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Preface

We were pleased to hold the 20th International Conference on Service-Oriented
Computing (ICSOC 2022) back in person after organizing it virtually for two con-
secutive years due to the COVID-19 pandemic. The present edition took place in the
beautiful city of Sevilla (Spain) from November 29 to December 2, 2022. The con-
ference is the premier international forum for academics, industry researchers, devel-
opers, and practitioners to report and share groundbreaking work in service-oriented
computing. It provides a high-quality forum for presenting results and discussing ideas
that further our knowledge and understanding of the various aspects (e.g. application
and system aspects) related to service computing with a particular focus on artificial
intelligence, machine learning, big data analytics, the Internet of Things (IoT), and
emerging technologies, including quantum computing, blockchain, chatbots, and green
IT. This edition of ICSOC built upon a history of successful series of previous editions
in Toulouse (France), Hangzhou (China), Malaga (Spain), Banff (Canada), Goa (India),
Paris (France), Berlin (Germany), Shanghai (China), Paphos (Cyprus), San Francisco
(USA), Stockholm (Sweden), Sydney (Australia), Vienna (Austria), Chicago (USA),
Amsterdam (the Netherlands), New York (USA), Trento (Italy), Dubai (United Arab
Emirates, virtual), and last year’s online edition.

ICSOC 2022 followed the two-round submission and reviewing process introduced
in the previous edition. It was organized in five tracks as they relate to service com-
puting research: (1) Service-Oriented Technology Trends, (2) Machine Learning and
Artificial Intelligence, (3) Big Data Analytics, (4) Internet of Things (IoT), and
(5) Emerging Technologies. Each track was managed by a track chair, hence enhancing
the quality and rigor of the paper review process. The conference attracted 221 paper
submissions (31 received in the first round) co-authored by researchers, practitioners,
and academics from different countries across all continents. Each paper submission
was carefully reviewed by at least three members of the Program Committee (PC); the
reviews were followed by discussions moderated by a senior PC member who made a
recommendation in the form of a meta-review to the track chairs and PC co-chairs.
The PC consisted of 218 world-class experts in service-oriented computing and related
areas (196 PC members and 22 senior PC members) from different countries across all
continents. Based on the recommendations, and the discussions, 29 papers (13.2%)
were accepted as full papers. We also selected 15 short papers (6%). In total, 16 of the
31 papers submitted in the first round were recommended for resubmission with minor
or major revisions, and 12 of the 16 papers were accepted as full or short papers.
Additionally, ICSOC 2022 included four invited vision papers from prominent
researchers; these papers underwent a simplified review process aimed at judging
visionary ideas that can drive future research efforts.

The conference program also included two keynotes from distinguished researchers:
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e Quantum Service-Oriented Computing: Challenges and Research Directions for
Quantum and Hybrid Software System, given by Juan M. Murillo (University of
Extremadura, Spain)

e Securing Data Pipelines Along the Cloud Continuum: The MUSA Approach, given
by Ernesto Damiani (University of Milan, Italy)

Finally, tutorials, a PhD symposium, a demo session, and the following four
workshops were organized to broaden the scope of ICSOC 2022:

e The 6th Workshop on Adaptive Service-oriented and Cloud Applications (ASOCA
2022).

e The 3rd International Workshop on Al-enabled Process Automation (AI-PA 2022).

e The 3rd International Workshop on Architectures for Future Mobile Computing and
Internet of Things (FMCIoT 2022).

e The 18th International Workshop on Engineering Service-Oriented Applications
and Cloud Services (WESOACS 202).

We would like to express our gratitude to all individuals, institutions, and sponsors
that supported ICSOC 2022. We would like to thank all authors and participants for
their insightful work and discussions. We are grateful to the members of the Senior
Program Committee, the international Program Committee, and the external reviewers
for a rigorous and robust reviewing process. ICSOC 2022 paper management was
performed through the Conftool Conference Management System. We are grateful to
the professional technical support provided by Conftool system administrators.

We would like to thank the ICSOC Steering Committee for entrusting us with
organizing the 20th edition of this prestigious conference. We are grateful to all the
members of the Organizing Committee and all who contributed to make ICSOC 2022 a
successful event. We are indebted to the local arrangements team from the University
of Seville for the successful organization of all conference, social, and co-located
events. We also acknowledge the prompt and professional support from Springer, who
published these proceedings as part of the Lecture Notes in Computer Science series.

November 2022 Pablo Fernandez
Brahim Medjahed
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Antonio Ruiz Cortés

Lina Yao
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Keynotes Talks



Quantum Service-Oriented Computing:
Challenges and Research Directions
for Quantum and Hybrid Software System

Juan Manuel Murillo

University of Extremadura, Spain

Quantum Computing is raising more interest day by day. The basis provided by
Quantum Mechanics enabled the development of the Quantum Information Theory and
the first Quantum Computers. From the hardware side, the advances are undeniable.
Recently, the first 1000 qubit computer has been announced to be released next 2023.

Nevertheless, from the point of view of Software Engineering, advances in
Quantum Computing are having less visibility. Part of the research community is still
conservative and thinks that it is still early to tackle the development of quantum
software engineering techniques. The reason is that how the quantum computers of the
future will look like is still unknown. However, regardless of how they will be, there
are some facts that we can affirm today. The first is that quantum and classical com-
puters will coexist, each dedicated to the tasks at which they are most efficient. The
second is that quantum computers will be part of the cloud infrastructure and will be,
indeed already are, accessible through the Internet. Third, as is the case today, complex
software systems will be made up of smaller pieces that will collaborate with each
other. Fourth, some of those pieces will be quantum, therefore the systems of the future
will be hybrid. Finally, the coexistence and interaction between the components of said
hybrid systems will be supported by service composition and the development of
quantum services will be governed by the current general criteria of Service Engi-
neering (composability, reusability, maintainability, etc.).

Bearing all of the above in mind, this talk analyzes the challenges that the inte-
gration of quantum services poses to Service-Oriented Computing. It determines what
are the current technologies that can be used for creating and operating quantum
services, the limitations they present for doing that and those technologies that do not
exist today but can already begin to be designed.



Securing Data Pipelines Along the Cloud
Continuum: The MUSA Approach

Ernesto Damiani

Khalifa University, United Arab Emirates

In the past decade, many organizations have re-designed their operation by migrating
their key business processes (to name but a few, procurement, supply chains, Human
Resources management) to global public clouds, where scalability and cost flexibility
could be achieved. Today, a new wave of Digital Transformation is changing again
how people live, consume and work. Processes in key domains like transportation,
supply chain management and healthcare need to provide low latency, high throughput
and distributed access. Furthermore, their execution needs to take place within
well-specified perimeters supporting traffic segregation, in order to guarantee data
protection, security and resilience. The 5G architecture promises to fulfill these new
requirements, supporting a “Cloud Continuum” that allows for the deployment of
micro-services on the 5G operators core networks (edge-on-network) as a complement
to classic edge-on-premises and cloud options. Based on the approach of the MUSA
project to delivering open science research pipelines over 5G, the talk discusses the
open challenges that need to be tackled to keep this promise, from the instrumentation
of the 5G infrastructure to support for securing services and process orchestrations
along the continuum.



Contents

Service Modeling and Mining

Optimization of BPMN Processes via Automated Refactoring. . .. ........ 3
Francisco Duran and Gwen Salaiin

Control-Flow-Based Querying of Process Executions from Partially

Ordered Event Data. . . . . ... ... ... .. . . .. i 19
Daniel Schuster, Michael Martini, Sebastiaan J. van Zelst,
and Wil M. P. van der Aalst

A Framework for Extracting and Encoding Features from Object-Centric

Event Data. . . . ... .. 36
Jan Niklas Adams, Gyunam Park, Sergej Levich, Daniel Schuster,
and Wil M. P. van der Aalst

Automated RESTful API Service Discovery with Various Interface
Features. . . . ... ... . 54
Shuaijun Wang, Yuanyuan Zhou, and Zhijun Ding

Enhancing Performance Modeling of Serverless Functions via Static
ANAlYSIS. « o oo e 71
Runan Wang, Giuliano Casale, and Antonio Filieri

Service Regulation: Modeling and Recognition. . .. .................. 89
Jintao Chen, Jianwei Yin, Shuiguang Deng, Tiancheng Zhao,
and Meng Xi

Quality of Service

WebQMon.ai: Gateway-Based Web QoE Assessment Using Lightweight

Neural Networks. . . ... ... e 107
Enge Song, Tian Pan, Qiang Fu, Chenhao Jia, Jiao Zhang, Tao Huang,
and Yunjie Liu

Temporal-Aware QoS Prediction via Dynamic Graph Neural

Collaborative Learning. . . . . ... ..ottt 125
Shengxiang Hu, Guobing Zou, Bofeng Zhang, Shaogang Wu, Shiyi Lin,
Yanglan Gan, and Yixin Chen

Mobility-Aware Proactive QoS Monitoring for Mobile Edge Computing . ... 134
Ting Wei, Pengcheng Zhang, Hai Dong, Huiying Jin,
and Athman Bouguettaya



XXil Contents

TRQP: Trust-Aware Real-Time QoS Prediction Framework Using

Graph-Based Learning . . . . . ... ... ... ... .

Suraj Kumar and Soumi Chattopadhyay

Microservices

Misty: Microservice-Based Streaming Trajectory Similarity Search .. ... ...

Jiachun Tao, Zhicheng Pan, Junhua Fang, Pingfu Chao,
Pengpeng Zhao, and Jiajie Xu

BSDG: Anomaly Detection of Microservice Trace Based on Dual Graph

Convolutional Neural Network . . .. ... ... ... . . .. . . ...

Kuanzhi Shi, Jing Li, Yuecan Liu, Yuzhu Chang, and Xuyang Li

SCORE: A Resource-Efficient Microservice Orchestration Model Based

on Spectral Clustering in Edge Computing. . . .. .......... ... .......

Ning Li, Yusong Tan, Xiaochuan Wang, Bao Li, and Jun Luo

Combining Static and Dynamic Analysis to Decompose Monolithic

Application into MICrOSETVICES . . . . v oottt e et e e e

Khaled Sellami, Mohamed Aymen Saied, Ali Ouni,
and Rabe Abdalkareem

MicroSketch: Lightweight and Adaptive Sketch Based Performance Issue

Detection and Localization in Microservice Systems . .. ...............

Yufeng Li, Guangba Yu, Pengfei Chen, Chuanfu Zhang, and Zibin Zheng

Proactive-Reactive Global Scaling, with Analytics. . .. ................

Lorenzo Bacchiani, Mario Bravetti, Maurizio Gabbrielli, Saverio
Giallorenzo, Gianluigi Zavattaro, and Stefano Pio Zingaro

Semantics-Driven Learning for Microservice Annotations. . . ... .........

Francisco Ramirez, Carlos Mera-Gomez, Shengsen Chen,
Rami Bahsoon, and Yuqun Zhang

MicroEGRCL: An Edge-Attention-Based Graph Neural Network Approach

for Root Cause Localization in Microservice Systems . . ... ............

Ruibo Chen, Jian Ren, Lingfeng Wang, Yanjun Pu, Kaiyuan Yang,
and Wenjun Wu

Mining the Limits of Granularity for Microservice Annotations. . . .. ... ...

Francisco Ramirez, Carlos Mera-Gomez, Rami Bahsoon,
and Yuqun Zhang



Contents

Service Personalization, Recommendation, and Crowdsourcing

Balancing Supply and Demand for Mobile Crowdsourcing Services . . .. ...

Zhaoming Li, Wei He, Ning Liu, Yonghui Xu, Lizhen Cui,
and Kaiyuan Qi

Acceptance-Aware Multi-platform Cooperative Matching in Spatial

CrowdSOUrCINg . . . . o vt

Xiaotong Xu, An Liu, Guanfeng Liu, Jiajie Xu, and Lei Zhao

Combining User Inherent and Contextual Preferences for Online

Recommendation in Location-Based Services . . . ....................

Haiting Zhong, Wei He, Lizhen Cui, and Lei Liu

PD-SRS: Personalized Diversity for a Fair Session-Based

Recommendation System . . .. ... ... ...

Naime Ranjbar Kermany, Luiz Pizzato, Jian Yang, Shan Xue,
and Jia Wu

TagTag: A Novel Framework for Service Tags Recommendation

and Missing Tag Prediction . . . ....... ... ... .. .. .. .. ...

Wentao Chen, Mingyi Liu, Zhiying Tu, and Zhongjie Wang

Blockchain

Non-disclosing Credential On-chaining for Blockchain-Based

Decentralized Applications. . . . . ... ...ttt

Jonathan Heiss, Robert Muth, Frank Pallas, and Stefan Tai

DeepThought: A Reputation and Voting-Based Blockchain Oracle . . ... ...

Marco Di Gennaro, Lorenzo Italiano, Giovanni Meroni,
and Giovanni Quattrocchi

Blockchain-Oriented Services Computing in Action: Insights from

aUser Study .. ... ... .

Giovanni Quattrocchi, Damian Andrew Tamburri,
and Willem-Jan Van Den Heuvel

IoT and Green Computing

Maximizing Consumer Satisfaction of IoT Energy Services . ...........

Amani Abusafia, Athman Bouguettaya, and Abdallah Lakhdari

A Multi-task Learning Approach for Predicting Intentions Using Smart

Home IoT Services . . . ... .o e

Bing Huang, Boyu Zhang, Quan Z. Sheng, and Kwok-Yan Lam

XXiil



XXV Contents

Joint Optimization of Trajectory and Frequency in Energy Constrained

Multi-UAV Assisted MEC System . .. ............. ... ... ... .....

Zhuohan Xu, YanPing Yang, and Bing Shi

Services for Cloud, Edge, and Fog Computing

Dual-Tree Genetic Programming for Deadline-Constrained Dynamic

Workflow Scheduling in Cloud. . . .......... ... .. .. .. .. .. .. .....

Yifan Yang, Gang Chen, Hui Ma, and Mengjie Zhang

Cost-Aware Dynamic Multi-Workflow Scheduling in Cloud Data Center

Using Evolutionary Reinforcement Learning. . ... ...................

Victoria Huang, Chen Wang, Hui Ma, Gang Chen,
and Kameron Christopher

Extending the Kubernetes Platform with Network-Aware Scheduling

Capabilities . . . ... ..

Angelo Marchese and Orazio Tomarchio

DeepSCJD: An Online Deep Learning-Based Model for Secure

Collaborative Job Dispatching in Edge Computing . .. ................

Zhaoyang Yu, Sinong Zhao, Tongtong Su, Wenwen Liu, Xiaoguang Liu,
Gang Wang, Zehua Wang, and Victor C. M. Leung

The Extreme Counts: Modeling the Performance Uncertainty of Cloud

Resources with Extreme Value Theory . .......... ... ... ... ... ....

Mengjuan Li, Jinshu Su, Hongyun Liu, Zhiming Zhao, Xue Ouyang,
and Huan Zhou

Scalable Discovery and Continuous Inventory of Personal Data at Rest in

Cloud Native SyStems . . . . . oottt e e

Elias Griinewald and Leonard Schurbert

Cheops, a Service to Blow Away Cloud Applications to the Edge. . . ... ...

Marie Delavergne, Geo Johns Antony, and Adrien Lebre

GreenFog: A Framework for Sustainable Fog Computing. . . ... .........

Adel N. Toosi, Chayan Agarwal, Lena Mashayekhy,
Sara K. Moghaddam, Redowan Mahmud, and Zahir Tari

Artificial Intelligence and Machine Learning for Service Computing

FedHF: A High Fairness Federated Learning Algorithm Based

on Deconfliction in Heterogeneous Networks . . . ....... ... ... ... ....

Zhipeng Gao, Yingwen Duan, Yang Yang, Lanlan Rui, and Chen Zhao



Contents XXV

A Collaborative Framework for Ad Click-Through Rate Prediction
in Mobile App Services. . .. ... ... .. 567
Xianjin Rong, Jinghua Zhu, and Heran Xi

Process-Oriented Intents: A Cornerstone for Superimposition of Natural

Language Conversations over Composite Services. . . .. .. ............. 575
Sara Bouguelia, Auday Berro, Boualem Benatallah, Marcos Bdez,
Hayet Brabra, Shayan Zamanirad, and Hamamache Kheddouci

A Bi-directional Category-Aware Multi-task Learning Framework

for Missing Check-in POI Identification. . . ... ....... ... ... ... ..... 584
Junhang Wu, Ruimin Hu, Dengshi Li, Lingfei Ren, Wenyi Hu,
and Yilong Zang

Performance and Cost-Aware Task Scheduling via Deep Reinforcement
Learning in Cloud Environment . . .. ... ... ... ... ... ... ... ..... 600
Zihui Zhao, Xiaoyu Shi, and Mingsheng Shang

IDGL: An Imbalanced Disassortative Graph Learning Framework for Fraud

Detection . . . . . oo 616
Junhang Wu, Ruimin Hu, Dengshi Li, Lingfei Ren, Wenyi Hu,
and Yilong Zang

Vision Papers

A Challenge for the Next 50 Years of Automated Service Composition. . . . . 635
Marco Aiello

Quality Engineering in Al Services . . ... ...... .. .. .. .. .. . .. .. .. 644
Fabio Casati and Boualem Benatallah

Service-Based Wireless Energy Crowdsourcing. . .. .................. 653
Amani Abusafia, Abdallah Lakhdari, and Athman Bouguettaya

Training and Serving Machine Learning Models at Scale. . . ... ......... 669
Luciano Baresi and Giovanni Quattrocchi

Author Index . ... ... .. .. . . ... e 685



Service Modeling and Mining



®

Check for
updates

Optimization of BPMN Processes
via Automated Refactoring

Francisco Durdan!®) and Gwen Salaiin?

1 ITIS Software, University of Malaga, Mélaga, Spain
fdmQuma.es
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France

Abstract. Business process optimization has become a strategic aspect
of companies’ management due to the potential of cost reduction and
throughput improvement. There are several ways to achieve process opti-
mization, depending on the level of expressiveness of the processes at
hand. In this paper, we focus on processes described using BPMN, but
also including an explicit description of execution time and resources
associated with tasks. We propose a refactoring procedure whose final
goal is to reduce the total execution time of the process given as input.
Such a procedure relies on refactoring operations that reorganize the
tasks in the process by taking into account the resources used by those
tasks. This process refactoring technique is fully automated by a tool that
we implemented and applied on several examples for validation purposes.

1 Introduction

Context. Business process optimization is a strategic activity in organizations
because of its potential to increase profit margins and reduce operational costs.
Optimization is however a difficult task to be achieved manually since several
parameters should be taken into account (execution times, resources, costs, etc.).
These parameters are not systematically included in existing languages used for
modelling and managing business processes. Moreover, optimization requires a
high level of expertise that not all users have. Automated techniques are thus
required to optimize a given process for certain criteria of interest.

In this work, we assume that a description of a business process is given using
the standardized workflow modelling language BPMN. This language allows us
to define the set of tasks involved in a process and the order in which they should
be executed. This behavioural description of the model can be extended with
information on the time each task takes to execute and an explicit description of
the resources required for executing each task. As a consequence, the resulting
model of the process does not only take into account behavioural aspects but
also quantitative aspects.

Motivations. Processes are not built once and for all in a monolithic way. Dur-
ing their life time, processes have to be changed or updated for several possible
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reasons: addition or suppression of some specific task, improvement of the pro-
cess with respect to a given criterion (e.g., overall execution time), adjustment of
the process to consider a new regulation or internal directive, etc. When writing
a process or when updating it as suggested before, the quality or correctness of
the process has to be preserved. This might not be the case if process writing
or reengineering/refactoring is achieved manually by human beings. Moreover,
refactoring steps may be very difficult to apply when BPMN models also take
into account quantitative aspects and when some criteria, such as resource usage
or execution time, are used to guide the refactoring steps so as to generate an
optimal process (e.g., the process must execute as quickly as possible). There-
fore, there is a need for automated refactoring techniques in order to generate
an optimal version of a process during its writing or update.

Proposal. Given a process model, we propose some optimization techniques that
rely on the refactoring of the given process. By changing the structure, we aim at
generating a different process whose overall execution time is reduced compared
to the original process. The main idea is to increase the level of parallelism
of the tasks involved in the process. The refactoring steps should however be
applied with care. For instance, it is not helpful to put in parallel two tasks
using a same resource since they will compete for such a resource and a resource
cannot be involved in two different tasks at the same time. Moreover, it does not
always make sense to put two tasks in parallel, and in some cases such causal
dependencies must be preserved (e.g., some product must be packaged before its
delivery).

More precisely, we propose in this paper optimization techniques based on
process refactoring. Our approach takes as input a BPMN process extended with
time and resources associated with tasks, and generates as output a new version
of this process. To do so, we first analyze the process to identify tasks that
could be executed earlier because the resources that one of these tasks requires
for its execution are available before its execution begins. Alternative processes
are generated by moving these tasks backwards (closer to the initial node). Our
approach works using an iterative approach. Each newly generated process is
similarly analyzed, and new alternative processes are generated in the same way.
Since many processes can be synthesized by our approach, there are different
ways to generate and handle these new processes. We have implemented and
carried out experiments with two strategies: (i) an exhaustive exploration of all
possible processes generated by refactoring, and (ii) a guided exploration of the
new processes by using some heuristic. All these techniques are fully automated
in a tool that we implemented and which has been validated on many examples.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces the considered subset of the BPMN notation and its extension with time
and resources. Section 3 provides an overview of the different steps of our app-
roach. Section 4 focuses on the refactoring process to change the structure of the
process. Section b presents the tool support and some experimental results to
assess the accuracy and performance of our approach. Section 6 compares our
solution to related work and Sect. 7 concludes.
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2 BPMN with Time and Resources

BPMN 2.0 (BPMN, as a shorthand, in the rest of this paper) was published as
an ISO/IEC standard [10] in 2013 and is nowadays extensively used for modeling
and developing business processes. In this paper, we focus on activity diagrams
including the BPMN constructs related to control-flow modeling and behavioural
aspects. Beyond those constructs, execution time and resources are also associ-
ated with tasks. Figurel summarizes the BPMN constructs supported in this
work.

Specifically, the node types event, task, and gateway, and the edge type
sequence flow are considered. Start and end events are used, respectively, to
initialize and terminate processes. A task represents an atomic activity that has
exactly one incoming and one outgoing flow. A sequence flow describes two nodes
executed one after the other in a specific execution order. A task and a flow may
have a duration or delay. The timing information associated to tasks and flows is
described as a literal value (a non-negative real number, possibly 0). Resources
are explicitly defined at the task level. A task that requires resources can include,
as part of its specification, the required resources. Information about time and
resources can be used jointly for a given task. In such a case, it means that
the task needs those resources to be able to execute, and once the resources are
acquired, the task is going to execute for the specified duration.

Sequence flows can be of two possible types, to explicitly specify flows that
must be preserved during the refactoring process. A strong flow corresponds to
a causal dependency between two nodes that cannot be changed (e.g., some
product must be packaged before its delivery). A weak flow corresponds to a
loose connection between two nodes that may be preserved or not (e.g., the
product could be delivered before the client pays for it).

Gateways are used to control the divergence and convergence of the execution
flow. We consider in this work the two main kinds of gateways used in activity
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diagrams, namely, ezclusive and parallel gateways. Gateways with one incoming
branch and multiple outgoing branches are called splits, e.g., split parallel gate-
way. Gateways with one outgoing branch and multiple incoming branches are
called merges, e.g., merge parallel gateway. An exclusive gateway chooses one
out of a set of mutually exclusive alternative incoming or outgoing branches. A
parallel gateway creates concurrent flows for all its outgoing branches or syn-
chronizes concurrent flows for all its incoming branches.

3 Overview of the Approach

In this section, we give an overview of the different steps of our approach. We
start by introducing the simulation-based analysis with which possible improve-
ments in the structure of the process in terms of resource usage are identified.
Then, we present the refactoring procedure and how different strategies are used
to explore the possible solutions.

3.1 Simulation-Based Analysis

In this work, the main idea of the refactoring approach is to change the structure
of the process in order to reduce its total execution time. Since optimization
mostly targets process execution time, we need to compute this time for a given
process. To do so, we rely on simulation-based techniques which turn out to
simplify the computation of execution times in the presence of resources. Indeed,
a task needs to acquire the required resources to be able to execute, and if the
resources are not available the task cannot execute. The competition for resources
may thus induce delays, and these delays are not easy to identify. To analize the
process, we simulate it a certain number of times (this is a parameter of the
approach). During these executions, some information about the execution of
tasks (pending, executing, completed) and the usage of resources is stored. At
the end of each execution, we store the time taken for completing the process.
The average of those times allows us to compute the average execution time of
the process.

After completion of the simulation, there is an analysis step which explores
the simulation log for retrieving specific information. In particular, we look for
specific timestamps during the simulation at which a task is in a pending state
(meaning that this task is still waiting to be able to execute), and all resources
required for executing this task are available. This means that this specific task
could execute earlier in a process, and we will use this information to change the
structure of the process by trying to move this task backwards in the process.
This analysis step returns as output a set of tasks that could be executed earlier.
Each task in this set verifies the aforementioned constraints (pending task but
with required resources available) during a period of time of the simulation.

3.2 Refactoring Procedure

A refactoring step takes as input a BPMN process and a task that can be exe-
cuted earlier in that process. Then, depending on the type of the preceding node,
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Fig. 2. Overview of the approach

a specific refactoring operation is applied. Such refactorings represent changes
in fragments of the process, and multiple refactoring operations may be applied
consecutively. To do so, the refactoring procedure relies on the generation and
exploration of possible solutions and keeps track of the visited processes to avoid
recomputations.

The refactoring operations are presented in Sect.4. A refactoring operation
can be seen as a model transformation L = R if C, with L and R subprocess
patterns and C' a condition on them. Each refactoring operation results in the
transformation of a process (or model) into another. Thus, a refactoring opera-
tion can be applied if its left-hand side L matches a subprocess (or submodel) of
the current process P, that is, P|, = Lo, for some match ¢ and position p, and
the condition C'is satisfied for that match, that is, if C'o is evaluated to true. The
application of such a refactoring rule results in the replacement of the matched
subprocess P|, by the right-hand side Ro. By repeatedly applying the available
refactoring transformations on different parts of a process, new processes are
generated. Strategies are thus necessary to explore all these new processes, and
eventually return the optimal one.

Figure 2 depicts the input and outputs as well as the main steps of the refac-
toring process from a global perspective. The approach takes as input a BPMN
process that includes a description of time and resources as shown in Sect. 2.
This process is moved to the queue of processes to be explored. One process
is then extracted from this queue (the original one in the first iteration) and
the simulation-based analysis is carried out to identify the tasks that could be
executed earlier. For each of these tasks, the corresponding refactoring operation
is applied, generating a new process. Since the refactoring operation just moves
the given task one step backwards, the resulting process may require additional
changes. Therefore, if the resulting process has not been explored yet, and if the
resulting process respects the strong dependencies defined in the original process
(causal dependencies corresponding to strong flows must be maintained by the
refactoring process), this new process is moved to the queue of processes to be
explored. Otherwise, it is moved to the queue of processes already explored.
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The refactoring procedure consists in the iterative application of refactoring
operations. Since there are different ways to refactor a process, it is not possi-
ble to know at the beginning of the approach which refactoring step will lead
to the best result (process with the minimal execution time). The exhaustive
exploration of the search space, achieved by repeatedly attempting each pos-
sible refactoring operation on the tasks that may be moved backwards, may
be time-consuming. To reduce the exploration space, we propose two different
strategies:

— The first strategy consists in a bounded breadth-first search. It carries on an
exhaustive exploration of all processes to be explored up to a certain bound
given as parameter. For each possible task to be moved earlier in the process,
the corresponding refactoring operation is applied. If the resulting process
has not been analyzed before, it is placed in the to-be-explored queue. The
procedure continues while there are processes in such a queue and the bound
has not been reached.

— The second strategy, instead of exploring the search graph by applying refac-
toring operations on all tasks that can be moved earlier, only expands by
applying refactoring on the task closer to the start event in the BPMN pro-
cess. The intuition is that by moving this task backwards, it will be placed
closer to the initial event, thus reducing the number of times it may be moved
in the future. In other words, we try to move first the tasks closer to their
final positions in the process. This strategy is referred as heuristic-based in
the rest of this paper.

Several experiments showing the behaviour of the following exploration algo-
rithms, including the use of these two strategies are presented in Sect. 5.

4 Refactoring Operations

This section presents a set of refactoring operations. In each of these refactoring
operations, given as input a process and a task that has to be moved earlier
in the process, a new process is returned as output. The refactoring operation
to be applied depends on what type of node precedes the task to be moved
backwards. There are actually three main cases: this node can be another task,
a merge node, or a split node. Therefore, we will organize the rest of this section
tackling successively these three cases. For each case, the proposed refactoring
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operations are presented. Before starting, we also recall that this refactoring
step focuses on the process structure and on the usage of resources by tasks, but
does not take into account strong flows, which is handled at another level (as
explained in Sect. 3.2).

4.1 Task

This first case is rather straightforward. If a task can be executed earlier, and that
task is preceded by another task, we check whether these two tasks are sharing
some resources. If they do not share any resources, the process is transformed
to execute these two tasks within a common parallel gateway, as illustrated in
Fig. 3.

4.2 Merge Node

If the task T to be moved earlier is preceded by a merge node, there are sev-
eral possible (sub)cases. First of all, this node can be an exclusive or a parallel
gateway. Second, before that merge, there may be only tasks, only other merge
nodes, or a combination of both. We have specific operations for each of these
cases. We will introduce these operations in the rest of this subsection.

Let us first consider the case in which the merge parallel gateway is preceded
by a set of tasks T1...Tn, and none of these tasks share resources with the task
T (left-hand side of Fig.4). In that case, all tasks are gathered in parallel just
before the merge parallel gateway (right-hand side of Fig.4). Note that a split
parallel gateway is added before these tasks in order to avoid that T executes
before the tasks preceding the tasks before the merge. The preceding tasks might
be using the same resources.

Assume now that the tasks preceding the merge parallel gateway share some
resources with task T. If they all share resources, no refactoring is possible (since
adding an additional task in parallel, competing for the same resources, would
not improve the process execution time). If only one task shares resources with T,
then T is moved after that task but before the merge as shown in Fig. 5. If there
are several tasks sharing resources with T (but not all), then T is moved before
the merge and right after an additional merge parallel gateway for this subset



10 F. Duran and G. Salatin

Lhel ] = e

Fig. 5. Merge parallel gateway with preceding tasks (shared resources with one task)

- -

) - .
-~ ~ ]
- -

Fig. 6. Merge parallel gateway with preceding tasks (shared resources with several
tasks)

of resources. Figure 6 shows such a case where T1...Ti share some resources with
T. Therefore, after the refactoring operation, T appears after T1...Ti whereas
Ti+1...Tn keep executing in parallel.

If what precedes the task to be moved is an exclusive gateway, and if there
are only tasks before the merge, there are two cases. For each task before the
merge, if task T shares some resource with that task, T is moved before the merge
but after that task. If task T does not share any resource with that task, T is
put in parallel with that task. Figure 7 illustrates this operation, showing that
in the case of T1...Ti (shared resources), T is moved after each of them, whereas
in the case of Ti+1...Tn (no shared resources), they all appear in parallel in the
resulting process. Note that T appears multiple times in the resulting process,
because by including T in an exclusive pattern, it has to be executed once by
each existing branch to maintain the intended behaviour.

As far as cascading merges are concerned, we support cascading merge exclu-
sive gateways (possibly finishing with a merge parallel gateway), by applying
several times the patterns introduced above. However, if there are cascading
merge parallel gateways or a merge parallel gateway followed by a merge exclu-
sive gateway, refactoring is too complicated and is not applied. Let us take the
example of two merge parallel gateways. If we move a task within the first one,
this is ok as presented earlier. However, if there are other merge parallel gate-
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ways inside the first one, we do not know where to move that task since we do
not want to execute it multiple times.

4.3 Split Node

If the task T to be moved earlier is preceded by a split parallel gateway, then T is
moved before the split, whatever precedes the split (task, split or merge). Figure 8
illustrates this pattern by moving the task before the split parallel gateway.

If the task T is preceded by a split exclusive gateway, we apply refactoring
only if the split is preceded with a task (T1 for instance). In that case, we need
to analyze the process to look for a merge gateway corresponding to the afore-
mentioned split gateway. If the subprocess is balanced and the corresponding
merge gateway is found, we still need to look at the resources used in that part
of the process. If all tasks between the split and the merge do not share any
resources with T1, then the whole block is moved in parallel with T1, as illus-
trated in Fig. 9, because we cannot dissociate the contents (tasks for instance)
appearing in the same branch of an exclusive structure. If the task T is preceded
by a split exclusive gateway, and the preceding node is not a task (it is another
split for instance), there is no simple refactoring and we keep it as is. Note that
if the exclusive split preceding T is not balanced or some task in that block uses
any of the resources of T, then the refactoring operation is not applied because
optimization is not possible.
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5 Implementation and Experiments

This section presents the tool support, a case study, and some experiments. Addi-
tional details about the tool and dataset used for the experiments are available
online [1].

5.1 Tool

A tool implementing the above refactoring operations and their systematic appli-
cation following the described procedures has been developed in Python. It works
as presented in Fig. 2: the user provides as input a BPMN process and obtains
as output an optimal version of that process with the gain in terms of process
execution time. The implementation consists of several classes as illustrated in
Fig. 10. The core of the approach is implemented in several methods dedicated to
process simulation and analysis (of the simulation), refactoring operations, and
exploration of the refactored processes by using different strategies. Processes
to be explored and already explored are stored into dictionaries. Hash values
for processes are used as keys and are computed using the number of nodes at
distance 1, 2, 3, etc. from the start event. These numbers are then concatenated
to form a key. Since we may have collisions, for each hash value, we store a list
of processes in the dictionary. As for the transformation from BPMN XML to
our encoding of BPMN into Python (in both directions), we take advantage of
the transformation capabilities available in VBPMN [12,13].
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Fig. 11. Example of “Trip Organization” process in BPMN

5.2 Case Study

We illustrate our approach with a process describing the business trip organiza-
tion given in Fig. 11. Each task has an annotation with a pair of values where the
first value is the duration of the task (in days for instance) and the second value
is the set of resources required to execute that task. Let us introduce the process
with more details. First, the assistant fills in the required documents. Then, the
travel agency is in charge of booking flight tickets, followed by the reservation of
accommodation by the user in that case. Visa is then prepared and, in parallel,
the user has to be vaccinated. The final part of the process is executed when
the user is back from the trip. All necessary documents for reimbursement are
returned by the user. Reimbursement is then completed by the financial staff.
Finally, all documents are archived by the assistant. It is worth noting that
there are several strong flows in the original process, before and after g2, and
between task ReturnDocuments and task Reimbursement. This means that the
causal dependency between these tasks is important and must be preserved by
the refactoring process.

To compute the refactored version of this process, we use a bounded explo-
ration (with 300 as bound). The resulting process is given in Fig. 12, and was
obtained after about 130 iterations. It takes about 20s to compute the resulting
process. The execution time of all the tasks of the original process is 43 d whereas
the new version executes in 28 d.

Let us now comment on this new version of the process. We can see that
causal dependencies defined by strong flows are preserved in this process: tasks
Visa and Vaccination are executed before task ReturnDocuments, and task
ReturnDocuments is executed before task Reimbursement. In the first part of
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Fig. 12. Trip Organization process after automated refactoring

the process, we can see that several tasks can be executed in parallel because they
all use different resources. However, tasks HotelReservation and Vaccination
cannot be executed in parallel because they use the same resource user. After
task ReturnDocuments, we can see that the two final tasks are executed in
parallel because they use different resources.

5.3 Experiments

In this section, we show some experimental results obtained when applying our
tool to different BPMN processes. The main goal of this section is to evaluate our
tool in terms of performance and accuracy of the results, particularly comparing
both strategies (bounded and heuristic-based exploration).

Table 1 shows some experiments on ten processes, mostly taken from the liter-
ature, e.g., BPMN processes introduced in [4-6], and from the VBPMN database
of examples [12,13]. The table first characterizes each process in terms of number
of tasks, flows, gateways, and strong flows (SF). Then, the table gives the cur-
rent Average Execution Time of the process (AET,) and the Average Execution
Time corresponding to the optimal process (AET;). The optimal process cor-
responds to the process with the shortest execution time. This optimal process
and the corresponding execution time were built and computed manually by the
authors of this paper. Then, we show the results for the bounded exploration
(bound fixed to 300) and for the heuristic-based approach. For each option, we
give the execution time of the final process and the computation time to obtain
the result.

Let us now comment on the results shown in this table. First of all, we can see
that the bounded exploration succeeds in most cases to find the optimal solution,
that is, the process with the shortest execution time. For larger examples (e.g.,
processes 7, 9 and 10 in the table), the best solution is not found because the
bound (300) was too small to explore enough processes and find the best solution.
However, if we increase the bound, the best solution is eventually found. As an
example, for row 7, the best solution (with 18 as execution time) is found after
about 750 iterations.
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Table 1. Experimental results

BPMN | Characteristics Bounded Explo. | Heuristic

Proc. | Tasks | Flows | Gateways | SF | AET. | AET, | AET | Time AET | Time
1 5 13 4 0 70 50 50 |1s 50 |1s
2 5 15 6 0 40 25 25 | 2s 25 |2s
3 6 13 22® 0 19 6 6 |2s 9 |1s
4 8 12 2 4 43 28 28 | 21s 35 |1s
5 8 12 2 2 21 14 14 | 23s 16 |1s
6 9 10 0 6 90 50 50 |31s 90 |1s
7 10 20 6 0 24 18 19 |38s 20 |1s
8 10 20 [2@4% 3 | 23 | 13 | 13 6Ts 17 |1s
9 12 29 8 0 | 200 120 140 |50s 120 |1s

10 15 36 1044 0 260 180 220 | 103s 260 |3s

As for the heuristic-based strategy, there are several cases for which the
best solution is not found, but in very specific cases (e.g., process 9), it may
give better results. Regarding computation time, the heuristic-based strategy
is much faster (a few seconds) whereas the bounded exploration takes more
time because it explores possibly many solutions (300 at most here). Regarding
the computation time for the bounded exploration, we can see that this time
increases with the size of the process (it takes more time to simulate, analyze
and refactor a larger process than a simpler one). The number of refactorings
does not really impact the computation time, since a bound is used to stop the
exploration of potential solutions. Finally, the number of strong flows tends to
reduce the number of possible refactorings thus the computation time, because
strong flows can be seen as additional constraints on the process.

6 Related Work

This section starts with a short overview of extensions of BPMN with time and
resource features, before presenting and comparing our approach with existing
solutions for BPMN refactoring. Several works propose extensions of BPMN
with time constructs, see, e.g., [2,9]. In [9], the authors present Time-BPMN,
an extension of BPMN that allows the specification of temporal constraints and
dependencies within a BPMN diagram. In [2], a metamodel-based approach to
integrate temporal constraints and dependencies is introduced. The time aspects
are specified using rules and OCL constraints capture the semantics of these
rules. Our solution shares similarities with the approach proposed in [9].

As far as resource allocation is concerned, several solutions have been pro-
posed by the research community in the business process domain. Schémig and
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Rau [18] use colored stochastic Petri nets to specify and analyze business pro-
cesses in the presence of dynamic routing, simultaneous resource allocation, fork-
ing/joining of process-control threads, and priority-based queueing. Li et al. [15]
introduce multidimensional workflow nets to model and analyze resource avail-
ability and workload. Oliveira et al. [16] use generalized stochastic Petri nets
for correctness verification and performance evaluation of business processes. In
this work, we propose to associate resources to tasks, which is a flexible solution
for modelling many different situations and scenarios. Moreover, our approach
does not focus on the computation of metrics but changes the process structure
to actually optimize some of these metrics.

Let us now focus on existing works on process refactoring. [19] presents six
common mistakes made by developers when modelling with BPMN: inconsis-
tent naming, large process diagrams, inconsistent use of gateways, inconsistent
use of events, inconsistent use of loops, poor diagram layout. For each prob-
lem, the authors present best practices for avoiding these issues. As an example,
the authors propose to use explicit gateways instead of using multiple incom-
ing/outgoing sequence flows. [3] presents a technique for detecting refactoring
opportunities in process model repositories. The technique works by first com-
puting activity similarity and then computing three similarity scores for frag-
ment pairs of process models. Using these similarity scores, four different kinds of
refactoring opportunities can be systematically identified. As a result, the app-
roach proposes to rename activities or to introduce subprocesses. IBUPROFEN,
a business process refactoring approach based on graphs, is presented in [8,17].
IBUPROFEN defines a set of 10 refactoring algorithms grouped into three cat-
egories: maximization of relevant elements, fine-grained granularity reduction,
and completeness. All these works mostly focus on syntactic issues and propose
synctatic improvements of the process by, for instance, removing unreachable
nodes or by merging consecutive gateways of the same type. They do not aim at
providing any kind of optimization regarding the process being designed as we
do.

In [14], the authors present an approach for optimizing the redesign of process
models. It is based on capturing process improvement strategies as constraints
in a structural-temporal model. Each improvement strategy is represented by
a binary variable. An objective function that represents a net benefit function
of cost and quality is then maximized to find the best combination of process
improvements that can be made to maximize the objective. The BPMN subset
used in [14] is very similar to the one we use in this paper. However, the approach
is rather different since they compute optimal redesigns with respect to some
constraints, whereas we propose refactoring patterns with respect to process
execution times.

Last but not least, it is worth mentioning recent works providing support
for building (optimal) processes. [7] proposes a semi-automated approach for
helping non-experts in BPMN to model business processes using this notation.
Alternatively, [11] presents an approach which combines notes taking in con-
strained natural language with process mining to automatically produce BPMN
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diagrams in real-time as interview participants describe them with stories. In this
work, we tackle this issue from a different angle since we assume that an existing
description of the process exists and that we want to automatically optimize it
by updating its structure.

7 Concluding Remarks

In this paper, we have focused on a version of BPMN including task durations
and an explicit description of resources. We have then proposed a simulation-
based approach that allows us to identify some specific tasks which are waiting
for being executed but for which the required resources are available. This means
that, from the point of view of the process structure, these tasks could be exe-
cuted earlier in the process. We then apply some refactoring transformations
to move those tasks backwards in the process structure. This approach works
by successively applying these refactorings and by thus exploring the possible
solutions to find the optimal one. Several strategies have been implemented and
vary in their way to apply these iterations. In any case, the refactoring process
completes and returns as result a process whose average execution time is lower
(or equal) than the one of the original process. Note that if the original process is
already optimal, that process and its corresponding execution time are returned
as output. All the steps of the refactoring approach are fully automated by a
tool we implemented and applied on many examples of processes for validation
purposes.
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Abstract. Event logs, as viewed in process mining, contain event data
describing the execution of operational processes. Most process mining
techniques take an event log as input and generate insights about the
underlying process by analyzing the data provided. Consequently, han-
dling large volumes of event data is essential to apply process mining
successfully. Traditionally, individual process executions are considered
sequentially ordered process activities. However, process executions are
increasingly viewed as partially ordered activities to more accurately
reflect process behavior observed in reality, such as simultaneous execu-
tion of activities. Process executions comprising partially ordered activ-
ities may contain more complex activity patterns than sequence-based
process executions. This paper presents a novel query language to call up
process executions from event logs containing partially ordered activities.
The query language allows users to specify complex ordering relations
over activities, i.e., control flow constraints. Evaluating a query for a
given log returns process executions satisfying the specified constraints.
We demonstrate the implementation of the query language in a process
mining tool and evaluate its performance on real-life event logs.

Keywords: Process mining - Process querying - Partial orders

1 Introduction

Executing operational processes generates large amounts of event data in enter-
prise information systems. Analyzing these data provides great opportunities for
operational improvements, for example, reduced cycle times and increased con-
formity with reference process models. Therefore, process mining [17] comprises
data-driven techniques to analyze event data to gain insights into the under-
lying processes; for example, automatically discovered process models, confor-
mance statistics, and performance analysis information. Since service-oriented
computing is concerned with orchestrating services to form dynamic business
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processes [6], process mining can provide valuable insights into the actual exe-
cution of processes within organizations [16]. These insights can then be used,
for example, to define services and ultimately construct service-oriented archi-
tectures. Further, process mining provides valuable tools for service monitoring.

Most process mining techniques [17] define process executions, termed traces,
as a sequence, i.e., a strict total order, of executed activities. In reality, however,
processes can exhibit parallel behavior, i.e., several branches of a process are exe-
cuted simultaneously. Consequently, the execution of individual activities may
overlap within a single trace. Thus, traces are defined by partially ordered exe-
cuted activities. Considering traces as partial orders, the complexity of observed
control flow patterns, i.e., relations among executed activities, increases com-
pared to sequential traces. Thus, tools are needed that facilitate the handling,
filtering, and exploring of traces containing partially ordered process activities.

This paper introduces a novel query language for querying traces from an
event log containing partially ordered activities. The proposed language allows
the specification of six essential control flow constraints, which can be further
restricted via cardinality constraints and arbitrarily combined via Boolean oper-
ators. The language design is based on standardized terms for control flow pat-
terns in process mining. We provide a formal specification of the language’s
syntax and semantics to facilitate reuse in other tools. Further, we present its
implementation in the process mining software tool Cortado [14], which supports
partially ordered event data. Query results are visualized by Cortado using a
novel trace variant visualization [13]. Finally, we evaluate the performance of
the query evaluation on real-life, publicly available event logs.

The remainder of this paper is structured as follows. Section 2 presents related
work. Section 3 introduces preliminaries. In Sect. 4, we introduce the proposed
query language. We present an exemplary application use case of the query
language in Sect. 5. In Sect. 6, we present an evaluation focusing on performance
aspects of the proposed query language. Finally, Sect. 7 concludes this paper.

2 Related Work

A framework for process querying methods is presented in [10]. In short, process
query methods differ in the input used, for instance, event logs (e.g., [3,20]) or
process model repositories (e.g., [2,5]), and the goal or capabilities of the query
method. Overviews of process querying languages can be found in [8-10,19]; the
majority of existing methods focuses on querying process model repositories.
Subsequently, we focus on methods that operate on event logs.

Celonis PQL [18] is a multi-purpose, textual query language that works on
event logs and process models and provides a variety of query options. However,
traces are considered sequentially ordered activities compared to the proposed
query language in this paper. In [3], a query language is proposed that operates
on a single graph, i.e., a RDF, connecting all events in an event log by user-
defined correlations among events. The query language allows to partition the
events by specified constraints and to query paths that start and end with events
fulfilling certain requirements. Compared to our approach, we do not initially
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transform the entire event log into a graph structure; instead, we operate on
individual traces composed of partially ordered event data.

In [4], the authors propose a natural language interface for querying event
data. Similar to [3], a graph based search is used. The approach allows specifying
arbitrary queries like “Who was involved in processing case x” and “For which
cases is the case attribute y greater than z.” However, control flow constraints
over partially ordered event data are not supported, unlike the query language
proposed in this paper, which is designed exclusively for control flow constraints.
In [11], the authors propose an LTL-based query language to query traces, con-
sisting of sequentially aligned process activities, fulfilling specified constraints
from an event log. In [20], the authors propose an approach to query trace frag-
ments from various event logs that are similar to a trace fragment surrounding a
selected activity from a process model using a notion of neighborhood context.
Traces are, in this approach, considered sequentially ordered activities.

In summary, various process querying methods exist, most of them operating
over process model repositories rather than event logs, cf. [8-10,19]. In short,
the proposed query language differs in three main points from existing work.

1. First process querying language focusing on traces containing partially
ordered activities (to the best of our knowledge)

2. Focus on traces rather than event data as a whole, i.e., executing a query
returns traces satisfying the specified constraints

3. Specific focus on control flow patterns, i.e., extensive options for specifying a
wide range of control flow patterns

3 Preliminaries

This section introduces notations and concepts used throughout this paper.

We denote the natural numbers by N and the natural numbers including 0 by
Ny. We simplify by representing timestamps by positive real numbers denoted
by R*. We denote the universe of activity labels by £, activity instance identifier
by Z#, and case identifier by Z€. Further, we denote a missing value by L.

Definition 1 (Activity instances). An activity instance a = (i,¢,l,ts,t.) €
T4 x I x L x (RJF U {J_}) x RY uniquely identified by i € T4 represents the
execution of an activity I € L that was executed for the process instance identified
by ¢ € IC. The activity instance’s temporal information is given by the optional
start timestamp ts € RT U {L} and the complete timestamp t. € RT. If ty #
1 =ty <t.. We denote the universe of activity instances by A.

Let a=(i, ¢, 1, ts,t.) € A be an activity instance, we use short forms to assess
the different components of a; we write a’, a, a’, ats, and a'e.

An event log can be seen as a set of activity instances describing the same pro-
cess; Table1 shows an example. Each row corresponds to an activity instance
describing the execution of an activity. For instance, the first row describes
the execution of the activity “credit request received” executed on 16.06.21 at
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Table 1. Example of an event log with partially ordered event data

ID Activity label Timestamp

Activity Case Start Completion

instance

1 1 Credit request received (CRR) € 16.06.21 12:43:35|. ..
2 1 Document check (DC) 17.06.21 08:32:23|18.06.21 12:01:11 ...
3 1 Request info. from applicant (RIP) 19.06.21 09:34:00|22.06.21 09:12:00 | ...
4 1 Request info. from third parties (RIT)|19.06.21 14:54:00 | 25.06.21 08:57:12 ...
5 1 Document check (DC) € 28.06.21 14:23:59 ...
6 1 Credit assessment (CA) 30.06.21 13:02:11|04.07.21 08:11:32] ...
7 1 Security risk assessment (SRA) 01.07.21 17:23:11|06.07.21 18:51:43 | ...
8 1 Property inspection (PI) 1 05.07.21 00:00:00 . ..
9 1 Loan-to-value ratio determined (LTV) | L 05.07.21 00:00:00 ...
10 1 Decision made (DM) € 08.07.21 14:13:18 ...
11 2 Credit request received (CRR) L 17.06.21 23:21:31 ...

DM
CRR = DC = RIP
7 e

Fig. 1. Ordering of the activity instances within the trace describing case 1. Solid arcs
depict the transitive reduction; solid and dotted arcs the transitive closure.

12:43:35 for the process instance identified by case-id 1. Individual process exe-
cutions within an event log are termed traces. Next, we formally define traces as
a partially ordered set of activity instances belonging to the same case.

Definition 2 (Trace). Let TCA. We call (T, <) a trace if:

1. Va;,a;€T(a = af) and
2. KCTxT and for arbitrary a;,a; €T holds that a;<a; iff:
—ale < a's given that aﬁc,a? €RT, or

i j
i <al given that aj* €RT and alr=1.

We denote the universe of traces by T.

For a trace (T, <)€T, note that the relation < (cf. Definition 2) is the tran-
sitive closure. We denote the transitive reduction of < by <. For <% it holds

that Va, beT [a<Rb — (a<b A (ABacT (a<"a A E<Rb)>} . Figure 1 visualizes the
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ordering relations of the activity instances of the trace describing case 1 (cf.
Table1). Solid arcs show direct relationships among activity instances. Thus,
the solid arcs represent the transitive reduction. Solid and dotted arcs represent
all relations among activity instances and thus, represent the transitive closure.

Finally, we define notation conventions regarding the existential quantifier.
Let k€N and X be an arbitrary set, we write 3=%, 3% and 3=* to denote that
there exist ezactly, at least, and at most k distinct elements in set X satisfying a
given formula P(...). Below we formally define the three existential quantifier.

- szxl, o xreX (Vlgigk P(ml)) = Hml, C axkEX[<v1§i<j§k .’1%75.%‘]) AN
(Vici<k P(:)) A (Voex\{or,ant ~P(@:))]

— szﬂﬂl, L. ,.TkEX (Vlgigk P(l’z)) = EL’El, L. ,xkEX [(V1§i<j§k xﬁéx]) AN
(Vicicrk Pla:))]

- Hgkl‘l, o xpeX (Vlgigk P(l‘i)) = 31‘1, o xpeX [(V1Si§k P(xi))/\
(vazeX\{wl,...,azk} _‘P(z))]
Note that x1, ..., 2, must not be different elements in the formula above; it
specifies that at most k distinct elements in X exist satisfying P(...).

4 Query Language

This section introduces the proposed query language. Section 4.1 introduces its
syntax, while Sect. 4.2 defines its semantics. Section 4.3 covers the evaluation of
queries. Finally, Sect. 4.4 presents the implementation in a process mining tool.

4.1 Syntax

This section introduces the syntax of the proposed query language. In total, six
operators exist, allowing to specify control flow constraints. Table 2 provides an
overview of these six operators, three binary, (i.e., isContained (isC), isStart
(is8), and isEnd (isE)), and three unary operators (i.e., isDirectlyFollowed
(isDF), isEventuallyFollowed (isEF), and isParallel (isP)). Next to each
operator, we list query examples, including the corresponding operator, and
present its semantics in natural language. As the examples show, each operator
can be additionally constrained by a cardinality. We call a query a leaf query
if only one operator is used, for instance, all examples shown in Table2 are
query leaves. Query leaves can be arbitrarily combined via Boolean operators,
for instance, see Fig. 2. Next, we formally define the query language’s syntax.

((’DC’ isC =2) OR ((’DC’ isC =1) AND (’CRR’ isDF ’DC’))) AND (NDT(’DC’ isDF ’DM’))

AND

/ \
_ R NOT

(’DC’ isC =2) __ AND (’DC’ is‘DF ’DM?)

~

(°DC’ isC =1) (°CRR’ isDF ’DC’)

Fig. 2. Example of a query. Leaves represent individual control flow constraints (cf.
Table 2) that are combined via Boolean operators.
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Table 2. Overview of the six control flow constraints and corresponding examples

Type Syntax

Example

Nr. Query Description of semantics
E1l ’A’ isC activity A is contained in the
trace
i?Contained . W @S @ activity A is contained at least 6
(isC) - st = times in the trace
B3 ALLIAY B} isS > 6 activity A and B are both
. Ua, 0B} isS > contained at least 6 times each
in the trace
E4 A’ isS there exists a start activity A
> ) exactly one start activity of the
e isStart 55 A’ isS = 1 trace is an A activity
=] isS
(is8) trace starts with exactly one A
£6  ANY{’A’,’B’} isC = 1 activity or/and with exactly one
B activity
ET ’A’ isE there exists an end activity A
) T o ARS8 at least two end activities of the
isEnd 18k =2 trace are an A activity
isE
(isE) B9 ALL{'A’ B} isE trace ends with at least one A
: { ’ } is and one B activity
E10 ‘A’ isDF B’ a B activity directly follows each
. s A activity in the trace
isDirectly 501 | 989 6B OB o 4 trace contains exactly one A
Followed ’ s : activity that is directly followed
(iDF) by B
every A activity is directly
012 oA i yBY g
[12 2A> isDF ALL{*B’,’C’} followed by a B and C activity
) after each A activity in the trace
E13 A’ isEF ’B’ -
» a B activity eventually follows
2 isEventually B4 | o fem B S 4 trace contains at least one A
2 Followed s & activity that is eventually
(isEF) followed by B
15 ALL{'A*.*B°Y isEF °C all A and B activities are
o {a,7B’} s eventually followed by a C
activity
) each A activity in the trace is in
16 °A’ isP ’B’ .
parallel to some B activity
isParallel E17 ‘A’ isP ‘B’ < 4 tra.ce.c.ontams at II?OSE four A
(isP) = activities that are in parallel to
some B activity
) trace contains at most two A
E18 A’ isP ANY{’B’,’C'} <2

activities that are parallel to a B
or C activity

(a) Trace may contain arbitrary further start respectively end activities.

Definition 3 (Query Syntax). Letly,...,l,_1,l,€L be activity labels, k€N,
Oe{<, >,=}, oc{isDF, isEF, isP}, ec{1sC, isS, isE}, and A€{ALL, ANY}. We
denote the universe of queries by Q and recursively define a query Q€Q below.

Leaf query with an unary operator (without/with cardinality constraint)

Q="1," o Ok

_ Q:IZIJ.

— Q=AY e

Q=A{l7,..., ly_1’} o Ok
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Leaf query with a binary operator (without/with cardinality constraint)

7Q:)l1)o )ln) Q:)ll)o )ln)Dk
= Q=N {1 ol 0 Q=A{"1,7,..., ly_1}’0 ’l,” Ok
— Q=" o Ay, Ly} Q="L,’ o ALl 7,..., ’ly_1}’ Ok

Composed query using Boolean operators

- If Q1,Q2€9Q are two queries and ME{AND, OR}, then Q= (QQ1MQ2) is a query
- If Q1€Q is a query, then Q=NOT(Q1) is a query

4.2 Semantics

This section introduces the query language’s semantics. Table 2 presents query
examples with corresponding semantics. In short, the unary operators allow to
specify the existence of individual activities within a trace, for example, is con-
tained (isC), is a start activity (isS), or is an end activity (isE). Optionally,
operators can have cardinality constraints that extend the existential seman-
tics of unary operators by quantification constraints. Binary operators allow to
specify relationships between activities; for example, two activities are parallel
(isP), directly follow each other (isDF), or eventually follow each other (isEF).
In contrast to unary operators, binary operators always have to hold globally
when no cardinality constraint is given. For example, E10 (cf. Table2) specifies
that a B activity must directly follow each A activity, i.e., there is an arc in the
transitive reduction from each A activity to a B activity. In comparison, E11
specifies that the trace contains precisely one A activity that is directly followed
by a B activity. ALL sets specify that a constraint must be fulfilled for all activity
labels within the set. Analogously, ANY sets specify that the constraint must be
fulfilled at least for one activity. Next, we formally define the semantics.

Definition 4 (Query Semantics). Let Q, Q1, Q2€Q be queries, T™=(T, <) €
T be a trace, and l1,...,l,€L be activity labels. We recursively define the func-
tion eval : QxT — {true, false} assigning a Boolean value, i.e., eval(Q,T~),
to query Q and trace T™.

Unary Operators
- If Q="ly’ isC Ok , then eval(Q,T7) &

HDkal, R akGT[Vlgigk(aé:ll)]
- If Q="ly’ isS Ok, then eval(Q,T7) &

HDkal, ., a €T {Vlgigk <aﬁ:l1 A\ ﬁHEieT(ERai))}
~If Q="ly’ isE0k , then eval(Q,T7) <
HDkal, .o a€T {Vlgigk (ali:ll A —EWET(CLZ' <Ei))}
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Binary Operators

— If Q="ly’ isDF ’ly’ , then eval(Q,T*) YEN
VaeT[al:ll — 3aET (@=ly A a<Fa) }

~ If Q="ly’ sDF ’ly’ Ok , then eval(Q,T~) <
IOkqy, . .., akeT{vlgiSk (agzzl A FGET (@=ly A a;<R7) )}

- If Q="ly’ isDF ANY{’l3’, ..., l, "} , then eval (Q,T~) &
vaeT [a'=ly — FaeT (a<"a n (V_ya' =1;))]

— If Q="ly’ isDF ANY{’ly’, ..., l, "} Ok , then eval (Q,T~) <
Frar,. el [Vicick (al=t A FGET (a;<Ra A Vi, (@=1y) )|

- If Q="ly’ %sDF ALL{’ly’, ..., l, ’} Ok, then eval(Q,T7) <

HDkal, .o ap€T {Vlgigk <a£:l1 A das, ... ,EneT( /\?22 (al—-<R'dj A aé-:lj)))}

~ If Q="ly’ %sEF ’ly’ , then eval(Q,T~) &
Va€T |al=ly — JG€T (@'=l> A a<a) |
~ If Q="ly’ EF ’ly’ Ok , then eval(Q,T7) &
Pay,... ayeT Vi<icy (al=ly A FGET (@ =1z A ai<a) ) |
~ If Q="ly’ 4sEF ANY{’ly’, ..., l, *} , then eval(Q,T7) &
vaeT [a'=ly — FaeT (a<a n (Vi a' = 1))
- If Q="l1’ isEF ANY{’ly’,...,°l, ’} Ok , then eval(Q7T<) &
Frar,.. aneT iy (al=ty AFGET (i< A (Vi @'=1)) )|
~ If Q="ly’ 4sEF ALL{’ly’, ..., l, ’} Ok, then eval(Q,T7) <
Frar,.. aneT rcic (al=ty A Fs, @0 €T( N_plai<i; AT=1,) )|
~If Q="l1’ sP ’ly’, then eval(Q,T7) <
VaeT [alzzl — Ja€T (al=ly A ad A GAa) ]
- If Q="ly’ isP ’ly’ Uk, then eval(Q,T*) &
Fkay,. k€T Vrcicy (ab=l A FG€T (@'=ly A aid A GAar)) |
~If Q="ly’ isP ANY{’ly’, ..., ", "} , then eval(Q,T7) <
vaeT [a'=ly — FaeT (afa nifa A (Vi d = 1) )]
- If Q="ly’ isP ANY{’ly’,...,°l,’} Ok , then eval(Q,T‘) &
Far,... areT [Vigicy (al=l AFGET (a:40 A aai A (Vizya=ly)) )]
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- If Q="ly’ 4sP ALL{’ly’,...,°l,’} Ok , then eval(Q,Tﬂ &
El‘:'kal,...,akGT{Vlgigk(aézll A T, .. an€T( N'op(aidd; A GAa; A

) *

Boolean Operators

~ If Q=NOT(Q1) , then eval(Q,T~) < —eval (Q1,T7)
- If Q=(@@Q1 OR Q3) , then eval (Q,T~) & eval (Q1,T7) V eval (Q2, T~)
~If Q=(Q1 AND Q3) , then eval(Q,T~) < eval(Q1,T) Aeval (Q2,T)

Note that Definition 4 does not cover all queries constructible using the syn-
tax in Definition 3. However, any query can be rewritten into a logically equiva-
lent one covered by Definition 3. We call queries @1, Q2€Q logically equivalent,
denoted Q1=Qs, iff VI'*eA* (eval(Q1,T7) < eval(Q2,T7)). Below, we list
query rewriting rules.

_ ’ll’.E ’l1’021

~ ANY{’l;’,...,°l,>}e = (’l;’¢) OR...OR (’l,’e)

~ ALL{’l;?,...,°l,>Ye = (’l;’e) AND...AND (’l,’e)

~ ANY{’ly’, ... .71, e Ok = (’l;’e0k) OR...0R (’l,’e k)

~ ALL{’l;?,...,°l,>}e Ok = (°l;’e (k) AND...AND (’l,’e (k)

COANY{? L, ol Yool = Cly?0%1,?) OR...OR Cly_1’0°0,7)

S ALL{° L, o, ly1 Yool = (Cly70%1,?) AND...AND Cl,_17071,)

~ ANY{’ly?, .l Yol Ok = (12071, 0k) OR...OR (ly_y?0°l,’ k)

~ ALL{ 07, ..., 2l Y02l Ok = (°ly70°1,° k) AND ... AND
Cly_y’0°l,’0k)

~ l7oALL{’ly>, ..., ?l,>} = Cly?0’ly?) AND...AND (°l;0°l,°)

Note that according to Definition 4, the following queries are not logically
equivalent. Thus, ANY and ALL sets are not syntactic sugar.

- ’ll’OANY{’ZQ’,...,’ln’};:_é (’ll’O’lg’) OR...0R (’ll’O’ln’)
— 217 ANY{ 1y, ..., 71, Y Ok # (ly?0’ly’0k) OR...OR (°ly?0’l,” Ok)
— 2l ?oALL{’ly’, ..., 71, } Ok # (13’0’1’ Ok) AND...AND (’l;°0’l,’ k)

For example, consider E18 in Table 2. The query states that there exist at
most two A activities that are in parallel to B or C activities. Thus, a trace
containing four A activities, two parallel to an arbitrary number (greater than
zero) of B activities, and two parallel to C activities, does not fulfill query E18.
However, the described trace fulfills the query Q = (°A’ isP ’B’ < 2) OR
(’A’ isP ’C’ < 2); hence, E18 = A’ isP ANY{’B’,’C’} <2 # Q.

4.3 Evaluating Queries

This section briefly discusses our approach to query evaluation. As shown in
Fig. 2, queries represent trees. Since each leaf represents a query, we evaluate the
queries composed of Boolean operators bottom-up. First, the leaves are evaluated



28 D. Schuster et al.

on a given trace, resulting in Boolean values per leaf. Then, bottom-up, the given
Boolean operators are applied recursively.

In many cases, however, a complete query evaluation is not needed to deter-
mine its overall Boolean value for a given trace. For instance, if one leaf of a
logical AND parent evaluates to false, the other leaves do not need to be further
evaluated for the given trace. Similar applies to the logical OR. Reconsider the
query given in Fig. 2 and the trace depicted in Fig. 1. The query consists of four
leaves; however, only two must be evaluated. Following a depth-first traversing
strategy, we first evaluate the leaf (°’DC’ isC =2) satisfied by the given trace.
Thus, we do not need to evaluate the right subtree of the OR, i.e., leaves (’DC’
isC =1) and (°CRR’ isDF ’DC’). Finally, we evaluate the leave (’DC’ isDF
’DM’). In short, by evaluating only two leaves, we can evaluate the entire query.

4.4 TImplementation

This section briefly demonstrates the implementation of the proposed query
language in the process mining tool Cortado [14]'. We refer to [14] for an intro-
duction to Cortado’s architecture and a feature overview.

Figure 3 depicts a screenshot of Cortado. The shown chevron-based visual-
izations represent trace variants® from the loaded event log that satisfies the

Variant Explorer Activity Overview

() H “b O M @~v Actii

Standard View

g
S
8
g
]
E
g
=
]
o

'W_Completeren aanvraag'

{ ’
'0_SELECTED', 'O_CREATED', '
o '0_SELECTED'

1;

d
Y Execute Query Remove active query

Fig. 3. Excerpt from a screenshot of Cortado showing a query editor (bottom right),
a trace variant explorer visualizing the matching trace variants of the query, and a
tabular overview of activities from the event log

! Available at https://cortado.fit.fraunhofer.de/.
2 A trace variant summarizes traces that share identical ordering relationships among
the contained activities.
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displayed query. We refer to [13] for an introduction to the trace variant visu-
alization. As shown in Fig. 3, the query editor offers syntax highlighting; colors
of the activity labels in the query editor correspond to the colors used in the
variant explorer to improve usability. Executing a query results in an updated
list of trace variants satisfying the query. In Fig. 3, the numbers at the top next
to the blue filter icon indicate that 109 out of 3,830 trace variants satisfy the
displayed query. In the backend, we use ANTLR [7] for generating a parser for
the query language. The language’s design ensures that every valid query, when
parsed with ANTLR, corresponds to a single parse tree that can be transformed
into a unique query tree (cf. Fig. 2).

5 Application Scenario Example

This section presents an exemplary application scenario of the proposed query
language. Process discovery is concerned with learning a process model from an
event log. Conventional discovery approaches [1] are fully automated, i.e., an
event log is provided as input and the discovery algorithm returns a process
model describing the event data provided. Since automated process discovery
algorithms often return process models of low quality, incremental/interactive
process discovery approaches have emerged [15] to additionally utilize domain
knowledge next to event data. Incremental process discovery allows users to
gradually add selected traces to a process model that is considered under con-
struction. By building a process model gradually, users can control the discovery
phase and intervene as needed, for example, by selecting different traces or mak-
ing manual changes to the model. In short, gradually selecting traces from event
data is the major form of interaction in incremental process discovery, cf. Fig. 4.

[ Proposed trace querying ]

explore, filter & find <y -
— " User
= e
o extract "":'"' . select race variant to
-— aa)' ) " be added
Event log emn 2Rem B

Trace variants

<0 Incremental <0
l S Process d
o-H Discovery -l
Initial Input Extended
Process Model  Process Model Process Model
A .

Fig. 4. Example of an application scenario of the proposed query language, i.e., trace
variant selection in the context of incremental process discovery
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With event logs containing numerous trace variants, user assistance in explor-
ing, finding, and selecting trace variants is critical for the success of incremental
process discovery. For instance, the log used in Fig. 3 contains 3,830 trace vari-
ants. Manual visual evaluation of all these variants is inappropriate. In such a
scenario, the proposed query language is a valuable tool for users to cope with
the variety, complexity, and amount of trace variants. As most process discovery
approaches [1], including incremental ones, focus on learning the control flow of
activities, a specialized query language focusing on control flow constraints is a
valuable tool. To this end, we implemented the query language in Cortado, a
tool for incremental process discovery, cf. Fig. 4.

6 Evaluation

This section presents an evaluation focusing on performance aspects of the query
language. Section 6.1 presents the experimental setup and Sect. 6.2 the results.

6.1 Experimental Setup

We used four publicly available, real-life event logs, cf. Table 3. For each log, we
automatically generated queries from which we pre-selected 1,000 such that no
finally selected query is satisfied by all or by no trace in the corresponding log.
With this approach, we have attempted to filter out trivial queries to evaluate.
We measured performance-related statistics given the 1,000 queries per log.

Table 3. Statistics about the event logs used

Event log #Traces | #Trace variants(®
BPI challenge 2012(P) 13,087 | 3,830
BPI challenge 2017(¢) 31,509 | 5,937
BPI challenge 2020, Prepaid Travel Cost log(?) | 2,099 | 213
Road traffic fine management (RTFM)() 150,370 | 350

a) Based on the variant definition presented in [13].

b) https://doi.org/10.4121/uuid:3926db30-{712-4394-aebc-75976070e91f.
c) https://doi.org/10.4121 /uuid:5£3067df-f10b-45da-b9I8b-86aedc7a310b.
d) https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.

(
(
(
(
(e) https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.


https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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6.2 Results

Each query is applied to all traces from the given event log. Since not all leaves
of a query have to be evaluated, cf. Sect. 4.3, the number of leaves evaluated may
differ per trace. Thus, the actual trace determines how many leaves of a given
query must be evaluated. Figure 5 shows the runtime (in seconds) of the queries
per event log for the median number of leaf nodes that were evaluated. Thus,
each boxplot is made up of 1,000 data points, i.e., 1,000 queries each evaluated
on all traces from the given log. Across all four event logs, we clearly observe a
linear trend of increasing runtime the more query leaves are evaluated.

