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Abstract. The thriving growth of Internet service not only facilitates
our daily lives but also incubates various fraudulent activities with con-
cealment. The traceable interactive behaviors forming the graph-like data
provide a great opportunity for graph-based fraud detection. Owing to
the stellar performance of assortative graph learning, GNN-based fraud
detection methods escalate much attention. However, the fraud graph
is not always assortative but more likely disassortative as the fraud-
sters usually camouflage themselves via building numerous connections
with normal users. Additionally, the GNN-based fraud detection meth-
ods also suffer from graph imbalance issues as the number of fraudsters
is far less than that of the normal users. To address these problems, an
imbalanced disassortative graph learning framework (IDGL) is proposed
with two key components. First, an adaptive dual-channel convolution
filter is developed to adaptively combine the advantage of low- and high-
frequency signals from its neighbors so as to assimilate the nodes with
assortative edges and discriminate the nodes with disassortative edges.
Second, a label-aware nodes and edges sampler is designed with the con-
sideration of nodes’ popularity and corresponding label class frequency,
which helps the model simultaneously eliminate the bias towards the
major classes and pay more attention to the valuable connections (fraud-
fraud, fraud-benign). Extensive experiments on two public fraud datasets
demonstrate the effectiveness of our method.
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1 Introduction

With the thriving growth of Internet services facilitating our daily life, there
also brings various kinds of fraudulent behaviors. The fraudsters or attackers
disguise as the benign users to do some malicious activities and conceal them-
selves within the mass of data, which has caused great damage to finance security
[10,16,20], cyber security [4] and comment management [3,14]. Fortunately, our
online behavior is always traceable no matter whether we are benign or fraudu-
lent, and we can transform these interactive behaviors as graph-like data where
the users and their interactions are treated as the nodes and the edges, respec-
tively. Recently, the emerging graph neural network (GNN) has shown its great
representation power of graph data, which makes GNN-based fraud detection
methods escalate extensive attention.

Fig. 1. Illustration of graph disassortativity and imbalance

Although these GNN-based fraud detection methods have made much
progress, there still exist the following two main challenges.

Graph Disassortativity. Generally, GNNs update the representation of nodes by
aggregating the signals from their neighbors, which can be treated as a low-pass
filter to retain the commonality between the connected nodes [9,18]. Benefiting
from the smoothness of the low-frequency filter, it works well for assortative
graphs, i.e., similar nodes tend to make the connections [1], which makes GNN-
based fraud or anomaly detection effective as it assumes that the fraudulent or
abnormal nodes with the same malicious goals tend to make the connections
with each other. However, some studies [5,7,14,19] have shown that the fraud
graphs are not always assortative but more likely disassortative as the fraudsters
often camouflage themselves by making many connections with the benign users
to make them look normal with less suspiciousness, which makes the fraud graph
flood with numerous disassortative connections, i.e., the entities from different
classes tend to make the connections. Consequently, the low-pass smoothing
aggregation mechanisms of GNNs are insufficient to support the inference for
these disassortative graphs as it enables the fraudsters to achieve their intentions,
i.e., the fraudulent features are concealed within the myriads of benign ones.
As shown in Fig. 1, given a query user who has far more connections with the
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normal user than the fraudster, the assortativity-based GNNs tend to classify
him/her into the normal user as its behavior features have been concealed by his
numerous benign neighbors within the low-pass smoothing aggregation. Under
this circumstance, the high-frequency signals (i.e., the difference between entity
nodes) are more suitable for these disassortative graphs.

Graph Imbalance. First, the number of fraudsters is generally far less than that
of the benign users, which causes the graph node imbalance issues. According to
Amazon and YelpChi datasets, only 9.50% and 14.53% of labeled entities are the
fraudulent ones respectively, as introduced in Table 1. The graph node imbalance
may make the training bias towards the majority class (i.e., the benign users)
with the reduction of model generalization ability. Expect for node imbalance,
the edge imbalance is more urgent as it directly guides the node aggregation
process. There are three types of edges in the fraud graph: edges between normal
entity nodes (denoted as N-N), edges between the fraudulent ones (denoted as
F-F), and the edges between the fraudulent and normal ones (denoted as F-
N). As introduced in Table 2, the number of N-N edges is far more than that
of others, which helps the normal user detection by retaining commonalities
between them. But for F-F and F-N edges, they are rare but valuable, and we
should pay more attention to them with exploring the commonalities between
fraudsters and the difference between fraudsters and normal users. However,
most current GNN-based fraud detection studies pay little attention to both
nodes and edges imbalance and haven’t made full use of labeled F-F and F-N
edges to detect the new fraudsters. Unfortunately, the graph imbalance issues
further exacerbate the disassortativity of the graph with more difficulties for
discrimination.

