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Abstract. Cloud native systems are processing large amounts of per-
sonal data through numerous and possibly multi-paradigmatic data stores
(e.g., relational and non-relational databases). From a privacy engineer-
ing perspective, a core challenge is to keep track of all exact locations,
where personal data is being stored, as required by regulatory frameworks
such as the European General Data Protection Regulation. In this paper,
we present Teiresias, comprising i) a workflow pattern for scalable dis-
covery of personal data at rest, and ii) a cloud native system architec-
ture and open source prototype implementation of said workflow pattern.
To this end, we enable a continuous inventory of personal data featur-
ing transparency and accountability following DevOps/DevPrivOps prac-
tices. In particular, we scope version-controlled Infrastructure as Code
definitions, cloud-based storages, and how to integrate the process into
CI/CD pipelines. Thereafter, we provide iii) a comparative performance
evaluation demonstrating both appropriate execution times for real-world
settings, and a promising personal data detection accuracy outperforming
existing proprietary tools in public clouds.

Keywords: Privacy · Data protection · Transparency ·
Accountability · Data loss prevention · Privacy engineering · DevOps

1 Introduction

The European General Data Protection Regulation (GDPR) or, similarly, the
California Consumer Privacy Act (CCPA) define strong regulatory frameworks
following the principle Privacy1 by Design and by Default (PbD). At the same
time, various services collect personal data from countless data subjects and
enterprises face the challenges of aligning to all regulatory obligations to avoid
severe fines. In particular, data controllers are required to establish technical
and organizational measures as safeguards against potential misuse or data
breaches. Supervisory authorities are also expanding their activities to audit data

1 For the sake of simplicity, we use the terms privacy and data protection interchange-
ably, being aware of their different notions in other contexts.
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controllers and processors [1]. Meanwhile, cloud native systems follow polyglot
microservice architectures and multi-cloud strategies and are therefore especially
hard to account for personal data. Due to their inherent complexity, they lack
transparency and because of their evolutionary development, they might contra-
dict present accountability requirements.

In practice, personal data are found in multi-paradigmatic storage and pro-
cessing settings (e.g., SQL, NoSQL). Effective means need to be found that
identify common patterns or context-specific indicators of personal data as such
in the vast amount of present data at rest. For instance, the GDPR requires com-
prehensive records of processing activities (RoPA, inventory) according to Art.
30.Such a procedure consists of technical and organizational measures, which,
in turn, have to take into account the state of the art (Art. 25). So far, we
observe laborious and primarily manual tasks of information collection and doc-
umentation, often inflexibly supported by simplistic spreadsheets or burdensome
written documents [2]. Consequently, we identify a collective need for what data
protection officers and supervisory authorities need to enhance transparency and
accountability of large-scale cloud native systems: A scalable discovery and con-
tinuously updated inventory of personal data. Furthermore, we observe the need
for tools to guarantee data protection at runtime to meet the prevailing software
development and operations (DevOps) lifecycle of constantly evolving systems
and not only ex-ante assumptions. From that follows, the technical scope should
align with both the regulatory obligations and the development practice. A key
research question here is: How to (i) discover personal data in large-scale cloud
native systems and (ii) how to inventory respective findings?

We herein present the (to the best of our knowledge) first model, architecture,
and implementation that jointly leverages Infrastructure as Code definitions,
multi-paradigmatic data stores, and CI/CD pipelines in cloud native systems to
inventory personal data at rest. To this end, we provide in this paper:

– A workflow pattern for the scalable discovery of personal data in cloud native
systems.

– Teiresisas, an architecture and open source prototype implementation of
said workflow pattern.

– An experimental evaluation of our approach in comparison to two widely used
baseline systems.

Therefore, the remainder of this paper is structured as follows: In Sect. 2 we
provide relevant background and related work. Thereafter, in Sect. 3 we present
the general approach for a scalable and continuous inventory procedure. We elab-
orate on the implementation in Sect. 4. On this basis, our approach is evaluated
in Sect. 5. In Sect. 6 we discuss the current limitations. Finally, Sect. 7 concludes.