Figure 6 depicts the distribution of queries according to their evaluation time.
Further, we can see the proportion of leaves evaluated at the median. As before,

+ 0.175 1
0.10 1 (2
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Fig. 5. Query evaluation time. Since the queries are applied to all traces, they are
ordered by the median number of leaves evaluated per trace



32 D. Schuster et al.

Median Number of 175 Median Number of
Leaves Evaluated Leaves Evaluated
200 1 /10 @ 40

320 @S0
3 30 @ 6.0

o
f=
=)
o
o
o4
0.02 0.04 0.06 0.08 0.10 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Runtime (seconds) Runtime (seconds)
(a) BPI Challenge 2012 (b) BPI Challenge 2017
175 edian Nurmber of 1o ] Median Number of
1 == s Leaves Evaluated
1.0 [ 40
1501 == 6 1504 = 2.0 @ 5.0
- == =230 B 6.0
125 4 125 4
€ 100 &
3 § 100 4
© o
75 754
50 A 504
25 A 25 A
0
0.002 0.003 0.004 0.002 0.004 0.006 0.008 0.010 0.012
Runtime (seconds) Runtime (seconds)
(c) BPI Challenge 2020 (d) RTFM

Fig. 6. Query evaluation time distribution

each plot contains 1,000 data points, i.e., 1,000 queries. Similar to Fig.5, we
observe that the number of evaluated leaves is the primary driver of increased
evaluation time. The observed behavior is similar for the different logs.

Figure 7 shows the impact of early termination, as introduced in Sect.4.3.
Note that in the previous plots, i.e., Fig.5 and Fig.6, early termination was
always used. We clearly see from the plots in Fig. 7 that early termination has a
significant impact on the evaluation time of a query across all used event logs.
In conclusion, the results shown in this section indicate that the time required
to evaluate queries increases linearly with the number of leaves evaluated.
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I No Early stopping I No Early stopping
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Fig. 7. Impact of early termination on the query evaluation time

7 Conclusion

We proposed a novel query language that can call up traces from event logs
containing partially ordered event data. The core of the language is the con-
trol flow constraints, allowing users to specify complex ordering relationships
over executed activities. We formally defined the query language’s syntax and
semantics. Further, we showed its implementation in the tool Cortado. We pre-
sented one potential application scenario of the language, i.e., the trace selection
within incremental process discovery. In short, the proposed query language facil-
itates handling large event logs containing numerous traces consisting of partially
ordered activities. For future work, we plan to conduct user studies exploring
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the query language’s ease of use [12]. Further, we plan to extend the language
with a graphical editor allowing query specification in a no-code environment.
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Abstract. Traditional process mining techniques take event data as
input where each event is associated with exactly one object. An object
represents the instantiation of a process. Object-centric event data con-
tain events associated with multiple objects expressing the interaction
of multiple processes. As traditional process mining techniques assume
events associated with exactly one object, these techniques cannot be
applied to object-centric event data. To use traditional process mining
techniques, object-centric event data are flattened by removing all object
references but one. The flattening process is lossy, leading to inaccurate
features extracted from flattened data. Furthermore, the graph-like struc-
ture of object-centric event data is lost when flattening. In this paper,
we introduce a general framework for extracting and encoding features
from object-centric event data. We calculate features natively on the
object-centric event data, leading to accurate measures. Furthermore,
we provide three encodings for these features: tabular, sequential, and
graph-based. While tabular and sequential encodings have been heavily
used in process mining, the graph-based encoding is a new technique
preserving the structure of the object-centric event data. We provide six
use cases: a visualization and a prediction use case for each of the three
encodings. We use explainable AT in the prediction use cases to show
the utility of both the object-centric features and the structure of the
sequential and graph-based encoding for a predictive model.

Keywords: Object-centric process mining + Machine learning -
Explainable AI

1 Introduction

Process mining [1] is a branch of computer science producing data-driven insights
and actions from event data generated by processes. These insights are typi-
cally grouped into three categories: process discovery, conformance checking, and
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Event ID Activity Order | Item Start Complete |...|
e place order o1 i1,i2 |15.06. 15:30 [ 15.06. 15:32 order: o1 )
item: i1 receive
e send invoice ol 15.06. 15:37 (15.06. 15:42 item: i2 review
» < )

e3 pick item i2 16.06. 10:12 | 16.06. 11:04 - pd
ey pick item i1 16.06. 11:08 [ 16.06. 11:47 . .

place i delivery receive
es pay order ol 17.06. 19:08 [ 17.06. 19:08 received review
e send delivery o1l i1,i2 | 18.06. 09:15 | 18.06. 09:27
e; delivery received| o1 i1,i2 | 20.06. 10:45|20.06. 10:45
eg archive order ol 20.06. 10:52 | 20.06. 10:54
€y receive review i1 25.06. 16:42 | 25.06. 16:42
ey receive review i2 25.06. 16:57 | 25.06. 16:57
e place order 02 i3 01.07. 22:15|01.07. 22:17

delivery archive
ez pick item i3 02.07. 08:07 | 02.07. 08:12 received order
e send invoice | 02 02.07. 10:04 | 02.07. 10:58 o7 ey
e pay order 02 05.07. 15:17 [05.07. 15:17 order: 02
send item: i3

es send delivery 02 i3 05.07. 16:02 | 05.07. 16:21 invoice
ei6 delivery received| 02 i3 08.07. 12:14|08.07. 12:14 e =7
ey7 archive order 02 08.07. 12:20 | 08.07. 12:25

Fig. 1. An object-centric event log and the underlying structure of events. The left-
hand side depicts the event log. Events may be associated with multiple objects of
different object types (here: Order and Item). The right-hand side shows the graph of
directly-follows relationships for the events given by the objects. An event with multiple
objects may have multiple predecessor events.

enhancement. Process discovery techniques create process models describing the
possible paths of actions in a process. Conformance checking techniques quantify
and qualify the correspondence between a process model and event data. Pro-
cess enhancement techniques take an encoding of features of the event data as
input and deliver insights, predictions, or actions as output. Such enhancement
techniques include process performance analysis [20,24], prediction [10,26,29] or
clustering of similar process executions [25].

Generally, process enhancement techniques encode features of event data in
either of two ways: as a table [9,18] or as a set of sequences [12,19,26]. In a
tabular encoding, each row corresponds to feature values for, e.g., an event.
This tabular encoding is used, for example, for regression, decision trees, and
feed-forward neural networks. However, each process execution (also: case) is a
timely ordered sequence of events. Therefore, summarizing event data to tabular
encoding removes the sequential structure of the event data. Since this structure
itself is meaningful, sequential encodings were developed [19]. These encodings
represent each process execution as a sequence of feature values and are used for
predictive models considering sequentially encoded data, such as LSTMs [26], or
to visualize the variant of the process execution.

Traditional process mining builds on two central assumptions: Each event is
associated with exactly one object (the case) and each object is of the same type.
Each object is associated with a sequence of events. A traditional event log, there-
fore, describes a collection of homogeneously typed, isolated event sequences.
This is a valid assumption when analyzing, e.g., the handling of insurance claims.
In this example, each object describes an instantiation of the same type: an
insurance claim. Events are associated to exactly one insurance claim. However,
real-life information systems often paint another picture: Events may be related
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Case Notion: Item Case Notion: Order
Event ID Activity Item Event ID Activity Order
2 place order i1 e place order o1
et place order i2 item: i1 e send invoice o1
place pick send delivery \\ receive

e3 pick item i2 order item dehvery received // review e pay order ol order: o1

i i 1 e, el & lace send pay send \ \deliver archwe
e pick item i1 e 4 3 e send delivery o1 \ >\ )) Y \( ry \

R ) order ))invoice /) order / delwerv received ) order

T item: 12 / / order /{ /

e.
eg send delivery i1 7 delivery received ol
P send delivery 2 order delivery /recelved )/ review P archive order ol
e e ee? e el place send pay ellvery archlve
el delivery received| i1 item: 3 e1r place order 02 order .rmme arder nrder

¢ |delivery received| 12 place  pick  send  delivery eis send invoice | o2
order item delivery received
e receive review | il e en e eis e pay order 02
e receive review | i2 ers send delivery | o2
ey place order i3 eis |delivery received| o2
e pick item i3 e archive order | o2
eis send delivery | i3
e |delivery received| i3

Case Notion: Order & Item

Event ID Activity Order & Item
e place order 01,i1,i2
e send invoice o01,i1,i2
e pick item o1,i1,i2
P pick item o1,i1,i2
e pay order o1,i1,i2
item: i1 item: i2 order: o1
e send delivery o1,i1,i2
- - — place send pick ay send  delivery \archive \\receive recewe
ey delivery received 01,i1,i2 order invoice item order dellvery received / order review revlew
eg archive order 01,i1,i2 e €2 €3 €4 s
3 receive review 01,i1,i2 item: i3 order: 02
1o receive review o1,i1,i2 place pick send pay send  delivery \archive
" " - order item  /invoice // order / delivery received / order
e,
" place order 02,i3 e e en 1 e1s €16 1
o1 pick item 02,i3
3 send invoice 02,i3
€14 pay order 02,i3
s send delivery 02,i3
e delivery received 02,i3
er7 archive order 02,i3

Fig. 2. Flattening an object-centric event log (cf. Fig. 1) such that it can be used for tra-
ditional process enhancement techniques. The event log is transformed into sequences
of a chosen case notion. Due to deficiency, convergence and divergence, the features
calculated on a flattened log might be misleading, e.g., through missing events. Fur-
thermore, the graph-like structure of the original event log is lost.

to multiple objects of different types [3,4,11,28]. The most prominent example
of information systems generating event data with multiple associated objects
are ERP systems. Objects in such systems would correspond to, e.g., an order,
different items of this order, and invoices in an order-to-cash process. Consider
the simplified example of an order handling process depicted in Fig. 1. An event
may be related to objects of type order, item, or both. An event with multiple
objects may have multiple predecessor events. Therefore, the structure of an
Object-Centric Event Log (OCEL) resembles a graph, not a sequential structure
as is assumed in traditional process mining.

This gap between OCELs and traditional process enhancement techniques
is currently bridged by flattening an event log [2], i.e., mapping an OCEL into
traditional event log format by enforcing a homogeneous, sequential structure.
This involves two steps: Choosing a case notion and duplicating events with
multiple objects of that notion. All objects not included in this case notion are
discarded. Flattening the event log of Fig. 1 is depicted in Fig. 2 for three different
case notions. The first two are case notions of a single object type [2]. The third
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Features A
Control-Flow " o A r
€ < ~ s -
2 -,
Data-Flow Tabular Time Series Regression Analysis
- Resources dll - -,
Sequence Sequential Variants
Performance ) )
Object-Centric
Objects Variants Graph NN
Gl Visualization Prediction
Object-Centric  Features of Different Encoding Use Cases
Event Log Perspectives

Fig. 3. Our framework enables accurate feature extraction for object-centric event
data. Furthermore, we provide three encodings for object-centric features: tabular,
sequential, and graph-based. We present a visualization and prediction use case for
each encoding.

case notion is a composite case notion of co-appearing orders and items, i.e.,
an order and all corresponding items. The flattened event data may be used as
input for traditional process enhancement techniques.

However, flattening manipulates the information of the object-centric event
log. The problems related to flattening are deficiency (disappearing events) [3],
convergence (duplicated events) [2] and divergence (misleading directly-follows
relations) [2,28]. We showcase divergence using an example. One might use a
composite case notion of order and item to flatten the event log (cf. Fig. 2 Case
Notion: Order & Item). All orders and items related through events form one
composite object, i.e., 01,i1,i2, and 02,i3. The events of these objects are flattened
to one sequence, introducing inaccurate precedence constraints. E.g., events eg
and ey, which describe an item being picked, are now sequentially ordered, indi-
cating some order between them. However, the original event data show that
these two picking events are independent. The same holds for the relationship
of pick item and pay order: The object-centric event data do not indicate any
precedence constraint. However, the sequential representation enforces one.

The three problems of flattening have major consequences on the quality of
the calculated features of the flattened OCEL: Due to missing events, dupli-
cated events, or wrong precedence constraints, many features deliver incorrect
results (cf. Sect. 4). Furthermore, the tabular or sequential encoding constructed
from these features does not preserve the graph-like structure of the event data,
removing important structural information. Therefore, features for OCELSs can
not accurately be extracted and encoded.

To solve the previously mentioned problem, an approach is necessary that
calculates features natively on the object-centric event data and enables a graph-
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Table 1. Process enhancement techniques and supporting frameworks.

Feature extraction Feature encoding Existing work

Object-centric | Flattened | Tabular | Sequential | Graph-based

(a) Process P1 v v [9,13]
enhancement

techniques

P2 v v [12,19,26]

P3 v v [16,23,27]
(b) F1 v v [18]
Frameworks

F2 v ' [7,14]

This paper | Vv v v v

based encoding preserving the actual structure of the event log. In this paper, we
introduce a general framework for extracting and encoding features for object-
centric event data (cf. Fig. 3), providing two contributions: 1) We translate the
computation of the features introduced in the framework of de Leoni et. al [18]
to the object-centric setting, providing accurate measures. 2) We provide three
different encodings to represent the extracted features for different algorithms
and methods: tabular, sequential, and graph-based. Using features and encoding,
we provide six use cases. These use cases showcase the generalizability of our
framework to a plethora of different tasks. We use one visualization and one
prediction use case for each encoding. In the prediction use cases, we depict how
the different features and the structure of the encodings are utilized by predictive
models, leveraging on explainable AT and SHAP values [21]. These contributions
may be used as a foundation for new algorithms, new visualizations, new machine
learning models, more accurate predictions, and more.

This paper is structured as follows. First, we discuss related work on feature
extraction and encoding in Sect. 2. We introduce object-centric event data and
process executions in Sect. 3. In Sect. 4, we provide an overview of native feature
calculation for object-centric event data. In Sect. 5, we define three encodings
for object-centric features. Sect. 6 depicts our six use cases for features and their
encodings. We conclude this paper in Sect. 7.

2 Related Work

A plethora of process enhancement techniques exist in the literature, including
process performance analysis, predictive process monitoring, and trace cluster-
ing [1]. Such techniques use encoded features extracted from an event log as input.
Table 1(a) shows three categories of techniques using different feature extraction
(i.e., feature extractions using 1. OCELSs and 2. flattened event logs) and encod-
ing (i.e., 1. tabular, 2. sequential, and 3. graph encoding) approaches with repre-
sentative examples. First, P1 represents the techniques using features extracted
from flattened event logs and encoded as tabular formats. For instance, van Dongen
et al. [9] use tabular encoding by transforming an event log into feature-outcome
pairs to predict remaining times using non-parametric regression. Also, in [13], an
event log is encoded into a tabular format with additional features on context, e.g.,
resource availability, to predict processing times. Second, techniques in P2 also use
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features based on flattened event logs but encoded as sequential formats. Leontjeva
et al. [19] propose complex sequence encoding to encode an event log to sequences to
predict the outcome of an ongoing case. To predict the next activity of an ongoing
case, Evermann et al. [12] encode control-flow features using embedding techniques,
whereas Tax et al. [26] use one-hot encoding. Finally, P3 consists of techniques
using features extracted from flattened event logs and encoded as graph formats.
Philipp et al. [23] encode an event log to a graph where each node represents an
activity, and each edge indicates the relationship between activities. The graph is
used to learn a Graph Neural Network (GNN) to predict process outcomes. Venu-
gopal et al. [27] extend [23] by annotating nodes with temporal features. They use
GNNs to predict the next activity and next timestamp of an event. Instead of rep-
resenting a node as an activity, Harl et al. [16] uses one-hot encoding of an activity
to represent a node to deploy gated graph neural network that provides the explain-
ability based on relevance score.

Furthermore, to support the development of process enhancement techniques
using different feature extraction and encoding, several frameworks have been
proposed (cf. Table1(b)). First, De Leoni [18] in FI suggest a framework to
compute features using flattened event logs and encode them to tables. Second,
Becker et al. [7] and Di Francescomarino et al. [14] in F2 propose frameworks
for techniques for sequentially encoding extracted features. To the best of our
knowledge, no framework supporting graph encoding exists.

Despite the limitations of flattened event logs to extract misleading features,
no study has been conducted to develop process enhancement techniques using
features based on OCELs. In this work, we provide a framework for extract-
ing and encoding features based on OCELs, with the goal of facilitating the
development of object-centric process enhancement approaches. Our proposed
framework supports all existing encoding formats, i.e., tabular, sequential, and
graph, to be used for different algorithms and methods.

3 Object-Centric Event Data

Given a set X, the powerset P(X) denotes the set of all possible subsets. A
sequence o : {1,...,n} — X of length len(c) = n assigns order to elements of
X. We denote a sequence with o = (1, ..., x,) and the set of all sequences over
X with X*. We overload the notion € o to express x € range(o).

A graph is a tuple G = (V, E) of nodes V and edges E C V x V. The set of
all subgraphs of G is given by sub(G) = {(V', (V' x V)N E) | V' CV}. A path
connects two distinct nodes through edges. The set of paths between two nodes
v, € Vju # v is defined by paths(v,v") = {{(v,v1), (v1,v2),..., (vE,v")) €
E*}. Two distinct nodes are connected if the set of paths between them is
not empty pathg(v,v') # 0. The distance between two nodes is the length
of the shortest path distg(v,v') = len(oq) such that o4 € patheg(v,v') A
3ot epath g (v len(oq) > len(c)). A graph G = (V, E) is connected iff a path
exists between all edges YV, v ev v # v' A patheg(v,v") # 0. The set of connected
subgraphs of G = (V, E) is defined as follows consub(G) = {G' € sub(G) |
G’ is connected}.
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An event log is a collection of events associated with objects. Each event con-
tains an activity, describing the executed action, a start and complete timestamp
and additional attributes. Each object is associated to a sequence of events.

Definition 1 (Event Log). Let £ be the universe of events, O be the uni-
verse of objects, OT be the universe of object types, A be the universe of activ-
ities, C be the universe of attributes and V be the universe of attribute val-
ues. Let A C A be a set of activities and C C C be a set of attributes. Each
object is mapped to exactly one object type miype 1 O — OT. An event log
L= (FE,0,0T,T¢t, Tst, Ttraces Tact, Tatt) 1S a tuple composed of

e cvents E C &, objects O C O, and object types OT C OT,

e two time mappings for the completion ., : E — R and the start g : E — R
of an event such that ws(e) < wee(e) for any e € E,

® 4 Mapping Tirace : O — E* mapping each object to a sequence of events such
that vOEO T trace (0) = <617 FREN en> A vz'e{l,u.nfl} 7Tct(ei) < 71-ct(ei+l);

e an activity mapping wae : £ — A and,

e an attribute mapping wa 1 E X C - V.

The table in Fig. 1 depicts an example of an OCEL. A row corresponds to one
event. Sorting the events of an object in timely order, we retrieve the event
sequence for the object, e.g., Tyqce(13) = (place order, pick item, send delivery,
delivery received). The relationships between objects can be expressed in the
form of a graph, connecting objects that share events.

Definition 2 (Object Graph). Let L = (E,O,O0T, Tct, Tst, Ttrace, Tact, Tatt)
be an event log. We denote the objects of an event e€E with mop;(e)={0€O |
€€ trace(0)}. The object graph OG=(0,1) is an undirected graph of nodes O
and edges of object interactions I={{0,0'}CO | 0#£0' A Jecr {0,0'} C mopi(e)}.

Objects which are directly or transitively connected in the object graph depend
on each other by sharing events. In traditional process mining, a process execu-
tion (case) is the event sequence of one object. We use the definitions of process
executions [6] and generalize this notion such that a process execution is the set
of events for multiple, connected objects.

Definition 3 (Process Execution). Let L = (E,O,O0T, Tet, Tst, Ttraces Tact,
matt) be an event log and OGp = (O,I) be the corresponding object graph. A
process execution p = (O’ E') is a tuple of objects O' C O and events E' C E
such that € € E' & mop;(e) CO" and O" forms a connected subgraph in OGp.

We define two techniques to extract process executions from an OCEL. These
two techniques are two out of many possible process execution extraction tech-
niques. The first technique extracts process executions based on the connected
components of the object graph. All transitively connected objects form one
process execution. This might lead to large executions for entangled event logs.
Therefore, we introduce the leading type extraction. A process execution is con-
structed for each object of a chosen leading object type. Connected objects are



Extracting and Encoding Features from Object-Centric Event Data 43

added to this process execution unless a connected object of the same type has
a lower distance to the leading object. This limits executions in size but also
removes dependencies.

Definition 4 (Execution FExtraction). Let L=(E,O,OT, 7.1, Tst, Ttrace,
Tact, Tatt) be an event log. An execution extraction EX Cconsub(OGpL) retrieves
connected subgraphs from the object graph. A subgraph ex = (O',1') € EX is
mapped to a process execution [ (ex, L) = (O, E') with E' = {e € E |
O’ Nobj(e) # 0}. We define two extraction techniques:

o EX comp(L) ={G € consub(OGL) | “Iarcconsub(0G,) G € sub(G")}, and

o FXieaa(L,o0t) = {G € lead_graphs = {G' = (O, I') € consub(OGL) |
Jocor Taype(0) = 0t AVocor —Forcor 07 # 0 A Tyype(0") = Tiype(0') A
distcr(0,0") > diste(0,0")} | ~3areiead_graphs G € sub(G")} for ot € OT.

When looking at the example of Fig. 1, the process executions retrieved by apply-
ing EX comp would be based on the connected components of the object graph,
ie., {ol,il,i2} and {02,i3}. Using the leading type order, we would retrieve
the same executions. Using item as the leading type, we would retrieve {i1, 01},
{2, 01} and {i3, 02}.

4 Object-Centric Features

This section deals with the problem resulting from flattening OCELs to apply
process enhancement techniques: Features are calculated on the manipulated,
flattened event data. Therefore, they might be inaccurate. We propose an object-
centric adaptation of the features introduced by the seminal machine learning
framework of de Leoni et al. [18]. We calculate them natively on the OCEL. Fur-
thermore, we provide several new features recently introduced in the literature
on object-centric process mining. A feature is, generally, calculated for an event.
It might describe a measure for the single event, in relationship to its process
executions, or the whole system.

Definition 5 (Features). Let L = (E,O,O0T, Tct, Tst, Ttrace, Tact, Tatt) bE an
event log and EX Cconsub(OGL) be a set of extracted process executions. A
feature fr:ExX EX-»R maps an event and a process execution onto a real number.

The primary need for adapting traditional feature calculation arises from two
main differentiations between object-centric and traditional event data: First,
each event can have multiple predeccesors/successors, one for each object. Sec-
ond, each event might have multiple objects of different types. The computa-
tion of features that are depended on previous and following behavior has to
be adapted to the graph structure. The most obvious example are preceding
activities: In traditional feature extraction, there is only one preceding activity
for each event. In object-centric feature extraction, there are multiple preceding
activities, one for each object. The graph-structure as well as the multiplicity
of objects also enables the definition of new features leveraging on the graph



44 J. N. Adams et al.

—
order: o1
item: i1 > ; C1: Current Acitivities
. - - C2: Preceding Acitivities
item: i2 already happened happens in the future accessing full event log €3: Previous Activity Count
C4: Following Activity Count
C3: pick item = 2, send invoice = 1,... ——— C4: receive review = 2 C5: Event Activity
H i = = : =Ly
gi 3, 03: item = 2, order = 1 D1: Aggregated Previous
previous following Characteristic Values
e . D2: Preceding Characteristic

( Al r Y values
C2,D2 N D3: Characteristic Value
; receive

\ i H R1: Current Resource
R, R2, 01 \TEVIEW T Workioad
R2: Current Total Workload
€9 R3: Event Resource

S ™. P1: Execution Duration
> delivery’  _ _ _ i receive } p2:Elapsed Time

‘received ' review ; P3:Remaining Time

N e . P4: Flow Time

send
delivery

\ P5: Synchronisation Time
€7 €10 P6: Sojourn Time

,’ """ P7: Pooling Time

P8: Lagging Time

¢ archive ' P9: Service Time

\ order P10: Waiting Time

send
invoice

C1, C5, D3, R3, 04,

05, 06 01: Current Total Object
ey es ! €g Count
02: Previous Object Count
P8 P10 P9 03: Previous Type Count
£<—><>4—> 04: Event Objects
P5 P6 05: Event Object Count
P4 06: Event Object Type Count
< >
- P2 > £3 >
< P1 _
* Lt »
totart tes,start tes,end tend Time

Fig. 4. Overview of the features that can be extracted for event eg. These features are
the object-centric adaptations of [18].

structure and object (type) associations. Previous (i.e., all events that happened
before the considered event in an execution) and following events can be adapted
in two ways: time-based (using the event’s timestamp) and path-based (using
path information of the graph). We use a simple time-based adaptation. How-
ever, the graph-based adaptation might give interesting new research directions.

An overview of the features collected from an object-centric adaptation of de
Leoni et al.’s framework [18] and features recently introduced in the literature
[3,22] is depicted in Fig. 4. Similar to de Leoni et al., we group features according
to different perspectives: Control-Flow, Data-Flow, Resource, Performance and
Objects. We, now, discuss the different perspectives and the adaptations that
are necessary to apply them to the object-centric setting. Table2 provides a
qualitative evaluation of the impact of flattening on the resulting feature value:
Features can be equal, they can be misleading/incorrect after flattening, and not
be available for flat event data.

The main adaptations of the control-flow perspectives are concerned with
the switch from sequential to graph-like control-flow. Multiple preceding activ-
ities (C2) as well as multiple current activities (C1) (endpoints of the current
execution graph) are possible. For previous and following activities (C3, C4),
we use a simple time-based adaptation.

The data-flow perspective needs slight adaptations for preceding character-
istic values (D2). Since there might be multiple preceding values, these need to
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Table 2. Impact of flattening on calculated feature values. Calculating a feature for
an event on object-centric vs. flattened data can lead to correct or misleading results.
Some features only exist on object-centric event data. Most features are misleading due
to the graph structure and object multiplicity.

Features Impact of flattening | Only available for OCEL
Correct | Misleading
Control-Flow | C1, C2, C3, C4 v
C5 v
Data D1, D2 v
D3 v
Resource R1 '
R2, R3 v
Performance |P1, P2, P3, P6, P10 v
P4, P5, P7, P8 v
P9 v
Objects 01, 02, 03, 04, O5 v

be aggregated. Previous characteristic values (D1) are adapted on a time basis,
and the characteristic value (D3) needs no adaptation.

The resources perspective’s features are mainly concerned with system-wide
measurements, such as the workload of the current resource (C1) or the total
system workload (C2). Therefore, this perspective remains mostly unaffected
by a move to object-centricity. Future research might investigate new features
derived from resource multiplicity per event.

The performance perspective has recently been studied for new object-centric
features [22]. Due to an event having multiple predecessors, the established per-
formance measures can be extended by several features expressing the time for
synchronization between objects (P5), the pooling time of an object type (P7),
or the lag between object types before the event (P8).

Finally, a new feature perspective concerning objects opens up. The paper
introducing the discovery of object-centric Petri nets [3] introduces some basic
features of the object perspective. For example, an event’s number of objects
(05), the event’s number of objects of a specific type (O6), or the current
system’s total object count (O1). Investigations of additional features in this
perspective, e.g., quantifying the relationships between objects through graph
metrics on the object graph, might also be an interesting research direction.

5 Feature Encodings

In this section, we tackle the absence of feature encodings that represent the
graph-like structure of object-centric event data. We extend the currently used
tabular and sequential encodings with a graph-based one and introduce all three
encodings formally. Together with the formal definition of each encoding, we
provide some common use cases, advantages, disadvantages and a continuation of
our running example from Fig. 1. As an example of extracted features we choose
the number of previous objects (02), the synchronization time (P5) and the
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remaining time (P3). The execution extraction for our example is the connected
components extraction EX comp. A tabular encoding is a common representation
of data points used for many use cases, such as regression analysis, clustering,
different data mining tasks, etc.
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Fig. 5. Example of tabular a), sequential b) and graph-based c) feature encodings
for the running example in Fig. 1. The graph-based encoding preserves the structural
information from the OCEL.

Definition 6 (Tabular Encoding). Let L = (E,O,O0T, T, Tst, Ttrace, Tact
Tatt) be an event log and EX C consub(OGL) be a set of process executions. Let
Fr, C Ex EX -» R be a set of features. The event feature table is defined by
tab(e, fr) = fr(e, ex) for alle € E, ex € EX (rows) and all fr, € Fr, (columns).

We depict an example of tabular encoding in Fig. 5 a). Such an encoding is easily
readable and versatile usable, however, the structural order information of the
event log is lost in the process of tabular encoding. A sequential encoding is
commonly used in sequence visualization, clustering, classification or next value
predictions (cf. Sec. 2).

Definition 7 (Sequential Encoding). Let L = (E,0,0T, T, Tst, Ttraces
Tact, Tatt) be an event log and EX C consub(OGp) be a set of extracted pro-
cess executions. Let Fr,.={fr1,..., fLm}CEXEX-»R be a set of features. The
sequential encoding of an execution ex € EX is defined by seq(ex,Fr) =
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Table 3. Results for the different models based on different encodings.

Regression ‘ LSTM ‘ GNN
Baseline MAE 0.7598
Train MAE 0.5101 0.4717 | 0.4460
Validation MAE | NA 0.4625 | 0.4534
Test MAE 0.5087 0.4568 | 0.4497

((fra(er,ex),..., fom(er,ex)),....,(fr1(en, €x),..., frm(en, ex))) with with
(O {e1,...,en}) = fetmct(ex, L) and wei(er) < -+ < merlen).

We depict a sequential encoding of the running example in Fig.5 b). The
events for process executions are ordered according to the complete timestamp
of the event. The resulting sequence is attributed with the different feature values
for each event. This encoding respects the timely order of events. Howewver, it does
not respect the true precedence constraints of the event log: By merging all events
into one sequence, some event pairs are forced into a precedence relationships
they did not exhibit in the event log (cf. Sec. 1). A graph encoding of features
may be used for extensive visualization, applying graph algorithms or for utilizing
graph neural networks [30].

Definition 8 (Graph Encoding). Let L=(E,O,OT, Tot, Tst, Tirace, Tacts Tatt)
be an event log EX C consub(OGp) be a set of extracted process executions. Let
Fr={fci, s frm} CEXEX - R be a set of features. For an extracted exe-
cution ex € EX | the graph of the corresponding process execution p = (O',E') =
fertract (ex L) is defined by G, = (E', K) with edges K = {(e,e’) € E'xX E' | e #
e€No€eO Ner,....en) € Trace(0) Ne =e; A€ =e;p1 NP €{1,...,n—1}}).
The graph encoding is defined by Greqr(p, Fr) = (E', K,1) with a node labeling
function l(e) = {fr(e,ex) | fr € FL} for any e € E'.

An example of the graph-based feature encoding for our running example is
depicted in Fig.5 ¢). Each process execution is associated with a graph. Each
node of the graph represents the feature values of an event.

6 Use Cases

In this section, we evaluate our framework by providing six use cases. We pursue
two evaluation goals with this approach: First, we aim to showcase the general-
izability of the framework by providing a collection of common process mining
tasks the framework can be applied to. Second, we aim to showcase the feature’s
and encoding’s effectiveness in the use cases. Over the last years, explainable
AT has been increasingly employed to make predictive process monitoring trans-
parent [15,17]. Through the use of SHAP [21] values, we are able to quantify
feature importance as well as structural importance of sequential and graph-
based encoding.
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Fig. 6. Time series describing two features over time: the weekly average number of
loan offers per event and the weekly average requested amount for each application.
Using this evaluation some initial insights can be generated, e.g., the gradual increase
in requested amount over time.

The use cases are split into two parts: three visualization and three predic-
tion use cases. We use a real-life loan application event log [8] as an OCEL. An
event can be related to an application and multiple loan offers as objects. We use
tabular, sequential, and graph-based encoding to gain insights into the process
through the visualization use cases. The prediction use cases aim at predicting
the remaining time of an event’s process execution (P3) using three different
techniques for the different encodings: regression (tabular), LSTM neural net-
works (sequential), and GNNs (graph-based). We use the same features for each
encoding: Preceding activities (C2), average previous requested amount (D1),
the elapsed time (P2), and the previous number of offers (03). We use a 0.7/0.3
train/test split of the same events for each model for comparability reasons. We
set aside 20% of the training set as a validation set. The performance is assessed
using the Mean Absolute Error (MAE) of the normalized target variable. Fur-
thermore, we provide a baseline MAE achieved by predicting the training set’s
average remaining time. The summarized results are depicted in Table 3.

We provide an open-source python implementation of our framework'. Our
experiments can ge reproduced through a GitHub repository?. The framework
can be extended with new features and adapted algorithms.

6.1 Tabular Encoding

Visualization. We split the event log into subsequent sublogs containing the
events of one week each. For each sublog, we extract the average requested
amount (D3) and the number of offers per event (O6). The resulting time series
is depicted in Fig. 6. We can observe the dynamics of the process over time, e.g.,
the increase in the requested amount over time. Furthermore, we can observe
that the number of offers is stable, except for a few short spikes.

Prediction. We use a linear regression model to predict the remaining time based
on the tabular encoding (cf. Table3). This is an object-centric adaption of use

! https://github.com/ocpm/ocpa.
2 https://github.com/niklasadams/OCELFeatureExtractionExperiments.
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Fig. 7. Left: Bee swarm plot of SHAP values for the regression model, showing the
aggregated importance of different features to the predictions. Right: SHAP values of
one LSTM prediction, visualized for the different positions of the input sequence.
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Fig. 8. Sequential variant visualization of a process execution enriched with the object
information (blue = application, orange = first and second offer). (Color figure online)

cases [9,13]. We generate the SHAP values, i.e., the impact of different features
on the individual model prediction, for 1000 predictions of the test set. The
resulting bee swarm plot is depicted in Fig.7 (left side). Red points indicate a
high feature value. The more they are positioned to the left, the more the feature
value reduces the model’s prediction. Therefore, the combination of color and
position gives insights into the feature value’s impact on the model output. We
can, e.g., observe a high decreasing impact of the existence of the Call activity
in the preceding activities to the predicted remaining time. One can also observe
an impact of the new object-centric feature of the number of previous objects
of type offer on the predicted remaining time: the more offers were previously
recorded in a case, the lower the predicted remaining time. In conclusion, the
selected set of object-centric feature adaptations yields valuable information for
a predictive model.

6.2 Sequential Encoding

Visualization. We choose one specific process execution and extract the sequen-
tial encoding for the current event’s activity (C5) and the event’s objects (O4)
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application_1
offer_1

a ) offer_2

Fig. 9. Use cases for the graph encoding: a) activities and objects of one process exe-
cution. Shared events between objects are colored with multiple colors. b) shows the
importance of different edges of one instance graph when predicting.

features. The result is a variant enriched by object information, depicted in Fig. 8.
Even though such a visualization might have misleading causality information
for events between objects, one can already retrieve some valuable insight into
the intra-object order and the overall activities of an execution.

Prediction. We use a neural network with two 10-hidden-node LSTM layers to
predict the remaining time of the sequentially encoded features. We use subse-
quences of length four (cf. Table 3 for results). This is an object-centric adaption
of use cases [19,26]. The regression use case already covered the importance of
features for the prediction. Therefore, we focus on the importance of the sequen-
tial encoding in this use case. We use SHAP values for each feature of the four
positions in the sequential encoding. The calculated feature impacts for an indi-
vidual prediction are depicted in Fig. 7 (right side). The more the value diverges
from zero, the higher the feature’s impact on the model’s output. We observe
features with high importance among all four positions of the sequence. There-
fore, the model utilizes the sequential encoding of the features, showcasing its
usefulness.

6.3 Graph Encoding

Visualization. Fig.9 a) depicts the graph-based variant visualization retrieved
from OCr [5] of the same process execution as Fig.8. Using the graph, one
can place concurrent events in two different lanes according to their objects,
not indicating any precedence between them. One can intuitively determine the
concurrent paths in the variant and the interaction of different objects. For large
process executions, this provides structured access to the control-flow of the
underlying process.

Prediction. We use the graph-based feature encoding as an input for a GNN.
The GNN contains two graph convolution layers. Each node in both layers has a
size of 24. Input graphs are constrained to four nodes (cf. LSTM use case). We
read the graphs out by averaging over the convoluted values, summarizing to one
predicted remaining time (cf. Table 3 for results). This is an object-centric adap-
tation of use cases [23,27]. We adapt SHAP values to determine the importance
of graph edges to the predicted remaining time. Fig. 9 b) depicts the calculated
values for one graph instance. The more the value of an edge diverges from zero,
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the higher its existence impacts the model’s prediction. We observe substantially
different values for all edges: While some edges have a relatively low negative
or positive impact on the model’s output, the presence of other edges heavily
impacts the predicted remaining time. Therefore, the graph structure itself yields
important information for predicting the remaining time.

7 Conclusion

We introduced a general framework to extract and encode features from OCELs.
Currently, object-centric event data needs to be flattened to apply process
enhancement techniques to the data. This leads to inaccurate features. Addi-
tionally, no feature encoding is available to express the graph-like structure of
object-centric event data. Our framework calculates features natively on the
object-centric event data, leading to accurate features. Furthermore, we provide
a graph-based encoding of the features, preserving the underlying structure of
an OCEL. We show the utility of the features and encodings in six use cases,
a visualization and prediction use case for each of the three encodings. This
framework lays a foundation for future machine learning approaches utilizing
object-centric event data and new algorithms using our encodings as a basis.
We provide a collection of use cases showing the applicability of our frame-
work for extracting and encoding features. For each of our framework steps,
interesting future research directions are present: Which feature work well with
which encoding? What are the best prediction techniques for which encoding?
How to optimize existing network architectures to achieve maximum results?
Furthermore, investigations of new features derived from the graph structure
and object-multiplicity as well as further traditional features not included in de
Leoni et al.’s framework [18] is an interesting direction for future research.
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Abstract. In recent years, the rapid increase in the number of RESTful
API services has made it more difficult for developers to select function-
ally suitable and callable ones from massive service information, which
brings new challenges for service discovery. Most existing RESTful API
discovery methods only use the function description texts, ignoring the
information contained in the input and output interfaces, making the
callability of the discovery results unguaranteed. This paper proposes
an automated RESTful API service discovery framework considering
both the description texts and interfaces. Based on the three newly-
noticed RESTful API features of interface design and parameter match-
ing, this paper presents an interface preprocessing and matching strategy.
Interface preprocessing consists of interface transformation and identi-
fier expansion to deal with parameter abbreviations. About the matching
strategy, required and optional input parameters are matched with differ-
ent importance, and one-to-many parameter matching relationships are
allowed in this scheme. Experiments show that the proposed method is
more suitable for automated RESTful API service discovery with various
interface features. Better results are reflected in three metrics.

Keywords: Automated service discovery * Interface matching -
Identifier expansion - Rapid API

1 Introduction

With the introduction of service-oriented architectures and development of Inter-
net technology, more services can be published, searched, and invoked through
the Internet. More developers choose to reuse existing services instead of rede-
velopment. Service registries such as UDDI were established and Web Service
Description Language(WSDL) became the commonly used description language
for SOAP-based services. After the REST architecture style was brought up,
web services gradually turn to be designed as RESTful APIs because the new
style is lighter and easier to understand. The platforms for service registry and
discovery have also moved from UDDI to some mainstream API markets such
as Programmable Web! and Rapid API?. The explosive growth of the number

! https://www.programmableweb.com/.
2 https:/ /rapidapi.com /hub.
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of services brings more choices to the users, while at the same time the challenge
about how to efficiently find the services meeting the user’s requirements arrives.

The change of service form leads to the change of service discovery research
object from SOAP-based services to RESTful APIs and mashups [1,14]. How-
ever, most of the WSDL-based service discovery methods adopt keyword-
matching technologies which cannot assure the discovery accuracy [18]. Ontology
based semantic service description languages are then introduced to help with
the understanding of parameters. However, RESTful APIs do not provide cor-
responding semantic annotations, which makes it difficult for the SOAP-based
methods to be migrated to the API scenario. In the meantime, most of the API
discovery research [12] focus on improving natural language processing technolo-
gies to understand the description better, which ignores the service callability.
Therefore, it is necessary to propose a RESTful API-oriented service discovery
method considering both the function description and interfaces.

To achieve this, we turn to the world’s largest API hub, Rapid API [22]. On
this platform, besides the functional description text of APIs, the interface and
performance information can also be automatically collected. Based on Rapid
API, we notice three new features of RESTful API interfaces in aspects of inter-
face design and parameter matching. Firstly, many abbreviations can be noticed
in parameters. Due to the lack of semantic annotations, these abbreviations can
greatly affect the accuracy of interface matching. Secondly, input parameters can
have different necessities as required or optional, which affects their importance
during matching. The third one is about matching relationships. There may have
one-to-many matches between parameters. For example, when a weather fore-
cast service needs coordinate as input, the data provided by the user may be
two separate parameters, latitude and longitude. We all know that coordinate
refers to the combination of latitude and longitude. In this case, both provided
data should be assigned to coordinate. These features can affect the discovery
accuracy to a certain extent. However, most existing work ignores their existence.

According to the problems, the main contributions are as follows:

— A framework for automatically RESTful API service preprocessing and dis-
covery is proposed. Based on the description texts and interfaces of large-scale
APIs, this framework provides more accurate discovery results considering
both the functional similarity and interface callability.

— Due to the features of RESTful APIs in the aspect of interface design and
parameter matching, an interface processing and matching method is pro-
posed. The interface processing includes the interface transformation and
identifier expansion, which is based on domain experience base and parame-
ter context. The one-to-many parameter matching with similarity threshold
is allowed, and the difference between required and optional input parameters
is considered, which can better fit with various user requirements.

— A new API dataset covering multi-angle information is collected from Rapid
API. Experiments are carried out based on this dataset. The discovery plat-
form based on the proposed work is now accessible?.

3 https://www.scafe.net.cn/.


https://www.scafe.net.cn/

56 S. Wang et al.

2 Related Work

According to the service forms during development, we introduce the existing
service discovery work based on SOAP-based web services and APIs respectively.

Keyword matchmaking mechanism is mainly used for WSDL-based service
discovery, such as the implementation in UDDI [3,8]. Although this kind of strat-
egy can achieve higher efficiency, the limited semantics contained in keywords
leads to poor discovery accuracy. With the appearance of semantic web, ontol-
ogy technologies help with more accurate solution. Improved semantic languages
with annotations are designed and introduced to help with parameter matching.
Paolucci et al. [19] adopt DAML-S as service description language. They take
advantages of DAML ontologies and match a request and a service advertisement
based on four discrete matching degrees. Plebani et al. [20] calculate parameter
similarities depending mainly on domain-specific ontology. They also provide a
solution when the services are described by SAWSDL.

Ontology annotation certainly helps a lot with service discovery. However, it
is impractical to expect all new web services to have semantic tagged descrip-
tions [5]. Although there exists research on semantic annotation for syntactic
API specifications [13,24], these methods are semi-automatic, requiring manual
adjustment of the annotations, and the correctness has not been verified. The
obstacles encountered in obtaining semantic annotations in RESTful APIs make
it difficult for ontology-based methods to be migrated to API interface matching.

Most of the existing RESTful API discovery methods are based on data
from Programmable Web and they often focus on improving natural language
processing technologies to obtain accurate discovery results using API descrip-
tion texts. Neural networks and deep learning methods are commonly used for
behaving well in mining the latent semantics features of texts. For example, Liu
et al. [12] propose a two-step transfer learning method to support endpoint-level
web API search. However, these methods can hardly assure the callability of
discovered APIs for not considering the interfaces.

TASSIC [14] takes interface matching into consideration. However, we find
it ignoring the three API interface features as we mentioned before. Firstly, it
simplifies the interface formalization by ignoring the path parameters in JSON,
parameter necessity and abbreviations. The Hungarian algorithm used for inter-
face matching also limits the parameters’ matching relationship to be one-to-one.
These problems can also be found in some WSDL-based work like [4].

3 Preliminaries

Involved definitions are introduced in this section. An API service is often com-
posed of multiple functionally related endpoints [12], and the atomic unit of
selection and invocation is a single endpoint. Therefore, the proposed work is
based on the endpoint level. Unless otherwise specified, every “service” men-
tioned in this paper refers to an endpoint. The formalization of this problem is
mainly composed of user request and endpoint service information.
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(a) Example of request interfaces (b) Example of endpoint interfaces

Fig. 1. A weather forecast running example

Definition 1: Endpoint. ep=(epName, epGroup, epDesc, epInput, epOutput,
apilnfo)

epName refers to the endpoint name. epGroup is the name of the group that
joined in by the endpoint, which can be null. epDesc refers to the functional
description text. The input and output parameters are represented by epInput
and epOutput, separately. epInput consists of epReq and epOpt, where epReq
refers to parameters necessarily required for invocation and epOpt are those
can be optionally filled. apilnfo is the information of API that this endpoint
belongs to, where apiName refers to the API’s name and apiDesc refers to the
API function description text.

Definition 2: Request. r = (rDesc, rInput, rOutput, r Domain)

rDesc is the description text of the function required. rInput are the input
parameters provided and the required output parameters are represented by
rOutput. rDomain refers to the domain of the targeted service that user
required. When a request arrives, based on the rDomain, we firstly pick the
corresponding endpoints as the initial candidate set EP = {ep; }.

Definition3: Parameter. p = (pName, pType)

pName refers to the transformed parameter name phrase and pType refers
to the data type of the leaf node parameter.

JSON is a common data exchange format between RESTful APIs. This paper
introduces the parameters in terms of “root node” and “leaf node” from tree
structures [5]. During invocation of a service, the parameter assignment finally
focuses on the matching of the leaf parameters [21]. Still, to retain more path
information, this paper turns the JSON Schema®* format interfaces into sets of
parameters which are phrases concatenating all identifiers on the path from the
root node to the leaf node. The conversion will be introduced in Sect. 4.2.

Figure 1 presents our running example. We create a request and an endpoint
based on real interfaces in Rapid API. The request interface here is designed to
be JSON example data and the endpoint interface is in JSON Schema format.

* http://json-schema.org)/.
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4 Implementation

This section describes the implementation. After briefly introducing the frame-
work and the discovery process, we will present the details of each module.

4.1 Overall Framework

The proposed framework shown in Fig. 2 includes the service data preprocessing
module and core discovery module. Service data preprocessing module prepares
service data before requests arrive. It consists of Rapid API data collecting and
pretreatment including interface transformation and parameter processing, after
which a service information database will be built. The core discovery module
describes the whole discovery process, which mainly includes three phases: func-
tion similarity calculation phase (Phasel), interface matching phase (Phase2),
and the comprehensive phase(Phase3). When a user request comes, the candi-
date services will go through the three phases in turn to measure their similarities
with the user request in terms of function description and interfaces. During the
first two phases, some services may be filtered out. Finally, for each remained
candidate, its total score will be calculated in phase 3. According to the total
scores, the user will be provided with the sorted discovered endpoints.

Core Discovery Module
———— 13 ¥ S i
| Phasel: Function Similarity Calculation Phase &““““»@
| User Functional Service Functional Initial - J—
DT#)—— =3 Request Description Cun\l‘lilda(e Service Information Dataset
lk:
S Parameter Processin;
M Redi"es‘ (Function Similarity - = 8
| - Identifier expansion Tree-structure
Discgvery = = <  Identifiers With Identifiers Without Interface
Redults Phase2 : Interface Matching Phase f ot e At Transformation to
Input Matching Output Matching : ,—f t . Parameter Set
Service User Input Service User Service | Context-based C:
Input P Optional Input Output Output i Preparation |
Filtering [ One-to-many Matching | o ! ,.% Lot é =
and A =2 5 e D i L3 ¥
Sorting @eqnlred Input Score\f)pmmal Input Scnra Ex er":e‘:::;nliase Prediction Model
(Output Matching Sq
Input Matching Score w'wg I
b JSON Schema Interface Information Extraction
Interface Matchiné Score
| Phase3: Comprehensive Phase | =
(Total Score ) Collected API Data from Rapid API
= . .
[ | Service Data Preprocessing Module

Fig. 2. Service discovery framework

4.2 Service Data Preprocessing Module

Preprocessing Framework. The foundation of API discovery is the service
information base. The preprocessing framework is in Fig. 2. We collect the service
data from Rapid API and preprocess the service interface information in terms
of transformation and identifier expansion.

First we introduce the transformation process. According to the interfaces in
Rapid API, JSON is mostly used as interface format and interface information is
often provided by body or schema. The body refers to the interface sample data
provided, and schema is interface template. JSON Schema is more suitable for
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the matching task for giving explicit interface template including parameter data
types. Therefore, in preprocessing, for those services that do not provide their
interface schemas, this paper first converts the body data to the corresponding
JSON Schema template by recursively identifying the keywords and data types
in the sample data. After unifying the interface format, this paper recursively
transforms the JSON Schema formatted interfaces to the parameter sets defined
in Sect. 3. In the end, the user request and each service will obtain two parameter
sets as input and output separately. In the process of the transformation, the
identifier expansion is performed.

Identifier Expansion in Service Discovery Scenario. Interface matching is
based on the obtained similarities between parameters. Most existing work directly
use common tools as Wordnet [16] for parameter similarity calculation. However, in
this case, naming conventions of identifiers such as abbreviations can greatly affect
the accuracy for the following two reasons. First, Wordnet does not contain all the
possible abbreviations, which may cause that some terms in identifiers cannot be
retrieved. It also does not specifically identify abbreviations which may cause the
misunderstanding of a certain term. For example, the definition of temp in Word-
Net is “a worker hired on a temporary basis”, but in the context of weather forecast,
it is often the abbreviation of temperature.

Current work on identifier expansion is mainly in the software maintenance
field [10,17]. The sources of candidate words used in the software scenario are
rich and targeted because the abbreviations in function parameters can often be
directly expanded [17] from the source code. For example, a formal parameter
can be expanded using its actual parameters as references and vice versa [10].
In service discovery scenarios, however, most of the information contained are
descriptions of the whole service which is less targeted for a single parameter.
The parameter identifiers in Rapid API mainly have the following features:

— Some providers attach description to each identifier to introduce the param-
eter’s meaning and format. In this case, an abbreviation inside the identifier
can often find its corresponding expansion directly from the description.

— Although the information of a single service is limited, there are commonly
used abbreviated specifications for services in the same domain. For example,
in weather services, lat usually means latitude.

— The same set of parameters often appear together for services in the same
domain. For example, in weather services, wind, cloud, and temperature
often occur together at the same level in the interfaces of several services to
describe weather conditions.

Based on the above information, this paper proposes an identifier expansion
method based on RESTful APIs. It is composed of two phases: preparation and
the expansion algorithm. Identifier expansion algorithm is used in the service
interface preprocessing and whenever a user request arrives. It includes two steps:
separation and term expansion [11]. This paper uses Spiral [9] for separation. As
for term expansion, the identifiers with or without description are processed in
two different ways, which will be introduced later.
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Preparation Work.
— Domain expansion experience base

Because parameter descriptions are targeted information, first we try to
expand parameters with description and use it for experience base construc-
tion. The construction process is as follows: for each identifier with description,
segment its description texts to obtain the candidate word set. For each term
after separation, decide whether there is a word or phrase in the candidates that
has an abbreviation relationship with it in turn. If there is, it is regarded as a
successful expansion. The identifier itself won’t be changed during preparation,
only the result will be recorded. So how to decide a term’s expansion from can-
didates? We consider all possible abbreviation formats to be acronym, prefix, or
dropped letter [10], and decide one by one to find whether there exists a candi-
date that has one of the above three relationships with the term processed. If
there find several possible expansions, select the shortest one as the most likely
result to return. It should be noted that for the acronyms, this paper finds the
candidate terms from combined initials of the terms in the description in case
of combined acronyms being ignored, such as tz for timezone.

— Domain word set and prediction model

Domain word set refers to the valid words appearing in all services under the
domain and is used as a reference when expanding the terms without description
and those who are not in the experience base. It is challenging to select the most
likely expansion from the large-scale domain word set. In the existing work, they
often choose the expansion according to word frequency or transformation cost
[2,6]. However, with these methods, the same terms tend to choose the same
expansion all the time, while the expansion should be the most likely appeared
one according to the context. Therefore, this paper uses the Continuous Bag-
of-Words Model (CBOW) [15] as the context-based word occurrence probability
prediction model. We collect the sentences in all APIs from the same domain
together with those composed of parameter identifiers at the same JSON level
in all interfaces to constitute a training dataset.

The training task of CBOW is to predict the current word based on the
context words. The trained model will be used in the expansion algorithm to
obtain the occurrence probability of each domain word according to the term’s
context. And the sorted domain words can be obtained as the candidates.

Identifier FExpansion Algorithm. Algorithm 1 provides the algorithm pseudo-
code. The inputs are the identifier to be processed, description of the
identi fier(if there is), the context terms from other parameter identifiers from
the same JSON level and the domain experience base dict,ccorq, and the output
is the expanded phrase identifiercyp. First, the identifier will be separated
into terms (line 1), and context will be put into the trained CBOW model.
The obtained sorted words will be used as context referenced candidates named
canscontest(line 2). Then we start to try to expand every segmented term. If
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the identifier has a description text, the expansion will firstly be selected from
the description. If it is successfully expanded, the result will be added to the
final expansion result (line 4-10). If not, first turn to check the dict,ecorq. If
there exists a record of this term, choose the shortest record as the expan-
sion and add to the final result (line 12-15). If not, first check if this term is
actually an abbreviation. If it’s not an abbreviation, this term will be directly
added to the result; otherwise the canscontest Will be used to locate the pos-
sibly correct expansion. Because the canscontest are already sorted by occur-
rence possibility, once a candidate is found to be a possible expansion, it will
be returned immediately instead of choosing the shortest one (line 17-21). If
this expansion still fails, the abbreviation will be directly added to the result.

Algorithm 1. Identifier Expansion

Input: identifier, context, dictrecord, description
Output: identifiercqp

1: termList — segment(identifier)
2: cansScontext < sortedWordsByC BOW (context)
3: for term in termList do
4 if description not null then
5: CaNSdescription — segment(description)
6 exp — expand(term, cansdescription )
7 end if
8 if exp not null then
9: identifieresp < identifiercyp, + exp
10: continue
11: end if
12: if term in dict,ecorq then
13: exp — shortest(dictrecoralterm])
14: identifieresp < identifiercyy + exp
15: continue
16: else
17: if isAbbr(term) then
18: exp — expandByContezt(term, canscontest)
19: if exp not null then
20: identifieresp «— identifiercypy + exp
21: continue
22: end if
23: end if
24: identifieresp < identifiercyp, + term
25: end if
26: end for

27: return identifiercey

4.3 Core Discovery Module

Function Similarity Calculation Phase. This paper uses the sentence
embedding model SimCSE [7], which is proved to be suitable for semantic textual
similarity tasks, and calculate the cosine similarities as the function similarity.
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We concatenate the texts related to the description of endpoint functional
information into a single paragraph as (1) and use SimCSE with cosine dis-
tance to calculate its similarity with the rDesc, which is scoreieq.t(r,ep;) =
$iMyeqrt(rDesc, epText;), between [0,1].

epText; = epName; . epDesc; « epGroup; « apiName; « apiDesc; (1)

where . represents sentence concatenation.

After phasel, those whose score is lower than the function similarity threshold
p will be filtered out, and the remained candidates in EP;q; = {ep;} will enter
the next phase.

Interface Matching Phase. This section describes how to measure the inter-
face matching degree. After converting the interfaces of the request and service
into parameter sets, a bipartite graph model can be built. Due to the different
representation of input and output, this section first takes two non specific sets
P and @ as example, where P = {p1,ps,...,on },@ = {q1,92, .., g1 }-

For each ep; in EP;.;, the matching degree between its and the request
r’s input/output interface parameter sets will be calculated and synthesized.
Similarity calculation between parameter sets depends on similarity calculation
between each pair of parameters. Therefore, this section first introduces the
similarity calculation between two single parameters.

Similarity Calculation between Parameters. The similarity between two param-
eters can be measured from two aspects: semantics and data type.

For the semantic similarity, this paper uses pName for calculation and the
similarity simgem (Pn, ¢m) is gained using the same SimCSE model as Sect. 4.3.
Data type similarity simqype(Pn,@m) can be obtained by looking up the Table1,
which is designed according to [23] and expanded considering the format speci-
fication of JSON and the type options of Rapid API.

Table 1. Similarities between types

Integer | Number | String | Boolean | Date | Time | Geopoint | Enum | Object | Array
Integer |1 0.5 0.3 0.1 0.1 |0 0 0.8 0 0
Number |1 1 0.1 0.1 0 0 0 0.8 0 0
String 0.7 0.7 1 0.3 0.8 (0.8 |08 0.8 0.5 0.5
Boolean |0.1 0 0.1 1 0 0 0 0 0 0
Date 0.1 0 0.1 0 1 0 0 0 0 0
Time 0 0 0.1 0 0 1 0 0 0 0
Geopoint | 0 0 0.1 0 0 0 1 0 0 0
Enum 0.5 0.1 0.1 0 0 0 0 1 0 0
Object |0 0 0.1 0 0 0 0 0 1 0
Array 0 0 0.1 0 0 0 0 0 0 1
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The semantic and data type similarities between parameters are weighted
and synthesized to obtain the total similarity simparam(Pn;@m)- Wsem is the
weight of semantic similarity.

$iMparam (Pns @m) = $iMsem (Pn, Gm) * Wsem + SiMiype (P, Gm) * (1 — Wsem)  (2)

The existing interface matching often directly uses the calculated similarities.
In this way, the gained matching score can be higher than it should be, because
with the existing method, two parameters can still be matched as long as their
similarity is higher than others, even if it only values 0.05. So this paper set
the threshold 7 to bring out a higher demand for two parameters to match.
According to (3), if the similarity is lower than 7, its value will be set to 0. As:

Simparam (pn7 qm)7 Simparam > (3)

SUm(Pn; Gm) = { 0, else

Interface Matching Degree between ep; and r. Due to the asymmetry of the
proposed one-to-many matching, this section still first takes P and @ as an
example to show how to calculate the matching degree when using @ to fill P.
In this situation, “one-to-many” means that one parameter in () may be selected
and matched by several parameters in P.

When using @ to fill P, for each p; in P, select the parameter in ) that has
the highest similarity with p; to match as in (5). Add all the matching scores
and then normalize it to [0,1] as the final score between the two sets. As:

match(p;, Q) = max{sim(p;,q1), ..., sim(p;, qar) } (4)
N
matched(P,Q) = U arg max {sim(p;, q;)} (5)
i=1 GEQ
N
5" match(pi, Q) o

SCO'rematch(Pv Q) == N

Back to service discovery. First, about input matching, the required and
optional input parameters are discussed separately. The required parameters
directly affect the service invocation, so they must be completely covered. The
optional parameters are often auxiliary parameters such as language and filter.
When the required parameters are equally met, the satisfaction of optional
parameters to user’s input data means how much the service gives extra consider-
ation of user needs. Therefore, this paper sets “basic-bonus” scoring mechanism
to measure the input matching degree.

— Stepl: Service required parameters matching
First, fill the endpoint’s required parameters with the user’s input as (7).
5COT€pqsic(T, €p;) = scorematch(epReq, rInput) (7)

Due to the setting of the parameter similarity threshold, the matching scores
of parameter pairs can be 0. When the matching score of any service required
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parameter is 0, the service is considered to be not callable. In this case, this
service will not be returned in the final result.

— Step2: Service optional parameters matching

Then fill in the remaining user’s input parameters unmatched after the first
step with the epOpt.

unmatched = rInput — matched(epReq, rInput)

(®)
9)

SCOT€ponus = SCOTEmateh (unmatched, epOpt)

Add the basic and bonus scores to obtain the input matching score:

5COT€ (1, €p;) = SCOT€hasic(T, €P;) + SCOTEbonus (T, €D;) (10)

For the outputs, directly use the service output parameter set to fill the user
request output parameter set as (11). Similarly, if the matching score of any of
the output parameters required by the user is 0, the service will not return.

(11)

Taking w;, as the weight of input matching degree, the synthesized interface
matching score is:

scoreout(r, ep;) = scoremaren (rOutput, epOutput)

sCOT€inter face (T, epj) = score;n (T, ep;) * Win + sCOTeout (1, ep;) * (1 — wipn) (12)

We use our example as Fig. 1 to show the process. First, we calculate the input
matching degree. We begin with the matching of required parameters. Based on
the principle of one-to-many matching and the setting of parameter threshold,
both longitude and latitude of the endpoint are matched with coordinates pro-
vided by user. So the scorepgsic is (0.77442 + 0.73651) /2 = 0.75547. The param-
eter language from request is then matched with the expanded optional param-
eter lang. Therefore the scoreponys equals 1.0 and the score;, equals 1.75547.
The bonus score shows that the endpoint can better fit the user request with
being able to provide weather information in various languages. Similarly, we
can obtain the output matching result in Table 2. The output matching degree
is (0.75309 +0.83990 + 0.85277 + 0.79706 + 0.76471) /5 = 0.80150. Therefore, the
overall interface matching degree is 1.75547 % 0.2 + 0.80150 * 0.8 = 0.99230.

Table 2. Output parameters similarity

Items temperature | Items temperature |Items temperature |Items weather |Items date
average minimum maximum text
List date 0.41998 0.32875 0.39211 0.53297 0.75309
List main temperature |0.75512 0.83990 0.75185 0.35799 0.24199
minimum
List main temperature |0.78571 0.71710 0.85277 0.35444 0.28260
maximum
List main temperature |0.79706 0.64821 0.72287 0.39970 0.29178
average
List main weather 0.58043 0.49227 0.52341 0.76471 0.47978
description
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Comprehensive Phase. This phase synthesizes the scoring results of the pre-
vious two phases, with wy.,+ as the weight of function similarity to obtain the
total score(r, ep;). The total score threshold A is set and the filtered service set
E P, st Will be sorted and returned.

score(r, epj) = SCOT€teqt (T, €Dj) ¥ Wiegt +SCOT€inter face(Ts €Dj) ¥ (1 —Wiert)  (13)

5 Experiments

5.1 Dataset

Rapid API Dataset. Experiments are carried out on the Rapid API dataset, in
which 7881 APIs are collected, including 37,037 endpoints, involving 46 domains.

Interface Information Statistics. According to our statistics, 90.03% of the
APIs provide interface information, and 96.93% of the output information are
provided in JSON; as shown in Fig. 3.

No interface
Output only JSON

B Input and output Non JSON
Input only
9.97%
96.93%
49.23% 6.5%
’ 3.07%

34.31%

(a) interface situation (b) output format situation

Fig. 3. Statistical result of interface situation in Rapid API

This paper also calculates the proportion of optional parameters and abbre-
viations in the dataset. The proportion of optional input parameters is about
48.52%. As for abbreviations, we first separate the parameters, remove the stop
words and non-English words, and regard the terms that do not exist in WordNet
as abbreviations. All the single characters are also thought to be abbreviations.
In this way, 349,552 terms are obtained from the whole dataset, of which 44,301
are abbreviations, accounting for about 12.67%. The above data shows that
the analyzed interface features account for a considerable proportion of the real
dataset, which can easily affect the service discovery results.

5.2 Experimental Settings

Evaluation Metrics. The metrics are Top-k precision, recall and Fl-score
which are commonly used in service discovery. The formulas are as follows:

_ |resulty (r) () truth(r)]

| (14)

Precisiong(r)
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Recally(r)

F1 — scoreg(r) =

_|resulty(r) (Y truth(r)]|

[truth(r)]

2% Precision(r) * Recally(r)

(15)

Precisiong(r) + Recally(r)

(16)

Among them, resulty(r) represents the top k services returned, and truth(r)
represents the accurate reference result corresponding to r. Precisiony(r) is used
to measure the accuracy of the top k results; Recall(r) is used to measure the
comprehensiveness of the top k results. F'1 — scoreg(r), as the harmonic mean
of precision and recall, is used to measure the performance comprehensively.

Requests Design. This paper designs 10 different requests involving 10 cat-
egories for experimental verification: Monitoring, Weather, Visual Recognition,
Location, Translation, Movies, Text Analysis, Social, Food, News&Media. For
each category, this paper prepares a request that can be used to discover more
than one accurate result. The corresponding accurate services are manually col-

lected in the meantime.
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Fig. 4. Thresholds impact on API discovery result
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Parameters. Six parameters are involved in the method. We discuss the
influence of different parameter combinations on discovery results to decide
the best group. We set each parameter to be 0.2,0.4,0.6,0.8 and try different
combinations in grid. Fl-score in (16) is chosen to show the discovery perfor-
mance, with k being set to |result(r)|. The obtained optimal combination is
w=0.4,17=0.6,\ = 0.6; Wyt = 0.8, W, = 0.2, Wger, = 0.8.

We can see from Fig.4c that when 7 is set to 0.6, the performance has an
obvious improvement. After n is decided, Fig.4a shows that better discovery
results can be obtained when p is below 0.6 because when p is higher than
0.6, most endpoints will be filtered out at phase 1. In general, it can be seen
from Fig.4a and Fig. 4b that the discovery performance shows a central decline
around (0.4, 0.6, 0.6). As for the weights, it can be seen from both Fig.5b and
Fig. 5c that as the wgey, increases, the performance keeps improving. This shows
the importance of parameter semantics to the discovery result. In the meantime,
better result still appears when they are set to be 0.2 and 0.8, respectively.

5.3 Comparison Methods

The comparative experiment consists of three groups to reflect the effect of
identifier expansion, the consideration of interface, and the impact of one-to-
many matching. Due to the lack of semantic annotation in RESTful APIs, we
mainly compare with the latest API discovery methods, which include:

noAbbr. The framework of this method is the same as the proposed work, only
the interfaces are transformed without identifiers being expanded. It is used to
verify the impact of the proposed identifier expansion phase.

textOnly. This method is designed as the representative of the API discovery
methods that consider only the function description of APIs to verify the effect
of considering interface. It only retains the phase 1 with u. The discovery results
are returned after filtering and sorting according to the function similarity.

TASSIC. [14] Due to different dataset scenarios and formalization, this method
is adjusted according to the scenario of this paper. The framework is consistent
with our work, only the interface matching is replaced by the idea of TASSIC.
Firstly, the number of interface parameters is preliminarily screened. Then, the
Hungarian algorithm is adopted. To ensure the experiment’s validity, the pro-
posed interface preprocessing is used in this comparison method. This design
compares the discovery results to verify the effectiveness of the proposed inter-
face matching scheme.
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5.4 Results

Effect of Identifier Expansion. Figure6 shows the comparison of the service
discovery results obtained by the method noAbbr and the proposed work. The
result is the average of 10 requests. It can be seen that better results are achieved
in all three metrics after identifier expansion, indicating that the discovery result
returned by the proposed work is more accurate and comprehensive. It is effective
to add the identifier expansion based data preprocessing module in this scheme.
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Fig. 6. Comparison of service discovery with or without identifier expansion

Effect of Interface Matching Phase. Both of the two comparison experi-
ments with the methods textOnly and TASSIC are shown in Fig.7. As can be
seen, compared with the textOnly method, TASSIC and the proposed work have
significantly improved the effect of service discovery, indicating that the inter-
face matching phase plays an important role in improving the service discovery
result. And when compared with the modified TASSIC method, the proposed
scheme still shows advantages in all three metrics. Also, most of the returned
results of our work are fewer than those returned by TASSIC, which means that
we can return more accurate results in more advanced positions and save the
users from further selection.

= textOnly

06] - + TASSIC 49 * textOnly
05 2 4+ ours 0'25 Larees 0.30-‘ . : ICZSIC
e : P o 0.25
_020 1
04 . = v 20.20 ‘e
151 LI 90.15 4 8 {
go.s - & / ©0.151 .
02 e, 010y - - texOny| Boqof ¢ . TR
: N 005 °  « + TASSIC 1
011 & we™ e, 0.00 . 4+ ours '05'_ P
000, —
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Fig. 7. Comparison of service discovery with different interface matching scheme
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6 Conclusion and Future Work

This paper proposes an automated service discovery framework for RESTful API
services considering the features of RESTful API interfaces. Firstly, this paper
proposes an API discovery framework that comprehensively scores the similar-
ity between user requests and candidate services to provide callable discovery
results with user-required function. Then, considering the three interface features
of RESTful APIs that are sorted out based on Rapid API, this paper provides
a new endpoint formalization and designs new interface matching strategy. The
identifier expansion phase based on context and experience base is introduced to
solve the abbreviated parameter problem. This paper also provides comprehen-
sive solutions for required and optional parameter matching and set the matching
algorithm into one-to-many mode with parameter similarity threshold. Compar-
ison experiments show the discovery performance improvement of the proposed
method. In the future, the adaptive tuning of the six parameters used in our
method will be discussed. And deep learning methods will be considered to fur-
ther improve the accuracy and response time of service discovery.

Acknowledgements. This work is supported by the National Key Research and
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Abstract. Serverless computing leverages the design of complex appli-
cations as the composition of small, individual functions to simplify
development and operations. However, this flexibility complicates reason-
ing about the trade-off between performance and costs, requiring accu-
rate models to support prediction and configuration decisions. Estab-
lished performance model inference from execution traces is typically
more expensive for serverless applications due to the significantly larger
topologies and numbers of parameters resulting from the higher frag-
mentation into small functions. On the other hand, individual functions
tend to embed simpler logic than larger services, which enables inferring
some structural information by reasoning directly from their source code.
In this paper, we use static control and data flow analysis to extract
topological and parametric dependencies among interacting functions
from their source code. To enhance the accuracy of model parameter-
ization, we devise an instrumentation strategy to infer performance pro-
files driven by code analysis. We then build a compact layered queueing
network (LQN) model of the serverless workflow based on the static
analysis and code profiling data. We evaluated our method on server-
less workflows with several common composition patterns deployed on
Azure Functions, showing it can accurately predict the performance of
the application under different resource provisioning strategies and work-
loads with a mean error under 7.3%.

Keywords: Serverless computing - Performance modeling - Layered
queueing networks - Static analysis + Code profiling

1 Introduction

Serverless computing is a novel cloud computing paradigm that aims at mak-
ing operations concerns transparent to developers and cloud users [9,13]. It has
recently gained increasing attention in industry due to the potential for signifi-
cant cost savings and on-demand billing modes. Function-as-a-Service (FaaS) is
a cloud computing execution model introduced within serverless computing that
allows developers to deploy single functions as basic building blocks [9]. Com-
pared to monolithic applications and microservice-based architectures, FaaS-
based applications can be triggered and served by events (e.g., HT'TP requests)
and executed on-demand. There are several cloud vendors providing FaaS capa-
bilities like AWS Lambda, Google Cloud Functions and Microsoft Azure Func-
tions, as well as open-source alternatives such as OpenFaaS or KNative.
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Developers can write individual serverless functions and compose them in
complex workflows deployed on the FaaS platforms. FaaS platforms enable auto-
matic management, scaling, and billing of the execution of FaaS-based workflows
to take over most operational efforts from developers and users. However, main-
taining Quality-of-Service (QoS) requirements and meeting service-level agree-
ments (SLAs) of FaaS applications remains an outstanding concern [26].