To address the above challenges, we propose an Imbalanced Disassortative
Graph Learning framework (IDGL) to simultaneously adaptively aggregate low-
and high-frequency signals from assortative and disassortative connections on
the imbalanced fraud graph. Specifically, IDGL is composed of four module lay-
ers: 1) a re-embedding layer. Some recent studies [2] have emphasized that the
performance and robustness of the model may be hurt by the entanglement
of graph filters and parameter matrices, and the fraudsters usually camouflage
themselves with the similar raw features to the normal users. Therefore, a non-
linear re-embedding layer is applied to relearn the representations of nodes; 2)
an adaptive dual-channel convolution layer, which is used to adaptively com-
bine the advantage of dual-channel (i,e., the low- and high-frequency) signals
from its neighbors to assimilate the nodes with assortative edges and discrimi-
nate the nodes with disassortative edges; 3) a representation fusion layer, which
combines the intermediate embeddings to be the final representation of nodes;
4) an imbalanced-oriented classification layer. To alleviate the effects of graph
imbalance, a label-aware nodes and edges sampler is designed with the consider-
ation of nodes’ popularity (i.e., degree) and corresponding label class frequency.
Sampled nodes are used for classification training to eliminate the bias towards
the major classes, and the sampled edges are treated as the supervision informa-
tion to facilitate the training of adaptive filters and make the model pay more
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attention to the valuable edges (i.e., F-F and F-N layers). The contributions of
the paper can be listed as follows:

– We formulate the graph-based fraud detection problem as an imbalanced dis-
assortative node classification task and propose an imbalanced disassortative
graph learning framework to deal with the disassortativity and graph imbal-
ance issues on the graph.

– An adaptive dual-channel convolution filter is further developed for fraud
detection to assimilate the nodes with assortative edges and discriminate
the nodes with disassortative edges. A label-aware node and edge sampler is
proposed to relieve graph imbalance issues with more attention to the valuable
edge information.

– Experiments on two public real-world datasets demonstrate the effectiveness
of our proposed IDGL for fraud detection.

2 Preliminaries

2.1 Definition

Definition 1 (Assortativity and disassortativity). Given a graph, if two
nodes (e.g., vi and vj), which make the connection as an edge, belong to different
classes, then we treat the connection as a disassortative edge, denoted as ε−

ij , and
if they belong to the same class, the connection is an assortative edge, denoted
as ε+ij . The larger disassortativity of the graph, the more nodes from different
classes tend to connect with each other, and vice versa. For our task, the fraud
graph is of both assortativity and disassortativity at the same time.

Definition 2 (Graph). Consider a graph G = {V,X, {ε+, ε−} , A, Y }, V =
{v1, v2, ..., vN} is the set of nodes, N is the number of nodes; X ∈ R

N×d is the
original d-dimension feature vector of all of N nodes; For {ε+, ε−}, ε+ and ε−

represent the assortative and disassortative edge sets respectively where ε+ ∪
ε− = ε and ε+ ∩ ε− = ∅; A is the corresponding adjacency matrice of the graph
where Aij = 1, if eij ∈ ε; Y is the set of labels for the nodes, and each one has
a label yi ∈ {0, 1} where 1 represents the fraudster and 0 represents the benign.

Definition 3 (Multi-relation Graph). There are different relations among
the nodes, and G =

{
V,X, {ε+r , ε−

r } ∣
∣R
r=1 , {A1, A2, ..., AR} , Y

}
is defined as

a multi-relation graph, where er
ij ∈ {ε+r , ε−

r } represents the edge between the
node vi and vj under the relation r ∈ {1, 2, ..., R} and Ar is the corresponding
adjacency matrix.