2 Background and Related Work

2.1 Personal Data in Cloud Native Systems

Hereinafter, we refer to personal data as defined in Art. 4(1) which states “‘per-
sonal data’ means any information relating to an identified or identifiable natural
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person (‘data subject’)”. Looking at real-world data sets, this classification is,
however, often far from trivial [3]. The presence of personal data can be con-
stituted by existing field such as a data subject’s name, (email) address, social
security number, (under certain circumstances) IP address [4] or more complex
data structures such as social media profiles, location data, personal preferences,
health records, and many others. Usually, these data are stored in relational or
non-relational (NoSQL) databases, e.g., as basic string values or more complex
objects.

From a legal perspective, several obligations need to be implemented by the
data controller as imposed by the GDPR. For this paper, four guiding privacy
principles are central: First, for the processing of personal data the transparency
principle according to Art. 5(1a) applies. This implies the controller needs to pro-
vide detailed transparency information to signal categories of personal data being
collected, their retention time, legal basis, purposes, third country transfers, and
many more (see, e.g., [5]). Second, Art. 5(1f) requires appropriate security mea-
sures (incl. integrity and confidentiality) against unauthorized or unlawful pro-
cessing or accidental loss (cf. Sect. 2.2). Third, the controller needs to be able to
demonstrate compliance with (not only) the aforementioned principles, i.e. the
responsibility and liability (see also Recital 74) for accountability (Art. 5(2)). To
this end, data controllers shall maintain a record of processing activities (Art.
30) with a special focus on the above-mentioned security of processing (Art.
32). While carrying out Data Protection Impact Assessments (DPIAs), the risks
associated with the processing of personal data shall be determined and regu-
larly reviewed (Art. 35 GDPR). Fourth, the overarching principle of privacy by
design and by default (Art. 25) needs to be taken into account. It applies to all
obligations laid out in the GDPR and requires “both at the time of the deter-
mination of the means for processing and at the time of the processing itself
[(‘at runtime’)] [to] implement appropriate technical and organizational mea-
sures”. For the following considerations, we use the term inventory to describe
the aforementioned documentary measures concerning where personal data are
being stored.

Through the technical lens, cloud native systems are built to scale applica-
tions for millions of concurrent users. For this, horizontal scaling techniques are
used and infrastructure (compute, storage, and network) is provisioned auto-
matically on demand [6]. Public cloud providers such as Amazon Web Services,
Google Cloud Platform, Microsoft Azure, or IBM Cloud are appreciated for their
elasticity and (seemingly) infinite resources. Consequently, privacy engineering
has to examine this generation of technology intensively.

Moreover, the architectural paradigm of microservices is pervasive. Through
cohesive, independently encapsulated services that interact through API-enabled
messaging, scalable microservice architectures can be implemented [7]. Within
such microservices, the choice of data storage strongly depends on the function-
ality needed and the skills of the development team. Considered in its entirety,
a multitude of polyglot microservices and multi-paradigmatic data stores are
then in use. In larger distributed systems, we can observe thousands of such
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individual processing entities. From a transparency perspective, observing all
of these concurrently for their (personal data) processing activities is a still-
unsolved task.

Besides these aspects, the degree of automation is rising. A best practice is
to provide infrastructure as code (IaC) definitions. In particular, DevOps teams
declaratively describe the desired state of compute, network, and storage compo-
nents. Advanced configuration management and orchestration tools then trans-
form the current state. For instance, an auto-scaling mechanism runs additional
virtual machines or replicates a database under high load. From a privacy per-
spective, this continuous process – being triggered by load, external events, and
new code developments – needs to be examined carefully. If a database instance
was replicated to a new data center, possibly personal data were suddenly being
stored in a third country. The GDPR would then require the controller to inven-
tory this storage separately, implement adequate safeguards, and transparently
inform data subjects.

2.2 Data Loss Prevention

As mentioned above, Art. 5(1f) GDPR explicitly demands technical and organi-
zational measures against accidental loss of personal data. This is why dedicated
Data Loss Prevention systems (DLP) have been designed in several iterations.
Most of these have in common that they examine data at rest. Remarkably, data
in transit or data in use will not be the core subject of this work. Existing
DLP systems are mostly security-centric. Related work covers also user behav-
ior analysis, such as profiling of document, database and network access [8], file
and network traffic analysis [9] and protection from misuse of email communica-
tion [10], as well as content tagging for export prevention [11] or access policies
that hinder an adversary from accessing data stores. With DLP, the discov-
ery of sensitive data has been demonstrated by the utilization of different NLP
techniques, through which documents become classifiable [12]. Additionally, doc-
ument classification has been discussed in the context of machine learning [13].
Meanwhile, cloud providers developed proprietary DLP systems, namely there
are AWS Macie [14] and Google Cloud Data Loss Prevention [15]. However,
they are substantially limited to the extent they only support the provider’s
storage system (such as S3 for AWS) or they lack algorithmic transparency.
Hence, multi-cloud and on-premise infrastructure are not covered at all. Neither
meaningful evaluation establishing more trust has been published. Therefore, a
data controller cannot meet the accountability requirements as imposed by, e. g.,
the GDPR [16].

