
Javier Troya · Brahim Medjahed ·
Mario Piattini · Lina Yao ·
Pablo Fernández · Antonio Ruiz-Cortés (Eds.)

20th International Conference, ICSOC 2022
Seville, Spain, November 29 – December 2, 2022
Proceedings

Service-Oriented
ComputingLN

CS
 1

37
40

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 13740

Services Science
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Athman Bouguettaya, RMIT University, Melbourne, Australia

Michael P. Papazoglou, University of Tilburg, The Netherlands

Subline Editorial Board

Boualem Bentallah, Australia Paul Maglio, USA
Murthy Devarakonda, USA Klaus Pohl, Germany
Carlo Ghezzi, Italy Stefan Tai, Germany
Chi-Hung Chi, Tasmania Yuzuru Tanaka, Japan
Hani Jamjoom, USA Christopher Ward, USA
Ingolf Krueger, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Javier Troya • Brahim Medjahed •

Mario Piattini • Lina Yao •

Pablo Fernández • Antonio Ruiz-Cortés (Eds.)

Service-Oriented
Computing
20th International Conference, ICSOC 2022
Seville, Spain, November 29 – December 2, 2022
Proceedings

123

Editors
Javier Troya
University of Malaga
Málaga, Spain

Brahim Medjahed
University of Michigan-Dearborn
Dearborn, MI, USA

Mario Piattini
University of Castilla-La Mancha
Ciudad Real, Spain

Lina Yao
The University of New South Wales
Sydney, NSW, Australia

Pablo Fernández
University of Seville
Seville, Spain

Antonio Ruiz-Cortés
University of Seville
Seville, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-20983-3 ISBN 978-3-031-20984-0 (eBook)
https://doi.org/10.1007/978-3-031-20984-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1314-9694
https://orcid.org/0000-0002-7212-8279
https://orcid.org/0000-0002-8763-0819
https://doi.org/10.1007/978-3-031-20984-0

Preface

We were pleased to hold the 20th International Conference on Service-Oriented
Computing (ICSOC 2022) back in person after organizing it virtually for two con-
secutive years due to the COVID-19 pandemic. The present edition took place in the
beautiful city of Sevilla (Spain) from November 29 to December 2, 2022. The con-
ference is the premier international forum for academics, industry researchers, devel-
opers, and practitioners to report and share groundbreaking work in service-oriented
computing. It provides a high-quality forum for presenting results and discussing ideas
that further our knowledge and understanding of the various aspects (e.g. application
and system aspects) related to service computing with a particular focus on artificial
intelligence, machine learning, big data analytics, the Internet of Things (IoT), and
emerging technologies, including quantum computing, blockchain, chatbots, and green
IT. This edition of ICSOC built upon a history of successful series of previous editions
in Toulouse (France), Hangzhou (China), Malaga (Spain), Banff (Canada), Goa (India),
Paris (France), Berlin (Germany), Shanghai (China), Paphos (Cyprus), San Francisco
(USA), Stockholm (Sweden), Sydney (Australia), Vienna (Austria), Chicago (USA),
Amsterdam (the Netherlands), New York (USA), Trento (Italy), Dubai (United Arab
Emirates, virtual), and last year’s online edition.

ICSOC 2022 followed the two-round submission and reviewing process introduced
in the previous edition. It was organized in five tracks as they relate to service com-
puting research: (1) Service-Oriented Technology Trends, (2) Machine Learning and
Artificial Intelligence, (3) Big Data Analytics, (4) Internet of Things (IoT), and
(5) Emerging Technologies. Each track was managed by a track chair, hence enhancing
the quality and rigor of the paper review process. The conference attracted 221 paper
submissions (31 received in the first round) co-authored by researchers, practitioners,
and academics from different countries across all continents. Each paper submission
was carefully reviewed by at least three members of the Program Committee (PC); the
reviews were followed by discussions moderated by a senior PC member who made a
recommendation in the form of a meta-review to the track chairs and PC co-chairs.
The PC consisted of 218 world-class experts in service-oriented computing and related
areas (196 PC members and 22 senior PC members) from different countries across all
continents. Based on the recommendations, and the discussions, 29 papers (13.2%)
were accepted as full papers. We also selected 15 short papers (6%). In total, 16 of the
31 papers submitted in the first round were recommended for resubmission with minor
or major revisions, and 12 of the 16 papers were accepted as full or short papers.
Additionally, ICSOC 2022 included four invited vision papers from prominent
researchers; these papers underwent a simplified review process aimed at judging
visionary ideas that can drive future research efforts.

The conference program also included two keynotes from distinguished researchers:

• Quantum Service-Oriented Computing: Challenges and Research Directions for
Quantum and Hybrid Software System, given by Juan M. Murillo (University of
Extremadura, Spain)

• Securing Data Pipelines Along the Cloud Continuum: The MUSA Approach, given
by Ernesto Damiani (University of Milan, Italy)

Finally, tutorials, a PhD symposium, a demo session, and the following four
workshops were organized to broaden the scope of ICSOC 2022:

• The 6th Workshop on Adaptive Service-oriented and Cloud Applications (ASOCA
2022).

• The 3rd International Workshop on AI-enabled Process Automation (AI-PA 2022).
• The 3rd International Workshop on Architectures for Future Mobile Computing and

Internet of Things (FMCIoT 2022).
• The 18th International Workshop on Engineering Service-Oriented Applications

and Cloud Services (WESOACS 202).

We would like to express our gratitude to all individuals, institutions, and sponsors
that supported ICSOC 2022. We would like to thank all authors and participants for
their insightful work and discussions. We are grateful to the members of the Senior
Program Committee, the international Program Committee, and the external reviewers
for a rigorous and robust reviewing process. ICSOC 2022 paper management was
performed through the Conftool Conference Management System. We are grateful to
the professional technical support provided by Conftool system administrators.

We would like to thank the ICSOC Steering Committee for entrusting us with
organizing the 20th edition of this prestigious conference. We are grateful to all the
members of the Organizing Committee and all who contributed to make ICSOC 2022 a
successful event. We are indebted to the local arrangements team from the University
of Seville for the successful organization of all conference, social, and co-located
events. We also acknowledge the prompt and professional support from Springer, who
published these proceedings as part of the Lecture Notes in Computer Science series.

November 2022 Pablo Fernández
Brahim Medjahed

Mario Piattini
Antonio Ruiz Cortés

Lina Yao

vi Preface

Organization

General Chairs

Pablo Fernandez University of Seville, Spain
Antonio Ruiz Cortés University of Seville, Spain

Program Committee Chairs

Brahim Medjahed University of Michigan-Dearborn, USA
Mario Piattini University of Castilla-La Mancha, Spain
Lina Yao UNSW, Australia

Local Organization Committee Chair

Jose Maria Garcia University of Seville, Spain

Infrastructure Co-chairs

Octavio Martín-Díaz University of Seville, Spain
Julio Barbancho University of Seville, Spain

Social Events Chair

Cristina Cabanillas University of Seville, Spain

Social Media and Multimedia Co-chairs

Joaquín Peña University of Seville, Spain
Alfonso Bravo University of Seville, Spain

Volunteers Co-chairs

Carlos Müller University of Seville, Spain
Bedilia Estrada University of Seville, Spain

Communications Chair

Alfonso Marquez University of Seville, Spain

Finance Chair

Bernd Krämer University of Hagen, Germany

Focus Area 1: Service-Oriented Technology Trends Chair

Marco Aiello University of Stuttgart, Germany

Focus Area 2: Machine Learning/Artificial Intelligence Chair

Xianzhi Wang University of Technology Sydney, Australia

Focus Area 3: Big Data Analytics Chair

Qi Yu Rochester Institute of Technology, USA

Focus Area 4: Internet of Things (IoT) Chair

Azadeh Ghari Neiat Deakin University, Australia

Focus Area 5: Emerging Technologies Chair

Manuel Resinas University of Seville, Spain

Demo Co-chairs

Guadalupe Ortiz University of Cádiz, Spain
Cesare Pautasso University of Lugano, Switzerland
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

Workshop Co-chairs

Raffaela Mirandola Politecnico di Milano, Italy
Elena Navarro University of Castilla-La Mancha, Spain

Ph.D. Symposium Chair

Andrea Delgado Universidad de la República, Uruguay

Publicity Co-chairs

Juan Boubeta-Puig University of Cádiz, Spain
Zheng Song University of Michigan – Dearborn, USA
Wei Zhang University of Adelaide, Australia

Publication Chair

Javier Troya University of Malaga, Spain

viii Organization

Sponsorhip Chair

José Antonio Parejo University of Seville, Spain

Web Co-chairs

Javier Berrocal University of Extremadura, Spain
José Manuel García University of Extremadura, Spain

Steering Committee

Boualem Benatallah UNSW, Australia
Athman Bouguettaya University of Sydney, Australia
Fabio Casati University of Trento, Italy
Bernd J. Krämer University of Hagen, Germany
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM, USA
Mike Papazoglou Tilburg University, The Netherlands
Jian Yang Macquarie University, Australia

Senior Program Committee

Boualem Benatallah UNSW, Australia
Athman Bouguettaya University of Sydney, Australia
Carlos Canal University of Malaga, Spain
Fabio Casati University of Trento, Italy
Flavio De Paoli Univerità di Milano-Bicocca, Italy
Schahram Dustdar TU Wien, Austria
Aditya Ghose University of Wollongong, Australia
Hakim Hacid Zayed University, United Arab Emirates
Mohand Said Hacid University of Lyon, France
Zakaria Maamar Zayed University, United Arab Emirates
Cesare Pautasso University of Lugano, Switzerland
Barbara Pernice Politecnico di Milano, Italy
Gustavo Rossi UNLP, Argentina
Michael Q. Sheng Macquarie University, Australia
Stefan Tai TU Berlin, Germany
Farouk Toumani LIMOS, France
Mathias Weske University of Potsdam, Germany
Jian Yang Macquarie University, Australia
Liang Zhanf Fudan University, China

Program Committee

Marco Aiello University of Stuttgart, Germany
Alessandro Aldini University of Urbino, Italy

Organization ix

Mohammad Allahbakhsh Macquarie University, Australia
Moayad M. Alshangiti University of Jeddah, Saudi Arabia
Yacine Atif University of Skövde, Sweden
Marcos Baez Bielefeld University of Applied Sciences, Germany
Mohammed Bahutair CSIRO, Australia
Dilum Bandara CSIRO, Australia
Luciano Baresi Politecnico di Milano, Italy
Thais Batista UFRN, Brazil
Amin Beheshti Macquarie University, Australia
Khalid Belhajjame Université Paris Dauphine, France
Moez Ben Haj Hmida National Engineering School of Tunis (ENIT), Tunisia
Salima Benbernou Université de Paris, France
Nadia Bennani INSA Lyon, LIRIS, France
Djamal Benslimane University of Lyon, France
Javier Berrocal University of Extremadura, Spain
Sami Bhiri Telecom SudParis, France
Walter Binder University of Lugano, Switzerland
Juan Boubeta-Puig University of Cádiz, Spain
Omar Boucelma Aix-Marseille University, France
Lars Braubach Hochschule Bremen, Germany
Uwe Breitenbücher University of Stuttgart, Germany
Antonio Brogi University of Pisa, Italy
Antonio Bucchiarone Fondazione Bruno Kessler, Italy
Christoph Bussler Robert Bosch LLC, USA
Cristina Cabanillas University of Seville, Spain
Wing-Kwong Chan City University of Hong Kong, Hong Kong
Francois Charoy University of Lorraine, France
Faouzi Ben Charrada University of Tunis El Manar, Tunisia
Sanjay Chaudhary Ahmedabad University, India
Feifei Chen Deakin University, Australia
Liang Chen Sun Yat-sen University, China
Shiping Chen CSIRO, Australia
Lin Chen (Liana) LinkedIn, USA
Lawrence Chung University of Texas at Dallas, USA
Marco Comuzzi UNIST, South Korea
Gianpiero Costantino IIT-CNR, Italy
Hoa Khanh Dam University of Wollongong, Australia
Valeria de Castro Universidad Rey Juan Carlos, Spain
Martina De Sanctis Gran Sasso Science Institute, Italy
Bruno Defude Telecom SudParis, France
Andrea Delgado Universidad de la República, Uruguay
Adela del-Río-Ortega Universidad de Sevilla, Spain
Shuiguang Deng Zhejiang University, China
Francesco Di Cerbo SAP, France
Claudio Di Ciccio Sapienza University of Rome, Italy
Gregorio Diaz Descalzo Universidad de Castilla - La Mancha, Spain

x Organization

Chen Ding Toronto Metropolitan University, Canada
Hai Dong RMIT University, Australia
Khalil Drira LAAS-CNRS, France
Yucong Duan Hainan University, China
Joyce El Haddad Université Paris-Dauphine, France
Abdelkarim Erradi Qatar University, Qatar
Rik Eshuis Eindhoven University of Technology, The Netherlands
Onyeka Ezenwoye Augusta University, USA
Noura Faci Université Lyon 1, CNRS, France
Xiu Susie Fang Donghua University, China
Marcelo Fantinato University of São Paulo, Brazil
Sheik Mohammad

Mostakim Fattah
University of Adelaide, Australia

Zhiyong Feng Tianjin University, China
Afonso Ferreira CNRS, France
Joao E. Ferreira University of Sao Paulo, Brazil
George Feuerlicht University of Technology Sydney, Australia
Marios-Eleftherios Fokaefs École Polytechnique Montréal, Canada
Luca Foschini University of Bologna, Italy
Xiang Fu Hofstra, USA
Walid Gaaloul Telecom SudParis, France
N. D. Gangadhar M S Ramaiah University of Applied Sciences, India
G. R. Gangadharan NIT Tiruchirappalli, India
Felix Garcia University of Castilla-La Mancha, Spain
José María García Universidad de Sevilla, Spain
Ilche Georgievski University of Stuttgart, Germany
Mohamed Graiet ISIMM, Tunisia
Daniela Grigori Université Paris-Dauphine, France
Georg Grossmann University of South Australia, Australia
Nawal Guermouche Université de Toulouse, France
Jun Han Swinburne University of Technology, Australia
Chihab Hanachi IRIT, University of Toulouse, France
Qiang He Swinburne University of Technology, Australia
Richard Hull Unaffiliated, USA
Fuyuki Ishikawa National Institute of Informatics, Japan
Pooyan Jamshidi University of South Carolina, USA
Hai Jin HUST, China
Ejub Kajan State University of Novi Pazar, Serbia
Anup Kumar Kalia IBM T. J. Watson Research Center, USA
Dimka Karastoyanova University of Groningen, The Netherlands
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Marouane Kessentini University of Michigan, USA
Hamamache Kheddouci LIRIS, Lyon 1 University, France
Kais Klai University of Paris 13, France

Organization xi

Igor Kotenko St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences (SPIIRAS),
Russia

Gerald Kotonya Lancaster University, UK
Hemza Labbaci University of Tours, France
Ladjel Bellatreche ISAE-ENSMA, France
Philippe Lalanda UGA, France
Manuel Lama University of Santiago de Compostela, Spain
Alexander Lazovik University of Groningen, The Netherlands
Weiping Li Peking University, China
Ying Li Zhejiang University, China
Marin Litoiu York University, Canada
Xiao Liu Deakin University, Australia
Xuanzhe Liu Peking University, China
Xumin Liu Rochester Institute of Technology, USA
Heiko Ludwig IBM, USA
Yutao Ma Wuhan University, China
Khalid Mahmood Malik Oakland University, USA
Maude Manouvrier University of Paris Dauphine, France
Esperanza Marcos Universidad Rey Juan Carlos, Spain
Philippe Massonet CETIC, Belgium
Massimo Mecella Sapienza Università di Roma, Italy
Nizar Messai University of Tours, France
Tommi Mikkonen University of Helsinki, Finland
Sumaira Sultan Minhas Fatima Jinnah Women University, Pakistan
Raffaela Mirandola Politecnico di Milano, Italy
Sajib Mistry Curtin University, Australia
Mohamed Wiem Mkaouer Rochester Institute of Technology, USA
Lars Moench University of Hagen, Germany
Hamid Reza

Motahari-Nezhad
EY AI Lab, USA

Michael Mrissa University of Primorska, Slovenia
Juan Manuel Murillo University of Extremadura, Spain
Adel Nadjaran Toosi Monash University, Australia
Nanjangud C. Narendra Ericsson Research, India
Azadeh Neiat Deakin University, Australia
Anne Ngu Texas State University, USA
Lanshun Nie Harbin Institute of Technology, China
Talal H. Noor Taibah University, Saudi Arabia
Alex Norta Tallinn University, Estonia
Guadalupe Ortiz University of Cádiz, Spain
Ali Ouni ETS Montreal, University of Quebec, Canada
Helen Paik UNSW, Australia
Li Pan Shandong University, China
Óscar Pedreira Fernández Universidade da Coruña, Spain
Ricardo Perez-Castillo University of Castilla-La Mancha, Spain

xii Organization

Olivier Perrin Lorraine University, France
Ernesto Pimentel University of Malaga, Spain
Pierluigi Plebani Politecnico di Milano, Italy
Karthikeyan Ponnalagu Robert Bosch, India
Lianyong Qi Qufu Normal University, China
Manfred Reichert University of Ulm, Germany
Manuel Resinas University of Seville, Spain
Stefanie Rinderle-Ma Technical University of Munich, Germany
Colette Roland Université Paris 1 Panthéon-Sorbonne, France
Diptikalyan Saha IBM Research India, India
Yacine Sam University of Tours, France
Stefan Schulte TU Hamburg, Germany
Aviv Segev University of South Alabama, USA
Lionel Seinturier University of Lille, France
Mohamed Sellami Télécom SudParis, France
Mohamed Adel Serhani UAEU, United Arab Emirates
Naveen Sharma Rochester Institute of Technology, USA
Jun Shen University of Wollongong, Australia
Weishi Shi University of North Texas, USA
Ignacio Silva-Lepe IBM, Mexico
Sergey Smirnov SAP, Germany
Zheng Song University of Michigan – Dearborn, USA
Chang-ai Sun University of Science and Technology Beijing, China
Yehia Taher University of Versailles St-Quentin-en-Yvelines,

France
Genoveva Vargas-Solar CNRS, France
Monica Vitali Politecnico di Milano, Italy
Maja Vukovic IBM Research, USA
Guiling Wang North China University of Technology, China
Hongbing Wang Southeast University, China
Jianmin Wang Tsinghua University, China
Jianwu Wang University of Maryland, Baltimore County, USA
Mingxue Wang Huawei Ireland Research Center, Ireland
Xianzhi Wang University of Technology Sydney, Australia
Yan Wang Macquarie University, Australia
Zhongjie Wang Harbin Institute of Technology, China
Jun Wei Institute of Software, Chinese Academy of Sciences,

China
Lijie Wen Tsinghua University, China
Jin Xiao IBM T. J. Watson Research Center, USA
Hanchuan Xu Harbin Institute of Technology, China
Jiuyun Xu China University of Petroleum, China
Sami Yangui CNRS-LAAS, France
Sira Yongchareon Auckland University of Technology, New Zealand
Tetsuya Yoshida Nara Women’s University, Japan
Jian Yu Auckland University of Technology, New Zealand

Organization xiii

Qi Yu Rochester Institute of Technology, USA
Dong Yuan University of Sydney, China
Gianluigi Zavattaro University of Bologna, Italy
Uwe Zdun University of Vienna, Austria
Wei Zhang University of Adelaide, Australia
Xuyun Zhang Macquarie University, Australia
Weiliang Zhao Macquarie University, Australia
Zhangbing Zhou China University of Geosciences, China
Floriano Zini Free University of Bozen-Bolzano, Italy
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

Additional Reviewers

Imen Abdennadher University of Sfax, Tunisia
Nasiru Aboki University of Stuttgart, Germany
Mohammad Abu-Lebdeh Concordia University, Canada
Ali Akoglu University of Arizona, USA
Faiza Belala Constantine 2 University, Algeria
Cheima Ben Njima University of Sousse, Tunisia
Lamia Ben Amor University of Sfax, Tunisia
Mohamed Reda Bouadjenek Deakin University, Australia
Ismael Bouassida Rodriguez University of Sfax, Tunisia
Khouloud Boukadi Université de Sfax, Tunisia
Josue Castaneda CNRS-LAAS, France
Saoussen Cheikhrouhou University of Sfax, Tunisia
Vincenzo Ciancia National Research Council, Italy
Umberto Costa UFRN, Brazil
Javier A. Espinosa Oviedo University of Lyon, France
Michela Fazzolari National Research Council, Italy
Amal Gassara CRNS, Tunisia
Carmem Hara Universidade Federal do Parana, Brazil
Slim Kallel University of Sfax, Tunisia
Nesrine Khabou University of Sfax, Tunisia
Faten Kharbat Al Ain University, United Arab Emirates
Somayeh Kianpisheh Concordia University, Canada
Imen Lahyani ENIS, Tunisia
Andrew Leonce Zayed University, United Arab Emirates
Faiza Loukil Université Jean Moulin Lyon 3, France
Abderrahmane Maaradji ECE Paris, France
Ilaria Matteucci IIT-CNR, Italy
Emna Mezghani Orange Labs, France
Naouel Moha UQAM, Canada
Riad Mokadem IRIT, France
Amira Mouakher University of Burgundy Franche-Comté, France
Fatma Outay Zayed University, United Arab Emirates
Alex Palesandro Politecnico di Torino, Italy

xiv Organization

Deep Pandey Rochester Institute of Technology, USA
Francesco Pierri Politecnico di Milano, Italy
Xiaofan Que Rochester Institute of Technology, USA
Sana Sellami Université d’Aix-Marseille, France
Brian Setz University of Stuttgart, Germany
Plácido A. Souza Neto Instituto Federal do Rio Grande do Norte, Brazil
George Spanoudakis City University London, UK
Angelo Spognardi Sapienza University of Rome, Italy
Nicolas Travers De Vinci Research Centre, France
Genoveva Vargas-Solar CNRS, France
José Luis Zechinelli Martini Universidad de las Américas Puebla, Mexico
Ervine Zheng Rochester Institute of Technology, USA
Yuansheng Zhu Rochester Institute of Technology, USA

Organization xv

Keynotes Talks

Quantum Service-Oriented Computing:
Challenges and Research Directions

for Quantum and Hybrid Software System

Juan Manuel Murillo

University of Extremadura, Spain

Quantum Computing is raising more interest day by day. The basis provided by
Quantum Mechanics enabled the development of the Quantum Information Theory and
the first Quantum Computers. From the hardware side, the advances are undeniable.
Recently, the first 1000 qubit computer has been announced to be released next 2023.

Nevertheless, from the point of view of Software Engineering, advances in
Quantum Computing are having less visibility. Part of the research community is still
conservative and thinks that it is still early to tackle the development of quantum
software engineering techniques. The reason is that how the quantum computers of the
future will look like is still unknown. However, regardless of how they will be, there
are some facts that we can affirm today. The first is that quantum and classical com-
puters will coexist, each dedicated to the tasks at which they are most efficient. The
second is that quantum computers will be part of the cloud infrastructure and will be,
indeed already are, accessible through the Internet. Third, as is the case today, complex
software systems will be made up of smaller pieces that will collaborate with each
other. Fourth, some of those pieces will be quantum, therefore the systems of the future
will be hybrid. Finally, the coexistence and interaction between the components of said
hybrid systems will be supported by service composition and the development of
quantum services will be governed by the current general criteria of Service Engi-
neering (composability, reusability, maintainability, etc.).

Bearing all of the above in mind, this talk analyzes the challenges that the inte-
gration of quantum services poses to Service-Oriented Computing. It determines what
are the current technologies that can be used for creating and operating quantum
services, the limitations they present for doing that and those technologies that do not
exist today but can already begin to be designed.

Securing Data Pipelines Along the Cloud
Continuum: The MUSA Approach

Ernesto Damiani

Khalifa University, United Arab Emirates

In the past decade, many organizations have re-designed their operation by migrating
their key business processes (to name but a few, procurement, supply chains, Human
Resources management) to global public clouds, where scalability and cost flexibility
could be achieved. Today, a new wave of Digital Transformation is changing again
how people live, consume and work. Processes in key domains like transportation,
supply chain management and healthcare need to provide low latency, high throughput
and distributed access. Furthermore, their execution needs to take place within
well-specified perimeters supporting traffic segregation, in order to guarantee data
protection, security and resilience. The 5G architecture promises to fulfill these new
requirements, supporting a “Cloud Continuum” that allows for the deployment of
micro-services on the 5G operators core networks (edge-on-network) as a complement
to classic edge-on-premises and cloud options. Based on the approach of the MUSA
project to delivering open science research pipelines over 5G, the talk discusses the
open challenges that need to be tackled to keep this promise, from the instrumentation
of the 5G infrastructure to support for securing services and process orchestrations
along the continuum.

Contents

Service Modeling and Mining

Optimization of BPMN Processes via Automated Refactoring. 3
Francisco Durán and Gwen Salaün

Control-Flow-Based Querying of Process Executions from Partially
Ordered Event Data. 19

Daniel Schuster, Michael Martini, Sebastiaan J. van Zelst,
and Wil M. P. van der Aalst

A Framework for Extracting and Encoding Features from Object-Centric
Event Data . 36

Jan Niklas Adams, Gyunam Park, Sergej Levich, Daniel Schuster,
and Wil M. P. van der Aalst

Automated RESTful API Service Discovery with Various Interface
Features . 54

Shuaijun Wang, Yuanyuan Zhou, and Zhijun Ding

Enhancing Performance Modeling of Serverless Functions via Static
Analysis. 71

Runan Wang, Giuliano Casale, and Antonio Filieri

Service Regulation: Modeling and Recognition . 89
Jintao Chen, Jianwei Yin, Shuiguang Deng, Tiancheng Zhao,
and Meng Xi

Quality of Service

WebQMon.ai: Gateway-Based Web QoE Assessment Using Lightweight
Neural Networks . 107

Enge Song, Tian Pan, Qiang Fu, Chenhao Jia, Jiao Zhang, Tao Huang,
and Yunjie Liu

Temporal-Aware QoS Prediction via Dynamic Graph Neural
Collaborative Learning. 125

Shengxiang Hu, Guobing Zou, Bofeng Zhang, Shaogang Wu, Shiyi Lin,
Yanglan Gan, and Yixin Chen

Mobility-Aware Proactive QoS Monitoring for Mobile Edge Computing 134
Ting Wei, Pengcheng Zhang, Hai Dong, Huiying Jin,
and Athman Bouguettaya

TRQP: Trust-Aware Real-Time QoS Prediction Framework Using
Graph-Based Learning . 143

Suraj Kumar and Soumi Chattopadhyay

Microservices

Misty: Microservice-Based Streaming Trajectory Similarity Search 155
Jiachun Tao, Zhicheng Pan, Junhua Fang, Pingfu Chao,
Pengpeng Zhao, and Jiajie Xu

BSDG: Anomaly Detection of Microservice Trace Based on Dual Graph
Convolutional Neural Network . 171

Kuanzhi Shi, Jing Li, Yuecan Liu, Yuzhu Chang, and Xuyang Li

SCORE: A Resource-Efficient Microservice Orchestration Model Based
on Spectral Clustering in Edge Computing . 186

Ning Li, Yusong Tan, Xiaochuan Wang, Bao Li, and Jun Luo

Combining Static and Dynamic Analysis to Decompose Monolithic
Application into Microservices . 203

Khaled Sellami, Mohamed Aymen Saied, Ali Ouni,
and Rabe Abdalkareem

MicroSketch: Lightweight and Adaptive Sketch Based Performance Issue
Detection and Localization in Microservice Systems 219

Yufeng Li, Guangba Yu, Pengfei Chen, Chuanfu Zhang, and Zibin Zheng

Proactive-Reactive Global Scaling, with Analytics. 237
Lorenzo Bacchiani, Mario Bravetti, Maurizio Gabbrielli, Saverio
Giallorenzo, Gianluigi Zavattaro, and Stefano Pio Zingaro

Semantics-Driven Learning for Microservice Annotations. 255
Francisco Ramírez, Carlos Mera-Gómez, Shengsen Chen,
Rami Bahsoon, and Yuqun Zhang

MicroEGRCL: An Edge-Attention-Based Graph Neural Network Approach
for Root Cause Localization in Microservice Systems 264

Ruibo Chen, Jian Ren, Lingfeng Wang, Yanjun Pu, Kaiyuan Yang,
and Wenjun Wu

Mining the Limits of Granularity for Microservice Annotations. 273
Francisco Ramírez, Carlos Mera-Gómez, Rami Bahsoon,
and Yuqun Zhang

xxii Contents

Service Personalization, Recommendation, and Crowdsourcing

Balancing Supply and Demand for Mobile Crowdsourcing Services 285
Zhaoming Li, Wei He, Ning Liu, Yonghui Xu, Lizhen Cui,
and Kaiyuan Qi

Acceptance-Aware Multi-platform Cooperative Matching in Spatial
Crowdsourcing . 300

Xiaotong Xu, An Liu, Guanfeng Liu, Jiajie Xu, and Lei Zhao

Combining User Inherent and Contextual Preferences for Online
Recommendation in Location-Based Services . 316

Haiting Zhong, Wei He, Lizhen Cui, and Lei Liu

PD-SRS: Personalized Diversity for a Fair Session-Based
Recommendation System . 331

Naime Ranjbar Kermany, Luiz Pizzato, Jian Yang, Shan Xue,
and Jia Wu

TagTag: A Novel Framework for Service Tags Recommendation
and Missing Tag Prediction . 340

Wentao Chen, Mingyi Liu, Zhiying Tu, and Zhongjie Wang

Blockchain

Non-disclosing Credential On-chaining for Blockchain-Based
Decentralized Applications . 351

Jonathan Heiss, Robert Muth, Frank Pallas, and Stefan Tai

DeepThought: A Reputation and Voting-Based Blockchain Oracle 369
Marco Di Gennaro, Lorenzo Italiano, Giovanni Meroni,
and Giovanni Quattrocchi

Blockchain-Oriented Services Computing in Action: Insights from
a User Study . 384

Giovanni Quattrocchi, Damian Andrew Tamburri,
and Willem-Jan Van Den Heuvel

IoT and Green Computing

Maximizing Consumer Satisfaction of IoT Energy Services 395
Amani Abusafia, Athman Bouguettaya, and Abdallah Lakhdari

A Multi-task Learning Approach for Predicting Intentions Using Smart
Home IoT Services . 413

Bing Huang, Boyu Zhang, Quan Z. Sheng, and Kwok-Yan Lam

Contents xxiii

Joint Optimization of Trajectory and Frequency in Energy Constrained
Multi-UAV Assisted MEC System . 422

Zhuohan Xu, YanPing Yang, and Bing Shi

Services for Cloud, Edge, and Fog Computing

Dual-Tree Genetic Programming for Deadline-Constrained Dynamic
Workflow Scheduling in Cloud. 433

Yifan Yang, Gang Chen, Hui Ma, and Mengjie Zhang

Cost-Aware Dynamic Multi-Workflow Scheduling in Cloud Data Center
Using Evolutionary Reinforcement Learning. 449

Victoria Huang, Chen Wang, Hui Ma, Gang Chen,
and Kameron Christopher

Extending the Kubernetes Platform with Network-Aware Scheduling
Capabilities . 465

Angelo Marchese and Orazio Tomarchio

DeepSCJD: An Online Deep Learning-Based Model for Secure
Collaborative Job Dispatching in Edge Computing 481

Zhaoyang Yu, Sinong Zhao, Tongtong Su, Wenwen Liu, Xiaoguang Liu,
Gang Wang, Zehua Wang, and Victor C. M. Leung

The Extreme Counts: Modeling the Performance Uncertainty of Cloud
Resources with Extreme Value Theory . 498

Mengjuan Li, Jinshu Su, Hongyun Liu, Zhiming Zhao, Xue Ouyang,
and Huan Zhou

Scalable Discovery and Continuous Inventory of Personal Data at Rest in
Cloud Native Systems . 513

Elias Grünewald and Leonard Schurbert

Cheops, a Service to Blow Away Cloud Applications to the Edge. 530
Marie Delavergne, Geo Johns Antony, and Adrien Lebre

GreenFog: A Framework for Sustainable Fog Computing. 540
Adel N. Toosi, Chayan Agarwal, Lena Mashayekhy,
Sara K. Moghaddam, Redowan Mahmud, and Zahir Tari

Artificial Intelligence and Machine Learning for Service Computing

FedHF: A High Fairness Federated Learning Algorithm Based
on Deconfliction in Heterogeneous Networks . 553

Zhipeng Gao, Yingwen Duan, Yang Yang, Lanlan Rui, and Chen Zhao

xxiv Contents

A Collaborative Framework for Ad Click-Through Rate Prediction
in Mobile App Services . 567

Xianjin Rong, Jinghua Zhu, and Heran Xi

Process-Oriented Intents: A Cornerstone for Superimposition of Natural
Language Conversations over Composite Services. 575

Sara Bouguelia, Auday Berro, Boualem Benatallah, Marcos Báez,
Hayet Brabra, Shayan Zamanirad, and Hamamache Kheddouci

A Bi-directional Category-Aware Multi-task Learning Framework
for Missing Check-in POI Identification . 584

Junhang Wu, Ruimin Hu, Dengshi Li, Lingfei Ren, Wenyi Hu,
and Yilong Zang

Performance and Cost-Aware Task Scheduling via Deep Reinforcement
Learning in Cloud Environment . 600

Zihui Zhao, Xiaoyu Shi, and Mingsheng Shang

IDGL: An Imbalanced Disassortative Graph Learning Framework for Fraud
Detection . 616

Junhang Wu, Ruimin Hu, Dengshi Li, Lingfei Ren, Wenyi Hu,
and Yilong Zang

Vision Papers

A Challenge for the Next 50 Years of Automated Service Composition 635
Marco Aiello

Quality Engineering in AI Services . 644
Fabio Casati and Boualem Benatallah

Service-Based Wireless Energy Crowdsourcing. 653
Amani Abusafia, Abdallah Lakhdari, and Athman Bouguettaya

Training and Serving Machine Learning Models at Scale 669
Luciano Baresi and Giovanni Quattrocchi

Author Index . 685

Contents xxv

Service Modeling and Mining

Optimization of BPMN Processes
via Automated Refactoring

Francisco Durán1(B) and Gwen Salaün2

1 ITIS Software, University of Málaga, Málaga, Spain
fdm@uma.es

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France

Abstract. Business process optimization has become a strategic aspect
of companies’ management due to the potential of cost reduction and
throughput improvement. There are several ways to achieve process opti-
mization, depending on the level of expressiveness of the processes at
hand. In this paper, we focus on processes described using BPMN, but
also including an explicit description of execution time and resources
associated with tasks. We propose a refactoring procedure whose final
goal is to reduce the total execution time of the process given as input.
Such a procedure relies on refactoring operations that reorganize the
tasks in the process by taking into account the resources used by those
tasks. This process refactoring technique is fully automated by a tool that
we implemented and applied on several examples for validation purposes.

1 Introduction

Context. Business process optimization is a strategic activity in organizations
because of its potential to increase profit margins and reduce operational costs.
Optimization is however a difficult task to be achieved manually since several
parameters should be taken into account (execution times, resources, costs, etc.).
These parameters are not systematically included in existing languages used for
modelling and managing business processes. Moreover, optimization requires a
high level of expertise that not all users have. Automated techniques are thus
required to optimize a given process for certain criteria of interest.

In this work, we assume that a description of a business process is given using
the standardized workflow modelling language BPMN. This language allows us
to define the set of tasks involved in a process and the order in which they should
be executed. This behavioural description of the model can be extended with
information on the time each task takes to execute and an explicit description of
the resources required for executing each task. As a consequence, the resulting
model of the process does not only take into account behavioural aspects but
also quantitative aspects.

Motivations. Processes are not built once and for all in a monolithic way. Dur-
ing their life time, processes have to be changed or updated for several possible

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-20984-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_1

4 F. Durán and G. Salaün

reasons: addition or suppression of some specific task, improvement of the pro-
cess with respect to a given criterion (e.g., overall execution time), adjustment of
the process to consider a new regulation or internal directive, etc. When writing
a process or when updating it as suggested before, the quality or correctness of
the process has to be preserved. This might not be the case if process writing
or reengineering/refactoring is achieved manually by human beings. Moreover,
refactoring steps may be very difficult to apply when BPMN models also take
into account quantitative aspects and when some criteria, such as resource usage
or execution time, are used to guide the refactoring steps so as to generate an
optimal process (e.g., the process must execute as quickly as possible). There-
fore, there is a need for automated refactoring techniques in order to generate
an optimal version of a process during its writing or update.

Proposal. Given a process model, we propose some optimization techniques that
rely on the refactoring of the given process. By changing the structure, we aim at
generating a different process whose overall execution time is reduced compared
to the original process. The main idea is to increase the level of parallelism
of the tasks involved in the process. The refactoring steps should however be
applied with care. For instance, it is not helpful to put in parallel two tasks
using a same resource since they will compete for such a resource and a resource
cannot be involved in two different tasks at the same time. Moreover, it does not
always make sense to put two tasks in parallel, and in some cases such causal
dependencies must be preserved (e.g., some product must be packaged before its
delivery).

More precisely, we propose in this paper optimization techniques based on
process refactoring. Our approach takes as input a BPMN process extended with
time and resources associated with tasks, and generates as output a new version
of this process. To do so, we first analyze the process to identify tasks that
could be executed earlier because the resources that one of these tasks requires
for its execution are available before its execution begins. Alternative processes
are generated by moving these tasks backwards (closer to the initial node). Our
approach works using an iterative approach. Each newly generated process is
similarly analyzed, and new alternative processes are generated in the same way.
Since many processes can be synthesized by our approach, there are different
ways to generate and handle these new processes. We have implemented and
carried out experiments with two strategies: (i) an exhaustive exploration of all
possible processes generated by refactoring, and (ii) a guided exploration of the
new processes by using some heuristic. All these techniques are fully automated
in a tool that we implemented and which has been validated on many examples.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces the considered subset of the BPMN notation and its extension with time
and resources. Section 3 provides an overview of the different steps of our app-
roach. Section 4 focuses on the refactoring process to change the structure of the
process. Section 5 presents the tool support and some experimental results to
assess the accuracy and performance of our approach. Section 6 compares our
solution to related work and Sect. 7 concludes.

Optimization of BPMN Processes via Automated Refactoring 5

Fig. 1. Supported BPMN syntax

2 BPMN with Time and Resources

BPMN 2.0 (BPMN, as a shorthand, in the rest of this paper) was published as
an ISO/IEC standard [10] in 2013 and is nowadays extensively used for modeling
and developing business processes. In this paper, we focus on activity diagrams
including the BPMN constructs related to control-flow modeling and behavioural
aspects. Beyond those constructs, execution time and resources are also associ-
ated with tasks. Figure 1 summarizes the BPMN constructs supported in this
work.

Specifically, the node types event, task, and gateway, and the edge type
sequence flow are considered. Start and end events are used, respectively, to
initialize and terminate processes. A task represents an atomic activity that has
exactly one incoming and one outgoing flow. A sequence flow describes two nodes
executed one after the other in a specific execution order. A task and a flow may
have a duration or delay. The timing information associated to tasks and flows is
described as a literal value (a non-negative real number, possibly 0). Resources
are explicitly defined at the task level. A task that requires resources can include,
as part of its specification, the required resources. Information about time and
resources can be used jointly for a given task. In such a case, it means that
the task needs those resources to be able to execute, and once the resources are
acquired, the task is going to execute for the specified duration.

Sequence flows can be of two possible types, to explicitly specify flows that
must be preserved during the refactoring process. A strong flow corresponds to
a causal dependency between two nodes that cannot be changed (e.g., some
product must be packaged before its delivery). A weak flow corresponds to a
loose connection between two nodes that may be preserved or not (e.g., the
product could be delivered before the client pays for it).

Gateways are used to control the divergence and convergence of the execution
flow. We consider in this work the two main kinds of gateways used in activity

6 F. Durán and G. Salaün

diagrams, namely, exclusive and parallel gateways. Gateways with one incoming
branch and multiple outgoing branches are called splits, e.g., split parallel gate-
way. Gateways with one outgoing branch and multiple incoming branches are
called merges, e.g., merge parallel gateway. An exclusive gateway chooses one
out of a set of mutually exclusive alternative incoming or outgoing branches. A
parallel gateway creates concurrent flows for all its outgoing branches or syn-
chronizes concurrent flows for all its incoming branches.

3 Overview of the Approach

In this section, we give an overview of the different steps of our approach. We
start by introducing the simulation-based analysis with which possible improve-
ments in the structure of the process in terms of resource usage are identified.
Then, we present the refactoring procedure and how different strategies are used
to explore the possible solutions.

3.1 Simulation-Based Analysis

In this work, the main idea of the refactoring approach is to change the structure
of the process in order to reduce its total execution time. Since optimization
mostly targets process execution time, we need to compute this time for a given
process. To do so, we rely on simulation-based techniques which turn out to
simplify the computation of execution times in the presence of resources. Indeed,
a task needs to acquire the required resources to be able to execute, and if the
resources are not available the task cannot execute. The competition for resources
may thus induce delays, and these delays are not easy to identify. To analize the
process, we simulate it a certain number of times (this is a parameter of the
approach). During these executions, some information about the execution of
tasks (pending, executing, completed) and the usage of resources is stored. At
the end of each execution, we store the time taken for completing the process.
The average of those times allows us to compute the average execution time of
the process.

After completion of the simulation, there is an analysis step which explores
the simulation log for retrieving specific information. In particular, we look for
specific timestamps during the simulation at which a task is in a pending state
(meaning that this task is still waiting to be able to execute), and all resources
required for executing this task are available. This means that this specific task
could execute earlier in a process, and we will use this information to change the
structure of the process by trying to move this task backwards in the process.
This analysis step returns as output a set of tasks that could be executed earlier.
Each task in this set verifies the aforementioned constraints (pending task but
with required resources available) during a period of time of the simulation.

3.2 Refactoring Procedure

A refactoring step takes as input a BPMN process and a task that can be exe-
cuted earlier in that process. Then, depending on the type of the preceding node,

Optimization of BPMN Processes via Automated Refactoring 7

Fig. 2. Overview of the approach

a specific refactoring operation is applied. Such refactorings represent changes
in fragments of the process, and multiple refactoring operations may be applied
consecutively. To do so, the refactoring procedure relies on the generation and
exploration of possible solutions and keeps track of the visited processes to avoid
recomputations.

The refactoring operations are presented in Sect. 4. A refactoring operation
can be seen as a model transformation L ⇒ R if C, with L and R subprocess
patterns and C a condition on them. Each refactoring operation results in the
transformation of a process (or model) into another. Thus, a refactoring opera-
tion can be applied if its left-hand side L matches a subprocess (or submodel) of
the current process P , that is, P |p = Lσ, for some match σ and position p, and
the condition C is satisfied for that match, that is, if Cσ is evaluated to true. The
application of such a refactoring rule results in the replacement of the matched
subprocess P |p by the right-hand side Rσ. By repeatedly applying the available
refactoring transformations on different parts of a process, new processes are
generated. Strategies are thus necessary to explore all these new processes, and
eventually return the optimal one.

Figure 2 depicts the input and outputs as well as the main steps of the refac-
toring process from a global perspective. The approach takes as input a BPMN
process that includes a description of time and resources as shown in Sect. 2.
This process is moved to the queue of processes to be explored. One process
is then extracted from this queue (the original one in the first iteration) and
the simulation-based analysis is carried out to identify the tasks that could be
executed earlier. For each of these tasks, the corresponding refactoring operation
is applied, generating a new process. Since the refactoring operation just moves
the given task one step backwards, the resulting process may require additional
changes. Therefore, if the resulting process has not been explored yet, and if the
resulting process respects the strong dependencies defined in the original process
(causal dependencies corresponding to strong flows must be maintained by the
refactoring process), this new process is moved to the queue of processes to be
explored. Otherwise, it is moved to the queue of processes already explored.

8 F. Durán and G. Salaün

Fig. 3. Sequence of tasks

The refactoring procedure consists in the iterative application of refactoring
operations. Since there are different ways to refactor a process, it is not possi-
ble to know at the beginning of the approach which refactoring step will lead
to the best result (process with the minimal execution time). The exhaustive
exploration of the search space, achieved by repeatedly attempting each pos-
sible refactoring operation on the tasks that may be moved backwards, may
be time-consuming. To reduce the exploration space, we propose two different
strategies:

– The first strategy consists in a bounded breadth-first search. It carries on an
exhaustive exploration of all processes to be explored up to a certain bound
given as parameter. For each possible task to be moved earlier in the process,
the corresponding refactoring operation is applied. If the resulting process
has not been analyzed before, it is placed in the to-be-explored queue. The
procedure continues while there are processes in such a queue and the bound
has not been reached.

– The second strategy, instead of exploring the search graph by applying refac-
toring operations on all tasks that can be moved earlier, only expands by
applying refactoring on the task closer to the start event in the BPMN pro-
cess. The intuition is that by moving this task backwards, it will be placed
closer to the initial event, thus reducing the number of times it may be moved
in the future. In other words, we try to move first the tasks closer to their
final positions in the process. This strategy is referred as heuristic-based in
the rest of this paper.

Several experiments showing the behaviour of the following exploration algo-
rithms, including the use of these two strategies are presented in Sect. 5.

4 Refactoring Operations

This section presents a set of refactoring operations. In each of these refactoring
operations, given as input a process and a task that has to be moved earlier
in the process, a new process is returned as output. The refactoring operation
to be applied depends on what type of node precedes the task to be moved
backwards. There are actually three main cases: this node can be another task,
a merge node, or a split node. Therefore, we will organize the rest of this section
tackling successively these three cases. For each case, the proposed refactoring

Optimization of BPMN Processes via Automated Refactoring 9

Fig. 4. Merge parallel gateway with preceding tasks (no shared resources)

operations are presented. Before starting, we also recall that this refactoring
step focuses on the process structure and on the usage of resources by tasks, but
does not take into account strong flows, which is handled at another level (as
explained in Sect. 3.2).

4.1 Task

This first case is rather straightforward. If a task can be executed earlier, and that
task is preceded by another task, we check whether these two tasks are sharing
some resources. If they do not share any resources, the process is transformed
to execute these two tasks within a common parallel gateway, as illustrated in
Fig. 3.

4.2 Merge Node

If the task T to be moved earlier is preceded by a merge node, there are sev-
eral possible (sub)cases. First of all, this node can be an exclusive or a parallel
gateway. Second, before that merge, there may be only tasks, only other merge
nodes, or a combination of both. We have specific operations for each of these
cases. We will introduce these operations in the rest of this subsection.

Let us first consider the case in which the merge parallel gateway is preceded
by a set of tasks T1...Tn, and none of these tasks share resources with the task
T (left-hand side of Fig. 4). In that case, all tasks are gathered in parallel just
before the merge parallel gateway (right-hand side of Fig. 4). Note that a split
parallel gateway is added before these tasks in order to avoid that T executes
before the tasks preceding the tasks before the merge. The preceding tasks might
be using the same resources.

Assume now that the tasks preceding the merge parallel gateway share some
resources with task T. If they all share resources, no refactoring is possible (since
adding an additional task in parallel, competing for the same resources, would
not improve the process execution time). If only one task shares resources with T,
then T is moved after that task but before the merge as shown in Fig. 5. If there
are several tasks sharing resources with T (but not all), then T is moved before
the merge and right after an additional merge parallel gateway for this subset

10 F. Durán and G. Salaün

Fig. 5. Merge parallel gateway with preceding tasks (shared resources with one task)

Fig. 6. Merge parallel gateway with preceding tasks (shared resources with several
tasks)

of resources. Figure 6 shows such a case where T1...Ti share some resources with
T. Therefore, after the refactoring operation, T appears after T1...Ti whereas
Ti+1...Tn keep executing in parallel.

If what precedes the task to be moved is an exclusive gateway, and if there
are only tasks before the merge, there are two cases. For each task before the
merge, if task T shares some resource with that task, T is moved before the merge
but after that task. If task T does not share any resource with that task, T is
put in parallel with that task. Figure 7 illustrates this operation, showing that
in the case of T1...Ti (shared resources), T is moved after each of them, whereas
in the case of Ti+1...Tn (no shared resources), they all appear in parallel in the
resulting process. Note that T appears multiple times in the resulting process,
because by including T in an exclusive pattern, it has to be executed once by
each existing branch to maintain the intended behaviour.

As far as cascading merges are concerned, we support cascading merge exclu-
sive gateways (possibly finishing with a merge parallel gateway), by applying
several times the patterns introduced above. However, if there are cascading
merge parallel gateways or a merge parallel gateway followed by a merge exclu-
sive gateway, refactoring is too complicated and is not applied. Let us take the
example of two merge parallel gateways. If we move a task within the first one,
this is ok as presented earlier. However, if there are other merge parallel gate-

Optimization of BPMN Processes via Automated Refactoring 11

Fig. 7. Merge exclusive gateway with preceding tasks

Fig. 8. Split parallel gateway

ways inside the first one, we do not know where to move that task since we do
not want to execute it multiple times.

4.3 Split Node

If the task T to be moved earlier is preceded by a split parallel gateway, then T is
moved before the split, whatever precedes the split (task, split or merge). Figure 8
illustrates this pattern by moving the task before the split parallel gateway.

If the task T is preceded by a split exclusive gateway, we apply refactoring
only if the split is preceded with a task (T1 for instance). In that case, we need
to analyze the process to look for a merge gateway corresponding to the afore-
mentioned split gateway. If the subprocess is balanced and the corresponding
merge gateway is found, we still need to look at the resources used in that part
of the process. If all tasks between the split and the merge do not share any
resources with T1, then the whole block is moved in parallel with T1, as illus-
trated in Fig. 9, because we cannot dissociate the contents (tasks for instance)
appearing in the same branch of an exclusive structure. If the task T is preceded
by a split exclusive gateway, and the preceding node is not a task (it is another
split for instance), there is no simple refactoring and we keep it as is. Note that
if the exclusive split preceding T is not balanced or some task in that block uses
any of the resources of T, then the refactoring operation is not applied because
optimization is not possible.

12 F. Durán and G. Salaün

Fig. 9. Split exclusive gateway

Fig. 10. Simplified class diagram

5 Implementation and Experiments

This section presents the tool support, a case study, and some experiments. Addi-
tional details about the tool and dataset used for the experiments are available
online [1].

5.1 Tool

A tool implementing the above refactoring operations and their systematic appli-
cation following the described procedures has been developed in Python. It works
as presented in Fig. 2: the user provides as input a BPMN process and obtains
as output an optimal version of that process with the gain in terms of process
execution time. The implementation consists of several classes as illustrated in
Fig. 10. The core of the approach is implemented in several methods dedicated to
process simulation and analysis (of the simulation), refactoring operations, and
exploration of the refactored processes by using different strategies. Processes
to be explored and already explored are stored into dictionaries. Hash values
for processes are used as keys and are computed using the number of nodes at
distance 1, 2, 3, etc. from the start event. These numbers are then concatenated
to form a key. Since we may have collisions, for each hash value, we store a list
of processes in the dictionary. As for the transformation from BPMN XML to
our encoding of BPMN into Python (in both directions), we take advantage of
the transformation capabilities available in VBPMN [12,13].

Optimization of BPMN Processes via Automated Refactoring 13

Fig. 11. Example of “Trip Organization” process in BPMN

5.2 Case Study

We illustrate our approach with a process describing the business trip organiza-
tion given in Fig. 11. Each task has an annotation with a pair of values where the
first value is the duration of the task (in days for instance) and the second value
is the set of resources required to execute that task. Let us introduce the process
with more details. First, the assistant fills in the required documents. Then, the
travel agency is in charge of booking flight tickets, followed by the reservation of
accommodation by the user in that case. Visa is then prepared and, in parallel,
the user has to be vaccinated. The final part of the process is executed when
the user is back from the trip. All necessary documents for reimbursement are
returned by the user. Reimbursement is then completed by the financial staff.
Finally, all documents are archived by the assistant. It is worth noting that
there are several strong flows in the original process, before and after g2, and
between task ReturnDocuments and task Reimbursement. This means that the
causal dependency between these tasks is important and must be preserved by
the refactoring process.

To compute the refactored version of this process, we use a bounded explo-
ration (with 300 as bound). The resulting process is given in Fig. 12, and was
obtained after about 130 iterations. It takes about 20 s to compute the resulting
process. The execution time of all the tasks of the original process is 43 d whereas
the new version executes in 28 d.

Let us now comment on this new version of the process. We can see that
causal dependencies defined by strong flows are preserved in this process: tasks
Visa and Vaccination are executed before task ReturnDocuments, and task
ReturnDocuments is executed before task Reimbursement. In the first part of

14 F. Durán and G. Salaün

Fig. 12. Trip Organization process after automated refactoring

the process, we can see that several tasks can be executed in parallel because they
all use different resources. However, tasks HotelReservation and Vaccination
cannot be executed in parallel because they use the same resource user. After
task ReturnDocuments, we can see that the two final tasks are executed in
parallel because they use different resources.

