
Chapter 14 
Mapping and Assessing the Seasonal 
Dynamics of Surface Urban Heat 
Intensity Using LandSAT-8 OLI/TIRS 
Images 
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Abstract Increased heat intensity in urban climate has serious implications on 
human health, contributing to urban liveability and vitality. As a way of mitigating 
the effect of excessive heat temperature in the urban area, it is imperative to examine 
the level of surface temperature in urban areas over time so that the urban heat 
intensity and its attendant consequences can be put into consideration when under-
taking sustainable urban planning. This study examined the spatiotemporal dynamics 
of surface urban heat intensity in Bosso Local Government Area of Niger State 
using remotely sensed images. Landsat-8 OLI/TIRS images of the year 2015, 2017, 
2019, and 2021 for both dry and wet seasons were used to determine the study 
area’s Normalized Difference Vegetation Index (NDVI), surface emissivity, land 
surface temperature (LST), and Normalized Difference Built-up Index (NDBI), using 
ArcGIS 10.8 software. The result showed that a rise in built-up density, surface emis-
sivity, and a decrease in vegetation density yields an increase in LST, while vegetation 
density proved to be of little effect in dry season when compared to the rainy season 
because most vegetation experiences draught at this time of the year. The result also 
showed that LST is higher in rainy season than it was in dry season because the 
wind, which decreases the effect of LST, is weak at this season of the year. The 
least value for surface emissivity in dry season was recorded to be 0.98605 while 
that of rainy is 0.98698, which implies that the emissivity of materials in the study 
area was observed to be higher in the rainy season than dry season. Furthermore, the 
result affirmed that a rise in urbanization gives rise to LST, likewise an increase in 
vegetation density of an area will lead to a decrease in the area’s urban heat intensity.
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The results also proved that wet periods can be hotter than dry periods of the year 
due to the presence of weak winds. 

Keywords Normalized difference vegetation index · Land surface temperature ·
Surface emissivity · Normalized difference built-up index 

Introduction 

The atmospheric systems and energy balance of the earth are gradually being altered 
as a result of chaotic urbanization, which has a direct impact on human thermal 
discomfort. Such issues are exacerbated in the cities, since the urban environment 
is the object of man’s most arbitrary landscape-modifying actions (Gomes and 
Caracristi 2021). In the light of the challenges of global warming and its charac-
terizing dynamics related to earth’s surface alterations, such as agricultural expan-
sion, desertification, urban development, and so on, examining the surface urban 
heat intensity is critical. In this regard, a lot of effort has gone into determining land 
surface temperature using remote sensing data (Garouani et al. 2021). The removal 
of vegetation within urban areas, changes in urban thermal and physical properties of 
construction materials, building, morphology, surface roughness, urbanization and 
anthropogenic heat sources, all modifies, alters, or affects local energy and leads to 
increase in atmospheric temperature in urban areas compared to their surroundings 
(Ayanlade et al. 2021). Adequate and accurate information about the status of the 
land surface temperature (LST) of specific areas of interest is required for successful 
geo-environmental management, which involves the monitoring and modelling of 
the environment (Agbor and Makinde 2018). There are many natural and anthro-
pogenic factors responsible for the increase or decrease in LST, while the degree of 
LST is seasonal and location dependent. Climate change and urbanization have been 
reported as one of the critically significant factors responsible for the change in land 
use and LST (Argueso et al. 2015; Elhadi et al. 2020). 

The heat intensity effect of solar radiation varies significantly across urban and 
rural areas. It has been observed to be higher in urban or metropolitan areas than in 
rural areas. The term urban heat island (UHI) is used to describe this phenomenon, 
which is primarily impacted by the amount of plant and water pervious surfaces 
present in an urbanized area. Because water pervious surfaces and vegetation have 
been replaced by impervious surfaces in urban environments, there is less evaporation 
to reduce LST (Michael et al. 2012). 

In an urban environment, natural vegetation is eliminated and replaced by non-
transpiring and non-evaporating surfaces that have low capacity for solar reflectivity 
and high capacity for heat absorption such as concrete, asphalt, and metals in most 
cases, resulting in a significant modification of the earth’s surface (Andrew 2012; 
Ridwan et al. 2021). This change eventually causes incoming solar energy to be 
redistributed, resulting in the rural–urban disparity in air temperatures and surface 
radiance (Guiling et al. 2008). 