In summary, the major drawback of these systems is the necessity to provide
contextual information on where suspected data are located at. In microservice
infrastructures, this step is far from easy. This is why we present a new general
approach to identifying sensitive information, in particular personal data, with
less necessary prior knowledge about the underlying system in the following
sections.
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3 General Approach

3.1 Requirements

Hence, the system must be designed with a strong focus on the regulatory givens,
which are in our example the information obligations from the GDPR. To clarify
up front what is often misunderstood: the discovery and inventory system is
not required to store copies of the personal data records persistently. Since the
system is to be built to safeguard data protection rather than introducing novel
threats, neither have the entities to be stored permanently in the inventory nor
for analysis activities. Rather, the data minimization principle from Art. 5(1c)
GDPR has to be ensured. This implies the system will only need to store meta
data, e.g., database and records references. Thus, the system is to be built with
a Privacy by Architecture [17] approach, not least to avert possible linkability
attacks which arose from the presence of a personal record within the system
[18].

Moreover, the system should cover a wide range of technological concepts,
such as multi-paradigmatic infrastructures, storage alternatives, data types,
etc., which all likely depend on the present infrastructure provider in a real
cloud-native system. To support these concepts, the system shall be flexible
and extensible with little effort. The system must therefore interact through
well-documented application programming interfaces (APIs) that power-efficient
communication and promote the extensibility and connection with existing parts
of the system or their development and operations (DevOps) tech stack.

Furthermore, multi-faceted automation potentials can unfold. These will help
to replace existent laborious manual tasks and human errors (read: sending
emails around, waiting for replies, and then manually creating spreadsheets that
are outdated at the moment of their completion). The inventory process must
therefore happen continuously and should scale out to larger infrastructures to
meet the givens of current system architecture practice.

On a non-functional level, the system itself should be created and behave
transparently to enable independent assessments, identify architectural and func-
tional limitations, and determine scalability, accuracy, security, and usability –
also for a non-technical audience, since naturally multidisciplinary stakeholders
are involved.

3.2 Introducing a Workflow Pattern for Scalable Discovery
of Personal Data

When studying data loss prevention systems, there is a lot of attention on the
detection methods but less on the practical integration of such systems. All too
often, monolithic tools are proposed that are suitable to operate as standalone
entity. However, these cannot meet the givens of modern heavily distributed
systems consisting of numerous services, all potentially dealing with sensitive
information. In these scenarios, we need to delegate the complexity of schedul-
ing classification and inventorying tasks to dedicated algorithms. Therefore, we
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propose the application of the workflow pattern. Having also the requirements
listed above in mind, we propose the following general four-step workflow as
depicted in Fig. 1:

Code
Analysis

Data
Retrieval

Data Analysis

Discovery
API

Data Inventory

DA

DR

CA

DR

DA

DR

DAα DAβ

DI

b1
b2

b3

Main Workflow

API

DA

DI

API Workflow

CA:
DR:
DA:
DAα,β :
DI:
API:
bi:

Code Analysis
Data Retrieval
Data Analysis
Submodules α, β
Data Inventory
Discovery API
Branch i

Fig. 1. Workflow pattern and exemplary workflows.

1. Code Analysis (CA): Discover storages in cloud native systems by
analyzing version-controlled code repositories. With this module, an app-
roach to finding storages in unknown distributed systems environments shall be
implemented (black-box approach). By analyzing code repositories, it is possi-
ble to find traces, definitions, or encoded connection strings of storages such as
databases or disk storages. Repositories may contain the program’s code, but
also relevant Infrastructure as Code (IaC) definitions. Both of them potentially
comprise information about personal data storages. The aspired outcome of the
code analysis is a list of connection details for each storage found, which then
enables the following retrieval component to read from. The list of connections
must consist of a Uniform Resource Identifier (URI), login credentials if required,
and the storage type. To successfully achieve the task of connection information
extraction, the module would need to be able to clone code repositories and parse
relevant code, including parameters of software packages used for storage con-
nection (e.g., frequently used object-relational mappers). Incomplete connection
information – for instance in case of missing passwords or dynamically assigned
IP addresses or host names – should be adequately marked in the inventory.
Given these pieces of information, a data controller can take action to include
them manually in future audits/analyses.

