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Abstract. QoS prediction algorithm requires to be real-time to be inte-
grated with most real-time service recommendation or composition algo-
rithms. However, real-time algorithms are prone to compromise on the
solution quality to improve their responsiveness, which we aim to address
in this paper. The collaborative filtering (CF) technique, the most widely
used QoS prediction method, consider the influences of all users/services
while predicting the QoS value for a given target user-service pair. How-
ever, the presence of untrustworthy users/services, whose QoS invocation
patterns are different from the rest, may lead to degradation in predic-
tion accuracy. Moreover, in many cases, the quality of the prediction
algorithms often deteriorates to ensure faster responsiveness due to their
inability to capture non-linear, higher-order, and complex relationships
among user-service QoS data. This paper proposes a trust-aware QoS
prediction framework leveraging a novel graph-based learning approach.
Our framework (TRQP) is competent enough to identify trustworthy
users and services while learning effective feature representation for find-
ing a rich collaborative signal in an end-to-end fashion. Our experiments
on the publicly available WS-DREAM-1 dataset show that TRQP is not
only eligible as a real-time algorithm but also is well capable of han-
dling various challenges associated with QoS prediction problems (e.g.,
extracting complex non-linear relationships among QoS data) and out-
performed major state-of-the-art methods.

1 Introduction

Recommending suitable service for a target user comes under commercial and
personal interest. However, it is a challenge in a decentralized environment,
where the functionally equivalent web services are increasing rapidly. Due to
the frequent addition of new functionally redundant services, obtaining the QoS
profile for each service for every user is practically infeasible and time/resource-
consuming. Therefore, QoS prediction [6] of services across different users
appears as a fundamental problem to solve.
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Recent studies reveal that collaborative filtering (CF)-based methods are
most effective for QoS prediction [24]. CF-based methods exploit the QoS log for
predicting the QoS value. The memory-based CFs [18,22] are the most simplistic
methods by design for QoS prediction. However, they fail to achieve a desirable
prediction accuracy due to many challenges, including the data sparsity, scalabil-
ity, cold-start, etc. Model-based CFs (e.g., matrix factorization [11], factorization
machines [14], deep-learning-based [21] approaches) and a few hybrid methods
[2,4] combining memory-based and model-based CF have been introduced to
address the above challenges. Although these methods are able to achieve sat-
isfactory performance, however, most of them are not suitable for the real-time
system due to their slower responsiveness [2,4]. On the other hand, the meth-
ods with faster responsiveness have significantly low prediction accuracy [18].
A clear trade-off between the prediction time and prediction accuracy has been
observed in the literature [6]. Some recent papers attempted to address this issue
[3]. However, due to the absence of quantitative measurement of prediction time
to designate an algorithm to be a real-time one, these works are yet to be faster
enough to be chosen as a real-time algorithm.

Another important observation is that most of the conventional CF-based
methods consider the influence of every user/service to predict the QoS of a
target user-service pair. However, all the users/services present in the QoS log
are not trustworthy because they may have very different QoS invocation pat-
terns compared to the rest. These users/services are generally referred to as
grey-sheep [8]. The influence of grey-sheep users/services in the computation
of the QoS of non-grey-sheep users/services lead to highly inaccurate results.
Avoiding untrustworthy users/services could improve the QoS prediction accu-
racy. Li et al. [10] proposed a reputation algorithm for detecting trustworthy
users based on geographical location, which could result in the inappropriate
set of untrustworthy users since geographical distance may not be equivalent
to network-wise distance. The authors in [17] proposed a two-phase K-means
clustering-based credibility-aware QoS prediction method, where a cluster with
a minimum number of users is considered untrustworthy. However, the clusters
with minimum number of users can still be large set. The authors in [12,15] pro-
vided a similar approach for detecting grey-sheep using 3σ rule. Although these
methods were proposed to detect the untrustworthy users/services, the notion
of trustworthiness, however, is yet to be standardized.