The influence of urbanization is tremendous, and it affects or alters the natural 
ecosystem; therefore, understanding UHI is vital for a variety of applications in earth
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and physical sciences as well as environmental management techniques (Aneeqa 
et al. 2016). The demand for agricultural production, food, and shelter is increasing 
as the global population grows. As a result of anthropogenic activities, land cover 
characteristics are shifting to satisfy rising population need and replacing vegetated 
areas with impermeable surfaces, inadvertently leading to climate change (Imran 
et al. 2021). Increased heat intensity in the urban climate has major consequences on 
human health and the usage of outdoor areas, as well as many activities that contribute 
to the liveability and vitality of cities. It causes different multifaceted issues such 
as skin cancer and greater energy consumption because air conditioners are often 
required (Michael et al. 2012; Naserikia et al. 2019). 

LST is defined by how hot the “surface” of the earth would feel when touched 
in a particular region (Przyborski 2021) while the surface in this context and as 
used in satellite remote sensing refers to whatever a satellite observes as its signal 
pierces through the atmosphere to the earth. Surface heat fluxes, which are affected by 
urbanization, influence the LST in an area (Dousset and Gourmelon 2003). Therefore, 
understanding the spatiotemporal distribution of LST will aid in deciphering its 
mechanism and determining possible mitigation techniques (Sun et al. 2009). 

Apart from the LST, other indices that have been reported to contribute to the 
urban heat island of a location include vegetation which is often measured using the 
Normalized Difference Vegetative Indices (NDVI), urbanization or built-up areas 
which is often measured using the Normalized Difference Building Indices (NDBI), 
surface emissivity, etc. 

The NDVI is an index used to detect and ascertain the existence or presence 
of live green vegetation. Most visible light (0.4–0.7 m) is absorbed by healthy 
vegetation, whereas most near-infrared light (0.7–1.1 m) is reflected. In contrast, 
unhealthy or sparse vegetation will reflect less near-infrared light and more visible 
light (Weirer and Herring 2010). As a result, greater radiation that is reflected in the 
near-infrared wavelengths than the visible wavelengths indicates the existence of 
green vegetation, while minimal variation in intensity between the two wavelengths 
suggests the existence of either non-vegetated surfaces or sparse vegetation (Weirer 
and Herring 2010). The built-up density for each area is described by the NDBI, 
which is synonymous to the vegetation density described by the NDVI. The ratio of 
short red infrared (SWIR) to near infrared (NIR) is calculated as NDBI, with indices 
ranging from −1 to 1 (Kshetri  2018). 

The impact of the relationship or connection between the NDVI and LST, espe-
cially in locations where the urban heat intensity phenomenon is more prevalent and 
mitigating efforts are required, cannot be overemphasized. This is primarily because 
denser vegetation lowers LST by ensuring the transfer of latent heat to the atmo-
sphere from the surface via evapotranspiration. The NDVI is used to investigate this 
relationship and, as a result, provides insight into how plants or vegetation’s natural 
cooling mechanism can be exploited to improve urban thermal settings. In general, 
it is expected that lower LSTs are recorded or observed in locations or places with 
a high NDVI, implying that the two have an indirect relationship. However, surface 
evapotranspiration and soil moisture levels may significantly alter or modify the 
dynamics of this relationship (Yuan and Bauer 2007).
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A property or attribute of a surface that determines the volume of energy that 
is emitted by an object at a particular temperature when compared to a blackbody 
at the same temperature is known as surface emissivity (EXERGEN 2021). It can 
also be described as the ability of a surface or an object to convert heat energy it 
receives into radiant energy (Sekertekin and Bonafoni 2020). The emissivity is gotten 
from NDVI after the fractional vegetation (Pv) cover has been estimated and then 
calculated from the reflectance values of the materials on the earth surface based on 
the results of the NDVI. The emissivity of materials on the earth’s surface reflects 
how well they absorb all incident radiation and convert it to internal energy before 
emitting (re-radiating) the received energy at the highest rate feasible per unit area 
(Isa et al. 2016). 