2. Data Retrieval (DR): Manage to access the deployed storages and
retrieve relevant (meta) data. The Data Retrieval directly depends on the
Code Analysis. With the given storage information, this component should be able
to connect to the storages and fetch data and meta data from them. Structured and
potentially unstructured data have to be extracted in the form of database entities
or files. The whole process must stay reliable, and therefore a data subset selection
(sampling) could optionally guarantee the timely termination of the following pro-
cessing steps for very large data sets. In addition, to provide a system that is appli-
cable for as many scenarios and architectures as possible, a Discovery API needs to
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be added. This API listens for data requests, which will then be analyzed, to over-
come the issue that storages were not found, or their connection information was
incomplete. That includes external storages that are not under development of the
data controller. The implementation of middlewares which actively send data to
the Discovery API allows the analysis of these prior hidden data collections. Alter-
natively, it may be used to analyze data that is not stored at rest, such as samples
from stream processing frameworks.

3. Data analysis (DA): Detect personal data using heuristics and data
analysis methods. The Data Analysis component accepts data and meta data
as incoming parameters. The actual analysis is carried out in a multistep app-
roach, which results in indicators for a personal or non-personal data classifica-
tion which includes entity and storage references to be inventoried. It is preferable
to yield false-positive rather than false-negative classifications. For example, if
verbose meta data – which can be categorically similar to a personal field’s data
type, but also natural language such as field names – exist, an analysis of the
meta data can result in false-positive indicators. Primarily, sensitive information
shall not be overlooked. It is safe to assume that these results are, before any
optimizations, still preferred over overlooking sensitive information. Moreover,
all analysis techniques which are convenient for meta data, especially pattern
matching and lookup tables, should be also applied to data in the initial phase.

4. Data Inventory (DI): Inventory findings while meeting the regu-
latory givens. The results of all prior steps are then written into the Data
Inventory which can serve as input for Data Protection Impact Assessments,
Records of Processing Activities, or any other external or internal supervisory
activity. Since the discovery job results can be highly diverse, a flexible and
non-relational document store is considered the best fit here. The results can
be transformed to meet the form specifications of necessary legal documents,
potential visualizations, or summaries of transparency information (Art. 12–14
GDPR).

Continuous software engineering relies on the concept of CI/CD pipelines,
which are usually triggered by the version control system [19]. Therefore, most
likely, the process shall be started each time relevant code changes are detected
or due to changes in the underlying architecture of a system.

3.3 Workflow Engineering

For large architectures and consequently many appearing triggering events, this
four-step workflow needs to be properly orchestrated. In the probable event of
detecting multiple storages under examination, the execution of the aforemen-
tioned steps needs then to be parallelized. Therefore, an efficient execution yield-
ing timely results needs horizontal scalability. The components presented above
are, in turn, dependent on each other. On a conceptual level, these dependencies
can be modeled as a Directed Acyclic Graph (DAG). We therefore propose an
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orchestration implementing the workflow pattern [20]. That means, each compo-
nent performs a dedicated task for separation of concerns in an independent or
dependent (and consequently sequential) flow.

Figure 1 depicts an example of an instantiated Main Workflow with par-
allelization of the sub-graphs. Supposing the Code Analysis returns a list of
three storages, the workflow is forked afterward into three execution branches.
Then, the Data Retrieval component is instantiated in each of the branches and
takes responsibility for the sub-tasks. For more complex scenarios, forking can
even be nested to introduce even more parallelism. Assuming the Data Retrieval
of branch b3 has returned complex data that should be analyzed by multiple
techniques, DAα and DAβ would fork the sub-graph to handle the data sets sep-
arately. Finally, all branches are joined and the workflow terminates after storing
the findings successfully. Besides, the API Workflow happens on requesting the
Discovery API and could also be forked (not shown).

In a cloud native environment, such workflows can be implemented through
workflow management platforms [20]. Their implementations depend on DAGs
as they manage workflow orchestration (i.e., the concurrent and distributed task
execution while meeting the ordering dependencies). Letting such a tool take the
responsibility for task execution and scheduling of the discovery and inventory
process promises reliability, scalability, and high automation potential, meeting
the above-mentioned requirements. Keeping these aspects in mind, we now con-
tinue with the concrete software architecture and implementation in the upcom-
ing sections.