2.2 Problem Formulation

Definition 4 (Graph-based Fraud Detection). Considering a multi-
relation graph G, which has been defined in definition 2, the task is to detect
the fraud nodes from the benign ones in the given graph. Specifically, given
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the structural information of the graph {A1, A2, ..., AR} and the original feature
information X, we need to learn the function f to map the nodes into a d-
dimension feature vector zi ∈ R

d across the multi-relation graph where d � N .
With the learned embedding and the labeled nodes, a classifier is trained to
detect whether a given unlabeled node is a fraudster.

3 Overview Framework of Method

In this section, we present the proposed IDGL framework, as shown in Fig. 2.
IDGL includes four module layers: the re-embedding embedding layer, adaptive
dual-channel convolution layer, representation fusion layer, and the imbalance-
oriented classification layer. For the first module layer, it is used to add some
uncertainty by the dense and dropout layer to relieve the effect of feature cam-
ouflage. Furthermore, the second module layer is introduced to make full use
of low- and high-pass signals to deal with the graph disassortativity issue. The
third module layer makes the fusion of the intermediate representation to be the
final features of nodes. The final module layer is used to deal with the graph
imbalance and detect the fraudsters.

Fig. 2. An illustration of proposed framework of IDGL

3.1 Re-embedding Layer

Fraudsters usually learn the normal users to camouflage themselves, so the orig-
inal attribute features between the fraudsters and the normal users are of great
similarity. Therefore, it is highly desirable to add some uncertainty into the
original features to re-learn the feature similarity between nodes to cater down-
stream fraudster detection tasks. In the paper, a dense-based dropout layer is
introduced to encode the embeddings of the nodes without depending on the
network topology, and it is denoted as follows:

h
(0)
i = σ (dropout (xi, η) · W0) , (1)
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where xi is the original feature vector of node vi, dropout (·, η) is the function
which drops the neurons from the network with a certain probability η during
network training, W0 is a learnable weight matrix, h

(0)
i represents the embedding

of node vi, and σ (·) is the non-linear ReLU activation function. Based on the
above components, the difference between the fraudsters and the normal users
will be further amplified via network topology based on the improved convolution
and aggregation strategies.

3.2 Adaptive Dual-channel Convolution Layer

Dual-channel Graph Convolution. Following GCN [8], from the perspective
of graph signal processing, the graph convolution ∗G between the given signal x
and filter f are denoted as:

f∗Gx ≈ θ
(
IN + D− 1

2 AD− 1
2

)
x, (2)

where IN ∈ R
N×N denotes the identity matrix and D = diag{d1, d2, ..., dN}

is the diagonal degree matrix (di =
∑

j Aij). From Eq. 2, we can observe that
IN + D− 1

2 AD− 1
2 can be considered to smooth the central node by its adjacent

nodes’ information via summation between signals, and it can be treated as a
low-pass filter to capture the commonalities between the central node and its
adjacent nodes [1]. Naturally, for a high-pass graph filter, it should be used to
capture the difference between them. Heuristically, a low-pass filter fL and a
high-pass filter fH are designed as follows:

fL∗Gx ≈ θ
(
εIN + D̂− 1

2 AD̂− 1
2

)
x

fH∗Gx ≈ θ
(
εIN − D̂− 1

2 AD̂− 1
2

)
x,

(3)

where D̂ = I +D, and ε ∈ [0, 1] is a scaling factor. We can generalize Eq. 3 to the
signal X ∈ R

N×d (i.e., a d-dimension representation for each node) as follows:

ZL = (εIN + D̂− 1
2 AD̂− 1

2 )XΘ

ZH = (εIN − D̂− 1
2 AD̂− 1

2 )XΘ,
(4)

where Θ ∈ R
d×M is the matrix of learnable filter parameter, and ZL ∈ R

N×M

and ZH ∈ R
N×M are the signal matrix convolved by low-pass and high-pass

filters, respectively. Then the low-pass and high-pass convolution of the node i
can be denoted as:

(FLX)i =

(

εXi +
∑

j∈N(i)

1√
D̂iiD̂jj

Xj

)

Θ

(FHX)i =

(

εXi − ∑

j∈N(i)

1√
D̂iiD̂jj

Xj

)