One of the important features or characteristics that can be observed by satellite 
remote sensing is the surface temperature of an area. This data (surface tempera-
ture) has a wide range of applications in ecology, environmental studies as well as 
spatial data modelling, which is frequently employed in web-based GIS applications 
(Sameen and Al Kubaisy 2014). 

Recently, the connection and correlation between LST and other factors or indices 
have received significant research attention (Peng et al. 2020). Researchers frequently 
look into the individual interaction between LST, vegetation, surface emissivity, and 
water, as well as the impact of urban land growth on temperature change, while little 
known effort has been invested in the combined effects of some of these interactions, 
a gap this research seeks to fill. The fundamental goal of this study is to investi-
gate the combined effect and interdependence of vegetation (using the Normalized 
Difference Vegetation Index (NDVI)), built-up area (using Normalized Difference 
Built-up Index (NDBI)), surface emissivity, and the LST in the assessment of urban 
heat intensity using Bosso Local Government Area of Niger State, Nigeria, as a case 
study. 

Materials and Methods 

Bosso, which is the project site of this study, is one of the Local Government Areas 
(LGA) in Niger State, Nigeria (see Fig. 14.1). With its administrative headquarters 
situated in Maikunkele, it covers an area of about 1592 km2 and a population of about 
147,359 according to the 2006 census. Bosso LGA has a high heat flow (Mohammed 
et al. 2019) which could be as a result of increased urban activities, hence, making 
it a suitable location for this study.

The study area experiences both wet (rainy) and dry seasons annually, and an 
attempt was made to assess the effect of seasonal variation of the LST or the heat 
intensity of the study area. Therefore, two images were downloaded for each year: 
one at dry season (February) and the second at rainy season (September), for the 
years 2015, 2017, 2019, and 2021, making a total of eight images. The properties of 
the Landsat-8 images, generated from their metadata, are presented in Table 14.1.
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Fig. 14.1 Cartographic description of the study area

Table 14.1 Characteristics of the used Landsat-8 OLI images 

Data Sensor Bands Resolution/grid cell size Season Date obtained Year 

Landsat-8 OLI 11 30 m Dry 25-02-2015 2015 

Landsat-8 OLI 11 30 m Rainy 21-09-2015 2015 

Landsat-8 OLI 11 30 m Dry 14-02-2017 2017 

Landsat-8 OLI 11 30 m Rainy 26-09-2017 2017 

Landsat-8 OLI 11 30 m Dry 20-02-2019 2019 

Landsat-8 OLI 11 30 m Rainy 27-05-2019 2019 

Landsat-8 OLI 11 30 m Dry 25-02-2021 2021 

Landsat-8 OLI 11 30 m Rainy 21-09-2021 2021 

OLI = Operational land imager 

The step-by-step or detailed procedure adopted for the execution of this study is 
presented in Fig. 14.2. The used Landsat-8 OLI/TIRS C2 L1 band images for 2015, 
2017, 2019, and 2021 were downloaded from https://earthexplorer.usgs.gov/.

Radiometric and Atmospheric Correction 

On satellite images, radiometric and atmospheric correction is frequently used to 
reduce the atmosphere’s absorption and scattering effects. As the electromagnetic 
(EM) energy travels from the sun to the earth and back to the sensor, through the

https://earthexplorer.usgs.gov/
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Fig. 14.2 Methodology 
workflow of estimating 
urban heat intensity from 
Landsat images

atmosphere, absorption diminishes the intensity of EM energy resulting in haziness, 
while the energy is redirected in the atmosphere by scattering resulting in an adja-
cent effect in which neighbouring pixels are shared and thus affecting image quality 
(GISgeography 2021). Radiometric and atmospheric correction removes the effect of 
sensor influence and atmospheric effect on the reflectance value of satellite images. 
Radiometric and atmospheric correction was done by computing the Top of Atmo-
spheric (TOA) spectral reflectance (Eq. 14.1), followed by the correction of sun angle 
(Eq. 14.2) for all the satellite images downloaded for this study. 

Procedure for Obtaining LST 

LST can be estimated using the Landsat-8 OLI/TIRS C2 L1 thermal bands by 
applying Eqs. (14.1)–(14.8) (Rosado et al. 2020) presented in the simplified 
procedure described by the following five (5) steps. 