4 Software Architecture and Implementation

We will now synthesize the conceptual workflow pattern and engineering con-
siderations to elaborate on the design and implementation of a prototype sys-
tem called Teiresias. The complete implementation is available under the MIT
License as open source software in a public code repository.2

4.1 Overview

In Fig. 2 we provide an overview of the proposed system architecture. As indi-
cated above, we heavily rely on the concepts of workflow management platforms.
For our implementation we chose the open-source workflow platform Apache
Airflow (for more details, see Sect. 4.2). It is mainly responsible for the cor-
rect execution of all workflow steps. Within the Teiresias system boundary 1 ,
Apache Airflow is integrated as an Airflow Celery Cluster 2 , consisting of a
message broker, database, (Airflow) API, scheduler, and worker nodes. An Air-
flow Worker 3 is executing the code of each discovery component. Hence, it
gets allocated their needed processing resources automatically. A data controller
or supervisory authority can initialize the discovery and inventory process by

2 https://github.com/teiresias-personal-data-discovery/teiresias-system.

https://github.com/teiresias-personal-data-discovery/teiresias-system
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Fig. 2. System Architecture

passing (meta) data to the Extension Interface 4 . Such data will then be passed
on into the workflow, where modules are listening for incoming data (Discovery
API ). Alternatively, they access them during a workflow execution, which may
include fetching data from the data controller’s infrastructure 5 under exam-
ination through both the Code Analysis and Data Retrieval modules. Finally,
discovered meta data are stored in the Inventory Database. These findings can
afterward be accessed through the Inventory GUI 6 , which requests the reports
from the Inventory Database through the Inventory API. Meanwhile, all the Air-
flow subcomponents can be administered through the Web Server (incl. GUI).
For instance, workflows and rules for their scheduling, such as the determination
of an examination on a regular basis, can be fine-tuned. Through these settings,
Teiresisas can be precisely parameterized to fit the users’ needs.

4.2 Workflow Management

We run the workflow management platform in a Celery cluster deployment.
Celery handles tasks asynchronously based on a job queue, which communi-
cates through message passing. We employ Redis as a broker to exchange mes-
sages between the scheduler and worker services. For all tasks, we implemented
PythonOperators for executing the logic of all components.The DAG for orches-
trating the workflow is defined in Python. The definition of the DAG focused
on scalability for the examination of larger infrastructures and extensibility for
handling paradigmatically different services (e.g., different storages or IaC defini-
tions). Conditional branching (as indicated in the example above) is introduced
by placing a BranchPythonOperator instance in front of the branches, which is
chosen during DAG execution by conditional context evaluation. Moreover, par-
allelization of sub-workflows can be achieved by iterating over Airflow variables,
and – once per iteration – the instantiation and linking (defining the execution
order) of tasks are dynamically set. During runtime, the system would instanti-
ate a clone and analyze code function to examine a code repository for storage
definitions and afterward create a task for each process code analysis task, all
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Fig. 3. Interaction flow

of which can then run in parallel. Throughout the iterative prototypical imple-
mentation, stability could be improved by the re-implementation of the tasks by
adding atomicity and idempotency as per best practice. For that, several more
little DAG definitions (chunking them in smaller units) worked best. Failing
tasks would then not prevent the main enclosing DAG to continue. Each error
is logged for debugging and highlighted in the Airflow administration interface.
We provide documentation along with the code.

4.3 Components

We now briefly explain the implementation of the core components. We provide
Fig. 3 to show the basic interactions with the system.

