sure that no BRB object is
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recycled before all correct nodes deliver its result. Also, once all correct nodes
have delivered a message, the BRB object can be recycled eventually. The line
numbers of Algorithm 3 continue the ones of the previous algorithms, and the
boxed code fragments in lines 31 to 32 are irrelevant to our single-instance

BRB.
Variables and Message Structure. The message MSG() unifies the different
messages of Algorithm 2. The array msg[][] stores both the information that is
sent and received by these messages. Specifically, msgi[i][] stores the information
that pi broadcasts (line 31) and for any j 
= i the entry msgi[j][] stores the
information coming from pj (line 17). Also, we define the type brbMSG (line 12)
for storing information related to BRB-broadcast messages, e.g., msgi[i][init]
stores the information that BRB-broadcast disseminates of INIT() messages and
the aggregated content of READY() messages appear in msgi[i][ready].
Algorithm Details. The brbBroadcast(v) operation (line 18) invokes BRB-
broadcast instances with v. The invocation causes Algorithm 3 to follow Algo-
rithm 2’s logic (lines 19 and 26 to 30). It also includes consistency tests (line 22).

Fig. 1. Integrating the BRB (Sect. 4), IRC (Sect. 5), and ♦Pmute (Sect. 6) protocols.

Interfaces for Coordinating the Recycling of a Given BRB Object. Recall that
Algorithm 3 has an interface to a recycling mechanism of BRB instances (Sect. 5).
The interface between the proposed BRB and recycling mechanism includes
the recycle(), txAvailable(), and rxAvailable() operations, see Fig. 1 (the interface
between IRC and ♦Pmute is irrelevant to Algorithm 3). The function recyclei(k)
lets the recycling mechanism locally reset msgi[k][] with the notation fi() denot-
ing that pi executes the function f . For the single-instance BRB (without recy-
cling), define txAvailable() and rxAvailable(k) to return True.
Interfaces for Accessing the Delivered Value and Current Status. Algorithm 2
informs the application about message arrival by raising brbDeliver() (line 11).
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Our SSBFT BRB solution takes another approach in which the application is
pulling information from Algorithm 3 by invoking the brbDeliver() operation
(line 19), which returns ⊥ (line 19) when no message is ready to be delivered.
Otherwise, the arriving message is returned. Note that once brbDeliveri(k) :
i, k ∈ Correct returns a non-⊥ value, brbDeliveri(k) returns a non-⊥ value in
all subsequent invocations. For the sake of satisfying BRB-integrity in a self-
stabilizing manner, line 19 records the fact that the non-⊥ message was delivered
at least once by storing True in wasDeliveredi[k]. The application can access
the value stored in wasDeliveredi[k] by invoking brbWasDeliveredi(k) (line 20).
Algorithm 3’s Correctness. Theorem 1 shows that consistency (Definition 2)
is regained eventually while Theorem 2 proves BRB-completion. Our proposal
satisfies BRB’s requirements since any completed BRB instance is eventually
recycled (cf. Sect. 1). Showing that a recycled SSBFT BRB object satisfies
BRB’s requirements is obtained by arguments similar to the ones of the non-
self-stabilizing BT algorithm, and the complete proof appears in [9].

Definition 2 (Consistent executions of Algorithm 3). We use the term
active for node pi ∈ P when referring to the case of msgi[i][init] 
= ∅. Let R
be an Algorithm 3’s execution, pi ∈ P : i ∈ Correct, and c ∈ R. Suppose the if-
statement condition of line 22 or 25 does not hold in c w.r.t. pi. In this case, we
say that c is inconsistent w.r.t. pi. Suppose every system state in R is consistent
w.r.t. pi. In this case, we say that R is consistent w.r.t. pi.

Theorem 1 (Algorithm 3’s Convergence). Let R be a fair execution of
Algorithm 3 in which pi ∈ P : i ∈ Correct is active eventually. The system
eventually reaches a state c ∈ R that starts a consistent execution w.r.t. pi.

Proof Sketch for Theorem 1. Suppose R’s starting state is inconsistent
w.r.t. pi. I.e., at least one of the if-statement conditions in lines 22 and 25 holds.
Since R is fair, eventually pi takes a step that includes the execution of lines 22
to 25, which assures that pi becomes consistent. Observe that once consistency
holds, it holds in any state that follows c, cf. lines 17 and 26 to 32.

�Theorem 1

Theorem 2 (BRB-Completion-1). Let R be a consistent Algorithm 3’s exe-
cution in which pi ∈ P is active. Eventually, ∀i, j ∈ Correct : brbDeliverj(i) 
= ⊥.

Proof of Theorem 2. Since pi is correct, it broadcasts MSG(brbJ =
msgi[i], -) infinitely often. By fair communication, every correct pj ∈ P receives
MSG(brbJ) = (m, -) eventually. Thus, ∀j ∈ Correct : msgj [i][init] = {m}
due to line 17. Also, ∀j ∈ Correct : msgj [j][echo] ⊇ {(i,m)} since node pj

obverses that the if-statement condition in line 26 holds (for the case of kj = i).
Thus, pj broadcasts MSG(brbJ = msgj [j], -) infinitely often. By fair commu-
nication, every correct node p� ∈ P receives MSG(brbJ, -) eventually. Thus,
∀j, � ∈ Correct : msg�[j][echo] ⊇ {(i,m)} (line 17). Since n−t > (n+t)/2, node
p� observes that (n+t)/2 < |{px ∈ P : (i,m) ∈ msg�[x][echo]}| holds, i.e., the if-
statement condition in line 27 holds, and thus, msg�[�][ready] ⊇ {(i,m)} holds.
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Note that, since t < (n+t)/2, faulty nodes cannot prevent a correct node from
broadcasting MSG(brbJ = mJ, -) : mJ [ready] ⊇ {(i,m)} infinitely often, say, by
colluding and sending MSG(brbJ = mJ, -) : mJ [ready] ⊇ {(i,m′)}∧m′ 
= m. By
fair communication, every correct py ∈ P receives MSG(brbJ = mJ, -) eventu-
ally. Thus, ∀j, y ∈ Correct : msgy[j][ready] ⊇ {(i,m)} holds (line 17). Therefore,
whenever py invokes brbDelivery(i) (line 19), the condition ∃m(2t+1) ≤ |{p� ∈
P : (ky = i,m) ∈ msgy[�][ready]}| holds, and thus, m is returned.

�Theorem 2

5 Self-stabilizing Recycling in Node-Failure-Free Systems

Before proposing our SSBFT algorithm for BRB instance recycling (Sect. 6), we
study a non-crash-tolerant yet self-stabilizing recycling algorithm. I.e., towards
a solution for BAMPn,t[FC,♦Pmute,BML], the independent round counter (IRC)
task is presented. And, we implement txAvailable() and rxAvailable(k) (Fig. 1).

When non-self-stabilizing node-failure-free systems are considered, the opera-
tions txAvailable() and rxAvailable(k) can be implemented using prevailing mecha-
nisms for automatic repeat request (ARQ), which uses unbounded counters. These
mechanisms are often used for guaranteeing reliable communications by letting
the sender collect acknowledgments from all receivers. Each message is associated
with a unique message number, which the sender obtains by adding one to the pre-
vious message number after all acknowledgments arrived. From that point in time,
the previous message number is obsolete and can be recycled. For the case of self-
stabilizing node-failure-free systems, the challenge is to deal with integer overflow
events. Specifically, when an algorithm considers the counters to be unbounded
but the studied system has bounded memory, transient faults can trigger integer
overflow events. The solution presented here shows how to overcome this challenge
via our recycling technique and a mild synchrony assumption.
Independent Round Counters (IRCs). We consider n independent counters,
such that each counter, cnti, can be incremented by a unique node, pi, via the
invocation of incrementi(), which returns the new round number or ⊥ when the
invocation is (temporarily) disabled. Suppose pi, pj ∈ P are correct. Node pj can
fetch cnti’s value via the invocation of fetchj(i), which returns the most recent
and non-fetched cnti’s value or ⊥ when such value is unavailable. We define the
IRC task using the following requirements.

– IRC-integrity-1. Let Si,j = (s0, . . . , sx) : x < B be a sequence of pi’s
round numbers that pj fetched—we are only interested in B most recent ones,
where B is a predefined constant. It holds that ∀sy ∈ Si,j : y < B − 1 =⇒
sy + 1 mod B = sy+1. I.e., no correct node IRC-fetches a value more than
once from the counter of any other correct node (considering the B most
recent IRC-fetches).

– IRC-integrity-2. Correct nodes that IRC-fetch from cnti do so in the order
in which cnti was incremented (considering the B most recent IRC-fetches).

– IRC-preemption. Suppose pi IRC-increments cnti to s. IRC-increment is
(temporarily) disabled until all correct nodes have fetched s from pi’s counter.
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Algorithm 4: time-free IRC; code for pi

33 constants: B: a bound on the integer size, e.g., 264−1.

34 variables: cur[P], nxt[P] = [[−1, −1], . . . , [−1, −1]]: a pair of round numbers—one pair per
node, where cur[i] is pi’s current round number and nxt[i] is the next one. Also, cur[j] and
nxt[j] are the most recently received, and resp., delivered round num. from pj ;

35 lbl[P] = [0, . . . , 0]: labels corresponding to cur[i], where lbl[j] stores the most recently
received label from pj .

36 required interfaces: recycle(k), trusted(), invoc(), rtComp(j);

37 provided interface: txAvailable() do {return increment() 
= ⊥}
38 rxAvailable(k) do {return fetch(k) 
= ⊥}
39 macro: behind(d, s, c) do {return s ∈ {x mod B : x ∈ {c − dλ, . . . , c}}}
40 operation increment() /* trusted() = P for the crash-free version */ begin
41 if cur[i] = −1 ∨ ∃j ∈ trusted() : lbl[j] ≤ 2(channelCapacity + 1) then return ⊥;

42 else invoc(); cur[i] ← cur[i] + 1 mod B; recycle(j); return cur[i];

43 operation fetch(k) do {if behind(1, cur[k], nxt[k]) then return ⊥ else {nxt[k] ← cur[k];
return nxt[k]}};

44 operation txMSG(j) {return (True, cur[i], lbl[j])}
45 operation rxMSG(brbJ, ircJ = (aJ, sJ, �J), j) begin
46 if ¬aJ ∧ behind(2, cur[i], sJ) ∧ lbl[j] = �J then

47 { rtComp(j); lbl[j] ← min{B, �J + 1}; return }
48 if ¬behind(1, sJ , cur[i]) then {cur[j] ← sJ ; recycle(j)};
49 send MSG(False, nxt[j], �J) to pj ;

50 do forever broadcast MSG(brb = msg[i], irc = txMSG());

51 upon MSG(brbJ, ircJ) arrival from pj do {mrg(brbJ, j); rxMSG(brbJ, ircJ, j)}

We also require IRC to be completed eventually (IRC-completion) and to
only allow the fetching of authentic values (IRC-validity), cf. [9] for details.
Note that an IRC algorithm can implement the interface functions txAvailable()
and rxAvailable(k) by returning increment() 
= ⊥ and fetch(k) 
= ⊥, resp.
Time-Free System Settings for AMPn[FC,BML]. The IRC solution proposed
in this section requires time-free system settings, which we define by revising
BAMPn,t[FC, t < n/3] into AMPn[FC,BML]. The latter model does not consider
node failures but includes Assumption 3, as we explain further.

Suppose, due to a transient fault, cnti is smaller than pj ’s copy of cnti by
x ∈ Z

+, thus node pi will have to complete x rounds before pj could IRC-fetch
a non-⊥ value. We overcome this by following Assumption 3.

Assumption 3 (Bounded Message Lifetime, BML). Suppose a correct
pi ∈ P repeatedly completes an unbounded number of round-trips with every
correct pj ∈ P. Suppose pj receives message m(s) from pi immediately before
c ∈ R, where s is the round number. Assume B is a bound for integers and
curi[i]−s ≤ λ holds in c, where λ ∈ Z

+ : channelCapacity < λ < B/6 is a known
upper-bound.

Self-stabilizing IRC for AMPn[FC,BML]. Algorithm 4 presents a self-
stabilizing solution for crash-free systems. The idea is to make sure that any
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node that had IRC-incremented its round counter defers any further IRC-
increments until all nodes have acknowledged the latest IRC-increment. To that
end, acknowledgments are used. Note that the line numbers of Algorithm 4 con-
tinue the ones of Algorithm 3. Also, the boxed code in lines 42 and 47 are
irrelevant to the IRC solution studied in this section. We remind that the imple-
mentation of recycle() (line 36) is provided by Algorithm 3, line 16. Also, for this
section only, let us assume that trustedi() = P.
Constants and Variables. All integers used by Algorithm 4 have a maximum
value, which we denote by B (line 33) and require to be large, say, 264 − 1. The
arrays cur[] and nxt[] (line 34) store a pair of round numbers. The entry cur[i]
is pi’s current round number and nxt[i] is the next one. Also, cur[j] and nxt[j]
store the most recently received, and resp., delivered round numbers from pj .
The array lbl[] holds labels that correspond to the number in cur[i], where lbl[j]
is the most recently received label from pj (line 34).
The increment() Operation. This operation allows the caller to IRC-increment
the value of its round number modulo B. It also returns the new round number.
However, if the previous invocation has not finished, the operation is disabled
and the ⊥ value is returned. Line 41 tests whether the round number is ready to
be incremented. In detail, recall that in this section, we assume trustedi() = P.
Now line 41 checks whether this is the first round, i.e., a round number of
−1, or the previous round has finished, i.e., the labels indicate that every node
has completed at least 2(channelCapacity+1) round-trips. By that, the proposed
solution overcomes packet loss and duplication over non-FIFO channels, see [20].
The fetch(k) Operation. It returns, exactly once, the most recently received round
number. Line 43 tests whether a new round number has arrived. If not, ⊥ is
returned. Otherwise, the new round number is returned (line 43). In detail,
due to Assumption 3, immediately after the arrival of m(s) to pj from pi, s /∈
{x mod B : x ∈ {c−λ, . . . , c}} implies that s is newer than curj [i]. Thus, pi can
use behindi(1, curi[k], nxti[k]) (line 43) for testing the freshness of curi[k] w.r.t.
nxti[k]. If it is fresh, fetchi() updates nxti[k] with the returned number.
The txMSG() and rxMSG() Operations. These operations let the sender, and
resp. receiver, process messages. Algorithm 4’s MSG() message has two fields:
brb and irc, where brb is related to Algorithm 3. Recall that when a message
arrives from pj , the receiving-side appends J to the field name, i.e., brbJ and
ircJ . The field irc is composed of ack, which indicates a required acknowledge,
seq, which is the sender’s round, and lbl, which is the corresponding label to
seq that the sender uses for the receiver. The operation txMSG() is used when
the sender transmits (line 44). It specifies that acknowledgment is required, i.e.,
ack = True as well as includes the sender’s current round, i.e., cur[i], and the
corresponding label that the sender uses for the receiver pj ∈ P, i.e., lbl [j].

The operation rxMSG() processes messages arriving either to the sender or
receiver. On the sender-side, when an acknowledgment arrives from the receiver,
pj , the sender checks whether the message has fresh round and label (line 46). In
this case, the label is incremented to indicate round-trip completion. In detail, pi

uses behindi(2, curi[j], sJ ) for testing if the arriving round, sJ , is fresh by asking
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whether sJ is not a member of {curj [i] − 2λ, . . . , curj [i]}, see Assumption 3. As
we see next, we need to consider the receiver’s test (line 48), which can cause
a non-fresh value to be a member of {x mod B : x ∈ {c − 2λ, . . . , c}}, but not
{x mod B : x ∈ {c−λ, . . . , c}}. On the receiver-side, pi uses behindi(1, sJ , curi[j])
to test whether a new round arrived, i.e., whether sJ is a member of {curj [i] −
2λ, . . . , curj [i]}. In this case, the local round number is updated (line 48) and the
interface function recyclei(j) is called (line 16). Note that whenever the receiver
gets a message, it replies (line 49). That acknowledgment specifies that no further
replies are required, i.e., ack = False, as well as the most recently delivered round
number, i.e., nxt[i], and label, �J .
The Do-Forever Loop and Message Arrival. The processing of messages (for
sending and receiving) is along the lines of Algorithm 3, and thus, can be pig-
gybacked. The do-forever loop broadcasts MSG() to every node (line 50). The
operation txMSG() is used for setting the ircJ field. Upon message arrival, the
receiver passes the arriving values to rxMSG() for processing (line 51).

6 SSBFT BRB Recycling via Muteness Detection

Algorithm 4 presents our self-stabilizing BFT recycling mechanism for the time-
free model of BAMPn,t[FC, t < n/3,BML,♦Pmute], which we obtain by enriching
BAMPn,t[FC, t < n/3,BML] with ♦Pmute, a detector for muteness failures that
we define in this section. Our SSBFT recycling mechanism appears in Algo-
rithm 4, including the boxed code lines. It is for BAMPn,t[FC,♦Pmute,BML]
and uses a muteness detector, which this section presents. Algorithm 4 lets pi

restart its local detector via a call to invoci() (line 42) and uses rtCompi(j)
(line 47) for reporting the completion of a round-trip between pi and pj . Our
proof, which appear in [9] due to the page limit, shows that the algorithm can
consider trustedi() ⊆ P due to ♦Pmute’s properties.
Muteness Failures. Let Alg be an algorithm that attaches a round number,
seq ∈ Z

+, to its messages, m(seq). Suppose ∃cτ ∈ R after which pj stops forever
replying to pi’s m(seq). In this case, we say that pj is mute to pi w.r.t. m(seq).
Specifications of ♦Pmute. We specify this class of muteness detectors.
Muteness Strong Completeness: Eventually, every mute node is forever sus-
pected w.r.t. round s by every correct node (or the round number changes).
Eventual Strong Accuracy: Eventually ∃cτ ∈ R : no correct node is suspected.
Our Solution in a Nutshell. Existing non-BFT implementations of perfect
failure detectors [21,22] might let pi suspect any pj ∈ P whenever pi was able to
complete Θ round-trips with other nodes but not with pj , where Θ is a predefined
constant. But, a Byzantine node might anticipate the sender’s messages and reply
before the arrival of prospective messages. Using this attack, the adversary may
accelerate the (fake) completion round-trips and let the detector suspect non-
faulty nodes. We propose to use Assumption 4 for defending against the above
attacks that use speculative acknowledgments. Specifically, when testing if the
Θ threshold has been exceeded, pi ignores the round-trips that were completed
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Algorithm 5: class ♦Pmute detector; code for pi

52 constants: B: a predefined bound on the integer size, say, 264 − 1.

53 variables: rt[P \ {pi}][P \ {pi}]: round trip counters, initially all entries are set to zero;

54 interface functions:
55 invoc() do {rt ← [[0, . . . , 0], . . . , [0, . . . , 0]]};
56 rtComp(j) do {{foreach pk ∈ P \ {pi, pj} do rt[k][j] ← min{B, rt[k][j] + 1}}

rt[j] ← [0, . . . , 0];}
57 trusted() do return {pj∈P:(

∑
x∈withoutTopItems(t,j) x) < Θ} where {rt[j][�]}p�∈P is a

multi-set with all the values in rt[j][] and withoutTopItems(t, j) is the same multi-set after
the removal of the top t values;

with the top t nodes, say, p1, . . . , pt, that had the highest number of round-trips
with pi. W.l.g. suppose the adversary captured nodes Pbyz = pbyz

n−t, . . . , p
byz
n−1. On

the one hand, the adversary aims at letting the Pbyz nodes to rapidly complete
round trips with pi. While on the other hand, pi ignores (when testing whether
the Θ threshold has been exceeded) any of the Pbyz nodes that completes round
trips faster than any of the nodes p1, . . . , pt. In other words, any adversarial
strategy that lets any of the Pbyz nodes to complete more round trips with pi

than the nodes p1, . . . , pt cannot cause a “haste” muteness detection of a correct
node. Algorithm 5 implements our solution, see [9] for details.

Assumption 4. Let
∑

x∈withoutTopItemsi,c(t,j)
x be the total number of round

trips that pi has completed until c when excluding the values from the top t
nodes. We assume that if Θ ≤ ∑

x∈withoutTopItemsi,c(t,j)
x, pj is mute to pi w.r.t.

m(s).

7 Discussion

To the best of our knowledge, this paper presents the first SSBFT algorithms for
IRC and repeated BRB (that follows Definition 1) for hybrid asynchronous/time-
free systems. As in BT, the SSBFT BRB algorithm takes several asynchronous
communication rounds of O(n2) messages per instance whereas the IRC algo-
rithm takes O(n) messages but requires synchrony assumptions.

The two SSBFT algorithms are integrated via specified interfaces and mes-
sage piggybacking (Fig. 1). Thus, our SSBFT repeated BRB solution increases
BT’s message size only by a constant per BRB, but the number of messages per
instance stays similar. The integrated solution can run an unbounded number of
(concurrent and independent) BRB instances. The advantage is that the more
communication-intensive component, i.e., SSBFT BRB, is not associated with
any synchrony assumption. Specifically, one can run δ concurrent BRB instances,
where δ is a parameter for balancing the trade-off between fault recovery time
and the number of BRB instances that can be used (before the next δ concur-
rent instances can start). The above extension mitigates the effect of the fact
that, for the repeated BRB problem, muteness detectors are used and mild syn-
chrony assumptions are made in order to circumvent well-known impossibilities,
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e.g., [17]. Those additional assumptions are required for the entire integrated
solution to work. To the best of our knowledge, there is no proposal for a weaker
set of assumptions for solving the studied problem in a self-stabilizing manner.

We note that the above extension facilitates the implementation of FIFO-
ordered delivery SSBFT repeated BRB. Here, each of the δ instances is associated
with a unqiue label � ∈ {0, . . . , δ − 1}. The implementation makes sure that no
node pi delivers a BRB message with label � > 0 before all the BRB messages
with labels in {0, . . . , �−1}. (For the case of � = 0, the delivery is unconditional.)

We hope that the proposed solutions, e.g., the proposed recycling mechanism
and the hybrid composition of time-free/asynchronous system settings, will facil-
itate new SSBFT building blocks.
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project (2019-03071) funded by VINNOVA, the Swedish Governmental Agency for
Innovation Systems.
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Abstract. Fault-tolerance techniques depend on replication to enhance
availability, albeit at the cost of increased infrastructure costs. This
results in a fundamental trade-off: Fault-tolerant services must satisfy
given availability and performance constraints while minimising the num-
ber of replicated resources. These constraints pose capacity planning
challenges for the service operators to minimise replication costs without
negatively impacting availability .

To this end, we present PCRAFT, a practical system to enable capac-
ity planning of dependable services. PCRAFT’s capacity planning is
based on a hybrid approach that combines empirical performance mea-
surements with probabilistic modelling of availability based on fault
injection. In particular, we integrate traditional service-level availabil-
ity mechanisms (active route anywhere and passive failover) and deploy-
ment schemes (cloud and on-premises) to quantify the number of nodes
needed to satisfy the given availability and performance constraints. Our
evaluation based on real-world applications shows that cloud deploy-
ment requires fewer nodes than on-premises deployments. Additionally,
when considering on-premises deployments, we show how passive failover
requires fewer nodes than active route anywhere. Furthermore, our eval-
uation quantifies the quality enhancement given by additional integrity
mechanisms and how this affects the number of nodes needed.

1 Introduction

Dependability is a must-have requirement for modern Internet-based services.
These services must be highly available, integrity protected, secure and offer
high assurance of performance to users, in terms of response time and through-
put. Service providers can use replication to achieve high availability and more
reliable services, and deploy them either using an on-premises cluster or on a
public cloud. However, such techniques regardless of the chosen deployment (i)
increase the complexity and the costs of the supporting infrastructure, and (ii)
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degrade the observed performance of the applications. To address the problem of
performance assurance, the service providers provision extra physical resources.
However, over-provisioning increases the operational costs without improving
availability. This represents an important problem: how to achieve the required
level of availability and performance while maintain affordable costs? We tackle
this problem directly by providing a capacity planning process.

We consider a scenario of a service that uses a cluster of server nodes that
run stateless [23] or soft-state [3] applications. The service has a target through-
put and availability requirements. To fulfil these requirements, applications are
replicated on different nodes. However, nodes crash and are replaced with new
ones, mainly to enhance or guarantee availability of the services. This can be
implemented using simple replication techniques such as active route anywhere
(ARA) or passive failover (PF). Active route anywhere provisions more nodes to
process users requests than required to meet the target performance. The extra
nodes fulfil this objective as long as sufficiently many stay available. Passive
failover also requires extra nodes to be provisioned but they are passively wait-
ing in a standby pool: when an active node fails, it is replaced by one from the
pool. After repairing the node, it is returned to the pool to handle new failures.

We consider two physical deployment schemes: on-premises cluster and public
cloud. The scheme has direct consequences on the fault-tolerance properties as
well as the associated costs. Cloud providers largely rely on the passive failover
approach, restarting virtual machines (or lately containers) of a failed node on a
functional one. Doing so, they can meet service level agreements (SLAs) under
several classes of nines [8]. Note that the service provider only has to pay for the
nodes actively participating in the cluster without the need to pay for the nodes
that passively exist in the pool. Conversely, when compared to an on-premises
deployment, resource sharing in the cloud (e.g., co-located virtual machines)
impacts the observed performance, leading to a degraded response time and
unexpected variations [25]. This degradation is perceived by clients as service
unavailability if it exceeds a certain (negative) threshold. On the other hand,
on-premises solutions must provide and pay for both the active nodes in the
cluster and the passive nodes in the pool.

Even when the service is available and serves requests, because of transient
hardware faults these requests may be incorrectly processed and produce incor-
rect results. Therefore, mechanisms such as instruction level redundancy [22] are
often used to protect the integrity of the execution by detecting which execu-
tions are incorrectly processed, yet at the price of decreased performance and
corresponding capacity.

Our system, PCRAFT,1 proposes a capacity planning process that is based
on a combination of empirical performance measurements with availability and
integrity probabilistic modelling. We consider the costs of deploying dependable
applications in terms of both the number of nodes used and the integrity of the
service provided. This simpler cost model allows us to easily reason about the

1 Performant, Cheap, Reliable and Available Fault Tolerance.
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total cost of ownership of a cluster and to consider the number of nodes as a
building block for more complex schemes.

PCRAFT integrates two availability techniques in its process: passive
failover and active route anywhere. PF consists of loosely coupled and inde-
pendent servers with failover capabilities. To tolerate f failures, at least f extra
nodes should be available in a standby pool. By default, these nodes are in
cold mode, i.e., they are only started when needed. ARA uses active replication
to deploy f additional, fully functional nodes behind a load-balancer that dis-
patches requests to all of them. The service performance is ensured only if at
most f nodes crash. In addition, PCRAFT uses instruction level redundancy
(ILR) [22] to protect node integrity from transient faults. ILR replicates data
flow instructions and executes two instruction streams in parallel, leveraging
the instruction-level parallelism of modern CPUs. To do so, PCRAFT relies on
the HAFT [13] framework, which additionally exploits hardware transactional
memory (HTM) [30] to recover from faults.

Previous studies on capacity planning mainly modelled the system perfor-
mance with varying workloads and resource conditions [16,17,24,26] assuming
an always available reliable infrastructure. Studies that quantify the availability
in the event of different types of failures ignored the effect of failures on the
performance [12,27]. Similarly, the combined effect of faults on availability and
performance [7,18–20] did not quantify the number of nodes needed to ensure
both the performance and availability levels. Further details on availability tech-
niques and related work on dependability studies are found in the extended
technical report [5].

In this paper, we propose the following contributions. (i) We introduce
PCRAFT, a capacity planning process that is based on a combination of empir-
ical experimentation and modelling to quantify the number of nodes needed to
assure availability and performance levels. (ii) We develop a collection of prob-
abilistic models to measure the availability of services when incorporated with
various failures and recovery behaviour via different fault-tolerance approaches
and physical deployment schemes. (iii) We measure the integrity of the service
by combining integrity models with fault-injection.

2 System Design

Fault Model. We assume a dependable service built using a cluster of server
nodes with three sources of failures: (1) Availability failures at the node level
regardless of the cause. We assume fail-stop failures that either crash nodes or
make them non-responsive, e.g., failing hardware, software, disks, memory. We
also assume that server nodes fail independently but do not exclude that many
nodes can fail simultaneously. We exclude failure types that cause multiple nodes
to fail due to a single failure, e.g., network failures or software bugs that determin-
istically crashes applications. (2) Performance failures: requests cannot be served
due to limited capacity, i.e., the number of available nodes is too low. (3) Integrity
failures: nodes are available but requests are served incorrectly without any error
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notification, in particular silent data corruption (SDC) [22] which leads to non-
malicious Byzantine behaviour. SDCs are transient hardware faults caused by sin-
gle event upsets, e.g., one bit-flip in a CPU register or miscomputation in a CPU
execution unit. Note that memory and caches are protected against bit-flips due
to the use of ECC which is assumed to exist in all modern servers.

In this paper, we consider a service as dependable2 if (i) the availability is above
a predetermined threshold, (ii) whenever the service is available, there is sufficient
capacity to ensure performance, and (iii) the service data integrity is protected.
Architecture. We consider a distributed n-tier service, with a front-end load
balancer, a middle-tier cluster of server nodes and a connected back-end persis-
tent storage. We focus on the middle-tier (i.e., web, application, caching servers)
to be available and well-performing. We assume the load balancer to be always
available (e.g., using replication [10]) and the back-end resources to be able to
scale accordingly.

The load balancer intercepts the client requests and distributes them to the
homogeneous cluster of servers nodes. A node becomes saturated when serving
the maximum throughput (requests per unit time) with an acceptable latency
(application-dependent response time threshold). Adding more requests to the
node after saturation will cause the latency perceived by users to be monoton-
ically increasing as more requests are added to the node’s local queue (sharing
model [20]). Alternatively, the server prematurely rejects the requests if the
server is saturated—assuming no queues (constant bit rate model [20])—with
users subsequently re-sending the rejected requests. In PCRAFT, we adapt the
constant bit rate model for server nodes to control the upper bound of the latency
perceived by users.
Dependable Services. The service consists of a cluster of nodes. Its throughput
is the sum of the throughput of each node, while the latency is the average latency
of all nodes that constitute the cluster. The service is available if at least a single
node in the cluster is available, but with a degraded performance. To consider the
service dependable, it must fulfils both the availability constraints (e.g., three
9’s) and the performance constraints (e.g., target throughput and response time
threshold). Additionally, the integrity mechanisms must be implemented at the
node level to enhance the integrity of the served requests.

To meet our performance requirements, we can predict—based on single node
performance—the number of nodes needed. Typically, we first assume that all
nodes are always available. Since nodes can actually fail, in a second step we
increase the availability by over-provisioning the number of nodes in the cluster.
Over-provisioning might take the form of ARA in which fully functional extra
nodes are added to the service cluster, or simply by replacing a failed node
from a standby pool of nodes with PF. The number of nodes needed for the
over-provisioning varies based on the type of deployment—on-premises or in the
cloud. This is due to the availability mechanisms which are implemented in the
cloud to assure the availability level for a single node that must meet the SLA.
2 It is possible to extend the dependability definition to include other attributes e.g.,

security, privacy, etc.
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However, single node provisioning is typically insufficient to meet the availability
constraints of a dependable service. Finding the adequate number of nodes in
each case requires solving the capacity planning problem for this service.

Note, we extrapolate the behaviour of a cluster using a single node perfor-
mance, however, in reality, sharing resources in a cluster might degrade the perfor-
mance of a single node. The degradation in the node performance when deployed
within a cluster can be captured by (1) considering various performance degra-
dation percentages of the standalone node performance e.g., 10%, 20% etc., then,
(2) we calculate the required number of nodes based on the degraded node perfor-
mance. The exact performance degradation percentage can be verified at runtime.
Capacity Planning Process. The process consists of two-phases. First, we
empirically benchmark the performance of a single server node. Second, we model
the availability behaviour and parameterise the models using the values from the
first phase to identify how many server nodes we need to ensure the dependability
requirements.

Experimentation phase — Assuming an always available node, we profile
the service that consists of a single node along two dimensions: performance
and integrity. First, we benchmark the performance of both the native appli-
cation (native) and the integrity protected version of the application (ft). We
refer to the throughput of the single node in both cases as NodTnative and
NodT ft , respectively. Note that usually NodT ft < NodTnative . The service target
throughput SerT is defined by the service provider as (Numnative ×NodTnative)
or (Numft × NodT ft). For different node types (native and ft), we can calculate
Numnative and Numft as an estimation for the number of nodes needed in the
cluster to fulfil the service target performance assuming nodes do not fail and
without any over-provisioning of nodes. Note that usually Numft > Numnative

to fulfil the same SerT . Second, we inject integrity faults with a service that
uses native and ft nodes to benchmark the integrity behaviour in each case.
The results of the fault injection is subsequently used to estimate the integrity
behaviour of applications in the presence of integrity faults.

Modelling phase — We build availability models for a cluster of nodes that
implements over-provisioning using ARA or PF mechanisms with a cloud or on-
premises deployment. The model can be used to first estimate the availability
level achieved by the basic number of nodes Num calculated in the previous
phase. Then, by comparing the availability achieved to the target availability
defined by the service provider, we over-provision iteratively the number of nodes
in the cluster until the availability constraint is met. In addition to availability
models, we build integrity models for native and ft to estimate the integrity
behaviour of nodes in the cluster when deployed in the cloud.

3 Implementation

In the second phase of the process, we build continuous-time Markov chain
(CTMC) models a probabilistic model checker tool called PRISM [14]. The mod-
els, which capture the availability and the integrity behaviour, consist of possible
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Fig. 1. State machine for a cluster of nodes using passive failover (left) or active route
anywhere (right) as over-provisioning in the availability models for the cloud and on-
premises deployments. Rectangles represent the states while arrows are transitions with
associated rates. The system fails at rates of λ’s and recovers at rates of ρ’s.

states and possible transitions between them with their respective rates (failure
and repair rates). We assume all rates have inter-event times that are expo-
nentially distributed [29]. CTMC suffers from well-known state space explosion
problems. To reduce the generated number of states, we follow two approaches.
First, we attempt to aggregate states together. Specifically, we use homogeneous
nodes in the cluster and so they exhibit similar failure and repair behaviour. It
is thus not necessary to distinguish between which node in the cluster failed.
Rather, we can simply keep track of up nodes (UpNodes). Second, performabil-
ity analysis generally uses a hierarchy of models instead of monolithic ones in
order to combine both availability and performance and hence reduce the num-
ber of generated states. In this paper, instead of solving performance models, we
use the empirical measurements to feed the availability models, which further
reduces the number of states needed.

For our models, we explore the following server node types: (i) native nodes
without any special software/hardware hardening mechanisms implemented at
the node level (standard nodes), and (ii) ft nodes which are integrity protected
using the HAFT [13] approach. Additionally, we consider two deployments, in
the cloud and on-premise, as well as two over-provisioning techniques, active
route anywhere and passive failover.
Availability Models. In the availability models (Fig. 1), we inject hardware
crash faults at different rates and consider the different over-provisioning tech-
niques and deployments schemes. The two node types do not differ in their avail-
ability models at the node level because they use the same hardware. However,
the performance achieved by each type is different and we need to use a higher
number of ft nodes compared to native nodes to fulfil the same performance
constraints. This results in different availability levels achieved in a cluster by
each type of node (see later in Fig. 6).

Passive failover — Figure 1(a) presents the state machine diagram for the
availability models of PF deployed in the cloud or on-premises. The PF tech-
nique assumes the existence of a pool that has a number of cold nodes that
are turned off and hence do not fail. With a cloud deployment, the number of
nodes passively waiting in the pool is unlimited (Pool = ∞) compared with
concrete value (Pool ≥ 0) for the on-premises case. The cluster initially consists
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of UpNodes. We start with a number of nodes that fulfil the performance con-
straint assuming always available nodes, i.e., UpNodes = Num (➊). A fault at
rate λHWCrash crashes a node in the cluster (➋), hence reducing the number of
UpNodes. Because UpNodes nodes can crash independently, this rate is multi-
plied by the number of nodes that can be affected by such a fault. A crashed
node can be recovered by replacing it with a node from the pool with a rate of
ρCrashRecovery (➌). This rate is affected by the number of available nodes in the
pool (➌ and ➍). This would increase the UpNodes while, additionally, decreasing
the Pool size in an on-premises deployment. The crashed nodes from the pool
may be repaired (➎) and returned back to the pool to use if needed at rate of
ρPoolRepair , which would increase the number of available nodes inside the pool.
Note that ➍ and ➎ are special cases for the on-premises deployment.

To calculate the availability achieved by such a model, we use “rewards” in
the PRISM tool to represent the time spent in each state in a one year time
period. The cluster traverses different states according to the failures and recov-
ery rates, and the time spent in a state where UpNodes = Num represents the
cluster availability. If the time spent outside this state does not exceed the down-
time specified by the availability constraints (e.g., three 9’s availability = 8.77 h
downtime per year), the cluster is considered available and well-performing.

Active route anywhere — Figure 1(b) presents the state machine diagram
for the availability models of ARA deployed in the cloud or on-premises. In
ARA, in addition to the initial number of nodes needed to fulfil performance
constraints (Num), we additionally use over-provisioned nodes (OP) which are
actively participating in the cluster. Therefore, the number of active nodes in
the cluster is UpNodes = Num + OP (➊). A fault λHWCrash crashes a node in
the cluster (➋), hence reducing the number of UpNodes. Unlike PF, this rate is
multiplied by all active nodes including the over-provisioned nodes (UpNodes).
In a cloud deployment (➌), the failed node is replaced automatically by another
node at rate of ρCrashRecovery , which increments UpNodes .

