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Abstract. Human motion detection based on smartphone sensors has
gained popularity for identifying everyday activities and enhancing situ-
ational awareness in pervasive and ubiquitous computing research. Mod-
ern machine learning and deep learning classifiers have been demon-
strated on benchmark datasets to interpret people’s behaviors, includ-
ing driving activities. While driving, driver behavior recognition may
assist in activating accident detection. In this paper, we investigate driv-
ing behavior detection using deep learning techniques and smartphone
sensors. We proposed the DriveNeXt classifier, which employs convolu-
tional layers to extract spatial information and multi-branch aggregation
transformation. This research evaluated the proposed model using a pub-
licly available benchmark dataset that captures four activities: a driver
entering/exiting and sitting/standing out of a vehicle. Classifier perfor-
mance was evaluated using two common HAR indicators (accuracy and
F1-score). The recommended DriveNeXt outperforms previous baseline
deep learning models with the most fantastic accuracy of 96.95% and the
highest F1-score of 96.82%, as shown by many investigations.

Keywords: Human activity recognition · Deep learning · Smartphone
sensors · Driver activities

1 Introduction

The domain of human activity recognition (HAR) in artificial intelligence has
seen significant growth in recent years. Current HAR study findings have inspired
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several applications in medical and related domains, including athletic measuring
performance, rehabilitation tracking, and lousy habit identification. Based on the
collection of activity data, the development of innovative wearable technology has
advanced the progression of HAR research owing to the offering of various and
increased activity data. Smartphones and smartwatches are two wearable gadgets
that feature sensors such as accelerometers, gyroscopes, and magnetometers that
individuals use throughout the globe in their everyday lives.

In the preceding ten years, the HAR research has led to the development of
machine learning and deep learning techniques [9]. Nonetheless, machine learning
is constrained by the need for individual specialists to extract distinguishing
characteristics from raw sensor data. Using convolutional operators as the initial
step of recognition models has enabled automatic feature extraction inside deep
learning methodologies.

Convolutional neural networks (CNN) and long short-term memory (LSTM)
neural networks were determined for the HAR deep learning approaches based on
a review of the relevant literature. Several accomplished models have motivated
the development of unique architectures for studying computer vision and natural
language processing [13], including InceptionTime, Temporal Transformer, and
ResNet. Based on these models, unfortunately, recognition performance has been
restricted due to a lack of knowledge of the class hierarchy of human activities.

Activity recognition algorithms based on CNNs often use activity labels
encoded as one-hot vectors. Because the one-hot encoding considers each class
separate from one another, most activity identification models are trained, disre-
garding the links between activities. Nonetheless, hierarchical linkages between
actual actions exist based on sensor data similarity [15]. For instance, when
considering four stationary classes, such as walking, ascending, and descend-
ing stairs, the three other categories might be regarded as abstract and non-
stationary.

Many fields, such as healthcare, sports, tactical awareness, fall detection,
and accident identification employ a broad range of HAR solutions [5,10,11]. In
order to track vehicle movement for the purpose of accident prevention, current
smartphone-based applications and research rely on GPS transceivers [16]. A
vehicle is in motion if its GPS coordinates reveal a considerable shift. Never-
theless, these GPS-based systems cannot detect slight displacements, preventing
the incident detection approach from activating if GPS coordinates do not move
beyond a specific threshold. Therefore, a driver must be spotted as soon as
they enter a vehicle, without the car going a significant distance. Multiple ben-
efits might result from this kind of early detection, including the launch of an
autonomous or innovative agent-based accident warning system and increased
situational awareness [4]. An intelligent agent is a self-aware entity that acts
upon its surroundings by observing it using sensors and then actuating it. For
instance, a smartphone application uses built-in sensors to detect human behav-
ior or any significant event.

We use deep learning neural networks and smartphone sensor data to
solve the abovementioned issues to recognize driver behavior. We unveiled the
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DriveNeXt deep learning model, inspired by the ResNeXt image classification
framework. To validate the effectiveness of the presented model, we utilized a
publicly standard dataset consisting of smartphone sensor data for various driv-
ing actions. This paper’s essential contribution can be defined as follows: 1) To
introduce a unique deep learning classifier based on multi-branch aggregation
transformation, 2) To determine the optimal window size for recognizing driver
behaviors, and 3) To analyze the effectiveness of several deep learning classifiers
using the benchmark dataset.

The remaining parts of the work are arranged as follows. New research of
relevance is included in Sect. 2. The study’s underlying model, a branch of CNN,
is described in Sect. 3. The results of our studies are presented in Sect. 4. The
report finishes with a consideration of necessary future studies (Sect. 5).

2 Related Works

The deep learning method has seen widespread implementation to overcome
machine learning’s shortcomings. When using deep learning, feature extraction
is efficient, meaning fewer people need to be involved. Many deep learning models
have been presented for identifying human activities, presenting promising find-
ings and a unique learning technique [8,12]. The majority of suggested models
use standard CNNs.