Code Analysis: This component allows discovering and semantically parsing
IaC definitions. In particular, we chose to support Ansible and Docker Com-
pose encoded in YAML files. The analysis extracts, among others, details such
as Docker images or Ansible module names. Through a look-up table and sev-
eral storage & IaC dependent regular expressions we identify, for demonstration
purposes, PostgreSQL and MongoDB storages. There we fulfill the requirement
of multi-paradigmatic storage identification. The analysis factors in structural
information, retrieving the storages’ contexts and resolves any variables that
might be distributed over several IaC files. Moreover, the component can uti-
lize repository information passed through the extension interface and clone Git
repositories. Non-Git code bases can also be passed to the module by semi-
automatically pulling the contents into a specific directory, in which a listener
detects any changes and hence triggers the analysis. In doing so, (parts of) repos-
itories can be analyzed without having access privileges to the version control
system, which could be preferred from a security.
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Data Retrieval and Analysis: The component collects meta data about differ-
ent data stores. At the core, an object-relational mapper (SQLAlchemy) allows
for easy integration of a variety of storages, such as MySQL, Google BigQuery,
or IBM DB2. While running, any analysis is performed in place through the
engines of the data storages. For example, the Meta data Analysis of a Post-
greSQL database fetches the list of columns per table, data types, number of
entities, and primary key definitions. An INET -typed table would then indicate
the storage of IP addresses, which will often be considered relatable to a person.
Throughout the analysis, a look-up table is compared to the attributes using
simple named-entity recognition (NER) methods. For instance, the similarity is
measured by the Levenshtein distance on a per attribute level. Finally, proxim-
ity lists are sorted and filtered using a 0.6 threshold, which is, according to our
experiments, a viable trade-off between a low false-positive rate (i.e., excluding
sub-string matches with few characters) and the best possible true positive rate
(i.e., including matches of declined or compound words which hint at personal
data semantically). Afterward, the Data Analysis is implemented through regu-
lar expression-based search patterns (e.g., for social security, ID, or credit card
numbers). The result is a list of references (e.g., ObjectIds in a MongoDB) ,
which is appended to the report. Finally, the discovery comprises a binary clas-
sification of whether personal data have been detected. Since several meaningful
insights originate from the analysis, such as the number of matched entities, the
proximities from the meta data’s analysis, and the total number of entities in
the collection, should be weighted differently. For this purpose, we propose and
implement the T metric:

T := min(1, n)
︸ ︷︷ ︸

= 0 ∨ 1

·max(
= 0 ∨ 1

︷ ︸︸ ︷

αhasMatch,

= 0 ∨ x ∈ [0.6, 1]
︷ ︸︸ ︷

βmeanProx/100)
︸ ︷︷ ︸

= 0 ∨ x ∈ [0.6, 1]

n := total number of entities in collection
αhasMatch := min(1, total number of data matches)
βmeanProx := mean(proximities of attribute names to keywords)

In short, we propose a binary classification based on T which enables a quick
assessment of data stores. However, we store the underlying measures because
they are helpful for later possibly manual verification.

Discovery API: The API accepts any valid JSON document, which will then
be analyzed. The pattern matching works the same way as described above. A
report will be written with a user-provided identifier. Using the REST API of the
Airflow web server, interoperability with other systems can be easily achieved.

Data Inventory: The reports are persistently stored in a MongoDB database,
since the schemaless approach fits best to the potentially heterogeneous report
structures. A specialized reporting Airflow operator is responsible for appending
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report portions from the different discovery steps into one bundled report per
discovery execution. This is done by using a common DAG execution identifier,
which is passed to the reporting operator. Each part is written, regardless of
whether the following discovery steps are failing or succeeding, to provide full
transparency and indicate necessary manual interaction.

Extension Interface and GUI: Furthermore, the inventory consists of a
RESTful API and a graphical interface (GUI), through which the reports can
be requested by the data controller or supervisory authority. Initially, the users
register the repository URI and branch name, to start the workflow. Next, addi-
tional storage information which was not accessible during execution can be
completed. This includes the addition of externally managed data stores. Such
information is then provided to the discovery via Airflow variables. Further-
more, storages can be temporarily excluded from the workflows or eventually
be deleted. Such deletion is helpful when infrastructure has been redefined, and
bypassing storages with huge amounts of known non-personal content can help
to limit unnecessary processing costs. Such changes remain consistent between
multiple code analysis executions.

4.4 Deployment and Integration

The deployment works as follows. First, all services are deployed through Docker
containers. Referencing production-ready Docker images enable a quick, main-
tainable, repeatable, and deterministic deployment.Second, all critical system
partsare only accessible after successful authentication. The communication with
all accessible servers is encrypted using TLS, which was achieved by adding a
reverse proxy server, which handles encryption with the utilization of a user-
generated private key and certificate. The inventory database separates users for
read and write access. It is additionally advised to provision a virtual private
network to add another security layer. More extensive details are provided as
software documentation in the repository.