We calculate the cluster availability by considering the time spent in a state
where UpNodes ≥ Num. Consequently, at most OP nodes can fail simultaneously
without violating the availability and performance constraints. Note that the
cluster can have UpNodes < Num at any time, but it is considered available and
well-performing as long as it does not violate the availability constraint.
Integrity Models. In the integrity models, we inject integrity faults consider-
ing the different node types and deployments schemes. ft nodes implementing
the HAFT approach have two modes of execution. HAFT implements instruc-
tion level redundancy to detect any violation to computation integrity. The first
mode implements a fail-stop model, specifically, once a violation is detected,
computation is stopped (ft ilr ). The second mode targets the availability, specif-
ically, after an integrity failure is detected, instead of aborting, the execution is
retried using transactions (ft tx ). Figure 2 presents the state machine diagram for
integrity models of a node deployed in the cloud or on-premises. The node starts
with Correct state. A transient fault can result in corruption of the state (SDC),
crash of the application or masking of the fault. If not masked, a transient fault
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transfers the node in a Corrupt state at rate of λSDC (➊) or in a Crash state
at rate of λHWcrash (➋). Note that using ft ilr nodes, this rate also includes the
crashes resulting from aborting the application after detecting a transient fault.
A ft tx node detects transient faults at rate of λDetected and transfers the node
into Retry state (➌). A node in a Retry state is able to either recover the state
at rate of ρRetryTx and revert the node back into Correct state (➍), or if retry is
not successful, abort execution and transfer the node into Crash state at rate of
ρCrashTx (➎). Both types of nodes do not have any mechanism to recover from
crashed states. However, if deployed in the cloud, a node with Crash state is
automatically replaced by another node to match the SLA agreement at a rate
of ρCrashRecovery (➏). When deployed on-premises, assuming enough resources in
the pool, the node transfers back to Correct state. Additionally, the corruption
of a node may be manually detected at a rate of ρSDCRecovery , which reverts the
node back to Correct state (➐).
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Fig. 2. State machine for integrity
models of the different nodes.

The integrity level achieved is captured
by measuring the normalised time spent by
the node in each state: Correct as correct
time, Corrupt as corrupted time, Crash com-
bined with Retry as downtime. Note that
over-provisioning of nodes does not help to
reduce the time in Corrupt state, since it pro-
duces multiple nodes with similar integrity
behaviour. Alternatively, a different integrity
protection technique should be implemented
at the node level.

4 Evaluation

In this section we illustrate how PCRAFT’s two phase methodology can be
used. In a first step we benchmark a single server node deployed with native,
ft ilr and ft tx nodes using a stateless web server application and two soft-state
applications. Then, we parameterise the models built in PCRAFT to calculate
the availability and the integrity behaviour at the cluster level and decide the
required capacity.

Our evaluation answers the following questions: (1) How much performance,
i.e., throughput and latency, can be achieved by a single node of types native,
ft ilr and ft tx? (2) What is the effect of the deployment scheme (cloud vs. on-
premises) on the availability level achieved by a single node, without over-
provisioning? (3) What is the effect of using a cluster of nodes on the availability
achieved, without over-provisioning? (4) How many extra nodes are needed to
ensure a given availability and performance constraints when using ARA and
PF with different deployment schemes? (5) How a single node of types native,
ft ilr and ft tx deployed in the cloud would behave when transient faults exist?
Experimental Settings. All experiments use a dedicated on-premises deploy-
ment. The experimental part attempts to identify the performance of a single
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node NodT , which can then be used to identify the number of nodes (Num)
required to achieve the cluster target performance (SerT ) assuming always the
available nodes. Sharing resources in the cloud, might result in a lower single
node performance NodT , however, using SLA, at higher costs, we can request
stronger machines that have minimal performance comparable to the perfor-
mance of the on-promises machines, otherwise, we can use similar experimental
path as presented here to obtain the required Num in the cloud deployment. In
this paper, we want to study the pure effect of over-provisioning and node types
on the availability of the cluster. We therefore assume NodT to be the same
for nodes deployed in the cloud or on-premises, and we use the same number of
nodes (Num) in each deployment to achieve SerT .

Each server node has an Intel Xeon E3-1270 v5 CPU clocked at 3.6 GHz.
The CPU has 4 cores with 8 hyper-threads (2 per core) and 8 MB of L3-cache.
The server has 64 GB memory running Ubuntu 14.04.5 LTS with Linux 4.4. The
workload generators run on a server with two 14-core Intel Xeon E5-2683 v3
CPUs at 2 GHz with 112 GB of RAM and Ubuntu 15.10. All machines have a
10 Gb/s Ethernet NIC connected to a dedicated network switch.

We use the following three real-world applications: Apache web
server (v2.2.11) [11], memcached (v1.4.21) [6] and Redis (v2.8.7) [21]. Further-
more, we deploy the applications in three variants: native unmodified applica-
tion, ft ilr built using the HAFT LLVM tool chain [13] with ILR, and ft tx which
additionally execute the application inside transactions.

4.1 Experimental Measurements

Apache Web Server. Our first set of experiments study the Apache httpd web
server (Fig. 3). We evaluate the throughput vs. latency ratio and the overall CPU
usage. We first measure the achievable throughput and latency of the three node
variants under test, and the CPU utilisation during the execution of the bench-
marks. We use the wrk2 workload generator [28] to measure the throughput and
latency based on fixed request rates issued to the master server. The following
three workloads are used. (i) static content: the web server fetches static con-
tent (such as images or CSS files); (ii) dynamic content: the web server fetches
dynamic content generated by PHP scripts (v5.4.0); and (iii) real workload: the
web server operates under real-world conditions by retrieving a WordPress blog
page with a MySQL server database at the back-end. We gradually increase
the submission rate of HTTP requests until the response times hit unacceptable
levels (e.g., > 1 second).

Figure 3a shows the results for static content. The x-axis shows the measured
response rate of the submitted requests while the y-axis shows the corresponding
latency. The measured response rate is often lower than the introduced request
rate when the system is saturated, giving the impression of the line going back-
wards suddenly since the data points are sorted by the introduced request rate
which is constantly increasing, as seen in top graphs of Fig. 3. For dynamic
content, Fig. 3b depicts the results to fetch a PHP script that solely employs
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Fig. 3. Apache throughput vs. latency (top) and CPU utilisation (bottom) with 3
different workloads: static (a), dynamic (b) and real-world (c).

an empty for-loop iterating 103 times to basically simulate some CPU-intensive
workload. Lastly, Fig. 3c presents the results under real workload for blog-like
web pages. As expected, the native execution outperforms the other variants,
with 200 thousand requests per seconds (kreq/s) to fetch static content. With
ft tx we reach only half the throughput, i.e., 100 kreq/s, whereas ft ilr improves
the performance (up to 155 kreq/s for static content) but without the ability to
properly handle detected errors. For dynamic content, we observe similar trends.
The native mode excels with a peak of roughly 86 kreq/s, followed by ft ilr and
ft tx , respectively at 52 and 23 kreq/s. Surprisingly, for blog-like web pages, the
peak performance for both native and ft is much higher than when solely retriev-
ing static content or a plain PHP page without any database interaction. We
observe a peak performance of 321 kreq/s for native, and respectively 260 and
160 kreq/s for the two ft variants. This effect can be explained by lower thread
contention upon database lookups happening for each request.

In terms of CPU utilisation, as expected we observe an increase as more
requests are being issued. In general, all the variants are strictly CPU-bound
(the limiting factor is our hardware) and the injected workloads manage to fully
saturate all CPU cores. However, the ft variants saturate the CPU much more
quickly than the native execution. For example, with static content we reach
roughly the 800% CPU limit with a throughput of around 200 kreq/s. This is
confirmed by a corresponding increase in response latency. This behaviour is
expected since ft requires more CPU cycles (for the instrumented instructions)
and thus saturates the CPU more quickly. Similarly, CPU consumption also
increases for the benchmarks that retrieve dynamic content, either with and
without database interaction.
Key-Value Stores: Memcached and Redis. Next, we evaluate two widely-
used key-value stores: memcached and Redis. To measure throughput vs. latency
with memcached, we rely on Twitter’s mcperf [15] tool. For Redis, we use YCSB
[4] with workload A, which comprises 50% read and 50% update operations.
Figure 4 shows the results for both systems.
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Table 1. Probabilistic models parameters: transient fault probabilities [13] (left) and
recovery times (right). (a)Common values for failover in HA cluster is 1–30 s [9]. (b)Amazon

reported 6 h to manually recover from corrupted state [1]. (c)Maximum latency of transaction retry
with 5,000 instructions (2.0GHz CPU).

Transient faults native ft ilr ft tx

Corrupt (%) 26.19 0.8 1.17

Crash (%) 12.49 75.0 7.72

Retry (%) – – 66.99

Recovery time native ft ilr ft tx

Crash recovery (s) 15a

SDC recovery (h) 6b

Retry transaction (μs) – – 2.5c
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Fig. 4. Memcached (a) and Redis (b): throughput
vs. latency (top) and CPU load (bottom).

Memcached reaches a peak
throughput at 886 kreq/s for
native and 600 kreq/s for ft tx .
The ft ilr variant is close to
native, with only a 12% differ-
ence overall. Since memcached
is limited by the memory band-
width (8 GB/s on our hard-
ware), there is only a small
increase in CPU utilisation
once the system is saturated.

With Redis, we observe a
peak at around 120 kreq/s before the latency starts climbing. Interestingly, there
is almost no visible overhead for the ft variants in comparison to native. This
is because Redis is single-threaded while ft harnesses multi-core technology for
ILR, as confirmed by the fact that CPU usage slightly increases as more requests
are being processed, yet never exceeds 100% (i.e., 1 core).

In summary, we observe across all applications an average throughput
(NodT ) of about 71% for ft tx in comparison to native execution. If we use ft ilr ,
the throughput climbs up to 92% of native performance.

4.2 Dependability Evaluation

We next use the models described in Sect. 3 to evaluate the availability and
integrity under faults for single nodes and a cluster of nodes, to calculate the
required capacity.
Models Settings. Table 1 presents the main parameters used in the mod-
els. The table consists of two parts. The first part presents the probabilities
of state transitions in the integrity models from Correct state to any of the
other states (Corrrupt , Crash, Retry) when transient faults are injected in a
node of a given type (native, ft ilr and ft tx ). These values are produced using
fault injection experiments on a wide range of applications in the HAFT paper
[13] (Table 4). The second part presents the time needed to recover the different
failed states back to Correct state. The techniques include replacing a crashed
node by either failover to a new node (CrashRecovery), the manual repair of a
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node with SDC state (SDCRecovery) and the recovery of a node with a detected
transient fault by retrying a transaction (RetryTx ). Note that recovery times
can be converted into rates assuming the second (s) as the basic time unit, using
RecoveryRate = 1/RecoveryTime. In the rest of this section we use the values
presented in the table unless otherwise specified.
Availability of Single Node Deployment. We want to study the availability
achieved by deploying a single node without any over-provisioning techniques
(i.e., PF or ARA) in the cloud compared to on-premises. The cloud differs from
on-premises deployment in its ability to automatically fail over by replacing
a failed node with another one from a hypothetically unlimited pool, so as to
satisfy the SLA agreement. The cloud automatic failover is modelled with Pool =
∞ and three values for CrashRecovery ={15 s, 60 s, 1800 s}, while on-premises
uses Pool = 0. Both deployments use Num = 1 to model a single node in the
cluster. Figure 5 shows the results of injecting hardware crash faults with rates
from once to 12 per year (x-axis) and the availability achieved in one year (y-
axis) for a node deployed in cloud (a) and on-premises (b). The availability
calculated represents the operational availability upTime/totalTime, where up
time assumes that Num nodes are operational and total time is one year.

Figure 5 (a) shows that the cloud deployment can achieve at least five 9’s for
a single node in terms of yearly availability. With slower recovery time (1800 s),
the achieved availability of at least three 9’s is consistent with what most cur-
rent cloud providers would provide for a single node [2]. Figure 5 (b) shows that
on-premises cannot achieve the required availability levels even with very low
fault rate, and availability quickly degrades with higher fault rates. The more
sever degradation in the availability is due to missing repairs in the on-premises
deployment, which indicates the need for the over-provisioning techniques to
ensure the required availability.
Service Target Throughput with Failure Free Nodes. In the experimental
phase, we measured throughput of a single node (NodT ) for the different node
types and calculated the average throughput degradation for ft ilr and ft tx with
respect to a native node. By defining the SerT as multiples of NodTnative ,
we can calculate the number of nodes Num needed to achieve a service target
throughput for all node types using SerT/NodT . For example, for SerT = 1, we
need either one native node or two nodes of either ft ilr or ft tx type. Similarly,
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Table 2. Number of active nodes needed (base + extra) for cloud and on-premises
deployments with ARA to achieve 10× native throughput (SerT ) and three 9’s avail-
ability level (HCR= λHWcrash , CR = ρCrashRecovery).

Extra ARA nodes

HCR: 1/year 6/year

Node Base CR: 15 s 1min 30min 15 s 1min 30min

native 10 0 0 0 0 0 1

ft ilr 11 0 0 0 0 0 1

ft tx 15 0 0 0 0 0 1

(a) cloud

Extra ARA nodes

Node Base HCR: 1/year 6/year

native 10 35 113

ft ilr 11 37 121

ft tx 15 46 152

(b) on-premises

we need either 10 native, 11 ft ilr or 15 ft tx nodes to handle SerT = 10. The
given nodes are considered sufficient to fulfil the performance constraints of the
service under the assumptions that (i) nodes do not fail and (ii) the backend
infrastructure scales with the number of nodes in the cluster. If the backend
infrastructure does not scale with the number of nodes, contention will increase
on the backend resources, hence reducing NodT and increasing the response
time. In this case, more nodes are required to achieve the same SerT , which
should then be determined experimentally.
Availability of Multiple Node Deployments. The service requires Num of
nodes to achieve the performance constraints assuming always available nodes.
Nodes do, however, crash in practice, which leads to degraded service perfor-
mance. We want to study the effect of nodes crashing on the overall service
availability using different deployments schemes when no over-provisioning tech-
niques are used. In Fig. 6, we vary the number of nodes in the cluster (x-axis)
when deployed in the cloud (a) and on-premises (b), and calculate the availabil-
ity achieved at the cluster level (y-axis) when hardware crash faults are injected
with two rates (1 and 6 per year). We measure the availability of cluster with
UpNodes = Num during one year, i.e., the yearly percentage of time that the
service is able to fulfill its performance requirement. We observe that, as we
increase the number of nodes expected to be operational, the availability of the
service deployed in the cloud remains high, while it degrades fast on-premises
even with low fault rate. Therefore, deploying a service on-premises requires
over-provisioning to ensure that performance requirements are met.
Capacity for Dependable Service. A dependable service that relies on a
cluster of nodes to achieve a target QoS requires the cluster to satisfy availability
constraints, in addition to protecting the integrity of the service. To that end, we
can use over-provisioning (e.g., PF or ARA) to meet the availability objectives
as well as integrity protection techniques to enhance the integrity of the service
(e.g., HAFT). We use the capacity planning process in two ways: i) to define
the number of nodes needed for a dependable service built using different node
types, deployment schemes and over-provisioning techniques, and ii) to quantify
the integrity of the service.
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(1) Number of Nodes Needed. For cloud deployments, Table 2 (a) shows
the number of nodes needed for a dependable service that has a performance
constraint SerT = 10 × NodTnative and service availability of at least three 9’s.
We consider CrashRecovery times for the automatic failover as 15 s, 1 min and
30 min, and hardware crash rates of 1 and 6 per year per node. If the availability
achieved does not satisfy the required level, extra nodes are provisioned as ARA
nodes. The deployment types differ in their “base” number of nodes, yet they
all achieve high availability levels of at least three 9’s except with high crash
rate and slow failover time (HCR = 6/year and CR = 30 min). In this case, it is
enough to have a single extra ARA node over-provisioned in the cloud to meet
the required availability level.

Table 3. Number of nodes needed (base + pool)
for on-premises deployment with PF to achieve 10×
native throughput (SerT ) and three 9’s availability
(HCR=λHWcrash , CR=ρCrashRecovery , PR=ρPoolRepair ).

Base

Extra pool nodes
HCR: 1/year 6/year

Node CR: 15 s 1min 30min 15 s 1min 30min
PR: – 1 h – 1 h – 1 h – 1 h – 1 h – 1 h

native 10 18 1 18 1 19 1 30 1 30 1 50 5
ftilr 11 19 1 19 1 20 1 33 1 33 1 57 5
fttx 15 24 1 24 1 27 1 42 1 42 1 63 5

For on-premises deploy-
ment, we consider both
ARA in Table 2 (b) and
PF in Table 3 as over-
provisioning techniques.
The tables consider a ser-
vice required throughout
SerT = 10 × NodTnative

and a service availabil-
ity of at least three 9’s.
Table 2 (b) shows that the
dependable service requires a number of active nodes UpNodes equal to the
sum of the “base” nodes needed for performance and the over-provisioned ARA
nodes. For example, a service that requires 10 native nodes also needs, assum-
ing a crash rate of 1 per year, 35 additional active nodes to ensure three 9’s
availability. To understand this high number of over-provisioned nodes, consider
that an on-premises deployment can achieve only 10% availability with a cluster
of 10 nodes (Fig. 6), which is very low compared to the required level of 99.9%.
Additionally, ARA nodes are active nodes and can fail due to crash failures.
Therefore, we need to over-provision many nodes to ensure that at least 10 are
available at any time, except for the allowed downtime (8.77 h per year for three
9’s). Note that the number of base nodes for each type is different, which also
affects the number of additional ARA nodes.

Table 3 shows that a dependable service requires a number of nodes equal to
the sum of “base” active node needed for performance and the over-provisioned
nodes as PF. The table considers CrashRecovery times for the failover from the
pool as 15 s, 1 min and 30 min and hardware crash rates of 1 and 6 per year
per node. Additionally, we consider two cases for handling crashed nodes upon
failed-over to a node from the pool: “no repair” (denoted by –) and “1 h repair”.
If repaired, a crashed node can return to the pool and be used for further failover
upon need. The table indicates that the number of nodes required to fulfil the
availability constraints is dramatically reduced when repairing crashed nodes,
as compared to the “no repair” case. For example, for a crash rate of 1 per
year and 15 s failover time, a service would require, in order to achieve three 9’s
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availability using 10 native active nodes, 18 additional passive nodes in the pool
if there are no repair vs. one if the pool is repaired at a rate of one per hour.

Comparing Table 2 (b) and Table 3, one can see that PF requires fewer nodes
than ARA. Indeed, passive nodes in the pool work in cold mode (turned off)
and not exposed to crashes.

(2) Integrity of the Service. To study how different nodes behave when tran-
sient faults are injected, we use the integrity models presented in Fig. 2. If not
masked, a transient fault can crash the node or corrupt its internal state with
probabilities that vary between different node types due to their ability to toler-
ate transient faults, as seen in Table 1. Note that native nodes do not implement
any integrity protection mechanism, while ft nodes are hardened against data
corruption. Transition rates between Correct state and other states (Corrupt ,
Crash, Retry) are defined by the injected transient faults rate multiplied by the
corresponding probability.
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Fig. 7. Normalised time spent by the different node
types in correct, corrupted and down states after
injecting transient faults.

Figure 7 presents the nor-
malised time that each node
type spends in Correct (avail-
able), Corrupt (available but
integrity is not preserved) and
Down (unavailable, crashed
or under repair) states in
one month in the cloud.
The figure shows that with
low transient fault rates, all
nodes spend most of their
time in Correct state. By
increasing fault rates, nodes
spends more time in Corrupt
or Crash states. Specifically,
native nodes spend 0.2–5.5%
of time in Corrupt state with faults in the month range and 6–58% with faults
in the day range, whereas these percentages decrease to 0.007–0.18% and 0.2–
4.3% with ft ilr and 0.0026–0.07% and 0.07–1.67% with ft tx for the same ranges,
respectively. With high fault rates, ft tx spends more time than ft ilr in Correct
state and less in Corrupt or Down states. This is due to the use of transactions
to recover from a detected fault in ft tx , as compared to the slower failover recov-
ery in ft ilr . Therefore, ft tx is not only more reliable, but also more available
than the other node types. Service dependability should not only consider the
availability of the nodes in the cluster, but also the integrity of the available
nodes, since they may spend a considerable amount of time in Corrupt state if
integrity mechanisms are not implemented.
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5 Conclusion

We have developed a capacity planning process (PCRAFT) to quantify the
number of nodes needed to ensure the dependability of stateless services. We
consider availability, integrity and performance failures for cloud-based and on-
premises deployments. PCRAFT combines a two-phase process—empirical and
modelling-based. In the empirical phase, we characterise the performance and
integrity of the service at the node level to parameterise the modelling phase,
in which we implement probabilistic models to estimate the availability and
integrity of service. Our evaluation of PCRAFT using Apache, memcached and
Redis shows that both availability and performance are important to leverage
the benefits of dependability mechanisms.
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Abstract. Given a network property or a data structure, a local certi-
fication is a labeling that allows to efficiently check that the property is
satisfied, or that the structure is correct. The quality of a certification
is measured by the size of its labels: the smaller, the better. This notion
plays a central role in self-stabilization, because the size of the certifica-
tion is a lower bound (and often an upper bound) on the memory needed
for silent self-stabilizing construction of distributed data structures.

When it comes to the size of the certification labels, one can identify
three important regimes: the properties for which the optimal size is poly-
nomial in the number of vertices of the graph, the ones that require only
polylogarithmic size, and the ones that can be certified with a constant
number of bits. The first two regimes are well studied, with several upper
and lower bounds, specific techniques, and active research questions. On
the other hand, the constant regime has never been really explored.

The main contribution of this paper is the first non-trivial lower bound
for this low regime. More precisely, we show that by using certification
on just one bit (a binary certification), one cannot certify k-colorability
for k ≥ 3. To do so, we develop a new technique, based on the notion
of score, and both local symmetry arguments and a global parity argu-
ment. We hope that this technique will be useful for establishing stronger
results.

We complement this result with an upper bound for a related prob-
lem, illustrating that in some cases one can do better than the natural
upper bound.

1 Introduction

Local certification consists in assigning labels to the vertices of a network, to
allow them to check locally that some property holds [9]. Historically, the concept
appeared implicitly in the study of self-stabilization, where in addition to com-
puting the solution of the problem, the vertices would compute some additional
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information that would allow fast checking of the solution (i.e. a certification
of the solution). The most classic example is maybe the problem of comput-
ing a spanning tree, where in addition to computing the pointer to its parents,
every vertex stores its distance to the root [2]. Such additional information is an
overhead in the memory used, hence, it is a natural goal to minimize its size.
In [4], Blin, Fraigniaud, and Patt-Shamir proved that for a standard notion of
self-stabilization called silent stabilization and up to some hypothesis, the space
needed for certification is the same as the space needed for self-stabilization

More recently, the question of the certification of properties of the network
itself, and not the correctness of a data structure built on top of it, has attracted
a lot of attention. This paper follows this direction, and we will only consider
certification of graph properties.

Let us now give a more precise intuition of what a local certification is (proper
definitions will be given in Sect. 2). We denote the number of vertices of a graph
by n. For a graph property P , we will say that it has a local certification of size
s if:

– for any graph G such that P holds, there exists an assignment of labels of
size s(n) per vertex that can “convince” all the vertices that P is satisfied,

– for any graph G such that P does not hold, for any assignment of labels of
size s(n) per vertex, there is at least one vertex that detects that the property
is not satisfied.

At the level of the vertices, the behavior is the following; every vertex runs the
same local decision algorithm that takes as input all the information available
in a neighborhood (i.e. a local view), and outputs a decision: accept or reject.
For positive instances, all the vertices are convinced, that is, they all accept. For
negative instances, at least one vertex rejects.

There are actually many possible models, depending on the notion of neigh-
borhood considered, the presence of identifiers and how vertices can use them,
etc. Two classic models are proof-labeling schemes [19] and locally checkable
proofs [17]. The precise model is not essential for the discussion that follows,
hence we delay their definitions to the model section.

1.1 Three Typical Regimes for the Certificate Sizes

As said earlier, a natural goal in the study of local certification is to minimize
the size of the certificates. It is well-known that the optimal size is always in
O(n2), since one can always use the adjacency matrix as a certificate and make
the vertex check the consistency of this matrix with their neighborhoods, as
well as check that the property holds in the graph described by the matrix [19,
Theorem 3.2].

Also, for any subquadratic function f , it is possible to engineer a property
for which the optimal size is f(n) [19, Corollary 2.4]. In other words, if we
consider the certificate size as the complexity of a property, there is no gap in the
complexity of certification. Nevertheless, for all the natural properties that have
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been studied, the optimal certificate size only belongs to one of the following
three regimes (already identified in [17]): polynomial, (poly)logarithmic, and
constant size. For example, there is no known natural properties with certificate
size Θ(log log n), or Θ(log∗ n), or Θ(2

√
log n).

In this paper, we are interested in lower bounds for the constant size regime.
But let us provide a quick overview of the three regimes, in order to give the full
picture and later discuss the novelty of our techniques.

Polynomial Regime. It is known that the Θ(n2) size is needed for some spe-
cific properties, such as having a non-trivial automorphism [17, Theorem 6.1] or
having chromatic number at least 4 (up to polylog factors) [17, Theorem 6.4].
Even innocent-looking properties such as having diameter 3 or being triangle-
free require certificates of size Ω(n) [6, Theorem 1] and n/eO(

√
n) [7, Proposition

5], respectively.

Polylogarithmic Regime. The regime of (poly)logarithmic certificate size has
attracted a lot of attention recently, and is often referred to as compact certifica-
tion (or LogLCP in [17]). The best-known local certification is the certification
of acyclicity (that is, the vertification of the class of trees) for which the optimal
size is Θ(log n) (by a straightforward adaptation of [19, Lemma 2.2]). It has
been proved recently that planarity and bounded-genus [8,12,13] have logarith-
mic certification, and that MSO properties on graphs of bounded treedepth [10]
and bounded treewidth [16] have respectively Θ(log n) and O(log2 n) local cer-
tifications. An important open question in the area is to establish whether any
graph class defined by a set of forbidden minors has a compact certification.
Partial results are known for small minors [5] or minors with specific shapes
(namely paths [10, Corollary 2.7] and planar graphs [16, Corollary 3]). Finally,
let us mention one key result of the area, even if it is concerned with a data
structure instead of a graph property: the optimal certificate size for a minimum
spanning tree is Θ(log n log W ), where W is the maximum weight [18].

Constant Size Regime. First, let us note that for some properties, no certificate
is needed. For example, checking that the graph is a cycle can be done by simply
having every vertex check that it has exactly two neighbors (we will always
assume that the graph is connected, thus there must be only one cycle).

Now, let us make a connection with a class of construction problems. A key
class of problems in distributed computing is the construction of locally check-
able labelings [21], or LCLs for short. These are problems that have constant-
size output per node and whose correctness can be checked by inspecting a
local neighborhood. Examples of LCLs are maximal independent sets, maximal
matchings, and minimal dominating sets at some distance d. There is now a very
large literature on computing such labelings. The problem that has attracted the
most interest is the one of vertex coloring: given an integer k, how fast can we
compute an assignment of colors to the vertices, such that for every edge the
endpoints have different colors. We refer to the monograph [3] for distributed
graph coloring.
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For any LCL, we can design a certification question:

Question 1. How many bits are needed to certify that the graph has a solution?

Most classic LCL problems are designed so that any graph has a solution;
for example, any graph has a maximal matching. But it is not true for any LCL;
for example, given a positive integer k ∈ N, not all graphs are k-colorable.

When a solution exists, and can be checked by inspecting each vertex and
its direct neighbors, it is trivial to design a certification for the question above:
get a solution, give every vertex its output in this solution as a certificate, and
for the verification, let the vertices run the local checking. Specifically, to certify
that a graph is k-colorable, one can find a proper k-coloring, and then give to
every vertex its color as a certificate. It is then easy for the vertices to check this
certification: every vertex checks that no neighbor has been given the same color
as itself. This certification uses certificates of �log k� bits, and the key question
that we would like to answer is:

Question 2. Can we do better than �log k� bits to certify that a graph is k-
colorable?

This question was already listed in [9] as one of the key open questions in
the field, and in the following section, we will review a few reasons why it is a
question worth studying.

1.2 Motivation for Studying the Constant-Size Regime

In local certification, and more generally in theoretical computer science, the
focus is usually not on the precise constants in the complexities, thus one might
consider the questions above to be non-essential. Let us list a few reasons why
Questions 1 and 2 are actually important.

An arena for New Lower Bound Techniques. The lower bound techniques that
we have for local certification are mainly of two types (see the survey [9] for
precise citations and more detailed sketches).

First, there are the techniques based on counting arguments, also called
cut-and-plug techniques, that can be rather sophisticated but boils down to
the following fact: if we use o(log n)-bit labels in yes-instances (that is, correct
instances) then some (set of) labels will appear in different places of an instance
(or in different instances), because there are n vertices and o(n) different labels.
Using this, one can build a no-instance and derive a contradiction. This is the
technique used to show almost all lower bounds in the logarithmic regime.

The second classic technique is a reduction from communication complexity,
which we will not sketch here, but simply mention that it works better for the
polynomial regime.

At this point, two things are clear: (1) we have only two main techniques, and
they are now very well understood, and (2) they do not solve all our problems. In
particular, they do not seem to apply to the o(log n) regime. One can hope that
by trying to give a negative answer to Question 2, we will create new techniques,
and that these techniques could be useful to establish new lower bounds.
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A Point of View on the Encoding of LCLs. As mentioned earlier, the study
of LCLs now plays a key role in our understanding of locality in distributed
computing. By asking Question 1, we are basically asking about how we express
such problems. Beyond the size of the encoding, a key question is what are
the different encodings for an LCL? Are there some that are more useful or
more compact? Such consideration could have an impact on techniques that
heavily rely on precise encodings, such as round elimination [23] and local conflict
colorings [15,20].

Beyond the Constant Regime. Up to now, we have considered the question of
k-coloring with constant k, thus Question 2 was about the constant regime per
se. But actually, one could let k depend on n, and the question is meaningful for
labels of size up to Θ(log n) (which corresponds to coloring with Θ(n) colors).
Hence, we are not only playing with constants when studying Question 2 in the
general case. Note that if we could show that k-coloring requires labels of size
Θ(log k) for all the range of k, then we would also have fairly natural problems
strictly between constant and logarithmic, which would be new and interesting
in itself.

A Candidate for Disproving the Trade-off Conjecture. One of the remaining
important open questions in local certification is the following, which we will
call the trade-off conjecture.

Question 3. Suppose that there exists a local certification with labels of size
f(n) for some property, where every vertex would check its radius at distance 1.
Is it true that there always exists a certification with labels of size O(f(n)/t) if
we allow the vertices to see at distance t in the graph?

This question and variants of it were raised in [11,14,22]. In these papers,
the authors basically prove (among other results) that the answer is positive
if the certification uses only spanning trees and a uniform certification (giving
the same information to every vertex). Since these are the main tools used for
certification in the logarithmic and polynomial regimes, the constant regime
(and its extension beyond constant, discussed above) seems to be the place to
find potential counterexamples. Note that for the constant regime, one could
try to disprove the conjecture with αf(n)/t, for some given constant α. And it
seems like a reasonable approach, since it is difficult to imagine how the trade-off
conjecture could be true for coloring-like problems: even if the vertices can see
further, how can we save bits to certify colorability? In order to prove such a
counterexample, we first need to have proper lower bounds for distance 1, that
is, to answer Question 2.

1.3 Our Results and Techniques

In this paper, we give the first non-trivial lower bound for the certification of
k-colorability. This is the first step of a research direction that we hope to be
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successful, and in terms of result it is a small step, in the sense that our answer
to Question 2 is restricted in several ways. The first restriction we make is that
instead of proving a log k lower bound, we prove that it is not possible to certify
k-colorability for any k ≥ 3, if we use exactly one bit (that is, only two different
labels). We will call this a binary certification. The second restriction is that we
take a model that is not the most powerful one. In our result, a vertex has access
to the following information: its identifier, its label, and the multiset of labels of
its neighbors. That is, a vertex cannot see further than its direct neighbors and
cannot access the identifiers of its neighbors (which corresponds to the original
proof-labeling scheme model [19], but not to the generalizations, such as locally
checkable proofs [17]), and there is no port number.

To prove this result, we introduce a new technique. Similarly to the cut-and-
plug technique mentioned earlier, we reason about one or several yes-instances
and prove that we can craft a no-instance where the vertices would accept. But
the reasoning is different, since counting arguments based on the pigeon-hole
principle applied to the certificates can only lead to Ω(log n) lower bounds. First,
we define the notion of score for a neighborhood and prove that if two vertices
have been given different labels but have the same score, then we can build a
no-instance that is accepted. Then we prove that this necessarily happens in
some well-chosen graphs, thanks to a series of local symmetry arguments, and a
global parity argument. This technique has a similar flavor as the fooling views
technique used for triangle detection in he CONGEST model [1].

We complement this main result by proving that in some cases (namely
distance-2 3-colorability) one can actually go below the size of the natural encod-
ing. As we will see, this happens because graphs that are distance-2 3-colorable
have a very specific shape. This illustrates why establishing lower bounds for
such problems is not so easy: the fact that the graph can (or cannot) be colored
with a given number of colors implies that it has a given structure, and this
structure could in theory be used in the certification to compress the natural
log k-bit encoding.

2 Models and Definitions

We denote by N the set of non-negative integers, and by |A| the cardinality
of a set A. All graphs in this paper are simple and connected. The vertex-set
and the edge-set of a graph G are denoted by V (G) and E(G), respectively.
The closed neighborhood of a vertex v ∈ V (G), denoted by N [v], is defined by
N [v] = N(v) ∪ {v} where N(v) = {u ∈ V (G) : uv ∈ E(G)} is the neighborhood
of v. We denote the complete graph on n vertices by Kn. A proper k-coloring of
the vertex-set of a graph G is a function φ : V (G) → {1, 2, . . . , k} such that if
xy ∈ E(G), then φ(x) �= φ(y). In other words, it is an assignment of colors to the
vertices of G using at most k colors, such that the endpoint of every edge receive
different colors. We say that G is k-colorable if it admits a proper k-coloring.

Let f : N → N be a function. We say that a graph G on n vertices is equipped
with an identifier assignment of range f(n) if every vertex is given an integer in
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[1, f(n)] (its identifier, or ID for short) such that no two vertices of the graph
are given the same number. Typically, f(n) is some polynomial of n, and in this
paper it has to be at least n3 (but we did not try to optimize this parameter).

A certificate assignment of size s of a graph G is a labeling of the vertices
of G with strings of length s, that is, a function � : V (G) → {0, 1}s. A binary
certificate assignment is a certificate assignment with s = 1.

As hinted earlier, there are many variants for the definition of local certifica-
tion. An important aspect is the type of algorithm that the vertices run. This is
a local algorithm, in the sense that the vertices can see only a neighborhood in
the graph, but this neighborhood can be at distance 1, constant, non-constant
etc. Another important aspect is the symmetry-breaking hypothesis: whether
there are identifiers, whether the vertices can see the identifiers of their neigh-
bors, whether they can distinguish these neighbors, etc. In this paper, we use
the following notion.

Definition 1. A local decision algorithm is an algorithm that runs on every
vertex of a graph. It takes as input the identifier of the vertex, the certificate of
the vertex, and the multiset of certificates of its neighbors, and outputs a decision,
accept or reject.

Definition 2. Fix a function f : N → N. A proof-labeling scheme of size s for
a property P is a local decision algorithm A such that the following holds: for
every graph G and every identifier assignment of range f(|V (G)|) of G there
exists a certificate assignment of size s of G such that A accepts on every vertex
in V (G), if and only if, the graph G has property P .

Notice that the proof-labeling scheme depends on the chosen function f .
In the proofs, as a first step, we will prove the result in a weaker anonymous

model.

Definition 3. An anonymous proof-labeling scheme is the same as a proof-
labeling scheme, but the graphs are not equipped with identifiers (or equivalently,
the outcome of the local decision algorithm is invariant by a change of the iden-
tifiers).

For a graph G with identifier id and labeling �, the view of a vertex v in
(G, id, �) in the proof-labeling scheme is a tuple (Mv, id(v)) where Mv is the
multiset

{(�(u), id(u)) : u ∈ N [v]}.

In the anonymous case, the view of a vertex v is only the multiset defined above.

3 k-colorability Does Not Have a Binary Certification

This section contains our main contribution. We prove that k-colorability does
not have a binary certification when k ≥ 3. Recall that for k = 2, k-colorabily
indeed has a binary certification (take the colors as certificates).
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3.1 Indistinguishability Setting

Let us first clarify the proof strategy with Lemma 1. It is a classic strategy, that
we detail for completeness.

Lemma 1. Let s be a positive integer, f : N → N be a function, and Λ ⊆ N be a
set of indices. If for every i ∈ Λ there exist a connected graph Gi with identifier
idi : V (Gi) → [1, f(|V (Gi)|)], and there exists a connected graph H such that

1. Gi is k-colorable for every i ∈ Λ,
2. H is not k-colorable,
3. for every set of labelings {�i}i∈Λ, where �i : V (Gi) → {0, 1}s is a labeling of

size s of Gi, there exists a labeling � : V (H) → {0, 1}s of size s of H and an
identifier id : V (H) → [1, f(|V (H)|)] such that for every view in (H, id, �)
there exists i ∈ Λ such that the view is the same as some view in (Gi, idi, �i),

then k-colorability cannot be certified by certificates of size s.
In case G and H do not have identifiers, the same holds with removing the

identifier functions and f from the statement of the Lemma.

Proof. Suppose there exists a local certification of size s for k-colorability. Then,
in particular, for every i ∈ Λ, there exists a labeling �i for the graph Gi such that
the verifier algorithm accepts on every vertex. For this set of labelings {�i}i∈Λ,
consider the labeling � and the identifier assignment id of H described in item (3)
of the Lemma. The verifier algorithm accepts on every vertex of (H, id, �) because
its view is the same as a view in (Gi, idi, �i) for some i ∈ Λ. This contradicts the
fact that H is not k-colorable. 
�

3.2 Notion of Score

Let � be a binary labeling of a graph G, and let v ∈ V (G). The score of v in �,
denoted by score�(v) or score(v) if there is no confusion, is defined as follows:

score�(v) = |{u ∈ N [v] : �(u) = 1}|.

