
Using Ensemble Machine Learning Methods
to Forecast Particulate Matter (PM2.5)

in Bangkok, Thailand

Patchanok Srisuradetchai(B) and Wararit Panichkitkosolkul

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat
University, Pathum Thani 12120, Thailand

{patchanok,wararit}@mathstat.sci.tu.ac.th

Abstract. Many areas of Bangkok and its environs are currently blanketed with
fine dust with dangerous levels of PM2.5. High levels of PM2.5 have a negative
impact on humanhealth. In this study, support vector regression, begged regression
tree, random forest, gradient boosted models, neural networks, neural networks
autoregressive, seasonal autoregressive moving average with exogenous covari-
ates, k-nearest neighbor, Bayesian additive model, Prophet, and general additive
models are used to anticipate PM2.5. The usefulness of adopting an ensemble
model for forecasting is investigated. A thorough evaluation of standalone algo-
rithms and ensemble techniques was performed using the root-mean-square error,
mean absolute error, and Pearson correlation coefficient. According to the results,
hybrid models are effective in the forecasting of PM2.5 concentrations.
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1 Introduction

All life on Earth depends on air, making it one of themost essential components. Over the
last half-century, human activity, industry, automobiles, power plants, chemical plants,
and other natural phenomena like agricultural burning, earthquakes, and fires have all
contributed to an increase in pollution [1]. It is the fourth most common cause of death
in the world. About 6.67 million people died in 2019 as a result of pollution, the most
lethal ofwhich scientists call PM2.5 (particlesmeasuring less than 2.5μmin aerodynamic
diameter) [2]. Breathing in PM2.5 is harmful because it can reach the bloodstream and
the lungs. For 24-h exposure to PM2.5 both outdoors and indoors, most studies indicate
that PM2.5 of 12 μg/m3 (micrograms per cubic meter) or less is considered healthy.
Asthmatics and people who already have respiratory problems, such as those who live in
areaswith high levels of ozone in the air, should seekmedical assistance if their symptoms
worsen [3]. PM2.5 has been related to an increase in respiratory and cardiovascular
hospitalizations, emergency room visits, and mortality. Exposure to fine particles for a
long time has been linked to chronic bronchitis, poor lung function, and death from lung
cancer and heart disease [4].
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Many areas of Bangkok and its environs are currently shrouded in fine dust with
lethal PM2.5 levels.According to the PollutionControlDepartment (PCD), themaximum
allowable level of air dust in the environment is 50 μg/m3, and this limit was exceeded
numerous times in February 2022, with PM2.5 levels ranging from 40 to 146 μg/m3 [5].
Due to poor air quality, the PCD has expanded its list of Bangkok province areas and
districts where people should wear protective gear and stay indoors.

Emissions from a variety of sources constantly change the quality of the air we
breathe. As a result, things can appear normal one day and then take an unexpected turn
the next. This emphasizes the importance of developing a tool for forecasting future
air quality accurately. Machine learning techniques like artificial neural networks and
regression trees can make predictions faster, more accurate, and easier to do with more
than one type of data.

To forecast PM2.5 in this paper, we utilize techniques of support vector regression
(SVR) with linear and polynomial (degrees of 2 and 3) kernel functions, bagged regres-
sion trees (BRT), random forest (RF), gradient boostedmodels (GBM)with different loss
functions, extreme gradient boosted (XGBoost) trees using L2 regularization, artificial
neural networks (ANN) having 1 and 2 hidden layers and different activation functions,
neural network autoregressive (NNAR), ANN using model averaging, seasonal ARI-
MAX (SARIMAX), k-nearest neighbor (KNN) regression with Epanechnikov and rect-
angular kernels, Prophet model, boosted generalized additive model (Boosted GAM),
and Bayesian additive model (BAM). Finally, the “great” models will be included in
the ensemble models to better forecast PM2.5 concentration, and they will be compared
to standalone algorithms. Following this introduction, the structure of the study is as
follows: literature review; dataset overview and preparation; research methods; findings
and conclusions, accordingly.