Recommended integration scenarios include automated and recurrent trigger-
ing (e.g., hourly schedule) of the workflow through the management platform.
Alternatively, the Discovery API can be triggered through CI/CD pipelines.
Moreover, to align with DevPrivOps / DevSecOps [21,22] practices, the reports
can be updated based on the workload. For example, each time the monitoring
system registers changes, the inventory process should be triggered to check for
unforeseen new sources of personal data.

5 Evaluation

To evaluate our approach, we first compare our prototype to two widely used
baseline systems, namely AWS Macie and Google CDLP, with regard to the
performance of personal data discovery. Therefore, we compile three data sets
to evaluate both (personal) data and meta data discovery in a single analysis
task. Hence, we assume a single column of 5k values (i.e., potential personal



Scalable Discovery and Continuous Inventory of Personal Data at Rest 525

data) with a meaningful column type and name (i.e., meta data). The first two
data sets are composed of a synthetic personal data generatorwhich outputs IP
addresses using a regular expression and, through lookup tables, forenames, and
surnames, which we combine (full names) to get a higher number of unique val-
ues. Besides these, we prepare a random subset of scraped personal handles from
Twitter.3 Moreover, we create a set of labeled noise to not give the veneer of
heuristics, since it would be feasible to drop empty data sets from the analysis
queue in the systems. In particular, the labeled noise has four columns named
user name, email, address and ip. It is expected that IPv4 addresses can be dis-
covered by pattern matching, whereas Full Names are a use case for classification
tasks or comprehensive lookup tables. Furthermore, Twitter Names can only be
found during classification and Labeled Noise entities should not be detected as
personal data at all.

Since AWS Macie exclusively scans files within its S3 storage, and Google
CDLP does not cover non-proprietary databases,csv files have been used for the
cloud service evaluationAvoiding interference between the experiment iterations,
each csv file has been deployed individually to a freshly provisioned storage. For
the prototype’s evaluation, the same data sets have been deployed to different
tables of a managed PostgreSQL database within the Google Cloud Platform
(PostgreSQL 13, 2 vCPUs, 3.75 GB Memory).The Google CDLP parameter
Percentage of included objects scanned within the bucket was set to 100% and
the Sampling method was set to No Sampling. No other preferences have been set
in AWS Macie’s console since comparable defaults were set. In both the Google
CDLP and the AWS Macie console, for each iteration, a one-time scan with a
pointer to the specific bucket was submitted. The prototype ran on a MacBook
Pro 2019 (2.4 GHz Intel i5 CPU, 16 GB RAM).

Table 1 summarizes the first experimental results. For both proprietary ser-
vices, there is not an indication that meta data have been analyzed at all. Google
CDLP has correctly found the 5 000 IPv4 entities per regular expression. Our
prototype is, in addition, able to find proximity between IPv4 and IP through
the meta data lookup attribute. There is some vagueness in the interpretation
of which techniques have been used to classify the Full Name entities correctly
as personal data, which only AWS Macie was able to do. It is most likely that
only pre-trained machine-learning models can achieve that task Teiresias again
correctly classified the data set via the meta data analysis. Twitter Names enti-
ties have not been recognized as personal data by any of the compared systems,
but, the data set was classified by Teiresias’ meta data analysis workflow.
In turn, the cloud services have correctly classified the Labeled Noise as non-
personal data, and the Teiresias analysis classified it incorrectly as personal
data, which is a result of the found meta data proximities and a non-empty data
set. To overcome this false positive, the weighting of the terms of T could be
refined in future work. However, yielding false positives rather than false nega-
tives rather strengthens the comprehensiveness of the discovery, since it prevents

3 https://github.com/danibram/mocker-data-generator,
https://kaggle.com/hwassner/TwitterFriends.

https://github.com/danibram/mocker-data-generator
https://kaggle.com/hwassner/TwitterFriends
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overlooking sensitive data. Balancing the results in a F1 measure, the propri-
etary services both reached a 0.57 score, each with one true positive, one true
negative, and two false negatives. The prototype’s score of 0.86 can be ascribed
to the true positive classifications of the meta data analyses. In these first exper-
iments, Teiresias outperforms AWS Macie and Google CDLP. Still, regarding
the data analysis, only a section of personal data can be discovered with pattern
matching and other rule-based detection mechanisms. Promising classification
technologies should therefore be considered to be added to the system as future
work.

