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Abstract. There have been several approaches for wearable fall detec-
tion devices during the last twenty years. The majority of technologies
relied on machine learning. Although the given findings appear that the
issue is practically addressed, critical problems remain about feature
extraction and selection. In this research, the constraint of machine learn-
ing on feature extraction is addressed by including a hybrid convolutional
operation in our proposed deep residual network, called the DeepFall
model. The proposed network automatically generates high-level motion
signal characteristics that can be utilized to track falls and everyday
activities. FallAllD dataset, a publicly available standard dataset for fall
detection that gathered motion signals of falls and other events, was uti-
lized to analyze the proposed network. We performed investigations using
a 5-fold cross-validation technique to determine overall accuracy and F-
measure. The experimental outcomes show that the proposed DeepFall
performs better accuracy (95.19%) and F-measure (92.79%) than the
state-of-the-art baseline deep learning networks.

Keywords: Fall detection · Wearable sensors · Deep learning · Deep
residual network

1 Introduction

The importance of fall detection systems (FDSs) for the elderly derives from the
concept that serious fall-related problems could well be avoided with prompt
and adequate medical care. The FDSs might be classified as either ambient or
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wearable. The first category is limited to residential use, but the latter bene-
fits following the elderly inside and outside. This article discusses wearable fall
detection technologies, and the sensors frequently utilized in this equipment are
discussed in the next section.

Micro-Electro-Mechanical Systems (MEMS) permitted the production of a
range of sensors, including accelerometers and gyroscopes, in compact and light-
weight packaging as wearable technology advanced. These MEMS-based sensors
are commonly employed in wearable devices presently. Accelerometers are the
most often utilized sensors for fall detection and human activity identification
due to their low energy consumption and techniques used to collect important
body movement data.

Several FDSs have been designed in the past twenty years. Some of these
strategies are threshold-based [12], however the most are machine learning-based
[15], to mention just some. In threshold-based approaches, thresholds are deter-
mined based on the available data. Correspondingly, with machine learning-
based approaches, the training phase depends on the available information.

Based on the interpretation of the findings acquired by wearable inertial sen-
sors, machine learning (ML) techniques have demonstrated remarkable efficacy
in differentiating between falls and typical motions or Activities of Daily Liv-
ing (ADLs). Random forest, Support vector machine, Multi-layer perceptron,
and k-nearest neighbors are four well-known and commonly employed ML tech-
niques in FDSs [5]. Nevertheless, the effectiveness of these ML approaches was
constrained by manual feature extraction.

Deep learning (DL) has been utilized extensively in the majority of areas
throughout the globe [10,11,17]. In recent years, fall recognition has benefited
more from the application of DL techniques [1,7] than threshold-based proce-
dures [2]. Designs of DL comprise layers, and each layer extracts the charac-
teristics of the provided data or transforms the data. Typically, the last lay-
ers of models consisted of synthetic neurons. The data could be recorded as a
vision-based image, raw data from an accelerometer and gyroscope. Several DL
approaches are employed to identify autumnal occurrences [8]. Some systems are
constructed using a single DL algorithm, while others combine many methods
to get a greater detection rate [6]. Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are the most prevalent DL models for fall
detection [9,20].

In this study, we proposed a convolutional and residual block-based deep
neural network named DeepFall model. Using the TensorFlow platform, the rec-
ommended model has been trained to identify falls and ADLs. The suggested
model was assessed and compared on a public benchmark dataset against various
baseline DL models (FallAllD dataset).

The article continues with the following outline: New relevant research is
included in Sect. 2. The details of the proposed model are outlined in Sect. 3.
The outcomes of our investigations can be seen in Sect. 4. The study finishes
with a discussion of necessary future studies in Sect. 5.
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2 Related Works

2.1 Fall Detection System

Current fall detection technologies may be loosely categorized into vision-based,
ambient, and wearable sensors.