Θ,

(5)

where N(i) is the set of one-hop neighborhoods of node i.
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Learnable Channel Fusion Aggregation. Given the above low- and high-
pass graph filters, the next step is how to aggregate both low- and high-frequency
information from the node’s neighbors, respectively. Naturally, a basic idea is to
add the weight parameter αij,r to balance the importance between such two
filters under the relation r:

h̃i,r = αij,r(FLH)i,r + (1 − αij,r) (FHH)i,r, (6)

where αij,r ∈ [0, 1], and Eq. 6 can be further expanded as follows:

h̃i,r =

⎛

⎝εhi,r +
∑

j∈Nr(i)

2αij,r − 1
√

D̂ii,rD̂jj,r

hj,r

⎞

⎠ Θr, (7)

where h̃i,r is the aggregated embedding of node vi under the relation r. Here,
we set a learnable coefficient ωij,r = 2αij,r −1, where ωij,r ∈ [−1, 1]. For ωij,r, it
decides whether a low or high-frequency signal should be extracted between the
node vi and vj , and thus the features of both the node itself vi and its neighbor
vj should be considered together. Naturally, a shared self-gating mechanism is
used to learn ωij,r as follows:

ω
(l)
ij,r = tanh

((
W(l)

r

)T [
h
(l−1)
i ||h(l−1)

j

])
, (8)

where h
(l−1)
i ∈ R

dvi
×1 and h

(l−1)
j ∈ R

dvj
×1 are the representations of the nodes

vi and vj at l-th layer, W(l)
r ∈ R

(dvi
+dvj )×1 is a trainable matrix, || is the

concatenation operation, and tanh (·) is the hyperbolic tangent function, which
makes the value ω

ij
in the range of (0, 1). Finally, the aggregation of node i can

be denoted as follows:

h
(l)
i,r = σ

⎛

⎝

⎛

⎝εh
(l−1)
i +

∑

j∈Nr(i)

ω
(l)
ij,r√

D̂ii,rD̂jj,r

h
(l−1)
j

⎞

⎠ Θ(l−1)
r

⎞

⎠ . (9)

Layer Architecture and Cross-relation Combination. In the previous
sections, we have introduced the message passing paradigm of our method. Here,
we formally define the convolution layer of our method under the r-th relation,
and the mathematical formulation is denoted as follows:

h
(0)
i = σ (dropout (xi, η) · W0)

...

ω
(l)
ij,r = tanh

((
W(l)

r

)T [
h
(l−1)
i ||h(l−1)

j

])

h
(l)
i,r = σ

((

εh
(l−1)
i +

∑

j∈Nr(i)

ω
(l)
ij,r√

D̂ii,rD̂jj,r

h
(l−1)
j

)

Θ
(l−1)
r

)

h
(l)
i ← [h(l)

i,1, h
(l)
i,2, ..., h

(l)
i,R]

...

(10)
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In Eq. 10, we can observe that h
(l)
i,r, r ∈ [1, 2, ..., R] (i.e., the signal of node i

learned under the different relation at the l-th layer) is concatenated as a new
signal h

(l)
i , and it will be the input of node feature for the next layer.

3.3 Representation Fusion Layer

In our model, the node embedding outputted by different neural network layers
has different smoothness and sharpness. In the model, the designed low- and
high-pass filters make the node embedding outputted by different convolution
layers have different smoothness and sharpness, and they can help facilitate the
downstream classification task. Thus, we combine the intermediate embeddings
outputted by the different layers as the final representation of the node:

zi = [xi, h
(0)
i , h

(1)
i , ..., h

(L)
i ], (11)

where L is the number of convolution layer.

3.4 Imbalance-Oriented Classification Layer

As introduced in Eq. 9, for each graph neural layer l under the relation r, α
(l)
ij,r can

be directly calculated by the learnable weight ω
(l)
ij,r as: α

(l)
ij,r = 0.5

(
ω
(l)
ij,r + 1

)
∈

[0, 1], and it can be used to measure the assortativity and disassortativity of the
edge eij , so as to be the supervised information to balance the weight between
low- and high-pass filters. Actually, the supervision signal from the known label
nodes can be treated as the ground truth to make an auxiliary loss:

L(l)
r = −

∑

eij,r∈εt,r

[
yij,r log

(
α
(l)
ij,r

)
+ (1 − yij,r) log

(
1 − α

(l)
ij,r

)]
, (12)

where yij,r ∈ {0, 1} is the label of the assortative edge (i.e., yij,r = 1) or the
disassortative edge (i.e., yij,r = 0) under the relation r, and εt,r is the edge set
whose source nodes and target nodes have been labeled under the relation r.
For each layer and each relation, the final loss for assortative and disassortative
edges can be formulated as follows:

Lε =
1

L × R

∑
L(l)

εt,r
, (13)

where L and R are the number of layers and relations, respectively.
Additionally, given the final embedding of nodes zi, the fraud detection prob-

lem can be treated as a binary node classification problem, and we use cross-
entropy loss function to model it:

Lc = − ∑

i∈V

[yi log (pi) + (1 − yi) log (1 − pi)]

pi = softmax (MLP (zi)) .
(14)
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To sum up, we define the overall loss of our method as follows:

Ltotal = γcLc + γεLε + γ‖Θ‖2, (15)

where γc, and γε (γc + γε = 1) are the weights to balance the importance of
different losses, ‖Θ‖2 is the regularization term to avoid over-fitting and γ is
the control coefficient. Note that, to alleviate the influence of sample imbalance
problem (i.e., the number of normal users is significantly larger than that of the
fraudsters), a label-aware sampler is proposed to take the nodes’ label frequency
and degree information into consideration, which make the minority class of rela-
tively high sampling probability. First, as to the node sampling for classification,
the sampling probability is denoted as follows:

P (vi) ∝
√

di

Z (C (vi))
, (16)

where di =
R∑

r=1

∑

j

Aij,r is the degree of node vi under all relations, and Z (C (vi))

represents the label frequency of class C (vi). Note that,
√

di means that more
“popular” nodes are more likely to selected, and Z (C (vi)) means the more
“rare” nodes are more likely to be selected.

Table 1. Datasets statistic information

YelpChi Amazon

#nodes (Fraudster%) Relation type Relations Class #Class #nodes (Fraudster%) Relation type Relations Class #Class

45954 (14.53%) R-U-R 49315 1 6677 11944 (10.5%) U-P-U 175608 1 821

R-T-R 573616 0 39277 U-S-U 3566479 0 7818

R-S-R 3402743 – 0 U-V-U 1036737 – 3305

ALL 3846979 ALL 4398392

1 For Class: 1: spam or fraudulent; 0: legitimate or benign; -: unlabeled.

The set of the sampled nodes is denoted as Vs. Next, for the edge sampling
under the relation r, the sampling probability is defined as follows:

P (εij,r) ∝
√

di,rdj,r

Z (C (εij,r))
, (17)

where di,r =
∑

k Aik,r is the degree of node vi under the relation r, and
Z (C (εij,r)) is the edge label (i.e., the assortative or disassortative edge) fre-
quency of class C(εij,r). The sets of the sampled edge under all relations are
marked as: {εs,r}

∣
∣R
r=1 . Similarly,

√
di,rdj,r and Z (C (εij,r)) represents the pop-

ularity and rareness of the edge eij under the relation r. For the edges between
fraudsters (F-F) and the edges between the fraudsters and the normal users (F-
N), they are rare but valuable. Thus, P (εij,r) can make F-N and F-F edges be
selected at a higher probability.
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4 Experiments

4.1 Experiment Setup

Datasets. Two public real-world fraud detection datasets (i.e., Yelp review
dataset and Amazon dataset[13]) are used to validate the performance of IDGL.
YelpChi dataset collects the reviews of hotels and restaurants on the Yelp
platform, and the reviews are treated as the node with three relations: 1) R-
U-R represents the reviews, which are provided by the same user, are linked;
2) R-T-R represents the reviews, which are given to the same product within
the same month; 3)R-S-R represents the reviews, which are given to the same
product with the same star-rating, are linked. The nodes are labeled by Yelp’s
filter (spam) and recommendation (legitimate). For Amazon, it is composed of
users with their comments on the musical instruments. Here, users are treated as
the node with three different types of relations: 1) U-P-U represents the users,
who make the comments on at least one same product, are linked; 2) U-S-U
represents the users, who give at least one same star-rating within a same week,
are linked; 3) U-V-U represents the users, who have top-5% mutual review TF-
IDF similarities, are linked. Note that the user is labeled the normal user or
the fraudster according to more than 80% or less than 20% helpful votes. The
statistics of such two datasets are shown in Tab. 1.