Given a k-regular graph G and a binary labeling � of G, the score matrix
of (G, �) is a 2 × (k + 2) matrix S with rows labeled with 0 and 1 and columns
labeled from 0 to k + 1. Let Si,j denote the (i, j) element of S. We set

S1,0 = S0,k+1 = 1,

and for i = 0, 1, j = 0, 1, . . . , k + 1, and (i, j) �= (1, 0), (0, k + 1) we set

Si,j = |{v ∈ V (G) : �(v) = i, score(v) = j}|.
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3.3 Our Graph Construction and Its Properties

Fix an integer k ≥ 3. We build a graph as follows: take the disjoint union of
three copies of Kk+1. For i = 1, 2, 3, let ai and bi be two distinct vertices in the
i-th copy. Then, remove the edges a1b1, a2b2, and a3b3 from the graph, and add
the edges b1a2, b2a3, and b3a1 to it. We denote the resulting graph by Nk. See
Fig. 1. In the figure, each set Ct, t ∈ {1, 2, 3} induces a Kk−1 in the graph and
at and bt are complete to Ct, i.e. every vertex of Ct is connected by an edge to
at and to bt.

a2b1

a1

b3 a3

b2

C2C1

C3

Fig. 1. The graph Nk.

Lemma 2. For every k ≥ 3, the graph Nk is k-colorable.

Proof. For every t ∈ {1, 2, 3}, color at and bt with color t and color the k − 1
vertices in Ct with the k − 1 colors {1, 2, . . . , k} \ {t}. It is easy to check that
this is a proper coloring of the vertex-set of Nk and as k ≥ 3 = t, we have used
exactly the k colors {1, 2, . . . , k}. 
�
Lemma 3. Assume k ≥ 3 is an integer and set G = Nk. If � : V (G) → {0, 1}
is a binary labeling of G, and S is the score matrix of (G, �), then there exists
an integer j ∈ {0, 1, . . . , k + 1} such that S0,jS1,j �= 0.

Proof. If there exists a vertex with label 0 whose neighbors all have label 0 as
well, then S0,0 = 1, and since by definition, S1,0 = 1, choosing j = 0 gives us the
required result. Similarly, if there exists a vertex with label 1 whose neighbors
all have label 1 as well, then S1,k+1 = 1, and as S1,k+1 = 1, choosing j = k + 1
gives us the required result. Hence, from now on, we may assume that

there exists no vertex in G that has the same label as all its neighbors. (1)
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Notice that for all t ∈ {1, 2, 3}, for all u, v ∈ Ct, we have N [u] = N [v], thus
score(u) = score(v). If two distinct vertices u and v of Ct have different labels,
then by choosing j = score(v), we have S0,jS1,j �= 0. So, we may assume that
for every t ∈ {1, 2, 3},

all the vertices of Ct have the same label. (2)

Thanks to (2), for the rest of this proof and by abuse of notion, we use the term
the label of Ct for referring to the common label of the vertices of Ct, and we
denote it by �(Ct). Also, notice that by (1), if �(Ct) = i, where i ∈ {0, 1}, then
at least one of the vertices at and bt must receive the label 1− i. Thus, for every
t ∈ {1, 2, 3},

at least one of at and bt has a label different from the one of Ct. (3)

Since there are three indices {1, 2, 3}, but only two labels {0, 1}, there exist
t, t′ ∈ {1, 2, 3} such that t �= t′ and �(at) = �(at′). By symmetry, we may
assume �(a1) = �(a2) = î for some î ∈ {0, 1}. Notice that for every u ∈ C1,
N [u] \ {a1} = N [b1] \ {a2}, so score(u) = score(b1). Thus if the label of C1

is different from the label of b1, then choosing j = score(b1) completes the
proof. So, we may assume that �(C1) = �(b1). Therefore, by (3), we must have
�(C1) �= �(a1). Consequently, �(b1) = �(C1) = 1 − î.

Now, if �(b3) = 1 − î, then for every u ∈ C1 we have score(a1) = score(u).
And because �(C1) �= �(a1), choosing j = score(a1) completes the proof. Hence
we assume �(b3) = î. Now, because of (1), there must be a vertex u in the
neighborhood of b3 with label 1 − î. As we already have �(a3) = î, we must have
u ∈ C3, and therefore by (2), �(C3) = 1 − î.

Moreover, if �(C2) = 1 − î, then we have score(a2) = score(b1), and as a2

and b1 have different labels, choosing j = score(a2) completes the proof. So, we
also assume that �(C2) = î. Thus �(C2) = �(a2) = î. Therefore, by (3), we must
have �(b2) = 1− î. Now, notice that the neighbors of a3 all have label 1− î, thus
by (1), we must have �(a3) = î.

The labels of vertices of G, with all the assumptions so far, are as shown in
Fig. 2.

To conclude, consider a1 and a vertex u ∈ C3. In their closed neighbor-
hoods, they both have twice the label î and k − 1 times the label 1 − î, so
score(a3) = score(u). Moreover, they have different labels. So, by choosing
j = score(a3) we have the required result. 
�

3.4 Anonymous Case

Theorem 1. For every k ≥ 3, k-colorability is not certifiable by binary certifi-
cates in the anonymous model.

Proof. Let G be the graph Nk and H be a complete graph on k + 1 vertices.
Let � be a binary labeling of G, and let S be the score matrix of (G, �). Since G
is k-colorable and H is not, by Lemma 1, to prove the theorem, it is enough to



Lower Bound for Constant-Size Local Certification 249

(a2) = î(b1) = 1− î

(a1) = î

(b3) = î (a3) = î

(b2) = 1− î

C2C1

C3

(C2) = î(C1) = 1− î

(C3) = 1− î

Fig. 2. The labels at the end of the proof of Lemma 3.

find a binary labeling �′ : V (H) → {0, 1} of H such that every view in (H, �′) is
a view in (G, �).

By Lemma 3, there exists j ∈ {0, 1, . . . , k + 1} such that S0,j and S1,j are
non-zero. So, if j = 0 (resp. j = k + 1), then there exists a vertex v ∈ V (G)
such that �(v) = 0 (resp. �(v) = 1) and all its neighbors have label 0 (resp. 1).
If 0 < j < k + 1, then there exist two distinct vertices u, v ∈ V (G) such that
�(u) = 0, �(v) = 1, and there are j vertices of label 1 in N(u), and j − 1 vertices
of label 1 in N(v).

Let V (H) = U ∪ V such that |U | = k + 1 − j and |V | = j. If j ∈ {0, k + 1},
then U or V is an empty set. Notice that the condition on the cardinalities of U
and V implies that U ∩ V = ∅. Define:

�′(w) =

{
0 w ∈ U

1 w ∈ V

Notice that if j = 0 or j = k + 1, then �′(·) = 0 or �′(·) = 1 respectively.
The view of each vertex of U in H is the same as the view of u in G and the

view of each vertex of V in H is the same as the view of v in G. So, every view
in H is the same as some view in G. 
�

3.5 Extension to Identifiers

Theorem 2. For every k ≥ 3, k-colorability is not certifiable by binary certifi-
cates in the proof-labeling scheme model when the range of the identifiers for a
graph on n vertices is f(n) = n3 + 3n.

Proof. Set K = (k + 1)2 + 1 and Λ = {1, 2, . . . ,K}.
Let G1, G2, . . . , GK be K connected graphs each isomorphic to Nk.

Notice that |V (Gi)| = 3k + 3. For i ∈ Λ, consider an identifier
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idi : V (Gi) → [1, f(|V (Gi)|)] of Gi such that the vertices of Gi receive ID’s
in the range [(i − 1)(3k + 3) + 1, i(3k + 3)]. Notice that

(i − 1)(3k + 3) + 1 ≥ (1 − 1)(3k + 3) + 1 = 1,

and

i(3k + 3) ≤ K(3k + 3)

=
(
(k + 1)2 + 1

)
(3k + 3)

=
(3k + 3)3

27
+ (3k + 3)

≤ (3k + 3)3 + 3(3k + 3)
= f(3k + 3) = f(|V (Gi)|).

So, [(i− 1)(3k +3)+1, i(3k +3)] ⊆ [1, f(|V (Gi)|)]. Thus the identifiers idi exist.
Let H be a complete graph on k + 1 vertices. Notice that each Gi is k-

colorable and H is not. Hence, by Lemma 1, to prove the theorem, it is enough to
define an identifier id : V (H) → [1, f(|V (H)|)] and a binary labeling assignment
� : V (H) → {0, 1} of H such that every view in (H, id, �) is the same as a view
in (Gi, idi, �i) for some i ∈ Λ.

Let S(i) be the score matrix of (Gi, �i). By Lemma 3, for every i ∈ Λ, there
exists j ∈ {0, 1, . . . , k + 1} such that S

(i)
0,jS

(i)
1,j �= 0. Therefore, by the pigeonhole

principle, there exists an integer j ∈ {0, 1, . . . , k + 1} and a subset Λ0 of Λ

such that |Λ0| ≥ k + 1 and for all i ∈ Λ0, we have S
(i)
0,jS

(i)
1,j �= 0. Notice that

j ∈ {0, 1, . . . , k + 1}, hence |Λ0| ≥ k + 1 ≥ k + 1 − j and |Λ0| ≥ k + 1 ≥ j.
Thus, we can find j distinct vertices v1, v2, . . . , vj ∈ ⋃

i∈Λ0
V (Gi) with label 1

and score j, and k + 1 − j distinct vertices vj+1, vj+2, . . . , vk+1 ∈ ⋃
i∈Λ0

V (Gi)
with label 0 and score j. Notice that in case that j = 0 (resp. j = k + 1), then
the first (resp. the second) set of vertices in empty.

Now, assume V (H) = {u1, u2, . . . , uk+1}.
First, define an identifier id : V (H) → [1, f(|V (H)|)] as follows:

id(ut) = id(vt) for every t ∈ {1, 2, . . . , k + 1}.

Notice that by this definition, for all t, we have:

id(ut) ∈
⋃
i∈Λ

[(i − 1)(3k + 3) + 1, i(3k + 3)] = [1,K(3k + 3)].

On the other hand:

K(3k + 3) =
(3k + 3)3

27
+ (3k + 3) = (k + 1)3 + 3(k + 1) = f(|V (H)|),

and therefore the image of id is a subset of [1, f(|V (H)|)].
Second, define a binary labeling � : V (H) → {0, 1} as follows:

�(ut) =

{
1 t ≤ j

0 j + 1 ≤ t
.
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Notice that if j = 0 or j = k + 1, then �′(·) = 0 or �′(·) = 1 respectively.
Thus, for every t, 1 ≤ t ≤ k + 1, the view of vertex ut in (H, id, �) is exactly

the view of vertex vt in some of the Gi’s, i ∈ Λ0. 
�

4 Going Below �log k�
In this section, we illustrate that in some cases one can go below the natural
upper bound. More precisely, we exhibit an LCL whose natural encoding uses k
different labels, and for which one can find a certification that a solution exists
with strictly less than k labels. The problem we use is distance-2 3-coloring,
which is the same as 3-coloring except that even having two vertices at distance
2 colored the same is forbidden. The natural encoding consists in giving the
colors (that are between 1 and 3) to the vertices, but we show that one can
actually certify distance-2 3-colorability with just two different certificates.

Lemma 4. A connected graph G is distance-2 3-colorable if and only if it is a
cycle of length 0 mod 3 or a path.

Proof. First, let G be a connected distance-2 3-colorable graph. Each vertex and
its neighbors form a set of vertices that are pairwise at distance at most 2, so
they should all have different colors. Since there are only three available colors,
G has maximum degree at most 2. Thus, G is a path or a cycle.

If G is a path, then we are done, so assume G is a cycle. Assume that the
cycle is v1, v2, . . . , vk, v1. Consider a proper distance-2 3-coloring of G with colors
{0, 1, 2}. Notice that if a vertex v of G has color i mod 3, then necessarily, its
two neighbors have colors (i − 1) mod 3 and (i + 1) mod 3. Without loss of
generality, assume that the color of v1 is 1 and the color of v2 is 2. Let [t] denote
the remainder of t divided by 3. So, [t] ∈ {0, 1, 2}. We prove by induction on
t that vt has color [t] for every t ∈ {1, 2, . . . , k}. This holds by assumption for
t = 1, 2. Now let t ≥ 3 and assume that vt′ has color [t′] for every t′ < t. By
the induction hypothesis, the color of vt−1 is [t − 1], hence the colors of its two
neighbors, namely vt−2 and vt, are [t] and [t+1]. Again, by induction hypothesis,
the color of vt−2 is [t − 2] = [t + 1]. Thus the color of vt must be [t], proving the
statement. Therefore, the color of vk is [k]. Finally, notice that because v1 has
color 1, and v2 has color 2, the color of vk must be 0. Therefore [k] = 0, meaning
that the length of the cycle, k is equal to 0 mod 3.

Second, in both cycles of length 0 mod 3 and in paths, it is possible to find
a proper distance-2 3-coloring, by simply choosing the color of one vertex and
propagating the constraints. 
�
Theorem 3. One can certify distance-2 3-colorable graphs with a binary certi-
fication.

Proof. By Lemma 4, it is enough to prove that paths and cycles of length 0
mod 3 can be recognized with a binary certification. The idea of the certification
is to give certificates of the form: . . . , 1, 0, 0, 1, 0, 0, 1, 0, 0, . . . .

Let us describe first the verifier algorithm of a vertex v:
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1. If the degree is strictly more than 2, reject,
2. If the degree is 2, accept if and only if, score(v) = 1, that is, among v and its

neighbors, exactly one has a 1 as certificate.
3. If the degree is 1, accept.

Because of Item 1, only paths and cycles can be accepted. For paths, the following
labeling makes every vertex accept: choose one endpoint u, and give label 1 to a
vertex v, if and only if, the distance from u to v is 0 mod 3. For cycles of length 0
mod 3, the following labeling makes every vertex accept: choose an orientation
and an arbitrary vertex u, and again give label 1 if and only the distance from
u to v in the sense of the orientation is 0 mod 3. It is easy to see that in cycles
of length different from 0 mod 3, at least one vertex will reject with Item 2.

Hence, we have a proper certification that a graph is a path or a cycle of
length 0 mod 3, with only two different labels (that is, just one bit). 
�

5 Challenges and Open Questions

We have proved the one bit is not enough for certifying k-colorability for k ≥ 3.
We conjecture that the answer to Question 2 is negative, that is, that �log k� is
the optimal certification size for k-colorability.

There are several challenges to overcome before one can hope to prove the
conjecture. First, it would be nice to have a more general model, where the
vertices can see their neighbors’ identifiers, or at least distinguish them, and
even better, where the vertices can see at a larger distance. At least the first
step in this direction might work by using some Ramsey argument, but then
losing the upper bound on the identifier range. Second, it might be necessary to
use graphs of large chromatic number that do not have large cliques as subgraph,
and these have complicated structures.

A different direction is to understand other LCLs, and to try to see which
ones have a certification that is more efficient than the natural encoding (such
as distance-2 3-coloring) and which do not. Maybe in this direction, one could
characterize exactly which properties can be certified with one bit.
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Abstract. In the dispersion problem, a set of k co-located mobile robots
must relocate themselves in distinct nodes of an unknown network. The
network is modeled as an anonymous graph G = (V, E), where the
graph’s nodes are not labeled. The edges incident to a node v with degree
d are labeled with port numbers in the range {0, 1, . . . , d − 1} at v. The
robots have unique IDs in the range [0, L], where L ≥ k, and are initially
placed at a source node s. Each robot knows only its ID, however, it does
not know the IDs of the other robots or the values of L or k. The task of
the dispersion was traditionally achieved based on the assumption of two
types of communication abilities: (a) when some robots are at the same
node, they can communicate by exchanging messages between them, and
(b) any two robots in the network can exchange messages between them.

This paper investigates whether this communication ability among
co-located robots is absolutely necessary to achieve the dispersion. We
established that even in the absence of the ability of communication, the
task of the dispersion by a set of mobile robots can be achieved in a much
weaker model, where a robot at a node v has the access of following very
restricted information at the beginning of any round: (1) am I alone at
v? (2) did the number of robots at v increase or decrease compared to
the previous round?

We propose a deterministic distributed algorithm that achieves the
dispersion on any given graph G = (V, E) in time O

(
k logL + k2 logΔ

)
,

where Δ is the maximum degree of a node in G. Further, each robot
uses O(logL + logΔ) additional memory. We also prove that the task
of the dispersion cannot be achieved by a set of mobile robots with
o(logL + logΔ) additional memory.
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1 Introduction

1.1 Background

The dispersion problem in a graph using mobile robots became popular in recent
times. In this problem, a set of k mobile robots, starting from one or multiple
source nodes of a graph, must relocate themselves in the nodes of the graph so
that no two robots are located on a single node. This problem was first introduced
by Augustine and Moses Jr. [3]. In the last few years, this problem got attention
from various researchers and has been studied over various models. This problem
has several practical applications. The most prominent application is the charging
of self-driving electric cars in charging stations [3]. It is assumed that charging a
car is a more time-consuming and costly task than relocating the car to a nearby
free charging station. So it is better to spread the cars such that each charging
station gets one at any time instead of a long queue in a single station. The dis-
persion problem is closely related to several problems on a graph network such
as exploration [6,7,10], scattering [4,11,24], load balancing [12], token distribu-
tion [8,13,14], and many more. In the previous studies of dispersion, it is assumed
that, if two robots are co-located at the same node, they can communicate and
exchange any amount of information. It enables the robots to learn the number of
co-located robots in the node, their IDs, the previous histories, etc.

1.2 Motivation and Problem Definition

Our work is motivated by the recent work on gathering by Bouchard et al. [5].
In the problem of gathering [2,23], a set of mobile robots, starting from different
nodes of an unknown graph, must meet at a node and declare that they all met.
In all the prior works related to gathering, the mobile robots are assumed to
have the capability of communication: any two robots can communicate if they
are co-located at a node. Bouchard et al. [5] asked the following fundamental
question: whether the capability of communication between co-located robots is
necessary for gathering? They showed that gathering can be achieved without
communication by a set of co-located mobile robots. Here, it is assumed that a
robot at any node can see how many robots are co-located with it in any round.

The task in the dispersion is the opposite of gathering. Here, a set of co-
located mobile robots must be relocated to different nodes of the graph. Similar
to the problem of gathering, in all the prior works in the dispersion, the capability
of communication between co-located robots is assumed. Therefore, it is natural
to ask whether this communication capability is absolute necessary to achieve
the dispersion.

1.3 The Model

Let G = (V,E) be a connected graph with n nodes. The nodes of the graph are
anonymous but the edges incident to a node v of degree d are labeled arbitrarily
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by unique port numbers 0, 1, . . . , d − 1. Thus, every edge in E is associated with
two independent port numbers, one corresponding to each of its end nodes. Let
s be a specified source node in V and initially k ≤ n mobile robots are placed
at s. Each mobile robot has a unique integer ID represented as a binary string
in the range [0, L], k − 1 ≤ L.

A mobile robot knows its own ID, but does not know the IDs of the other
robots or the values of L and k. The robots move in synchronous rounds, and
at most one edge can be traversed by a robot in every round. Each round is
divided into two different stages. In the first stage, each robot at a node v does
any amount of local computations. In the second stage, a robot moves along one
of the edges incident to v or stays at v.

The robots are silent: there is no means of communication between any two
robots in the graph. A robot M at a node v has access to the following two local
information at the beginning of a round: (1) am I alone at v? (2) did the number
of robots at v increase or decrease compared to the previous round?

The robots use three binary variables named alone, increase and decrease
in order to store the above mentioned local information. In any round t, if there
is only one robot at v, then alone = true, else alone = false. If a robot M
decides to stay at a node v in the t-th round, and if the number of robots that
left v in the t-th round is more than the number of robots that entered v, then
decrease = true for M at the beginning of the (t + 1)-th round. If a robot M
decides to stay at a node v in the t-th round, and if the number of robots that
left v in the t-th round is less than the number of robots that entered v, then
increase = true for M at the beginning of the (t+1)-th round. Otherwise, both
increase and decrease are false at the beginning of the (t + 1)-th round.

Whenever a robot M entered a node v in some round t using a port from
another node, it learns the incoming port through which it reaches v and the
degree of v. If two robots decide to move along the same edge from the same or
different end nodes in the same round, none of them can detect other’s movement.

1.4 Our Contribution

So far, all the works on dispersion problem require two types of communication
abilities between the robots: (1) when some robots are at the same node, they
can communicate by exchanging messages between them (2) any two robots
in the network can exchange messages between them. This paper shows that
neither of the above communication abilities is required to achieve dispersion.
We propose a deterministic algorithm in our described model, that runs in time
O(k logL+k2 logΔ), where k and Δ are the number of robots and the maximum
degree of the underlying graph, respectively. The additional memory used by the
robots is O(logL + logΔ). We further prove that Ω(logL + logΔ) additional
memory is necessary to achieve dispersion in our model.

It can be noted here that with the sufficient amount of memory available to
each robot, dispersion can be achieved by the following trivial algorithm: the
robot with ID i starts moving according to depth-first search in round i where
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the edges are visited in the increasing order of their port numbers. The robot
settles down at the first node that some other robot has not previously occupied.

Hence, our main contribution in this paper is to design an efficient dispersion
algorithm by a set of silent robots with asymptotically optimal memory.

Due to restriction in page limit, the proofs of the lemmas and theorems, the
figures, and the pseudocodes are deferred to the full version of the paper.

1.5 Related Works

The dispersion problem was first introduced by Augustine and Moses Jr. [3]. In
this paper, the authors considered this problem when the number of robots (i.e.,
k) equals the number of vertices (i.e., n) and all the robots are initially co-located.
Along with arbitrary graphs, they also study various special classes of graphs
such as paths, rings, and trees. They proved that, for any graph G of diameter
D, any deterministic algorithm must take Ω(log n) bits of memory by each robot
and Ω(D) rounds. For arbitrary graphs with m edges, they provided an algorithm
that requires O(m) rounds where each robot requires O(n log n) bits of mem-
ory. For paths, rings, and trees, they provided algorithms such that each robot
requires O(log n) bits of memory and takes O(n) rounds. Further, their algo-
rithm takes O(D2) rounds for rooted trees, and each robot requires O(Δ+log n)
bits of memory. All their algorithms work under the local communication model,
i.e., co-located robots can communicate among themselves. Kshemkalyani and
Ali [15] proposed five different dispersion algorithms for general graphs starting
from arbitrary initial configurations. Their first three algorithms require O(m)
time and each robot requires O(k logΔ) bits of memory, where m is the num-
ber of edges and Δ is the degree of the graph. These three algorithms differ
on the system model and what, where, and how the used data structures are
maintained. Their fourth and fifth algorithms work in the asynchronous model.
Their fourth algorithm uses O(D logΔ) bits of memory at each robot and runs
in O(ΔD) rounds, where D is the graph diameter. Their fifth algorithm uses
O(max(log k, logΔ)) bits memory at each robot and uses O((m−n)k) rounds. All
their algorithms work use local communication model. In [16], Kshemkalyani et
al. provided a novel deterministic algorithm in arbitrary graphs in a synchronous
model that requires O(min(m, kΔ) log k) rounds and O(log n) bits of memory by
each robot. However, they assumed that the robots know the maximum degree
and number of edges. Shintaku et al. [25] studied the dispersion problem of [16]
without the knowledge of maximum degree and number of edges and provided
an algorithm that uses the same number of rounds and log(Δ+ k) bits of mem-
ory per robot which improves upon the memory requirement of [16]. Recently
Kshemkalyani et al. [19] came up with an improved algorithm where it requires
O(min(m, kΔ)) rounds, however, the memory requirement remains the same as
in [25]. All the algorithms in [16,25] works under the local communication model.
The dispersion problem was studied on dynamic rings by Agarwalla et al. [1].
In [21], Molla et al. introduced fault-tolerant in dispersion problem in a ring
in the presence of the Byzantine robots. The results are further extended by
the authors in [22] where dispersion on general graphs in presence of Byzantine
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robots are considered. In all these algorithms, local communication model is con-
sidered. Molla et al. [20] used randomness in dispersion problem. They gave an
algorithm where each robot uses O(logΔ) bits of memory. They also provided
a matching lower bound of Ω(logΔ) bits for any randomized algorithm to solve
the dispersion problem. They extended the problem to a general k-dispersion
problem where k > n robots need to disperse over n nodes such that at most
k
n robots are at each node in the final configuration. Recently, Das et al. [9]
studied dispersion on anonymous robots and provided a randomized dispersion
algorithm where each robot uses O(logΔ) bits of memory. In both the works,
local communication model is considered. There are works [17,18] in the global
communication model as well where robots can communicate even if they are
located in different nodes. Results in these papers include dispersion on grids as
well as general graphs. In all the results mentioned above, robots communicate
either locally or globally.

2 Dispersion on Graphs

In this section, we propose an algorithm that achieves dispersion in any anony-
mous graph in time O(k logL + k2 logΔ) and with O(logL + logΔ) additional
memory. Before we describe our algorithm, we overview how previous results
on dispersion work where co-located robots with limited memory can exchange
arbitrary amounts of messages between them. The proposed algorithms in the
previous works on dispersion rely on exploring nodes of the graph using depth-
first search (DFS). At the beginning, all the robots are at a node s and the
smallest ID robot settles at s and the other robots move to an adjacent node
according to DFS. The robots learn about the smallest ID by exchanging their
IDs among co-located robots. In any round, the robot with the smallest ID among
the co-located robots settles at the current node and other robots move to an
adjacent empty neighbor. Here, the self-placement of a robot at an ‘empty’ node
represents ‘coloring’ of already visited nodes in DFS traversal. Therefore, even
if the graph is anonymous, DFS traversal can still be executed by the mobile
robots. The difficulty arises due to limited memory, the robots may not store the
entire path it follows while traversing nodes before it settles down at an empty
node. Specifically, suppose that all the unsettled robots reach a node v (which
is already occupied by some other robot) during DFS. If the robots observe that
each of the neighbor of v is already visited (the robot can learn this by visiting
the neighbors of v and observing that some other mobile robots already occupy
these neighbors), then as per DFS, all the unsettled robots must backtrack to
the node u from which it visited v and then search for another empty neighbor
of u. If there is no empty neighbor of u, backtrack again and continue until an
empty node is found. Without sufficient memory, the robots cannot do this back-
tracking process by themselves. Here, the capability of communications between
co-located robots again comes for rescue. Each robot stores the incoming port
through which it enters the empty node where it settled down. The information
of this port serves as the pointer to backtrack from a particular node. When the
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set of unsettled robots unable to find any empty neighbor of a node v, they have
to backtrack. The robot which settled at v provides the port information for
backtracking to these unsettled robots. Therefore, the above DFS like dispersion
strategy can be executed with O(logΔ) memory at each robot, where Δ is the
maximum degree of a node in the graph.

The difficulty arises when the co-located robots do not have the capability of
communication. Specifically, the following major issues may arise in the absence
of communication.

– Each mobile robot only knows its own label but is unable to know other
robots’ labels without direct communication. Therefore, a strategy like a
robot with the ‘minimum’ or ‘maximum’ label settled down will not work.

– With limited memory and lack of communication, a robot may not learn
sufficiently long path information that is needed for backtracking.

Our algorithm runs in several iterations. We call a node v full in an iteration
j, if v is occupied by a robot at the end of the iteration j. Otherwise, it is called
empty. Also, for any node v, the node adjacent to v and connected through the
port i from v is denoted by v(i).

In each iteration of our algorithm, except the last iteration, an empty node
becomes full and no full node becomes empty. Therefore, if k robots are ini-
tially present at the start node, the task of dispersion is completed within k − 1
iterations. An additional iteration is required to identify that the dispersion is
completed.

Each iteration of the algorithm has two phases. In Phase 1, a leader election
algorithm is executed and a robot M is elected as the leader from a set of robots
R. In Phase 2, an empty node is occupied by a mobile robot that is either the
robot elected recently or a robot elected previously.

A detailed description of the algorithm with the high-level idea is described
below. During the description of each major step of the algorithm, we explicitly
mention the purpose of the respective steps, the difficulty of implementing the
steps with existing techniques, and how to overcome such difficulties.

2.1 The Algorithm

High Level Idea and Preliminaries: The proposed algorithm executes in
several iterations. Each iteration of the algorithm consists of Phase 1 and Phase
2. In Phase 1, a leader among the robots situated at s is elected. In Phase 2,
one empty node is occupied by a robot. Phase 2 requires several communications
between robots. Since there is no means of direct communication, we adopt the
idea proposed in [5] which enables the robots to communicate between them
by utilizing the robot’s movement as the tool of communication. We describe
later how this communication process is executed while describing Phase 2 of
our algorithm.
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The robots collectively execute the following tasks in each iteration.
– Execution of Phase 1.
– Execution of Phase 2. This phase includes five major steps. (1) Informing all

robots (those who will participate in Phase 2 that Phase 1 ended. (2) Finding
an empty node. (3) Propagate information whether an empty node was found
or not to the robots ‘participating’ in Phase 2. (4) Movement of the robots
for occupying the empty node. (5) Termination detection.

Each of the above tasks involves the movement of the robots. A robot may
decide to move in a particular round to achieve one of the following goals.

– To elect the leader.
– To transmit some information.
– To search or occupy an empty node.

The movement of a robot for a specific purpose may create confusion for
other robots, who are affected by this movement. This is because a robot may
decide to move to find an empty node, but some other robots may learn this
movement to initiate some message transmission. Therefore special care must
be taken to avoid such ambiguity. Our algorithm overcomes such ambiguity by
allotting a unique ‘slot’ to each of the five above mentioned steps for Phase 2
and one slot for Phase 1. Specifically, each round in a consecutive block of six
rounds is dedicated to exactly one of the above six steps required to execute
Phase 1 and Phase 2. That is, a robot moving in round 6i+ j means different to
the algorithm than a robot moving in round 6i + j′ for j �= j′ and 0 ≤ j, j′ ≤ 5.
For 0 ≤ j ≤ 5, we call a round j-dedicated, if the round number is of the form
6m + j for some positive integer m.

During the algorithm’s execution, each robot maintains a variable status. At
any point of time the status of a robot can be one of following.

– active: These robots participates in Phase 1 and one of the active robots is
elected as ‘leader’ in Phase 1 of any iteration.

– master and follower: The robot, elected as the leader in Phase 1 of an itera-
tion, changes its status to master in the very first iteration of the algorithm.
In the subsequent iterations, the leader changes its status to follower.

– idle: A robot with this status does not take part in the algorithm anymore.
During our algorithm’s execution, each robot eventually becomes idle.

Initially, all robots are active. The algorithm terminates when status of each
robot becomes idle.

With the above details, we are ready to describe the details of the dispersion
algorithm. We start by describing Phase 1 of the algorithm.

Phase 1 (Electing Leader). Only the active robots start executing this phase.
The robots execute the steps of this phase only in 1-dedicated rounds. The active
robots at s start this phase in round 1 if this is the first iteration of the algorithm.
Otherwise, if decrease = true in some 5-dedicated round at s (this event signifies
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that the activities in the last iteration are ended), then all the active nodes start
executing Phase 1 in the next 1-dedicated round.

Without the ability of communication by message passing, the labels of the
robots are used to elect a leader among co-located robots at s. On a high level,
a robot ‘leave’ s if a bit of its label is 1, else stay. Since the labels of two robots
are different, there must be at least a position in their labels where the bits are
different. Therefore, if, a robot moves when a bit of its label is 1 and does not
move if the bit is 0 or all the bits of its labels are already processed, then the
two robots must occupy different nodes within z rounds where z is the length of
the label of the node with maximum ID. Careful implementation of this process
ensures that after z rounds, exactly one robot stays at s and elects itself as the
leader. However, this raises a difficulty. The difficulty is that the labels of the
robots are not necessarily of the same length. For example, suppose that the
label of one robot is ‘10’ and the other is ‘100’. If the robots process the bits of
their label from left to right, then in this case, there is no way one can identify
the position of the labels where the bits differ. This difficulty can be overcome
by processing the bits from right to left instead of left to right as no label can
end with a zero if read from right to left.

Let l(M) be the reverse binary string corresponding to the label of the robot
M . Also, let δ be the degree of s. Without loss of generality, we assume that the
degree of s is at least 2. Otherwise, each robot moves to the adjacent node of s
and starts the algorithm from the node.

Each robot M executes a subroutine called ProcessBit(M, j) for the j-th
bit of its reverse label l(M), for all j = 1, 2, 3, . . . until the leader is elected. If
|l(M)| < j for a robot M , then the j-th bit is treated as zero while executing
ProcessBit(M, j).

Each call of subroutine ProcessBit is executed for six consecutive 1-
dedicated rounds. On a high level, after executing subroutine Process-
Bit(M, j), two robots whose j-th bits are not the same, gets separated. After
executing subroutine ProcessBit(M, j), one of the following events happens.

– If all robots at s have the same j-th bit, then after executing subroutine
ProcessBit(M, j) all of them stay at s and participate in the next call of
the subroutine for the (j + 1)-th bit.

– Otherwise, the robots whose j-th bit are 1 move to s(δ − 1) and remain there
until a robot is elected as the leader. Other robots with j-th bit 0, stay at s
and participate in the next call of this subroutine for the (j + 1)-th bit.

Executing the above steps for j = 1, 2, . . ., eventually, exactly one robot
remains at s. This robot changes its status to master in the first iteration and
follower in subsequent iterations. After learning that the leader is elected, the
other robots return to s, and Phase 1 of the current iteration ends with this.
The details of the subroutine ProcessBit are described below.

Description of the Subroutine ProcessBit: The robots at s use the set
of variables engage, move, candidate, and election. At the beginning of Phase 1
of any iteration, for all the robots at s, engage = true, move = 0, candidate =
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false and election = false. At the beginning of each call of the subroutine
ProcessBit, all the robots at s have engage = true and these robots only
participate in the first four 1-dedicated rounds. In the first 1-dedicated round, if
the number of robots at s is more than one, then the robots with the j-th bit of
its reverse label 1 move through port 0 by setting the variable move = 1. This
activity in round 1 resulted in a possible ‘split’ in the set of robots at s. The
robots with j-th bit 0 stayed at s and the other robots move to s(0). Hence, the
robots who stayed at s observe decrease = true in the next round learns about
this split. However, the robots that moved to s(0) do not have any idea about
this split as it may happen that all the robots moved to s(0).

If some of the robots at s have j-th bit 0 and others have j-th bit 1, a split
happens in the 1st 1-dedicated round. The 2nd 1-dedicated round is for the
robots at s(0) to learn about this split. For this purpose, the robots at s, move
to s(0) in the 2nd 1-dedicated round after setting move = 2. The robots at
s(0) (came to s(0) in the first 1-dedicated round) observe increase = true and
hence learn the fact that some robots from s visited s(0) and therefore a split
happened in the 1st 1-dedicated round. The 3rd 1-dedicated round is for all the
robots currently at s(0) to come back to s. In the 4th 1-dedicated round, the
robots whose j-th bit are 1, move to s(δ − 1) and set engage = false.

If all robots at s have the j-th bit 0, then in the 1st 1-dedicated round no
robots move from s and each of them has move = 0. Since these robots observe
decrease = false, they learned that no split happened and did not move in
the 2nd 1-dedicated round, and hence no robot participates in the 3rd or 4th
1-dedicated round. Hence at the end of the 4th 1 dedicated round, all the robots
at s have move = 0, engage = true.

If all the robots at s have the j-th bit 1, then in the 1st 1-dedicated round
all robots move from s to s(0) and each has move = 1. In the 2nd 1-dedicated
round, no robots visit s(0) (as there is no robot has left s). Hence the robots
at s(0) see increase = false after the 2nd 1-dedicated round and learn that no
split happened at s. In the 3rd 1-dedicated round these robots move back to s
and set move = 0. Hence no robot participates in the 4th 1-dedicated round.

The 5th and 6th 1-dedicated rounds are participated by the robots only if
there was only one robot at s in the 1st 1-dedicated round. In this case, this
robot had set candidate = true, and the subroutine identifies this robot as the
leader. At this point, all the other robots must have set engage = false and
are in s(δ − 1). To ‘inform’ the robots at s(δ − 1) that the leader is elected,
the robot at s (with candidate = true ) moves to s(δ − 1). Hence, in the 6th
1-dedicated round, robots at s(δ − 1), after observing increase = true in the
5th 1-dedicated round, learn that the leader is elected, and move back to s
after setting election = true, engage = true and move = 0. The robot with
candidate = true also returns to s in the 6th 1-dedicated round and changes its
status to master if the current iteration is the first iteration of the algorithm,
else changes its status to follower.
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Phase 2 (Occupying an Empty Node). All the robots except those who
became idle participate in this phase. In this phase, one empty node is occupied
by a robot. On a high level, let v1, v2, . . . , vp−1 be the nodes that became full in
consecutive iterations and v1 is a neighbor of s. Let r1, r2, . . . , rp−1 be the robots
that are in v1, v2, . . . , vp−1, respectively, before Phase 2 of the current iteration
starts. Then the leader elected in Phase 1 of the current iteration moves to v1,
r1 moves to v2, r2 moves to v3 and so on and, finally rp−1 moves to an empty
neighbor of vp−1.

During the execution of our algorithm, there is a unique master robot, and
the other robots are either follower, or active, or idle.

We define parent and child of the robots with status master and follower
in an iteration. Let master (resp. follower) be at node v at the start of Phase 2
of some iteration. The parent of a master robot r (resp. follower robot) is the
node u from where the master (resp. follower) is entered at v for the first time.
If the master(resp. follower) is at s, then its parent is defined as null. Similarly,
the child of a master or follower robot is the node to which the robot will move
at the end of the current iteration.

Since the graph is anonymous, the parent and child of a robot are identified
by the port numbers through which its parent and child can be reached from the
robot’s current position, respectively. Initially at s, all the robots have parent =
NULL and child = 0.

We first describe the high level description of the task the robots collec-
tively execute in Phase 2. Let Mp be the unique master robot at vp. Let
Mp−1,Mp−2, . . . ,M1 be the follower robots at the nodes vp−1, vp−2, . . . , v1,
respectively, such that vj is the parent of the robot Mj+1, v1 = s and M1 is
the leader that is elected in Phase 1 of current iteration. In this phase, the
master robot Mp searches for an empty neighbor of its current node vp. While
searching, the master robot visits the neighbors of vp using the edges incident
to vp in the increasing order of their port numbers, starting from 0 until it finds
an empty node. Intuitively, if master finds an empty node, it goes to vp−1 and
‘informs’ Mp−1 to move to vp and then Mp moves to that empty node. The robot
Mp−1, after learning the information that Mp is going to leave vp, ‘informs’ Mp−2

to occupy vp−1 and then move to vp. This procedure of information exchange
and moving forward goes on until M1 moves to v2 and with this, Phase 2 ends.