Vision-based sensors gather motion information by monitoring systems and
extracting a person’s body photograph orientation or human skeleton annota-
tions from collected video or image data [21] to detect a fall. Typically, the
ambient sensor measures fall by gathering infrared [19], radar [13], and other
signals from the scene sensor. Although it does not pose any privacy concerns,
it comes at a slightly higher price. It is susceptible to noise and has a somewhat
restricted detection range. Multiple low-cost sensors are used by wearable tech-
nology to monitor falls [18]. Its detecting abilities depend on the sensor being
worn in real-time. However, the elderly may be unable to do so in some situa-
tions, such as having a bath. Furthermore, some older individuals may experience
pain from their apparel.

Due to the inexpensive cost of sensors in recent times, wearable sensors have
gained increasing popularity. To acquire the three-axis acceleration at various
points and the three-axis rotation angular velocity in a gyroscope, the most
popular locations for wearable sensors are the calf, spine, head, pelvis, and feet
[4].

2.2 Automatic Fall Detection by Using DL

Approaches for ML are primarily separated into classical pattern recognition
and classification and recognition based on DL. Conventional recognition tech-
niques depend on manually extracted features for identification. Consequently,
researchers recommend stricter parameters for fall detection. Initially, it is
required to identify the physical components involved in the falling procedure.
Second, it is necessary to evaluate how these traits are separated from ADLs
such as sitting and leaping; otherwise, the feature selection method will be sig-
nificantly slowed down. Classification and identification based on DL are being
used in fall detection systems that can automatically extract feature data. Due
to this benefit, DL approaches have gained increasing popularity among the sci-
entific community. They have been utilized in various fields where they have
performed a part equal to that of human specialists. In principle, the stages
required in DL approaches using sensor data from wearable devices are to pre-
process the received signals, extract features from signal segments, and train a
model using these features as input [16]. Thus, current studies in wearable sensor
data fall risk assessment concentrate primarily on technical aspects that optimize
performance. Various DL methods utilize the retrieved information as input to
forecast the occurrence of falls. Klenk et al. [3] built a fall detection system based
on long short-term memory (LSTM), which used a long-time sequence as input
and extracted temporal features efficiently.
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3 Fall Detection Approach

The sensor-based fall detection approach used in this investigation includes
four main operational phases, as shown in Fig. 1: data acquisition, data pre-
processing, data generation, model construction, and evaluation.

Fig. 1. Sensor-based fall detection approach

3.1 FallAllD Dataset

The FallAllD dataset [14] is a free public standard dataset for fall identification.
Motion signal data was collected from 15 healthful people (age 21–53, height 158–
187 cm, and weight 48–85 kg) using three types of equipment: an accelerometer,
gyroscope, magnetometer, and barometer. The individuals wore the wearable
devices on three distinct body locations (neck, wrist, and waist). In this dataset,
44 categories of ADL and 35 categories of falls were conducted.

Each information recorder has an inertial measurement unit, LSM9DS1, built
for tracking movement. This module includes 1) a 3D accelerometer (a sampling
rate 238 Hz and a broad dynamic scope of 8 g), 2) a 3D gyroscope (a sampling
rate 238 Hz and a geometric proportion of 2000 DPS), and 3) a 3D magnetometer
(a frequency response 80 Hz). In addition, a separate data recorder is integrated
with an MS5607 barometric sensor with 10 Hz sampling rate.

3.2 Pre-processing of Data

Original sensor data of the accelerometer and gyroscope were processed by mak-
ing the following adjustments. First, the median filter and a third-order low-pass
Butterworth filter with a 20-Hz cutoff frequency were employed to reduce noise.
Then, the Min-Max method was utilized to normalize the data. Segmentation
of the pre-processed sensor data was conducted using fixed-width 1-second of
sliding windows with a 50% overlapping, as shown in Fig. 2.
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Fig. 2. Fixed-length sliding window

3.3 Hybrid Deep Residual Neural Network

DeepFall model, a hybrid deep residual neural network introduced in this paper,
consists of two primary details. The first part is a convolutional block automat-
ically extracting low-level characteristics from unprocessed movement inputs.
The second method hierarchically recovers combination characteristics from a
mixture of Spatio-temporal and channel-specific data using the residual block.
This residual block contained Conv1D, BN, and ReLU layers, including a direct
connection to LSTM, as seen in Fig. 3.