Fig. 3. Disassortativity Evidence. X-axis is the proportion of disassortative edges in the
neighborhood of fraud nodes. Y-axis is the proportion of the corresponding fraudulent
nodes among all fraudsters. NN is the fraudulent node without any neighbor.

Baselines. In this section, several state-of-the-art GNN-based methods and
their variants are compared to verify the effectiveness of our proposed method.
The source code of our model is available.1

GCN [8] is a general GNN model which aggregates the embedding informa-
tion of node’s first-order neighours. GAT [15] is an attention-based graph neural
network which takes the attention mechanism into the process of aggregation.
GraphSAGE [6] is an inductive graph neural network which takes the multi-order
node sampling strategy into node aggregation. GEM [12] is an improved graph
neural network for malicious accounts detection which constructs the hetero-
geneous account-device graphs by summarizing the weakness of the attackers.
1 https://github.com/Shzuwu/IDGL.

https://github.com/Shzuwu/IDGL
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FdGars [17] is a GCN-based method for fraud detection which reconstruct a
relational graph between the fraudsters and the normal users based on multi-
context information. GraphConsis [11] is a heterogeneous GNN-based method
that aims to address the inconsistency problems of context, feature, and relation.
CARE-GNN [3] is a GNN-based method that investigates the camouflage behav-
ior of fraudsters and their negative influence on GNN-based fraudster detectors,
and proposes a label-aware similarity measure and a similarity-aware selector.
FRAUDRE [19] is an improved GNN method that focuses on the graph incon-
sistency and imbalance issues of the camouflaged fraudsters.

Note that we perform GCN, GAT, GraphSAGE, and FdGars on the graphs
characterized by Definition 2 (i.e., ALL in Table 1), and perform the other meth-
ods on multi-relation graphs characterized by Definition 3.

Evaluation Metrics. Since YelpChi and Amazon datasets have imbalanced
classes, following previous work, we use AUC, Macro-Recall and Macro-F1 for
performance evaluation. As a widely used binary classification metric, AUC is
computed based on the relative ranking of prediction probabilities of all samples,
and it could eliminate the influence of class imbalance.

4.2 Evidence of Graph Disassortativity and Imbalance

First, we investigate the existence of graph disassortativity. Specifically, we calcu-
late the proportion of disassortative edges to all one-hop neighbors of each fraud-
ulent node under different relation subgraphs, and further count the proportion
changes of these fraudulent nodes among all of them with the growth of disas-
sortativity proportion, as shown in Fig. 3. We can observe that there are numer-
ous fraudulent nodes with high disassortativity in such subgraphs, and more than
half-past of fraudsters are with larger than 80% disassortativity proportion. Con-
sequently, the fraud graph is of disassortativity naturally, and we need to take the
separation of assortativity and disassortativity into consideration.

Table 2. Edge type statistic information

Edge YelpChi Amazon

R-U-R R-T-R R-S-R U-P-U U-S-U U-V-U

N-N 48,261 420,783 2,539,220 112,330 2,670,843 665,149

F-F 878 14,781 88,406 3,397 4,474 925

F-N 176 138,052 775,117 31,655 124,232 26,970
1 N-N: edges between normal users; F-F: edges between fraud-
sters; F-N: edges between fraudsters and normal users.

Next, we further study the imbalance of the fraud graph, and we find that
the imbalance of nodes and edges is widespread. Specifically, for node imbalance,
we have counted it in Table 1, and we can observe that only 14.53% and 9.50% of
labeled nodes are fraudsters, which makes the model dominated by the majority
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class (i.e., the benign users) with the reduction of model generalization ability.
Furthermore, we also investigate the edge imbalance of fraud graphs. Specifically,
we first classify the edge type into three classes, namely N-N(edges between nor-
mal users), F-F(edges between fraudsters), and F-N(edges between the normal
users and fraudsters), and then count their numbers under the different rela-
tional subgraphs, as shown in Table 2. We can observe that the number of N-N
edges is of maximum quantity, which may make the node aggregation dominated
by N-N edges and weaken the ability to model differences (between fraudsters
and normal users) and commonalities (between the fraudsters) while they are
the keys to fraud detection. Consequently, the imbalance of nodes and edges
is widespread in fraud detection, and we need to design an imbalanced-oriented
nodes and edges sampling strategy to eliminate bias toward the majority classes.