In this paper, we propose a real-time, trust-aware QoS prediction algorithm
using graph-based learning that can achieve reasonably high prediction accuracy.
The graph has been established as a functional data structure that can explore
higher-order connectivity (i.e., depth of relationship) in the non-euclidean data
space, which helps the graph exploit every possible relationship from nodes
and edges. In recent years, graph neural network (GNN) [9] has attracted vast
research attention. However, to the best of our knowledge, QoS prediction using
graph-based learning is mostly unexplored in the literature. We now summarize
the major contributions of our paper:

(i) We propose a novel framework for real-time QoS prediction (TRQP) utiliz-
ing a graph convolution network that captures the multi-hop collaborative signal
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by the node message passing and aggregating them over the users/services. The
comparative experimental analysis with ablation study shows the efficiency of
TRQP in terms of prediction accuracy and prediction time.

(ii) We propose an effective method for identifying trustworthy
users/services. Our analysis shows that TRQP improved the accuracy for the
non-gray-sheep users/services.

(iii) We performed extensive experiments on publicly available WS-DREAM-
1 dataset [23] to validate the performance of TRQP.

In subsequent sections, we formulate the problem and discuss our solution.

2 Formulation of QoS Prediction Problem

Given a set of n users U = {u1, u2, . . . , un} with their contextual data (consist-
ing of latitude, longitude, country, and autonomous systems), a set of m services
S = {s1, s2, . . . , sm} with the set of contextual data (includes latitude, longi-
tude, country, service provider), and their partial interactions in terms of a QoS
parameter q given in the form of a sparse QoS log matrix Q, the objective of the
QoS prediction problem is to predict the value of the QoS parameter for a target
user-service pair, where each valid entry of Q (say, qij) represents the value of q
of sj ∈ S when invoked by ui ∈ U .

The conventional collaborative filtering (CF) based approaches fail to achieve
high accuracy due to the presence of grey-sheep users/services [8]. Since grey
users/services have their unique QoS invocation patterns, predicting the QoS
for the non-grey-sheep users/services with the help of the QoS patterns of grey-
sheep users/services results in a high prediction error.

The main objective of this paper is to identify the grey-sheep users/services
from the given set of users and services and come up with a prediction framework
that not only provides a high prediction accuracy but also has a lower prediction
time to make the framework compatible with a real-time system.

3 Proposed QoS Prediction Framework

In this section, we discuss different modules of our solution framework (namely,
TRQP) for trust-aware QoS prediction problem.

3.1 Identification of Trustworthy Users and Services

The first component of TRQP focuses on identifying the grey-sheep
users/services. We first compute an abnormality score of each user ui and a
service sj (say, A (ui)/A (sj)) as described in [8]. A user ui (or service si) is
considered to be more trustworthy as compared to another user uj (or service
sj) if A (ui) is less than A (uj) (or, A (si) < A (sj)). A user ui ∈ U (service
sj ∈ S) is called grey-sheep, if A (ui) (A (sj)) is more than a given threshold T u

A

(T s
A ). T u

A and T s
A are hyper-parameters, required to be set externally. In this
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Fig. 1. Model architecture for TRQP

paper, we consider T u
A = μu

A +c∗σu
A (T s

A = μs
A +c∗σs

A ), where μu
A and σu

A (μs
A

and σs
A ) are the mean and standard deviation of the abnormality scores of users

(services), respectively. c is a hyper-parameter, which can be tuned externally.
Once the grey-sheep users and services are identified, we remove them from the
given list of users and services to train our model for prediction. In the next
subsection, we present the details of our model.

3.2 Design of the Learning Framework for TRQP

In this subsection, we discuss our proposed architecture (designated as, TRQP)
for QoS prediction. TRQP is an ensemble learning model combining two net-
works (i.e., GM and DM), as shown in Fig. 1. Each of these networks includes two
separate modules. The first module is accountable for computing user/service
feature embedding, the second module is responsible for QoS prediction.