5.3 Experiments

In this section, we show some experimental results obtained when applying our
tool to different BPMN processes. The main goal of this section is to evaluate our
tool in terms of performance and accuracy of the results, particularly comparing
both strategies (bounded and heuristic-based exploration).

Table 1 shows some experiments on ten processes, mostly taken from the liter-
ature, e.g., BPMN processes introduced in [4–6], and from the VBPMN database
of examples [12,13]. The table first characterizes each process in terms of number
of tasks, flows, gateways, and strong flows (SF). Then, the table gives the cur-
rent Average Execution Time of the process (AETc) and the Average Execution
Time corresponding to the optimal process (AETb). The optimal process cor-
responds to the process with the shortest execution time. This optimal process
and the corresponding execution time were built and computed manually by the
authors of this paper. Then, we show the results for the bounded exploration
(bound fixed to 300) and for the heuristic-based approach. For each option, we
give the execution time of the final process and the computation time to obtain
the result.

Let us now comment on the results shown in this table. First of all, we can see
that the bounded exploration succeeds in most cases to find the optimal solution,
that is, the process with the shortest execution time. For larger examples (e.g.,
processes 7, 9 and 10 in the table), the best solution is not found because the
bound (300) was too small to explore enough processes and find the best solution.
However, if we increase the bound, the best solution is eventually found. As an
example, for row 7, the best solution (with 18 as execution time) is found after
about 750 iterations.

Optimization of BPMN Processes via Automated Refactoring 15

Table 1. Experimental results

BPMN Characteristics Bounded Explo. Heuristic

Proc. Tasks Flows Gateways SF AETc AETb AET Time AET Time

1 5 13 4 0 70 50 50 1 s 50 1 s

2 5 15 6 0 40 25 25 2 s 25 2 s

3 6 13 2 2 0 19 6 6 2s 9 1 s

4 8 12 2 4 43 28 28 21 s 35 1 s

5 8 12 2 2 21 14 14 23 s 16 1 s

6 9 10 0 6 90 50 50 31s 90 1 s

7 10 20 6 0 24 18 19 38 s 20 1 s

8 10 20 2 4 3 23 13 13 67 s 17 1 s

9 12 29 8 0 200 120 140 50 s 120 1 s

10 15 36 10 0 260 180 220 103 s 260 3 s

As for the heuristic-based strategy, there are several cases for which the
best solution is not found, but in very specific cases (e.g., process 9), it may
give better results. Regarding computation time, the heuristic-based strategy
is much faster (a few seconds) whereas the bounded exploration takes more
time because it explores possibly many solutions (300 at most here). Regarding
the computation time for the bounded exploration, we can see that this time
increases with the size of the process (it takes more time to simulate, analyze
and refactor a larger process than a simpler one). The number of refactorings
does not really impact the computation time, since a bound is used to stop the
exploration of potential solutions. Finally, the number of strong flows tends to
reduce the number of possible refactorings thus the computation time, because
strong flows can be seen as additional constraints on the process.

6 Related Work

This section starts with a short overview of extensions of BPMN with time and
resource features, before presenting and comparing our approach with existing
solutions for BPMN refactoring. Several works propose extensions of BPMN
with time constructs, see, e.g., [2,9]. In [9], the authors present Time-BPMN,
an extension of BPMN that allows the specification of temporal constraints and
dependencies within a BPMN diagram. In [2], a metamodel-based approach to
integrate temporal constraints and dependencies is introduced. The time aspects
are specified using rules and OCL constraints capture the semantics of these
rules. Our solution shares similarities with the approach proposed in [9].

As far as resource allocation is concerned, several solutions have been pro-
posed by the research community in the business process domain. Schömig and

16 F. Durán and G. Salaün

Rau [18] use colored stochastic Petri nets to specify and analyze business pro-
cesses in the presence of dynamic routing, simultaneous resource allocation, fork-
ing/joining of process-control threads, and priority-based queueing. Li et al. [15]
introduce multidimensional workflow nets to model and analyze resource avail-
ability and workload. Oliveira et al. [16] use generalized stochastic Petri nets
for correctness verification and performance evaluation of business processes. In
this work, we propose to associate resources to tasks, which is a flexible solution
for modelling many different situations and scenarios. Moreover, our approach
does not focus on the computation of metrics but changes the process structure
to actually optimize some of these metrics.

Let us now focus on existing works on process refactoring. [19] presents six
common mistakes made by developers when modelling with BPMN: inconsis-
tent naming, large process diagrams, inconsistent use of gateways, inconsistent
use of events, inconsistent use of loops, poor diagram layout. For each prob-
lem, the authors present best practices for avoiding these issues. As an example,
the authors propose to use explicit gateways instead of using multiple incom-
ing/outgoing sequence flows. [3] presents a technique for detecting refactoring
opportunities in process model repositories. The technique works by first com-
puting activity similarity and then computing three similarity scores for frag-
ment pairs of process models. Using these similarity scores, four different kinds of
refactoring opportunities can be systematically identified. As a result, the app-
roach proposes to rename activities or to introduce subprocesses. IBUPROFEN,
a business process refactoring approach based on graphs, is presented in [8,17].
IBUPROFEN defines a set of 10 refactoring algorithms grouped into three cat-
egories: maximization of relevant elements, fine-grained granularity reduction,
and completeness. All these works mostly focus on syntactic issues and propose
synctatic improvements of the process by, for instance, removing unreachable
nodes or by merging consecutive gateways of the same type. They do not aim at
providing any kind of optimization regarding the process being designed as we
do.

In [14], the authors present an approach for optimizing the redesign of process
models. It is based on capturing process improvement strategies as constraints
in a structural-temporal model. Each improvement strategy is represented by
a binary variable. An objective function that represents a net benefit function
of cost and quality is then maximized to find the best combination of process
improvements that can be made to maximize the objective. The BPMN subset
used in [14] is very similar to the one we use in this paper. However, the approach
is rather different since they compute optimal redesigns with respect to some
constraints, whereas we propose refactoring patterns with respect to process
execution times.

Last but not least, it is worth mentioning recent works providing support
for building (optimal) processes. [7] proposes a semi-automated approach for
helping non-experts in BPMN to model business processes using this notation.
Alternatively, [11] presents an approach which combines notes taking in con-
strained natural language with process mining to automatically produce BPMN

Optimization of BPMN Processes via Automated Refactoring 17

diagrams in real-time as interview participants describe them with stories. In this
work, we tackle this issue from a different angle since we assume that an existing
description of the process exists and that we want to automatically optimize it
by updating its structure.

7 Concluding Remarks

In this paper, we have focused on a version of BPMN including task durations
and an explicit description of resources. We have then proposed a simulation-
based approach that allows us to identify some specific tasks which are waiting
for being executed but for which the required resources are available. This means
that, from the point of view of the process structure, these tasks could be exe-
cuted earlier in the process. We then apply some refactoring transformations
to move those tasks backwards in the process structure. This approach works
by successively applying these refactorings and by thus exploring the possible
solutions to find the optimal one. Several strategies have been implemented and
vary in their way to apply these iterations. In any case, the refactoring process
completes and returns as result a process whose average execution time is lower
(or equal) than the one of the original process. Note that if the original process is
already optimal, that process and its corresponding execution time are returned
as output. All the steps of the refactoring approach are fully automated by a
tool we implemented and applied on many examples of processes for validation
purposes.

Acknowledgments.. F. Durán has been partially supported by projects PGC2018-
094905-B-100 and UMA18-FEDERJA-180, and by Universidad de Málaga, Campus de
Excelencia Internacional Andalućıa Tech. This work was also supported by the Région
Auvergne-Rhône-Alpes within the “Pack Ambition Recherche” programme.

References

1. Workflow refactoring tool and examples - (Blinded) Github repository (2022).
https://github.com/afjdm/workflow-refactoring

2. Arévalo, C., Cuaresma, M.J.E., Ramos, I.M., Domı́nguez-Muñoz. M.: A metamodel
to integrate business processes time perspective in BPMN 2.0. Inf. Softw. Technol.
77, 17–33 (2016)

3. Dijkman, R.M., Gfeller, B., Küster, J.M., Völzer, H.: identifying refactoring oppor-
tunities in process model repositories. Inf. Softw. Technol. 53(9), 937–948 (2011)

4. Durán, F., Rocha, C., Salaün, G.: Stochastic analysis of BPMN with time in rewrit-
ing logic. Sci. Comput. Program. 168, 1–17 (2018)

5. Durán, F., Rocha, C., Salaün, G.: A rewriting logic approach to resource allocation
analysis in business process models. Sci. Comput. Program. 183, 102303 (2019)

6. Durán, F., Salaün, G.: Verifying timed BPMN processes using Maude. In: Jacquet,
J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 219–236.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59746-1 12

7. Falcone, Y., Salaün, G., Zuo, A.: Semi-automated modelling of optimized BPMN
processes. In Proceedings of SCC 2021, pp. 425–430. IEEE (2021)

https://github.com/afjdm/workflow-refactoring
https://doi.org/10.1007/978-3-319-59746-1_12

18 F. Durán and G. Salaün

8. Fernández-Ropero, M., Pérez-Castillo, R., Piattini, M.: Graph-based business pro-
cess model refactoring. In: Proceedings of the 3rd International Symposium on
Data-driven Process Discovery and Analysis, volume 1027 of CEUR Workshop
Proceedings, pp. 16–30 (2013)

9. Gagné, D., Trudel, A.: Time-BPMN. In: Proceedings of CEC 2009, pp. 361–367.
IEEE Computer Society (2009)

10. ISO/IEC. International Standard 19510, Information technology - Business Process
Model and Notation (2013)

11. Ivanchikj, A., Serbout, S., Pautasso, C.: From text to visual BPMN process models:
design and evaluation. In: Proceedings of MoDELS 2020, pp. 229–239. ACM (2020)

12. Krishna, A., Poizat, P., Salaün, G.: VBPMN: automated verification of BPMN
processes (Tool Paper). In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 323–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66845-1 21

13. Krishna, A., Poizat, P., Salaün, G.: Checking business process evolution. Sci. Com-
put. Program. 170, 1–26 (2019)

14. Kumar, A., Indradat, P.: Optimizing process model redesign. In: Sheng, Q.Z.,
Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 39–54.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0 3

15. Li, J., Fan, Y., Zhou, M.: Performance modeling and analysis of workflow. IEEE
Trans. Syst. Man Cybern. 34(2), 229–242 (2004). Mar

16. Oliveira, C., Lima, R., Reijers, H., Ribeiro, J.: Quantitative analysis of resource-
constrained business processes. Trans. Syst. Man Cybern. 42(3), 669–684 (2012)

17. Pérez-Castillo, R., Fernández-Ropero, M., Piattini, M.: Business process model
refactoring applying IBUPROFEN. Ind. Eval. J. Syst. Softw. 147, 86–103 (2019)

18. Schömig, A.K., Rau, H.: A petri net approach for the performance analysis of
business processes. Technical Report 116, Universität Würzburg, Germany, May
1995

19. Silingas, D., Mileviciene, E.: Refactoring BPMN Models: from ‘Bad Smells’ to best
practices and patterns. In: BPMN 2.0 Handbook, pp. 125–134 (2012)

https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-46295-0_3

Control-Flow-Based Querying of Process
Executions from Partially Ordered Event

Data

Daniel Schuster1,2(B) , Michael Martini1 , Sebastiaan J. van Zelst1,2 ,
and Wil M. P. van der Aalst1,2

1 Fraunhofer Institute for Applied Information Technology FIT,
Sankt Augustin, Germany

{daniel.schuster,michael.martini,sebastiaan.van.zelst}@fit.fraunhofer.de
2 RWTH Aachen University, Aachen, Germany

wvdaalst@pads.rwth-aachen.de

Abstract. Event logs, as viewed in process mining, contain event data
describing the execution of operational processes. Most process mining
techniques take an event log as input and generate insights about the
underlying process by analyzing the data provided. Consequently, han-
dling large volumes of event data is essential to apply process mining
successfully. Traditionally, individual process executions are considered
sequentially ordered process activities. However, process executions are
increasingly viewed as partially ordered activities to more accurately
reflect process behavior observed in reality, such as simultaneous execu-
tion of activities. Process executions comprising partially ordered activ-
ities may contain more complex activity patterns than sequence-based
process executions. This paper presents a novel query language to call up
process executions from event logs containing partially ordered activities.
The query language allows users to specify complex ordering relations
over activities, i.e., control flow constraints. Evaluating a query for a
given log returns process executions satisfying the specified constraints.
We demonstrate the implementation of the query language in a process
mining tool and evaluate its performance on real-life event logs.

Keywords: Process mining · Process querying · Partial orders

1 Introduction

Executing operational processes generates large amounts of event data in enter-
prise information systems. Analyzing these data provides great opportunities for
operational improvements, for example, reduced cycle times and increased con-
formity with reference process models. Therefore, process mining [17] comprises
data-driven techniques to analyze event data to gain insights into the under-
lying processes; for example, automatically discovered process models, confor-
mance statistics, and performance analysis information. Since service-oriented
computing is concerned with orchestrating services to form dynamic business
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 19–35, 2022.
https://doi.org/10.1007/978-3-031-20984-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_2&domain=pdf
http://orcid.org/0000-0002-6512-9580
http://orcid.org/0000-0001-5376-4424
http://orcid.org/0000-0003-0415-1036
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-20984-0_2

20 D. Schuster et al.

processes [6], process mining can provide valuable insights into the actual exe-
cution of processes within organizations [16]. These insights can then be used,
for example, to define services and ultimately construct service-oriented archi-
tectures. Further, process mining provides valuable tools for service monitoring.

Most process mining techniques [17] define process executions, termed traces,
as a sequence, i.e., a strict total order, of executed activities. In reality, however,
processes can exhibit parallel behavior, i.e., several branches of a process are exe-
cuted simultaneously. Consequently, the execution of individual activities may
overlap within a single trace. Thus, traces are defined by partially ordered exe-
cuted activities. Considering traces as partial orders, the complexity of observed
control flow patterns, i.e., relations among executed activities, increases com-
pared to sequential traces. Thus, tools are needed that facilitate the handling,
filtering, and exploring of traces containing partially ordered process activities.

This paper introduces a novel query language for querying traces from an
event log containing partially ordered activities. The proposed language allows
the specification of six essential control flow constraints, which can be further
restricted via cardinality constraints and arbitrarily combined via Boolean oper-
ators. The language design is based on standardized terms for control flow pat-
terns in process mining. We provide a formal specification of the language’s
syntax and semantics to facilitate reuse in other tools. Further, we present its
implementation in the process mining software tool Cortado [14], which supports
partially ordered event data. Query results are visualized by Cortado using a
novel trace variant visualization [13]. Finally, we evaluate the performance of
the query evaluation on real-life, publicly available event logs.

The remainder of this paper is structured as follows. Section 2 presents related
work. Section 3 introduces preliminaries. In Sect. 4, we introduce the proposed
query language. We present an exemplary application use case of the query
language in Sect. 5. In Sect. 6, we present an evaluation focusing on performance
aspects of the proposed query language. Finally, Sect. 7 concludes this paper.

2 Related Work

A framework for process querying methods is presented in [10]. In short, process
query methods differ in the input used, for instance, event logs (e.g., [3,20]) or
process model repositories (e.g., [2,5]), and the goal or capabilities of the query
method. Overviews of process querying languages can be found in [8–10,19]; the
majority of existing methods focuses on querying process model repositories.
Subsequently, we focus on methods that operate on event logs.

Celonis PQL [18] is a multi-purpose, textual query language that works on
event logs and process models and provides a variety of query options. However,
traces are considered sequentially ordered activities compared to the proposed
query language in this paper. In [3], a query language is proposed that operates
on a single graph, i.e., a RDF, connecting all events in an event log by user-
defined correlations among events. The query language allows to partition the
events by specified constraints and to query paths that start and end with events
fulfilling certain requirements. Compared to our approach, we do not initially

Control-Flow-Based Querying of Process Executions 21

transform the entire event log into a graph structure; instead, we operate on
individual traces composed of partially ordered event data.

In [4], the authors propose a natural language interface for querying event
data. Similar to [3], a graph based search is used. The approach allows specifying
arbitrary queries like “Who was involved in processing case x” and “For which
cases is the case attribute y greater than z.” However, control flow constraints
over partially ordered event data are not supported, unlike the query language
proposed in this paper, which is designed exclusively for control flow constraints.
In [11], the authors propose an LTL-based query language to query traces, con-
sisting of sequentially aligned process activities, fulfilling specified constraints
from an event log. In [20], the authors propose an approach to query trace frag-
ments from various event logs that are similar to a trace fragment surrounding a
selected activity from a process model using a notion of neighborhood context.
Traces are, in this approach, considered sequentially ordered activities.

In summary, various process querying methods exist, most of them operating
over process model repositories rather than event logs, cf. [8–10,19]. In short,
the proposed query language differs in three main points from existing work.

1. First process querying language focusing on traces containing partially
ordered activities (to the best of our knowledge)

2. Focus on traces rather than event data as a whole, i.e., executing a query
returns traces satisfying the specified constraints

3. Specific focus on control flow patterns, i.e., extensive options for specifying a
wide range of control flow patterns

3 Preliminaries

This section introduces notations and concepts used throughout this paper.
We denote the natural numbers by N and the natural numbers including 0 by

N0. We simplify by representing timestamps by positive real numbers denoted
by R

+. We denote the universe of activity labels by L, activity instance identifier
by IA, and case identifier by IC . Further, we denote a missing value by ⊥.

Definition 1 (Activity instances). An activity instance a = (i, c, l, ts, tc) ∈
IA × IC × L ×

(
R

+ ∪ {⊥}
)

× R
+ uniquely identified by i ∈ IA represents the

execution of an activity l ∈ L that was executed for the process instance identified
by c ∈ IC . The activity instance’s temporal information is given by the optional
start timestamp ts ∈ R

+ ∪ {⊥} and the complete timestamp tc ∈ R
+. If ts �=

⊥ ⇒ ts ≤ tc. We denote the universe of activity instances by A.

Let a=(i, c, l, ts, tc) ∈ A be an activity instance, we use short forms to assess
the different components of a; we write ai, ac, al, ats , and atc .

An event log can be seen as a set of activity instances describing the same pro-
cess; Table 1 shows an example. Each row corresponds to an activity instance
describing the execution of an activity. For instance, the first row describes
the execution of the activity “credit request received” executed on 16.06.21 at

22 D. Schuster et al.

Table 1. Example of an event log with partially ordered event data

ID Activity label Timestamp . . .

Activity

instance

Case Start Completion

1 1 Credit request received (CRR) ⊥ 16.06.21 12:43:35 . . .

2 1 Document check (DC) 17.06.21 08:32:23 18.06.21 12:01:11 . . .

3 1 Request info. from applicant (RIP) 19.06.21 09:34:00 22.06.21 09:12:00 . . .

4 1 Request info. from third parties (RIT) 19.06.21 14:54:00 25.06.21 08:57:12 . . .

5 1 Document check (DC) ⊥ 28.06.21 14:23:59 . . .

6 1 Credit assessment (CA) 30.06.21 13:02:11 04.07.21 08:11:32 . . .

7 1 Security risk assessment (SRA) 01.07.21 17:23:11 06.07.21 18:51:43 . . .

8 1 Property inspection (PI) ⊥ 05.07.21 00:00:00 . . .

9 1 Loan-to-value ratio determined (LTV) ⊥ 05.07.21 00:00:00 . . .

10 1 Decision made (DM) ⊥ 08.07.21 14:13:18 . . .

11 2 Credit request received (CRR) ⊥ 17.06.21 23:21:31 . . .

.

CRR DC RIP

RIT DC CA PI

LTV

SRA

DM

Fig. 1. Ordering of the activity instances within the trace describing case 1. Solid arcs
depict the transitive reduction; solid and dotted arcs the transitive closure.

12:43:35 for the process instance identified by case-id 1. Individual process exe-
cutions within an event log are termed traces. Next, we formally define traces as
a partially ordered set of activity instances belonging to the same case.

Definition 2 (Trace). Let T⊆A. We call (T,≺) a trace if:

1. ∀ai, aj∈T (aci = acj) and
2. ≺⊆ T×T and for arbitrary ai, aj∈T holds that ai≺aj iff:

– atci < atsj given that atci , atsj ∈R+, or
– atci < atcj given that atci ∈R+ and atsj =⊥.

We denote the universe of traces by T .

For a trace (T,≺)∈T , note that the relation ≺ (cf. Definition 2) is the tran-
sitive closure. We denote the transitive reduction of ≺ by ≺R. For ≺R it holds
that ∀a, b∈T

[
a≺Rb ↔

(
a≺b ∧

(
� ∃ã∈T (a≺Rã ∧ ã≺Rb

))]
. Figure 1 visualizes the

Control-Flow-Based Querying of Process Executions 23

ordering relations of the activity instances of the trace describing case 1 (cf.
Table 1). Solid arcs show direct relationships among activity instances. Thus,
the solid arcs represent the transitive reduction. Solid and dotted arcs represent
all relations among activity instances and thus, represent the transitive closure.

Finally, we define notation conventions regarding the existential quantifier.
Let k∈N and X be an arbitrary set, we write ∃=k, ∃≥k, and ∃≤k to denote that
there exist exactly, at least, and at most k distinct elements in set X satisfying a
given formula P (. . .). Below we formally define the three existential quantifier.

– ∃=kx1, . . . , xk∈X
(
∀1≤i≤k P (xi)

)
≡ ∃x1, . . . , xk∈X

[(
∀1≤i<j≤k xi �=xj

)
∧(

∀1≤i≤k P (xi)
)

∧
(
∀x∈X\{x1,...,xk} ¬P (xi)

)]

– ∃≥kx1, . . . , xk∈X
(
∀1≤i≤k P (xi)

)
≡ ∃x1, . . . , xk∈X

[(
∀1≤i<j≤k xi �=xj

)
∧(

∀1≤i≤k P (xi)
)]

– ∃≤kx1, . . . , xk∈X
(
∀1≤i≤k P (xi)

)
≡ ∃x1, . . . , xk∈X

[(
∀1≤i≤k P (xi)

)
∧(

∀x∈X\{x1,...,xk} ¬P (x)
)]

Note that x1, . . . , xk must not be different elements in the formula above; it
specifies that at most k distinct elements in X exist satisfying P (. . .).

4 Query Language

This section introduces the proposed query language. Section 4.1 introduces its
syntax, while Sect. 4.2 defines its semantics. Section 4.3 covers the evaluation of
queries. Finally, Sect. 4.4 presents the implementation in a process mining tool.

4.1 Syntax

This section introduces the syntax of the proposed query language. In total, six
operators exist, allowing to specify control flow constraints. Table 2 provides an
overview of these six operators, three binary, (i.e., isContained (isC), isStart
(isS), and isEnd (isE)), and three unary operators (i.e., isDirectlyFollowed
(isDF), isEventuallyFollowed (isEF), and isParallel (isP)). Next to each
operator, we list query examples, including the corresponding operator, and
present its semantics in natural language. As the examples show, each operator
can be additionally constrained by a cardinality. We call a query a leaf query
if only one operator is used, for instance, all examples shown in Table 2 are
query leaves. Query leaves can be arbitrarily combined via Boolean operators,
for instance, see Fig. 2. Next, we formally define the query language’s syntax.

Fig. 2. Example of a query. Leaves represent individual control flow constraints (cf.
Table 2) that are combined via Boolean operators.

24 D. Schuster et al.

Table 2. Overview of the six control flow constraints and corresponding examples

Type Syntax
Example

Nr. Query Description of semantics

u
n
a
ry

isContained

(isC)

E1 ’A’ isC activity A is contained in the

trace

E2 ’A’ isC ≥ 6
activity A is contained at least 6

times in the trace

E3 ALL{’A’,’B’} isS ≥ 6
activity A and B are both

contained at least 6 times each

in the trace

isStart

(isS)

E4 ’A’ isS there exists a start activity A

E5 ’A’ isS = 1

exactly one start activity of the

trace is an A activity

E6 ANY{’A’,’B’} isC = 1

trace starts with exactly one A

activity or/and with exactly one

B activity

isEnd

(isE)

E7 ’A’ isE there exists an end activity A

E8 ’A’ isE ≥ 2
at least two end activities of the

trace are an A activity

E9 ALL{’A’,’B’} isE
trace ends with at least one A

and one B activity

b
in

a
ry

isDirectly

Followed

(isDF)

E10 ’A’ isDF ’B’
a B activity directly follows each

A activity in the trace

E11 ’A’ isDF ’B’ = 1
trace contains exactly one A

activity that is directly followed

by B

E12 ’A’ isDF ALL{’B’,’C’} every A activity is directly

followed by a B and C activity

isEventually

Followed

(isEF)

E13 ’A’ isEF ’B’
after each A activity in the trace

a B activity eventually follows

E14 ’A’ isEF ’B’ ≥ 1
trace contains at least one A

activity that is eventually

followed by B

E15 ALL{’A’,’B’} isEF ’C’
all A and B activities are

eventually followed by a C

activity

isParallel

(isP)

E16 ’A’ isP ’B’
each A activity in the trace is in

parallel to some B activity

E17 ’A’ isP ’B’ ≤ 4
trace contains at most four A

activities that are in parallel to

some B activity

E18 ’A’ isP ANY{’B’,’C’} ≤ 2
trace contains at most two A

activities that are parallel to a B

or C activity

(a) Trace may contain arbitrary further start respectively end activities.

Definition 3 (Query Syntax). Let l1, . . . , ln−1, ln∈L be activity labels, k∈N0,
�∈{≤,≥,=}, ◦∈{isDF, isEF, isP}, •∈{isC, isS, isE}, and �∈{ALL, ANY}. We
denote the universe of queries by Q and recursively define a query Q∈Q below.

Leaf query with an unary operator (without/with cardinality constraint)

– Q=’l1’ • Q=’l1’ • �k
– Q=�{’l1’, . . . , ’ln−1’} • Q=�{’l1’, . . . , ’ln−1’} • �k

Control-Flow-Based Querying of Process Executions 25

Leaf query with a binary operator (without/with cardinality constraint)

– Q=’l1’ ◦ ’ln’ Q=’l1’ ◦ ’ln’ �k
– Q=�{’l1’, . . . , ’ln−1}’ ◦ ’ln’ Q=�{’l1’, . . . , ’ln−1}’ ◦ ’ln’ �k
– Q=’ln’ ◦ �{’l1’, . . . , ’ln−1}’ Q=’ln’ ◦ �{’l1’, . . . , ’ln−1}’ �k

Composed query using Boolean operators

– If Q1, Q2∈Q are two queries and �∈{AND, OR}, then Q=(Q1�Q2) is a query
– If Q1∈Q is a query, then Q=NOT(Q1) is a query

4.2 Semantics

This section introduces the query language’s semantics. Table 2 presents query
examples with corresponding semantics. In short, the unary operators allow to
specify the existence of individual activities within a trace, for example, is con-
tained (isC), is a start activity (isS), or is an end activity (isE). Optionally,
operators can have cardinality constraints that extend the existential seman-
tics of unary operators by quantification constraints. Binary operators allow to
specify relationships between activities; for example, two activities are parallel
(isP), directly follow each other (isDF), or eventually follow each other (isEF).
In contrast to unary operators, binary operators always have to hold globally
when no cardinality constraint is given. For example, E10 (cf. Table 2) specifies
that a B activity must directly follow each A activity, i.e., there is an arc in the
transitive reduction from each A activity to a B activity. In comparison, E11
specifies that the trace contains precisely one A activity that is directly followed
by a B activity. ALL sets specify that a constraint must be fulfilled for all activity
labels within the set. Analogously, ANY sets specify that the constraint must be
fulfilled at least for one activity. Next, we formally define the semantics.

Definition 4 (Query Semantics). Let Q,Q1, Q2∈Q be queries, T≺=(T,≺) ∈
T be a trace, and l1, . . . , ln∈L be activity labels. We recursively define the func-
tion eval : Q×T → {true, false} assigning a Boolean value, i.e., eval(Q,T≺),
to query Q and trace T≺.

Unary Operators

– If Q=’l1’ isC �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k(ali=l1)

]

– If Q=’l1’ isS �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ¬∃ã∈T (ã≺ai)

)]

– If Q=’l1’ isE �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ¬∃ã∈T (ai≺ã)

)]

26 D. Schuster et al.

Binary Operators

– If Q=’l1’ isDF ’l2’ , then eval
(
Q,T≺)

⇔
∀a∈T

[
al=l1 → ∃ã∈T

(
ãl=l2 ∧ a≺Rã

)]

– If Q=’l1’ isDF ’l2’ �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ãl=l2 ∧ ai≺Rã

))]

– If Q=’l1’ isDF ANY{’l2’, . . . ,’ln’} , then eval
(
Q,T≺)

⇔
∀a∈T

[
al=l1 → ∃ã∈T

(
a≺Rã ∧

(∨n
j=2 ã

l = lj
))]

– If Q=’l1’ isDF ANY{’l2’, . . . ,’ln’} �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ai≺Rã ∧

∨n
j=2(ã

l=lj)
))]

– If Q=’l1’ isDF ALL{’l2’, . . . ,’ln’} �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã2, . . . , ãn∈T

(∧n
j=2

(
ai≺Rãj ∧ ãlj=lj

)))]

– If Q=’l1’ isEF ’l2’ , then eval
(
Q,T≺)

⇔
∀a∈T

[
al=l1 → ∃ã∈T

(
ãl=l2 ∧ a≺ã

)]

– If Q=’l1’ iEF ’l2’ �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ãl=l2 ∧ ai≺ã

))]

– If Q=’l1’ isEF ANY{’l2’, . . . ,’ln’} , then eval
(
Q,T≺)

⇔
∀a∈T

[
al=l1 → ∃ã∈T

(
a≺ã ∧

(∨n
i=2 ã

l = li
))]

– If Q=’l1’ isEF ANY{’l2’, . . . ,’ln’} �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ai≺ã ∧

(∨n
j=2 ã

l=lj
)))]

– If Q=’l1’ isEF ALL{’l2’, . . . ,’ln’} �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã2, . . . , ãn∈T

(∧n
j=2(ai≺ãj ∧ ãlj=lj)

))]

– If Q=’l1’ isP ’l2’ , then eval
(
Q,T≺)

⇔
∀a∈T

[
al=l1 → ∃ã∈T

(
ãl=l2 ∧ a�≺ã ∧ ã�≺a

)]

– If Q=’l1’ isP ’l2’ �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ãl=l2 ∧ ai �≺ã ∧ ã�≺ai

))]

– If Q=’l1’ isP ANY{’l2’, . . . ,’ln’} , then eval
(
Q,T≺)

⇔
∀a∈T

[
al=l1 → ∃ã∈T

(
a�≺ã ∧ ã�≺a ∧

(∨n
j=2 ã

l = lj
))]

– If Q=’l1’ isP ANY{’l2’, . . . ,’ln’} �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã∈T

(
ai �≺ã ∧ ã�≺ai ∧

(∨n
j=2 ã

l=lj
)))]

Control-Flow-Based Querying of Process Executions 27

– If Q=’l1’ isP ALL{’l2’, . . . ,’ln’} �k , then eval
(
Q,T≺)

⇔
∃�ka1, . . . , ak∈T

[
∀1≤i≤k

(
ali=l1 ∧ ∃ã2, . . . , ãn∈T

(∧n
j=2(ai �≺ãj ∧ ãj �≺ai ∧

ãlj=lj)
))]

Boolean Operators

– If Q=NOT(Q1) , then eval
(
Q,T≺)

⇔ ¬eval
(
Q1, T

≺)

– If Q=(Q1 OR Q2) , then eval
(
Q,T≺)

⇔ eval
(
Q1, T

≺)
∨ eval

(
Q2, T

≺)

– If Q=(Q1 AND Q2) , then eval
(
Q,T≺)

⇔ eval
(
Q1, T

≺)
∧ eval

(
Q2, T

≺)

Note that Definition 4 does not cover all queries constructible using the syn-
tax in Definition 3. However, any query can be rewritten into a logically equiva-
lent one covered by Definition 3. We call queries Q1, Q2∈Q logically equivalent,
denoted Q1≡Q2, iff ∀T≺∈A∗(eval(Q1, T

≺) ⇔ eval(Q2, T
≺)

)
. Below, we list

query rewriting rules.

– ’l1’• ≡ ’l1’•≥1
– ANY{’l1’, . . . ,’ln’}• ≡ (’l1’•) OR . . . OR (’ln’•)
– ALL{’l1’, . . . ,’ln’}• ≡ (’l1’•) AND . . . AND (’ln’•)
– ANY{’l1’, . . . ,’ln’}• �k ≡ (’l1’•�k) OR . . . OR (’ln’• �k)
– ALL{’l1’, . . . ,’ln’}• �k ≡ (’l1’• �k) AND . . . AND (’ln’• �k)
– ANY{’l1’, . . . ,’ln−1’}◦’ln’ ≡ (’l1’◦’ln’) OR . . . OR (’ln−1’◦’ln’)
– ALL{’l1’, . . . ,’ln−1’}◦’ln’ ≡ (’l1’◦’ln’) AND . . . AND (’ln−1’◦’ln’)
– ANY{’l1’, . . . ,’ln−1’}◦’ln’�k ≡ (’l1’◦’ln’�k) OR . . . OR (’ln−1’◦’ln’�k)
– ALL{’l1’, . . . ,’ln−1’}◦’ln’�k ≡ (’l1’◦’ln’�k) AND . . . AND
(’ln−1’◦’ln’�k)

– ’l1’◦ALL{’l2’, . . . ,’ln’} ≡ (’l1’◦’l2’) AND . . . AND (’l1’◦’ln’)

Note that according to Definition 4, the following queries are not logically
equivalent. Thus, ANY and ALL sets are not syntactic sugar.

– ’l1’◦ANY{’l2’, . . . ,’ln’} �≡ (’l1’◦’l2’) OR . . . OR (’l1’◦’ln’)
– ’l1’◦ANY{’l2’, . . . ,’ln’} �k �≡ (’l1’◦’l2’�k) OR . . . OR (’l1’◦’ln’ �k)
– ’l1’◦ALL{’l2’, . . . ,’ln’} �k �≡ (’l1’◦’l2’ �k) AND . . . AND (’l1’◦’ln’ �k)

For example, consider E18 in Table 2. The query states that there exist at
most two A activities that are in parallel to B or C activities. Thus, a trace
containing four A activities, two parallel to an arbitrary number (greater than
zero) of B activities, and two parallel to C activities, does not fulfill query E18.
However, the described trace fulfills the query Q = (’A’ isP ’B’ ≤ 2) OR
(’A’ isP ’C’ ≤ 2); hence, E18 = ’A’ isP ANY{’B’,’C’} ≤ 2 �≡ Q.

4.3 Evaluating Queries

This section briefly discusses our approach to query evaluation. As shown in
Fig. 2, queries represent trees. Since each leaf represents a query, we evaluate the
queries composed of Boolean operators bottom-up. First, the leaves are evaluated

28 D. Schuster et al.

on a given trace, resulting in Boolean values per leaf. Then, bottom-up, the given
Boolean operators are applied recursively.

In many cases, however, a complete query evaluation is not needed to deter-
mine its overall Boolean value for a given trace. For instance, if one leaf of a
logical AND parent evaluates to false, the other leaves do not need to be further
evaluated for the given trace. Similar applies to the logical OR. Reconsider the
query given in Fig. 2 and the trace depicted in Fig. 1. The query consists of four
leaves; however, only two must be evaluated. Following a depth-first traversing
strategy, we first evaluate the leaf (’DC’ isC =2) satisfied by the given trace.
Thus, we do not need to evaluate the right subtree of the OR, i.e., leaves (’DC’
isC =1) and (’CRR’ isDF ’DC’). Finally, we evaluate the leave (’DC’ isDF
’DM’). In short, by evaluating only two leaves, we can evaluate the entire query.

4.4 Implementation

This section briefly demonstrates the implementation of the proposed query
language in the process mining tool Cortado [14]1. We refer to [14] for an intro-
duction to Cortado’s architecture and a feature overview.

Figure 3 depicts a screenshot of Cortado. The shown chevron-based visual-
izations represent trace variants2 from the loaded event log that satisfies the

Fig. 3. Excerpt from a screenshot of Cortado showing a query editor (bottom right),
a trace variant explorer visualizing the matching trace variants of the query, and a
tabular overview of activities from the event log
1 Available at https://cortado.fit.fraunhofer.de/.
2 A trace variant summarizes traces that share identical ordering relationships among
the contained activities.

https://cortado.fit.fraunhofer.de/

Control-Flow-Based Querying of Process Executions 29

displayed query. We refer to [13] for an introduction to the trace variant visu-
alization. As shown in Fig. 3, the query editor offers syntax highlighting; colors
of the activity labels in the query editor correspond to the colors used in the
variant explorer to improve usability. Executing a query results in an updated
list of trace variants satisfying the query. In Fig. 3, the numbers at the top next
to the blue filter icon indicate that 109 out of 3,830 trace variants satisfy the
displayed query. In the backend, we use ANTLR [7] for generating a parser for
the query language. The language’s design ensures that every valid query, when
parsed with ANTLR, corresponds to a single parse tree that can be transformed
into a unique query tree (cf. Fig. 2).

5 Application Scenario Example

This section presents an exemplary application scenario of the proposed query
language. Process discovery is concerned with learning a process model from an
event log. Conventional discovery approaches [1] are fully automated, i.e., an
event log is provided as input and the discovery algorithm returns a process
model describing the event data provided. Since automated process discovery
algorithms often return process models of low quality, incremental/interactive
process discovery approaches have emerged [15] to additionally utilize domain
knowledge next to event data. Incremental process discovery allows users to
gradually add selected traces to a process model that is considered under con-
struction. By building a process model gradually, users can control the discovery
phase and intervene as needed, for example, by selecting different traces or mak-
ing manual changes to the model. In short, gradually selecting traces from event
data is the major form of interaction in incremental process discovery, cf. Fig. 4.

Fig. 4. Example of an application scenario of the proposed query language, i.e., trace
variant selection in the context of incremental process discovery

30 D. Schuster et al.

With event logs containing numerous trace variants, user assistance in explor-
ing, finding, and selecting trace variants is critical for the success of incremental
process discovery. For instance, the log used in Fig. 3 contains 3,830 trace vari-
ants. Manual visual evaluation of all these variants is inappropriate. In such a
scenario, the proposed query language is a valuable tool for users to cope with
the variety, complexity, and amount of trace variants. As most process discovery
approaches [1], including incremental ones, focus on learning the control flow of
activities, a specialized query language focusing on control flow constraints is a
valuable tool. To this end, we implemented the query language in Cortado, a
tool for incremental process discovery, cf. Fig. 4.

6 Evaluation

This section presents an evaluation focusing on performance aspects of the query
language. Section 6.1 presents the experimental setup and Sect. 6.2 the results.

6.1 Experimental Setup

We used four publicly available, real-life event logs, cf. Table 3. For each log, we
automatically generated queries from which we pre-selected 1,000 such that no
finally selected query is satisfied by all or by no trace in the corresponding log.
With this approach, we have attempted to filter out trivial queries to evaluate.
We measured performance-related statistics given the 1,000 queries per log.

Table 3. Statistics about the event logs used

Event log #Traces #Trace variants(a)

BPI challenge 2012(b) 13, 087 3, 830

BPI challenge 2017(c) 31, 509 5,937

BPI challenge 2020, Prepaid Travel Cost log(d) 2, 099 213

Road traffic fine management (RTFM)(e) 150, 370 350

(a) Based on the variant definition presented in [13].
(b) https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
(c) https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.
(d) https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.
(e) https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

Control-Flow-Based Querying of Process Executions 31

6.2 Results

Each query is applied to all traces from the given event log. Since not all leaves
of a query have to be evaluated, cf. Sect. 4.3, the number of leaves evaluated may
differ per trace. Thus, the actual trace determines how many leaves of a given
query must be evaluated. Figure 5 shows the runtime (in seconds) of the queries
per event log for the median number of leaf nodes that were evaluated. Thus,
each boxplot is made up of 1,000 data points, i.e., 1,000 queries each evaluated
on all traces from the given log. Across all four event logs, we clearly observe a
linear trend of increasing runtime the more query leaves are evaluated.

Figure 6 depicts the distribution of queries according to their evaluation time.
Further, we can see the proportion of leaves evaluated at the median. As before,

(a) BPI Challenge 2012 (b) BPI Challenge 2017

(c) BPI Challenge 2020 (d) RTFM

Fig. 5. Query evaluation time. Since the queries are applied to all traces, they are
ordered by the median number of leaves evaluated per trace

32 D. Schuster et al.

Fig. 6. Query evaluation time distribution

each plot contains 1,000 data points, i.e., 1,000 queries. Similar to Fig. 5, we
observe that the number of evaluated leaves is the primary driver of increased
evaluation time. The observed behavior is similar for the different logs.

Figure 7 shows the impact of early termination, as introduced in Sect. 4.3.
Note that in the previous plots, i.e., Fig. 5 and Fig. 6, early termination was
always used. We clearly see from the plots in Fig. 7 that early termination has a
significant impact on the evaluation time of a query across all used event logs.
In conclusion, the results shown in this section indicate that the time required
to evaluate queries increases linearly with the number of leaves evaluated.

Control-Flow-Based Querying of Process Executions 33

Fig. 7. Impact of early termination on the query evaluation time

7 Conclusion

We proposed a novel query language that can call up traces from event logs
containing partially ordered event data. The core of the language is the con-
trol flow constraints, allowing users to specify complex ordering relationships
over executed activities. We formally defined the query language’s syntax and
semantics. Further, we showed its implementation in the tool Cortado. We pre-
sented one potential application scenario of the language, i.e., the trace selection
within incremental process discovery. In short, the proposed query language facil-
itates handling large event logs containing numerous traces consisting of partially
ordered activities. For future work, we plan to conduct user studies exploring

34 D. Schuster et al.

the query language’s ease of use [12]. Further, we plan to extend the language
with a graphical editor allowing query specification in a no-code environment.

References

1. Augusto, A., et al.: Automated discovery of process models from event logs: review
and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

2. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
BP-QL. Inf. Syst. 33(6), 477–507 (2008)

3. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query lan-
guage for analyzing business processes execution. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 281–297. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23059-2 22

4. Kobeissi, M., Assy, N., Gaaloul, W., Defude, B., Haidar, B.: An intent-based nat-
ural language interface for querying process execution data. In: 2021 3rd Interna-
tional Conference on Process Mining (ICPM), pp. 152–159. IEEE (2021)

5. Markovic, I., Costa Pereira, A., de Francisco, D., Muñoz, H.: Querying in business
process modeling. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol.
4907, pp. 234–245. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
540-93851-4 23

6. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

7. Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(k) parser generator. Softw.
Pract. Experience 25(7), 789–810 (1995)

8. Polyvyanyy, A.: Business process querying. In: Sakr, S., Zomaya, A. (eds.) Ency-
clopedia of Big Data Technologies, pp. 1–9. Springer, Cham (2019). https://doi.
org/10.1007/978-3-319-63962-8 108-1

9. Polyvyanyy, A.: Process Querying Methods. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-92875-9

10. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.: Process querying:
enabling business intelligence through query-based process analytics. Decis. Sup-
port Syst. 100, 41–56 (2017)

11. Räim, M., Di Ciccio, C., Maggi, F.M., Mecella, M., Mendling, J.: Log-based under-
standing of business processes through temporal logic query checking. In: Meers-
man, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 75–92. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45563-0 5

12. Reisner, P.: Human factors studies of database query languages: a survey and
assessment. ACM Comput. Surv. 13(1), 13–31 (1981)

13. Schuster, D., Schade, L., van Zelst, S.J., van der Aalst, W.M.P.: Visualizing trace
variants from partially ordered event data. In: Munoz-Gama, J., Lu, X. (eds.)
ICPM 2021. LNBIP, vol. 433, pp. 34–46. Springer, Cham (2022). https://doi.org/
10.1007/978-3-030-98581-3 3

14. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Cortado—an interactive
tool for data-driven process discovery and modeling. In: Buchs, D., Carmona, J.
(eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 465–475. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76983-3 23

15. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Utilizing domain knowledge
in data-driven process discovery: a literature review. Comput. Ind. 137, 103612
(2022). https://doi.org/10.1016/j.compind.2022.103612

https://doi.org/10.1007/978-3-642-23059-2_22
https://doi.org/10.1007/978-3-540-93851-4_23
https://doi.org/10.1007/978-3-540-93851-4_23
https://doi.org/10.1007/978-3-319-63962-8_108-1
https://doi.org/10.1007/978-3-319-63962-8_108-1
https://doi.org/10.1007/978-3-030-92875-9
https://doi.org/10.1007/978-3-030-92875-9
https://doi.org/10.1007/978-3-662-45563-0_5
https://doi.org/10.1007/978-3-030-98581-3_3
https://doi.org/10.1007/978-3-030-98581-3_3
https://doi.org/10.1007/978-3-030-76983-3_23
https://doi.org/10.1016/j.compind.2022.103612

Control-Flow-Based Querying of Process Executions 35

16. van der Aalst, W.M.P.: Service mining: using process mining to discover, check,
and improve service behavior. IEEE Trans. Serv. Comput. 6(4), 525–535 (2013)

17. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016). https://doi.org/10.1007/978-3-662-49851-4

18. Vogelgesang, T., Ambrosy, J., Becher, D., Seilbeck, R., Geyer-Klingeberg, J.,
Klenk, M.: Celonis PQL: a query language for process Mining. In: Polyvyanyy, A.
(eds.) Process Querying Methods, pp. 377–408. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-92875-9 13

19. Wang, J., Jin, T., Wong, R.K., Wen, L.: Querying business process model reposi-
tories. World Wide Web 17(3), 427–454 (2014)

20. Yongsiriwit, K., Chan, N.N., Gaaloul, W.: Log-based process fragment querying to
support process design. In: 2015 48th Hawaii International Conference on System
Sciences, pp. 4109–4119. IEEE (2015)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-92875-9_13
https://doi.org/10.1007/978-3-030-92875-9_13

A Framework for Extracting
and Encoding Features

from Object-Centric Event Data

Jan Niklas Adams1(B) , Gyunam Park1 , Sergej Levich3,
Daniel Schuster1,2 , and Wil M. P. van der Aalst1,2

1 Process and Data Science, RWTH Aachen University, Aachen, Germany
{niklas.adams,gnpark,schuster,wvdaalst}@pads.rwth-aachen.de

2 Fraunhofer Institute for Applied Information Technology, Sankt Augustin,
Germany

3 Information Systems Research, University of Freiburg, Freiburg, Germany
sergej.levich@is.uni-freiburg.de

Abstract. Traditional process mining techniques take event data as
input where each event is associated with exactly one object. An object
represents the instantiation of a process. Object-centric event data con-
tain events associated with multiple objects expressing the interaction
of multiple processes. As traditional process mining techniques assume
events associated with exactly one object, these techniques cannot be
applied to object-centric event data. To use traditional process mining
techniques, object-centric event data are flattened by removing all object
references but one. The flattening process is lossy, leading to inaccurate
features extracted from flattened data. Furthermore, the graph-like struc-
ture of object-centric event data is lost when flattening. In this paper,
we introduce a general framework for extracting and encoding features
from object-centric event data. We calculate features natively on the
object-centric event data, leading to accurate measures. Furthermore,
we provide three encodings for these features: tabular, sequential, and
graph-based. While tabular and sequential encodings have been heavily
used in process mining, the graph-based encoding is a new technique
preserving the structure of the object-centric event data. We provide six
use cases: a visualization and a prediction use case for each of the three
encodings. We use explainable AI in the prediction use cases to show
the utility of both the object-centric features and the structure of the
sequential and graph-based encoding for a predictive model.

Keywords: Object-centric process mining · Machine learning ·
Explainable AI

1 Introduction

Process mining [1] is a branch of computer science producing data-driven insights
and actions from event data generated by processes. These insights are typi-
cally grouped into three categories: process discovery, conformance checking, and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 36–53, 2022.
https://doi.org/10.1007/978-3-031-20984-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_3&domain=pdf
http://orcid.org/0000-0001-8954-4925
http://orcid.org/0000-0001-9394-6513
http://orcid.org/0000-0002-6512-9580
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-20984-0_3

Extracting and Encoding Features from Object-Centric Event Data 37

Fig. 1. An object-centric event log and the underlying structure of events. The left-
hand side depicts the event log. Events may be associated with multiple objects of
different object types (here: Order and Item). The right-hand side shows the graph of
directly-follows relationships for the events given by the objects. An event with multiple
objects may have multiple predecessor events.

enhancement. Process discovery techniques create process models describing the
possible paths of actions in a process. Conformance checking techniques quantify
and qualify the correspondence between a process model and event data. Pro-
cess enhancement techniques take an encoding of features of the event data as
input and deliver insights, predictions, or actions as output. Such enhancement
techniques include process performance analysis [20,24], prediction [10,26,29] or
clustering of similar process executions [25].

Generally, process enhancement techniques encode features of event data in
either of two ways: as a table [9,18] or as a set of sequences [12,19,26]. In a
tabular encoding, each row corresponds to feature values for, e.g., an event.
This tabular encoding is used, for example, for regression, decision trees, and
feed-forward neural networks. However, each process execution (also: case) is a
timely ordered sequence of events. Therefore, summarizing event data to tabular
encoding removes the sequential structure of the event data. Since this structure
itself is meaningful, sequential encodings were developed [19]. These encodings
represent each process execution as a sequence of feature values and are used for
predictive models considering sequentially encoded data, such as LSTMs [26], or
to visualize the variant of the process execution.

Traditional process mining builds on two central assumptions: Each event is
associated with exactly one object (the case) and each object is of the same type.
Each object is associated with a sequence of events. A traditional event log, there-
fore, describes a collection of homogeneously typed, isolated event sequences.
This is a valid assumption when analyzing, e.g., the handling of insurance claims.
In this example, each object describes an instantiation of the same type: an
insurance claim. Events are associated to exactly one insurance claim. However,
real-life information systems often paint another picture: Events may be related

38 J. N. Adams et al.

Fig. 2. Flattening an object-centric event log (cf. Fig. 1) such that it can be used for tra-
ditional process enhancement techniques. The event log is transformed into sequences
of a chosen case notion. Due to deficiency, convergence and divergence, the features
calculated on a flattened log might be misleading, e.g., through missing events. Fur-
thermore, the graph-like structure of the original event log is lost.

to multiple objects of different types [3,4,11,28]. The most prominent example
of information systems generating event data with multiple associated objects
are ERP systems. Objects in such systems would correspond to, e.g., an order,
different items of this order, and invoices in an order-to-cash process. Consider
the simplified example of an order handling process depicted in Fig. 1. An event
may be related to objects of type order, item, or both. An event with multiple
objects may have multiple predecessor events. Therefore, the structure of an
Object-Centric Event Log (OCEL) resembles a graph, not a sequential structure
as is assumed in traditional process mining.

This gap between OCELs and traditional process enhancement techniques
is currently bridged by flattening an event log [2], i.e., mapping an OCEL into
traditional event log format by enforcing a homogeneous, sequential structure.
This involves two steps: Choosing a case notion and duplicating events with
multiple objects of that notion. All objects not included in this case notion are
discarded. Flattening the event log of Fig. 1 is depicted in Fig. 2 for three different
case notions. The first two are case notions of a single object type [2]. The third

Extracting and Encoding Features from Object-Centric Event Data 39

Fig. 3. Our framework enables accurate feature extraction for object-centric event
data. Furthermore, we provide three encodings for object-centric features: tabular,
sequential, and graph-based. We present a visualization and prediction use case for
each encoding.

case notion is a composite case notion of co-appearing orders and items, i.e.,
an order and all corresponding items. The flattened event data may be used as
input for traditional process enhancement techniques.

However, flattening manipulates the information of the object-centric event
log. The problems related to flattening are deficiency (disappearing events) [3],
convergence (duplicated events) [2] and divergence (misleading directly-follows
relations) [2,28]. We showcase divergence using an example. One might use a
composite case notion of order and item to flatten the event log (cf. Fig. 2 Case
Notion: Order & Item). All orders and items related through events form one
composite object, i.e., o1,i1,i2, and o2,i3. The events of these objects are flattened
to one sequence, introducing inaccurate precedence constraints. E.g., events e3
and e4, which describe an item being picked, are now sequentially ordered, indi-
cating some order between them. However, the original event data show that
these two picking events are independent. The same holds for the relationship
of pick item and pay order: The object-centric event data do not indicate any
precedence constraint. However, the sequential representation enforces one.

The three problems of flattening have major consequences on the quality of
the calculated features of the flattened OCEL: Due to missing events, dupli-
cated events, or wrong precedence constraints, many features deliver incorrect
results (cf. Sect. 4). Furthermore, the tabular or sequential encoding constructed
from these features does not preserve the graph-like structure of the event data,
removing important structural information. Therefore, features for OCELs can
not accurately be extracted and encoded.

To solve the previously mentioned problem, an approach is necessary that
calculates features natively on the object-centric event data and enables a graph-

40 J. N. Adams et al.

Table 1. Process enhancement techniques and supporting frameworks.