I. Top of Atmospheric (TOA) spectral reflectance. 

On a given surface, the ratio of reflected solar radiation to incident solar radiation 
is often referred to as the ratio of TOA radiance (Eq. 14.1), which is a unitless 
measurement. The mean solar spectral irradiance and the solar zenith angle derived
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from satellite-measured spectral radiance are used for the estimation of TOA (Rosado 
et al. 2020). 

T O  A(L) = ML  ∗ Qcal + AL (14.1) 

where ML is the band-specific multiplicative rescaling factor from the metadata, Qcal 

corresponds to band 10, and AL is the band-specific additive rescaling factor from 
the metadata. 

II. Calculation of Brightness Temperature 

The thermal band detectors record TOA’s brightness temperature in the form of 
digital numbers (DNs), which is then converted to surface temperature using the 
single channel algorithm. Surface temperatures obtained with Eq. (14.3) are deemed 
to be highly accurate (Michael et al. 2012). 

BT = (K 2/(ln(K 1/L) + 1)) − 273.15 (14.2) 

where K1 and K2 are the band-specific thermal conversion constant from the metadata 
and L is the TOA. In order to obtain the results in degree Celsius, absolute zero is 
added to the radiant temperature as presented in Eq. (14.3). 

BT = (
1321.0789/Ln

((
777.8853/′′%T O  A%′′) + 1

)) − 273.15 (14.3) 

III. Extracting the NDVI 

Reflectance data of Landsat-8 images, i.e. the visible red (Red) and the near-infrared 
(NIR) bands (bands 4 and 5, respectively) were used to extract the NDVI. 

The NDVI was extracted using the expression presented in Eqs. (14.4) and (14.5). 

NDVI = (Band 5 − Band 4)/(Band 5 + Band 4) (14.4) 

It should be noted that calculating the NDVI is crucial since it is necessary to esti-
mate the proportion of vegetation (Pv), which is related to the NDVI, and emissivity 
(ε), which is related to the proportion of vegetation. 

NDVI = Float(Band 5 − Band 4)/Float(Band 5 + Band 4) (14.5) 

IV. Estimating vegetation proportion (Pv) 

The proportion of vegetation was estimated using Eq. (14.6) (Carlson and Ripley 
1997). 

Pv  = Square((NDVI − NDVImin)/(NDVImax − NDVImin)) (14.6) 

The minimum and maximum values of the NDVI are gotten from the properties 
of NDVI under the source tab or the highest and lowest value range in ArcGIS 10.8.
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V. Estimating Surface Emissivity (ε) 

The effectiveness of a material’s surface in emitting energy as thermal radiation is 
known as its emissivity. Thermal radiation is electromagnetic radiation that includes 
both visible (light) and infrared (infrared) wavelengths that are invisible to the human 
eye (Sobrino et al. 2013). The mathematical expression used for the estimation of 
emissivity is presented in Eq. (14.7). 

ε = m ∗ Pv  + n (14.7) 

where m = emissivity of vegetation (0.004), Pv  = percentage of vegetation, and n 
= soil emissivity value (0.986). 

VI Estimating the Land Surface Temperature 

Equation (14.8) presents the mathematical expression used for the estimation of LST. 

LST = (BT /(1 + (0.00115 ∗ BT/1.4388) ∗ Ln(ε))) (14.8) 

where BT = Brightness temperature and ε = Emissivity. 

Estimating the NDBI 

The NDBI was extracted using the reflectance data (short red infrared (SWIR) and 
near infrared (NIR) bands) of Landsat-8 images. The NDBI is estimated as the ratio 
between short red infrared (SWIR) and near infrared (NIR) and has indices ranging 
from −1 to 1. Generally, the mathematical expression for estimating the NDBI for 
an area is shown in Eq. (14.9), while Eq. (14.10) presents the equation used to extract 
the NDBI specifically from Landsat-8 image. 

NDBI = (SWIR − NIR)/(SWIR + NIR) (14.9) 

NDBI = float(band 6 − band 5)/float(band 6 + band 5) (14.10) 

where band 6 is a SWIR band and band 5 is a NIR band. Built-up areas were 
extracted from the built-up density in the form of point features for clear depiction 
of urbanization. 