Performance models provide analytical prediction and simulation results to
help to reason about and improve the quality of FaaS-based applications. Accu-
rate and efficient performance modeling benefits not only the developers and
operators, but also FaaS providers. On the one hand, with performance mod-
els, the developers have a better understanding and prediction capabilities of
the quality of the application under different workloads and deployment con-
figurations, which may also help direct development decisions. On the other
hand, FaaS providers can take advantage of accurate cost prediction and resource
management, inferring related metrics from performance models. There are well-
established stochastic models such as queueing networks [16], layered queueing
networks (LQNs) [14], Petri nets [22] that can describe the system with a sim-
plified abstraction. Among them, LQNs are particularly suitable for capturing
the dependencies and interactions between different FaaS functions.

Building performance models for FaaS applications accurately and efficiently
is a non-trivial problem. However, differently from monolithic or service-based
applications that aggregate larger functionalities behind each endpoint, the
source code of individual serverless functions is usually more focused and suc-
cinct, rendering it amenable to static code analysis to infer additional informa-
tion about the internals of FaaS applications. Our insight is to exploit estab-
lished control and data flow analysis methods [23] to improve the granularity
of performance models for FaaS-based applications, ultimately improving the
accuracy of models and performance predictions. However, building LQN mod-
els for FaaS functions and workflows is still challenging due to the information
gap between modeling and monitoring granularity compared to the classical per-
formance modeling for web applications and microservice-based applications.

The first challenge in building LQN models for FaaS applications is learning
the topological graph representing the application behavior on both inter- and
intra-function levels. Attempting to accurately and completely reconstruct this
structure only from traces or monitoring data may be difficult because it relies
on the test inputs capable of covering all the relevant execution traces. However,
when functions are observed as black-boxes, i.e., without knowing which parts
of their code have been exercised, there is no reliable way to ascertain whether
any behavior has remained uncovered. In turn, the LQN model inferred from
such partial traces may itself be incomplete.

Additionally, appropriate model parameterization is critical to define effec-
tive and efficient parameter estimation methods. Estimating service demand for
individual endpoints from system monitoring measurements, like utilization or
response time, is particularly challenging, with most methods typically resort-
ing to regression algorithms to combine different measurements [25]. However,
these methods estimate service demand based on queueing theory and may lead
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to inaccurate results due to the uncertainty introduced by the approximation
based on the queueing theory.

This paper proposes to build performance models for FaaS workflows com-
bining static analysis and code profiling. We assume that the source code and
configuration metadata of FaaS functions and workflows are accessible. To learn
the topology of the model, we apply static analysis on the source code to obtain
the inter-procedural call graph of the orchestrator defining the workflow com-
posing the individual functions, and the intra-procedural control flows for each
function. To more accurately characterize the model parameterization, we pro-
pose to inject code to hook system function calls during the profiling stage and
capture the distribution of the service demand based on profiling data instead
of estimating based on system measurement. The profiling data, being measured
within the process executing the function, depends only on the function inputs,
while it is largely workload-independent since queueing time does not affect the
measures. Then, we derive the LQN models for serverless workflows by mapping
the static graphs and code profiling data. In the experiments, we implement
FaaS-based workflows representing different function compositing patterns to
evaluate our proposed method. We compare the results by solving LQN to the
data collected from the workflow execution. The experimental results yield model
predictions with a mean error under 7.3% in all the evaluated scenarios.

The remainder of the paper is structured as follows. In Sect. 2, we give back-
ground on static analysis and LQN. In Sect. 3, we discuss the methodology of
building LQN model based on static analysis and code profiling. In Sect. 4, we
conduct experiments with different FaaS workflows to evaluate the effectiveness
and efficiency of our proposed modeling method. In Sects. 5 and 6, respectively,
we discuss related work and draw conclusions.

2 Background

Static Analysis of Source Code. Static analysis is widely used to infer infor-
mation about a program by reasoning on the structure and features of its source
code, or convenient intermediate representations, without actually executing the
program [23] (as opposed to dynamic analyses that require executing the pro-
gram). For example, it can infer which statements in a program affect the value
of a variable at a specific line. Two widely used representations that can be stat-
ically extracted are control and data flow graph. A control flow graph (CFG)
captures (a superset of ) all the possible paths that can be executed at runtime. A
CFG represents how the evaluation of conditional statements (e.g., branches and
loops) determines the next code block to be executed. At intra-procedural level,
CFGs represent the dependencies between code blocks and all the possible exe-
cution orderings, subject to the decisions at conditional nodes. Intra-procedural
CFGs can be related to one another via the program call graph. A call graph
(CG) captures for each caller function all the callee functions it can invoke,
providing an inter-procedural representation of the dependencies and interac-
tions among functions. Instead, a data flow graph represents the propagation
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Fig. 1. An example LQN model

of information throughout program statements and variables [18]. Static data
flow analysis, for example, can compute execution paths that propagate values
of interests from their sources to sinks. Data can flow through dependent nodes
of a CFG, e.g., through the arguments of a function invocation or the decision
at a conditional node. Taint analysis is a data flow analysis that can track which
program variables at which code locations are affected by the values of a func-
tion’s inputs. While typically used for security purposes [27], taint analysis can
capture what input information can flow to other function invocations.

Layered Queuing Networks. LQNs are an extended queuing network for-
malism that has been widely used to abstract web applications [17]. The main
components of LQN models covered in this paper are shown with an example in
Fig. 1. The large parallelograms, denoted as Task, represent software and hard-
ware entities. There are mainly two types of tasks: a task representing the clients,
and tasks representing the servers processing incoming requests. Tasks are hosted
on resources that are denoted as processors in the circle, and multiprocessor hosts
can be specified with a multiplicity figure. Smaller parallelograms inside a task
are called Entry and represent different service classes provided by a task (e.g.,
different endpoints). The detailed operations inside each entry can be described
with a set of Activity specified with their execution order (rectangular nodes
for activities and circular “+” nodes representing probabilistic choices). Each
activity is parameterized with service demand, for example, specifying the mean
value of the exponential demand distribution. Activities can make requests to
different entries by sending synchronous or asynchronous calls. For instance, in
the top task, 10 concurrent clients are sending synchronous requests to £21 and
E22 and the arcs are labelled with the value of the mean number of requests.

3 Methodology

Our methodology for modeling serverless applications combining static analysis
and code profiling includes three main phases: a static analysis to learn the
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Fig. 2. The overview of the proposed methodology

topology for LQN structure modeling, a dynamic analysis with code profiling to
collect data for model parameterization, and LQN model generation.

Overview. The overview of the proposed methodology is shown in Fig.2.
Assume that after the development of individual serverless functions or FaaS-
based workflows, we are able to access and instrument the source code and
configuration metadata either from developers or cloud providers. (Black-box
functions whose performance models have been constructed with alternative
methods can in principle be included in the LQN model as well, with possi-
ble increase of the overall uncertainty of the model. However, in this paper, we
focus on modeling functions whose source code is accessible.) First, to define
the topological structure of the workflow, we apply static analysis to extract the
intra-procedural and inter-procedural control flow graphs from the source code
of FaaS-based workflows, including individual functions and orchestration code
composing them. Besides, we try to infer the dependencies between the input
parameters of each individual serverless function and which function calls they
affect; this can help to reduce the number of nodes in the topological graph.
We then inject profiling instructions into the source code to enable code-level
profiling during performance testing (we will refer to the instrumented code as
profiled code). Next, the profiled code can be deployed on the production plat-
form as required for performance testing and data collection. After exercising
the test inputs, the service demand distribution is captured with the profiling
data. The availability of the static graph also allows inspecting if any static exe-
cution path has not been covered, enabling the developer to decide whether 1)
the static path is effectively not executable (e.g., the FaaS application does not
require all the features of a library function, thus using only some of its possible
behaviors), 2) the static path implements features not relevant to ensure the
SLAs thus it was deliberately not exercised during performance testing, or 3)
the performance test suite needs improvement to cover more missing relevant
application behaviors. Finally, we can generate LQN models using the topolog-
ical graph for components specification, and accurately characterize the model
parameters with code-profiling data.
In the remainder of this section, we will detail each of the three phases.
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3.1 Static Analysis for Structure Extraction

We assume that there are two major components in a given FaaS-based applica-
tion: an orchestration function defining workflows to compose individual serverless
functions with suitable patterns (e.g., sequential or parallel execution), and a set
of individual serverless functions implementing different functionalities. We first
construct the topology of the LQN from static source code analysis. The static
analysis provides a fast way to capture the internal control flows by identifying
(a superset of) all feasible paths of the programs. This can help build a complete
topological graph, whereas certain parts could be missed in monitoring data if the
inputs used to test the system do not cover all of its features extensively.

5try:
6 req_body = ..

7 except... || 9else:
8 pass 10 name = req_body...

2 logging.info ...

1 def main(req: func.HttpRequest) -> func HttpResponse:

2 logging.info('Python HTTP trigger function processed a request)

3 name = req.params.get('name’)

4 ifnotname:

5 try:

6 req_body = req.get_json()

7 except ValueError:

8 pass

9 else:

10 name = req_body.get('name")

11 ifname:

12 return func HttpResponse(f'Hello, {name}. This HTTP triggered function executed successfully.")
13 else:

14 return func HttpResponse(

15 “This HTTP triggered function executed successfully. Pass a name in the query string or in "+
16 "the request body for a personalized response.",

13 else:
14 returen func.Http.
15 “This is HTTP ...

12 return func.Htp.... 16 the request

17 status_code=200 17 status_code ..
18 ) 18 )

(a) (b)

Fig. 3. An exampled source code in Python from Azure Functions (a) and the corre-
sponding control flow graph (b).

Static Graph Generation. In this paper, we use both inter- and intra-
procedural static graphs to derive the topological structure of the LQN mod-
els. A call graph (CG) is mainly responsible for extracting the calling rela-
tionships on the workflow, which is extracted from the orchestration function.
While intra-procedural information can be obtained by generating a control flow
graph (CFG) for each serverless function. Both CG and CFG are constructed by
traversing nodes in the abstract syntax tree (AST) on the profiled code, resulting
in a collection of code blocks and control nodes representing conditional execu-
tion [23]. Combining both CG and CFG of the serverless workflow, we obtain
an inter-procedural static description of the system that we call the static graph
(SG) as SG = {CG,CFG}.

Given the control graph of an individual serverless function as CFG =
(N, E), the control flow is formalized by conditions, loops, function calls, and
sequential code blocks. In CFG, N and E denote the nodes and edges, respec-
tively. In order to enable further analysis of the CFG, we then define each
node N; as a tuple (i,ls,le), where [y and [, are the starting and end lines
of the i*" code block. A directed edge in E = {(N;,N;),...} describes the
relationship between nodes N; and Nj;. The example source code in Fig.3a
is available at [1], and Fig.3b shows the control flow for the example server-
less function. The resulting CFG is represented with N = {Nj, Na,..., Ny},
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E =1{(1,2),(2,3),(3,4),(4,5),(4,6),(4,7),(3,7),(7,8),(7,9)} and, for example,
Ny = (9,13,18).

Data Flow Analysis for Parameter Dependency Inference. The static
graph of serverless applications could be large due to redundant nodes repre-
senting the statements whose execution times are not influenced by a function’s
input parameters (e.g., constant time initialization). Thus, from a performance
perspective, these statements could be aggregated into single blocks to reduce
the size and fragmentation of the static graph. We apply a static data flow anal-
ysis to the profiled code to infer the potential parametric dependencies between
input parameters and function calls using taint analysis. This can help reduce
the number of nodes in a static graph by aggregating input independent nodes,
in turn lowering the computation complexity of solving the inferred LQN mod-
els. Taint analysis in this phase works by marking a statement in the source
code as tainted if its execution or assigned value is affected by function input
values. The parametric dependency inference can be formulated as detecting any
existing tainted statement in the nodes of the CFG. If there are input param-
eters used by the statement of any node, we then deduce that the execution
times of the detected node IN; are potentially dependent on such input param-
eters. Formally, potential parametric dependencies can be described as a set of
PD; = (source, sink,lineno), where source and sink are the identifiers of a
function input parameter and a function call whose arguments are affected by
the input parameter, while lineno is the line number identifying the call site of
the sink function to distinguish possible multiple calls.

1 def func(input_p): °
3 resultl = funcl(inpu‘t_p) @
4 logging.info(‘There is no input parameter here’) ° °
N )

) O,
6 result2 = func2(result1)
7

(a) (b)

Fig. 4. An example excerpt of code with taint analysis results highlighted (a), and the
control flow graph reduction process (b).

If there is no potential parametric dependency detected in N;, we can infer
that the demand for executing N; is not impacted by function inputs, resulting
in a reduction of N; by aggregating it with its predecessor. Figure4a shows
an example source code with the taint analysis results highlighted. Let the left
graph in Fig.4b be the original CFG of the example code, with Ny = (4, 3,3)



78 R. Wang et al.

Algorithm 1. Control flow graph reduction with potential parametric depen-
dencies
Input: CFG « Control flow graph of the source code CFG = (N, E)
PD — Set of potential parametric dependencies [PD1, PDa, ..., PDy]
Output: CFG, «— Optimized CFG with reduction on nodes
1: Initialize ry =0, E, =0

2: for N; in CFG do

3: for PD; in PD do

4: if lineno is not in the range of [I5, l.] then

5: ry «—rn UN;

6: succ < all successors of N;, pred < all predecessors of N;
7 update [ of pred to include N;

8: end if

9:  end for

10: N, —« N\rn

11: for succ; in suce do

12: for pred; in pred do

13: E, — E\ (pred;, N;), E, «— E U (pred;, succ;)
14: end for

15: E, — E\ (Ns, succ;)

16: end for

17: end for

18: return CFG, «— (N,,E;,)

and N5 = (5,4,4). The right graph in Fig. 4b shows the reduction of node Nj
into node V4 5 due to no detected parametric dependencies in node Ns.

Algorithm 1 formulates the control flow graph reduction process based on
taint analysis. The algorithm takes the intra-procedural control flow graph and
the detected parametric dependencies as inputs. The algorithm traverses N, in
the original C F'G and checks if any potential parametric dependencies occurred
at N;. If no dependency exists, the current node N; is added to the untainted
set rv. At Line 6 and 7, the algorithm first finds all predecessors and successors
of the untainted node and then revises the end line number of all predecessors
with [, of V;. Then at Line 10, the untainted node is removed from the original
graph. From Line 11 to Line 16, the algorithm iterates on the nodes and removes
the edges containing the affected nodes. By fully connecting the nodes in succ
and pred, the new edges are generated to form the untainted edge set E,. After
iterating on all the nodes in the original graph, the reduced graph CFG, =
(N, E,) is generated by combining nodes in which there are no function calls
or parametric dependencies.

It can be noticed that the parametric dependency inference is only capable
of detecting potential relationship between function calls and input parameters
from the code syntax. For example, consider y = 0*x; f(y); most taint analyses
would conclude that the invocation of £ may depend on the input parameter x.
This may lead to a conservative over-approximation, with possibly only a subset
of the statically detected dependencies satisfied during runtime. In this case, the
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static graph could have been further reduced, realizing that 0*x is identically 0.
Nonetheless, even when non-optimal, taint analysis may still help to reduce the
size of the static graph.

3.2 Code Profiling for Model Parameterization

Application-level monitoring data may be too coarse-grained to accurately infer
service demand parameters of LQN activities, representing the operations inside
individual serverless functions. We instead propose instrumenting the code of a
function to obtain fine-grained measurements that can bridge the information
gap between the granularity of the topology extracted via static analysis and
the data used for model parameter inference.

Code-Level Profiling. To avoid changing any functionality of the source code
and try to instrument the code as less as possible, we only wrap the MAIN
function block into a wrapper function and inject a decorator to record the
execution times with a standard line-level profiler [2] (while we refer mainly
to Python code in this work, similar profiler utilities exist for all mainstream
programming languages). Here, we take the assumption that the performance
test inputs are representative of all relevant production behaviors. If executable
paths in the static graph are not covered by the current test inputs, while they
may affect the application’s SLAs, the developer has the opportunity to identify
the gap and produce additional performance tests.

We denote a sample from the collected profiling data as s = (lineno, dt, iter),
where dt is the execution duration of the statement at line lineno and iter is
the iteration counter to distinguish different iterations in a loop. We can then
map the profiling data into the static graph according to line numbers lineno in
s and (Is,1.) of nodes in CFG, to extend the static graph with profiling data;
we will refer to this extended structure as profiled static graph.

Besides obtaining the execution times of nodes in the graph, we also need
to learn the probabilities of branches and the number of iterations for loops to
infer the remaining parameters of an LQN model. For the branch probabilities,
we define the executed path of each test input request eP. Each eP; € eP
represents one of the feasible paths in the static graph that has been executed
according to the profiling data s. Therefore, the probability of a given selection
path? on each conditional statement can be derived as the fraction of eP; taking
each branch over the number of e P; evaluating the corresponding condition. For
loop iterations, we represent the body of for or while loop as an entire activity
and infer the expected number of iterations from the profiling data, which is
consistent with the typical specification of LQNs. This can be further optimized
by considering the branch probabilities inside loops to indicate a probabilistic
loop, however, this is out of the scope of our current modeling method. In our
proposed method, the number of iterations of loops in each execution can be
directly extracted from the profiled data with iter.

LQN Activity Service Demand Distribution. Service demands are critical
parameters for the specification of activities, as they represent the cumulative
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computation time the activity requires to run. To capture the demand of the
activities in LQN, we model the service demand distribution with acyclic phase-
type (APH) distributions and Erlang distributions by moment matching. Based
on the execution duration dt in the profiling data, we first try to fit an APH
distribution by matching the first three moments of dt. If there is no solution for
APH distribution with the current data, we then fit an Erlang distribution with
mean value and squared coefficient of variation (scv). In this way, the service
demand of each activity can be directly characterized by the profiling data.

3.3 LQN Model Generation

To construct an LQN model from the profiled static graph, we first define a
reference task to represent the incoming workload and an orchestration task
to abstract the workflow logic composing individual serverless functions. Then,
each individual serverless function can be modeled with a single task hosted on
a separate processor, since it can be deployed with different configurations of
resources and even to different platforms.

The entry node of the LQN is then specified according to the entry point
of each function. We further assume that the sequential or parallel (fork-join)
composition of the functions is specified in the orchestration function, e.g., using
Azure Functions code constructs. The degree of concurrency allowed to each
function is specified in the configuration metadata. The scheduling policy of the
processor can be specified as either First-come-first-serve (FCFS), if the source
code is with single-thread implementation, or Processor-sharing (PS) if function
invocations can be interleaved on the same processor. Both scheduling policies
are supported in LQN modeling [15].

LQN Activity Graph Characterization. The static graphs and profiling
information collected so far allows for a systematic construction of the LQN
model. First, we consider that the orchestration function is allowed to specify the
workflow patterns with HTTP calls to invoke the individual serverless functions.
Each activity inside the orchestration entry can be defined according to the nodes
in the call graph and takes the role of sending synchronous and asynchronous
calls for parallel execution to the entries of individual functions in the lower
layers of the LQN. Whereas, the skeleton of the activity graph for an individual
function can be directly derived from the reduced CFG. The activity graph
representing the set of activities act is defined as AG = {act, sd, prec}, where
sd presents the service demand and the precedence relation among activities is
denoted as prec.

Now we discuss the procedure of activity graph specification for the serverless
function f following the approach in [14]. For each activity representing NZ-I , all
the successors and predecessors of Nl-/ are computed. There are mainly 4 types of
activity precedence included in our method: (1) If the current node is included
in its predecessors, it indicates that loops are occurring at Ni/ which can be
extracted with the number of iterations iter; derived from profiled data. (2) If
the current node only has one successor and one or fewer predecessors, it means
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that N, is sequentially connected to its successor. (3) When there is more than
one successor of N,, there are branches with IF or SWITCH statements for
jumping to different nodes, whose branching probabilities have previously been
computed from profiling data. (4) If there is more than one predecessor, different
conditional blocks can be merged at NZ-/. From the orchestration function, we
also capture parallelism and synchronization among the execution of different
serverless functions. Combining all the listed cases, our method can describe
the operator precedence in the activity graph including sequential interactions,
conditioning and merging on branch nodes, as well as fork-join synchronization.

4 Evaluation

In this section, we first introduce the experimental setup and metrics to evaluate
the accuracy of performance models constructed with our method. The compar-
ison of LQN model predictions against execution monitoring traces for serverless
workflows with different composition patterns is presented afterwards.

4.1 Experimental Setup

To evaluate the proposed method for automatically building LQN models based
on static analysis and code profiling, we first implement 4 serverless workflows
including sequential, branching, parallel and complex execution scenarios. The
source code of the serverless workflow implementation is available at [1].

We create 13 serverless functions and 4 orchestration functions to define a col-
lection of common workflow patterns on Azure Functions Service. The individual
serverless functions are adapted from public examples that use TensorFlow with
Azure functions [3] and models from Onnx Model Zoo [4]. The functionality of dif-
ferent workflows includes preprocessing of input images and classification based on
machine learning algorithms or pre-trained models. Some metrics for the composi-
tion workflows implemented by the 4 orchestration functions are shown in Table 1,
where ¢? is the squared coefficient of variation of the execution times.

Table 1. FaaS-based workflow patterns

wfl wf2 wf3 wf4
Number of functions | 8 9 8 14
¢? of execution times | 0.26 | 5.71 | 0.84 | 7.44

To evaluate the accuracy of our modeling method, we conduct several exper-
iments with different workloads and compare the performance predictions from
the LQN models against the application-level monitoring data of the serverless
workflows. The experimental environment is as follows. All the individual server-
less functions are developed with Python 3.7 and deployed with Azure Functions
3.0. We take the response times of requests from the real traces as ground truth
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to evaluate our model-based predictions. To collect the real traces, we use Azure
Application Insights as the monitoring tool and expose the code profiling data
on the same service. As workload-independent execution times can be profiled in
isolation, we can perform offline profiling on the production platform as required
to collect profiling data, and then deploy the non-instrumented functions to the
target cloud service (without the profiling instructions) to collect application-
level runtime monitoring data.

The static analysis is built on top of the ast module in Python 3.7. For the
taint analysis on the static data flow, we use the open-source tool Pyre shipped
with Pysa [6] to infer the potential parametric dependencies. To obtain the ana-
lytical results, we use LQNS via LINE to solve the generated LQN models [11].
For performance testing, we generate closed workloads with different intensities
using Locust [5].

We compare the model prediction accuracy of mean response times to the
collected traces, using mean relative error (MRE) as our comparison metric,
where M RE = |m —m/|/m is computed with the mean response times m of the
monitored execution traces and m’ for LQN predicted response times.

4.2 Experimental Result

We first evaluate the static graph reduction based on inferring static paramet-
ric dependencies. Next, to evaluate the accuracy of parameterization for LQN
models, we conduct extensive experiments with different settings of the number
of processors and the dynamic auto-scaling to simulate two resource provision
scenarios. Here, we regard these two experimental settings as limited resources
and sufficient resources in the following discussion.

LQN Model Node Reduction. In Sect. 3.2, we introduced Algorithm 1 to
reduce the size of the static graph by aggregating code blocks independent of
input parameters, with the ultimate goal of further reducing the size and com-
plexity of the generated LQN models. We here compare the accuracy and effi-
ciency of the original LQN models to the reduced LQN models. From Table 2, we
can observe that after node reduction, for example, the number of activities of
w f2 is reduced to 69, which indicates that nearly 30% of nodes have been merged
according to the static parametric dependencies. Besides, it can be noticed from

Table 2. The comparison results of based on LQN node reduction

Number of activities | Execution times (s) | MRE
Original | Reduced | Original | Reduced | Original | Reduced

wfl|91 67 2.793 2.092 0.044 0.030
wf2 |96 69 2.804 2.133 0.029 0.038
wf3 |27 21 1.545 1.542 0.222 0.236

wf4]122 89 3.682 3.257 0.103 0.117
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the table that the execution times of solving model are decreased by up to 25%
for wf2, while the MRE increases only to a small degree for all the subjects,
which is likely an acceptable trade-off between prediction accuracy and model
complexity in most situations. We can conclude that the reduction of nodes in
static graphs can directly help to reduce the number of activities in the LQN
model, thus saving analysis costs. The savings come with a marginal increase in
the MRE for three out of four subjects, while the MRE marginally decreased for
wf1l. Overall, the impact of reduction on the MRE appears marginal.

Sufficient Resource. In the following experiments with sufficient resources, we
assume that dynamic auto-scaling is enabled for each FaaS function and there
is no need to operate on the configuration of the resources. In LQN models,
we set the multiplicities of each processor to 100 to simulate sufficient resource
provision not to limit the scaling out of the individual functions.

We evaluate the above 4 different workflow patterns and take wf1l as an
example under different workloads. The comparison of LQN model predictions
against the real traces is shown in Fig.5, and the details of model accuracy
evaluation are in Table3. It can be seen from Fig.5a that the mean response
times among different workflow patterns vary in a range of 0 to 15s, while all
prediction results are close to the measurements. Figure 5b, which zooms on w f1,
shows that there is no obvious increase in response times as the number of clients
grows. This is because under sufficient provision, all required resources can be
allocated and there are no significant queueing times for each request. Therefore,
the LQN modeling results capture the correct trend of response times changing
with workloads. Besides, it can be observed from Table3 that the prediction
of the LQN model yields good accuracy with an average MRE over the four
workflows of 5.5% (min=2.9% for wf2, max = 10.3% for wf4), indicating a
fairly accurate characterization of the performance of the FaaS workflows.
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Fig. 5. Mean response times of different workflow patterns (a) and of wf1 under dif-
ferent workloads (b), comparing model prediction and real trace measurements.
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Table 3. MRE of compared results in Fig. 5

Workflow pattern Workload

wfl |wf2 |wf3 |wfd |1 5 10
Model 9.0810.927{10.144 | 1.923 | 9.081 | 9.081 | 9.081
Measurement | 9.501 | 0.901 | 9.737 | 1.744|9.501 | 9.613 | 8.390
MRE 0.0440.029 | 0.042 |0.103 | 0.044 | 0.055 | 0.082

Limited Resource. For the limited resources experiments, we tune the configu-
ration of each serverless function to variate the number of cores for the processor.
Practically, we first identify the most resource-demanding serverless function as
the bottleneck function and then study the accuracy of our model for different
values of the maximum number of instances on Azure and, coherently, of the
multiplicity parameter of the corresponding LQN activity.

However, when a single processor is allowed, Azure Function Consumption
plan limits the allocated memory to 1.5Gb, which in the case of wf3 and wf4 is
not sufficient to serve 10 users without scaling strategies for the most resource-
demanding serverless function. Therefore, we selected the second most resource-
demanding serverless function as the bottleneck function for wf3 and w f4. The
comparison of results on LQN model prediction and monitoring traces measure-
ments is shown in Tables4 and 5.

First, we investigate the model performance with increasing concurrent users
between N = 1 to 10 with only one processor (P = 1) available for the bottle-
neck function. It can be seen from Table 4 that, with increased workload intensity,
the mean response time grows with different trends. For example, in wf1, the
response time with 10 users is nearly 5 times higher than with 1 user due to the
contention on the bottleneck function that forces the users to wait. Nevertheless,
regardless of the variation trends in the response time, the model predicts accu-
rately the performance measurements from monitoring traces in all four work-
flows, with average MRE across all the experiments of about 6.2% (min=0.8%
for wf1 with N = 10, max=12.2% for wf4 with N = 10).

Next, we evaluate model prediction accuracy using an intense workload
(N=10) and varying the number of processors available for the bottleneck func-
tion. Table 5 shows the comparative data for the number of processors P between
1 and 10. As expected, increasing the number of processors reduces the response
time for all the workflows, albeit with different trends. The average MRE across
all the experiments is in this case about 9.5% (min=0.8% for wf1 with P =1,
max=22.2% for wfl with P = 5). While average MRE remained under 10%,
we observed a performance deterioration for P = 5. By observing the execution
traces, we conjecture this deterioration may be caused of some implicit optimiza-
tion or automation happening on the serverless platform around P = 5 which is
not accurately captured by our models and may require additional investigation.

Summary. The evaluation of our LQN modeling strategy for serverless func-
tions based on static analysis and code profiling may be summarized with the
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Table 4. Comparison results on different number of processors on 4 workflow patterns
with limited resource P =1

wfl wf2

N=1 N=5 N=10 N=1|N=5|N=10
Model 9.081 |22.71849.016 |0.927 |1.454 |3.085
Measurement | 9.501 |24.397|48.606 |0.901 |1.394 |2.952
MRE 0.044 |0.069 |0.008 |0.029 |0.043 | 0.045

wf3 wf4

N=1 N=5 N=10 N=1|N=5|N=10
Model 10.144 1 10.664 | 12.545 | 1.923 |2.229 | 3.215
Measurement | 9.737 |12.125|13.626 |1.744 |2.3 3.655
MRE 0.042 |0.120 |0.079 |0.103 |0.031 |0.122

Table 5. Comparison results on different workloads on 4 workflow patterns with limited

resource N = 10

wfl wf2

P=1 P=5 P=10|P=1P=5P=10
Model 49.016 | 10.325 | 9.083 | 3.085 |0.928 |0.927
Measurement | 48.606 | 13.27 |8.018 2.952 |1.149 |0.879
MRE 0.008 |0.222 |0.133 |0.045 |0.192 |0.054

wf3 wf4

P=1 P=5 P=10|P=1P=5P=10
Model 12.545110.144 | 10.144 |3.215 |1.923 |1.923
Measurement | 13.626 | 8.600 |10.489 |3.655 |2.031 | 1.895
MRE 0.089 |0.180 |0.033 |0.120 | 0.053 | 0.015

following two observations. First, node reduction on the static graph leads to
smaller LQN models, saving computation time for both LQN model generation
and model-based performance prediction, with negligible impact on prediction
accuracy. Second, model-based performance prediction achieved a close fit to
the measurements from monitoring traces (average MRE=7.3%), under differ-
ent workload intensity and in both sufficient and limited resources. Finally, we
remark that the availability of the static graph also allows assessing the coverage
of the performance test inputs, highlighting possible execution paths relevant to
the satisfaction of the application’s SLAs that are not exercised (enough), thus
driving the refinement of the performance test suite.
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5 Related Work

The question of how to predict the performance of serverless functions is closely
followed by researchers. However, fine-grained analytical performance modeling
for serverless functions still lacks investigations to our knowledge. Eismann et
al. [12] propose to use mixture density networks to predict the response time
distribution of a single serverless function and then estimate the cost of server-
less workflow execution by Monte-Carlo simulation. In [7], the authors develop
a framework called COSE for serverless function configuration with a trace-
based performance model. Based on the performance model, they apply Bayesian
Optimization into obtaining the optimal serverless function configuration. These
works can be identified as data-driven performance predictions for serverless
functions, which cannot give an explicit, interpretable abstraction of a serverless
application.

On the other hand, model-driven performance prediction can help devel-
opers and providers to better understand different performance prediction and
reason about performance issues or design alternatives. Boza et al. [10] propose
to use M(t)/M/oco queues to model serverless functions, enabling the calcula-
tion of performance and cost. Mahmoudi et al. [20,21] propose an analytical
performance model by using a continuous-time semi-Markov process to accu-
rately predict the performance metrics. However, this work mainly focuses on
modeling aspects of the computing platform to support tuning its configuration,
and does not directly relate to the internals of serverless functions. Lin et al. [19]
use probabilistic directed acyclic graph abstractions to predict the end-to-end
response times of serverless applications. The smallest representable unit in this
work is a whole serverless function, which may limit the performance prediction
accuracy due to the coarse modeling granularity.

Finally, the generation of LQN models for software performance prediction
have also been investigated starting from higher-level, architectural specifica-
tions, e.g., from UML [24] or Palladio Component Models (PCM) [8]. Recently,
TOSCA specifications have been extended to specify several concerns of server-
less applications [28] and can be used to generate LQN performance models.
However, most of these approaches require expert knowledge to define accurate
architectural models in the first place. This is typically expensive and error-prone
due to the need to keep the models consistent with the actual implementation,
which also requires manual instrumentation and adequate performance test suite
to measure the implementation’s performance.

6 Conclusion and Future Work

We presented a new method to build LQN performance models for serverless
applications using information from static analysis to enhance model-based pre-
diction accuracy. We exploit the relatively smaller size of serverless function
implementations, together with advances in static analysis methods for mod-
ern programming languages, to extract intra- and inter-procedural control and
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data dependencies among functions and their invocation parameters at different
call sites. The topological structures identified by these dependencies then drives
both code-level performance profiling and the automatic generation of a succinct
LQN model to reason about the performance of the application. Experimental
results indicate that our method can accurately capture the characterization of
FaaS workflows and yield accurate prediction results under different workloads
and resource provisions.

Among the possible future research directions, we aim to explore the inte-
gration of performance modeling of FaaS-based applications with performance
issues diagnosis. Intra- and inter-function LQN models can help to relate perfor-
mance bottlenecks to code artifacts, potentially helping to locate the root causes
of SAL violations.
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Abstract. Service regulation applies modern management theory and
information technology to provide intelligent, efficient and in-depth regu-
lation of service quality and compliance operation. The Modern Service
Industry with rapid innovation and evolution of services is confronted
with many challenges such as compliance operation, yet traditional reg-
ulation methods rely heavily on manual labour and are less efficient.
Therefore it is urgent to research efficient and intelligent methods of reg-
ulation in order to promote the healthy development of Modern Service
Industry. As for process compliance in service regulation, this paper pro-
poses a conceptual model of service regulation that includes service orga-
nization domain, business process domain and service regulation domain.
Furthermore, a modeling language based on 7 calculus is introduced to
formalize regulation issues. We have summarised six categories of gen-
eral regulation rules based on regulation source materials from different
service domains. To the best of our knowledge, there is currently no
dataset available for service process violation recognition. Therefore, we
construct a labelled process dataset for violation recognition (LPD4VR)
of Internet healthcare service and propose a baseline method to detect
the violation issue which achieves a recognition accuracy of 83.33%.

Keywords: Service regulation - Service regulation model - Violation
recognition

1 Introduction

Advances in information technology have promoted the prosperity of the Mod-
ern Service Industry. In the process of vigorous development, many innovative
services with new service delivery methods, represented by Internet healthcare
services, have emerged. Changing the traditional offline delivery methods of ser-
vice to online interaction greatly facilitates the lives of consumers. However, rapid
development and innovation lead to many hidden risks. Various non-compliance
and low-quality services occur frequently, which seriously affects the user expe-
rience of the service and the sustainable development of the modern service
industry.
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Take Internet healthcare service for example, it is undertaken via Internet,
which has a distinctly non-contact nature compared to traditional service deliv-
ery methods. With the help of information technologies, Internet healthcare
services have redistributed medical resources, thereby reconstructed relevant
processes, improved service efficiency as well as promoted fairness across the
industry. Healthcare organizations, including hospitals of different types and
sizes, outpatient clinics for primary and secondary care, and even some Internet
companies which involved in the medical field, provide public with a variety of
online healthcare services. Internet healthcare services offer not only the tradi-
tional ones such as remote consultation and chronic disease management, but
also some new-styles, for instance, health education and nursing school. A typi-
cal Internet healthcare service is clarified in Fig. 1. Although Internet healthcare
services have gained rapid growth in the past decade or so, many irregulari-
ties and quality issues have been identified. Take the qualifications of medical
institutions for example: the “hospital concept” was arbitrarily applied; medical
service areas were arbitrarily expanded; the scope of specialties and grades were
not strictly audited; etc. According to the Ponemon Institute, breaches affecting
healthcare providers are the most costly to deal with and take the longest to
recover from. Building intelligent methods for compliance management can help
improve regulatory efficiency and reduce regulatory cost. Therefore, intelligent
and efficient regulation methods will play an extremely important role in the
future of compliance management.
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Fig. 1. Online treatment service: a typical service of Internet healthcare service
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Service regulation is now more maturely studied in the financial sector and
has resulted in systematic regulation technology (RegTech). RegTech is a branch
of FinTech (financial technology). The UK Financial Conduct Authority (FCA)
first introduced the concept of RegTech in 2015: innovative applications of tech-
nology that efficiently and cost-effectively address regulatory and compliance
requirements, primarily for financial institutions, with a focus on those technolo-
gies that can facilitate regulation more effectively than existing instruments. Due
to compliance needs, other service areas are also beginning to look into RegTech.
Hence Wikipedia’s definition of regulatory technology expands on the FCA’s def-
inition which defined as a new technology that uses information technology to
enhance regulation. Current research on RegTech is focused on the financial
sector, with less research on models and methods to support general regula-
tion of Modern Services Industry. Service regulation can be divided into three
stages: beforehand, halfway and afterward. In stage of beforehand, modelling
of service and regulation rules is the focus. Therefore, we propose a concep-
tual model of service regulation satisfying the requirements of business process
and service regulation. It contains three domains including service organization
domain, business process domain and service regulation domain. Furthermore
we construct a regulation language based on 7 calculus and conceptual model.
We also built a dataset and develop a baseline method for violation recognition.
Our major contributions in this paper are summarized as follows:

— propose a conceptual model of service regulation with three dimensions: ser-
vice organization domain, business process domain and service regulation
domain;

— present the service regulation language based on 7 calculus which includes
six categories of general regulation rules;

— construct a labelled process dataset for violation recognition (LPD4VR) and
a baseline for violation recognition.

The rest of this paper is organized as follows. Section 2 reviews the previous
research. We introduce the conceptual model and modeling language for ser-
vice regulation in Sect.3. Section 4 is an introduction to the dataset including
construction strategies and analysis. We present the service regulation baseline
method in Sect.5. The case study in the field of Internet healthcare services is
carried out in Sect. 6. Finally we conclude this work in Sect. 7.

2 Related Work

Business process compliance focuses on the consistency of regulatory rules with
the design, verification and validation of business processes [8].

Conformance Checking. Conformance checking is a key function of process
mining. It is significant for providers and regulators to confirm whether reg-
ulations are being met or where and why there are deviations so that they
can manage their processes accordingly. Conformance checking compares pro-
cess instances with a given process model to identify deviations between the
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process instances’ actual behaviour and its modelled behaviour [6]. It allows to
check the relation between a process model and process data collected by IT
systems, and to identify as well as analyze deviations between them [15]. As a
kind of modeling language, the Petri net is widely used for conformance check-
ing [2,5]. In addition, BPMN is also used for conformance checking in [9]. As for
perspectives of conformance checking, multi-perspectives are taken into consid-
eration such as time, roles, and contextual data [2,10]. In [7], Felli et al. adopted
data Petri nets (DPNs) as the underlying reference formalism and introduced
the CoCoMoT (Computing Conformance Modulo Theories) framework for con-
formance checking with multi-perspective processes. Berti et al. proposed an
improved token-based replay approach to avoid known problems (e.g., “token
flooding”) which is much faster and scalable [4]. In [17], Valencia-Parra et al.
introduced an architecture that supports the creation and distribution of align-
ment subproblems based on an innovative horizontal acyclic model decompo-
sition to empower conformance checking. A taxonomy of uncertain event logs
and models was defined in [14] in response to uncertain event data. In litera-
ture [3], a method for evaluating temporal compliance rules in sublinear time by
pre-computing data structures was proposed, which summarises the temporal
relationships between activities in the log.

Compliance Regulation in Different Service Domains. A number of stud-
ies of compliance have emerged in specific service areas. For E-commerce, Siek et
al. analyzed event log data from the web databases of an e-commerce company
to check their conformance with the standardized processes [16]. Wang et al. [18]
proposed a model called Extended Data Petri net (DPNE) based on the confor-
mance checking algorithm [1]. For healthcare, the review in [11]systematically
assess the criteria used to measure adherence to clinical guidelines and explore
the suitability of using process mining techniques.

3 Service Regulation Modeling

The traditional service relationship model, which includes service provider, ser-
vice consumer and service objectives, represents the relationship between the
subject and the object in the service delivery process. However, the model is
missing the important role of the regulator, which makes it difficult to meet the
needs of service regulation modelling. The regulator has taken on the role of
ensuring that services are developed in compliance. Therefore we propose a con-
ceptual model and introduce the regulation language to satisfy the requirements
of service regulation.

3.1 Conceptual Model of Service Regulation

Figure 2 gives an overview of the key components in the regulation modeling. As
modern service industries are often complex services characterised by a diversity
of participants and a variety of services, internal synergies are more complex
while service delivery methods are more convenient. Therefore, the modelling of
service regulation is divided into three main domains:
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— Service Organization Domain: describes the organizational relationships and
collaborative mechanisms in complex services and define the qualifications of
service provider;

— Business Process Domain: assumes that business processes are designed as a
collection of process; elements [12].

— Service Regulation Domain: defines the core components of service regulation
and the relationships between them.
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Fig. 2. Conceptual model of service regulation

The service organization domain includes service platform, service provider,
service consumer and qualification. It is primarily aimed at modelling the top
level of service design. The business process domain follows the BPMN2.0 spec-
ification. The service regulation domain covers the three stages: beforehand,
halfway and afterward. As the basis for regulation management, regulation rules
are formal representations of regulation source. And the regulation management
includes compliance control and QoS control. Both controls need to receive the
regulation data generated by the business process instances.

3.2 Service Regulation Language Based on IT Calculus

Preliminary. The 7-calculus is a mathematical model of processes whose inter-
connections change as they interact [13]. Due to space constraints and its com-
plexity, we briefly introduce the basic concepts in this subsection. Table 1 shows
the basic syntax of the w-calculus.
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Table 1. The syntax of the mw-calculus.

Agents Symbol Definition
Empty agent |0 The empty agent can not perform any actions
Output prefix | ax - P After the name x is sent along the name a,
the agent P continues
Input prefix |a(x)- P After the name a receives the name x,
the agent P continues
Silent prefix |7 Refers to invisible actions, i.e. internal actions that
are not observable from outside the system
Sum P+Q An agent can enact either P or Q
Parallel P| Q The agents P and Q are executed in parallel
Match if x = y then P | If names of x and y are same, then the agent P
continues
Mismatch if x # y then P | If names of x and y are same, then the agent P
continues
Restriction (vx)P The name x can only be used inside P
Identifier A(Y1y ooy Yn) Behaves as agent P with y; replacing z; for
each ¢

The m-calculus is based on the paradigm of synchronous communication.
The simplest entities of m-calculus are names (denoted by lowercase) and agents
(denoted by uppercase). There are various representations of the operational
semantics of the 7-calculus, of which the two main ones are the labelled transition
system, which is represented by transition rules, and the unlabelled transition
system, which is represented by reduction rules. To achieve asynchrony, this
can be done by a sub-calculus: asynchronous m-calculus. Alternatively, this can
be achieved by adding an agent representing an asynchronous communication
medium between sender and receiver.

Since the Internet and the applications running on it are mostly dynamically
coupled systems, m-calculus is well suited as a model for dynamically coupled
systems, so we choose m-calculus as the formal method to formalize services.

Business Process Domain. In business process domain, BP and BP element
are in design-time. The BP is a set of participants, tasks, data objects and flows,
which can be designed as:

BP = (Participants, Tasks, DataObjects, Flows, Gateways) (1)

The participants are divided into service providers and service consumers.
The tasks, data objects and flows which follow the BPMN2.0 specification. The
definition of data objects, tasks, flows and gateways are defined as:
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DataObjects =(log-data, resource_data, flows_data, provider_data,

service_content_data, consumer_data)

Flows = (sequence_flow, message_flow) (3)
Gateways =(exclusive_gateway, parallel _gateway, join_gateway) (4)

For data objects, the specific data categories are explained below:

— log_data: system execution data, includes timestamp, user, event and etc.

— resource_data: the record of the resources on which service delivery depends;

— flows_data: the messages required for the m-calculus to pass through flows;

— service_content_data: data on the content of the services received by the con-
sumer;

— consumer_data and provider_data: contains provider and consumer profiles,
qualifications and other information.

In our dataset, flows contain both sequential and message streams, and gate-
ways are divided into parallel gateway, exclusive gateway and join gateway. The
definitions of gateways are as follows:

parallel_gateway = fin(mM).T. fout (Miask1, Miask2) (5)

join_gateway = fin(Mtask1, Miask2)-T-fout (M) (6)

exclusive_gateway = fin,(m).7.(ifm = my then foui(Miask1) +if m = ma
then fout(Miask2))

(7)

The f;, and fou: represent the flow of inputs and outputs, the m represents the
message delivered by flow.

startBvent =T,.(vmy) foutMs (8)
endEvent = fi,(m.).Te (9)
Task = fin(Min, Maata1)-T-fout (Mout Mdata2) (10)

The startFEvent and endEvent are special tasks at the beginning and end of
the business process. The m; and m, represent the start/end message, m;, and
Moyt are the input and output messages in the task.

Service Regulation Domain. In service regulation domain of Fig. 2, the reg-
ulation management includes compliance control and QoS control, which cover
the whole chain of regulation. The regulation rules originate from regulation
source which contains laws, industry standards and etc. The regulatory rules are
the key basis for regulation management. The ground rules for service regulation
can be defined in the following six categories:
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* Rule 1:
drequired = (dlad2a---adn); (11)
f(m)(zf m == d'required then Pcompliance else Pviolation)
* Rule 2:
dstandard = (mh m2); (12)
f(m)(lf m ¢ dstandard then Pviolation else Pcompliance)
* Rule 3:
Mspecific = (mlamQ); (13)
f(m)(lf m ¢ Mspecific then Pyiolation €lse Pcompliance)
* Rule 4:
Myiolation = (mtaskla Mtask2s -+ mtaskn); (14)
f(m)<7/f m Subseteqm'uiolation then Pviolation else Pcompliance)
* Rule 5:
Mrequired = (mtaskrla Miask2y -y mtask:n); (15)
f(m)(zf Myrequired ¢ m then Pviolation else Pcompliance)
* Rule 6:
M finished = (mtaskla Miask2sy mtask:n); (16)

f(m)(lf m C mfinished then Ta5k2)~Pcompliance else Pviolation)

The dyequired represents the data required by regulation and the dgtandara are
scope of compliance. Peompliance and Pyioiation refer to the activation of the
corresponding compliance agent or violation agent. The Rulel and Rule2 are
formal definitions of data compliance. The remaining four rules are formal def-
initions of behavioural compliance. The Rulel represents the required content
of regulation source, such as the various types of qualifications required in the
access approval tasks. The Rule2 defines the scope of compliance with the data.
Muyiolation, Mspecificy Mrequired @A M finished correspond to violation tasks, spe-
cial tasks, normative tasks and completed tasks respectively. The Rule3 indicates
that certain tasks can only be executed under certain circumstances. The Ruled
is a formal expression of the prohibited conduct in the regulation source. Corre-
spondingly, the Ruleb5 describes the tasks that must be performed. The Rule6
defines the order of execution of tasks which corresponds to the case where
certain tasks have to be executed after the end of some specific tasks.

In conjunction with the regulation tasks mentioned in Sect. 4, service regula-
tion is carried out in three stages: design time, running time and post-execution
time. In design time, access approval and business process compliance checking
are major tasks, which can be described as:

Paccess = fpro’uider(mrequired)~PaccessCheck~fma_nage(mresult) (17)
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The fprovider means the inputs submitted by the provider, fma;mge means the
output of regulation management.

Paccesscheck = f(m)(lfm == Qualificationdata then Pcompliance else Pviolation)

(18)

Quali ficationga:, refers to the necessary qualifications for service approval.

PcomplianceCheck = f(m)~PruleCheck~f_(mres) (19)

PeomptianceCheck and Pryjecheck correspond to the compliance checking process
and the specific rule checking process. m...s is the result of compliance checking.
The running time requires monitoring of the operation of business processes,
timely recognition of irregularities and real-time alerts which are defined as:

Poert = f(m).(m|pass.0 + fail.warning) (20)

The pass and fail are the possible values of input. The warning refers to the
activation of the alert agent.

Pm,onitorCheck = f(m)~PruleCheckuf(mres)-Palert (21)

The PrionitorCheck 1S a real-time checking agent.

Pmonitor :!PmonitorCheck (22)

The afterward regulation is carried out mainly by means of audits:

Paudit = f(Q)'PruleCheck'f_(mresult)'P (23)

4 LPD4VR: A Labelled Process Dataset for Violation
Recognition

To the best of our knowledge, there are currently no process datasets available for
service violation recognition. To further facilitate research into the intelligence of
service regulation, a labelled process dataset (LPD4VR) has been constructed.

The processes in the area of Internet healthcare services covers the main busi-
nesses of Internet healthcare services. This dataset contains mainly 40 compliant
processes, 9 violation processes, and 17 unknown processes. The process files in
XML format follow the BPMN2.0 standard. In the build process, we first built
16 compliant business processes manually based on existing Internet healthcare
services. Based on these 16 compliance processes, the dataset was constructed
through the following strategies:

— The back-translation method which is currently the most effective enhance-
ment method for text data enhancement is used to implement existing process
data for text enhancement. We use the Google Translate interface to augment
the manually built compliance process with an “English-French-English” back
translation.
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— Randomly removing some of the task nodes. We select 10% of the processes
to randomly delete task nodes from them, destroying the topological integrity
of the process, as part of the violation processes.

— Targeted change of some compliance processes to violation processes, e.g.
removal of some data objects required for compliance.
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Fig. 3. Semantic distribution of processes Fig.4. Distribution of the number of
in the LPD4VR BPMN elements in the LPD4VR

Based on the above construction strategies, there are two main types of vio-
lation processes: one is an incomplete process that is obtained by randomly
deleting nodes, and the other is a process that has undergone targeted modifi-
cations. The former is a violation process that does not meet the general service
rules, and the latter is a violation process that does not meet the business domain
rules. Unknown processes are mainly processes that are difficult to judge under
existing rules. We collected 17 processes from other service areas as the unknown
processes section, such as the e-commerce service area and the insurance service
area. Figure3 reveals the semantic distribution of compliance processes, non-
compliance processes and unknown processes. Both the compliance and violation
processes are in the area of Internet healthcare services, and thus the semantics
of these two categories are relatively close, while the unknown processes are in
other business areas, as the semantic distribution is more dispersed. Figure4
shows statistics on the length of processes (number of elements, containing data
objects, task nodes) in the LPD4VR, which mainly concentrated in the interval
[10, 30].

5 A Baseline for Violation Recognition

Violation recognition of service processes can help service providers and reg-
ulators to identify violation issues in a timely manner and reduce the cost of
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breaches. In order to effectively regulate the active service ecosystems of the
modern service industry, we propose a framework for identifying violations as
shown in Fig. 5.
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Fig. 5. The violation recognition framework

In the course of business development, crossover service is an important form
for innovation which involves new service domains. However, regulation rules
have a limited scope of action and thus lack the ability to regulate new service
domains. Therefore, we first perform a service domain determination on the
input service process. For processes that do not belong to the known service
domains, the violation recognition method directly marks them as 'unknown’.
Service domain determination is carried out mainly through semantic analysis.
With the help of text generation techniques in NLP, we generate service process
descriptions by using the names of participants and tasks in the service process
as prompt words. At the same time, a business description text needs to be
prepared for the service domains that are in the scope of regulation. The semantic
similarity is calculated for the two texts and a threshold 6 is used to determine
whether the process is within the regulation range. The value of 8 is determined
according to the specific semantic distribution of regulation dataset.

Processes that fall within the scope of regulation are subject to compliance
inference based on regulation rules. The regulation rules consist of two main
categories: general service regulation rules and domain-related regulation rules.
As for the inference, rules first need to be bound with BPMN process elements
based on the semantics. The violation is then recognized according to the rules.
The recognition method is described in algorithm 1. In this algorithm, the two
thresholds are semantic similarity thresholds, determined in conjunction with
domain semantic analysis. Regulation rules are formal representations of regula-
tion source texts, but regulation source texts are relatively easier to understand
semantically. Therefore, both the regulation source text and the regulation rules
are used as input to the algorithm. The algorithm 1 consists of two main steps:
rule binding and recognition of the violation BPMN elements, which returns the
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Algorithm 1. Compliance inference
Input: BPMN process: BP; Regulation source text: Ry;
Regulationrule : R,; Threshold: : «;Thresholds : (8
Output: BPMN process with binding regulation rules: BP;;
Set of violation processes: P,; Set of compliance processes, P.;
BP. —0,P, «— 0,P. — 0
if Type(R:) == general then
BP, = Bind(BP,R:,R,)
else
Simper = similarityCalculation(BP, Ry)
if Simpgr > o then
BP, = Bind(BP,R:,R,)
end if
end if
10: for each FElement € BP, do
11: for each R; € BP. do

©

12: if Simegr = similarityCalculation(Element, Ry) then

13: Element = Bind(Element, Ry, R,); BP..Element «— Element
14: end if

15: end for

16: end for

17: for each BP in BP, do
18: for each FElement in BP do

19: rule.m «— Elementinput

20: result = rule.expressions(rule.m, rule.required)
21: if result == Pyiolation then

22: BP.label — violation; P,.append(BP)

23: else

24: BP.label — compliance; P..append(BP)

25: end if

26: end for

27: end for

28: return P,; P.

set of compliance processes P. and the set of violation processes P,. In the bind-
ing phase, general regulation rules are bound directly to the process, and service
domain regulation rules are bound where the semantic similarity is greater than
the threshold «. After completing the process-level rule binding, the element-
level binding is carried out in the same way. The violation recognition is based
on regulation rule expressions. The label for that process is then returned based
on the result of the expression.

6 Case Study

To verify the effectiveness of the regulatory language and methodology proposed
in this paper, we select Internet healthcare service, an innovative service of med-
ical service, for analysis.
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Unified Concept Base. The construction of a unified concept base is a nec-
essary step before formal modelling of the Internet healthcare services domain
can be carried out. Incorporate existing ISO international standards related to
healthcare services, the unified concept base contains nine categories:

— Medication concepts: includes prescription and over-the-counter medicines
and vaccines, etc.

— Workflow concepts: the concepts involved in automating parts or the whole
of a healthcare service process in a computer application environment

— Clinical concepts: the concepts involved in the clinical diagnostic process,
including surgery, disease, etc.

— Financial concepts: financial practices such as payment and health insurance
settlement involved in the process of medical services

— Participants concepts: the concept of participants involved in the process of
Internet health services

— Qualification concepts: the concept of qualifications required of Internet
healthcare participants

— Equipment concepts: the concept of medical devices, the concept of Internet
service devices and other necessary equipment involved in Internet health
services

— Data concepts: the concept of data required and generated by the whole pro-
cess of Internet health services, including electronic health records, electronic
prescriptions, etc.

— QoS concepts: the concepts of indicators needed to assess the quality of Inter-
net health services

Regulation Rule Base. Regulation rules are the basis for compliance deter-
minations. The regulatory rule base is divided into two parts, one for generic
rules and the other for domain rules. The generic rule base is mainly topology-
constrained rules for the processes and some business-independent rules. For
example, compliance processes must first meet the requirement of process
integrity. Business-independent rules refer to service rules that are common to
the modern service industry. For example, customer service staff must not use
abusive language in after-sales service. The domain rule base is based on a cer-
tain amount of domain knowledge. Combined with the unified concept base,
we extract regulation rules from regulation sources such as laws and industry
standards related to the Internet healthcare services sector to build a formal reg-
ulation rule base. According to rule types proposed above, the regulation rule
base contains six categories of species atomic rules as well as one category of
compound rules. Compound rules are used where two or more atomic rules are
required to express the specification. As different regulation sources have differ-
ent binding effects, each rule will be prioritised accordingly when constructing
the regulation rule base. The priorities consist of two main categories, the first
being rules that must be followed and the second being norms that are rec-
ommended to be followed. The first category is more binding than the second.
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Table 2. The results of experiment.

Compliance | Violance | Unknown | Overall
Numbers in dataset 40 9 17 66
Numbers of accurate recognition | 33 6 16 55
Accuracy of recognition 82.5% 66.7% 94.12% |83.33%

Experiment of Violation Recognition. After the unified concept base and
regulation rule base were constructed, we conduct violation recognition experi-
ment on LPD4VR. In the experiments, we set the threshold « to 0.3, and the
threshold G to 0.5. The specific experimental results are shown in the follow-
ing Table 2. We found that the 'unknown’ class to be the most accurate, with
94.12% accuracy. This accuracy result is also broadly consistent with the results
of the semantic analysis of the dataset. The least accurate process recognition
rate is 66.7% for ’violation’ class. This may be due to the weak semantics of
the task phrase, which makes it difficult to accomplish a highly relevant binding
to the rule. The overall recognition accuracy achieved is 83.33%. To improve
overall recognition accuracy, future work will be to improve compliance process
recognition accuracy and violation identification accuracy.

7 Conclusion

The rapid development of the modern service industry is accompanied by many
irregularities. Traditional methods of regulation rely heavily on manual labour,
which is inefficient and costly. Research into intelligent and efficient methods
of service regulation has therefore become an important aspect of ensuring the
healthy development of modern service industries. This paper proposes a con-
ceptual model of service regulation for service process compliance management.
Furthermore we present a formal modelling approach based on the 7 calculus.
In terms of violation recognition, to our best knowledge, there are no widely
used datasets. Therefore we construct the LPD4VR dataset in the field of Inter-
net healthcare services. Our proposed violation recognition method has also been
experimented on this dataset. As for future works, we will focus on real-time reg-
ulation, especially for service processes that generate multi-modal data including
video, picture, audio and text.
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Abstract. Users’ perception of their experience accessing web pages
greatly affects users’ willingness to continue browsing the website. How-
ever, it is difficult to assess user perception through a generic Quality
of Experience (QoE) model. Web content consists of a large variety of
static as well as dynamic objects, with some of them coming from the
remote sites. This makes QoE assessment a challenge for the traditional
methods. To build a generic QoE model, we introduce WebQMon.ai,
a lightweight Web QoE assessment architecture using machine learning
methods without setting any specific formula or threshold. WebQMon.ai
can evaluate web-browsing QoE using mostly network-layer data with
only one piece of application-layer information, the referer in the HTTP
header, which is used to aggregate the packets associated with the same
web page. The distribution of the arriving packets requested by the web
page is used to construct WebQMon.ai. WebQMon.ai requires little stor-
age space (80KB 6MB). More importantly it can be deployed directly at
edge routers/gateways, due to the weak dependence on the application-
layer payload. We further improved our algorithm by ensemble learning
combining multiple orthogonal features, to generate a stronger classi-
fier. We evaluated WebQMon.ai on three popular websites. It shows that
the QoE assessment results for 4,800 unknown samples can be obtained
within just 0.07s and reach an average accuracy of 97%.

Keywords: Web-browsing QoE - Neural networks

1 Introduction

The web-based Internet activities produce a large amount of HTTP traffic [15].
Internet users often visit a variety of websites to search for information, watch
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video clips or socialise with someone. The page loading latency is critical to
user experience (UE). A study shows that there is a strong correlation between
the performance of e-commerce websites and online shoppers’ behavior [1]. The
observation from the experiment with 1,048 online shoppers indicates that two
seconds is the critical threshold for page loading latency, after which consumers
may become impatient if the page is still not loaded, and 40% of the consumers
will abandon the site if it goes beyond three seconds. Research also shows that
slow page loading damages consumers’ loyalty to an e-commerce site, especially
for high spenders [3]. Up to 79% of online shoppers who experienced a dissat-
isfying visit would never visit the site again while 27% of them would not visit
its physical store either. QoS has been widely used to measure network perfor-
mance. But, it is not a direct reflection of QoE [5]. ISPs and equipment vendors
can however leverage their knowledge of the traffic going through their networks
and create hypothetical QoE prediction models to estimate UE or QoE anywhere
in the network. They can then refine the network settings or give feedback and
recommendations to website owners to improve QoE.

However, real-time QoE assessment is a challenge. Casas et al. [4] propose
YOUQMON, which can predict in real-time the stalling events of YouTube
videos with network-layer data. Unfortunately, it is not a generic QoE assess-
ment tool, as the thresholds and formulas are made specific to YouTube. The
web-browsing QoE is mostly affected by the loading time of the last visible object
shown on the screen, that is, above-the-fold (ATF) time. The study in [7] shows
that among a variety of QoE metrics including page load time (PLT), ATF is
most correlated to user experience. Many studies use ATF or its variants to
capture how users perceive web-browsing experience [7,9,11,12,14]. Although
predicting QoE by ATF works well, it is not a trivial task to obtain ATF. Most
of the existing methods obtain ATF or its variants with client-side support by
analyzing the video recordings of the web page rendering process [9,11,17] or
tracing loading time of different resource types [6,7,12,14,16]. However, these
analysis methods have a common issue: relying on client-side support to install
software or hardware plugins and thus obtain or infer ATF or its variants. In
contrast, we use machine learning methods to predict ATF.

To this end, we design WebQMon.ai, a generic real-time tool for assessing
web-browsing QoE without requiring client-side support. It uses network-layer
data and a single piece of application-layer data (the referer field in HTTP
header) to predict ATF. As the referer is in the first few bytes of the HTTP
request packet, no packet reassembly is needed. The referer is not even required,
if the content from the third-party web site is not a concern. Hence, WebQMon.ai
can be deployed at access routers or gateways without additional security or
privacy concerns, which may be an issue for those requiring client-side support.

As ATF increases QoE deteriorates. We can classify ATF into multiple cate-
gories. Each category corresponds to a certain level of QoE, e.g., an ATF below
two seconds indicating good user experience [1]. We gather TCP traffic gener-
ated from web browsing, and then characterize the traffic by the two proposed
traffic metrics: Traffic Volume per Second (TVS) and Cumulative Traffic Volume
(CTV). TVS and CTV in time series exhibit different patterns under different
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network conditions, which is a good indication of distinct QoE. WebQMon.ai
can predict QoE by distinguishing these patterns. Based on this architecture,
we propose five supervised learning-based models to classify the patterns. The
collected samples of the traffic metrics in time series are labeled by the esti-
mated ATF. The labeled data is then used as training data to train the machine
learning model. The trained model takes up a small amount of storage space,
from tens of KBs to a few MBs. WebQMon.ai is capable of real-time and accu-
rate prediction. For instance, more than four thousand samples can be predicted
within 0.07 seconds, with an average accuracy of 97%.

Our major contributions are summarized as follows:

— We propose WebQMon.ai, a generic web-browsing QoE assessment system,
capable of real-time prediction with high accuracy. It can be deployed on
gateways instead of end hosts, with little storage space required. WebQMon.ai
is powered by a data-driven model. It can be easily updated with new data to
adapt to new types of web content in a timely manner, without the complexity
of mathematical formulations or threshold settings (Sect. 3).

— To realize the data-driven model, we develop five models based on machine
learning algorithms and the WebQMon.ai architecture to predict ATF. These
methods are lightweight, easy to train and enable real-time and accurate
prediction without being limited to a certain type of content (Sect. 4).

— We implement the five models with 1,876 lines of code, available at our github
repository [2] (Sect. 5). The extensive evaluation shows that WebQMon.ai
works very well on QoE prediction (Sect. 6).

2 Related Work

The current work requires client-side support for web QoE assessment. Some of
the approaches rely on models specifically designed for a particular web site such
as YouTube. WebQMon.ai is a generic architecture that can be easily applied to
different types of web content. The other adopt generic models using formulas or
machine learning models. These solutions acquire ATF and/or its variants with
client-side support, and then perform QoE mapping through formulas or machine
learning models. These solution are conceptually different to WebQMon.ai, which
aims to estimate ATF without client-side support.

Non-generic Models. The solutions in [4,10] predict QoE through mathemat-
ical formulations and empirical threshold settings. This is a complex procedure,
and more importantly, limits its applicability to other types of web content.
For example in [4], YouTube stalling events are predicted using two thresholds
Ostq and apqy, which are estimated from large measurement campaigns. This
is a complex procedure, and more importantly, limits its applicability to other
types of web content [4]. For a different application, it may require to re-estimate
the threshold from another large measurement campaign. WebQMon.ai is data-
driven, which does not require threshold settings or mathematical formulations.
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Fig. 1. WebQMon.ai architecture.

Formula-Based QoE Mapping. Given the user-perceived metrics, the solu-
tions in [11,14] uses formulas for QoE mapping. For example, the work in [11]
analyzes the video frames of the recorded web page rendering process and then
obtains ATF related metrics such as SpeedIndex. The work in [14] has a cus-
tomized application embedded into the user devices to get the relevant infor-
mation for QoE mapping. These systems rely on client-side plugins to obtain
relevant metrics to do QoE mapping and have to be deployed on the client-side.

Machine Learning-Based QoE Mapping. Some solutions use machine
learning models for fine-grained QoE mapping, after acquiring ATF or relevant
metrics from the client-side [7,9,12,13]. The studies in [7,12,13] get the metrics
through the browser’s API. Similar to [11], the work in [9] obtains ATF through
analyzing the recorded web page rendering process. These solutions are concep-
tually different to our approach, as WebQMon.ai uses machine learning models
to estimate ATF based on traffic characteristics. However, we did get inspired
by these studies and adopted the machine learning-based approach.

3 WebQMon.ai Architecture

3.1 System Architecture

ATF determines user’s web-browsing experience. We propose WebQMon.ai to
predict ATF and thus user experience. We collect network-level data from the
Gateway and transform raw data into a useful format (Fig. 1). Then, our model is
trained with the processed data. After that, WebQMon.ai can predict ATF when
the user visits the web pages. In Sect. 4, based on the architecture, we propose
five models using different input metrics and machine learning algorithms. These
models can be trained and/or updated with the diverse types of content or web
sites, giving it the ability to learn and adapt to the new context.
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The access routers or gateways all perform DPI (Deep Packet Inspection) for
a variety of reasons. Raw data is readily available without needing additional
resources. No packet reassembly is even needed as packets are processed as they
need to be. We only need to get the statistics and construct the proposed traf-
fic metrics. As to be discussed in Sect. 3.2, the overhead can be managed by
following vendor’s restrictions on sampling intervals. The test time of the mod-
els is instant as shown in Sect. 6, predicting over 4,000 samples within 0.07s.
The storage requirement is in the order of tens of KBs to a few MBs. All these
indicate that WebQMon.ai can be conveniently deployed at gateways.
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Fig. 2. Traffic Volume per Second. Fig. 3. Cumulative Traffic Volume.

3.2 Dataset and Data Preprocessing

The training and test dataset are derived from the TCP streams appearing when
the user visits a web page. In Fig. 1, we can easily get all TCP traffic at the Edge
Router or Gateway. The referer, a field in HT'TP header, is used to identify and
aggregate the traffic requested by the visited web page from other sources such
as a third-party website. The arrival pattern of TCP packets is highly correlated
to network conditions. The arriving packets are from different TCP flows. We
will first need to aggregate the packets into their individual flows to establish
the correlation. To extract meaningful flow features that can reflect network
dynamics, we propose two traffic metrics to be defined below.

Traffic Volume per Second (TVS) measures the instantaneous throughput
of a flow. The challenge is the sampling granularity. A fine granularity may
cause a high-level of measurement overhead, which the gateway may struggle to
handle. A coarse granularity may result in the loss of detailed flow features, which
will decrease classification accuracy. The sampling interval is set to one second,
the finest sampling granularity limited by the switch without overloading the
gateway. Figure 2 shows the normalized T'VS in time series with good and bad
network conditions, respectively. Good network conditions result in satisfactory
ATF while bad network conditions result in unsatisfactory ATF, as defined in
Eq. (1). We will elaborate on this in Sect. 5. It shows that when the network
condition is good, a large amount of content arrives quickly and the peak rate
appears at the early stage of the transmission. In contrast, when the network
condition is bad, the content is loaded slowly and there is no clear peak rate.

Cumulative Traffic Volume (CTV) measures the total amount of traffic
received over a flow at a time point. Figure3 illustrates the normalized CTV
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in time series for different network conditions, corresponding to satisfactory and
unsatisfactory ATF, respectively. With the good network condition, the curve
shows a steep slope, or otherwise a shallow slope.

Both TVS and CTV in time series exhibit a pattern clearly correlated to
network conditions. This is a strong indication that these two traffic metrics may
be used to reflect web-browsing QoE.

3.3 Training and Prediction

The raw TCP data is processed to generate the proposed traffic metrics. Each
of them is marked with a unique label for supervised learning and the ATF can
be predicted by exploring the time series patterns of the metrics. When using
machine learning methods, TVS and CTV need to be processed to generate
input variables. We will elaborate on this in a later section. In the training
stage, the difference between the predicted value and the label is reduced itera-
tion by iteration. In order to get the prediction results (i.e., ATF), we conduct
simple matrix calculations. The ATF can then be mapped to the QoE score by
a mapping function [7]. This enables real-time QoE assessment.

4 'WebQMon.ai Algorithm

To explore TVS and CTV for QoE assessment, we design five classification
models based on machine learning methods, namely, Slice, NN, LSTM, R-LSTM
and Combine. All the models use the WebQMon.ai architecture, with selected
machine learning algorithms and feature variables, to be discussed in Sect 4.3.
Slice classifies T'VSS using the fully connected neural networks. NN is based on the
maximum slope and time domain features of CTV. LSTM relies on the linear
interpolation data of CTV. R-LSTM improves LSTM by reversing the input
variables. The fifth method, Combine, uses the idea of ensemble learning, which
can subtly combine the predictions from multiple learning models to achieve
more accurate, stable, and robust results. It is particularly suitable in our case
as the features of Slice, NN and R-LSTM are distinct to each other.
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4.1 Basic Classification Models

The packets that arrive within 60s after the HTTP request are collected and
preprocessed. We calculate and normalize TVS and CTV, which are then used
as the input of the first four models. The output is the label of ATF or QoE
score, which is determined by the probability of the estimated ATF, for example,
being below or above 2s.

Slice takes T'VS as input. The different forms of T'V:S correspond to different
ATF. Slice uses fully connected neural networks for fast training and testing and
good performance. Since packets are collected for 60s, the data format of T'VS is
a 60-dimensional vector as shown in Fig. 4. The input variable is the normalized
data.