Feature extraction Feature encoding Existing work

Object-centric Flattened Tabular Sequential Graph-based

(a) Process

enhancement

techniques

P1 � � [9,13]

P2 � � [12,19,26]

P3 � � [16,23,27]

(b)

Frameworks

F1 � � [18]

F2 � � [7,14]

This paper � � � �

based encoding preserving the actual structure of the event log. In this paper, we
introduce a general framework for extracting and encoding features for object-
centric event data (cf. Fig. 3), providing two contributions: 1) We translate the
computation of the features introduced in the framework of de Leoni et. al [18]
to the object-centric setting, providing accurate measures. 2) We provide three
different encodings to represent the extracted features for different algorithms
and methods: tabular, sequential, and graph-based. Using features and encoding,
we provide six use cases. These use cases showcase the generalizability of our
framework to a plethora of different tasks. We use one visualization and one
prediction use case for each encoding. In the prediction use cases, we depict how
the different features and the structure of the encodings are utilized by predictive
models, leveraging on explainable AI and SHAP values [21]. These contributions
may be used as a foundation for new algorithms, new visualizations, new machine
learning models, more accurate predictions, and more.

This paper is structured as follows. First, we discuss related work on feature
extraction and encoding in Sect. 2. We introduce object-centric event data and
process executions in Sect. 3. In Sect. 4, we provide an overview of native feature
calculation for object-centric event data. In Sect. 5, we define three encodings
for object-centric features. Sect. 6 depicts our six use cases for features and their
encodings. We conclude this paper in Sect. 7.

2 Related Work

A plethora of process enhancement techniques exist in the literature, including
process performance analysis, predictive process monitoring, and trace cluster-
ing [1]. Such techniques use encoded features extracted from an event log as input.
Table 1(a) shows three categories of techniques using different feature extraction
(i.e., feature extractions using 1. OCELs and 2. flattened event logs) and encod-
ing (i.e., 1. tabular, 2. sequential, and 3. graph encoding) approaches with repre-
sentative examples. First, P1 represents the techniques using features extracted
fromflattened event logs and encoded as tabular formats. For instance, vanDongen
et al. [9] use tabular encoding by transforming an event log into feature-outcome
pairs to predict remaining times using non-parametric regression. Also, in [13], an
event log is encoded into a tabular format with additional features on context, e.g.,
resource availability, to predict processing times. Second, techniques inP2 also use

Extracting and Encoding Features from Object-Centric Event Data 41

features based on flattened event logs but encoded as sequential formats. Leontjeva
et al. [19] propose complex sequence encoding to encode an event log to sequences to
predict the outcome of an ongoing case. To predict the next activity of an ongoing
case, Evermann et al. [12] encode control-flow features using embedding techniques,
whereas Tax et al. [26] use one-hot encoding. Finally, P3 consists of techniques
using features extracted from flattened event logs and encoded as graph formats.
Philipp et al. [23] encode an event log to a graph where each node represents an
activity, and each edge indicates the relationship between activities. The graph is
used to learn a Graph Neural Network (GNN) to predict process outcomes. Venu-
gopal et al. [27] extend [23] by annotating nodes with temporal features. They use
GNNs to predict the next activity and next timestamp of an event. Instead of rep-
resenting a node as an activity, Harl et al. [16] uses one-hot encoding of an activity
to represent a node to deploy gated graph neural network that provides the explain-
ability based on relevance score.

Furthermore, to support the development of process enhancement techniques
using different feature extraction and encoding, several frameworks have been
proposed (cf. Table 1(b)). First, De Leoni [18] in F1 suggest a framework to
compute features using flattened event logs and encode them to tables. Second,
Becker et al. [7] and Di Francescomarino et al. [14] in F2 propose frameworks
for techniques for sequentially encoding extracted features. To the best of our
knowledge, no framework supporting graph encoding exists.

Despite the limitations of flattened event logs to extract misleading features,
no study has been conducted to develop process enhancement techniques using
features based on OCELs. In this work, we provide a framework for extract-
ing and encoding features based on OCELs, with the goal of facilitating the
development of object-centric process enhancement approaches. Our proposed
framework supports all existing encoding formats, i.e., tabular, sequential, and
graph, to be used for different algorithms and methods.

3 Object-Centric Event Data

Given a set X, the powerset P(X) denotes the set of all possible subsets. A
sequence σ : {1, . . . , n} → X of length len(σ) = n assigns order to elements of
X. We denote a sequence with σ = 〈x1, . . . , xn〉 and the set of all sequences over
X with X∗. We overload the notion x ∈ σ to express x ∈ range(σ).

A graph is a tuple G = (V,E) of nodes V and edges E ⊆ V × V . The set of
all subgraphs of G is given by sub(G) = {(V ′, (V ′ × V ′) ∩ E) | V ′ ⊆ V }. A path
connects two distinct nodes through edges. The set of paths between two nodes
v, v′ ∈ V, v �= v′ is defined by pathG(v, v′) = {〈(v, v1), (v1, v2), . . . , (vk, v′)〉 ∈
E∗}. Two distinct nodes are connected if the set of paths between them is
not empty pathG(v, v′) �= ∅. The distance between two nodes is the length
of the shortest path distG(v, v′) = len(σd) such that σd ∈ pathG(v, v′) ∧
¬∃σ′

d∈pathG(v,v′) len(σd) > len(σ′
d). A graph G = (V,E) is connected iff a path

exists between all edges ∀v,v′∈V v �= v′ ∧ pathG(v, v′) �= ∅. The set of connected
subgraphs of G = (V,E) is defined as follows consub(G) = {G′ ∈ sub(G) |
G′ is connected}.

42 J. N. Adams et al.

An event log is a collection of events associated with objects. Each event con-
tains an activity, describing the executed action, a start and complete timestamp
and additional attributes. Each object is associated to a sequence of events.

Definition 1 (Event Log). Let E be the universe of events, O be the uni-
verse of objects, OT be the universe of object types, A be the universe of activ-
ities, C be the universe of attributes and V be the universe of attribute val-
ues. Let A ⊆ A be a set of activities and C ⊆ C be a set of attributes. Each
object is mapped to exactly one object type πtype : O → OT . An event log
L = (E,O,OT, πct , πst , πtrace , πact , πatt) is a tuple composed of

• events E ⊆ E, objects O ⊆ O, and object types OT ⊆ OT ,
• two time mappings for the completion πct : E → R and the start πst : E → R

of an event such that πst(e) ≤ πct(e) for any e ∈ E,
• a mapping πtrace : O → E∗ mapping each object to a sequence of events such
that ∀o∈O πtrace(o) = 〈e1, . . . , en〉 ∧ ∀i∈{1,...n−1} πct(ei) ≤ πct(ei+1),

• an activity mapping πact : E → A and,
• an attribute mapping πatt : E × C � V.

The table in Fig. 1 depicts an example of an OCEL. A row corresponds to one
event. Sorting the events of an object in timely order, we retrieve the event
sequence for the object, e.g., πtrace(i3) = 〈place order,pick item, send delivery,
delivery received〉. The relationships between objects can be expressed in the
form of a graph, connecting objects that share events.

Definition 2 (Object Graph). Let L = (E,O,OT, πct , πst , πtrace , πact , πatt)
be an event log. We denote the objects of an event e∈E with πobj (e)={o∈O |
e∈πtrace(o)}. The object graph OGL=(O, I) is an undirected graph of nodes O
and edges of object interactions I={{o, o′}⊆O | o �=o′ ∧ ∃e∈E {o, o′} ⊆ πobj (e)}.

Objects which are directly or transitively connected in the object graph depend
on each other by sharing events. In traditional process mining, a process execu-
tion (case) is the event sequence of one object. We use the definitions of process
executions [6] and generalize this notion such that a process execution is the set
of events for multiple, connected objects.

Definition 3 (Process Execution). Let L = (E,O,OT, πct , πst , πtrace , πact ,
πatt) be an event log and OGL = (O, I) be the corresponding object graph. A
process execution p = (O′, E′) is a tuple of objects O′ ⊆ O and events E′ ⊆ E
such that e′ ∈ E′ ⇔ πobj (e′) ⊆ O′ and O′ forms a connected subgraph in OGL.

We define two techniques to extract process executions from an OCEL. These
two techniques are two out of many possible process execution extraction tech-
niques. The first technique extracts process executions based on the connected
components of the object graph. All transitively connected objects form one
process execution. This might lead to large executions for entangled event logs.
Therefore, we introduce the leading type extraction. A process execution is con-
structed for each object of a chosen leading object type. Connected objects are

Extracting and Encoding Features from Object-Centric Event Data 43

added to this process execution unless a connected object of the same type has
a lower distance to the leading object. This limits executions in size but also
removes dependencies.

Definition 4 (Execution Extraction). Let L=(E,O,OT, πct , πst , πtrace ,
πact , πatt) be an event log. An execution extraction EX⊆consub(OGL) retrieves
connected subgraphs from the object graph. A subgraph ex = (O′, I ′) ∈ EX is
mapped to a process execution fextract(ex , L) = (O′, E′) with E′ = {e ∈ E |
O′ ∩ obj (e) �= ∅}. We define two extraction techniques:

• EX comp(L) = {G ∈ consub(OGL) | ¬∃G′∈consub(OGL) G ∈ sub(G′)}, and
• EX lead(L, ot) = {G ∈ lead graphs = {G′ = (O′, I ′) ∈ consub(OGL) |

∃o∈O′ πtype(o) = ot ∧ ∀o′∈O′ ¬∃o′′∈O′ o′′ �= o′ ∧ πtype(o′′) = πtype(o′) ∧
distG′(o, o′) > distG′(o, o′′)} | ¬∃G′′∈lead graphsG ∈ sub(G′′)} for ot ∈ OT .

When looking at the example of Fig. 1, the process executions retrieved by apply-
ing EX comp would be based on the connected components of the object graph,
i.e., {o1, i1, i2} and {o2, i3}. Using the leading type order, we would retrieve
the same executions. Using item as the leading type, we would retrieve {i1, o1},
{i2, o1} and {i3, o2}.

4 Object-Centric Features

This section deals with the problem resulting from flattening OCELs to apply
process enhancement techniques: Features are calculated on the manipulated,
flattened event data. Therefore, they might be inaccurate. We propose an object-
centric adaptation of the features introduced by the seminal machine learning
framework of de Leoni et al. [18]. We calculate them natively on the OCEL. Fur-
thermore, we provide several new features recently introduced in the literature
on object-centric process mining. A feature is, generally, calculated for an event.
It might describe a measure for the single event, in relationship to its process
executions, or the whole system.

Definition 5 (Features). Let L = (E,O,OT, πct , πst , πtrace , πact , πatt) be an
event log and EX⊆consub(OGL) be a set of extracted process executions. A
feature fL:E×EX�R maps an event and a process execution onto a real number.

The primary need for adapting traditional feature calculation arises from two
main differentiations between object-centric and traditional event data: First,
each event can have multiple predeccesors/successors, one for each object. Sec-
ond, each event might have multiple objects of different types. The computa-
tion of features that are depended on previous and following behavior has to
be adapted to the graph structure. The most obvious example are preceding
activities: In traditional feature extraction, there is only one preceding activity
for each event. In object-centric feature extraction, there are multiple preceding
activities, one for each object. The graph-structure as well as the multiplicity
of objects also enables the definition of new features leveraging on the graph

44 J. N. Adams et al.

Fig. 4. Overview of the features that can be extracted for event e6. These features are
the object-centric adaptations of [18].

structure and object (type) associations. Previous (i.e., all events that happened
before the considered event in an execution) and following events can be adapted
in two ways: time-based (using the event’s timestamp) and path-based (using
path information of the graph). We use a simple time-based adaptation. How-
ever, the graph-based adaptation might give interesting new research directions.

An overview of the features collected from an object-centric adaptation of de
Leoni et al.’s framework [18] and features recently introduced in the literature
[3,22] is depicted in Fig. 4. Similar to de Leoni et al., we group features according
to different perspectives: Control-Flow, Data-Flow, Resource, Performance and
Objects. We, now, discuss the different perspectives and the adaptations that
are necessary to apply them to the object-centric setting. Table 2 provides a
qualitative evaluation of the impact of flattening on the resulting feature value:
Features can be equal, they can be misleading/incorrect after flattening, and not
be available for flat event data.

The main adaptations of the control-flow perspectives are concerned with
the switch from sequential to graph-like control-flow. Multiple preceding activ-
ities (C2) as well as multiple current activities (C1) (endpoints of the current
execution graph) are possible. For previous and following activities (C3, C4),
we use a simple time-based adaptation.

The data-flow perspective needs slight adaptations for preceding character-
istic values (D2). Since there might be multiple preceding values, these need to

Extracting and Encoding Features from Object-Centric Event Data 45

Table 2. Impact of flattening on calculated feature values. Calculating a feature for
an event on object-centric vs. flattened data can lead to correct or misleading results.
Some features only exist on object-centric event data. Most features are misleading due
to the graph structure and object multiplicity.

Features Impact of flattening Only available for OCEL

Correct Misleading

Control-Flow C1, C2, C3, C4 �
C5 �

Data D1, D2 �
D3 �

Resource R1 �
R2, R3 �

Performance P1, P2, P3, P6, P10 �
P4, P5, P7, P8 �
P9 �

Objects O1, O2, O3, O4, O5 �

be aggregated. Previous characteristic values (D1) are adapted on a time basis,
and the characteristic value (D3) needs no adaptation.

The resources perspective’s features are mainly concerned with system-wide
measurements, such as the workload of the current resource (C1) or the total
system workload (C2). Therefore, this perspective remains mostly unaffected
by a move to object-centricity. Future research might investigate new features
derived from resource multiplicity per event.

The performance perspective has recently been studied for new object-centric
features [22]. Due to an event having multiple predecessors, the established per-
formance measures can be extended by several features expressing the time for
synchronization between objects (P5), the pooling time of an object type (P7),
or the lag between object types before the event (P8).

Finally, a new feature perspective concerning objects opens up. The paper
introducing the discovery of object-centric Petri nets [3] introduces some basic
features of the object perspective. For example, an event’s number of objects
(O5), the event’s number of objects of a specific type (O6), or the current
system’s total object count (O1). Investigations of additional features in this
perspective, e.g., quantifying the relationships between objects through graph
metrics on the object graph, might also be an interesting research direction.

5 Feature Encodings

In this section, we tackle the absence of feature encodings that represent the
graph-like structure of object-centric event data. We extend the currently used
tabular and sequential encodings with a graph-based one and introduce all three
encodings formally. Together with the formal definition of each encoding, we
provide some common use cases, advantages, disadvantages and a continuation of
our running example from Fig. 1. As an example of extracted features we choose
the number of previous objects (O2), the synchronization time (P5) and the

46 J. N. Adams et al.

remaining time (P3). The execution extraction for our example is the connected
components extraction EX comp . A tabular encoding is a common representation
of data points used for many use cases, such as regression analysis, clustering,
different data mining tasks, etc.

Fig. 5. Example of tabular a), sequential b) and graph-based c) feature encodings
for the running example in Fig. 1. The graph-based encoding preserves the structural
information from the OCEL.

Definition 6 (Tabular Encoding). Let L = (E,O,OT, πct , πst , πtrace , πact ,
πatt) be an event log and EX ⊆ consub(OGL) be a set of process executions. Let
FL ⊆ E × EX � R be a set of features. The event feature table is defined by
tab(e, fL) = fL(e, ex) for all e ∈ E, ex ∈ EX (rows) and all fL ∈ FL (columns).

We depict an example of tabular encoding in Fig. 5 a). Such an encoding is easily
readable and versatile usable, however, the structural order information of the
event log is lost in the process of tabular encoding. A sequential encoding is
commonly used in sequence visualization, clustering, classification or next value
predictions (cf. Sec. 2).

Definition 7 (Sequential Encoding). Let L = (E,O,OT, πct , πst , πtrace ,
πact , πatt) be an event log and EX ⊆ consub(OGL) be a set of extracted pro-
cess executions. Let FL={fL,1, . . . , fL,m}⊆E×EX�R be a set of features. The
sequential encoding of an execution ex ∈ EX is defined by seq(ex , FL) =

Extracting and Encoding Features from Object-Centric Event Data 47

Table 3. Results for the different models based on different encodings.

Regression LSTM GNN

Baseline MAE 0.7598
Train MAE 0.5101 0.4717 0.4460
Validation MAE NA 0.4625 0.4534
Test MAE 0.5087 0.4568 0.4497

〈(fL,1(e1, ex), . . . , fL,m(e1, ex)), . . . , (fL,1(en, ex), . . . , fL,m(en, ex))〉 with with
(O′, {e1, . . . , en}) = fextract(ex , L) and πct(e1) ≤ · · · ≤ πct(en).

We depict a sequential encoding of the running example in Fig. 5 b). The
events for process executions are ordered according to the complete timestamp
of the event. The resulting sequence is attributed with the different feature values
for each event. This encoding respects the timely order of events. However, it does
not respect the true precedence constraints of the event log : By merging all events
into one sequence, some event pairs are forced into a precedence relationships
they did not exhibit in the event log (cf. Sec. 1). A graph encoding of features
may be used for extensive visualization, applying graph algorithms or for utilizing
graph neural networks [30].

Definition 8 (Graph Encoding). Let L=(E,O,OT, πct , πst , πtrace , πact , πatt)
be an event log EX ⊆ consub(OGL) be a set of extracted process executions. Let
FL = {fL,1, . . . , fL,m} ⊆ E ×EX � R be a set of features. For an extracted exe-
cution ex ∈ EX , the graph of the corresponding process execution p = (O′, E′) =
fextract(ex , L) is defined by Gp = (E′,K) with edges K = {(e, e′) ∈ E′ ×E′ | e �=
e′ ∧ o ∈ O′ ∧ 〈e1, . . . , en〉 ∈ πtrace(o) ∧ e = ei ∧ e′ = ei+1 ∧ i ∈ {1, . . . , n − 1}}).
The graph encoding is defined by Gfeat (p, FL) = (E′,K, l) with a node labeling
function l(e) = {fL(e, ex) | fL ∈ FL} for any e ∈ E′.

An example of the graph-based feature encoding for our running example is
depicted in Fig. 5 c). Each process execution is associated with a graph. Each
node of the graph represents the feature values of an event.

6 Use Cases

In this section, we evaluate our framework by providing six use cases. We pursue
two evaluation goals with this approach: First, we aim to showcase the general-
izability of the framework by providing a collection of common process mining
tasks the framework can be applied to. Second, we aim to showcase the feature’s
and encoding’s effectiveness in the use cases. Over the last years, explainable
AI has been increasingly employed to make predictive process monitoring trans-
parent [15,17]. Through the use of SHAP [21] values, we are able to quantify
feature importance as well as structural importance of sequential and graph-
based encoding.

48 J. N. Adams et al.

Fig. 6. Time series describing two features over time: the weekly average number of
loan offers per event and the weekly average requested amount for each application.
Using this evaluation some initial insights can be generated, e.g., the gradual increase
in requested amount over time.

The use cases are split into two parts: three visualization and three predic-
tion use cases. We use a real-life loan application event log [8] as an OCEL. An
event can be related to an application and multiple loan offers as objects. We use
tabular, sequential, and graph-based encoding to gain insights into the process
through the visualization use cases. The prediction use cases aim at predicting
the remaining time of an event’s process execution (P3) using three different
techniques for the different encodings: regression (tabular), LSTM neural net-
works (sequential), and GNNs (graph-based). We use the same features for each
encoding: Preceding activities (C2), average previous requested amount (D1),
the elapsed time (P2), and the previous number of offers (O3). We use a 0.7/0.3
train/test split of the same events for each model for comparability reasons. We
set aside 20% of the training set as a validation set. The performance is assessed
using the Mean Absolute Error (MAE) of the normalized target variable. Fur-
thermore, we provide a baseline MAE achieved by predicting the training set’s
average remaining time. The summarized results are depicted in Table 3.

We provide an open-source python implementation of our framework1. Our
experiments can ge reproduced through a GitHub repository2. The framework
can be extended with new features and adapted algorithms.

6.1 Tabular Encoding

Visualization. We split the event log into subsequent sublogs containing the
events of one week each. For each sublog, we extract the average requested
amount (D3) and the number of offers per event (O6). The resulting time series
is depicted in Fig. 6. We can observe the dynamics of the process over time, e.g.,
the increase in the requested amount over time. Furthermore, we can observe
that the number of offers is stable, except for a few short spikes.

Prediction. We use a linear regression model to predict the remaining time based
on the tabular encoding (cf. Table 3). This is an object-centric adaption of use
1 https://github.com/ocpm/ocpa.
2 https://github.com/niklasadams/OCELFeatureExtractionExperiments.

https://github.com/ocpm/ocpa
https://github.com/niklasadams/OCELFeatureExtractionExperiments

Extracting and Encoding Features from Object-Centric Event Data 49

Fig. 7. Left: Bee swarm plot of SHAP values for the regression model, showing the
aggregated importance of different features to the predictions. Right: SHAP values of
one LSTM prediction, visualized for the different positions of the input sequence.

Fig. 8. Sequential variant visualization of a process execution enriched with the object
information (blue = application, orange = first and second offer). (Color figure online)

cases [9,13]. We generate the SHAP values, i.e., the impact of different features
on the individual model prediction, for 1000 predictions of the test set. The
resulting bee swarm plot is depicted in Fig. 7 (left side). Red points indicate a
high feature value. The more they are positioned to the left, the more the feature
value reduces the model’s prediction. Therefore, the combination of color and
position gives insights into the feature value’s impact on the model output. We
can, e.g., observe a high decreasing impact of the existence of the Call activity
in the preceding activities to the predicted remaining time. One can also observe
an impact of the new object-centric feature of the number of previous objects
of type offer on the predicted remaining time: the more offers were previously
recorded in a case, the lower the predicted remaining time. In conclusion, the
selected set of object-centric feature adaptations yields valuable information for
a predictive model.

6.2 Sequential Encoding

Visualization. We choose one specific process execution and extract the sequen-
tial encoding for the current event’s activity (C5) and the event’s objects (O4)

50 J. N. Adams et al.

Fig. 9. Use cases for the graph encoding: a) activities and objects of one process exe-
cution. Shared events between objects are colored with multiple colors. b) shows the
importance of different edges of one instance graph when predicting.

features. The result is a variant enriched by object information, depicted in Fig. 8.
Even though such a visualization might have misleading causality information
for events between objects, one can already retrieve some valuable insight into
the intra-object order and the overall activities of an execution.

Prediction. We use a neural network with two 10-hidden-node LSTM layers to
predict the remaining time of the sequentially encoded features. We use subse-
quences of length four (cf. Table 3 for results). This is an object-centric adaption
of use cases [19,26]. The regression use case already covered the importance of
features for the prediction. Therefore, we focus on the importance of the sequen-
tial encoding in this use case. We use SHAP values for each feature of the four
positions in the sequential encoding. The calculated feature impacts for an indi-
vidual prediction are depicted in Fig. 7 (right side). The more the value diverges
from zero, the higher the feature’s impact on the model’s output. We observe
features with high importance among all four positions of the sequence. There-
fore, the model utilizes the sequential encoding of the features, showcasing its
usefulness.

6.3 Graph Encoding

Visualization. Fig. 9 a) depicts the graph-based variant visualization retrieved
from OCπ [5] of the same process execution as Fig. 8. Using the graph, one
can place concurrent events in two different lanes according to their objects,
not indicating any precedence between them. One can intuitively determine the
concurrent paths in the variant and the interaction of different objects. For large
process executions, this provides structured access to the control-flow of the
underlying process.

Prediction. We use the graph-based feature encoding as an input for a GNN.
The GNN contains two graph convolution layers. Each node in both layers has a
size of 24. Input graphs are constrained to four nodes (cf. LSTM use case). We
read the graphs out by averaging over the convoluted values, summarizing to one
predicted remaining time (cf. Table 3 for results). This is an object-centric adap-
tation of use cases [23,27]. We adapt SHAP values to determine the importance
of graph edges to the predicted remaining time. Fig. 9 b) depicts the calculated
values for one graph instance. The more the value of an edge diverges from zero,

Extracting and Encoding Features from Object-Centric Event Data 51

the higher its existence impacts the model’s prediction. We observe substantially
different values for all edges: While some edges have a relatively low negative
or positive impact on the model’s output, the presence of other edges heavily
impacts the predicted remaining time. Therefore, the graph structure itself yields
important information for predicting the remaining time.

7 Conclusion

We introduced a general framework to extract and encode features from OCELs.
Currently, object-centric event data needs to be flattened to apply process
enhancement techniques to the data. This leads to inaccurate features. Addi-
tionally, no feature encoding is available to express the graph-like structure of
object-centric event data. Our framework calculates features natively on the
object-centric event data, leading to accurate features. Furthermore, we provide
a graph-based encoding of the features, preserving the underlying structure of
an OCEL. We show the utility of the features and encodings in six use cases,
a visualization and prediction use case for each of the three encodings. This
framework lays a foundation for future machine learning approaches utilizing
object-centric event data and new algorithms using our encodings as a basis.

We provide a collection of use cases showing the applicability of our frame-
work for extracting and encoding features. For each of our framework steps,
interesting future research directions are present: Which feature work well with
which encoding? What are the best prediction techniques for which encoding?
How to optimize existing network architectures to achieve maximum results?
Furthermore, investigations of new features derived from the graph structure
and object-multiplicity as well as further traditional features not included in de
Leoni et al.’s framework [18] is an interesting direction for future research.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Ölveczky, P.C., Salaün, G. (eds.): SEFM 2019. LNCS, vol. 11724. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30446-1

3. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1–4), 1–40 (2020). https://doi.org/10.3233/FI-2020-1946

4. Adams, J.N., van der Aalst, W.M.P.: Precision and fitness in object-centric
process mining. In: ICPM, pp. 128–135. IEEE (2021). https://doi.org/10.1109/
ICPM53251.2021.9576886

5. Adams, J.N., van der Aalst, W.M.P.: Ocπ: object-centric process insights. In:
Bernardinello, L., Petrucci, L. (eds.) Application and Theory of Petri Nets and
Concurrency. PETRI NETS 2022. Lecture Notes in Computer Science, vol. 13288,
pp. 139–150. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06653-5 8

6. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.P.:
Defining cases and variants for object-centric event data. CoRR abs/2208.03235,
10.48550/arXiv.2208.03235 (2022)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-30446-1
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.1109/ICPM53251.2021.9576886
https://doi.org/10.1109/ICPM53251.2021.9576886
https://doi.org/10.1007/978-3-031-06653-5_8

52 J. N. Adams et al.

7. Becker, J., Breuker, D., Delfmann, P., Matzner, M.: Designing and implementing a
framework for event-based predictive modelling of business processes. In: EMISA,
pp. 71–84. GI (2014)

8. van Dongen, B.: BPI challenge 2017 (2017). https://doi.org/10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b

9. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction:
when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88871-0 22

10. Ehrendorfer, M., Mangler, J., Rinderle-Ma, S.: Assessing the impact of context
data on process outcomes during runtime. In: Hacid, H., Kao, O., Mecella, M.,
Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 3–18. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-91431-8 1

11. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10(1–2), 109–141 (2021). https://doi.org/10.1007/s13740-021-00122-1

12. Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learn-
ing. Decis. Support Syst. 100, 129–140 (2017). https://doi.org/10.1016/j.dss.2017.
04.003

13. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012.
LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33606-5 18

14. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi,
W.: Predictive business process monitoring framework with hyperparameter opti-
mization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS,
vol. 9694, pp. 361–376. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39696-5 22

15. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable
predictive process monitoring. In: ICPM, pp. 1–8. IEEE (2020). https://doi.org/
10.1109/ICPM49681.2020.00012

16. Harl, M., Weinzierl, S., Stierle, M., Matzner, M.: Explainable predictive business
process monitoring using gated graph neural networks. J. Decis. Syst. 29(sup1),
312–327 (2020). https://doi.org/10.1080/12460125.2020.1780780

17. Huang, T.H., Metzger, A., Pohl, K.: Counterfactual explanations for predictive
business process monitoring. In: Themistocleous, M., Papadaki, M. (eds.) Infor-
mation Systems. EMCIS 2021. Lecture Notes in Business Information Processing,
vol. 437, pp. 399–413. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
95947-0 28

18. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56, 235–257 (2016). https://doi.org/10.1016/j.is.2015.07.003

19. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23063-4 21

20. Li, C.-Y., van Zelst, S.J., van der Aalst, W.M.P.: Stage-based process performance
analysis. In: Hacid, H., et al. (eds.) ICSOC 2020. LNCS, vol. 12632, pp. 349–364.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76352-7 34

21. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
NeurIPS, pp. 4765–4774 (2017)

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.1007/978-3-540-88871-0_22
https://doi.org/10.1007/978-3-540-88871-0_22
https://doi.org/10.1007/978-3-030-91431-8_1
https://doi.org/10.1007/s13740-021-00122-1
https://doi.org/10.1016/j.dss.2017.04.003
https://doi.org/10.1016/j.dss.2017.04.003
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-319-39696-5_22
https://doi.org/10.1007/978-3-319-39696-5_22
https://doi.org/10.1109/ICPM49681.2020.00012
https://doi.org/10.1109/ICPM49681.2020.00012
https://doi.org/10.1080/12460125.2020.1780780
https://doi.org/10.1007/978-3-030-95947-0_28
https://doi.org/10.1007/978-3-030-95947-0_28
https://doi.org/10.1016/j.is.2015.07.003
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1007/978-3-030-76352-7_34

Extracting and Encoding Features from Object-Centric Event Data 53

22. Park, G., Adams, J.N., van der Aalst, W.M.P.: OPerA: object-centric performance
analysis. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karla-
palem, K. (eds.) Conceptual Modeling. ER 2022. LNCS, vol. 13607, pp. 281–292.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2 20

23. Philipp, P., et al.: Analysis of control flow graphs using graph convolutional neural
networks. In: ISCMI, pp. 73–77 (2019). https://doi.org/10.1109/ISCMI47871.2019.
9004296

24. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-45005-1 27

25. Sun, Y., Bauer, B., Weidlich, M.: Compound trace clustering to generate accurate
and simple sub-process models. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 175–190. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3 12

26. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

27. Venugopal, I., Töllich, J., Fairbank, M., Scherp, A.: A comparison of deep-learning
methods for analysing and predicting business processes. In: IJCNN, pp. 1–8
(2021). https://doi.org/10.1109/IJCNN52387.2021.9533742

28. Waibel, P., Pfahlsberger, L., Revoredo, K., Mendling, J.: Causal process mining
from relational databases with domain knowledge. CoRR abs/2202.08314 (2022)

29. Wang, C., Cao, J.: Interval-based remaining time prediction for business processes.
In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS,
vol. 13121, pp. 34–48. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
91431-8 3

30. Wu, Z., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neu-
ral Networks Learn. Syst. 32(1), 4–24 (2021). https://doi.org/10.1109/TNNLS.
2020.2978386

https://doi.org/10.1007/978-3-031-17995-2_20
https://doi.org/10.1109/ISCMI47871.2019.9004296
https://doi.org/10.1109/ISCMI47871.2019.9004296
https://doi.org/10.1007/978-3-642-45005-1_27
https://doi.org/10.1007/978-3-319-69035-3_12
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1109/IJCNN52387.2021.9533742
https://doi.org/10.1007/978-3-030-91431-8_3
https://doi.org/10.1007/978-3-030-91431-8_3
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386

Automated RESTful API Service
Discovery with Various Interface Features

Shuaijun Wang, Yuanyuan Zhou, and Zhijun Ding(B)

Department of Computer Science and Technology, Tongji University, Shanghai, China
{wangsj,yuanyuan zhouTJ,dingzj}@tongji.edu.cn

Abstract. In recent years, the rapid increase in the number of RESTful
API services has made it more difficult for developers to select function-
ally suitable and callable ones from massive service information, which
brings new challenges for service discovery. Most existing RESTful API
discovery methods only use the function description texts, ignoring the
information contained in the input and output interfaces, making the
callability of the discovery results unguaranteed. This paper proposes
an automated RESTful API service discovery framework considering
both the description texts and interfaces. Based on the three newly-
noticed RESTful API features of interface design and parameter match-
ing, this paper presents an interface preprocessing and matching strategy.
Interface preprocessing consists of interface transformation and identi-
fier expansion to deal with parameter abbreviations. About the matching
strategy, required and optional input parameters are matched with differ-
ent importance, and one-to-many parameter matching relationships are
allowed in this scheme. Experiments show that the proposed method is
more suitable for automated RESTful API service discovery with various
interface features. Better results are reflected in three metrics.

Keywords: Automated service discovery · Interface matching ·
Identifier expansion · Rapid API

1 Introduction

With the introduction of service-oriented architectures and development of Inter-
net technology, more services can be published, searched, and invoked through
the Internet. More developers choose to reuse existing services instead of rede-
velopment. Service registries such as UDDI were established and Web Service
Description Language(WSDL) became the commonly used description language
for SOAP-based services. After the REST architecture style was brought up,
web services gradually turn to be designed as RESTful APIs because the new
style is lighter and easier to understand. The platforms for service registry and
discovery have also moved from UDDI to some mainstream API markets such
as Programmable Web1 and Rapid API2. The explosive growth of the number

1 https://www.programmableweb.com/.
2 https://rapidapi.com/hub.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 54–70, 2022.
https://doi.org/10.1007/978-3-031-20984-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_4&domain=pdf
https://www.programmableweb.com/
https://rapidapi.com/hub
https://doi.org/10.1007/978-3-031-20984-0_4

Automated RESTful API Service Discovery with Various Interface Features 55

of services brings more choices to the users, while at the same time the challenge
about how to efficiently find the services meeting the user’s requirements arrives.

The change of service form leads to the change of service discovery research
object from SOAP-based services to RESTful APIs and mashups [1,14]. How-
ever, most of the WSDL-based service discovery methods adopt keyword-
matching technologies which cannot assure the discovery accuracy [18]. Ontology
based semantic service description languages are then introduced to help with
the understanding of parameters. However, RESTful APIs do not provide cor-
responding semantic annotations, which makes it difficult for the SOAP-based
methods to be migrated to the API scenario. In the meantime, most of the API
discovery research [12] focus on improving natural language processing technolo-
gies to understand the description better, which ignores the service callability.
Therefore, it is necessary to propose a RESTful API-oriented service discovery
method considering both the function description and interfaces.

To achieve this, we turn to the world’s largest API hub, Rapid API [22]. On
this platform, besides the functional description text of APIs, the interface and
performance information can also be automatically collected. Based on Rapid
API, we notice three new features of RESTful API interfaces in aspects of inter-
face design and parameter matching. Firstly, many abbreviations can be noticed
in parameters. Due to the lack of semantic annotations, these abbreviations can
greatly affect the accuracy of interface matching. Secondly, input parameters can
have different necessities as required or optional, which affects their importance
during matching. The third one is about matching relationships. There may have
one-to-many matches between parameters. For example, when a weather fore-
cast service needs coordinate as input, the data provided by the user may be
two separate parameters, latitude and longitude. We all know that coordinate
refers to the combination of latitude and longitude. In this case, both provided
data should be assigned to coordinate. These features can affect the discovery
accuracy to a certain extent. However, most existing work ignores their existence.

According to the problems, the main contributions are as follows:

– A framework for automatically RESTful API service preprocessing and dis-
covery is proposed. Based on the description texts and interfaces of large-scale
APIs, this framework provides more accurate discovery results considering
both the functional similarity and interface callability.

– Due to the features of RESTful APIs in the aspect of interface design and
parameter matching, an interface processing and matching method is pro-
posed. The interface processing includes the interface transformation and
identifier expansion, which is based on domain experience base and parame-
ter context. The one-to-many parameter matching with similarity threshold
is allowed, and the difference between required and optional input parameters
is considered, which can better fit with various user requirements.

– A new API dataset covering multi-angle information is collected from Rapid
API. Experiments are carried out based on this dataset. The discovery plat-
form based on the proposed work is now accessible3.

3 https://www.scafe.net.cn/.

https://www.scafe.net.cn/

56 S. Wang et al.

2 Related Work

According to the service forms during development, we introduce the existing
service discovery work based on SOAP-based web services and APIs respectively.

Keyword matchmaking mechanism is mainly used for WSDL-based service
discovery, such as the implementation in UDDI [3,8]. Although this kind of strat-
egy can achieve higher efficiency, the limited semantics contained in keywords
leads to poor discovery accuracy. With the appearance of semantic web, ontol-
ogy technologies help with more accurate solution. Improved semantic languages
with annotations are designed and introduced to help with parameter matching.
Paolucci et al. [19] adopt DAML-S as service description language. They take
advantages of DAML ontologies and match a request and a service advertisement
based on four discrete matching degrees. Plebani et al. [20] calculate parameter
similarities depending mainly on domain-specific ontology. They also provide a
solution when the services are described by SAWSDL.

Ontology annotation certainly helps a lot with service discovery. However, it
is impractical to expect all new web services to have semantic tagged descrip-
tions [5]. Although there exists research on semantic annotation for syntactic
API specifications [13,24], these methods are semi-automatic, requiring manual
adjustment of the annotations, and the correctness has not been verified. The
obstacles encountered in obtaining semantic annotations in RESTful APIs make
it difficult for ontology-based methods to be migrated to API interface matching.

Most of the existing RESTful API discovery methods are based on data
from Programmable Web and they often focus on improving natural language
processing technologies to obtain accurate discovery results using API descrip-
tion texts. Neural networks and deep learning methods are commonly used for
behaving well in mining the latent semantics features of texts. For example, Liu
et al. [12] propose a two-step transfer learning method to support endpoint-level
web API search. However, these methods can hardly assure the callability of
discovered APIs for not considering the interfaces.

TASSIC [14] takes interface matching into consideration. However, we find
it ignoring the three API interface features as we mentioned before. Firstly, it
simplifies the interface formalization by ignoring the path parameters in JSON,
parameter necessity and abbreviations. The Hungarian algorithm used for inter-
face matching also limits the parameters’ matching relationship to be one-to-one.
These problems can also be found in some WSDL-based work like [4].

3 Preliminaries

Involved definitions are introduced in this section. An API service is often com-
posed of multiple functionally related endpoints [12], and the atomic unit of
selection and invocation is a single endpoint. Therefore, the proposed work is
based on the endpoint level. Unless otherwise specified, every “service” men-
tioned in this paper refers to an endpoint. The formalization of this problem is
mainly composed of user request and endpoint service information.

Automated RESTful API Service Discovery with Various Interface Features 57

Fig. 1. A weather forecast running example

Definition 1: Endpoint. ep=〈epName, epGroup, epDesc, epInput, epOutput,
apiInfo〉

epName refers to the endpoint name. epGroup is the name of the group that
joined in by the endpoint, which can be null. epDesc refers to the functional
description text. The input and output parameters are represented by epInput
and epOutput, separately. epInput consists of epReq and epOpt, where epReq
refers to parameters necessarily required for invocation and epOpt are those
can be optionally filled. apiInfo is the information of API that this endpoint
belongs to, where apiName refers to the API’s name and apiDesc refers to the
API function description text.

Definition 2: Request. r = 〈rDesc, rInput, rOutput, rDomain〉
rDesc is the description text of the function required. rInput are the input

parameters provided and the required output parameters are represented by
rOutput. rDomain refers to the domain of the targeted service that user
required. When a request arrives, based on the rDomain, we firstly pick the
corresponding endpoints as the initial candidate set EP = {epi}.

Definition3: Parameter. p = 〈pName, pType〉
pName refers to the transformed parameter name phrase and pType refers

to the data type of the leaf node parameter.
JSON is a common data exchange format between RESTful APIs. This paper

introduces the parameters in terms of “root node” and “leaf node” from tree
structures [5]. During invocation of a service, the parameter assignment finally
focuses on the matching of the leaf parameters [21]. Still, to retain more path
information, this paper turns the JSON Schema4 format interfaces into sets of
parameters which are phrases concatenating all identifiers on the path from the
root node to the leaf node. The conversion will be introduced in Sect. 4.2.

Figure 1 presents our running example. We create a request and an endpoint
based on real interfaces in Rapid API. The request interface here is designed to
be JSON example data and the endpoint interface is in JSON Schema format.
4 http://json-schema.org/.

http://json-schema.org/

58 S. Wang et al.

4 Implementation

This section describes the implementation. After briefly introducing the frame-
work and the discovery process, we will present the details of each module.

4.1 Overall Framework

The proposed framework shown in Fig. 2 includes the service data preprocessing
module and core discovery module. Service data preprocessing module prepares
service data before requests arrive. It consists of Rapid API data collecting and
pretreatment including interface transformation and parameter processing, after
which a service information database will be built. The core discovery module
describes the whole discovery process, which mainly includes three phases: func-
tion similarity calculation phase (Phase1), interface matching phase (Phase2),
and the comprehensive phase(Phase3). When a user request comes, the candi-
date services will go through the three phases in turn to measure their similarities
with the user request in terms of function description and interfaces. During the
first two phases, some services may be filtered out. Finally, for each remained
candidate, its total score will be calculated in phase 3. According to the total
scores, the user will be provided with the sorted discovered endpoints.

Fig. 2. Service discovery framework

4.2 Service Data Preprocessing Module

Preprocessing Framework. The foundation of API discovery is the service
information base. The preprocessing framework is in Fig. 2. We collect the service
data from Rapid API and preprocess the service interface information in terms
of transformation and identifier expansion.

First we introduce the transformation process. According to the interfaces in
Rapid API, JSON is mostly used as interface format and interface information is
often provided by body or schema. The body refers to the interface sample data
provided, and schema is interface template. JSON Schema is more suitable for

Automated RESTful API Service Discovery with Various Interface Features 59

the matching task for giving explicit interface template including parameter data
types. Therefore, in preprocessing, for those services that do not provide their
interface schemas, this paper first converts the body data to the corresponding
JSON Schema template by recursively identifying the keywords and data types
in the sample data. After unifying the interface format, this paper recursively
transforms the JSON Schema formatted interfaces to the parameter sets defined
in Sect. 3. In the end, the user request and each service will obtain two parameter
sets as input and output separately. In the process of the transformation, the
identifier expansion is performed.

Identifier Expansion in Service Discovery Scenario. Interface matching is
based on the obtained similarities between parameters.Most existingwork directly
use common tools asWordnet [16] for parameter similarity calculation.However, in
this case, naming conventions of identifiers such as abbreviations can greatly affect
the accuracy for the following two reasons. First, Wordnet does not contain all the
possible abbreviations, which may cause that some terms in identifiers cannot be
retrieved. It also does not specifically identify abbreviations which may cause the
misunderstanding of a certain term. For example, the definition of temp in Word-
Net is “aworker hired on a temporary basis”, but in the context ofweather forecast,
it is often the abbreviation of temperature.

Current work on identifier expansion is mainly in the software maintenance
field [10,17]. The sources of candidate words used in the software scenario are
rich and targeted because the abbreviations in function parameters can often be
directly expanded [17] from the source code. For example, a formal parameter
can be expanded using its actual parameters as references and vice versa [10].
In service discovery scenarios, however, most of the information contained are
descriptions of the whole service which is less targeted for a single parameter.
The parameter identifiers in Rapid API mainly have the following features:

– Some providers attach description to each identifier to introduce the param-
eter’s meaning and format. In this case, an abbreviation inside the identifier
can often find its corresponding expansion directly from the description.

– Although the information of a single service is limited, there are commonly
used abbreviated specifications for services in the same domain. For example,
in weather services, lat usually means latitude.

– The same set of parameters often appear together for services in the same
domain. For example, in weather services, wind, cloud, and temperature
often occur together at the same level in the interfaces of several services to
describe weather conditions.

Based on the above information, this paper proposes an identifier expansion
method based on RESTful APIs. It is composed of two phases: preparation and
the expansion algorithm. Identifier expansion algorithm is used in the service
interface preprocessing and whenever a user request arrives. It includes two steps:
separation and term expansion [11]. This paper uses Spiral [9] for separation. As
for term expansion, the identifiers with or without description are processed in
two different ways, which will be introduced later.

60 S. Wang et al.

Preparation Work.

– Domain expansion experience base

Because parameter descriptions are targeted information, first we try to
expand parameters with description and use it for experience base construc-
tion. The construction process is as follows: for each identifier with description,
segment its description texts to obtain the candidate word set. For each term
after separation, decide whether there is a word or phrase in the candidates that
has an abbreviation relationship with it in turn. If there is, it is regarded as a
successful expansion. The identifier itself won’t be changed during preparation,
only the result will be recorded. So how to decide a term’s expansion from can-
didates? We consider all possible abbreviation formats to be acronym, prefix, or
dropped letter [10], and decide one by one to find whether there exists a candi-
date that has one of the above three relationships with the term processed. If
there find several possible expansions, select the shortest one as the most likely
result to return. It should be noted that for the acronyms, this paper finds the
candidate terms from combined initials of the terms in the description in case
of combined acronyms being ignored, such as tz for timezone.

– Domain word set and prediction model

Domain word set refers to the valid words appearing in all services under the
domain and is used as a reference when expanding the terms without description
and those who are not in the experience base. It is challenging to select the most
likely expansion from the large-scale domain word set. In the existing work, they
often choose the expansion according to word frequency or transformation cost
[2,6]. However, with these methods, the same terms tend to choose the same
expansion all the time, while the expansion should be the most likely appeared
one according to the context. Therefore, this paper uses the Continuous Bag-
of-Words Model (CBOW) [15] as the context-based word occurrence probability
prediction model. We collect the sentences in all APIs from the same domain
together with those composed of parameter identifiers at the same JSON level
in all interfaces to constitute a training dataset.

The training task of CBOW is to predict the current word based on the
context words. The trained model will be used in the expansion algorithm to
obtain the occurrence probability of each domain word according to the term’s
context. And the sorted domain words can be obtained as the candidates.

Identifier Expansion Algorithm. Algorithm 1 provides the algorithm pseudo-
code. The inputs are the identifier to be processed, description of the
identifier(if there is), the context terms from other parameter identifiers from
the same JSON level and the domain experience base dictrecord, and the output
is the expanded phrase identifierexp. First, the identifier will be separated
into terms (line 1), and context will be put into the trained CBOW model.
The obtained sorted words will be used as context referenced candidates named
canscontext(line 2). Then we start to try to expand every segmented term. If

Automated RESTful API Service Discovery with Various Interface Features 61

the identifier has a description text, the expansion will firstly be selected from
the description. If it is successfully expanded, the result will be added to the
final expansion result (line 4-10). If not, first turn to check the dictrecord. If
there exists a record of this term, choose the shortest record as the expan-
sion and add to the final result (line 12–15). If not, first check if this term is
actually an abbreviation. If it’s not an abbreviation, this term will be directly
added to the result; otherwise the canscontext will be used to locate the pos-
sibly correct expansion. Because the canscontext are already sorted by occur-
rence possibility, once a candidate is found to be a possible expansion, it will
be returned immediately instead of choosing the shortest one (line 17–21). If
this expansion still fails, the abbreviation will be directly added to the result.

Algorithm 1. Identifier Expansion
Input: identifier, context, dictrecord, description
Output: identifierexp
1: termList ← segment(identifier)
2: canscontext ← sortedWordsByCBOW (context)
3: for term in termList do
4: if description not null then
5: cansdescription ← segment(description)
6: exp ← expand(term, cansdescription)
7: end if
8: if exp not null then
9: identifierexp ← identifierexp + exp

10: continue
11: end if
12: if term in dictrecord then
13: exp ← shortest(dictrecord[term])
14: identifierexp ← identifierexp + exp
15: continue
16: else
17: if isAbbr(term) then
18: exp ← expandByContext(term, canscontext)
19: if exp not null then
20: identifierexp ← identifierexp + exp
21: continue
22: end if
23: end if
24: identifierexp ← identifierexp + term
25: end if
26: end for
27: return identifierexp

4.3 Core Discovery Module

Function Similarity Calculation Phase. This paper uses the sentence
embedding model SimCSE [7], which is proved to be suitable for semantic textual
similarity tasks, and calculate the cosine similarities as the function similarity.

62 S. Wang et al.

We concatenate the texts related to the description of endpoint functional
information into a single paragraph as (1) and use SimCSE with cosine dis-
tance to calculate its similarity with the rDesc, which is scoretext(r, epi) =
simtext(rDesc, epTexti), between [0,1].

epTexti = epNamei � epDesci � epGroupi � apiNamei � apiDesci (1)

where � represents sentence concatenation.
After phase1, those whose score is lower than the function similarity threshold

μ will be filtered out, and the remained candidates in EPtext = {epj} will enter
the next phase.

Interface Matching Phase. This section describes how to measure the inter-
face matching degree. After converting the interfaces of the request and service
into parameter sets, a bipartite graph model can be built. Due to the different
representation of input and output, this section first takes two non specific sets
P and Q as example, where P = {p1, p2, ..., pN},Q = {q1, q2, ..., qM}.

For each epj in EPtext, the matching degree between its and the request
r’s input/output interface parameter sets will be calculated and synthesized.
Similarity calculation between parameter sets depends on similarity calculation
between each pair of parameters. Therefore, this section first introduces the
similarity calculation between two single parameters.

Similarity Calculation between Parameters. The similarity between two param-
eters can be measured from two aspects: semantics and data type.

For the semantic similarity, this paper uses pName for calculation and the
similarity simsem(pn, qm) is gained using the same SimCSE model as Sect. 4.3.
Data type similarity simtype(pn, qm) can be obtained by looking up the Table 1,
which is designed according to [23] and expanded considering the format speci-
fication of JSON and the type options of Rapid API.

Table 1. Similarities between types

Integer Number String Boolean Date Time Geopoint Enum Object Array

Integer 1 0.5 0.3 0.1 0.1 0 0 0.8 0 0

Number 1 1 0.1 0.1 0 0 0 0.8 0 0

String 0.7 0.7 1 0.3 0.8 0.8 0.8 0.8 0.5 0.5

Boolean 0.1 0 0.1 1 0 0 0 0 0 0

Date 0.1 0 0.1 0 1 0 0 0 0 0

Time 0 0 0.1 0 0 1 0 0 0 0

Geopoint 0 0 0.1 0 0 0 1 0 0 0

Enum 0.5 0.1 0.1 0 0 0 0 1 0 0

Object 0 0 0.1 0 0 0 0 0 1 0

Array 0 0 0.1 0 0 0 0 0 0 1

Automated RESTful API Service Discovery with Various Interface Features 63

The semantic and data type similarities between parameters are weighted
and synthesized to obtain the total similarity simparam(pn, qm). wsem is the
weight of semantic similarity.

simparam(pn, qm) = simsem(pn, qm) ∗ wsem + simtype(pn, qm) ∗ (1 − wsem) (2)

The existing interface matching often directly uses the calculated similarities.
In this way, the gained matching score can be higher than it should be, because
with the existing method, two parameters can still be matched as long as their
similarity is higher than others, even if it only values 0.05. So this paper set
the threshold η to bring out a higher demand for two parameters to match.
According to (3), if the similarity is lower than η, its value will be set to 0. As:

sim(pn, qm) =
{

simparam(pn, qm), simparam > η
0, else

(3)

Interface Matching Degree between epj and r. Due to the asymmetry of the
proposed one-to-many matching, this section still first takes P and Q as an
example to show how to calculate the matching degree when using Q to fill P .
In this situation, “one-to-many” means that one parameter in Q may be selected
and matched by several parameters in P .

When using Q to fill P , for each pi in P , select the parameter in Q that has
the highest similarity with pi to match as in (5). Add all the matching scores
and then normalize it to [0,1] as the final score between the two sets. As:

match(pi, Q) = max{sim(pi, q1), ..., sim(pi, qM)} (4)

matched(P,Q) =
N⋃
i=1

arg max
qj∈Q

{sim(pi, qj)} (5)

scorematch(P,Q) =

N∑
i=1

match(pi, Q)

N

(6)

Back to service discovery. First, about input matching, the required and
optional input parameters are discussed separately. The required parameters
directly affect the service invocation, so they must be completely covered. The
optional parameters are often auxiliary parameters such as language and filter.
When the required parameters are equally met, the satisfaction of optional
parameters to user’s input data means how much the service gives extra consider-
ation of user needs. Therefore, this paper sets “basic-bonus” scoring mechanism
to measure the input matching degree.

– Step1: Service required parameters matching

First, fill the endpoint’s required parameters with the user’s input as (7).

scorebasic(r, epj) = scorematch(epReq, rInput) (7)

Due to the setting of the parameter similarity threshold, the matching scores
of parameter pairs can be 0. When the matching score of any service required

64 S. Wang et al.

parameter is 0, the service is considered to be not callable. In this case, this
service will not be returned in the final result.