GM consists of a graph convolution network [9] (say, GConv) for obtaining
user/service feature embedding followed by a multi-layer perceptron (MLP) for
QoS prediction, where DM comprises a deep prediction framework (say, DPN) for
generating user/service feature embedding followed by an MLP for prediction.
A final MLP is used in TRQP to aggregate the outputs of GM and DM for the
final prediction. We now elaborate each of these modules below.

3.2.1 Architecture of GM. Here, we introduce the graph modeling for the
prediction problem. We begin with defining the QoS prediction graph.
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Definition 1 (QoS Prediction Graph (QPG)). A QoS prediction graph
G = (V1 ∪V2, E) is a bipartite graph, where the vertices V1 and V2 represent the
set of users U and the set of services S, respectively. An edge eij = (v1

i , v
2
j ) ∈ E

exists between two vertices v1
i ∈ V1 and v2

j ∈ V2 if the QoS log Q includes a
valid QoS entry for the service sj corresponding to v2

j invoked by the user ui

corresponding to v1
i . �

We represent the QPG in terms of an adjacency matrix A(n+m)×(n+m), which is
used in graph convolutional network to obtain user/service feature embedding.
However, instead of using A by itself, we normalize A, so that more influence of
the higher degree nodes can be avoided during learning [9]. Moreover, normal-
ization helps in scaling. The normalized matrix is denoted by Ā = D− 1

2 AD− 1
2 ,

where D is a diagonal matrix representing the degree of each node of the QPG
G by its diagonal elements. It may be noted, each non-zero element of Ā, i.e.,
Ā(i, j), is normalized by the square root of the number of invocations of the
corresponding user ui and service sj as recorded in Q, i.e., Ā(i, j) = A(i,j)√

dii.
√

djj

.

Each node of QPG is associated with an embedding representing the features
of that node (i.e., initial user/service feature embedding consisting of the latent
representation of QoS profile and contextual data of user/service of length f).

3.2.2 Description of GConv: We now discuss the architecture of GConv, as
shown in Fig. 1(c). We begin with illustrating the primary component of GConv,
i.e., GConv-unit, as presented in Fig. 1(a). GConv-unit takes the normalized
adjacency matrix ĀN×N and an input feature matrix F i with dimension N × f ,
where N = (n + m). The objective of a GConv-unit is to accumulate the input
feature embedding of each node vk

i ∈ (V1 ∪ V2), k ∈ {1, 2} of G with the feature
embedding of its subsequent hop (i.e., the node directly connected to vk

i through
an edge in E of G), as modeled by the four equations of Fig. 1(a). Therefore, the
output of the GConv-unit is another feature matrix of the same dimension.

The user/service embedding matrix E serves as the input feature embedding
matrix for GConv, i.e., F 0 = E . The initial node embedding for each node
vk
i ∈ (V1 ∪ V2), k ∈ {1, 2} of G is refined while propagated through multiple

GConv-units by accumulating the features of other nodes directly/indirectly
connected to vk

i via a path in G. Therefore, in a GConv network with L number
of GConv-units, the final embedding for each node in QPG is able to aggregate
the feature embedding of all neighbors reachable through L-hops.

3.2.3 Description of MLP of GM: An MLP is used for QoS prediction in
GM. The network is trained with a sample for each ui ∈ U and sj ∈ S such
that qij �= 0 in Q. The concatenation of the features of ui and sj obtained from
GConv is used as the feature to train the MLP, while qij is served as the target
value. It may be noted, the MLP is trained before the deployment of TRQP.

3.2.4 Architecture of DM: The architecture of DM is similar to GM. Here,
instead of GConv, a deep prediction network (DPN) comprising DPN-unit (refers
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to Fig. 1(b)) is used to generate the user/service embedding, while a following
MLP is used for QoS prediction. The architecture of DPN is similar to GConv.
The only difference in DPN is that the adjacency matrix is not used in DPN.