2 Literature Review

Because of the volatile nature of PM2.5, accurate prediction has become challenging.
Several models for predicting particulate matter emissions have been developed in the
last several years in an effort to monitor air quality around the world.

Catalano [6] looked at the relationship between the hourly mean NO2 concentration
and factors that explain theNO2 mean level one hour before, aswell as traffic andweather
conditions like the number of cars on the road, the speed of the wind, the direction of
the wind, and the temperature. To model pollution peaks, the ANN, ARIMAX, and
SARIMAX models were used.

Masood and Ahmad [7] looked at the possibilities of ANN and SVM in creating
reliable and accurate PM2.5 predictions for New Delhi. Carbon monoxide (CO), sulfur
dioxide (SO2), nitrogen oxide (NO), toluene (C7H8), nitrogen dioxide (NO2), wind
speed, relative humidity, and temperature are studied.

Suleiman et al. [8] evaluated and compared three air quality management techniques
for predicting andmanaging roadside PM10 and PM2.5, including SVM, ANN, and BRT.
It has been found that the ANN and regression tree-based models perform marginally
better than the SVM model for PM10 forecasting but significantly worse for PM2.5
forecasting.
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Doreswamy et al. [9] employed RF, XGBoost, BRT, andMLPRegression to forecast
Taiwan PM2.5. In both training and testing datasets, XG Boost obtained the best R2 and
lowestMSE. Sharma et al. [10] evaluatedmany air contaminants and utilized a time series
regression model with extraneous factors to predict SO2, NO2, O3, CO, and PM2.5.

Qiao et al. [11] proposed a new model based on WT (wavelet transform)-
SAE (stacked autoencoder)-LSTM (wavelet transform-stacked autoencoder-LSTM).
To begin, WT is used to break down the PM2.5 time series into numerous low- and
high-frequency components based on different data from six Chinese research sites.
SAE-LSTM is then used to forecast the deconstructed components.

Biancofiore et al. [12] analyzed three years of continuous measurements of PM and
CO concentration in central Italy using a multiple linear regression model and ANN
models with and without recursive architecture. One to three days in the future, an ANN
was used to predict the concentrations of PM10 and PM2.5 in the air. The ANN used
meteorological and chemical factors as input.

Mahajan et al. [13] utilized the NNAR, an additive version of the Holt-Winters
method, and the ARIMA model to forecast hourly PM2.5 in Taiwan. For comparison,
root-mean-square error (RMSE) and mean absolute error (MAE) were the criteria. The
results show that the NNAR model has the lowest values for both RMSE and MAE.

Ejohwomu et al. [14] used ARIMA, exponential smoothing, prophet, NNAR, ANN
based on multiple variables, SVM, XG Boost, and RF. PM2.5, relative humidity, and
temperature were measured every 15 min and converted to hourly time-series data.
Accuracy of forecast model predictions was evaluated using metrics such as RMSE and
MAE.

Gupta et al. [15] used NASA’s Modern-Era Retrospective analysis for Research and
Applications,Version 2 (MERRA2) aerosols andmeteorology reanalysis data to estimate
the surface PM2.5 concentration in Thailand. The RF was used to validate and train the
data. Furthermore, the RF can estimate hourly and daily mean PM2.5 with a high degree
of precision. The mean bias is near to zero, with correlation coefficients above 0.90 in
the majority of cases.

3 Dataset Overview and Preparation

ThePM2.5 air pollution index (API) data utilized in this study are secondary data obtained
from the website of the World Air Quality Index (WAQI) project, https://aqicn.org/city/
Bangkok/. Bangkok’sAPI database inWAQI is retrieved from theDivision ofAirQuality
Data, Bureau of Air Quality and Noise Management, Pollution Control Department.
The daily AQI is based on the 24-h average of hourly readings from all stations from
January 1, 2019 to December 31, 2021. Also, some variables are obtained from the
World Meteorological Organization (WMO) via the webpage https://meteostat.net/en/
place/th/bangkok. The database contains pollutants and meteorological variables such
as ozone (O3), nitrogen dioxide (NO2), average temperature (Temp.avg), precipitation
(PRCP), wind speed (Wspd), and pressure.