– Step2: Service optional parameters matching

Then fill in the remaining user’s input parameters unmatched after the first
step with the epOpt.

unmatched = rInput − matched(epReq, rInput) (8)

scorebonus = scorematch(unmatched, epOpt) (9)

Add the basic and bonus scores to obtain the input matching score:

scorein(r, epj) = scorebasic(r, epj) + scorebonus(r, epj) (10)

For the outputs, directly use the service output parameter set to fill the user
request output parameter set as (11). Similarly, if the matching score of any of
the output parameters required by the user is 0, the service will not return.

scoreout(r, epj) = scorematch(rOutput, epOutput) (11)

Taking win as the weight of input matching degree, the synthesized interface
matching score is:

scoreinterface(r, epj) = scorein(r, epj) ∗ win + scoreout(r, epj) ∗ (1 − win) (12)

We use our example as Fig. 1 to show the process. First, we calculate the input
matching degree. We begin with the matching of required parameters. Based on
the principle of one-to-many matching and the setting of parameter threshold,
both longitude and latitude of the endpoint are matched with coordinates pro-
vided by user. So the scorebasic is (0.77442 + 0.73651)/2 = 0.75547. The param-
eter language from request is then matched with the expanded optional param-
eter lang. Therefore the scorebonus equals 1.0 and the scorein equals 1.75547.
The bonus score shows that the endpoint can better fit the user request with
being able to provide weather information in various languages. Similarly, we
can obtain the output matching result in Table 2. The output matching degree
is (0.75309+0.83990+0.85277+0.79706+0.76471)/5 = 0.80150. Therefore, the
overall interface matching degree is 1.75547 ∗ 0.2 + 0.80150 ∗ 0.8 = 0.99230.

Table 2. Output parameters similarity

Items temperature
average

Items temperature
minimum

Items temperature
maximum

Items weather
text

Items date

List date 0.41998 0.32875 0.39211 0.53297 0.75309

List main temperature
minimum

0.75512 0.83990 0.75185 0.35799 0.24199

List main temperature
maximum

0.78571 0.71710 0.85277 0.35444 0.28260

List main temperature
average

0.79706 0.64821 0.72287 0.39970 0.29178

List main weather
description

0.58043 0.49227 0.52341 0.76471 0.47978

Automated RESTful API Service Discovery with Various Interface Features 65

Comprehensive Phase. This phase synthesizes the scoring results of the pre-
vious two phases, with wtext as the weight of function similarity to obtain the
total score(r, epj). The total score threshold λ is set and the filtered service set
EPresult will be sorted and returned.

score(r, epj)=scoretext(r, epj)∗wtext+scoreinterface(r, epj)∗(1−wtext) (13)

5 Experiments

5.1 Dataset

Rapid API Dataset. Experiments are carried out on the Rapid API dataset, in
which 7881 APIs are collected, including 37,037 endpoints, involving 46 domains.

Interface Information Statistics. According to our statistics, 90.03% of the
APIs provide interface information, and 96.93% of the output information are
provided in JSON, as shown in Fig. 3.

Fig. 3. Statistical result of interface situation in Rapid API

This paper also calculates the proportion of optional parameters and abbre-
viations in the dataset. The proportion of optional input parameters is about
48.52%. As for abbreviations, we first separate the parameters, remove the stop
words and non-English words, and regard the terms that do not exist in WordNet
as abbreviations. All the single characters are also thought to be abbreviations.
In this way, 349,552 terms are obtained from the whole dataset, of which 44,301
are abbreviations, accounting for about 12.67%. The above data shows that
the analyzed interface features account for a considerable proportion of the real
dataset, which can easily affect the service discovery results.

5.2 Experimental Settings

Evaluation Metrics. The metrics are Top-k precision, recall and F1-score
which are commonly used in service discovery. The formulas are as follows:

Precisionk(r) =
|resultk(r)

⋂
truth(r)|

k
(14)

66 S. Wang et al.

Recallk(r) =
|resultk(r)

⋂
truth(r)|

|truth(r)| (15)

F1 − scorek(r) =
2 ∗ Precisionk(r) ∗ Recallk(r)
Precisionk(r) + Recallk(r)

(16)

Among them, resultk(r) represents the top k services returned, and truth(r)
represents the accurate reference result corresponding to r. Precisionk(r) is used
to measure the accuracy of the top k results; Recallk(r) is used to measure the
comprehensiveness of the top k results. F1 − scorek(r), as the harmonic mean
of precision and recall, is used to measure the performance comprehensively.

Requests Design. This paper designs 10 different requests involving 10 cat-
egories for experimental verification: Monitoring, Weather, Visual Recognition,
Location, Translation, Movies, Text Analysis, Social, Food, News&Media. For
each category, this paper prepares a request that can be used to discover more
than one accurate result. The corresponding accurate services are manually col-
lected in the meantime.

(a) (b) (c)

Fig. 4. Thresholds impact on API discovery result

(a) (b) (c)

Fig. 5. Weights impact on API discovery result

Automated RESTful API Service Discovery with Various Interface Features 67

Parameters. Six parameters are involved in the method. We discuss the
influence of different parameter combinations on discovery results to decide
the best group. We set each parameter to be 0.2,0.4,0.6,0.8 and try different
combinations in grid. F1-score in (16) is chosen to show the discovery perfor-
mance, with k being set to |result(r)|. The obtained optimal combination is
μ = 0.4, η = 0.6, λ = 0.6;wtext = 0.8, win = 0.2, wsem = 0.8.

We can see from Fig. 4c that when η is set to 0.6, the performance has an
obvious improvement. After η is decided, Fig. 4a shows that better discovery
results can be obtained when μ is below 0.6 because when μ is higher than
0.6, most endpoints will be filtered out at phase 1. In general, it can be seen
from Fig. 4a and Fig. 4b that the discovery performance shows a central decline
around (0.4, 0.6, 0.6). As for the weights, it can be seen from both Fig. 5b and
Fig. 5c that as the wsem increases, the performance keeps improving. This shows
the importance of parameter semantics to the discovery result. In the meantime,
better result still appears when they are set to be 0.2 and 0.8, respectively.

5.3 Comparison Methods

The comparative experiment consists of three groups to reflect the effect of
identifier expansion, the consideration of interface, and the impact of one-to-
many matching. Due to the lack of semantic annotation in RESTful APIs, we
mainly compare with the latest API discovery methods, which include:

noAbbr. The framework of this method is the same as the proposed work, only
the interfaces are transformed without identifiers being expanded. It is used to
verify the impact of the proposed identifier expansion phase.

textOnly. This method is designed as the representative of the API discovery
methods that consider only the function description of APIs to verify the effect
of considering interface. It only retains the phase 1 with μ. The discovery results
are returned after filtering and sorting according to the function similarity.

TASSIC. [14] Due to different dataset scenarios and formalization, this method
is adjusted according to the scenario of this paper. The framework is consistent
with our work, only the interface matching is replaced by the idea of TASSIC.
Firstly, the number of interface parameters is preliminarily screened. Then, the
Hungarian algorithm is adopted. To ensure the experiment’s validity, the pro-
posed interface preprocessing is used in this comparison method. This design
compares the discovery results to verify the effectiveness of the proposed inter-
face matching scheme.

68 S. Wang et al.

5.4 Results

Effect of Identifier Expansion. Figure 6 shows the comparison of the service
discovery results obtained by the method noAbbr and the proposed work. The
result is the average of 10 requests. It can be seen that better results are achieved
in all three metrics after identifier expansion, indicating that the discovery result
returned by the proposed work is more accurate and comprehensive. It is effective
to add the identifier expansion based data preprocessing module in this scheme.

Fig. 6. Comparison of service discovery with or without identifier expansion

Effect of Interface Matching Phase. Both of the two comparison experi-
ments with the methods textOnly and TASSIC are shown in Fig. 7. As can be
seen, compared with the textOnly method, TASSIC and the proposed work have
significantly improved the effect of service discovery, indicating that the inter-
face matching phase plays an important role in improving the service discovery
result. And when compared with the modified TASSIC method, the proposed
scheme still shows advantages in all three metrics. Also, most of the returned
results of our work are fewer than those returned by TASSIC, which means that
we can return more accurate results in more advanced positions and save the
users from further selection.

Fig. 7. Comparison of service discovery with different interface matching scheme

Automated RESTful API Service Discovery with Various Interface Features 69

6 Conclusion and Future Work

This paper proposes an automated service discovery framework for RESTful API
services considering the features of RESTful API interfaces. Firstly, this paper
proposes an API discovery framework that comprehensively scores the similar-
ity between user requests and candidate services to provide callable discovery
results with user-required function. Then, considering the three interface features
of RESTful APIs that are sorted out based on Rapid API, this paper provides
a new endpoint formalization and designs new interface matching strategy. The
identifier expansion phase based on context and experience base is introduced to
solve the abbreviated parameter problem. This paper also provides comprehen-
sive solutions for required and optional parameter matching and set the matching
algorithm into one-to-many mode with parameter similarity threshold. Compar-
ison experiments show the discovery performance improvement of the proposed
method. In the future, the adaptive tuning of the six parameters used in our
method will be discussed. And deep learning methods will be considered to fur-
ther improve the accuracy and response time of service discovery.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China under Grant 2019YFB1704102.

References

1. Azmy, M.R., Muhamad, W., et al.: Advanced technologies to support service dis-
covery in service-oriented systems. In: 2020 International Conference on Informa-
tion Technology Systems and Innovation (ICITSI), pp. 300–305. IEEE (2020)

2. Carvalho, N.R., Almeida, J.J., Henriques, P.R., Varanda, M.J.: From source code
identifiers to natural language terms. J. Syst. Softw. 100, 117–128 (2015)

3. Chen, F., Lu, C., Wu, H., Li, M.: A semantic similarity measure integrating multiple
conceptual relationships for web service discovery. Exp. Syst. Appl. 67, 19–31
(2017)

4. Chen, K., Kuang, C.: Web service discovery based on maximum weighted bipartite
graphs. Comput. Commun. 171, 54–60 (2021)

5. Cheng, B., Li, C., Zhao, S., Chen, J.: Semantics mining & indexing-based rapid web
services discovery framework. IEEE Trans. Serv. Comput. 14(3), 864–875 (2018)

6. Corazza, A., Di Martino, S., Maggio, V.: Linsen: an efficient approach to split
identifiers and expand abbreviations. In: 2012 28th IEEE International Conference
on Software Maintenance (ICSM), pp. 233–242. IEEE (2012)

7. Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embed-
dings. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 6894–6910 (2021)

8. He, Q., et al.: Keyword search for building service-based systems. IEEE Trans.
Softw. Eng. 43(7), 658–674 (2016)

9. Hucka, M.: Spiral: splitters for identifiers in source code files. J. Open Source Softw.
3(24), 653 (2018)

10. Jiang, Y., Liu, H., Zhu, J., Zhang, L.: Automatic and accurate expansion of abbre-
viations in parameters. IEEE Trans. Softw. Eng. 46(7), 732–747 (2018)

70 S. Wang et al.

11. Lawrie, D., Binkley, D.: Expanding identifiers to normalize source code vocabulary.
In: 2011 27th IEEE International Conference on Software Maintenance (ICSM),
pp. 113–122. IEEE (2011)

12. Liu, L., Bahrami, M., Park, J., Chen, W.-P.: Web API search: discover web API and
its endpoint with natural language queries. In: Ku, W.-S., Kanemasa, Y., Serhani,
M.A., Zhang, L.-J. (eds.) ICWS 2020. LNCS, vol. 12406, pp. 96–113. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59618-7 7

13. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., De Paoli, F.: Enrich-
ing API descriptions by adding API profiles through semantic annotation. In:
Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936,
pp. 780–794. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-
0 55

14. Ma, S.P., Chen, Y.J., Syu, Y., Lin, H.J., Fanjiang, Y.Y.: Test-oriented restful
service discovery with semantic interface compatibility. IEEE Trans. Serv. Comput.
14(5), 1571–1584 (2018)

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

16. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

17. Newman, C.D., Decker, M.J., Alsuhaibani, R.S., Peruma, A., Kaushik, D., Hill, E.:
An empirical study of abbreviations and expansions in software artifacts. In: 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 269–279. IEEE (2019)

18. Paliwal, A.V., Shafiq, B., Vaidya, J., Xiong, H., Adam, N.: Semantics-based auto-
mated service discovery. IEEE Trans. Serv. Comput. 5(2), 260–275 (2011)

19. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol.
2342, pp. 333–347. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
48005-6 26

20. Plebani, P., Pernici, B.: Urbe: Web service retrieval based on similarity evaluation.
IEEE Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)

21. Rachad, T., Boutahar, J., et al.: A new efficient method for calculating similarity
between web services. arXiv preprint arXiv:1501.05940 (2015)

22. RapidAPI: What is rapidapi? https://docs.rapidapi.com/docs/what-is-rapidapi/
23. Sara, R., Fatima, A., Lakhdar, L.: A new approach for grouping similar operations

extracted from WSDLs files using k-means algorithm. Int. J. Adv. Comput. Sci.
Appl. 8(12), 84–91 (2017)

24. Schwichtenberg, S., Gerth, C., Engels, G.: From open API to semantic specifica-
tions and code adapters. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 484–491. IEEE (2017)

https://doi.org/10.1007/978-3-030-59618-7_7
https://doi.org/10.1007/978-3-319-46295-0_55
https://doi.org/10.1007/978-3-319-46295-0_55
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/3-540-48005-6_26
https://doi.org/10.1007/3-540-48005-6_26
http://arxiv.org/abs/1501.05940
https://docs.rapidapi.com/docs/what-is-rapidapi/

Enhancing Performance Modeling
of Serverless Functions via Static Analysis

Runan Wang(B) , Giuliano Casale , and Antonio Filieri

Department of Computing, Imperial College London, London, UK
{runan.wang19,g.casale,a.filieri}@imperial.ac.uk

Abstract. Serverless computing leverages the design of complex appli-
cations as the composition of small, individual functions to simplify
development and operations. However, this flexibility complicates reason-
ing about the trade-off between performance and costs, requiring accu-
rate models to support prediction and configuration decisions. Estab-
lished performance model inference from execution traces is typically
more expensive for serverless applications due to the significantly larger
topologies and numbers of parameters resulting from the higher frag-
mentation into small functions. On the other hand, individual functions
tend to embed simpler logic than larger services, which enables inferring
some structural information by reasoning directly from their source code.
In this paper, we use static control and data flow analysis to extract
topological and parametric dependencies among interacting functions
from their source code. To enhance the accuracy of model parameter-
ization, we devise an instrumentation strategy to infer performance pro-
files driven by code analysis. We then build a compact layered queueing
network (LQN) model of the serverless workflow based on the static
analysis and code profiling data. We evaluated our method on server-
less workflows with several common composition patterns deployed on
Azure Functions, showing it can accurately predict the performance of
the application under different resource provisioning strategies and work-
loads with a mean error under 7.3%.

Keywords: Serverless computing · Performance modeling · Layered
queueing networks · Static analysis · Code profiling

1 Introduction

Serverless computing is a novel cloud computing paradigm that aims at mak-
ing operations concerns transparent to developers and cloud users [9,13]. It has
recently gained increasing attention in industry due to the potential for signifi-
cant cost savings and on-demand billing modes. Function-as-a-Service (FaaS) is
a cloud computing execution model introduced within serverless computing that
allows developers to deploy single functions as basic building blocks [9]. Com-
pared to monolithic applications and microservice-based architectures, FaaS-
based applications can be triggered and served by events (e.g., HTTP requests)
and executed on-demand. There are several cloud vendors providing FaaS capa-
bilities like AWS Lambda, Google Cloud Functions and Microsoft Azure Func-
tions, as well as open-source alternatives such as OpenFaaS or KNative.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 71–88, 2022.
https://doi.org/10.1007/978-3-031-20984-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_5&domain=pdf
http://orcid.org/0000-0001-9245-6096
http://orcid.org/0000-0003-4548-7951
http://orcid.org/0000-0001-9646-646X
https://doi.org/10.1007/978-3-031-20984-0_5

72 R. Wang et al.

Developers can write individual serverless functions and compose them in
complex workflows deployed on the FaaS platforms. FaaS platforms enable auto-
matic management, scaling, and billing of the execution of FaaS-based workflows
to take over most operational efforts from developers and users. However, main-
taining Quality-of-Service (QoS) requirements and meeting service-level agree-
ments (SLAs) of FaaS applications remains an outstanding concern [26].

Performance models provide analytical prediction and simulation results to
help to reason about and improve the quality of FaaS-based applications. Accu-
rate and efficient performance modeling benefits not only the developers and
operators, but also FaaS providers. On the one hand, with performance mod-
els, the developers have a better understanding and prediction capabilities of
the quality of the application under different workloads and deployment con-
figurations, which may also help direct development decisions. On the other
hand, FaaS providers can take advantage of accurate cost prediction and resource
management, inferring related metrics from performance models. There are well-
established stochastic models such as queueing networks [16], layered queueing
networks (LQNs) [14], Petri nets [22] that can describe the system with a sim-
plified abstraction. Among them, LQNs are particularly suitable for capturing
the dependencies and interactions between different FaaS functions.

Building performance models for FaaS applications accurately and efficiently
is a non-trivial problem. However, differently from monolithic or service-based
applications that aggregate larger functionalities behind each endpoint, the
source code of individual serverless functions is usually more focused and suc-
cinct, rendering it amenable to static code analysis to infer additional informa-
tion about the internals of FaaS applications. Our insight is to exploit estab-
lished control and data flow analysis methods [23] to improve the granularity
of performance models for FaaS-based applications, ultimately improving the
accuracy of models and performance predictions. However, building LQN mod-
els for FaaS functions and workflows is still challenging due to the information
gap between modeling and monitoring granularity compared to the classical per-
formance modeling for web applications and microservice-based applications.

The first challenge in building LQN models for FaaS applications is learning
the topological graph representing the application behavior on both inter- and
intra-function levels. Attempting to accurately and completely reconstruct this
structure only from traces or monitoring data may be difficult because it relies
on the test inputs capable of covering all the relevant execution traces. However,
when functions are observed as black-boxes, i.e., without knowing which parts
of their code have been exercised, there is no reliable way to ascertain whether
any behavior has remained uncovered. In turn, the LQN model inferred from
such partial traces may itself be incomplete.

Additionally, appropriate model parameterization is critical to define effec-
tive and efficient parameter estimation methods. Estimating service demand for
individual endpoints from system monitoring measurements, like utilization or
response time, is particularly challenging, with most methods typically resort-
ing to regression algorithms to combine different measurements [25]. However,
these methods estimate service demand based on queueing theory and may lead

Enhancing Performance Modeling of Serverless Functions via Static Analysis 73

to inaccurate results due to the uncertainty introduced by the approximation
based on the queueing theory.

This paper proposes to build performance models for FaaS workflows com-
bining static analysis and code profiling. We assume that the source code and
configuration metadata of FaaS functions and workflows are accessible. To learn
the topology of the model, we apply static analysis on the source code to obtain
the inter-procedural call graph of the orchestrator defining the workflow com-
posing the individual functions, and the intra-procedural control flows for each
function. To more accurately characterize the model parameterization, we pro-
pose to inject code to hook system function calls during the profiling stage and
capture the distribution of the service demand based on profiling data instead
of estimating based on system measurement. The profiling data, being measured
within the process executing the function, depends only on the function inputs,
while it is largely workload-independent since queueing time does not affect the
measures. Then, we derive the LQN models for serverless workflows by mapping
the static graphs and code profiling data. In the experiments, we implement
FaaS-based workflows representing different function compositing patterns to
evaluate our proposed method. We compare the results by solving LQN to the
data collected from the workflow execution. The experimental results yield model
predictions with a mean error under 7.3% in all the evaluated scenarios.

The remainder of the paper is structured as follows. In Sect. 2, we give back-
ground on static analysis and LQN. In Sect. 3, we discuss the methodology of
building LQN model based on static analysis and code profiling. In Sect. 4, we
conduct experiments with different FaaS workflows to evaluate the effectiveness
and efficiency of our proposed modeling method. In Sects. 5 and 6, respectively,
we discuss related work and draw conclusions.

2 Background

Static Analysis of Source Code. Static analysis is widely used to infer infor-
mation about a program by reasoning on the structure and features of its source
code, or convenient intermediate representations, without actually executing the
program [23] (as opposed to dynamic analyses that require executing the pro-
gram). For example, it can infer which statements in a program affect the value
of a variable at a specific line. Two widely used representations that can be stat-
ically extracted are control and data flow graph. A control flow graph (CFG)
captures (a superset of) all the possible paths that can be executed at runtime. A
CFG represents how the evaluation of conditional statements (e.g., branches and
loops) determines the next code block to be executed. At intra-procedural level,
CFGs represent the dependencies between code blocks and all the possible exe-
cution orderings, subject to the decisions at conditional nodes. Intra-procedural
CFGs can be related to one another via the program call graph. A call graph
(CG) captures for each caller function all the callee functions it can invoke,
providing an inter-procedural representation of the dependencies and interac-
tions among functions. Instead, a data flow graph represents the propagation

74 R. Wang et al.

Fig. 1. An example LQN model

of information throughout program statements and variables [18]. Static data
flow analysis, for example, can compute execution paths that propagate values
of interests from their sources to sinks. Data can flow through dependent nodes
of a CFG, e.g., through the arguments of a function invocation or the decision
at a conditional node. Taint analysis is a data flow analysis that can track which
program variables at which code locations are affected by the values of a func-
tion’s inputs. While typically used for security purposes [27], taint analysis can
capture what input information can flow to other function invocations.

Layered Queuing Networks. LQNs are an extended queuing network for-
malism that has been widely used to abstract web applications [17]. The main
components of LQN models covered in this paper are shown with an example in
Fig. 1. The large parallelograms, denoted as Task, represent software and hard-
ware entities. There are mainly two types of tasks: a task representing the clients,
and tasks representing the servers processing incoming requests. Tasks are hosted
on resources that are denoted as processors in the circle, and multiprocessor hosts
can be specified with a multiplicity figure. Smaller parallelograms inside a task
are called Entry and represent different service classes provided by a task (e.g.,
different endpoints). The detailed operations inside each entry can be described
with a set of Activity specified with their execution order (rectangular nodes
for activities and circular “+” nodes representing probabilistic choices). Each
activity is parameterized with service demand, for example, specifying the mean
value of the exponential demand distribution. Activities can make requests to
different entries by sending synchronous or asynchronous calls. For instance, in
the top task, 10 concurrent clients are sending synchronous requests to E21 and
E22 and the arcs are labelled with the value of the mean number of requests.

3 Methodology

Our methodology for modeling serverless applications combining static analysis
and code profiling includes three main phases: a static analysis to learn the

Enhancing Performance Modeling of Serverless Functions via Static Analysis 75

Fig. 2. The overview of the proposed methodology

topology for LQN structure modeling, a dynamic analysis with code profiling to
collect data for model parameterization, and LQN model generation.

Overview. The overview of the proposed methodology is shown in Fig. 2.
Assume that after the development of individual serverless functions or FaaS-
based workflows, we are able to access and instrument the source code and
configuration metadata either from developers or cloud providers. (Black-box
functions whose performance models have been constructed with alternative
methods can in principle be included in the LQN model as well, with possi-
ble increase of the overall uncertainty of the model. However, in this paper, we
focus on modeling functions whose source code is accessible.) First, to define
the topological structure of the workflow, we apply static analysis to extract the
intra-procedural and inter-procedural control flow graphs from the source code
of FaaS-based workflows, including individual functions and orchestration code
composing them. Besides, we try to infer the dependencies between the input
parameters of each individual serverless function and which function calls they
affect; this can help to reduce the number of nodes in the topological graph.
We then inject profiling instructions into the source code to enable code-level
profiling during performance testing (we will refer to the instrumented code as
profiled code). Next, the profiled code can be deployed on the production plat-
form as required for performance testing and data collection. After exercising
the test inputs, the service demand distribution is captured with the profiling
data. The availability of the static graph also allows inspecting if any static exe-
cution path has not been covered, enabling the developer to decide whether 1)
the static path is effectively not executable (e.g., the FaaS application does not
require all the features of a library function, thus using only some of its possible
behaviors), 2) the static path implements features not relevant to ensure the
SLAs thus it was deliberately not exercised during performance testing, or 3)
the performance test suite needs improvement to cover more missing relevant
application behaviors. Finally, we can generate LQN models using the topolog-
ical graph for components specification, and accurately characterize the model
parameters with code-profiling data.

In the remainder of this section, we will detail each of the three phases.

76 R. Wang et al.

3.1 Static Analysis for Structure Extraction

We assume that there are two major components in a given FaaS-based applica-
tion: an orchestration function defining workflows to compose individual serverless
functions with suitable patterns (e.g., sequential or parallel execution), and a set
of individual serverless functions implementing different functionalities. We first
construct the topology of the LQN from static source code analysis. The static
analysis provides a fast way to capture the internal control flows by identifying
(a superset of) all feasible paths of the programs. This can help build a complete
topological graph, whereas certain parts could be missed in monitoring data if the
inputs used to test the system do not cover all of its features extensively.

Fig. 3. An exampled source code in Python from Azure Functions (a) and the corre-
sponding control flow graph (b).

Static Graph Generation. In this paper, we use both inter- and intra-
procedural static graphs to derive the topological structure of the LQN mod-
els. A call graph (CG) is mainly responsible for extracting the calling rela-
tionships on the workflow, which is extracted from the orchestration function.
While intra-procedural information can be obtained by generating a control flow
graph (CFG) for each serverless function. Both CG and CFG are constructed by
traversing nodes in the abstract syntax tree (AST) on the profiled code, resulting
in a collection of code blocks and control nodes representing conditional execu-
tion [23]. Combining both CG and CFG of the serverless workflow, we obtain
an inter-procedural static description of the system that we call the static graph
(SG) as SG = {CG,CFG}.

Given the control graph of an individual serverless function as CFG =
(N ,E), the control flow is formalized by conditions, loops, function calls, and
sequential code blocks. In CFG, N and E denote the nodes and edges, respec-
tively. In order to enable further analysis of the CFG, we then define each
node Ni as a tuple (i, ls, le), where ls and le are the starting and end lines
of the ith code block. A directed edge in E = {(Ni, Nj), . . . } describes the
relationship between nodes Ni and Nj . The example source code in Fig. 3a
is available at [1], and Fig. 3b shows the control flow for the example server-
less function. The resulting CFG is represented with N = {N1, N2, . . . , N9},

Enhancing Performance Modeling of Serverless Functions via Static Analysis 77

E = {(1, 2), (2, 3), (3, 4), (4, 5), (4, 6), (4, 7), (3, 7), (7, 8), (7, 9)} and, for example,
N9 = (9, 13, 18).

Data Flow Analysis for Parameter Dependency Inference. The static
graph of serverless applications could be large due to redundant nodes repre-
senting the statements whose execution times are not influenced by a function’s
input parameters (e.g., constant time initialization). Thus, from a performance
perspective, these statements could be aggregated into single blocks to reduce
the size and fragmentation of the static graph. We apply a static data flow anal-
ysis to the profiled code to infer the potential parametric dependencies between
input parameters and function calls using taint analysis. This can help reduce
the number of nodes in a static graph by aggregating input independent nodes,
in turn lowering the computation complexity of solving the inferred LQN mod-
els. Taint analysis in this phase works by marking a statement in the source
code as tainted if its execution or assigned value is affected by function input
values. The parametric dependency inference can be formulated as detecting any
existing tainted statement in the nodes of the CFG. If there are input param-
eters used by the statement of any node, we then deduce that the execution
times of the detected node Ni are potentially dependent on such input param-
eters. Formally, potential parametric dependencies can be described as a set of
PDi = (source, sink, lineno), where source and sink are the identifiers of a
function input parameter and a function call whose arguments are affected by
the input parameter, while lineno is the line number identifying the call site of
the sink function to distinguish possible multiple calls.

Fig. 4. An example excerpt of code with taint analysis results highlighted (a), and the
control flow graph reduction process (b).

If there is no potential parametric dependency detected in Nj , we can infer
that the demand for executing Nj is not impacted by function inputs, resulting
in a reduction of Nj by aggregating it with its predecessor. Figure 4a shows
an example source code with the taint analysis results highlighted. Let the left
graph in Fig. 4b be the original CFG of the example code, with N4 = (4, 3, 3)

78 R. Wang et al.

Algorithm 1. Control flow graph reduction with potential parametric depen-
dencies
Input: CFG ← Control flow graph of the source code CFG = (N ,E)

PD ← Set of potential parametric dependencies [PD1, PD2, . . . , PDn]
Output: CFGr ← Optimized CFG with reduction on nodes
1: Initialize rN = ∅, Er = ∅
2: for Ni in CFG do
3: for PDi in PD do
4: if lineno is not in the range of [ls, le] then
5: rN ← rN ∪ Ni

6: succ ← all successors of Ni, pred ← all predecessors of Ni

7: update le of pred to include Ni

8: end if
9: end for

10: Nr ← N \ rN

11: for succi in succ do
12: for predi in pred do
13: Er ← E \ (predi, Ni), Er ← E ∪ (predi, succi)
14: end for
15: Er ← E \ (Ni, succi)
16: end for
17: end for
18: return CFGr ← (Nr ,Er)

and N5 = (5, 4, 4). The right graph in Fig. 4b shows the reduction of node N5

into node N4,5 due to no detected parametric dependencies in node N5.
Algorithm 1 formulates the control flow graph reduction process based on

taint analysis. The algorithm takes the intra-procedural control flow graph and
the detected parametric dependencies as inputs. The algorithm traverses Ni in
the original CFG and checks if any potential parametric dependencies occurred
at Ni. If no dependency exists, the current node Ni is added to the untainted
set rN . At Line 6 and 7, the algorithm first finds all predecessors and successors
of the untainted node and then revises the end line number of all predecessors
with le of Ni. Then at Line 10, the untainted node is removed from the original
graph. From Line 11 to Line 16, the algorithm iterates on the nodes and removes
the edges containing the affected nodes. By fully connecting the nodes in succ
and pred, the new edges are generated to form the untainted edge set Er . After
iterating on all the nodes in the original graph, the reduced graph CFGr =
(N r,Er) is generated by combining nodes in which there are no function calls
or parametric dependencies.

It can be noticed that the parametric dependency inference is only capable
of detecting potential relationship between function calls and input parameters
from the code syntax. For example, consider y = 0*x; f(y); most taint analyses
would conclude that the invocation of f may depend on the input parameter x.
This may lead to a conservative over-approximation, with possibly only a subset
of the statically detected dependencies satisfied during runtime. In this case, the

Enhancing Performance Modeling of Serverless Functions via Static Analysis 79

static graph could have been further reduced, realizing that 0*x is identically 0.
Nonetheless, even when non-optimal, taint analysis may still help to reduce the
size of the static graph.

3.2 Code Profiling for Model Parameterization

Application-level monitoring data may be too coarse-grained to accurately infer
service demand parameters of LQN activities, representing the operations inside
individual serverless functions. We instead propose instrumenting the code of a
function to obtain fine-grained measurements that can bridge the information
gap between the granularity of the topology extracted via static analysis and
the data used for model parameter inference.

Code-Level Profiling. To avoid changing any functionality of the source code
and try to instrument the code as less as possible, we only wrap the MAIN
function block into a wrapper function and inject a decorator to record the
execution times with a standard line-level profiler [2] (while we refer mainly
to Python code in this work, similar profiler utilities exist for all mainstream
programming languages). Here, we take the assumption that the performance
test inputs are representative of all relevant production behaviors. If executable
paths in the static graph are not covered by the current test inputs, while they
may affect the application’s SLAs, the developer has the opportunity to identify
the gap and produce additional performance tests.

We denote a sample from the collected profiling data as s = (lineno, dt, iter),
where dt is the execution duration of the statement at line lineno and iter is
the iteration counter to distinguish different iterations in a loop. We can then
map the profiling data into the static graph according to line numbers lineno in
s and (ls, le) of nodes in CFGr to extend the static graph with profiling data;
we will refer to this extended structure as profiled static graph.

Besides obtaining the execution times of nodes in the graph, we also need
to learn the probabilities of branches and the number of iterations for loops to
infer the remaining parameters of an LQN model. For the branch probabilities,
we define the executed path of each test input request eP . Each ePi ∈ eP
represents one of the feasible paths in the static graph that has been executed
according to the profiling data s. Therefore, the probability of a given selection
pathi on each conditional statement can be derived as the fraction of ePi taking
each branch over the number of ePi evaluating the corresponding condition. For
loop iterations, we represent the body of for or while loop as an entire activity
and infer the expected number of iterations from the profiling data, which is
consistent with the typical specification of LQNs. This can be further optimized
by considering the branch probabilities inside loops to indicate a probabilistic
loop, however, this is out of the scope of our current modeling method. In our
proposed method, the number of iterations of loops in each execution can be
directly extracted from the profiled data with iter.

LQN Activity Service Demand Distribution. Service demands are critical
parameters for the specification of activities, as they represent the cumulative

80 R. Wang et al.

computation time the activity requires to run. To capture the demand of the
activities in LQN, we model the service demand distribution with acyclic phase-
type (APH) distributions and Erlang distributions by moment matching. Based
on the execution duration dt in the profiling data, we first try to fit an APH
distribution by matching the first three moments of dt. If there is no solution for
APH distribution with the current data, we then fit an Erlang distribution with
mean value and squared coefficient of variation (scv). In this way, the service
demand of each activity can be directly characterized by the profiling data.

3.3 LQN Model Generation

To construct an LQN model from the profiled static graph, we first define a
reference task to represent the incoming workload and an orchestration task
to abstract the workflow logic composing individual serverless functions. Then,
each individual serverless function can be modeled with a single task hosted on
a separate processor, since it can be deployed with different configurations of
resources and even to different platforms.

The entry node of the LQN is then specified according to the entry point
of each function. We further assume that the sequential or parallel (fork-join)
composition of the functions is specified in the orchestration function, e.g., using
Azure Functions code constructs. The degree of concurrency allowed to each
function is specified in the configuration metadata. The scheduling policy of the
processor can be specified as either First-come-first-serve (FCFS), if the source
code is with single-thread implementation, or Processor-sharing (PS) if function
invocations can be interleaved on the same processor. Both scheduling policies
are supported in LQN modeling [15].

LQN Activity Graph Characterization. The static graphs and profiling
information collected so far allows for a systematic construction of the LQN
model. First, we consider that the orchestration function is allowed to specify the
workflow patterns with HTTP calls to invoke the individual serverless functions.
Each activity inside the orchestration entry can be defined according to the nodes
in the call graph and takes the role of sending synchronous and asynchronous
calls for parallel execution to the entries of individual functions in the lower
layers of the LQN. Whereas, the skeleton of the activity graph for an individual
function can be directly derived from the reduced CFG. The activity graph
representing the set of activities act is defined as AG = {act, sd,prec}, where
sd presents the service demand and the precedence relation among activities is
denoted as prec.

Now we discuss the procedure of activity graph specification for the serverless
function f following the approach in [14]. For each activity representing N

′
i , all

the successors and predecessors of N
′
i are computed. There are mainly 4 types of

activity precedence included in our method: (1) If the current node is included
in its predecessors, it indicates that loops are occurring at N

′
i which can be

extracted with the number of iterations iteri derived from profiled data. (2) If
the current node only has one successor and one or fewer predecessors, it means

Enhancing Performance Modeling of Serverless Functions via Static Analysis 81

that N
′
i is sequentially connected to its successor. (3) When there is more than

one successor of N
′
i , there are branches with IF or SWITCH statements for

jumping to different nodes, whose branching probabilities have previously been
computed from profiling data. (4) If there is more than one predecessor, different
conditional blocks can be merged at N

′
i . From the orchestration function, we

also capture parallelism and synchronization among the execution of different
serverless functions. Combining all the listed cases, our method can describe
the operator precedence in the activity graph including sequential interactions,
conditioning and merging on branch nodes, as well as fork-join synchronization.

4 Evaluation

In this section, we first introduce the experimental setup and metrics to evaluate
the accuracy of performance models constructed with our method. The compar-
ison of LQN model predictions against execution monitoring traces for serverless
workflows with different composition patterns is presented afterwards.

4.1 Experimental Setup

To evaluate the proposed method for automatically building LQN models based
on static analysis and code profiling, we first implement 4 serverless workflows
including sequential, branching, parallel and complex execution scenarios. The
source code of the serverless workflow implementation is available at [1].

We create 13 serverless functions and 4 orchestration functions to define a col-
lection of common workflow patterns on Azure Functions Service. The individual
serverless functions are adapted from public examples that use TensorFlow with
Azure functions [3] and models from Onnx Model Zoo [4]. The functionality of dif-
ferent workflows includes preprocessing of input images and classification based on
machine learning algorithms or pre-trained models. Some metrics for the composi-
tion workflows implemented by the 4 orchestration functions are shown in Table 1,
where c2 is the squared coefficient of variation of the execution times.

Table 1. FaaS-based workflow patterns

wf1 wf2 wf3 wf4

Number of functions 8 9 8 14

c2 of execution times 0.26 5.71 0.84 7.44

To evaluate the accuracy of our modeling method, we conduct several exper-
iments with different workloads and compare the performance predictions from
the LQN models against the application-level monitoring data of the serverless
workflows. The experimental environment is as follows. All the individual server-
less functions are developed with Python 3.7 and deployed with Azure Functions
3.0. We take the response times of requests from the real traces as ground truth

82 R. Wang et al.

to evaluate our model-based predictions. To collect the real traces, we use Azure
Application Insights as the monitoring tool and expose the code profiling data
on the same service. As workload-independent execution times can be profiled in
isolation, we can perform offline profiling on the production platform as required
to collect profiling data, and then deploy the non-instrumented functions to the
target cloud service (without the profiling instructions) to collect application-
level runtime monitoring data.

The static analysis is built on top of the ast module in Python 3.7. For the
taint analysis on the static data flow, we use the open-source tool Pyre shipped
with Pysa [6] to infer the potential parametric dependencies. To obtain the ana-
lytical results, we use LQNS via LINE to solve the generated LQN models [11].
For performance testing, we generate closed workloads with different intensities
using Locust [5].

We compare the model prediction accuracy of mean response times to the
collected traces, using mean relative error (MRE) as our comparison metric,
where MRE = |m−m′|/m is computed with the mean response times m of the
monitored execution traces and m′ for LQN predicted response times.

4.2 Experimental Result

We first evaluate the static graph reduction based on inferring static paramet-
ric dependencies. Next, to evaluate the accuracy of parameterization for LQN
models, we conduct extensive experiments with different settings of the number
of processors and the dynamic auto-scaling to simulate two resource provision
scenarios. Here, we regard these two experimental settings as limited resources
and sufficient resources in the following discussion.

LQN Model Node Reduction. In Sect. 3.2, we introduced Algorithm 1 to
reduce the size of the static graph by aggregating code blocks independent of
input parameters, with the ultimate goal of further reducing the size and com-
plexity of the generated LQN models. We here compare the accuracy and effi-
ciency of the original LQN models to the reduced LQN models. From Table 2, we
can observe that after node reduction, for example, the number of activities of
wf2 is reduced to 69, which indicates that nearly 30% of nodes have been merged
according to the static parametric dependencies. Besides, it can be noticed from

Table 2. The comparison results of based on LQN node reduction

Number of activities Execution times (s) MRE

Original Reduced Original Reduced Original Reduced

wf1 91 67 2.793 2.092 0.044 0.030

wf2 96 69 2.804 2.133 0.029 0.038

wf3 27 21 1.545 1.542 0.222 0.236

wf4 122 89 3.682 3.257 0.103 0.117

Enhancing Performance Modeling of Serverless Functions via Static Analysis 83

the table that the execution times of solving model are decreased by up to 25%
for wf2, while the MRE increases only to a small degree for all the subjects,
which is likely an acceptable trade-off between prediction accuracy and model
complexity in most situations. We can conclude that the reduction of nodes in
static graphs can directly help to reduce the number of activities in the LQN
model, thus saving analysis costs. The savings come with a marginal increase in
the MRE for three out of four subjects, while the MRE marginally decreased for
wf1. Overall, the impact of reduction on the MRE appears marginal.

Sufficient Resource. In the following experiments with sufficient resources, we
assume that dynamic auto-scaling is enabled for each FaaS function and there
is no need to operate on the configuration of the resources. In LQN models,
we set the multiplicities of each processor to 100 to simulate sufficient resource
provision not to limit the scaling out of the individual functions.

We evaluate the above 4 different workflow patterns and take wf1 as an
example under different workloads. The comparison of LQN model predictions
against the real traces is shown in Fig. 5, and the details of model accuracy
evaluation are in Table 3. It can be seen from Fig. 5a that the mean response
times among different workflow patterns vary in a range of 0 to 15 s, while all
prediction results are close to the measurements. Figure 5b, which zooms on wf1,
shows that there is no obvious increase in response times as the number of clients
grows. This is because under sufficient provision, all required resources can be
allocated and there are no significant queueing times for each request. Therefore,
the LQN modeling results capture the correct trend of response times changing
with workloads. Besides, it can be observed from Table 3 that the prediction
of the LQN model yields good accuracy with an average MRE over the four
workflows of 5.5% (min=2.9% for wf2, max = 10.3% for wf4), indicating a
fairly accurate characterization of the performance of the FaaS workflows.

1 2 3 4
Workflow pattern

0

5

10

15

M
ea

n
re

sp
on

se
 ti

m
es

 [s
]

Model
Measurement

(a)

1 5 10
No. of users

0

5

10

M
ea

n
re

sp
on

se
 ti

m
es

 [s
]

Model
Measurement

(b)

Fig. 5. Mean response times of different workflow patterns (a) and of wf1 under dif-
ferent workloads (b), comparing model prediction and real trace measurements.

84 R. Wang et al.

Table 3. MRE of compared results in Fig. 5

Workflow pattern Workload

wf1 wf2 wf3 wf4 1 5 10

Model 9.081 0.927 10.144 1.923 9.081 9.081 9.081

Measurement 9.501 0.901 9.737 1.744 9.501 9.613 8.390

MRE 0.044 0.029 0.042 0.103 0.044 0.055 0.082

Limited Resource. For the limited resources experiments, we tune the configu-
ration of each serverless function to variate the number of cores for the processor.
Practically, we first identify the most resource-demanding serverless function as
the bottleneck function and then study the accuracy of our model for different
values of the maximum number of instances on Azure and, coherently, of the
multiplicity parameter of the corresponding LQN activity.

However, when a single processor is allowed, Azure Function Consumption
plan limits the allocated memory to 1.5Gb, which in the case of wf3 and wf4 is
not sufficient to serve 10 users without scaling strategies for the most resource-
demanding serverless function. Therefore, we selected the second most resource-
demanding serverless function as the bottleneck function for wf3 and wf4. The
comparison of results on LQN model prediction and monitoring traces measure-
ments is shown in Tables 4 and 5.

First, we investigate the model performance with increasing concurrent users
between N = 1 to 10 with only one processor (P = 1) available for the bottle-
neck function. It can be seen from Table 4 that, with increased workload intensity,
the mean response time grows with different trends. For example, in wf1, the
response time with 10 users is nearly 5 times higher than with 1 user due to the
contention on the bottleneck function that forces the users to wait. Nevertheless,
regardless of the variation trends in the response time, the model predicts accu-
rately the performance measurements from monitoring traces in all four work-
flows, with average MRE across all the experiments of about 6.2% (min=0.8%
for wf1 with N = 10, max=12.2% for wf4 with N = 10).

Next, we evaluate model prediction accuracy using an intense workload
(N=10) and varying the number of processors available for the bottleneck func-
tion. Table 5 shows the comparative data for the number of processors P between
1 and 10. As expected, increasing the number of processors reduces the response
time for all the workflows, albeit with different trends. The average MRE across
all the experiments is in this case about 9.5% (min=0.8% for wf1 with P = 1,
max=22.2% for wf1 with P = 5). While average MRE remained under 10%,
we observed a performance deterioration for P = 5. By observing the execution
traces, we conjecture this deterioration may be caused of some implicit optimiza-
tion or automation happening on the serverless platform around P = 5 which is
not accurately captured by our models and may require additional investigation.

Summary. The evaluation of our LQN modeling strategy for serverless func-
tions based on static analysis and code profiling may be summarized with the

Enhancing Performance Modeling of Serverless Functions via Static Analysis 85

Table 4. Comparison results on different number of processors on 4 workflow patterns
with limited resource P = 1

wf1 wf2

N = 1 N = 5 N = 10 N = 1 N = 5 N = 10

Model 9.081 22.718 49.016 0.927 1.454 3.085

Measurement 9.501 24.397 48.606 0.901 1.394 2.952

MRE 0.044 0.069 0.008 0.029 0.043 0.045

wf3 wf4

N = 1 N = 5 N = 10 N = 1 N = 5 N = 10

Model 10.144 10.664 12.545 1.923 2.229 3.215

Measurement 9.737 12.125 13.626 1.744 2.3 3.655

MRE 0.042 0.120 0.079 0.103 0.031 0.122

Table 5. Comparison results on different workloads on 4 workflow patterns with limited
resource N = 10

wf1 wf2

P = 1 P = 5 P = 10 P = 1 P = 5 P = 10

Model 49.016 10.325 9.083 3.085 0.928 0.927

Measurement 48.606 13.27 8.018 2.952 1.149 0.879

MRE 0.008 0.222 0.133 0.045 0.192 0.054

wf3 wf4

P = 1 P = 5 P = 10 P = 1 P = 5 P = 10

Model 12.545 10.144 10.144 3.215 1.923 1.923

Measurement 13.626 8.600 10.489 3.655 2.031 1.895

MRE 0.089 0.180 0.033 0.120 0.053 0.015

following two observations. First, node reduction on the static graph leads to
smaller LQN models, saving computation time for both LQN model generation
and model-based performance prediction, with negligible impact on prediction
accuracy. Second, model-based performance prediction achieved a close fit to
the measurements from monitoring traces (average MRE=7.3%), under differ-
ent workload intensity and in both sufficient and limited resources. Finally, we
remark that the availability of the static graph also allows assessing the coverage
of the performance test inputs, highlighting possible execution paths relevant to
the satisfaction of the application’s SLAs that are not exercised (enough), thus
driving the refinement of the performance test suite.

86 R. Wang et al.

5 Related Work

The question of how to predict the performance of serverless functions is closely
followed by researchers. However, fine-grained analytical performance modeling
for serverless functions still lacks investigations to our knowledge. Eismann et
al. [12] propose to use mixture density networks to predict the response time
distribution of a single serverless function and then estimate the cost of server-
less workflow execution by Monte-Carlo simulation. In [7], the authors develop
a framework called COSE for serverless function configuration with a trace-
based performance model. Based on the performance model, they apply Bayesian
Optimization into obtaining the optimal serverless function configuration. These
works can be identified as data-driven performance predictions for serverless
functions, which cannot give an explicit, interpretable abstraction of a serverless
application.

On the other hand, model-driven performance prediction can help devel-
opers and providers to better understand different performance prediction and
reason about performance issues or design alternatives. Boza et al. [10] propose
to use M(t)/M/∞ queues to model serverless functions, enabling the calcula-
tion of performance and cost. Mahmoudi et al. [20,21] propose an analytical
performance model by using a continuous-time semi-Markov process to accu-
rately predict the performance metrics. However, this work mainly focuses on
modeling aspects of the computing platform to support tuning its configuration,
and does not directly relate to the internals of serverless functions. Lin et al. [19]
use probabilistic directed acyclic graph abstractions to predict the end-to-end
response times of serverless applications. The smallest representable unit in this
work is a whole serverless function, which may limit the performance prediction
accuracy due to the coarse modeling granularity.

Finally, the generation of LQN models for software performance prediction
have also been investigated starting from higher-level, architectural specifica-
tions, e.g., from UML [24] or Palladio Component Models (PCM) [8]. Recently,
TOSCA specifications have been extended to specify several concerns of server-
less applications [28] and can be used to generate LQN performance models.
However, most of these approaches require expert knowledge to define accurate
architectural models in the first place. This is typically expensive and error-prone
due to the need to keep the models consistent with the actual implementation,
which also requires manual instrumentation and adequate performance test suite
to measure the implementation’s performance.

6 Conclusion and Future Work

We presented a new method to build LQN performance models for serverless
applications using information from static analysis to enhance model-based pre-
diction accuracy. We exploit the relatively smaller size of serverless function
implementations, together with advances in static analysis methods for mod-
ern programming languages, to extract intra- and inter-procedural control and

Enhancing Performance Modeling of Serverless Functions via Static Analysis 87

data dependencies among functions and their invocation parameters at different
call sites. The topological structures identified by these dependencies then drives
both code-level performance profiling and the automatic generation of a succinct
LQN model to reason about the performance of the application. Experimental
results indicate that our method can accurately capture the characterization of
FaaS workflows and yield accurate prediction results under different workloads
and resource provisions.

Among the possible future research directions, we aim to explore the inte-
gration of performance modeling of FaaS-based applications with performance
issues diagnosis. Intra- and inter-function LQN models can help to relate perfor-
mance bottlenecks to code artifacts, potentially helping to locate the root causes
of SAL violations.

References

1. https://anonymous.4open.science/r/Enhancing-Performance-Modeling-of-
Serverless-Functions-via-Static-Analysis-828D

2. https://github.com/pyutils/line profiler
3. https://github.com/Azure-Samples/functions-python-tensorflow-tutorial
4. https://github.com/onnx/models
5. https://locust.io/
6. Pyre. https://pyre-check.org/
7. Akhtar, N., Raza, A., Ishakian, V., Matta, I.: Cose: configuring serverless func-

tions using statistical learning. In: IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pp. 129–138. IEEE (2020)

8. Altamimi, T., Petriu, D.C.: Incremental change propagation from UML software
models to LQN performance models. In: CASCON, pp. 120–131 (2017)

9. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Res. Adv. Cloud Comput., pp. 1–20.
Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5026-8 1

10. Boza, E.F., Abad, C.L., Villavicencio, M., Quimba, S., Plaza, J.A.: Reserved, on
demand or serverless: model-based simulations for cloud budget planning. In: 2017
IEEE Second Ecuador Technical Chapters Meeting (ETCM), pp. 1–6 (2017)

11. Casale, G.: Integrated performance evaluation of extended queueing network mod-
els with line. In: Winter Simulation Conference (WSC), pp. 2377–2388. IEEE
(2020)

12. Eismann, S., Grohmann, J., Van Eyk, E., Herbst, N., Kounev, S.: Predicting the
costs of serverless workflows. In: Proceedings of the ACM/SPEC International
Conference on Performance Engineering, pp. 265–276 (2020)

13. Eismann, S., et al.: Serverless applications: why, when, and how? IEEE Softw.
38(1), 32–39 (2020)

14. Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced modeling
and solution of layered queueing networks. IEEE Trans. Softw. Eng. 35(2), 148–161
(2008)

15. Franks, G., Maly, P., Woodside, M., Petriu, D.C., Hubbard, A., Mroz, M.: Layered
queueing network solver and simulator user manual. Department of Systems and
Computer Engineering, Carleton University (December 2005), pp. 15–69 (2005)

https://anonymous.4open.science/r/Enhancing-Performance-Modeling-of-Serverless-Functions-via-Static-Analysis-828D
https://anonymous.4open.science/r/Enhancing-Performance-Modeling-of-Serverless-Functions-via-Static-Analysis-828D
https://github.com/pyutils/line_profiler
https://github.com/Azure-Samples/functions-python-tensorflow-tutorial
https://github.com/onnx/models
https://locust.io/
https://pyre-check.org/
https://doi.org/10.1007/978-981-10-5026-8_1

88 R. Wang et al.

16. Garetto, M., Cigno, R.L., Meo, M., Marsan, M.A.: A detailed and accurate closed
queueing network model of many interacting TCP flows. In: Proceedings IEEE
INFOCOM 2001, vol. 3, pp. 1706–1715. IEEE (2001)

17. Israr, T.A., Lau, D.H., Franks, G., Woodside, M.: Automatic generation of lay-
ered queuing software performance models from commonly available traces. In:
Proceedings of the 5th international Workshop on Software and Performance, pp.
147–158 (2005)

18. Khedker, U.P., Sanyal, A., Karkare, B.: Data Flow Analysis: Theory and Practice.
CRC Press, Boca Raton (2017)

19. Lin, C., Khazaei, H.: Modeling and optimization of performance and cost of server-
less applications. IEEE Trans. Parallel Distrib. Syst. 32(3), 615–632 (2020)

20. Mahmoudi, N., Khazaei, H.: Performance modeling of serverless computing plat-
forms. IEEE Trans. Cloud Comput. (2020)

21. Mahmoudi, N., Khazaei, H.: Temporal performance modelling of serverless com-
puting platforms. In: Proceedings of the 2020 Sixth International Workshop on
Serverless Computing, pp. 1–6 (2020)

22. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with generalized stochastic Petri nets, vol. 292. Wiley, New York (1995)

23. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer,
Berlin (2015). https://doi.org/10.1007/978-3-662-03811-6

24. Petriu, D.C., Shen, H.: Applying the UML performance profile: graph grammar-
based derivation of LQN models from UML specifications. In: Field, T., Harrison,
P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 159–177.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46029-2 10

25. Spinner, S., Casale, G., Brosig, F., Kounev, S.: Evaluating approaches to resource
demand estimation. Perform. Eval. 92, 51–71 (2015)

26. Tariq, A., Pahl, A., Nimmagadda, S., Rozner, E., Lanka, S.: Sequoia: enabling
quality-of-service in serverless computing. In: Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC 2020, pp. 311–327. Association for Computing
Machinery (2020)

27. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. ACM Sigplan Notices 44(6), 87–97 (2009)

28. Zhu, L., Giotis, G., Tountopoulos, V., Casale, G.: Rdof: deployment optimization
for function as a service. In: 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD), pp. 508–514. IEEE (2021)

https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/3-540-46029-2_10

Service Regulation: Modeling
and Recognition

Jintao Chen1, Jianwei Yin1, Shuiguang Deng1, Tiancheng Zhao2,
and Meng Xi1(B)

1 Zhejiang University, Hangzhou, China
{chenjintao,mengxi}@zju.edu.cn, {zjuyjw,dengsg}@cs.zju.edu.cn

2 Binjiang Institute of Zhejiang University, Hangzhou, China
tianchez@zju-bj.com

Abstract. Service regulation applies modern management theory and
information technology to provide intelligent, efficient and in-depth regu-
lation of service quality and compliance operation. The Modern Service
Industry with rapid innovation and evolution of services is confronted
with many challenges such as compliance operation, yet traditional reg-
ulation methods rely heavily on manual labour and are less efficient.
Therefore it is urgent to research efficient and intelligent methods of reg-
ulation in order to promote the healthy development of Modern Service
Industry. As for process compliance in service regulation, this paper pro-
poses a conceptual model of service regulation that includes service orga-
nization domain, business process domain and service regulation domain.
Furthermore, a modeling language based on π calculus is introduced to
formalize regulation issues. We have summarised six categories of gen-
eral regulation rules based on regulation source materials from different
service domains. To the best of our knowledge, there is currently no
dataset available for service process violation recognition. Therefore, we
construct a labelled process dataset for violation recognition (LPD4VR)
of Internet healthcare service and propose a baseline method to detect
the violation issue which achieves a recognition accuracy of 83.33%.