3.2.5 Architecture of TRQP: As discussed earlier, TRQP comprises GM,
DM, and an additional MLP to combine the outputs of GM and DM (Refer to
Fig. 1(d)). The MLP is trained before the deployment of TRQP as well. Each
training sample of MLP consists of a feature vector of size 2, the outputs of GM
and DM, for each ui ∈ U and sj ∈ S such that qij �= 0 in Q. qij is again served
as the target value. The output of the MLP is considered the final output of
TRQP.

Finally, we employ an outlier detection algorithm [3] for detecting outliers
from the dataset, which are removed to measure the performance of TRQP. The
next section presents the performance of TRQP through experiments.

4 Experimental Analysis

We have implemented our proposed method in TensorFlow with Python. The
training of TRQP was done on NVIDIA’s Quadro RTX 3000/PCIe/SSE2
GPU with 1920 cores, and 6 GB memory. For testing, we used i9-10885H @
2.40 GHz×16 processor with x86 64 CPU with 128 GB RAM.

To validate the performance of TRQP, we performed extensive experiments
on WS-DREAM-1 dataset [23]. Table 1 shows the description of the dataset used
for our experiment.

Table 1. WS-Dream-1 dataset description

QoS (# user, # service) Min Max Mean Median Std. Dev

Response time (RT) (339× 4998) 0.001 19.999 0.915 0.319 2.000

Throughput (TP) (339× 5004) 0.017 1000.0 46.786 14.018 108.918

The configuration of TRQP, used for our experiments, is as follows. For
identifying grey-sheep users/services, we used c = 2 throughout our experiments.
We reported our results by eliminating 3% outliers. The size of initial user/service
feature embedding is 255. Our GConv and DPN includes 2 GConv-units and 2
DPN-units, respectively. In our experiment, we have used ADAM optimizer and
mean squared error as the loss function [7].

4.1 Experimental Analysis

We compared the performance of TRQP with 14 major state-of-the-art (SoA)
methods with and without trustworthiness taken into consideration. Tables 2(a)
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and (b) show the comparative analysis of TRQP in terms of the prediction
accuracy, measured by mean absolute error (MAE) [3]. Figure 2(a) shows the
comparative study of TRQP in terms of the prediction time. Below we summarize
our observations from Tables 2(a), (b) and Fig. 2(a).

(i) In all cases other than OffDQ, TRQP outperformed the SoA for both
training percentages for both datasets. The improvement of TRQP over the
second-best value for each of the 4 cases is shown in the final row of Table 2(b).

(ii) Although OffDQ performed better than TRQP in terms of the prediction
accuracy, the results of the OffDQ was presented by removing 5% to 15% outliers.
However, in our case, we removed 3% outliers and about 10% entries due to grey-
sheep analysis. Moreover, TRQP performed better than OffDQ in terms of the
prediction time (refer to Fig. 2(a)). While the prediction time for OffDQ is in
the order of 10−1 s, the same for the TRQP is in the order of 10−5 s.

Table 2. Comparison of TRQP with SoA on prediction accuracy (MAE)

Without Trust-aware Prediction

Methods
Response time Throughput

10% 20% 10% 20%

WSRec [22] 0.6394 0.5024 19.9754 16.0762

NRCF [16] 0.5312 0.4607 - -

RACF [18] 0.4937 0.4208 - -

GMF [1] 0.4737 0.4233 - -

DAFR [21] 0.3461 0.3404 16.9020 15.5670

LBFM [20] 0.3750 0.3421 - 11.9291

CNCF [5] 0.3380 0.3140 18.189 16.826

OffDQ [3] 0.2000 0.1800 9.1600 8.6700

TRQP 0.2540 0.2520 10.5760 9.5660

(a)

With Trust-aware Prediction

Methods
Response time Throughput

10% 20% 10% 20%

TAP [15] 0.5502 - - -

RAP [13] 0.5250 0.4400 19.4333 16.4104

CAP [17] 0.5030 0.4394 15.1148 13.8192

RMF [19] 0.4877 0.4414 - -

LRMF [10] 0.4719 0.4384 - -

S-RAP [12] 0.4833 - - -

TRQP 0.2540 0.2520 10.5760 9.5660

Improvement 24.85% 19.75% 30.03% 19.81%

(b)