If the master robot does not find any empty neighbor, it informs the same to
the robot rp−1 and then changes its status to idle. The robot rp−1, upon learning
that the master is idle, changes its status to master and initiates searching for
an empty neighbor. This process continues until an empty node is found and
then occupied by the master robot. phase ends when r1 leaves s and occupies a
previously occupied node by a follower robot or empty.

There are certain difficulties in implementing the above explained procedures.

1. How can the robot learn through which port from the current node it can
reach its parent?

2. How to propagate ‘information’ to the robot residing at the parent node?
3. How to learn through which port vp is reachable from vp−1?
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The learning of the port that leads to the parent by a robot is gained in the
previous iteration itself. To elaborate this, first consider the very first iteration
of our algorithm. In Phase 1 of the first iteration, a robot is elected as leader
and the status of this robot is master. In Phase 2, this master finds s(0) empty
and hence moves to s(0). While moving to s(0), this master robot learned the
incoming port q of the edge from s to s(0) and set parent = q. Suppose that
the master and every follower robot knows their parent port till iteration t.
Then consider the execution of t + 1-th iteration. In Phase 1 of this iteration,
a robot r is elected as leader and sets its status as follower. In Phase 2, the
master robot, after finding an empty neighbor, assigns its parent port to the port
number through which it entered to its empty neighbor. The follower robots
at the time of occupying the new node updates its parent port through which it
entered its new position.

The second and third difficulties can be resolved together as follows. First,
we explain below how a robot r can exchange a binary string α with a robot r′

reachable through the port number p from its current node.

Message Transmission Using the Movement of Mobile Robots: Let a
robot r decided to transmit the string α to a robot r′ reachable from the current
node of r through port p.

First, r waits for the first available 4-dedicated round. Call this round as
the 1st 4-dedicated round. Then for each i ≥ 1, the robot moves through port
p in the i-th 4-dedicated round if the i-th bit of α is 1 and comes back to v
in the next round. On the receiving end of this communication, the robot r′

decodes α by identifying the event increase = true in every 4-dedicated round
at its current node as a 1 and identifying an event increase = false in every
4-dedicated round as 0. The difficulty here is how the receiving robot knows
when this communication process ends. To overcome this, we use the idea of
transformed binary encoding. For any binary string α, replace every ‘1’ by ‘11’
and ‘0’ by ‘10’. Note that the transformed binary encoding of any binary string
can not contain the sub string ‘00’. Hence, the robot recognizes the observation
of two consecutive zeros as the end of transmission.

Using this technique, the master robot transmits one of the following infor-
mation to its parent in Phase 2.

1. “I am a master robot, I found an empty neighbor though port p". This mes-
sage is encoded as 1011 · Bp, where the transformed binary encoding of the
integer p is denoted by Bp.

2. “I am a master robot, I did not find any empty neighbor". This message is
encoded as 1111.

Upon receiving the message (1), the follower robot decodes the integer p
transmits the following message to the robot connected through its parent port:
3. “I am a follower robot, I am going to move forward through port child. This
message can be encoded as 1011 · Bchild.

The follower then moves through the port p, updates parent as the incoming
port at the destination node and child = p. If a follower robot receives the
message (2), it changes its status to master and start vising each of its neighbors
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in the increasing order of the port number starting from port child + 1. When
the follower robot at s receives the message (1) or (3), it moves through port
child and with this Phase 2 and hence the current iteration ends. If the follower
robot at s receives the message (2), then it changes its status to master, and
start searching for an empty neighbor starting from port child+1. The iteration
ends once the robot leaves s.

We now give the detailed descriptions of the algorithms of the robots with
different status in Phase 2.

Description of Subroutine Follower (M): A robot M with status
follower executes the subroutine Follower(M). The robot uses a binary vari-
able forward. If the robot is at s, i.e., this robot is elected as leader in Phase 1
of the current iteration, then forward = 0. For the other follower robots, which
are not in s, have forward = 1. If the robot at s is not the only robot at s, i.e.,
alone = false, then this robot moves through its child port in the next avail-
able 2-dedicated round and comes back to s in the next round (steps 5–8). The
follower robots which are not is s, waits until increase = true in a 0-dedicated
round or in a 2-dedicated round. Suppose the robot finds increase = true in
a 2-dedicated round. In this case, it learns that the current iteration is not the
last and send the same information to the robot present in the adjacent node by
moving through its child port in the next 2-dedicated round and comes back to
its position in the next round. Once this step is executed, the robot calls sub-
routine Learn_Signal, where it waits until increase = true in a 4-dedicated
round. After that, it learns the message from the robot connected through its
child port by identifying increase = true as a 1 in a 4-dedicated round and
increase = false as a 0 in the same round until two consecutive 4-dedicated
rounds have increase = false. It then decodes the integer p and the three bit
string γ. If γ = 1111, the robot learns that the robot connected through its child
port is a master robot and it is now idle. After learning this information, the
follower robot changes its status to master and set recent = true. After that,
it starts executing the subroutine Master(M). If γ is either 1011 or 1110, then
the robot calls subroutine Send_Signal(α, parent), where α = 1110 · Bchild.
After this transmission is complete, the robot moves through port p in the next
5-dedicated round and updates parent as the incoming port through which
it entered the empty node, and child = p. In step 4, if the robot observes
increase = true in a 0-dedicated round, it learns that the current iteration is
the last iteration and the follower robot connected through its parent port is
now idle. It moves through port child in the next available 0-dedicated round
and changes its status to idle.

Description of the Subroutine Master (M): A robot with status master
executes the subroutine Master(M). If recent = true, then the robot was a
follower robot at the beginning of the current iteration and changed its status
to master because the previous master robot did not find any empty neighbor
in the current iteration and is now idle. In this case, the robot executes from step
9 of the algorithm, according to which, it starts searching for an empty neighbor
in its neighborhood (steps 9–15). If recent = false, then the robot waits until
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increase = true in a 0-dedicated round or in a 2-dedicated round. If it observes
increase = true in a 2-dedicated round, then it learns that the current iteration
is not the last iteration of the algorithm. It then searches for an empty neighbor
in its neighborhood (steps 9–15). If an empty neighbor is found through port
p′, the robot executes the subroutine Send_Signal with α = 101 ·Bp′ through
the port parent. It then moves to its empty neighbor in the next 5-dedicated
round through the port p′, updates child = 0, parent as the port through which
it entered this empty node, and sets recent = false.

Description of Subroutine Active (M): The active robots at s execute
the subroutine Active(M) in Phase 2. The robots will execute the subroutine
Learn_Signal to learn the port p and γ which was transmitted by the robot
connected through its child port by executing the subroutine Send_Signal. If
γ = 1111, then the robots at s learn that the robot connected through its child
port was a master robot, and it does not find any empty neighbor. Therefore,
the follower robot at s is going to become master and will start searching for
an empty neighbor starting from port child. Since 3-dedicated rounds are used
in search of an empty neighbor by a master robot, the active robots observe
how many times the event decrease = true in a 3-dedicated round occurs at s.
If there are total j times decrease = true occurs then that signifies s(child +
1), s(child+2), . . . , s(child+j) are full. Accordingly, the robots at s update their
child = child + j + 1.

2.2 Correctness and Analysis

The following lemma will be useful to show that a unique leader is elected in
Phase 1 of any iteration.

Lemma 1. In Phase 1 of any iteration of our algorithm, for j ≥ 1, let Uj be
the set of robots at s and U ′

j be the set of robots at s(δ − 1) before the call of the
subroutine ProcessBit(M, j) by every robot in Uj ∪ U ′

j. If |Uj | > 1 then, the
following statements are true.

1. All the robots in Uj have engage = true, candidate = false, move = 0,
election = false.

2. All the robots in U ′
j have engage = false, candidate = false, move = 1,

election = false.
3. Let Uj(1) be the robots in Uj with j + 1-th bit at its reverse label 1 and

Uj(0) = Uj \ Uj(1). If Uj(1) = Uj or Uj(0) = Uj, then, Uj+1 = Uj and
U ′
j+1 = U ′

j; otherwise, Uj+1 = Uj(0), U ′
j+1 = U ′

j ∪ Uj(1).

The lemma below proves that one robot is always elected as a leader in Phase 1.

Lemma 2. If m > 1 robots are at s in the beginning of some iteration, then
at the end of Phase 1 of that iteration, exactly one robot changes its status to
either master or follower.

The following two lemmas (Lemma 3 and Lemma 4) help us to show that some
robots always find an empty neighbor for movement in Phase 2.
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Lemma 3. Before any iteration of the algorithm, if the number of robots at s
is at least 2, then one of the following statements is true.

1. The master robot has an empty neighbor
2. one of the follower robot has an empty neighbor.
3. s has an empty neighbor.

Lemma 4. In any iteration of the algorithm, following statements are true.

1. At the beginning of the iteration, there is a simple path P from s to the
node where the master node is present and the internal nodes of this path
contains follower robots. Also, for any node w in this path, the next node w′

is connected to w through port child of the robot present at w.
2. All the robots which are not in any node in P are idle.
3. If the number of robots at s is at least 2, then exactly one empty node becomes

full and no full nodes become empty after the iteration.

The following theorems ensure the termination of the algorithm after the
k-th iteration.

Theorem 1. Each robot becomes idle by the k-th iteration.

Following lemmas and theorems give the time and memory complexity of the
proposed algorithm.

Lemma 5. The algorithm executes at most k logL 1-dedicated rounds.

Lemma 6. The total number of 2-dedicated round used is O(k2).

Lemma 7. The total number of 4-dedicated round is O(k2 logΔ).

Lemma 8. The total number of 5-dedicated round is O(k2).

Lemma 9. The total number of 3-dedicated round used across all the iterations
is O(min{kΔ, k2}).
Lemma 10. The total number of 0-dedicated round is at most k.

Theorem 2. The algorithm terminates in time O(k logL + k2 logΔ) and each
robot uses O(logL + logΔ) additional memory.

We show that every robot’s amount of additional memory in the algorithm
is indeed asymptotically optimal. In [20], the authors proved Ω(logΔ) lower
bound of memory requirement by any randomized algorithm for each robot for
dispersion. The same proof gives Ω(logΔ) lower bound of memory for any deter-
ministic algorithm. Hence it is enough to prove the lower bound Ω(logL) which
we do in the following theorem.

Theorem 3. In the proposed communication model, dispersion can not be
achieved by a set of mobile robots if the memory available to the robots is o(logL).
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3 Conclusion

This paper introduces an algorithm that achieved dispersion without commu-
nication between the robots using asymptotically optimal additional memory.
Here, the task of dispersion is achieved under the assumption that the robots
have access to two local information at any node: (1) whether the robot is alone
at the node (2) whether the number of robots changes at the node compared
to the previous round. A natural question arises: whether dispersion can be
achieved with lesser local information. To be specific, it will be quite interesting
to study whether the information of a robot is alone or not at a node is sufficient
to achieve dispersion. Also, improving the time complexity of our algorithm in
the proposed model or proving a lower bound of the same can be explored in the
future. Another natural question is how to achieve dispersion when the robots
starts from multiple source nodes in the graph.
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Abstract. This work deals with the problem of gathering n oblivious
mobile entities, called robots, at a point (not known beforehand) placed
on an infinite triangular grid. The robots are considered to be myopic,
i.e., robots have limited visibility. Earlier works of gathering mostly con-
sidered the robots either on a plane or on a circle or on a rectangular
grid under both full and limited visibility. In the triangular grid, there
are two works to the best of our knowledge. The first one is by Cicerone
et al. [ICDCN’2021] on arbitrary pattern formation where full visibility
is considered. The other one by Shibata et al. [IPDPS(W)’2021] which
considers seven robots with 2-hop visibility that form a hexagon with
one robot in the center of the hexagon in a collision-less environment
under a fully synchronous scheduler.

In this work, we first show that gathering on a triangular grid with
1-hop vision of robots is not possible even under a fully synchronous
scheduler if the robots do not agree on any axis. So one axis agreement
has been considered in this work (i.e., the robots agree on a direction
and its orientation). We have also shown that the lower bound for time
is Ω(n) epochs when n number of robots are gathering on an infinite
triangular grid. An algorithm is then presented where a swarm of n
number of robots with 1-hop visibility can gather within O(n) epochs
under a semi-synchronous scheduler. So the algorithm presented here is
time optimal.

Keywords: Gathering · Triangular grid · Swarm robot · Limited
visibility

1 Introduction

1.1 Background and Motivation

A swarm of robots is a collection of a large number of robots with minimal capa-
bilities. In the present research scenario on robotics, researchers are interested

P. Goswami, A. Sharma and S. Ghosh—Full time research scholars in Jadavpur Uni-
versity.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 270–284, 2022.
https://doi.org/10.1007/978-3-031-21017-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21017-4_18&domain=pdf
http://orcid.org/0000-0002-0546-3894
http://orcid.org/0000-0001-8940-392X
http://orcid.org/0000-0003-1747-4037
http://orcid.org/0000-0001-7008-6135
https://doi.org/10.1007/978-3-031-21017-4_18


Time Optimal Gathering of Myopic Robots on an Infinite Triangular Grid 271

in these swarms of robots as these inexpensive robots can collectively do many
tasks which earlier were done by single highly expensive robots with many capa-
bilities. The wide application of these swarm of robots in different fields (e.g.,
search and rescue operations, military operations, cleaning of large surfaces, dis-
aster management, etc.) grabbed the interest of researchers in the field of swarm
robotics.

The goal of the researches in this field is to find out the minimum capabilities
the robots need to have to do some specific tasks like gathering [10,12], dispersion
[3], arbitrary pattern formation [5] etc. These capabilities are considered when
modeling a robot for some specific task. Some of the well known robot models
are OBLOT , FST A, FCOM and LUMI. In each of these models, the robots
are autonomous (i.e. there is no central control for the robots), anonymous (i.e.
the robots do not have any unique identifier), homogeneous (i.e. all the robots
upon activation execute the same deterministic algorithm), identical (i.e. robots
are physically identical). In the OBLOT model the robots are considered to be
silent(i.e. robots do not have any direct means of communication) and oblivious
(i.e. the robots do not have any persistent memory so that they can remember
their earlier state). In FST A model, the robots are silent but not oblivious. In
FCOM, the robots are not silent but are oblivious. And in LUMI model, the
robots are neither silent nor oblivious. Their are many works that have been
done considering these four robot models [4–6,11,12,16]. In this paper, we have
considered the weakest OBLOT model, among these four models.

The activation time of the robots is a huge factor when it comes to the
robots doing some tasks. A scheduler is said to be controlling the activation of
robots. Mainly there are three types of schedulers that have been used vastly in
literature. Fully synchronous (FSYNC) scheduler where the time is divided into
global rounds of the same length and each robot is activated at the beginning
of each round, semi-synchronous (SSYNC) scheduler where time is divided into
equal-length rounds but all robots may not be activated at the beginning of each
round and asynchronous (ASYNC) scheduler where any robot can get activated
any time as there is no sense of global rounds. Among these, FSYNC and SSYNC
schedulers are considered to be less practical than ASYNC scheduler. Still, it
has been used in many works [16] as providing algorithms for a more general
and more realistic ASYNC scheduler is not always easy. In this paper, we have
considered the SSYNC scheduler.

Vision is another important capability that robots have. The vision of a robot
acquires information about the positions of other robots in the environment.
A robot can have either full or restricted visibility. In [4,8,10,11,15] authors
have modeled the robots to have infinite or full vision. The biggest drawback
of full vision is that it is not possible in practical applications due to hardware
limitations. So in [2,12,18], authors considered limited visibility. A robot with
limited visibility is called a myopic robot. A myopic robot on the plane is assumed
to see only up to a certain distance called visibility range. In graphs though, the
vision of a robot is assumed to be all the vertices within a certain hop from
the vertex on which the robot is located. Other than limited vision, robots can
have obstructed vision where even if the vision of a robot is infinite it might get
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obstructed by other robots in front of it. This model is also more practical than
using point robots that can see through other robots. So in [6], obstructed vision
model has been considered.

In this paper, we are interested in the problem of gathering. The gathering
problem requires a swarm of robots that are placed either on a plane or on
a graph, to move to a single point that is not known to the robots a priori
(Ideal Gathering Configuration). In this work, we have considered the robots on
an infinite triangular grid having the least possible vision of 1-hop under the
SSYNC scheduler. Our solution also works under obstructed vision model as a
robot needs no information about other robots who are not directly adjacent to
it.

Earlier Gathering problem has been considered under limited vision on the
plane [12], but movements of robots are not restricted in the plane as there are
infinitely many paths between any two points on a plane. So it would have been
interesting to consider this problem on discrete terrain where the movement of a
robot is restricted. And since grid network has wide application in various fields it
was natural to study this problem under different kinds of grids. Now an infinite
regular tessellation grid is one of the 3 types of infinite regular grids namely,
infinite square grid, infinite triangular grid, and infinite hexagonal grid [13]. Our
goal is to solve this problem for any infinite regular tessellation grid with the
least possible vision for a robot. In [18] a solution has already been provided
by the authors where the terrain is an infinite square grid embedded on a plane
and the robots can either move diagonally from one grid point to another or
moves along the edges of the grid. But in their work, the robots can see up to
a distance of 2 units (each edge length of the grid is considered to be one unit).
So in this paper, by providing a solution for the infinite triangular grid, where a
robot can see only up to a unit of distance, we reached a little closer to our goal
of providing a solution for this problem for any infinite regular tessellation grid.
Furthermore, we also drew motivation for framing this problem for an infinite
triangular grid from the application perspective of it. In [19], authors have shown
that for some robots with sensors the coverage will be maximum if the robots
are forming a triangular grid and the length of each edge is

√
3s where s is the

sensing radius for the sensors on the robots. So coverage wise triangular grid
is better than any other regular tessellation grid. For these specific reasons, we
have considered this problem on this specific terrain.

The literature on this problem is very rich. In the following subsection, we
have provided a glimpse of the rich literature that lead us to write this paper.

1.2 Earlier Works

In this paper, we are specifically focused on the problem of gathering. Ear-
lier the problem was mainly studied considering the robots on a plane [1,4].
But currently, many researchers have been interested in gathering on the dis-
crete environment as well, [10,11,14,15] as movements in graphs become more
restricted which is practical in real-life scenarios. In [15], Klasing et al. studied
the gathering problem on a ring and proved that it is impossible to gather on
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a ring without multiplicity detection. In [10], D’Angelo et al. first characterized
the problem of gathering on a tree and finite grid. He has proved that gathering
even with global-strong multiplicity detection is impossible if the configuration
is periodic or, symmetric with the line of symmetry passing through the edges
of the grid.

Another capability of these robots is their vision. After activation, a robot
takes a snapshot of its surroundings to collect information about the positions
of the other robots. Gathering has been studied extensively where robots are
assumed to have full or infinite visibility [1,4,8–11,14,15]. But in the application,
it is impossible due to hardware limitations. So, in [2] Ando et al. provided an
algorithm where indistinguishable robots with a limited vision on a plane without
any common coordinate system converge to a point under a semi-synchronous
scheduler. In [12] Flocchini et al. have produced a procedure that guides robots
with a limited vision on a plane to gather at a single point in finite time. In
their work, they have assumed the robots have agreement on the direction and
orientation of the axes under an asynchronous scheduler. In [17], the authors
have shown that gathering is possible by robots on a circle with agreement on
the clockwise direction even if a robot can not see the location at an angle π from
it, under a semi-synchronous scheduler. Gathering under limited visibility where
the robots are placed in a discrete environment has been recently studied by the
authors in [18] where algorithms have been provided with both one and two-axis
agreement under viewing range 2 and 3 simultaneously and square connectivity
range

√
2 under asynchronous scheduler.

1.3 Our Contribution

Recently, in [7], the authors have provided an algorithm for robots on a triangu-
lar grid to form any arbitrary pattern from any asymmetric initial configuration.
In their work, they have assumed that the target configuration can have multi-
plicities also. So the algorithm provided in [7] can be used for gathering where
the target configuration contains only one location for each robot. But in their
work, they have assumed the robots have full visibility which is impractical as
in application robots can’t have an infinite vision. Also, their algorithm works
only when the initial configuration is asymmetric.

Considering limited vision this problem has earlier been done in the euclidean
plane in [12]. But in the plane, the movement of a robot is not at all restricted
as there are infinitely many paths between any two points on the plane. Also,
the authors have considered two axis agreement which makes the robot more
powerful which is against the motivation of research on swarm robot algorithms
where we need to find the minimum capabilities for the robots to do a specific
task.

In [18], the authors have presented a technique for gathering under limited
visibility under an infinite rectangular grid. In their work, they have presented
two algorithms. In the first algorithm, they have considered two axis agreement
and a vision of 2× edge length of the grid. And in the second algorithm consid-
ering one axis agreement and vision of 3× edge length of the grid for any robot
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they have provided an algorithm where the robots may not gather but will surely
be on a horizontal segment of unit length (Relaxed Gathering Configuration).
Both of these algorithms are not collision-free. Also, observe that none of their
algorithms are able to gather if the visibility for each robot is 1× edge length of
the grid.

In our work, we have given a characterization of the gathering problem of
myopic robots with 1-hop vision on a triangular grid with any connected ini-
tial configuration. We have shown that myopic robots with 1-hop visibility on
an infinite triangular grid which agree on the direction of both axis can not
gather even under a fully synchronous scheduler if they do not agree on the ori-
entation of any axis. So assuming that myopic robots on an infinite triangular
grid have 1-hop (i.e. 1× length of an edge of the triangular grid) visibility and
they agree on the direction and orientation of any one of the three lines that
generate the infinite triangular grid, we have provided an algorithm 1-hop 1-
axis gather (Algorithm 1) which gathers these robots on a single grid point
within O(n) epochs under semi-synchronous scheduler where n is the number of
myopic robots on the grid. Where one epoch is a time interval such that within
which each robot has been activated at least once. We have also shown that any
gathering algorithm on a triangular grid must take Ω(n) epochs where n is the
number of robots placed on the infinite triangular grid. Therefore the algorithm
we presented in this paper is asymptotically time optimal.

In the following Table 1 we have compared our work with the works in [7,12,
18].

Table 1. Comparison table

SL. No. Algorithm Axis agreement Visibility Ideal/Relaxed
gathering

1 Algorithm in [7] No axis agreement Full visibility Ideal

2 Algorithm in [12] Two axis V ∈ R(> 0) Ideal

3 1st Algorithm in
[18]

Two axis 2× edge length Ideal

4 2nd Algorithm in
[18]

One axis 3× edge length Relaxed

5 1-hop 1-axis
gather(This
paper)

One axis 1× edge length Ideal

2 Models and Definitions

2.1 Model

An infinite triangular grid G is a geometric graph where each vertex v is placed
on a plane and has exactly six adjacent vertices and any induced sub-graph K3
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forms an equilateral triangle. Let R = {r1, r2, r3, . . . rn} be n robots placed on
the vertices of an infinite triangular grid G.

Robot Model: The robots are considered to be-
autonomous: there is no centralized control.
anonymous: robots do not have any unique identifier (ID).
homogeneous: robots execute same deterministic algorithm.
identical : robots are identical by their physical appearance.

The robots are placed on the vertices of an infinite triangular grid G as a
point. The robots do not have any multiplicity detection ability i.e., a robot
can not decide if a vertex contains more than one robot or not. The robots do
not agree on some global coordinate system, but each robot has its own local
coordinate system with itself at the origin and handedness. However, the robots
may agree on the direction and orientation of the axes. Based on that we consider
the following model.

One Axis Agreement Model: In the one axis agreement model all robots
agree on the direction and orientation of any specific axis. Note that any vertex
v of the infinite triangular grid G is at the intersection of three types of lines. In
this work, the robots will agree on the orientation and direction of any one of
these three types of lines and consider it as its y-axis. Note that in this model
the robots have a common notion of up and down but not about left or right.

As an input, a robot takes a snapshot after waking. This snapshot contains
the position of other robots on G according to the local coordinates of the robot.
In a realistic setting due to limitations of hardware, a robot might not see all
of the grid points in a snapshot. So to limit the visibility of the robots we have
considered the following visibility model.

Visibility: In k-hop visibility model, each robot r can see all the grid points
which are at most at a k-hop distance from r. In this paper, the robots are
considered to have 1-hop visibility (i.e. k = 1). Note that when k = 1, a robot
placed on a vertex v of the infinite triangular grid G can only see the adjacent
six vertices of v.

The robots operate in LOOK-COMPUTE-MOVE (LCM) cycle. In each cycle
a previously inactive or idle robot wakes up and does the following steps:

LOOK: In this step after waking a robot placed on u ∈ V takes a snapshot of
the current configuration visible to it as an input. In this step, a robot gets the
positions of other robots expressed under its local coordinate system.

COMPUTE: In this step a robot computes a destination point x adjacent to
its current position, where x ∈ V according to some deterministic algorithm
with the previously obtained snapshot as input.

MOVE: After determining a destination point x ∈ V in the previous step the
robot now moves to x through the edge ux ∈ E. Note that if x = u then the
robot does not move.
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After completing one LCM cycle a robot becomes inactive and again wakes
up after a finite but unpredictable number of rounds and executes the LCM
cycle again.

Scheduler Model: Based on the activation and timing of the robots there are
mainly three types of schedulers in the literature,

Fully Synchronous: In the case of a fully synchronous (FSYNC) scheduler
time can be divided logically into global rounds where the duration of each
round and each step of each round is the same. Also, each robot becomes active
at the start of each round (i.e. the set of the active robot at the beginning of
each round is the whole of R).

Semi-synchronous: A semi-synchronous (SSYNC) scheduler is a more gen-
eral version of a fully synchronous scheduler. In the case of a semi-synchronous
scheduler, the set of active robots at the beginning of a round can be a proper
subset of R. i.e. all the robots might not get activated at the beginning of a
round. However, every robot is activated infinitely often.

Asynchronous: An Asynchronous (ASYNC) scheduler is the most general
model. Here a robot gets activated independently and also executes the LCM
cycles independently. The amount of time spent in each cycle and the inactive
phase may be different for each robot and also for the same robot in two differ-
ent cycles. This amount of time is finite but unbounded and also unpredictable.
Hence there is no common notion of time. Moreover, a robot with delayed com-
putation may compute at a time when other robots have already moved and
changed the configuration. Thus the robot with delayed computation now com-
putes with an obsolete configuration as input.

In this paper, we have considered the scheduler to be semi-synchronous. The
scheduler that controls the time and activation of the robots can be thought of
as an adversary. Observe that the semi-synchronous scheduler can be controlled
as a fully synchronous scheduler as SSYNC is more general than FSYNC but not
vice-versa. Also, an adversary can decide the local coordinate system of a robot
(obeying the agreement rules of axes and orientation). However, after deciding
on the coordinate system of a robot it can not be changed further.

2.2 Notations and Definitions

Definition 1 (Infinite Triangular Grid). An infinite triangular grid G is an
infinite geometric graph G = (V,E), where the vertices are placed on R

2 having
coordinates {(k,

√
3
2 i) : k ∈ Z, i ∈ 2Z} ∪ {(k + 1

2 ,
√
3
2 i) : k ∈ Z, i ∈ 2Z + 1} and

two vertices are adjacent if the euclidean distance between them is 1 unit.

It is to be noted that robots do not have access to this coordinates. This coor-
dinates are used simply for describing the infinite triangular grid G.
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Definition 2 (Configuration). A configuration formed by a set of robots R,
denoted as CR (or, simply C) is the pair (G, f) where, f is a map from V to
{0, 1}. For v ∈ V , f(v) = 1 if and only if there is at least one robot on the vertex
v.

Definition 3 (Visibility Graph). A visibility graph GC for a configuration
C = (G, f) is the sub graph of G induced by set of vertices {v ∈ V : f(v) = 1}.

It is not hard to produce a configuration C with disconnected GC , such that
there exists no deterministic algorithm which can gather a set of robots start-
ing from C. So in this work, it is assumed that initially the visibility graph is
connected and any algorithm that solves the gathering problem should maintain
this connectivity during its complete execution.

Definition 4 (Extreme). A robot r is said to be an extreme robot if the follow-
ing conditions hold in its visibility:

1. There is no other robot on the positive y-axis of r.
2. Either left or right open half of r is empty.

2.3 Problem Definition

Suppose, a swarm of n robots is placed on the grid points of an infinite triangular
grid G. The gathering problem requires devising an algorithm such that after
some finite time all robots assemble at exactly one grid point and stay forever
gathered at that grid point.

3 Impossibility Result

The proof of the impossibility result stated in Theorem 1 is omitted here due
to page constraint. In Fig. 1 the reasoning is discussed in brief. Check the full
version of the paper for the detailed discussion.

Theorem 1. Gathering in a triangular grid is impossible without agreement on
the orientation of any axis even when agreement on direction is present and
under a fully synchronous scheduler and 1-hop visibility.

Due to Theorem 1 we have considered one axis agreement model and devised
an algorithm considering 1-hop vision under semi-synchronous scheduler.

4 Gathering Algorithm

In this section, an algorithm 1-hop 1-axis gather (Algorithm 1) is provided
that will work for a swarm of n myopic robots with one axis agreement and
1-hop visibility under a semi-synchronous scheduler. Note that under one axis
agreement a robot can divide the grids into two halves based on the agreed line
as the y-axis. An extreme robot r will always have either left or right open half
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Fig. 1. In the diagram the robots agree on direction of both the axes but do not
agree on the orientation of the axes. Now, the initial Configuration-A transforms
into Configuration-B after a round and similarly Configuration-B transforms into
Configuration-A after a round creating a deadlock situation.

empty. Thus it is easy to see that when any one of the open halves is non-empty
and r is on a grid point v, two adjacent grid points of v on the empty open half
and another adjacent grid point of v on y-axis and above r will always be empty.
In this situation, r can uniquely identify the remaining three adjacent grid points
of v (one on the y-axis and below r and the remaining two are on the non-empty
half) based on the different values of their y−coordinates. So an extreme robot
can uniquely name them as v1, v2 and v3 such that y − coordinate of vi is less
than y − coordinate of vi+1 and i ∈ {1, 2} (Fig. 2). We denote position vj of an
extreme robot r as vj(r) where j ∈ {1, 2, 3}. Note that for a non-extreme robot
r, there are two v2(r) and two v3(r) positions as r have either both open halves
empty or both open halves non empty. In the algorithm 1-hop 1-axis Gather
(1), an extreme robot r moves to v1(r) if there is a robot on v1(r) and there
is no robot on v3(r). r does not move when there is only a robot on v3(r) or
there are robots only on v3(r) and v1(r). In the other remaining cases, if r sees
at least one robot on the adjacent vertices it moves to v2(r). An extreme robot
terminates when it does not see any other robot on the adjacent vertices.

Fig. 2. e is an extreme robot it can uniquely identify the positions of v1, v2 and v3 if
it sees right or left open half non empty.
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If r is not an extreme robot, then it only moves if there is no robot with
y − coordinate greater than zero within its vision and there are two robots on
both of its v2(r) positions. In this scenario the robot r moves to v1(r).

In Fig. 3 we have shown all possible views when a robot r moves and in which
direction it moves. In Fig. 3 suppose a robot r is placed on the node denoted
by a black solid circle. The grid points that are encircled are occupied by other
robots. For all the views of r in V iew − I, r moves to v1(r) and for all the views
of r in V iew − II, r moves to v2(r).

Algorithm 1: 1-hop 1-axis gather (for a robot r)
Data: Position of the robots on the adjacent grid points of r on triangular grid

G.
Result: A vertex on G adjacent to r, as destination point of r.
if r is extreme then

if There is no robot on the adjacent grid points then
terminate;

else if There is a robot only on v3(r) or there are robots only on both v1(r)
and v3(r) then

do not move;

else if There is a robot on v1(r) and no robot on v3(r) then
move to v1(r);

else
move to v2(r);

else
if There is a robot on both v2(r) and no robot on the vertices with
y − coordinate > 0 then

move to v1(r);

else
do not move;

4.1 Correctness Results:

The intuition of the Algorithm 1 is that the width of the configuration decreases
while the visibility graph stays connected by the movement of the robots. The
following results will make this intuition more concrete. Before that let us have
some definitions which will be needed in the proof of the results.

Definition 5 (Layer). Let H be a straight line perpendicular to the agreed
direction of y−axis such that there is at least one robot on some grid points
on H, then H is called a layer.

Definition 6 (Top most layer, Ht). Ht or top most layer of a configuration
C is a layer such that there is no layer above it.

Definition 7 (Vertical line, Lv). Let Lv be a line that is parallel to the agreed
direction of the y-axis such that there is at least one robot on some grid point on
Lv, then Lv is called a vertical line.
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Fig. 3. All possible views of a robot r placed on a node indicated by a black solid circle
when r decides to move. Encircled point represents a robot occupied node For all views
in V iew − I, r moves to v1(r) position and for all views in V iew − II, r moves to v2(r)
position.

Definition 8 (Left edge, el). Left edge of a configuration C or, el is the vertical
line such that there is no other vertical line on the left of el.

Definition 9 (Right edge, er). Right edge of a configuration C or, er is the
vertical line such that there is no other vertical line on the right of er.

Definition 10 (Width of a configuration C). Width of a configuration w(C)
is defined as the distance between el and er.

Definition 11 (Depth of a vertical line Lv). Depth of a vertical line Lv is
defined as the distance between the layers Ht and the layer on which the lowest
robot on Lv is located. We denote the depth of line Lv as d(Lv).

Figure 4 shows all the entities of the above definitions. A brief overview of the
correctness proof is given below along with the statements of the results. Detailed
proofs of all the following results are in the full version of the paper due to page
constraints.

Overview of the Correctness Proof: In Lemma 1, we have proved that the
visibility graph will remain connected throughout the execution of the algorithm.
It is necessary to prove this as otherwise, the robots may gather in several clusters
on the infinite triangular grid. Then we have shown that in Lemma 6 the width
of the configuration will decrease in finite time. Now when the width of the
configuration becomes one then there are only two vertical lines that contain
robots. These lines are left edge el and right edge er. Now in this scenario from
Lemma 2 the robots on the topmost layer will always move below and the depth
of both el and er never increases (by Lemma 5). So the depth of both the right
and left edge now decreases in each epoch. Hence within finite time, the depth
will also become one for either el or er. And in this scenario when the topmost
layer shifts down again, all the robots gather at one grid vertex (Theorem 2).
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Fig. 4. diagram of a configuration C mentioning layer (H), top most layer (Ht), vertical
line (Lv), left edge (el), right edge (er), width of the C (w(C)) and depth of the vertical
line el (d(el)).

Lemma 1. If at the start of some round the configuration formed by the robots
has connected visibility graph then after execution of Algorithm 1 at the end of
that round the visibility graph of the configuration remains connected.

Lemma 2. Ht of the configuration C, always shift down in one epoch until the
gathering is complete.

Lemma 3. Robots on el or er which are not extreme do not move.

Lemma 4. A robot r which is lowest on el or er never moves down to v1(r).

Lemma 5. Neither d(el) nor d(er) ever increase as long as the position of the
corresponding vertical line is same.

Lemma 6. If w(C) > 0 at a round t0 then there exists a round t > t0 such that
w(C) decreases.

Theorem 2. Algorithm 1-hop 1-axis Gather guarantees that there exists a
round t > 0 such that a swarm of n myopic robots on an infinite triangular grid G
with 1-hop visibility and one axis agreement will always gather after completion of
round t under semi-synchronous scheduler starting from any initial configuration
C for which visibility graph GC is connected.

4.2 Complexity Analysis

First we observe that it will take at least Ω(n) epochs to gather n number of
robots. One can check that it is the case when all robots are on a single vertical
line. We state this in the following Theorem 3. For the detailed calculations see
the full version of the paper.
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Theorem 3. Any gathering algorithm on a triangular grid takes Ω(n) epoch.

Now we shall prove that the robots executing our proposed algorithm do not
go downwards by much. First, we define the smallest enclosing rectangle for the
initial configuration.

Fig. 5. ABCD, smallest enclosing rectangle

Definition 12 (SER). A rectangle R = ABCD is said to be the smallest
enclosing rectangle (SER) (Fig. 5) of the initial configuration if it is the smallest
in dimension satisfying the following:

1. All robots in the initial configuration are inside R
2. All vertices of ABCD are on some grid points
3. AB and CD side is parallel to the axis agreed by all the robots
4. BC is the lower side of the rectangle.

Next, we define a polygon that shall contain all the robots throughout the algo-
rithm.

Definition 13 (Bounding Polygon). Let R = ABCD be the SER of the
initial configuration. Let P the point below BC line such that ∠CBP = ∠BCP =
π/6. Then the polygon P = ABPCDA is said to be the Bounding Polygon.

We show that no robot executing Algorithm 1 ever steps out of the bound-
ing polygon (Lemma 7). Using Lemma 7, Theorem 4 proves that Algorithm 1
terminates within O(n) epochs. The proofs are in the appendix due to page
limitations.

Lemma 7. No robot executing the Algorithm 1 ever steps out of the bounding
polygon.

Theorem 4. The algorithm 1-hop 1-axis Gather takes at most O(n) epochs to
gather all the robots.
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5 Conclusion

Gathering is a classical problem in the field of swarm robotics. The literature
on the gathering problem is vast as it can be considered under many differ-
ent robot models, scheduler models, and environments. Limited vision is very
practical when it comes to robot models. To practically implement any algo-
rithm considering a robot swarm having full visibility is impossible. So, we have
to transfer the research interest towards providing algorithms that work under
limited visibility also. This paper is one achievement towards that goal.

In this paper, we have done a characterization of gathering on an infinite
triangular grid by showing that it would not be possible to gather from any
initial configuration to a point on the grid if the myopic robots having a vision
of 1-hop do not have any axis agreement even under the FSYNC scheduler. Thus,
considering one axis agreement we have provided an algorithm that gathers n
myopic robots with a vision of 1-hop under the SSYNC scheduler within O(n)
epochs. We have also shown that the lower bound of time for gathering n robots
on an infinite triangular grid is Ω(n). So our algorithm is time optimal.