Keywords: Service regulation · Service regulation model · Violation
recognition

1 Introduction

Advances in information technology have promoted the prosperity of the Mod-
ern Service Industry. In the process of vigorous development, many innovative
services with new service delivery methods, represented by Internet healthcare
services, have emerged. Changing the traditional offline delivery methods of ser-
vice to online interaction greatly facilitates the lives of consumers. However, rapid
development and innovation lead to many hidden risks. Various non-compliance
and low-quality services occur frequently, which seriously affects the user expe-
rience of the service and the sustainable development of the modern service
industry.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 89–104, 2022.
https://doi.org/10.1007/978-3-031-20984-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_6

90 J. Chen et al.

Take Internet healthcare service for example, it is undertaken via Internet,
which has a distinctly non-contact nature compared to traditional service deliv-
ery methods. With the help of information technologies, Internet healthcare
services have redistributed medical resources, thereby reconstructed relevant
processes, improved service efficiency as well as promoted fairness across the
industry. Healthcare organizations, including hospitals of different types and
sizes, outpatient clinics for primary and secondary care, and even some Internet
companies which involved in the medical field, provide public with a variety of
online healthcare services. Internet healthcare services offer not only the tradi-
tional ones such as remote consultation and chronic disease management, but
also some new-styles, for instance, health education and nursing school. A typi-
cal Internet healthcare service is clarified in Fig. 1. Although Internet healthcare
services have gained rapid growth in the past decade or so, many irregulari-
ties and quality issues have been identified. Take the qualifications of medical
institutions for example: the “hospital concept” was arbitrarily applied; medical
service areas were arbitrarily expanded; the scope of specialties and grades were
not strictly audited; etc. According to the Ponemon Institute, breaches affecting
healthcare providers are the most costly to deal with and take the longest to
recover from. Building intelligent methods for compliance management can help
improve regulatory efficiency and reduce regulatory cost. Therefore, intelligent
and efficient regulation methods will play an extremely important role in the
future of compliance management.

Fig. 1. Online treatment service: a typical service of Internet healthcare service

Service Regulation: Modeling and Recognition 91

Service regulation is now more maturely studied in the financial sector and
has resulted in systematic regulation technology (RegTech). RegTech is a branch
of FinTech (financial technology). The UK Financial Conduct Authority (FCA)
first introduced the concept of RegTech in 2015: innovative applications of tech-
nology that efficiently and cost-effectively address regulatory and compliance
requirements, primarily for financial institutions, with a focus on those technolo-
gies that can facilitate regulation more effectively than existing instruments. Due
to compliance needs, other service areas are also beginning to look into RegTech.
Hence Wikipedia’s definition of regulatory technology expands on the FCA’s def-
inition which defined as a new technology that uses information technology to
enhance regulation. Current research on RegTech is focused on the financial
sector, with less research on models and methods to support general regula-
tion of Modern Services Industry. Service regulation can be divided into three
stages: beforehand, halfway and afterward. In stage of beforehand, modelling
of service and regulation rules is the focus. Therefore, we propose a concep-
tual model of service regulation satisfying the requirements of business process
and service regulation. It contains three domains including service organization
domain, business process domain and service regulation domain. Furthermore
we construct a regulation language based on π calculus and conceptual model.
We also built a dataset and develop a baseline method for violation recognition.
Our major contributions in this paper are summarized as follows:

– propose a conceptual model of service regulation with three dimensions: ser-
vice organization domain, business process domain and service regulation
domain;

– present the service regulation language based on π calculus which includes
six categories of general regulation rules;

– construct a labelled process dataset for violation recognition (LPD4VR) and
a baseline for violation recognition.

The rest of this paper is organized as follows. Section 2 reviews the previous
research. We introduce the conceptual model and modeling language for ser-
vice regulation in Sect. 3. Section 4 is an introduction to the dataset including
construction strategies and analysis. We present the service regulation baseline
method in Sect. 5. The case study in the field of Internet healthcare services is
carried out in Sect. 6. Finally we conclude this work in Sect. 7.

2 Related Work

Business process compliance focuses on the consistency of regulatory rules with
the design, verification and validation of business processes [8].

Conformance Checking. Conformance checking is a key function of process
mining. It is significant for providers and regulators to confirm whether reg-
ulations are being met or where and why there are deviations so that they
can manage their processes accordingly. Conformance checking compares pro-
cess instances with a given process model to identify deviations between the

92 J. Chen et al.

process instances’ actual behaviour and its modelled behaviour [6]. It allows to
check the relation between a process model and process data collected by IT
systems, and to identify as well as analyze deviations between them [15]. As a
kind of modeling language, the Petri net is widely used for conformance check-
ing [2,5]. In addition, BPMN is also used for conformance checking in [9]. As for
perspectives of conformance checking, multi-perspectives are taken into consid-
eration such as time, roles, and contextual data [2,10]. In [7], Felli et al. adopted
data Petri nets (DPNs) as the underlying reference formalism and introduced
the CoCoMoT (Computing Conformance Modulo Theories) framework for con-
formance checking with multi-perspective processes. Berti et al. proposed an
improved token-based replay approach to avoid known problems (e.g., “token
flooding”) which is much faster and scalable [4]. In [17], Valencia-Parra et al.
introduced an architecture that supports the creation and distribution of align-
ment subproblems based on an innovative horizontal acyclic model decompo-
sition to empower conformance checking. A taxonomy of uncertain event logs
and models was defined in [14] in response to uncertain event data. In litera-
ture [3], a method for evaluating temporal compliance rules in sublinear time by
pre-computing data structures was proposed, which summarises the temporal
relationships between activities in the log.

Compliance Regulation in Different Service Domains. A number of stud-
ies of compliance have emerged in specific service areas. For E-commerce, Siek et
al. analyzed event log data from the web databases of an e-commerce company
to check their conformance with the standardized processes [16]. Wang et al. [18]
proposed a model called Extended Data Petri net (DPNE) based on the confor-
mance checking algorithm [1]. For healthcare, the review in [11]systematically
assess the criteria used to measure adherence to clinical guidelines and explore
the suitability of using process mining techniques.

3 Service Regulation Modeling

The traditional service relationship model, which includes service provider, ser-
vice consumer and service objectives, represents the relationship between the
subject and the object in the service delivery process. However, the model is
missing the important role of the regulator, which makes it difficult to meet the
needs of service regulation modelling. The regulator has taken on the role of
ensuring that services are developed in compliance. Therefore we propose a con-
ceptual model and introduce the regulation language to satisfy the requirements
of service regulation.

3.1 Conceptual Model of Service Regulation

Figure 2 gives an overview of the key components in the regulation modeling. As
modern service industries are often complex services characterised by a diversity
of participants and a variety of services, internal synergies are more complex
while service delivery methods are more convenient. Therefore, the modelling of
service regulation is divided into three main domains:

Service Regulation: Modeling and Recognition 93

– Service Organization Domain: describes the organizational relationships and
collaborative mechanisms in complex services and define the qualifications of
service provider;

– Business Process Domain: assumes that business processes are designed as a
collection of process; elements [12].

– Service Regulation Domain: defines the core components of service regulation
and the relationships between them.

Fig. 2. Conceptual model of service regulation

The service organization domain includes service platform, service provider,
service consumer and qualification. It is primarily aimed at modelling the top
level of service design. The business process domain follows the BPMN2.0 spec-
ification. The service regulation domain covers the three stages: beforehand,
halfway and afterward. As the basis for regulation management, regulation rules
are formal representations of regulation source. And the regulation management
includes compliance control and QoS control. Both controls need to receive the
regulation data generated by the business process instances.

3.2 Service Regulation Language Based on Π Calculus

Preliminary. The π-calculus is a mathematical model of processes whose inter-
connections change as they interact [13]. Due to space constraints and its com-
plexity, we briefly introduce the basic concepts in this subsection. Table 1 shows
the basic syntax of the π-calculus.

94 J. Chen et al.

Table 1. The syntax of the π-calculus.

Agents Symbol Definition

Empty agent 0 The empty agent can not perform any actions

Output prefix āx · P After the name x is sent along the name a,
the agent P continues

Input prefix a(x) · P After the name a receives the name x,
the agent P continues

Silent prefix τ Refers to invisible actions, i.e. internal actions that
are not observable from outside the system

Sum P+Q An agent can enact either P or Q

Parallel P| Q The agents P and Q are executed in parallel

Match if x = y then P If names of x and y are same, then the agent P
continues

Mismatch if x �= y then P If names of x and y are same, then the agent P
continues

Restriction (υx)P The name x can only be used inside P

Identifier A(y1, ..., yn) Behaves as agent P with yi replacing xi for
each i

The π-calculus is based on the paradigm of synchronous communication.
The simplest entities of π-calculus are names (denoted by lowercase) and agents
(denoted by uppercase). There are various representations of the operational
semantics of the π-calculus, of which the two main ones are the labelled transition
system, which is represented by transition rules, and the unlabelled transition
system, which is represented by reduction rules. To achieve asynchrony, this
can be done by a sub-calculus: asynchronous π-calculus. Alternatively, this can
be achieved by adding an agent representing an asynchronous communication
medium between sender and receiver.

Since the Internet and the applications running on it are mostly dynamically
coupled systems, π-calculus is well suited as a model for dynamically coupled
systems, so we choose π-calculus as the formal method to formalize services.

Business Process Domain. In business process domain, BP and BP element
are in design-time. The BP is a set of participants, tasks, data objects and flows,
which can be designed as:

BP = (Participants, Tasks,DataObjects, F lows,Gateways) (1)

The participants are divided into service providers and service consumers.
The tasks, data objects and flows which follow the BPMN2.0 specification. The
definition of data objects, tasks, flows and gateways are defined as:

Service Regulation: Modeling and Recognition 95

DataObjects =(log data, resource data, flows data, provider data,

service content data, consumer data)
(2)

Flows = (sequence flow,message flow) (3)

Gateways =(exclusive gateway, parallel gateway, join gateway) (4)

For data objects, the specific data categories are explained below:

– log data: system execution data, includes timestamp, user, event and etc.
– resource data: the record of the resources on which service delivery depends;
– flows data: the messages required for the π-calculus to pass through flows;
– service content data: data on the content of the services received by the con-

sumer;
– consumer data and provider data: contains provider and consumer profiles,

qualifications and other information.

In our dataset, flows contain both sequential and message streams, and gate-
ways are divided into parallel gateway, exclusive gateway and join gateway. The
definitions of gateways are as follows:

parallel gateway =fin(m).τ. ¯fout(mtask1,mtask2) (5)

join gateway =fin(mtask1,mtask2).τ. ¯fout(m) (6)

exclusive gateway =fin(m).τ.(ifm = m1 then ¯fout(mtask1) + if m = m2

then ¯fout(mtask2))
(7)

The fin and fout represent the flow of inputs and outputs, the m represents the
message delivered by flow.

startEvent =τs.(υms) ¯foutms (8)

endEvent = fin(me).τe (9)

Task =fin(min,mdata1).T. ¯fout(mout,mdata2) (10)

The startEvent and endEvent are special tasks at the beginning and end of
the business process. The ms and me represent the start/end message, min and
mout are the input and output messages in the task.

Service Regulation Domain. In service regulation domain of Fig. 2, the reg-
ulation management includes compliance control and QoS control, which cover
the whole chain of regulation. The regulation rules originate from regulation
source which contains laws, industry standards and etc. The regulatory rules are
the key basis for regulation management. The ground rules for service regulation
can be defined in the following six categories:

96 J. Chen et al.

* Rule 1:

drequired = (d1, d2, ..., dn);
f(m).(if m == drequired then Pcompliance else Pviolation)

(11)

* Rule 2:

dstandard = (m1,m2);
f(m).(if m /∈ dstandard then Pviolation else Pcompliance)

(12)

* Rule 3:

mspecific = (m1,m2);
f(m).(if m /∈ mspecific then Pviolation else Pcompliance)

(13)

* Rule 4:

mviolation = (mtask1,mtask2, ...,mtaskn);
f(m).(if m subseteqmviolation then Pviolation else Pcompliance)

(14)

* Rule 5:

mrequired = (mtask1,mtask2, ...,mtaskn);
f(m).(if mrequired /∈ m then Pviolation else Pcompliance)

(15)

* Rule 6:

mfinished = (mtask1,mtask2, ...,mtaskn);
f(m).(if m ⊂ mfinished then Task2).Pcompliance else Pviolation)

(16)

The drequired represents the data required by regulation and the dstandard are
scope of compliance. Pcompliance and Pviolation refer to the activation of the
corresponding compliance agent or violation agent. The Rule1 and Rule2 are
formal definitions of data compliance. The remaining four rules are formal def-
initions of behavioural compliance. The Rule1 represents the required content
of regulation source, such as the various types of qualifications required in the
access approval tasks. The Rule2 defines the scope of compliance with the data.
mviolation, mspecific, mrequired and mfinished correspond to violation tasks, spe-
cial tasks, normative tasks and completed tasks respectively. The Rule3 indicates
that certain tasks can only be executed under certain circumstances. The Rule4
is a formal expression of the prohibited conduct in the regulation source. Corre-
spondingly, the Rule5 describes the tasks that must be performed. The Rule6
defines the order of execution of tasks which corresponds to the case where
certain tasks have to be executed after the end of some specific tasks.

In conjunction with the regulation tasks mentioned in Sect. 4, service regula-
tion is carried out in three stages: design time, running time and post-execution
time. In design time, access approval and business process compliance checking
are major tasks, which can be described as:

Paccess = fprovider(mrequired).PaccessCheck. ¯fmanage(mresult) (17)

Service Regulation: Modeling and Recognition 97

The fprovider means the inputs submitted by the provider, ¯fmanage means the
output of regulation management.

PaccessCheck = f(m).(ifm == Qualificationdata then Pcompliance else Pviolation)

(18)

Qualificationdata refers to the necessary qualifications for service approval.

PcomplianceCheck = f(m).PruleCheck.f̄(mres) (19)

PcomplianceCheck and PruleCheck correspond to the compliance checking process
and the specific rule checking process. mres is the result of compliance checking.
The running time requires monitoring of the operation of business processes,
timely recognition of irregularities and real-time alerts which are defined as:

Palert = f(m).(m̄|pass.0 + fail.warning) (20)

The pass and fail are the possible values of input. The warning refers to the
activation of the alert agent.

PmonitorCheck = f(m).PruleCheck.f̄(mres).Palert (21)

The PmonitorCheck is a real-time checking agent.

Pmonitor =!PmonitorCheck (22)

The afterward regulation is carried out mainly by means of audits:

Paudit = f(q).PruleCheck.f̄(mresult).P (23)

4 LPD4VR: A Labelled Process Dataset for Violation
Recognition

To the best of our knowledge, there are currently no process datasets available for
service violation recognition. To further facilitate research into the intelligence of
service regulation, a labelled process dataset (LPD4VR) has been constructed.

The processes in the area of Internet healthcare services covers the main busi-
nesses of Internet healthcare services. This dataset contains mainly 40 compliant
processes, 9 violation processes, and 17 unknown processes. The process files in
XML format follow the BPMN2.0 standard. In the build process, we first built
16 compliant business processes manually based on existing Internet healthcare
services. Based on these 16 compliance processes, the dataset was constructed
through the following strategies:

– The back-translation method which is currently the most effective enhance-
ment method for text data enhancement is used to implement existing process
data for text enhancement. We use the Google Translate interface to augment
the manually built compliance process with an “English-French-English” back
translation.

98 J. Chen et al.

– Randomly removing some of the task nodes. We select 10% of the processes
to randomly delete task nodes from them, destroying the topological integrity
of the process, as part of the violation processes.

– Targeted change of some compliance processes to violation processes, e.g.
removal of some data objects required for compliance.

Fig. 3. Semantic distribution of processes
in the LPD4VR

Fig. 4. Distribution of the number of
BPMN elements in the LPD4VR

Based on the above construction strategies, there are two main types of vio-
lation processes: one is an incomplete process that is obtained by randomly
deleting nodes, and the other is a process that has undergone targeted modifi-
cations. The former is a violation process that does not meet the general service
rules, and the latter is a violation process that does not meet the business domain
rules. Unknown processes are mainly processes that are difficult to judge under
existing rules. We collected 17 processes from other service areas as the unknown
processes section, such as the e-commerce service area and the insurance service
area. Figure 3 reveals the semantic distribution of compliance processes, non-
compliance processes and unknown processes. Both the compliance and violation
processes are in the area of Internet healthcare services, and thus the semantics
of these two categories are relatively close, while the unknown processes are in
other business areas, as the semantic distribution is more dispersed. Figure 4
shows statistics on the length of processes (number of elements, containing data
objects, task nodes) in the LPD4VR, which mainly concentrated in the interval
[10, 30].

5 A Baseline for Violation Recognition

Violation recognition of service processes can help service providers and reg-
ulators to identify violation issues in a timely manner and reduce the cost of

Service Regulation: Modeling and Recognition 99

breaches. In order to effectively regulate the active service ecosystems of the
modern service industry, we propose a framework for identifying violations as
shown in Fig. 5.

Fig. 5. The violation recognition framework

In the course of business development, crossover service is an important form
for innovation which involves new service domains. However, regulation rules
have a limited scope of action and thus lack the ability to regulate new service
domains. Therefore, we first perform a service domain determination on the
input service process. For processes that do not belong to the known service
domains, the violation recognition method directly marks them as ’unknown’.
Service domain determination is carried out mainly through semantic analysis.
With the help of text generation techniques in NLP, we generate service process
descriptions by using the names of participants and tasks in the service process
as prompt words. At the same time, a business description text needs to be
prepared for the service domains that are in the scope of regulation. The semantic
similarity is calculated for the two texts and a threshold θ is used to determine
whether the process is within the regulation range. The value of θ is determined
according to the specific semantic distribution of regulation dataset.

Processes that fall within the scope of regulation are subject to compliance
inference based on regulation rules. The regulation rules consist of two main
categories: general service regulation rules and domain-related regulation rules.
As for the inference, rules first need to be bound with BPMN process elements
based on the semantics. The violation is then recognized according to the rules.
The recognition method is described in algorithm 1. In this algorithm, the two
thresholds are semantic similarity thresholds, determined in conjunction with
domain semantic analysis. Regulation rules are formal representations of regula-
tion source texts, but regulation source texts are relatively easier to understand
semantically. Therefore, both the regulation source text and the regulation rules
are used as input to the algorithm. The algorithm 1 consists of two main steps:
rule binding and recognition of the violation BPMN elements, which returns the

100 J. Chen et al.

Algorithm 1. Compliance inference
Input: BPMN process: BP ; Regulation source text: Rt;

Regulationrule : Rr; Threshold1 : α; Threshold2 : β
Output: BPMN process with binding regulation rules: BPr;

Set of violation processes: Pv; Set of compliance processes, Pc;
1: BPr ← ∅, Pv ← ∅, Pc ← ∅
2: if Type(Rt) == general then
3: BPr = Bind(BP ,Rt,Rr)
4: else
5: Simp&r = similarityCalculation(BP , Rt)
6: if Simp&r ≥ α then
7: BPr = Bind(BP ,Rt,Rr)
8: end if
9: end if

10: for each Element ∈ BPr do
11: for each Rt ∈ BPr do
12: if Sime&r = similarityCalculation(Element, Rt) then
13: Element = Bind(Element, Rt, Rr); BPr.Element ← Element
14: end if
15: end for
16: end for
17: for each BP in BPr do
18: for each Element in BP do
19: rule.m ← Elementinput

20: result = rule.expressions(rule.m, rule.required)
21: if result == Pviolation then
22: BP.label ← violation; Pv.append(BP)
23: else
24: BP.label ← compliance; Pc.append(BP)
25: end if
26: end for
27: end for
28: return Pv; Pc

set of compliance processes Pc and the set of violation processes Pv. In the bind-
ing phase, general regulation rules are bound directly to the process, and service
domain regulation rules are bound where the semantic similarity is greater than
the threshold α. After completing the process-level rule binding, the element-
level binding is carried out in the same way. The violation recognition is based
on regulation rule expressions. The label for that process is then returned based
on the result of the expression.

6 Case Study

To verify the effectiveness of the regulatory language and methodology proposed
in this paper, we select Internet healthcare service, an innovative service of med-
ical service, for analysis.

Service Regulation: Modeling and Recognition 101

Unified Concept Base. The construction of a unified concept base is a nec-
essary step before formal modelling of the Internet healthcare services domain
can be carried out. Incorporate existing ISO international standards related to
healthcare services, the unified concept base contains nine categories:

– Medication concepts: includes prescription and over-the-counter medicines
and vaccines, etc.

– Workflow concepts: the concepts involved in automating parts or the whole
of a healthcare service process in a computer application environment

– Clinical concepts: the concepts involved in the clinical diagnostic process,
including surgery, disease, etc.

– Financial concepts: financial practices such as payment and health insurance
settlement involved in the process of medical services

– Participants concepts: the concept of participants involved in the process of
Internet health services

– Qualification concepts: the concept of qualifications required of Internet
healthcare participants

– Equipment concepts: the concept of medical devices, the concept of Internet
service devices and other necessary equipment involved in Internet health
services

– Data concepts: the concept of data required and generated by the whole pro-
cess of Internet health services, including electronic health records, electronic
prescriptions, etc.

– QoS concepts: the concepts of indicators needed to assess the quality of Inter-
net health services

Regulation Rule Base. Regulation rules are the basis for compliance deter-
minations. The regulatory rule base is divided into two parts, one for generic
rules and the other for domain rules. The generic rule base is mainly topology-
constrained rules for the processes and some business-independent rules. For
example, compliance processes must first meet the requirement of process
integrity. Business-independent rules refer to service rules that are common to
the modern service industry. For example, customer service staff must not use
abusive language in after-sales service. The domain rule base is based on a cer-
tain amount of domain knowledge. Combined with the unified concept base,
we extract regulation rules from regulation sources such as laws and industry
standards related to the Internet healthcare services sector to build a formal reg-
ulation rule base. According to rule types proposed above, the regulation rule
base contains six categories of species atomic rules as well as one category of
compound rules. Compound rules are used where two or more atomic rules are
required to express the specification. As different regulation sources have differ-
ent binding effects, each rule will be prioritised accordingly when constructing
the regulation rule base. The priorities consist of two main categories, the first
being rules that must be followed and the second being norms that are rec-
ommended to be followed. The first category is more binding than the second.

102 J. Chen et al.

Table 2. The results of experiment.

Compliance Violance Unknown Overall

Numbers in dataset 40 9 17 66

Numbers of accurate recognition 33 6 16 55

Accuracy of recognition 82.5% 66.7% 94.12% 83.33%

Experiment of Violation Recognition. After the unified concept base and
regulation rule base were constructed, we conduct violation recognition experi-
ment on LPD4VR. In the experiments, we set the threshold α to 0.3, and the
threshold β to 0.5. The specific experimental results are shown in the follow-
ing Table 2. We found that the ’unknown’ class to be the most accurate, with
94.12% accuracy. This accuracy result is also broadly consistent with the results
of the semantic analysis of the dataset. The least accurate process recognition
rate is 66.7% for ’violation’ class. This may be due to the weak semantics of
the task phrase, which makes it difficult to accomplish a highly relevant binding
to the rule. The overall recognition accuracy achieved is 83.33%. To improve
overall recognition accuracy, future work will be to improve compliance process
recognition accuracy and violation identification accuracy.

7 Conclusion

The rapid development of the modern service industry is accompanied by many
irregularities. Traditional methods of regulation rely heavily on manual labour,
which is inefficient and costly. Research into intelligent and efficient methods
of service regulation has therefore become an important aspect of ensuring the
healthy development of modern service industries. This paper proposes a con-
ceptual model of service regulation for service process compliance management.
Furthermore we present a formal modelling approach based on the π calculus.
In terms of violation recognition, to our best knowledge, there are no widely
used datasets. Therefore we construct the LPD4VR dataset in the field of Inter-
net healthcare services. Our proposed violation recognition method has also been
experimented on this dataset. As for future works, we will focus on real-time reg-
ulation, especially for service processes that generate multi-modal data including
video, picture, audio and text.

Acknowledgements. This work was supported in part by National Natural Science
Foundation of China under Grant 61825205, in part by the Key Research and Devel-
opment Program of Zhejiang Provence under grant 2021C01017, in part by the Key
Research Project of Zhejiang Province under Grant 2022C01145 and in part by the
National Natural Science Foundation of China under Grants U20A20173 and 62125206.

Service Regulation: Modeling and Recognition 103

References

1. Van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisc. Rev.
Data Min. Knowl. Disc. 2(2), 182–192 (2012)

2. Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.: Linking
data and process perspectives for conformance analysis. Comput. Secur. 73, 172–
193 (2018)

3. Augusto, A., Awad, A., Dumas, M.: Efficient checking of temporal compliance rules
over business process event logs. arXiv preprint arXiv:2112.04623 (2021)

4. Berti, A., van der Aalst, W.M.P.: A novel token-based replay technique to speed
up conformance checking and process enhancement. In: Koutny, M., Kordon, F.,
Pomello, L. (eds.) Transactions on Petri Nets and Other Models of Concurrency
XV. LNCS, vol. 12530, pp. 1–26. Springer, Heidelberg (2021). https://doi.org/10.
1007/978-3-662-63079-2 1

5. Burattin, A., van Zelst, S.J., Armas-Cervantes, A., van Dongen, B.F., Carmona, J.:
online conformance checking using behavioural patterns. In: Weske, M., Montali,
M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 250–267.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 15

6. Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a state-of-
the-art literature review. In: Proceedings of the 11th International Conference on
Subject-Oriented Business Process Management, pp. 1–10 (2019)

7. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: CoCoMoT: conformance
checking of multi-perspective processes via SMT. In: Polyvyanyy, A., Wynn, M.T.,
Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 217–234.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0 15

8. Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with business
process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1),
79–133 (2018)

9. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and resource-aware
conformance checking of business processes. In: Abramowicz, W., Kriksciuniene,
D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 48–59. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-30359-3 5

10. Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

11. Oliart, E., Rojas, E., Capurro, D.: Are we ready for conformance checking in health-
care? measuring adherence to clinical guidelines: a scoping systematic literature
review. J. Biomed. Inf. 130, 104076 (2022)

12. Papazoglou, M.P.: Making business processes compliant to standards and regula-
tions. In: 2011 IEEE 15th International Enterprise Distributed Object Computing
Conference, pp. 3–13. IEEE (2011)

13. Parrow, J.: An introduction to the π-calculus. In: Handbook of Process algebra,
pp. 479–543. Elsevier (2001)

14. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.: Conformance checking over uncer-
tain event data. Inf. Syst. 102, 101810 (2021)

15. Pufahl, L., Rehse, J.R.: Conformance checking with regulations-a research agenda.
In: EMISA, pp. 24–29 (2021)

16. Siek, M., Mukti, R.: Business process mining from e-commerce event web logs:
conformance checking and bottleneck identification. In: IOP Conference Series:
Earth and Environmental Science, vol. 729, p. 012133. IOP Publishing (2021)

http://arxiv.org/abs/2112.04623
https://doi.org/10.1007/978-3-662-63079-2_1
https://doi.org/10.1007/978-3-662-63079-2_1
https://doi.org/10.1007/978-3-319-98648-7_15
https://doi.org/10.1007/978-3-030-85469-0_15
https://doi.org/10.1007/978-3-642-30359-3_5

104 J. Chen et al.

17. Valencia-Parra, Á., Varela-Vaca, Á.J., Gómez-López, M.T., Carmona, J., Bergen-
thum, R.: Empowering conformance checking using big data through horizontal
decomposition. Inf. Syst. 99, 101731 (2021)

18. Wang, Y., Yu, W., Teng, P., Liu, G., Xiang, D.: A detection method for abnormal
transactions in e-commerce based on extended data flow conformance checking.
Wireless Commun. Mob. Comput. 2022 (2022)

Quality of Service

WebQMon.ai: Gateway-Based Web QoE
Assessment Using Lightweight Neural

Networks

Enge Song1, Tian Pan1,2(B), Qiang Fu3(B), Chenhao Jia1, Jiao Zhang1,2,
Tao Huang1,2, and Yunjie Liu1,2

1 State Key Laboratory of Networking and Switching Technology, BUPT,
Beijing, China

2 Purple Mountain Laboratories, Nanjing, China
pan@bupt.edu.cn

3 Royal Melbourne Institute of Technology, Melbourne, Australia

qiang.fu@rmit.edu.au

Abstract. Users’ perception of their experience accessing web pages
greatly affects users’ willingness to continue browsing the website. How-
ever, it is difficult to assess user perception through a generic Quality
of Experience (QoE) model. Web content consists of a large variety of
static as well as dynamic objects, with some of them coming from the
remote sites. This makes QoE assessment a challenge for the traditional
methods. To build a generic QoE model, we introduce WebQMon.ai,
a lightweight Web QoE assessment architecture using machine learning
methods without setting any specific formula or threshold. WebQMon.ai
can evaluate web-browsing QoE using mostly network-layer data with
only one piece of application-layer information, the referer in the HTTP
header, which is used to aggregate the packets associated with the same
web page. The distribution of the arriving packets requested by the web
page is used to construct WebQMon.ai. WebQMon.ai requires little stor-
age space (80KB˜6MB). More importantly it can be deployed directly at
edge routers/gateways, due to the weak dependence on the application-
layer payload. We further improved our algorithm by ensemble learning
combining multiple orthogonal features, to generate a stronger classi-
fier. We evaluated WebQMon.ai on three popular websites. It shows that
the QoE assessment results for 4,800 unknown samples can be obtained
within just 0.07 s and reach an average accuracy of 97%.

Keywords: Web-browsing QoE · Neural networks

1 Introduction

The web-based Internet activities produce a large amount of HTTP traffic [15].
Internet users often visit a variety of websites to search for information, watch

This work was supported by National Key Research and Development Program of
China (2019YFB1802600).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 107–124, 2022.
https://doi.org/10.1007/978-3-031-20984-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_7&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_7

108 E. Song et al.

video clips or socialise with someone. The page loading latency is critical to
user experience (UE). A study shows that there is a strong correlation between
the performance of e-commerce websites and online shoppers’ behavior [1]. The
observation from the experiment with 1,048 online shoppers indicates that two
seconds is the critical threshold for page loading latency, after which consumers
may become impatient if the page is still not loaded, and 40% of the consumers
will abandon the site if it goes beyond three seconds. Research also shows that
slow page loading damages consumers’ loyalty to an e-commerce site, especially
for high spenders [3]. Up to 79% of online shoppers who experienced a dissat-
isfying visit would never visit the site again while 27% of them would not visit
its physical store either. QoS has been widely used to measure network perfor-
mance. But, it is not a direct reflection of QoE [5]. ISPs and equipment vendors
can however leverage their knowledge of the traffic going through their networks
and create hypothetical QoE prediction models to estimate UE or QoE anywhere
in the network. They can then refine the network settings or give feedback and
recommendations to website owners to improve QoE.

However, real-time QoE assessment is a challenge. Casas et al. [4] propose
YOUQMON, which can predict in real-time the stalling events of YouTube
videos with network-layer data. Unfortunately, it is not a generic QoE assess-
ment tool, as the thresholds and formulas are made specific to YouTube. The
web-browsing QoE is mostly affected by the loading time of the last visible object
shown on the screen, that is, above-the-fold (ATF) time. The study in [7] shows
that among a variety of QoE metrics including page load time (PLT), ATF is
most correlated to user experience. Many studies use ATF or its variants to
capture how users perceive web-browsing experience [7,9,11,12,14]. Although
predicting QoE by ATF works well, it is not a trivial task to obtain ATF. Most
of the existing methods obtain ATF or its variants with client-side support by
analyzing the video recordings of the web page rendering process [9,11,17] or
tracing loading time of different resource types [6,7,12,14,16]. However, these
analysis methods have a common issue: relying on client-side support to install
software or hardware plugins and thus obtain or infer ATF or its variants. In
contrast, we use machine learning methods to predict ATF.

To this end, we design WebQMon.ai, a generic real-time tool for assessing
web-browsing QoE without requiring client-side support. It uses network-layer
data and a single piece of application-layer data (the referer field in HTTP
header) to predict ATF. As the referer is in the first few bytes of the HTTP
request packet, no packet reassembly is needed. The referer is not even required,
if the content from the third-party web site is not a concern. Hence, WebQMon.ai
can be deployed at access routers or gateways without additional security or
privacy concerns, which may be an issue for those requiring client-side support.

As ATF increases QoE deteriorates. We can classify ATF into multiple cate-
gories. Each category corresponds to a certain level of QoE, e.g., an ATF below
two seconds indicating good user experience [1]. We gather TCP traffic gener-
ated from web browsing, and then characterize the traffic by the two proposed
traffic metrics: Traffic Volume per Second (TVS) and Cumulative Traffic Volume
(CTV). TVS and CTV in time series exhibit different patterns under different

WebQMon.ai 109

network conditions, which is a good indication of distinct QoE. WebQMon.ai
can predict QoE by distinguishing these patterns. Based on this architecture,
we propose five supervised learning-based models to classify the patterns. The
collected samples of the traffic metrics in time series are labeled by the esti-
mated ATF. The labeled data is then used as training data to train the machine
learning model. The trained model takes up a small amount of storage space,
from tens of KBs to a few MBs. WebQMon.ai is capable of real-time and accu-
rate prediction. For instance, more than four thousand samples can be predicted
within 0.07 seconds, with an average accuracy of 97%.

Our major contributions are summarized as follows:

– We propose WebQMon.ai, a generic web-browsing QoE assessment system,
capable of real-time prediction with high accuracy. It can be deployed on
gateways instead of end hosts, with little storage space required. WebQMon.ai
is powered by a data-driven model. It can be easily updated with new data to
adapt to new types of web content in a timely manner, without the complexity
of mathematical formulations or threshold settings (Sect. 3).

– To realize the data-driven model, we develop five models based on machine
learning algorithms and the WebQMon.ai architecture to predict ATF. These
methods are lightweight, easy to train and enable real-time and accurate
prediction without being limited to a certain type of content (Sect. 4).

– We implement the five models with 1,876 lines of code, available at our github
repository [2] (Sect. 5). The extensive evaluation shows that WebQMon.ai
works very well on QoE prediction (Sect. 6).

2 Related Work

The current work requires client-side support for web QoE assessment. Some of
the approaches rely on models specifically designed for a particular web site such
as YouTube. WebQMon.ai is a generic architecture that can be easily applied to
different types of web content. The other adopt generic models using formulas or
machine learning models. These solutions acquire ATF and/or its variants with
client-side support, and then perform QoE mapping through formulas or machine
learning models. These solution are conceptually different to WebQMon.ai, which
aims to estimate ATF without client-side support.

Non-generic Models. The solutions in [4,10] predict QoE through mathemat-
ical formulations and empirical threshold settings. This is a complex procedure,
and more importantly, limits its applicability to other types of web content.
For example in [4], YouTube stalling events are predicted using two thresholds
αsta and αplay, which are estimated from large measurement campaigns. This
is a complex procedure, and more importantly, limits its applicability to other
types of web content [4]. For a different application, it may require to re-estimate
the threshold from another large measurement campaign. WebQMon.ai is data-
driven, which does not require threshold settings or mathematical formulations.

110 E. Song et al.

Fig. 1. WebQMon.ai architecture.

Formula-Based QoE Mapping. Given the user-perceived metrics, the solu-
tions in [11,14] uses formulas for QoE mapping. For example, the work in [11]
analyzes the video frames of the recorded web page rendering process and then
obtains ATF related metrics such as SpeedIndex. The work in [14] has a cus-
tomized application embedded into the user devices to get the relevant infor-
mation for QoE mapping. These systems rely on client-side plugins to obtain
relevant metrics to do QoE mapping and have to be deployed on the client-side.

Machine Learning-Based QoE Mapping. Some solutions use machine
learning models for fine-grained QoE mapping, after acquiring ATF or relevant
metrics from the client-side [7,9,12,13]. The studies in [7,12,13] get the metrics
through the browser’s API. Similar to [11], the work in [9] obtains ATF through
analyzing the recorded web page rendering process. These solutions are concep-
tually different to our approach, as WebQMon.ai uses machine learning models
to estimate ATF based on traffic characteristics. However, we did get inspired
by these studies and adopted the machine learning-based approach.

3 WebQMon.ai Architecture

3.1 System Architecture

ATF determines user’s web-browsing experience. We propose WebQMon.ai to
predict ATF and thus user experience. We collect network-level data from the
Gateway and transform raw data into a useful format (Fig. 1). Then, our model is
trained with the processed data. After that, WebQMon.ai can predict ATF when
the user visits the web pages. In Sect. 4, based on the architecture, we propose
five models using different input metrics and machine learning algorithms. These
models can be trained and/or updated with the diverse types of content or web
sites, giving it the ability to learn and adapt to the new context.

WebQMon.ai 111

The access routers or gateways all perform DPI (Deep Packet Inspection) for
a variety of reasons. Raw data is readily available without needing additional
resources. No packet reassembly is even needed as packets are processed as they
need to be. We only need to get the statistics and construct the proposed traf-
fic metrics. As to be discussed in Sect. 3.2, the overhead can be managed by
following vendor’s restrictions on sampling intervals. The test time of the mod-
els is instant as shown in Sect. 6, predicting over 4,000 samples within 0.07 s.
The storage requirement is in the order of tens of KBs to a few MBs. All these
indicate that WebQMon.ai can be conveniently deployed at gateways.

Fig. 2. Traffic Volume per Second. Fig. 3. Cumulative Traffic Volume.

3.2 Dataset and Data Preprocessing

The training and test dataset are derived from the TCP streams appearing when
the user visits a web page. In Fig. 1, we can easily get all TCP traffic at the Edge
Router or Gateway. The referer, a field in HTTP header, is used to identify and
aggregate the traffic requested by the visited web page from other sources such
as a third-party website. The arrival pattern of TCP packets is highly correlated
to network conditions. The arriving packets are from different TCP flows. We
will first need to aggregate the packets into their individual flows to establish
the correlation. To extract meaningful flow features that can reflect network
dynamics, we propose two traffic metrics to be defined below.

Traffic Volume per Second (TVS) measures the instantaneous throughput
of a flow. The challenge is the sampling granularity. A fine granularity may
cause a high-level of measurement overhead, which the gateway may struggle to
handle. A coarse granularity may result in the loss of detailed flow features, which
will decrease classification accuracy. The sampling interval is set to one second,
the finest sampling granularity limited by the switch without overloading the
gateway. Figure 2 shows the normalized TVS in time series with good and bad
network conditions, respectively. Good network conditions result in satisfactory
ATF while bad network conditions result in unsatisfactory ATF, as defined in
Eq. (1). We will elaborate on this in Sect. 5. It shows that when the network
condition is good, a large amount of content arrives quickly and the peak rate
appears at the early stage of the transmission. In contrast, when the network
condition is bad, the content is loaded slowly and there is no clear peak rate.

Cumulative Traffic Volume (CTV) measures the total amount of traffic
received over a flow at a time point. Figure 3 illustrates the normalized CTV

112 E. Song et al.

Fig. 4. Architecture of the Slice model.

in time series for different network conditions, corresponding to satisfactory and
unsatisfactory ATF, respectively. With the good network condition, the curve
shows a steep slope, or otherwise a shallow slope.

Both TVS and CTV in time series exhibit a pattern clearly correlated to
network conditions. This is a strong indication that these two traffic metrics may
be used to reflect web-browsing QoE.

3.3 Training and Prediction

The raw TCP data is processed to generate the proposed traffic metrics. Each
of them is marked with a unique label for supervised learning and the ATF can
be predicted by exploring the time series patterns of the metrics. When using
machine learning methods, TVS and CTV need to be processed to generate
input variables. We will elaborate on this in a later section. In the training
stage, the difference between the predicted value and the label is reduced itera-
tion by iteration. In order to get the prediction results (i.e., ATF), we conduct
simple matrix calculations. The ATF can then be mapped to the QoE score by
a mapping function [7]. This enables real-time QoE assessment.

4 WebQMon.ai Algorithm

To explore TVS and CTV for QoE assessment, we design five classification
models based on machine learning methods, namely, Slice, NN, LSTM, R-LSTM
and Combine. All the models use the WebQMon.ai architecture, with selected
machine learning algorithms and feature variables, to be discussed in Sect 4.3.
Slice classifies TVS using the fully connected neural networks. NN is based on the
maximum slope and time domain features of CTV. LSTM relies on the linear
interpolation data of CTV. R-LSTM improves LSTM by reversing the input
variables. The fifth method, Combine, uses the idea of ensemble learning, which
can subtly combine the predictions from multiple learning models to achieve
more accurate, stable, and robust results. It is particularly suitable in our case
as the features of Slice, NN and R-LSTM are distinct to each other.

WebQMon.ai 113

4.1 Basic Classification Models

The packets that arrive within 60 s after the HTTP request are collected and
preprocessed. We calculate and normalize TVS and CTV, which are then used
as the input of the first four models. The output is the label of ATF or QoE
score, which is determined by the probability of the estimated ATF, for example,
being below or above 2 s.

Slice takes TVS as input. The different forms of TVS correspond to different
ATF. Slice uses fully connected neural networks for fast training and testing and
good performance. Since packets are collected for 60 s, the data format of TVS is
a 60-dimensional vector as shown in Fig. 4. The input variable is the normalized
data.

NN takes CTV as input and uses fully connected neural networks. Figure 3
shows that the maximum slope of CTV can reflect the network condition — the
deeper the slope is, the better the condition is. This makes maximum slope one
of the classification features. The time when CTV reaches x% is denoted as tx%.
It makes sense to use t25%, t50%, t75% and t90% as inputs, to capture CTV in
time domain while making them relatively independent. Together with maximum
slope, we have a five-dimensional input, that is, t25%, t50%, t75%, t90%, maximum
slope. Note that the time domain inputs tx% do have some correlation. This
violates the assumption to use NN and explains its less impressive performance
on ternary classification in Sect. 6. LSTM is more suitable to use CTV.

LSTM. (Long Short-Term Memory Neural Networks), a variant of Recurrent
Neural Networks (RNN), is often used to process the time series data. Compared
to the simple RNN, LSTM can keep the Long-Term Memory feature of the

Fig. 5. Architecture of the NN model and the LSTM model.

114 E. Song et al.

sequence. Therefore, LSTM is particularly suitable to address the long delays
of CTV and capture the dependency between data points. As shown in Fig. 5,
to construct the input, linear interpolation is used to create approximate 100
points of CTV for curve fitting.

R-LSTM. The packets that arrive earlier within the 60 s represent the initial
response of the loading process, and thus may have a greater impact on user
experience. However, in LSTM the early input has less impact on the output.
This is not desirable. Therefore, we reverse the interpolated data, that is, the
early data points of CTV are processed last, giving them more influence on
the output. We call this model R-LSTM. Note that LSTM and R-LSTM differ
only in the input vector. We shall demonstrate in Sect. 6 that R-LSTM indeed
performs better than LSTM.

4.2 Combine Classification Model

Combine Leverages Ensemble Learning. The idea is to first generate multiple
learners, then combine them with some integration strategies, and finally gener-
ate the output. The theoretical basis of ensemble learning is that strong learners
and weak learners are equivalent, so we can find ways to convert weak learners
into strong learners instead of having to directly search for strong learners that
are hard to find. Take the binary classification problem as an example. Assume
that there are N independent classifiers with an error rate of p. Using a sim-
ple voting method to combine all the classifiers, the error rate of the integrated
classifier is Perror =

∑N/2
k=0 Ck

N (1 − p)kpN−k. It can be seen from the equation
that when p < 0.5, the error rate Perror decreases as N increases. If the error
rate of each classifier is less than 0.5 and they are independent of each other,
the more the number of classifiers is, the smaller the Perror will be. When N is
infinite, the Perror is 0. In addition, the ensemble model works well when these
weak classifiers perform well individually and have different features.

Since R-LSTM performs better than LSTM, we decide to combine R-LSTM,
Slice, and NN through ensemble learning. As the features of these three classifiers
are distinct to each other, the ensemble model may work well. After completing

Fig. 6. Architecture of the combine model.

WebQMon.ai 115

the training of the three basic models, we combine them using fully connected
neural networks. As shown in Fig. 6, based on binary classification, the predicted
values of the three models are combined into a six-dimensional vector as the input
variable of the fully connected neural networks.

4.3 Feature and Algorithm Selection

For the fully connected neural networks, we assume that all inputs are relatively
independent of each other. In contrast, the idea behind LSTM neural networks
is to make use of sequential correlated information. The models are designed to
take advantage of the different input variables. For example, TVS is used for
Slice while CTV is used for NN. The input variables for LSTM and R-LSTM are
derived from CTV, with the earlier input related to the latter input. The other
three models does not have this property and thus can take a simple approach
using the fully connected neural networks. Combine aims to take advantage of
the other models for better performance.

All these models are data-driven methods, which means that we can update
our models with new data in a timely manner on a regular basis. The real-
time ability of these methods allows ISPs and equipment vendors to assess user
experience on the fly and take actions if necessary.

5 Implementation and Experimental Settings

5.1 Dataset Collection

Data Collection. Our experiments took place from September 2020 to Febru-
ary 2021 in a laboratory. The hardware was equipped with i5-8600K CPU
and GTX 1070Ti. We selected three websites to visit, that is, “amazon.com”,
“sina.com.cn”, ranked the eighth and the nineteenth, respectively, in Alexa Traf-
fic Rank, and “youku.com.cn,” which represent widely used shopping, news and
video sites. For simplicity, we will use Amazon, Sina and Youku to refer to these
websites. Our data was obtained by visiting the homepage of the website. Note
that the homepage is the most popular, diverse and dynamic page and its con-
tent changes over the months of the sampling period. Being able to classify the
homepage of the three different types of websites is a challenge. We collected the
packets arriving within 60 s after the user visited the website. Then, we got the
TVS and the CTV from these packets and labeled this sample of TVS or CTV
in time series according to the estimated ATF. We used Dummynet to create a
bottleneck to control the network condition and construct samples with differ-
ent labels accordingly. There were already mature plugins for the aggregation of
packets belonging to the same visit. Traffic aggregation was implemented by the
Firefox browser.

Data Labeling. We evaluate the performance of Slice, NN, LSTM, R-LSTM
and Combine to predict ATF using the collected dataset. Our experiments have
two parts: binary classification and ternary classification. We adjust the network

116 E. Song et al.

condition through Dummynet to ensure that the ATF meets our requirements,
measured by the chrome plugins released in [6]. We then label the data according
to the estimated ATF using the following rules based on Akamai’s research on
customer behaviours, 2 s being the psychological threshold [1]:

Binary : label =
{

0, ATF ≤ 2 s
1, ATF > 2 s

; Ternary : label =

⎧
⎨

⎩

0, ATF ≤ 2 s
1, 2 s < ATF ≤ 5 s
2, ATF > 5 s

(1)
We use a simple one-to-one correspondence to map ATF to QoE, which could

be implemented through a mapping function [7]. For binary classification, “0”
represents good UE, and “1” represents poor UE. For ternary classification, “0”
means good UE, “1” means poor UE, and “2” means terrible UE.

Dataset. For binary classification, we collected about 16,000, 16,000, 8,000
samples from Sina, Amazon and Youku, respectively, of which the proportion
of positive and negative samples was 1:1. This balanced split is for the purpose
of learning, to ensure that the models learn both positive and negative cases.
In reality the occurrence of positive cases is much less common than that of
negative cases. However, only positive cases are of interest to ISPs and vendors.
For ternary classification, we only got extra 6,000 samples from Sina due to being
blocked later on. The proportion of “0”, “1” and “2” samples was 4:4:3. 70% of
the samples are used as the training dataset with the rest as the test dataset.
Since most websites have a mechanism against crawling, this prevents us from
frequently refreshing the same web page. For example, when we collected data
from Amazon, it always required to provide a verification code. This made it
extremely difficult to create a larger dataset. We believe that the amount of
available data can demonstrate the feasibility of the model to a certain extent,
and the three websites represent the typical scenarios of web browsing activities.
For a certain website, different models share the same training and test dataset,
ensuring that the results are not affected by how the dataset is split. We use the
training dataset to train each model separately, that is, we train five models for
each of the test websites, for a total of 15 models.

5.2 Model Parameters

Parameter Setting. The parameters common to all models are: number of
iterations = 100,000, learning rate = 0.003, and batch size =128. These param-

Table 1. Other model parameters.

No. of

input units

No. of

hidden units

No. of

hidden layers

Slice 60 480 2

NN 5 40 2

R-/LSTM 100 256 1

Combine 6 48 2

Table 2. Dropout effect.

No

Dropout

Pkeep

of 80%

Accuracy 0.9425 0.9495

Precision 0.9569 0.97

Recall 0.9512 0.9489

F1 score 0.954 0.9593

WebQMon.ai 117

eters were chosen to achieve the highest accuracy on the validation set. Other
parameters are shown in the Table 1. The Number of input units is the dimension
of the input variable, while the Number of hidden units is the number of neurons
in the hidden layer. The Number of hidden layers is the number of the network
layers between input and output layers. The classic “trial-and-error” method
was used for creating neural network layers. It was a simple process with several
iterations. There was no need to readjust the parameters and it worked well
across all the three web sites, indicating the ease of parameter selection. It also
shows that all the five models have a simple lightweight architecture.

Overfitting and Dropout. In machine learning, overfitting may occur when
a model corresponds too closely or exactly to the training data and thus may
fail to fit the test data or predict reliably. Dropout regularization is one of the
popular techniques to avoid overfitting, which helps make the model globally
fit. As shown in Sect. 6, the Slice model is overfitting. Dropout is applied by
deactivating a portion of neurons at the training time. Pkeep represents the
portion of active neurons. After tests on the validation set, we found that the
Slice model had the best performance with Pkeep set to 80%.

6 Experimental Results

Accuracy, precision, recall and F1 score are commonly used performance metrics.
In a real-world scenario, the chance to have an unsatisfactory ATF (positive) is
small. Accuracy can be misleading for imbalanced data sets, e.g., small portion
of positives vs large portion of negatives. Precision represents true positives per
predicted positive while recall represents true positives per real positive. As recall
increases, precision may drop, and vice versa. F1 score is the harmonic mean of
precision and recall. A high F1 score indicates a good balance between the two.
As we have a focus on positive cases and the number of negatives is unknown and
large, this makes the latter three metrics particularly suitable in our evaluation.
Equation (1) shows the label of our data. For binary classification, label with
“1” is the positive instance and label with “0” is the negative instance. For
ternary classification, each category is treated as a positive class for calculating
the values of the metrics. The test dataset is used to predict labels. The predicted
label is compared to the actual label, which serves as the ground truth.

118 E. Song et al.

Fig. 7. Without dropout regularization vs. Pkeep of 80%.

6.1 Basic Models

Dropout Effect on Slice. Figure 7 compares the results with and without
dropout regularization (Pkeep set to 80%). It shows that the Slice model is indeed
overfitting. Figures 7(a) and 7(b) show the loss functions measuring the incon-
sistency between the predicted value and the actual label against the number of
training epochs. The loss functions decrease as the number of epochs increases.
Without dropout (Fig. 7(a)), the loss function of the test dataset is not as small
as that of the training dataset, and this gap does not decrease as the number of
epochs increases. This is an indication of overfitting. With dropout (Fig. 7(b)),
the loss function of the training and test datasets matches each other very well.
Similarly, Fig. 7(c) and 7(d) show the accuracy performance of the model against
the number of epochs. The accuracy improves as the number of epochs increases.