4.3 Performance Comparison

In this section, we compare our proposed method IDGL with the state-of-the-art
methods on both Amazon and YelpChi datasets. Note that we also perform the
metrics (i.e., AUC, Macro-Recall, and Macro-F1) under different ratios (from
10% to 40%) of both datasets, as shown in Table 3, and we have the following
observations.

First, compare the methods which are performed on the single graph (i.e.,
GCN, GAT, GraphSage, and FdGars) with the ones which are performed on the
multi-graph (i.e., GME, GraphConsis, CARE-GNN, FRAUDRE, and IDGL),
the latter is mostly better than formers, expect for GME, which brings two
aspects of inspiration. On the one hand, the multi-relation graph contains richer

Table 3. Performance under various ratios of Amazon and YelpChi training sets. Recall
and F1 are the abbreviation of Macro-Recall and Macro-F1.

Data Method 10% 20% 30% 40%

AUC Recall F1 AUC Recall F1 AUC Recall F1 AUC Recall F1

Amazon GCN 77.26 50.00 47.51 77.42 50.00 47.51 76.99 50.00 47.51 77.94 50.00 47.51

GAT 76.96 50.00 47.50 76.99 50.00 47.51 76.61 50.00 47.50 77.35 50.00 47.50

GraphSage 69.87 50.00 47.50 71.75 50.00 47.50 72.51 50.00 47.51 71.49 50.00 47.50

GME 70.24 69.56 75.52 72.05 71.55 75.53 73.99 72.12 68.48 74.44 70.66 74.42

FdGars 81.10 73.41 55.32 81.19 73.47 55.31 80.91 72.90 55.01 80.82 72.82 55.14

GraphConsis 82.67 82.63 75.97 84.22 84.21 81.93 84.46 84.37 79.06 85.15 85.10 77.98

CARE-GNN 88.16 88.19 88.21 88.25 87.95 85.80 87.41 84.89 75.70 87.36 83.90 88.36

FRAUDER 90.37 89.12 91.02 88.99 88.71 90.67 91.51 88.01 91.11 88.18 88.61 91.10

IDGL 95.09 89.37 91.22 96.42 89.76 91.17 96.98 90.61 91.65 97.58 90.73 91.23

YelpChi GCN 52.12 50.00 46.08 53.88 50.00 46.08 52.62 50.00 46.08 53.12 50.00 46.08

GAT 50.14 50.00 46.08 49.94 50.00 46.08 49.97 50.00 46.08 49.67 50.00 46.08

GraphSage 52.94 50.00 46.08 55.39 50.00 46.08 56.08 50.00 46.10 56.45 50.00 46.10

GME 64.35 50.00 46.08 64.28 51.33 48.89 69.63 51.04 48.24 70.88 50.38 46.87

FdGars 47.36 49.19 48.76 47.54 49.40 48.93 47.71 49.52 49.02 47.91 49.42 48.93

GraphConsis 64.12 64.72 61.3 63.89 64.46 62.93 60.94 61.44 62.73 61.02 61.67 63.03

CARE-GNN 69.73 65.68 52.86 70.47 66.94 57.55 72.42 67.32 57.39 70.99 66.80 56.47

FRAUDER 72.21 66.44 55.34 72.51 67.30 58.22 73.72 67.91 59.24 72.22 66.98 59.26

IDGL 85.38 74.50 70.23 88.65 78.65 72.84 90.04 80.06 74.36 91.14 82.36 76.37
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information than the single one, which may provide the chance to make perfor-
mance improvements. On the other hand, the richer data means a more complex
relationship, which means that it is unworkable to directly apply GNNs to fraud
detection under the multi-relation graph, and we need to deal with the relation-
ship between the node and its neighbors more carefully. GraphConsis, CARE-
GNN, and FRAUDRE have achieved the promising performance by introducing
similarity measure and fraud-aware module into the node aggregation process,
and IDGL outperforms all other SOTA methods via the learnable high- and low-
filter to adaptively learn the difference and similarity commonalities between the
node and its neighbors to facilitate the target task.