For an immediate course of future research, one can think of solving the
gathering problem by considering myopic robots on an infinite triangular grid
making the algorithm collision-free (where no collision occurs except at the ver-
tex of gathering) and under an asynchronous scheduler. Another interesting work
would be to find out if there is any class of configurations for which gathering
on a triangular grid will be solvable even without one axis agreement.
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Abstract. Proving to someone else the knowledge of a secret without
revealing any of its information is an interesting feature in cryptography.
The best solution to solve this problem is a Zero-Knowledge Proof (ZKP)
protocol.

Nurimisaki is a Nikoli puzzle. The goal of this game is to draw a kind
of abstract painting (“Nuri”) that represents the sea with some capes
(“Misaki”) of an island (represented by white cells). For this, the player
has to fulfill cells of a grid in black (representing the sea) in order to draw
some capes while respecting some simple rules. One of the specificity of
the rules of this game is that the cells called “Misaki” can only have one
white neighbour and all white cells need to be connected. In 2020, this
puzzle has been proven to be NP-complete.

Using a deck of cards, we propose a physical ZKP protocol to prove
that a player knows a solution of a Nurimisaki grid without revealing
any information about the solution.

Keywords: Zero-knowledge proof · Pencil Puzzle · Card-based
cryptography · Nurimisaki

1 Introduction

The democratization of computers and network systems has fuelled the virtu-
alization of interactions and processes such as communication, payments, and
elections. Proving the knowledge of some secret without revealing any bit of
information from that secret is crucial in our today’s society. This issue can be
applied to numerous contexts.
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For instance, a client would like to connect to a server via a password without
revealing the password. Another example is database management, where an
entity could ask if a piece of information is in a database without asking for
factual data. A third example can be given in the electronic voting system where
the voters want to be sure that the ballots are correctly mixed (without revealing
how the mix was done).

A cryptographic tool exists for all the previous examples, called a Zero-
Knowledge Proof (ZKP) protocol. It enables a prover P to convince a verifier
V that P knows a secret s without revealing anything other than it. A ZKP
protocol must verify the following three properties:

– Completeness: If P knows s then the protocol ends without aborting (mean-
ing that V is convinced that P has s);

– Soundness: If P does not have s then V will detect it;
– Zero-Knowledge: V learns nothing about s.

In practice, ZKP protocols are typically executed by computers. However,
their understanding is difficult for the uninitiated. We take a more direct app-
roach to the notion of ZKP and construct a protocol using physical objects like
playing cards and envelopes. It allows us to present the notion of ZKP proto-
cols without deep mathematical backgrounds and also to extend the existing
literature.

The first physical ZKP protocol [7] for a Sudoku grid was constructed using
a deck of cards. Since this novel protocol was devised, several teams in the world
have proposed physical ZKP protocols using a deck of cards for pencil puz-
zles, such as Sudoku [19,25], Akari [1], Takuzu [1], Kakuro [1,13], KenKen [1],
Makaro [2], Norinori [5], Slitherlink [11], Suguru [16], Nurikabe [17], Ripple
Effect [22], Numberlink [20], Bridges [21], Cryptarithmetic [8], Shikaku [23], and
Nonogram [3,18].

Why shall we propose a new card-based ZKP protocol for another Nikoli
puzzle? For us, it is similar to the question: Why shall we prove that a puzzle is
NP-complete? People want to know if a puzzle is NP-complete in order to know if
the puzzle is difficult or not for a computer to solve it. Card-based ZKP protocols
are quite similar; once a puzzle is shown to be NP-complete, a natural question
is: Can we design a physical ZKP protocol? This is an intellectual challenge
on the puzzle. Moreover, each puzzle has different rules and specificity, which
force us to imagine new physical ZKP techniques. For instance, consider a Nikoli
puzzle, Nurimisaki, which we will deal with in this paper; then, its rules combine
for the first time some connectivity, neighbourhood restriction, and straight line
with counting, as seen later. A previous work [24] (in Japanese, unpublished)
proposed a card-based ZKP protocol for Nurimisaki. Yet, the protocol is not
optimal since it prepares another grid to verify the rules (so the number of
cards is large). Moreover, elaborate but complex techniques are used (e.g., using
another grid to represent the in-spanning-tree of P ’s solution). In contrast, our
protocol has a more direct approach with closer interaction to the real game.
Before giving our contributions, let us define the rules of the Nurimisaki puzzle.
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Fig. 1. Nurimisaki example (left) with its solution (right).

Nurimisaki Rules. Figure 1 shows a puzzle instance of Nurimisaki. The goal for
Nurimisaki puzzle is to color in black some cells on the grid, under the following
rules:

1. A cell with a circle is called a “Misaki”. A Misaki has only one cell of its
neighbours (vertically or horizontally) remaining white and the rest black.

2. The number written in a Misaki cell indicates the number of white cells in
straight line from the Misaki. If there is no number, any number of white cells
is allowed.

3. White cells without a circle cannot be a Misaki.
4. A 2 × 2 square cannot be composed of only black or white cells.
5. White cells are connected.

Nurimisaki puzzle was recently proven NP-complete in [9]; hence, it is a nat-
ural question to construct a physical ZKP protocol for this fun puzzle. Although
Goldwasser et al. [6] proved that any NP-complete problem has its corresponding
interactive ZKP protocol, simple physical ZKP protocols are always sollicited as
mentioned above.

Contributions. We propose a physical ZKP protocol that only uses cards and
envelopes. We rely on some classical existing card-based sub-protocols in order
to be able to construct our ZKP protocol. The main difficulty in this Nurim-
isaki game that seems to be simple, is that existing techniques proposed in the
literature since few years cannot be applied directly. The main trick is to find
an encoding that allows us to apply several sub-protocols in the right order to
obtain a secure ZKP protocol. For this, we propose an original way to combine
several techniques to design our ZKP protocol with a reasonable amount of cards
and manipulations.

Outline. In Sect. 2, we introduce our encoding scheme using cards in order to
represent a gird of the game and a solution. We also give some sub-protocols that
are used in our construction. In Sect. 3, we give our ZKP protocol for Nurimisaki.
Before concluding in the last section, we give the security proof of our ZKP
protocol in Sect. 4.
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2 Preliminaries

We explain the notations and sub-protocols used in our constructions.

Cards and Encoding. The cards we use in our protocols consist of clubs ♣ ♣ · · · ,
hearts ♥ ♥ · · · , and numbered cards 1 2 · · · , whose backs are identical ? .
We encode three colors {black,white, red} with the order of two cards as follows:

♣ ♥ → black, ♥ ♣ → white, ♥ ♥ → red. (1)

We call a pair of face-down cards ? ? corresponding to a color according
to the above encoding rule a commitment to the respective color. We also use
the terms, a black commitment, a white commitment, and a red commitment.
We sometimes regard black and white commitments as bit values, based on the
following encoding scheme:

♣ ♥ → 0, ♥ ♣ → 1. (2)

For a bit x ∈ {0, 1}, if a pair of face-down cards satisfies the encoding (2), we
say that it is a commitment to x, denoted by ? ?

︸ ︷︷ ︸

x

.

We also define two other encoding [22,26]:

– ♣-scheme: for x ∈ Z/pZ, there are p cards composed of p− 1 ♥s and one ♣,
where the ♣ is located at position (x + 1) from the left. For example, 2 in
Z/4Z is represented as ♥ ♥ ♣ ♥ .

– ♥-scheme: it is the same encoding as above but the ♥ and ♣ are reversed.
For instance, 2 in Z/4Z is represented as ♣ ♣ ♥ ♣ .

2.1 Pile-Shifting Shuffle [15,26]

This shuffling action means to cyclically shuffle piles of cards. More for-
mally, given m piles, each of which consists of the same number of face-down
cards, denoted by (p1,p2, . . . ,pm), applying a pile-shifting shuffle (denoted by
〈·‖ · · · ‖·〉) results in (ps+1,ps+2, . . . ,ps+m):

〈

?
︸︷︷︸

p1

∥

∥

∥

∥

∥

?
︸︷︷︸

p2

∥

∥

∥

∥

∥

· · ·
∥

∥

∥

∥

∥

?
︸︷︷︸

pm

〉

→ ?
︸︷︷︸

?
︸︷︷︸

· · · ?
︸︷︷︸

ps+1 ps+2 ps+m

,

where s is uniformly and randomly chosen from Z/mZ. Implementing a pile-
shifting shuffle is simple: we use physical cases that can store a pile of cards, such
as boxes and envelopes; a player (or players) cyclically shuffles them manually
until everyone (i.e., the prover P and the verifier V ) loses track of the offset.
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2.2 Input-Preserving Five-Card Trick [12]

Given two commitments to a, b ∈ {0, 1} based on the encoding rule (2), this sub-
protocol [4,12] reveals only the value of a∨ b as well as restores commitments to
a and b: ? ?

︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

→ a ∨ b & ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

.

The original sub-protocol [4,12] was designed for computing AND (a ∧ b),
but we adjust it to compute OR (a ∨ b):

1. Add helping cards and swap the two cards of the commitment to b so that
we have the negation b, as follows:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

→ ? ?
︸ ︷︷ ︸

a

♥ ? ?
︸ ︷︷ ︸

b

♥ ♣ ♣ ♣ ♣ .

2. Rearrange the sequence of cards and turn over the face-up cards as:

? ? ♥ ? ? ♥ ♣ ♣ ♣ ♣ → ?
♥

?
♣

♥
♣

?
♣

?
♣

→ ?
?

?
?

?
?

?
?

?
?
.

3. Regarding cards in the same column as a pile, apply a pile-shifting shuffle to
the sequence:

〈

?
?

∥

∥

∥

∥

?
?

∥

∥

∥

∥

?
?

∥

∥

∥

∥

?
?

∥

∥

∥

∥

?
?

〉

→ ? ? ? ? ?
? ? ? ? ? .

4. Reveal all the cards in the first row.
(a) If it is ♣ ♣ ♥ ♥ ♥ (up to cyclic shifts), then a ∨ b = 0.
(b) If it is ♥ ♣ ♥ ♣ ♥ (up to cyclic shifts), then a ∨ b = 1.

5. After turning over all the face-up cards, apply a pile-shifting shuffle.
6. Reveal all the cards in the second row; then, the revealed cards should include

exactly one ♥ .
7. Shift the sequence of piles so that the revealed ♥ is the leftmost card and

swap the two cards of the commitment to b to restore commitments to a
and b.
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2.3 Mizuki–Sone Copy Protocol [14]

Given a commitment to a ∈ {0, 1} along with four cards ♣ ♥ ♣ ♥ , the Mizuki–
Sone copy protocol [14] outputs two commitments to a:

? ?
︸ ︷︷ ︸

a

♣ ♥ ♣ ♥ → ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

.

1. Turn all cards face-down and set the commitments as follows:

?
?

︸
︷
︷

︸

a

?
?

︸
︷
︷

︸

0

?
?

︸
︷
︷

︸

0 .

2. Apply a pile-shifting shuffle as follows:
〈

? ? ?

∥ ∥ ∥ ∥ ∥ ∥

? ? ?

〉

→

?
?

?
?

?
?

.

3. Reveal the two above cards to obtain either a or a as follows:

♣
♥

?
?

︸
︷
︷

︸

a

?
?

︸
︷
︷

︸

a or ♥
♣

?
?

︸
︷
︷

︸

a

?
?

︸
︷
︷

︸

a .

2.4 How to Form a White Polyomino [17]

We introduce the generic method of [17] to address the connectivity constraint
(rule 5). Given a grid where all cells are black, it enables P to make white
connected cells, i.e., white-polyomino, without revealing anything to V . We first
describe two crucial sub-protocols: the chosen pile protocol and the 4-neighbor
protocol.

Chosen Pile Protocol [5]. The chosen pile protocol allows P to choose a pile of
cards without V knowing which one. This pile can be manipulated and all the
commitments are replaced to their initial order afterward.

This protocol is an extended version of the “chosen pile cut” proposed in [10].
Given m piles (p1,p2, . . . ,pm) with 2m additional cards, the chosen pile protocol
enables a prover P to choose the i-th pile pi (without revealing the index i)
and revert the sequence of m piles to their original order after applying other
operations to pi.
1. Using m − 1 ♣ s and one ♥ , P places m face-down cards encoding i − 1

in the ♥-scheme (denoted by row 2 ) below the given piles, i.e., only the i-th
card is ♥ . We further put m cards encoding 0 in the ♥-scheme (denoted by
row 3 ):

?
︸︷︷︸

p1

?
︸︷︷︸

p2

. . . ?
︸︷︷︸

pi−1

?
︸︷︷︸

pi

?
︸︷︷︸

pi+1

. . . ?
︸︷︷︸

pm

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

← row 2

?
♥

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣

← row 3
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2. Considering the cards in the same column as a pile, apply a pile-shifting
shuffle to the sequence of piles.

3. Reveal all the cards in row 2. Then, exactly one ♥ appears, and the pile
above the revealed ♥ is the i-th pile (and hence, P can obtain pi). After
this step is invoked, other operations are applied to the chosen pile. Then,
the chosen pile is placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in row 2. (Note, therefore, that we
do not use the card ♥ revealed in Step 3.) Then, apply a pile-shifting shuffle.

5. Reveal all the cards in row 3. Then, one ♥ appears, and the pile above the
revealed ♥ is p1. Therefore, by shifting the sequence of piles (such that p1

becomes the leftmost pile in the sequence), we can obtain a sequence of piles
whose order is the same as the original one without revealing any information
about the order of the input sequence.

Sub-protocol: 4-Neighbor Protocol [17]. Given pq commitments placed on a p× q
grid, a prover P has a commitment in mind, which we call a target commitment.
The prover P wants to reveal the target commitment and another one that lies
next to the target commitment (without revealing their exact positions). Here,
a verifier V should be convinced that the second commitment is a neighbor of
the first one (without knowing which one) as well as V should be able to confirm
the colors of both the commitments. To handle the case where the target com-
mitment is at the edge of the grid, we place commitments to red (as “dummy”
commitments) in the left of the first column and below the last row to prevent
P from choosing a commitment that is not a neighbor. Thus, the size of the
expanded grid is (p + 1) × (q + 1). This sub-protocol proceeds as follows.

1. P and V pick the (p + 1)(q + 1) commitments on the grid from
left-to-right and top-to-bottom to make a sequence of commitments:
? ? ? ? ? ? ? ? · · · ? ? .

2. P uses the chosen pile protocol to reveal the target commitment.
3. P and V pick all the four neighbors of the target commitment. Since a pile-

shifting shuffle is a cyclic reordering, the distance between commitments are
kept (up to a given modulo). That is, for a target commitment (not at any
the edge), the possible four neighbors are at distance one for the left or right
one, and p+ 1 for the bottom or top one so that P and V can determine the
positions of all the four neighbors.

4. Among these four neighbors, P chooses one commitment using the chosen
pile protocol and reveals it.

5. P and V end the second and first chosen pile protocols.

Forming White-Polyomino. Assume that there is a grid having p × q cells. P
wants to arrange white commitments on the grid such that they form a white-
polyomino while V is convinced that the placement of commitments is surely a
white-polyomino. The sub-protocol proceeds as follows.

1. P and V place a commitment to black (i.e., ♣ ♥ ) on every cell and commit-
ments to red as mentioned above so that they have (p+1)(q+1) commitments
on the board.
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2. P uses the chosen pile protocol to choose one black commitment that P wants
to change.
(a) V swaps the two cards constituting the chosen commitment so that it

becomes a white commitment (recall the encoding (1)).
(b) P and V end the chosen pile protocol to return the commitments to their

original positions.
3. P and V repeat the following steps exactly pq − 1 times.

(a) P chooses one white commitment as a target and one black commitment
among its neighbors using the 4-neighbor protocol; the neighbor is chosen
such that P wants to make it white.

(b) V reveals the target commitment. If it corresponds to white, then V
continues; otherwise V aborts.

(c) V reveals the neighbor commitment (chosen by P ). If it corresponds to
black, then P makes the neighbor white or keep it black (depending on
P ’s choice) by executing the following steps; otherwise V aborts.
i. If P wants to change the commitment, P places face-down club-to-

heart pair below it; otherwise, P places a heart-to-club pair: ? ? →
?
?
♣

?
?
♥

or ?
?
♥

?
?
♣

.

ii. Regarding cards in the same column as a pile, V applies a pile-shifting

shuffle to the sequence of piles:
〈

?
?

∥

∥

∥

∥

?
?

〉

→ ? ?
? ? .

iii. V reveals the two cards in the second row. If the revealed right card
is ♥ , then V swaps the two cards in the first row; otherwise V does
nothing.

(d) P and V end the 4-neighbor protocol.

V is now convinced that all the white commitments represent a white-polyomino.
Therefore, this method allows a prover P to make a solution that only P has in
mind, guaranteed to satisfy the connectivity constraint.

2.5 Sum in Z [22]

We give a brief overview of the protocol described in [22] for the addition of
elements in Z/2Z with a result in Z. This allows to compute S =

∑n
i=1 xi

with S ∈ Z and xi ∈ Z/2Z for i ∈ {1, . . . , n}. The idea is to compute the
sum inductively; when starting by the two first elements x1 and x2, they are
transformed into x1 − r and x2 + r for uniformly random r ∈ Z/2Z. Then x2 + r
is revealed (no information about x2 leaks since r is random), and the cards of
x1 −r is shifted by x2 +r positions to encode value (x1 −r)+(x2 +r) = x1 +x2.
Note that this result is in Z/(p + 1)Z (or simply Z since the result is less than
p) for elements x1, x2 in Z/pZ.

3 ZKP Protocol for Nurimisaki

We present our ZKP protocol for Nurimisaki. Hereinafter, we consider an
instance of Nurimisaki as a rectangular grid of size p × q.
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3.1 Setup Phase

The verifier V and the prover P place black commitments on all the cell of the
p×q grid and place red commitments (“dummy” commitments) around the grid
so that we have (p + 1)(q + 1) commitments.

3.2 Connectivity Phase

P and V apply the protocol given in Sect. 2.4: a white-polyomino is formed
according to P ’s solution. Now, V reveals all the commitments corresponding
to Misaki to check that they are indeed white. After this phase, V is convinced
that white commitments are connected (rule 5).

3.3 Verification Phase

The verifier V is now checking that the other rules are satisfied.

No 2×2 square (rule 4). We use an adapted verification phase of the one in [17] for
checking that 2×2 square are not composed of only white (black) commitments.
Note that for an initial grid p×q, there are (p−1)(q−1) possible squares of size
2 × 2. Thus P and V consider each of those squares (in any order) and apply
the following:

1. P chooses a white commitment and a black one among the four commitments
via the chosen-pile protocol (Sect. 2.4).

2. V reveals both commitments marked by P in the previous step. If there are
exactly a white commitment and a black one, V continues; otherwise, abort.

Misaki (rule 1 and 2). V wants to check that each Misaki cell (cell with a circle)
has only one of its neighbours white and others black. Moreover, when a Misaki
has a number in it, V wants to check that the straight line formed by white cells
starting from the Misaki cell has the corresponding number of white cells.

P and V first consider Misaki cells with a number. For each Misaki cell (not
at a border) with a number i in it, apply the following:

1. P and V add black commitments (i.e., “dummy” commitments) at the bor-
der of the grid. This ensures that we delimit correctly the number of white
commitments in a straight line.

2. For each of the four neighbours, P and V form a pile composed of i + 1
commitments for each direction (top, bottom, left, right).

1

1

1

1

2

2

2

2

3

3

3

3

2 2p1 p3

p2

p4
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3. P and V puts numbered cards under each pile as follows:
p1 p2 p3 p4

1 2 3 4 .
4. P and V shuffle the piles and reveal the first commitment of each pile. If

there is exactly one commitment corresponding to white then V continues.
Otherwise, V aborts.

5. V reveals the next i commitments of the pile with the first white commitment.
If there are only white commitments for the first i − 1 commitments and a
black commitment for the last one, then V continues; otherwise, aborts.

After this step, V is convinced that Misaki cells with a number are well-
formed. In the case where there is no number, the first step consists of forming a
pile with only one commitment. Hence, V is convinced that Misaki cells without
a number satisfy only rule 1 but not rule 2 since any number of white cells could
form the straight line1.

No circle, no Misaki (rule 3). V needs to check that white cells without a circle
are not Misaki, meaning that any white cell of the grid has at least two of its
neighbours white. This rule is somewhat challenging to verify without leaking
information on the solution because the number and location of white cells are
part of the solution (and must not be publicly revealed).

If the targeted cell is black then there is nothing to verify since any configu-
rations could occur. Yet, if the targeted cell is white then there are at least (but
it could be more) two neighbours that are white. The idea is to set the value of
targeted cell being 5 if it is white and 0 if it is black. Then we add the neighbours
to it (white is 0, and black is 1). If the cell is black then the sum is always less
than or equal to 4 (which is permitted by the rules to have all black). But if the
cell is white then the permitted value for the sum is less than or equal to 7 (a
Misaki is equal to 8) for a targeted cell that is not at a border.

For a given cell, called targeted cell ct, we look at its neighbors (up to 4). The
idea of verifying that a white cell is not a Misaki is to first sum the four neighbors
(where a white cell is equal to 0 and a black cell is 1). Then by choosing another
encoding, the targeted cell can be equal to 5 for white and 0 for black. Finally,
adding the sum of the neighbors with ct gives at most 4 for black ct (which is
permitted by the rules) and at most 7 for white ct in a valid configuration and
8 or 9 for invalid configuration.

1. Copy all the commitments using the copy protocol (Sect. 2.3). The number
of copies for a p × q grid is 2(2pq − p − q);

2. Sum the four neighbours by considering that a white commitment is equal to
0 and a black commitment is equal to 1. The result is given in the ♥-scheme
(i.e., there are four ♣ s and one ♥ at position corresponding to the result of
the sum).

1 Note that we described the protocol for Misaki cell not at the border of the grid. If
a Misaki cell is at a border (but not a corner) then the 4-neighbours becomes the
3-neighbours and the protocol is the same (there will be only three piles instead of
four). For Misaki cells at a corner, P and V consider the 2-neighbours (thus only
two piles).
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3. For the targeted cell, add 3 ♥ s in the middle of the commitment as:

white: ♥ ♣ → ♥ ♥ ♥ ♥ ♣ = 5,

black: ♣ ♥ → ♣ ♥ ♥ ♥ ♥ = 0.

White is now 5 and black is 0 in the ♣-scheme.
4. Sum the result of the two previous steps (the sum of the four neighbours and

the inner cell). The result is encoded in the ♥-scheme.
5. Reveal the last and penultimate cards. If a ♥ appears then abort; otherwise,

continue.

4 Security Proofs

Our protocol needs to verify three security properties given as theorems.

Theorem 1 (Completeness). If P knows the solution of a Nurimisaki grid,
then P can convince V .

Proof. First, notice that P convinces V in the sense that the protocol does not
abort which mean that all the rules are satisfied. The protocol can be split in
two: (1) the connectivity and (2) the verification phases.

(1) Since P knows the solution, the white cells are connected and hence can
always choose a black commitment at step 2 to swap it to white. Notice
that there exists a proof for the connectivity in [17].

(2) The verification of 2×2 square will not abort since if P has the solution then
for any given 2×2 square there always exist a white commitment and a black
commitment. For the Misaki rules, each Misaki cell has three of its neighbors
black and one white; thus, the first commitment of piles p1, p2, p3, p4 will
reveal exactly three black and one white commitments. Then, when looking
at pile pi of the first commitment corresponding to white, the number of
white commitments corresponds to the number in the inner cell. Thus the
protocol will continue. Finally, the non-Misaki rule is verified. Since P has
the solution, any white cell (with no circle in it) has at least two white
neighbors. Thus if the inner cell is white then the sum will start to 5 and
the maximal value is 7 because a solution has at least two whites so at
most two black commitments (of value 1 in this step). So the protocol will
continue and hence V will be convinced that P has the solution. �

Theorem 2 (Soundness). If P does not provide a solution of the p×q Nurim-
isaki grid, P is not able to convince V .

Proof. Suppose that P does not know the solution, hence at least one of the
rules is not verified. If the white cells are not connected then P cannot choose a
black commitment at step 2 hence V will detect it. Notice that there is also the
proof of this phase in [17].
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If P does not have the solution, then one of the verification phase will fail.
We apply a case distinction for those verifications. Assume first that there is
a block of 2 × 2 square composed of only white (black) commitments, then P
cannot choose, during the chosen-pile protocol, two distinct commitments (i.e.,
a black and a white) thus the revealed commitments will attest to V that P does
not have the solution. Second, assume that a Misaki cell is not well-formed in
the sense that either (1) the number of white neighbour is not equal to 1 or that
(2) the number of white cells in straight line does not correspond to the number
of the Misaki cell. For (1) the neighbours are revealed (after a shuffle) so V will
notice the number of white commitments; for (2) all the commitments next to
the white neighbour are revealed thus V will also notice if there is a flaw. The
last verification is for white cells which are not Misaki. It is equivalent of saying
that any white cell (without a circle in it) has at least two white neighbours. If a
white cell has only one white neighbour then during the sum process, then ct = 5
(because the central cell is white) and the total for its neighbours is 3 (because
there are 3 black commitments and 1 white). The final sum is then equal to 8,
since V will look at the last and penultimate card of the sum (corresponding to
a sum equal to 9 and 8) then V will detect that a white card is a Misaki. Notice
that a sum equals to 9 means the white cell is surrounded by 4 black cells. It is
not possible since white cells are connected. �
Theorem 3 (Zero-knowledge). V learns nothing about P ’s solution of the
given grid G.

Proof. We use the same proof technique as in [7], namely the description of an
efficient simulator which simulates the interaction between an honest prover and
a cheating verifier. The goal is to produce an indistinguishable interaction from
the verifier’s view (with the prover). Notice that the simulator does not have
the solution but it can swap cards during shuffles. Informally, the verifier cannot
distinguish between two protocols, one that is run with the actual solution and
one with random commitments. The simulator acts as follows: The simulator
constructs a random connected white polyomino. During the 2 × 2 square veri-
fication, the simulator will swap cards to choose white and black commitments.
For the Misaki verification, the simulator swaps three commitments to black for
three piles and one to white for the last pile. The latter will also be modified
by the simulator to contain the correct numbers of white commitments (and the
last commitment to black). During the non-Misaki verification, when the sum is
computed, the simulator swaps the cards to always put ♣ cards in position 8
and 9 (for the cell not at the edge, but the latter is done the same way).

The simulated and real proofs are indistinguishable hence V learns noth-
ing from the connectivity and verification phases. Finally, we conclude that the
protocol is zero-knowledge. �

5 Conclusion

We proposed a physical ZKP protocol for Nurimisaki that uses only cards and
envelopes. The most difficult part was to prove that cells are not Misaki without



Card-Based ZKP Protocol for Nurimisaki 297

leaking their color. Of course, we combined this part with the rest of the verifi-
cations that are stated by other rules. This new approach clearly demonstrates
that showing that some cells do not have some properties is often more difficult
than proving an explicit property without leaking any information.
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Abstract. Digital money can be implemented efficiently by avoiding
consensus. However, no-consensus designs are fundamentally limited, as
they cannot support general smart contracts, and similarly they cannot
deal with conflicting transactions.

We present a novel protocol that combines the benefits of an asyn-
chronous, broadcast-based digital currency, with the capacity to perform
consensus. This is achieved by selectively performing consensus a pos-
teriori, i.e., only when absolutely necessary. Our on-demand consensus
comes at the price of restricting the Byzantine participants to be less
than a one-fifth minority in the system, which is the optimal threshold.

We formally prove the correctness of our system and present an open-
source implementation, which inherits many features from the Ethereum
ecosystem.

Keywords: Consensus · Reliable broadcast · Blockchain · Fault
tolerance · Cryptocurrency

1 Introduction

Following the famed white paper of Satoshi Nakamoto [30], a plethora of digital
payment systems (cryptocurrencies) emerged. The basic functionality of such
payment systems are money transfer transactions. These transactions are stored
in a distributed ledger, a fault-tolerant and cryptographically secured append-
only database. Most cryptocurrencies have a ledger where transactions are totally
ordered, effectively forcing all participants of the system to perform the state
transitions sequentially. This sequential verification of all transactions is consid-
ered the main bottleneck of distributed ledger solutions [12].

However, in reality, most transactions have no dependencies between each
other. For example, a transaction from Alice to Bob and a transaction from
Charlie to Dani can be performed in any order. Verifying such independent trans-
actions in parallel offers a vast efficiency improvement. Indeed, recent research
proposes “no-consensus” payment systems that do not order independent trans-
actions [12,29]. Such systems can achieve unbounded transaction throughput, as
all transactions can be verified in any order, in parallel.

However, no-consensus payment systems suffer from fundamental limitations,
as they lack the means to deal with conflicting inputs: If Charlie sets up two
transactions, one for Alice, one for Bob, but Charlie does not have enough funds
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 299–313, 2022.
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for both transactions, no-consensus payment system might end up in a deadlock,
with Charlie ultimately losing access to her account, and neither Alice nor Bob
getting paid. The same problem fundamentally prevents no-consensus systems
from supporting general smart contracts, where many uncoordinated parties
might issue conflicting inputs to the same smart contract at the same time (Fig.
1).

Fig. 1. A high level overview of our proto-
col.

We are faced with a choice: either
we use a total ordering currency which
cannot scale to a high transaction
throughput, or we use a parallel no-
consensus verification system that is
functionally restricted, and cannot
resolve conflicting transactions.

In this work we propose a sys-
tem which combines the advantages
of both approaches. Our system offers
all of the benefits of no-consensus sys-
tems, such as in principle unbounded
throughput and powerful resiliency to
network attacks. Our design first tries
to verify every transaction without
performing consensus. Only if a transaction cannot be verified on this “fast
path”, we invoke a consensus routine to resolve potential conflicts.

Our contributions are as follows:

1. We present a protocol we call ConsensusOnDemand. Assuming access to an
existing consensus protocol, ConsensusOnDemand is a wrapper algorithm
where the first phase offers the benefits of no-consensus systems. In situ-
ations where conflicting inputs cannot be processed by pure no-consensus
systems (and only those situations), ConsensusOnDemand invokes the con-
sensus instance to resolve the deadlock. The wrapper protocol is resilient to
completely asynchronous network conditions as long as n > 5f , where n is the
total number of participants and f is the number of Byzantine participants.
The common case (no consensus) is optimal with regard to latency and does
not rely on complex broadcast primitives.
Thus, we combine the power of processing unrelated inputs in parallel with
the ability to resolve conflicting inputs when needed and pave the way for
implementations of systems with unbounded throughput and full smart con-
tract functionality.

2. We exhibit our idea in the context of online payments. We describe our pro-
tocol, including the pseudocode, and prove the algorithm’s correctness.

3. We implement our design as a digital currency following a no-consensus app-
roach enhanced with consensus on demand. A smart contract is used as
the example consensus instance. Our implementation is built on top of the
Ethereum client go-ethereum, and thus features a network discovery protocol
and advanced wallets, while being compatible with the Ethereum ecosystem.
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2 Model

We distinguish between clients and servers. Clients are free to enter and leave the
system as they please. Servers are in charge of securing the system. We assume
that the set of servers Π is fixed and known to all servers.

Clients and servers that follow the protocol are said to be honest. Byzan-
tine clients or servers are subject to arbitrary behavior and might collude when
attempting to compromise the system’s security. We assume there are no more
than f Byzantine servers and that the set of Byzantine servers is static. Further,
let n = |Π|. We assume that n > 5f , in other words, less than one-fifth of servers
are Byzantine.

Servers are connected all-to-all with authenticated links. Communication is
asynchronous i.e. messages are delivered with arbitrary delays. We assume
standard cryptographic primitives to hold, more specifically, MACs and signa-
tures cannot be forged.

Finally, the model might have to be restricted further in order to reflect
the assumptions needed for the choice of the underlying consensus instance. For
the consensus algorithm chosen for our implementation (see Sect. 8) we indeed
assume synchronous communication.

3 Problem Statement

We formulate the problem in the context of a cryptocurrency. Initially, the
state of the system consists of a known assignment of currency amounts to
clients. The system’s purpose is to accept transactions, where a transaction
t = (sender, sn, recipient, amount) moves an amount of currency from a sender
to a recipient. Each client can issue transactions as the sender, where the
sequence number sn starts from 0 and increases by 1 for each transaction.

Definition 1. Two transactions t and t′ are said to conflict, if they have the
same sender and sequence number but t �= t′, i.e., the recipient or the amount
differ.

Existing broadcast-based payment systems [3,12] provide the guarantees of
a Byzantine reliable broadcast for every transaction:

Definition 2. Each honest server observes transactions from a set of conflicting
transactions {t0, t1, ...}. Byzantine reliable broadcast satisfies the following
properties:
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1. Totality: If some honest server accepts a transaction, every honest server
will eventually accept the same transaction.

2. Agreement: No two honest servers accept conflicting transactions.
3. Validity: If every honest server observes the same transaction (there are

no conflicting transactions), this transaction will be accepted by all honest
servers.

The totality and agreement properties guarantee consistent state of the sys-
tem and that at most one transaction per unique (sender, sn) pair can be
accepted, thus preventing double-spends.

Validity ensures that if the client issued only one transaction for a given
sequence number, the transaction will indeed be accepted. However, otherwise
the definition does not guarantee termination. In other words, if the client issues
conflicting transactions, the system might deadlock and never decide on accept-
ing any of them.

Through the use of this weak abstraction, broadcast-based payment sys-
tems combine many benefits, such as resilience to complete asynchrony and fast
acceptance. The standout advantage is perhaps the inherent ability to parallelize
the processing of independent transactions, resulting in unbounded throughput
through horizontal scaling [5,29].

The crucial assumption that well-behaved clients will not issue conflicting
transactions is warranted for a rudimentary payment system. However, it inher-
ently precludes more advanced applications where conflicting inputs naturally
occur, such as uncoordinated parties issuing conflicting inputs to a smart con-
tract. To support the full range of blockchain applications, a stronger guarantee
needs to hold:

Definition 3. Each honest server observes transactions from a set of conflicting
transactions {t0, t1, ...}. Consensus satisfies the following properties:

1. All properties of Byzantine reliable broadcast, and
2. Termination: Every honest server eventually accepts one of the observed

transactions.

The objective of this work is to combine the benefits of broadcast-based
designs with the power of consensus: a) non-conflicting transactions are to be
processed in a broadcast-based fashion: each honest server broadcasting one
acknowledgement for a transaction is enough to accept it; and b) consensus is
supported to resolve conflicts (Table 1).

4 Related Work

Broadcast-based Protocols. In 2016 Gupta [20] points out that a payment
system does not require consensus. Later, Guerraoui et al. [19] prove that the
consensus number of a cryptocurrency is indeed 1 in Herlihy’s hierarchy [21].

Both Guerraoui et al. [12] and Baudet et al. [5] propose a payment scheme
where the ordering of transactions is purely determined by the transaction issuer.
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Table 1. A comparison of existing solutions and ConsensusOnDemand (CoD). The
CoD wrapping of a consensus is asynchronous and leaderless, and thus any potentially
stronger assumptions are inherited from the consensus instance being used.

Bitcoin and
Ethereum [30]

Ouroboros [22] Algorand [17] PBFT [10] Red Belly [13] BEAT [15] Broadcast-
based [12]

CoD + PBFT CoD + BEAT

Energy-efficient � � � � � � � �
Deterministic
finality

� � � � � � �

Permissionless � � �
Leaderless � � � �
Asynchronous � � �
Parallelizable � � �
Consensus � � � � � � � �

In their simplest form those currencies rely on Byzantine reliable broadcast, as
originally defined by Bracha and Toueg [8]. Srikanth and Toueg [39] as well
as Bracha [7] propose well-known Byzantine reliable broadcast algorithms with
O(n2) message complexity per instance. We use Bracha’s Double-Echo algorithm
[7] as a fundamental building block and comparison to our approach.

The Cascade protocol [37] promises similar benefits, while being permission-
less, i.e., participants are free to enter and leave the system as they please.

Other approaches have proposed a probabilistic Byzantine reliable broadcast
[18]. By dropping determinism, efficiency is gained, more specifically O(n log(n))
messages are shown to be sufficient for each transaction. Our implementation
relies on a practical and widely adopted probabilistic broadcast protocol.

Instead, it is possible to drop the totality property of Byzantine reliable
broadcast and build a payment system where servers distribute themselves proof
(a list of signatures) that they are indeed in the possession of the claimed funds.
This was also proposed by Guerraoui et al. [12], based on a digital signature
approach inspired by Malkhi and Reiter [27]. The message complexity is hereby
improved to O(n).

Remedying the Consensus Bottleneck. Early work by Pedone et al. [32] and
Lamport [25] recognizes that commuting transactions do not need to be ordered
in the traditional state machine replication (SMR) problem with crash failures.
Follow-up protocols also deal with Byzantine faults and show fundamental lower-
bounds [26,33,35].

Removing global coordination in favor of weaker consistency properties also
receives a lot of attention outside the area of state machine replication. Conflict-
free Replicated Data Types (CRDT) [9,34] provide a principled approach to
performing concurrent operations optimistically, and have recently also been
applied to permissioned blockchains [31].
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It is often tricky to compare protocols, as they can differentiate themselves
in one of the many dimensions, such as synchrony, fault-tolerance and fast path
latency [6]. A recent protocol called Byblos [6] achieves 5-step latency in a par-
tially synchronous network when n > 4f . Suri-Payer et al. [40] improve the fast
path latency to 2 communication steps, in the absence of Byzantine behavior.

Kursawe’s optimistic Byzantine agreement protocol [23] features a fast path
paired with a consensus protocol in the slow path, with each component being
modular. While Kursawe’s proposed fast path requires synchronous rounds and
no Byzantine failures to happen, our protocol features the same optimal fast
path of a single round-trip, while not relying on synchrony and tolerating f
Byzantine servers. This comes at the cost of requiring n ≥ 5f + 1 servers. This
bound has been shown to be optimal by Martin et al. [28]. Kuznetsov et al. [24]
have recently shown the lower bound to be n ≥ 5f − 1 in the special case where
the set of proposers (clients) is a subset of acceptors (servers). Their insight is
to disregard the acknowledgement of a provably misbehaving server. Although
we do not assume the required special case, as in our model the set of clients is
external to servers and changing freely, the assumption might well be warranted
in other contexts, wherein their approach is applicable to our work.