(iii) One of the crucial characteristics of a real-time QoS prediction algorithm
is that it is supposed to have negligible prediction time compared to the service’s
response time. This makes the prediction framework compatible with a real-
time recommendation system, where a service is first recommended based on
its predicted QoS, before its execution. Therefore, one preliminary criterion of a
real-time prediction algorithm is to have a much lesser prediction time compared
to the response time of services. As observed in Table 1, the minimum response
time of service is in order of 10−3 s. In comparison to the response time of
services, our framework has an insignificant prediction time (i.e., in the order of
10−5 s), which makes TRQP a real-time algorithm.

(iv) Furthermore, TRQP outperformed the SoA methods that are known to
have less prediction time.

Ablation Study: From this analysis onwards we have used the RT dataset
with 10% training data. Figures 2(b) and (c) present the results for our ablation
study. Our observations from Figs. 2(b) and (c) are listed below:
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(i) Figure 2(b) shows the model ablation study, where we reported the perfor-
mance of the individual components of TRQP. As evident from Fig. 2(b), TRQP
performed the best in the presence of all its components.

(a) (b)

(c)

Fig. 2. (a) Comparison of TRQP with respect to SoA on prediction time; Ablation
study (b) Model ablation; (c) Feature ablation

(ii) As observed in Fig. 2(a), GM and DM have better prediction times as
compared to TRQP. However, TRQP performed better than GM and DM in
terms of prediction accuracy.

(iii) We reported the performance of all the networks for L = 1, 2, 3 (i.e.,
GConv/DPN with 1/2/3 GConv-units/DPN-units). For L = 2 and L = 3, the
performance of TRQP is almost the same and better than the performance for
L = 1. This may be due to the over-smoothing problem in graph convolution
network [9]. GConv with more number of GConv-units cannot improve its per-
formance, and it often leads to severe degradation in the feature extraction since
it may end up obtaining similar embedding for all the nodes in QPG. In our
experiment, we used 2 GConv-units.

(iv) Figure 2(c) shows the feature ablation study. We reported the perfor-
mance of TRQP with only contextual features, only QoS features, and their
combinations. As it turned out, TRQP, with the combination of the contextual
and QoS features, performed the best as compared to the others. The perfor-
mance of TRQP with only the contextual feature was not good. TRQP achieved
a 25.6% improvement on average over TRQP with only contextual features.
However, in the absence of contextual features, we can still use TRQP with only
QoS features for the prediction, as TRQP achieved only a 7.1% improvement on
average over TRQP with only QoS features.
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(v) Furthermore, we observed the overall MAE for the non-grey-sheep users
or services obtained from TRQP is 0.254, which is less than the one obtained
from TRQP with grey-sheep users or services (which is 0.261 as reported). This,
in turn, shows the effectiveness of our trustworthiness analysis.

In summary, TRQP without grey-sheep users and services achieved reason-
ably high prediction accuracy while being suitable for a real-time system.

5 Conclusion

This paper proposes a trust-aware, real-time QoS prediction framework. To the
best of our knowledge, TRQP is one of the first methods in the QoS prediction
literature to leverage the graph-based feature embedding exploiting the graph
convolution for QoS prediction. The graph convolution over bipartite represen-
tation of QoS data helps exploit the non-linear, deep/higher-order, and com-
plex relationship among user/service QoS data that enhances the collaborative
signal for better QoS prediction. We also propose a means to determine trust-
worthy users/services. Focusing on the trustworthiness problem, identifying the
grey-sheep users/services, and removing them to achieve better prediction accu-
racy proves the usefulness of our framework for trust-aware QoS prediction. The
experimental analysis in the paper shows that TRQP outperformed major SoA
methods in terms of prediction accuracy and/or prediction time.

As a future endeavor, we wish to develop more sophisticated algorithms for
predicting the QoS for untrustworthy users/services. We also aim to explore a
Spatio-temporal graph convolution for time-aware QoS prediction.
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