In data cleaning and preparation processes, the missing data can be accessed in
aggregation plots as shown in Fig. 1. The missing proportion of PRCP is 1.09%, and
PM2.5, NO2, and O3 are all the same, at 0.36%, while the other covariates have no

https://aqicn.org/city/Bangkok/
https://meteostat.net/en/place/th/bangkok
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missing values. Two different types of blocks are shown on the right of Fig. 1: one
for observed (blue) values and one for missing (red) data. There are 1,078 days with
complete covariates, 12 days with only missing PRCP, 2 days with only missing PM2.5,
2 days with missing NO2 and O3, and 2 days with missing PM2.5, NO2, and O3.Multiple
imputation by chained equations (MICE) was utilized to replace missing values in the
gathered data. The MICE approach is based on the premise that multiple imputation is
best accomplished in distinct steps, each of which may require diagnostic examination.
Multiple imputation, analysis of imputed data, and pooling of analysis outcomes are
MICE’s main steps. This task can be achieved by using the R package “mice” [16].

Fig. 1. Aggregation plots for missing values

Fig. 2. Time-series plot of PM2.5

Table 1. Descriptive statistics of cleaned data from 1 January 2019 to 31 December 2021

Covariates Unit Range Mean S.D Min Max

PM2.5 μg/m3 169.0 78.84 31.927 18.0 187.0

O3 μg/m3 93.0 12.79 7.114 1.0 94.0

NO2 μg/m3 37.0 9.886 6.109 1.0 38.0

Temperature Celsius 12.9 29.28 1.736 21.6 34.5

Precipitation inches 117.1 3.967 10.625 0.0 117.1

Humidity percent 51.8 71.19 9.063 44.0 95.8

Pressure Hg 0.4 29.80 0.085 29.6 30.0

Wind Speed km/hour 5.0 2.074 0.842 0.2 5.2
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After preprocessing data, the time-series data on PM2.5 concentration is illustrated in
Fig. 2, and descriptive statistics of PM2.5 concentration and metrological data are shown
in Table 1. To quantify relationship, Pearson’s values are calculated and presented in
Fig. 3 along with scatter plots. It is observed that PM2.5 concentration is correlated
with NO2 the most, followed by pressure, O3, and humidity. These factors correlate
moderately to strongly with PM2.5. Precipitation and average temperature have low
correlations with PM2.5, and wind speed has the lowest correlation.

Fig. 3. Scatter plots and Pearson correlations among all pairs of variables

4 Research Methods

4.1 Seasonal ARIMA with Exogenous Covariates

The autoregressive moving average (ARMA) model is a combination of the AR and
MA models. The AR model of order p can be written as,

(
1 − φ1L − · · · φpL

p)yt = c + εt, (1)

where Li is a lag operator that converts a variable at time t into its ith-order lagged form,
and the MA model of order q is defined as

yt = c + (
1 + θ1L + · · · + θqL

q)εt . (2)

The AR component represents the connection between the dependent variable and
its previous expression, while theMA term combines the effect of a limited series of ran-
dom disturbances on the dependent variable. Incorporating differencing and exogenous
variables to ARMA model, we obtain a non-seasonal ARIMAX model:

φ(L)∇d yt = xTt β + θ(L)εt, (3)
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where φ(L) is called the autoregressive operator, θ(L) is called the moving average
operator, β is a vector of coefficients, xTt is a vector of covariate at time t, and εt is a
disturbance characterized by a normal distribution with a mean of zero and a constant
variance. To describe Eq. (3), notation ARIMAX(p, d, q) is usually used.

TheARIMAXmodels can also be used tomodel a variety of seasonal data.Additional
seasonal terms are added to the ARIMAX model to create a seasonal ARIMAX model,
Eq. (3). It is written as follows:

φp(L)�P(LS)∇d∇Dyt = xTt β + θq(L)�Q(LS)εt, (4)

where �P(LS) corresponds to a seasonal AR component, �Q(LS) corresponds to a
seasonal MA component, and S is the duration of the recurring seasonal pattern. The
corresponding notation for Eq. (4) is SARIMAX(p, d, q)(P, D, Q)S [17].