NN takes CTV as input and uses fully connected neural networks. Figure 3
shows that the mazimum slope of CTV can reflect the network condition — the
deeper the slope is, the better the condition is. This makes mazimum slope one
of the classification features. The time when CTV reaches x% is denoted as ¢,9.
It makes sense to use to59, tsou, trse, and tgpy as inputs, to capture CTV in
time domain while making them relatively independent. Together with maximum
slope, we have a five-dimensional input, that is, to59, t50%, t7s%, toow, mazrimum
slope. Note that the time domain inputs ¢,y do have some correlation. This
violates the assumption to use NN and explains its less impressive performance
on ternary classification in Sect. 6. LSTM is more suitable to use CTV.

LSTM. (Long Short-Term Memory Neural Networks), a variant of Recurrent
Neural Networks (RNN), is often used to process the time series data. Compared
to the simple RNN, LSTM can keep the Long-Term Memory feature of the
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sequence. Therefore, LSTM is particularly suitable to address the long delays
of CTV and capture the dependency between data points. As shown in Fig.5,
to construct the input, linear interpolation is used to create approximate 100
points of CTV for curve fitting.

R-LSTM. The packets that arrive earlier within the 60 s represent the initial
response of the loading process, and thus may have a greater impact on user
experience. However, in LSTM the early input has less impact on the output.
This is not desirable. Therefore, we reverse the interpolated data, that is, the
early data points of CTV are processed last, giving them more influence on
the output. We call this model R-LSTM. Note that LSTM and R-LSTM differ
only in the input vector. We shall demonstrate in Sect. 6 that R-LSTM indeed
performs better than LSTM.

4.2 Combine Classification Model

Combine Leverages Ensemble Learning. The idea is to first generate multiple
learners, then combine them with some integration strategies, and finally gener-
ate the output. The theoretical basis of ensemble learning is that strong learners
and weak learners are equivalent, so we can find ways to convert weak learners
into strong learners instead of having to directly search for strong learners that
are hard to find. Take the binary classification problem as an example. Assume
that there are N independent classifiers with an error rate of p. Using a sim-
ple voting method to combine all the classifiers, the error rate of the integrated
classifier is P.ppor = sz/g Ck (1 — p)*pN=F. It can be seen from the equation
that when p < 0.5, the error rate P.,.., decreases as N increases. If the error
rate of each classifier is less than 0.5 and they are independent of each other,
the more the number of classifiers is, the smaller the P,,,.,, will be. When N is
infinite, the P,,,., is 0. In addition, the ensemble model works well when these
weak classifiers perform well individually and have different features.

Since R-LSTM performs better than LSTM, we decide to combine R-LSTM,
Slice, and NN through ensemble learning. As the features of these three classifiers
are distinct to each other, the ensemble model may work well. After completing
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the training of the three basic models, we combine them using fully connected
neural networks. As shown in Fig. 6, based on binary classification, the predicted
values of the three models are combined into a six-dimensional vector as the input
variable of the fully connected neural networks.

4.3 Feature and Algorithm Selection

For the fully connected neural networks, we assume that all inputs are relatively
independent of each other. In contrast, the idea behind LSTM neural networks
is to make use of sequential correlated information. The models are designed to
take advantage of the different input variables. For example, TVS is used for
Slice while CTV is used for NN. The input variables for LSTM and R-LSTM are
derived from CTYV, with the earlier input related to the latter input. The other
three models does not have this property and thus can take a simple approach
using the fully connected neural networks. Combine aims to take advantage of
the other models for better performance.

All these models are data-driven methods, which means that we can update
our models with new data in a timely manner on a regular basis. The real-
time ability of these methods allows ISPs and equipment vendors to assess user
experience on the fly and take actions if necessary.

5 Implementation and Experimental Settings

5.1 Dataset Collection

Data Collection. Our experiments took place from September 2020 to Febru-
ary 2021 in a laboratory. The hardware was equipped with i5-8600K CPU
and GTX 1070Ti. We selected three websites to visit, that is, “amazon.com”,
“sina.com.cn”, ranked the eighth and the nineteenth, respectively, in Alexa Traf-
fic Rank, and “youku.com.cn,” which represent widely used shopping, news and
video sites. For simplicity, we will use Amazon, Sina and Youku to refer to these
websites. Our data was obtained by visiting the homepage of the website. Note
that the homepage is the most popular, diverse and dynamic page and its con-
tent changes over the months of the sampling period. Being able to classify the
homepage of the three different types of websites is a challenge. We collected the
packets arriving within 60s after the user visited the website. Then, we got the
TVS and the CTV from these packets and labeled this sample of TVS or CTV
in time series according to the estimated ATF. We used Dummynet to create a
bottleneck to control the network condition and construct samples with differ-
ent labels accordingly. There were already mature plugins for the aggregation of
packets belonging to the same visit. Traffic aggregation was implemented by the
Firefox browser.

Data Labeling. We evaluate the performance of Slice, NN, LSTM, R-LSTM
and Combine to predict ATF using the collected dataset. Our experiments have
two parts: binary classification and ternary classification. We adjust the network
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condition through Dummynet to ensure that the ATF meets our requirements,
measured by the chrome plugins released in [6]. We then label the data according
to the estimated ATF using the following rules based on Akamai’s research on
customer behaviours, 2s being the psychological threshold [1]:

0, ATF <2s
< ) —
Binary : label = {(1)’ j;? ; ;S i Ternary :label =4 1,2s < ATF <5s
’ 5 2, ATF > 55

1)

We use a simple one-to-one correspondence to map ATF to QoE, which could
be implemented through a mapping function [7]. For binary classification, “0”
represents good UE, and “1” represents poor UE. For ternary classification, “0”
means good UE, “1” means poor UE, and “2” means terrible UE.

Dataset. For binary classification, we collected about 16,000, 16,000, 8,000
samples from Sina, Amazon and Youku, respectively, of which the proportion
of positive and negative samples was 1:1. This balanced split is for the purpose
of learning, to ensure that the models learn both positive and negative cases.
In reality the occurrence of positive cases is much less common than that of
negative cases. However, only positive cases are of interest to ISPs and vendors.
For ternary classification, we only got extra 6,000 samples from Sina due to being
blocked later on. The proportion of “0”, “1” and “2” samples was 4:4:3. 70% of
the samples are used as the training dataset with the rest as the test dataset.
Since most websites have a mechanism against crawling, this prevents us from
frequently refreshing the same web page. For example, when we collected data
from Amazon, it always required to provide a verification code. This made it
extremely difficult to create a larger dataset. We believe that the amount of
available data can demonstrate the feasibility of the model to a certain extent,
and the three websites represent the typical scenarios of web browsing activities.
For a certain website, different models share the same training and test dataset,
ensuring that the results are not affected by how the dataset is split. We use the
training dataset to train each model separately, that is, we train five models for
each of the test websites, for a total of 15 models.

5.2 Model Parameters

Parameter Setting. The parameters common to all models are: number of
iterations = 100,000, learning rate = 0.003, and batch size =128. These param-

Table 1. Other model parameters. Table 2. Dropout effect.
No. of No. of No. of No Preep
input units | hidden units | hidden layers Dropout | of 80%
Slice 60 480 2 Accuracy |0.9425 0.9495
NN 5 40 2 Precision | 0.9569 0.97
R-/LSTM | 100 256 1 Recall 0.9512 0.9489
Combine 6 48 2 F'1 score |0.954 0.9593
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eters were chosen to achieve the highest accuracy on the validation set. Other
parameters are shown in the Table 1. The Number of input units is the dimension
of the input variable, while the Number of hidden units is the number of neurons
in the hidden layer. The Number of hidden layers is the number of the network
layers between input and output layers. The classic “trial-and-error” method
was used for creating neural network layers. It was a simple process with several
iterations. There was no need to readjust the parameters and it worked well
across all the three web sites, indicating the ease of parameter selection. It also
shows that all the five models have a simple lightweight architecture.

Overfitting and Dropout. In machine learning, overfitting may occur when
a model corresponds too closely or exactly to the training data and thus may
fail to fit the test data or predict reliably. Dropout regularization is one of the
popular techniques to avoid overfitting, which helps make the model globally
fit. As shown in Sect. 6, the Slice model is overfitting. Dropout is applied by
deactivating a portion of neurons at the training time. P, represents the
portion of active neurons. After tests on the validation set, we found that the
Slice model had the best performance with Ppe., set to 80%.

6 Experimental Results

Accuracy, precision, recall and F1 score are commonly used performance metrics.
In a real-world scenario, the chance to have an unsatisfactory ATF (positive) is
small. Accuracy can be misleading for imbalanced data sets, e.g., small portion
of positives vs large portion of negatives. Precision represents true positives per
predicted positive while recall represents true positives per real positive. As recall
increases, precision may drop, and vice versa. F'1 score is the harmonic mean of
precision and recall. A high F1 score indicates a good balance between the two.
As we have a focus on positive cases and the number of negatives is unknown and
large, this makes the latter three metrics particularly suitable in our evaluation.
Equation (1) shows the label of our data. For binary classification, label with
“1” is the positive instance and label with “0” is the negative instance. For
ternary classification, each category is treated as a positive class for calculating
the values of the metrics. The test dataset is used to predict labels. The predicted
label is compared to the actual label, which serves as the ground truth.
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Fig. 7. Without dropout regularization vs. Pgeep of 80%.

6.1 Basic Models

Dropout Effect on Slice. Figure7 compares the results with and without
dropout regularization (Pyeep set to 80%). It shows that the Slice model is indeed
overfitting. Figures7(a) and 7(b) show the loss functions measuring the incon-
sistency between the predicted value and the actual label against the number of
training epochs. The loss functions decrease as the number of epochs increases.
Without dropout (Fig.7(a)), the loss function of the test dataset is not as small
as that of the training dataset, and this gap does not decrease as the number of
epochs increases. This is an indication of overfitting. With dropout (Fig. 7(b)),
the loss function of the training and test datasets matches each other very well.
Similarly, Fig. 7(c) and 7(d) show the accuracy performance of the model against
the number of epochs. The accuracy improves as the number of epochs increases.
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Fig. 8. Accuracy comparison (LSTM vs Fig. 9. Training and test time compari-
R-LSTM). son (Amazon).
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Without dropout (Fig. 7(c)), the accuracy of the test dataset does not match the
accuracy of the training dataset, which reaches 100%, and the gap is not nar-
rowed as the number of epochs increases. The model fits the training dataset
well but fails to fit the test dataset. This indicates that the Slice model is indeed
overfitting. With dropout (Fig.7(d)), the accuracy of the training and the test
datasets matches each other closely. Although dropout reduces the accuracy of
the training dataset, it helps improve the accuracy of the test dataset.

Table 2 shows that, with dropout regularization, the accuracy, precision and
F1 score of the model slightly increase but the recall decreases a little bit. Note
that precision and recall are mutually influential (true positives per predicted
positive vs per real positive). True positives are usually achieved at the cost of
false positives. A high recall may come with a low precision, and vice versa [8].
Ideally, we want to keep both precision and recall high, to ensure that the posi-
tives are true positives without any missing positives. A high F1 score (as shown
in Table2) indicates a good balance between the two. Based on these results,
we can conclude that dropout regularization improves the performance of Slice.
Dropout is applied to Slice in the later experiments.

LSTM vs R-LSTM. We will now demonstrate that the improved LSTM
model, R-LSTM, has better performance. Figure8 shows the prediction accu-
racy by LSTM and R-LSTM against the number of training epochs for the three
test websites. It shows that the model converges much faster with R-LSTM at
roughly epoch 50 for both Sina and Amazon. With LSTM, the model converges
at roughly epochs 150 and 600, for Sina and Amazon, respectively. For Youku,
R-LSTM has much higher accuracy than LSTM, roughly 97% vs. 75%. Based
on these results, we believe that reversing the input variables can significantly
improve convergence time as well as accuracy, depending on the type of web
content. In later experiments, we will use R-LSTM instead of LSTM.

Performance. Table3 shows the performance of the models for binary clas-
sification on accuracy, precision, recall, and F1 score. The data volumes of the
test datasets for Amazon, Sina, and Youku are approximately 4,800, 4,800, 2,400
samples (30% of the dataset), respectively. The results suggest that for Amazon
and Sina, the three models work remarkably well on ATF prediction. The per-
formance on all the metrics is close to 1. There are fewer than five prediction
errors for Amazon and Sina. For Youku, the performance is less impressive. The

Table 3. ATF prediction performance comparison.

Amazon Sina Youku
Slice |NN R-LSTM | Slice NN R-LSTM | Slice |NN R-LSTM
Accuracy |0.9991 | 0.9991 | 0.9995 | 0.9988 | 0.9986 |0.9983 0.9466 | 0.9536 | 0.9684
Precision | 1 0.9996 | 1 0.9992 | 0.9987 |0.9987 0.9642 | 0.9674 | 0.9789
Recall 0.9984 1 0.9988 | 0.9992 | 0.9983 | 0.9983 | 0.9979 0.9501 | 0.9583 | 0.9690
F'1 score {0.99920.9992|0.9996 |0.9987  0.9985 |0.9983 0.957110.9628 | 0.9739
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Table 4. Performance comparison with Table 5. Performance for ternary classi-

combine on Youku. fication.
R-LSTM | Slice NN Combine R-LSTM | Slice NN Combine
Accuracy | 0.9546 0.9546 | 0.9546 | 0.9693 ...10.9439 0.9109|0.8607 | 0.9518
Precision | 0.9899 |0.9728|0.9765 |0.9826 ...10.941 0.891 |0.828 |0.941
Recall 0.939 0.9561|0.9523 | 0.9695 ...10.9192 0.8907|0.8299 | 0.9452
F1 score |0.9638 0.9644 | 0.9643 | 0.976 ...10.9281 0.8908|0.8289 | 0.943

values of the performance metrics vary between 0.94 and 0.98. Since Youku is
a video site, there are a lot of dynamically loaded content on its home page.
Therefore, regardless of the network conditions, the diversity of the content (or
the dataset) on its home page is a challenge to classification and thus reduces
the accuracy. Within the 2,400 samples, there are about 100 prediction errors,
an error rate roughly between 2% to 6%. Among the three models, R-LSTM
appears to be the best performer on Youku.

Training and Test Time. Figure9 shows the training and test time of the
three models on Amazon. The data volume of the training and test datasets are
about 11,200 and 4,800 samples, respectively. It shows that the training time of
R-LSTM is much higher than that of the other two models. The training time of
LSTM depends on the number of iterations, which is 100 in our model. Therefore,
backpropagation of LSTM needs to be performed 100 times per training batch. In
contrast, Slice and NN use fully connected neural networks as the classifier, which
requires only one backpropagation per training batch. As a result, the training
time of LSTM is much longer than that of Slice and NN. For test time, it is a
similar situation. The forward propagation of LSTM requires 100 executions to
generate an output, but the forward propagation of the fully connected neural
network only needs to be performed once to generate an output. The time it takes
R-LSTM to complete 4,800 predictions is much longer than it takes Slice and
NN. However, as backpropagation is only needed for training, not for prediction,
the gap between LSTM and NN/Slice on test time is much smaller than on
training time. The time required for the three models to predict 4,800 samples
is about 0.7s, 0.08s, and 0.07 s, respectively. It confirms the possibility of using
our model to assess the user’s QoE in real-time.

6.2 Combine

Ensemble Learning. We combine the trained Slice, NN, and R-LSTM through
a fully connected neural network to generate a new model, Combine. The three
basic models were trained using the 70% of the total dataset as the training
dataset and were able to predict with few errors. If we reuse the 70% for Combine,
the inputs and the labels are likely to be the same or similar, making the training
no longer meaningful. Therefore, Combine uses the remaining 30% as its training
and test datasets. We still use 70:30 split of the dataset for training and testing.
It is observed that all models perform very well on Amazon and Sina with no
much difference, although Combine performs the best with no prediction errors
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at all. The advantage of Combine is getting clearer on Youku. Table4 shows
Combine’s performance on Youku in comparison with the other models. The
performance of all models is not as great, because of the highly dynamic content
on Youku’s home page. However, Combine still performs the best on accuracy,
recall and F1 score, and only behind R-LSTM on precision. This motivates us to
further explore the effectiveness of ensemble learning on ternary classification.

Ternary Classification. Table5 shows the performance on the test dataset.
The precision, recall, and F1 score here are established as follows: an initial value
of the metrics is obtained for each of the three QoE categories as a binary clas-
sification problem, and then a weighted average across the three QoE categories
is calculated, which becomes the value of the metrics shown in Table 5. It shows
that the performance of the models is substantially degraded for ternary classi-
fication. This is expected because of the finer granularity of the QoE. R-LSTM
is the best performer among the three basic models, with the values of the met-
rics ranging from 0.919 to 0.941. NN is the worst, with F1 score of only 0.8289.
The features used by NN do not describe well the differences between categories
“1” and “2”. Also as stated in Sect. 4, NN’s inputs are not as independent
as assumed. In contrast, R-LSTM performs well because the accumulated data
makes the input statistically significant, which facilitates classification. Slice sits
in the middle, with the values of the metrics varying slightly around 0.90.

Combine performs the best across all the metrics, with their values all greater
than 0.94. Through ensemble learning, we use three weak classifiers to form a
strong classifier, making the model well suited for ternary classification.

6.3 Summary

WebQMon.ai can predict ATF well when users visit the websites, whether it is a
binary or ternary classification problem. R-LSTM performs the best among the
three basic models, but it takes the longest time to train and predict. Slice is
more balanced, having a reasonable performance with the shortest training and
prediction time. NN requires a short time to train and predict but has the worst
performance. Combine performs the best through ensemble learning. However,
since the model needs to use the results of the three basic models, it has the
longest training and prediction time. Furthermore, we collected data for four
months, during which the content of the websites changed greatly. Nonetheless,
our model still predicts ATF well, which proves that the model can be updated
by new data to accommodate changes in website content. It would be difficult
to do this through threshold settings or mathematical formulations. In addition,
the trained model takes up very little storage space, a minimum of 80KB and a
maximum of 6MB. WebQMon.ai only requires the referer from the application
layer, making it possible to deploy on edge routers.

7 Discussion

HTTP vs HTTPS. In contrast to current work, WebQMon.ai minimizes the
use of application layer data — it only needs the referer to aggregate the traffic
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associated with a page. This is under the assumption that the content associated
with a page may be sourced from other sites. Nevertheless, if we are only inter-
ested in the content from a particular site, WebQMon.ai does not need access to
application data at all. The limitation is that WebQMon.ai would not be able to
predict page-based QoE, as the objects of the page may be from different sites.
However, it can still provide a QoE assessment for the content from a particular
site. This is of great value to content providers as well as ISPs.

Placement. Predicting web-browsing QoE on the client-side usually occupies
user network bandwidth and needs the user to cooperate and install specific
software. It may provide the best possible prediction accuracy, but it is also the
most costly choice. If deployed on the server-side, it may work for the websites
who have the budget to do so. However, from the client’s point of view, this may
result in the least accurate prediction, and the prediction is limited to a specific
site. In contrast, WebQMon.ai can be deployed on edge routers/gateways, and
thus is transparent to the server and the client. In some scenarios, WebQMon.ai
may not be able to achieve the prediction as accurate as some client-based solu-
tions. But it can still achieve a high level of accuracy, and more importantly,
without the client-side constraints. WebQMon.ai has access to all the websites
that ISP’s clients are interested in. This enables close collaboration between ISPs
and content providers to serve their clients.

Versatility and Real-time. WebQMon.ai is powered by a data-driven model,
which is easy to update and apply for all websites with different types of content.
It can be updated on a regular basis as long as there is new data, that is,
WebQMon.ai has the ability to learn and adjust to the new context. Current
solutions that rely on empirical threshold settings or mathematical formulations
are usually designed specifically to a certain site, limiting their applicability
for other sites. In addition, WebQMon.ai only needs to use lightweight neural
networks to achieve a high level of accuracy. This demonstrates not only that
WeQMon.ai can get updated quickly and work in a real-time fashion, but also
the practical applicability of machine learning in this field.

Fine-Grained ATF Prediction. WebQMon.ai can handle very well binary
and ternary classifications, which are common cases for QoE prediction. How-
ever, as the granularity of QoE classification increases, the performance of
WebQMon.ai deteriorates. At some stage, finer-grained ATF prediction may be
required, which can be done through addressing the regression problem. The
mapping from ATF to QoE can then be done through Mean Opinion Score
(MOS) [7]. We can imagine this would improve the performance at the cost of
training and test latency, due to the complexity of the model.

8 Conclusion

In this paper, we present WebQMon.ai to predict web-browsing QoE. WebQ-
Mon.ai relies on packet-level measurements without deeply parsing the packet
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payload, and thus can be deployed on edge routers/gateways instead of end
hosts. WebQMon.ai is data-driven, empowered by lightweight supervised learn-
ing methods, which enables the system to learn and adapt to new contents in
a timely manner. WebQMon.ai works very well for binary and ternary classi-
fication based QoE prediction, achieving a high level of accuracy in real-time.
Furthermore, we demonstrate the potential and feasibility of machine learning
methods in web-browsing QoE assessment.
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Abstract. How to effectively predict missing QoS has become a fun-
damental research issue for service-oriented downstream tasks. However,
most QoS prediction approaches omit high-order implicit invocation cor-
relations and collaborative relationships among users and services. Thus,
they are incapable of effectively learning the temporally evolutionary
characteristics of user-service invocations from historical QoS records,
which significantly affects the performance of QoS prediction. To address
the issue, we propose a novel framework for temporal-aware QoS pre-
diction by dynamic graph neural collaborative learning. Dynamic user-
service invocation graph and graph convolutional network are combined
to model user-service historical temporal interactions and extract latent
features of users and services at each time slice, while a multi-layer GRU
is applied for mining temporal feature evolution pattern across multiple
time slices, leading to temporal-aware QoS prediction. The experimen-
tal results indicate that our proposed approach for temporal-aware QoS
prediction significantly outperforms state-of-the-art competing methods.

Keywords: Web service + Temporal-aware QoS prediction - Dynamic
user-service invocation graph - Graph convolutional network - Latent
feature extraction

1 Introduction

With the rapid advancements of Internet technology, service-oriented architec-
ture (SOA) has been widely used in real-world applications. As one of the
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key implementation techniques of SOA, web services have extremely promoted
interoperatable machine-to-machine interactions. However, many services sup-
ply users with analogous functionalities. Quality of Service (QoS) [11] is applied
to represent the non-functional characteristics of web services and differentiate
those functionally equivalent ones. Because of the enormous number of users
and services, it is impractical and time-consuming for users to invoke all web
services and record the corresponding QoS values in the constantly changing net-
work environment. Thus, it is of vital importance to precisely perform temporal-
aware QoS prediction, which has become a challenging issue due to the sparsity
of historical user-service invocations across multiple time slices in real scenarios.

Some recent investigations concentrate on collaborative filtering (CF) and
neural network-based approaches for temporal-aware QoS prediction. They gen-
erally compose a sequence of QoS invocation matrices from different consecutive
time slices, and extract the features of users and services at each time slice, then
apply deep learning techniques, such as gate recurrent unit (GRU) [3] and long
short-term memory (LSTM) [7], to learn the evolution pattern of QoS across
multiple time slices. However, they mainly characterize a user in terms of those
directly invoked services or a service in terms of those users who have directly
invoked the service, without the consideration of high-order implicit invocation
correlations between users and services through indirect interactions as well as
the high-order collaborative relationships between similar users or services. Due
to the lack of the extraction of high-order latent features that are hidden in the
user-service interactions, it is still difficult in effectively encoding latent features
of users and services, yielding to low accuracy of temporal-aware QoS prediction.

To address the issues, inspired by the developments of graph and Graph
Convolutional Networks (GCNs) [2], we propose a novel framework for temporal-
aware QoS prediction by dynamic graph neural collaborative learning. First, we
formulate user-service historical QoS interactions as a temporal-aware service
ecosystem, which is transformed into a dynamic user-service invocation graph
across multiple time slices. Then, a GCN-based [2] graph neural collaborative
feature extractor is learned to extract high-order latent features of users and ser-
vices at each time slice, taking into account both indirect user-service invocation
correlations and collaborative relationships by similar users or services. Finally,
a multi-layer GRU [3] is applied for mining temporal feature evolution pattern
across multiple time slices, leading to temporal-aware QoS prediction. To eval-
uate the effectiveness of our proposed approach for temporal-aware QoS predic-
tion, extensive experiments are conducted on a large-scale real-world dataset. By
comparing with several state-of-the-art baselines, experimental results demon-
strate that our proposed approach receives the best prediction performance in
multiple evaluation metrics. The main contributions of this paper are summa-
rized as follows:

— We propose a novel dynamic graph neural collaborative learning framework
for temporal-aware QoS prediction. It can more effectively reveal user-service
invocation features at each time slice and mine temporal feature evolution
pattern across multiple time slices for better QoS prediction.
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Fig. 1. The overall framework of our proposed approach.

— We propose a novel approach for extracting high-order latent features of a user
and service by dynamic user-service invocation graph modeling and graph
convolutional network learning. Compared to the existing approaches, the
advantage is that we can more deeply reveal the latent features of users and
services, with the consideration of both high-order user-service invocation
correlations and collaborative relationships by similar neighborhoods.

— Extensive experiments are conducted on a large-scale real-world QoS dataset,
and the results indicate that our approach receives superior performance for
temporal-aware QoS prediction compared with baseline approaches.

The remainder of this paper is structured as follows. Section 2 elaborates the
proposed approach. Section 3 shows and analyzes experimental results. Finally,
Sect. 4 concludes the paper and discusses future work.

2 Approach

The overall framework of our proposed approach is illustrated in Fig. 1. It mainly
consists of four stages, including dynamic user-service invocation graph model-
ing, high-order latent feature extraction, user-service temporal feature evolution
mining, and temporal-aware QoS prediction.

2.1 Dynamic User-Service Invocation Graph Modeling

A temporal-aware service ecosystem can be formulated as £ =< U, S, T, R >,
where there are n users U = {w;},, m web services S = {s;}/,, ¢ time
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slices T' = {1,2,...,t}, and a sequence of corresponding historical QoS matrix
R = {R' e R™™}I_,, r; € R' indicates the corresponding QoS value when a
user u; € U invokes a service s; € S at time ¢. To model the high-order implicit
invocation correlations and collaborative relationships among users and services,
we transform ¢ into a dynamic user-service invocation graph G = {G*}_,. Each
snapshot Gt =< V,,, Vi, B, W! > is transformed from & =< U, S,t, Rt > at
time slice ¢. Here, V,, = {u;}?_; is a set of n user vertices; Vs = {s;}1, is a set
of m service vertices; E' is a set of edges that represents user-service invocation
relationships. If 7/, € R', there exists an edge e}; = ¢}, € E* between u; € V,,
and s; € V,; W' is a set of edge weights. If ¢f; € L7, there exists a corresponding
weight wj; € W*, which can be converted from r}; € R".

The edge weight w! € W? measures the strength of the connection, i.e. the
invocation relationship, between a user vertex and a service vertex at time slice
t. Generally, a lower value implies a higher QoS under a negative QoS criteria,
such as response time. It is observed that most of real QoS values are clustered
around a certain value for a QoS criterion, but there are also a small number of
outliers that may influence model training deviating from expectations. In order
to ensure robustness of our proposed model, we further convert the original QoS
value rfj to a normalized range as the corresponding edge weight wf.j. By taking
into account both the distribution characteristics of QoS values and practical
observations, a heuristic conversion function is designed to project rf»j to wfj
under a negative QoS criterion. It is expressed as follows:

.t . .t
exp(r;;)—exp(—1/r;;)

: t
t _ ) exp(l/r};)+exp(=1/r};) if Tij >1 (1)
Wij = 1 1 oexp(2)=1 oy
ezp(rfj) T e + exp(2)+1 otnerwise

where wj; denotes the associated weight for edge ef; € E*. By using the con-

version function, we project all of the QoS values to their corresponding edge
weights for each time slice t € T. Thus, the dynamic user-service invocation
graph G can be generated, which is used to extract high-order latent features of
users and services at each time slice.

2.2 High-Order Latent Feature Extraction of Users and Services

Based on G, we extract the high-order latent feature of a target user u and service
s at each time slice. We initially represent u and s with a randomized feature
vector x, € R% and z, € R?, respectively, where d specifies the dimension of
the feature vector. It is intuitive that a user’s feature can be partially reflected
by the directly invoked services and indirectly characterized by the non-adjacent
user and service neighbors. It can be performed by a multi-layer recursive way in
a user-service invocation graph G at each time slice . Analogously, we can also
extract a service’s latent feature with the consideration of user-service invocation
correlations and collaborative relationships among services.

Here, we leverage the GCN’s [2] message passing mechanism to capture high-
order latent features of users (services) along the structure of G*. The procedure
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High-order
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Fig. 2. High-order user latent feature extraction by graph neural collaborative feature
extractor.

of high-order user latent feature extraction by graph neural collaborative feature
extractor is illustrated in Fig. 2. which applies a recursive way of message prop-
agation and aggregation. More specifically, N;! C V; denotes the set of adjacent
service vertices that are directly connected to w in GY, i.e., the first-hop service
neighbors of u at time slice ¢. In such case, for each service s’ € NV, the message

m! _ ., propagated from s’ to u is calculated as follows:
t
exp(w?
mb_ = —p( us') Wiz, (2)

Zie/\/ﬁ exp(wy;)

where W' € R94*? is a trainable weight matrix, and w’, denotes the weight

associated with edge el ,. With a larger w,,,, more messages are retained and s’
contributes more to w’s high-order latent feature. Following that, we aggregate
messages from all of the u’s first-hop neighbors in message aggregation:

vl =x (3)

u u
(@) = alzl, + Y mi_y) (4)
s'ENY

where (2! )! signifies the representation of u that aggregates first-order messages,
which implies the behavioral features embodied by the directly invoked services,
a is the activation function. By stacking l4., message-passing procedures, we
can aggregate messages from l4.,-hop user and service neighbors, leading to
the high-order connectivity characteristics of u. These heuristic information can
strengthen the feature representation of a user by the latent invocation corre-
lations between u and non-invoked services, as well as the latent collaborative
relationships of the user neighbors who are structurally nearby vertices of u. The
recursive aggregation of user representation can be expressed as:

t
t Ngen—1 _ exp(W, ) Whoen (gt )loen—1 5
U—S ) Zie/\/’ﬁ exp(wzi) ( s ) ( )

(@)l = azl + Y (ml )oY (6)

s'eN?

(m
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where Wlsen is the trainable weight for the l,.,-th layer message propagation.
Through I4.,-layers message passing, we obtain a series of user representa-
tions at, (x!)1, ..., (2!)lsen  which aggregates the user-service invocation corre-
lations and collaborative relationships of users or services among different hops
around the center of u. They are fused by a one-dimensional convolution layer

to generate the high-order latent feature of u as follows:
lgen
(@) = Y _wi(X0)i, i €[0,d) (7)
j=0

where (z¢)* € R? is the extracted high-order latent feature of u, w € Rloent1
denotes the convolution kernel, X! € RdxUgent1) is the matrix of combining
(Igen + 1) user representations zt, (zf)!, ..., (2%)%e. It is important to note
that the procedure for extracting the high-order latent feature (z%)* of a target
service s is identical to the one of .

Based on the high-order latent features of (z%,)* and (z%)*, they are concate-
nated as a whole that is fed into a [,,-layer multi-layer perceptron (MLP) to
obtain the invocation feature ht of w and s at time slice t. Consequently, hz

is used for mining temporal feature evolution between u and s.

2.3 User-Service Temporal Feature Evolution Mining

To reveal the evolution pattern of the user-service invocation features across
multiple time slices, we mine the hidden temporal nonlinear relationship by a

multi-layer GRU [3]. Given a set of extracted invocation features Hy = {ht*kﬂ,

h75 M2 Rt _} of a current u and a target service s across k consecutive time

shces the hldden state of GRU layer can be calculated as follows:

2 =W, WA ) ®)
rt=o(W, - [ Y|hf,]) (9)
5 = tanh(W - [(r* © B 1)||RE 1) (10)
W=(1-2)on' "+ es (11)

where W, W,., W are the trainable weight matrices, d’ is the dimension of the
GRU layer’s output, and ® represents element-wise product. Due to traditional
GRU is a shallow model with limited capacity to extract deep implicit features,
we stack lgr, GRU layers. The hidden output of last GRU layer h’fgm e R is
used as the evolutionary invocation feature for temporal-aware QoS prediction.

2.4 Temporal-Aware QoS Prediction

Based on the evolutionary invocation feature of a current user uw and target
service s, we can predict the missing QoS #/t! at time slice t + 1, by a fully-
connected neural network. The output layer is calculated as:

it = ReLU(Woh/;  +bo) (12)
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where W, is a trainable weight matrix, b, is a offset item, and #L%! is the pre-
dicted QoS when a current user u invokes a target service s at time slice ¢ + 1.
To train and optimize the model parameters, we take Mean Square Error as the
loss that is defined as:

ZuGU Zses(ftutl - thl)Q

AO|? 1
v + A0l (13)

Loss =

where U, S represent the user and service set, respectively, and |U| = n,|S| = m.
O is all the trainable parameters of our proposed model, A controls the L2
regularization strength to prevent overfitting. We adopt mini-batch AdamW [4]
to update and optimize the parameters.

Table 1. Results of temporal-aware QoS prediction among competing approaches.

Density | MAE RMSE

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
UPCC |0.946 |1.209 |1.107 |1.006 |1.908 |1.778 |1.720 |1.683
IPCC 1.135 | 1.041 |0.994 |0.989 |2.255 |1.867 |1.795 |1.795
WSRec |0.807 |0.578 [0.967 |0.758 |1.917 |1.328 |2.407 |1.733
WSPred 0.781 |0.689 | 0.673 |0.663 |1.707 | 1.633 |1.608 |1.593
PNCF 1.165 |[1.089 /1.043 |1.013 |1.836 |1.722 |1.653 |1.617
RNCF 1.048 | 1.010 |0.974 |0.958 |1.616 |1.546 |1.503 | 1.470
TUIPCC | 0.731 0.576 |0.819 |0.697 |1.776 |1.207 '2.059 |1.635
Ours 0.574 | 0.526 | 0.489 |0.462 |1.284 1.193|1.158 1.123
Gains 22.5% | 8.7% | 27.4% | 30.4% | 20.6% | 1.2% | 23.6% | 23.5%

3 Experiments

3.1 Dataset

To validate the effectiveness of the proposed approach, we conduct extensive
experiments on a large-scale real-world web service QoS dataset called WS-
DREAM!, which has been widely used in service computing for QoS prediction.
WS-DREAM employed 142 distributed PlanetLab computers (i.e. users) located
across 22 countries, to monitor a total of 4,500 publicly accessible real-world web
services from 57 countries continuously in 64 different time slices at 15-minute
interval. And a total of 27,392,643 detailed response-time values ranging from
0s to 20s are collected as the sub-dataset rtdata [11], on which our experiments
are extensively conducted to demonstrate the superiority performance of the
proposed temporal-aware QoS prediction approach. The overall data sparsity is
approximately 66.98%.

! http://wsdream.github.io/dataset.
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3.2 Experimental Results and Analyses

We evaluate the temporal-aware QoS prediction results by two widely adopted
evaluation metrics: MAE (Mean Absolute Error) and RMSE (Root Mean
Squared Error). In addition, we compare our proposed approach with 7 state-of-
the-art methods: UPCC [8], IPCC [5], WSRec [10], WSPred [9], PNCF [1], RNCF
[3] and TUIPCC [6]. To thoroughly validate the effectiveness of our proposed
approach for temporal-aware QoS prediction, we conduct extensive experiments
on temporal QoS dataset with four different densities: 5%, 10%, 15%, and 20%,
and report the MAE and RMSE, respectively. For all baseline approaches, we
follow the optimal parameter settings specified in the corresponding papers.

The results are summarized in Table 1, with the best performance among
baseline approaches highlighted in dark and the overall best results bolded. It is
obvious from the results that our proposed approach outperforms all of the com-
peting approaches at different QoS densities, with the relative improvements
ranging from 8.7% to 30.4% on MAE and 1.2% to 23.6% on RMSE, respec-
tively. In terms of MAE, TUIPCC receives superior performance among base-
line approaches at QoS densities of 0.05 and 0.1, whereas WSPred achieves the
best among baseline approaches at QoS densities of 0.15 and 0.2. As for RMSE,
RNCF is better than the other baseline approaches for the densities of 0.05,
0.1, and 0.2, respectively. As can be seen from the above results, the baseline
approaches suffer from instability for QoS prediction at different densities. For
example, while TUIPCC achieves a lower MAE, it cannot perform very well
on RMSE, indicating that it is unable to fit certain outliers when predicting
the missing QoS. Therefore, compared to the baseline approaches, our proposed
prediction model consistently achieves the lowest MAE and RMSE across all
different QoS densities, revealing that it can predict QoS values more precisely
with better robustness.

It concludes that two aspects may potentially contribute to the best per-
formance of our proposed approach. First, an optimized dynamic neural graph
collaborative learning model is designed to encode the high-order latent features
of users and services, that overcomes the constraint of sparse historical QoS
invocations across multiple time slices, leading to more precisely user-service
invocation feature. Second, a multi-layer GRU is applied to boost the accuracy
of QoS prediction by effectively mining the implicit temporal evolution patterns
of user-service invocation features across multiple time slices.

4 Conclusion and Future Work

This paper proposes a novel framework for temporal-aware QoS prediction by
dynamic graph neural collaborative learning. It first models a temporal-aware
service ecosystem as a dynamic user-service invocation graph, which is then
fed into a graph neural collaborative feature extractor for extracting high-order
latent features of users and services at each time slice, considering both indi-
rect user-service invocation correlations and collaborative relationships by sim-
ilar users or services. Finally, a multi-layer GRU is employed to mine temporal
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feature evolution patterns across multiple time slices, leading to vacant QoS pre-
diction. Extensive experiments are conducted based on a large-scale QoS dataset
in service computing to validate the superior prediction accuracy of our proposed
approach, compared to state-of-the-art competing baselines on MAE and RMSE.
In the future work, we are devoted to deeply investigating on how to effectively
leverage the contextual information and graph structural properties of users and
services to further strengthen the capability of temporal-aware QoS prediction.
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dation of China (No. 62272290, 62172088), and Shanghai Natural Science Foundation
(No. 21ZR1400400).
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Abstract. This article presents a novel probabilistic QoS (Quality
of Service) monitoring approach called LSTM-BSPM (DonLSTM-Den
based BayeSian Runtime Proactive Monitoring), which is based on
the DouLSTM-Den model and Gaussian Hidden Bayesian Classifier for
mobile edge environments. A DouLSTM-Den model is designed to pre-
dict a user’s trajectory in mobile edge environments. The predicted tra-
jectory is leveraged to obtain the mobility-aware QoS and capture its
spatio-temporal dependency. Next, a parent attribute is constructed for
each QoS attribute to reduce the influence of dependence between QoS
attributes on monitoring accuracy. A Gaussian hidden Bayes classifier is
trained for each edge server to proactively monitor the user’s mobility-
aware QoS. We conduct a set of experiments respectively upon a public
data set and a real-world data set demonstrate the feasibility and effec-
tiveness of the proposed approach.

Keywords: Mobile/Multi-access edge computing - Quality of service -
Monitoring * Bayesian classifier - LSTM model

1 Introduction

Mobile (or Multi-Access) edge computing is a new distributed computing
paradigm that transfers the computing power from cloud data centers to the
edge of a network [1]. Mobile edge services refer to the services provisioned in
mobile edge environments [2]. Users’ requirements on mobile edge services have
gradually shifted from functional requirements to non-functional requirements,
i.e. QoS (Quality of Service) [3,4]. There has been a stronger focus recently on
selecting a service that meets a user’s QoS requirements among many services
with similar functions [5]. Monitoring the runtime QoS is a key means to ensure
the accurate service selection.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-20984-0_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_9

Proactive QoS Monitoring 135

A variety of monitoring methods have been devised for probabilistic quality
attributes. These include QoS monitoring methods based on traditional prob-
ability statistics [3], hypothesis testing [4,6] and Bayes’ theorem [7,8]. Those
methods aim to perform continuous QoS monitoring based on user-defined stan-
dards in addition to computation overhead reduction. However, these methods
encounter the following problems in the mobile edge environment:

Traditional QoS Monitoring Approaches Lack a Proactive Mechanism. Service
providers usually deploy a large number of services in the network environment.
It is impractical for sensors to monitor and record in real-time the QoS generated
by different users due to time, financial and resource constraints. In addition,
monitoring the current status of a service cannot fully prevent the service from
failure. In this regard, the monitoring results received by a user at present can
only reflect the service status in the past due to the network latency. Therefore,
it is essential to develop proactive service monitoring solutions to detect service
failure in advance.

The Current QoS Monitoring Approaches Ignore the Temporal and Spatial Char-
acteristics of QoS. Our literature survey reveals that existing QoS monitoring
approaches overlook the spatio-temporal dependency of QoS. This defect may
lead to deviation of monitoring results from the real situation. The QoS of a ser-
vice (observed from the client side) relies on the state of the service (on the server
side) and the network environment. The service state is impacted by the server
capacity and workload, the allocated computing resources, etc. The network
environment is influenced by users and servers’ locations, network bandwidth
and traffic, the number of clients, etc. Both of them are highly dynamic over
time and space.

Past trajectories LEGEND _  Predected trajectories
A Past trajectory ™,

ndug
uondIpaIg

Model

Fig. 1. Motivation scenario Fig. 2. Architecture of model

2 Related Work

Many probabilistic QoS monitoring techniques based on Bayesian classifiers
were proposed to address the limitation of the aforementioned methods on vari-
able user requirements. A new mobility and dependency-based QoS monitoring
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method named ghBSRM-MEC was presented in [9]. This method assumes that
the QoS attribute value of an edge server obeys Gaussian distribution. A par-
ent attribute is constructed for each attribute, thereby reducing the dependence
between attributes. A Gaussian implicit Bayes classifier is constructed for each
edge server to realize QoS monitoring in the mobile edge environment.

Proactive monitoring techniques have also been applied into other fields. A
QoS monitoring algorithm that can quickly detect broken or congested links was
depicted in [10]. This algorithm takes advantage of a multithreaded design based
on lock-free data structures. It improve the performance by avoiding synchro-
nization among threads. Their work specifically focuses on real-time streaming.
It does not realize proactive QoS monitoring. A proactive solution was intro-
duced in [11]. It migrates the virtual machines before violating the actual delay
threshold. The authors proposed a delay-aware resource allocation method that
considers an adaptive delay warning threshold for various users. Their work
focuses on dynamic resource allocation for hosting delay-sensitive vehicular ser-
vices in a federated cloud. It cannot realize proactive QoS monitoring.

All the above monitoring methods do not take into account the proactive
selection of servers by capturing the mobility of users in mobile edge environ-
ments. They also ignore the temporal and spatial dependency of QoS monitoring.
These defects would lead to their failure to address the problems of lagging mon-
itoring and long monitoring delay. This inspires us to devise a context-dependent
proactive QoS monitoring method to fully cater to mobile edge environments.

3 The LSTM-BSPM Approach

As shown in Fig. 1, we use a mobile edge service scenario to illustrate our moti-
vation. And its main framework is shown in Fig.3. It mainly includes three
steps.

Step 1: Data preprocessing Step 2: Get predicted QoS data
Ser?'er |0C§Ii0n User dynamic Construct LSTM
and invocation of trajectory data g model
service
collection Edge QoS -
data set

QoS sample data Obtain mobility

flow of edge server awareness QoS

|
Monitori 1t Gaussian hidden | Dynamic < geg:o?-a] da'ta
Monitoring results [¢— Bayesian classifier data flow Ow of server

. . Calculat t
Step 3: Classifier Construction cutate pa'ren Construct context
property factors

Fig. 3. Structure of proactive QoS monitoring
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3.1 Data Preprocessing

First, we partition the spatial QoS data according to the locations of their
belonged edge servers. The monitoring process in a mobile edge environment
needs to consider user’s historical trajectory data and information of service
calls. The existing data sets do not meet such requirements. Hence, we need to
construct a data set for mobile edge servers and users. The second major mission
of the data preprocessing is to filter invalid data, such as the sample data with
response time of —1 and 0. It makes the experimental data more in line with the
real situation.

3.2 Mobility-Aware QoS Acquisition Based on DouLSTM-Den

The primary purposes of this step is to construct and train the DouLSTM-
Den model to obtain the user’s mobility-aware QoS. Here we propose a model
named DoulLSTM-Den to predict a user’s future location. As shown in Fig. 2,
DouLLSTM-Den comprises an LSTM layer with 3 units, a hidden LSTM layer
with 2 units, and a normal dense layer with 2 hidden outputs for 2 columns. The
details how this structure is determined is explained in the evaluation part.

The original trajectory data of the moving user is converted into a sequence of
h positions H; = {Y1,Ys,..., Yy}, where H; represents the movement trajectory
of user;, Y; = {Ingp, lat,,} represents the mth longitude and latitude of user;
based on time series. The current location is Y’ = {laty,Ing;}. In practice, we
continuously update the trajectory by combining the current location of the user
for trajectory prediction.

We predict the ¢+ 1th location Y;; 1 of the user; through the DouLSTM-Den
model. A high-level definition of the DouLSTM-Den model can be expressed as:

Y;hLl :f({}/i7}/2)ayhan}) (1)

Its technical details can be referenced from Sect. 3.2.

The network conditions in different coverage areas of an edge server are odd.
In this regard, the network loads in different locations are diverse. This would
cause distinct QoS values among different coverage areas of an edge server. The
coverage area of a sever is usually circular. We accordingly divide the coverage
area of a server into several circular rings and monitor QoS in each circular ring.

We set the coverage of each edge sever to 2 km by analyzing the users’ loca-
tions under each server’s coverage. The coverage of each edge server is divided
into 5 circular areas through the analysis of user distributions. The circular areas
are [1,400), [400, 800), [800, 1200), [1200,1600), and [1600,2000] based on their
distance to an edge server.

We choose the server closest to a user as the edge server that the user is
most likely to access. We then determine the exact circular area of the server.
The historical QoS data of the service to be invoked by the user is extracted
from all the users in the same circular area of the predicted edge server. It is
denoted by Torea,y, = {Tuys Luss -+, Tu, }, Where Ty, represents the QoS of the
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service invoked by the user i. The average value of the historical QoS data is
calculated to obtain the mobility-aware QoS of the service. It is denoted by
QoSi41 = Zil Tamat+1/n, where n is the number of the users in this area.

3.3 QoS Monitoring Based on Gaussian Hidden Bayesian Classifier

The main purpose of this step is to train a Gaussian Hidden Bayes classifier
based on historical data. The classifier will proactively monitor the mobility-
aware QoS acquired from the last step. A Naive Bayes classifier assumes that
the attribute values are independent of each other. However, tt ignores the fact
that there might be dependence between QoS attribute values, leading to inac-
curate classification results. Here we define a parent attribute 7(z;) to reduce
the dependence between QoS attributes. Each parent attribute represents the
influence of the other attributes to each independent attribute. The value of the
parent attribute 7(z;) is the mean value of 21 ~ x;_;. The improved Bayesian
classifier formula can be expressed as:

n
C(X) = argmax {P(c;) [ [ Plxi|n(x:).¢;)} (2)
Cj eC i=1
The Gaussian distribution is generally used to represent the class conditional
probability distribution of continuous attributes. We apply Gaussian distribution
to the probability distribution of continuous variables in Bayesian classifier. The
assumption of the Gaussian distribution is expressed as follows:

P fr(xo).cs) = N (“ T “’“””’) @

op (1= p?

where N, represents the Gaussian distribution of the corresponding category
¢j, Ug, and a%i are the mean and variance of the sample attributes, and (.,
and o, (,,) are the mean and variance of the parent attributes corresponding
to the sample. The correlation coefficient between x; and 7(z;) is denoted by
_ conv(z;,m(x;))
P oniony
In the training phase, a Gaussian hidden Bayesian classifier is constructed
upon its parent attributes for each sample, i.e., the mobility-aware QoS value
of the user. The classifier is trained based on the historical data of each edge
server. The spatio-temporal QoS data (i.e., the QoS data in the same circular
area of a sever within the same time period) is used as the input in the classifier.
Every time a new QoS value is obtained, whether or not the QoS value satisfies
with the pre-defined probabilistic requirements can be determined. We assume
that the QoS attribute value follows the Gaussian distribution. Therefore, the
determination can be implemented by the probability density integral formula:

Qos-Value 1 (z—u)2
P(X < Qos_Value) :/ —e 202 (4)

s 2mo
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where p and o represent the mean and standard deviation of the QoS value. For
example, if a QoS requirement is that the probability that the service response
time is less than 2s is greater than 85%, the value of QoS_Value is 2.

In the QoS monitoring process, users pre-define a set of QoS requirement
vectors as Tgos = [X1, X2, -+ , Xp|, where X,, = [x1, 22, - ,xn]T refers to the
set of required QoS values of all the services called by the user n when accessing
a server. The category set is C' = {¢g, ¢1 }, where ¢ refers to a satisfactory grade
and c; refers to a unsatisfactory grade. The posterior probabilities of ¢y and
c1 are calculated via the aforementioned process. The category with a higher
posterior probability is regarded as the final monitoring result.

4 Experiment

4.1 Experimental Environment Configuration

Experiment Setup. The TensorFlow 2.4.0 deep learning framework! is used
to implement the proposed DouLLSTM-Den model. The model is trained with a
computer with Nvidia GTX1080Ti GPU. The model is trained 30 epochs with
a batch size of 128. The initial learning rate is set to 0.001. All these parameters
are optimal settings according to our experimental observation.

Data Sets. This experiment involves three data sets in the experiment.

— Data Set 1 bases on the Shanghai Telecom data set?. This data set includes
the geographic location information of 3,233 base stations and 611,507 service
calling records.

— Data Set 2 bases on a real-world Web service quality data set released by
Chinese University of Hong Kong®. This data set includes the response time
of 4,500 Web services called by 142 users in 64 different time slices.

— Data Set 3 is a simulated verification data set. The verification data set
is generated according to users’ QoS requirements in the experiment. The
verification data is used to verify the effectiveness of the proposed method.
For example, if the QoS requirement is that the probability that the response
time of the service is less than 3.6s is greater than 80%, we inject more than
20% exceptional response time (i.e. greater than 3.6s) samples in a certain
range of the original samples as the verification data.

Comparison Method. We compare LSTM-BSPM with the following state-of-
the-art service quality monitoring methods to verify the superiority of LSTM-
BSPM. These include ghBSRM [9], wBSRMM (8] and IgS-wBSRM [12].

! https://github.com /tensorflow /tensorflow /tree/v2.4.0.
2 http://sguangwang.com/TelecomDataset. html.
3 http://wsdream.github.io/dataset /wsdream_dataset2.html.


https://github.com/tensorflow/tensorflow/tree/v2.4.0
http://sguangwang.com/TelecomDataset.html
http://wsdream.github.io/dataset/wsdream_dataset2.html

140 T. Wei et al.

LSTM-BSPM monitoring time ' Sever switching time LSTM-BSPM monitoring time  Sever switching time

Times(s) Times(s)
a5

50 as 1
436
p 1188

1.25
s 38.1 3829 12 109 10226

35 3225 10

30 8
25
20

= 42538015396  2.551665068 2578454971 2485833406  2.582831383  2.543400238

10
52538015306 2551665068 2578454971 2485833406 ~ 2582831383 2543400238 2

0 o

3 2 3 4 5 Average 1 2 3 4 5 Average
User User

(a) When driving cars (b) When taking high-speed trains

Fig.4. Time consumption comparison between proactive service monitoring
(tLsTm—Bspm) and server switching (t¢rq)

4.2 Feasibility Verification of Proactive Monitoring

We set up an experiment to assess the feasibility of the proposed method. We
verify whether our approach can detect abnormal service states before users
access new edge servers. The experiment assumes that a group of 160 users call
services when driving a car and taking a high-speed train respectively. We assume
that the speed of the vehicle is 72km/h and the speed of the train is 300 km /h.
The monitoring time t1, g7y — pspa mainly contains two parts: the time tpg7ns
to obtain the mobility-aware QoS attribute value based on the DouLSTM-Den
model, and the time t,,,,, to monitor the QoS using the Bayesian classifier. The
estimated time t;., required for a user to access a new edge server is obtained
by calculating the distance between two edge servers divided by the speed.

Figure 4a and Fig. 4b respectively show the time needed for proactive moni-
toring and connecting to a new edge server for 5 randomly selected users and all
the users when driving and taking high-speed trains respectively. We can draw
a conclusion that our approach can efficiently complete the proactive service
monitoring before users access new edge servers. This would provide more time
for servers to make decisions if service anomalies occur.

4.3 Effectiveness Verification of Positive Monitoring

We establish an experiment to verify whether the proposed proactive monitoring
method can more quickly and accurately detect service exceptions before users
calling the services. The proposed method is compared with the three aforemen-
tioned baseline methods. Data Set 3 is used for the experiment. First, we extract
the QoS values of 2000 services to train a Gaussian hidden Bayes classifier. We
then inject 200 exceptional samples with response time of 3s in the ranges of
[200, 400] and [400, 600] of 1000 test samples (i.e. services).

Figure 5a and Fig. 5b respectively show the monitoring results of the excep-
tional samples injected in different intervals. The abscissa represents the number
of samples that a monitoring method can obtain based on the test set The ordi-
nate represents the monitoring result, where 1 represents normal, and —1 rep-
resents abnormal. The number of samples required for each method to monitor
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Fig. 5. Result of response time monitoring

the abnormality of the service status is marked on the top of the diagram. It
can be seen that the proposed proactive monitoring method (i.e. LSTM-BSPM)
needs the lowest numbers of samples to detect the service exceptions. In general,
it can be seen that the prediction results of LSTM-BSPM are more consistent
with the injected exceptions. The experimental results verify the effectiveness of
the proposed proactive monitoring method in the mobile edge environment.

5 Conclusion

This paper presents a proactive QoS monitoring method in the mobile edge envi-
ronment based on DouLSTM-Den model and a Gaussian hidden Bayes classifier.
Experiments are conducted on both simulated and real data sets. The experi-
mental results show the effectiveness and feasibility of the proposed method.
For the future work, the following tasks will be considered: i) we will design
solutions to accurately predict users’ multi-lag moving paths; ii) we will improve
this method to adapt to multivariate QoS monitoring; iii) we will consider user
privacy protection when designing future proactive QoS monitoring methods.
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Abstract. QoS prediction algorithm requires to be real-time to be inte-
grated with most real-time service recommendation or composition algo-
rithms. However, real-time algorithms are prone to compromise on the
solution quality to improve their responsiveness, which we aim to address
in this paper. The collaborative filtering (CF) technique, the most widely
used QoS prediction method, consider the influences of all users/services
while predicting the QoS value for a given target user-service pair. How-
ever, the presence of untrustworthy users/services, whose QoS invocation
patterns are different from the rest, may lead to degradation in predic-
tion accuracy. Moreover, in many cases, the quality of the prediction
algorithms often deteriorates to ensure faster responsiveness due to their
inability to capture non-linear, higher-order, and complex relationships
among user-service QoS data. This paper proposes a trust-aware QoS
prediction framework leveraging a novel graph-based learning approach.
Our framework (TRQP) is competent enough to identify trustworthy
users and services while learning effective feature representation for find-
ing a rich collaborative signal in an end-to-end fashion. Our experiments
on the publicly available WS-DREAM-1 dataset show that TRQP is not
only eligible as a real-time algorithm but also is well capable of han-
dling various challenges associated with QoS prediction problems (e.g.,
extracting complex non-linear relationships among QoS data) and out-
performed major state-of-the-art methods.

1 Introduction

Recommending suitable service for a target user comes under commercial and
personal interest. However, it is a challenge in a decentralized environment,
where the functionally equivalent web services are increasing rapidly. Due to
the frequent addition of new functionally redundant services, obtaining the QoS
profile for each service for every user is practically infeasible and time/resource-
consuming. Therefore, QoS prediction [6] of services across different users
appears as a fundamental problem to solve.
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Recent studies reveal that collaborative filtering (CF)-based methods are
most effective for QoS prediction [24]. CF-based methods exploit the QoS log for
predicting the QoS value. The memory-based CF's [18,22] are the most simplistic
methods by design for QoS prediction. However, they fail to achieve a desirable
prediction accuracy due to many challenges, including the data sparsity, scalabil-
ity, cold-start, etc. Model-based CF's (e.g., matrix factorization [11], factorization
machines [14], deep-learning-based [21] approaches) and a few hybrid methods
[2,4] combining memory-based and model-based CF have been introduced to
address the above challenges. Although these methods are able to achieve sat-
isfactory performance, however, most of them are not suitable for the real-time
system due to their slower responsiveness [2,4]. On the other hand, the meth-
ods with faster responsiveness have significantly low prediction accuracy [18].
A clear trade-off between the prediction time and prediction accuracy has been
observed in the literature [6]. Some recent papers attempted to address this issue
[3]. However, due to the absence of quantitative measurement of prediction time
to designate an algorithm to be a real-time one, these works are yet to be faster
enough to be chosen as a real-time algorithm.

Another important observation is that most of the conventional CF-based
methods consider the influence of every user/service to predict the QoS of a
target user-service pair. However, all the users/services present in the QoS log
are not trustworthy because they may have very different QoS invocation pat-
terns compared to the rest. These users/services are generally referred to as
grey-sheep [8]. The influence of grey-sheep users/services in the computation
of the QoS of non-grey-sheep users/services lead to highly inaccurate results.
Avoiding untrustworthy users/services could improve the QoS prediction accu-
racy. Li et al. [10] proposed a reputation algorithm for detecting trustworthy
users based on geographical location, which could result in the inappropriate
set of untrustworthy users since geographical distance may not be equivalent
to network-wise distance. The authors in [17] proposed a two-phase K-means
clustering-based credibility-aware QoS prediction method, where a cluster with
a minimum number of users is considered untrustworthy. However, the clusters
with minimum number of users can still be large set. The authors in [12,15] pro-
vided a similar approach for detecting grey-sheep using 3o rule. Although these
methods were proposed to detect the untrustworthy users/services, the notion
of trustworthiness, however, is yet to be standardized.

In this paper, we propose a real-time, trust-aware QoS prediction algorithm
using graph-based learning that can achieve reasonably high prediction accuracy.
The graph has been established as a functional data structure that can explore
higher-order connectivity (i.e., depth of relationship) in the non-euclidean data
space, which helps the graph exploit every possible relationship from nodes
and edges. In recent years, graph neural network (GNN) [9] has attracted vast
research attention. However, to the best of our knowledge, QoS prediction using
graph-based learning is mostly unexplored in the literature. We now summarize
the major contributions of our paper:

(i) We propose a novel framework for real-time QoS prediction (TRQP) utiliz-
ing a graph convolution network that captures the multi-hop collaborative signal
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by the node message passing and aggregating them over the users/services. The
comparative experimental analysis with ablation study shows the efficiency of
TRQP in terms of prediction accuracy and prediction time.

(il) We propose an effective method for identifying trustworthy
users/services. Our analysis shows that TRQP improved the accuracy for the
non-gray-sheep users/services.

(iii) We performed extensive experiments on publicly available WS-DREAM-
1 dataset [23] to validate the performance of TRQP.

In subsequent sections, we formulate the problem and discuss our solution.

2 Formulation of QoS Prediction Problem

Given a set of n users U = {uq,usg,...,u,} with their contextual data (consist-
ing of latitude, longitude, country, and autonomous systems), a set of m services
S = {s1,82,...,8m} with the set of contextual data (includes latitude, longi-
tude, country, service provider), and their partial interactions in terms of a QoS
parameter ¢ given in the form of a sparse QoS log matrix Q, the objective of the
QoS prediction problem is to predict the value of the QoS parameter for a target
user-service pair, where each valid entry of Q (say, ¢;;) represents the value of ¢
of s; € S when invoked by u; € U.

The conventional collaborative filtering (CF) based approaches fail to achieve
high accuracy due to the presence of grey-sheep users/services [8]. Since grey
users/services have their unique QoS invocation patterns, predicting the QoS
for the non-grey-sheep users/services with the help of the QoS patterns of grey-
sheep users/services results in a high prediction error.

The main objective of this paper is to identify the grey-sheep users/services
from the given set of users and services and come up with a prediction framework
that not only provides a high prediction accuracy but also has a lower prediction
time to make the framework compatible with a real-time system.

3 Proposed QoS Prediction Framework

In this section, we discuss different modules of our solution framework (namely,
TRQP) for trust-aware QoS prediction problem.

3.1 Identification of Trustworthy Users and Services

The first component of TRQP focuses on identifying the grey-sheep
users/services. We first compute an abnormality score of each user u; and a
service s; (say, </(u;)/</(s;j)) as described in [8]. A user u; (or service s;) is
considered to be more trustworthy as compared to another user u; (or service
sj) if @7 (u;) is less than o (u;) (or, @7(s;) < &/(s;)). A user u; € U (service
sj € S) is called grey-sheep, if o (u;) (<7 (s;)) is more than a given threshold 7%
(75). 7Y and 7 are hyper-parameters, required to be set externally. In this
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paper, we consider 7Y = u% +cxol, (T = puS,+cxo?,), where u*, and o, (13,
and 0%, ) are the mean and standard deviation of the abnormality scores of users
(services), respectively. ¢ is a hyper-parameter, which can be tuned externally.
Once the grey-sheep users and services are identified, we remove them from the
given list of users and services to train our model for prediction. In the next
subsection, we present the details of our model.

3.2 Design of the Learning Framework for TRQP

In this subsection, we discuss our proposed architecture (designated as, TRQP)
for QoS prediction. TRQP is an ensemble learning model combining two net-
works (i.e., GM and DM), as shown in Fig. 1. Each of these networks includes two
separate modules. The first module is accountable for computing user/service
feature embedding, the second module is responsible for QoS prediction.

GM consists of a graph convolution network [9] (say, GConv) for obtaining
user /service feature embedding followed by a multi-layer perceptron (MLP) for
QoS prediction, where DM comprises a deep prediction framework (say, DPN) for
generating user/service feature embedding followed by an MLP for prediction.
A final MLP is used in TRQP to aggregate the outputs of GM and DM for the
final prediction. We now elaborate each of these modules below.

3.2.1 Architecture of GM. Here, we introduce the graph modeling for the
prediction problem. We begin with defining the QoS prediction graph.
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Definition 1 (QoS Prediction Graph (QPG)). A QoS prediction graph
G = (V1 UV,, E) is a bipartite graph, where the vertices V; and V5 represent the
set of users U and the set of services S, respectively. An edge e;; = (v}, vjz) S
exists between two vertices vil € Vi and sz_ € Vs if the QoS log Q includes a
valid QoS entry for the service s; corresponding to v]2» invoked by the user wu;
corresponding to v;. [ |

We represent the QPG in terms of an adjacency matrix A"+ *(+m) which is
used in graph convolutional network to obtain user/service feature embedding.
However, instead of using A by itself, we normalize A, so that more influence of
the higher degree nodes can be avoided during learning [9]. Moreover, normal-
ization helps in scaling. The normalized matrix is denoted by A = D_%AD_%,
where D is a diagonal matrix representing the degree of each node of the QPG
G by its diagonal elements. It may be noted, each non-zero element of A, i.e.,

A(i, ), is normalized by the square root of the number of invocations of the
corresponding user u; and service s; as recorded in Q, i.e., A(i,j) = %
Each node of QPG is associated with an embedding representing the features
of that node (i.e., initial user/service feature embedding consisting of the latent
representation of QoS profile and contextual data of user/service of length f).

3.2.2 Description of GConv: We now discuss the architecture of GConv, as
shown in Fig. 1(c). We begin with illustrating the primary component of GConv,
i.e., GConv-unit, as presented in Fig.1(a). GConv-unit takes the normalized
adjacency matrix Ay y and an input feature matrix F* with dimension N x f,
where N = (n + m). The objective of a GConv-unit is to accumulate the input
feature embedding of each node v¥ € (V1 UVz),k € {1,2} of G with the feature
embedding of its subsequent hop (i.e., the node directly connected to vf through
an edge in E of G), as modeled by the four equations of Fig. 1(a). Therefore, the
output of the GConv-unit is another feature matrix of the same dimension.

The user/service embedding matrix £ serves as the input feature embedding
matrix for GConv, i.e., F® = £. The initial node embedding for each node
vF e (Vi UWa),k € {1,2} of G is refined while propagated through multiple
GConv-units by accumulating the features of other nodes directly/indirectly
connected to v via a path in G. Therefore, in a GConv network with L number
of GConv-units, the final embedding for each node in QPG is able to aggregate
the feature embedding of all neighbors reachable through L-hops.

3.2.3 Description of MLP of GM: An MLP is used for QoS prediction in
GM. The network is trained with a sample for each v; € U and s; € S such
that ¢;; # 0 in Q. The concatenation of the features of u; and s; obtained from
GConv is used as the feature to train the MLP, while g;; is served as the target
value. It may be noted, the MLP is trained before the deployment of TRQP.

3.2.4 Architecture of DM: The architecture of DM is similar to GM. Here,
instead of GConv, a deep prediction network (DPN) comprising DPN-unit (refers
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to Fig. 1(b)) is used to generate the user/service embedding, while a following
MLP is used for QoS prediction. The architecture of DPN is similar to GConv.
The only difference in DPN is that the adjacency matrix is not used in DPN.

3.2.5 Architecture of TRQP: As discussed earlier, TRQP comprises GM,
DM, and an additional MLP to combine the outputs of GM and DM (Refer to
Fig. 1(d)). The MLP is trained before the deployment of TRQP as well. Each
training sample of MLP consists of a feature vector of size 2, the outputs of GM
and DM, for each u; € U and s; € S such that ¢;; # 0 in Q. ¢;; is again served
as the target value. The output of the MLP is considered the final output of
TRQP.

Finally, we employ an outlier detection algorithm [3] for detecting outliers
from the dataset, which are removed to measure the performance of TRQP. The
next section presents the performance of TRQP through experiments.

4 Experimental Analysis

We have implemented our proposed method in TensorFlow with Python. The
training of TRQP was done on NVIDIA’s Quadro RTX 3000/PCle/SSE2
GPU with 1920 cores, and 6 GB memory. For testing, we used 19-10885H @
2.40 GHzx 16 processor with x86_64 CPU with 128 GB RAM.

To validate the performance of TRQP, we performed extensive experiments
on WS-DREAM-1 dataset [23]. Table 1 shows the description of the dataset used
for our experiment.

Table 1. WS-Dream-1 dataset description

QoS (# user, # service) | Min | Max Mean | Median | Std. Dev
Response time (RT) | (339 x 4998) 0.001 19.999| 0.915| 0.319 2.000
Throughput (TP) | (339 x 5004) 0.017 | 1000.0 | 46.786 | 14.018 | 108.918

The configuration of TRQP, used for our experiments, is as follows. For
identifying grey-sheep users/services, we used ¢ = 2 throughout our experiments.
We reported our results by eliminating 3% outliers. The size of initial user/service
feature embedding is 255. Our GConv and DPN includes 2 GConv-units and 2
DPN-units, respectively. In our experiment, we have used ADAM optimizer and
mean squared error as the loss function [7].

4.1 Experimental Analysis

We compared the performance of TRQP with 14 major state-of-the-art (SoA)
methods with and without trustworthiness taken into consideration. Tables 2(a)



TRQP: Trust-Aware Real-Time QoS Prediction Framework 149

and (b) show the comparative analysis of TRQP in terms of the prediction
accuracy, measured by mean absolute error (MAE) [3]. Figure2(a) shows the
comparative study of TRQP in terms of the prediction time. Below we summarize
our observations from Tables2(a), (b) and Fig. 2(a).

(i) In all cases other than OffDQ, TRQP outperformed the SoA for both
training percentages for both datasets. The improvement of TRQP over the
second-best value for each of the 4 cases is shown in the final row of Table 2(b).

(ii) Although OffDQ performed better than TRQP in terms of the prediction
accuracy, the results of the Off DQ was presented by removing 5% to 15% outliers.
However, in our case, we removed 3% outliers and about 10% entries due to grey-
sheep analysis. Moreover, TRQP performed better than OffDQ in terms of the
prediction time (refer to Fig.2(a)). While the prediction time for OffDQ is in
the order of 10~! s, the same for the TRQP is in the order of 1075 s.

Table 2. Comparison of TRQP with SoA on prediction accuracy (MAE)

Without Trust- Predicti
1thou ustraware frediction With Trust-aware Prediction

Response time | Throughput
0%  [20% |10%  [20% Methods
WSRec [22] | 0.6394 | 0.5024 | 19.9754 |16.0762
NRCF [16] | 0.5312 |0.4607 |-
RACF [18] |0.4937 |0.4208 |-
GMF [1] 0.4737 0.4233 |- -
DAFR [21] |0.3461 |0.3404 |16.9020 |15.5670
LBFM [20] | 0.3750 |0.3421 |- 11.9291

. ; y -
CNCF [5] |0.3380 |0.3140 |18.189 |16.826 TRQP 0.2540 | 0.2520 | 10.5760 | 9.5660
OffbQ [3] 1 0.2000 0.1800 9.1600  8.6700

TRQP 0.2540 0.2520 10.5760  9.5660 Improvement | 24.85% | 19.75% | 30.03% | 19.81%

Methods Response time | Throughput

0%  [20% |10%  |20%
TAP [15] 0.5502 |-
RAP [13] 0.5250 | 0.4400 |19.4333 | 16.4104
CAP [17) 0.5030 | 0.4394 |15.1148 | 13.8192
RMF [19] 0.4877 0.4414 |- -
LRMF [10] |0.4719 |0.4384 |- -
S-RAP [12] |0.4833

(iii) One of the crucial characteristics of a real-time QoS prediction algorithm
is that it is supposed to have negligible prediction time compared to the service’s
response time. This makes the prediction framework compatible with a real-
time recommendation system, where a service is first recommended based on
its predicted QoS, before its execution. Therefore, one preliminary criterion of a
real-time prediction algorithm is to have a much lesser prediction time compared
to the response time of services. As observed in Table 1, the minimum response
time of service is in order of 1072 s. In comparison to the response time of
services, our framework has an insignificant prediction time (i.e., in the order of
10~° s), which makes TRQP a real-time algorithm.