According to [18], a CNN model is meant to analyze three-dimensional
accelerometer data without considerable preprocessing. Before sending the input
to the initial convolution layer, all information is preprocessed using the sliding
window approach, and the accelerometer data is normalized. The normalized
data are then given to the one-dimensional convolution and max-polling layers.
The researcher proposes performing model evaluation using the WISDM stan-
dard dataset. Experimental findings indicated that the presented model could
achieve significant precision while preserving reasonable computing costs. A CNN
with several channels was proposed to unravel the motion detection issue in exer-
cise programs’ environment [1]. This study implements a self-collected dataset
of 16 events from the Otago training schedule. Multiple sensors are installed on
body parts to collect inactivity data for different movements, with individual
sensors feeding a distinct CNN channel. After CNN functions, the findings from
all sensors will be analyzed individually to establish the optimal placement of
sensors for improved lower-limb action recognition. Their findings suggest that
many sensor configurations could be more efficient than just one.

A deep HAR network is developed, transforming movement-sensing input to
a series of spectrum images before passing these images to two CNN models
that have been separately trained [7]. Individually CNN representative incorpo-
rates the image sequencing produced by the accelerometer and gyroscope. An
ensemble of trained CNNs is used to make an informed guess about the kind of
human behavior being observed. This research employs the Real-world Human
Activity Recognition (RWHAR) dataset. This dataset includes eight actions:
descending and ascending stairs, laying, standing, seated, running, leaping, and
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walking. Using the proposed model, an F-score of 0.78 is possible during static
and dynamic activities and 0.87 during vigorous activity. The researchers further-
more concluded that the model could effectively process image information. The
model generalization is promising, but its accuracy performance is not equivalent
to that of the other standard deep learning model. In [2], three ways for using
the temporal features of a series of windows are provided. The first technique
involves calculating the CNN model’s average of the input windows. In another
technique, the window series is given to a coincident CNN, which determines
the action category established on the intermediate scores. The last approach
resembles the second approach, and the learned characteristics are blended using
a global intermediate pooling layer to obtain the last forecast.

Compared to using a single CNN classifier, it has been hypothesized that
using an ensemble of CNN might improve the accuracy of motion recognition.
Zhu et al. [21] introduced a CNN-based framework for HAR by combining sev-
eral smartphone-based sensors, including a magnetometer, accelerometer, and
gyroscope. The suggested technique is an ensemble of two different CNN stan-
dards. The first model of CNN is prepared to forecast action categories, and the
second CNN is conditioned to concentrate on activity classes with many mis-
classifications. Employing weighted polling, the result of separate CNN models
is then merged to forecast unexpected behaviors. The testing outcome reveals
that this suggested model could attain an accuracy of 96.20%.

Also, [19] recommended using an ensemble model with three separate CNN
models. The ensemble model computes the final result by averaging the results
of the three CNN models. Before assembling each CNN for actual interpreta-
tion assessment, researchers investigated the effectiveness of every CNN model.
The experimental outcome suggests that the ensemble model outperforms the
three CNNs with a precision of 94.00%. This finding demonstrated that this
learning approach could generalize how the weak learner’s learning influence
can be enhanced to increase the overall model. A two-channel model of CNN
for action recognition is presented in [14]. The presented approach improves
identification accuracy using sensor inputs’ frequency and power characteristics.
The model’s accuracy was 95.30% when experimented on the publicly available
UCI-HAR dataset. This technique has the disadvantage of requiring the extrac-
tion of specific characteristics to enhance movement detection from sensor data.
Applying the attention mechanism module to identify the importance of the
features enhances the effectiveness of the CNN model [20]. In order to capture
the local features, the three acceleration inputs are transmitted concurrently
to three convolutional layers with varying filter sizes. The attention mechanism
then calculates how important each feature is to select the most useful ones. The
model was validated using the public WISDM dataset, which performed with a
96.40% success rate.
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3 Sensor-Based HAR Methodology

Data acquisition, preprocessing, data generation, model training, and evaluation
are the four main operational phases in the sensor-based HAR methodology used
in this investigation (see Fig. 1).

Fig. 1. The proposed HAR methodology

3.1 Driver Activity Dataset

This study uses a public dataset called “Driver entrance into and leaves from a
vehicle using smartphone sensors,” which records when a driver enters and leaves
an automobile while their phone is in their pocket [3]. Participants performed
the driving duties of:

– Grabbing the child safety seat (designated IN).
– Seated for some time (designated SITTING).
– Exit the automobile (designated OUT).
– Waiting a little while, perhaps 2 or 3 s, with the phone in the left pocket and

the screen towards the thigh as you stand outside the automobile (designated
STANDING).

Xiaomi Redmi Note6-Pro smartphones running Android 8.1 were utilized to
gather data for the dataset. It features many sensors, including the gyroscope and
accelerometer which were employed for data collecting. To acquire these signals,
we relied on the Android program Sensor Kinetics Pro, which records data from
the three-dimensional sensors at a sampling frequency of more than 400 Hz and
provides information on the gravitation, linear acceleration, and spinning of the
sensors.