In theRpackage “forecast”, there is a function called auto.arima() that canfit a regres-
sionmodelwithARIMAerrors. It employs a variant of theHyndman-Khandakarmethod
[18] that combines unit root testing, Akaike information criterion (AICc) reduction, and
MLE to get the ARIMA model.

4.2 Prophet Model

Facebook [19] created the Prophet model to forecast daily data with weekly and yearly
seasonality, as well as holiday influences. It was later extended to incorporate other
seasonal data sources. It is effective with time series with strong seasonality and data
from many seasons. Prophet is a nonlinear regression model of the following form:

yt = g(t) + s(t) + h(t) + εt, (5)

where g(t) represents a piecewise-linear trend, s(t) denotes the various seasonal patterns,
h(t) determines the holiday effects, and εt is a random error term.

4.3 Regression Tree

Since Breiman [20] proposed decision trees in 1984, statistical learning approaches
based on them have grown in popularity. A binary regression tree T divides the space X
into many regions as there are leaf nodes, as stated byW . The total prediction function
g associated with the tree may be represented as

g(x) =
∑

w∈W
gw(x)I(x ∈ RW ), (6)

where I represents the indicator function andRW is the region built in the regression tree
using logical criteria. The goal of building a tree using a training set τ = {(xi, yi)}ni=1 is
to minimize the training squared-error loss,

lτ (g) = 1

n

∑

w∈W

n∑

i=1

I(xi ∈ RW )
[
yi − g(xi)

]2
. (7)
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Cost-Complexity Pruning. Let τ = {(xi, yi)}ni=1 be a data set and γ ≥ 0 be a real
number. For a given tree T, the cost-complexity measure Cτ (γ,T) is defined as:

Cτ (γ,T) = 1

n

∑

w∈W

n∑

i=1

I(xi ∈ RW )
[
yi − g(xi)

]2 + γ |W |, (8)

where W denotes the set of terminal nodes of T and |W | denotes the total number of
leaves on the tree, which provides insight into its intricacy.

Bootstrap Aggregation. One of the ensemble methods is bootstrap aggregation, com-
monly known as bagging. There are bootstrap samples I∗

1, I∗
2, ..., I∗

B and the matching
B independent models giving learner gI∗

1
, gI∗

2
, ..., gI∗

B
from the training set I with n

observations. The bootstrapped aggregated estimator or bagged estimator is obtained by
model averaging as follows:

gbag(x) = 1

B

B∑

b=1

gI∗
b
(x). (9)

In an idealized situation, the average prediction function converges to the expectation
prediction function if B → ∞ and I1,I2 , ..., IB are identically and distributed.
However, I1, I2, ..., IB are not independent, and for large n, the bootstrap sample I∗
only contains roughly 0.37 of the points from I[21].

Random Forest. Suppose there is a feature that gives a very excellent split of the data,
it will be chosen and divided for every {gI∗

b
}Bb=1 at the root level, and predictions will be

highly correlated. Prediction averaging is unlikely to improve in such a case. this problem
is addressed by selectingm ≤ p features at random and then calculating splitting criteria.
Strong predictors have a lower chance of being retained at the root levels [21].

Conditional Inference Forest. Torsten Hothorn et al. [22] created conditional infer-
ence forests (Cforest) to identify the conditional distribution of statistics that quantify
the relationships between the response variable and the predictor factors. The Chi-square
test statistics are used to examine if any predictors have statistically significant correla-
tions with the response. A global null hypothesis is defined as H0 : ⋂m

j=1 H
j
0, where H

j
0

indicates that Y is independent of Xj, j ∈ {1, 2, ..., p}.
Gradient Boosted Regression Tree. Any learning algorithm may benefit from boost-
ing, especially if the learner is a poor one. Boosting and bagging both use prediction
functions, however the two techniques are fundamentally distinct from each other. Boot-
strapped data are used in bagging, while in boosting, the prediction functions are learned
in sequentially. At each stage of the boosting round b, b = 1, 2, ...,B, a negative gra-
dient on n training points x1, ..., xn will be calculated. Next, the negative gradient is
estimated using a simple tree by solving

hb = argmin
h∈H

1

n

n∑

i=0

(
r(b)i − [

gb−1(xi) + h(xi)
])2

. (10)
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The algorithm makes a γ -sized step in the direction of the negative gradient:

gb(x) ← gb−1(x) + γ hb(x). (11)

Approximation tree learning with sparse data was proposed by Chen and Guestrin
[23]. They explain how to build a scalable tree boosting system using caching, com-
pression, and sharing techniques. The combination of these findings allows XGBoost to
handle billions of instances while using a fraction of the resources.