Fig. 3. The proposed DeepFall structure
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3.4 Interpretation Measurements

The effectiveness of the proposed DL model is evaluated using four standard
evaluation metrics obtained during the 10-fold cross-validation process: accuracy,
precision, recall, and F-measure. These four metrics can be calculated using the
following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F −measure = 2 × Precision×Recall

Precision + Recall
(4)

The four most often used KPIs for fall detection are listed above. The clas-
sification is considered true positive (TP) for the group under study, whereas,
for all other groups, it is considered true negative (TN). When sensor data from
one group is incorrectly assigned to another, this is called a false positive (FP).
On the other hand, a false positive (FP) designation could occur if data from an
activity sensor that belongs to a different group was wrongly labeled as belonging
to that group.

4 Experimental Results

In the Google Colab-Pro+ system, every experiment in this research is con-
ducted. We experiment to assess the recognition interpretation of the offered
network and compare the model to benchmark DL algorithms in this study
(CNN and LSTM). To assess the efficiency of the algorithm, we divided these
laboratory experiments into three scenarios:

– Scenario I: using movement signal data from neck-mounted wearable sensors,
– Scenario II: using movement signal data from wrist-mounted wearable sensors,
– Scenario III: using movement signal data from waist-mounted wearable sen-

sors.

During experiments, movement signal data were acquired employing a 5-fold
cross-validation methodology. Several tests were done to assess the identifica-
tion effectiveness of various standard DL models (CNN and LSTM) and the
suggested network. The precision and loss quantify the experimental findings,
and F-measure is indicated in Table 1.

The proposed network obtained the maximum accuracy and F-measure in
every scenario, according to the data. Incorporating an accuracy of 95.19% and
an F-measure of 92.79%, the recommended network with movement signals from
the waist position shows the most satisfactory performance.



222 S. Mekruksavanich et al.

Table 1. Identification effectiveness of baseline models compared with the proposed
DriveNeXt model

Model Identification effectiveness

Accuracy Loss F1-score

Scenario I: Neck

CNN 74.21% (±0.006%) 0.57 (±0.000) 42.60% (±0.002%)

LSTM 81.72% (±0.363%) 0.40 (±0.002) 72.18% (±0.934%)

Hybrid deep residual network 92.13% (±0.938%) 0.28 (±0.028) 89.61% (±1.381%

Scenario II: Wrist

CNN 83.02% (±0.004%) 0.46 (±0.001) 45.36% (±0.001%)

LSTM 87.62% (±0.291%) 0.29 (±0.005) 72.70% (±1.383%)

Hybrid deep residual network 93.82% (±0.467%) 0.26 (±0.021) 88.81% (±0.678%)

Scenario III: Waist

CNN 79.50% (±1.280%) 0.50 (±0.032) 56.91% (±15.846%)

LSTM 86.37% (±0.153%) 0.32 (±0.006) 76.80% (±0.718%)

Hybrid deep residual network 95.19% (±0.353%) 0.24 (±0.033) 92.79% (±0.561%)

5 Conclusion and Future Studies

Applying wearable sensors, we developed a hybrid DL model to address the fall
detection challenge in this work effectively. The proposed DL method utilizes
some of the benefits of residual blocks. In this study, we investigated the pro-
posed DeepFall network using the FallAllD standard dataset for wearable sen-
sors. Experimental findings revealed that the proposed network surpasses other
models with the best accuracy (95.19%) and F-measure (92.79%).

Future research could also include evaluating the proposed DL model using a
larger sample size of people with various fall circumstances. The efficacy might
be significantly increased with the development of increasingly complex and
compact DL networks and specific data representations based on time-frequency
analysis.
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