Interpretation of NDBI and NDVI 

Generally, the value of the NDBI and NDVI calculation ranges from −1 to 1. The  
representation of the values within the range for NDVI is presented in Table 14.2,
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Table 14.2 NDVI value 
range and feature represented 
(Kshteri 2018) 

NDVI value range Feature represented 

−1–0 Water bodies 

−0.1–0.1 Snow, barren rocks, or sand 

0.2–0.5 Senescing crops, grasslands, or shrubs 

0.6–1.0 Tropical rainforest or dense vegetation 

Table 14.3 NDVI value 
range and the represented 
state of plant’s health 

NDVI value range State of plant 

−1–0 Inanimate objects or plants that are dead 

0–0.33 Plants that are unhealthy 

0.33–0.66 Plants that are moderately healthy 

0.66–1 Plants that are very healthy 

while Table 14.3 presents the range of index values representing the state of plant 
health (EOS 2019). For the NDBI, while negative values represent non-urban land 
areas, urban land areas are represented by positive values. 

Results and Discussion 

For clearer presentation, the results were presented and discussed in two subsections. 
While the results obtained in the seasonal dynamics of the surface heat intensity of 
the study area in the dry season were presented in subsection “Surface Heat Intensity 
of the Area in the Dry Season”, the result obtained for the same analysis in the rainy 
season was presented in subsection “Surface Heat Intensity of the Area in the Rainy 
Season”. The relationships and effects of the combined indices (NDVI, NDBI, and 
LST) on the surface urban heat intensity are also presented. 

Surface Heat Intensity of the Area in the Dry Season 

Maps depicting the spatial distribution of NDVI, NDBI, and the spatial variation of 
LST values of the study area for the dry season are presented in Figs. 14.3, 14.4 and 
14.5, respectively, while Table 14.4 contains the estimated maximum values of the 
NDBI, NDVI, and LST obtained for 2015, 2017, 2019, and 2021 for the dry season. 
From the results, it was observed that in dry season, the highest maximum value of 
LST was recorded in the year 2017 (51 °C) which also yielded the highest NDVI 
and NDBI values of 0.388 and 0.577, respectively, while the lowest maximum value 
of LST was recorded in the year 2015 (33 °C).
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Fig. 14.3 Spatial distribution of NDVI in dry season

Also, the value for LST is lowest in the year 2015, but its value for NDBI (0.425) 
is higher than the values recorded for the years 2019 and 2021 which are 0.414 
and 0.320, respectively, while the vegetative index value for the year 2021 (0.278) is 
higher than that of the year 2015 (0.257). Therefore, the lowest LST in the dry season 
over the years understudied is justifiably expected to be reported in the year 2021 
since vegetation reduces the effect of LST, and the value of the NDBI recorded for 
the year 2021 is the least compared to other years. Also, since NDVI value below 0.5 
indicates the presence of shrubs, rocks, sand, unhealthy plants, grasses (unhealthy or 
moderately healthy), etc., and the highest maximum value for NDVI in dry season 
is 0.388 as recorded in the year 2017, it evidently shows that most plants within the 
study area have already dried up at this time of the year; therefore, the effect of NDVI 
in dry season is minimal. 

Also, since surface emissivity contributes to surface temperature in an area along 
with built-up index, the surface emissivity of the study area was examined for each 
of the years understudied for the dry season, and the obtained result is presented 
in Fig. 14.6. The maximum surface emissivity recorded in the years 2017 and 2021 
illustrates the extent to which various materials, such as bare land or soils, engineering 
structures, metal, concrete, and tar, absorb all incident radiation completely, and 
convert it to internal energy. The absorbed energy is then emitted (re-radiated) into
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Fig. 14.4 Spatial distribution of NDBI in dry season

the atmosphere and thereby contributing to LST. The recorded surface emissivity in 
the years 2017 and 2021 is higher than that of the year 2015 for the dry season which 
explains why the least value of LST for dry season was recorded in the year 2015 
and not in 2021. It also explains why LST in the year 2021 is higher than what it was 
in the year 2019.