Bayesian Additive Regression Tree (BART). The BART model is comprised of a
sum-of-trees model plus a regularization prior on model parameters. Let M =
{μ1, μ2, ..., μb}denote a set of parameter values for each terminal nodeb inT andFunc-
tion f (x;T,M ) that assigns a μi ∈ M to a single component in x = (x1, x2, ..., xp)
as follows:

Y =
m∑

j=1

g(x;Tj,Mj) + ε, (12)

where ε N (0, σ 2) and g(x;Tj,Mj) is the function which assigns μij ∈ Mj to x. Also, a
prior g(T1,M1), ..., g(Tm,Mm) and σ must be imposed over all sum-of-trees parame-
ters. BART draws posterior samples usingMCMC. Chipman et al. [24] describe in detail
an iterative Bayesian backfitting MCMC algorithm.

4.4 Support Vector Regression

Vapnik et al. [25] proposed an SVM for regression. Here, F(x,w) denotes a family of
functions parameterized by w, G(x) is an unknown function, and ŵ is the value of w
that minimizes an error between G(x) and F(x, ŵ). The representation of F(x, ŵ) can
be defined as

F(x, ŵ) =
n∑

i=1

(
α∗
i − αi

)(
νTi x + 1

)p + b, (13)

where there are 2n+ 1 values of α∗
i , αi, and b. The optimum values for the components

of ŵ or α depend on a definition of a loss function and the objective function.

4.5 Artificial Neural Network

The artificial neural network (ANN) approach resembles the functioning of human bran,
and the algorithm has been based on function:

g∗(x) =
2p+1∑

j=1

hj

( p∑

i=1

hij(xi)

)

, (14)
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where each of the p parts of the input x is expressed as a node in an input layer; there
are 2p + 1 nodes in the hidden layer. The output of a feed-forward neural network with
L + 1 layers may be expressed as the function composition:

g(x) = SL ◦ ML ◦ · · · ◦ S2 ◦ M2 ◦ S1 ◦ M1, (15)

where Ml = Wl z + bl, l = 1, 2, ...,L − 1, Sl is an activation function,Wl is a weight
matrix, and bl is a bias vector.

4.6 K-Nearest Neighbors (KNN) Regression

Let τ = {(xi, yi)}ni=1 be a training set and {(x(i), y(i))}ni=1 be a reordering of the data
according to increasing distances ‖xi − x‖ of the x′

is to x. The usual k-NN regression
estimate takes the form gn(x) = ∑n

i=1 y(i)(x)/kn.

5 Results and Conclusions

A total of 1004 data points were used for training and a further 92 for testing. The RMSE,
MAE, and Pearson correlation coefficient (PCC) were used to evaluate the forecasts
provided by the machine learning models.

Table 2 summarizes and presents the predictive performance indicators for all the 24
models. Based on the training data, the RF has the lowest RMSE andMAE, followed by
SARIMAX and trees without pruning; the RF is clearly superior, as its RMSE is only
9.68 and its PCC is close to one. For test data, GBMs with Gaussian and Laplace have
the lowest RMSE and MAE, respectively. Based on the PCC, the best three approaches
are, respectively, Prophet, NNAR, and GBM with Gaussian distribution.

Considering all the criteria in both the training and test datasets, SARIMAX, trees
without pruning, and typical neural networks (except NNAR and ANN using model
averaging) tend to be overfitted models, so they are not suitable for PM2.5 prediction.
The other models are considered “good” and some of them are evaluated for a particular
period, as shown in Fig. 4.