Fig. 8. Accuracy comparison (LSTM vs
R-LSTM).

Fig. 9. Training and test time compari-
son (Amazon).

WebQMon.ai 119

Without dropout (Fig. 7(c)), the accuracy of the test dataset does not match the
accuracy of the training dataset, which reaches 100%, and the gap is not nar-
rowed as the number of epochs increases. The model fits the training dataset
well but fails to fit the test dataset. This indicates that the Slice model is indeed
overfitting. With dropout (Fig. 7(d)), the accuracy of the training and the test
datasets matches each other closely. Although dropout reduces the accuracy of
the training dataset, it helps improve the accuracy of the test dataset.

Table 2 shows that, with dropout regularization, the accuracy, precision and
F1 score of the model slightly increase but the recall decreases a little bit. Note
that precision and recall are mutually influential (true positives per predicted
positive vs per real positive). True positives are usually achieved at the cost of
false positives. A high recall may come with a low precision, and vice versa [8].
Ideally, we want to keep both precision and recall high, to ensure that the posi-
tives are true positives without any missing positives. A high F1 score (as shown
in Table 2) indicates a good balance between the two. Based on these results,
we can conclude that dropout regularization improves the performance of Slice.
Dropout is applied to Slice in the later experiments.

LSTM vs R-LSTM. We will now demonstrate that the improved LSTM
model, R-LSTM, has better performance. Figure 8 shows the prediction accu-
racy by LSTM and R-LSTM against the number of training epochs for the three
test websites. It shows that the model converges much faster with R-LSTM at
roughly epoch 50 for both Sina and Amazon. With LSTM, the model converges
at roughly epochs 150 and 600, for Sina and Amazon, respectively. For Youku,
R-LSTM has much higher accuracy than LSTM, roughly 97% vs. 75%. Based
on these results, we believe that reversing the input variables can significantly
improve convergence time as well as accuracy, depending on the type of web
content. In later experiments, we will use R-LSTM instead of LSTM.

Performance. Table 3 shows the performance of the models for binary clas-
sification on accuracy, precision, recall, and F1 score. The data volumes of the
test datasets for Amazon, Sina, and Youku are approximately 4,800, 4,800, 2,400
samples (30% of the dataset), respectively. The results suggest that for Amazon
and Sina, the three models work remarkably well on ATF prediction. The per-
formance on all the metrics is close to 1. There are fewer than five prediction
errors for Amazon and Sina. For Youku, the performance is less impressive. The

Table 3. ATF prediction performance comparison.

Amazon Sina Youku

Slice NN R-LSTM Slice NN R-LSTM Slice NN R-LSTM

Accuracy 0.9991 0.9991 0.9995 0.9988 0.9986 0.9983 0.9466 0.9536 0.9684

Precision 1 0.9996 1 0.9992 0.9987 0.9987 0.9642 0.9674 0.9789

Recall 0.9984 0.9988 0.9992 0.9983 0.9983 0.9979 0.9501 0.9583 0.9690

F1 score 0.9992 0.9992 0.9996 0.9987 0.9985 0.9983 0.9571 0.9628 0.9739

120 E. Song et al.

Table 4. Performance comparison with
combine on Youku.

R-LSTM Slice NN Combine

Accuracy 0.9546 0.9546 0.9546 0.9693

Precision 0.9899 0.9728 0.9765 0.9826

Recall 0.939 0.9561 0.9523 0.9695

F1 score 0.9638 0.9644 0.9643 0.976

Table 5. Performance for ternary classi-
fication.

R-LSTM Slice NN Combine

... 0.9439 0.9109 0.8607 0.9518

... 0.941 0.891 0.828 0.941

... 0.9192 0.8907 0.8299 0.9452

... 0.9281 0.8908 0.8289 0.943

values of the performance metrics vary between 0.94 and 0.98. Since Youku is
a video site, there are a lot of dynamically loaded content on its home page.
Therefore, regardless of the network conditions, the diversity of the content (or
the dataset) on its home page is a challenge to classification and thus reduces
the accuracy. Within the 2,400 samples, there are about 100 prediction errors,
an error rate roughly between 2% to 6%. Among the three models, R-LSTM
appears to be the best performer on Youku.

Training and Test Time. Figure 9 shows the training and test time of the
three models on Amazon. The data volume of the training and test datasets are
about 11,200 and 4,800 samples, respectively. It shows that the training time of
R-LSTM is much higher than that of the other two models. The training time of
LSTM depends on the number of iterations, which is 100 in our model. Therefore,
backpropagation of LSTM needs to be performed 100 times per training batch. In
contrast, Slice and NN use fully connected neural networks as the classifier, which
requires only one backpropagation per training batch. As a result, the training
time of LSTM is much longer than that of Slice and NN. For test time, it is a
similar situation. The forward propagation of LSTM requires 100 executions to
generate an output, but the forward propagation of the fully connected neural
network only needs to be performed once to generate an output. The time it takes
R-LSTM to complete 4,800 predictions is much longer than it takes Slice and
NN. However, as backpropagation is only needed for training, not for prediction,
the gap between LSTM and NN/Slice on test time is much smaller than on
training time. The time required for the three models to predict 4,800 samples
is about 0.7 s, 0.08 s, and 0.07 s, respectively. It confirms the possibility of using
our model to assess the user’s QoE in real-time.

6.2 Combine

Ensemble Learning. We combine the trained Slice, NN, and R-LSTM through
a fully connected neural network to generate a new model, Combine. The three
basic models were trained using the 70% of the total dataset as the training
dataset and were able to predict with few errors. If we reuse the 70% for Combine,
the inputs and the labels are likely to be the same or similar, making the training
no longer meaningful. Therefore, Combine uses the remaining 30% as its training
and test datasets. We still use 70:30 split of the dataset for training and testing.
It is observed that all models perform very well on Amazon and Sina with no
much difference, although Combine performs the best with no prediction errors

WebQMon.ai 121

at all. The advantage of Combine is getting clearer on Youku. Table 4 shows
Combine’s performance on Youku in comparison with the other models. The
performance of all models is not as great, because of the highly dynamic content
on Youku’s home page. However, Combine still performs the best on accuracy,
recall and F1 score, and only behind R-LSTM on precision. This motivates us to
further explore the effectiveness of ensemble learning on ternary classification.

Ternary Classification. Table 5 shows the performance on the test dataset.
The precision, recall, and F1 score here are established as follows: an initial value
of the metrics is obtained for each of the three QoE categories as a binary clas-
sification problem, and then a weighted average across the three QoE categories
is calculated, which becomes the value of the metrics shown in Table 5. It shows
that the performance of the models is substantially degraded for ternary classi-
fication. This is expected because of the finer granularity of the QoE. R-LSTM
is the best performer among the three basic models, with the values of the met-
rics ranging from 0.919 to 0.941. NN is the worst, with F1 score of only 0.8289.
The features used by NN do not describe well the differences between categories
“1” and “2”. Also as stated in Sect. 4, NN’s inputs are not as independent
as assumed. In contrast, R-LSTM performs well because the accumulated data
makes the input statistically significant, which facilitates classification. Slice sits
in the middle, with the values of the metrics varying slightly around 0.90.

Combine performs the best across all the metrics, with their values all greater
than 0.94. Through ensemble learning, we use three weak classifiers to form a
strong classifier, making the model well suited for ternary classification.

6.3 Summary

WebQMon.ai can predict ATF well when users visit the websites, whether it is a
binary or ternary classification problem. R-LSTM performs the best among the
three basic models, but it takes the longest time to train and predict. Slice is
more balanced, having a reasonable performance with the shortest training and
prediction time. NN requires a short time to train and predict but has the worst
performance. Combine performs the best through ensemble learning. However,
since the model needs to use the results of the three basic models, it has the
longest training and prediction time. Furthermore, we collected data for four
months, during which the content of the websites changed greatly. Nonetheless,
our model still predicts ATF well, which proves that the model can be updated
by new data to accommodate changes in website content. It would be difficult
to do this through threshold settings or mathematical formulations. In addition,
the trained model takes up very little storage space, a minimum of 80KB and a
maximum of 6MB. WebQMon.ai only requires the referer from the application
layer, making it possible to deploy on edge routers.

7 Discussion

HTTP vs HTTPS. In contrast to current work, WebQMon.ai minimizes the
use of application layer data — it only needs the referer to aggregate the traffic

122 E. Song et al.

associated with a page. This is under the assumption that the content associated
with a page may be sourced from other sites. Nevertheless, if we are only inter-
ested in the content from a particular site, WebQMon.ai does not need access to
application data at all. The limitation is that WebQMon.ai would not be able to
predict page-based QoE, as the objects of the page may be from different sites.
However, it can still provide a QoE assessment for the content from a particular
site. This is of great value to content providers as well as ISPs.

Placement. Predicting web-browsing QoE on the client-side usually occupies
user network bandwidth and needs the user to cooperate and install specific
software. It may provide the best possible prediction accuracy, but it is also the
most costly choice. If deployed on the server-side, it may work for the websites
who have the budget to do so. However, from the client’s point of view, this may
result in the least accurate prediction, and the prediction is limited to a specific
site. In contrast, WebQMon.ai can be deployed on edge routers/gateways, and
thus is transparent to the server and the client. In some scenarios, WebQMon.ai
may not be able to achieve the prediction as accurate as some client-based solu-
tions. But it can still achieve a high level of accuracy, and more importantly,
without the client-side constraints. WebQMon.ai has access to all the websites
that ISP’s clients are interested in. This enables close collaboration between ISPs
and content providers to serve their clients.

Versatility and Real-time. WebQMon.ai is powered by a data-driven model,
which is easy to update and apply for all websites with different types of content.
It can be updated on a regular basis as long as there is new data, that is,
WebQMon.ai has the ability to learn and adjust to the new context. Current
solutions that rely on empirical threshold settings or mathematical formulations
are usually designed specifically to a certain site, limiting their applicability
for other sites. In addition, WebQMon.ai only needs to use lightweight neural
networks to achieve a high level of accuracy. This demonstrates not only that
WeQMon.ai can get updated quickly and work in a real-time fashion, but also
the practical applicability of machine learning in this field.

Fine-Grained ATF Prediction. WebQMon.ai can handle very well binary
and ternary classifications, which are common cases for QoE prediction. How-
ever, as the granularity of QoE classification increases, the performance of
WebQMon.ai deteriorates. At some stage, finer-grained ATF prediction may be
required, which can be done through addressing the regression problem. The
mapping from ATF to QoE can then be done through Mean Opinion Score
(MOS) [7]. We can imagine this would improve the performance at the cost of
training and test latency, due to the complexity of the model.

8 Conclusion

In this paper, we present WebQMon.ai to predict web-browsing QoE. WebQ-
Mon.ai relies on packet-level measurements without deeply parsing the packet

WebQMon.ai 123

payload, and thus can be deployed on edge routers/gateways instead of end
hosts. WebQMon.ai is data-driven, empowered by lightweight supervised learn-
ing methods, which enables the system to learn and adapt to new contents in
a timely manner. WebQMon.ai works very well for binary and ternary classi-
fication based QoE prediction, achieving a high level of accuracy in real-time.
Furthermore, we demonstrate the potential and feasibility of machine learning
methods in web-browsing QoE assessment.

References

1. Akamai research. https://www.akamai.com/us/en/about/news/press/2009-press/
akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-
web-page-response-times.jsp/. Accessed 2020

2. Webqmon.ai. https://github.com/songng/WebQMon.ai/. Accessed 2022
3. Caruana, A.: Service loyalty: the effects of service quality and the mediating role

of customer satisfaction. Eur. J. Mark. 36(7/8), 811–828 (2002)
4. Casas, P., Seufert, M., Schatz, R.: Youqmon: a system for on-line monitoring of

YouTube QoE in operational 3g networks. ACM SIGMETRICS Perform. Eval.
Rev. 41(2), 44–46 (2013)

5. Chen, X., et al.: Reinforcement learning based QoS/QoE-aware service function
chaining in software-driven 5g slices. Trans. Emerg. Telecommun. Technol. 29,
e3477- (2018)

6. Da Hora, D., Rossi, D., Christophides, V., Teixeira, R.: A practical method for
measuring web above-the-fold time. In: Proceedings of the ACM SIGCOMM 2018
Conference on Posters and Demos, pp. 105–107. ACM (2018)

7. Da Hora, D.N., Asrese, A.S., Christophides, V., Teixeira, R., Rossi, D.: Narrowing
the gap between QoS Metrics and Web QoE using above-the-fold metrics. In:
Beverly, R., Smaragdakis, G., Feldmann, A. (eds.) PAM 2018. LNCS, vol. 10771,
pp. 31–43. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76481-8 3

8. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Proceedings of the ICML 2006, pp. 233–240. ACM (2006)

9. Dey, P., Ahammad, P., et al.: Perceived performance of top retail webpages in the
wild. ACM SIGCOMM Comput. Commun. Rev. 47(5), 42–47 (2017)

10. Gutterman, C., et al.: ReqUet: real-time QoE detection for encrypted YouTube
traffic. In: Proceedings of the 10th ACM Multimedia Systems Conference, pp. 48–
59 (2019)

11. Hoßfeld, T., Metzger, F., Rossi, D.: Speed index: Relating the industrial standard
for user perceived web performance to web QoE. In: 2018 Tenth International
Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2018)

12. Huet, A., Houidi, Z.B., Mathieu, B., Rossi, D.: Detecting degradation of web brows-
ing quality of experience. In: CNSM 2020, pp. 1–7. IEEE (2020)

13. Saverimoutou, A., Mathieu, B., Vaton, S.: A 6-month analysis of factors impacting
web browsing quality for QoE prediction. Comput. Netw. 164, 106905 (2019)

14. Seufert, M., Wehner, N., Wieser, V., Casas, P., Capdehourat, G.: Mind the (QoE)
gap: On the incompatibility of web and video QoE models in the wild. In: CNSM
2020, pp. 1–5. IEEE (2020)

15. Singh, V., Bharti, S., Pathak, V., Sengar, A., Singh, T., Goswami, M.: On domi-
nant characteristics of residential broadband internet traffic. In: ACM SIGCOMM
Conference on Internet Measurement (2009)

https://www.akamai.com/us/en/about/news/press/2009-press/akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-web-page-response-times.jsp/
https://www.akamai.com/us/en/about/news/press/2009-press/akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-web-page-response-times.jsp/
https://www.akamai.com/us/en/about/news/press/2009-press/akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-web-page-response-times.jsp/
https://github.com/songng/WebQMon.ai/
https://doi.org/10.1007/978-3-319-76481-8_3

124 E. Song et al.

16. Subramanian, M., Ye, E., Korlipara, R., Smith, F.: Techniques for measuring
above-the-fold page rendering, US Patent 8,812,648, 19 Aug 2014

17. Varvello, M., Blackburn, J., Naylor, D., Papagiannaki, K.: EYEORG: a platform
for crowdsourcing web quality of experience measurements. In: Proceedings of the
CoNEXT 2016, pp. 399–412. ACM (2016)

Temporal-Aware QoS Prediction
via Dynamic Graph Neural Collaborative

Learning

Shengxiang Hu1, Guobing Zou1(B), Bofeng Zhang2,3, Shaogang Wu1,
Shiyi Lin1, Yanglan Gan4, and Yixin Chen5

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
{shengxianghu,gbzou}@shu.edu.cn

2 School of Computer and Information Engineering, Shanghai Polytechnic
University, Shanghai, China

bfzhang@sspu.edu.cn
3 School of Computer Science and Technology, Kashi University, Xinjiang, China

4 School of Computer Science and Technology, Donghua University, Shanghai, China
ylgan@dhu.edu.cn

5 Department of Computer Science and Engineering, Washington University
in St. Louis, St. Louis, MO 63130, USA

chen@cse.wustl.edu

Abstract. How to effectively predict missing QoS has become a fun-
damental research issue for service-oriented downstream tasks. However,
most QoS prediction approaches omit high-order implicit invocation cor-
relations and collaborative relationships among users and services. Thus,
they are incapable of effectively learning the temporally evolutionary
characteristics of user-service invocations from historical QoS records,
which significantly affects the performance of QoS prediction. To address
the issue, we propose a novel framework for temporal-aware QoS pre-
diction by dynamic graph neural collaborative learning. Dynamic user-
service invocation graph and graph convolutional network are combined
to model user-service historical temporal interactions and extract latent
features of users and services at each time slice, while a multi-layer GRU
is applied for mining temporal feature evolution pattern across multiple
time slices, leading to temporal-aware QoS prediction. The experimen-
tal results indicate that our proposed approach for temporal-aware QoS
prediction significantly outperforms state-of-the-art competing methods.

Keywords: Web service · Temporal-aware QoS prediction · Dynamic
user-service invocation graph · Graph convolutional network · Latent
feature extraction

1 Introduction

With the rapid advancements of Internet technology, service-oriented architec-
ture (SOA) has been widely used in real-world applications. As one of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 125–133, 2022.
https://doi.org/10.1007/978-3-031-20984-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_8

126 S. Hu et al.

key implementation techniques of SOA, web services have extremely promoted
interoperatable machine-to-machine interactions. However, many services sup-
ply users with analogous functionalities. Quality of Service (QoS) [11] is applied
to represent the non-functional characteristics of web services and differentiate
those functionally equivalent ones. Because of the enormous number of users
and services, it is impractical and time-consuming for users to invoke all web
services and record the corresponding QoS values in the constantly changing net-
work environment. Thus, it is of vital importance to precisely perform temporal-
aware QoS prediction, which has become a challenging issue due to the sparsity
of historical user-service invocations across multiple time slices in real scenarios.

Some recent investigations concentrate on collaborative filtering (CF) and
neural network-based approaches for temporal-aware QoS prediction. They gen-
erally compose a sequence of QoS invocation matrices from different consecutive
time slices, and extract the features of users and services at each time slice, then
apply deep learning techniques, such as gate recurrent unit (GRU) [3] and long
short-term memory (LSTM) [7], to learn the evolution pattern of QoS across
multiple time slices. However, they mainly characterize a user in terms of those
directly invoked services or a service in terms of those users who have directly
invoked the service, without the consideration of high-order implicit invocation
correlations between users and services through indirect interactions as well as
the high-order collaborative relationships between similar users or services. Due
to the lack of the extraction of high-order latent features that are hidden in the
user-service interactions, it is still difficult in effectively encoding latent features
of users and services, yielding to low accuracy of temporal-aware QoS prediction.

To address the issues, inspired by the developments of graph and Graph
Convolutional Networks (GCNs) [2], we propose a novel framework for temporal-
aware QoS prediction by dynamic graph neural collaborative learning. First, we
formulate user-service historical QoS interactions as a temporal-aware service
ecosystem, which is transformed into a dynamic user-service invocation graph
across multiple time slices. Then, a GCN-based [2] graph neural collaborative
feature extractor is learned to extract high-order latent features of users and ser-
vices at each time slice, taking into account both indirect user-service invocation
correlations and collaborative relationships by similar users or services. Finally,
a multi-layer GRU [3] is applied for mining temporal feature evolution pattern
across multiple time slices, leading to temporal-aware QoS prediction. To eval-
uate the effectiveness of our proposed approach for temporal-aware QoS predic-
tion, extensive experiments are conducted on a large-scale real-world dataset. By
comparing with several state-of-the-art baselines, experimental results demon-
strate that our proposed approach receives the best prediction performance in
multiple evaluation metrics. The main contributions of this paper are summa-
rized as follows:

– We propose a novel dynamic graph neural collaborative learning framework
for temporal-aware QoS prediction. It can more effectively reveal user-service
invocation features at each time slice and mine temporal feature evolution
pattern across multiple time slices for better QoS prediction.

Temporal-Aware QoS Prediction 127

Graph Neural
Collaborative Service

Feature Extractor

Temporal-aware QoS
Predic�on

Invoca�on
Feature

Extrac�on

Feature
Concatena�on

User/Service
Feature

Extrac�on...

Dynamic User-Service
Invoca�on

Graph Modeling

High-order Latent
Feature Extrac�on

User-Service
Temporal Feature
Evolu�on Mining

GRU

GRU
Cell

...

GRU

GRU
Cell

...

Graph Neural
Collaborative User
Feature Extractor

||

Fig. 1. The overall framework of our proposed approach.

– We propose a novel approach for extracting high-order latent features of a user
and service by dynamic user-service invocation graph modeling and graph
convolutional network learning. Compared to the existing approaches, the
advantage is that we can more deeply reveal the latent features of users and
services, with the consideration of both high-order user-service invocation
correlations and collaborative relationships by similar neighborhoods.

– Extensive experiments are conducted on a large-scale real-world QoS dataset,
and the results indicate that our approach receives superior performance for
temporal-aware QoS prediction compared with baseline approaches.

The remainder of this paper is structured as follows. Section 2 elaborates the
proposed approach. Section 3 shows and analyzes experimental results. Finally,
Sect. 4 concludes the paper and discusses future work.

2 Approach

The overall framework of our proposed approach is illustrated in Fig. 1. It mainly
consists of four stages, including dynamic user-service invocation graph model-
ing, high-order latent feature extraction, user-service temporal feature evolution
mining, and temporal-aware QoS prediction.

2.1 Dynamic User-Service Invocation Graph Modeling

A temporal-aware service ecosystem can be formulated as ξ =< U,S, T,R >,
where there are n users U = {ui}ni=1, m web services S = {si}mi=1, t time

128 S. Hu et al.

slices T = {1, 2, . . . , t}, and a sequence of corresponding historical QoS matrix
R = {Ri ∈ �n×m}ti=1, rtij ∈ Rt indicates the corresponding QoS value when a
user ui ∈ U invokes a service sj ∈ S at time t. To model the high-order implicit
invocation correlations and collaborative relationships among users and services,
we transform ξ into a dynamic user-service invocation graph G = {Gi}ti=1. Each
snapshot Gt =< Vu, Vs, E

t,W t > is transformed from ξt =< U,S, t, Rt > at
time slice t. Here, Vu = {ui}ni=1 is a set of n user vertices; Vs = {si}mi=1 is a set
of m service vertices; Et is a set of edges that represents user-service invocation
relationships. If rtij ∈ Rt, there exists an edge etij = etji ∈ Et between ui ∈ Vu

and sj ∈ Vs; W t is a set of edge weights. If etij ∈ Et, there exists a corresponding
weight wt

ij ∈ W t, which can be converted from rtij ∈ Rt.
The edge weight wt ∈ W t measures the strength of the connection, i.e. the

invocation relationship, between a user vertex and a service vertex at time slice
t. Generally, a lower value implies a higher QoS under a negative QoS criteria,
such as response time. It is observed that most of real QoS values are clustered
around a certain value for a QoS criterion, but there are also a small number of
outliers that may influence model training deviating from expectations. In order
to ensure robustness of our proposed model, we further convert the original QoS
value rtij to a normalized range as the corresponding edge weight wt

ij . By taking
into account both the distribution characteristics of QoS values and practical
observations, a heuristic conversion function is designed to project rtij to wt

ij

under a negative QoS criterion. It is expressed as follows:

wt
ij =

⎧
⎨

⎩

exp(rtij)−exp(−1/rtij)

exp(1/rtij)+exp(−1/rtij)
if rtij > 1

1
exp(rtij)

− 1
e + exp(2)−1

exp(2)+1 otherwise
(1)

where wt
ij denotes the associated weight for edge etij ∈ Et. By using the con-

version function, we project all of the QoS values to their corresponding edge
weights for each time slice t ∈ T . Thus, the dynamic user-service invocation
graph G can be generated, which is used to extract high-order latent features of
users and services at each time slice.

2.2 High-Order Latent Feature Extraction of Users and Services

Based on G, we extract the high-order latent feature of a target user u and service
s at each time slice. We initially represent u and s with a randomized feature
vector xu ∈ �d and xs ∈ �d, respectively, where d specifies the dimension of
the feature vector. It is intuitive that a user’s feature can be partially reflected
by the directly invoked services and indirectly characterized by the non-adjacent
user and service neighbors. It can be performed by a multi-layer recursive way in
a user-service invocation graph Gt at each time slice t. Analogously, we can also
extract a service’s latent feature with the consideration of user-service invocation
correlations and collaborative relationships among services.

Here, we leverage the GCN’s [2] message passing mechanism to capture high-
order latent features of users (services) along the structure of Gt. The procedure

Temporal-Aware QoS Prediction 129

High-order
User Latent

Feature

...

Fig. 2. High-order user latent feature extraction by graph neural collaborative feature
extractor.

of high-order user latent feature extraction by graph neural collaborative feature
extractor is illustrated in Fig. 2. which applies a recursive way of message prop-
agation and aggregation. More specifically, N t

u ⊆ Vs denotes the set of adjacent
service vertices that are directly connected to u in Gt, i.e., the first-hop service
neighbors of u at time slice t. In such case, for each service s′ ∈ N t

u, the message
mt

u←s′ propagated from s′ to u is calculated as follows:

mt
u←s′ =

exp(wt
us′)

∑
i∈N t

u
exp(wt

ui)
W 1xs′ (2)

where W 1 ∈ �d×d is a trainable weight matrix, and wt
us′ denotes the weight

associated with edge etus′ . With a larger wt
us′ , more messages are retained and s′

contributes more to u’s high-order latent feature. Following that, we aggregate
messages from all of the u’s first-hop neighbors in message aggregation:

xt
u = xu (3)

(xt
u)1 = α(xt

u +
∑

s′∈N t
u

mt
u←s′) (4)

where (xt
u)1 signifies the representation of u that aggregates first-order messages,

which implies the behavioral features embodied by the directly invoked services,
α is the activation function. By stacking lgcn message-passing procedures, we
can aggregate messages from lgcn-hop user and service neighbors, leading to
the high-order connectivity characteristics of u. These heuristic information can
strengthen the feature representation of a user by the latent invocation corre-
lations between u and non-invoked services, as well as the latent collaborative
relationships of the user neighbors who are structurally nearby vertices of u. The
recursive aggregation of user representation can be expressed as:

(mt
u←s′)lgcn−1 =

exp(wt
us′)

∑
i∈N t

u
exp(wt

ui)
W lgcn(xt

s′)lgcn−1 (5)

(xt
u)lgcn = α(xt

u +
∑

s′∈N t
u

(mt
u←s′)lgcn−1) (6)

130 S. Hu et al.

where W lgcn is the trainable weight for the lgcn-th layer message propagation.
Through lgcn-layers message passing, we obtain a series of user representa-

tions xt
u, (xt

u)1, . . . , (xt
u)lgcn , which aggregates the user-service invocation corre-

lations and collaborative relationships of users or services among different hops
around the center of u. They are fused by a one-dimensional convolution layer
to generate the high-order latent feature of u as follows:

(xt
u)∗

i =
lgcn∑

j=0

ωj(Xt
u)i,j , i ∈ [0, d) (7)

where (xt
u)∗ ∈ �d is the extracted high-order latent feature of u, ω ∈ �lgcn+1

denotes the convolution kernel, Xt
u ∈ �d×(lgcn+1) is the matrix of combining

(lgcn + 1) user representations xt
u, (xt

u)1, . . . , (xt
u)lgcn . It is important to note

that the procedure for extracting the high-order latent feature (xt
s)

∗ of a target
service s is identical to the one of u.

Based on the high-order latent features of (xt
u)∗ and (xt

s)
∗, they are concate-

nated as a whole that is fed into a lm-layer multi-layer perceptron (MLP) to
obtain the invocation feature ht

lm
of u and s at time slice t. Consequently, ht

lm
is used for mining temporal feature evolution between u and s.

2.3 User-Service Temporal Feature Evolution Mining

To reveal the evolution pattern of the user-service invocation features across
multiple time slices, we mine the hidden temporal nonlinear relationship by a
multi-layer GRU [3]. Given a set of extracted invocation features Hk = {ht−k+1

lm
,

ht−k+2
lm

, . . . , ht
lm

} of a current u and a target service s across k consecutive time
slices, the hidden state of GRU layer can be calculated as follows:

zt = σ(Wz · [h′t−1||ht
lm]) (8)

rt = σ(Wr · [h′t−1||ht
lm]) (9)

ŝt = tanh(W · [(rt � h′t−1)||ht
lm]) (10)

h′t = (1 − zt) � h′t−1 + zt � ŝt (11)

where Wz,Wr,W are the trainable weight matrices, d′ is the dimension of the
GRU layer’s output, and � represents element-wise product. Due to traditional
GRU is a shallow model with limited capacity to extract deep implicit features,
we stack lgru GRU layers. The hidden output of last GRU layer h′t

lgru ∈ �d′
is

used as the evolutionary invocation feature for temporal-aware QoS prediction.

2.4 Temporal-Aware QoS Prediction

Based on the evolutionary invocation feature of a current user u and target
service s, we can predict the missing QoS r̂t+1

us at time slice t + 1, by a fully-
connected neural network. The output layer is calculated as:

r̂t+1
us = ReLU(Woh

′t
lgru + bo) (12)

Temporal-Aware QoS Prediction 131

where Wo is a trainable weight matrix, bo is a offset item, and r̂t+1
us is the pre-

dicted QoS when a current user u invokes a target service s at time slice t + 1.
To train and optimize the model parameters, we take Mean Square Error as the
loss that is defined as:

Loss =
∑

u∈U

∑
s∈S(r̂t+1

us − rt+1
us)2

n × m
+ λ ‖Θ‖22 (13)

where U, S represent the user and service set, respectively, and |U | = n, |S| = m.
Θ is all the trainable parameters of our proposed model, λ controls the L2
regularization strength to prevent overfitting. We adopt mini-batch AdamW [4]
to update and optimize the parameters.

Table 1. Results of temporal-aware QoS prediction among competing approaches.

Density MAE RMSE

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

UPCC 0.946 1.209 1.107 1.006 1.908 1.778 1.720 1.683

IPCC 1.135 1.041 0.994 0.989 2.255 1.867 1.795 1.795

WSRec 0.807 0.578 0.967 0.758 1.917 1.328 2.407 1.733

WSPred 0.781 0.689 0.673 0.663 1.707 1.633 1.608 1.593

PNCF 1.165 1.089 1.043 1.013 1.836 1.722 1.653 1.617

RNCF 1.048 1.010 0.974 0.958 1.616 1.546 1.503 1.470

TUIPCC 0.731 0.576 0.819 0.697 1.776 1.207 2.059 1.635

Ours 0.574 0.526 0.489 0.462 1.284 1.193 1.158 1.123

Gains 22.5% 8.7% 27.4% 30.4% 20.6% 1.2% 23.6% 23.5%

3 Experiments

3.1 Dataset

To validate the effectiveness of the proposed approach, we conduct extensive
experiments on a large-scale real-world web service QoS dataset called WS-
DREAM1, which has been widely used in service computing for QoS prediction.
WS-DREAM employed 142 distributed PlanetLab computers (i.e. users) located
across 22 countries, to monitor a total of 4,500 publicly accessible real-world web
services from 57 countries continuously in 64 different time slices at 15-minute
interval. And a total of 27,392,643 detailed response-time values ranging from
0 s to 20 s are collected as the sub-dataset rtdata [11], on which our experiments
are extensively conducted to demonstrate the superiority performance of the
proposed temporal-aware QoS prediction approach. The overall data sparsity is
approximately 66.98%.
1 http://wsdream.github.io/dataset.

http://wsdream.github.io/dataset

132 S. Hu et al.

3.2 Experimental Results and Analyses

We evaluate the temporal-aware QoS prediction results by two widely adopted
evaluation metrics: MAE (Mean Absolute Error) and RMSE (Root Mean
Squared Error). In addition, we compare our proposed approach with 7 state-of-
the-art methods: UPCC [8], IPCC [5], WSRec [10], WSPred [9], PNCF [1], RNCF
[3] and TUIPCC [6]. To thoroughly validate the effectiveness of our proposed
approach for temporal-aware QoS prediction, we conduct extensive experiments
on temporal QoS dataset with four different densities: 5%, 10%, 15%, and 20%,
and report the MAE and RMSE, respectively. For all baseline approaches, we
follow the optimal parameter settings specified in the corresponding papers.

The results are summarized in Table 1, with the best performance among
baseline approaches highlighted in dark and the overall best results bolded. It is
obvious from the results that our proposed approach outperforms all of the com-
peting approaches at different QoS densities, with the relative improvements
ranging from 8.7% to 30.4% on MAE and 1.2% to 23.6% on RMSE, respec-
tively. In terms of MAE, TUIPCC receives superior performance among base-
line approaches at QoS densities of 0.05 and 0.1, whereas WSPred achieves the
best among baseline approaches at QoS densities of 0.15 and 0.2. As for RMSE,
RNCF is better than the other baseline approaches for the densities of 0.05,
0.1, and 0.2, respectively. As can be seen from the above results, the baseline
approaches suffer from instability for QoS prediction at different densities. For
example, while TUIPCC achieves a lower MAE, it cannot perform very well
on RMSE, indicating that it is unable to fit certain outliers when predicting
the missing QoS. Therefore, compared to the baseline approaches, our proposed
prediction model consistently achieves the lowest MAE and RMSE across all
different QoS densities, revealing that it can predict QoS values more precisely
with better robustness.

It concludes that two aspects may potentially contribute to the best per-
formance of our proposed approach. First, an optimized dynamic neural graph
collaborative learning model is designed to encode the high-order latent features
of users and services, that overcomes the constraint of sparse historical QoS
invocations across multiple time slices, leading to more precisely user-service
invocation feature. Second, a multi-layer GRU is applied to boost the accuracy
of QoS prediction by effectively mining the implicit temporal evolution patterns
of user-service invocation features across multiple time slices.

4 Conclusion and Future Work

This paper proposes a novel framework for temporal-aware QoS prediction by
dynamic graph neural collaborative learning. It first models a temporal-aware
service ecosystem as a dynamic user-service invocation graph, which is then
fed into a graph neural collaborative feature extractor for extracting high-order
latent features of users and services at each time slice, considering both indi-
rect user-service invocation correlations and collaborative relationships by sim-
ilar users or services. Finally, a multi-layer GRU is employed to mine temporal

Temporal-Aware QoS Prediction 133

feature evolution patterns across multiple time slices, leading to vacant QoS pre-
diction. Extensive experiments are conducted based on a large-scale QoS dataset
in service computing to validate the superior prediction accuracy of our proposed
approach, compared to state-of-the-art competing baselines on MAE and RMSE.
In the future work, we are devoted to deeply investigating on how to effectively
leverage the contextual information and graph structural properties of users and
services to further strengthen the capability of temporal-aware QoS prediction.

Acknowledgements. This work was supported by National Natural Science Foun-
dation of China (No. 62272290, 62172088), and Shanghai Natural Science Foundation
(No. 21ZR1400400).

References

1. Chen, L., Zheng, A., Feng, Y., Xie, F., Zheng, Z.: Software service recommendation
base on collaborative filtering neural network model. In: Pahl, C., Vukovic, M., Yin,
J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 388–403. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03596-9 28

2. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

3. Liang, T., Chen, M., Yin, Y., Zhou, L., Ying, H.: Recurrent neural network based
collaborative filtering for QoS prediction in IoV. IEEE Trans. Intell. Transp. Syst.
23(3), 2400–2410 (2022)

4. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

5. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: International Conference on World Wide Web
(WWW), pp. 285–295 (2001)

6. Tong, E., Niu, W., Liu, J.: A missing QoS prediction approach via time-aware col-
laborative filtering. IEEE Trans. Serv. Comput. (2021). https://doi.org/10.1109/
TSC.2021.3103769

7. Wu, X., Fan, Y., Zhang, J., Lin, H., Zhang, J.: QF-RNN: QI-matrix factoriza-
tion based RNN for time-aware service recommendation. In: IEEE International
Conference on Services Computing (SCC), pp. 202–209. IEEE (2019)

8. Xue, G.R., et al.: Scalable collaborative filtering using cluster-based smoothing.
In: International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR), pp. 114–121 (2005)

9. Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: a time-aware personalized QoS predic-
tion framework for web services. In: IEEE International Symposium on Software
Reliability Engineering, pp. 210–219. IEEE (2011)

10. Zheng, Z., Ma, H., Lyu, M.R., King, I.: WSRec: a collaborative filtering based web
service recommender system. In: IEEE International Conference on Web Services
(ICWS), pp. 437–444. IEEE (2009)

11. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services.
IEEE Trans. Serv. Comput. 7(1), 32–39 (2014)

https://doi.org/10.1007/978-3-030-03596-9_28
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1711.05101
https://doi.org/10.1109/TSC.2021.3103769
https://doi.org/10.1109/TSC.2021.3103769

Mobility-Aware Proactive QoS
Monitoring for Mobile Edge Computing

Ting Wei1, Pengcheng Zhang1(B), Hai Dong2, Huiying Jin1,
and Athman Bouguettaya3

1 College of Computing and Information, Hohai University, Nanjing 211100, China
pchzhang@hhu.edu.cn

2 School of Computing Technologies, RMIT University, Melbourne, Australia
hai.dong@rmit.edu.au

3 School of Computer Science, The University of Sydney, Sydney, NSW, Australia
athman.bouguettaya@sydney.edu.au

Abstract. This article presents a novel probabilistic QoS (Quality
of Service) monitoring approach called LSTM-BSPM (DonLSTM-Den
based BayeSian Runtime Proactive Monitoring), which is based on
the DouLSTM-Den model and Gaussian Hidden Bayesian Classifier for
mobile edge environments. A DouLSTM-Den model is designed to pre-
dict a user’s trajectory in mobile edge environments. The predicted tra-
jectory is leveraged to obtain the mobility-aware QoS and capture its
spatio-temporal dependency. Next, a parent attribute is constructed for
each QoS attribute to reduce the influence of dependence between QoS
attributes on monitoring accuracy. A Gaussian hidden Bayes classifier is
trained for each edge server to proactively monitor the user’s mobility-
aware QoS. We conduct a set of experiments respectively upon a public
data set and a real-world data set demonstrate the feasibility and effec-
tiveness of the proposed approach.

Keywords: Mobile/Multi-access edge computing · Quality of service ·
Monitoring · Bayesian classifier · LSTM model

1 Introduction

Mobile (or Multi-Access) edge computing is a new distributed computing
paradigm that transfers the computing power from cloud data centers to the
edge of a network [1]. Mobile edge services refer to the services provisioned in
mobile edge environments [2]. Users’ requirements on mobile edge services have
gradually shifted from functional requirements to non-functional requirements,
i.e. QoS (Quality of Service) [3,4]. There has been a stronger focus recently on
selecting a service that meets a user’s QoS requirements among many services
with similar functions [5]. Monitoring the runtime QoS is a key means to ensure
the accurate service selection.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 134–142, 2022.
https://doi.org/10.1007/978-3-031-20984-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_9

Proactive QoS Monitoring 135

A variety of monitoring methods have been devised for probabilistic quality
attributes. These include QoS monitoring methods based on traditional prob-
ability statistics [3], hypothesis testing [4,6] and Bayes’ theorem [7,8]. Those
methods aim to perform continuous QoS monitoring based on user-defined stan-
dards in addition to computation overhead reduction. However, these methods
encounter the following problems in the mobile edge environment:

Traditional QoS Monitoring Approaches Lack a Proactive Mechanism. Service
providers usually deploy a large number of services in the network environment.
It is impractical for sensors to monitor and record in real-time the QoS generated
by different users due to time, financial and resource constraints. In addition,
monitoring the current status of a service cannot fully prevent the service from
failure. In this regard, the monitoring results received by a user at present can
only reflect the service status in the past due to the network latency. Therefore,
it is essential to develop proactive service monitoring solutions to detect service
failure in advance.

The Current QoS Monitoring Approaches Ignore the Temporal and Spatial Char-
acteristics of QoS. Our literature survey reveals that existing QoS monitoring
approaches overlook the spatio-temporal dependency of QoS. This defect may
lead to deviation of monitoring results from the real situation. The QoS of a ser-
vice (observed from the client side) relies on the state of the service (on the server
side) and the network environment. The service state is impacted by the server
capacity and workload, the allocated computing resources, etc. The network
environment is influenced by users and servers’ locations, network bandwidth
and traffic, the number of clients, etc. Both of them are highly dynamic over
time and space.

Fig. 1. Motivation scenario Fig. 2. Architecture of model

2 Related Work

Many probabilistic QoS monitoring techniques based on Bayesian classifiers
were proposed to address the limitation of the aforementioned methods on vari-
able user requirements. A new mobility and dependency-based QoS monitoring

136 T. Wei et al.

method named ghBSRM-MEC was presented in [9]. This method assumes that
the QoS attribute value of an edge server obeys Gaussian distribution. A par-
ent attribute is constructed for each attribute, thereby reducing the dependence
between attributes. A Gaussian implicit Bayes classifier is constructed for each
edge server to realize QoS monitoring in the mobile edge environment.

Proactive monitoring techniques have also been applied into other fields. A
QoS monitoring algorithm that can quickly detect broken or congested links was
depicted in [10]. This algorithm takes advantage of a multithreaded design based
on lock-free data structures. It improve the performance by avoiding synchro-
nization among threads. Their work specifically focuses on real-time streaming.
It does not realize proactive QoS monitoring. A proactive solution was intro-
duced in [11]. It migrates the virtual machines before violating the actual delay
threshold. The authors proposed a delay-aware resource allocation method that
considers an adaptive delay warning threshold for various users. Their work
focuses on dynamic resource allocation for hosting delay-sensitive vehicular ser-
vices in a federated cloud. It cannot realize proactive QoS monitoring.

All the above monitoring methods do not take into account the proactive
selection of servers by capturing the mobility of users in mobile edge environ-
ments. They also ignore the temporal and spatial dependency of QoS monitoring.
These defects would lead to their failure to address the problems of lagging mon-
itoring and long monitoring delay. This inspires us to devise a context-dependent
proactive QoS monitoring method to fully cater to mobile edge environments.

3 The LSTM-BSPM Approach

As shown in Fig. 1, we use a mobile edge service scenario to illustrate our moti-
vation. And its main framework is shown in Fig. 3. It mainly includes three
steps.

Fig. 3. Structure of proactive QoS monitoring

Proactive QoS Monitoring 137

3.1 Data Preprocessing

First, we partition the spatial QoS data according to the locations of their
belonged edge servers. The monitoring process in a mobile edge environment
needs to consider user’s historical trajectory data and information of service
calls. The existing data sets do not meet such requirements. Hence, we need to
construct a data set for mobile edge servers and users. The second major mission
of the data preprocessing is to filter invalid data, such as the sample data with
response time of –1 and 0. It makes the experimental data more in line with the
real situation.

3.2 Mobility-Aware QoS Acquisition Based on DouLSTM-Den

The primary purposes of this step is to construct and train the DouLSTM-
Den model to obtain the user’s mobility-aware QoS. Here we propose a model
named DouLSTM-Den to predict a user’s future location. As shown in Fig. 2,
DouLSTM-Den comprises an LSTM layer with 3 units, a hidden LSTM layer
with 2 units, and a normal dense layer with 2 hidden outputs for 2 columns. The
details how this structure is determined is explained in the evaluation part.

The original trajectory data of the moving user is converted into a sequence of
h positions Hi = {Y1, Y2, ..., Yh}, where Hi represents the movement trajectory
of useri, Yi = {lngm, latm} represents the mth longitude and latitude of useri

based on time series. The current location is Y ′ = {latt, lngt}. In practice, we
continuously update the trajectory by combining the current location of the user
for trajectory prediction.

We predict the t+1th location Yt+1 of the useri through the DouLSTM-Den
model. A high-level definition of the DouLSTM-Den model can be expressed as:

Yt+1 = f({Y1, Y2, ..., Yh, Yt}) (1)

Its technical details can be referenced from Sect. 3.2.
The network conditions in different coverage areas of an edge server are odd.

In this regard, the network loads in different locations are diverse. This would
cause distinct QoS values among different coverage areas of an edge server. The
coverage area of a sever is usually circular. We accordingly divide the coverage
area of a server into several circular rings and monitor QoS in each circular ring.

We set the coverage of each edge sever to 2 km by analyzing the users’ loca-
tions under each server’s coverage. The coverage of each edge server is divided
into 5 circular areas through the analysis of user distributions. The circular areas
are [1, 400), [400, 800), [800, 1200), [1200, 1600), and [1600, 2000] based on their
distance to an edge server.

We choose the server closest to a user as the edge server that the user is
most likely to access. We then determine the exact circular area of the server.
The historical QoS data of the service to be invoked by the user is extracted
from all the users in the same circular area of the predicted edge server. It is
denoted by Tareat+1 = {Tu1 , Tu2 , ..., Tun

}, where Tui
represents the QoS of the

138 T. Wei et al.

service invoked by the user i. The average value of the historical QoS data is
calculated to obtain the mobility-aware QoS of the service. It is denoted by
QoSt+1 =

∑1
n Tareat+1/n, where n is the number of the users in this area.

3.3 QoS Monitoring Based on Gaussian Hidden Bayesian Classifier

The main purpose of this step is to train a Gaussian Hidden Bayes classifier
based on historical data. The classifier will proactively monitor the mobility-
aware QoS acquired from the last step. A Naive Bayes classifier assumes that
the attribute values are independent of each other. However, tt ignores the fact
that there might be dependence between QoS attribute values, leading to inac-
curate classification results. Here we define a parent attribute π(xi) to reduce
the dependence between QoS attributes. Each parent attribute represents the
influence of the other attributes to each independent attribute. The value of the
parent attribute π(xi) is the mean value of x1 ∼ xk−1. The improved Bayesian
classifier formula can be expressed as:

C(X) = arg max
cj∈C

{P (cj)
n∏

i=1

P (xi|π(xi), cj)} (2)

The Gaussian distribution is generally used to represent the class conditional
probability distribution of continuous attributes. We apply Gaussian distribution
to the probability distribution of continuous variables in Bayesian classifier. The
assumption of the Gaussian distribution is expressed as follows:

P (xi|π(xi), cj) = Ncj

(
uxi

+ ρ
σxi

σπ(xi)
(π(xi) − uπ(xi)),

σ2
xi

(1 − ρ2)

)

(3)

where Ncj
represents the Gaussian distribution of the corresponding category

cj , uxi
and σ2

xi
are the mean and variance of the sample attributes, and uπ(xi)

and σπ(xi) are the mean and variance of the parent attributes corresponding
to the sample. The correlation coefficient between xi and π(xi) is denoted by
ρ = conv(xi,π(xi))

σxi
σπ(xi)

.
In the training phase, a Gaussian hidden Bayesian classifier is constructed

upon its parent attributes for each sample, i.e., the mobility-aware QoS value
of the user. The classifier is trained based on the historical data of each edge
server. The spatio-temporal QoS data (i.e., the QoS data in the same circular
area of a sever within the same time period) is used as the input in the classifier.
Every time a new QoS value is obtained, whether or not the QoS value satisfies
with the pre-defined probabilistic requirements can be determined. We assume
that the QoS attribute value follows the Gaussian distribution. Therefore, the
determination can be implemented by the probability density integral formula:

P (X < Qos V alue) =
∫ Qos V alue

−∞

1√
2πσ

e− (x−u)2

2σ2 (4)

Proactive QoS Monitoring 139

where μ and σ represent the mean and standard deviation of the QoS value. For
example, if a QoS requirement is that the probability that the service response
time is less than 2 s is greater than 85%, the value of QoS V alue is 2.

In the QoS monitoring process, users pre-define a set of QoS requirement
vectors as TQoS = [X1,X2, · · · ,Xn], where Xn = [x1, x2, · · · , xn]T refers to the
set of required QoS values of all the services called by the user n when accessing
a server. The category set is C = {c0, c1}, where c0 refers to a satisfactory grade
and c1 refers to a unsatisfactory grade. The posterior probabilities of c0 and
c1 are calculated via the aforementioned process. The category with a higher
posterior probability is regarded as the final monitoring result.

4 Experiment

4.1 Experimental Environment Configuration

Experiment Setup. The TensorFlow 2.4.0 deep learning framework1 is used
to implement the proposed DouLSTM-Den model. The model is trained with a
computer with Nvidia GTX1080Ti GPU. The model is trained 30 epochs with
a batch size of 128. The initial learning rate is set to 0.001. All these parameters
are optimal settings according to our experimental observation.

Data Sets. This experiment involves three data sets in the experiment.

– Data Set 1 bases on the Shanghai Telecom data set2. This data set includes
the geographic location information of 3,233 base stations and 611,507 service
calling records.

– Data Set 2 bases on a real-world Web service quality data set released by
Chinese University of Hong Kong3. This data set includes the response time
of 4,500 Web services called by 142 users in 64 different time slices.

– Data Set 3 is a simulated verification data set. The verification data set
is generated according to users’ QoS requirements in the experiment. The
verification data is used to verify the effectiveness of the proposed method.
For example, if the QoS requirement is that the probability that the response
time of the service is less than 3.6s is greater than 80%, we inject more than
20% exceptional response time (i.e. greater than 3.6 s) samples in a certain
range of the original samples as the verification data.

Comparison Method. We compare LSTM-BSPM with the following state-of-
the-art service quality monitoring methods to verify the superiority of LSTM-
BSPM. These include ghBSRM [9], wBSRMM [8] and IgS-wBSRM [12].

1 https://github.com/tensorflow/tensorflow/tree/v2.4.0.
2 http://sguangwang.com/TelecomDataset.html.
3 http://wsdream.github.io/dataset/wsdream dataset2.html.

https://github.com/tensorflow/tensorflow/tree/v2.4.0
http://sguangwang.com/TelecomDataset.html
http://wsdream.github.io/dataset/wsdream_dataset2.html

140 T. Wei et al.

Fig. 4. Time consumption comparison between proactive service monitoring
(tLSTM−BSPM) and server switching (ttra)

4.2 Feasibility Verification of Proactive Monitoring

We set up an experiment to assess the feasibility of the proposed method. We
verify whether our approach can detect abnormal service states before users
access new edge servers. The experiment assumes that a group of 160 users call
services when driving a car and taking a high-speed train respectively. We assume
that the speed of the vehicle is 72 km/h and the speed of the train is 300 km/h.
The monitoring time tLSTM−BSPM mainly contains two parts: the time tLSTM

to obtain the mobility-aware QoS attribute value based on the DouLSTM-Den
model, and the time tmon to monitor the QoS using the Bayesian classifier. The
estimated time ttra required for a user to access a new edge server is obtained
by calculating the distance between two edge servers divided by the speed.

Figure 4a and Fig. 4b respectively show the time needed for proactive moni-
toring and connecting to a new edge server for 5 randomly selected users and all
the users when driving and taking high-speed trains respectively. We can draw
a conclusion that our approach can efficiently complete the proactive service
monitoring before users access new edge servers. This would provide more time
for servers to make decisions if service anomalies occur.

4.3 Effectiveness Verification of Positive Monitoring

We establish an experiment to verify whether the proposed proactive monitoring
method can more quickly and accurately detect service exceptions before users
calling the services. The proposed method is compared with the three aforemen-
tioned baseline methods. Data Set 3 is used for the experiment. First, we extract
the QoS values of 2000 services to train a Gaussian hidden Bayes classifier. We
then inject 200 exceptional samples with response time of 3 s in the ranges of
[200, 400] and [400, 600] of 1000 test samples (i.e. services).

Figure 5a and Fig. 5b respectively show the monitoring results of the excep-
tional samples injected in different intervals. The abscissa represents the number
of samples that a monitoring method can obtain based on the test set The ordi-
nate represents the monitoring result, where 1 represents normal, and –1 rep-
resents abnormal. The number of samples required for each method to monitor

Proactive QoS Monitoring 141

Fig. 5. Result of response time monitoring

the abnormality of the service status is marked on the top of the diagram. It
can be seen that the proposed proactive monitoring method (i.e. LSTM-BSPM)
needs the lowest numbers of samples to detect the service exceptions. In general,
it can be seen that the prediction results of LSTM-BSPM are more consistent
with the injected exceptions. The experimental results verify the effectiveness of
the proposed proactive monitoring method in the mobile edge environment.

5 Conclusion

This paper presents a proactive QoS monitoring method in the mobile edge envi-
ronment based on DouLSTM-Den model and a Gaussian hidden Bayes classifier.
Experiments are conducted on both simulated and real data sets. The experi-
mental results show the effectiveness and feasibility of the proposed method.

For the future work, the following tasks will be considered: i) we will design
solutions to accurately predict users’ multi-lag moving paths; ii) we will improve
this method to adapt to multivariate QoS monitoring; iii) we will consider user
privacy protection when designing future proactive QoS monitoring methods.

Acknowledgements. This work is funded by the National Natural Science Founda-
tion of China under Grant (No. 62272145, No. U21B2016), the Natural Science Foun-
dation of Jiangsu Province under grant No. BK20191297, the Fundamental Research
Funds for the Central Universities under grant No. B210202075. This research was also
partially supported by the Australian Government through the Australian Research
Council’s Discovery Projects funding scheme (project DP220101823).