(iv) Furthermore, TRQP outperformed the SoA methods that are known to
have less prediction time.

Ablation Study: From this analysis onwards we have used the RT dataset
with 10% training data. Figures 2(b) and (c¢) present the results for our ablation
study. Our observations from Figs. 2(b) and (c) are listed below:
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(i) Figure 2(b) shows the model ablation study, where we reported the perfor-
mance of the individual components of TRQP. As evident from Fig. 2(b), TRQP
performed the best in the presence of all its components.
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Fig. 2. (a) Comparison of TRQP with respect to SoA on prediction time; Ablation
study (b) Model ablation; (c) Feature ablation

(ii) As observed in Fig.2(a), GM and DM have better prediction times as
compared to TRQP. However, TRQP performed better than GM and DM in
terms of prediction accuracy.

(iii) We reported the performance of all the networks for L = 1,2,3 (i.e.,
GConv/DPN with 1/2/3 GConv-units/DPN-units). For L = 2 and L = 3, the
performance of TRQP is almost the same and better than the performance for
L = 1. This may be due to the over-smoothing problem in graph convolution
network [9]. GConv with more number of GConv-units cannot improve its per-
formance, and it often leads to severe degradation in the feature extraction since
it may end up obtaining similar embedding for all the nodes in QPG. In our
experiment, we used 2 GConv-units.

(iv) Figure2(c) shows the feature ablation study. We reported the perfor-
mance of TRQP with only contextual features, only QoS features, and their
combinations. As it turned out, TRQP, with the combination of the contextual
and QoS features, performed the best as compared to the others. The perfor-
mance of TRQP with only the contextual feature was not good. TRQP achieved
a 25.6% improvement on average over TRQP with only contextual features.
However, in the absence of contextual features, we can still use TRQP with only
QoS features for the prediction, as TRQP achieved only a 7.1% improvement on
average over TRQP with only QoS features.
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(v) Furthermore, we observed the overall MAE for the non-grey-sheep users
or services obtained from TRQP is 0.254, which is less than the one obtained
from TRQP with grey-sheep users or services (which is 0.261 as reported). This,
in turn, shows the effectiveness of our trustworthiness analysis.

In summary, TRQP without grey-sheep users and services achieved reason-
ably high prediction accuracy while being suitable for a real-time system.

5 Conclusion

This paper proposes a trust-aware, real-time QoS prediction framework. To the
best of our knowledge, TRQP is one of the first methods in the QoS prediction
literature to leverage the graph-based feature embedding exploiting the graph
convolution for QoS prediction. The graph convolution over bipartite represen-
tation of QoS data helps exploit the non-linear, deep/higher-order, and com-
plex relationship among user/service QoS data that enhances the collaborative
signal for better QoS prediction. We also propose a means to determine trust-
worthy users/services. Focusing on the trustworthiness problem, identifying the
grey-sheep users/services, and removing them to achieve better prediction accu-
racy proves the usefulness of our framework for trust-aware QoS prediction. The
experimental analysis in the paper shows that TRQP outperformed major SoA
methods in terms of prediction accuracy and/or prediction time.

As a future endeavor, we wish to develop more sophisticated algorithms for
predicting the QoS for untrustworthy users/services. We also aim to explore a
Spatio-temporal graph convolution for time-aware QoS prediction.
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Abstract. As a fundamental operation in various LBS (Location Based
Service) applications, the trajectory similarity search has long been a
performance bottleneck in applications like (e.g., traffic optimization and
contact tracing). When handling streaming trajectory data, the variable
workload and stateful compute requirement are two crucial challenges
that further complicate the problem. Distributed microservice, a main-
stream industrial software design architecture, is the preferred way to
address such issues. However, the trajectory instance will inevitably be
split under the parallel framework. Therefore, how to distribute tra-
jectory data among the parallel processing tasks in a real-time and
lightweight manner is the crux. In this paper, we propose a Microservice-
based real-time processing framework for streaming trajectory similarity
search, called Misty, which effectively reduces the update cost of the sec-
ondary index and supports high scalability. Moreover, on top of Misty, we
can build resilient and stateful cloud-native applications. Misty is com-
posed of the assembler, index, coordinator, and executor. Specifically, the
assembler and the index module ensure retrieval performance, while the
coordinator and executor module enable the system with elastic scaling.
Extensive experimental studies on real-world data demonstrate higher
query throughput and lower latency over traditional approaches.

Keywords: Real-time data processing - Trajectory similarity -
Microservice - Distributed processing - Streaming spatio-temporal data

1 Introduction

A trajectory is an ordered arrangement of latitude and longitude of the moving
object in the time dimension, which contains the movement trend and pattern of
the moving object. Trajectory similarity is a measure that describes the degree of
correlation between pair-wise trajectories [9], which is an infrastructural opera-
tion in LBS and can be extended to various fields, such as contact tracing during
COVID-19, ride-sharing [5] and route planning [8].
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Most existing related schemes [1,4,6,7] focus on solving the trajectory sim-
ilarity query problem on a single machine. However, when processing similarity
queries for massive data, such schemes will face inconceivable storage and pro-
cess capability. Moreover, it is difficult to directly extend these schemes to the
distributed environment. The fundamental reason is that the trajectory needs to
be split under the parallel processing architecture. No matter whether the par-
titioner divides the trajectories into parallel processing by the trajectory ID or
by the trajectory segments, the computational state of the similarity processing
will be destroyed. Specifically, by using the hash function, two trajectories (T}
and T») will be dispatched into two different partitions, respectively. As a result,
the system cannot get their similarity result directly. By using range partition,
the first two points named 7177 of T} and the first three points named T5; of Th
will be distributed to partition P;. The rest of the points, named 775 and Thg
accordingly, will be distributed into partition P». In effect, the system can only
compute a partial similarity.

Nowadays, some works focusing on parallel trajectory similarity processing
have been proposed. However, the current mainstream trajectory similarity pro-
cessing platform is all based on generic big data processing frameworks, such as
Spark and Flink. In general, these frameworks cannot adjust the architecture at
runtime in a lightweight manner, so the retrieval efficiency and flexibility cannot
reach the ideal state. The detailed description is as follows:

— Retrieval efficiency: Distributed spatial indexing is a key technology to
improve the retrieval efficiency of trajectory similarity. This technology has
been widely studied in offline scenarios and greatly improves retrieval effi-
ciency. However, in the face of real-time scenarios, frequent and heavy-weight
updates of indexes will lead to a sharp drop in system performance. We believe
that the bottleneck of this problem lies in the following two aspects: At the
logical level, the update mode of the secondary index is synchronized, which
makes the update of the global index and the local index extremely time-
consuming. At the physical level, the update of the index relies on the APIs
of big data processing frameworks (e.g., Spark or Flink), so our development
is limited by the programming mode of these frameworks.

— Runtime scalability: Although existing works [8,9,11,12] can improve high-
performance queries, their architecture is rigid at runtime. This is because
they are usually based on big data processing frameworks such as Spark,
which have development issues with runtime parallelism scaling. In conclu-
sion, these frameworks do not have lightweight elastic scaling capabilities,
and scalability is not comprehensive. In addition, the slave node itself isn’t
able to scale actively, and design patterns such as JVM and DAG have a large
resource overhead. In short, it cannot provide lightweight runtime scalability.

As shown in Fig. 1(a), when the existing secondary index mode encounters a
need to adjust (such as inserting new data), it will first update the local index,
then adjust the global index, and finally, redistribute the data. Needless to say,
such an operation consumes a lot of performance and resources. Such a schedul-
ing method based on workload reshuffling will inevitably reduce the retrieval
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efficiency and hinder the flexibility of the system. The recent emergence of the
micro-services architecture effectively addresses the maintenance and scalability
demands of online service providers. Moreover, such architectures intend to over-
come the shortcomings of monolithic architectures where all of the application’s
logic and data are managed in one deployable unit. Inspired by it, we design
a lightweight processing solution based on the micro-services architecture (such
as Dapr) for trajectory stream similarity processing by updating the index and
scaling out a task on demand (as shown in Fig. 1(b)).

To ensure the retrieval efficiency and scalability of our system Misty, we
propose a novel trajectory similarity search framework for continuous trajectory
similarity search. Firstly, we design a hierarchy tree-like distributed spatial index
structure. This is a hybrid index that uses a grid index in partition and a tree
index inside a single machine. Secondly, to address the huge overlapping problems
for wide-span trajectories, we split trajectories into segments before inserting
them into our index. To summarize, the main contributions of our work are:

— We propose the full-fledged microservice-based distributed framework called
Misty. It leverages a hierarchy tree-like distributed spatial index to answer
continuous similarity search queries over massive streaming trajectory data.

— Misty utilizes a segment-based data model with several optimizations for
storing, indexing and pruning to ensure efficient querying capability.

— We conduct a comprehensive empirical evaluation for Misty using large
synthetic and real-world trajectory data streams to measure its scalability,
throughput and latency. The experimental results demonstrate the superior
performance that our framework achieves against possible alternatives.

The rest of the paper is organized as the following. Section 2 surveys exist-
ing spatial indexes, trajectory similarity measures and distributed processing
frameworks. Section 3 formalizes the continuous trajectory similarity search. We
describe the proposed framework in Sect. 4. Section 5 presents the results of our
experimental study and Sect. 6 concludes the paper with remarks on future work.
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2 Related Work

2.1 Distributed Similarity Search

DFT [9], DITA [8] and REPOSE [12] are state-of-the-art distributed trajectory
similarity search frameworks. DFT [9] is the first distributed framework that
leverages segment-based partitioning and indexing to answer similarity search
queries over large trajectory data. DFT speeds up queries with a two-level R-
Tree and compresses index items with roaring bitmaps. DITA [8] selects pivot
points to represent a trajectory and stores close pivot points in the same MBR. In
addition, DITA considers the connections when calculating similarities and uses
the bipartite graph model to enhance the load balancing capability. REPOSE [12]
is a distributed in-memory framework for the processing of Top-k trajectory
similarity queries on Spark. REPOSE uses a trie-tree to index trajectories.

Although these frameworks can achieve satisfactory performance in offline
scenarios, they still have retrieval performance and runtime scalability issues.
Therefore, these frameworks cannot process trajectory streaming data well in
real-time with a distributed architecture.

2.2 Distributed Spatial Indexing

Generally speaking, the distributed spatial indexes are processed in two steps,
in line with a filtering-and-refinement framework. In particular, DITIR [2] is a
distributed index for indexing and querying trajectory data in real-time. It sup-
ports the ingestion and indexing of trajectory data at high rates. Xie et al. [9,10]
used the Sort-Tile-Recursive packing algorithm at the master node to determine
the sub-region responsible for each slave node, which is a partitioning method
with a fixed spatial region. After determining the sub-regions for each slave node,
they use an STR-tree [7] to build a local index on each slave node, thus com-
pleting the construction of a distributed spatial index. Shang et al. [8] use the
Sort-Tile-Recursive packing algorithm twice with the first and last sample points
of each trajectory in the trajectory set to form two rectangular sets M BRy and
MBR; and created two R-trees on the master node with M BR; and M BR,
respectively to partition the query trajectories, and then created a local index
on each slave node.

2.3 Spatio-temporal Data Analytics Systems

Simba [10] extends Spark SQL and DataFrame API to make spatial support
for Spark. It improves the query performance by introducing multi-level (global
and local) R-tree indexing on RDDs, and spatial-aware (logical and cost-based)
query planning. Moreover, the STR, partitioner [7] mitigates the data partition-
ing skew significantly. Later, Simba extended its support for spatial partitioning
and indexing. However, Simba only supports spatial operations over point and
rectangle objects. Zeyuan et al. [8] developed DITA, which supports both SQL
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and Dataframe API for trajectory analysis. DITA adopts the STR [7] partition-
ing strategy to create balanced partitions of trajectory points. Like TrajSpark, it
also uses multi-level indexing to expedite query performance. Besides, DITA has
developed a cost model to reduce inter-worker transmission costs and balance
the workload. Dragoon is a multi-purpose system capable of processing both
offline and online trajectory data. Dragoon [3] designs a mutable RDD so that
data can be updated.

3 Preliminaries

Misty focuses on the flexibility and efficiency of the real-time trajectory pro-
cessing framework. In this section, we first introduce the relevant definitions of
Misty, and then we give an overview of Misty’s framework and core components.

3.1 Definitions

Definition 1. A trajectory is a sequence of consecutive line segments, denoted
as T = (I1,1a,...,1;). The notation l; means a line segment in R?. The end point
of l; is denoted as s;+1 and it is the starting point of l;11.

Trajectory T in our system is assumed as unbounded, which means when
doing similarity calculation, we refer to the snapshot of T" at time ¢. After a new
point arrives in the system, one particular trajectory should be updated and
distance needs to be recalculated.

Definition 2. Given two trajectory segments Iy = (s1,e1), loa = (s2,e2) and
distance criteria d() their distance is

d(ll, 12) = maa:(d(sl, 12), d(el, 12), d(SQ, 11), d(eg, l1))

where the distance between a point p and a segment [ is defined as: d(p,l) =
minget|p — 4l

The above definition for the distance between two segments I; and [l is
equivalent to the well-known Hausdorff distance. This is because a line segment
l is a convex object, thus the point on [ with the maximum distance to another
line segment must be one of the two end points of .

We decide to use the classical Hausdorff distance as the distance measure
of our framework due to its capability for parallel computing. Since we choose
trajectory segment as the most basic data structure, we use discrete segment
Hausdorff distance designed by [9]. Here we represent it again using our notation.

Definition 3. For query trajectory Q = (91,92, -.-,gx) and T = (I1,1a,...,1;) €T
their discrete segment Hausdorff distance is defined as:

-DH = mazx mainEQm?nleTd(gialj)
maxy;erming, EQd(gia lj)
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The above definitions describe the distance between trajectory segments and
the distance between trajectories. The query on the real-time trajectory stream
revolves around the trajectory similarity, including but not limited to the range,
top-k and threshold queries. We define a continuous trajectory similarity query
problem with top-k queries as primers:

Definition 4. Given a trajectory stream T = [11,Ts, ..., TN], a query trajectory
Q, a distance measure D, a max distance €, and an integer k; A continuous
trajectory similarity search continuously returns the set S(Q,,D,k) C 7
where |S(Q, 1, D, k)| =k and for any T,T" € T :

If T e S(Q,r,D,k) And T' ¢ S(Q, 7, D, k)
Then D(Q,T) < D(Q,T") And D(Q,T)<c¢

It should be noted that other queries on the trajectory stream are also in
the above-mentioned pattern, and they replace the parameter k with a certain
range or a maximum tolerated similarity value.

3.2 Overview of Misty

The overall architecture of Misty is shown in Fig.2. We first briefly introduce
the four core components as follows:

1. Assembler converts the received stream of trajectory points into segments
and stores the entire trajectory as a state, simplifying the semantics of the
query. Historical trajectory will be persisted to disk, identified as “Store” in
the figure.

2. Index partitions the data entering the system, specifically according to the
Uber H3 hexagonal grid partition. After data partitioning, the data will be
distributed to shared-nothing nodes. In them, Misty builds local indexes (R-
Tree) to provide efficient local search capabilities.

3. Coordinator stores the index-meta, which is an improved R-tree structure
whose leaf nodes contain MBR of H3 addresses. When the index is updated,
the coordinator will also update the index-meta synchronously. In addition,
the coordinator is responsible for the parallelism, scheduling, etc. of dis-
tributed tasks.
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4. Executor collects candidate data through the index and performs distributed
incremental similarity calculation. Since indexing will greatly reduce the
amount of candidate data, this specific operation will consume less time.
We will detail the execution flow of the executor and how it interacts with
high concurrency queries.

The integration of the above core components forms our continuous query
framework for processing trajectory similarity with high efficiency and scalabil-
ity. We will introduce all components of Misty in Sect. 4.

4 Framework

4.1 Assembler

The assembler first converts the point stream data into segments and then assem-
bles them into assembler instances. We introduce the trajectory segment and
assembly process separately below.

Trajectory Segment. The real trajectory of a moving object is always a con-
tinuous curve in space, but trajectories collected and stored in the database
are not. Because only discrete samples are taken by the sensing devices. For
example, a taxi equipped with GPS will report its location every 1 min. Discrete
samples from one moving object form an ordered sequence of segments. When
the sample rate is high enough, these segments will be able to approximate the
real trajectory of a moving object fairly accurately.

The trajectory segment is defined in Definition 1. In a nutshell, the trajec-
tory segment is a structure composed of the current point and the predecessor
point. These segments have two downstream processing directions. On the one
hand, they will be the input to the assembling process and output as assembler
instances. Then, such instances will be cached in the state store, contributing to
the final result while waiting for the query to execute. On the other hand, it will
be stored incrementally and persistently as historical trajectory data.
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Assembling Process. This process will assemble segments into state instances
for final result computation. As shown in Fig.3, Misty assembles a start point
s and endpoint e into a segment, then integrates the segments into a trajectory
at the state store. Simultaneously, the assembler will assemble and cache the
sequence of trajectory segments as a state, for example, T} (a set of segments)
will be assembled as A;, which provides convenience for subsequent queries.

For a new trajectory point without a predecessor point, we will initialize a
new structure to store it. For new trajectory points with predecessor points, we
assemble them into segments and update the state incrementally.

4.2 Index

The Index aims to find candidate trajectories. The computational complexity of
meeting query requirements based on candidate trajectory sets will be greatly
reduced. As shown in Fig.3, each H3 partition has a local R-Tree index. The
local R-Tree has a maximum size of K, insertion ratio R and a buffer with a
maximum size of M. These properties will affect how the native R-Tree responds
differently in case of inserts, splits, etc. The following will first introduce the R-
tree insertion process when new data (segments with H3 partitions) arrive.

Algorithm 1 presents how a new trajectory segment is formed. When receiv-
ing a new segment, Misty needs to determine whether the partition it belongs
to has expired. After such a judgment, Algorithm 1 adds the trajectory segment
to the buffer.

Algorithm 2 presents how new trajectory segments are added to the index.
Trajectory segments from the assembler will be inserted into the buffer first.
When the buffer size reaches M or meets the condition of ;ZZZE% > R, the
partition will insert the data in the buffer into the R-Tree all at once. Misty
build an R-Tree of trajectory segments in each partition as its local index. The
local index has an additional input buffer. New-coming segments will firstly
be stored in a hash table. When the number of data in the buffer reaches the
dynamic insertion threshold R, the index will stop responding to new requests
and commit the hash table to R-Tree.

Algorithm 3 shows the process of partition splitting checking. When a parti-
tion reaches capacity threshold K this will trigger a partition split. This partition
will temporarily stop responding to new requests and divide itself into several
smaller partitions. After new partitions are set and ready to serve, the old big
partition will still exist for a while acting as a router, directing traffic to new
smaller partitions until there is no more possible traffic.

4.3 Coordinator

The coordinator is the Master node in the Master-slave architecture, and there
is only one. The coordinator maintains meta information of index nodes called
index-meta and coordinates distributed jobs (such as the number of nodes for
specific computing tasks and the upper limit of parallelism).
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Algorithm 1. Accept New Segment Algorithm 3. Check Splitting

if new_start_reg € child_regs then

Input: Segment s, Buffer C Input: Index I, Splitting threshold K
Output: New segment buffer C' Output: New Index [
1: if isEzpired() then 1: if I.size() > K Asel f.resulotion < 15 then
return sel f.resolution 2 childRes «— self.res +1

2: end if 3 childRegions «— split_reg(childRes)

3: C.add(s) 4 for sin I do

4: checkInsertion() 5: new_s_reg < getRegion(s.start())

5: return C 6: new_end-reg < getRegion(s.end())
7
8

Algorithm 2. Check Insertion : sendToRegion(s, region)
Input: Segment buffer C, Index I, 9: end if.

Buffer size M, Insertion ratio R, 10: if new_end_reg € child_regs then
Splitting threshold K 11: sendToRegion(s, region)

Output: New Index I 12: end if

1: if C.size() > M, %ze() > R then 13: end for

2: I.add(C) 14: self.isExpired — True

3: C—g > clear the buffer 15: informRegionSplit(regions)

4: end if 16: return 0

5: checkSplitting() 17: end if

6: return / 18: return 1

Index-meta is an improved R-tree structure whose leaf nodes contain MBR
of H3 hexagons. Index-meta collects the information of each partition. When an
index partition expires, if some data wants to enter it, the data will be rejected.
Misty updates the index-meta when a partition expires by adding new child
partitions and deleting the old parent partition. Index-meta is similar to the
global index structure in traditional secondary indexes.

4.4 Query Agent

The query agent is responsible for the invocation of components. Each microser-
vice only needs to do its part to help complete the query.

Firstly, the agent calculates the candidate areas in H3 with max distance R.
Then it queries the coordinator for relevant indexes. Then, it sends @) to relevant
indexes to calculate overlapped candidates’ tids. Next, the agent split the list of
tids with batch size B and sends batches to executors. Finally, the agent sorts
out top-k trajectories and answers the client. For continuity, the agent will start
a new round of searches at a fixed interval.

4.5 Executor

The Executor mainly performs segment-based Hausdorff distance calculations,
and it transmits the results directly to the Query Agent. The Executor reads
the trajectory state from State to provide incremental computation. Misty can
dynamically change the parallelism of the executors through the query Agent to
meet the best resource utilization.
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Example: We have two trajectories named T and Q. For every segment of
T named l;, we figure out the minimum distance from it to every segment g; of
Q. Then we get a maximum distance of all d(l;, g;) and that’s the distance from
T to Q. Distance from @ to T is the same. Finally, we take the larger number
of the distances between T to @ and @ to T as the distance between T" and Q.

5 Experimental Evaluation

5.1 Experimental Settings

Experimental Environment. The Misty! is built based on dapr, and Pythons.
The framework is deployed on a local cluster with one twelve-core CPU (AMD
Ryzen 9 3900X @ 3.80 GHz).

Datasets. T-Drive Taxi Trajectories is a sample of trajectories from the
Microsoft Research T-Drive project, generated by over 10,000 taxicabs in a week
in Beijing. The full dataset was used to suggest the practically fastest driving
directions to normal drivers, recommend a passenger-pickup location for taxi
drivers, enable dynamic taxi ride-sharing, glean the problematic design in a
city’s transportation network, and identify urban functional regions.

Experimental Metric. We mainly focus on evaluating the following metrics in
our experiments:

— Query Time: Average query time of all continuous queries. In the exper-
iments, we conduct continuous queries as repeatedly query one particular
trajectory(e.g. trajectory with id 1) and takes the average time of all queries.

— Insertion Time: The insertion time of a new trajectory. In our experiments,
due to the inconsistent length of real-world trajectories, we take the total
insertion time of all trajectories as the insertion time.

— Throughput: Number of all trajectory points divided by insertion time.

Independent Variable. Next, we will list parameters in Misty.

— Resolution p. As mentioned in Sect. 4.2, each index partition is responsible
for a particular area on the map. Its size is up to the resolution p. In the
experiments, the minimum resolution p is called initial resolution. We choose
5 as the default initial resolution for balancing resource consumption and
overall performance.

— Max buffer size M and Insertion ratio R. For max buffer size M and
insertion ratio R, as mentioned in Sect.4.2, these two parameters play a
critical role when each partition inserts data from the buffer into the R-Tree.
R should control the insertion. We choose 0.2 as the default value of R.

— Splitting threshold K. Lower K will lead to more frequent partition split-
ting causing higher system resource consumption such as CPU usage and
network I/0. We choose 2000 as the default value of K.

! Source code available at https://github.com/LionTao/misty.
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Fig. 4. Effect of M.

— Query batch size b and Query threshold. Query batch size controls
distance computes batch size as described in Sect.4.5. The query threshold
controls the width of the trajectory corridor.

Baselines. We compare our solution with the naive R-Tree method and Spark.
We put the R-Tree into our Dapr-based framework with K set to infinite, R
set to 0, M set to 0 and initial resolution p set to 0. We compare the total
data manipulation times and total insertion time of both methods. Comparison
results are shown in Fig.7. Due to the inflexibility of spark, we only compare
query time between Spark and Misty.

5.2 Result Analysis

Effect of Max Buffer Size M. Figure4(a) shows continuous query results
during insertions as M increases. Our solution has very stable results when the
initial index partition resolution is 5. Performance starts decreasing when the
resolution is 10 because data distribution is too sparse. Network overhead is
significantly high when the index module has a sparse data distribution.

Figure4(b) shows the total data insertion time as M increases. We can see
a significant time increment after M is above 200. This is because maintaining
a big non-repeatable data set is time-consuming. With the default parameter,
M larger than 400 will have no more effect on insertion time because buffer
will insert into R-Tree before reaching buffer size limit. During experiments, we
notice higher CPU and memory usage when the initial resolution goes higher.
This is because more index partitions were created. When the initial resolution
is 5, we can see a usage drop on both parts of the system when the M size
is relatively larger. This is expected as a larger buffer size leads to fewer tree
insertions.

Effect of Inserting Ratio R. Figure5(a) shows continuous query results dur-
ing insertions as tree insertion ratio R increases. Our solution has very stable
results when the initial index partition resolution is 5 and 10 across all tests.
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Fig. 5. Effect of R.

Performance decreases when resolution starts with 1 because partitions are busy
splitting themselves.

Figure 5(b) shows the total data insertion time as R increases. Our solution
has solid and stable results when the initial resolution is relatively high. When
the initial resolution is 1, R starts to affect the overall performance because
splitting partitions is more time-consuming and R controls buffer insertion which
leads to partition splitting. When R is large, there is a large probability that
the last insertion of the partition will significantly exceed the split threshold K
and cause an immediate big splitting thus impacting the performance. Moreover,
we can see both less CPU and memory usage when the initial resolution goes
higher because when more index partitions were created, less data was inserted
into each partition on average. When the initial resolution is 10, we can see
a slight increase in memory because of memory overhead with a lot of active
partitions. As to the CPU, more partitions at initial resolution 10 result in less
splitting thus lowering the CPU usage.

Effect of Splitting Threshold K. Figure6(c) and Fig.6(a) show continuous
query results during insertions as splitting threshold K increases with or with-
out insertion buffer. We can see in Fig. 6(a), that having an insertion buffer has
an edge over Fig.6(c) in average query time when the initial resolution is 10.
Figure6(d) and Fig.6(b) show total data insertion time as K increases. Com-
paring both figures, we can see that having an insertions buffer has a significant
advantage on total insertion time when the initial resolution is 10. We can con-
clude that when there are plenty of index partitions, a decent amount of insertion
buffer can benefit the data insertion.

Comparison with R-Tree. We compare our solution with the naive R-Tree
method in terms of total insertion time and total numbers of R-Tree insertion
operations. For our solution, we choose the default parameter as described in
Sect. 5.1.

As shown in Fig. 7(a), our solution outperforms the R-Tree in all tests. To
be specific, in larger dataset sizes such as 100 trajectories, our solution achieves
up to 5x speedup in the insertion time test. This result shows the advantage
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of using a buffer to cache incoming trajectory segments temporarily for a more
efficient bulk load into the R-Tree. Also, the distributed manner of our solution
gains advantages for being capable of concurrent insertion which leads to a more
stable insertion time curve as the amount of data grows. Without the ability of
parallel processing and the buffer, the baseline method must rebuild the entire
R-Tree every time the data is updated. Benefiting from our distributed index
module as discussed in Sect. 4.2, our solution has an edge over the baseline in
terms of total insertion time.

Also, our solution has a clear advantage in the number of operations as shown
in Fig.7(b). With data size at 100, our solution with K set to 2000, R set to
0.2, M set to 500 and initial resolution p set to 5 takes only 60% of total R-Tree
insertion to complete the test. This is because we use an insertion buffer while
the baseline needs to rebuild R-Tree upon every data update. Thanks to a decent
amount of max buffer size M and insertion ratio R as discussed in Sect. 4.2, our
solution outperforms the baseline in terms of R-Tree operations.

Comparison with Spark. Figure7(c) and Fig.7(d) shows a comparison
between the worst case of misty with default parameters and the spark imple-
mentation in terms of single trajectory query and full dataset trajectory query.
For a single query, we use spark to join one dataset containing the target tra-
jectory with another trajectory containing all trajectories. For the full query, we
use spark to cross join the dataset containing all trajectories with itself.
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Fig. 7. Misty v.s. Baselines

As shown in Fig.7(c), our solution shows stable performance while spark
suffers performance loss as data size grows up. This result shows the advantage
of Misty’s distributed index. The index can help prune unnecessary trajectories
thus greatly reducing the computation cost.

As shown in Fig. 7(d), our solution has a clear advantage over spark in the
full query which is typically seen in high concurrency query scenarios. Without
the proper pruning capability of an index, spark has to calculate the trajectory
distance using brute force. As data sizes grow, spark must use drastically more
time to complete the task. This result shows the advantage of the micro-service
style that Misty adopts. When large amounts of data flood into the system,
Misty is able to cope with it with ease.

6 Conclusions

This work presents a microservice-based real-time processing framework for
streaming trajectory similarity search queries. Our framework is composed of the
assembler, index, coordinator, and executor. The assembler and index enable a
distributed trajectory to be ingested and indexed in our system. The coordina-
tor and executor enable various query patterns including continuous queries. An
extensive experimental study proves that Misty is quite effective for the index-
ing trajectories and corresponding queries compared to single node plain R-Tree
and Spark. As a future direction, we are working on Misty’s extension to spatial
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join and query plan optimization for higher throughput and more elastic index
scaling.

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China under grant (No. 61802273, 62102277), Postdoctoral Science Foundation of
China (No. 2020M681529), Natural Science Foundation of Jiangsu Province (BK2021070
3), China Science and Technology Plan Project of Suzhou (No. SYG202139), Postgrad-
uate Research & Practice Innovation Program of Jiangsu Province (SJC

X2.11342), Project Funded by the Priority Academic Program Development of Jiangsu
Higher Education Institutions.

References

10.

. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: an efficient and

robust access method for points and rectangles. In: Garcia-Molina, H., Jagadish,
H.V. (eds.) Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, USA, 23-25 May 1990, pp. 322-331 (1990).
https://doi.org/10.1145/93597.98741,https://doi.org/10.1145/93597.98741

Cai, R., Lu, Z., Wang, L., Zhang, Z., Fur, T.Z.J., Winslett, M.: DITIR: distributed
index for high throughput trajectory insertion and real-time temporal range
query. Proc. VLDB Endow. 10(12), 1865-1868 (2017). 10.14778/3137765.3137795,
https://doi.org/10.14778/3137765.3137795

Fang, Z., Chen, L., Gao, Y., Pan, L., Jensen, C.S.: Dragoon: a hybrid and efficient
big trajectory management system for offline and online analytics. VLDB J. 30(2),
287-310 (2021)

Fu, A.W., Chan, P.M., Cheung, Y., Moon, Y.S.: Dynamic VP-tree indexing for n-
nearest neighbor search given pair-wise distances. VLDB J. 9(2), 154-173 (2000).
https://doi.org/10.1007/PL00010672, https://doi.org/10.1007 /PL0O0010672

Fu, Y.C.,Hu, Z.Y., Guo, W., Zhou, D.R.: QR-tree: a hybrid spatial index structure.
In: Proceedings of the 2003 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No.03EX693), vol. 1, pp. 459-463 (2003). https://doi.
org/10.1109/ICMLC.2003.1264521

Kamel, 1., Faloutsos, C.: Hilbert R-tree: an improved r-tree using fractals. In:
Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB’94, Proceedings of 20th Interna-
tional Conference on Very Large Data Bases, 12—-15 September 1994, Santiago de
Chile, Chile. pp. 500-509 (1994). https://www.vldb.org/conf/1994/P500.PDF
Leutenegger, S.T., Lopez, M.A., Edgington, J.: STR: a simple and efficient algo-
rithm for R-tree packing. In: Proceedings 13th International Conference on Data
Engineering, pp. 497-506. IEEE (1997)

Shang, Z., Li, G., Bao, Z.: DITA: distributed in-memory trajectory analytics. In:
Proceedings of the 2018 International Conference on Management of Data, pp.
725-740 (2018)

Xie, D., Li, F., Phillips, J.M.: Distributed trajectory similarity search. Proc. VLDB
Endow. 10(11), 1478-1489 (2017)

Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spa-
tial analytics. In: Proceedings of the 2016 International Conference on Management
of Data, SIGMOD 2016, pp. 1071-1085. Association for Computing Machinery,
New York, NY, USA (2016). https://doi.org/10.1145/2882903.2915237, https://
doi.org/10.1145/2882903.2915237


https://doi.org/10.1145/93597.98741,
https://doi.org/10.1145/93597.98741
https://doi.org/10.14778/3137765.3137795
https://doi.org/10.1007/PL00010672
https://doi.org/10.1007/PL00010672
https://doi.org/10.1109/ICMLC.2003.1264521
https://doi.org/10.1109/ICMLC.2003.1264521
https://www.vldb.org/conf/1994/P500.PDF
https://doi.org/10.1145/2882903.2915237,
https://doi.org/10.1145/2882903.2915237
https://doi.org/10.1145/2882903.2915237

170

11.

12.

J. Tao et al.

Yuan, H., Li, G.: Distributed in-memory trajectory similarity search and join on
road network. In: 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pp. 1262-1273. IEEE (2019)

Zheng, B., Weng, L., Zhao, X., Zeng, K., Zhou, X., Jensen, C.S.: Repose: dis-
tributed top-k trajectory similarity search with local reference point tries. In: 2021
IEEE 37th International Conference on Data Engineering (ICDE), pp. 708-719.
IEEE (2021)



BSDG: Anomaly Detection
of Microservice Trace Based on Dual
Graph Convolutional Neural Network

®

Check for
updates

Kuanzhi Shi'®, Jing Li'®)®, Yuecan Liu?, Yuzhu Chang?, and Xuyang Li?

1

! College of Computer Science and Technology/College of Artificial Intelligence,

Nanjing University of Aeronautics and Astronautics, Nanjing, China
{skz16sz,1lijing}@nuaa.edu.cn
2 State Grid Information & Telecommunication Branch, Beijing, China

Abstract. Microservice architecture has been widely used by more and
more developers in recent years. Accurate anomaly detection is crucial for
system maintenance. Trace data can reflect the microservice dependency
relationship and response time, which has been adopted for microser-
vice anomaly detection now. However, due to the lack of unification
modeling framework of response time and call path, the performance of
anomaly detection degrades, and difficult to adapt to downstream tasks.
To address the above issues, we propose BSDG, a trace anomaly detec-
tion method based on a dual graph convolutional neural network (dual-
GCOCN). First, BSDG extracts the microservice call dependencies, combing
the learnable node attributes generated by Bi-directional Long Short-
Term Memory(BiLSTM) to build an attribute dependency graph com-
bined response time and call path. Then, a self-attention mapping graph
is constructed and we use a dualGCN with mutual attention to gen-
erate effective feature embedding representation. Finally, BSDG adopts
a multilayer perceptron with a new classification loss function to train
the model in an end-to-end way for anomaly detection. The experimen-
tal results on public benchmarks show that the proposed BDSG outper-
forms baseline methods. We also conduct experiments on our constructed
microservice trace dataset to validate the robustness of BSDG. Experi-
ments show that the BSDG outperforms existing methods in microservice
trace anomaly detection.

Keywords: Microservices + Trace + dualGCN - Anomaly detection

Introduction

With the development of information technology, microservice have been widely
used for developing large-scale applications in cloud environments due to their
advantages of flexibility. Microservice systems consisting of hundreds or thou-
sands of cooperative services perhaps lead to unstable microservice performance,
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so an accurate and robust method for microservice anomaly detection is urgently
needed. Recently, anomaly detection based on trace has received more and more
attention because it can better reflect the dependencies between response time
and call path. Most current microservice trace anomaly detection methods are
based on response time [1-3], call path [4-7], as well as response time and call
path anomalies [8-12].The response time anomaly detection method [1-3] judges
whether the response time of each microservice is abnormal by analyzing whether
it conforms to the normal distribution. Since the response time is also affected
by the microservices it invokes, this type of method is prone to cause the detec-
tion effect to be poor. The call path anomaly detection method [4-7] compares
the calling sequence of each node in the trace with the entire traces to deter-
mine trace anomaly, but it can only be used to detect structural anomalies in the
microservice trace. Response time and call path anomaly detection method [8-12]
consider these two cases comprehensively, however, most of the existing methods
mainly model them in different stages. For example, TraceAnomaly [11] starts
to perform anomaly detection on the call path to find the abnormal trace, then
continues to find the abnormal span according to the response time anomaly
detection. Therefore, this kind of anomaly detection result mainly depends on
the previous step, which will bring error accumulation. In summary, microser-
vice anomaly detection based on response time and call path mainly face the
following two challenges:

(1) How to express the relationship between response time and the
call path effectively.

As shown in Fig. 1(a) and (b), the average response time and response time
distribution of microservice calls under different call paths are listed in the
normal operation of the microservice system. Because the calling and request
resources between microservices differ, there will be large response time fluctu-
ations when calling the same microservice. Therefore, how to provide a unified
framework to model the information between them is a challenge.
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Fig. 1. The relationship between response time and call path.
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(2) How to effectively deal with the problem of the missing call paths
of trace.

Since the microservices cooperate to complete tasks through remote calls,
when an anomaly occurs, it may occur that the span is missing, causing its
sub-calls to be broken in the trace, resulting in the lack of the call paths of the
trace. In this way, it is difficult for us to construct a complete trace topology
graph based on the existing call relationship between spans. If we remove such
samples directly and ignore the impact of missing call paths, it will lead to poor
performance of the model. Therefore, how to effectively deal with the missing
call paths of the trace is another challenge.

To address the above two challenges, we propose a microservice trace anomaly
detection method BSDG based on dualGCN. First, it extracts the call depen-
dency between spans in the trace, combines the node attributes based on BiL-
STM, constructs the attribute dependency graph based on response time and
call path, and then uses the self-attention mechanism to generate a self-attention
mapping graph. Finally, the dualGCN with mutual attention is used to fuse the
node attribute dependence and the self-attention node mapping.

Our contributions of this paper are summarized as follows.

(1) We propose a method for generating trace embedded representation of
node attributes based on BiLSTM. By constructing attribute dependency graphs
and self-attention mapping graphs, a unified modeling framework with effective
integration of microservice response time and call paths is achieved.

(2) We first apply dualGCN to the microservice trace anomaly detection.
Through the information propagation of the multi-layer dualGCN and the fusion
mechanism based on mutual attention, the effective feature embedding represen-
tation performance of the trace is generated.

(3) Our Multi-point fault injection (MPFI) microservice trace dataset is
constructed in the cloud environment, and the accuracy and robustness of the
anomaly detection algorithm proposed in this paper are validated.

2 BSDG

Trace data can be used for microservice anomaly detection. Trace data consists
of multiple traces. Each trace composed of span data blocks is a set of call trees.
Span is used to storing information such as operation name, timestamp, span ID,
response time and status code. BSDG models microservice trace anomaly detec-
tion as a multi-dimensional binary classification problem. BSDG first parses trace
and generates node attributes through BiLSTM to build an attribute dependency
graph. Then, uses the self-attention mechanism to construct the self-attention
graph, aggregates the unified information representation by the dualCNN, and
finally completes the anomaly detection through the classification module. The
BSDG framework is shown in Fig. 2.
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Fig. 2. The framework of the proposed BSDG.

2.1 Graph Construction Module

Trace with timestamp can be expressed as T; = [s4,sh,...,s% ], i€ {1,..., M}
where T; denotes the i*" trace, s is the jt" span, and N is the length of
T;. The response time is normalized by Min-max normalization as St scaied =

maf(%—inm(i% is used to process the response time, where max(S) and min(S)
is the maximum and minimum values of response time in span, and S; is the
response time of span at time ¢. Other non-numeric fields use one-hot encoding,
and the above data constitutes a node performance vector p§ € R%. To model
the relationship between the current span and its history, each trace is divided

using sliding windows technique. The divided traces are represented as T, =

)

J
and [ is the size of sliding window.

[wi, w), ..., wk], where wi = [p;‘-fl,p;;lﬂ, ..., p5| is a sliding window data,

Node Attribute Generation. To overcome the limitations of LSTM, we use
BiLSTM to capture the bidirectional features of node performance representa-
tion P = {pi,ph,...p,}, consisting of two LSTM hidden layers with opposite
input directions. In this module, previous and future information can be uti-
lized in the output layer to generate learnable node attributes. For a given input
sample T/ = [wi,wé7 . ,w}v], we use a BiLSTM to mine the important node
attribute information and output the corresponding hidden layer state variables
n (t) and (E (t).Concatenate them to get node attributes X = {z%,z%,... 2%}
as follows: . H

X = Concat(h (t), h (1)) (1)

Attribute Dependency Graph Construction. Combined with the span ID,
the call dependencies between span and the node attributes, we construct the
attribute dependency graph Gap =< V, AP X >, where V denotes the set
of vertices composed of span IDs, A9’ ¢ RM*N denotes an adjacency matrix,
formed by the calling relationship between spans, X is the node attributes of
each node in graph G4p.
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Self-attention Mapping Graph Construction. We use the self-attention
mechanism to calculate the node attribute similarity by inputting the node
attributes into two linear layers separately, and then generate the self-attention
mapping matrix A%™m ¢ RVxN:

(WoX +bg) x (WX +bg)"
VN

where Wg and Wy are the weights matrix of the linear layer, bg and bx are
the bias of the linear layer, N is the number of input nodes. Moreover, we use
the span ID set, A**™ and X to construct the self-attention mapping graph
Gsa =<V, A%9™ X >.

We introduce an orthogonal regularization [13] to ensure the self-attention
mapping matrix is as orthogonal as possible by computing the Frobenius norm
of Asa™m(As@™)T and unit matrix.

A% = softmax(

) (2)

_ AT — 1l 5
B N

Ro

where T is the unit matrix and || e || denotes the Frobenius norm.

2.2 Information Fusion Module

Given attribute graph Gap and self-attention mapping graph Gg4, we aim
to generate a new embedding representation fusing above information. We
address this problem using dualGCN architecture composed with self-adaptive
based GCN(SAGCN), call-dependent based GCN(CDGCN) and mutual atten-
tion block. In addition, we use differential regularization [13] for A**™ in SAGCN
to encourage the SAGCN to capture the node feature information that cannot
be captured by the CDGCN.

CDGCN Block. The CDGCN uses a layer-by-layer propagation multilayer
graph convolutional neural network(GCN) to aggregate global information
between node attributes in the attribute dependency graph based on the true
dependency relationships of A%P to enhance the ability to accurately capture
the dependency relationships between node attributes. Specifically, the graph
convolutional layer of CDGCN is based on the following Equation:

ity = (4 g

where A4%P = D=3 (AP 4 [)D~% denotes the symmetrically normalized adja-
cency matrix with self-loops, H (%D € RV*4 is the node representation matrix

in [*" layer of the CDGCN, H(Cof = X, W is a trainable weight matrix in /'
layer and o is the ReLU activation function.
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SAGCN Block. Based on the different weights of neighbor nodes in A%*™,
SAGCN uses another GCN to capture the information between the attributes of
each node in the self-attention mapping graph to capture additional information
that cannot be extracted from CDGCN. Specifically, the graph convolutional
layer of SAGCN is based on the following Equation:

Hity = o (A HE W) ) (5)

where Asem = D=3 (Asem 4 T )f)_% denotes the symmetrically normalized adja-
cency matrix with self-loops, H (Sl)A € RV*4 is the node representation matrix in

Ith layer of the SAGCN, H(SO’)4 =X.

Mutual Attention Block. Cross-modality information between CDGCN and
SAGCN in BSDG brings richer information. However, only concatenating them
for calculations will lose much complementary information, and this information
perhaps has a significant effect on anomaly detection. So, we use the mutual
attention block of dualGCN to improve the fusion of information.

We first define the mutual attention operator between matrix A € RV>*? and
B € RNXN as: Mutual Att(A, B) = wT tanh(Wy A+ W2 B) +soft max(AW3BT),
and W is the weight matrix. Second, we calculate the new output H S)A,

and Hg)D, of 1" dualGCN using H(%“/ = MutualAtt(HS)A,Hg)D)Hg)D and

HEP " = Mutual Att(H OPH (SZ)A)H Sl)A based on mutual attention operator. This
mutual attention block can help achieve effective fusion between node attribute
dependencies and self-attention mapping features through the exchange of node
attribute features between CDGCN and SAGCN.

Finally, in order to make SAGCN and CDGCN have more differentiated
feature representation, we use a differential regularizer to calculate the difference
between A%*™ and A%P using the Frobenius norm, the inverse of the Frobenius

norm is taken as the final differential regularization term Rp.

N

RD = ||Asam _ Adep”F (6)

2.3 Anomaly Detection Module

The last layer output of dualGCN from CDGCN and SAGCN are concatenated

to obtain the node attribute feature representation H = Concat(HS?slt), H(SI‘;;O).

Then H is input to the multilayer perceptron (MLP) to complete anomaly detec-
tion. We use a linear mapping followed by a non-linear activation function as:

a; :J(wff{‘f'bf) (7)

where wy and by are the weights and bias parameters of MLP, ¢ is the softmax
activation function, a; is the i*" sample predicted anomaly probability. We use
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the cross-entropy loss function widely used defined I as:
1N

le= N2 [yi - log(a;) + (1 —y;) - log(1 — a;)] (8)

where y; is the true label of span samples, and N denotes the total number of
span samples. Then the combined I, Rp and Rp to get the total loss function:

It =lc+MRp+ XRo (9)

where A1 and \; denote the regularization coefficients.

3 Experimental Results and Analysis

3.1 Data Set Description

We conduct experiments on datasets of TTFI', AIOps2020? and MPFI. Among
them, TTFI comes from TLFD [10], which collected the trace data by simulating
fault injection to the Train Ticket® microservice application. AIOps2020 comes
from the International AIOps Challenge, which provides real production data
of a large service provider. MPFI is a data set constructed used for our paper
by simulating multi-point failure. We summarize their characteristics in Table 1
and provide the example of microservice trace in Table 2.

TTFI consists of eight fault files according to the injected fault type,
which includes container JVM failures, container CPU utilization failures, and
microservice or container networking type failures. AIOps2020 monitors the call-
ing relationship and performance metrics between microservices in the appli-
cation system and divides multiple fault files by date. The types of failures
include container CPU utilization failures, container memory utilization failures,
database type failures, and host or container network type failures. Compared
with the TTFI, the failure distribution in the AIOps2020 is more random and
diverse.

During the construction of the MPFI, we first deploy the Train Ticket
microservice in the cloud environment using Kubernetes*, and use Chaosblade®
to inject faults into the microservice and the container where it is located, mainly
including increasing the communication delay between microservices, improve
the random packet loss rate of microservices, accidentally delete microservices,
suspend the container where the microservice is located, and exhaust the load

! https://github.com/BIGXT/TTFIL.

2 https://github.com/NetManATOps/AIOps-Challenge-2020-Data.
3 https://github.com/FudanSELab /train-ticket.

* https://Kubernetes.io/.

5 https://github.com/chaosblade-io.
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resources of the node pool where the microservice is located. Finally, the open-
source distributed tracing system Jaeger® based on the OpenTracing” protocol,
is used to collect trace data and save it in the Elasticsearch® database.

Table 1. Dataset Statistics.

Dataset | Train | Validation | Test Dimensions | Anomalies(%)

TTFI 183682 61227 61228 | 12 0.410

AIOps | 7482487 | 2494162 2494164 | 9 0.106

MPFI 7294 2431 2433 1 12 1.349

Table 2. Example of Microservice Trace.

TracelD SpanID ParentSpanID Response time | ServiceName OperationName | Kind
100£3f1c3fae86fla | a9637b3cb377a652 | None 8123 ts-ui-dashboard | ts-ui-dashboard | server
100£f3f1c3fae86fla | Taeb835cc7a7992a | a9637b3cb377a652 | 7581 ts-ui-dashboard | ts-order-service | client
100£3f1c3fae86fla | 22201ee383adfOef | Taecb835cc7a7992a | 6940 ts-order-service | ts-order-service | client
100£3f1c3fae86fla | 28bfc57affae0e2d | 22201ee383adfOef | 2454 ts-order-service | ts-station-service | client
100£3f1c3fae86fla | d4d1eb7f838579f0 | 28bfc57affac0e2d | 2044 ts-station-service | ts-station-service | client

3.2 Baseline Methods for Anomaly Detection

We select the current state-of-the-art TLFD [10], Multimodal LSTM [9] and
Deeplog [5] in microservice trace anomaly detection as baseline comparison meth-
ods. TLFD is a two-stage modeling method based on call path and response time.
It first detects whether there is an abnormal call path by calculating the simi-
larity between the trace and the normal trace. If there exists an anomaly, then
it uses statistical methods to determine whether there is an abnormal response
time. Multimodal LSTM is a typical unified modeling method of call path and
response time. By using multimodal LSTM to learn the properties of response
time and call path in the normal trace, and then judge whether there is an
anomaly by whether the trace mode deviates from the normal mode. Deeplog is
a widely used deep learning anomaly detection algorithm, which uses the LSTM
model to detect call path anomalies in microservice anomaly detection.

We use Precision, Recall and the Fl-score as measures of detection effective-
ness. Precision represents the proportion of true anomalies among the detected
anomalies, and recall represents the proportion of all true anomalies marked as
anomalies by the model. The F1-Score, as shown in Equation (10), is a perfor-
mance measure that combines precision and recall.

2 x Precision x Recall

F1 (10)

Precision + Recall

5 https://www.jaegertracing.io/.
" https://opentracing.io/.
8 https://www.elastic.co/.
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3.3 Experimental Setup

During training, we tune the hyperparameters of competing models and our
model with grid search by early stopping on the validation set. In general, the
size of the window is set to 10. The dualGCN layers are set to 4. The learning
rate is 0.001. The regularized factors L1 and L2 are 0.1. The hyper-parameters
are summarized in Table 3.

Table 3. Hyperparameter configurations of BSDG.

Hyperparameter Value
Window sizes 10
dualGCN layers 4
Learning rate 0.001
L1&L2 0.1
Early Stopping epochs | 10

3.4 Overall Performance

We show the overall performance empirical results of three datasets in Tables4,
5 and 6. As can be seen in Table 4, BSDG has the average highest precision,
recall and Fl-score on the TTFI. The overall performance of BSDG on eight
fault files is 6.6% higher than that of Multimodal LSTM, and the performance
of TLFD is slightly worse, mainly because TLFD does not fully consider the
relationship between the call path and response time. Multimodal LSTM also
does not deeply explore this correlation. The overall performance is lower than
BSDG, which validated the superiority of our method based on unified modeling
in microservice anomaly detection.

Table 4. Overall performance results on TTFI. P:Precision, R: Recall, F1: F1-
score.The best PR and F1 scores are highlighted in bold.

Fault File | TLFD BSDG Multimodal LSTM | Deeplog
P R F1 P R F1 P R F1 P R F1

F1 0.907 | 0.888 | 0.887 | 0.999 | 0.964 | 0.975 | 0.951 | 0.957 | 0.954 | 0.554 | 0.913 | 0.700
F2 0.979 | 0.979 | 0.979 | 0.987 | 1.0 0.993 | 0.881 | 0.904 | 0.892 | 0.522 | 0.833 | 0.642
F3 0.921 | 0.907 | 0.906 | 0.933 | 0.902 | 0.917 | 0.956 | 0.792 | 0.866 | 0.527 | 0.878 | 0.659
F4 0.953 | 0.949 | 0.949 | 0.990 | 1.0 0.999 | 0.905 | 0.776 | 0.835 | 0.542 | 0.748 | 0.629
F5 0.963 | 0.960 | 0.960 | 0.997 | 1.0 0.990 | 0.935 | 0.889 | 0.911 | 0.531 | 0.852 | 0.654
Fé6 0.832 | 0.747 | 0.729 | 0.958 | 0.999 | 0.979 | 0.912 | 0.984 | 0.947 | 0.593 | 0.953 | 0.731
F7 0.914 | 0.906 | 0.906 | 0.980 | 1.0 0.990 | 0.920 | 0.992 | 0.955 | 0.593 | 0.953 | 0.731
F8 0.915 | 0.890 | 0.886 | 0.959 | 1.0 0.979 | 0.860 | 1.0 0.920 | 0.520 | 1.0 0.684
Average |0.915|0.890 | 0.886 | 0.975|0.983 | 0.978 | 0.915 | 0.912 | 0.910 | 0.546 | 0.891 | 0.679
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Table 5. Overall performance results on AIOps2020.

Fault File | BSDG Multimodal LSTM | Deeplog

P R F1 P R F1 P R F1
0523 0.885|0.990 | 0.935 | 0.823 | 0.500 |0.623|0.587 | 0.440  0.502
0524 0.973 1 0.998 | 0.986 | 0.837 1 0.513 | 0.636 | 0.549|0.417 | 0.474
0525 0.998 1.0 0.999  0.842 1 0.501 |0.631|0.869 | 0.343 | 0.492
05-26 0.960 | 0.828 | 0.889 | 0.797 | 0.534 |0.640|0.3750.742 | 0.498
0527 0.940 | 0.972|0.956 | 0.840 | 0.521 |0.643 | 0.754 | 0.445 | 0.559
Average |0.951)0.958|0.953|0.828|0.5138|0.635|0.627 | 0.477 | 0.505

Table 5 shows the performance comparison of other BSDG methods on the
AIOps2020 dataset. It can be seen that Multimodal LSTM and Deeplog have
poor performance, while BSDG is better than them in all metrics.

To further verify the performance of BSDG, experiments are conducted on
our MPFI dataset with multi-point fault. As can be seen from Table 6, BSDG
still achieves the average performance of 0.856 on this complex dataset, outper-
forming other methods.

Table 6. Overall performance results on MPFI.

Method P R F1

BSDG 0.856 | 0.857 | 0.856
Multimodal LSTM | 0.574 |0.710 | 0.634
Deeplog 0.671 |0.464 | 0.548

3.5 Parameter Sensitivity Analysis

In order to test the robustness of our method to hyperparameters, we designed
a parameter sensitivity analysis experiment of BSDG, the results are shown in
Fig. 3.

0.95 0.95 /\/\—,/ 0.95 M
5.0.90 5.0.90 5.0.90
[9 [9 9
e c c
30.85 3085 goss
< < <
0.80 0.80 0.80
—— Precison — Precison —— Precison
0.75 —— Recall 0.75 —— Recall 0.75 —— Recall
—— Fl-score —— Fl-score —— Fl-score
0.70 0.70 0.70
1 2 3 4 5 6 7 10 20 30 40 50 60 70 0.00 0.05 0.10 0.15 0.20 0.25 0.30
layers of dualGCN Accumulaton step L1 and L2

Fig. 3. Anomaly detection accuracy in terms of precision, recall, and F1-scoreon dif-
ferent parameter setups
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It can be seen that the performance of BSDG will fluctuate as the number
of layers of dualGCN increases. When the number of layers of dualGCN is 4,
BSDG achieves the best performance. The change in the accumulation step will
affect the model training time and the amplitude of the training oscillation.
When the accumulation step is 20, BSDG has the best performance. When the
regularization coefficients L1 and L2 are 0.1, the performance of BSDG is the
best.

3.6 Root Cause Localization Experiment

In order to use the results of BSDG anomaly detection for the microservice fault
root cause location task, we use the Pagerank algorithm [14], combined with the
correlation probability model [15], to design a BSDG-based microservice root
cause location algorithm. The experimental results are shown in Table 7.

Table 7. Performance of BSDG anomaly detection results on root cause localization
algorithm. Top-k accuracy (Top@k) refers to the probability that the root causes are
included in the top-k results.

Dataset | Top@1 | Top@2 | Top@3 | Top@4
TTFI |0.75 0.875 |1.0 1.0
AlOps |0.846 |0.846 |0.923 |1.0
MPFI |0.727 |0.818 |0.909 |0.909

3.7 Ablation Study

To study the relative importance of each component of BSDG, we set up two
variant methods of BSDG. That is Only-BiLSTM and Only BiLSTM&CDGCN.
Only-BiLSTM represents the model in BSDG using only the node attribute
information of the trace. Only BiLSTM&CDGCN represents the model using
only attribute dependency graphs in BSDG. As shown in Fig. 4, the experimen-
tal results show that Only-BiLSTM and BiLSTM&CDGCN will degrade the
performance of BSDG, which validates the necessity of unified modeling based
on call path and response time.
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Fig. 4. Ablation study on BSDG.

4 Related Work

4.1 Microservice Trace Anomaly Detection

Most anomaly detection methods are based on response time and call path mod-
eling in a separate way. Anomaly detection based on response time mainly judges
the anomaly according to whether the response time of each microservice con-
forms to the normal response time distribution. Zhang [1] proposed a supervised
learning-based anomaly detection method that uses a convolutional neural net-
work combined with LSTM to predict the probability of each microservice service
quality degradation. However, it only focuses on response time anomalies and
does not consider call path anomalies. Nedelkoski [2] proposed an unsupervised
deep Bayesian network model based on AEVB to detect the anomaly response
time of trace. This method needs to train a model for each microservice, and
there are problems such as high training overhead. Aiming at the fact that
the response time is easily affected by the competition of system resources and
fluctuates. Bogatinovsk [4] proposed a method based on self-supervised learn-
ing through training an autoencoder to reconstruct random masked events in
the input trace. When detected, to predict the events that may occur at each
location in the trace according to the reconstruction results, but this method
can only detect structural anomalies in the microservice trace. Du [5] proposed
the Deeplog method, which uses the template prediction instead of the recon-
struction method for anomaly detection. The above anomaly detection methods
based on separate modeling of response time and call path cannot simultane-
ously consider the relationship between response time and call path, resulting in
performance degradation.

The other anomaly detection methods are based on unified modeling of
response time and call path. To improve the performance of anomaly detection,
unified modeling based on response time and call path can be used for anomaly
detection of microservice trace. Nedelkoski [9] proposed a multimodal LSTM
anomaly detection method, but it ignores the context of the event sequence in the
trace, and the model structure cannot effectively learn the correlation between
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the microservice call path and response time. Chen [10] proposed TLED as a
two-stage modeling method based on the call path and response time by calcu-
lating the similarity between trace and normal trace to detect whether there is
an anomaly call path, if there exits anomaly, use statistical methods to judge
whether there is an anomaly response time, but this method does not consider the
relationship between the response time and the call path, and unable to detect
anomalies where delays in the application cause unexpected increases in response
time for some requests. Liu [11] proposed an unsupervised anomaly detection
method TraceAnomaly based on a deep Bayesian network and knowledge base
of normal call paths, but this knowledge base type method has problems such as
high computational complexity and long detection time. The above-mentioned
methods based on unified modeling of response time and call path lack effec-
tive processing and deep integration of response time and call path, resulting in
low model detection performance and difficulty in adapting to downstream tasks
such as microservice fault location. So we propose a microservice trace anomaly
detection model BSDG that can perform unified modeling and deep integration
of response time and call path.

4.2 Graph Neural Networks

In recent years, graph neural networks (GNN) [16] have attracted a lot of
attention when dealing with anomaly detection tasks. GNN have also been
applied in microservice anomaly detection. Zhang [17] constructed a trace event
graph (TEG) for trace data and log events, using a gated graph neural net-
works (GGNNs) to fuse the multi-source information. Recently, Xu [12] also
applied GNN to anomaly detection, using a graph attention network to aggre-
gate influence relationships between nodes, and finally judges whether a node
is an anomaly by the deviation between the predicted value and actual value.
However, these methods suffer from fixed graph structure and the construction
method is relatively in a single form. Different from GNN, dualGCN models the
global context of the input features in a single general framework. After infer-
ence, the perceptual features of the two complementary relationships are further
fused to form a refined feature and can be further provided to the next layer for
specific tasks, and many research results have emerged in different fields. Li [13]
considered the complementary information of syntactic structure and seman-
tic correlation in the process of sentiment analysis, and proposed a dualGCN
to integrate the information. Ma [19] designed a dualGCN to predict cancer
drug response models. Sun [20] designed a dual dynamic graph convolutional
neural network (DDGCN) to learn the representation of dynamic events in a
fine-grained way for better detection of rumors. We will take full advantage of
dualGCN to achieve unified modeling of the trace response time and call path
relationship.
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5 Summary

We propose BSDG, a microservice trace anomaly detection method based on
dualGCN in this paper. BILSTM is used to generate node attribute represen-
tation, and a trace attribute dependency graph and self-attention mapping are
constructed tounified modeling microservice response time and call path. Then,
through the propagation of the multi-layer dualCNN and information fusion
based on the mutual attention, the effective feature embedding representation
of microservice trace is generated, and then detect the anomalies using multi-
layer perceptron. Finally, extensive experiments are conducted on three datasets,
TTFI, AIOps and our MPFI. Compared with the three state-of-the-art trace
anomaly detection methods TLFD, MultimodalTrace and Deeplog, BSDG has
superior performance in microservice trace anomaly detection.

Acknowledgements. This work was supported by the Science and Technology Pro-
gram of State Grid Corporation of China under Grant 5700-202152169A-0-0-00.
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Abstract. Microservices architecture has an essential characteristic of
loose coupling compared to traditional monolithic applications, allowing
applications to be created, updated, and extended independently. With
lightweight virtualization technologies, such as container, microservices-
based applications can be widely deployed to the edge of the network.
However, challenges of deploying microservice in edge come from the
contradiction between the latency sensitivity of applications and limited
node resources. We propose a microservice orchestration model(SCORE)
for edge scenarios that enable microservice scheduling based on spec-
trum clustering(MSSC) and dynamic resource allocation under multi-
dimension constraints based on the sliding window(SW) mechanism.
MSSC significantly reduces the cross-node communication traffic between
microservices by portraying the dependencies between microservices
through a graph and then using spectral clustering to map microservices
to edge nodes. At the same time, the process of cluster scaling under multi-
dimension provides more fine-grained resource allocation for microservices
and improves resource utilization while ensuring service-level performance
objectives(SLOs). The experimental results indicate that our approach
reduces the inter-node communication traffic by 17.7% compared to base-
line, and the overall average memory requested for processing a single
request is 19.4% and 45.8% of baseline, respectively.

Keywords: Microservice - Resource allocation - Edge computing -
Scheduling - Spectral clustering

1 Introduction

With the large-scale deployment of 5G cellular networks and the widespread
use of intelligent devices at the edge, more and more computing tasks are
being sunk to the network’s edge. Edge devices have also shifted from a sin-
gle role as data consumers to a dual role as producers and consumers of data.
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Performing tasks on edge devices save bandwidth resources and protect pri-
vacy, and reduces response time [15,24,30]. However, edge environments are
often characterized by constrained resources, dynamic network changes, and fre-
quent application iterations. Traditional SOA architecture-based applications
have been unable to bridge the gap between application requirements and envi-
ronmental characteristics. In this case, microservices architecture-based applica-
tions are widely deployed in edge computing. It decouples monolithic applica-
tions into independent microservice components [12,18], and through container
technology, the entire lifecycle of microservices can be independently managed
and rapidly iterated with minimal resource consumption. With the dramatic
increase in microservices, orchestrating and managing containers has become
more complex. There are a variety of mature container orchestration tools, such
as Google’s open-source project Kubernetes [1], Docker Swarm [2] and Open-
Shift [3], etc. Kubernetes, the most mature container orchestration engine, is
widely deployed in data centers. Its default scheduling algorithm includes two
phases, Predicates, and Priorities, where nodes that do not meet the require-
ments can be filtered out in the Predicates phase, and then the remaining nodes
are scored and ranked in the Priorities stage to select the best. The default
algorithm is competent for container scheduling in general, but there are still
two main challenges in edge scenarios. The first is that a distinctive feature of
edge computing is the requirement for low latency, which is directly related to
user experience [27], and frequent cross-node communication in edge environ-
ments can significantly increase application response time, which is not taken
into account by the default algorithm. The second is that although Kubernetes’
Horizontal Pod Autoscaler (HPA) mechanism can adapt to changes in load by
changing the number of container replicas, there is over-provisioning in resource
allocation based on multi-dimension constraints (see Sect.3.2) [20], which is
unfriendly to edge environments.

In allusion to the shortage of the default scheduling algorithm, we design a
microservice scheduling and resource allocation model that is more adaptable to
the characteristics of edge scenarios. In summary, the main contributions of the
paper are as follows.

e Microservice scheduling based on spectral clustering. MSSC signif-
icantly reduces the cross-node communication traffic between microservices
by portraying the dependencies through a graph and then using spectral clus-
tering to map microservices to edge nodes.

e Dynamic resource allocation under multi-dimension constraint
based on sliding window mechanism. We address the problem of over-
provisioning resources in cluster scaling under multi-dimension constraints
by adopting a more accurate resource allocation algorithm while combining
the sliding window mechanism to avoid drastic changes in the cluster and
improve resource utilization while ensuring the quality of service.

e Simulation experiments under real production environment. We
built a simulated cluster using Raspberry Pi and virtual machines. To ver-
ify the model’s performance in the production environment, we analyzed
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the cluster-trace-microservices-v2021 dataset [4] from Alibaba’s open-source
Alibaba Cluster Trace Program to simulate the traffic characteristics of the
production environment for stress testing.

The experimental results show that compared with the baseline, the propor-
tion of intra-node traffic increases to 2.7 times, the inter-node traffic decreases
by 17.7%, and the minimum, average and maximum application response times
decrease by 37.8%, 10.7%, and 26.6%, respectively. During cluster scaling, the
average memory value requested for processing a single request on two high-
load microservice applications is equivalent to 19.4% and 45.8% of baseline,
respectively. In contrast, the total number of requests and response time remains
unchanged.

The rest of this paper is structured as follows. In Sect. 2, related works about
microservice scheduling in edge computing are discussed. System architecture
and proposed microservice scheduling and resource allocation algorithm are dis-
cussed in Sect. 3. In Sect. 4, we evaluate the proposed algorithm on a cloud-edge
continuum. Section 5 concludes the paper and highlights future directions.

2 Related Works

In this section, we introduce the work on microservice scheduling and resource
allocation.

Microservice Scheduling. Previous work [11] uses multiple clustering algo-
rithms to classify hosts and then uses principal component analysis(PCA) to
extract key metrics of containers and decide which containers need to be sched-
uled. [9,13,14,21,28], etc. map microservices or hosts into a graph, convert the
scheduling problem into a problem of finding the least-cost graph, and then use
the shortest path algorithm, maximum flow algorithm, etc. to obtain the final
scheduling policy. The graph provides convenience for handling microservices-
based scheduling. However, when the number of nodes increases, the performance
of these algorithms will become the bottleneck of the system, and they can only
adopt approximate methods to compromise. They cannot cope with the dynamic
edge environment. [25] introduces a way combining deep learning and Q-learning
algorithm to model container migration strategy as a multi-dimension Markov
decision problem (MDP). However, this approach requires learning features in
different application scenarios and lacks generality. [17,19,27,29] constructs a
task scheduling model from the perspective of improving resource utilization
by collecting multiple metrics for scheduling at different stages, including node
metrics, container metrics, and application layer metrics. Although the above
methods optimize the scheduling of microservices from different perspectives,
they lack the analysis of the dependencies between microservices. They cannot
solve the problem of latency caused by cross-node communication.

Resource Allocation. To improve the foresight of resource allocation, [9,13,
16,22,26] adopt the methods of reinforcement learning, deep learning, Gaussian
regression, and statistical analysis to forecast the resource demand of the applica-
tion. First, use a pre-trained model to interact with the environment. Dynamically
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collect data to update the model, predict the future state of the environment, and
allocate resources based on the anticipated results. This method needs to learn the
characteristics of different application scenarios, the inference and training of the
model are resource-intensive tasks, it cannot adapt to the features of the edge envi-
ronment, and the model also lacks a certain degree of versatility. [9,10] designed
a closed-loop feedback control model from the cybernetics perspective and then
used a proportional-integral-derivative(PID) algorithm to realize the control of
microservices. However, the parameters of the cybernetics-based algorithm are
highly coupled with the application scenario, requiring iterative testing and precise
parameter tuning, which lacks versatility. [9,12,23,29] introduces multi-level met-
rics to monitor the application for resource allocation. However, these approaches
have a coarse granularity in coping with the resource allocation problem under
multiple resource constraints, resulting in poor resource utilization.

Table 1. System parameters

Parameter | Description

G The graph abstracted from a microservice application

w The adjacency matrix of graph

D The degree matrix of a graph

L The Laplace matrix of the graph

1% An n-dimensional real vector

G The i 'th subgraph of G

W (Gi, Gj) | The sum of weights of all edges between subgraphs G; and G;

E Average resource usage per request processed by microservices

Wy The weight of the edge between nodes i and j

d; The diagonal element of a degree matrix

v; The components of the real vector V'

A The eigenvalues of the Laplace matrix

Ny, The £’th node of the graph

T; The target resource utilization rate specified by the user for the i’th resource

U; Actual resource utilization of the i’th resource for microservice

C The current number of replicates

R; The #’th resource required by the microservice in the new state

i The i’th resource required by the microservice in the initial state

Ci The number of replicates calculated from the i’th resource

uﬁj The current resource utilization of the i’th resource on the j’th node at time ¢ for
microservice

tr The duration of the k’th resource allocation

3 System Design

In this section, we present the system architecture (see Fig.1) and discuss how
it works. First, Locust [5] is used to generate the traffic, then Cilium and
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Hubble are used to analyze the dependencies between microservices, and finally,
microservices are mapped to nodes by spectral clustering. At the foundation
of Cilium is a new Linux kernel technology called eBPF, which enables the
dynamic insertion of powerful security visibility and control logic within Linux
itself. Hubble is built on top of Cilium and eBPF to enable deep visibility into the
communication and behavior of services [6]. Then, accurate resource allocation
is accomplished through the monitoring unit, mapping unit, resource allocation
unit, and execution unit, Influz DB [7] is used to store the monitoring metrics.
See Sects. 3.1 and 3.2 for detailed description of each unit of the system.

E‘ . ‘ . . . . ‘Eflows.isoni ‘ ) . ; spectr_al i

i clusterin
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Fig. 1. System architecture.

3.1 Microservice Scheduling Based on Spectral Clustering

With the continuous expansion of the application scale, the number of microser-
vices increases sharply, and the invocation relationship between services becomes
more complex. The traditional scheduling mechanism usually makes decisions
based on the status of the target node, including the usage of resources such
as CPU, memory, and port. However, in the edge computing scenario where
microservices architecture is widely used, the constraint relationship between
microservices is the critical factor affecting user experience. The graph is used
to portray the dependencies between microservices and then uses a clustering
algorithm to complete the mapping of microservices to nodes so that microser-
vices with strong dependencies are deployed to the same nodes, thus reducing
the response time (see Fig. 2).
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Fig. 2. Service mapping. Fig. 3. Traffic between microservices.