Our protocol improves upon the solutions of Kursawe and Kuznetsov et al. by
being leaderless and asynchronous even in the slow path. This is crucial as leader-
based protocols have been shown to be susceptible to throughput degradation
in the case of even one slow replica [1,2,11,15,43]. Song et al. [38] solution
is probably most similar to ours, as their Bosco algorithm provides the same
decision latency as ours. However, their solution does not focus on reducing the
number of invocations of the underlying consensus, meaning that consensus is
still performed for every decision.

Sharding is the process of splitting a blockchain architecture into multiple
chains, allowing parallelization as each chain solves the state replication task
separately. The improvement brought forward in this area [4] is orthogonal to
the one we address in this work. Indeed, while having multiple shards allows
systems to parallelize operations overall, inside each shard transactions still need
to be processed sequentially.

Implementations. Recent systems that remove or reduce the need for consen-
sus have shown great promise in terms of practical scalability. More specifically,
Astro [12] is able to perform 20,000 transactions per second, in a network of
200 nodes, with transactions having a latency of less than a second. A similar
system by Spiegelman et al. [14] that uses consensus without creating overhead
achieves 160,000 tx/s with about 3 s latency in a WAN. The Accept system [29]
scales linearly, and has been shown to achieve 1.5 Million tx/s.
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5 A Simple Payment System

We describe a digital currency called BroadcastCoin that serves as a foundation.
The protocol disseminates transactions through separate instances of Byzantine
reliable broadcast. Crucially, the protocol does not rely on transactions being
executed sequentially.

As explained in Sect. 3, clients start with a given account balance. Clients
can access a server to submit transactions t = (sender, sn, recipient, amount).
We assume that all transactions are signed using public-key cryptography and
that servers only handle transactions with valid signatures. Clients can go offline
whenever they please, but are required to keep track of the number of transac-
tions they have performed so far, in order to choose correct, i.e. increasing,
sequence numbers.

The BroadcastCoin algorithm determines the agreed order of transactions of
a given client to be executed. A transaction accepted by the underlying Byzantine
reliable broadcast instance is executed (i.e., the funds are moved) as soon as all
previous transactions belonging to the corresponding sender are executed, and
enough funds are available in the sender’s balance.

The BroadcastCoin interface of a server (bc) exports the following events:

– Request: 〈bc.Transfer | s, sn, r, a〉 : Allows a client s to submit a transaction
with sequence number sn sending a units of cryptocurrency to a recipient
client r.

– Request: 〈bc.RequestBalance | c〉 : Retrieves the amount of cryptocurrency
client c currently owns.

– Indication: 〈bc.Balance | c, a〉: Amount a of cryptocurrency currently owned
by client c.

In Byzantine reliable broadcast algorithms, a transaction t typically under-
goes the following steps before being accepted:

1. Dissemination: A server broadcasts t received by a client by sending it to all
servers.

2. Verification: Servers acknowledge t if they have never acknowledged a con-
flicting transaction t′.

3. Approval : Servers that receive more than n+f
2 acknowledgements for a trans-

action, broadcast an APPROVE message. Servers also broadcast an APPROVE
message, if they see more than f + 1 approvals. A server that receives more
than 2f + 1 approvals, accepts the transaction.
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Algorithm 1. BroadcastCoin
1: Uses:
2: Authenticated Perfect Point-to-Point Links, instance al
3: Byzantine Reliable Broadcast, instance rb
4:
5: upon event 〈bc.Init | initialDistribution〉 do
6: currentSN := [ ](−1); � dictionary initialized with -1
7: pending := {}; � empty set
8: balance := initialDistribution; � dictionary
9:

10: upon event 〈bc.RequestBalance | client〉 do
11: trigger 〈bc.Balance | client, balance[client]〉;
12:
13: upon event 〈bc.Transfer | [sender, sn, recipient, amount]〉 do
14: t := [sender, sn, recipient, amount];
15: trigger 〈rb.Broadcast | [sender, sn], t〉; � will be changed in Section 6
16:
17: upon event 〈rb.Deliver | [sender, sn], t〉 do
18: pending[t.sender] = pending[t.sender] ∪ t;
19:
20: upon ∃t ∈ pending such that isV alidToExecute(t) do
21: balance[t.sender] = balance[t.sender] − t.amount;
22: balance[t.recipient] = balance[t.recipient] + t.amount;
23: currentSN [t.sender] = currentSN [t.sender] + 1;
24: pending[t.sender] = pending[t.sender] \ t;
25:
26: procedure isValidToExecute(t) is
27: return currentSN [t.sender] = t.sn − 1 ∧ balance[t.sender] ≥ t.amount;
28:

6 Consensus on Demand

This section presents the core of our contribution that improves upon Broadcast-
Coin by providing higher functionality as well as lower latency in the fast path.
The Byzantine reliable broadcast instance rb is substituted by two steps. A best-
effort broadcast primitive is used to disseminate transactions efficiently. Then
the first transaction t for a given (sender, sn) received by a server is the input
value proposed in the corresponding ConsensusOnDemand instance. Consensu-
sOnDemand uses an underlying consensus instance to provide conflict resolution
when necessary. We stress that the combination of the broadcast and consensus
steps can be implemented in a variety of ways. The version we present in the
following consists of best-effort broadcast paired with consensus as defined in
Definition 3, while in Sect. 7 we mention a different combination. As before, a
transaction traverses three stages:

1. Dissemination: The transaction is broadcast to all servers.
2. Verification: Servers issue an acknowledgement for the first valid transaction

they observe for a given (sender, sn) pair. If at any point, a server observes a
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quorum of more than n+3f
2 acknowledgements for a transaction t, the server

accepts t.
3. Consensus (opt.): If after receiving n − f acknowledgements servers observe

conflicting acknowledgments, they propose the transaction for which they
have observed the most acknowledgements up to this point to the consen-
sus instance identified by the (sender, sn) pair. The transaction decided by
the consensus routine is then accepted immediately, if the transaction hasn’t
already been accepted by the fast path.

Note that the first stage is identical to the first stage in the Byzantine reli-
able broadcast considered in Sect. 5. Although the acceptance condition is also
similar, it is performed without the additional broadcast round of APPROVE mes-
sages. This means that in the common case, transactions are accepted with less
delay. The final stage consists of performing consensus if necessary.

The crux of this construction is that a transaction accepted by the fast path
should never conflict with a transaction accepted in the slow path. This holds
true, since if a transaction t can be accepted by an honest server in the fast
path, even though conflicting transactions exists, then every other honest server
is guaranteed to observe a majority of acknowledgements for t in a quorum of
size n − f . Thus, all honest servers will propose t to the underlying consensus
instance, and by its validity property, every server will eventually also accept t.

Figure 2 illustrates this argument in the case where n = 5f + 1. There are
3f +1 honest servers that acknowledge t and f honest servers that acknowledge
t′. By issuing acknowledgements for t, the adversary could bring some servers to
accept the transaction t in the fast path. Hence, ConsensusOnDemand should
never accept t′. This can be guaranteed, as every quorum containing more than
n−f servers (such as Q1) has a majority of servers acknowledging t. Thus, every
server will propose t to the consensus instance, which will accept t due to its
validity property. Theorem 3 proves this intuition.

Fig. 2. The two shades of gray represent the share of honest servers acknowledging t
(light gray) and t′ (dark gray). The adversary is depicted in white, and can acknowledge
either transaction. While a server might see more than 4f acknowledgments for t, no
server sees a majority of acknowledgements for t′ in a quorum of n − f servers.
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Algorithm 2. ConsensusOnDemand
1: Implements:
2: Consensus, instance fc for the (sender, sn) tuple
3:
4: Uses:
5: Consensus, instance con
6: Authenticated Perfect Point-to-Point Links, instance al
7:
8: upon event 〈fc.Init〉 do
9: accepted, con proposed := False;

10: acks := [n](⊥); � array of size n initialized with ⊥
11:
12: upon event 〈fc.Propose | t〉 do
13: for all q in Π do
14: trigger 〈al.Send | q, [ACK, t]〉
15: end for
16:
17: upon event 〈al.Deliver | p, [ACK, t]〉 do
18: if acks[p] = ⊥ then
19: acks[p] := t;
20: end if
21:
22: upon exists t 
= ⊥ such that #({p ∈ Π | acks[p] = t}) ≥ n+3f

2
and accepted =

False do
23: accepted := True;
24: trigger 〈fc.Accept | t〉;
25:
26: upon exists p, q ∈ Π such that acks[p] 
= acks[q] and #({p ∈ Π | acks[p] 
=

⊥}) ≥ n − f and con proposed = False do
27: majority := argmaxt∈T (#({p ∈ Π | acks[p] = t})
28: con proposed := True;
29: trigger 〈con.Propose | majority〉
30:
31: upon event 〈con.Accept | t〉 such that accepted = False do
32: accepted := True;
33: trigger 〈fc.Accept | t〉;
34:

Theorem 1. ConsensusOnDemand satisfies Validity.

Proof. If every honest server observes the same transaction t, then every honest
server broadcasts an acknowledgment for t. Thus every server is guaranteed to
eventually observe at least n−f acknowledgements for t. Since f < n

5 , it follows
that n+3f

2 < n − f , thus every server eventually accepts t.

Theorem 2. ConsensusOnDemand satisfies Termination.
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Proof. If every honest server observes the same transaction t, by the same argu-
ment as in Theorem 1, every server accepts t in a single message round-trip. If an
honest server observes too many conflicting acknowledgments to accept a trans-
action on the fast path, then at least two honest servers have issued conflicting
transactions. Hence, eventually, every correct server will propose a transaction
to the consensus instance con. By termination of consensus, con will eventu-
ally accept a transaction, and thus every honest server will eventually accept a
transaction.

Theorem 3. ConsensusOnDemand satisfies Agreement.

Proof. First, let us assume that a server accepts a transaction t without using
the consensus instance. This means that the server has seen more than n+3f

2

acknowledgments for t. This implies that more than n+3f
2 − f = n+f

2 honest
servers have acknowledged t.

Before proposing, every server waits for the arrival of n−f acknowledgements,
out of which at least n−2f come from honest servers. Together, both sets contain
more than n+f

2 +n−2f = 3(n−f)
2 acknowledgements coming from honest servers.

However, there are no more than n − f honest servers, meaning that both sets
have more than 3(n−f)

2 − (n − f) = n−f
2 acknowledgements in common. This

implies that acknowledgements for t will be the most received acknowledgement
at every honest server.

Therefore, every honest server will either accept t though its fast path or, if
there is a conflicting transaction, propose t to the consensus instance. Due to
its validity property, no honest server will accept a value different from t, thus
satisfying agreement.

If no server observes more than n+3f
2 acknowledgments for a single transac-

tion, then all honest servers will fall back to the consensus instance, and due to
its agreement property, the agreement of ConsensusOnDemand is also satisfied.

7 Discussion

Throughput. No-consensus payment systems have been shown to scale linearly
with more computing resources [5,12]. In particular the simple design of Mathys
et al. [29] can be directly applied as the implementation of the fast path of our
design, and their result supports our claim that the fast path of our protocol has
in principle unbounded throughput.

Slow Path Abuse. In ConsensusOnDemand, malicious clients can increase
the likelihood that consensus needs to be performed by submitting conflicting
transactions intentionally.

Due to the completely asynchronous communication model, in our proto-
col servers keep listening for potentially conflicting acknowledgements of past
transactions that might trigger a consensus invocation. This requirement can be
avoided by replacing best-effort broadcast in the fast path with (probabilistic)
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reliable broadcast. In this configuration, servers for which the fast path succeeds
do not have to participate in the slow path at all, as thanks to reliable broad-
cast’s totality property, every honest server is guaranteed to eventually be able
to complete the fast path. This modification would make it harder for malicious
clients to intentionally invoke consensus, but on the other hand a more compli-
cated broadcast primitive would be used (two echo rounds instead of one).

Intentional abuse of the slow path can also be addressed through game-
theoretic means. Economic incentives, such as fees, can be set up so that inten-
tional consensus invocation is adequately costly for a malicious client. The sub-
ject of incentive schemes in blockchain systems is broad, as different aspects of
the system’s functionality need to be considered depending on the application.
It is thus left outside the scope of this paper.

Fast Path-Only Synchronization. We presented ConsensusOnDemand in the
form where the consensus outcome is accepted by the servers without further
steps. Consider the following addition to our protocol. Suppose a server s has
not acknowledged a transaction t in the fast path, and later t is the result of
consensus. Even though s might have acknowledged a conflicting transaction t′

in the fast path, let now s broadcast a fast path acknowledgement for t. By
introducing this rule, we ensure that all honest servers that observe the con-
sensus outcome additionally issue a fast path acknowledgement. Afterwards, all
accepted transactions can be determined only following the fast path condition.

In this setup, any records of consensus performed by the system can be
forgotten, as any agent synchronizing with the state of the system conveniently
only needs to be supplied with the fast path acknowledgements.

8 Implementation

We implement the BroadcastCoin protocol described in Algorithm 1 by utilizing
the core of the go-ethereum client for Ethereum. The main modules that are of
relevance are briefly described below.

Transactions: There are two types of transactions in Ethereum. We only sup-
port transactions that lead to message calls, and do not support transactions
that lead to contract creation. Transactions are broadcast using the Ethereum
Wire Protocol [16] that probabilistically disseminates blocks through gossip with
a sample size of

√
n.

Blocks: The fundamental building blocks of Ethereum also lay at the core of
our protocol. However, instead of using a single chain of blocks to totally order
transactions, blocks are used to broadcast batches of acknowledgments. This is
done by including all transactions that should be signed in a block created by
the server. The block signature proves the authenticity of all acknowledgments.
The parentHash field of a block is also kept, in order to refer to the previous
block, which allows for easier synchronization between servers.
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Blockchain: As every server issues its own chain of blocks, we re-purpose the
blockchain abstraction to keep track of all chains in a DAG and allow for syn-
chronization with new clients in future extensions.

Mining: We replace the proof-of-work engine with our own logic that deter-
mines which transactions from the transaction pool are safe to be acknowledged.
Acknowledgements are batched in blocks, signed and broadcast every 5 s.

Transaction Pool: The transaction pool module is managing new transactions
in Ethereum. Most functions and data structures shown in the pseudocode of
Algorithm 1 are closely matching the implementation of this module.

We complete the implementation of our protocol by enhancing the no-
consensus payment system with the ConsensusOnDemand algorithm. We do
so by plugging in a simple consensus algorithm built on the Ethereum Rinkeby
testnet. More specifically, we provide a smart contract that is able to perform
consensus for any (sender, sn) instance. The contract terminates either when
f + 1 equal proposals for t are collected, in which case it immediately accepts t.
Alternatively, once 2f +1 proposals are collected, the contract accepts the most
frequent input. The smart contract is called Multishot and its implementation
can be found in [42], while the appendix of the arXiv version [36] shows the
pseudocode and the correctness proof of this algorithm.

While our algorithm is agnostic to the underlying consensus algorithm used,
this simple smart contract allows us to demonstrate the effectiveness of Consen-
susOnDemand, while keeping our implementation in the Ethereum ecosystem.

These few modules make up most of the changes that were required for us
to leverage a large part of the existing go-ethereum infrastructure. This allows
us to take advantage of the network discovery protocol [16] and the support
for hardware wallets. Moreover, our server can simultaneously function as a
client, which can be controlled through a variety of interfaces. While the regular
JavaScript console can be used, the client can also be addressed via a standard
web3 JSON-RPC API accessible through HTTP, WebSockets and Unix Domain
Sockets. The complete infrastructure is open source [41].
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Abstract. This work proposes a novel proof-of-work blockchain incen-
tive scheme such that, barring exogenous motivations, following the pro-
tocol is guaranteed to be the optimal strategy for miners. Our blockchain
takes the form of a directed acyclic graph, resulting in improvements with
respect to throughput and speed.

More importantly, for our blockchain to function, it is not expected
that the miners conform to some presupposed protocol in the interest of
the system’s operability. Instead, our system works if miners act selfishly,
trying to get the maximum possible rewards, with no consideration for
the overall health of the blockchain.

1 Introduction

A decade ago, Satoshi Nakamoto presented his now famous Bitcoin protocol [11].
Nakamoto assembled some stimulating techniques in an attractive package, such
that the result was more than just the sum of its parts.

The Bitcoin blockchain promises to order and store transactions meticulously,
despite being anarchistic, without a trusted party. Literally anybody can partic-
ipate, as long as “honest nodes collectively control more CPU power than any
cooperating group of attacker nodes.” [11]

In Sect. 6 of his seminal paper, Nakamoto argues that it is rational to be
honest thanks to block rewards and fees. However, it turns out that Nakamoto
was wrong, and rational does not imply honest. If a miner has a fast network
and/or a significant fraction of the hashing power, the miner may be better off
by not being honest, holding blocks back instead of immediately broadcasting
them to the network [2].

If the material costs and payoffs of mining are low, one can argue that the
majority of miners will want to remain honest. After all, if too many miners
stop conforming to the protocol, the system will break down. However, the costs
and payoffs of participation vary over time, and a majority of miners remaining
altruistic is never guaranteed. Strategies outperforming the protocol may or may
not be discovered for different blockchain incentive designs. However, as long as
it is not proven that no such sophisticated strategy exists, the system remains
in jeopardy.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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1.1 Blockchain Game

Typical blockchains, such as Bitcoin’s, take the form of a rooted tree of blocks.
During the execution of the protocol, players continually create new blocks that
are appended to the tree as new leaves. Creating blocks is computationally inten-
sive, so that the network creates a specific number of blocks in a given time
period, such as one block every ten minutes on average in Bitcoin. One path of
blocks, such as the longest path, is distinguished as the main chain and keeps
being extended by addition of new leaves. The network’s participants want to
create blocks that remain incorporated into the main chain, as these blocks are
rewarded. Ideally, the leaves would be added in sequence, each leaf appended
to the previous leaf. However, by chance or malice, it is inevitable that some
leaves are appended to the same block and create a “fork”. Then, it is uncertain
which one will end up extending the main chain. According to typical solutions,
one of the competing leaves is eventually chosen as being in the main chain,
and the creator of the other leaf misses out on block rewards. This approach
introduces some unwanted incentives and a potential to punish other players.
Even worse, some factors such as network connectivity start to play a role and
might influence the behaviour of players.

1.2 Our Contribution

We propose a blockchain design with an incentive scheme guaranteeing that devi-
ating from the protocol strictly reduces the overall share and amount of rewards.
All players following the protocol constitute a strict, strong Nash equilibrium.
Our approach is to ensure that creating a fork will always be detrimental to all
parties involved. Our design allows blocks to reference more than one previous
block; in other words, the blocks form a directed acyclic graph (DAG). We prove
that miners creating a new block have an incentive to always reference all previ-
ously unreferenced blocks. Hence, all blocks are recorded in the blockchain and
no blocks are discarded.

1.3 Intuitive Overview

In Sect. 2 we describe the terms to define our protocol.
In Sect. 3 we explain the protocol and how to interpret the created DAG.

In terms of security, our design is identical to known proof-of-work blockchains,
as similarly to other protocols, we identify the main chain to achieve consensus.
Intuitively, each new block should reference all previous terminal blocks known to
the miner and automatically extend the main chain. In Subsect. 3.1, we explain
how to use the main chain to process and totally order all blocks [7].

In Sect. 4 we construct and discuss our reward scheme.
In Subsect. 4.1 we explain how to label some blocks as stale, such that blocks

mined by honest miners are not labeled as stale, but blocks withheld for a long
time are labeled as stale. Stale blocks do not receive any rewards.
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The core idea of the incentive scheme is to penalize every block by a small
amount for every block that it “competes” with.

In Sect. 5 we discuss related work.

2 Model and Preliminaries

2.1 Rounds

We assume a network with a message diffusion mechanism that delivers messages
to all connected parties (similarly to Bitcoin’s network).

Similarly to foundational works in the area [3] we express the network delay
in terms of rounds. Communication is divided into rounds, such that when a
player broadcasts a message, it will be delivered to all parties in the network in
the next round. Thus each round can be viewed as: 1) receiving messages sent in
the previous round, 2) computing (mining) new blocks, 3) broadcasting newly
found blocks to all other players.

Rounds model the network delay for the purpose of analysis. However, the
protocol itself is not concerned with the division of time into rounds in any way,
and only relies on the network delay being correspondingly bounded.

2.2 Players

To avoid confusion in how we build on previous work, we stick to the usual
terminology of honest players and an adversary. The players that conform to the
protocol are called honest. A coalition of all parties that considers deviating from
the protocol is controlled by an adversary. We gradually introduce new elements,
and eventually show that by deviating from the protocol, the adversary reduces
its share and amount of rewards. Hence, rational becomes synonymous with
honest.

The adversary constitutes a minority as described in Sect. 2.5, otherwise the
adversary can take over the blockchain by simply ignoring all actions by honest
players.

The adversary is also more powerful than honest players. First of all, we
consider the adversary as a single entity. The adversary does not have to send
messages to itself, so the mine/send/receive order within a round does not apply
to the adversary. Moreover, the adversary gets to see all messages sent by honest
players in round r before deciding its strategy of round r. After seeing the honest
messages, the adversary is not allowed to create new blocks again in this round.
Moreover, the adversary controls the order that messages arrive to each player.

2.3 Blocks

Blocks are the messages that the players exchange, and a basic unit of the
blockchain. Formally, a block B is a tuple B = 〈TB ,RB , c, η〉, where:

– TB is the content of the block
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– RB is a set of references (hashes) to previously existing blocks, i.e. RB =
{h(B1), . . . , h(Bm)}

– c is a public key of the player that created the block
– η is the proof-of-work nonce, i.e., a number such that for a hash function h

and difficulty parameter D, h(B) < D holds.

The content of the block TB depends on the application. In general, TB con-
tains some information that the block creator wishes to record in the blockchain
for all participants to see. We consider blockchain properties independently of
the content TB . The content TB is discussed in the arXiv version [16].

The creator of B holds the private key corresponding to c. The creator can
later use the key to withdraw the reward for creating B. The amount of reward
is automatically determined by the protocol, and at the core of our contribution
in Sect. 4.

2.4 DAG

RB includes at least one hash of a previous block, which might be the hash of a
special genesis block 〈∅, ∅,⊥, 0〉. The hash function is pre-image resistant, i.e. it
is infeasible to find a message given its hash. If a block B′ includes a reference
to another block B, B′ must include h(B), and hence has to be created after B.

A directed cycle of blocks is impossible, as the block which was created
earliest in such a cycle cannot include a hash to the other blocks that were
created later. Consequently, the blocks always form a directed acyclic graph
(DAG) with the genesis block as the only root (block without any parent) of
this DAG.

2.5 Mining

Creating a new block is achieved by varying η to find a hash value that is smaller
than the difficulty parameter D, i.e., h(〈TB ,RB , c, η〉) < D. Creating blocks in
this way is called mining. Blocks are called honest if mined by an honest player,
or adversarial if mined by the adversary.

By varying D, the protocol designer can set the probability of mining a block
with a single hashing query arbitrarily. The difficulty D could also change during
the execution of the protocol to adjust the rate at which blocks are created. We
leave the details of changing D to future work, and assume D to be constant.

The honest players control the computational power to mine α blocks in
expectation in one round. The computational power of the adversary is such
that the expected number of blocks the adversary can mine in one round is
equal to β. The adversary does not experience a delay in communication with
itself, so the adversary might mine multiple blocks forming a chain in one round.

Assumptions. The following assumptions are made in order to satisfy the pre-
requisites of Lemma 2, which was proven in [6]. Lemma 2 links our work to tra-
ditional blockchains. Intuitively, the lemma states that a traditional blockchain
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works with respect to the most basic requirement. If one believes a blockchain
to function in this basic way under some other assumptions, those assumptions
can be used instead, and our results would apply in the same way.

Because of the delay in communication, the effective computational power of
the honest players corresponds to the probability α′ ≈ αe−α [6] that in a given
round exactly one honest player mines a block.

1. The honest players have more mining power: α′ ≥ β(1 + ε) for a constant
ε > 0.

2. The difficulty D is set such that the expected number of blocks mined within
one round is less than one: α + β < 1.

2.6 Action Space

The state of the blockchain is only updated through discovery and broadcasting
of new blocks, hence the adversary can only vary its behaviour with respect to
the following factors:

– the blocks being mined i.e. the contents, the included references etc.
– when to announce any of the mined blocks
– the set of agents to whom to send a given block1.

3 The Block DAG

The protocol by which the honest players construct the block DAG is simple:

– Attempt to mine new blocks.
– Reference in RB all unreferenced blocks observed.
– Broadcast newly mined blocks immediately.

Each player stores the DAG formed by all blocks known to the player. For
each block B, one of the referenced blocks Bi is the parent Bi = P (B), and B
is the child of P (B). The parent is automatically determined based on the DAG
structure. The parent-child edges induce the parent tree from the DAG.

The players use Algorithm 1 by [17] to select a chain of blocks going from
the genesis block to a leaf in the parent tree. The selected chain represents the
current state of the blockchain; it is called the main chain. The main chain of
a player changes from round to round. Players adopt main chains that may be
different from each other, depending on the blocks observed.

Let past(B) denote the set of blocks reachable by references from B and
the DAG formed by those blocks. The protocol dictates referencing all blocks
that otherwise would not be included in past(B). Then, by creating a new block
B, the creator communicates only being aware of blocks in past(B). Based on
past(B), we determine P (B) as the end of the main chain (Algorithm 1) of the
DAG of the player when creating a new block B [7].
1 Honest agents disseminate all received blocks, so by sending a block to a subset of
agents, the adversary can delay other agents from seeing a block for only one round.
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Algorithm 1: Main chain selection algorithm.
Input: a block tree T
Output: block B - the end of the selected chain

1 B ← genesis // start at the genesis block.

2 while B has a child in T do
3 B ← heaviest child of B // continue with the child of B

// with most nodes in its subtree.

4 return B

Definition 1 (Determining Parent). For a given block B, the block returned
by Algorithm 1 in the parent tree of past(B) \ {B} is the parent of B.

Lemma 2 by [6], encapsulates the notion that a blockchain (represented by
the parent tree in our description) functions properly with respect to a basic
requirement. Intuitively, it states that from any point in time, the longer one
waits, the more probable it becomes that some honest block mined after that
point in time is contained in a main chain of each honest player. The probability
of the contrary decreases exponentially with time.

Lemma 2 (Fresh Block Lemma). For all r,Δ ∈ N, with probability 1 −
e−Ω(Δ), there exists a block mined by an honest player on or after round r that
is contained in the main chain of each honest player on and after round r + Δ.

Lemma 2 can be proved with respect to other chain selection rules, for
instance picking the child with the longest chain instead of the heaviest child as
in Algorithm 1. Our work can be applied equally well using such chain selection
rules.

If the protocol designer has control over some factor x, probability of the form
e−Ω(x) can be set arbitrarily low with relatively small variation of x. Probability
of the form e−Ω(x) is called negligible2.

3.1 Block Order

We will now explain, how all blocks reachable by references will be ordered,
following the algorithm of [7]. According to the resulting order, the contents of
blocks that fall outside of the main chain can be processed, as if all blocks formed
one chain.

Definition 3. Each player processes blocks in the order Order(B), where B is
the last block of the main chain.

Note the order of executing the FOR loop in line 6 of the Algorithm 2 has
to be the same for each player for them to receive consistent orders of blocks.
Algorithm 2 processes Bi’s in the order of inclusion in RB , but the order could
be alphabetical or induced by the chain selection rule.

Based on lines numbered 5–8 we can state Corollary 4.
2 Probabilities of this form are often disregarded completely in proofs [14].
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Algorithm 2: Order(B): a total order of blocks in past(B).
Input: a block B
Output: a total order of all blocks in past(B)

1 On the first invocation, visited(·) is initialized to false for each block.
2 if visited(B) then return ∅
3 visited(B) ← true // Blocks are visited depth-first.

4 if B = genesis then return (B)
5 O ← Order(P (B)) // Get the order of P (B) recursively.

6 for i = 1, . . . ,m do
7 O ← O.append(Order(Bi)) // Append newly included blocks.

8 O ← O.append(B) // Append B at the end.

9 return O

Corollary 4. Order(B) extends Order(P (B)) by appending all newly reachable
blocks not included yet in Order(P (B)).

Lemma 5. Any announced block becomes referenced by a block contained in the
main chain of any honest player after Δ rounds with probability 1 − e−Ω(Δ).

Proof. Suppose a block B is announced at round r. By Lemma 2, some honest
block A mined in the following Δ rounds is contained in the main chains adopted
by honest players after round r + Δ. Since A is honest, B ∈ past(A). 	


By Lemma 5 all announced blocks are eventually referenced in the main
chains of honest players. Since for the purpose of achieving consensus we rely on
the results of [6] and [7], we state Corollary 6.

Corollary 6. The protocol achieves consensus properties corresponding to [6]
and [7].

4 Reward Schemes

4.1 Stale Blocks

We now introduce a mechanism to distinguish blocks that were announced within
a reasonable number of rounds from blocks that were withheld by the miner for
an extended period of time. Such withheld blocks are called stale. Honest miners
broadcast their blocks immediately, so stale blocks can be attributed to the
adversary. In our incentive scheme, stale blocks will not receive any rewards and
will also be ignored for the purpose of determining other block rewards. Thus we
ensure that it is pointless for the adversary to wait too long before broadcasting
its blocks.

The basic definition of whether a block A is stale is termed with respect to
some other block B. We are only interested in blocks B that form the main
chain. When the main chain is extended, the sets of stale and non-stale blocks
are preserved (and extended). Hence, stale-ness is determined by the eventual
main chain.
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Definition 7. Given a block B, the set of stale blocks SB is computed by Algo-
rithm 3. Then, S̄B = past(B) \ SB. If A ∈ SB we call A stale.

The constant p of Algorithm 3 is chosen by the protocol designer. Intuitively,
given a main chain ending with block B that references another block A, we
judge A by the distance one needs to backtrack along the main chain to find an
ancestor of A. If the distance exceeds p, A is stale.

We call P i(B) the ith ancestor of B and B is a descendant of P i(B)3. By
LCA(B1, B2) (lowest common ancestor) we denote the block that is an ancestor
of B1 and an ancestor of B2, such that none of its children are simultaneously
an ancestor of B1 and an ancestor of B2.

For blocks A and B, D(A,B) is the distance between A and B in the parent
tree, i.e. D(A,P (A)) = 1, D(A,P (P (A))) = 2, etc.

Algorithm 3: Compute SB .
Input: a block B
Output: a set SB

1 if B = genesis then return ∅
2 S ← SP (B) // Copy SP (B) for blocks in past(P (B)).
3 for A ∈ past(B) \ past(P (B)) do
4 X = LCA(A,B)
5 Age = D(X,B) // age = distance from B to LCA.

6 if Age > p then
7 S = S ∪ {A} // A is stale iff age is bigger than p

8 return S

Corollary 8 shows that when the main chain is extended, the stale-ness of
previously seen blocks is preserved.

Corollary 8. If A ∈ past(P (B)) then A ∈ SB ⇐⇒ A ∈ SP (B).

Proof. Line 2 in Algorithm 3 sets SB as the same as SP (B), while the following
FOR loop adds only blocks A /∈ past(P (B)). 	


Theorem 9 establishes the most important property of stale-ness. The prob-
ability that the adversary can successfully make an honest block stale decreases
exponentially with p, and is negligible.

Theorem 9 (Honest Blocks are Not Stale). Let B be an honest block mined
on round r. With probability 1− e−Ω(p), after round r +O(p) each honest player
H adopts a main chain ending with a block BH such that B ∈ S̄BH

.

The proof appears in the arXiv version of the paper [16].

3 Note that ancestors and descendants are defined based on the parent tree and not
based on other non-parent references building up the DAG.
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4.2 Discussion of Flat Rewards

Consider coupling the presented protocol with a reward mechanism R0 that,
intuitively speaking, grants some flat amount b of reward to all non-stale blocks,
and 0 reward to stale blocks. R0 is a special case of the reward scheme properly
defined in Definition 12.

Corollary 10. Under the reward scheme R0, honest players are rewarded pro-
portionally to the number of blocks they mine, except with negligible probability.

Proof. By Theorem 9 honest blocks are not stale, so honest miners receive
rewards linear in the number of blocks they mined. The adversary might
only decrease its rewards by producing stale blocks, otherwise the adversary
is rewarded in the same way. 	


Note that R0 achieves the same fairness guarantee as the Fruitchains protocol
to be discussed in Sect. 5.3—honest blocks are incorporated into the blockchain
as non-stale, while withholding a block for too long makes it lose its reward
potential. Both protocols rely on the honest majority of participants to guarantee
this fairness.

The Fruitchains protocol relies critically on merged-mining [12] (also called 2-
for-1 POW [3]) fruits and blocks. While fruits are mined for the rewards, blocks
are supposed to be mined entirely voluntarily with negligible extra cost. The
reward scheme R0 avoids this complication.

Granting flat amount of reward for each non-stale block leaves a lot of room
for deviation that goes unpunished. In the case of the Fruitchains protocol,
mining blocks does not contribute rewards in any way. Hence, any deviation
with respect to mining blocks (which decide the order of contents) is free of any
cost for the adversary. In the context of cryptocurrency transactions, a rational
adversary should always attempt to double-spend.

In the case of R0, the adversary can refrain from referencing some recent
blocks, and suffer no penalty. However, attempting to manipulate the order of
older blocks would render the adversary’s new block stale, and hence penalize.
Thus, we view even the base case R0 of the presented reward scheme as a strict
improvement over the Fruitchains protocol.

4.3 Penalizing Deviations

Central to our design is the approach to treating forks i.e. blocks that “compete”
by referencing the same parent block and not each other. Typically, blockchain
schemes specify that one of the blocks eventually “loses” and the creator misses
out on some rewards, essentially discouraging competition. However, there are
ways of manipulating this process to one’s advantage, and the uncertainty of
which block will win the competition introduces unneeded incentives. We penal-
ize all parties involved in creating a fork.

The conflict set introduced in Definition 11 contains the blocks that “com-
pete” with a given block. Stale blocks are excluded, as we ignore them for the
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purpose of computing rewards. Like stale-ness, the conflict set is defined with
respect to some other block A. Again, we are only interested in blocks A that
form the main chain, and the conflict set indicated by the eventual main chain.

The conflict set of a non-stale block B contains all non-stale blocks X that
are not reachable by references from B, and B is not reachable by references
from X (Fig. 1).

Definition 11 (Conflict Set). For blocks A and B where B ∈ S̄A,

XA(B) = {X : X ∈ S̄A ∧ X /∈ past(B) ∧ B /∈ past(X)}.

Fig. 1. An example of a conflict set. The gray blocks constitute the conflict set of the
blue block. The dashed arrows are references and the solid arrows are parent references.
(Color figure online)

Intuitively, the scheme we propose awards every block some amount of reward
b decreased by a penalty c multiplied by the size of the conflict set. The ultimate
purpose of the properties we establish is to make sure that rational miners want
to minimize the conflict set of the blocks they create, following the protocol as
a consequence.

Definition 12 (Rewards). A reward scheme Rc,b is such that given the main
chain ending with a block A, each block B ∈ past(A) is granted Rc,b

A (B) amount
of reward:

Rc,b
A (B) =

{
0, if B ∈ SA or D(A,LCA(A,B)) ≤ 2p.

b − c|XA(B)|, otherwise.

We write Rc for Rc,b if b is clear from context, or just R if c is clear from
context.

In our reward scheme, the reward associated with a given block are decreased
linearly with the size of the block’s conflict set. We need to ensure that no block
reward is negative, otherwise the reward scheme would break down. Lemma
13 shows that it is only possible for the conflict set to reach certain size; the
probability that the conflict set of a block is bigger than linear in p is negligible.
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Intuitively, it is because stale blocks cannot be part of a conflict set, and after
enough time has passed from broadcasting some block B, new blocks either
reference B or are stale.

As a consequence, we establish in Corollary 14 that the rewards are non-
negative.

Lemma 13. Let x ≥ p and B be a block. The probability that any honest player
adopts a main chain ending with a block A such that |XA(B)| > xp is e−Ω(x).

The proof appears in the arXiv version of the paper [16].

Corollary 14 (Rewards Are Non-Negative). Let B be a block. The prob-
ability that any honest player adopts a main chain ending with a block A such
that Rc,b

A (B) < 0 is e−Ω( b
cp ).

Proof. Follows directly from Lemma 13. 	

The conflict set of a block is determined based on the main chain. At some

point, the reward needs to be determined and stay fixed. Lemma 15 shows that
if the main chain has grown far enough from block B, the new block A appended
to the chain will not modify the conflict set of B.

Lemma 15. If D(P (A),LCA(P (A), B)) > 2p then XA(B) = XP (A)(B)

The proof appears in the arXiv version of the paper [16].
The rewards in Definition 12 are only assigned as non-zero to blocks B such

that D(A,LCA(A,B)) > 2p, where A is the block at the end of the main chain.
By Corollary 16, these non-zero rewards are not modified by the blocks extending
the main chain and remain fixed.

Corollary 16 (Rewards Are Final).

∀B ∈ past(A) : RP (A)(B) �= 0 =⇒ RA(B) = RP (A)(B).

Proof. Rc,b
A (B) is non-zero only if D(A,LCA(A,B)) > 2p. The corollary follows

from Lemmas 8 and 15 and induction. 	

The properties we have established so far culminate in Theorem 17.

Theorem 17. Deviating from the protocol reduces the adversary’s rewards and
its proportion of rewards Rc,b, except with negligible probability.

The proof appears in the arXiv version of the paper [16].

4.4 Nash Equilibria

Theorem 17 follows from Lemma 2 and hence holds for the same action space
as considered in [6], i.e. attempting to mine any chosen blocks and withholding
or releasing blocks at will. Hence, for this action space, minimizing the conflict
set of mined blocks is in the interest of the miner. The adversary is considered
as a coordinated minority coalition of players, hence the constants p, c, b can
be set such that all players following the protocol constitute a strict, strong
Nash equilibrium. In other words, all agents and all minority coalitions of agents
strictly prefer to follow the protocol to any alternative strategy.
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Corollary 18. All players following the protocol constitute a strict, strong Nash
equilibrium.