References

1. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile
edge networks: convergence of computing, caching and communications. Access 5,
6757–6779 (2017)

2. Wang, S., Xu, J., Zhang, N., Liu, Y.: A survey on service migration in mobile edge
computing. Access 6, 23511–23528 (2018)

142 T. Wei et al.

3. Chan, K., Poernomo, I., Schmidt, H., Jayaputera, J.: A Model-oriented framework
for runtime monitoring of nonfunctional properties. In: Reussner, R., Mayer, J.,
Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J. (eds.) QoSA/SOQUA -
2005. LNCS, vol. 3712, pp. 38–52. Springer, Heidelberg (2005). https://doi.org/10.
1007/11558569 5

4. Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical Runtime checking
of probabilistic properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 164–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77395-5 14

5. Billhardt, H., Hermoso, R., Ossowski, S., Centeno, R.: Trust-based service provider
selection in open environments. In: SAC, pp. 1375–1380 (2007)

6. Grunske, L.: An effective sequential statistical test for probabilistic monitoring.
Inf. Softw. Technol. 53(3), 190–199 (2011)

7. Zhu, Y., Xu, M., Zhang, P., Li, W., Leung, H.: Bayesian probabilistic monitor: a
new and efficient probabilistic monitoring approach based on Bayesian statistics.
In: QSIC-13, pp. 45–54, IEEE (2013)

8. Zhang, P., Zhuang, Y., Leung, H., Song, W., Zhou, Y.: A novel QoS monitoring
approach sensitive to environmental factors. In: ICWS, pp. 145–152, IEEE (2015)

9. Zhang, P., Zhang, Y., Dong, H., Jin, H.: Mobility and dependence-aware QoS
monitoring in mobile edge computing. IEEE Trans. Cloud. Comput. 9(3), 1143–
1157 (2021)

10. Tommasi, F., De Luca, V., Melle, C.: QoS monitoring in real-time streaming over-
lays based on lock-free data structures. Multim. Tools Appl. 80(14), 20929–20970
(2021)

11. Najm, M., Patra, M., Tamarapalli, V.: An adaptive and dynamic allocation of
delay-sensitive vehicular services in federated cloud. In: 2021 COMSNETS, pp.
97–100, IEEE (2021)

12. Zhang, P., Jin, H., He, Z., Leung, H., Song, W., Jiang, Y.: IGS-WBSRM: a time-
aware web service QoS monitoring approach in dynamic environments. Inf. Softw.
Technol. 96, 14–26 (2018)

https://doi.org/10.1007/11558569_5
https://doi.org/10.1007/11558569_5
https://doi.org/10.1007/978-3-540-77395-5_14
https://doi.org/10.1007/978-3-540-77395-5_14

TRQP: Trust-Aware Real-Time QoS
Prediction Framework Using

Graph-Based Learning

Suraj Kumar and Soumi Chattopadhyay(B)

Indian Institute of Information Technology Guwahati, Guwahati, India
{suraj.kumar,soumi}@iiitg.ac.in

Abstract. QoS prediction algorithm requires to be real-time to be inte-
grated with most real-time service recommendation or composition algo-
rithms. However, real-time algorithms are prone to compromise on the
solution quality to improve their responsiveness, which we aim to address
in this paper. The collaborative filtering (CF) technique, the most widely
used QoS prediction method, consider the influences of all users/services
while predicting the QoS value for a given target user-service pair. How-
ever, the presence of untrustworthy users/services, whose QoS invocation
patterns are different from the rest, may lead to degradation in predic-
tion accuracy. Moreover, in many cases, the quality of the prediction
algorithms often deteriorates to ensure faster responsiveness due to their
inability to capture non-linear, higher-order, and complex relationships
among user-service QoS data. This paper proposes a trust-aware QoS
prediction framework leveraging a novel graph-based learning approach.
Our framework (TRQP) is competent enough to identify trustworthy
users and services while learning effective feature representation for find-
ing a rich collaborative signal in an end-to-end fashion. Our experiments
on the publicly available WS-DREAM-1 dataset show that TRQP is not
only eligible as a real-time algorithm but also is well capable of han-
dling various challenges associated with QoS prediction problems (e.g.,
extracting complex non-linear relationships among QoS data) and out-
performed major state-of-the-art methods.

1 Introduction

Recommending suitable service for a target user comes under commercial and
personal interest. However, it is a challenge in a decentralized environment,
where the functionally equivalent web services are increasing rapidly. Due to
the frequent addition of new functionally redundant services, obtaining the QoS
profile for each service for every user is practically infeasible and time/resource-
consuming. Therefore, QoS prediction [6] of services across different users
appears as a fundamental problem to solve.

This work is supported by the Science and Engineering Research Board, Department
of Science and Technology, Government of India, under Grant SRG/2020/001454.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 143–152, 2022.
https://doi.org/10.1007/978-3-031-20984-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_10&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_10

144 S. Kumar and S. Chattopadhyay

Recent studies reveal that collaborative filtering (CF)-based methods are
most effective for QoS prediction [24]. CF-based methods exploit the QoS log for
predicting the QoS value. The memory-based CFs [18,22] are the most simplistic
methods by design for QoS prediction. However, they fail to achieve a desirable
prediction accuracy due to many challenges, including the data sparsity, scalabil-
ity, cold-start, etc. Model-based CFs (e.g., matrix factorization [11], factorization
machines [14], deep-learning-based [21] approaches) and a few hybrid methods
[2,4] combining memory-based and model-based CF have been introduced to
address the above challenges. Although these methods are able to achieve sat-
isfactory performance, however, most of them are not suitable for the real-time
system due to their slower responsiveness [2,4]. On the other hand, the meth-
ods with faster responsiveness have significantly low prediction accuracy [18].
A clear trade-off between the prediction time and prediction accuracy has been
observed in the literature [6]. Some recent papers attempted to address this issue
[3]. However, due to the absence of quantitative measurement of prediction time
to designate an algorithm to be a real-time one, these works are yet to be faster
enough to be chosen as a real-time algorithm.

Another important observation is that most of the conventional CF-based
methods consider the influence of every user/service to predict the QoS of a
target user-service pair. However, all the users/services present in the QoS log
are not trustworthy because they may have very different QoS invocation pat-
terns compared to the rest. These users/services are generally referred to as
grey-sheep [8]. The influence of grey-sheep users/services in the computation
of the QoS of non-grey-sheep users/services lead to highly inaccurate results.
Avoiding untrustworthy users/services could improve the QoS prediction accu-
racy. Li et al. [10] proposed a reputation algorithm for detecting trustworthy
users based on geographical location, which could result in the inappropriate
set of untrustworthy users since geographical distance may not be equivalent
to network-wise distance. The authors in [17] proposed a two-phase K-means
clustering-based credibility-aware QoS prediction method, where a cluster with
a minimum number of users is considered untrustworthy. However, the clusters
with minimum number of users can still be large set. The authors in [12,15] pro-
vided a similar approach for detecting grey-sheep using 3σ rule. Although these
methods were proposed to detect the untrustworthy users/services, the notion
of trustworthiness, however, is yet to be standardized.

In this paper, we propose a real-time, trust-aware QoS prediction algorithm
using graph-based learning that can achieve reasonably high prediction accuracy.
The graph has been established as a functional data structure that can explore
higher-order connectivity (i.e., depth of relationship) in the non-euclidean data
space, which helps the graph exploit every possible relationship from nodes
and edges. In recent years, graph neural network (GNN) [9] has attracted vast
research attention. However, to the best of our knowledge, QoS prediction using
graph-based learning is mostly unexplored in the literature. We now summarize
the major contributions of our paper:

(i) We propose a novel framework for real-time QoS prediction (TRQP) utiliz-
ing a graph convolution network that captures the multi-hop collaborative signal

TRQP: Trust-Aware Real-Time QoS Prediction Framework 145

by the node message passing and aggregating them over the users/services. The
comparative experimental analysis with ablation study shows the efficiency of
TRQP in terms of prediction accuracy and prediction time.

(ii) We propose an effective method for identifying trustworthy
users/services. Our analysis shows that TRQP improved the accuracy for the
non-gray-sheep users/services.

(iii) We performed extensive experiments on publicly available WS-DREAM-
1 dataset [23] to validate the performance of TRQP.

In subsequent sections, we formulate the problem and discuss our solution.

2 Formulation of QoS Prediction Problem

Given a set of n users U = {u1, u2, . . . , un} with their contextual data (consist-
ing of latitude, longitude, country, and autonomous systems), a set of m services
S = {s1, s2, . . . , sm} with the set of contextual data (includes latitude, longi-
tude, country, service provider), and their partial interactions in terms of a QoS
parameter q given in the form of a sparse QoS log matrix Q, the objective of the
QoS prediction problem is to predict the value of the QoS parameter for a target
user-service pair, where each valid entry of Q (say, qij) represents the value of q
of sj ∈ S when invoked by ui ∈ U .

The conventional collaborative filtering (CF) based approaches fail to achieve
high accuracy due to the presence of grey-sheep users/services [8]. Since grey
users/services have their unique QoS invocation patterns, predicting the QoS
for the non-grey-sheep users/services with the help of the QoS patterns of grey-
sheep users/services results in a high prediction error.

The main objective of this paper is to identify the grey-sheep users/services
from the given set of users and services and come up with a prediction framework
that not only provides a high prediction accuracy but also has a lower prediction
time to make the framework compatible with a real-time system.

3 Proposed QoS Prediction Framework

In this section, we discuss different modules of our solution framework (namely,
TRQP) for trust-aware QoS prediction problem.

3.1 Identification of Trustworthy Users and Services

The first component of TRQP focuses on identifying the grey-sheep
users/services. We first compute an abnormality score of each user ui and a
service sj (say, A (ui)/A (sj)) as described in [8]. A user ui (or service si) is
considered to be more trustworthy as compared to another user uj (or service
sj) if A (ui) is less than A (uj) (or, A (si) < A (sj)). A user ui ∈ U (service
sj ∈ S) is called grey-sheep, if A (ui) (A (sj)) is more than a given threshold T u

A

(T s
A). T u

A and T s
A are hyper-parameters, required to be set externally. In this

146 S. Kumar and S. Chattopadhyay

Fig. 1. Model architecture for TRQP

paper, we consider T u
A = μu

A +c∗σu
A (T s

A = μs
A +c∗σs

A), where μu
A and σu

A (μs
A

and σs
A) are the mean and standard deviation of the abnormality scores of users

(services), respectively. c is a hyper-parameter, which can be tuned externally.
Once the grey-sheep users and services are identified, we remove them from the
given list of users and services to train our model for prediction. In the next
subsection, we present the details of our model.

3.2 Design of the Learning Framework for TRQP

In this subsection, we discuss our proposed architecture (designated as, TRQP)
for QoS prediction. TRQP is an ensemble learning model combining two net-
works (i.e., GM and DM), as shown in Fig. 1. Each of these networks includes two
separate modules. The first module is accountable for computing user/service
feature embedding, the second module is responsible for QoS prediction.

GM consists of a graph convolution network [9] (say, GConv) for obtaining
user/service feature embedding followed by a multi-layer perceptron (MLP) for
QoS prediction, where DM comprises a deep prediction framework (say, DPN) for
generating user/service feature embedding followed by an MLP for prediction.
A final MLP is used in TRQP to aggregate the outputs of GM and DM for the
final prediction. We now elaborate each of these modules below.

3.2.1 Architecture of GM. Here, we introduce the graph modeling for the
prediction problem. We begin with defining the QoS prediction graph.

TRQP: Trust-Aware Real-Time QoS Prediction Framework 147

Definition 1 (QoS Prediction Graph (QPG)). A QoS prediction graph
G = (V1 ∪V2, E) is a bipartite graph, where the vertices V1 and V2 represent the
set of users U and the set of services S, respectively. An edge eij = (v1

i , v
2
j) ∈ E

exists between two vertices v1
i ∈ V1 and v2

j ∈ V2 if the QoS log Q includes a
valid QoS entry for the service sj corresponding to v2

j invoked by the user ui

corresponding to v1
i . �

We represent the QPG in terms of an adjacency matrix A(n+m)×(n+m), which is
used in graph convolutional network to obtain user/service feature embedding.
However, instead of using A by itself, we normalize A, so that more influence of
the higher degree nodes can be avoided during learning [9]. Moreover, normal-
ization helps in scaling. The normalized matrix is denoted by Ā = D− 1

2 AD− 1
2 ,

where D is a diagonal matrix representing the degree of each node of the QPG
G by its diagonal elements. It may be noted, each non-zero element of Ā, i.e.,
Ā(i, j), is normalized by the square root of the number of invocations of the
corresponding user ui and service sj as recorded in Q, i.e., Ā(i, j) = A(i,j)√

dii.
√

djj

.

Each node of QPG is associated with an embedding representing the features
of that node (i.e., initial user/service feature embedding consisting of the latent
representation of QoS profile and contextual data of user/service of length f).

3.2.2 Description of GConv: We now discuss the architecture of GConv, as
shown in Fig. 1(c). We begin with illustrating the primary component of GConv,
i.e., GConv-unit, as presented in Fig. 1(a). GConv-unit takes the normalized
adjacency matrix ĀN×N and an input feature matrix F i with dimension N × f ,
where N = (n + m). The objective of a GConv-unit is to accumulate the input
feature embedding of each node vk

i ∈ (V1 ∪ V2), k ∈ {1, 2} of G with the feature
embedding of its subsequent hop (i.e., the node directly connected to vk

i through
an edge in E of G), as modeled by the four equations of Fig. 1(a). Therefore, the
output of the GConv-unit is another feature matrix of the same dimension.

The user/service embedding matrix E serves as the input feature embedding
matrix for GConv, i.e., F 0 = E . The initial node embedding for each node
vk
i ∈ (V1 ∪ V2), k ∈ {1, 2} of G is refined while propagated through multiple

GConv-units by accumulating the features of other nodes directly/indirectly
connected to vk

i via a path in G. Therefore, in a GConv network with L number
of GConv-units, the final embedding for each node in QPG is able to aggregate
the feature embedding of all neighbors reachable through L-hops.

3.2.3 Description of MLP of GM: An MLP is used for QoS prediction in
GM. The network is trained with a sample for each ui ∈ U and sj ∈ S such
that qij �= 0 in Q. The concatenation of the features of ui and sj obtained from
GConv is used as the feature to train the MLP, while qij is served as the target
value. It may be noted, the MLP is trained before the deployment of TRQP.

3.2.4 Architecture of DM: The architecture of DM is similar to GM. Here,
instead of GConv, a deep prediction network (DPN) comprising DPN-unit (refers

148 S. Kumar and S. Chattopadhyay

to Fig. 1(b)) is used to generate the user/service embedding, while a following
MLP is used for QoS prediction. The architecture of DPN is similar to GConv.
The only difference in DPN is that the adjacency matrix is not used in DPN.

3.2.5 Architecture of TRQP: As discussed earlier, TRQP comprises GM,
DM, and an additional MLP to combine the outputs of GM and DM (Refer to
Fig. 1(d)). The MLP is trained before the deployment of TRQP as well. Each
training sample of MLP consists of a feature vector of size 2, the outputs of GM
and DM, for each ui ∈ U and sj ∈ S such that qij �= 0 in Q. qij is again served
as the target value. The output of the MLP is considered the final output of
TRQP.

Finally, we employ an outlier detection algorithm [3] for detecting outliers
from the dataset, which are removed to measure the performance of TRQP. The
next section presents the performance of TRQP through experiments.

4 Experimental Analysis

We have implemented our proposed method in TensorFlow with Python. The
training of TRQP was done on NVIDIA’s Quadro RTX 3000/PCIe/SSE2
GPU with 1920 cores, and 6 GB memory. For testing, we used i9-10885H @
2.40 GHz×16 processor with x86 64 CPU with 128 GB RAM.

To validate the performance of TRQP, we performed extensive experiments
on WS-DREAM-1 dataset [23]. Table 1 shows the description of the dataset used
for our experiment.

Table 1. WS-Dream-1 dataset description

QoS (# user, # service) Min Max Mean Median Std. Dev

Response time (RT) (339× 4998) 0.001 19.999 0.915 0.319 2.000

Throughput (TP) (339× 5004) 0.017 1000.0 46.786 14.018 108.918

The configuration of TRQP, used for our experiments, is as follows. For
identifying grey-sheep users/services, we used c = 2 throughout our experiments.
We reported our results by eliminating 3% outliers. The size of initial user/service
feature embedding is 255. Our GConv and DPN includes 2 GConv-units and 2
DPN-units, respectively. In our experiment, we have used ADAM optimizer and
mean squared error as the loss function [7].

4.1 Experimental Analysis

We compared the performance of TRQP with 14 major state-of-the-art (SoA)
methods with and without trustworthiness taken into consideration. Tables 2(a)

TRQP: Trust-Aware Real-Time QoS Prediction Framework 149

and (b) show the comparative analysis of TRQP in terms of the prediction
accuracy, measured by mean absolute error (MAE) [3]. Figure 2(a) shows the
comparative study of TRQP in terms of the prediction time. Below we summarize
our observations from Tables 2(a), (b) and Fig. 2(a).

(i) In all cases other than OffDQ, TRQP outperformed the SoA for both
training percentages for both datasets. The improvement of TRQP over the
second-best value for each of the 4 cases is shown in the final row of Table 2(b).

(ii) Although OffDQ performed better than TRQP in terms of the prediction
accuracy, the results of the OffDQ was presented by removing 5% to 15% outliers.
However, in our case, we removed 3% outliers and about 10% entries due to grey-
sheep analysis. Moreover, TRQP performed better than OffDQ in terms of the
prediction time (refer to Fig. 2(a)). While the prediction time for OffDQ is in
the order of 10−1 s, the same for the TRQP is in the order of 10−5 s.

Table 2. Comparison of TRQP with SoA on prediction accuracy (MAE)

Without Trust-aware Prediction

Methods
Response time Throughput

10% 20% 10% 20%

WSRec [22] 0.6394 0.5024 19.9754 16.0762

NRCF [16] 0.5312 0.4607 - -

RACF [18] 0.4937 0.4208 - -

GMF [1] 0.4737 0.4233 - -

DAFR [21] 0.3461 0.3404 16.9020 15.5670

LBFM [20] 0.3750 0.3421 - 11.9291

CNCF [5] 0.3380 0.3140 18.189 16.826

OffDQ [3] 0.2000 0.1800 9.1600 8.6700

TRQP 0.2540 0.2520 10.5760 9.5660

(a)

With Trust-aware Prediction

Methods
Response time Throughput

10% 20% 10% 20%

TAP [15] 0.5502 - - -

RAP [13] 0.5250 0.4400 19.4333 16.4104

CAP [17] 0.5030 0.4394 15.1148 13.8192

RMF [19] 0.4877 0.4414 - -

LRMF [10] 0.4719 0.4384 - -

S-RAP [12] 0.4833 - - -

TRQP 0.2540 0.2520 10.5760 9.5660

Improvement 24.85% 19.75% 30.03% 19.81%

(b)

(iii) One of the crucial characteristics of a real-time QoS prediction algorithm
is that it is supposed to have negligible prediction time compared to the service’s
response time. This makes the prediction framework compatible with a real-
time recommendation system, where a service is first recommended based on
its predicted QoS, before its execution. Therefore, one preliminary criterion of a
real-time prediction algorithm is to have a much lesser prediction time compared
to the response time of services. As observed in Table 1, the minimum response
time of service is in order of 10−3 s. In comparison to the response time of
services, our framework has an insignificant prediction time (i.e., in the order of
10−5 s), which makes TRQP a real-time algorithm.

(iv) Furthermore, TRQP outperformed the SoA methods that are known to
have less prediction time.

Ablation Study: From this analysis onwards we have used the RT dataset
with 10% training data. Figures 2(b) and (c) present the results for our ablation
study. Our observations from Figs. 2(b) and (c) are listed below:

150 S. Kumar and S. Chattopadhyay

(i) Figure 2(b) shows the model ablation study, where we reported the perfor-
mance of the individual components of TRQP. As evident from Fig. 2(b), TRQP
performed the best in the presence of all its components.

(a) (b)

(c)

Fig. 2. (a) Comparison of TRQP with respect to SoA on prediction time; Ablation
study (b) Model ablation; (c) Feature ablation

(ii) As observed in Fig. 2(a), GM and DM have better prediction times as
compared to TRQP. However, TRQP performed better than GM and DM in
terms of prediction accuracy.

(iii) We reported the performance of all the networks for L = 1, 2, 3 (i.e.,
GConv/DPN with 1/2/3 GConv-units/DPN-units). For L = 2 and L = 3, the
performance of TRQP is almost the same and better than the performance for
L = 1. This may be due to the over-smoothing problem in graph convolution
network [9]. GConv with more number of GConv-units cannot improve its per-
formance, and it often leads to severe degradation in the feature extraction since
it may end up obtaining similar embedding for all the nodes in QPG. In our
experiment, we used 2 GConv-units.

(iv) Figure 2(c) shows the feature ablation study. We reported the perfor-
mance of TRQP with only contextual features, only QoS features, and their
combinations. As it turned out, TRQP, with the combination of the contextual
and QoS features, performed the best as compared to the others. The perfor-
mance of TRQP with only the contextual feature was not good. TRQP achieved
a 25.6% improvement on average over TRQP with only contextual features.
However, in the absence of contextual features, we can still use TRQP with only
QoS features for the prediction, as TRQP achieved only a 7.1% improvement on
average over TRQP with only QoS features.

TRQP: Trust-Aware Real-Time QoS Prediction Framework 151

(v) Furthermore, we observed the overall MAE for the non-grey-sheep users
or services obtained from TRQP is 0.254, which is less than the one obtained
from TRQP with grey-sheep users or services (which is 0.261 as reported). This,
in turn, shows the effectiveness of our trustworthiness analysis.

In summary, TRQP without grey-sheep users and services achieved reason-
ably high prediction accuracy while being suitable for a real-time system.

5 Conclusion

This paper proposes a trust-aware, real-time QoS prediction framework. To the
best of our knowledge, TRQP is one of the first methods in the QoS prediction
literature to leverage the graph-based feature embedding exploiting the graph
convolution for QoS prediction. The graph convolution over bipartite represen-
tation of QoS data helps exploit the non-linear, deep/higher-order, and com-
plex relationship among user/service QoS data that enhances the collaborative
signal for better QoS prediction. We also propose a means to determine trust-
worthy users/services. Focusing on the trustworthiness problem, identifying the
grey-sheep users/services, and removing them to achieve better prediction accu-
racy proves the usefulness of our framework for trust-aware QoS prediction. The
experimental analysis in the paper shows that TRQP outperformed major SoA
methods in terms of prediction accuracy and/or prediction time.

As a future endeavor, we wish to develop more sophisticated algorithms for
predicting the QoS for untrustworthy users/services. We also aim to explore a
Spatio-temporal graph convolution for time-aware QoS prediction.

References

1. Chang, Z., Ding, D., Xia, Y.: A graph-based QoS prediction approach for web
service recommendation. Appl. Intell. 51(10), 6728–6742 (2021)

2. Chattopadhyay, S., Banerjee, A.: QoS value prediction using a combination of
filtering method and neural network regression. In: ICSOC, pp. 135–150 (2019)

3. Chattopadhyay, S., et al.: OffDQ: an offline deep learning framework for QoS pre-
diction. In: ACM the Web Conference, pp. 1987–1996. WWW (2022)

4. Chowdhury, R.R., et al.: CAHPHF: context-aware hierarchical Qos prediction with
hybrid filtering. IEEE Trans. Serv. Comput. 15(4), 2232–2247 (2022)

5. Gao, H.: Xothers: context-aware QoS prediction with neural collaborative filtering
for internet-of-things services. IEEE IoT J. 7(5), 4532–4542 (2019)

6. Ghafouri, S.H., et al.: A survey on web service QoS prediction methods. IEEE TSC
(2020). https://doi.org/10.1109/TSC.2020.2980793

7. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computa-
tion and Machine Learning. MIT Press, London (2016)

8. Gras, B., et al.: Identifying grey sheep users in collaborative filtering: a distribution-
based technique. In: ACM UMAP, pp. 17–26 (2016)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR 2017 (2017)

https://doi.org/10.1109/TSC.2020.2980793

152 S. Kumar and S. Chattopadhyay

10. Li, S., Wen, J., Wang, X.: From reputation perspective: A hybrid matrix factoriza-
tion for QoS prediction in location-aware mobile service recommendation system.
Mob. Inf. Syst. 2019(8950508), 1–12 (2019)

11. Lo, W., et al.: An extended matrix factorization approach for QoS prediction in
service selection. In: IEEE SCC, pp. 162–169 (2012)

12. Muslim, H.S.M., et al.: S-RAP: relevance-aware QoS prediction in web-services and
user contexts. Knowl. Inf. Syst. 64, 1997–2022 (2022)

13. Qiu, W., et al.: Reputation-aware QoS Value prediction of web services. In: IEEE
SCC, pp. 41–48 (2013)

14. Shen, L., et al.: Contexts Enhance accuracy: on modeling context aware deep
factorization machine for web API QoS prediction. IEEE Access 8, 165551–165569
(2020)

15. Su, K., et al.: TAP: a personalized trust-aware QoS prediction approach for web
service recommendation. Knowl.-Based Syst. 115, 55–65 (2017)

16. Sun, H., et al.: Personalized web service recommendation via normal recovery col-
laborative filtering. IEEE TSC 6(4), 573–579 (2013)

17. Wu, C., et al.: QoS prediction of web services based on two-phase k-means clus-
tering. In: IEEE ICWS. pp. 161–168 (2015)

18. Wu, X., et al.: Collaborative Filtering Service Recommendation based on a Novel
Similarity Computation Method. IEEE Trans. Serv. Comput. 10(3), 352–365
(2017)

19. Xu, J., et al.: Web service personalized quality of service prediction via reputation-
based matrix factorization. IEEE Trans. Reliab. 65(1), 28–37 (2016)

20. Yang, Y., et al.: A location-based factorization machine model for web service QoS
prediction. IEEE Trans. Serv. Comput. 14(5), 1264–1277 (2021)

21. Yin, Y., et al.: QoS prediction for service recommendation with features learning
in mobile edge computing environment. IEEE Trans. Cogn. Commun. Netw. 6(4),
1136–1145 (2020)

22. Zheng, Z., et al.: QoS-aware web service recommendation by collaborative filtering.
IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

23. Zheng, Z., et al.: Investigating QoS of Real-World Web Services. IEEE Trans. Serv.
Comput. 7(1), 32–39 (2014)

24. Zheng, Z., et al.: Web service QoS prediction via collaborative filtering: a survey.
IEEE Trans. Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.2995571

https://doi.org/10.1109/TSC.2020.2995571

Microservices

Misty: Microservice-Based Streaming
Trajectory Similarity Search

Jiachun Tao, Zhicheng Pan, Junhua Fang(B), Pingfu Chao, Pengpeng Zhao,
and Jiajie Xu

Department of Computer Science and Technology, Soochow University,
Suzhou, China

{jctao31,zcpan28}@stu.suda.edu.cn,
{jhfang,pfchao,ppzhao,xujj}@suda.edu.cn

Abstract. As a fundamental operation in various LBS (Location Based
Service) applications, the trajectory similarity search has long been a
performance bottleneck in applications like (e.g., traffic optimization and
contact tracing). When handling streaming trajectory data, the variable
workload and stateful compute requirement are two crucial challenges
that further complicate the problem. Distributed microservice, a main-
stream industrial software design architecture, is the preferred way to
address such issues. However, the trajectory instance will inevitably be
split under the parallel framework. Therefore, how to distribute tra-
jectory data among the parallel processing tasks in a real-time and
lightweight manner is the crux. In this paper, we propose a Microservice-
based real-time processing framework for streaming trajectory similarity
search, called Misty, which effectively reduces the update cost of the sec-
ondary index and supports high scalability. Moreover, on top of Misty, we
can build resilient and stateful cloud-native applications. Misty is com-
posed of the assembler, index, coordinator, and executor. Specifically, the
assembler and the index module ensure retrieval performance, while the
coordinator and executor module enable the system with elastic scaling.
Extensive experimental studies on real-world data demonstrate higher
query throughput and lower latency over traditional approaches.

Keywords: Real-time data processing · Trajectory similarity ·
Microservice · Distributed processing · Streaming spatio-temporal data

1 Introduction

A trajectory is an ordered arrangement of latitude and longitude of the moving
object in the time dimension, which contains the movement trend and pattern of
the moving object. Trajectory similarity is a measure that describes the degree of
correlation between pair-wise trajectories [9], which is an infrastructural opera-
tion in LBS and can be extended to various fields, such as contact tracing during
COVID-19, ride-sharing [5] and route planning [8].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 155–170, 2022.
https://doi.org/10.1007/978-3-031-20984-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_11

156 J. Tao et al.

Most existing related schemes [1,4,6,7] focus on solving the trajectory sim-
ilarity query problem on a single machine. However, when processing similarity
queries for massive data, such schemes will face inconceivable storage and pro-
cess capability. Moreover, it is difficult to directly extend these schemes to the
distributed environment. The fundamental reason is that the trajectory needs to
be split under the parallel processing architecture. No matter whether the par-
titioner divides the trajectories into parallel processing by the trajectory ID or
by the trajectory segments, the computational state of the similarity processing
will be destroyed. Specifically, by using the hash function, two trajectories (T1

and T2) will be dispatched into two different partitions, respectively. As a result,
the system cannot get their similarity result directly. By using range partition,
the first two points named T11 of T1 and the first three points named T21 of T2

will be distributed to partition P1. The rest of the points, named T12 and T22

accordingly, will be distributed into partition P2. In effect, the system can only
compute a partial similarity.

Nowadays, some works focusing on parallel trajectory similarity processing
have been proposed. However, the current mainstream trajectory similarity pro-
cessing platform is all based on generic big data processing frameworks, such as
Spark and Flink. In general, these frameworks cannot adjust the architecture at
runtime in a lightweight manner, so the retrieval efficiency and flexibility cannot
reach the ideal state. The detailed description is as follows:

– Retrieval efficiency: Distributed spatial indexing is a key technology to
improve the retrieval efficiency of trajectory similarity. This technology has
been widely studied in offline scenarios and greatly improves retrieval effi-
ciency. However, in the face of real-time scenarios, frequent and heavy-weight
updates of indexes will lead to a sharp drop in system performance. We believe
that the bottleneck of this problem lies in the following two aspects: At the
logical level, the update mode of the secondary index is synchronized, which
makes the update of the global index and the local index extremely time-
consuming. At the physical level, the update of the index relies on the APIs
of big data processing frameworks (e.g., Spark or Flink), so our development
is limited by the programming mode of these frameworks.

– Runtime scalability: Although existing works [8,9,11,12] can improve high-
performance queries, their architecture is rigid at runtime. This is because
they are usually based on big data processing frameworks such as Spark,
which have development issues with runtime parallelism scaling. In conclu-
sion, these frameworks do not have lightweight elastic scaling capabilities,
and scalability is not comprehensive. In addition, the slave node itself isn’t
able to scale actively, and design patterns such as JVM and DAG have a large
resource overhead. In short, it cannot provide lightweight runtime scalability.

As shown in Fig. 1(a), when the existing secondary index mode encounters a
need to adjust (such as inserting new data), it will first update the local index,
then adjust the global index, and finally, redistribute the data. Needless to say,
such an operation consumes a lot of performance and resources. Such a schedul-
ing method based on workload reshuffling will inevitably reduce the retrieval

Misty: Microservice-Based Streaming Trajectory Similarity Search 157

Fig. 1. Existing solution v.s. Our solution

efficiency and hinder the flexibility of the system. The recent emergence of the
micro-services architecture effectively addresses the maintenance and scalability
demands of online service providers. Moreover, such architectures intend to over-
come the shortcomings of monolithic architectures where all of the application’s
logic and data are managed in one deployable unit. Inspired by it, we design
a lightweight processing solution based on the micro-services architecture (such
as Dapr) for trajectory stream similarity processing by updating the index and
scaling out a task on demand (as shown in Fig. 1(b)).

To ensure the retrieval efficiency and scalability of our system Misty, we
propose a novel trajectory similarity search framework for continuous trajectory
similarity search. Firstly, we design a hierarchy tree-like distributed spatial index
structure. This is a hybrid index that uses a grid index in partition and a tree
index inside a single machine. Secondly, to address the huge overlapping problems
for wide-span trajectories, we split trajectories into segments before inserting
them into our index. To summarize, the main contributions of our work are:

– We propose the full-fledged microservice-based distributed framework called
Misty. It leverages a hierarchy tree-like distributed spatial index to answer
continuous similarity search queries over massive streaming trajectory data.

– Misty utilizes a segment-based data model with several optimizations for
storing, indexing and pruning to ensure efficient querying capability.

– We conduct a comprehensive empirical evaluation for Misty using large
synthetic and real-world trajectory data streams to measure its scalability,
throughput and latency. The experimental results demonstrate the superior
performance that our framework achieves against possible alternatives.

The rest of the paper is organized as the following. Section 2 surveys exist-
ing spatial indexes, trajectory similarity measures and distributed processing
frameworks. Section 3 formalizes the continuous trajectory similarity search. We
describe the proposed framework in Sect. 4. Section 5 presents the results of our
experimental study and Sect. 6 concludes the paper with remarks on future work.

158 J. Tao et al.

2 Related Work

2.1 Distributed Similarity Search

DFT [9], DITA [8] and REPOSE [12] are state-of-the-art distributed trajectory
similarity search frameworks. DFT [9] is the first distributed framework that
leverages segment-based partitioning and indexing to answer similarity search
queries over large trajectory data. DFT speeds up queries with a two-level R-
Tree and compresses index items with roaring bitmaps. DITA [8] selects pivot
points to represent a trajectory and stores close pivot points in the same MBR. In
addition, DITA considers the connections when calculating similarities and uses
the bipartite graph model to enhance the load balancing capability. REPOSE [12]
is a distributed in-memory framework for the processing of Top-k trajectory
similarity queries on Spark. REPOSE uses a trie-tree to index trajectories.

Although these frameworks can achieve satisfactory performance in offline
scenarios, they still have retrieval performance and runtime scalability issues.
Therefore, these frameworks cannot process trajectory streaming data well in
real-time with a distributed architecture.

2.2 Distributed Spatial Indexing

Generally speaking, the distributed spatial indexes are processed in two steps,
in line with a filtering-and-refinement framework. In particular, DITIR [2] is a
distributed index for indexing and querying trajectory data in real-time. It sup-
ports the ingestion and indexing of trajectory data at high rates. Xie et al. [9,10]
used the Sort-Tile-Recursive packing algorithm at the master node to determine
the sub-region responsible for each slave node, which is a partitioning method
with a fixed spatial region. After determining the sub-regions for each slave node,
they use an STR-tree [7] to build a local index on each slave node, thus com-
pleting the construction of a distributed spatial index. Shang et al. [8] use the
Sort-Tile-Recursive packing algorithm twice with the first and last sample points
of each trajectory in the trajectory set to form two rectangular sets MBRf and
MBRl and created two R-trees on the master node with MBRf and MBRl

respectively to partition the query trajectories, and then created a local index
on each slave node.

2.3 Spatio-temporal Data Analytics Systems

Simba [10] extends Spark SQL and DataFrame API to make spatial support
for Spark. It improves the query performance by introducing multi-level (global
and local) R-tree indexing on RDDs, and spatial-aware (logical and cost-based)
query planning. Moreover, the STR partitioner [7] mitigates the data partition-
ing skew significantly. Later, Simba extended its support for spatial partitioning
and indexing. However, Simba only supports spatial operations over point and
rectangle objects. Zeyuan et al. [8] developed DITA, which supports both SQL

Misty: Microservice-Based Streaming Trajectory Similarity Search 159

and Dataframe API for trajectory analysis. DITA adopts the STR [7] partition-
ing strategy to create balanced partitions of trajectory points. Like TrajSpark, it
also uses multi-level indexing to expedite query performance. Besides, DITA has
developed a cost model to reduce inter-worker transmission costs and balance
the workload. Dragoon is a multi-purpose system capable of processing both
offline and online trajectory data. Dragoon [3] designs a mutable RDD so that
data can be updated.

3 Preliminaries

Misty focuses on the flexibility and efficiency of the real-time trajectory pro-
cessing framework. In this section, we first introduce the relevant definitions of
Misty, and then we give an overview of Misty’s framework and core components.

3.1 Definitions

Definition 1. A trajectory is a sequence of consecutive line segments, denoted
as T = (l1, l2, ..., li). The notation li means a line segment in R

2. The end point
of li is denoted as si+1 and it is the starting point of li+1.

Trajectory T in our system is assumed as unbounded, which means when
doing similarity calculation, we refer to the snapshot of T at time t. After a new
point arrives in the system, one particular trajectory should be updated and
distance needs to be recalculated.

Definition 2. Given two trajectory segments l1 = (s1, e1), l2 = (s2, e2) and
distance criteria d() their distance is

d(l1, l2) = max(d(s1, l2), d(e1, l2), d(s2, l1), d(e2, l1))

where the distance between a point p and a segment l is defined as: d(p, l) =
minq∈l‖p − q‖

The above definition for the distance between two segments l1 and l2 is
equivalent to the well-known Hausdorff distance. This is because a line segment
l is a convex object, thus the point on l with the maximum distance to another
line segment must be one of the two end points of l.

We decide to use the classical Hausdorff distance as the distance measure
of our framework due to its capability for parallel computing. Since we choose
trajectory segment as the most basic data structure, we use discrete segment
Hausdorff distance designed by [9]. Here we represent it again using our notation.

Definition 3. For query trajectory Q = (g1, g2, ..., gk) and T = (l1, l2, ..., li) ∈ τ
their discrete segment Hausdorff distance is defined as:

DH = max

{
maxgi∈Qminlj∈T d(gi, lj)
maxlj∈Tmingi∈Qd(gi, lj)

}

160 J. Tao et al.

Fig. 2. Overview of Misty

The above definitions describe the distance between trajectory segments and
the distance between trajectories. The query on the real-time trajectory stream
revolves around the trajectory similarity, including but not limited to the range,
top-k and threshold queries. We define a continuous trajectory similarity query
problem with top-k queries as primers:

Definition 4. Given a trajectory stream τ = [T1, T2, ..., TN], a query trajectory
Q, a distance measure D, a max distance ε, and an integer k; A continuous
trajectory similarity search continuously returns the set S(Q, τ,D, k) ⊂ τ
where |S(Q, τ,D, k)| = k and for any T, T ′ ∈ τ :

If T ∈ S(Q, τ,D, k) And T ′ /∈ S(Q, τ,D, k)
Then D(Q,T) < D(Q,T ′) And D(Q,T) < ε

It should be noted that other queries on the trajectory stream are also in
the above-mentioned pattern, and they replace the parameter k with a certain
range or a maximum tolerated similarity value.

3.2 Overview of Misty

The overall architecture of Misty is shown in Fig. 2. We first briefly introduce
the four core components as follows:

1. Assembler converts the received stream of trajectory points into segments
and stores the entire trajectory as a state, simplifying the semantics of the
query. Historical trajectory will be persisted to disk, identified as “Store” in
the figure.

2. Index partitions the data entering the system, specifically according to the
Uber H3 hexagonal grid partition. After data partitioning, the data will be
distributed to shared-nothing nodes. In them, Misty builds local indexes (R-
Tree) to provide efficient local search capabilities.

3. Coordinator stores the index-meta, which is an improved R-tree structure
whose leaf nodes contain MBR of H3 addresses. When the index is updated,
the coordinator will also update the index-meta synchronously. In addition,
the coordinator is responsible for the parallelism, scheduling, etc. of dis-
tributed tasks.

Misty: Microservice-Based Streaming Trajectory Similarity Search 161

Fig. 3. Assembling and Indexing

4. Executor collects candidate data through the index and performs distributed
incremental similarity calculation. Since indexing will greatly reduce the
amount of candidate data, this specific operation will consume less time.
We will detail the execution flow of the executor and how it interacts with
high concurrency queries.

The integration of the above core components forms our continuous query
framework for processing trajectory similarity with high efficiency and scalabil-
ity. We will introduce all components of Misty in Sect. 4.

4 Framework

4.1 Assembler

The assembler first converts the point stream data into segments and then assem-
bles them into assembler instances. We introduce the trajectory segment and
assembly process separately below.

Trajectory Segment. The real trajectory of a moving object is always a con-
tinuous curve in space, but trajectories collected and stored in the database
are not. Because only discrete samples are taken by the sensing devices. For
example, a taxi equipped with GPS will report its location every 1 min. Discrete
samples from one moving object form an ordered sequence of segments. When
the sample rate is high enough, these segments will be able to approximate the
real trajectory of a moving object fairly accurately.

The trajectory segment is defined in Definition 1. In a nutshell, the trajec-
tory segment is a structure composed of the current point and the predecessor
point. These segments have two downstream processing directions. On the one
hand, they will be the input to the assembling process and output as assembler
instances. Then, such instances will be cached in the state store, contributing to
the final result while waiting for the query to execute. On the other hand, it will
be stored incrementally and persistently as historical trajectory data.

162 J. Tao et al.

Assembling Process. This process will assemble segments into state instances
for final result computation. As shown in Fig. 3, Misty assembles a start point
s and endpoint e into a segment, then integrates the segments into a trajectory
at the state store. Simultaneously, the assembler will assemble and cache the
sequence of trajectory segments as a state, for example, T1 (a set of segments)
will be assembled as A1, which provides convenience for subsequent queries.

For a new trajectory point without a predecessor point, we will initialize a
new structure to store it. For new trajectory points with predecessor points, we
assemble them into segments and update the state incrementally.

4.2 Index

The Index aims to find candidate trajectories. The computational complexity of
meeting query requirements based on candidate trajectory sets will be greatly
reduced. As shown in Fig. 3, each H3 partition has a local R-Tree index. The
local R-Tree has a maximum size of K, insertion ratio R and a buffer with a
maximum size of M . These properties will affect how the native R-Tree responds
differently in case of inserts, splits, etc. The following will first introduce the R-
tree insertion process when new data (segments with H3 partitions) arrive.

Algorithm 1 presents how a new trajectory segment is formed. When receiv-
ing a new segment, Misty needs to determine whether the partition it belongs
to has expired. After such a judgment, Algorithm 1 adds the trajectory segment
to the buffer.

Algorithm 2 presents how new trajectory segments are added to the index.
Trajectory segments from the assembler will be inserted into the buffer first.
When the buffer size reaches M or meets the condition of c.size()

I.size() > R, the
partition will insert the data in the buffer into the R-Tree all at once. Misty
build an R-Tree of trajectory segments in each partition as its local index. The
local index has an additional input buffer. New-coming segments will firstly
be stored in a hash table. When the number of data in the buffer reaches the
dynamic insertion threshold R, the index will stop responding to new requests
and commit the hash table to R-Tree.

Algorithm 3 shows the process of partition splitting checking. When a parti-
tion reaches capacity threshold K this will trigger a partition split. This partition
will temporarily stop responding to new requests and divide itself into several
smaller partitions. After new partitions are set and ready to serve, the old big
partition will still exist for a while acting as a router, directing traffic to new
smaller partitions until there is no more possible traffic.

4.3 Coordinator

The coordinator is the Master node in the Master-slave architecture, and there
is only one. The coordinator maintains meta information of index nodes called
index-meta and coordinates distributed jobs (such as the number of nodes for
specific computing tasks and the upper limit of parallelism).

Misty: Microservice-Based Streaming Trajectory Similarity Search 163

Algorithm 1. Accept New Segment
Input: Segment s, Buffer C
Output: New segment buffer C
1: if isExpired() then

return self.resolution
2: end if
3: C.add(s)
4: checkInsertion()
5: return C

Algorithm 2. Check Insertion
Input: Segment buffer C, Index I,

Buffer size M , Insertion ratio R,
Splitting threshold K

Output: New Index I
1: if C.size() > M, c.size()

K
> R then

2: I.add(C)
3: C ← ∅ � clear the buffer
4: end if
5: checkSplitting()
6: return I

Algorithm 3. Check Splitting
Input: Index I, Splitting threshold K
Output: New Index I
1: if I.size() > K∧self.resulotion < 15 then
2: childRes ← self.res + 1
3: childRegions ← split reg(childRes)
4: for s in I do
5: new s reg ← getRegion(s.start())
6: new end reg ← getRegion(s.end())
7: if new start reg ∈ child regs then
8: sendToRegion(s, region)
9: end if.

10: if new end reg ∈ child regs then
11: sendToRegion(s, region)
12: end if
13: end for
14: self.isExpired ← True
15: informRegionSplit(regions)
16: return 0
17: end if
18: return 1

Index-meta is an improved R-tree structure whose leaf nodes contain MBR
of H3 hexagons. Index-meta collects the information of each partition. When an
index partition expires, if some data wants to enter it, the data will be rejected.
Misty updates the index-meta when a partition expires by adding new child
partitions and deleting the old parent partition. Index-meta is similar to the
global index structure in traditional secondary indexes.

4.4 Query Agent

The query agent is responsible for the invocation of components. Each microser-
vice only needs to do its part to help complete the query.

Firstly, the agent calculates the candidate areas in H3 with max distance R.
Then it queries the coordinator for relevant indexes. Then, it sends Q to relevant
indexes to calculate overlapped candidates’ tids. Next, the agent split the list of
tids with batch size B and sends batches to executors. Finally, the agent sorts
out top-k trajectories and answers the client. For continuity, the agent will start
a new round of searches at a fixed interval.

4.5 Executor

The Executor mainly performs segment-based Hausdorff distance calculations,
and it transmits the results directly to the Query Agent. The Executor reads
the trajectory state from State to provide incremental computation. Misty can
dynamically change the parallelism of the executors through the query Agent to
meet the best resource utilization.

164 J. Tao et al.

Example: We have two trajectories named T and Q. For every segment of
T named li, we figure out the minimum distance from it to every segment gj of
Q. Then we get a maximum distance of all d(li, gj) and that’s the distance from
T to Q. Distance from Q to T is the same. Finally, we take the larger number
of the distances between T to Q and Q to T as the distance between T and Q.

5 Experimental Evaluation

5.1 Experimental Settings

Experimental Environment. The Misty1 is built based on dapr, and Python3.
The framework is deployed on a local cluster with one twelve-core CPU (AMD
Ryzen 9 3900X @ 3.80 GHz).

Datasets. T-Drive Taxi Trajectories is a sample of trajectories from the
Microsoft Research T-Drive project, generated by over 10,000 taxicabs in a week
in Beijing. The full dataset was used to suggest the practically fastest driving
directions to normal drivers, recommend a passenger-pickup location for taxi
drivers, enable dynamic taxi ride-sharing, glean the problematic design in a
city’s transportation network, and identify urban functional regions.

Experimental Metric. We mainly focus on evaluating the following metrics in
our experiments:

– Query Time: Average query time of all continuous queries. In the exper-
iments, we conduct continuous queries as repeatedly query one particular
trajectory(e.g. trajectory with id 1) and takes the average time of all queries.

– Insertion Time: The insertion time of a new trajectory. In our experiments,
due to the inconsistent length of real-world trajectories, we take the total
insertion time of all trajectories as the insertion time.

– Throughput: Number of all trajectory points divided by insertion time.

Independent Variable. Next, we will list parameters in Misty.

– Resolution ρ. As mentioned in Sect. 4.2, each index partition is responsible
for a particular area on the map. Its size is up to the resolution ρ. In the
experiments, the minimum resolution ρ is called initial resolution. We choose
5 as the default initial resolution for balancing resource consumption and
overall performance.

– Max buffer size M and Insertion ratio R. For max buffer size M and
insertion ratio R, as mentioned in Sect. 4.2, these two parameters play a
critical role when each partition inserts data from the buffer into the R-Tree.
R should control the insertion. We choose 0.2 as the default value of R.

– Splitting threshold K. Lower K will lead to more frequent partition split-
ting causing higher system resource consumption such as CPU usage and
network I/O. We choose 2000 as the default value of K.

1 Source code available at https://github.com/LionTao/misty.

https://github.com/LionTao/misty

Misty: Microservice-Based Streaming Trajectory Similarity Search 165

0

5

10

15

20

25

30

0 2 20 200 500 700

Q
u
er

y
 T

im
e

(s
)

Max Buffer Size M

resolution = 1

resolution = 5

resolution = 10

(a) M - Query

310

320

330

340

350

360

0 2 20 200 500 700

In
se

rt
io

n
 T

im
e

(s
)

Max Buffer Size M

resolution = 5

resolution = 10

(b) M - Insertion

Fig. 4. Effect of M .

– Query batch size b and Query threshold. Query batch size controls
distance computes batch size as described in Sect. 4.5. The query threshold
controls the width of the trajectory corridor.

Baselines. We compare our solution with the naive R-Tree method and Spark.
We put the R-Tree into our Dapr-based framework with K set to infinite, R
set to 0, M set to 0 and initial resolution ρ set to 0. We compare the total
data manipulation times and total insertion time of both methods. Comparison
results are shown in Fig. 7. Due to the inflexibility of spark, we only compare
query time between Spark and Misty.

5.2 Result Analysis

Effect of Max Buffer Size M . Figure 4(a) shows continuous query results
during insertions as M increases. Our solution has very stable results when the
initial index partition resolution is 5. Performance starts decreasing when the
resolution is 10 because data distribution is too sparse. Network overhead is
significantly high when the index module has a sparse data distribution.

Figure 4(b) shows the total data insertion time as M increases. We can see
a significant time increment after M is above 200. This is because maintaining
a big non-repeatable data set is time-consuming. With the default parameter,
M larger than 400 will have no more effect on insertion time because buffer
will insert into R-Tree before reaching buffer size limit. During experiments, we
notice higher CPU and memory usage when the initial resolution goes higher.
This is because more index partitions were created. When the initial resolution
is 5, we can see a usage drop on both parts of the system when the M size
is relatively larger. This is expected as a larger buffer size leads to fewer tree
insertions.

Effect of Inserting Ratio R. Figure 5(a) shows continuous query results dur-
ing insertions as tree insertion ratio R increases. Our solution has very stable
results when the initial index partition resolution is 5 and 10 across all tests.

166 J. Tao et al.

0

5

10

15

20

25

0 0.1 0.3 0.5 0.9

R

Q
u
er

y
T

im
e

(s
)

resolution = 1

resolution = 5

resolution = 10

(a) R - Query

200

400

600

800

1000

1200

1400

0 0.1 0.3 0.5 0.9

P
ro

ce
ss

in
g
 T

im
e

(s
)

R

resolution = 1

resolution = 5

resolution = 10

(b) R - Insertion

Fig. 5. Effect of R.

Performance decreases when resolution starts with 1 because partitions are busy
splitting themselves.

Figure 5(b) shows the total data insertion time as R increases. Our solution
has solid and stable results when the initial resolution is relatively high. When
the initial resolution is 1, R starts to affect the overall performance because
splitting partitions is more time-consuming and R controls buffer insertion which
leads to partition splitting. When R is large, there is a large probability that
the last insertion of the partition will significantly exceed the split threshold K
and cause an immediate big splitting thus impacting the performance. Moreover,
we can see both less CPU and memory usage when the initial resolution goes
higher because when more index partitions were created, less data was inserted
into each partition on average. When the initial resolution is 10, we can see
a slight increase in memory because of memory overhead with a lot of active
partitions. As to the CPU, more partitions at initial resolution 10 result in less
splitting thus lowering the CPU usage.

Effect of Splitting Threshold K. Figure 6(c) and Fig. 6(a) show continuous
query results during insertions as splitting threshold K increases with or with-
out insertion buffer. We can see in Fig. 6(a), that having an insertion buffer has
an edge over Fig. 6(c) in average query time when the initial resolution is 10.
Figure 6(d) and Fig. 6(b) show total data insertion time as K increases. Com-
paring both figures, we can see that having an insertions buffer has a significant
advantage on total insertion time when the initial resolution is 10. We can con-
clude that when there are plenty of index partitions, a decent amount of insertion
buffer can benefit the data insertion.

Comparison with R-Tree. We compare our solution with the naive R-Tree
method in terms of total insertion time and total numbers of R-Tree insertion
operations. For our solution, we choose the default parameter as described in
Sect. 5.1.

As shown in Fig. 7(a), our solution outperforms the R-Tree in all tests. To
be specific, in larger dataset sizes such as 100 trajectories, our solution achieves
up to 5× speedup in the insertion time test. This result shows the advantage

Misty: Microservice-Based Streaming Trajectory Similarity Search 167

0

5

10

15

20

1000 1500 2000 2500 3000

K

Q
u
er

y
T

im
e

(s
)

resolution = 1

resolution = 5

resolution = 10

(a) Effect of K - Query - Open

0

400

800

1200

1600

1000 1500 2000 2500 3000

In
se

rt
io

n
 T

im
e

(s
)

K

resolution = 1

resolution = 5

resolution = 10

(b) Effect of K - Insertion - Open

0

5

10

15

20

25

30

1000 1500 2000 2500 3000

K

resolution = 1

resolution = 5

resolution = 10

Q
u
er

y
 T

im
e

(s
)

(c) Effect of K - Query - Close

0

400

800

1200

1600

2000

1000 1500 2000 2500 3000

In
se

rt
io

n
 T

im
e

(s
)

K

resolution = 1

resolution = 5

resolution = 10

(d) Effect of K - Insertion - Close

Fig. 6. Effect of K.

of using a buffer to cache incoming trajectory segments temporarily for a more
efficient bulk load into the R-Tree. Also, the distributed manner of our solution
gains advantages for being capable of concurrent insertion which leads to a more
stable insertion time curve as the amount of data grows. Without the ability of
parallel processing and the buffer, the baseline method must rebuild the entire
R-Tree every time the data is updated. Benefiting from our distributed index
module as discussed in Sect. 4.2, our solution has an edge over the baseline in
terms of total insertion time.