To provide superior forecasts, ensemble techniques employ a collection of machine
learning methods. There are numerous “great” models here based on a certain criterion
for both training and test datasets. For example, GBMwithGaussian, NNAR, SVR (Poly
deg. of 2), BRT, and RF all give RMSE values of less than 20, MAE values of less than
16, and PCC values of greater than 0.7 for the test data. These models shown in Fig. 4
are among the top ten and were included in the ensemble models. There are three kinds
of ensemble models: (1) average, (2) median, and (3) weighted. The weights (W) are
allocated based on predictive performance: WGBM = 5, WNNAR = 4, WSVR = 3, WBRT
= 2, and WRF = 1. The predictive performance is shown in Table 3. When compared to
all standalone algorithms, the ensemble (weighted) model gives the lowest RMSE, the
lowest MAE, and the highest PCC. The ensemble model produced in this work is a mix
of the “great” models, which might explain why it performs better.
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Table 2. Predictive performance of the univariate and multivariate models

Models Training data Test data

RMSE MAE PCC RMSE MAE PCC

1 SARIMAX
(3,1,2)(2,0,0) [7]

13.2309 9.8416 0.9135 29.1229 21.0273 0.3017

2 Prophet model 16.4195 12.4349 0.8625 16.8109 12.9635 0.7852

3 Boosted GAM 19.6704 14.8718 0.7958 17.3149 13.3911 0.7487

4 Tree without
pruning

13.7452 10.0344 0.9059 27.5612 21.2349 0.5096

5 Tree with pruning 19.7211 14.9438 0.7942 19.7729 14.9105 0.7017

6 Bagged regression
TREE

16.5598 12.8007 0.8644 17.9855 13.8474 0.7280

7 Random forest
(RF)

9.6836 7.1578 0.9617 18.8680 14.7794 0.7065

8 Conditional RF 16.5503 12.2456 0.8626 18.1553 13.8912 0.7169

9 GBM with
Gaussian

18.2094 13.6183 0.8288 16.7995 12.8349 0.7603

10 GBM with
Student-t

20.1617 14.2879 0.7971 17.5609 12.8646 0.7345

11 GBM with
Laplace

19.3167 13.5126 0.8122 16.9995 12.5213 0.7578

12 XGBoost 16.2301 12.1305 0.8686 17.3822 13.1277 0.7448

13 BART 17.9175 13.5989 0.8346 17.7948 13.5950 0.7357

14 7-11-1 ANN
(logistic)

17.4170 13.0207 0.8438 23.6783 19.4137 0.6601

15 7-11-1 ANN
(tanh)

17.5802 13.3950 0.8406 31.6012 26.3459 0.2858

16 7-11-4-1 ANN
(logistic)

15.9349 11.8504 0.8712 25.7745 21.3557 0.5825

17 7-11-4-1 ANN
(tanh)

14.8501 11.1096 0.8892 53.2947 40.3602 0.3647

18 NNAR
(29,1,18)[7]

13.5594 9.0555 0.9095 17.3663 12.9768 0.7772

19 ANN using model
averaging

19.8413 15.0865 0.7950 18.5319 14.5525 0.7132

20 KNN
(Rectangular)

18.4564 13.6578 0.8288 19.5365 15.7029 0.6755

(continued)
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Table 2. (continued)

Models Training data Test data

RMSE MAE PCC RMSE MAE PCC

21 KNN
(Epanechnikov)

19.2517 14.2518 0.8103 19.4960 15.6700 0.6782

22 SVR Linear 21.6400 16.2817 0.7453 17.0003 13.1713 0.7562

23 SVR (Poly deg. of
2)

20.2533 14.5404 0.7848 17.9685 13.9103 0.7277

24 SVR (Poly deg. of
3)

19.2560 13.4661 0.8075 21.9772 16.3793 0.6050

Fig. 4. Forecasts from the selected models compared to the actual values of PM2.5

Table 3. Predictive performance on test data for the ensemble models

Model RMSE MAE PCC

Ensemble (mean) 16.3746 12.6136 0.7763

Ensemble (median) 17.1361 13.0713 0.7501

Ensemble (weighted) 15.9516 12.3144 0.7888
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