However, there exist other Nash equilibria, such as the example given in
the arXiv version of the paper [16]. The presented equilibrium is based on a
player threatening to induce penalties for other players by suffering penalties
herself. Intuitively speaking, we suggest all Nash equilibria where some player
does not follow the protocol are of this nature, but we do not formalize this
concept. However, if the adversary wishes to spend resources solely to influence
the behaviour of rational miners, there are always ways to achieve this outside
the scope of any reward scheme, such as bribery (see Sect. 5.4).

4.5 Hurting Other Players

When designing a reward scheme, it might be seen as fair if each honest player is
rewarded irrespectively of the strategies of other players. Such fairness principle
is enjoyed by the Fruitchains protocol and our reward scheme R0. However,
those schemes inevitably trivialize some aspect of the game and leave potential
for deviation that goes unpunished. A relaxation of this principle is stated in
Corollary 19 based on Theorem 17 and its proof.

Corollary 19. Under the reward scheme Rc,b, by deviating from the protocol
the adversary can only reduce the rewards of other players by forfeiting at least
the same amount.

We observe that the property stated in Corollary 19 prevents the existence
of selfish mining strategies such as those concerning Bitcoin and other tradi-
tional blockchains (see Sect. 5.1). Such strategies pose a threat since they enable
forfeiting some rewards to penalize other players to an even bigger extent.

5 Related Work

The model of round-based communication in the setting of blockchain was intro-
duced in [3]. This paper formalizes and studies the security of Bitcoin.

5.1 Selfish Mining

Selfish mining is a branch of research studying a type of strategies increasing
the proportion of rewards obtained by players in a Bitcoin-like system. Selfish
mining exemplifies concerns stemming from the lack of proven incentive compat-
ibility. Selfish mining was first described formally in [2], although the idea had
been discussed earlier [10]. Selfish mining strategies have been improved [15] and
generalized [13]. Selfish mining is not applicable to our incentive scheme.
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5.2 DAG

The way we order all blocks for the purpose of processing them was introduced
in [7]. The authors consider an incentive scheme to accompany this modification.
Their design relies on altruism, as referring extra blocks has no benefit, other
than to creators of referred blocks. Hence, rational miners would never refer
them, possibly degenerating the DAG to a blockchain similar to Bitcoin’s. Some
other shortcomings are discussed by the authors.

The authors of [8] contribute an experimental implementation of the directed
acyclic graph structure and ordering of [7], in particular its advantages with
respect to the throughput.

5.3 Fruitchains

Fruitchains [14] is the work probably the closest related to ours. Fruitchains is a
protocol that gives a guarantee that miners are rewarded somewhat proportion-
ally to their mining power. The objective might seem similar to ours, but there
are fundamental differences. To achieve fairness, similarly to existing solutions,
the Fruitchains protocol requires the majority of miners to cooperate without
an incentive. In other words, in order to contribute to the common good of the
system, players must put in altruistic work. In contrast, we strive for a protocol
such that any miner simply trying to maximize their share or amount of rewards
will inadvertently conform to the protocol.

The Fruitchains protocol rewards mining of “fruits”, which are a kind of
blocks that do not contribute to the security of the system. The Fruitchains
protocol relies on merged-mining4 also called 2-for-1 PoW in [3]. In addition to
fruits, the miners can mine “normal” blocks (containing the fruits) with mini-
mal extra effort and for no reward. The functioning and security of the system
depends only on mining normal blocks according to the protocol.

Miners are asked to reference the fruits of other miners, benefiting others
but not themselves, similarly to [7]. The probability of not doing so having any
effect is negligible, since majority of the miners are still assumed to reference
said fruits.

The resulting system-wide cooperation guarantees fairness, inevitably remov-
ing many game-theoretic aspects from the resulting game. In particular, misbe-
haviour does not result in any punishment. It is common to analyze blockchain
designs with respect to the expected cost of a double-spend attempt. In the case
of Fruitchains, while the probability of double-spends being successful is similar
to previous designs, the cost of attempting to double-spend is nullified. As a
result, any miner might attempt to double-spend constantly at no cost, which
we view as a serious jeopardy to the system.

In the absence of punishments, we also argue that not conforming to the pro-
tocol is often simpler. Since transaction fees are shared between miners, includ-
ing transactions might be seen as pointless altogether. Mining only fruits with
4 One of the first mentions of merged-mining as used today is [12], although the general
idea was mentioned as early as [4].
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dummy, zero-fee transactions, while not including the fruits of others (or not
mining for blocks altogether), would relieve the miner of a vast majority of the
network communication.

Another game-theoretic issue of the Fruitchains protocol is that while it
prescribes sharing of the transaction fees, miners might ask transaction issuers
to disguise the fee as an additional transaction output, locking it to a specific
miner, potentially benefiting both parties and disrupting the protocol.

As argued in Sect. 4, the reward scheme R0 is an improvement over
Fruitchains in the same vein, achieving the same result while avoiding some
of the complications.

In contrast to Fruitchains protocol, the approach of reward schemes Rc,b is
to employ purely economic forces, clearly incentivizing desired behaviour while
making sure that deviations are punished.

5.4 Bribery

Recently, there have been works highlighting the problems of bribery, e.g. [1,5,9].
A bribing attacker might temporarily convince some otherwise honest players
(either using threats or incentives) to join the adversary. Consequently, the
adversary might gain more than half of the computational power, taking over
the system temporarily.

Such bribery might be completely external to the reward scheme itself, for
example the adversary might program a smart contract (perhaps in another
blockchain) that provably offers rewards to miners that show they deviate from
the protocol [5]. Hence, no permissionless blockchain can be safe against this
type of attack.

6 Conclusions

Mining is a risky business, as block rewards must pay for hardware investments,
energy and other operation costs. At the time of this writing, the Bitcoin mining
turnover alone is worth over $10 billion per year, which is without a doubt a
serious market. Miners in this market are professionals, who will make sure that
their investments pay off. Yet, many believe that a majority of miners will follow
the protocol altruistically, in the best interests of everybody, the “greater good”.

We argue that assuming altruistic miners is not strong enough to be a foun-
dation for a reliable protocol. In this work, we introduced a blockchain incentive
scheme such that following the protocol is guaranteed to be the optimal strategy.

We showed that our design is tolerant to miners acting rationally, trying to
get the maximum possible rewards, with no consideration for the overall health
of the blockchain.

To the best of our knowledge, our design is the first to provably allow for
rational mining. Nakamoto [11] needed “honest nodes collectively control more
CPU power than any cooperating group of attacker nodes”. With our design it
is possible to turn the word honest into the word rational.
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Abstract. The question whether one way functions (i.e., functions that
are easy to compute but hard to invert) exist is arguably one of the cen-
tral problems in complexity theory, both from theoretical and practical
aspects. While proving that such functions exist could be hard, there
were quite a few attempts to provide functions which are one way “in
practice”, namely, they are easy to compute, but there are no known
polynomial time algorithms that compute their (generalized) inverse (or
that computing their inverse is as hard as notoriously difficult tasks, like
factoring very large integers).

In this paper we study a different approach. We introduce a simple
heuristic, called self masking, which converts a given polynomial time
computable function f into a self masked version [f ], which satisfies the
following: for a random input x, [f ]−1 ([f ] (x)) = f−1(f(x)) w.h.p., but
a part of f(x), which is essential for computing f−1(f(x)) is masked in
[f ] (x). Intuitively, this masking makes it hard to convert an efficient
algorithm which computes f−1 to an efficient algorithm which computes
[f ]−1, since the masked parts are available in f(x) but not in [f ] (x).

We apply this technique on variants of the subset sum problem which
were studied in the context of one way functions, and obtain functions
which, to the best of our knowledge, cannot be inverted in polynomial
time by published techniques.

1 Introduction

The question whether one way functions (i.e., functions that are easy to compute
but hard to invert) exist is arguably one of the central problems in complexity
theory, both from theoretical and practical aspects.

e.g., it is known that the existence of one way functions implies, and is implied
by, the existence of pseudo random number generators (see e.g. [5] for a construc-
tive proof of this equivalence).

While proving that one way functions exist could be hard (since it would
settle affirmatively the conjecture that P �= NP ), there were quite a few attempts
to provide functions which are one way “in practice” – namely, they are easy to
compute, but there are no known polynomial time algorithms which compute
their (generalized) inverses.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 331–334, 2022.
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In this paper we suggest a heuristic, called self masking, to cope with pub-
lished attacks on previous attempts to construct one way functions. Specifically,
the self masking versions of polynomial time computable functions “hide” in the
outputs of these functions parts which are essential for computing their inverse.
This brief announcement contains the necessary definitions, related previous
results and a short survey of the main results of the paper. For a more detailed
exposition the reader is referred to [4].

1.1 Preliminaries

To make the presentation self contained and as short as possible, we present only
definitions which are explicitly used in our analysis. For a more comprehensive
background on one way functions and related applications see, e.g., [5,6].

The notation x∈UD indicates that x is a member of the (finite) set D, and
that for probabilistic analysis we assume a uniform distribution on D.

Following [5], we define one way functions using the notion of polynomial
time function ensembles.

Definition 1. A polynomial time function ensemble f = (fk)∞k=1 is a polynomial
time computable function that, for a strictly increasing sequence (nk)∞k=1 and a
sequence (mk)∞k=1, fk maps {0, 1}nk to {0, 1}mk . Both nk and mk are bounded
by a polynomial in k and are computable in time polynomial in k. The domain
of fk is denoted by Dk = {0, 1}nk .1

Definition 2. Let f = (fk)∞k=1 be a polynomial time function ensemble. Then
f is one way function if for any polynomial time algorithm AL, and for all but
finitely many k’s, the probability that AL(fk(x)) ∈ f−1

k (fk(x)) for x∈UDk is
negligible (i.e., asymptotically smaller than |x|−c for any c > 0) .

1.2 Previous Work

Quite a few attempts to construct one way functions - typically in the context
of public key cryptosystems - are based on the hardness of variants of the subset
sum problem. However, algorithmic attacks which compute the inverses of the
suggested functions in expected polynomial time were later found for all these
attempts.

The public key cryptosystem of Merkle and Hellman [9] uses an easy to
solve variant of the subset sum problem, in which the input sequence is super
increasing, which is transformed to a sequence in which the super increasing
structure is concealed. This cryptosystem was first broken by Shamir in [11],
and subsequently more sophisticated variants of it were broken too [2].

Super increasing sequences are a special case of low density instances of the
subset sum problem. These low density instances were also solved efficiently [1,
3,7]. A comprehensive survey of these methods and of the corresponding attacks
can be found in [10].
1 For definiteness, inputs whose length � is different from mk for all k are mapped

to 1�.
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1.3 Contribution

The basic variant of the self masking technique replaces a (polynomial time
computable) function f by a self masking version, denoted [f ], as follows: Let
y = f(x) for arbitrary x in the domain of f , and let |x| denote the length of x.
Then a self masked version [y] = [f ] (x) is obtained by replacing two “critical”
substrings, z1 and z2, of y, of length |x|Ω(1), by z1 ⊕ z2

2. Intuitively, z1 and z2

are critical in the sense that they are essential for computing f−1(y).
An immediate concern raised by this method is that it might significantly

increase the number of preimages associated with the masked output value
[f ] (x), e.g. that [f ]−1 ([f ] (x)) may contain exponentially many preimages of
[f ] (x) even if f−1(f(x)) contains only few elements. We cope with this diffi-
culty by showing that, by carefully selecting the parameters of the transfor-
mation, this is not the case, and in fact that we can guarantee that, w.h.p.,
[f ]−1 ([f ] (x)) = {x}, i.e. [f ] is univalent.

We demonstrate this technique on functions associated with variants of the
subset sum problem, which were widely used in the context of one way functions
(see e.g. [6–9]).

In the detailed presentation of our results, given in [4], we first introduce
the self masked subset sum problem, and prove that this problem is NP hard.
Then we define function ensembles associated with the self masked subset sum
problem, and present conditions under which the resulted functions are univalent
w.h.p.. Then we demonstrate that applying the self masking technique on super
increasing instances of the subset sum problem produces function which cannot
be inverted by the known attacks on cryptosystems based on super increasing
sequences. We extend this result further by showing that applying the self mask-
ing technique on low density instances of the subset sum problem provides func-
tions which cannot be inverted by the known attacks on low density instances
of the (unmasked) subset sum problem, given, e.g., in [1,7,10]. We conclude by
discussing applications of the self masking technique on high density instances
of the subset sum problem.
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Abstract. The network formation process in the Bitcoin protocol is
designed to hide the global network structure: while most of the nodes
of the network can be easily discovered, the existence or not of an edge
between two nodes is only known by the two endpoints.

In [Becchetti et al., SODA2020] the authors propose a random graph
generative model resembling the network formation process in the Bitcoin
protocolandtheyprovethat itgeneratesanexpandergraph,withhighprob-
ability. In this paper we extend that model to obtain two dynamic random
graph models that continue to evolve forever. We run extensive simulations
to measure “expansion” of the snapshots of the dynamic graphs (i.e., how
“well-connected” they are) and “flooding time” (i.e., how long it takes a
message starting at some node to reach all, or almost all, the nodes).

Keywords: Dynamic graphs · Markov chains · P2P networks

1 Introduction

Bitcoin is a cryptocurrency proposed in 2008 by an unknown person or group
of people under the pseudonym of Satoshi Nakamoto [8]. Nodes in the Bitcoin
system are connected toward an unstructured peer-to-peer network [2] running
on top of the Internet. The first version of the Bitcoin software was released
by Satoshi Nakamoto in January 2009. The most widely used implementation
coming from that initial release, named Bitcoin-core [9], is currently under active
development. In this paper we are concerned with dynamic graph models inspired
by the network formation process of the Bitcoin P2P network. After an initial
bootstrap in which they rely on DNS seeds for node discovery, nodes running
the Bitcoin-core implementation turn to a fully-decentralized policy to regener-
ate their neighbors when their degree drops below the configured threshold [5].
Each node has a “target out-degree value” and a “maximum in-degree value”
(respectively 8 and 125, in the default configuration) and it locally stores a
large list of (ip addresses of) “active” nodes. Every time the number of current
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 335–340, 2022.
https://doi.org/10.1007/978-3-031-21017-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21017-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-21017-4_23


336 A. Cruciani and F. Pasquale

neighbors of a node is below the configured target value it tries to create new
connections with nodes sampled from its list. The list stored by a node is ini-
tially started with nodes received in response to queries to DNS seeds, then it
is periodically advertised to its neighbors and updated with the lists advertised
by the neighbors. While most of the nodes of the network can be easily discov-
ered [11], the existence or not of an edge between two nodes is only known by
the two endpoints. Indeed, discovering the network structure has been recently
an active research topic [6].

Our Contribution. RAES (Request a link, then Accept if Enough Space) [3] is a
directed random graph model defined by three parameters n ∈ N, d ∈ {1, . . . , n−
1}, c > 1, in which each one of n nodes has out-degree exactly d and in-degree
at most cd. The random graph is generated according to the following discrete
random process: Starting from the empty graph, at every round each node u
with out-degree doutu < d picks d−doutu nodes uniformly at random (u.a.r.) (with
repetitions) and, for each such node v, u “requests” a directed link (u, v); If a
node v receives a number of link-requests that would make its in-degree larger
than cd, then v rejects all requests received in the current round, otherwise v
accepts all requests of the round. The process terminates when all nodes have
out-degree d (and in-degree at most cd). In this paper we consider an undirected
version of RAES and we extend the random graph model in two ways generating
dynamic random graphs that perpetually evolve. We run extensive simulations
of both models to grasp the “stationary” structural properties of the dynamic
random graphs and we measure the flooding time, i.e., how long it takes a message
starting at a random node to reach all (or almost all) the nodes of the graph. For
the E-RAES model, the simulations show that the flooding time is short (i.e.,
compatible with a logarithmic growth, as a function of the number of nodes),
for every value of the edge-disappearance rate p. For the V-RAES model, the
simulations show that, as long as the fraction of nodes that leave the network
at any round is not too large, e.g., if it stays below 70%, a message starting at
a random node typically quickly reaches nearly all of the nodes.

Related Work. The topology of the Bitcoin network is hidden by the network
formation protocol. However several approaches in the last decade proved effec-
tive in revealing some portion of the network [6,7]. A random network model for
unstructured P2P networks has been introduced and analyzed by Panduragan
et al. [10]. Their model was inspired by the Gnutella P2P network and is based
on the existence of a host server that maintains a cache of constant size with
addresses of nodes accepting connections that can be reached at any time by
other nodes. Bagchi et al. [1] studied the number of adversarial and random
faults that an expander graph can tolerate while preserving approximately the
same expansion factor. Becchetti et al. [3] introduced and analyzed the RAES
network formation model, in which after a logarithmic number of rounds the
network evolution terminates in a state in which every node has a specified out-
degree and in-degree upper bounded by a constant. More recently [4] they also
introduced and studied a similar model in which nodes can also join and leave
the network, but the in-degree of the nodes is not upper bounded by a constant.
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2 Edge-Dynamic RAES (E-RAES)

The E-RAES model is defined by four parameters, n, d, c, and p, where n ∈ N is
the number of nodes, d ∈ N is the minimum target degree, c · d with c � 1 is the
maximum acceptable degree, and p ∈ [0, 1] is the edge-failure probability. Starting
from an arbitrary initial graph G0 = (V,E0), the set of n nodes remains fixed
while the set of edges evolves, at each round, in three steps.

- Step 1: For each node u ∈ V , let N1
u be the set of neighbors of u at the beginning of

Step 1. If |N1
u| < d then u samples d − |N1

u| nodes from the set V \ N1
u, independently

and u.a.r. with replacement, and connects to them.

- Step 2: For each node u ∈ V , let N2
u be the set of neighbors of u at the beginning

of Step 2. If |N2
u| > c · d then u samples |N2

u| − (c · d) neighbors from the set N2
u,

independently and u.a.r. with replacement, and disconnects from them.

- Step 3: Each edge {u, v} currently in the graph disappears with probability p,
independently of the other edges.

The E-RAES model defines a Markov chain with the set of all graphs with n
nodes as state space. We want to study how fast the information spreads from a
node to all the other nodes when the network evolution is stationary. In principle,
it would be possible to give theoretical bounds on the number of rounds needed
to reach stationarity; however, the analysis of such a Markov chain appears far
from easy. For the purpose of this paper, we use an heuristic criterion based on
the stabilization of the spectral gap of the snapshots of the dynamic graph. In
Fig. 1a there is a representative sample of the evolution of the spectral gap during
the first rounds of the E-RAES model. It shows that the spectral gap stabilizes
after a few rounds. At that point we start the simulation of the flooding process
and we measure the number of rounds until the flooding is complete. Figure 1b
shows some of the results of the simulations. Each point in the plot is the average
flooding time over 100 runs. The picture quite clearly highlights that the flooding
time, as a function of the number of nodes, is compatible with a logarithmic
growth, for every value of the edge-failure probability p. The value of p seems
to determine the multiplicative constant of the logarithm. Notice that in the

(a)
(b)

Fig. 1. (a) Evolution of the spectral gap for an ERAES with 215 nodes, d = 4, and c
= 1.5 starting from the empty graph. (b) Semi-log-plot of the average flooding time
over an E-RAES with d = 4, c = 1.5, 29 � n � 215, and p = 0, 0.1, 0.5, 0.7, 0.9.
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simulations the message-passing step of the flooding process is scheduled after
the edge-failure step of the E-RAES model, i.e., when for values of p larger than
0.1 the snapshot of the graph is typically disconnected. Thus, the results show
that the time required to get all nodes informed is quite short even when every
snapshot of the dynamic graph is completely sparse and disconnected.

3 Vertex-Dynamic RAES (V-RAES)

The V-RAES model is defined by four parameters, λ, d, c, and q, where λ > 0
is the arrival rate of new nodes, d and c · d are the minimum target degree and
the maximum acceptable degree as in the E-RAES model, and q ∈ [0, 1] is the
node-leaving probability. Starting from an arbitrary initial graph G0 = (V0, E0),
at each round t the graph evolves in four steps.

- Step 0: Nλ(t) new nodes join the graph, where Nλ(t) is a Poisson random variable
with rate λ.
- Step 1: For each node u, let N1

u be the set of neighbors of u at the beginning of
Step 1. If |N1

u| < d then u samples d − |N1
u| nodes from the set (Vt \ Nλ(t)) \ N1

u,
independently and u.a.r. with replacement, and connects to them.
- Step 2: For each node u, let N2

u be the set of neighbors of u at the beginning of Step 2.
If |N2

u| > c · d then u samples |N2
u| − (c · d) neighbors from the set N2

u, independently
and u.a.r. with replacement, and disconnects from them.
- Step 3: Each node u disappears with probability q, independently of the other nodes,
together with its incident edges.

The size of the vertex set Vt in the V-RAES model converges to λ/q. For the
purpose of our simulations we thus consider the network evolution for the V-
RAES model to have reached a stationary regime when the number of nodes in
the network is close to λ/q. Since nodes join and leave the network at any round,
a message sent from an initiator node might not reach neither all the nodes in
the graph nor a large fraction of them. It turns out that, when about 90% of the
nodes disappear at every round, in about 60% of the simulations all the informed
nodes left at the second round of the flooding process. On the other hand, when
no more than half of the nodes disappear at every round, the fraction of times
in which the message of the initiator node fails to spread in the network is very
small. In order to measure the speed of information spreading in the V-RAES
model, we thus keep track of the fraction of informed nodes αt := |It|/|Vt| at
each round. In Fig. 2a we plot the evolution of the fraction αt of informed nodes,
for all the simulations in which the message of the initiator node does spread in
the network. The plots show that αt quickly stabilizes over precise values that
depend on the node-leaving probability q: for q � 0.7 the number of informed
nodes reaches a stationary phase in which almost all the nodes in the network
are informed; even for larger values of the node-leaving probability, e.g., when
q = 0.9, in all simulations in which the informed nodes do not simultaneously
disappear within the first few rounds, the fraction of informed nodes at any
round stabilizes around 80%. As a measure of flooding time in the V-RAES
model, we thus can consider the number of rounds required to reach the stable
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(a)
(b)

Fig. 2. (a) Evolution of the fraction of informed nodes αt for a V-RAES with d = 4, c =
1.5, λ/q = 215, and q = 0.1, 0.3, 0.5, 0.7, 0.9. (b) Semi-log-plot of the average flooding
time for a V-RAES with d = 4, c = 1.5, 29 � λ/q � 215, and q = 0.1, 0.3, 0.5, 0.7.

value αt, as it is determined by the node-leaving probability q. For example, in
Fig. 2b we plot the number of rounds required by the flooding process to reach
a fraction αt of informed nodes of at least 90%, for all the values of the node-
failure probability q such that the fraction of informed nodes stabilizes above
90%. The picture clearly highlights that such number of rounds is compatible
with a logarithmic growth, as a function of λ/q.
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Abstract. This paper focuses on analyzing and differentiating between
lattice linear problems and lattice linear algorithms. It introduces a new
class of algorithms called (fully) lattice linear algorithms, that induce a
partial order among all states and form multiple lattices. An initial state
locks the system into one of these lattices. We present a lattice linear
self-stabilizing algorithm for minimal dominating set.
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1 Introduction

A multiprocessing system involves several processes running concurrently. These
systems can provide a substantially larger computing power over a single pro-
cessor. However, increased parallelism requires increased coordination, thereby
increasing the execution time.

The notion of detecting predicates to represent problems which induce partial
order among the global states (lattice linear problems) was introduced in [2]. If
the states form a partial order, then the nodes can be allowed to read old data and
execute asynchronously. In [4], we introduced eventually lattice linear algorithms,
for problems where states do not naturally form a partial order (non-lattice linear
problems), which induce a partial order among the feasible states. In this paper,
we differentiate between the partial orders in lattice linear problems and those
induced by lattice linear algorithms in non-lattice linear problems.

The paper is organized as follows. In Sect. 2, we elaborate the preliminaries
and some background on lattice linearity. In Sect. 3, we present a fully lattice
linear algorithm for minimal dominating set. In Sect. 4, we study the convergence
time of algorithms traversing a lattice of states. We discuss related work in Sect. 5
and conclude in Sect. 6.

2 Preliminaries and Background

In this paper, we are mainly interested in graph algorithms where the input is
a graph G, V (G) is the set of its nodes and E(G) is the set of its edges. For a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 341–345, 2022.
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node i ∈ V (G), Adji is the set of nodes connected to i by an edge, and Adjxi are
the set of nodes within x hops from i, excluding i.

Each node in V (G) stores a set of variables, which represent its local state.
A global state is obtained by assigning each variable of each node a value from
its respective domain. We use S to denote the set of all possible global states. A
global state s ∈ S is represented as a vector, where s[i] itself is a vector of the
variables of node i.

Each node in V (G) is associated with actions. Each action at node i checks
the values of nodes in Adjxi ∪ {i} (where the value of x is problem dependent)
and updates its own variables. A move is an event in which some node i updates
its variables based on the variables of nodes in Adjxi ∪ {i}.

S is a lattice linear state space if its states form a lattice. The nature of
the partial order, present among the states in S which makes it lattice linear,
is elaborated as follows. Local states are totally ordered and global states are
partially ordered. We use ’<’ to represent both these orders. For a pair of global
states s and s′, s < s′ iff (∀i : (s[i] < s′[i] ∨ s[i] = s′[i])) ∧ (∃i : (s[i] < s′[i])).
We use the symbol ‘>’ which is the opposite of ‘<’, i.e. s > s′ iff s′ < s. In the
lattice linear problems in [2], s transitions to s′ where s < s′.

Certain problems can be represented by a predicate P such that for any node
i, if i is violating P, then it must change its state, or else the system will not
satisfy P. If i is violating P in some state s, then it is forbidden in s. Formally,

Definition 1. [2] Forbidden(i, s,P) ≡ ¬P(s) ∧ (∀s′ > s : s′[i] = s[i] =⇒ ¬P(s′)).

The predicate P is lattice linear with respect to the lattice induced in S iff
s not being optimal implies that there is some forbidden node in s. Formally,

Definition 2 [2] Lattice Linear Predicate P. ∀s ∈ S : Forbidden(s,P)
=⇒ ∃i : Forbidden(i, s,P).

A problem P is a lattice linear problem iff it can be represented by a lattice
linear predicate. Otherwise, P is a non-lattice linear problem.

Many lattice linear problems studied in [2], such as stable marriage problem,
single source shortest path problem, are lattice linear problems. These problems
have only one optimal state. In lattice linear problems [2], the global states form
a lattice. The system must initialize in the infimum of the lattice. If P(s) is false
in a state s, then there exists at least one node i that is forbidden in s (Definition
2). If a forbidden i does not change its state, then P(s) remains false (Definition
1). A move causes the system to traverse up in the lattice. The goal is to reach
the lowest state in the lattice where P(s) is true, which is optimal.

3 Lattice Linear Algorithms: Minimal Dominating Set

In non-lattice linear problems such as minimal dominating set (MDS), the states
do not form a partial order naturally, as for a given non-optimal state, it cannot
be determined that which nodes are forbidden.
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We introduce the class of fully lattice linear algorithms, which partition the
state space into subsets S1, S2, · · · , Sw(w ≥ 1), where each subset forms a lattice.
The initial state locks the system into one of these lattices and algorithm executes
until an optimal state is reached. The optimal state is always the supremum of
that lattice. In this section, we describe a fully lattice linear algorithm for MDS.

Definition 3 Minimal dominating set. In the MDS problem, the task is to
choose a minimal set of nodes D in a given graph G such that for every node in
V (G), either it is present in D, or at least one of its neighbours is in D. Each
node i stores a variable st.i with domain {IN,OUT}; i ∈ D iff st.i = IN .

We describe the algorithm as Algorithm 1.

Algorithm 1 Algorithm for MDS.

Removable-DS(i) ≡ st.i = IN ∧ (∀j ∈ Adji ∪ {i} : ((j �= i ∧ st.j = IN)∨
(∃k ∈ Adjj , k �= i : st.k = IN))).

Addable-DS(i) ≡ st.i = OUT ∧ (∀j ∈ Adji, st.j = OUT ).
Unsatisfied-DS(i) ≡ Removable-DS(i)∨ Addable-DS(i).
Forbidden-DS(i) ≡ Unsatisfied-DS(i) ∧ (∀j ∈ Adj2i :

¬Unsatisfied-DS(j) ∨ id.i > id.j).
Rules for node i:
Forbidden-DS(i) −→ st.i = ¬st.i.

To demonstrate that Algorithm 1 is lattice linear, we define state value and
rank, assumed as imaginary variables associated with the nodes, as follows:

State-Value-DS(i, s) =

{
1 if Unsatisfied-DS(i) in state s

0 otherwise

Rank-DS(s) =
∑

i∈V (G)

State-Value-DS(i, s).

The lattice is formed with respect to the state value. Specifically, the state
value of a node can change from 1 to 0 but not vice versa. Therefore Rank-DS
always decreases until it becomes zero at the supremum.

Lemma 1. Any node in an input graph does not revisit its older state while
executing under Algorithm 1.

Proof. In Algorithm 1, if a node i is forbidden, then no node in Adj2i moves.
If i is forbidden and addable at time t, then any other node in Adji is out of

the DS. When i moves in, then any other node in Adji is no longer addable, so
they do not move in after t. As a result i does not have to move out after moving
in. Similarly, a forbidden and removable i does not move in after moving out.

Let that i is dominated and out, and j ∈ Adji is removable forbidden. j will
move out only if i is being covered by another node. Also, while j turns out of
the DS, no other node in Adj2j , and consequently in Adji, changes its state. As
a result i does not have to turn itself in because of the action of j.

From the above cases, we have that i does not change its state to st.i after
changing its state from st.i to st′.i throughout the execution of Algorithm 1. 
�
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Theorem 1. Algorithm 1 is self-stabilizing and (fully) lattice linear.

Proof. From Lemma 1, if G is in state s and Rank-DS(s) is non-zero, then at
least one node is forbidden in s, so Rank-DS decreases monotonously until it
becomes zero. For any node i, we have that its state value decreases whenever i
is forbidden and never increases. Thus Algorithm 1 is self-stabilizing.

We have a partial order among the states, where if the rank of a state s
is nonzero, then it transitions to a state s′ such that s < s′ where for some i
forbidden in s, s[i] < s′[i]. Here, s < s′ iff Rank-DS(s) > Rank-DS(i). This
shows that Algorithm 1 is lattice linear. 
�
Example 1. Let G4 be a graph where V (G4) = {v1, v2, v3, v4} and E(G4) = {{v1,
v2}, {v3, v4}}. For G4 the lattices induced under Algorithm 1 are shown in Fig. 1;
each vector represents a global state (st.v1, st.v2, st.v3, st.v4). 
�
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(IN,OUT,
IN,IN)

(IN,IN,
IN,OUT)
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(a)

(OUT,IN,
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OUT,OUT)

(OUT,OUT,
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(OUT,OUT,
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(b)

(OUT,IN,
IN,OUT)

(OUT,IN,
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(OUT,OUT,
IN,OUT)

(OUT,OUT,
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(c)

(IN,OUT,
OUT,IN)

(IN,IN,
OUT,IN)

(IN,OUT,
OUT,OUT)

(IN,IN,
OUT,OUT)

(d)

Fig. 1. The lattices induced by Algorithm 1 on the graph G4 described in Example 1.

Remark : The lattices in Fig. 1 present the skeleton of the partial order among
the states. Here, in a non-optimal state, if only one forbidden node moves, then
the resulting state s′ is a parent of s. If more than one nodes move, then the
resulting state s′ is not a parent of s, but is reachable from s through the lattice.

4 Convergence Time in Traversing a Lattice of States

Theorem 2. Given an LLTS on n processes, with the domain of size not more
than m for each process, the acting algorithm will converge in n×(m−1) moves.

Proof. Assume for contradiction that the underlying algorithm converges in x ≥
n × (m − 1) + 1 moves. This implies, by pigeonhole principle, that at least one
of the nodes i is revising their states st.i after changing to st′.i. If st.i to st′.i
is a step ahead transition for i, then st′.i to st.i is a step back transition for i
and vice versa. For a system containing a lattice linear state space, we obtain a
contradiction since step back actions are absent in such systems. 
�
Corollary 1. Consider the case where the nodes have multiple variables. Fur-
thermore, in each node, atmost r of these variables, var1.i, ..., varr.i (with
domain sizes m′

1, ...m
′
r respectively) contribute independently to the construction

of the lattice. Then the LLTS will converge in n ×
( r∑

j=1

(m′
j − 1)

)
moves. 
�
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Corollary 2. (From Theorem 2 and Theorem 1) Algorithm 1 converges in n
moves.

5 Related Work

Lattice Theory: Lattice linear problems are studied in [2]. In [4], we have
extended the theory presented in [2] to develop eventually lattice linear self-
stabilizing algorithms for some non-lattice linear problems. Such algorithms
impose a lattice among the feasible states of the state space.

In this paper, we present a (fully) lattice linear algorithm for maximal domi-
nating set, which imposes a partial order among all states and converges faster.

Dominating Set: Self-stabilizing algorithms for the minimal dominating set
problem are proposed in [1,3,6]. The best convergence time among these works
is 4n moves. The algorithm presented in [4], takes 2n moves to converge.

In this paper, the fully lattice linear algorithm that we present converges in
n moves and is fully tolerant to consistency violations. This is an improvement
as compared to the results presented in the literature.

6 Conclusion

In this paper, we study the differences between the structure of partial order
induced in lattice linear problems and non-lattice linear problems. We present a
fully lattice linear self-stabilizing algorithm for the minimal dominating set. This
is the first lattice linear algorithm for a non-lattice linear problem. This algorithm
converges in n moves. We provide upper bounds to the convergence time for an
algorithm traversing an arbitrary lattice linear state space. A technical report
for this paper, containing its extended version, is available at [5].

It is still an open question whether fully lattice linear algorithms for minimal
vertex cover and maximal independent set problems can be developed.
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Abstract. In a reconfiguration problem, given a problem and two fea-
sible solutions of the problem, the task is to find a sequence of transfor-
mations to reach from one solution to the another such that every inter-
mediate state is also a feasible solution to the problem. In this paper,
we study the distributed spanning tree reconfiguration problem and we
define a new reconfiguration step, called k-simultaneous add and delete,
in which every node is allowed to add at most k edges and delete at most
k edges such that multiple nodes do not add or delete the same edge.

We first show that, if the two input spanning trees are rooted then we
can transform one into another in one round using a single 1-simultaneous
add and delete step in the CONGEST model. Therefore, we focus our
attention towards unrooted spanning trees and show that transforming
an unrooted spanning tree into another using a single 1-simultaneous
add and delete step requires Ω(n) rounds in the LOCAL model. We addi-
tionally show that transforming an unrooted spanning tree into another
using a single 2-simultaneous add and delete step can be done in O(log n)
rounds in the CONGEST model.

Keywords: Spanning trees · Reconfiguration · Distributed algorithms

1 Introduction

A reconfiguration problem asks the following computational question: Given two
different configurations of a system, is it possible to transform one to the other
in a step-by-step fashion such that the intermediate solutions are also feasible?
Spanning trees are important in classic distributed models such as LOCAL and

S. Gupta—Supported by Engineering and Physical Sciences Research Council
(EPSRC) grant no: EP/V007793/1.
M. Kumar—Supported by the Rita Altura trust chair in computer science, and by the
Lynne and William Frankel Center for Computer Science, BGU, Israel.
S. Pai—Supported in part by the Academy of Finland, Grant 334238.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Devismes et al. (Eds.): SSS 2022, LNCS 13751, pp. 346–351, 2022.
https://doi.org/10.1007/978-3-031-21017-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21017-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-21017-4_25


Distributed Reconfiguration of Spanning Trees 347

CONGEST1 as they can be used for efficient routing and aggregation. It is desir-
able to change the current spanning tree to a better spanning tree depending on
the routing demands. Each node can just delete the old incident edges and add
the new edges, but this is resource intensive as some nodes may have to simul-
taneously change a lot of incident edges. Efficiently computing a reconfiguration
schedule for spanning trees in a distributed manner allows the system to change
from one spanning tree to another in a way that each node is responsible for
initiating only a limited amount of changes in one step. And since each interme-
diate structure is a spanning tree, these intermediate structures can be used to
perform the required operations till the next steps are performed.

In the distributed spanning tree reconfiguration problem, we have two span-
ning trees T1, T2 of a graph G such that each node v ∈ V knows its incident edges
in T1 and T2. The nodes need to efficiently compute a reconfiguration schedule
that converts T1 to T2 using k-simultaneous add and delete steps, where in each
step, each node is allowed to add at most k incident edges to the spanning
tree and delete at most k incident edges from the spanning tree. In any given
step, multiple nodes cannot add or delete the same edge. A valid reconfiguration
schedule is a sequence of steps where we start from T1 and reach T2 such that
the intermediate structure obtained after each step is a spanning tree.

If T1 and T2 are rooted spanning trees, where each node knows its parent
pointer, then each node v can tell its neighbours that it wants to add its parent
in T2 and delete its parent in T1. If v sees that its parent wants to do the opposite
operation on the same edge, it does nothing. Hence each edge is added or deleted
by at most one node. Therefore, in this setting, the nodes can compute in 1-
round, a reconfiguration schedule using a single 1-simultaneous add and delete
step. But in the case of unrooted trees, this strategy fails as it crucially relies on
the parent pointer information to coordinate between the nodes. Therefore, the
natural question arises: what can we do in the case of unrooted spanning trees?
In this work, we present two results that answer this question:

1. A lower bound that shows computing a single step 1-simultaneous add and
delete reconfiguration schedule requires Ω(n) rounds in the LOCAL model.

2. An algorithm that computes a single step 2-simultaneous add and delete
reconfiguration schedule in O(log n) rounds in the CONGEST model.