Surface Heat Intensity of the Area in the Rainy Season 

Figures 14.7, 14.8 and 14.9 present the graphical description of the spatial distribution 
of NDVI, NDBI, and the spatial variation of LST of the study area for the rainy season, 
respectively. The estimated maximum values of the NDBI, NDVI, and LST obtained 
for the years 2015, 2017, 2019, and 2021 for the rainy season are presented in Table 
14.5. Similar to what was observed in the results obtained for the dry season, the 
lowest value of LST was recorded in the year 2021, but its value for built-up index 
(0.267) is higher than NDBI values for the years 2017 and 2015 which are 0.259 
and 0.243, respectively. Also, the year 2019 had the highest maximum value for LST 
(70 °C), while the year also recorded the lowest NDVI value of 0.544 and the highest
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Fig. 14.5 Spatial variation of LST in dry season 

Table 14.4 Estimated NDVI, 
NDBI, and LST maximum 
values for the dry seasons 

Year NDVI NDBI LST (°C) 

2015 0.257 0.425 33 

2017 0.388 0.577 51 

2019 0.232 0.414 40 

2021 0.278 0.320 47

Fig. 14.6 Surface emissivity 
in dry season
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Fig. 14.7 Spatial distribution of NDVI in rainy season

NDBI value of 0.421. The implication of this is that in the year 2019, urbanization 
rate was very high which had a negative effect on vegetation thereby increasing the 
urban heat intensity of the study area in the rainy season. In contrast, for the year 
2021, there was a very low heat intensity judging by the recorded lowest maximum 
value for LST of 29 °C. This can be attributed to the high NDVI of 0.598 and low 
NDBI of 0.267, which implies an improvement in vegetation growth and reduced 
urban growth, respectively. 

Although the vegetation index for the years 2021 and 2015 is very close, the 
lowest value of LST recorded in the rainy season of the year 2015 is justified by the 
lowest value for built-up index recorded in the same season and the highest value 
of the NDVI recorded in the dry season over the studied time epochs. This suggests 
that while there are low or reduced urbanization activities, there were high vegetated 
activities which led to the recorded low LST within the period of study. 

Also, the surface emissivity of the study area in the rainy season was examined 
over the studied years and the result is presented in Fig. 14.10. Similar to the surface 
emissivity of the study area in the dry season, the surface emissivity for the years 
2015 and 2017 was observed to be considerably higher than what it was in the years 
2019 and 2021 in the rainy season, which explains why the least value of LST for 
the rainy season was recorded in the year 2021 and not in year 2015.
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Fig. 14.8 Spatial distribution of NDBI in rainy season

Generally, it was observed from the analysis that the surface emissivity values of 
the study area obtained in the rainy season were significantly higher than the surface 
emissivity values of the study area obtained for dry season across all the years, except 
for the results obtained for the year 2019. This is because the strength of wind in the 
study area is weak at this season of the year. 

Conclusion 

This research shows the potential of using Geographic Information System (GIS) and 
remote sensing techniques in assessing the surface heat intensity of any location. The 
findings of this study affirmed that a rise in surface urban heat intensity is resulted 
from an increase in urbanization and a decrease in vegetation. The effect of increased 
built-up density and surface emissivity which resulted to an increase in LST proves 
that increase in urbanization leads to an increase in surface heat intensity. The study 
also proved that a rise in vegetation density leads to a decrease in urban heat intensity 
and that the effect is more significant in the rainy season than dry season as vegetation 
is usually dry at this season of the year, where soil moisture content is low. In as
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Fig. 14.9 Spatial variation of LST in rainy season 

Table 14.5 Estimated NDVI, 
NDBI, and LST maximum 
values for the rainy seasons 

Year NDVI NDBI LST (°C) 

2015 0.610 0.243 31 

2017 0.555 0.259 32 

2019 0.544 0.421 70 

2021 0.598 0.267 29

Fig. 14.10 Surface 
emissivity in rainy season
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much as vegetation is more effective in rainy season, wet periods are usually periods 
of high urban heat intensity because of the high emissivity values associated with 
this season. This is because wind, which decreases the effect of urban heat intensity, 
is weak at this season of the year. Further studies will attempt to investigate the effect 
of other factors such as terrain elevation or topography and presence of water bodies 
on the urban heat intensity of the study area. 
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