Spectral clustering is performed by cutting the graph to make the sum of
weights between the subgraphs as large as possible and the sum of weights within
the subgraphs as small as possible, which is a minimum cut problem. There have
been many related types of research on this problem in graph theory, such as
Ford — Fulkerson algorithm, RatioCut algorithm, and NormalizedCut algo-
rithm, etc., which can prove that the minimum cut problem and the maximum
flow problem are equivalent. The Ford — Fulkerson algorithm is to get the solu-
tion of the minimum cut problem by solving the maximum flow problem, which
is a circular, iterative algorithm with high time complexity when the graph is
large [13]. It does not meet the latency requirements of edge applications. This
paper solves the minimum cut problem based on the RatioCut algorithm, which
maps the application to a directed acyclic graph (DAG), where the vertices rep-
resent individual microservices and the edges define the invocation relationships
between microservices. We derived the invocation frequencies among different
microservices by analyzing 30,000 historical access data (see Fig. 3) and quanti-
fied them as the weights of edges. The invocation frequency reflects the closeness
between microservices. Then a weighted undirected graph is used to portray
a microservice architecture-based application, whose objective function for the
minimum cut problem can be expressed as Eq. (1). The parameters are explained

in Table 1.

k R
min RationCut(Gy, ...,Gy) = min 2 3 %
Gi€Q G.eq? = 1G]

where G; denotes the i’th subgraph, W (G, G;) denotes the weight between G;
and other subgraphs, and to prevent the granularity of the division from being
too fine, |G;| is introduced in the denominator for correction, |G;| denotes the

number of nodes in the subgraph G;.
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For any weighted undirected graph, we can obtain its adjacency matrix W
and degree matrix D, and then compute its Laplacian matrix L, as shown in

Egs. (2), (3).

W11 W12 * - Win dy
Wa1 Wag -+ Wap da n
W=1. .. . D= - di= Y wy (2
o : Jj=1,3#i
Wn1 Wp2 ** Wnpn dn
n
D Wij  —Wiz ccc o SWh ottt —Win
—w S Wo i+ - —Wos e —w
21 j=1,j#2 W2,j 21 2n
L=D-W= ’ ) n o
—Wi1 — W52 T Zj=1,j7éi Wij - —Win
n—1
—Wn1 —Wn2 e —Wny e Zj:l Wn,, 5

3)

For an undirected weighted graph, it is evident that the Laplacian matrix is

symmetric, and there exists an eigenvalue of 0, whose corresponding eigenvector

is (1,---,1) € R™. It can be proved that there exists an n-dimensional real vector
v,

VTLV:% Z wi,j'(vi_vj)Z

ij=1
= |G| - RationCut(G,G) )
=An

So the problem of minimizing the objective function can be transformed into
finding the minimum eigenvalues and eigenvectors of the Laplacian matrix. First,
the graph’s adjacency matrix is derived by analyzing the cluster trace, based
on which we can obtain the degree matrix and the Laplace matrix and then
calculate the eigenvalues and eigenvectors of the Laplace matrix. By arranging
the eigenvectors corresponding to the first k smallest eigenvalues of the Laplacian
matrix except 0 into an n * k-dimensional matrix, an n-dimensional classification
vector is finally obtained using k-means clustering, which represents the nodes
corresponding to each microservice. Finally, the deployment of the service is
realized by calling APIServer, as shown in Algorithm 1.

3.2 Dynamic Resource Allocation Under Multi-dimension
Constraint Based on Sliding Window Mechanism

After the microservices are deployed to the nodes, multiple resources are required
to ensure their regular operation. On the one hand, the over-allocation of
resources will lead to resource competition on the same node. Once the resource
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Algorithm 1: MSSC algorithm

Input: Cluster Trace(30000)

Output: Results of spectral clustering: clustermap.
1 Initialize: Analyzing application Data =w_matriz;
2 w-matricz = d-matrix;
3 [_matriz = d_matrix — w_matriz;

// Calculate eigenvalues and eigenvectors
4 eigenlist,vectorlist = Matriz(l-matriz);
// Sort the eigenvectors
sort_vectorlist = Sort(eigenlist, vectorlist);
fori=1;i<k+1;i++ do

| sub_matriz = Append(sub_matriz, sort_vectorlist[i])

end
cluster_map = kmeans(sub_matriz, k);
10 cluster_map = APIServer

© o N o o

limit of the node is exceeded, the node may crash. On the other hand, if the
resource allocation is insufficient, the application performance will be degraded
or even unable to provide services normally. Therefore, reasonable resource allo-
cation is the premise to ensure the normal operation of the cluster. The upper
limit of resources is set to prevent node crashes caused by an application’s unlim-
ited use of resources. The overall resource utilization of the cluster can be rep-
resented by a matrix as follows (see Eq. 5). Each row of the matrix represents a
resource, each column represents a node, and each element represents the usage
of a resource on the corresponding node.

U1l U2 * - Uik
U21 U2« U2k

()

Unl Un2 ** Upk

The original HPA mechanism expands and shrinks the capacity based on
static configuration templates. Each replicate applies for the same and a fixed
amount of resources. In the process of cluster scale expansion based on multiple
indicators, the controller calculates the optimal number of replicates for each
resource and then selects the maximum value as the final number of replicates
for this round of scheduling, as shown in Egs. (6), (7).

ko
cizizj;li”ﬂ i€1,2,3... (©)
C=Mazx(ci,ca,C3,...,¢pn)

k

Zj:l Uij
O )
according to (6), (7), for C' # ¢;, it can be derived that U; < T; .

U, = 1€1,2,3... (7)
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In this case, the resource corresponding to the small number of replicates is
over-provisioning, especially when the application resource request is not bal-
anced, the phenomenon will be more noticeable and even affect the overall load
capacity of the node. This situation is not friendly to the edge computing sce-
nario.

The number of resources allocated and the actual demand of the application
should be matched dynamically so that the quality of service can be satisfied while
avoiding resource over-provisioning as much as possible. To solve this problem, we
propose a dynamic resource allocation method based on a sliding window, consist-
ing mainly of a monitoring unit, a mapping unit, a resource allocation unit, and
an execution unit. The monitoring unit consists of node daemons cAdvisor and
metrics — server, mainly responsible for collecting resource metrics from each
node and pod in the cluster. The mapping unit completes the binding of met-
rics and microservices and stores the metrics for each microservice in In fluxDB.
The resource allocation unit analyzes historical data based on a sliding window
mechanism, i.e., it calculates the resource allocation not only based on the current
requests but takes into account the resource usage in the most recent window (see
Fig.4). When the system detects that a new resource allocation process is trig-
gered, it will build the new window with the current slot as the endpoint, push
forward the winlen length as the starting point, and calculate the new resource
allocation scheme with the average value within the window. This is mainly to pre-
vent drastic fluctuations in the cluster state, affecting service quality. The latest
allocated resources are shown in Eq. (8),

Window Size t

CTTT T T T [ 1]
L —]

t=0 t=winlen The next
Current slot

Fig. 4. Sliding window mechanism.

winlen k t
t=1 Ej:l Uiy Ti

winlen - C' - T;

R; = (8)

The numerator indicates the total resource usage of all replicas of the same
application on different nodes, reflecting the current load level of the application,
and winlen is the size of the sliding window. The minimum resource usage can
be calculated while satisfying the user requirements based on the final number
of replicas and the target resource usage. The execution unit is responsible for
communicating with APIServer to update the cluster status, as shown in Algo-
rithm 2. The time complexity of the algorithm is O (32 Tl S w), s represents
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the number of microservices, r represents the number of replicas, i represents
the resource type, and w represents the window length.

Algorithm 2: Resource allocation algorithm

Input: The length of sliding window, winlen;
The initial resource requests, Initlist;
List of microservices, servicelist;
The target resource utilization, T'.
1 while True do
2 for service in servicelist do
// Calculate the number of replicates

3 averagelist = getwinvalue(service, winlen)
4 fori=1;i <n;i++ do

5 ‘ cli] = averagelist|[i]/Initlist[i] - T'[i]

6 end

7 new_C' = Max(c[i])

8 end

// Reallocate resources
9 for i=1;i <n;i+ + do

10 if ¢[i] < new_C then

11 | newlist[i] = averagelist[i]/new_C - T'i]
12 end

13 end

14 if old_C # new-C then

15 update(new_C, newlist)

16 old_C = new_C

17 end

18 end

For each microservice, we first calculate the average value of each type of
resource in the new window and the corresponding number of replicas and take
the maximum value new_C' as the new final number of replicas. Then we real-
locate all kinds of resources according to the new replicas and the SLAs target
T. Finally, it triggers a new round of updates when the new number of replicas
is different from the old. The owner’s SLOs are the target for adjustment. For
containers, the over-provisioning of resources will lead to the poor utilization of
the device, and conversely, there is a risk of SLOs violations. The algorithm is
to perform accurate resource allocation while satisfying the SLOs.

4 FEvaluation

In this section, we present the performance comparison between our proposed
approach and the default scheduler of Kubernetes, which mainly covers two
aspects, 1) the performance of clustering-based microservice scheduling and 2)
the performance of dynamic resource allocation.
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Cluster Setup: We evaluated the system in a simulated environment consisting
of seven nodes, including a master node and six working nodes, where the Rasp-
berry Pi was connected to the cluster through a wireless channel. The hardware
configuration is shown in Table 2.

Software Setup: Kubernetes version v1.19.3, container runtime is Docker
20.10.7, database version is InfluxDB v2.3.0.

Load Generation: We use Alibaba dataset cluster-trace-microservices-v2021
as our primary workload, which reflects user access characteristics in the real
world. Locust is used as a load generator deployed outside the cluster to avoid
interference.

Benchmark: Using Kubernetes scheduler as well as HPA as the baseline,
MSSC and SW were evaluated using Google’s open-source online application
Online Boutique [8], which consists of a total of 12 microservices including
front-end web service, shopping cart, checkout center, back-end database, etc.,
covering the main application scenarios.

Table 2. Hardware Configuration.

Name CPU Memory | Disk |ISA | OS

Master 2/2.8GHz | 4G 50G | x86 |Ubuntu 21.04 LTS

Edgel 2/2.8GHz | 4G 50G | x86 | Ubuntu 21.04 LTS

Edge2 2/2.8GHz | 4G 50G |x86 | Ubuntu 21.04 LTS

Edge3 2/2.8GHz | 4G 50G | x86 | Ubuntu 21.04 LTS
Raspberrypil | 4/1.5GHz | 8G 120G | ARM | Ubuntu Server 20.04.2 LTS
Raspberrypi2 | 4/1.5GHz | 8G 120G | ARM | Ubuntu Server 20.04.2 LTS
Raspberrypi3 | 4/1.5GHz | 8G 120G | ARM | Ubuntu Server 20.04.2 LTS

4.1 Performance of Cluster-Based Microservice Scheduling

To verify the performance of the clustering algorithm in reducing the cross-
node communication of microservices, we deployed Cilium and Hubble in the
cluster. First, when the application is deployed to the cluster, the Kubernetes
default scheduler deploys the microservices to different nodes. After stress test-
ing, we discovered the dependencies between the microservices by analyzing
30,000 access records. Figure5) and Fig. 6) respectively depict the traffic distri-
bution under the action of baseline and MSSC during a round of testing. It can
be seen that the former has a general cross-node flow, while the latter decreases
significantly after clustering. We conducted ten rounds of tests to eliminate the
effect of randomness. The results show that 90.1% of the traffic in the cluster
belong to cross-node communication, while only 9.9% of the traffic belongs to
intra-node communication (see Fig. 7).
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Secondly, a spectral clustering analysis was performed based on the access
records collected in the previous step, and the microservices were mapped to
different nodes based on the clustering results.

Finally, the same number of application access records are recaptured for
analysis under the current scheduling decision, and 72.4% of the traffic is inter-
node communication, and 27.6% of the traffic is intra-node communication.

Compared with the baseline, the proportion of intra-node traffic increased to
2.7 times, and the traffic of inter-node communication decreased by 17.7% (see
Fig.8). The response time of the application is also evaluated, the MSSC is
reduced in all intervals of the cumulative distribution function (CDF) compared
to baseline (see Fig.9). Under MSSC, the minimum, average and maximum val-
ues of response time are reduced by 37.8%, 10.7%, and 26.6%, respectively (see

Fig. 10), and the overall fluctuation range decreased by 26.3%, mainly benefits

from the reduction of cross-node communication.
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4.2 Performance of Dynamic Resource Allocation

This section validates the performance of the resource allocation model under
multiple resource constraints based on the sliding window mechanism (SW).
Our target is to conserve resources as much as possible in the edge scenario
while satisfying the application SLOs to ensure that the nodes can allocate the
limited resources to more applications. The sliding window mechanism is also
used to suppress the cluster performance degradation caused by the dramatic
fluctuations in a short period.

We chose two typical resources, CPU and memory, to verify the algorithm’s
performance with sliding window lengths of 5s, 30s, and 60s, respectively. To
eliminate uncertainty, we had the same SLOs for each round of testing, which
lasted for one hour. The CPU and memory utilization are 60% and 70%,
respectively. To simulate real-world traffic characteristics, we used cluster-trace-
microservices-v2021 from the Alibaba Cluster Trace Program, which contains
200004+ microservices in 12h, and introduced the runtime metrics of microser-
vices in the production cluster. We obtained the traffic characteristics of the
production environment by analyzing the dataset (see Fig.11), and scaled it
equally to fit the local test conditions. An average resource consumption indica-
tor F; is introduced to characterize the resource usage, and it can be calculated
in Equation 9.

n ck.rk.tk
E=) &+ i " i €1,2,3... 9

Where cf represents the number of replicates in the k-th stage, rf represents
the number of i-th dimension resources requested by the copy in the k-th stage,
ti represents the duration of the k-th stage, and n represents the number of
requests processed in the entire process.

When using the dynamic resource allocation method, the percentage of mem-
ory resources requested by the two high-load microservices currencyservice and
frontend to complete a single request relative to HPA is shown in Fig. 12, where
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Fig. 11. Alibaba Cluster Trace.

E for frontend is 37%, 9%, and 12.2% of HPA in three different windows, respec-
tively. 9% and 12.2% of HPA, and the indicator for currencyservice is 42.8%,
41.5% and 53.2%, respectively. The results show that the performance of the
algorithm based on dynamic resource allocation is better than its competitors
under different window sizes, and it can be found that the performance is better
than the other two conditions when the winlen is 30s. This indicates that there
is no simple linear relationship between the size of the window and the per-
formance, which aligns with our intuitive impression. The window size reflects
the strategy’s sensitivity and represents the system’s inertia. When the window
size increases, on the one hand, it avoids frequent fluctuations, but on the other
hand, it makes the system not reflect the actual situation accurately. A smaller
window has the opposite effect. It shows that the hyperparameter winlen needs
to be chosen reasonably according to the system’s characteristics.

Figure 13 depicts that the response time of microservices does not show a
significant decrease due to the compression of resources. Instead, Our approach’s
latency is more diminutive than HPA in all intervals of the CDF for SW-30, and
the indicator is 80% for SW-60. It is mainly due to the more accurate resource
allocation based on real-time load analysis, balancing performance and efficiency.
The introduction of the sliding window mechanism also effectively suppresses
system fluctuations and improves the cluster’s performance.

Figure 14 depicts the total number of requests completed by the system and
the average response time. From the results, HPA is better than SW-5 and SW-
60, but worse than SW-30, indicating that the performance of HPA can be fully
achieved or even exceeded by setting the appropriate winlen. Figure 15 depicts
the request failures. Our approach introduces a failure rate of 0.1%, but we
consider these losses acceptable compared to the increase in resource utilization.
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5 Conclusions

We propose a model for microservice scheduling and resource allocation in edge
scenarios. It significantly reduces the cross-node communication traffic between
microservices by portraying the dependencies between microservices through a
graph and then using spectral clustering to map microservices to edge nodes. We
adopt precise resource allocation algorithms during cluster scaling under multi-
dimension constraints to improve resource utilization of edge devices while ensur-
ing SLOs. The experimental results show that compared with the baseline, the
inter-node traffic decreases by 17.7%, and the minimum, average and maximum
application response time decrease by 37.8%, 10.7%, and 26.6%, respectively.
During cluster scaling, the average value of memory requested for processing a
single request on two high-load microservice applications is overall equivalent
to 19.4% and 45.8% of baseline, respectively. In contrast, the total number of
requests and response time remain essentially unchanged.
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The model itself is platform bound, mainly considering the fact that Kuber-

netes is widely deployed in the field of microservice orchestration, and the algo-
rithm needs to be reimplemented for the new API when it is transplanted to
other platforms. In the future, we will optimize the model for the characteris-
tics of device hardware heterogeneity and network mode heterogeneity in the
edge environment and use real-time application dependency analysis and graph
generation algorithms to improve the autonomy and adaptability of the model.
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Abstract. In order to benefit from the advantages offered by the
microservices architectural design, many companies have started migrat-
ing their monolithic application to this newer design. However, due to
the high cost and development time associated to this task, automated
approaches need to be developed to solve these issues.

Solutions that tackle this problem can be classified based on the infor-
mation available for the monolithic application which are often based on
source code or runtime traces. The latter provides a more accurate rep-
resentation of the interactions between the classes within the application
however it often fails to cover all of the classes. On the other hand, the
source code of the application is more readily available and can be used
to extract additional information like semantic meaning of the classes.

The objective of this paper is to provide a hybrid solution that com-
bines both of these approaches in order to take advantage of their strengths
while covering their weaknesses. The proposed solution performs static
and dynamic analysis on the monolithic application based on the available
information and the user’s input. Afterwards, an iterative clustering pro-
cess is applied on the processed data in order to generate the microservices
decomposition. We compare different strategies for combining the static
and dynamic approaches and we evaluate the performance of the hybrid
approach compared to each of the separate approaches on 4 monolith appli-
cations. We provide as well a comparison with state-of-the-art solutions.

Keywords: Microservices - Clustering - Legacy decomposition * Static
analysis - Dynamic analysis

1 Introduction

Monolithic architectural styles implemented in the legacy applications often lead
to maintainability issues as these applications evolve and as such fail to meet
user demands or provide their services adequately [4]. Service Oriented Architec-
tures (SOA) have emerged as an alternative when building new software which
tries to answer the problems found in monolithic applications. The microser-
vices architecture [1,13] builds upon the philosophy used in SOAs to utilize a

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 203-218, 2022.
https://doi.org/10.1007/978-3-031-20984-0_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_14

204 K. Sellami et al.

Domain Driven Design (DDD) [8] to build autonomous, fine-grained and scalable
components (microservices) that can function independently. A large number of
developers have sought to adopt this style and migrate their legacy applications.
However, this migration process proved to be costly, lengthy and complex in
many cases, requiring a large amount of time and monetary investment from
these developers and as such served as a barrier to improve their software [10].
Approaches that try to tackle this issue attempt at automating this part of the
process by proposing the set of potential microservices which is called a decom-
position. Each approach tackles this issue in a different way mostly based on
the type of input it utilizes and how it analyzes it. One of the most commonly
used approach relies on the information found within the run-time traces of
the monolithic application [3,6,7] since it provides a more accurate view of the
interactions of the components within this application. However, this approach,
called Dynamic Analysis, requires the availability of enough execution traces to
provide this advantage and, as such, methods that employ it often fail to cover
all of the components within the application. The other most common approach
uses the source code of the legacy application [11,15,16] since it is rare that
this information would be unavailable for a developer that is trying to migrate
his application. In addition, this analysis approach, called Static Analysis, can
cover all of the components within the legacy software and include them in the
decomposition.

In this research, we present a solution that merges Static Analysis and
Dynamic Analysis approaches in order to complement each other by providing
more robust decompositions which take advantage of the run-time traces while
covering the whole application by supplementing the inference phase with the
information extracted from the source code. Our solution analyzes the run-time
traces and the source code independently in order to extract semantic, struc-
tural and dynamic representations of the monolithic application. Afterwards,
we apply an iterative clustering approach that combines representations from
different domains in order to generate a single result in a hierarchical structure
that represents the microservices.

In this paper, we compare different strategies for combining the analysis
approaches and we evaluate our approach in comparison with other baselines in
the literature that tackle problems similar to the microservices decomposition
issue. The results obtained show that our approach improved the coverage of our
proposed decompositions while maintaining Structural Modularity, Conceptual
Modular Quality and Inter Call Percentage metrics that are better or similar to
most of the baselines.

The paper is organized as follows. In Sect.2, we present the related work
to our research. Afterwards, we showcase a formal formulation of the problem
and the details of our proposed approach in Sect. 3. Then, in the 4*" section, we
specify and describe the empirical evaluation of our approach. Subsequently, we
move on to discussing the threats to the validity of this work in Sect. 5. Finally,
we provide a conclusion to the paper, and we outline our future work in Sect. 6.
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2 Related Work

Recent research in the migration process from a monolithic architecture to
a microservices architecture has focused mainly on the decomposition phase
where given a monolithic application, an approach proposes a set of potential
microservices. There has been numerous attempts to automate this task. These
approaches can be categorized by how they process the monolithic application
and how they analyze it.

Some solutions focused on the use of execution traces to represent the legacy
systems. Mono2micro [7] associates execution traces with use cases and then
analyzes them to calculate a shared similarity metric between the classes. Then,
it uses a hierarchical clustering algorithm to suggest the microservices. FoSCI [6]
addresses this problem by proposing a solution that relies on execution traces
and a search-based algorithm to group together the classes of the monolithic
application. The approach CoGCN [3] is based on a graph neural network that
provides the proposed decomposition while outputting the list of outliers. This
approach builds its neural network using the structural data in the source code
and trains the model using the execution traces.

Most other solutions that tackle this problem rely on the source code for
their analysis. hierDecomp [16] analyzes the source code in order to extract the
structural and semantic information within it which is used in conjunction with a
hierarchical DBSCAN algorithm variant to generate the decomposition options.
Bunch [11] is a tool designed to provide an architectural-level view of a software
system by decomposing it and clustering its components using search algorithms
and using only the source code of the application.

Some approaches have tried to represent the monolithic applications using
different sources of information. MEM [9], for example, relies on the source code
and the version control history of the application to generate a graph. It proposes
its microservices by applying a clustering algorithm on this graph. ServiceCutter
[5] takes as input a JSON format of the design documents of the monolithic
application. Using this input, ServiceCutter generates scores for 16 coupling
criteria and generates a weighted graph. The developers can use this graph to
generate a service oriented architecture.

3 Proposed Approach

In this section, we present the details of our solution. We start by defining the
problem we are trying to solve. Afterwards, we showcase an overview of the
proposed approach. Then, we explain in detail the different components used in
this approach.

3.1 Problem Formulation

Given a legacy monolithic application, our approach needs to generate a set of
candidate microservices which is called in this case a decomposition. This task
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is achieved by analyzing the source code and execution traces. Even though this
solution can be applied on each one of these inputs individually, we will assume
that both types of information are available for the rest of the paper.

The legacy application is represented as a set of classes C' = {¢1,ca,...,cn}
where ¢; is the class’s id and N is the total number of classes. In addition, given
that dynamic analysis rarely covers all of the classes within the code base, we
define Cy = {c}, ¢, ...,y } as the set of classes mentioned within the execution
traces where ¢; € C and Ny < N.

The result of our approach is a hierarchical representation of the suggested
decomposition. It is defined as a list of layers, each representing a level of the
hierarchy. The ' layer is defined as L; = {M, 1, M; 2, ..., M; n,} where M;; =
{¢ij1,¢ij,2, - Cij N, } is a microservice containing N; ; classes and ¢; jx € C.
If a microservice contains only one class, that class is defined as an outlier. In
addition, for each microservice M; ; in the it" layer, there exists a microservice
MiJrl’j/ in the (Z + 1)th layer where Mi,j Q M7;+1’j/.

Mo,1 Mo,2 Mo3 Mo4 Mos Mos
Lp=C
0 [ TradeDirect } [TradeActiuanducer} [ TradeAction J [ WriteListenerlmp } { OrderDataBean } { OrderData }
M1 My 2 M3 Mi4
L.
! { TradeDirect } [T ionProdu ,} [ T ) ] { WriteListenerlmp ] { OrderDataBean ] { OrderData }
My ¢ Mz Mz3
L,
2 [ TradeDirect J [TradeAckiDnPdeucer} [ TradeAction J [ WriteListenerlmp J [ OrderDataBean J [ OrderData J

Fig. 1. An example showcasing the result of a microservice decomposition.

Figure 1 showcases an example of a decomposition results for a small subset
of classes within an open-source monolithic Java application called DayTrader!.
The initial layer is defined as a set of microservices each having exactly one class.
The second layer contains 4 microservices since the couple of classes TradeAc-
tion and TradeActionProducer as well as OrderData and OrderDataBean have
been merged into a single microservice each. Since the microservices M; ; and
M 3 have only the classes TradeDirect and WtiteListenerImp respectively, both
of these classes are categorized as outliers within this layer. For the final layer,
the microservices Mj,; and M; o have merged to create the 3-class microser-
vice Ms 1. As such, the suggested decomposition contains 2 microservices and
WriteListenerImp as the only outlier.

Having defined the input and output of our solution, the following subsection
explains the details of our approach as well as the theoretical reasoning behind
it.

! https://github.com/WASdev /sample.daytrader?.
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3.2 Approach Overview

Our approach takes as input the source code and execution traces of a
given monolithic application. Afterwards, three separate and distinct analysis
approaches are executed on this input in order to generate a dataset for each
approach. The three datasets are then fed to the clustering component which
combines them in order to output the decomposition layers. Nonetheless, any
combination of the analysis approaches is possible including having a single one.

The Fig. 2 showcases the different steps taken in order to generate a decom-
position for a given monolithic application. The smaller rectangles within the
figure represent the task done by our solution while the ellipses represent inputs
and outputs.

Fig. 2. An overview of the process used to output the microservices decomposition.

3.3 Extracting the Datasets for Each Approach

Dynamic Calls Matrix. This phase requires as input a list of execution traces
recording the dynamic interactions of the classes. These traces represent the exe-
cution logs. Each trace should represent a call path from the first class until the
last called class. Branches in the call path create another trace. For example, if
during an execution, TradeActionProducer called TradeAction which then called
TradeDirect this would create the first trace: |[TradeActionProducer, TradeAc-
tion, TradeDirect]. If TradeDirect finished its task and returned, and afterwards
TradeAction called OrderData, we would create a second trace: [TradeAction-
Producer, TradeAction, OrderData]. All circular dependencies within the traces
and all duplicates are removed in a pre-processing step. Using these traces, we
generate the dynamic calls matrix. We define the dynamic calls matrix Mgy, as
a NgxNg matrix where each cell is equal to the sum of direct calls and indirect
calls between every couple of classes within the execution traces. For example,
given the following traces: [ TradeActionProducer, TradeAction, TradeDirect] and
[TradeActionProducer, TradeDirect] and the order of classes is [ TradeActionPro-
012
ducer, TradeAction, TradeDirect|, the call matrix would be equal to: {001
000
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Structural Interactions Matrix. We define an interaction between a class A
and a class B when within class A, class B was declared, used as a type for a
method’s parameter, inherited or had one of its methods called. In addition, all
classes acquire the interactions of the class they inherit from.

As such, we start by extracting the metadata within the source code. Any
static analysis tool that can analyze the Abstract Syntax Trees of the appli-
cation’s programming language can be used to extract this information. After-
wards, for each couple of classes, we measure the number of interactions between
them in order to create the structural interactions matrix M., which is a NxN
matrix.

Term Frequency - Inverse Document Frequency (TF-IDF) Matrix.
For each of the N classes within the source code, we extract the text used in the
class’ definition. The text includes the class’ name, the comments, the members’
names, the methods’ names, the parameters’ names and the variables’ names
within its methods. Afterwards, for each word in the text, we apply camelcase
case splitting which separates the input string into multiple words based on the
camelcase naming convention. For example, CamelCase will be split into Camel
and Case. Then, we filter out stopwords. Finally, we apply a stemming process
in order to facilitate the detection of similar words. After this pre-processing
step, we acquire a vector of words for each class which is used, in conjunction
with the vocabulary V to measure the TF-IDF values and obtain the TF-IDF
matrix Mgep,. The final result would be a NxDy matrix where Dy represents
the number of words in the vocabulary.

3.4 The Hybrid Clustering Process

The objective of this task is to combine the different matrices generated in
the previous task in order to provide a better decomposition than each of the
approaches separately. Both structural and semantic analysis can utilize simi-
larity functions that generate N x N matrices whose values are in the range
[0,1] where N refers to the total number of classes within the monolithic appli-
cation. For this reason, an intuitive and simple solution would be to calculate
the weighted sum of structural and semantic similarity matrices using a weight
value called alpha in the range [0,1]. For the rest of the paper, we will call this
matrix the static analysis matrix since it’s based on a couple of approaches that
employ static analysis.

On the other hand, the dynamic calls matrix can’t be used to generate a NxN
matrix since it lacks information regarding some of the classes. As such, a sim-
ple weighted sum is not sufficient. In this case, we use a clustering strategy that
combines 2 datasets from different domains in order to generate a single cluster-
ing result introduced in [14]. This approach builds upon a modified DBSCAN
algorithm [12,16].

This algorithm, which we call hierarchical-DBSCAN, executes DBSCAN in
multiple iterations and slowly increments the epsilon hyper-parameter in order
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to loosen the restriction on the condition for grouping together the classes until
a maximum epsilon value, defined by the user, is reached. Each iteration takes
as input additionally the clustering of the previous iteration. As such, the final
result is a list of layers describing the hierarchy of the clusters since each cluster
with a layer contains at least one of the clusters of the previous layer similarly
to the example shown in Fig. 1.

Combination Strategy. The algorithm introduced in [14] proposed two dif-
ferent strategies to combine the datasets. The first strategy involves running the
hierarchical-DBSCAN processes separately and in a sequential manner.

As shown in Fig. 3, we start with one of the datasets, which in our case is
the dynamic call matrix and we execute all of the iterations of the hierarchical
clustering algorithm. At each iteration, we take as input the previous iteration’s
result and the original dataset. Then, for each cluster in the previous layer, we
generate a new sample that represents the cluster depending on an aggregation
function. Afterwards, we calculate a similarity matrix based on the newly created
samples. Using the similarity matrix, we run the DBSCAN algorithm in order
to acquire the new clusters. After incrementing the epsilon parameter, we verify
if it exceeds a maximum threshold called Max epsilon and that is defined by the
user. If it does not, we feed the clustering result to the next iteration. Otherwise,
we feed it as input into the second phase which applies the same process on
the second dataset, its corresponding aggregation function and its Max epsilon
hyper-parameter. Finally, when the second epsilon reaches its maximum, the
acquired clustering layers are returned as the output of the algorithm.

The Fig. 4 showcases the second strategy. In this case, we alternate between
the datasets. We start by running an iteration for the first dataset. Afterwards,
we update the first epsilon value and we feed the result to an iteration of the
second dataset. Similarly, we update the second epsilon value and use the result
as the input of the second iteration of the first dataset. We keep alternating
between both datasets until both epsilon values have reached their respective
maximum values. Finally, we output the clustering layers.

Given the assumption that dynamic analysis data are a better representation
of the application at the cost of a lower class coverage, we always start the
clustering process with the dynamic call matrix as the first dataset.

Fig.3. A showcase of the sequential Fig. 4. A showcase of the alternating
strategy. strategy.
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Aggregation Functions. During each iteration and for each different type of
analysis, we take as input the previous clusters and the original dataset. We
define a function capable of aggregating each cluster into a single point. The
newly generated vectors replace the vectors of the clusters’ components within
the dataset. The resulting dataset is then used in the next steps of the current
iteration

For semantic analysis, each cluster is transformed into a normalized vector
representing the mean of the TF-IDF vectors of its classes. Given a cluster C,
we generate the new vector as:

Zciec Mgem [Cz]

i (1)

o =

where Mse; [¢;] is the vector encoding the class ¢ in the TF-IDF Matrix Men,

As for both structural and dynamic analysis, we use the same aggregation
function which measures the sum of the vectors representing its classes. Given a
cluster C' and the label a in {dyn, str}, we generate the new vector as:

ce = Z Ma_[ci] (2)

4 FEvaluation

In this section, we conduct experiments in order to evaluate the performance of
our approach in identifying the optimal decomposition.

4.1 Research Questions

We developed our experimental setups in order to answer the following research
questions:

— Q1: What is the best approach for combining different representations and
interpretations of the monolithic application?

— Q2: How does our approach perform when compared to state-of-the-art
microservices decomposition baselines?

4.2 Experimental Setup

Evaluation Metrics. In order to properly evaluate our solution and compare it
with other approaches, we need to define metrics that can quantify the quality of
the generated microservices. However, since we are dealing with a problem that
does not contain true values we can compare with, we will need to evaluate the
quality of the decomposition based on defined criteria that theoretically represent
an acceptable microservices architecture [10]. As such, for this evaluation, we will
compare the proposed decompositions based on how much the decomposition
respects the Domain Driven Design (DDD) philosophy [8], how coherent the
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microservices are, how much coupling exists between them and the granularity
of the microservices

For these reasons, we selected the following evaluation metrics from the lit-
erature that encode in different ways the selected criteria:

— Structural Modularity (SM): [6] is an evaluation metric that can be asso-
ciated with both the cohesion and coupling criteria since it defines a way to
quantify the structural coherence of the microservices as well as the coupling
between then combines them into a single metric. It is defined as follows:

1 & 1 Koo
M= - i i,]
S K;mf (K(K—l))/Q;Qmimj 3)

Where K is the number of the extracted microservices, p; is the number
of unique calls between the classes in microservice i, m; is the number of
classes in microservice i and o; ; is the number of unique calls between classes
of microservice i and classes of microservice j. Decompositions with higher
cohesiveness and lower coupling result in higher SM values and as such reflect
a higher structural quality.

— Conceptual Modular Quality(CMQ): [6], quantifies the conceptual qual-
ity of the decomposition. The cohesion and coupling components within this
metric are based on the common textual terms between the classes. As such,
this metric evaluates how focused the contexts represented by the microser-
vices are. Thus, it can be categorized as a metric for evaluating the DDD
aspects.

1 K 7 1 K o
_ i 1,3
M@= K ; m?2  (K(K-1))/2 ; 2m; m; )

Where K is the number of the extracted microservices, u) is the number of
common terms between the classes in microservice i, m; is the number of
classes in microservice i and o} ; is the number of common terms between
classes of microservice i and classes of microservice j. Higher CMQ values
reflect better decompositions.

— Non-Extreme Distribution (NED): [3] This metric corresponds to the
granularity criteria and introduces a way to quantify this aspect by measuring
the percentage of classes with extremely small or extremely large microser-
vices. It is defined in detail in the following equation:

_ |{m1 ; 5 < |mz| < 207Z € [laK]}‘

NED =1
= %)

Where K is the number of the extracted microservices and |m;| is the size
of microservice m;. In our evaluation, we selected the values 5 and 20 as the
thresholds for the definition of extreme sizes for all sample applications in
order to be consistent with the literature [2,3,7]. Having high NED often
corresponds to worse results.
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— Inter Call Percentage (ICP): [7] is based on the percentage of static calls
between two microservices. This metric quantifies the dependencies between
the microservices and as such can represent the coupling criteria.

K
0P — Zi:l,j:l,i;ﬁj chGMi ZczeMj (log(calls(ck, 1)) + 1))

Zfiu:l cheMi ZClEMj (log(calls(ck, 1)) + 1)

Where K is the number of microservices, M; is the set of classes in microser-
vice i, calls(cg,c;) is the number of calls from class ¢; to class ¢;. Lower
values of ICP correspond to fewer interactions and as such lower coupling
and a better decomposition.

— Coverage (COV): is simply defined as the percentage of classes from the
monolithic application that were included in the proposed decomposition. For
our approach, we won’t consider outlier classes as part of the proposed decom-
position. If we measure this metric for the decomposition example shown if
Fig.1 which has 5 classes and detected 1 outlier, the result would be equal
to 0.8. On the other hand, if the used approach is only based on run-time
execution trace analysis and only 3 classes were detected, the result for this
approach would 0.6.

Evaluation Applications. We selected 4 monolithic Open-source Java appli-
cations that we evaluate our approach on. The selected applications have varying
scales in order to evaluate how scalable our approach is. The metadata of these
applications are described in the Table 1 where we specify the number of classes
detected using static analysis (SA) and dynamic analysis (DA) separately and
the number of unique interactions found using static analysis.

Table 1. Monolithic applications metadata.

Project Version | SLOC | # of SA classes | # of DA classes | # of unique interactions
Plants 1.0 7,347 140 20 123
JPetStore 1.0 3,341 |73 37 209
AcmeAir 1.2 8,899 | 86 23 242
DayTrader(see footnote 1) | 1.4 18,224 | 118 73 378

"https://github.com/WASdev/sample.mono-to-ms.pbw-monolith.
Zhttps://github.com/KimJongSung/jPetStore.
3https://github.com/acmeair /acmeair.

Experimental Process. For each research question, we propose different alter-
natives that we compare their results. However, hyper-parameter choices can sig-
nificantly impact the quality of the output. As such, we applied a grid-search like
approach where we select intervals of possible values for each hyper-parameter
that is not under evaluation and then we generate the decompositions for each
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hyper-parameter combination and we measure their evaluation metrics. After-
wards, we filter out the decompositions that have a NED score equal to 1. Since
NED is calculated by the percentage of microservices with extreme sizes, having
a NED score equal to 1 signifies that all the microservices within this decom-
position can be considered invalid and as such this solution should be excluded.
Additionally, we exclude the decompositions that have a coverage lower than a
defined threshold. In this process, we used 0.5 as the threshold.

4.3 Experimental Setup and Results for RQ1

In this research question, we evaluate which combination strategy as described in
the section Combination strategy performs better. Therefore, we start by com-
paring the performance of the sequential strategy and the alternating strategy.

After applying the experimental process and excluding the extreme cases,
we evaluate the influence of the chosen strategy independently from the hyper-
parameters based on the analysis of over 40000 potential decompositions. The
Table 2 shows the median result for each evaluation metric, sample application
and strategy.

Table 2. Comparison of median evaluation results for approach combination strategies.

SM cMQ ICP \, NED \, cov

Alternating | Sequential | Alternating | Sequential | Alternating | Sequential | Alternating | Sequential | Alternating | Sequential
Plants 0.4037 0.4042 0.0385 0.0246 0.1776 0.1752 0.3077 0.3478 0.675 0.65
JPetStore |0.0767 0.0789 0.1647 0.1539 0.3378 0.4641 0.5968 0.5082 0.863 0.8493
AcmeAir [0.093 0.1031 0.3127 0.2757 0.3885 0.5799 0.7229 0.6125 0.8652 0.7753
DayTrader | 0.2219 0.227 0.2047 0.1991 0.2425 0.347 0.7103 0.6848 0.8305 0.7627

As we can observe in the table, both methods had very close median results
for the metric SM with the largest difference being around 0.004 for the project
AcmeAir. However, we can see that using the alternating strategy achieved
higher results for all projects. As for ICP, the alternating strategy managed
to lower its values and achieve a worse but very close median score compared to
the sequential strategy. On the other hand, when comparing the scores for NED,
we can see that the alternating had more extreme microservices in all projects
except for Plants. Finally, the coverage it achieved was better in all applications.

We hypothesize that the increased performance observed in this case is due to
the feedback loop between the clustering processes that exists in the alternating
strategy compared to the sequential approach. In the first case, the results of
the dynamic analysis clustering process feed into the static analysis clustering
process at each iteration which should improve the quality of this process and
vice versa. As for the sequential strategy, the results of the dynamic analysis
clustering process are only used as the input for the first iteration of the static
analysis clustering process.
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For the following experiments, we will exclusively use the alternating strategy.

Using the alternating strategy when combining the static and dynamic anal-
ysis results generated decompositions that had better metrics, in general,
than those achieved by the sequential strategy decompositions.

4.4 Experimental Setup and Results for RQ2

In order to answer this research question, we selected the six approaches that
tackle the monolithic to microservices decomposition problem or a similar prob-
lem using different methods and views of the monolithic applications. These
approaches are Bunch [11], CoGCN |[3], Hierarchical DBSCAN (HierDec)
[16], FoSCI [6], MEM [9] and Mono2micro (M2M) [7].

For each one of the baselines we compare with as well as our approach
(HyDec), we use different ranges of hyper-parameters in order to generate multi-
ple decompositions. Then we calculate all five of the evaluation metrics. Similarly
to the previous research questions, we eliminate all decompositions that have a
NED score equal to 1.

Figure 5 showcases the results of each baseline for each metric and each sam-
ple application in boxplot figures. Our solution is highlighted in red.

Fig. 5. Boxplots of the evaluation results for each baseline. (Color figure online)



Combining Static and Dynamic Analysis for Microservices Decomposition 215

For the sample application Plants, we can observe in the Figure that our
approach achieved the highest CM(Q median score while managing to have the
second highest SM median score and second best ICP score. Only MEM and
HierDec managed to have a better score than our approach respectively in SM
and ICP. As for NED, our solution had a better score than MEM, FoSCI and
CoGCN while M2M achieved the lowest NED. Finally, Our approach had the
highest coverage while HierDec had the lowest.

As for JPetStore, our approach managed to achieve the second-best score in
both SM and ICP in which HierDec had the best score. However, our approach
had significantly better NED and coverage score than the rest of the baselines
with only Bunch as an exception for the NED metric. Although HyDec did
not reach the best score for CMQ like in the case of Plants, its score managed
nonetheless to be the third best and is very close to M2M’s score.

When comparing our approach with the rest of the baselines in the AcmeAir
project, we can see that it achieved much better coverage than the rest where
the median is at least twice as much as the second highest coverage. In addition,
it had the highest CMQ and a similar median score to the highest result in ICP
which was acquired by MEM. However, these scores came at the cost of lower
SM values and higher NED values.

Finally, by comparing the results generated for the application DayTrader
using our approach to those created by the other baselines, we can see that
HyDec had the highest coverage, the second highest CMQ score, the second-best
NED score and the third-highest SM score. As for ICP, our approach managed
to have a better score than 3 out of the 7 baselines.

HyDec had the best median COV in all of the sample applications since our
approach does not rely too heavily on the run-time execution traces but instead
combines it with the source in order to improve the results while having enough
information to place as many classes as possible into their adequate microser-
vices. In addition, HyDec managed to be within the 3 best approaches for all
sample applications for the metrics SM, CMQ and ICP with the exception of a
couple of cases: SM for AcmeAir and ICP for DayTrader. These results show-
case that even with the higher coverage, which serves as a disadvantage when
calculating these metrics, our approach still managed to improve over the base-
lines for some cases and remain competitive for the rest. As for NED, the results
varied from one application to another. For example, even though HyDec had a
significantly higher coverage than the baselines, it did not negatively affect the
NED score unlike what happened with AcmeAir. As for the other applications,
HyDec’s NED score was close to the average of the baselines.

Our approach, HyDec, managed to increase the coverage of the decomposi-
tion and to achieve better conceptual and static cohesion and coupling than
the other baselines in most cases.
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5 Threats to Validity

For internal threats to validity, the biggest threat lies within the selection eval-
uation metrics and the hyper-parameters for our approach. For the former, we
tried to use five metrics that differ in the criteria that they represent and that
use different inputs, except for the proposed decomposition, to calculate. As for
the latter, we tried to mitigate this threat by varying these hyper-parameters in
order to generate multiple decompositions for the comparison. Particularly for
the comparison with the baselines, we applied the same process and the same
conditions on all of the approaches. The implementation of the approaches could
be a threat to the validity of this research as well. We attempted to mitigate
this issue by extensively testing the code and verifying the obtained results.

In this paper, we evaluated our approach on only four monolithic applica-
tions. Although we tried to select a set of applications that have varying numbers
of classes and interactions, it would be beneficial to our research to evaluate its
performance on additional sample monolithic applications. Our approach uses
the classes of the monolithic application as the granularity level of its representa-
tion. There is a debate within the literature on which granularity level would be
more suitable for the decomposition task [6]. In our case, we decided on the class
level since this research focused mainly on Object-Oriented Languages for which
the classes represent a core concept when coding. Having a more fine-grained
level, like for example at the procedural level, can lead to more coupling issues
and as such more refactoring would be required.

6 Conclusion and Future Work

We presented a microservices decomposition solution that takes as input the
source code of a monolithic application as well as run-time traces of its execu-
tion. The proposed approach analyzes each of the sources individually extracting
semantic and structural information of the classes within the monolithic appli-
cation from the source code and dynamic interactions between the classes from
the execution traces. Then, an iterative clustering process starts which groups
together the classes based on the current analysis type, the results of the previ-
ous layer and the current constraints. The final result is a hierarchical view of
the proposed microservices. The evaluation results showcase that this approach
improves over individual applications of each analysis approach and a compari-
son with state-of-the-art approaches shows that our solution managed to surpass
the coverage of the rest of the baselines while providing decompositions that have
competitive structural and conceptual cohesion and coupling.

In the future, we would like to work on improving the analysis phase of our
approach, and particularly the semantic analysis approach in order to extract
more accurate information from the source code of the monolithic applications.
We would like to investigate as well if we can combine information extracted from
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other sources like the version control history or the documentation. Finally, it
would be interesting to study the impact of prioritizing the domain relationship
between the classes over the structural and dynamic interactions and find a way
to evaluate whether these solutions would be more beneficial.
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Abstract. With the rapid growth of microservice systems in cloud-native
environments, end-to-end traces have become essential data to help diag-
nose performance issues. However, existing trace-based anomaly detec-
tion and root cause analysis (RCA) still suffer from practical issues due
to either the massive volume or frequent system changes. In this study,
we propose a lightweight and adaptive trace-based anomaly detection and
RCA approach, named MicroSketch, which leverages Sketch based fea-
tures and Robust Random Cut Forest (RRCForest) to render trace analy-
sis more effective and efficient. In addition, MicroSketch is an unsupervised
approach that is able to adapt to changes in microservice systems with-
out any human intervention. We evaluated MicroSketch on a widely-used
open-source system and a production system. The results demonstrate the
efficiency and effectiveness of MicroSketch. MicroSketch significantly out-
performs start-of-the-art approaches, with an average of 40.9% improve-
ment in F1 score on anomaly detection and 25.0% improvement in Recall
of Top-1 on RCA. In particular, MicroSketch is at least 60x faster than
other methods in terms of diagnosis time.

Keywords: Microservice - Anomaly detection - Root cause analysis -
Sketch

1 Introduction

Over the years, more and more enterprises (e.g., Amazon, Netflix, and Twit-
ter) have gradually replaced monolithic applications with loosely-coupled and
lightweight microservices [2,16]. The loosely-coupled paradigm of microservice
applications enables independent refactoring and dynamic scaling for each ser-
vice [19,20]. Despite various resilience strategies in modern microservice architec-
ture (e.g., load balancing and circuit breaking), system-wide issues of microservice
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J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 219-236, 2022.
https://doi.org/10.1007/978-3-031-20984-0_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_15

220 Y. Li et al.

applications are still pervasive due to resource exhaustion, network jam, etc. Per-
formance issues that manifest themselves as high latency are easier to happen but
more difficult to diagnose than availability issues [4].

Distributed tracing [14] becomes a mainstream tool for troubleshooting in
microservice systems. Distributed tracing records the detailed executions of com-
pleting a user request, including the invocation paths of service instances and
latency information of these invocations between service instances. Because dis-
tributed tracing has an irreplaceable advantage in capturing interactions between
service instances, it is becoming an indispensable infrastructure for monitor-
ing, profiling, analyzing and diagnosing in modern distributed software systems,
especially in large microservice applications. However, current tracing tools (e.g.,
Jaeger! and Zipkin? are primarily designed to collect and present traces rather
than automatically diagnose performance issues.

It is an error-prone and labor-intensive process to manually detect perfor-
mance issues and localize root causes based on current tracing tools. Therefore,
some automated trace analysis approaches have been proposed in microservice
systems [6,10,18]. However, state-of-the-art studies with traces for performance
analysis encounter practical issues due to the massive volume of traces or frequent
system changes. As shown in Table 1, tprof [6] takes over 600 s and MicroRank [18]
needs over 100s to infer root causes by analyzing 10,000 traces when one fault
occurs. This is because tprof [6] hierarchically groups traces by request types and
trace structures, and calculates increasingly detailed aggregated statistics, which
consumes a great deal of time. MicroRank introduces PageRank to calculate the
weights of traces, which needs a long time to get the converged results when meet-
ing a larger scale of traces. The inference time will be further exacerbated when
a larger-scale microservice system is encountered. TraceAnomaly [10] takes less
time to infer root causes than MicroRank, but it needs to retrain the deep Bayesian
network after microservice updates. In addition, this training process is extremely
time-consuming, resulting in poor adaptability.

Table 1. Resource overhead and inference time for some state-of-the-art trace analysis
systems. (The experiment platform is shown in Subsect. 4.1)

System Method CPU utilization (%) | Memory usage (MB) | Time(s)
tprof [6] Hierarchical analysis 12 4 2 single core 800 £ 50 600 £ 30
TraceAnomaly [10] | Deep Bayesian network | 75 & 5 single core 550 + 50 65+ 10

MicroRank [18] PageRank+Spectrum | 12 4 2 single core 430+ 50 105+ 10

To address the above drawbacks of existing work, we propose MicroSketch,
which leverages Sketch [11] based features and Robust Random Cut Forest
(RRCForest) [5] to detect performance issues and localize root causes using dis-
tributed traces in a lightweight and adaptive way, with a low time and space com-

! Jaeger, https://jaegertracing.io/.
2 Zipkin, https://zipkin.io/.
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plexity. It consists of three main procedures including Status Encoder, Anomaly
Detector, and Fault Locator. Status Encoder collects trace data and encodes
these data into a status vector in order to conduct Anomaly Detector. Then
Anomaly Detector determines whether it is an anomaly. Once an anomaly is
detected, Fault Locator is triggered and generates a ranking list containing pos-
sible root causes for the anomaly. We evaluated MicroSketch on a widely-used
open-source system and a production system. The results demonstrate the effi-
ciency and effectiveness of MicroSketch. Moreover, MicroSketch significantly out-
performs start-of-the-art approaches, with an average of 40.9% improvement in
F1 score on anomaly detection and 25.0% improvement in Recall of Top-1 on
root cause analysis (RCA). In particular, MicroSketch is at least 60x faster than
other methods in terms of diagnosis time. Besides, MicroSketch has the ability
to automatically adapt to the changes of microservice systems and continually
work without any manual intervention.
Overall, the contribution of this paper is three-fold summarized as follows.

— We improve the DDSketch, state-of-the-art sketch technology, so that it keeps
all the original features while reducing storage space to calculate the quantiles
with sublinear space and linear time complexity.

— We propose a novel anomaly detection and RCA approach in microser-
vice environments based on the adaptive RRCForest, which automatically
adapts to variable-length input vector and renders our model appropriate for
dynamic microservice systems.

— We implement MicroSketch to detect performance issues and localize root
causes in a lightweight and adaptive way. We conduct extensive experiments
based on a widely-used microservice benchmark and a production microser-
vice system. Experimental results demonstrate that MicroSketch achieves
good results both on anomaly detection and RCA. In addition, MicroSketch
is at least 60x faster than other methods in terms of diagnosis time.

2 Background

Distributed tracing is an important technique for gaining insight and observabil-
ity into microservice systems [15]. In large-scale microservice systems, a request
is typically handled by multiple services deployed in different nodes or even data
centers. Distributed tracing provides a method to track the complete execution
path of each request. A span represents a logical unit of execution, handled by
an operation of a service instance in a microservice system. All spans that serve
for the same request collectively form a trace, as illustrated in the left part of
Fig. 1. Spans generated by the same request have the same trace ID. For each
span, it records some attributes (i.e., Trace ID, Span ID, and Start time), as
shown on the right part of Fig. 1.

As shown in Fig. 1, the duration of a span is the accumulated time spent by
this operation and all downstream operations. Therefore, when the duration of
span E increases due to a fault, all upstream spans of E (i.e., span A and D) will
increase as well due to fault propagation, making it difficult to determine which
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span is the root cause. To overcome this problem, we transform duration into a
more directional metric. For each span, we subtract the duration of its all child
spans from its duration to get its real handling time. In Fig. 1, the non-shaded
part is called the span’s handling time.

Span A |
Trace ID 3eb4c605¢c8
Span ID 8f02ada43dc
Parent ID 29cb92¢adfa
Start Time(us) | 1656018305976165
Instance check-2
Trace ID | SpanID | Parent ID | Start Time | —) Ope?‘atlon Checkout
== - ) Duration (us) 2621
Instance | Operation | Duration :Hz_m_dlir_lg_]:ir_nf: i_Handling Time , __ 2621 -E __!

Fig. 1. An example of trace with five spans in Hipster-Shop (Hipster-Shop, https://
github.com/GoogleCloudPlatform/microservices-demo).

3 System Design

3.1 System Overview

Figure 2 demonstrates the framework of MicroSketch. It consists of three mod-
ules, including Status Encoder, Anomaly Detector and Fault Locator. We use
time interval to denote the trace analysis frequency (1 min default in this study).
Firstly, given the traces in a time interval, Status Encoder leverages the extended
DDSketch to calculate the quantile of the handling time for each invocation group
and encodes them as status vector © = (21,2, ..., Ts,) (Subsect. 3.2). Secondly,
Anomaly Detector analyzes the status vector based on adaptive Robust Random
Cut Forest (RRCForest) and outputs the anomaly score of @ (Subsect. 3.3). If
the score of x is over the predefined threshold 7, Fault Locator is triggered to
determine the root cause (Subsect. 3.4).

(@ Anomaly Detector

Invocation A=>CB->C A->CC->D

= =2 D - Rank List
Trace ) 2. Instance A
Online 3. Instance B

Quantile Quantile | Quantile
A->B B>C| D-=>E

B H| 6
v

[ O Sketch Quantile ]

(3] Robust Random Cut Forest ]

Average
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System

1

1
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h 1
h 1
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Fig. 2. The framework of MicroSketch


https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

MicroSketch: Performance Issue Detection and Localization 223

3.2 Status Encoder

At each time interval, MicroSketch queries all traces in the time interval and
inputs them into Status Encoder.

Status Vector. Quantile is a splendid statistic for profiling data, especially for
latency data. The quantile of the handling time, such as the 50th or the 90th
percentiles, reflects the quality of service instance. As shown in Fig. 3, p90 of
the operation (product-1.sql-query) rises when issue occurs. Quantile [11] can be
formalized as follows. Given a multiset S' of size n, the g-quantile item z, € S is
the item x whose index R(z) in sorted multiset S'is [14+¢(n—1)] for 0 < ¢ < 1.
After all spans are collected, we group them by the type of invocation. The
invocation owning the same upstream service instance, same downstream service
instance and same operation belongs to the same type. We calculate the quantile
(p90 in this paper) of the handling time for each group and manage these quan-
tiles as a vector © = [z1, 3, ..., T ], where ; means the quantile of the handling
time that belongs to the invocation group i. Status vector x largely reflects the
performance status of the global microservice system in this time interval.

Sketch Technology. Commonly, we sort the multi-set S first and then query
by index |14 ¢(n—1)] to generate an exact g-quantile, but it requires huge com-
puting resources and time for sort. Nevertheless, it is not so necessary to get the
exact quantile value in our scenarios. An estimated quantile that does not devi-
ate too far from the exact value can also be enough to conduct anomaly detec-
tion. Therefore, we introduce Distributed Distribution Sketch (DDSketch) [11],
which is able to calculate the quantile much faster and more economically with
relative-error guarantees and sublinear space and linear time complexity. DDS-
ketch keeps rigorously relative-error guarantees by dividing the data stream into
fixed buckets. It means that, given a parameter «, each estimated g-quantile Z,
and the exact g-quantile z, are satisfied to |2, — 24| < azq.

However, we do not need to satisfy the rigorous relative-error guarantees.
Because we hardly focus on the head latency data (i.e., the main-body distribu-
tion of latency data). We use an equi-width histogram to extend the DDSketch,
which allows us to reduce memory usage without losing the relative-error guar-
antees in the tail data, compared to DDSketch. To elaborate on how extended
DDSketch works, the three phases, namely initialization, insertion and query
are summarized.

In the phase of initialization, we define the tail relative-error rate o, boundary
L and head granularity factor (3 to keep the error guarantees. Given a quantile
percentage ¢, if £, < L, the estimated quantile Z, will be satisfied to |Z,—z4| <
and if z, > L, the estimated quantile Z, will be satisfied to |2, — z,| < ax,.
Thus, we keep the relative-error guarantees in the tail data (the numbers are
greater than L), and reduce the memory usage at the cost of losing the relative-
error guarantees in the head data (the numbers are less than L). In this paper,
a is set as 1%, L is set as p50 estimated by the last or 0 and 3 is set as ﬁ or
other reasonable values.
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Algorithm 1. extended DDSketch Insert Algorithm

Input: the number x € R> 0

1: if z < L then

2: i — ’V%-‘ //Find bucket index i if x belongs to the head data
H; — H; +1 //Bucket HJ[i] adds 1

3:
4: else

5: i — (log,y(r)] //Find bucket index i if x belongs to the tail data
6:

7

B; «— B; +1 //Bucket BJi] adds 1
end if

In the phase of insertion, let v := 81‘3; If the input number z is less than

L, bucket H[[%—‘] adds 1. Otherwise, bucket B[[log,y(xﬂ] adds 1. This is shown

in Algorithm 1.

In the phase of query, given a quantile percentage g, extended DDSketch
try to find the minimum index i which makes >~._ H; > g(n — 1). If we suc-
ceed in finding the index 7, extended DDSketch returns the estimated quantile
% (. Otherwise, extended DDSketch finds the minimum index ¢ which makes

1

ijo H; + Z;:o B; > g(n — 1) and returns the estimated quantile % The
detail is described in Algorithm 2. Finally, we update L to the estimated p50.

Algorithm 2. extended DDSketch Query Algorithm

Input: 0<¢<1

Output: the estimated g-quantile

1: count < 0 i——1

2: while i < len(H) && count < ¢g(n — 1) do

i—i41

count «— count +H; //Accumulate bucket H[i] in order
. end while

: if count > g(n — 1) then

return Lz_lﬁ //The g-quantile falls in bucket H][i]
. end if

: while count < g(n — 1) do

10: i« min({j: B; >0Aj >1i}) //Accumulate non-empty bucket B[j] in order
11: count <« count +B;;

12: end while_

13: return 3—111 //The g-quantile falls in bucket Bl[i]

LRI

3.3 Anomaly Detector

After encoding, traces in time interval are transformed into status vector & =
[x1, 22, ..., Z;m]. Anomaly detection is converted to outlier detection based on the
time series of status vector x. Robust Random Cut Forest (RRCForest) [5] is
a streaming model and follows the mechanism of isolation forest [9]. In detail,
the point set is distributed in a multidimensional space S C R™, for each case,
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RRCForest randomly chooses a dimension and randomly chooses a value in this
dimension to cut. This process is called dimension cut. After one dimension
cut, the whole space is divided into two subspaces. Subsequently, two subspaces
are recursively cut in the same way. A point is determined to be isolated if it
occupies a subspace exclusively. The scatter chart in Fig.3 shows an isolated
point occupying the shaded left upper corner exclusively.

o] ]
d

product-l.sql-query‘ Normal>K Isolated Outlier X Outlier‘

o0 -
= o >
= X
= % S) X
- <
E o — front-1.Recv Z x X
TE -
SE
= 5
° =
g — Score s T AN IR 58, o6
Q St
3 L sholollmm— 8 J
Time front-1.Recv

Fig. 3. The distribution of status vectors and the mechanism of RRCForest. The first
and second line charts in the left part are p90 handling time of operation front-1.Recv
and product-1.sql-query, respectively. The third line chart is the anomaly score given
by adaptive RRCForest. The scatter chart is the distribution of status vectors and an
example of the dimension cut of a two-dimensional space S C R2.

Taking two operations (front-1.Recv and product-1.sql-query) in Hipster-
Shop (Subsect. 4.1) as an example, we use Status Encoder to transform traces
in each time interval into status vector & = [x1,z2]. Both the distribution of
each dimension and the distribution of the vectors are shown in Fig. 3. We inter-
mittently injected four anomalies into service instance product-1. There are four
peaks in the handling time of product-1 because of fault injection. The scat-
ter chart in Fig. 3 presents that several vectors corresponding to the peaks are
labeled as red forks. The red forks can be isolated by two or three dimension
cuts and those dense normal blue dots require more cuts to be isolated.

Next, we describe how RRCForest detects anomalies. The process of dimen-
sion cut mentioned above is described by a binary tree structure, called Robust
Random Cut Tree (RRCTree). As shown in Fig.4, RRCTree owns two kinds
of nodes. One is leaf, represented as a square rectangle, the other is branch,
represented as a rounded rectangle. We also summarize three phases for the
construction of RRCTree, namely initialization, insertion and query.
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Fig. 4. The construction of RRCTree. U and L keeps the maximum and minimum of
each dimension of the leaves to avoid repeatedly calculating them for Eq.1. d and v
denote the cut dimension and cut value, respectively. Each leaf is assigned to a status
vector and each branch records how the vectors are isolated.

In the phase of initialization, we create an empty tree, given in Fig. 4-1.
MATzcsT; — MiNgeST;

>, (mazgesz; — mingesa;)

w; = (1)
In the phase of insertion, given a RRCTree T’, we insert a vector x. Let S’

as all vectors in RRCTree 77 and S = S’ Ux. If RRCTree is empty (case 1), we

directly create a leaf, assigned to this vector. Figure 4-@ shows the case 1.

If RRCTree is non-empty (case 2), we move on to the following discussion.
The case 2 is further divided into three sub-cases. We randomly select the cut
dimension d according to the weight w; which is calculated in the Eq.1. After
selecting cut dimension d, we randomly and uniformly choose a cut value v €
[Mmingestq, matgeseq). If v < ming cg ! (case 2-1), we create a branch and
a leaf that is assigned to the vector x. Then, we set the created leaf as the
left subtree of the created branch and the RRCTree T” as the right subtree. If
v > mazy esxy (case 2-2), we set the RRCTree T” as the left subtree of the
created branch and the created leaf as the right subtree. If neither is the case
(case 2-3), we consider inserting the vector « into the left subtree of RRCTree
T’ or right subtree. In detail, for the cut dimension d’ and cut value v’ of the
root branch, if x4 < v’, we insert the vector x into the left subtree of RRCTree
T’. Otherwise, we insert the vector x into the right subtree. Since the subtree is
also a RRCTree, the insertion can run recursively until it goes back to the case
2-1 or case 2-2. In sum, Fig. 4-@ shows the case 2—1. The case 2-2 is similar to
the case 2—-1. Figure 4-©-1 shows the case 2-3.

The last case (case 3) is to insert a variable-length vector  and len(x) >
max, g len(x’). We create a branch, named dimension branch, which repre-
sents that a new dimension occurs. Then, we set RRCTree T” as the left subtree
of the created dimension branch and the inserted vector as the right subtree.
Figure 4-©-2 shows the case 3.

Further, in order to prevent the tree from excessively expanding, we set
tree size (128 in this paper) in advance and delete the earliest point from the
tree when the number of leaves exceeds tree size. Deletion is similar to insertion.



MicroSketch: Performance Issue Detection and Localization 227

‘ @ Branch O Dimension Branch ®Leave A Subtree ‘

(a) RRCTree without Dimension Branch (b) RRCTree with Dimension Branch

Fig. 5. An example of calculating the anomaly score. (a) The cut rates of red leaf are

z 3—2 and %. The score of the leaf is 22. (b) The cut rates of red leaf are 2 and 12

and the score of the leave is 4. The higher the score, the more anomalous the vector.

In the phase of query, we obtain an anomaly score for the inserted vector. As

soon as the insertion of a vector is complete, we query its score. We define the
min(Nicfe,Nright)
that belong to the left subtree of the branch and n,;gx: is the number of leaves

that belong to the right subtree of the branch. We find all ancestor branches in
the path from the leaf corresponding to the vector to the root branch except
dimension branch and calculate these branches’ cut rates. Logically, the score
of the vector is equal to the maximum in these cut rates. Figure5 presents two
examples of how to calculate the anomaly score of a leaf.

Therefore, anomaly score is closely related to tree size. Practically, we give
a threshold 7 = mean x log(tree size), where mean denotes the average history
score. If one’s score exceeds the threshold 7, we regard it as an anomaly.

The above section illustrates how a RRCTree is constructed and queried. As
listed in Eq.1, the selection of cut dimension is random and probabilistic. To
make this random construction more convergent to its expectation, we generally
build multiple RRCTrees simultaneously and independently. The final score is
the average of all RRCTrees’ scores. Therefore, in practice, we have to define
a parameter tree number (50 in this paper by default), which determines how
many RRCTrees Anomaly Detector maintains.

cut rate of a branch as r = , where nje s, is the number of leaves

RRCForest F 3 F 3 F 3 F 3 )

Anomalous |Invocation Invocation Invocation Invocation
Dimension | (A,C)  (B,C) (A,C)  (C,D) )@

Vote A:2 B: 1 C: 4 D: 1
Rank List | @ C QA s eD )3

Fig.6. The details of Fault Locator. Each RRCTree independently points out an
anomalous invocation. The instance C is viewed as the root cause because there are
four RRCTrees voting for C.
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3.4 Fault Locator

Once Anomaly Detector finds an outlier, Fault Locator will be triggered.
For a RRCTree, the dimension of the branch corresponding to the largest
cut rate is considered an anomalous dimension. Each RRCTree points out
an anomalous dimension of the outlier. An anomalous dimension repre-
sents that one type of invocation is anomalous. If the invocation is anoma-
lous, we conclude that the upstream service instance or downstream service
instance may be anomalous. RRCForest gives a set of anomalous invoca-
tions [I(uy,dy), I(ua,ds), ..., I(ug,dy)], where v and d denote upstream service
instance and downstream service instance, respectively. To further determine
the most likely root cause, we propose a voting mechanism. Each anomalous
invocation I(u,d) votes for service instance u and service instance d. The service
instance with the most votes is regarded as the root cause. Figure 6 presents that
instance C is determined as the root cause after the vote of four RRCTrees.

4 Experiment Setup

4.1 Datasets

We use two datasets to validate our approach. One, named A, is based on one
of the most widely-used open-source microservice systems, Hipster-Shop. The
other, named B, is based on a production microservice system in China Mobile,
the largest telecommunication company in China. Table2 shows some details
of our experimental datasets. We implement MicroSketch with Python 3.7. All
experiments are conducted on a workstation with 4-core 2 GHz Intel Core i5-
1038NG7 CPU and 16 GB memory.

Table 2. Experimental datasets

Dataset Benchmark Fault number | Fault type Trace number
A Hipster-shop 50 Network, CPU, 10 read, 10 write | 2,902 K
B Production system | 8 Network, CPU 168 K

Hipster-Shop Microservice System. This system is an e-commerce website
with 10 microservices that are implemented in different programming languages
and intercommunicate using gRPC. We continuously run a workload generator,
which can simulate real-world users. The microservice benchmark is deployed in
a Kubernetes cluster that consists of 1 master node and 5 worker nodes based on
virtual machines, which singly run with Ubuntu 18.04 OS. To mimic performance
issues, we use two tools, Chaosblade® and Strace* to inject four types of faults
into Hipster-Shop. We injected 50 faults to Hipster-shop in total. Each fault
injection lasts for 30 to 60s.

3 Chaosblade, https://github.com/chaosblade-io/chaosblade.
4 Strace, https://strace.io.


https://github.com/chaosblade-io/chaosblade
https://strace.io

MicroSketch: Performance Issue Detection and Localization 229

Real-World Microservice System. Dataset B, released by the 2020 AIOps
Challenge Event, is based on a real-world production microservice system in
China Mobile. In particular, the workload of the system in B is a replica of the
real-world workload. The types of faults include network fault and CPU fault.
Note that since this event does not only focus on microservice applications, we
only selected those faults related to microservices on May 31st, 2020.

4.2 Evaluation Metric

We use Precision (P), Recall (R) and F1 score (F'1) to compare the per-
formance of anomaly detection. Precision is computed by %, while Recall

is computed by %, where TP, FP and FN refer to the number of anoma-
lous time intervals that are correctly predicted to be anomalous, the number of
normal time intervals that are incorrectly predicted to be anomalous, and the
number of anomalous time intervals that are incorrectly predicted to be normal,
respectively. F1 score is calculated by 2 x gig.

We employ the following two widely-used metrics by previous work [18], to
evaluate the effectiveness of Fault Locator. Recall of Top-k (R@k) refers to
the probability that root causes can be included in the top k results. Higher
RQFk denotes more effective root cause localization. We choose RQk (k = 1,2,5)
in the experiment. EXAM Score (ES) refers to the average count of incorrect
candidates that have to be excluded manually by operators before localizing the
correct root cause. If ES is larger than 10, we set E.S as 10.

5 Experimental Evaluation

5.1 Effectiveness Comparison

We use some state-of-the-art trace-based unsupervised approaches to validate the
performance of MicroSketch on anomaly detection and RCA, including Micro-
Rank [18], tprof [6] and TraceAnomaly [10]. Note that we assume that all the
anomalies have been detected before RCA.

Anomaly Detection. Table3 compares the overall performance of anomaly
detection and lists the obtained result with the best F1 score. MicroSketch,

Table 3. Comparisons of MicroSketch’s anomaly detector and baselines.

Dataset | Approach F1 score | F1 score impr. | Precision | Precision impr. | Recall | Recall impr.