This dataset sampled major features including acceleration, gravitation,
direction, linear acceleration, and rotational across all three axes at a rate of
50 Hz.
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3.2 Data Pre-processing

In data pre-processing, noise removal and data normalization were performed
on unprocessed sensor data. The pre-processed data of the sensor were then
separated by utilizing fixed-width sliding windows of 1 to 5 s with a 50% overlap
ratio.

3.3 The Proposed DriveNeXt Architecture

In this work, we devised a multi-branch aggregation strategy in response to the
ResNeXt model [17]. This approach provides kernel feature maps of varying sizes
as a contrast to concatenated in the InceptionNet model [6]. This significantly
reduced the number of model parameters, enabling these interconnections to be
suitable for edge and low-latency processes.

Three convolutional kernel dimensions are represented in the DriveNeXt
model’s three components. There are three unique kernel dimensions (1 × 3,
1 × 5, and 1 × 7) in each MultiKernel (MK) device. The sophistication of the
network and the number of parameters are further reduced by using 1 × 1 con-
volutions before implementing these kernels. DriveNeXt specifications are shown
in Fig. 2.

Fig. 2. An overview of MultiKernel component architecture

The DriveNeXt architecture has a minimal number of trainable parameters –
just 23,653. The complete model is made up of six MK units, with the number of
kernels being reduced to the desired number of classes using a 1 × 1 convolutional
method. The layout of the DriveNeXt model is shown in Fig. 3.
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Fig. 3. The DriveNeXt architectural design

4 Experiments and Research Findings

In this section, we discuss the experimental setup and provide the experimen-
tal observations used to assess the standard CNN and LSTM models and the
proposed DriveNeXt model for driving action detection based on smartphone
sensor data.

4.1 Research Setting

Each investigation in this research is carried out on the Google Colab-Pro plat-
form operating a V100 Tesla. Python is used for development in addition to the
packages TensorFlow, Keras, Scikit-Learn, Numpy, and Pandas.

4.2 Research Findings

Table 1 displays the average accuracy and F1-score of DriveNeXt and benchmark
models. Each model in the table employed varying sizes (1 s to 5 s) of sliding
window data to train and test models with a 5-fold cross-validation process.

Based on Table 1, the findings suggest that the DriveNeXt model outper-
formed CNN and LSTM benchmark models for all window sizes. The DriveNeXt
model achieved the most significant performance of window size of 1 s with an
accuracy of 96.95%.



Recognizing Driver Activities Using Deep Learning Approaches 153

Table 1. Identification effectiveness of baseline models compared with the proposed
DriveNeXt model

Classifiers Window size (s) Identification effectiveness

Accuracy Loss F1-score

CNN 1 95.49% (±0.411%) 0.29 (±0.058) 95.38% (±0.405%)

2 94.26% (±1.134%) 0.32 (±0.052) 94.05% (±1.165%)

3 92.43% (±1.576%) 0.39 (±0.117) 92.09% (±1.607%)

4 91.63% (±1.047%) 0.41 (±0.072) 90.62% (±1.155%)

5 90.45% (±2.441%) 0.56 (±0.147) 88.44% (±2.847%)

LSTM 1 96.62% (±0.313%) 0.16 (±0.029) 96.49% (±0.339%)

2 93.48% (±1.225%) 0.41 (±0.036) 93.27% (±1.225%)

3 92.74% (±0.793%) 0.32 (±0.070) 92.49% (±0.781%)

4 92.77% (±1.761%) 0.43 (±0.106) 91.88% (±2.037%)

5 92.51% (±1.901%) 0.20 (±0.062) 91.12% (±2.086%)

DriveNeXt 1 96.95% (±0.509%) 0.18 (±0.057) 96.82% (±0.549%)

2 95.57% (±0.446%) 0.21 (±0.089) 95.40% (±0.491%)

3 95.20% (±1.076%) 0.17 (±0.062) 94.95% (±1.134%)

4 93.53% (±1.928%) 0.18 (±0.042) 93.09% (±2.141%)

5 92.81% (±1.779%) 0.37 (±0.127) 91.26% (±2.130%)

5 Conclusion and Future Works

In this study, smartphone sensor-based identification of driving activity was
investigated. We proposed the DriveNeXt deep residual model to achieve the
study objective for driving behavior identification. Models were trained and
tested to measure detection capability using a publicly available benchmark
dataset. CNN and LSTM are the two baseline deep learning models used to
compare the DriveNeXt model. The experimental findings demonstrate that the
DriveNeXt has the most outstanding performance for all sliding window data
sizes. The DriveNeXt model is successful at recognizing driver behavior.

In future research, we want to investigate driving action detection using dif-
ferent kinds of deep learning networks, including ResNet, InceptionTime, Tem-
poral Transformer, etc.
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