1.1 Related Work

The problem of spanning tree reconfiguration is very well studied in the cen-
tralized setting. A transformation step in the centralized setting is defined as
follows: two spanning trees T and T ′ of a graph G are reachable in one step iff
there exists two edges e ∈ T and e′ ∈ T ′ such that T ′ = (T \ e) ∪ e′. In the

1 In the LOCAL model [9], a communication network is abstracted as an n-node graph.
In synchronous rounds each node can send an arbitrary size message to each of
its neighbors. The CONGEST model [11] is similar to the LOCAL model with the
additional constraint that each message has size O(log n) bits.
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centralized setting, any spanning tree can be reconfigured into any other span-
ning tree in polynomial time [7] and finding a shortest reconfiguration sequence
between two directed spanning trees is polynomial-time solvable [8]. Therefore,
more constrained versions of the problem have been studied. For instance, the
reconfiguration problem is PSPACE-complete when each spanning tree in the
sequence has at most (and at least) k leaves (for k ≥ 3) [3]. On the other hand,
reconfiguration is polynomial-time solvable if the intermediate spanning trees
are constrained to have large maximum degree and small diameter while it is
PSPACE-complete if we have small maximum degree constraints and NP-hard
with large diameter constraints [4]. The only previous work on distributed span-
ning tree reconfiguration that we are aware of is [12]. The authors of [12] show
how to solve reconfiguration of rooted spanning tree in an asynchronous message
passing system using local exchange operation between pairs of incident edges,
in O(n) rounds and requires O(log n) bits memory at each process. Distributed
reconfiguration has been studied for Coloring [1,2], Vertex Cover [5], and MIS [6].

2 Distributed Spanning Tree Reconfiguration

2.1 1-Simultaneous Add and Delete Requires Ω(n) Rounds

We begin by stating a folk result which will be the basis for the proof of the
main lower bound in the subsequent theorem. We state our lower bounds in the
LOCAL model, but since any CONGEST algorithm is also a LOCAL algorithm,
the lower bound also holds in the CONGEST model.

Lemma 1. Rooting a tree T at an arbitrary node is a global problem, i.e. it
requires Ω(n) rounds in the LOCAL model.

Theorem 1. Solving the distributed spanning tree reconfiguration problem in
one step of 1-simultaneous add and delete requires Ω(n) rounds in the LOCAL
model.

Proof. For sake of contradiction let A be a LOCAL algorithm that computes a
one step reconfiguration schedule in o(n) rounds. We will show that A can be
used to root an unrooted tree in o(n) rounds in the LOCAL model. Let T = (V,E)
be the tree that we wish to root. For each node v ∈ V create a copy v′ which
will be simulated by v, and add edges {v, v′} as well as {u′, v′} for all neighbours
u of v. Let V ′ be the set of all the nodes v′, E′ be the set of edges of the form
{u′, v′}, and M = {{v, v′} | v ∈ V }. Now we want to run algorithm A where the
source spanning tree is T1 = (V ∪ V ′, E ∪ M), the destination spanning tree is
T2 = (V ∪ V ′, E′ ∪ M), and the communication network is T1 ∪ T2.

Any R-round LOCAL algorithm on T1 ∪ T2 can be simulated on network
T in R rounds by having v simulate the behaviour of v′. Since A produces a
reconfiguration schedule that uses one step of 1-simultaneous add and delete,
each node will delete at most one edge and add at most one edge in order to
go from T1 to T2. Node v will output as its parent the edge in E that is to be
deleted by v, if such an edge exists.



Distributed Reconfiguration of Spanning Trees 349

These parent pointers correspond to a valid rooting because nodes in V must
delete n − 1 edges of T1 in one step for the reconfiguration schedule of A to be
correct. This is only possible if n− 1 nodes of T delete exactly one incident edge
of T and the remaining node r does not delete any incident edge. The neighbours
of r in T must delete the incident edge that is pointing to r as nobody else can
delete this edge. Then we can repeat this argument inductively on all nodes that
are i-hops away from r and we show that the parent pointers form a valid rooting
of T with root node r.

Thus, a rooting of T was output in the LOCAL model in o(n) rounds, which
is impossible by Lemma 1. Thus A cannot exist, which proves the theorem. ��

2.2 2-Simultaneous Add and Delete in O(log N) Rounds

We first describe an edge orientation procedure that is essentially the rake and
compress algorithm of [10]. The output of Algorithm 1 has the property that
each node has at most two outgoing edges. It is well known that this orientation
can be computed very efficiently as opposed to a rooting of the tree.

Algorithm 1: Orient(T )

1 T ′ ← empty graph
2 while T �= ∅ do
3 H ← nodes in T with degree at most 2
4 Add to T ′ the nodes of H with their incident edges in T oriented outward,

breaking ties arbitrarily
5 Remove H from T

6 end
7 return oriented tree T ′

Lemma 2. The while loop of Algorithm 1 runs for O(log n) iterations. Moreover
each iteration can be implemented in O(1) rounds in the CONGEST model.

Proof. If α fraction of the nodes have degree at most 2 then we can write average
degree as at least 3(1−α) because (1−α) fraction of the nodes must have degree
at least 3. Average degree of a tree (or a forest) is 2, which implies 2 ≥ 3(1−α).
So an α ≥ 1/3 fraction of the nodes are removed in each iteration. Therefore the
number of iterations is at most O(log n).

To execute an iteration in the CONGEST model, each node just needs to know
its degree in the current tree T . So in the each iteration, nodes in H that remove
themselves can send a message to their neighbours to decrease their degree. ��

Now we show how this orientation can be used to compute a reconfiguration
schedule. We run Algorithm 1 on the source spanning tree T1 and the target
spanning tree T2 separately and obtain two orientations such that each node
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Fig. 1. This figure shows how node v1 computes reconfiguration schedule using the
orientation procedure. The bold edges belong to T1 and the dashed edges belong to T2

in the graph has at most 2 outgoing edges in T1 and at most 2 outgoing edges
in T2 (see Fig. 1). Now, each node v decides it will add its outgoing edges of
T2 and it will delete its outgoing edges of T1. If v decides to add and delete
the same incident edge e, it updates its decision to not change e. Then v sends
the decisions along the outgoing edges. If for a single edge, one end point has
decided to add and the other has decided to delete, then both nodes update their
decision on this edge to do nothing. It is easy to see that these decisions form
one step of 2-simultaneous add and delete where all edges of T1 \ T2 are deleted
and all edges of T2 \ T1 are added. This proves the following theorem.

Theorem 2. The distributed spanning tree reconfiguration problem can be solved
in one step of 2-simultaneous add and delete. Computing this reconfiguration
schedule takes O(log n) rounds in the CONGEST model.
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Abstract. In this paper, we consider the Uniform Circle Forma-
tion problem, which is a problem to locate all robots uniformly (i.e., with
equal central angle) on the circumference of a common circle on infinite
grid plane. We first introduce an algorithm to achieve Uniform Circle
Formation using 5 colors with diameter O(N), and present another
algorithm to achieve Uniform Circle Formation satisfying Complete Vis-
ibility (i.e., no three robots are collinear) using 4 colors with diameter
O(N2) (optimal) under assumptions such that robots agree on the only
one axis, are opaque, operate asynchronously, and do not know the num-
ber of robots.

Keywords: Uniform circle formation · Complete visibility ·
Autonomous mobile robot · Luminous model

1 Introduction

Since basic computational theoretical models of autonomous mobile robot sys-
tem consisting of multiple mobile computational entities (called robots) with
low functionality was first introduced by Suzuki et al. [1], various models are
considered based on the capabilities of the robots and the assumptions of the
entire system. Many studies are investigated to clarify the relationship between
the model and the solvability of the given problem.

The circle formation problem is one of pattern formation problems in which
the robots form a circle in a certain region. The main difficulty of the problem is
how to provide to all robots information for forming a common circle, e.g., the
position of the center and the radius of the circle. Therefore, to form a circle,
some sophisticated manner is required to provide these necessary information to
the robots. Many studies of the circle formation problem are investigated on the
Euclidean plane [2], however, the problem on an infinite grid is first introduced
by Adhikary et al. [3]. In the case of grid plane, each robot can be located only
on the grid point and moves only along the line between two adjacent points.
Therefore, the shape of a circle on the grid plane is not perfectly formed as that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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on the Euclidean plane. If a grid point does not exist on the circumference of the
circle, a robot cannot be located on the circumference of the circle; hence, the
robot is placed on the nearest grid point. In [3], the authors consider Luminous
Model using 7 colors of a light equipped on the robot and assume that all robots
agree on the direction and orientation of one axis. This algorithm guarantees
a circle formation but not its uniformity. That is, the position of the robots
forming the circle is allowed to be biased (i.e., non-uniform circle formation).

In this paper, we consider the uniform circle formation algorithm with fewer
numbers of light. Moreover, we also consider the Uniform Circle Formation that
satisfies Complete Visibility by opaque (i.e., non-transparent) robots; no three
robots are collinear. We assume that all robots agree on the direction and orien-
tation of one axis (Y -axis), are opaque, do not know the number of robots, and
operate asynchronously. Under these assumptions, we introduce an algorithm
to achieve Uniform Circle Formation using only 5 colors with O(N) diameter,
where N is the number of robots. To the best of our knowledge, this is the first
algorithm for Uniform Circle Formation on grid plane. Furthermore, we present
another algorithm, which is an extension of the first one, to achieve Uniform
Circle Formation with Complete Visibility. The diameter O(N2) is optimal to
achieve Complete Visibility.

2 Model and Problem Definition

Let R = {r1, r2, ..., rN} be the set of N autonomous mobile robots. Robots are
indistinguishable by their appearance, execute the same algorithm, and have no
memory (i.e., oblivious). Each robot can be located only at the point on the
grid, and two or more robots cannot exist at the same point on the grid. All
robots agree on the orientation and direction of Y -axis; however, they do not
agree on the chirality. No robot knows the total number of robots N .

We consider Luminous Model [2]: Each robot maintains a constant-sized
visible memory called light that can be observed by other robots. Each light
can be set by one among the constant numbers of colors. Moreover, every robot
has an unlimited visibility range; however, robots are opaque: a robot cannot
observe some other robots if there is another robot between them.

Each robot performs one of the three operations: Look, Compute, and Move.
In Look operation, a robot obtains the positions (based on its local coordinate
system centered on itself) and the colors of all other (visible) robots’ lights as well
as the color of its own light. Note that some robots cannot be observed because of
their opaqueness. In Compute operation, a robot computes its color of light and
its destination according to the given algorithm with the other robot’s positions
and colors, as well as its own color obtained in Look operation. Furthermore,
as a result of Compute, each robot immediately changes its color of light when
Compute operation is terminated (if necessary). In Move operation, a robot
moves to the destination computed in Compute operation. A robot can move to
only one of the four points adjacent to the current point in one Move operation.
The movement of each robot is atomic (i.e., instant move); thus, each robot is
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never observed by any other robots while it is moving. In this paper, we assume
an asynchronous (ASYNC) scheduler; There is no assumption on the timing of
each robot’s operation. This means that all robots perform their operations in
an unpredictable time instant and duration.

Here we define the Uniform Circle Formation Problem as follows: Given
a set of robots that is initially located on distinct points on infinite grid. Algo-
rithm A solves the uniform circle formation problem if A satisfies all the follow-
ing conditions: (1) A eventually terminates; A eventually reaches a configuration
such that no robot can move, and (2) When A terminates, all robots are located
on the circumference of the same circle with equal center angle; if a point does
not exist on the circumference of the circle, a robot should be on the nearest
point on the grid plane. Furthermore, we say that an algorithm achieves Com-
plete Visibility, if every (opaque) robot can observe all other robots when the
algorithm terminates.

3 Uniform Circle Formation

In this section, we propse an algorithm for solving the Uniform Circle Forma-
tion problem under ASYNC. The proposed algorithm consists of the following
three phases. Each robot is equipped with a light that emits one of five colors of
{A,B,EvenCorner,OddCorner,Done}; colors EvenCorner and OddCorner are used
to share information (the center and diameter of the circle), color Done for ter-
mination detection, and colors A and B are required to change the robots’ phase.
The light is initially set by A.

Fig. 1. Notations of horizontal lines Fig. 2. Example of Gr,G
′
r,G

′
ra⊥

Preliminaries: We introduce some notations as follows. Let L1 be the line
parallel to X-axis (i.e., horizontal line) containing the robot with the smallest
Y -coordinate (Fig. 1). We call the horizontal line above L1 L2, as the same
manner, we also call every horizontal line L3, L4, · · · , respectively (Fig. 1). Let
L′
1 be the horizontal line where there are two robots whose lights are EvenCorner,

OddCorner, or Corner (in Fig. 1, two black robots presents the robots with such
color). We call each horizontal line above line L′

1 L
′
2+, L′

3+, L′
4+, · · · , respectively
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in order from bottom. As the same manner, we call each horizontal line below
line L′

1 L′
2−, L′

3−, L′
4−, · · · , respectively. Moreover, we call two horizontal lines

radius apart from L′
1 Lrad+ and Lrad− respectively. Let Gr be the exact location

of robot r to achieve Uniform Circle Formation, and we denote the nearest point
on grid to Gr as G′

r (Fig. 2). When robot r is located on line Li, we denote the
foot of a perpendicular from G′

r to Li as G′
ra⊥ (in Fig. 2, i is 2).

Line Formation Phase: The first phase locates all robots on the same horizon-
tal line. Since all robots agree on the direction and orientation of Y -axis, they
can be lined up on L1. All robots changes their light from A into B (Fig. 3(a)).

Diameter Determination Phase: In this phase, the two robots at both end
of robots aligned on L1 become the reference robots which provide the diameter
and the center of a circle to inform them to all other robots. After the Line
Formation Phase, the two reference robots move in the negative direction of the
Y -axis to grasp the total number of robots N (Fig. 3(b)). If N is an even number,
the light is changed to EvenCorner, otherwise, OddCorner. After that, they move
back to where they were before changing their lights (Fig. 3(c)), and the other
robots move up (L′

2+) or down (L′
2−) so that the number of robots in L′

2+ and
(L′

2−) are the same (as possible) (Fig. 3(d) and (e)). Note that the difference in
the number of robots on L′

2+ and on L′
2− is at most 2 (Fig. 3(f) and (h)).

Fig. 3. Two examples of partitioning into two groups (depends on a scheduler)

Circle Formation Phase: In this phase each robot moves to the point that
achieves Uniform Circle Formation based on the two reference robots. Now the
robots at both ends on L′

2+ (resp. L′
2−) move to L′

rad+ (resp. L′
rad−) (Fig. 4(a)).

After all robots other than the reference robots reach L′
rad+ and L′

rad−, the
robot at both ends of L′

rad+ moves to G′
r (Fig. 4(b)). After all robots on L′

rad+

have been moved, the robots on L′
rad− begin to move to G′

r by referring to the
robots on the upper side of L′

1. Each robot changes its color into Done when it
reaches G′

r. Finally, two reference robots move to G′
r (if necessary). Note that

all robots need to know the exact number of robots N to move to G′
r, and this

can be calculated by referring to the locations and lights of two reference robots
(Fig. 4(c)).
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Fig. 4. Example of the movements of robots in the third phase

4 Uniform Circle Formation with Complete Visibility

Uniform Circle Formation achieved by the algorithm in Sect. 3 may include three
collinear robots, which means that some robots cannot observe each other. Now
we extend the algorithm to achieve Uniform Circle Formation with Complete
Visibility using 4 colors ({A,B,Corner, 2ndCorner}) by forming a larger circle.
In this algorithm, no color for termination detection is necessary because every
robot eventually observes all other robots (Complete Visibility).

The first phase is the same as the previous algorithm. In the second phase,
two reference robots change their lights into Corner. The robots with light B
move upward or downward as the same manner of the previous one. When two
reference robots observe each other, they move away until the distance between
them becomes (N − 2)2. After that, the two reference robots change their light
into 2ndCorner. If each robot with light B at the end of L′

2+ or L′
2− observes

two reference robots with lights 2ndCorner, it moves to G′
ra⊥ and changes its

light to A when it reaches G′
ra⊥. When each robot with light A on L′

2+ (resp.
L′
2−) observes that all robots on L′

2− (resp. L′
2+) have lights A, it moves to G′

r

and changes its light into B again when it reaches G′
r. Finally, if two reference

robots move to G′
r (if necessary). As a result, Uniform Circle Formation with

Complete Visibility is achieved. This diameter ((N − 2)2) is a necessary and
sufficient condition to achieve Complete Visibility.
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1 Introduction

Our study aims at the design of an even more reliable solution. We do so through
the lenses of self-stabilization—a very strong notion of fault-tolerance. In addi-
tion to node and communication failures, self-stabilizing algorithms can recover
after the occurrence of arbitrary transient faults; these faults represent any viola-
tion of the assumptions according to which the system was designed to operate
(as long as the algorithm code stays intact). This work proposes the first (to
the best of our knowledge) self-stabilizing algorithm for total-order (uniform
reliable) broadcast for asynchronous message-passing systems prone to process
failures and transient faults. As we show, the proposed solution facilitates the
elegant construction of self-stabilizing state-machine replication using bounded
memory.

We study the TO-URB problem (Definition 1). It uses the operations TO-
broadcast (for sending application messages) and TO-deliver (for receiving
them).

Definition 1. TO-URB requires the satisfaction of the following.

– TO-validity. Suppose a process TO-delivers m. Message m was previously
TO-broadcast by its sender, which is denoted by m.sender.

– TO-integrity. A process TO-delivers m at most once.

– TO-delivery. Suppose a process TO-delivers m and later TO-delivers m′.
No process TO-delivers m′ before m.

– TO-completion-1. Suppose a non-faulty process TO-broadcasts m. All non-
faulty processes TO-delivers m.

– TO-completion-2. Suppose a process TO-delivers m. All non-faulty pro-
cesses TO-deliver m.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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It is known that TO-broadcast’s implementation requires the computability
power of consensus, but FIFO-URB does not. Thus, our reference architecture
(Fig. 1) includes consensus and a failure detector for eventually identifying faulty
nodes. It also uses the communication abstraction of FIFO-URB, which is sim-
pler than TO-URB since it does not require the computability power of consen-
sus. One can specify FIFO-URB by substituting the TO-delivery requirement
of Definition 1 with the following FIFO-delivery requirement. Suppose a process
FIFO-delivers m and later FIFO-delivers m′, such that the sender is the same,
i.e., m.sender = m′.sender. Then, no process FIFO-delivers m′ before m.

reliable broadcast 
with FIFO delivery

failure 
detector

mul valued 
consensus 

reliable broadcast with total-order delivery

emulation of state-machine replication

message-passing system

Fig. 1. The context of the studied
problems (appear in bold font)

Fault Model. We study an asynchronous
message-passing system that has no guar-
antees on the communication delay and
the algorithm cannot explicitly access the
local clock. We assume that this asyn-
chronous system is prone to (detectable)
fail-stop failures after which the failed
node stops taking steps forever. We
also consider communication failures, e.g.,
packet loss, duplication, and reordering,
as long as fair communication holds, i.e.,
a message that is sent infinitely often is
received infinitely often. We say that the
faults above are foreseen since they are
known at the design time. In addition, we consider transient faults, i.e., any
temporary violation of assumptions according to which the system was designed
to operate, e.g., state corruption due to soft errors. These transient faults arbi-
trarily change the system state in unpredictable manners (while keeping the
program code intact). Thus, we assume that these violations bring the system
to an arbitrary state from which a self-stabilizing system should recover. Once
the system has recovered, it must never violate the task specifications.

Related Work. This work uses several external building blocks. I.e., FIFO-
URB [2], binary [3] and multivalued consensus [4] solutions for self-stabilizing
systems that their scheduler is seldom fair [1]. Specifically, after the occurrence
of the last transient fault, fairness eventually holds, but only for the period that
is sufficient for enabling recovery. Note that, in the absence of transient faults,
correctness is demonstrated without any fairness assumptions. Since transient
faults are rare, these fairness assumption is seldom needed.

Our Contribution. We present a fundamental module for dependable dis-
tributed systems: a self-stabilizing fault-tolerant TO-URB for asynchronous mes-
sage passing systems. Our solution assumes the availability of self-stabilizing
algorithms for FIFO-URB and multivalued consensus. In the absence of tran-
sient faults, our asynchronous solution for self-stabilizing TO-URB completes
within a constant number of communication rounds. After the occurrence of the
last transient fault, the system recovers eventually (while assuming execution
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fairness among the non-faulty processes). The amount of memory used by the
proposed algorithm as well as its communication costs are bounded. To the best
of our knowledge, we propose the first self-stabilizing TO-URB solution.

The detailed version of this work appears in a complementary technical
report [5].

2 Self-stabilizing Bounded-Memory TO-URB

We present a self-stabilizing algorithm that uses bounded memory for implement-
ing TO-URB. It uses FIFO-URB broadcasts for disseminating the messages that
were sent via TO-broadcast. It defers the delivery of these FIFO broadcasts (in
the buffers of FIFO-URBs) until sufficient information allows all nodes to decide
on their total-order.

To that end, the URB objects report the message numbers, per sender, of
messages that are ready-to-be-delivered. By collecting these reports from the
nodes, the solution can decide, via a multivalued consensus, on the set of mes-
sages that all trusted nodes are ready to deliver. Specifically, it agrees on the
vector of message numbers, one number per sender, that all nodes are ready
to deliver their respective messages (and all earlier messages). Thus, the result
of the agreement defines a common set of messages that all nodes are ready
to deliver. Since the message numbers in the set are known to all nodes, one
can use a straightforward deterministic total-order for delivering these buffered
messages in the same order.

Overview of the Proposed Solution (Fig. 2). Before going through the
overview, we highlight its key parts.

1. Upon the invocation of toBroadcast(m), disseminate the application message
m by using FIFO-URB for broadcasting toURB(m), which is the name of the
URB messages that need to be totally ordered before delivery.

2. Do forever
(a) Query all trusted nodes about the system’s consensus round numbers and

the vector, allReady i, of ready-to-be-delivered messages.
(b) Recycle unused consensus objects; use round numbers info. from step (a).
(c) If the set of consensus round numbers (collected in line 2a) include just

one number, continue to the next consensus round by proposing allReady i.
Once the consensus has been completed, pi delivers the buffered messages
that their individual message numbers, per sender, are not greater than
the respective entries in the agreed vector.

Going Through the Overview of Fig. 2. The array CS [] stores three multi-
valued consensus objects, where the proposed values are (seq, ready). The field
seq is a round number of a multivalued consensus invocation that moderates
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variables: CS [0..2] = [⊥, ⊥, ⊥] : consensus objects, where the proposed values are
(seq, ready), seq is a consensus round number, and ready is a vector of URB message
numbers (one number per node).
obsS = 0 : a local copy of the highest, possibly obsolete, consensus round number.
macros: needFlush(): indicates the need for flushing the buffer, i.e., all URBs have
been completed, or the number of messages exceeds a predefined constant, δ.

1. operation toBroadcast(m) do FIFO-URB the message m along with the message
name toURB.

2. do forever

(a) Collect info. about round numbers and buffered messages. Query all trusted
nodes, pj , about obsS j , getSeqj(), which is the highest consensus round num-
ber known to pj , and maxReadyj(), which is a vector of pj ’s ready-to-be-delivered
toURB() messages. Use the arriving values for calculating:

i. maxSeqi: the greatest collected consensus round number.

ii. allSeq i: the set of all collected consensus round numbers.

iii. allReadyi: a vector of message numbers, per sender, of the ready-to-deliver
broadcasts that all nodes can perform.

(b) Recycle unused consensus objects. Nullify CS []’s unused entries, i.e., assign ⊥
to any CS [k], for which k ∈ {0, 1, 2} is not one of the following:

i. obsS i mod 3, but only when obsS < getSeqi(), i.e., CS []’s highest consensus
round number, getSeqi(), is higher than the locally highest obsolete round
number, obsS i. The reason is that pi still uses this entry.

ii. getSeqi() mod 3 since there might be another node that is using it.

iii. maxSeqi+1 mod 3 but only when |allSeq i| = 1, i.e., there is a single consensus
round number. This is because one should not nullify the next entry since
another node might have already started to use it.

(c) Agree on the delivery order. If one collected consensus round number exists and
it is time to flush the toURB() buffer, i.e., needFlush() = True, call CS i[maxSeqi +
1 mod 3].propose(maxSeqi +1, allReadyi). If other nodes have higher rounds than
pi or the current consensus object has completed, then:

i. If the current object has been completed, deliver all messages that their
individual consensus round numbers are not greater than the agreed ones.

ii. Finish the current consensus round, i.e., obsS ← obsS + 1.

Fig. 2. An overview of the proposed solution; code for pi ∈ P

the ordered delivery of URB messages. The field ready is a vector of URB mes-
sage numbers (one number per node)—each number, say ready[j], moderates
the URB messages sent by pj . The integer obsS holds the consensus round num-
ber that is locally considered to be the highest one, but possibly obsolete. Once
pi delivers the messages associated with CS [obsS mod 3].result() (and the ear-
lier ones), pi considers obsS i as obsolete. Node pi recycles CS [obsS mod 3] once
it knows that all other trusted nodes also consider obsS as an obsolete round
number. The proposed solution uses CS [] cyclically by considering obsS ’s value
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modulus three. As explained in [5], we use global reset for dealing with the event
of obsS ’s integer overflow.

Since the proposed solution defers message delivery, there is a need to guar-
antee that such delivery occurs eventually. To that end, the macro needFlush()
identifies two cases in which the buffered messages should be flushed (i.e.,
needFlush() returns True): (i) the number of deferred messages exceeds a prede-
fined constant, and (ii) there are no active URBs.

As mentioned, the invocation of toBroadcast(m) (line 1) leads to FIFO-URB
of toURB(m). The do forever loop (line 2) makes sure that these toURB() mes-
sages can be delivered according to an order that all nodes agree on. To that end,
a query is sent (line 2a) to all nodes, pj , about their current consensus round
number, obsS j , and the highest round numbers stored in CS [], getSeqj(), as well
as the current status of their ready-to-deliver FIFO-URBs, i.e., maxReadyj().
Node pi uses the arriving and local information (line 2a) for calculating (i) the
message numbers of all-nodes ready-to-deliver broadcasts, i.e., allReady i, (ii) the
maximum consensus round number, maxSeq i, and (iii) the set of all consensus
round numbers that pi is aware of, i.e., allSeq i.

This information allows pi to recycle stale entries in CS i[]. Specifically, line 2b
nullifies entries that are not used (or about to be used). Also, if there is just one
collected consensus round number, i.e., |allSeq i| = 1, and it is time to flush the
buffer of the toURB() messages, as indicated by needFlushi(), then pi continues
to the next agreement round by proposing the pair (maxSeq i + 1, allReady i). As
mentioned, such agreement on the value of the vector allReady allows all nodes
to deliver, in the same order, all the messages that their message numbers, per
sender pk, is not greater than allReady [k].

If pi notices that other nodes use a higher consensus round number than
its own (which implies that they have already continued to the next consensus
round) or its current consensus object has been completed, pi can deliver the
buffered messages (line 2c). Specifically, it tests whether the current consensus
object has been completed. If so, it then delivers all messages that their individ-
ual message numbers are not greater than the one agreed by the completed object
(line 2(c)i). In any case, it finishes the current consensus round by incrementing
the agreement round number, obsS (line 2(c)ii).

3 Discussion

We proposed, to the best of our knowledge, the first self-stabilizing algorithm
for total-order uniform reliable broadcast. This is built atop self-stabilizing algo-
rithms for FIFO-URB and multivalued consensus. Our complementary technical
report [5] includes an application for the proposed solution, i.e., a self-stabilizing
state-machine replication. We encourage the use of our solution and techniques
when designing distributed systems that must recover from transient faults.

Acknowledgments. The work of E. M. Schiller was partly supported by the CyReV
project (2019-03071) funded by VINNOVA, the Swedish Governmental Agency for
Innovation Systems.



Brief Announcement: Self-stabilizing Total-Order Broadcast 363

References

1. Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared
atomic memory in seldomly fair message passing networks. Algorithmica. Also
appears in CoRR abs/1806.03498 (2022)

2. Lundström, Oskar, Raynal, Michel, M. Schiller, Elad: Self-stabilizing uniform reli-
able broadcast. In: Georgiou, Chryssis, Majumdar, Rupak (eds.) NETYS 2020.
LNCS, vol. 12129, pp. 296–313. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-67087-0 19

3. Lundström, O., Raynal, M., Schiller, E.M.: Self-stabilizing indulgent zero-degrading
binary consensus. In: 22nd Distributed Computing and Networking ICDCN, pp.
106–115 (2021)

4. Lundström, O., Raynal, M., Schiller, E.M.: Self-stabilizing multivalued consensus
in asynchronous crash-prone systems. In: 17th European Dependable Computing
Conference, EDCC, pp. 111–118. IEEE (2021)

5. Lundström, O., Raynal, M., Schiller, E.M.: Self-stabilizing total-order broadcast.
CoRR abs/2209.14685 (2022)

https://doi.org/10.1007/978-3-030-67087-0_19
https://doi.org/10.1007/978-3-030-67087-0_19


Brief Announcement: Secure
and Efficient Participant

Authentication—Application to Mobile
E-Voting

Kun Peng(B)

Shenzhen, China

Kun Peng CPU@hotmail.com

Abstract. With Popularity of smart phones, more and more users tend
to use them in e-voting activities. However, mobile devices has weak
computing power and sometimes cannot support costly cryptographic
operations. Vote validity proof is usually an inefficient ZK proof for the
prover and liable to have poor performance on mobile devices. To over-
come the bottleneck for mobile voters, an efficient protocol is proposed
in this paper.

1 Introduction

With the development of ubiquitous computing, more and more users are
using mobile devices to enjoy network services like e-voting through dynamic
omnipresent wireless networks. Suppose there are some voters in a network sys-
tem. They move around and may log in the election system through a wireless
connection in a dynamic location. There are many such systems in practical
applications, and usually there is an authentication mechanism in any wire-
less network such that legal users can be authenticated and given access. An
important security property of network application is user privacy. Namely, the
voters do not want to be traced and hope to log into communication networks
anonymously. When users’ privacy is required, their authentication is a chal-
lenge. Especially, we should be aware that mobile users often use low-capability
devices like mobile phone. So authentication of them must be efficient in com-
putation. Moreover, to save power consumption of mobile devices in wireless
networks, communicational efficiency must be high as well.

A straightforward solution to anonymous authentication is pseudonym. Every
legal user registers at an authority, which issues a pseudonym to him. To prevent
the authority from knowing the pseudonyms he issues, blind signature is usually
employed to generate them such that every pseudonym is a digital signature
signed by the authority using his private key without any knowledge of the
signed message. Although the users can use their pseudonyms to show that they
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are legal users certified by the authority, this straightforward authentication
mechanism is vulnerable to replay attack. The pseudonyms may be intercepted
(no matter in plaintext in a normal communication pattern or in ciphertext in an
encrypted communication pattern) or revealed (by the network authentication
agent who receives and verifies the pseudonyms) and then used by illegal users.
Although interception-based replay attacks may be avoided by employing some
special encryption functions of fresh nonces, attacks using revealed secret from
conspiring verifiers are difficult to prevent.

A common method to realize anonymous authentication is to verify that a
user is a member of a group of legal users without revealing his identity. Suppose
there is a group of users S, which contains n users A1, A2, . . . , An. When logging
in, a user in the group only needs to prove that he is a member of the group
and gives no more identity information. A simple solution to this mechanism is
to give every member in the group the same password or secret key such that
every member can authenticate himself in the same way. However, this simple
solution has two drawbacks: complex maintenance and easy revealing. Firstly, it
is complex to maintain the group. There must be a group manager to initiate
and distribute the password or secret key and register new users. Moreover,
when a member is deleted from the group, a new password or secret key must
be generated and distributed to all the left members. In addition, when one
member leaks his password or key, an update in the whole group is needed.
Another problem in this solution is the attack using revealed secret just like in
the pseudonym-based solution as the password or secret key may be intercepted
in the air or revealed by the verifiers.

We want to design a dynamic and efficient anonymous authentication tech-
nology based on proof of membership in a user group. Firstly, it should be highly
dynamic such that no initiation, registration or maintenance is needed for any
group. So a temporary user can join a dynamic group in real time. Secondly,
intensive employment of costly public key cryptographic operations should be
avoided. With these two requirements, a user can still be authenticated with-
out revealing his identity. Our idea of dynamic anonymous authentication is that
every legal user publishes a public commitment to a secret only known by himself
such that a user can dynamically choose a group of legal users in real time and
prove that he knows the secret opening to one of the users’ public commitments
in the group. A straightforward method to implement this idea is the so-called
zero knowledge proof of partial knowledge by Cramer et al in [1], which requires
a user in S to give n parallel zero knowledge proofs, each corresponding to a
user’s secret. Of course, the user does not know other users’ secrets, so the n− 1
instances of proof of knowledge of their secrets are prepared off-line by the user
without being challenged. The only on-line challenged proof is the proof of his
knowledge of his own secret. As all the n instances of proof are indistinguishable,
a verifier or observer cannot extract which secret the user knows. An OR logic
between the n instances of proof guarantees that at least one of them is ran-
domly challenged and thus implies knowledge of the corresponding secret. This
method has an obvious drawback: low efficiency. It costs a prover O(n) public
key operations, each costing a few exponentiations. When mobile users employ
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low-capability devices to log in a wireless network, this authentication method
is too costly.

In this paper, a new anonymous authentication scheme is proposed for mobile
voters in wireless networks. A user can use it to prove that he is legal voter (a
member of any dynamic user group) without revealing which member in the
group he is. It achieves zero knowledge privacy and so reveals no information to
verifiers and observers. Random and fresh challenges are employed in it to pre-
vent the replay attack. No complex initiation, maintenance or updating operation
is needed in the new anonymous authentication technique. The new anonymous
authentication scheme mainly depends on hash functions and so is very efficient
in both computation and communication. A voter only needs one public key
operation (which costs one exponentiation) in his proof, while all his other oper-
ations are hash functions. As outputs of hash functions are usually much smaller
than the integers used in public key cryptography, the new anonymous authenti-
cation scheme transfers very few large integers (e.g. those integers used in public
key cryptographic operations, which are usually hundreds of bits long). It is
especially suitable for wireless networks with mobile users using low-capability
devices with limited power consumption, while an e-voting scheme is designed
as an example of its application. It is more flexible than the traditional e-voting
solutions [2–8] and does not compromised security or efficiency.

2 Efficient Anonymous Authentication for Legal Voters

Suppose a voter includes himself in a legally registered voter group
A1, A2, . . . , An, whose membership gives the network access he needs. Each Ai

has a secret xi in Zq, which is the secret knowledge he uses for authentication.
Each secret xi has a public commitment yi = gxi mod p. Public commitments
of the voter in the group, denoted as S, form a commitment list y1, y2, . . . , yn.
To prove he is a member of S, Ai can prove his knowledge of at least one of
logg y1, logg y2, . . . , logg yn without revealing i using the proof protocol in Fig 1
where H() is a one-way and collision-resistent hash function from G to Z2L . As
the bit length of the output of H(), L is usually much smaller than log2 p, the
bit length of the integers used in the public key cryptographic operations in G.

The idea in the proof protocol is not complex. A verifier sets up n different
Diffie-Hellman keys, each of whose discrete logarithm is the product of two key
roots. The two key roots for the ith Diffie-Hellman key include a constant key
root chosen by the verifier and logg yi. The verifier then seals a random secret
message m into n commitments, using H() and the n Diffie-Hellman keys. The
verifier publishes the n commitments and his Diffie-Hellman commitment of his
key root and then asks the prover to extract m. Obviously, the prover can extract
m if he knows one of the n Diffie-Hellman keys, while Diffie-Hellman assumption
implies that he knows the ith Diffie-Hellman key if and only if he knows logg yi.
Therefore, passing the authentication protocol in Fig 1 implies that the prover
knows one of logg y1, logg y2, . . . , logg yn under Diffie-Hellman assumption.

This new authentication protocol is quite efficient in computation. Especially
the prover only needs a low constant computational cost independent of n in the
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Suppose At needs to authenticate to a verifier using his secret xt where 1 ≤ t ≤ n.

1. A verifier randomly chooses an integer r from Zq and a random message m from
Z2L . He calculates and conceals

zi = yr
i mod p for i = 1, 2, . . . , n.

The verifier calculates and publishes

ci = H(zi) ⊕ m for i = 1, 2, . . . , n

z = gr mod p.

2. At publishes
u = H(zt) ⊕ ct

where zt = zxt mod p.

3. The verifier verifies
u = m.

He accepts the authentication iff this equation holds.

Fig. 1. Efficient anonymous authentication

protocol. Moreover, as L is usually much smaller than log2 p, most integers trans-
ferred in the protocol are much smaller than the integers in G. So the protocol
is much more efficient in communication than the solutions heavily depending
on public key cryptographic operations like groups signature and ring signature.
In addition, in the protocol, any voter can dynamically choose any user group
and include himself in it immediately. So real time anonymous authentication
service is provided and no initiation or maintenance work is needed. Therefore,
the protocol is especially suitable for mobile users in wireless networks. Correct-
ness of the protocol is straightforward and any interested reader can follow the
proof protocol step by step to check it. Its soundness is proved in Theorem 1,
while it is proved to be honest-verifier zero knowledge in Theorem 2.

Theorem 1. Passing the protocol guarantees the user’s knowledge of discrete
logarithm of one of y1, y2, . . . , yn under the Diffie-Hellman assumption.

Proof: Passes the protocol implies

u = m

and thus the user knows m. As the only published information about m is

ci = H(zi) ⊕ m for i = 1, 2, . . . , n,
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the user must know a zI where 1 ≤ I ≤ n. So according to the Diffie-Hellman
assumption, the user must know xI = logg yI as

zI = gxIr mod p

and r is kept secret from the prover. ��

Theorem 2. The protocol achieves honest-verifier zero knowledge.

Proof: The transcript of the protocol contains c1, c2, ..., cn, z, u. A party without
any knowledge of any secret can simulate the proof transcript as follows.

1. He randomly chooses an integer r from Zq and a random message m from
Z2L .

2. He calculates z = gr mod p and zi = yri mod p for i = 1, 2, ..., n.
3. He calculates ci = H(zi) ⊕ m for i = 1, 2, ..., n
4. He sets u = m.

In both the real transcript of the protocol with an honest verifier and the
simulated transcript,

– u is uniformly distributed in Z2L.

– z is uniformly distributed in G.
– ci = H(zi) ⊕ u for i = 1, 2, ..., n where zi = y

logg
z

i mod p.

As the two transcripts have just the same distribution, the transcript of
the protocol can be simulated without any difference by a party without any
knowledge of any secret if the verifier is honest and does not deviate from the
proof protocol. So the protocol achieves honest-verifier zero knowledge. ��

Note that proof of zero knowledge of the protocol in Theorem 2 assumes
that the verifier is honest and does not deviate from the proof protocol. It is
very common and actually necessary in many proof protocols.
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