A MicroSketch 0.925 — 0.93 — 0.92 -
MicroRank 0.834 7 10.9% 0.84 7 10.7% 0.829 | 7 11.0%
tprof 0.413 T 124.0% 0.327 T 184.4% 0.493 | T 86.6%
TraceAnomaly | 0.804 T 15.0% 0.823 7T 13.0% 0.786 | 17 17.0%

B MicroSketch 0.934 - 0.877 - 1.0 -
MicroRank 0.865 T 8.0% 0.90 | —2.6% 0.833 | T 20.0%
tprof 0.545 T 71.4% 0.48 T82.7% 0.631 | T 58.5%
TraceAnomaly | 0.804 T16.2% 0.70 T 25.3% 0.946 | T 5.7%
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Table 4. Comparisons of MicroSketch’s fault locator and baselines

Dataset | Approach R@1 | R@Q1 Impr. | R@2 | R@2 Impr. | R@5 | R@5 Impr. | Exam Score

A MicroSketch | 0.96 | — 0.96 | — 1.0 - 0.16
MicroRank 0.98 || -2.0% 0.98 || -2.0% 0.98 | 12.0% 0.2
tprof 0.64 | 150.0% 0.64 | 7 50.0% 0.70 |71 42.9% 3.12
TraceAnomaly | 0.62 | T 54.8% 0.70 |71 37.1% 0.86 |1 16.3% 1.98

B MicroSketch 1.0 — 1.0 - 1.0 - 0.0
MicroRank 1.0 0.0% 1.0 0.0% 1.0 0.0% 0.0
tprof 075 |1333% |0.75 |133.3% |1.0 |0.0% 1.0
TraceAnomaly | 0.875 | T 14.3% 0.875 | 1 14.3% 0.875 | 1 14.3% 1.125

MicroRank and TraceAnomaly achieve over 0.8 in F1 score. However, MicroS-
ketch achieves the best result on both A and B with an average of 40.9% improve-
ment in F1 score. The F1 score of MicroSketch outperforms the compared unsu-
pervised approaches by 10.9%~124% on A and by 8.0%~71.4% on B. tprof per-
forms poorly because tprof detects anomalies using simple ratio relationships.

Root Cause Localization. Table4 compares the overall effectiveness of RCA.
The RQ1 results of MicroSketch on A and B are 0.96 and 1, respectively. MicroS-
ketch achieves an average of 25.0% improvement in RQ1. The ES of MicroSketch
achieves 0.16. MicroRank works better in RCA since MicroRank fully leverages
PageRank and Spectrum technology and takes a lot of time to get a convergent
result. tprof intuitively believes that the more times an operation is called and
the longer time it takes, the more anomalous it is. In the operation and main-
tenance phase, the uncommon pattern should be more concerned rather than
the time-consuming pattern. TraceAnomaly analyzes root causes by one specific
anomalous trace rather than combining all available traces.

5.2 Adaption

80 Product scale Inject -
product-2 Rank List
g 60 with 120 ms i 1. product-2
A 40 latency o 2. recomendation-2
20 5|3 recomendation-1

0 X el
19:00 1930  20:00  20:30  21:00  21:30  22:00

Fig. 7. The anomaly score varies from 19:00 to 22:00 about three hours in Hipster-
Shop. At 20:17, product service instances increase from 2 to 3. This is shown in blue
slash shadow. At 21:14, we inject product-2 instance with 120 ms latency and this is
shown in the red grid shadow. (Color figure online)
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Figure 7 demonstrates the adaptability of MicroSketch to changes in system
topology. In Fig.7, the topology of Hipster-Shop changes due to the product
service’s auto-scaling at 20:17. MicroSketch perceives that the pattern of trace
data is out of the way and gives the system a high anomaly score at 20:18. Since
the topology change is stable, MicroSketch adapts to the new pattern and the
anomaly score gradually returns to normal again. At 21:14, we actively inject
a latency fault to product-2, one of the instances of product service. At 21:15,
MicroSketch successfully detects anomaly and localizes the root cause (product-
2). MicroSketch also owns the ability to adapt to other forms of service changes,
such as service update.

Table 5. The overhead of the entire MicroSketch and single modules of MicroSketch.

Module CPU utilization (%) | Memory usage (MB) | Time(s) | Note
MicroSketch 1242 200 £+ 20 1.1+0.3 | 10000 traces
Status encoder 12+2 170£10 0.9£0.2 | 10000 traces
Anomaly detector | 12+ 2 180410 0.2+0.1 |1 time interval
Fault locator 12+£2 1204+ 10 0.001 1 anomaly

5.3 Overhead

Table 5 shows the overhead of various modules of MicroSketch. Status Encoder
consumes about 12% CPU utilization, 170 MB memory and 0.9 s to encode 10000
traces as status vector. Anomaly Detector takes about 12% CPU utilization, 180
MB memory and 0.2's to detect whether a vector is anomalous or not. Fault Loca-
tor spends very little time which is smaller than 0.001 s and consumes 12% CPU
utilization and 120 MB memory. The whole MicroSketch costs about 12% CPU
utilization, 200 MB memory and 1.1s to analyze 10000 traces. Compared to the
overhead of other baselines in Table 1, MicroSketch reduces the memory usage
by about 50% and is at least 60x faster. MicroSketch is more lightweight because
MicroSketch exploits two efficient data structure DDSketch and RRCForest with
a low complexity.

Status Encoder’ space complexity is sublinearly related to the number of
traces in the time interval, and the time complexity is linearly related to the
number of traces in the time interval. Anomaly Detector’s space complexity
is linearly related to the product of tree size and tree number, and the time
complexity is sublinearly related to the product of tree size and tree number.
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Fig. 8. Comparisons of exact quantile, DDSketch and extended DDSketch. (a) The
exact quantiles vs. the values estimated by DDSketch and extended DDSketch. (b)
The exact p90 vs. the estimated p90 of a data stream (20 batches of 100,000 values).
(c) The consuming time of exact quantile and extended DDSketch.
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Fig. 9. Comparisons of exact quantile and sketch technology. (a) The time using exact
quantile and the time using sketch. (b) The memory usage using exact quantile and
the memory usage using sketch. (¢) The improvements that sketch brings.

5.4 Sketch Technology

Efficiency and Error. Figure 8-a shows that extended DDSketch has the same
relative-error guarantees as DDSketch on the tail data. However, extended DDS-
ketch reduces bucket usage at the cost of losing the relative-error guarantees on
the head data which we barely focus on. We employ extended DDSketch on 20
batches of 100000 values to calculate the p90 and the result is shown in Fig. 8-
b. The estimated p90 always keeps relative-error guarantees. The relative-error
guarantees ensure that the estimated quantiles can be used for the following
modules. We implement quicksort to calculate exact quantiles. Figure 8-c¢ shows
the consuming time of exact quantile and extended DDSketch. The time of cal-
culating the estimated value is much less than the exact value when the number
of data increases.

Ablation. For MicroSketch, sketch technology is not indispensable. We remove
the sketch technology from Status FEncoder and use exact quantile instead of
it. We analyze various numbers of traces in the time interval. Figure9-a and
9-b show that the overhead of exact quantile rises dramatically as the number
of traces increases, but the rise of sketch technology is relatively flat. Figure9-
c presents that the sketch technology achieves 170% improvement on time and
25.0% improvement on memory usage by analyzing 100000 traces. Thus, MicroS-
ketch can scale up readily in large microservice systems.
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5.5 Sensitivity

Tree Size and Tree Number. Tree size, which determines how many vectors
RRCTree maintains, is a key parameter for our model. Tree number means how
many RRCTrees MicroSketch creates and also is significant. We set the different
values for these two parameters and conduct experiments on A. Figure 10 shows
that the difference between the maximum and minimum values of F1 score is
3%. Figure 11 shows that larger parameters can achieve a better result on RCA.
However, non-optimal parameters also work well and achieve 91%-95% in R@1.
In conclusion, MicroSketch is not sensitive to these two parameters.
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Fig. 12. The performance of our model using various statistics.

Statistical Magnitude. We replace the p90 in the status vector with other
statistics. Figure 12 presents that different statistics have different effects. The
maximum and minimum values do not work well because of the system jitter.
Other simple statistics, such as mean, standard deviation and variance, are easily
influenced by a few extremums and lack the ability to perceive issues that slightly
affect only part of the requests. Therefore, quantile is a splendid statistic for
profiling data. Specific quantile forms specific feature. In practice, it is essential
to apply various key quantiles simultaneously in MicroSketch.

6 Discussion

MicroSketch forms sketch-based features for anomaly detection and combines the
information provided by all anomalous invocations for root cause localization.
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Therefore, MicroSketch keeps its effectiveness. However, there are some limita-
tions. Firstly, MicroSketch focus on the detection and localization of performance
issue, so it is helpless over the faults which manifest in other forms. Secondly,
MicroSketch relies on trace data. The credible trace architecture of microservice
systems is an important part to ensure the effectiveness of the method.

7 Related Work

Anomaly Detection. Both TraceAnomaly [10] and Nedelkoski [12], use deep
learning method to learn normal patterns of traces offline and detect anomalous
traces online. They are useful to detect trace anomalies. However, they require
a long time to train the model. Further, when the microservice system changes,
they have to retrain the model. Compared to them, MicroSketch does not need
training and owns the ability to adapt to the system without any human inter-
vention. Seer [3] leverages deep learning to learn spatial and temporal patterns
with the KPIs of each service. Hora [13], based on monitored time series met-
rics, combines architectural knowledge with Bayesian networks to determine the
occurrence of performance issues. Microscope [8] detects anomalies by compar-
ing the KPIs with the SLOs of the application. Fully leveraging various types of
KPIs, these methods can detect more comprehensive anomaly types. Instead,
MicroSketch focuses on detecting performance anomalies and localizing root
causes more efficiently and effectively.

Root Cause Localization. Zhou [21] designs a trace visualization tool, which
allows application operators manually analyze anomalous traces. This tool is very
practical but labor-intensive because of the large scale of traces. While MicroS-
ketch provides automatic anomaly diagnosis and RCA. MicroRank [18] analyzes
clues provided by normal and abnormal traces and utilizes spectrum techniques
to localize root causes. tprof [6] hierarchically groups traces by request type and
trace structure and calculates increasingly detailed aggregated statistics. These
two methods spend a lot of time on obtaining fine-grained and convergent local-
ization results. Compared to them, MicroSketch is at least 60x faster and more
suitable for large-scale systems. As the number of traces grows, MicroSketch will
be more advantageous. Many RCA methods are based on KPI, such as Monitor-
Rank [7], Sieve [17] and Causelnfer [1]. MonitorRank [7] forms a system topology
graph and uses the personalized PageRank algorithm to determine possible root
causes. Sieve [17] reconstructs the system topology and infers possible root causes
by representative KPIs. Causelnfer [1] builds a two-layered hierarchical causal-
ity graph and uses statistical methods to infer root causes. MicroSketch utilizes
traces, which carry request information about invocation paths and latency of
these invocations, to acquire an API-level system topology that helps to precisely
localize root causes.

8 Conclusion

This paper presents MicroSketch, an unsupervised lightweight approach to
detect performance issues and localize root causes in microservice environments
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via Sketch-based features and adaptive RRCForest. MicroSketch can adapt to
changes in microservice systems. The experimental evaluation demonstrates the
efficiency and effectiveness of MicroSketch. Moreover, MicroSketch is at least 60x
faster than other methods in terms of diagnosis time. In practice, MicroSketch
overcomes the challenges imposed by the large scale of traces and the dynamic
of microservices, and can scale up readily in large microservice systems.
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Abstract. In this work, we focus on by-design global scaling, a tech-
nique that, given a functional specification of a microservice architec-
ture, orchestrates the scaling of all its components, avoiding cascading
slowdowns typical of uncoordinated, mainstream autoscaling. State-of-
the-art by-design global scaling adopts a reactive approach to traffic fluc-
tuations, undergoing inefficiencies due to the reaction overhead. Here, we
tackle this problem by proposing a proactive version of by-design global
scaling able to anticipate future scaling actions. We provide four con-
tributions in this direction: i) a platform able to host both reactive and
proactive global scaling; ii) a proactive implementation based on data
analytics; iii) a hybrid solution that mixes reactive and proactive scaling;
iv) use cases and empirical benchmarks, obtained through our platform,
that compare reactive, proactive, and hybrid global scaling performance.
From our comparison, proactive global scaling consistently outperforms
reactive, while the hybrid solution is the best-performing one.

Keywords: Microservices + Architecture-level scaling - Predictive
scaling

1 Introduction

Modern Cloud architectures use microservices as their highly modular and scal-
able components, which, in turn, enable effective practices such as continuous
deployment [1] and horizontal (auto)scaling [2]. Although a powerful resource,
scaling comes with its own challenges. As Ghandi et al. [3] put it:

[...] it is up to the customer (application owner) to leverage the flexi-
ble platform. That is, the user must decide when and how to scale the
application deployment to meet the changing workload demand.
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Background. Our work focuses on global scaling [4-9]; which orchestrates the
scaling of all microservices in a given architecture. This contrasts with local scal-
ing, intended as the mainstream interpretation of (auto)scaling [2], which scales
microservices in an uncoordinated way. Performance-wise, local scaling suffers
from domino effects, also called bottleneck shift, where the uncoordinated scaling
actions cause waves of cascading slowdowns and possibly generate outages [4,10].

Problem. Existing global scaling approaches focus on smoothing out domino
effects [4,6,8] or on removing them by design [5,7,9]. This “by-design” approach
performs the coordinated scaling of the microservices based on a quantification
of their functional relations. However, existing work on by-design global scaling
only focused on reacting to fluctuations of inbound traffic, wasting time to the
detriment of customers, who can endure delays, downtimes, and receive a lower-
than-expected level of service.

Contributions. In this paper, we challenge the existing reactive interpretation of
by-design global scaling—hereinafter, we omit the “by-design” suffix. We hypoth-
esise that global scaling might endure some performance inefficiencies due to its
reaction overhead, which is the starting point of our contributions.

In Sect.2, we present a platform able to host both reactive and proactive
global scaling, e.g., it allows users to programmatically switch between the two
approaches. We simulate an ideal, oracle proactive global scaler, and we show
empirical benchmarks of the inefficiencies of reactive global scaling and of the
possible gains of proactive global scaling.

In Sect.3, we introduce a proactive global scaling implementation based on
analytics [11]. We present a use case on email traffic from the Enron dataset [12].
We benchmark this implementation, which overcomes the limitations of its reac-
tive counterpart and approximates the ideal performance of the oracle

In Sect. 4, we present an algorithm that (deployed in our platform) integrates
proactive and reactive global scaling. Benchmarks on the Enron use case show
that this hybrid approach is the best-performing one.

Our datasets, trained models, and simulations are publicly available at [13],
which also contains a containerized version of the testbed.

2 Proactive Global Scaling

We introduce a platform that DevOps can use to perform proactive and reactive
global scaling. In doing so, we do not start from scratch, and we build on previous
work on global scaling, proposing a redesign able to capture proactive scaling on
the existing reactive global scaling platform from [5,7,9]. Our new architecture is
immediately useful. We use it at the end of this section to quantify the untapped
potential of proactive global scaling—comparing the performance of reactive
local and global scaling vs an ideal, oracle proactive global scaler. We use our
platform also later, in Sects.3 and 4, to benchmark our implementations of
proactive and proactive-reactive scalers.
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Global Scaling. In global scaling, the user provides a specification of the scaling
constraints of each component of a given architecture, both in terms of nec-
essary resources (such as CPU and memory) and of its dependencies on other
microservices (e.g., microservice M; needs two copies of the microservice Mo
to run properly). Then, given one such specification, and using dedicated res-
olution engines [5], deployment plans can be computed such that: i) scale the
whole architecture w.r.t. an expected increase/decrease of inbound traffic; ii)
respect (if any) the constraints of resource allocation and dependency of the
scaled microservices; iii) optimise the plan towards some set goals, e.g., minimis-
ing the cost of running the scaled architecture, i.e., using the minimal amount
of virtual machines that supports the execution of the scaled architecture.

2.1 Design of a Proactive-Reactive Global Scaling Platform
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Fig. 1. Architectural view of the proactive-reactive global scaling platform.

We depict the architecture of the platform in Fig. 1, which includes two kinds of
elements. The components found in the “cloud” are the microservices of a given
architecture, labelled G, M1, My, Mgs. The global scaling platform manages the
scaling of these microservices. Since the platform sees microservices as instance
parameters, we abstract from their actual behaviour and use them in examples.
The other elements in Fig.1 are the components of the platform. Specifically,
the elements with continuous-line borders are the ones inherited from previ-
ous work [5,7,9]. The main new elements, drawn with a dotted border, are the
Predictive Module and the Actuation Module.

For completeness, we first describe the elements of the platform already
present in the original proposals [5,7,9], and then dedicate to the new com-
ponents for proaction, i.e. Actuation and Predictive Modules. Before doing so,
we highlight the three kinds of flows in Fig. 1: continuous-line arrows — show
the traffic addressed to the microservice architecture; dashed-line arrows --»
regard the runtime execution of global scaling; the thick arrow < indicates the
compilation time of deployment plans.
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Deployment Orchestration Engine. This component performs the actual scal-
ing, (de)allocating replicas of microservices. It is a loosely-coupled component
of the platform, taken from existing solutions (the only requirement is that it
provides a programming interface for the application of deployment plans), such
as Kubernetes.

Deployer. The Deployer implements the Maximum Computational Load (MCL)
scaling algorithm and the deployment strategy proposed in [9], and it regards
two flows. The first one, represented by < , regards the computation of the
deployment plans, applied by the scaling --+ . As such, this process is asyn-
chronous w.r.t. both the scaling and the traffic flow — . In < | the Deployer
takes the specifications given by the user (DevOps in Fig.1) and computes the
deployment plans that satisfy the Resources needed by each microservice (e.g.,
M; needs 1 CPU and 1 Memory), the Dependencies among the microservices
(e.g., microservice My needs two copies of My to work), and the Deployment
Constraints of different scaling targets. Since these deployment plans represent
differential increments/decrements in microservice replicas, we call them deltas.
The second flow, that of the runtime scaling --+ ;| runs alongside the inbound
traffic — . In this case, the Deployer acts as a service that other components
call to trigger the application of a target, computed delta. Upon activation,
the Deployer interacts with the Deployment Orchestration Engine to perform the
scaling.

Monitor. In its original formulation, the monitor tracks the traffic flowing on the
architecture within a prefixed time unit and checks the possible occurrence of
a workload deviation, i.e., a discrepancy between the current, tracked workload
and the expected one, correspondent to the delta currently applied. When such
a condition occurs, the Monitor triggers the Deployer to apply the delta that
corresponds to the current traffic load. To support proaction, we break the above,
direct relation between the Monitor and the Deployer, as detailed below.

Actuation Module. This is the first component we introduce to support the
coexistence of proactive and reactive global scaling. This is achieved by break-
ing and controlling the once-direct triggering relation between the Monitor and
the Deployer, i.e., it is now the Actuation Module that decides when/whether to
trigger the Deployer. This redesign allows the seamless coexistence of the previ-
ous reactive modality with the new proactive one. Indeed, to obtain the same
behaviour of the original proposal, we just need to set the Actuation Module in
“passive” mode and let it forward triggers from the Monitor to the Deployer.
When active, the Actuation Module can choose to act independently of the traf-
fic, e.g., choosing to ignore information coming from the Monitor and trigger the
Deployer according to signals coming from other sources, e.g., from the Predictive
Module, described below. As discussed in Sect. 4, the Actuation Module is where
the DevOps defines algorithms that can dynamically decide when to follow the
anticipated scaling from forecasts or react to the signals from the Monitor.
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Predictive Module. The Predictive Module acts independently of the actual
inbound traffic forwarding the prediction to the Actuation Module. For instance,
the Predictive Module can use a static model, e.g., forecasting traffic peaks at pre-
determined times, or sophisticated techniques to have more accurate predictions
of traffic fluctuations, e.g., based on data analytics. In Fig. 1, we represent the
input of the Predictive Module with the greyed-out arrow receiving information
from the traffic flow and stores it into a time series dataset for further usage.

2.2 Benchmarking the Platform

To run our benchmarks, we relied on simulations. Specifically, we modelled our
platform and the scaling approaches via the ABS programming language [14],
compiling it into a system of Erlang programs that run the simulation. These
programs and their execution environment form the test-bed of all our simula-
tions, and we provide it as a container in the companion repository [13].

The simulation receives three kinds of inputs, which are statically defined
within a simulation run: a real inbound workload (RIW), a predicted inbound
workload (PIW), and the deployment plans (DP). The simulation combines these
inputs to benchmark the performance of a target microservices architecture.

Notably, while we fix all inputs in simulations, this diverges from real execu-
tions only on the source of RIWs. Indeed, in real executions, RIWs corresponds
to the traffic reaching the architecture, while, in our simulations, we generate
RIWSs beforehand—specifically, from samplings of actual traffic. RIW apart, also
in real executions PIW and DP are normally computed before their utilisation
time-window. For instance, since they tend to be time-consuming calculations,
one can compute PIWs and DPs for the coming day during the preceding night.

Since our simulator is parametric to a target microservices architecture, we
fix one for the benchmarks throughout this paper: the Email Pipeline Processing
System from Bacchiani et al. [9], which includes twelve microservices, each with
its own load balancer for distributing requests over the available replicas.

2.3 Reactive Local vs Reactive Global vs Proactive Global Scaling
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all requests received between 9 a.m. and 10 a.m. within a corresponding logical
time unit). In this benchmark, we draw the traffic flow from [9].

Technically, the oracle knows the exact number of incoming requests and
anticipates by one time unit the triggering of the Deployer and the related provi-
sioning of resources. Here, we assume that a time unit is enough for the Deployer
to (de)allocate the necessary resources before the traffic arrives.

As mentioned in the previous section, to run the benchmarks for the global
reactive case, we disable the Predictive Module. Indeed, we obtain the same results
from [9], with the only difference that we modified the Monitor to keep track of
the maximum inbound workload, while Bacchiani et al. [9] use the average.
We deem this choice sensible, since it provides results consistent with those
of Bacchiani et al. [9], but it is less sensitive to irregular workloads. Also the
implementation of the oracle is straightforward: we provide the Predictive Module
with the considered traffic flow, shifted by one time unit, so that the Actuation
Module anticipates the overhead of triggering the Deployer and applying the delta
to handle the traffic of the next time unit. Finally, we adopt the same program
(defined in ABS and run with Erlang) Bacchiani et al. [9] used to simulate
reactive local scaling for that architecture.

Notably, while the traffic flow (generator) from [9] follows a fixed curve, it
generates email attachments randomly. This is the only information unknown to
the oracle that we expect to impact on its (otherwise non-existent) latency.

In Fig.2, we show the comparison between oracle proactive global scaling,
reactive global scaling, and local scaling. From the results, local scaling is the
worse-performing one, due to both the reactive overhead and the domino effect
(see Sect. 1). Reactive global scaling does not suffer from the latter phenomenon,
but (confirming our hypothesis) it endures the overhead of applying deltas in
response to traffic fluctuations (e.g., while the scaling takes effect, new messages
arrive that are enqueued, increasing latency). As expected, the oracle performs
almost perfectly and shows minimal latency at the time units between 14-16,
likely due to the number of attachments in emails that exceeded the expected
average considered in the deployment plans (this parameter is the same across
all three modalities).

To give a quantitative intuition of the performance gap between the ideal
proactive oracle and the other reactive approaches, we report the Area Under
Curve for the latencies, in seconds, computed using the composite trapezoidal
rule: oracle 0.1, reactive global scaling 13, reactive local scaling 29.

Summing up, while reactive global scaling already outperforms reactive local
scaling (ca. 44% reduced latency), having an implementation that approximates
the behaviour of the proactive oracle could further increase the performance of
global-scaling system (ca. 70% reduced latency).

Notably (as illustrated later in Sect.3) (de)allocating resources in advance
does not have drawbacks from the point of view of costs, since resources are
also (de)allocated earlier than in a reactive approach—indeed, by definition, the
oracle does not change the scaling sequence applied also by the reactive global
scaler, but rather anticipates them by one time unit.
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3 Analytics-Based Proactive Global Scaling

Given the promising results from Sect. 2, we demonstrate how one can develop
a realistic proactive global scaling implementation, i.e., using a state-of-the-art
data analytics technique to obtain a predictor and integrating it in our Predictive
Module. Here, we introduce the steps of general data analytics and we specify
how these impact the workflow of Fig. 1. Next, we concentrate on the use case
and how we applied data analytics to build the predictor. Finally, we compare
our implementation of analytics-based proactive global scaling against oracle
proactive global scaling (similar to the one presented in Sect. 2) reactive global
scaling, and oracle proactive local scaling.

3.1 Data Analytics for Global Scaling

The Steps of Data Analytics. We provide a general overview of the elements of
data analytics [11] (DA) and then detail how we applied these in our use case.

Using data analytics to predict the occurrence of the event in a given time
unit, we aim to understand which variables influence and describe the phe-
nomenon (descriptive DA). Once we selected the variables, we need to under-
stand which attribute values are most relevant (diagnostic DA). Then, using the
attributes and diagnostic(s) of the phenomenon, we are able to build a dataset
to automatically train a model and infer the outcome of a new instance of the
phenomenon, i.e., an event (of the same nature as the one being studied) not
yet observed (predictive DA). The model created provides a description of all
the observed and new events. Each of the possible outcomes relates with one or
more configurations of the system. Each configuration corresponds to a response
strategy to the occurrence of events similar to those already observed (prescrip-
tive DA). Given a specific system configuration, we can compute its efficiency
and select the one that offers the best cost-benefit trade-off (proactive DA). This
optimal configuration, if any, is the one sent to the actuator.

The Workflow of Analytics-based Proactive Global Scaling. As mentioned in
Sect. 2, we use the new modules introduced in this work in our global scaling
platform (cf. Figure 1), namely the Predictive Module and the Actuation Module,
to capture the steps of data analytics. Specifically, the Predictive Module imple-
ments the steps of descriptive and diagnostic (prepare the dataset) and predictive
data analytics (train and inference) while the Actuation Module realises the pre-
scriptive (define the scaling strategy) and proactive steps (triggering policies).

In pure proactive scaling, the Actuation Module computes the scaling strategy,
given the outcomes of the Predictive Module and directly triggers the Deployer,
disregarding any inputs coming from the Monitor.

Architecture and Dataset used in the Benchmark. After seeing the general work-
flow of analytics-based proactive global scaling, we introduce our use case and
illustrate how each of its parts fit into said workflow.
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However, instead of using the fixed traffic from [9], which provides too little
information to train a data analytics model, we draw our dataset from another,
renowned source—e.g., for training email schedulers and SPAM filters—from the
literature, that has a compatible structure (i.e., email traffic): the Enron corpus
dataset [12], made public by the Federal Energy Regulatory Commission during
investigations concerning the Enron corporation (version of May 7th, 2015). The
dataset contains 517,431 emails from 151 users, without attachments, distributed
over a time window of about 10 years (1995-2005).

Descriptive and Diagnostic DA in Predictive Module. Leveraging the pre-
processing routine from [12], we perform the cleaning procedure of the Enron
dataset for classification tasks, and then we extract the attributes for predicting
the number of incoming emails for a given time. First, we extract the datetime
attribute for each email in the dataset, and then we sum the number of emails
in the desired monitored time unit—i.e., one hour—for each month of the year,
day of the month, and day of the week. Thus, we generate five new attributes:
month, day, weekday, hour, and counter—the target—for each dataset instance.
This gives us a representation of the email flow in the system at a given hour.
The intuition for such a pre-processing is simple. The phenomena of increase or
decrease in the flow of emails that occur in a company depend on factors such
as the specific time of the working day (peak in the early hours versus the night
hours), the month (monthly, bimonthly, etc. deadline), the day of the month
(salary) or the day of the week (weekdays versus holidays).

Predictive DA in Predictive Module. For the predictive phase, we use off-the-
shelf machine learning technique, specifically MLP (Multi-Layer Perceptron),
which is capable—in contrast with purely linear models, e.g., linear regression—
of exploring nonlinear patterns and increase prediction performance while con-
taining complexity (about 7Tk parameters) and resource usage (about lms infer-
ence time). We categorise the numerical variables using the standard one-hot
encoding technique, to prevent our model from attributing wrong semantics to
these (e.g., month 12 is “greater than” month 1), resulting in a data represen-
tation of 70 attributes plus the counter target.

Then, we followed the traditional training process for machine learning. We
partitioned the cleaned, processed data into three sets: one for training the neural
network model, one for validating its hyperparameters (the parameters of the
training process and network architecture), and one for testing the accuracy of
the model. We use this last set to compute the error rate of the model.

The neural network used in the training process consists of three fully-
connected layers. We applied the Rectified Linear Unit (ReLU) nonlinear activa-
tion function to the output of each layer. Each level compresses the input into a
smaller representation, going from 70 to 64 attributes, in the first level, and from 64
to 32 attributes, in the second level. Finally, the 32 attributes are linearly projected
into a single value, corresponding to the target of the regression. To compute the
error rate, we adopt the loss function Mean Squared Error (MSE). To optimise the
network parameters we use Adaptive Moment Estimation (Adam). We performed
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the training process with a learning rate of 0.1 and an exponential decay scheduler
with gamma 0.9.

After the training, given a time slot—the tuple month (1-12), day (1-31),
weekday (1-7), and hour (0-24)—the predictor forecasts the amount of emails
incoming therein.

This is the third and last step of the data analytics workflow that concerns the
Predictive Module. Here, we embedded the trained model to make the Predictive
Module yield a prediction of the expected traffic, given a target time slot.

Prescriptive and Proactive DA in Actuation Module. The last two steps of the
data analytics workflow are the prescriptive and proactive ones. We realise these
in the Actuation Module. Since we implement pure predictive autoscaling, the
prescriptive step is straightforward: we follow the prediction from the Predictive
Module. The proactive step is the implementation of the strategy, where we
forward of the expected traffic from the Predictive Module to the Deployer.

3.2 Benchmarking the Performance of Analytics-Based Global
Scaling

Analytics-Based Proactive vs Reactive and Oracle Global Scaling. To give an
intuition of the effectiveness of our analytics-based proactive global scaler, we
test its performance against reactive global scaling [9] and an oracle similar to
that seen in Sect.2—also here, simulated by fixing a traffic flow and applying
the related deltas one time-unit before the actual execution time.

Consistently with the oracle in Sect.2, we do not fix also here the number
of attachments in inbound emails but define them randomly. This comparison
mainly aims at showing the performance gap between the analytics-based proac-
tive and the oracle proactive variants (i.e., how close the former approximates
the ideal proactive scaler), keeping reactive global scaling as a baseline for the
comparison. To this aim, we report latency, message loss, cost, and number of
deployed microservices. All benchmark tests shown in this section are performed
on email traffic on a weekday in May 2001.

Considering latency, as shown in Fig. 3a, reactive scaling is the worst and
presents high peaks of latency when the inbound workload grows. The oracle,
similarly as in Sect. 2, is barely visible because, by construction, it knows in
advance the exact amount of inbound messages, thus, it anticipates required
scaling actions, with negligible latency. Performance-wise, our analytics-based
global scaler closely approximates the oracle. Indeed, it mainly differs in two
small spikes, imputable to inaccuracies in the workload predictions. Since latency
and message loss (see Fig.3b) are strictly related, we have similar conclusions:
the oracle loses no messages, followed by the analytics-based one, while reactive
scaling loses the most, at sudden peaks of workload. The number of deployed
microservices and costs are also directly proportional, as seen in respectively
Fig. 3c and 3d. Despite the sensible performance difference between the oracle,
analytics-based, and reactive scaling, the costs/number of deployed instances are
the same, although shifted by a time-unit backwards. The reason is that, since
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Fig. 3. Comparison between reactive, analytics-based proactive, and oracle-based
proactive global scaling approaches.

the traffic is the same, resource (de)allocations are the same across all scalers,
although these happen one time-unit in advance in the oracle and analytics-based
proactive cases—divergences of the analytics-based proactive scaling derive from
inaccuracies of the trained predictor.

Analytics-Based Proactive Global Scaling vs Oracle Local Scaling. We also com-
pare our analytics-base proactive global scaler with oracle local scaling in Fig. 4a
and Fig. 4b, i.e., a scaler that knows the future traffic of each microservice in an
architecture and performs microservice-level scaling in advance. The purpose of
this test is to give empirical evidence of the benefits of global vs local scaling,
which holds in the reactive case—as proven in [9]—as well as in the proactive
one (oracle and analytics-based). The rationale is that, if we show that analytics-
based proactive global scaling outperforms ideal proactive local scaling, then i)
the latter performs worse than the oracle global scaler and ii) the former out-
performs any analytics-based local scaling.

In this experiment, we focus on the evaluation of the same performance as in
the previous benchmark, but, for brevity, we only report latency and the num-
ber of deployed microservices measures, since these are proxies for the respective
other two, directly-proportional measures: message loss and costs. Starting from
latency, reported in Fig. 4a, analytics-based proactive global scaling outperforms
ideal proactive local scaling. The former has almost 0 latency throughout the entire
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Fig. 4. Comparison between analytics-based proactive global scaling and oracle-based
proactive local scaling.

experiment, except for little spikes within time unit 17. The latter struggles to
adapt to rapid changes in inbound requests (intervals 13-18 and 5-6). The deteri-
oration in performance of the oracle-based local scaling is caused by the so-called
“domino” effect, i.e., single services scaling one after the other, causing chained
slowdowns [9]. Besides worsening the performance, the domino effect also limits
the predictive power of the local approach: the first microservice in a call chain is
the one that anticipates the scaling, while the other ones cascade-scale only after
that moment. This uncoordinated scaling leads to situations where the overheads
of scaling accumulate sequentially (instead of executing in parallel, as in the global
case), degrading performance. The presence of the domino effect is witnessed in
particular in Fig. 4b. In analytics-based proactive global scaling, the number of
deployed instances reaches the target amount to handle the inbound workload as
soon as it is foreseen by the proactive module. Instead, the ideal proactive local
scaler can only grow the number of deployed instances linearly over time, follow-
ing the chain of scaling/forecast of the single microservices.

Limitations of Analytics-Based Proac-

tive Global Scaling: QOutliers. The
. analytics-based proactive approach
) presented in this section proved to
be quite effective. However, predic-
! tors are mnot infallible: if the traf-
. fic greatly deviates from the histori-
cal data, due to some unprecedented
occurrence, the predictor can fail to
provide an accurate estimation of the
traffic.

This fact, considered in the con-
text of purely analytics-based global
scaling (like the one implemented
above) where scaling decisions neglect actual traffic fluctuations, can result in

Analytics-based Proactive scaling Actua

nnnnn

urs) '

Fig.5. Latency of the analytics-based
proactive global scaling on the outliers test
set.
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over- (wasted resources) or under-scaling (latency, request loss) of the system.
To illustrate how much this phenomenon can affect performance, we selectively
picked outliers from the test set described in Sect. 3.1 and used these to produce
a traffic flow that our predictor would struggle to forecast. As shown in Fig. 5,
when unpredicted peaks occur, latency grows, causing performance deteriora-
tion. In the next section, we propose a solution that overcomes this limitation
by mixing reactive and proactive global scaling.

4 Proactive-Reactive Global Scaling

The fact that predictors are weak against exceptional events is a well-known fact
(see Sect.5), which we concretely showed (see Sect.3) can affect pure proactive
global scaling too, resulting in the application of inappropriate deltas (either
wasting resources or degrading the level of service). In this section, we propose
a solution to this limitation, mixing proactive global scaling with reactive global
scaling. Our global-scaling platform architecture (Sect.2) simplifies this task: we
program the Actuation Module to calculate an accuracy threshold which defines
when to follow the forecasts of the Predictive Module or switch to the reactive
signals of the Monitor.

Our algorithm does not rely on comparing the estimated and actual number
of inbound requests in a given time unit. The reason is that the dynamic inter-
action between message queues and scaling times makes it difficult to reliably
estimate the accuracy of the predicted scaling configuration w.r.t. traffic fluc-
tuations. Hence, we introduce a new, stable estimation, rooted in the workload
measure defined below.

Our idea is to use the Maximum Computation Load (MCL) from [9], which
measures the capacity of a system configuration to handle a given workload.
Using the MCL, we cast the comparison as the capacity of the system to deal
with a given workload, defined by its current scaling configuration. Hence, we
have a way to estimate both over- and under-scaling of proactive global scaling,
given by the distance between the MCL (of the scaling configuration) induced
by the actual traffic.

Our estimation considers statically-defined scores for each architectural
reconfiguration increment (allocating new system resources, i.e., service instances
and bindings [9]), called Ascale. Hence, each Ascale has associated a score s, com-
puted on the basis of the increment in system MCL (i.e., the maximum supported
workload for a given inbound traffic). Following [9], we have i € [1, 4] different A
scale; plans, which are applied sequentially (in the exceptional case Ascaley is
not enough, we restart from Ascaley, see [9]). For each Ascale; we have a differ-
ential system MCL increment of: AMCL, = 60 for Ascale; and AMCL; = 90

for Ascale; with 2 < i < 4. Given AMCL;, we compute s; = %.
j=1 J

Notice that this yields Z?zl s; = 1.
Then, for each time unit ¢, we compute our estimation following these 3 steps.
In step 1, we calculate, for each index 4, the absolute value |diff;| of the
difference between the Ascale; of the predicted workload and the observed
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Fig. 6. Comparison between hybrid and pure proactive (analytics-based) global scaling,
on the outliers test set.

one at time ¢. Then, we compute a weight w € [0,1] that we later use
to combine the predicted workload and the measured one. Since |diff;| > 1
only happens in exceptional cases (when Ascaley is not enough), we compute
w = min (2?21 si - | diff ;] 1).

We keep track of the values w computed in the last 3 time units using
function h = {(1,wi—2), (2,ws—1), (3,wt)}, where w; is the weight computed
for the current time unit and w;_o, wy;—; are the preceding ones. The pairs
(1,wi—2), (2,w;—1) are included in h only if the system was already running at
those times.

In step 2, we compute the overall weight overall w = M of t. In

(i,-)eh
particular, w - ¢ means that the most recent w is the most influential one in the

sum. The overall weight indicates the distance between the measured workload
and the predicted one. Specifically, the closer the overall weight is to 1 the more
distant the prediction is from the actual workload.

In step 3, we linearly combine the predicted and the measured workload
through overall_w to estimate the workload used by the global scaler to com-
pute the current system configuration: workload_estimation = (overall_w -
workload_measured) + ((1 — overall_w) - workload_predicted).

Benchmarking the Performance of Proactive-Reactive Global Scaling. In the fol-
lowing, we benchmark our hybrid global scaler in two ways. First, we compare
the hybrid scaler against the pure proactive global scaler from Sect. 3. Second,
we compare our hybrid scaler with an alternative implementation from the lit-
erature [4]. In both benchmarks we re-use the same highly-volatile traffic used
in Sect. 3.

Proactive- Reactive Global Scaling vs Pure Proactive Global Scaling. Similarly to
what done in Sect. 3 , we report only latency (Fig.6a) and number of deployed
microservices (Fig. 6b), which are proxies for message loss and costs.

From Fig. 6a, hybrid local scaling rapidly recovers from wrong predictions,
while pure proactive scaling neglects unexpected traffic fluctuations. This is vis-
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ible, e.g., in the interval 11-13, where the pure proactive scaler expects fewer
requests and endures high latency. Also the hybrid scaler initially undergoes
high latency, but, detecting the diverge with the predictions, it assumes a reac-
tive stance and quickly adapts. Note that the latency of the hybrid global scaler
in the timespan 18-19 is “good”. Indeed, while the workload drops between
15-17, the pure proactive scaler allocates a high number of microservices (cf.
Figure 6b), wasting a lot of resources. Contrarily, the hybrid scaler (reacting to
the unforeseen change) trades some minor latency off resource savings.

Alternative Hybridisation Tech-
niques. Many hybrid local scaling
techniques, see Sect.5, use local
metrics (CPU, memory) that can-
not directly translate into global
scaling ones. This is because
we would need a global mea-

sure out of the local ones, how- ‘ ||

ever none of them provide a I
method to obtain this aggre- Ll
gate global measure (understand-

?‘bly= because. they are interested Fig. 7. Comparison of the workload obtained
m loc'al scaling). '.Therefo.re, for (in our hybrid approach and that of [4]) by mix-
the aim of comparison with our ing the actual and forecasted one.

hybrid global scaler, we cannot
translate the local scaling algorithm used in such techniques into a global one.

We are instead able to compare our algorithm with the global one of [4],
which, like us, computes the target workload (used for scaling) in terms of
received requests per time unit. We implement the algorithm proposed in [4]
into an alternative hybrid global scaler and benchmark it using the outliers test
set. We report in Fig.7: the workload of the actual traffic, of the forecasted
traffic, and the target workload of our hybrid scaler and that of [4].

As shown in Fig. 7, both techniques adjust underestimations, i.e., they do
not let the system degrade its level of service. However, the alternative imple-
mentation is not able to adjust overestimated predictions (range 15-18), which
end up wasting resources (and money)—a shortcoming reported in [4]. Besides
this qualitative trait, quantitatively, our mixing approach is more accurate than
that of [4]. In range 11-14 of Fig. 7 our scaler approximates the actual workload
on the system. The algorithm of [4] overcompensates the innacurate prediction
with the peaks at 12-13.

" e e s S s s

v 3 om0 o2 0 o e o

B 19w on n
Tine (hours)

5 Related Work

Global Scaling. The strand of work closest to ours [5,7,9] introduced a kind of
reactive global scaling that eliminates domino effects by design; building upon
this we propose our proactive-reactive solution. More distant work on global
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scaling focus on smoothing, rather than removing, the domino effect (called
“bottleneck shifts”) as, e.g.: [6], which however only considers reactive scaling,
and [4], which we already discussed in detail in Sect.4. Besides [4], also [§]
mixes reactive and proactive. The main differences of [8] with our work are: (¢)
the microservice architectures considered in [8] disregard fork-join patterns, i.e.
those accomplishing a task via parallel execution of pipelines as in the use case
we consider (where the analysis of an email requires analysing its subparts, i.e.,
attachments, text body, etc...); (i) the global scaling algorithm of [8] suffers
from the domino effect in that, when global adaptation is triggered, the maxi-
mum number of replicas for each microservice is established only from metrics
obtained by its local monitoring.

Local Scaling. Reactive and proactive local-scaling proposals abound in the lit-
erature (both pure and mixed) [15,16]. Recent examples of pure reactive local
scaling include Bayesian Optimisation techniques [17] and Fuzzy Logic [18].
Researchers already followed this path for the case of local scaling—due in part
to how susceptible local scaling is to domino effects [19]—, also proposing ways
to mix the reactive nature of local autoscaling with proactive elements, e.g., by
forecasting the incoming workload [16]. The proactive mode involves adopting
future workload prediction techniques to create early scaling mechanisms. The
prediction of future system load is usually addressed with probabilistic modelling
frameworks or time series analysis techniques. Mathematical modelling of pro-
cesses entails the usage of techniques such as Markov chains [20], model-checking
or probabilistic time automata [21,22], enabling the analysis and anticipation of
system behaviours. Time series analysis is a data-oriented technique that involves
extracting relevant information from the behaviour of the studied system. The
most commonly used techniques include machine-learning algorithms, such as
k-means [23], neural networks [24,25]—which we also use to maximize accuracy
and precision of our predictor.

Previous work also presented approaches that mixed reactive-proactive scal-
ing at the local level. However, a significant difference between our hybrid global
scaling approach and the local ones is that the latter, for the most part, exploit
local metrics of the virtual machine hosting services (CPU, memory). As argued
in Sect. 4, looking at local metrics is fine as long as we aim at local replications,
however these metrics are not enough to account for functional dependencies
between system requests and local requests to single microservices (which allow
us to eliminate the domino effect). Thus, we cannot directly compare with the
literature on hybrid local scaling and we only draw a coarse comparison. Pre-
vious work also presented local-scaling hybrid reactive-proactive systems. These
improve system behaviour and effectively deal with unexpected traffic fluctu-
ations, while simultaneously benefiting from the analytics-based proactive and
reactive power of the system [24,26]. Industry-wise, the main platforms deliv-
ering Cloud services, e.g., Amazon and Google, offer integrated solutions for
reactive local scaling of resources based on user thresholds or rules for adapting
to the workload [27,28]. Recently, these platforms have introduced predictive
capabilities in their systems [29], exploiting gathered historical information for
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automatic adaptation and orchestrating between reactive and proactive modali-
ties. Following the hybrid approach, we developed our platform to accommodate
both reactive and proactive global modes and showed a possible implementa-
tion (see Sect.4). Specifically, we favour analytics-based proactive scaling and
pass control to the reactive modality when traffic fluctuations exceed some set
accuracy threshold.

6 Conclusion and Future Work

We proposed a platform that can host both reactive and proactive global scaling
and compared the analytics-based proactive and proactive-reactive scaling.

Low-hanging fruits from this work include both the introduction and refine-
ment of analytics-based prediction and hybridisation techniques. For example,
one can use natural language processing to extract complementary features for
the representation of the regression target (in our case, the inbound requests).

Another direction towards using data analytics to help global scaling is help-
ing DevOps in compiling the deployment constraints of the scaling plans (cf.
Fig. 1). In this case, monitors would track how requests hop among the microser-
vices of the observed architecture, and data-analytics techniques would provide
hints for DevOps to quantify the multiplicative deployment factors among the
microservices.
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Abstract. Annotations are program metadata that generates code and
configuration files, among others. Different frameworks provide annota-
tions to facilitate the implementation of microservice applications while
their absence can slow down the maintenance of microservices and their
misuse can lead to potential bugs. In this paper, we propose a novel
semantics-driven learning approach for capturing the relation between
code fragments and annotations, leveraging a Recurrent Neural Net-
work (RNN) and a K-Nearest-Neighbour (KNN) classifier. The approach
locates similar pieces of code to increase the probability of suggesting
annotations of unseen fragments. We utilise PyTorch and Sci-kit Learn
to evaluate our approach with a set of Java code fragments, and we
measure how similar two code fragments are by a number between zero
(close) and one (distant). The results indicate that our semantics-driven
learning framework achieves an average of 87% of correct recommen-
dations of annotations when the code fragments have a distance of 0.4
against the expected annotations subset.

Keywords: Microservice annotations - Semantic analysis - Static
analysis

1 Introduction

Annotations are a form of program metadata that generates code, configuration
files, and warnings, among others. Microservice frameworks provide annotations
to facilitate the implementation of cloud-based applications in terms of the reuse
of features and support for software evolution. However, the misuse of microser-
vice annotations generates potential bugs whose detection requires the analysis
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of multiple logs and source code files. This detection effort is not trivial for
developers since debugging microservices may take days or even weeks.

Developers go through a reduced amount of source code and infer the func-
tionality of code fragments [2]. However, comprehension of programs takes
around 58% of the time spent on software maintenance due to outdated or miss-
ing comments. Similarly, the wrong usage of annotations introduces errors with
unexpected behaviour. Despite the significance of annotations for microservice
development, only a few approaches have worked with annotations [6,7]. Lacking
static analysis on microservice annotations results in a gap between detecting
warnings and correcting errors before deployment. To overcome these issues, it
is essential to match source code with the usage of annotations.

In this paper, we contribute to a novel static analysis approach using
semantics-driven learning of code fragments collected from open-source reposito-
ries. In particular, our approach implements a new mechanism that leverages a
Recurrent Neural Network (RNN) and a K-Nearest-Neighbour (KNN) classifier
to learn the semantic relation of code fragments against their annotations and
predict a suitable annotation.

Moreover, our approach is the first to exploit the relation between code frag-
ments and their annotations. We convert the Abstract Syntax Trees (ASTSs)
representation of Java code fragments to vectors following prior work [4,5]. We
further conduct a set of experiments to identify incorrect or missing annotations
by performing the approach through a simulation tool that extends PyTorch
and Sci-Kit Learn Library. Our results indicate that our semantic learning of
microservice annotations achieves an average of 87% of the correct recommen-
dations of annotations.

2 Preliminaries

2.1 Tokenisation and AST Representation

Tokenisation is a common Natural Language Processing (NLP) task for sepa-
rating the source code into words or tokens. Usually, such techniques take the
AST representation of the source code as input. Specifically, an AST contains
additional semantic information inside a tree structure with a statement denoted
as a node. Note that an AST tree is usually traversed in a preorder manner.

2.2 Vector Representation of Code

Source code files can be transformed into a vector space [4] where the iden-
tification of annotations from source code can be deemed as a transformation
problem as well. Such approaches are widely used in many Al-assisting software
engineering tasks, such as code summarization [8], defect prediction [11], and
fault localization [13].
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3 Proposed Approach

We develop an approach to learn the semantic information of existing code frag-
ments to give suggestions about the declaration of microservice annotations in
a code fragment, as in Fig.1 with Algorithm 1 describing the overall steps.
The output of our approach is a set of suggestions, each composed of an action
followed by an annotation name, e.g., KEEP PostConstruct. We illustrate our
approach by using two actions: (i) ADD action suggests the incorporation of a
missing annotation; (ii) and KEEP action suggests no change in the usage of an
annotation.

Prepare raw data

Transform to vectors

i) List of / d
annotations Predictor
~ 1training = 3 encoded
ii) Dataset of @ V&) dataset 2 subset
classes f:( D> Pre-processor[ Learner
4 predicted
annotations
2 encoder @

©

Find similar code fragments

Predict annotations

iii) Database of
code fragments

Set of actions
for annotations

Search Engine

o

Fig. 1. Conceptual model of our semantics-diven learning approach

Algorithm 1. Semantics-Driven Learning Algorithm

Input: datasets // contains the datasets for training, validate and testing the learning model
Input: database // Java database to search similar code fragments
Input: queries // List of queries to predict annotations and suggest actions

Output: allActions
1: preProcessor « new PreProcessor()
2: learner «— newLearner()

3: predictor «— newPredictor()

4: searchEngine «— newSearchEngine()

5: allActions «— newlList()

6: trainingDataset «— preProcessor.prepare(datasets)

7: encoder «— learner.buildModel(trianingDataset).getEncoder()
8: searchEngine.setDatabase(database)

9: searchEngine.setEncoder(encoder)
10: for each query € queries do

11: encodedSubset «— searchEngine.getClosestCodeFragments(query)
12: predictor.train(encodedSubset)

13: predicted Annotation «— predictor.predictAnnotation(query)

14: action «— searchEngine.suggestAction(predicted Annotation)

15: allActions.add(action)

16: end for

3.1 Pre-processor

The pre-processor transforms raw data, i.e., Java source code and the list of
targeted microservice annotations, into training, validation, and testing sets. We
convert each Java file into their AST representation and split it into methods
with attached annotations. We also build two databases (Java and Queries)
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where a Java database is required to search for subsets and references for the
predictor and search engine. We build the AST representation by using a Java
Lang Parser which follows the language syntax by tokenising the source code to
identify the types, constructors, members and expressions. We split the string
representation of Java class into methods with the keyword MethodDeclaration
and identify annotations after the keyword Annotation.

3.2 Learner

The goal of this component is to learn the semantic information of a code frag-
ment. Specifically, we choose a sequence-to-sequence-based learner considering
its good performance to capture the relation between code and text as in [2]
where an encoder transforms the AST from a source code to vectors by pre-
dicting the probability distribution of variable types. Additionally, the encoders
with attention based on Recurrent Neural Network (RNN) extracts features from
the text with better accuracy than Support Vector Machines (SVM) based on
traditional methods [12]. Our encoder returns vectors with dimensions N = M.

3.3 Predictor

This model predicts the best microservice annotations for a given source code
upon a classifier. For the training process, we match each code fragment with the
elements of the annotation list. The decoder of our learner provides a sequence of
tokens with words of similar meaning. To enhance its accuracy, we require specific
words for each annotation. Specifically, we consider that (i) every query requires
a subset of limited code fragments with similar features; (ii) fast classifiers that
support non-linear boundaries with sensitivity to overfitting; and (iii) classifiers
based on probabilistic are unacceptable due to their demand for more training
data. To this end, We choose a K-Nearest-Neighbour (KNN) classifier, which
fulfils the above requirements by creating K clusters, locating the input inside
the closest cluster and selecting the class of the neighbour.

3.4 Search Engine

The goal of our search engine is the suggestion of annotations. First, the engine
encodes the query to get its vector representation. Then, it selects a subset of
vectors from the Java database to reduce the scope and execution time of the
prediction. Our search engine calls the predictor with the query and a subset
and returns an annotation. Finally, it suggests actions for the query. Note that
we adopt the cosine similarity as our similarity metric.

4 Evaluation

The study investigates how helpful is the semantics information of code frag-
ments to keep or add annotations for unseen code fragments. We target more
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than 109,000 open-source repositories with the topic 'microservices’ on GitHub.
Most of those repositories (76%) adopt ten different languages. Specifically, our
study chooses Java (29%) to investigate the effectiveness of our approach in
terms of the number of correct annotations and the usage of classifiers to make
predictions when a code fragment requires keeping or adding a single annota-
tion. We also analyse the subsets of wrong suggestions and the distances between
expected and unexpected annotations.

We calculate the following metrics: (i) Accuracy which is the percentage of
correct values out of the total predictions; (ii) F'I-score which is derived from
the quality of positive predictions and the ability to detect positive samples; (iii)
BLEU Score which is a measure to evaluate the quality of a candidate translation
compared to one or more supposed correct translations [2]; and (iv) Overlapping
which is the intersection between code fragments within the same distance range.

4.1 Experiment Setup

We extend PyTorch to train the learner and build vectors. The KNeighborsClas-
sifier of the Sci-Kit Learn library allows the predictor to classify new code frag-
ments. The search engine has a Java database of code fragments to find similar
pieces of code and provides suggestions of annotations. For our dataset, we cloned
a few Java methods using keywords and distributed them into 20 experiments.
All our experiments can be replicated via a package' which includes the dataset
for training, the databases and scripts to replicate and run the experiments.

4.2 Results and Discussion

We draw scatter and box-and-whisker plots to show the accuracy of queries and
annotations. Besides, we plot the average BLEU score per length to show the
quality of searching code fragments. We compare the distance of queries and
their subset in case of correct and wrong predictions.
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Fig. 2. Performance and quality of our approach

! https://bitbucket.org/semantics-driven-learning /replication-package/.
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Our approach achieves an accuracy between 83.09% and 89.8%, with an aver-
age of 87.03%. Figure 2(a) shows that 60.00% of the experiments are above the
average. The difference between F1l-score and accuracy is slight, i.e., 0.13% and
0.37%. The small difference means the precision and recall are good because of
low false positives and negatives. The accuracy shows the quality of our app-
roach by counting its positive results. We elaborate the box-and-whisker plot
with the percentage of correct predictions. We focus on five annotations which
open-source projects widely attach in their methods. Additionally, we assess the
quality of searching code fragments using the BLEU score. Figure 2(b) shows the
quality of good queries with different lengths grouped every five tokens. We have
got BLEU scores between 41.84% and 81.24% with an average of 63.12%, which
is a good value considering that comment generation has 38% and translation
language has an average of 41% [2].

The experiment results indicate that our semantics-driven learning achieves
an average accuracy between 74.95% and 93.92% for annotations and a general
average of 87.26%. Our results also show that the minimum accuracy of 67.11%
is for Before annotation, while the unexpected annotations have 90.37% on aver-
age. Figure 3(a) shows that RequestMapping and GetMapping have higher accu-
racy with an average above 90%. Before and RequestMapping have a minimum
difference of 31.64% and a maximum of 3.11%.
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Fig. 3. Accuracy of annotations and wrong actions per annotations

For the sake of visualising and discussing the data, we focus on Before and
calculate the percentage of predictions per every 0.05 unit of distance. Figure 3b
shows that wrong predictions occur for distances above 0.40. The green area
indicates the expected annotations of the good predictions are below 0.70 with
distance ranges: (i) bellow 0.10 has 60%. (ii) between 0.10 and 0.45 has an
average of 60%; and (iii) above 0.45 increase from 10% up to 39%. The red line
refers to the unexpected annotations of the wrong predictions and shows that
80% occurs for a distance between 0.41 and 0.75. The blue line refers to the
unexpected annotations of the good predictions between 40% and 60%.
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Beyond the results of our experiments, our approach can reduce the mis-
use of annotations. We provided a quantitative way of indicating if a set of
code fragments are different from a particular Java database and how different
they are. Developers can thus identify which code fragments need adjustment
to the usage of annotations. Additionally, they can increase the Java database
to add new rules and extend them for other features such as parameters and
their types. Overall, our approach suggests annotations on code fragments with
specific behaviours while increasing the visibility of issues with missing annota-
tions.

4.3 Threats to Validity

Theoretical validity: We mitigate the databases manual construction by
selecting simple code fragments, introducing small changes and checking similar-
ity against others. Internal validity: A noisy Java database of code fragments
may increase wrong suggestions, which we reduce by cloning real-world code
fragments. External validity: We mitigate the limited number of repositories
by splitting the source code into methods that increase the records for training.

Table 1. Related work

Features Related work Our work
(6] [7] [5] [4] [9] [3] [14] [1] [10] [15]
Microservices vV Vv VvV Y ox x  x  x ok x v
Annotations vV Vv o x x x x x x X x v
AST x x x v x x v VvV x x v
NLP x x v VvV Vv Vv Vv v v VY v
RNN x x v vV VvV x x v YV x v
Extracting features x x v x v Vv x x x x v
Smell detection Vo ox vV x x x x  x X x v
Defect detection x x x x x x v Vv x x v
Clone detection x x x YV x x x vV VY v
Bug detection x v o x x x v x x x x v

5 Related Work

In this study, we focus on the misuse of annotations in the area of microservices.
Table 1 shows how our work fits in the state-of-the-art techniques.

While existing works applied techniques to detect microservice smells [6] and
modify the declaration of annotations [7]. Our research differs from their work in
two dimensions: (i) we extract methods with microservice annotations using the
AST of the source code; (ii) we create a model to learn the usage of microservice
annotations, compare code fragments and suggest the best annotations.
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Previous works used NLP in microservices projects for detecting architectural
smells and clones of code fragments [4,5]. Unlike those works, our approach
extracts terms from annotations and learns their relation with the code.

Other previous approaches applied NLP techniques for bug detection in dif-
ferent contexts: (i) generation of sentences from source code for summarisation
of its behaviour [9]; (ii) extracting pieces of text/comments/reports and features
from source code for detecting bugs and warning analysis [3]; (iii) detecting
defects by using AST [1,14]; and (iv) detecting clones or similarities on code
fragments [10,15].

6 Conclusion and Future Work

We are the first to propose a semantics-driven learning approach to suggest
annotations according to the similarities between code fragments under an RNN
and a KNN classifier to learn the semantic relation of code fragments against
their annotations and predict a suitable annotation.

We conclude that using a database of rules based on code fragments with
annotations is good enough to identify missing annotations, specifically for the
ADD actions. Moreover, the analysis on overlapping of the subsets returns that
increasing the distance between code fragments would reduce the number of
wrong suggestions. In our ongoing research, we are introducing the analysis of
multiple interconnected annotations for advanced features to study interdepen-
dence between annotations.
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Abstract. Microservices architecture has become the latest trend in
building modern applications due to its flexibility, scalability, and agility.
However, due to the complex interdependencies between microservices,
an anomaly in any one service in a microservice system has the poten-
tial to propagate along service dependencies and affect multiple services.
Therefore, accurate and efficient root cause localization is a significant
challenge for current microservice system operation and maintenance.
Focusing on this challenge and leveraging the dynamically constructed
service call graph, we propose MicroEGRCL, a root cause localization
approach based on graph neural networks with an attention mechanism
that includes edge feature enhancement. We conducted an experimen-
tal evaluation by injecting various types of service anomalies into two
microservice benchmarks running in a Kubernetes cluster. The experi-
mental results demonstrate that MicroEGRCL can achieve an average
topl localization accuracy of 87%, exceeding the state-of-the-art baseline
approaches.

Keywords: Microservice - Root cause localization + Graph neural
network - Anomaly detection

1 Introduction

The need for high availability, high maintainability, and high scalability of com-
plex Internet applications has led to the evolution of application architectures
as their scale increases. In this context, microservice architecture is the most
recent trend in developing complex cloud-native applications [2,3,6]. A large-
scale industrial microservice system may contain multiple services, each of which
may be comprised of several hundreds of instances executing in distinct con-
tainers. There are complex invocation relationships between these services and
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J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 264-272, 2022.
https://doi.org/10.1007/978-3-031-20984-0_18


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_18&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_18

MicroEGRCL 265

their instances. In such circumstances, a service anomaly may propagate through
lengthy service call chains and affect other services in the chain [9]. This issue
also makes it challenging for system operation staff to conduct troubleshoot-
ing and recovery. Therefore, it is essential to aid microservice system operation
personnel in accurately locating service faults.

In this paper, we propose a novel root cause localization algorithm called
MicroEGRCL that is based on a new graph neural network (GNN) model and
incorporates a graph attention mechanism with enhanced edge features. In the
event of system abnormality, this method generates the service invocation graph
by dynamically obtaining the invocation relationship between services.

The contributions of this paper are threefold:

e We propose a novel approach to microservice root cause localization using a
graph neural network based on a service call graph.

e We propose an edge-feature-enhanced attention mechanism for graph neural
networks, upon which we implement weighted sampling for various nodes to
improve the algorithm performance.

e We designed and implemented the MicroEGRCL root cause localization
method and achieved excellent localization accuracy in a number of test sce-
narios, with a significant improvement over the baseline.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents an overview of our approach. The experimental evalu-
ation of the method is described in Sect. 4, and Sect. 5 concludes the paper.

2 Related Work

In recent years, a great deal of research has been devoted to identifying the root
of anomalies in distributed systems, clouds, and microservices. These methods
can be broadly classified into the following categories according to their research
subjects and approaches.

Log-Based Analysis Approaches. This type of approach is mainly proposed
for traditional distributed systems and cloud systems [9]. By analyzing and clus-
tering logs, such as LogDC [13] and Logsurfer [11], it identifies the root cause of
a failure. These approaches are limited in terms of adaptability and processing
time, and they necessitate frequent manual updates to the rules to accommodate
various exceptions.

Trace-Based Approaches. This approach is commonly used to identify the
root cause of microservices or service-based systems [9]. Commonly method to
root cause localization is by comparing fault tracing with historical tracing and
learning trace logs for fault prediction [4,10,14]. Typically, these approaches
require the collection and analysis of a large number of traces in order to identify
anomaly patterns and train predictive models. Therefore, they are inefficient for
microservice systems on a large scale.

Service Call Graph-Based Approaches. This type of approach is mainly
used for inferring root causes based on the call graph of microservice systems.
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The first approach is based on graph similarity and was proposed by Alvaro
et al [1]. Tts dependence on the graph anomaly library is the method’s most
significant limitation. The methods in the second category are based on Ran-
dom Walk [7,8,12]. The main problem with this approach is its inefficiency in
large-scale systems. To overcome the limitations of these methods, we propose
MicroEGRCL, a novel graph-based root cause localization method that employs
a GNN and edge features to accurately infer the root cause of microservice call
graphs. Our method improves the inference accuracy and computational effi-
ciency of root cause analysis significantly.

3 Method

3.1 Formal Definition of the Root Cause Localization Problem

In this study, root cause localization is performed based on the service call graph.
We extract the data of a microservice system’s call chains in order to generate
its call graph, which consists of n nodes, each with m features, and the features
of node i are represented by the vector S;. All the features of the service nodes
in the entire call graph can be represented by a feature matrix S"*"™.

The existence of a call relationship between nodes can be represented by the
adjacency matrix A"*". Each element in A is either 1 or 0, representing the
existence and non-existence of a call relationship.

For the invocation information between nodes, the edge feature matrix R is
used for representation. If there is a call relationship between nodes ¢ and j, then
;5 is its corresponding metric; otherwise, it is 0. Since communication between
services generates several metrics, they are represented by d different matrices
R, where d is the number of generated metrics.

Feature Aggregation

Call Metrics Root Cause Service Ranking

Fig. 1. Major components and root cause localization workflow of MicroEGRCL

The major component of the MicroEGRCL algorithm is a root cause classifier
that can automatically infer the actual root cause. The inputs of this classifier
include the adjacency matrix A, the set of call relationship attributes R, and the
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features matrix S of all nodes. A fault localization result vector Z of length equal
to the number of service nodes is the output. Each element z; represents the like-
lihood that node ¢ will become the fault’s root cause. The specific computational
process of the MicroEGRCL algorithm is shown in Fig. 1.

3.2 Service Root Cause Localization Method Based on GNN

This paper formulates root cause localization as the classification of call graph
nodes. Since inter-service call metrics are the most important indicator of node
health. Therefore, edge characteristics are critical for accurately locating root
cause services. Based on these analyses, we propose a GNN-based algorithm for
root cause localization with an enhanced attention mechanism for edge features
[5]. This method implements non-equal weight sampling of nodes via the atten-
tion mechanism, which mitigates the effect of local information loss on node
information aggregation to some degree.

In this study, the metrics we focus on include two main categories. The first
is the service node metrics, which include resource utilization (RU) and network
status (NS, e.g., request time, TCP packet count). The second is inter-service
call metrics (edge metrics), including response time (RT) and TCP send count
(TSC).

3.3 Attention-Based Mechanism with Weighted Node Sampling

To implement weighted node feature aggregation based on the attention mecha-
nism. In this paper, the correlation information between nodes is used directly to
sample the attention of neighboring nodes. The attention vector a is calculated
as Eq. (1).

exp (Zh?}euh“) kmh?]?)
ZmENﬁ, exp (e;m)

L (h;j) represents the indicator set that contains all the metrics measured
between node i and node j. h}} represents the m — th value in the set L (hi;)
and the pre-defined k;, determines the weight coefficient for h;7. By a weighted
summation over the indicator set L (hi;), we can obtain e; as the attention
coefficients. Finally, we can calculate the normalized coefficients aj; using the
Softmax function.

The final attention consists of two parts, the traditional attention based
on node metrics and the attention calculated based on edge features, and the
attention is calculated as shown in Eq. (2).

(1)

a;; = Softmax (ej;) =

exp (LeakyReLU <d’T [WngWgJ] ))

> men, €XD (LeakyReLU <6T [WS;HWS;,L} ))

+al; (2)

Q55 = ij

where @ represents the weight matrix of the feedforward neural network, @ €
R?F" | I’ is the feature dimension of the nodes entering the next layer of the
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neural network, and 7" indicates matrix transpose. Use the LeakyReLU nonlinear
activation function (with a slope of 0.2 for negative input values). W represents
the weight matrix of the graph convolution layer.

In this model, the sampling depth k& = 2 (i.e., each node can only aggregate
neighbor nodes whose distance from itself is <2). The final sampling aggregation
process can be expressed as Eq. (3).

Sk (W- ({SF'}||IMEAN {a;; - S¥',Vj € N(i)})) (3)

J

Sk represents the sampling result of node i at the kth layer. The MEAN
function represents averaging over the node features. The node feature aggre-
gation process of MicroEGRCL is shown in Algorithm 1. Eventually, the model
will output the probability of each node being the root cause node.

Algorithm 1. Algorithm of node feature aggregation
Input:
Call graph G (V, E), Input features z;,Vi € V
Weight matrix W* Vk € {1,--- | K}
Nonlinear function o, Aggregation function AGGy,Vk € {1,--- K}
Attention factor{a.;,Vi,j € V}
Output:
The new node vector represents z;,i € V'
: S? —z, VeV
: for k€ {1,2} do
for i € V do
Sk — AGGk ({aij - SF~', Vi€ N (i)})
S¥ — o (WF-CONCAT (S, 5% )
end for
SE — SF/|ISE||2,Vie V
end for
2i — ZK eV
: return 7

SRR I AN S ol s
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4 Experimental Evaluation

To validate the effectiveness of the MicroEGRCL, we conducted experimental
validation using two microservice applications and various failure scenarios. The
first is Sock-shop, a widely used microservice benchmark that consists of 15
microservices in total. In order to evaluate the performance of our algorithm
at a large scale, we extracted dependencies between services based on a real
business scenario involving an online ride-hailing company. We developed the
ride-hailing Mock-up microservice application, which consists of sixty distinct
microservices and a more complex service invocation graph. Microservice systems
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are constructed within a Kubernetes' environment. Additionally, Prometheus?
is utilized to monitor and collect service metrics.

In this work, we focus on three types of anomalies that cause most of the avail-
ability issues in microservice systems. Availability Anomaly: an anomalous
increase in the number of failed service invocations is indicative of an availabil-
ity anomaly, which is typically caused by defects in the service or anomalies in
the operating environment. Performance Anomaly: performance anomaly is
characterized by abnormal increases in service response times, typically result-
ing from resource anomalies (e.g., CPU, MEM). Communication Anomaly:
a communication anomaly characterized by a significant increase in the number
of service requests or an increase in service packet loss, which is typically caused
by network anomalies between services.

We construct a service call graph using the service metrics, which indicate
the source and destination services of this request, respectively. On the basis of
the aforementioned information, we can generate a service call graph based on a
structured set of data representing different service instances and the invocation
relationships between them. In addition, we use the BIRCH clustering algorithm
for anomaly detection.

4.1 Experimental Setup

We set up an experimental environment to simulate online user requests and
emulate various microservice system anomalies. Chaos-mesh?® is used to inject a
variety of anomalies for the microservice systems running on Kubernetes. In our
experiment, different service nodes are injected with distinct faults over a period
of time, during which node metrics, call metrics, and call chain information are
collected for training. For the sake of simplification, we only inject one fault per
experiment run into each call chain per service node.

Table 1. Accuracy evaluation of the algorithms on the sock-shop

P@QK | Method Frontend | Orders | Payment | Catalogue | Shipping

P@1 RS 0.06 0.07 0.06 0.08 0.06
GraphSAGE |0.95 0.88 0.57 0.33 0.96
MicroEGRCL | 0.94 0.99 |0.78 0.56 0.98

P@3 RS 0.19 0.19 0.2 0.2 0.16
GraphSAGE |0.99 0.99 0.96 0.71 1
MicroEGRCL | 1 1 0.96 0.99 1

To thoroughly validate the effectiveness of MicroEGRCL, we compare it to
two state-of-the-art baseline methods. The first method is Random Walk, which

! Kubernetes - https://kubernetes.io.
2 Prometheus - https://prometheus.io.
3 Chaos-mesh - https://chaos-mesh.org.
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is utilized by MonitorRank [7] and MicroRCA [12]. In this paper, we utilize
one of them, MicroRCA, which is more effective, as the comparison method.
The second is a classical GNN algorithm called GraphSAGE. In addition, we
compared it with the case of randomly selected(RS) root causes.

As an evaluation metric, we employ PQK (Precision at topK, topK accu-
racy) to assess the effectiveness of the MicroEGRCL method. PQK denotes the
probability that the first K results predicted by the algorithm are the actual
cause of a given fault.