In our second experiment, we measure the runtime performance, for which
we re-used the experimental setup described above. However, this time we can-
not compare AWS Macie and Google CDLP, since their underlying compute
resources are not publicly known and this would contradict fairness in perfor-
mance benchmarks.For the experiment, four different data sets with four columns
each, and different total numbers of entities (0.5–500k) have been deployed.
Afterward, we measured the execution time for the different samples. To limit
the workload to one specific data set at a time, the PostgreSQL instance was
registered to the system, containing one table per iteration, and the DAG for
data analysis was scheduled exclusively.

Fig. 4. Execution times of three runs for
different sample sizes.

Table 1. Comparative evaluation results
of DLP systems.

AWS Macie Google CDLP Teiresias

TP TN FP FN TP TN FP FN TP TN FP FN

IPv4 ➊ ➋ ➌➍

Full Name ➊ ➋ ➍

Twitter Name ➊ ➋ ➍

Labeled Noise ➊ ➋ ➍

F1-Score 0.57 0.57 0.86

TP True Positive ➊ See [14]
TN True Negative ➋ See [15]
FP False Positive ➌ Data analysis
FN False Negative ➍ Meta data analysis

The results are presented in Fig. 4. We show that there is a non-linear growth,
with 8.4 s for 50k and 17.6 s for 500k entities, which is nearly a doubling of the
required time for a tenfold higher number of entities. It can be assumed that,
with a very high number of entities, the mean execution time depends largely
on the in-place data analysis query processing costs. In contrast, with a low
number of entities, the costs for the system core functionalities and the meta
data handling make up a major part of the execution time and stay almost
constant. In summarizing, we demonstrate the applicability of our approach in
a real-world setting, since these execution times allow for discovery operations
without major time or resource consumption.
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Note, we publish all test data sets used for the evaluation to enhance both
repeatability and verifiability of our work.4

6 Limitations and Discussion

Without a doubt, the system provides a scalable framework, which illustrates an
automation concept using the proposed workflow pattern. However, for now, it
only supports a limited set of data at rest storages and types of IaC definitions.
To be used in more environments, support to connect to more popular at rest
systems should be implemented. More and more relevant processing happens also
in stream processing systems and ephemeral storages, which could be included
as well. Moreover, static code analysis techniques would complement the code
analysis features to discover also some of these additional components. Further-
more, the detection and analysis methods should be extended. Lookup tables and
regular expressions are well-functioning tools to detect many critical categories
of personal data. Nevertheless, with the help of mature natural language pro-
cessing and advanced machine learning models, better classification results can
be yielded for all kinds of unpredictable data sets. This is especially important
for audit scenarios and data that are provided by the data subject. This limi-
tation, however, was not within the scope of the paper, but recent related work
could complement our approach [23]. Future work should also focus on data link-
age attacks and anonymization or minimization methods [24]. Since the GDPR
requires data controllers to consider if it is reasonably likely (cf. Recital 26) that
personal data get de-anonymized, a DLP system could also try to (re-)combine
records from different storage systems.

Teiresias is expected to discover and inventory personal data continuously
at runtime. Related work shows how to formalize machine-readable transparency
information (encoding the purpose, legal bases, third country transfers, cate-
gories of personal data, etc.) [5,25]. At the same time, observability measures
(such as logging, distributed tracing, monitoring) can create precise data flow
models. Future research should concentrate on combining such practical privacy
engineering practices to harvest accurate and transparent information at run-
time [26,27]. Especially growing and constantly evolving microservice architec-
tures are not to be inventoried manually anymore. Therefore, there is an urgent
need for more automated tools that help data controllers to keep track of their
processing activities.

7 Conclusion

In this paper, we presented a DLP approach that monitors a system under exam-
ination for personal data at runtime continuously. With these contributions,

4 https://github.com/teiresias-personal-data-discovery/evaluation.

https://github.com/teiresias-personal-data-discovery/evaluation
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data controllers are provided with working measures for aligning with regula-
tory frameworks such as the GDPR. Moreover, supervisory authorities can uti-
lize Teiresias to audit infrastructures. Practical applicability has been demon-
strated through a comparative evaluation. We emphasize that the approach pri-
marily targets cloud native systems, but is also applicable to cloud-enabled ones.
The latter, e.g., in legacy-cloud hybrids, would only need a lightweight custom
middleware component to be connected to the proposed APIs. Within the wider
prospects, our workflow could be extended to not only detect personal data (and
other kinds of sensitive information) but also support efficient distributed data
deletion.
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