Second, it has been introduced in Table 1 that node imbalance is widespread
in fraud detection. For GNN-based fraud detection methods, CARE-GNN and
FRAUDRE take the influence of node imbalance into consideration to elimi-
nate the training bias towards the majority class (i.e., the normal users), and
achieve better performance than other methods. However, they haven’t taken
edge imbalance into consideration. As we discussed in Sect. 4.2, we categorize
the edge type into three classes: N-N, F-F, and F-N. For F-N, we can treat it as
a guide to learn the difference between the fraudsters and the normal users, and
F-F is rare but valuable for us to learn the commonalities between the fraudsters,
which helps better fraud detection. Thus, an edge sampling method is proposed
to make the model pay more attention to the edge of F-N and F-F. Consequently,
IDGL achieves better performance than CARE-GNN and FRAUDRE by taking
both node and edge sampling into consideration.

4.4 Ablation Analysis

High- and Low-Filters. To demonstrate the effectiveness of the adaptive filter,
we conduct the ablation study on the Amazon dataset by ranging the percentage
of the training dataset from 10% to 40%, as shown in Fig. 4 (a), and a similar

Fig. 4. Ablation Analysis of Learnable Adaptive Filter and Nodes/Edges Sampling on
Amazon dataset with AUC, Recall and F1.
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result can also be observed on YelpChi dataset. Specifically, we construct two
ablation models by replacing the learnable adaptive high- and low-filer with the
only low-filer (i.e., αij,r = 1, denoted as IDGL+) and the only high-filter (i.e.,
αij,r = 0, denoted as IDGL−), respectively. We can observe that both IDGL+
and IDGL− can be applied to fraud detection with competitive performance.
Additionally, IDGL− have better performance than IDGL+, because the fraud
graph is of great disassortativity as proved above, and IDGL+ only aggregates
the low-frequency signals from its neighbors without considering the difference
between classes which makes itself submerged with lack of discrimination. IDGL
outperforms such two methods by combining the advantages of low- and high-
filters adaptively.

Node and Edge Sampling. To demonstrate the effectiveness of node and edge
sampling, we construct two ablation models by removing either edge sampling
or both of them on the Amazon dataset with ranging the percentage of training
dataset from 10% to 40%, as shown in Fig. 4 (b), and the similar result can
also be observed on YelpChi dataset. We can observe that compared with the
ablation model without any imbalance-oriented sampling, the one with node
sampling performs better as it can mitigate the imbalance issue to some extent.
By further introducing edge sampling to make the model pay more attention to
the valuable edge types (i.e., F-F and F-N), the performance has been further
improved, which shows the effectiveness of node and edge sampling.

4.5 Parameter Sensitivity and Running Efficiency

In this section, we investigate the sensitivity and running efficiency.
First, with 40% of the Amazon dataset as the training set, we vary the value

of embedding dimensionality in the range of [8,64], and the result is depicted in
Fig. 5(a). We can observe that it first makes a slight improvement with embed-
ding size increasing, and it becomes stable after 32. Considering a larger embed-
ding dimensionality requires higher computational complexity, we finally set d
as 32 to make the balance between performance and complexity.

Fig. 5. Performance of IDGL with varing embedding size and running efficiency on
Amazon dataset.
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Second, to investigate the running efficiency of IDGL, with different per-
centages of the training set on the Amazon dataset, we compare the average
training time of each epoch with FRAUDRE, which has the most competitive
performance among all the baseline methods. To be fair, we set the number of
convolution layers to 2, the embedding size to 32, and the batch size to 256 for
both of them, and the result is depicted in Fig. 5 (b). We can observe that IDGL
runs faster than FRAUDER with more time efficiency.

5 Conclusion

In the paper, we propose an imbalanced disassortative graph learning frame-
work called IDGL to solve the graph disassortativity and imbalance issues. To
tackle the graph disassortativity, an adaptive dual-channel convolution filter is
further developed to adaptively combine the advantage of dual-channel (i,e.,
the low- and high-frequency) signals from its neighbors, which helps assimilate
the nodes with assortative edges and discriminate the nodes with disassortative
edges. For graph imbalance issues, a label-aware nodes sampler and edges sam-
pler are designed with the consideration of nodes’ popularity and corresponding
label class frequency, which helps the model simultaneously eliminate the bias
towards the major classes and pay more attention to the valuable edges (i.e.,
F-F and F-N). Extensive experiments on two public fraud datasets demonstrate
the effectiveness of our method.
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