4.2 Results and Discussion

In our experiments, we injected anomalies into multiple services in two microser-
vice applications and performed a statistical analysis of the results. It should be
noted that in the dataset of this paper, we only counted the location accuracy
under different anomalies for MicroRCA due to its inability to properly locate
some of the service anomalies selected for this experiment.

Table 2. Accuracy evaluation of the algorithms by anomaly types on sock-shop

Anomaly type |PQK | RS |MicroRCA | GraphSAGE | MicroEGRCL
Availability pPa@1l | 0.06|0.3 0.78 0.88

P@3 /0.19/0.78 0.92 0.99
Performance pP@1l | 0.070.3 0.72 0.79

Pa@3 0.2 |0.82 0.91 0.97
Communication | P@1 | 0.08 | 0.36 0.65 0.86

P@3 |0.17/0.83 0.95 1

We investigated the localization accuracy of MicroEGRCL and other baseline
methods for different fault types and service faults, and the experimental results
are presented in Tables1 and 2. In both experiments, the results demonstrate
that the MicroEGRCL achieves the highest localization accuracy, achieving an
average of greater than 80% topl localization accuracy and greater than 98%
top3 localization accuracy in all scenarios, thereby proving that this method is
effective for Sock-shop applications.

We conducted the same experiment as Sock-shop in the Ride-hailing Mock-
up dataset, but only the PQ1 accuracy was counted. The experimental results
are presented in Tables 3 and 4. In larger-scale applications, the results indicate
that MicroEGRCL is still able to demonstrate superior localization accuracy
to other methods. Comparing the accuracy changes of different methods for the
two datasets reveals that the number of nodes decreases the localization accuracy
of MicroRCA to some degree. In contrast, the method based on graph neural
networks does not have this issue. Compared to the GraphSAGE algorithm,
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Table 3. Accuracy evaluation of PQ1 by service nodes on ride-hailing mock-up

Method driver-gs | guard-gs | kronos-publish | ogs-gs | gz-gs | pay-gs | trans-gs
RS 0.02 0.01 0.03 0.02 |0.02 |0.02 0.02
GraphSAGE |0.78 0.69 0.91 0.62 0.87 10.88 |0.69
MicroEGRCL | 0.93 0.76 0.99 0.76 0.99 0.98 |0.95

Table 4. Accuracy evaluation of PQ1 by anomaly types on ride-hailing mock-up

Anomaly type |RS | MicroRCA | GraphSAGE | MicroEGRCL
Availability 0.020.31 0.85 0.91
Performance 0.02|0.25 0.75 0.91
Communication | 0.02 | 0.27 0.72 0.9

the MicroEGRCL demonstrates an average level of accuracy, which represents a
6%—-18% improvement.

Based on all experimental results, GNN-based localization accuracy is sig-
nificantly superior to RandomWalk. More significantly, by introducing the edge
features enhanced attention, we further improve the localization accuracy of the
GNN-based approach. The effectiveness of the proposed method in this paper is
verified.

5 Conclusion and Future Work

This paper proposes an edge-attention-based GNN root cause localization app-
roach for microservice systems, named MicroEGRCL. The root cause localization
results are improved by making full use of the invocation information between
services. Specifically, we propose an attention mechanism with enhanced call
information for the weighted aggregation of feature weights across different
nodes. We evaluate our method by comparing it to the state-of-the-art base-
line approaches and the conventional GNN method. The experimental results
demonstrate that MicroEGRCL outperforms or is comparable to existing meth-
ods, and has a certain generalization ability. Future work will introduce addi-
tional domain information to enhance the model’s capabilities and validate it in
real-world business scenarios.
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Abstract. Microservice architecture style advocates the design and cou-
pling of highly independent services. Various granularity dimensions of
the constituent services have been proposed to measure the complex-
ity and refinement levels of the service provision. Moreover, attaching
annotations to operations adds granularity to the services while adding
features and facilitating the implementation of applications. Microservice
applications with inadequate granularity affect the system quality of ser-
vice (e.g., performance), introduce issues for management, and increase
the diagnosing and debugging time of microservices to days or even
weeks. In this paper, we propose a semantics-driven learning approach
to mining the granularity limits of operations with their annotations
according to the developer community. The learning process pursues to
build a vector space for clustering similar operations with their anno-
tations that facilitate the identification of granularity. The evaluation
shows that clustering annotations by operations similarity achieves sig-
nificantly high accuracy when classifying unseen operations (89%).

Keywords: Granularity - Microservice annotations + Semantic analysis

1 Introduction

Microservice architecture style is a software development approach that imple-
ments a set of refined and highly cohesive services. In this context, granularity is
related with the size of microservices within the application. Typical granularity
measurements are the number of lines, complexity and dependencies [4].

There is no agreement on the right size of microservices because project
teams interpret the size in different terms such as line of code, number of classes,
entities, among others [4]. Then, an application could have microservices with
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different granularity. However, tiny microservices introduce managing issues into
the whole architecture, while huge microservices affect the quality attributes,
especially performance which reduces the overall system quality. The detection
effort to solve the above issues is time-consuming and not trivial for developers
since debugging microservices may take days or weeks [12].

The novel contribution of this paper is a mechanism for mining granularity
limits of operations with semantics similarity. The approach contributes to the
fundamentals of microservice granularity, where, to our best knowledge, we are
the first to cluster similar operations to avoid/reduce the amount of microservice
invocation or time response.

The importance and methods to determine an optimal granularity have been
considered in several studies [2,9,10]. However, to our knowledge, our work is
the first to identify the granularity limits implemented in source code by cluster-
ing operations with similar behaviour. The results indicates that our approach
achieves a high accuracy when classifying unseen operations (89%).

2 Background

2.1 Annotations by Operations

Annotations are a form of program metadata for adding features to a piece of
code that facilitate the implementation of microservice applications. Developers
follow coding style guidelines [1], which means one project has operations with
similar syntax. Thus, similar usage of annotations appears in operations with
semantics similarity.

Some annotations expose services through RESTful HTTP with attached
annotations such as GetMapping, GET, POST and RequestMapping. Note that
Java Parser can be used for listing the project classes with their content and
searching for annotations attached to methods. The microservice applications
allow the usage of multiple frameworks such as Spring, Redis and others where
an operation allows more than one annotation. For instance, Spring Boot and
Spring Cloud help run microservices in embedded web servers with common
distributed patterns such as Circuit Breaker.

2.2 Granularity Dimensions

The most common granularity dimensions are the number and length of services
calculated by aggregating the number of operations and their lines of code while
others involve coupling, cohesion and complexity. Note that finding the optimal
level of granularity has potential issues when finalising the level too early [3].

2.3 Learning Process

Semantics-driven learning extracts features from a text by focusing on its syntax
and semantics and is applied to perform tasks such as learning the relation
between two texts in terms of their plain forms or Abstract Syntax Trees (ASTSs)
[5]. Tt typically encodes the operations into vectors and keeps the inner relation
between operations and annotations.
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Fig. 1. The components of our approach

3 Proposed Approach

In our approach, we collect code fragments, extract their annotations, identify
operations, map the operations by annotations and calculate their granularity.
We analyse the granularity utilised by the developer community when attaching
annotations to operations. In particular, the semantic information of operations
enhances the searching for similar operations.

3.1 Operation Miner

The goal of the Operation Miner is pre-processing the raw files from the Java
dataset. This component gets, organises, and formats the operations before con-
tinuing with the other components. The Miner executes three essential functions,
which are: (i) collecting code fragments, (ii) inspecting their structure, and (iii)
measuring their granularity.

The initial task of our miner is to collect the code fragments from open-
source repositories. First, we download complete source code files from different
projects. Second, we identify Java files with annotations. Third, we need to split
the files into code fragments. Next, we select only code fragments that correspond
to operations. Then, we map the selected operations according to their projects,
packages, and classes.

3.2 Annotation Adapter

The goal of our Annotation Adapter is to map the operations, their annotations
and granularity. This component gets the AST representation and converts oper-
ations into vectors. The Adapter executes three essential functions, which are: (i)
parsing the operations, (ii) learning the relation between operations and annota-
tions, and (iii) connecting the mentioned relations to their granularity metrics.

We parse the source code of operations to build their AST representation
as a text. Our approach requires a Java Parser, a library that reads the source
code of complete Java files and provides an AST structure to work with Java
code in a programmatic way. Java Parser allows us to produce a text by reading
the tree with the transversal algorithm in post-order. The result is a text where
each word is a token for the next step of the learning process.
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Similar operations could require similar annotations, and the Adapter intends
to detect those annotations by converting the operations into vectors. Thus, we
can detect operations with similar behaviour through a training process with the
AST representation of operations as input text. We also convert the annotation
names into vectors with one dimension and add it as additional information
to the vector representation of operations. This way, we can organise data by
operation similarity, annotation, and granularity.

3.3 Granularity Marker

Detection of operations with similar annotations is possible by measuring the
distance between two vectors. In this paper, we adopt Cosine similarity for mea-
suring annotation similarity following prior work [13]. In particular, we avoid
excluding operations with similarities higher than a specific threshold, e.g., 0.70.

The cosine similarity reduces the searching scope by finding the nearest vec-
tors. We form a subset using the closest vectors with similar behaviour opera-
tions. Then, we build clusters using the K-Means algorithm, which requires the
number of clusters as a parameter. If one operation has more than one annota-
tion, we could join the annotations in pairs of two.

The subset helps search the granularity limits according to the nearest anno-
tation. The KNN algorithm predicts the clusters of annotations. Then, we filter
the operations by using the prediction. The filtered options contain the granu-
larity metrics ordered from minimum to maximum. The granularity limits for
specific annotation are near the extremes.

4 Evaluation

For our evaluation, we measure the effectiveness of our approach by counting
the percentage of operations inside the range of granularity limits. Our evalua-
tions can be replicated via this package ! which contains examples of exposed
operations, the datasets, databases and scripts to run the experiments.

4.1 Experiment Design

We prepare a Java dataset by cloning the source code from GitHub open-source
repositories selected with the following criteria: (i) Java projects; (ii) microser-
vices; (iii) more than 300 stars. We search with Java Parser for RequestMapping,
GetMapping and RestTemplate annotations to detect operations and connec-
tions between them. Our text parser reads the selected Java files and splits their
content into operations. We choose the operations with annotations, generate
their AST representation and calculate the length of operations. Additionally,
our learning model needs three datasets of selected operations for training, val-
idating and testing its encoder. Then, we add to our dataset the vector after
converting the operations with the encoder.

! https://bitbucket.org/mining-granularity-limits/replication-package/ .
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4.2 Experiment Setup

We implement the Miner with Java and Python libraries to extract the oper-
ations. Specifically, the Java Parser Lang library helps identify connections
between operations, while Python Java Parser builds the AST representation.
Additionally, we implement semantics-driven learning by extending PyTorch, a
Python-based library for NLP and deep neural networks. We train the learner in
nodes environment for the Annotation Adapter and then build the vectors using
its encoder. The experiments mainly run on a laptop (Core i7 and 16 GB).

4.3 Results and Discussion

We identify the top 20 annotations that appear near 69% of 20,540 code frag-
ments with one, two or three annotations. We select the annotations such
as RequestMapping and GetMapping which expose operations. We reduce the
experimentation scope by selecting operations with more token usage.

Token Usage by Annotation
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Fig. 2. Mining operations and granularity exploration

Figure 2(a) represents the probability density of different granularity values.
We observe that three annotations, RequestMapping, GetMapping and GET have
a similar density. They show that developers prefer operations with less than 75
tokens on average. After 100 tokens, the number of operations almost disappears.
There are different shapes for the Path and POST annotations. Operation Gran-
ularity tends to decrease slowly between the 75 and 150 tokens in both cases.
Although POST looks to disappear after 200 tokens, it slightly reappears near
the 400 tokens. Thus, clusters of the operations with similar behaviour may
have their own granularity density. Additionally, Fig. 2(b) shows the percentage
of token usage for the top annotations. We can see decay in all cases, meaning
that operations with a granularity above 80 tokens have a small usage.

We identify the granularity limits by clustering the vector representation of
operations per annotation. Then, we consider 10 clusters (K10) as a base to con-
tinue the exploration. Figure 3(a) shows the granularity limits of RequestMap-
ping. The whisker boxes present the lower and high granularity values for each
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Fig. 3. Granularity limits and overall results

cluster, and each operation is a coloured data point. Thus, blue data points
(below 25%) and red data points (above 75%) represent low and high granular-
ity, and the green area contains 50% of data points, including the mean.

Our approach achieves an accuracy above 89%, with an average of 94%.
Figure 3(b) shows that our approach has 55% of experiments above the average.
We also notice a slight difference between the Accuracy and F1-Score. The dif-
ference of 2% means low false positives and negatives for Precision and Recall.
Additionally, we group the results of good and wrong predictions by cluster. For
instance, Fig.4(a) shows the cumulative percentage of distance occurrence for
two different cluster IDs. We observe subset imbalance effects. C6 is a cluster
with a similar cumulative percentage but a gap between the distance of good
and wrong predictions (0.04 to 0.05). C9 has a significant cumulative percentage
for good predictions but overlapping on wrong predictions (above 0.11).
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Fig. 4. Distance Overlapping Analysis

Figure 4(b) has positive and negative values for distance difference. Positive
values mean cases of intersection for good and wrong predictions, and negative
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values indicate a separation. We can see the overlapping of distance difference
in the range of positive values.

Our findings show that 40% of wrong predictions occur when subsets have
a distance difference below —0.05. Additionally, 60% of good predictions occur
even with an overlapping before the 0.10 distance difference. Thus, databases
should reduce the subsets imbalance and increase the distance per annotations
cluster to improve the performance.

5 Related Work

Annotations Detection. Our research shows one empirical study catalogues
developer issues and identifies annotations as the top category for components
settings (30.3%) [8]. One systematic mapping study consolidates activities for
detection and transition to microservices [3]. The research also shows previous
studies that take advantage of the annotations to detect bad smells on microser-
vice architecture [6] and evaluate the quality of the software through mutation
testing [7]. Unlike those works, our approach identifies microservices and extracts
annotations from a dataset from real open-source projects.

Table 1. Related work

Features Related work Our work
(8] [7] [3] [6] [2] [1] [9] [11] [10]
Annotations detection v v x Vv x x x «x x v
Microservice detection x x v x x x x «x x v
Granularity importance x x v x v Vv Vv x v
Granularity metrics x x x x vV VvV VvV vV Y v
Source code of samples x x x x x x Vv x v
Semantics similarity X x X x x x x X x v
Operations collection X X x x x x x X x v
Granularity exploration x x x x x x x «x x v

Granularity Importance. Several studies mentioned the granularity
importance of determining the suitable size of microservices when splitting mono-
lith applications [3]. Refactoring and Domain-Driven Design are used to find the
optimal modularity of microservices [2,9,10]. Five works propose fourteen gran-
ularity samples, and only 22% have third-parties source code to calculate the
granularity metrics. Unlike those works, our study explores different operation
lengths among their semantics similarity to propose limits for good granularity.

Previous approaches do not consider the granularity by annotations. Then,
we focus on the operations collection, semantics similarity and granularity explo-
ration of size limits for fine-grained and coarse-grained operations with suitable
amount of operations as suggested by Vural et al. [11] Table1 shows how our
work fits the state-of-the-art techniques.
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6 Conclusion and Future Work

We elaborated a semantics-driven learning approach to suggest the granularity
limits by learning the semantic relation between operations and their annotations
and predicting the granularity limits. We are the first to propose a mechanism
that detects the granularity limits of similar operations with their annotations.

We conclude that a database of operations is good enough to identify the
granularity limits for unseen operations with annotations. Moreover, the analysis
of overall results shows that increasing the unique annotations with overlapped
operations would slightly reduce the overall accuracy. Increasing the distance
between operations would minimize the impact on the overall accuracy.

In our ongoing research, we are including other granularity metrics and clus-
tering mechanisms such as Hierarchical Clustering for advanced features.
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Abstract. Mobile crowdsourcing (MC) which has been developed
rapidly in recent years is playing an increasingly indispensable role in
people’s daily lives such as taxi-hailing, food delivery and other ser-
vices. The geographic equilibrium of service supply and demand is cru-
cial so that the MC system could guarantee more promising matches in
a more regionally balanced way. However, due to the spatial dynamic
of MC environments, the emergence of supply and demand is unpre-
dictable, asymmetric, and constantly changing among different regions
and throughout the day, presenting considerable challenges to the MC
platform. In this paper, we propose a hybrid reinforcement learning and
transformer-based balancing framework (HRB) to achieve geographically
balanced coverage of MC services, considering both the imbalanced state
of service supply-demand geographical distribution and the moving will-
ingness of MC participants. The HRB framework is developed based
on the Deep Deterministic Policy Gradient strategy, which includes an
actor-critic network for generating migration strategies and a Willing-
ness Transformer (WiT) model for predicting the migration willingness
of both mobile service providers and demanders among different regions.
Experimental results have validated the effectiveness by comparing the
proposed approach with other algorithms under multiple indicators.

Keywords: Mobile crowdsourcing service + Supply and demand
balance - Reinforcement learning - Transformer + Migration willingness

1 Introduction

With the popularity of mobile smart devices, Mobile Crowdsourcing (MC) [7]
assisted by smart mobile devices has developed rapidly. Multiple types of Mobile
Crowdsourcing Service (MCS) platforms are becoming more popular and inte-
grating into people’s daily life, such as taxi-hailing services, food delivery ser-
vices, etc. In MC applications, a task publisher requester releases space-time
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related tasks on the platform, and one or more task performers workers simi-
larly acquire tasks and perform them either actively (e.g. by grabbing orders) or
passively (e.g. by being assigned by the platform) through the platform, and then
get the corresponding reward. In this paper, the requester is referred to as Service
Demander (e.g. the passenger in taxi-hailing services) and the worker as Service
Provider (e.g. the driver in taxi-hailing services). Due to the personalized prefer-
ence of both service demander and provider and the changeable contexts such as
weather condition, urban traffic and geographic region, the service supplies and
demands in MCS platform are asymmetrical, highly dynamic, and irregularly
distributed. When there is an imbalance between supply and demand in a geo-
graphical region, it often happens that the provider cannot find a demander to
be served or the demander cannot find a provider to offer the expected service.
Therefore, the problem of mismatch and imbalance between service supply and
demand has become a challenge for platforms, and the coverage balance of MCS
is particularly important.

There have been some recent application-specific results on the balance of
supply and demand services, which are mainly in the areas of WiFi hotspot shar-
ing, bicycle-sharing and ride-hailing. Neiat et al. [14] proposed a system for WiFi
service, which combines the participation probability model with an improved
bipartite graph matching algorithm to achieve a geographically balanced cov-
erage of services. Pan et al. [15] proposed a bicycle-sharing system with deep
reinforcement learning methods to generate incentives encouraging users to par-
ticipate in adjusting the number of bicycles among different subregions. Qin et al.
[16] focused on taxi-hailing system, which uses deep reinforcement learning and
transfer learning to improve efficiency. The above existing related works mostly
balance the overall supply and demand situation through incentive mechanisms
or maximizing benefits in platform-specific applications, ignoring the fact that
the participant’s autonomy and voluntariness play an essential role in general
MC scenarios such as social-based, event-based or interest-based mobile services
where incentives don’t work very well. In fact, considering the willingness and
preference of mobile participants will promote well-balanced distribution of ser-
vice supply and demand, improve the matching efficiency and finally create more
revenue for the MC platform.

In this paper, we propose a hybrid reinforcement learning and transformer-
based balancing framework (HRB), to achieve the coverage balance of MC ser-
vice supply and demand among multiple subregions. The basic idea is shown in
Fig. 1, where the problem is formulated as a Markov Decision Process (MDP)
based on interactions among the MC platform, the subregions and the partici-
pants. In the MDP, the “state” includes service supplies, demands, surplus, and
shortage in different subregions, and each “action” corresponds to a decision on
the migration direction of service providers or demanders in each subregion. Our
HRB framework includes an actor-critic network for generating migration strate-
gies and a Willingness Transformer (WiT) model for predicting the participants’
migration willingness. Put simply, the actor-critic network and the WiT model
are used to decide “how many participants should move from subregion sr; to
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Fig. 1. An overview of the deep reinforcement learning framework for balancing supply
and demand.

b2

sr;” and “who are most likely to move from subregion sr; to sr;”, respectively.
Specifically, the actor network is used to interact with the MC environment and
generate migration decisions, meanwhile the critic network is used to evaluate
the performance of the actor with a group of value functions and reward func-
tions which can indicate the global supply-demand balance. Actions (i.e. user
migration decisions) generated from the actor-critic network will be combined
with the participants’ willingness extracted by WiT model to effectively match
the migration tasks with the participants. By this way, the distribution between
MC service supply and demand can be adjusted continuously and thereby a
relatively balanced state is maintained over the regions.
To summarize, the main contributions of the paper are as follows.

— We propose the hybrid reinforcement learning and transformer-based balanc-
ing (HRB) framework to achieve geographically balanced coverage of MC
services by considering both the imbalanced state of service supply-demand
distribution and the potential moving willingness of MC participants.

— We develop the Willingness Transformer (WiT) model to predict user inten-
tion and obtain the migration probabilities among different regions based on
the historical trajectories of MC service participants.

— We conduct extensive experiments to validate the effectiveness of the pro-
posed approach by comparing with other algorithms under multiple indica-
tors, including the overall balance degree of supply and demand, geographical
imbalance rate and supply-demand distribution etc.

The remainder of this paper is organized as follows: Sect.2 summarizes the
related work about adjusting service supply and demand for Mobile Crowd-
sourcing; Sect.3 explains the definition of this problem; Sect. 4 introduces the
proposed approach in detail; Sect.5 presents the experimental results; Finally,
Sect. 6 offers the conclusion of our work.
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2 Related Work

Due to the dynamics of MC environments, some researchers have focused on
problems including supply-demand balancing, task scheduling and allocation,
mainly in the areas of WiFi hotspot sharing, bicycle-sharing and ride-hailing.
The literatures on WiFi service coverage include [14,17,18]. Neiat et al.
[14] combined the participation probability model and incentive model with an
improved bipartite graph matching algorithm to achieve a geographically bal-
anced coverage of services. Said et al. [17] extracted features from historical
sequence data of the supply and demand gap through CNN-based method to
predict the next time slot gap. Said et al. [18] also proposed another prediction
approach about the gap, using topological data analysis technology to gener-
ate a predictor from the original sequence data. The problem of supply and
demand balance of bicycle-sharing has both theoretical research value and prac-
tical application value, and related literatures include [1,5,6,15,19,21]. Wang
et al. [21] proposed a bike usage demand inference method, which estimates
the demand of some regions and time intervals from the actual demand data
of some bicycles, and then uses them as seeds to infer the regional bike usage
demand of the entire city. By hiring workers to rebalance loads among bike sta-
tions, Duan et al. [6] first focused on the three-dimensional matching problem
among workers, overflow and underflow stations from the perspective of work-
ers’ detour distance, and then considered the rebalancing frequency and target
for each rebalancing operation. The authors also divided monetary incentives
into source and destination incentives, and then combined reinforcement learn-
ing methods to solve the problem of bicycle rebalancing [5]. Pan et al. [15] also
used a deep reinforcement learning algorithm to obtain the incentive value of
each subregion hierarchically to adjust the distribution of bicycles. By modeling
the relationships among bicycle stations, Chen et al. [1] used a dynamic clus-
ter method to predict the over-demand. Singla et al. [19] designed a completely
incentive system which adopts the optimal pricing policies using the approach of
regret minimization and has been deployed in the real-world bicycle-sharing sys-
tem. Compared to bicycle-sharing services, ride-hailing services appeared earlier.
Related literatures mainly address two major problems in ride-hailing services,
namely order dispatching and driver repositioning [9-11,16,22]. In [10], a prac-
tical framework based on deep learning and decision-making time planning was
proposed to reduce the idle time of online drivers and improve the operating
efficiency of the ride-hailing system. Qin et al. [16] set two optimization goals,
i.e. driver-centric and passenger-centric, to maximize the total revenue of drivers
on the platform, and propose a deep reinforcement learning approach to improve
the order dispatch efficiency. Wang et al. [22] focused on matching passengers
and drivers(i.e. order dispatching problem) by combining transfer learning and
deep Q network reinforcement learning. Holler et al. [9] propose a decentralized
solution for order dispatching problem by decomposing the single agent (system-
centric) into multi-agents (driver-centric) which interact with the environment
in reinforcement learning, and then use KL divergence optimization to accelerate
the learning process. For the same purpose, Li et al. [11] use the approach of
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mean field approximation to simplify local interactions among multi-agents, and
then take an average action among neighborhoods to capture dynamic changes
in supply and demand.

3 Problem Definition

In this section, we present a formal model for the service coverage balance prob-
lem. The system of MC services consists of a central platform, which can be
aware of the distribution of workers and users, that is service providers and
service demanders. We use the following definitions to formulate the problem.

Definition 1. (Region and Subregion)

R=sr;UsroaUsrgU---Usr, (1)

In a location-based MC' scenario, the entire region R is divided into a set of
subregions SR = {srq, sra,srs, .- ,srp} (with different sizes), n is the number
of subregions. Similarly, the entire interval T when both the MC users and work-
ers are available, is divided into a set of discrete time slots of equal fized length.
T can be computed based on the maximum travel time between two subregions
(e.g. using Google Map Distance Matriz API), denoted as {t1, ta,t3, - }.

‘@ Worker (supply)

ﬁ% User (Demand)
@ system Platform

O Oversupplied Subregion
O Undersupplied Subregion
O Balanced Subregion

Fig. 2. Mobile crowdsourcing service scenario.

Definition 2. (Region Coverage Equilibrium)

RCE (Psupply7 Pdemand) =
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We calculate the balance degree RCE based on the distribution of supply
and demand in the region. And Psyppiy, Piemand Tepresent supply distribution,
demand distribution respectively. S; and D; are the number of service providers
and demanders in subregion sr; respectively. And n is the number of subregions.
If RCE fluctuates within [0, «], it indicates the regional coverage balance. And
the smaller RCE, the more balanced region. o depends on the distribution of
supply and demand in experimental data.

Definition 3. (Mobile Crowdsourcing Coverage Balance Problem
(MCCBP)) Given a time interval T = {t1, ta,t3, -} and a set of subregions
SR = {sri, sra,srs,---,srn}, let SP;ij = {spy, Spy,sps,---} be the set of ser-
vice providers and SD;; = {sdi, sdg, sds,---} be the set of service demanders
in the time t; in the subregion srj. As shown in Fig. 2, the MCCBP is to con-
stantly redistribute service providers within subregions during the time interval
T to achieve optimal service coverage equilibrium in accordance with minimizing
RCE, taking participants’ willingness into account.

4 The HRB Framework

In this section, we propose a hybrid reinforcement learning and transformer-
based balancing framework (HRB) to solve MCCBP. HRB not only takes the
regional balance into account but also considers the autonomy of participants. As
shown in Fig. 3, HRB consists of two parts: Actor-Critic network and Willingness
Transformer (WiT) model. Actor-Critic network first determines the migration
direction of service providers within each subregion based on the RCE. WiT
then obtains the participants’ willingness from their historical trajectory within
the entire region. Finally, the combination of migration direction and willingness
generates specific matching solutions for service providers and demanders, i.e.,
the plans for a provider to move to the location of the demander to provide a
service to meet the demander’s request.

4.1 MDP Formulation

The migration direction problem can be modeled as a Markov decision process
(MDP) defined by a 5-tuple (S, A, Pr, R,~), where S and A denote the set of
states and actions, R represents the immediate reward and ~ is the discount
factor. In our problem, at each timestep ¢, the expression of state s; is as
follows:

se=(S(t),D(1).0(t),U (1)) (3)

In subregion sr; at the beginning of timeslot ¢ € 7, let S; (t), D; (t), O; (t),
U, (t) denote the supply, demand, oversupply, undersupply, i.e., the number of
service provider, service demander, surplus provider, surplus demander. And we
denote S (t), D (t), O(t), U (t) as the vector of supply, demand, oversupply,
undersupply respectively. The action a; = (SRsoy (t) , SRaes(t)). At the begin-
ning of timeslot ¢ € 7, the MC service providers in subregion sr; will migrate
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Plan(t) = (SPiou(t), SReou (1), SDates (1), SRaes (1))
se = (). D(£).0(2). V(D)) ¢ = (SRuou (1), SRues (1)) Plan(t)
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Fig. 3. The network of HRB framework.

to one of subregions sryi,57k2, -+ ,8Tkm. And sr; € SR (t), 1 < j < n,
stk € SRyes (t),1 < k < m, (87,871, 8Tk2, "+ ,STkm) € a;. An immedi-
ate reward R (st,a¢) indicates the balance of region after a; is executed on
the basis of s;, that is, the distribution of supply and demand. The reward
R (s¢,at) = —RCE (Psuppiy, Piemand). As mentioned in Problem Definition,
Psupply> Pdemand represent supply distribution, demand distribution respectively.
We use RC'E to measure the similarity of the distribution of supply and demand,
and negative RC'E is used as the value of immediate reward. In conclusion, the
platform takes an action a;, and receives an immediate reward R (s, a;) in the
whole area R at timestep t. Pr (si11]|s¢, at) represents the transition probability
from state s; to state s;1; under action a;. The policy function gy (s¢) with
the parameter 6, maps the current state to a deterministic action. The overall
objective is to find an optimal policy to maximize the overall discounted rewards
from state s; following mg, denoted by J, = E [Z;’;O Y*R (ay, si) |7, so] , where
v € [0,1] denotes the discount factor. The Q-value of state s; and action a;
under policy my is denoted by Q™ (sy,a;) = E [Y o, v* 'R (ak, si) | 7o, St, ar].
Note that J,, is a discounted version of the targeting objective, and will serve
as a close approximation when = is close to 1.

4.2 Actor-Critic Network

Actor-Critic network based on DDPG [12] determine the migration direction
of the service provider, i.e. the provider moves from the subregion where this
provider is located to the subregion where the corresponding demander is
located. The action space is high-dimensional and continuous. As the number
of subregions increases, there will be a crisis of dimensionality. Inspired by [3],
we decompose the original region critic network into multiple subregions critic
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networks, that is, decompose the Q-value of the region into sub-Q-value of sub-
regions. We use state and action as features respectively for feature embedding
to discover more potential information [2]. When we decompose the Q-value of
the region into sub-Q-value of subregions, only the effect of the action on the
state in subregions is considered, but the effect of the action on the state of the
entire region may be ignored. Therefore, we count the number of three cases of
subregions (i.e. oversupplied, undersupplied, and balanced) and the imbalance
rate from the state s; as input to consider the overall situation. The calculation
process of imbalance rate is as follows:

S; — D;
Z"I"i = 7‘ d l| (4)
max (S;, D;)
S; and D; are the number of service providers and demanders in subregion
sr; respectively. And n is the number of subregions.

Inspired by [15], we can get @, (s¢, a¢) by:

Qu(st,a0) = Q + ) Qi (e, a51) ()

=1

In time slot ¢, the input of global-critic are three numbers (i.e. the number of
oversupplied, undersupplied, balanced subregions), the output is a global value
Q. Each subregion has a sub-critic network. And the input is state s;; and
action a;; of this subregion, the output is a sub-Q-value Qij, so Q value of
the entire region is 37, Q7 . As mentioned earlier, when the region is divided
into subregions, Q-value will have a possible deviation, so )y makes up for this
shortcoming.

Reinforcement learning uses the immediate rewards obtained during the
interaction between the agent and the environment to guide the behavior of
the agent. The Actor network will output actions based on the status of the
environment feedback, and the Critic network will evaluate the actions output
by the Actor network based on the status of the environment feedback and imme-
diate rewards, and output the Q value. Due to the instability of a single network
during training, drawing on the successful experience of DQN [13], the original
Actor and Critic networks are expanded to four networks. These four networks
are divided into the real network and the target network. The real network is the
original one. In the Actor-Critic network, target network has the same structure
as the real network. The real network will softly update the target network for
a fixed period to improve the stability of the real network training. Intuitively
speaking, during the training process, the Actor network updates its parame-
ters according to the Q value output by the Critic network, that is, the goal of
the Actor network is to maximize the Q value; the Critic network updates its
own network parameters according to the immediate rewards feedback from the
environment, that is, the real Critic network and the target Critic network do
the mean square error.
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The Actor network represents the policy 7y parameterized by 6. It maximizes
Jr, using stochastic gradient ascent. In particular, the gradient of J,, over 6 is
given by:

VGJﬂ'g =E, Prg [VE’TF@ (S) anu (Sa a) |a:7r9(s)] ) (6)
where pr, denotes the distribution of states.
The Critic network takes the state s; and action a; as input, and outputs
the action value. Specifically, the critic network approximates the action-value
function Q™ (s,a) by minimizing the following loss [12]:

L(Q™) = Buy oo = |(Qu (st:00) = 90)°] (7)
where y; = R(st,at) + WQ;/ (st41,mp (5¢41))-

4.3 Willingness Transformer (WiT)

Inspired by Vision Transformer [4], we propose the Willingness Transformer
(WiT) model based on Transformer [20]. Compared with Transformer, WiT
inputs the subregions ID sequence during the training phase, and the label is
the next subregion ID. After the training of WiT is completed, we can input the
subregion ID sequence of the service provider to obtain the probabilities to sub-
regions, that is, willingness. The principle is the consistency of behaviors, which
means that human behaviors always follow a respective pattern and preference
within a certain period. The subregion ID sequence first needs ID Embedding
and Positional Encoding, then the two are added together. Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) respectively extract the
local features and long dependencies of the subregion ID sequence. And Trans-
former Encoder uses a self-attention mechanism to give these different features
different attention levels. Finally, WiT outputs probabilities.

Finput = Concatenate(Fenn, Frstar, Fie + Fpe) (8)

Fj. are the subregion ID embedding of the check-in sequence. Similarly, Fj,
is the positional encoding. And Fonpn, FrsTar respectively represent local fea-
tures and long dependencies of ID sequence. Fjyp,: is fed into the Transformer
Encoder. The encoder is a stack of N identical blocks. Each block contains a
multi-head attention layer and a feedforward network layer. The attention func-
tion can be considered as mapping a set of key-value pairs (K-V) and a query (Q)
to an output, where the key, value, and query all come from different transfor-
mations of feature integration. The output is the weighted sum of these values,
where the weight of each value depends on the similarity of the query to the corre-
sponding key. Residual connection [8] is used, which can alleviate the problem of
vanishing or exploding gradients in deep neural networks as the depth increases,
that is, to prevent information loss. The WiT’s train loss £ = CFE (yid, id),
where C'E is the Cross-Entropy function, y;4 is the one-hot encoding of true
next subregion ID, and ;4 is the recommendation probabilities of all subregion
ID. The training objective is to minimize the loss function L.
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5 Experiment

This section demonstrates the effectiveness of the proposed approach by con-
ducting comparative experiments on benchmark datasets.

5.1 Datasets

We conduct our experiments on the following real-world datasets. Considering
the diversity of experimental data, we select two types of datasets with different
MC scenarios, including taxi-hailing and bike-sharing.

New York City Taxi Trip Duration': We use the training set of this dataset
to generate supply and demand data. The records include pick-up and drop-off
time and pick-up and drop-off locations with their associated IDs. We consider
each pick-up event as a demand record (i.e. passenger has a demand for a taxi)
and each drop-off event as a supply (i.e. taxi has become available, and the driver
can offer a service) to generate supply and demand data.

New York City Bike Sharing 20192%: We use this dataset to generate supply
and demand data. The records include start and stop time and its corresponding
locations in terms of latitude and longitude. We consider each start event as a
demand record (i.e. passenger has a demand for a bike) and each stop event
as a supply (i.e. bike has become available, and the bike can offer a service) to
generate supply and demand data.

FourSquare - NYC and Tokyo Check-ins®: The dataset contains check-in
records in two cities, NYC and Tokyo for about 10 months. It contains 227,428
check-ins in New York City and 573,703 check-ins in Tokyo. In the following
experiments, we generate the trajectory data of MC service providers from this
check-in dataset.

Two groups of datasets were used to evaluate the proposed HRB framework,
namely the NYC Taxi and Check-ins datasets, the NYC Bike and Check-ins
datasets. And the WiT model is evaluated with the NYC and Tokyo Check-ins
datasets.

5.2 Evaluation Metric and Baselines

To comprehensively evaluate the performance of HRB over a period of time
(one day), we summarize experimental data during this period of time and use
the sum, mean, maximum and minimum values based on three metrics, includ-
ing Region Coverage Equilibrium (RCE), accumulated service provider income
(ASPI), and order response rate (ORR). RCE calculation formula is shown in

! https://tianchi.aliyun.com/dataset /dataDetail?datald=94519.

2 https://www.kaggle.com/datasets/ongks1986 /new-york-city-bike-sharing-2019.

3 https://www.kaggle.com/chetanism /foursquare-nyc-and-tokyo-checkin-dataset /
version/2.
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https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset/version/2

Balancing Supply and Demand for Mobile Crowdsourcing Services 295

Eq. (2). ASPI and ORR inspired by [11] are proposed. To evaluate the per-
formance of WiT, we use the probabilities output by the model and label to
calculate the accuracy. If the correct label is among the top-k predicted values,
the calculation result is increased by 1. We compare our HRB framework with
the following baseline algorithms:

— No operations (NO). This method does not perform matching operations.

— Random (RAN). It only randomly assigns all active service providers with
available demanders at each time step.

— Response-based (RES). During each time step, all available demanders start-
ing from the same subregion will be sorted by the deadline. Multiple deman-
ders with the same deadline will be further sorted by the service reward.

— Revenue-based (REV). The higher the reward is given by the service deman-
der, the higher its priority when matched. Following the similar principle as
described above, demanders with an earlier deadline will be assigned first if
multiple demanders give the same reward.

- DDPG. [12].

— HRB-Hierarchical (HRB-H). Compared with HRB, HRB-H has no Global-
critic and no Embedding in the network structure.

— HRB-Hierarchical-Global (HRB-HG). Compared with HRB, HRB-HG has no
Embedding in the network structure.

To predict the migration willingness of MC participants among different
regions, we compare the WiT module with the following algorithms:

— Convolutional Neural Network (CNNCom).
— Long Short-Term Memory (LSTMCom).
— TransformerCom (Imitating Vision Transformer [4]).

5.3 Performance Comparison

We first compare WiT with other related algorithms, then verify the effectiveness
of the internal structure of Actor-Critic Network, and finally compare HRB with
other related algorithms.

WiT Performance. We trained WiT and its’ comparison algorithms on NYC
and TKY datasets respectively. The Top-1 accuracy of these models on NYC
and TKY test set are shown in Fig. 4. In detail, the training step and accuracy
of these models to achieve the best results on the test set are shown in Table 1.
We observe that WiT can achieve higher prediction accuracy in lesser training
steps.

Effect of the Internal Structure with Actor-Critic Network. Respec-
tively, we compare our HRB framework with the baseline algorithms, as well as
conduct ablation experiments to verify the effectiveness of the different compo-
nents (i.e. the Hierarchical structure, the Global-critic network and the Embed-
ding layer) in the HRB framework. As shown in Tables 2 and 3 for the taxi-hailing
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Table 1. Performance comparison for WiT in terms of training step and accuracy on
Check-ins test set.

Datasets | Algorithm Training step | Top-1 Top-2 Top-3 Top-4 Top-5
NYC WiT 145500 51.42% | 68.40% | 75.88% | 80.01% | 82.89%
Check-ins | LSTMCom 207500 50.62% |67.65% |75.11% | 79.28% |82.12%
TransformerCom | 214000 48.19% |66.25% | 74.06% |78.64% |81.68%
CNNCom 158500 47.03% |64.40% |72.01% |76.42% |79.26%
TKY WiT 312000 57.22% | 75.34% | 82.79% | 86.70% | 89.22%
Check-ins | LSTMCom 786000 56.50% | 74.75% |82.32% |86.37% |88.95%
TransformerCom | 597500 45.68% |66.04% | 76.56% |82.48% |86.41%
CNNCom 543000 44.25% | 64.18% | 74.19% |79.82% |83.52%
= —
o = //
=@ \\/iT ~ «m@u=TransformerCom CNNCom LSTMCom =@ \\/iT  ==@==TransformerCom CNNCom LSTMCom
(a) (b)

Fig. 4. Performance comparison for WiT in terms of accuracy on two test sets. (a)
NYC test set. (b) TKY test set.

and bike-sharing datasets, we can observe the effectiveness of these three struc-
tures. The Hierarchical Structure can effectively improve the performance of
HRB, so that the problem-solving perspective is changed from the entire region
to subregions, paying more attention to each subregion. Global-critic makes
up for the deficiencies of Hierarchical Structure and considers the connections
between subregions from the perspective of imbalance rate. Embedding enables
Actor-Critic Network to have the ability to mine more useful information from
state s; and action a;.

Essentially, these DDPG-based algorithms are constantly exploring the best
matching scheme to reduce RCE. In this exploration process, the ORR increases,
which drives the increase of ASPI. Note that the smaller the RCE, the larger
the ORR and ASPI, the better. And the relationship between ORR and ASPI
is non-linear.

HRB Performance. As is shown in Tables2 and 3 for Taxi and Bike datasets,
traditional methods (i.e., RAN, RES and REV.) just mechanically perform
matching operations in accordance with their own rules, ignoring participants’
willingness, making ORR low. Although these methods can reduce RCE, the
number of matches completed is too small. In contrast, HRB uses neural net-
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Table 2. Performance comparison for HRB on NYC Taxi dataset.

Algorithm | ORR (mean) | ASPI (sum) | RCE (mean) | RCE (max) | RC E(min)
NO 0.00% 0.00 60.41 115.21 21.42
RAN 11.08% 604081.64 57.11 110.28 21.59

RES 11.01% 602223.01 56.88 105.25 21.38
REV 11.19% 626606.50 57.13 112.64 21.84
DDPG 73.71% 2773629.23 | 51.79 94.87 18.76
HRB-H 74.05% 2770291.25 |51.51 93.39 18.57
HRB-HG | 73.49% 2760943.73 | 51.52 92.99 19.18
HRB 73.97% 2780334.14 | 50.92] 89.24| 18.76]

Table 3. Performance comparison for HRB on NYC Bike dataset.

Algorithm | ORR(mean) | ASPI(sum) | RCE(mean) | RCE(max) | RCE(min)
NO 0.00% 0.00 56.12 203.74 2.00
RAN 11.72% 622536.80 52.89 197.23 2.00
RES 12.41% 631632.78 53.26 196.15 2.00
REV 12.02% 656474.49 52.94 196.05 2.00
DDPG 66.40% 2882350.56 | 50.71 189.55 2.00
HRB-H 65.23% 2886530.42 | 50.56 187.57 2.00
HRB-HG | 66.75% 2876824.91 | 50.22 189.51 2.00
HRB 66.80% 2895037.73 | 49.91] 175.31] 2.00

2 5000 2 1soeac0c0
ST

(a) (b)

Fig. 5. Performance comparison for HRB in terms of two metrics on Taxi datasets. (a)
RCE (mean). (b) ASPI (sum).

works to learn the relevant rules of migration direction of service providers and
keeps trying to reduce RCE, that is, to maintain the relative balance of the
region, to increase ORR, and thereby increase ASPI. As is shown in Figs.5,
compared with other algorithms, HRB matches providers and demanders taking
the regional balance and the willingness of participants into account, which can
effectively increase the number of transactions and thereby increase the total
revenue of service providers.
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6 Conclusion

In this paper, we propose a hybrid reinforcement learning and transformer-based
balancing framework (HRB) to achieve geographically balanced coverage of MC
services. Experimental results proved that HRB can continuously adjust supply
and demand distribution among regions while taking participants’ willingness
into account, thereby increasing the overall number of successful MC supply
and demand matches. In the future work, we will model participants in a more
refined manner (e.g. interests in different contexts), and explore methods about
reinforcement learning training for mobile user behavior prediction tasks.
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Abstract. With the development of sharing economy, multi-platform
cooperative matching (MPCM) is becoming popular as it provides an
effective way to cope with the supply-demand imbalance in spatial crowd-
sourcing (SC). While cooperation between two SC platforms in MPCM
has been intensively studied, competition among multiple SC platforms
is largely overlooked by existing work. In particular, an idle worker may
be requested by multiple platforms simultaneously, but he/she can only
accept some of them due to capacity constraints. This partial acceptance
will decrease the revenue of some platforms and thus should be addressed
properly. Towards this goal, we investigate in this paper the problem of
acceptance-aware multi-platform cooperative matching. We first design
an algorithm called BaseMPCM to predict the acceptance rate of work-
ers and calculate the utility scores of task-and-worker pairs. Considering
that in BaseMPCM, the platforms make the decision from their own ben-
efits, and this may lead to a sub-optimal total revenue, we further design
an algorithm called DeepMPCM to predict the action of other platforms
and calculate the utility scores globally. Extensive experiments on real
and synthetic datasets demonstrate the effectiveness of our algorithms.

Keywords: Spatial crowdsourcing - Task allocation + Cooperative
matching + Multiple platforms

1 Introduction

Spatial Crowdsourcing (SC) is an emerging paradigm of crowdsourcing in which
SC platforms employ a crowd of workers to move to specific physical locations to
perform spatiotemporal tasks. Many services in daily life are typical SC appli-
cations, for example, real-time taxi-calling services (e.g., DiDi and Uber), online
meal-ordering services (e.g., Ele.me and Meituan), citizen sensing services (e.g.,
Waze and OpenStreetMap), just to name a few.
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Fig. 1. An example of cooperative matching among three platforms

One critical problem in SC is matching, which assigns tasks to workers so
that the total utility of an SC platform is optimized. Most existing studies focus
on designing algorithms for a single platform to achieve optimal matching using
different utility settings. For instance, the utility of a platform can be the total
number of assigned tasks [9], the total moving distance of workers [15], the payoff
difference among workers [21], and so on. All these methods can achieve good
matching when the tasks and workers of a platform are evenly distributed. In
the real world, however, this is not the case. Specifically, some tasks cannot be
fulfilled because there are no idle workers nearby, while some idle workers at
other locations may always be unoccupied since no executable tasks are around.
The uneven distribution will bring a huge loss of performance to the existing
methods. Fortunately, the distributions of tasks and workers in different plat-
forms are typically various in real life [5]. It is likely that an unassigned task
in one platform can be served by the idle workers of other platforms. If these
platforms can cooperate in matching, the problem caused by uneven distribution
will be alleviated, and the platforms will achieve a win-win situation.

Motivated by this, we investigate the Multi-Platform Cooperative Matching
(MPCM) problem where n platforms cooperate in assigning their tasks with the
aim of increasing their total revenue. A simple version of this problem has been
studied in [5], where n = 2 and the aim is to maximize the revenue of only one
platform. However, the proposed solution does not work well when n > 2 due
to a phenomenon called worker competition. Let us illustrate this with a simple
example shown in Fig. 1(a). Suppose there are three platforms G, B, and R. At
some point, the platform B has some free workers (denoted by blue squares) but
no task. On the contrary, platforms G and R have some tasks (denoted by green
and red triangles) to complete, but no worker is available. Using the solution
proposed in [5] which matches the nearest serviceable worker to a task, G and
R will ask the worker wy, to perform their tasks ¢y, and ¢,,, respectively. The
worker, however, can only accept one task say t,,, due to capacity constraint.



302 X. Xu et al.

This partial acceptance will decrease the platform G’s revenue since G could ask
wy, for help if it knew wy, would reject it, albeit w,, is a little far away.

An important observation from the above example is that when n > 2, the
platforms are not only cooperators but also competitors for workers. In [5], only
two platforms are involved in the cooperation, so the idle workers of one platform
can just be lent to the other. Clearly, there is no competition for workers there.
When the number of platforms is more than two, however, it is likely that an idle
worker is requested by multiple platforms at the same time, leading to partial
acceptance, as illustrated in the above example. Since partial acceptance may
decrease the revenue of some platforms to a certain degree, it should be taken
into account in the course of cooperative matching. The challenge here is whether
or not a task will be accepted by a worker cannot be known in advance, and
it is determined by many factors, for example, the quotation of the platform,
the distance between the task and the worker, and the number of requests that
the worker receives at that time. Note that the last factor cannot be known in
advance either, which makes the prediction of acceptance non-trivial.

To enable acceptance awareness in cooperative matching, we propose in this
paper an algorithm called BaseMPCM which first employs the method of upper
confidence bound to learn the relationship between the acceptance rate and the
platform’s quotation and then calculates utility scores for all task-and-worker
pairs. In BaseMPCM, every platform makes the decision from its own benefit,
which may lead to a sub-optimal total revenue. To overcome this shortcoming,
we further design an algorithm called DeepMPCM which first predicts the action
of other platforms and then calculates global utility scores for task-and-worker
pairs. Specifically, we adopt a Convolutional Neural Network (CNN) to capture
the spatial correlation between tasks and workers, which is useful to estimate the
number of requests that workers may receive. We also construct a multi-layer
perceptron (MLP) to predict global utility scores based on the contextual infor-
mation of tasks and workers. In summary, we make the following contributions:

e To the best of our knowledge, this is the first study to consider the problem of
worker competition in cooperative matching in spatial crowdsourcing. Worker
competition will lead to partial acceptance, which in turn may decrease the
revenue of some platforms and thus should be addressed.

e We propose two algorithms to predict the utility scores of task-and-worker
pairs. Specifically, We first design the BaseMPCM algorithm to predict the
acceptance rate of workers and calculate platform’s expected revenue as the
utility score. We further design the DeepMPCM algorithm to predict the
action of other platforms and predict global utility scores by neural networks.

e We conduct extensive experiments on real and synthetic datasets to demon-
strate the effectiveness of the proposed algorithms.

2 Related Work

Task-worker matching plays an important role in SC. Existing studies on match-
ing can be divided into two categories: offline matching and online matching. In
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the former case, the spatiotemporal information, such as the arrival time and the
location of tasks and workers, is known in advance. Based on the information,
offline matching can be modeled as a typical bipartite matching and be solved
by network flow algorithms [10,14].

Compared with offline matching, dynamic online matching is more practi-
cal, where tasks and workers arrive at a platform dynamically, and the plat-
form needs to respond promptly to task requests. Existing works usually design
dynamic matching algorithms [4] and greedy algorithms [7] to solve the online
matching problem. In [16], the authors randomly choose task-and-worker pairs
whose score is higher than an established threshold to obtain a competitive
ratio of 1/2eIn (1 + Upax) under the online adversarial model with Uy, as the
maximum edge weight in the bipartite graph and e as the natural constant. In
addition, some algorithms based on road discovery, game theory and reinforce-
ment learning [3,6,20,21] have been proposed to improve the matching quality
and realize personalized matching based on workers’ social graph [11-13].

Besides the traditional simple matching, some complex matching problems
have been studied in recent years [3,8,18,19]. However, these solutions cannot
be applied to our problem. On the one hand, although the acceptance rate of
workers has been considered in [22], it is assumed to be known in advance and
does not need to be predicted. On the other hand, in the MPCM scenario, partial
acceptance is caused by worker competition on multiple platforms. Therefore, the
acceptance rate of workers is also determined by the action of other platforms,
which is different from the traditional acceptance rate in the single platform
scenario.

3 Problem Statement

In this section, we introduce some basic concepts and present the formal defini-
tion of the MPCM problem.

Definition 1 (Task). A task is a tuple t = (t.s,t.e,t.l,t.p,t.c) where t.s and
t.e are the arriwal time and due time of t respectively, t.l is the location where
t will be performed, and t.p is the amount of money that the platform t.c will
receive after t is completed.

Definition 2 (Worker). A worker is a tuple w = (w.s, w.l, w.r,w.c) where w.s
18 the arrival time of w, w.l is the location of w, w.r is the reachable range of w
and w.c is the platform to which w belongs.

Definition 3 (SC Platform). An SC platform is a tuple sc = (sc. W, sc.T),
where sc. W and sc. T are the worker set and task set of sc, respectively.

Definition 4 (Outer Payment). When a worker from other platforms suc-
cessfully serves a platform’s spatial task t, the worker will be paid an outer pay-
ment t.p" and 0 < t.p’" < t.p.
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Definition 5 (Revenue). For any pair (t,w) € Ms. where M. is the matching
result set of sc, the revenue of platform sc on (t,w) is as follows:

t.p t.c = sc and w.c = sc
revg(t,w) = < t.p' t.c # sc and w.c = sc (1)

tp—tp t.c=scand w.c# sc

If a task and a worker both come from the same platform sc, the revenue will be
the original payment of the task. If sc’s internal task is performed by a worker
from other platforms, the revenue will be the task’s original payment minus
its outer payment. If sc’s internal worker serves a task of other platforms, the
revenue is the task’s outer payment.

Definition 6 (The MPCM Problem). Given a set of cooperative platforms
SC = {sci,5ca,...5¢50|}, tasks and workers arrive at these platforms sequen-
tially, and the platforms conduct matching over the shared tasks and workers.
MPCM requires finding a matching result set M; (1 < i < |SC|) for each plat-
form so that the platforms’ total revenue is mazimized under the following con-
straints:

e Spatial constraint: A worker can only serve tasks within his/her reachable
range, that is, only the tasks in the circular area with w.l as the center and
w.r as the radius can be served by worker w.

e Temporal constraint: A matched worker must arrive at the workplace of
task t before the task’s expiration time, i.e., before t.e.

e Capacity constraint: A crowd worker can serve only one task at a time,
and a task can be performed by only one worker.

4 Methodology

In this section, we present a general framework for solving the problem of MPCM
and design two self-supervised algorithms for external matching.

4.1 Framework of Solving MPCM Problem

Our general framework mainly contains three components: internal matching,
task pricing, and external matching, where the internal matching and external
matching are respectively responsible for matching inner workers (i.e., workers
in the current platform) and outer workers (i.e., workers in other platforms) for
platform’s tasks and the task pricing calculates the outer payments that platform
would payoff the outer workers. It is clear that existing task matching algorithms
proposed for a single platform can be applied to the internal matching problem
as the problem only matches inner workers and tasks. In this paper, we adopt
the online task assignment algorithm proposed in [16] for the internal matching,
as the algorithm can give response to task requests promptly with a competitive
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ratio guarantee of 1/2eln (1 + Upax), where Uyyq, is the maximum utility of
task-and-worker pairs, and e is a natural constant.

Considering that the tasks’ outer payments depend on the platforms’ global
supply-demand relationship, we utilize a variant of the existing matching-based
task pricing approach (v-MAPS) [17] for task pricing in MPCM. The approach
calculates rewards for tasks based on the platform’s supply and demand curves
to maximize the platform’s total expected revenue. Specifically, our v-MAPS
algorithm makes the following modifications.

e The expected revenue: For a cooperative spatial task ¢ with payment ¢.p
and outer payment t.p’ and a set of outer workers W, the expected revenue
of the task can be expressed as

E(t, Wou) = (t.p —t.p") x A_p (t.p', Wous ) (2)

where A_p (t.p/, Wous ) indicates the acceptance rate that the serviceable
outer workers in W,,,; would like to serve task ¢ with outer payment ¢.p’.

e The acceptance rate: In v-MAPS, a self-supervised approach is used to
update the acceptance rate of workers for tasks with different outer payments.
Specifically, we use the grid index to model location spaces in the real world.
Every time receiving feedbacks of a current matching result, we use formula
(3) to calculate the acceptance rate of workers under different outer pay-
ments in each grid and take the arithmetic mean of the calculated acceptance

rates @/ of all grids as the overall acceptance rate A/cc\p/ of specific outer
payments, where g is a specific grid cell and p’ is an outer payment.

Agg\p/ :bf in g and t.p'= ?/ and t is successfully accepted| 3)
’ |t in g and t.p’ = p/|

After introducing the above basic steps, we focus on our primary work: exter-
nal matching. As shown in Algorithm 1, the main workflow of our proposed
external matching algorithm contains two steps, the utility prediction step (lines
3-5) and the task matching step (lines 6-8). In the utility prediction step, we
call algorithms to predict the acceptance rate of workers and calculate compre-
hensive utility scores of task-and-worker pairs. The utility score combines the
worker’s acceptance rate and the platform’s revenue. In the task matching step,
we construct a bipartite graph of tasks and workers and use the Minimum Cost
Maximum Flow (MCMF) algorithm to realize final matching. In the following
two sections, we will detail the utility prediction algorithms.

4.2 The BaseMPCM Algorithm

For a set of inner tasks and a set of outer workers, BaseMPCM always renders
higher scores to the valid pairs with higher revenue and greater acceptance rate.
Inspired by the task pricing algorithm, we use ezpected revenue(formula (2))
to balance the worker’s acceptance rate and the platform’s obtained revenue in
BaseMPCM. Specifically, for a valid pair (w;,t;), we use formula (4) to predict
the acceptance rate of w; for ¢;, where a; € [0,1] is an adjustable parameter,
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Algorithm 1. The main workflow of the external task matching algorithm.

Input: Inner task set T;,, outer task set T, and outer worker set Wyt
Output: The set of external matching results M,,: and the obtained revenue revoy:
1: Moyt = 0; revout = 0
: Traverse T, and Woy:, retrieve all the valid task-and-worker pairs to S
: for each pair ({,w) in S do
use BaseMPCM or DeepMPCM algorithm to calculate a utility score s(t, w)
: Construct a bipartite graph in which a vertex represents a task or a worker, and
there exists an edge between a worker w; and a task t¢; if they constitute a valid
task-and-worker pair, the weight of the edge is —s(wj, t;).
6: Add a source vertex and a sink vertex in the graph, the source vertex connects task
vertexes and the sink vertex connects worker vertexes, the weight of the edge is 0.
7: Use the MCMF algorithm to get the final matching result M,,: with 1 as each
edge’s capacity and the weight as the cost.
8: for each matching pair (w;,t;) in Moy do

TUA W

9: send the task request t; to worker w;
10: if w; receive the task ¢; then

11: TeVout+ = tj.p — t;.0'

12: else

13: remove (wj, t;) from Moys

14: return Moy 7€Vout;

Acc(tj.p',tj.g) is the upper confidence bound (UCB, i.e., the upper bound of
a confidence interval, which is defined as the sample mean plus a confidence
radius) of the acceptance rate for the outer payment ¢;.p" in grid t;.g, 1/c(w;)
measures the acceptance rate of w; for ¢; in the worst case (all of the w}s ser-
viceable platforms send task request to him at the same time) in reality in which
c(w;) calculates the number of platforms that w; is serviceable for in the current
time point. It’s worth noting that we predict the acceptance rate via the method
of calculating UCB (a classical solution to the multi-arm bandit (MAB) problem
[2]), as the method well combines exploration (try to request workers in a new
grid) and exploitation (automatically filter out workers in grids with low accep-
tance rate), and can find an appropriate grid cell to locate the optimal workers
rapidly and effectively. The mathematical representation of UCB is shown in
formula (5) where Xc?p is the sample mean, N is the total number of tasks in
g so far, N(p) is the number of times that we use p in g and if N(p) = 0, we all

have ,/QIHN =0.

N(p)
1
A_p (wi,tj) = a1 x Ace (t;.p",t5.9) + (1 — aq) x <) (4)
— 2InN
Acc (p,g) = Accy + (| —— 5

To reduce the waiting time of tasks, we additionally take the distance between
workers and tasks into consideration on the basis of expected revenue, and the
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final score of a task-and-worker pair is calculated as the following formula:
s (ws, tj)=ag X E (tj, w;)+(1—ag) x (max_d—dis (w;, t;)) (6)

where ay € [0, 1] is an adjustable parameter, dis(w;,t;) calculates the euclidean
distance between t; and w;, mar_d is the maximum distance in all valid task-
and-worker pairs.

In BaseMPCM, we predict the acceptance rate of workers to make the plat-
forms with lower acceptance rates (i.e., the inferior platforms) avoid selecting
the same worker as other platforms with higher acceptance rates (i.e., the supe-
rior platforms) so as to improve platform’s revenue. However, the algorithm only
focuses on the worker selection of inferior platforms but not on that of the supe-
rior platforms. With BaseMPCM, the superior platforms will assign the closest
workers to their tasks without considering the impact of their matching results
on other platforms. Considering the example in Fig. 1(b), for platform G (the
superior platform), whichever worker (ws, or wy, ) it sends request to, task ty, can
be carried out because t4, is closest to both of the two workers (the acceptance
rates of wy, and wy, for tg, are both 1). Thus, G will match the closer worker
wp, to tg,. In this case, the task ¢,, will be rejected. However, if G matches wy,
to tg,, both tg and t,, can be served. Actually, the final matching of inferior
platforms is usually decided by the matching result of superior platforms. In the
following section, we additionally consider the impact of task-and-worker pairs
on global matching results and propose the DeepMPCM algorithm to calculate
the global utility score for valid pairs.

4.3 The DeepMPCM Algorithm

It is evident in the MPCM scenario that the selection strategy of a platform
often depends on the action of others. If a platform gets the action of other
platforms in advance, it can then infer the most favorable selection strategy for
the global situation: the platform will avoid selecting the same worker with the
platforms with high acceptance rates and try to select the workers with less
impact on other platforms when there are more than one candidates. This can
not only help the platform itself to improve the total revenue but also indirectly
increase the revenue of other platforms. Inspired by this, we further propose the
DeepMPCM algorithm to calculate the global utility score for platforms.

As shown in Fig. 2, the DeepMPCM model is mainly composed of two parts:
the predictive layer and the evaluative layer. In the predictive layer, the model
predicts the probability that each platform sends task requests to every worker
based on the platforms’ task and worker distribution. On this basis, in the eval-
uative layer, the model calculates the global utility score for valid pairs using
a multi-layer perceptron (MLP). Specifically, we first encode the distribution
information of the platforms’ tasks and workers in the predictive layer. We use
the grid index to model different location spaces in the real world and then
take each grid as a unit to count each platform’s task and worker distribution.
Suppose that the number of the cooperative platforms is n and the entire space
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is divided into k; X ko grids, each grid contains k3 x k4 sub-grids. The feature
vector of the overall distribution can be expressed as

D1 D2 e Dkz

Dk2+1 Dk2+2 e D2k2

D= (7)

Dk, —1)sko+1 Dcs —1)sko+2 *** Diysks
where D;(i € [1, k1 x ka]) is the feature vector of the ith grid, it is expressed as

t t t w w
[numi,l’xi71,0ayi,1,07"'numi,lvxi,LO’”' )

t t t w w
NUM; 2, Tj 205 Yi 2,00 UMY 9, L9205

D; = : : Do : Do (8)

t t t w w
UMY 1y Tj oy 05 Yim, 00" VU s Ty 05 7 ]

in which num;j is the total number of tasks platform sc; contains in grid g,
x;?,jﬂ and yf,j’q (¢ € [0, ks x kyq)) are the average longitude coordinate and latitude
coordinate of the tasks contained by sc; in the sub grid g;q of grid g;.
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Fig. 2. The DeepMPCM model.

Considering the spatial correlation between tasks and workers, we then use a
classical 3-layer Convolutional neural network (CNN) to conduct the prediction
after encoding overall distribution. We can get the probability that each platform
selects workers in different grids: O = [O1, O, ..., 0,,], where O; represents the
selection probability matrix of platform sc;.

Based on the platforms’ worker selection probability obtained from the pre-
dictive layer, we encode both the task and the worker for each valid pair in the
evaluative layer: we take the task’s 2D location, platform id, original payment,
the ratio of the outer payment to the original payment and the current time
to constitute its feature vector t, and take the worker’s 2D location, distance
from the task, the number of each platform’s tasks that the worker can serve
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and the probability that the worker is selected by each platform to constitute
the worker’s feature vector w. Then we concatenate the task and worker’s rep-
resentation to obtain a joint representation r = {t; w} which will be fed into the
MLP to predict the global utility score of the task-and-worker pair.

Every time receiving feedbacks of the current external task matching, both
the predictive layer and the evaluative layer will learn their parameters in a self-
supervised way. The predictive layer normalizes the counted number of workers
in each grid selected by each platform as its real label, then calculates the cross
entropy loss and uses the gradient descent method to optimize parameters. In the
evaluative layer, we use the actual matching results of the platform to calculate
the real label. For a task-and-worker pair (t;,w;) € M¢“', if the worker w
accepts the task t;, we use the following formula to represent their real utility
score:

yr, = max(1l — std, 0) (9)

where 1 represents that the acceptance rate of w; to t; is 1, std is the standard
deviation of the obtained revenue proportion of all platforms, which measures
the difference between the platforms’ revenues. In this way, on the premise of
ensuring their own revenues, the platforms will try to improve the revenue of
other platforms so as to narrow the difference between platforms’ revenues. For
a platform, the revenue proportion is the ratio of its obtained revenues from the
inner tasks to the total payment of its inner tasks in the current turn. If the
worker w; rejects the task t;, their real utility score will be 0, which means that
the acceptance rate of w; to ¢; is 0 under the current distribution.

Similar to the predictive layer, cross-entropy is also used in the evaluative
layer, and the gradient descent method is used to optimize the parameters.

5 Experiment

5.1 Dataset and Setup

The dataset used in the experiment is a real dataset from DiDi [1], which contains
historical taxi records in Chengdu on November 14 and November 15, 2016. The
data on November 14 is used for training, and the data on November 15 is used
for evaluation. Since the original dataset comes from one platform, that is, DiDi,
we divide workers and tasks into 5 groups. Each group simulates one platform, so
we have 5 platforms in the experiment. For each platform, we consider two kinds
of data distribution: even distribution and uneven distribution. Specifically, we
divide the urban area of Chengdu into 2,790 grids. For even distribution, we
randomly divide the workers into 5 groups and randomly select for each worker
10~15 tasks from the grid in which the worker locates. For uneven distribu-
tion, we randomly divide all the grids into 5 groups, and then for each grid, we
retain either tasks or workers. We also generate synthetic datasets to verify the
scalability of the proposed algorithms. We randomly generate 100~10k workers
and 1000~100k tasks for each cooperative platform. The location of tasks and
workers are randomly generated in the range of longitude 102°E~ 104°E and



310 X. Xu et al.

latitude 30°N~ 31°N. Besides, the speed of workers is set to 40km/h, and the
serviceable range of workers is random from 1km to 3km. The details of the
resulting datasets are shown in Table 1 and Table 2, where the default values are
shown in bold.

Table 1. Real datasets

Dataset Platform

A B C D E
Even |[W| | 4728 |4642 | 4510 |4658 |4661
|T'] |57792 58013 | 58418 | 57966 | 58005
Uneven | |W]| | 501 502 507 507 2391
|T'| | 26724 | 28452 | 27404 | 29333 | 29952

Table 2. Synthetic datasets

Parameter | Value
W] 100 |1k [2k |5k |10k
|T| 1000 |10k | 20k | 50k | 100k

We compare our algorithms with three baselines: 1) TOTA: an online task
matching algorithm proposed for a single platform [16]; 2) COM: the latest cross
online matching algorithm proposed for cooperation between two platforms [5];
and 3) V-MPCM: a variant of BaseMPCM which ignores the acceptance rate of
workers. TOTA is used to demonstrate the effectiveness of cooperative matching,
and the other two algorithms are used to verify the significance of dealing with
worker competition. In particular, the idle worker list in COM is shared by all
platforms to realize multi-platform cooperation, and the edge weights in the
bipartite graph in V-MPCM are set to tasks’ real payment.

We use three metrics for evaluation: 1) AREV: the average revenue of all
platforms; 2) ACOM: the average completed task number of all platforms; 3)
AACP: the average acceptance rate of all tasks, which is calculated by formula
(10), in which My, is the outer matching result set of all platforms and c(w) is
the number of platforms that send requests to worker w at the same time.

|Mout|

AACP = ——————
ZweMout C(’U})

(10)
5.2 Experiment Results

Effectiveness w.r.t AREV. As shown in Fig.3(a) and Fig.3(b), the rev-
enues obtained by the four cooperation-based algorithms are all higher than that
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obtained by TOTA, which means the cooperation between platforms can indeed
improve their revenues. In addition, it can be seen from Table 3 that our algo-
rithms can achieve higher revenue than COM and V-MPCM over both datasets.
This confirms that our algorithms are more effective in terms of revenue.

Table 3. Results on real datasets

Dataset | Algorithm | AREV (x 10°) | ACOM (x 10%) | AACP

Even TOTA 1.622 5.186 /
COM 1.686 5.109 0.657
V-MPCM 1.690 5.040 0.629
BaseMPCM | 1.710 5.238 0.764
DeepMPCM | 1.736 5.386 0.845

Uneven | TOTA 0.421 1.405 /
COM 0.579 1.683 0.431
V-MPCM 0.590 1.715 0.454
BaseMPCM | 0.606 1.771 0.505
DeepMPCM | 0.619 1.856 0.566

Effectiveness w.r.t ACOM. As shown in Table3, in the even distribution
dataset, COM and V-MPCM complete the fewest tasks but obtain more revenue
than TOTA. This is because the worker competition will lead to a huge amount of
rejection of the tasks with lower outer payment. In addition, as shown in Fig. 3(c)
and Fig. 3(d), the number of completed tasks is gradually increasing in TOTA
(V-MPCM), BaseMPCM and DeepMPCM on both datasets, which indicates
that our algorithms can effectively solve the problem of worker competition.

Effectiveness w.r.t AACP. As shown in Table 3, our algorithms achieve better
acceptance rates than COM and V-MPCM, which directly confirms that our
algorithms can solve the problem of worker competition effectively. Further, since
DeepMPCM additionally considers the utility from a global point of view, the
acceptance rate of DeepMPCM is higher than that of BaseMPCM.

AREV w.r.t. |IW| As shown in Fig. 4(a), the average revenue in all algorithms
increases with the increase of [W|, and when |W| > 2000, the revenue increases
slowly. This is because when |[W| < 2000, the number of existing tasks is much
larger than that of existing workers can serve. Therefore, with the increase of
|[W], more tasks can be served. When |[W| > 2000, the number of serviceable
tasks reaches the peak, so the revenue increases slowly and then reaches the
peak.

ACOM w.r.t. |W| Fig.4(b) shows the average number of completed tasks in
the four algorithms w.r.t |[W|. Similar to the average revenue, the number of
average completed tasks calculated by the algorithms also increases with the
increase of |[W|, and when |W| > 2000, it increases slowly.
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uTOTA ucom = VMPOM
Base-MPCM M DeepMPCM

TOTA oM = VMPCM
Base-MPCM M DecpMPCM
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