Also, our solution has a clear advantage in the number of operations as shown
in Fig. 7(b). With data size at 100, our solution with K set to 2000, R set to
0.2, M set to 500 and initial resolution ρ set to 5 takes only 60% of total R-Tree
insertion to complete the test. This is because we use an insertion buffer while
the baseline needs to rebuild R-Tree upon every data update. Thanks to a decent
amount of max buffer size M and insertion ratio R as discussed in Sect. 4.2, our
solution outperforms the baseline in terms of R-Tree operations.

Comparison with Spark. Figure 7(c) and Fig. 7(d) shows a comparison
between the worst case of misty with default parameters and the spark imple-
mentation in terms of single trajectory query and full dataset trajectory query.
For a single query, we use spark to join one dataset containing the target tra-
jectory with another trajectory containing all trajectories. For the full query, we
use spark to cross join the dataset containing all trajectories with itself.

168 J. Tao et al.

Fig. 7. Misty v.s. Baselines

As shown in Fig. 7(c), our solution shows stable performance while spark
suffers performance loss as data size grows up. This result shows the advantage
of Misty’s distributed index. The index can help prune unnecessary trajectories
thus greatly reducing the computation cost.

As shown in Fig. 7(d), our solution has a clear advantage over spark in the
full query which is typically seen in high concurrency query scenarios. Without
the proper pruning capability of an index, spark has to calculate the trajectory
distance using brute force. As data sizes grow, spark must use drastically more
time to complete the task. This result shows the advantage of the micro-service
style that Misty adopts. When large amounts of data flood into the system,
Misty is able to cope with it with ease.

6 Conclusions

This work presents a microservice-based real-time processing framework for
streaming trajectory similarity search queries. Our framework is composed of the
assembler, index, coordinator, and executor. The assembler and index enable a
distributed trajectory to be ingested and indexed in our system. The coordina-
tor and executor enable various query patterns including continuous queries. An
extensive experimental study proves that Misty is quite effective for the index-
ing trajectories and corresponding queries compared to single node plain R-Tree
and Spark. As a future direction, we are working on Misty’s extension to spatial

Misty: Microservice-Based Streaming Trajectory Similarity Search 169

join and query plan optimization for higher throughput and more elastic index
scaling.

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China under grant (No. 61802273, 62102277), Postdoctoral Science Foundation of
China (No. 2020M681529), Natural Science Foundation of Jiangsu Province (BK2021070
3), China Science and Technology Plan Project of Suzhou (No. SYG202139), Postgrad-
uate Research & Practice Innovation Program of Jiangsu Province (SJC
X2 11342), Project Funded by the Priority Academic Program Development of Jiangsu
Higher Education Institutions.

References

1. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. In: Garcia-Molina, H., Jagadish,
H.V. (eds.) Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, USA, 23–25 May 1990, pp. 322–331 (1990).
https://doi.org/10.1145/93597.98741,https://doi.org/10.1145/93597.98741

2. Cai, R., Lu, Z., Wang, L., Zhang, Z., Fur, T.Z.J., Winslett, M.: DITIR: distributed
index for high throughput trajectory insertion and real-time temporal range
query. Proc. VLDB Endow. 10(12), 1865–1868 (2017). 10.14778/3137765.3137795,
https://doi.org/10.14778/3137765.3137795

3. Fang, Z., Chen, L., Gao, Y., Pan, L., Jensen, C.S.: Dragoon: a hybrid and efficient
big trajectory management system for offline and online analytics. VLDB J. 30(2),
287–310 (2021)

4. Fu, A.W., Chan, P.M., Cheung, Y., Moon, Y.S.: Dynamic VP-tree indexing for n-
nearest neighbor search given pair-wise distances. VLDB J. 9(2), 154–173 (2000).
https://doi.org/10.1007/PL00010672, https://doi.org/10.1007/PL00010672

5. Fu, Y.C., Hu, Z.Y., Guo, W., Zhou, D.R.: QR-tree: a hybrid spatial index structure.
In: Proceedings of the 2003 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No.03EX693), vol. 1, pp. 459–463 (2003). https://doi.
org/10.1109/ICMLC.2003.1264521

6. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved r-tree using fractals. In:
Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB’94, Proceedings of 20th Interna-
tional Conference on Very Large Data Bases, 12–15 September 1994, Santiago de
Chile, Chile. pp. 500–509 (1994). https://www.vldb.org/conf/1994/P500.PDF

7. Leutenegger, S.T., Lopez, M.A., Edgington, J.: STR: a simple and efficient algo-
rithm for R-tree packing. In: Proceedings 13th International Conference on Data
Engineering, pp. 497–506. IEEE (1997)

8. Shang, Z., Li, G., Bao, Z.: DITA: distributed in-memory trajectory analytics. In:
Proceedings of the 2018 International Conference on Management of Data, pp.
725–740 (2018)

9. Xie, D., Li, F., Phillips, J.M.: Distributed trajectory similarity search. Proc. VLDB
Endow. 10(11), 1478–1489 (2017)

10. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spa-
tial analytics. In: Proceedings of the 2016 International Conference on Management
of Data, SIGMOD 2016, pp. 1071–1085. Association for Computing Machinery,
New York, NY, USA (2016). https://doi.org/10.1145/2882903.2915237,https://
doi.org/10.1145/2882903.2915237

https://doi.org/10.1145/93597.98741,
https://doi.org/10.1145/93597.98741
https://doi.org/10.14778/3137765.3137795
https://doi.org/10.1007/PL00010672
https://doi.org/10.1007/PL00010672
https://doi.org/10.1109/ICMLC.2003.1264521
https://doi.org/10.1109/ICMLC.2003.1264521
https://www.vldb.org/conf/1994/P500.PDF
https://doi.org/10.1145/2882903.2915237,
https://doi.org/10.1145/2882903.2915237
https://doi.org/10.1145/2882903.2915237

170 J. Tao et al.

11. Yuan, H., Li, G.: Distributed in-memory trajectory similarity search and join on
road network. In: 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pp. 1262–1273. IEEE (2019)

12. Zheng, B., Weng, L., Zhao, X., Zeng, K., Zhou, X., Jensen, C.S.: Repose: dis-
tributed top-k trajectory similarity search with local reference point tries. In: 2021
IEEE 37th International Conference on Data Engineering (ICDE), pp. 708–719.
IEEE (2021)

BSDG: Anomaly Detection
of Microservice Trace Based on Dual
Graph Convolutional Neural Network

Kuanzhi Shi1 , Jing Li1(B) , Yuecan Liu2, Yuzhu Chang2, and Xuyang Li2

1 College of Computer Science and Technology/College of Artificial Intelligence,
Nanjing University of Aeronautics and Astronautics, Nanjing, China

{skz16sz,lijing}@nuaa.edu.cn
2 State Grid Information & Telecommunication Branch, Beijing, China

Abstract. Microservice architecture has been widely used by more and
more developers in recent years. Accurate anomaly detection is crucial for
system maintenance. Trace data can reflect the microservice dependency
relationship and response time, which has been adopted for microser-
vice anomaly detection now. However, due to the lack of unification
modeling framework of response time and call path, the performance of
anomaly detection degrades, and difficult to adapt to downstream tasks.
To address the above issues, we propose BSDG, a trace anomaly detec-
tion method based on a dual graph convolutional neural network (dual-
GCN). First, BSDG extracts the microservice call dependencies, combing
the learnable node attributes generated by Bi-directional Long Short-
Term Memory(BiLSTM) to build an attribute dependency graph com-
bined response time and call path. Then, a self-attention mapping graph
is constructed and we use a dualGCN with mutual attention to gen-
erate effective feature embedding representation. Finally, BSDG adopts
a multilayer perceptron with a new classification loss function to train
the model in an end-to-end way for anomaly detection. The experimen-
tal results on public benchmarks show that the proposed BDSG outper-
forms baseline methods. We also conduct experiments on our constructed
microservice trace dataset to validate the robustness of BSDG. Experi-
ments show that the BSDG outperforms existing methods in microservice
trace anomaly detection.

Keywords: Microservices · Trace · dualGCN · Anomaly detection

1 Introduction

With the development of information technology, microservice have been widely
used for developing large-scale applications in cloud environments due to their
advantages of flexibility. Microservice systems consisting of hundreds or thou-
sands of cooperative services perhaps lead to unstable microservice performance,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 171–185, 2022.
https://doi.org/10.1007/978-3-031-20984-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_12&domain=pdf
http://orcid.org/0000-0003-3750-3931
http://orcid.org/0000-0001-5664-9907
https://doi.org/10.1007/978-3-031-20984-0_12

172 K. Shi et al.

so an accurate and robust method for microservice anomaly detection is urgently
needed. Recently, anomaly detection based on trace has received more and more
attention because it can better reflect the dependencies between response time
and call path. Most current microservice trace anomaly detection methods are
based on response time [1–3], call path [4–7], as well as response time and call
path anomalies [8–12].The response time anomaly detection method [1–3] judges
whether the response time of each microservice is abnormal by analyzing whether
it conforms to the normal distribution. Since the response time is also affected
by the microservices it invokes, this type of method is prone to cause the detec-
tion effect to be poor. The call path anomaly detection method [4–7] compares
the calling sequence of each node in the trace with the entire traces to deter-
mine trace anomaly, but it can only be used to detect structural anomalies in the
microservice trace. Response time and call path anomaly detection method [8–12]
consider these two cases comprehensively, however, most of the existing methods
mainly model them in different stages. For example, TraceAnomaly [11] starts
to perform anomaly detection on the call path to find the abnormal trace, then
continues to find the abnormal span according to the response time anomaly
detection. Therefore, this kind of anomaly detection result mainly depends on
the previous step, which will bring error accumulation. In summary, microser-
vice anomaly detection based on response time and call path mainly face the
following two challenges:

(1) How to express the relationship between response time and the
call path effectively.

As shown in Fig. 1(a) and (b), the average response time and response time
distribution of microservice calls under different call paths are listed in the
normal operation of the microservice system. Because the calling and request
resources between microservices differ, there will be large response time fluctu-
ations when calling the same microservice. Therefore, how to provide a unified
framework to model the information between them is a challenge.

Fig. 1. The relationship between response time and call path.

BSDG 173

(2) How to effectively deal with the problem of the missing call paths
of trace.

Since the microservices cooperate to complete tasks through remote calls,
when an anomaly occurs, it may occur that the span is missing, causing its
sub-calls to be broken in the trace, resulting in the lack of the call paths of the
trace. In this way, it is difficult for us to construct a complete trace topology
graph based on the existing call relationship between spans. If we remove such
samples directly and ignore the impact of missing call paths, it will lead to poor
performance of the model. Therefore, how to effectively deal with the missing
call paths of the trace is another challenge.

To address the above two challenges, we propose a microservice trace anomaly
detection method BSDG based on dualGCN. First, it extracts the call depen-
dency between spans in the trace, combines the node attributes based on BiL-
STM, constructs the attribute dependency graph based on response time and
call path, and then uses the self-attention mechanism to generate a self-attention
mapping graph. Finally, the dualGCN with mutual attention is used to fuse the
node attribute dependence and the self-attention node mapping.

Our contributions of this paper are summarized as follows.
(1) We propose a method for generating trace embedded representation of

node attributes based on BiLSTM. By constructing attribute dependency graphs
and self-attention mapping graphs, a unified modeling framework with effective
integration of microservice response time and call paths is achieved.

(2) We first apply dualGCN to the microservice trace anomaly detection.
Through the information propagation of the multi-layer dualGCN and the fusion
mechanism based on mutual attention, the effective feature embedding represen-
tation performance of the trace is generated.

(3) Our Multi-point fault injection (MPFI) microservice trace dataset is
constructed in the cloud environment, and the accuracy and robustness of the
anomaly detection algorithm proposed in this paper are validated.

2 BSDG

Trace data can be used for microservice anomaly detection. Trace data consists
of multiple traces. Each trace composed of span data blocks is a set of call trees.
Span is used to storing information such as operation name, timestamp, span ID,
response time and status code. BSDG models microservice trace anomaly detec-
tion as a multi-dimensional binary classification problem. BSDG first parses trace
and generates node attributes through BiLSTM to build an attribute dependency
graph. Then, uses the self-attention mechanism to construct the self-attention
graph, aggregates the unified information representation by the dualCNN, and
finally completes the anomaly detection through the classification module. The
BSDG framework is shown in Fig. 2.

174 K. Shi et al.

Fig. 2. The framework of the proposed BSDG.

2.1 Graph Construction Module

Trace with timestamp can be expressed as Ti =
[
si1, s

i
2, . . . , s

i
N

]
, i ∈ {1, . . . , M}

, where Ti denotes the ith trace, sij is the jth span, and N is the length of
Ti. The response time is normalized by Min-max normalization as St,scaled =

St−min(S)
max(S)−min(S) is used to process the response time, where max(S) and min(S)
is the maximum and minimum values of response time in span, and St is the
response time of span at time t. Other non-numeric fields use one-hot encoding,
and the above data constitutes a node performance vector pij ∈ R

d. To model
the relationship between the current span and its history, each trace is divided
using sliding windows technique. The divided traces are represented as T ′

i =
[
wi

1, w
i
2, . . . , w

i
N

]
, where wi

j =
[
pij−l, p

i
j−l+1, . . . , p

i
j

]
is a sliding window data,

and l is the size of sliding window.

Node Attribute Generation. To overcome the limitations of LSTM, we use
BiLSTM to capture the bidirectional features of node performance representa-
tion P =

{
pi1, p

i
2, . . . p

i
n

}
, consisting of two LSTM hidden layers with opposite

input directions. In this module, previous and future information can be uti-
lized in the output layer to generate learnable node attributes. For a given input
sample T ′

i =
[
wi

1, w
i
2, . . . , w

i
N

]
, we use a BiLSTM to mine the important node

attribute information and output the corresponding hidden layer state variables
→
h (t) and

←
h (t).Concatenate them to get node attributes X = {xi

1, x
i
2, . . . x

i
N}

as follows:
X = Concat(

→
h (t),

←
h (t)) (1)

Attribute Dependency Graph Construction. Combined with the span ID,
the call dependencies between span and the node attributes, we construct the
attribute dependency graph GAD =< V,Adep,X >, where V denotes the set
of vertices composed of span IDs, Adep ∈ R

N×N denotes an adjacency matrix,
formed by the calling relationship between spans, X is the node attributes of
each node in graph GAD.

BSDG 175

Self-attention Mapping Graph Construction. We use the self-attention
mechanism to calculate the node attribute similarity by inputting the node
attributes into two linear layers separately, and then generate the self-attention
mapping matrix Asam ∈ R

N×N :

Asam = softmax(
(WQX + bQ) × (WKX + bK)T√

N
) (2)

where WQ and WK are the weights matrix of the linear layer, bQ and bK are
the bias of the linear layer, N is the number of input nodes. Moreover, we use
the span ID set, Asam and X to construct the self-attention mapping graph
GSA =< V,Asam,X >.

We introduce an orthogonal regularization [13] to ensure the self-attention
mapping matrix is as orthogonal as possible by computing the Frobenius norm
of Asam(Asam)T and unit matrix.

RO =
‖Asam(Asam)T − I‖F

N
(3)

where I is the unit matrix and ‖ • ‖F denotes the Frobenius norm.

2.2 Information Fusion Module

Given attribute graph GAD and self-attention mapping graph GSA, we aim
to generate a new embedding representation fusing above information. We
address this problem using dualGCN architecture composed with self-adaptive
based GCN(SAGCN), call-dependent based GCN(CDGCN) and mutual atten-
tion block. In addition, we use differential regularization [13] for Asam in SAGCN
to encourage the SAGCN to capture the node feature information that cannot
be captured by the CDGCN.

CDGCN Block. The CDGCN uses a layer-by-layer propagation multilayer
graph convolutional neural network(GCN) to aggregate global information
between node attributes in the attribute dependency graph based on the true
dependency relationships of Adep to enhance the ability to accurately capture
the dependency relationships between node attributes. Specifically, the graph
convolutional layer of CDGCN is based on the following Equation:

HCD
(l+1) = σ

(
A

˜depHCD
(l) W(l)

)
(4)

where Ãdep = D̃− 1
2 (Adep + I)D̃− 1

2 denotes the symmetrically normalized adja-
cency matrix with self-loops, HCD

(l) ∈ R
N×d is the node representation matrix

in lth layer of the CDGCN, HCD
(0) = X, W(l) is a trainable weight matrix in lth

layer and σ is the ReLU activation function.

176 K. Shi et al.

SAGCN Block. Based on the different weights of neighbor nodes in Asam,
SAGCN uses another GCN to capture the information between the attributes of
each node in the self-attention mapping graph to capture additional information
that cannot be extracted from CDGCN. Specifically, the graph convolutional
layer of SAGCN is based on the following Equation:

HSA
(l+1) = σ

(
A ˜samHSA

(l) W(l)

)
(5)

where Ãsam = D̃− 1
2 (Asam + I)D̃− 1

2 denotes the symmetrically normalized adja-
cency matrix with self-loops, HSA

(l) ∈ R
N×d is the node representation matrix in

lth layer of the SAGCN, HSA
(0) = X.

Mutual Attention Block. Cross-modality information between CDGCN and
SAGCN in BSDG brings richer information. However, only concatenating them
for calculations will lose much complementary information, and this information
perhaps has a significant effect on anomaly detection. So, we use the mutual
attention block of dualGCN to improve the fusion of information.

We first define the mutual attention operator between matrix A ∈ R
N×d and

B ∈ R
N×N as: MutualAtt(A,B) = wT tanh(W1A+W2B)+softmax(AW3B

T),
and W is the weight matrix. Second, we calculate the new output HSA′

(l)

and HCD′
(l) of lth dualGCN using HSA′

(l) = MutualAtt(HSA
(l) ,HCD

(l))HCD
(l) and

HCD′
(l) = MutualAtt(HCD

(l) ,HSA
(l))HSA

(l) based on mutual attention operator. This
mutual attention block can help achieve effective fusion between node attribute
dependencies and self-attention mapping features through the exchange of node
attribute features between CDGCN and SAGCN.

Finally, in order to make SAGCN and CDGCN have more differentiated
feature representation, we use a differential regularizer to calculate the difference
between Asam and Adep using the Frobenius norm, the inverse of the Frobenius
norm is taken as the final differential regularization term RD.

RD =
N

‖Asam − Adep‖F (6)

2.3 Anomaly Detection Module

The last layer output of dualGCN from CDGCN and SAGCN are concatenated
to obtain the node attribute feature representation H̃ = Concat(HCD′

(last),H
SA′
(last)).

Then H̃ is input to the multilayer perceptron (MLP) to complete anomaly detec-
tion. We use a linear mapping followed by a non-linear activation function as:

ai = σ(wf H̃ + bf) (7)

where wf and bf are the weights and bias parameters of MLP, σ is the softmax
activation function, ai is the ith sample predicted anomaly probability. We use

BSDG 177

the cross-entropy loss function widely used defined lC as:

lc = − 1
N

N∑

i

[yi · log(ai) + (1 − yi) · log(1 − ai)] (8)

where yi is the true label of span samples, and N denotes the total number of
span samples. Then the combined lC , RO and RD to get the total loss function:

lT = lC + λ1RD + λ2RO (9)

where λ1 and λ2 denote the regularization coefficients.

3 Experimental Results and Analysis

3.1 Data Set Description

We conduct experiments on datasets of TTFI1, AIOps20202 and MPFI. Among
them, TTFI comes from TLFD [10], which collected the trace data by simulating
fault injection to the Train Ticket3 microservice application. AIOps2020 comes
from the International AIOps Challenge, which provides real production data
of a large service provider. MPFI is a data set constructed used for our paper
by simulating multi-point failure. We summarize their characteristics in Table 1
and provide the example of microservice trace in Table 2.

TTFI consists of eight fault files according to the injected fault type,
which includes container JVM failures, container CPU utilization failures, and
microservice or container networking type failures. AIOps2020 monitors the call-
ing relationship and performance metrics between microservices in the appli-
cation system and divides multiple fault files by date. The types of failures
include container CPU utilization failures, container memory utilization failures,
database type failures, and host or container network type failures. Compared
with the TTFI, the failure distribution in the AIOps2020 is more random and
diverse.

During the construction of the MPFI, we first deploy the Train Ticket
microservice in the cloud environment using Kubernetes4, and use Chaosblade5

to inject faults into the microservice and the container where it is located, mainly
including increasing the communication delay between microservices, improve
the random packet loss rate of microservices, accidentally delete microservices,
suspend the container where the microservice is located, and exhaust the load

1 https://github.com/BIGXT/TTFI.
2 https://github.com/NetManAIOps/AIOps-Challenge-2020-Data.
3 https://github.com/FudanSELab/train-ticket.
4 https://Kubernetes.io/.
5 https://github.com/chaosblade-io.

https://github.com/BIGXT/TTFI
https://github.com/NetManAIOps/AIOps-Challenge-2020-Data
https://github.com/FudanSELab/train-ticket
https://Kubernetes.io/
https://github.com/chaosblade-io

178 K. Shi et al.

resources of the node pool where the microservice is located. Finally, the open-
source distributed tracing system Jaeger6 based on the OpenTracing7 protocol,
is used to collect trace data and save it in the Elasticsearch8 database.

Table 1. Dataset Statistics.

Dataset Train Validation Test Dimensions Anomalies(%)

TTFI 183682 61227 61228 12 0.410

AIOps 7482487 2494162 2494164 9 0.106

MPFI 7294 2431 2433 12 1.349

Table 2. Example of Microservice Trace.

TraceID SpanID ParentSpanID Response time ServiceName OperationName Kind

100f3f1c3fae86f1a a9637b3cb377a652 None 8123 ts-ui-dashboard ts-ui-dashboard server

100f3f1c3fae86f1a 7aeb835cc7a7992a a9637b3cb377a652 7581 ts-ui-dashboard ts-order-service client

100f3f1c3fae86f1a 22201ee383adf0ef 7aeb835cc7a7992a 6940 ts-order-service ts-order-service client

100f3f1c3fae86f1a 28bfc57affae0e2d 22201ee383adf0ef 2454 ts-order-service ts-station-service client

100f3f1c3fae86f1a d4d1eb7f838579f0 28bfc57affae0e2d 2044 ts-station-service ts-station-service client

3.2 Baseline Methods for Anomaly Detection

We select the current state-of-the-art TLFD [10], Multimodal LSTM [9] and
Deeplog [5] in microservice trace anomaly detection as baseline comparison meth-
ods. TLFD is a two-stage modeling method based on call path and response time.
It first detects whether there is an abnormal call path by calculating the simi-
larity between the trace and the normal trace. If there exists an anomaly, then
it uses statistical methods to determine whether there is an abnormal response
time. Multimodal LSTM is a typical unified modeling method of call path and
response time. By using multimodal LSTM to learn the properties of response
time and call path in the normal trace, and then judge whether there is an
anomaly by whether the trace mode deviates from the normal mode. Deeplog is
a widely used deep learning anomaly detection algorithm, which uses the LSTM
model to detect call path anomalies in microservice anomaly detection.

We use Precision, Recall and the F1-score as measures of detection effective-
ness. Precision represents the proportion of true anomalies among the detected
anomalies, and recall represents the proportion of all true anomalies marked as
anomalies by the model. The F1-Score, as shown in Equation (10), is a perfor-
mance measure that combines precision and recall.

F1 =
2 × Precision × Recall

Precision + Recall
(10)

6 https://www.jaegertracing.io/.
7 https://opentracing.io/.
8 https://www.elastic.co/.

https://www.jaegertracing.io/
https://opentracing.io/
https://www.elastic.co/

BSDG 179

3.3 Experimental Setup

During training, we tune the hyperparameters of competing models and our
model with grid search by early stopping on the validation set. In general, the
size of the window is set to 10. The dualGCN layers are set to 4. The learning
rate is 0.001. The regularized factors L1 and L2 are 0.1. The hyper-parameters
are summarized in Table 3.

Table 3. Hyperparameter configurations of BSDG.

Hyperparameter Value

Window sizes 10

dualGCN layers 4

Learning rate 0.001

L1&L2 0.1

Early Stopping epochs 10

3.4 Overall Performance

We show the overall performance empirical results of three datasets in Tables 4,
5 and 6. As can be seen in Table 4, BSDG has the average highest precision,
recall and F1-score on the TTFI. The overall performance of BSDG on eight
fault files is 6.6% higher than that of Multimodal LSTM, and the performance
of TLFD is slightly worse, mainly because TLFD does not fully consider the
relationship between the call path and response time. Multimodal LSTM also
does not deeply explore this correlation. The overall performance is lower than
BSDG, which validated the superiority of our method based on unified modeling
in microservice anomaly detection.

Table 4. Overall performance results on TTFI. P:Precision, R: Recall, F1: F1-
score.The best P,R and F1 scores are highlighted in bold.

Fault File TLFD BSDG Multimodal LSTM Deeplog

P R F1 P R F1 P R F1 P R F1

F1 0.907 0.888 0.887 0.999 0.964 0.975 0.951 0.957 0.954 0.554 0.913 0.700

F2 0.979 0.979 0.979 0.987 1.0 0.993 0.881 0.904 0.892 0.522 0.833 0.642

F3 0.921 0.907 0.906 0.933 0.902 0.917 0.956 0.792 0.866 0.527 0.878 0.659

F4 0.953 0.949 0.949 0.990 1.0 0.999 0.905 0.776 0.835 0.542 0.748 0.629

F5 0.963 0.960 0.960 0.997 1.0 0.990 0.935 0.889 0.911 0.531 0.852 0.654

F6 0.832 0.747 0.729 0.958 0.999 0.979 0.912 0.984 0.947 0.593 0.953 0.731

F7 0.914 0.906 0.906 0.980 1.0 0.990 0.920 0.992 0.955 0.593 0.953 0.731

F8 0.915 0.890 0.886 0.959 1.0 0.979 0.860 1.0 0.920 0.520 1.0 0.684

Average 0.915 0.890 0.886 0.975 0.983 0.978 0.915 0.912 0.910 0.546 0.891 0.679

180 K. Shi et al.

Table 5. Overall performance results on AIOps2020.

Fault File BSDG Multimodal LSTM Deeplog

P R F1 P R F1 P R F1

05 23 0.885 0.990 0.935 0.823 0.500 0.623 0.587 0.440 0.502

05 24 0.973 0.998 0.986 0.837 0.513 0.636 0.549 0.417 0.474

05 25 0.998 1.0 0.999 0.842 0.501 0.631 0.869 0.343 0.492

05 26 0.960 0.828 0.889 0.797 0.534 0.640 0.375 0.742 0.498

05 27 0.940 0.972 0.956 0.840 0.521 0.643 0.754 0.445 0.559

Average 0.951 0.958 0.953 0.828 0.5138 0.635 0.627 0.477 0.505

Table 5 shows the performance comparison of other BSDG methods on the
AIOps2020 dataset. It can be seen that Multimodal LSTM and Deeplog have
poor performance, while BSDG is better than them in all metrics.

To further verify the performance of BSDG, experiments are conducted on
our MPFI dataset with multi-point fault. As can be seen from Table 6, BSDG
still achieves the average performance of 0.856 on this complex dataset, outper-
forming other methods.

Table 6. Overall performance results on MPFI.

Method P R F1

BSDG 0.856 0.857 0.856

Multimodal LSTM 0.574 0.710 0.634

Deeplog 0.671 0.464 0.548

3.5 Parameter Sensitivity Analysis

In order to test the robustness of our method to hyperparameters, we designed
a parameter sensitivity analysis experiment of BSDG, the results are shown in
Fig. 3.

Fig. 3. Anomaly detection accuracy in terms of precision, recall, and F1-scoreon dif-
ferent parameter setups

BSDG 181

It can be seen that the performance of BSDG will fluctuate as the number
of layers of dualGCN increases. When the number of layers of dualGCN is 4,
BSDG achieves the best performance. The change in the accumulation step will
affect the model training time and the amplitude of the training oscillation.
When the accumulation step is 20, BSDG has the best performance. When the
regularization coefficients L1 and L2 are 0.1, the performance of BSDG is the
best.

3.6 Root Cause Localization Experiment

In order to use the results of BSDG anomaly detection for the microservice fault
root cause location task, we use the Pagerank algorithm [14], combined with the
correlation probability model [15], to design a BSDG-based microservice root
cause location algorithm. The experimental results are shown in Table 7.

Table 7. Performance of BSDG anomaly detection results on root cause localization
algorithm. Top-k accuracy (Top@k) refers to the probability that the root causes are
included in the top-k results.

Dataset Top@1 Top@2 Top@3 Top@4

TTFI 0.75 0.875 1.0 1.0

AIOps 0.846 0.846 0.923 1.0

MPFI 0.727 0.818 0.909 0.909

3.7 Ablation Study

To study the relative importance of each component of BSDG, we set up two
variant methods of BSDG. That is Only-BiLSTM and Only BiLSTM&CDGCN.
Only-BiLSTM represents the model in BSDG using only the node attribute
information of the trace. Only BiLSTM&CDGCN represents the model using
only attribute dependency graphs in BSDG. As shown in Fig. 4, the experimen-
tal results show that Only-BiLSTM and BiLSTM&CDGCN will degrade the
performance of BSDG, which validates the necessity of unified modeling based
on call path and response time.

182 K. Shi et al.

Fig. 4. Ablation study on BSDG.

4 Related Work

4.1 Microservice Trace Anomaly Detection

Most anomaly detection methods are based on response time and call path mod-
eling in a separate way. Anomaly detection based on response time mainly judges
the anomaly according to whether the response time of each microservice con-
forms to the normal response time distribution. Zhang [1] proposed a supervised
learning-based anomaly detection method that uses a convolutional neural net-
work combined with LSTM to predict the probability of each microservice service
quality degradation. However, it only focuses on response time anomalies and
does not consider call path anomalies. Nedelkoski [2] proposed an unsupervised
deep Bayesian network model based on AEVB to detect the anomaly response
time of trace. This method needs to train a model for each microservice, and
there are problems such as high training overhead. Aiming at the fact that
the response time is easily affected by the competition of system resources and
fluctuates. Bogatinovsk [4] proposed a method based on self-supervised learn-
ing through training an autoencoder to reconstruct random masked events in
the input trace. When detected, to predict the events that may occur at each
location in the trace according to the reconstruction results, but this method
can only detect structural anomalies in the microservice trace. Du [5] proposed
the Deeplog method, which uses the template prediction instead of the recon-
struction method for anomaly detection. The above anomaly detection methods
based on separate modeling of response time and call path cannot simultane-
ously consider the relationship between response time and call path, resulting in
performance degradation.

The other anomaly detection methods are based on unified modeling of
response time and call path. To improve the performance of anomaly detection,
unified modeling based on response time and call path can be used for anomaly
detection of microservice trace. Nedelkoski [9] proposed a multimodal LSTM
anomaly detection method, but it ignores the context of the event sequence in the
trace, and the model structure cannot effectively learn the correlation between

BSDG 183

the microservice call path and response time. Chen [10] proposed TLFD as a
two-stage modeling method based on the call path and response time by calcu-
lating the similarity between trace and normal trace to detect whether there is
an anomaly call path, if there exits anomaly, use statistical methods to judge
whether there is an anomaly response time, but this method does not consider the
relationship between the response time and the call path, and unable to detect
anomalies where delays in the application cause unexpected increases in response
time for some requests. Liu [11] proposed an unsupervised anomaly detection
method TraceAnomaly based on a deep Bayesian network and knowledge base
of normal call paths, but this knowledge base type method has problems such as
high computational complexity and long detection time. The above-mentioned
methods based on unified modeling of response time and call path lack effec-
tive processing and deep integration of response time and call path, resulting in
low model detection performance and difficulty in adapting to downstream tasks
such as microservice fault location. So we propose a microservice trace anomaly
detection model BSDG that can perform unified modeling and deep integration
of response time and call path.

4.2 Graph Neural Networks

In recent years, graph neural networks (GNN) [16] have attracted a lot of
attention when dealing with anomaly detection tasks. GNN have also been
applied in microservice anomaly detection. Zhang [17] constructed a trace event
graph (TEG) for trace data and log events, using a gated graph neural net-
works (GGNNs) to fuse the multi-source information. Recently, Xu [12] also
applied GNN to anomaly detection, using a graph attention network to aggre-
gate influence relationships between nodes, and finally judges whether a node
is an anomaly by the deviation between the predicted value and actual value.
However, these methods suffer from fixed graph structure and the construction
method is relatively in a single form. Different from GNN, dualGCN models the
global context of the input features in a single general framework. After infer-
ence, the perceptual features of the two complementary relationships are further
fused to form a refined feature and can be further provided to the next layer for
specific tasks, and many research results have emerged in different fields. Li [13]
considered the complementary information of syntactic structure and seman-
tic correlation in the process of sentiment analysis, and proposed a dualGCN
to integrate the information. Ma [19] designed a dualGCN to predict cancer
drug response models. Sun [20] designed a dual dynamic graph convolutional
neural network (DDGCN) to learn the representation of dynamic events in a
fine-grained way for better detection of rumors. We will take full advantage of
dualGCN to achieve unified modeling of the trace response time and call path
relationship.

184 K. Shi et al.

5 Summary

We propose BSDG, a microservice trace anomaly detection method based on
dualGCN in this paper. BiLSTM is used to generate node attribute represen-
tation, and a trace attribute dependency graph and self-attention mapping are
constructed tounified modeling microservice response time and call path. Then,
through the propagation of the multi-layer dualCNN and information fusion
based on the mutual attention, the effective feature embedding representation
of microservice trace is generated, and then detect the anomalies using multi-
layer perceptron. Finally, extensive experiments are conducted on three datasets,
TTFI, AIOps and our MPFI. Compared with the three state-of-the-art trace
anomaly detection methods TLFD, MultimodalTrace and Deeplog, BSDG has
superior performance in microservice trace anomaly detection.

Acknowledgements. This work was supported by the Science and Technology Pro-
gram of State Grid Corporation of China under Grant 5700-202152169A-0-0-00.

References

1. Gan, Y., Zhang, Y., Hu, K., Cheng, D., He, Y., Pancholi, M., Delimitrou, C.: Seer:
leveraging big data to navigate the complexity of performance debugging in cloud
microservices. In: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
19–33 (2019)

2. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection and classification using
distributed tracing and deep learning. In: 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 241–250. IEEE
(2019)

3. Samir, A., Pahl, C.: DLA: detecting and localizing anomalies in containerized
microservice architectures using markov models. In: 2019 7th International Con-
ference on Future Internet of Things and Cloud (FiCloud), pp. 205–213. IEEE
(2019)

4. Bogatinovski, J., Nedelkoski, S., Cardoso, J., Kao, O.: Self-supervised anomaly
detection from distributed traces. In: 2020 IEEE/ACM 13th International Confer-
ence on Utility and Cloud Computing (UCC), pp. 342–347. IEEE (2020)

5. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1285–1298 (2017)

6. Meng, L., Ji, F., Sun, Y., Wang, T.: Detecting anomalies in microservices with
execution trace comparison. Future Gener. Comput. Syst. 116, 291–301 (2021)

7. Wang, T., Zhang, W., Xu, J., Gu, Z.: Workflow-aware automatic fault diagnosis for
microservice-based applications with statistics. IEEE Trans. Netw. Serv. Manag.
17(4), 2350–2363 (2020)

8. Zhou, X., et al.: Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 683–694 (2019)

BSDG 185

9. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data
using multimodal deep learning. In: 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pp. 179–186. IEEE (2019)

10. Chen, H., Wei, K., Li, A., Wang, T., Zhang, W.: Trace-based intelligent fault diag-
nosis for microservices with deep learning. In: 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC), pp. 884–893. IEEE (2021)

11. Liu, P., et al.: Unsupervised detection of microservice trace anomalies through
service-level deep Bayesian networks. In: 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE), pp. 48–58. IEEE (2020)

12. Xu, P., Gao, X., Zhang, Z.: Graph neural network-based anomaly detection for
trace of microservices. Available at SSRN 4111928

13. Li, R., Chen, H., Feng, F., Ma, Z., Wang, X., Hovy, E.: Dual graph convolutional
networks for aspect-based sentiment analysis. In: Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 6319–6329 (2021)

14. Mariani, L., Monni, C., Pezzé, M., Riganelli, O., Xin, R.: Localizing faults in
cloud systems. In: 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), pp. 262–273. IEEE (2018)

15. Li, Z., et al.: Practical root cause localization for microservice systems via trace
analysis. In: 2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), pp. 1–10. IEEE (2021)

16. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate
time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 4027–4035 (2021)

17. Zhang, C., et al.: DeepTraLog: trace-log combined microservice anomaly detection
through graph-based deep learning (2022)

18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

19. Ma, T., Liu, Q., Li, H., Zhou, M., Jiang, R., Zhang, X.: DualGCN: a dual graph
convolutional network model to predict cancer drug response. BMC Bioinform.
23(4), 1–13 (2022)

20. Sun, M., Zhang, X., Zheng, J., Ma, G.: DDGCN: dual dynamic graph convolutional
networks for rumor detection on social media (2022)

http://arxiv.org/abs/1609.02907

SCORE: A Resource-Efficient
Microservice Orchestration Model Based

on Spectral Clustering in Edge
Computing

Ning Li1(B) , Yusong Tan1(B) , Xiaochuan Wang1 , Bao Li1 ,
and Jun Luo2

1 School of Computer, National University of Defense Technology,
Changsha 410073, China
lining20@nudt.edu.cn

2 Tianjin Institute of Advanced Technology, Tianjin 300450, China

Abstract. Microservices architecture has an essential characteristic of
loose coupling compared to traditional monolithic applications, allowing
applications to be created, updated, and extended independently. With
lightweight virtualization technologies, such as container, microservices-
based applications can be widely deployed to the edge of the network.
However, challenges of deploying microservice in edge come from the
contradiction between the latency sensitivity of applications and limited
node resources. We propose a microservice orchestration model(SCORE)
for edge scenarios that enable microservice scheduling based on spec-
trum clustering(MSSC) and dynamic resource allocation under multi-
dimension constraints based on the sliding window(SW) mechanism.
MSSC significantly reduces the cross-node communication traffic between
microservices by portraying the dependencies between microservices
through a graph and then using spectral clustering to map microservices
to edge nodes. At the same time, the process of cluster scaling under multi-
dimension provides more fine-grained resource allocation for microservices
and improves resource utilization while ensuring service-level performance
objectives(SLOs). The experimental results indicate that our approach
reduces the inter-node communication traffic by 17.7% compared to base-
line, and the overall average memory requested for processing a single
request is 19.4% and 45.8% of baseline, respectively.

Keywords: Microservice · Resource allocation · Edge computing ·
Scheduling · Spectral clustering

1 Introduction

With the large-scale deployment of 5G cellular networks and the widespread
use of intelligent devices at the edge, more and more computing tasks are
being sunk to the network’s edge. Edge devices have also shifted from a sin-
gle role as data consumers to a dual role as producers and consumers of data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 186–202, 2022.
https://doi.org/10.1007/978-3-031-20984-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_13&domain=pdf
http://orcid.org/0000-0002-5369-3459
http://orcid.org/0000-0003-1233-5679
http://orcid.org/0000-0001-8186-6233
http://orcid.org/0000-0002-4504-6841
http://orcid.org/0000-0003-3460-3996
https://doi.org/10.1007/978-3-031-20984-0_13

Microservice Orchestration 187

Performing tasks on edge devices save bandwidth resources and protect pri-
vacy, and reduces response time [15,24,30]. However, edge environments are
often characterized by constrained resources, dynamic network changes, and fre-
quent application iterations. Traditional SOA architecture-based applications
have been unable to bridge the gap between application requirements and envi-
ronmental characteristics. In this case, microservices architecture-based applica-
tions are widely deployed in edge computing. It decouples monolithic applica-
tions into independent microservice components [12,18], and through container
technology, the entire lifecycle of microservices can be independently managed
and rapidly iterated with minimal resource consumption. With the dramatic
increase in microservices, orchestrating and managing containers has become
more complex. There are a variety of mature container orchestration tools, such
as Google’s open-source project Kubernetes [1], Docker Swarm [2] and Open-
Shift [3], etc. Kubernetes, the most mature container orchestration engine, is
widely deployed in data centers. Its default scheduling algorithm includes two
phases, Predicates, and Priorities, where nodes that do not meet the require-
ments can be filtered out in the Predicates phase, and then the remaining nodes
are scored and ranked in the Priorities stage to select the best. The default
algorithm is competent for container scheduling in general, but there are still
two main challenges in edge scenarios. The first is that a distinctive feature of
edge computing is the requirement for low latency, which is directly related to
user experience [27], and frequent cross-node communication in edge environ-
ments can significantly increase application response time, which is not taken
into account by the default algorithm. The second is that although Kubernetes’
Horizontal Pod Autoscaler (HPA) mechanism can adapt to changes in load by
changing the number of container replicas, there is over-provisioning in resource
allocation based on multi-dimension constraints (see Sect. 3.2) [20], which is
unfriendly to edge environments.

In allusion to the shortage of the default scheduling algorithm, we design a
microservice scheduling and resource allocation model that is more adaptable to
the characteristics of edge scenarios. In summary, the main contributions of the
paper are as follows.

• Microservice scheduling based on spectral clustering. MSSC signif-
icantly reduces the cross-node communication traffic between microservices
by portraying the dependencies through a graph and then using spectral clus-
tering to map microservices to edge nodes.

• Dynamic resource allocation under multi-dimension constraint
based on sliding window mechanism. We address the problem of over-
provisioning resources in cluster scaling under multi-dimension constraints
by adopting a more accurate resource allocation algorithm while combining
the sliding window mechanism to avoid drastic changes in the cluster and
improve resource utilization while ensuring the quality of service.

• Simulation experiments under real production environment. We
built a simulated cluster using Raspberry Pi and virtual machines. To ver-
ify the model’s performance in the production environment, we analyzed

188 N. Li et al.

the cluster-trace-microservices-v2021 dataset [4] from Alibaba’s open-source
Alibaba Cluster Trace Program to simulate the traffic characteristics of the
production environment for stress testing.

The experimental results show that compared with the baseline, the propor-
tion of intra-node traffic increases to 2.7 times, the inter-node traffic decreases
by 17.7%, and the minimum, average and maximum application response times
decrease by 37.8%, 10.7%, and 26.6%, respectively. During cluster scaling, the
average memory value requested for processing a single request on two high-
load microservice applications is equivalent to 19.4% and 45.8% of baseline,
respectively. In contrast, the total number of requests and response time remains
unchanged.

The rest of this paper is structured as follows. In Sect. 2, related works about
microservice scheduling in edge computing are discussed. System architecture
and proposed microservice scheduling and resource allocation algorithm are dis-
cussed in Sect. 3. In Sect. 4, we evaluate the proposed algorithm on a cloud-edge
continuum. Section 5 concludes the paper and highlights future directions.

2 Related Works

In this section, we introduce the work on microservice scheduling and resource
allocation.

Microservice Scheduling. Previous work [11] uses multiple clustering algo-
rithms to classify hosts and then uses principal component analysis(PCA) to
extract key metrics of containers and decide which containers need to be sched-
uled. [9,13,14,21,28], etc. map microservices or hosts into a graph, convert the
scheduling problem into a problem of finding the least-cost graph, and then use
the shortest path algorithm, maximum flow algorithm, etc. to obtain the final
scheduling policy. The graph provides convenience for handling microservices-
based scheduling. However, when the number of nodes increases, the performance
of these algorithms will become the bottleneck of the system, and they can only
adopt approximate methods to compromise. They cannot cope with the dynamic
edge environment. [25] introduces a way combining deep learning and Q-learning
algorithm to model container migration strategy as a multi-dimension Markov
decision problem (MDP). However, this approach requires learning features in
different application scenarios and lacks generality. [17,19,27,29] constructs a
task scheduling model from the perspective of improving resource utilization
by collecting multiple metrics for scheduling at different stages, including node
metrics, container metrics, and application layer metrics. Although the above
methods optimize the scheduling of microservices from different perspectives,
they lack the analysis of the dependencies between microservices. They cannot
solve the problem of latency caused by cross-node communication.

Resource Allocation. To improve the foresight of resource allocation, [9,13,
16,22,26] adopt the methods of reinforcement learning, deep learning, Gaussian
regression, and statistical analysis to forecast the resource demand of the applica-
tion. First, use a pre-trained model to interact with the environment. Dynamically

Microservice Orchestration 189

collect data to update the model, predict the future state of the environment, and
allocate resources based on the anticipated results. This method needs to learn the
characteristics of different application scenarios, the inference and training of the
model are resource-intensive tasks, it cannot adapt to the features of the edge envi-
ronment, and the model also lacks a certain degree of versatility. [9,10] designed
a closed-loop feedback control model from the cybernetics perspective and then
used a proportional-integral-derivative(PID) algorithm to realize the control of
microservices. However, the parameters of the cybernetics-based algorithm are
highly coupled with the application scenario, requiring iterative testing and precise
parameter tuning, which lacks versatility. [9,12,23,29] introduces multi-level met-
rics to monitor the application for resource allocation. However, these approaches
have a coarse granularity in coping with the resource allocation problem under
multiple resource constraints, resulting in poor resource utilization.

Table 1. System parameters

Parameter Description

G The graph abstracted from a microservice application

W The adjacency matrix of graph

D The degree matrix of a graph

L The Laplace matrix of the graph

V An n-dimensional real vector

Gi The i ’th subgraph of G

W (Gi, Gj) The sum of weights of all edges between subgraphs Gi and Gj

E Average resource usage per request processed by microservices

wij The weight of the edge between nodes i and j

di The diagonal element of a degree matrix

vi The components of the real vector V

λ The eigenvalues of the Laplace matrix

Nk The k’th node of the graph

Ti The target resource utilization rate specified by the user for the i’th resource

Ui Actual resource utilization of the i’th resource for microservice

C The current number of replicates

Ri The i’th resource required by the microservice in the new state

ri The i’th resource required by the microservice in the initial state

ci The number of replicates calculated from the i’th resource

ut
ij The current resource utilization of the i’th resource on the j’th node at time t for

microservice

tk The duration of the k’th resource allocation

3 System Design

In this section, we present the system architecture (see Fig. 1) and discuss how
it works. First, Locust [5] is used to generate the traffic, then Cilium and

190 N. Li et al.

Hubble are used to analyze the dependencies between microservices, and finally,
microservices are mapped to nodes by spectral clustering. At the foundation
of Cilium is a new Linux kernel technology called eBPF, which enables the
dynamic insertion of powerful security visibility and control logic within Linux
itself. Hubble is built on top of Cilium and eBPF to enable deep visibility into the
communication and behavior of services [6]. Then, accurate resource allocation
is accomplished through the monitoring unit, mapping unit, resource allocation
unit, and execution unit, InfluxDB [7] is used to store the monitoring metrics.
See Sects. 3.1 and 3.2 for detailed description of each unit of the system.

Fig. 1. System architecture.

3.1 Microservice Scheduling Based on Spectral Clustering

With the continuous expansion of the application scale, the number of microser-
vices increases sharply, and the invocation relationship between services becomes
more complex. The traditional scheduling mechanism usually makes decisions
based on the status of the target node, including the usage of resources such
as CPU, memory, and port. However, in the edge computing scenario where
microservices architecture is widely used, the constraint relationship between
microservices is the critical factor affecting user experience. The graph is used
to portray the dependencies between microservices and then uses a clustering
algorithm to complete the mapping of microservices to nodes so that microser-
vices with strong dependencies are deployed to the same nodes, thus reducing
the response time (see Fig. 2).

Microservice Orchestration 191

Fig. 2. Service mapping. Fig. 3. Traffic between microservices.

Spectral clustering is performed by cutting the graph to make the sum of
weights between the subgraphs as large as possible and the sum of weights within
the subgraphs as small as possible, which is a minimum cut problem. There have
been many related types of research on this problem in graph theory, such as
Ford − Fulkerson algorithm, RatioCut algorithm, and NormalizedCut algo-
rithm, etc., which can prove that the minimum cut problem and the maximum
flow problem are equivalent. The Ford−Fulkerson algorithm is to get the solu-
tion of the minimum cut problem by solving the maximum flow problem, which
is a circular, iterative algorithm with high time complexity when the graph is
large [13]. It does not meet the latency requirements of edge applications. This
paper solves the minimum cut problem based on the RatioCut algorithm, which
maps the application to a directed acyclic graph (DAG), where the vertices rep-
resent individual microservices and the edges define the invocation relationships
between microservices. We derived the invocation frequencies among different
microservices by analyzing 30,000 historical access data (see Fig. 3) and quanti-
fied them as the weights of edges. The invocation frequency reflects the closeness
between microservices. Then a weighted undirected graph is used to portray
a microservice architecture-based application, whose objective function for the
minimum cut problem can be expressed as Eq. (1). The parameters are explained
in Table 1.

min
Gi∈G

RationCut(G1, ..., Gk) = min
Gi∈G

1
2

k∑

i=1

W (Gi,Gi)
|Gi|

= min
Gi∈G

k∑

i=1

cut(Gi,Gi)
|Gi|

(1)

where Gi denotes the i’th subgraph, W (Gi, Gi) denotes the weight between Gi

and other subgraphs, and to prevent the granularity of the division from being
too fine, |Gi| is introduced in the denominator for correction, |Gi| denotes the
number of nodes in the subgraph Gi.

192 N. Li et al.

For any weighted undirected graph, we can obtain its adjacency matrix W
and degree matrix D, and then compute its Laplacian matrix L, as shown in
Eqs. (2), (3).

W =

⎛

⎜
⎜
⎜
⎝

w11 w12 · · · w1n

w21 w22 · · · w2n

...
...

. . .
...

wn1 wn2 · · · wnn

⎞

⎟
⎟
⎟
⎠

D =

⎛

⎜
⎜
⎜
⎝

d1
d2

. . .
dn

⎞

⎟
⎟
⎟
⎠

di =
n∑

j=1,j �=i

wi,j (2)

L = D − W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑n
j=2 w1,j −w12 · · · −w1i · · · −w1n

−w21

∑n
j=1,j �=2 w2,j · · · −w2i · · · −w2n

...
...

. . .
...

. . .
...

−wi1 −wi2 · · · ∑n
j=1,j �=i wi,j · · · −win

...
...

. . .
...

. . .
...

−wn1 −wn2 · · · −wni · · · ∑n−1
j=1 wn,j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)
For an undirected weighted graph, it is evident that the Laplacian matrix is

symmetric, and there exists an eigenvalue of 0, whose corresponding eigenvector
is (1, · · · , 1) ∈ Rn. It can be proved that there exists an n-dimensional real vector
V ,

V T · L · V = 1
2

n∑

i,j=1

wi,j · (vi − vj)
2

= |G| · RationCut(G,G)

= λ · n

(4)

So the problem of minimizing the objective function can be transformed into
finding the minimum eigenvalues and eigenvectors of the Laplacian matrix. First,
the graph’s adjacency matrix is derived by analyzing the cluster trace, based
on which we can obtain the degree matrix and the Laplace matrix and then
calculate the eigenvalues and eigenvectors of the Laplace matrix. By arranging
the eigenvectors corresponding to the first k smallest eigenvalues of the Laplacian
matrix except 0 into an n∗k-dimensional matrix, an n-dimensional classification
vector is finally obtained using k-means clustering, which represents the nodes
corresponding to each microservice. Finally, the deployment of the service is
realized by calling APIServer, as shown in Algorithm 1.

3.2 Dynamic Resource Allocation Under Multi-dimension
Constraint Based on Sliding Window Mechanism

After the microservices are deployed to the nodes, multiple resources are required
to ensure their regular operation. On the one hand, the over-allocation of
resources will lead to resource competition on the same node. Once the resource

Microservice Orchestration 193

Algorithm 1: MSSC algorithm
Input: Cluster Trace(30000)
Output: Results of spectral clustering: clustermap.

1 Initialize: Analyzing application Data ⇒w matrix;
2 w matrix ⇒ d matrix;
3 l matrix = d matrix − w matrix;

// Calculate eigenvalues and eigenvectors

4 eigenlist, vectorlist = Matrix(l matrix);
// Sort the eigenvectors

5 sort vectorlist = Sort(eigenlist, vectorlist);
6 for i = 1; i < k + 1; i + + do
7 sub matrix = Append(sub matrix, sort vectorlist[i])
8 end
9 cluster map = kmeans(sub matrix, k);

10 cluster map ⇒ APIServer

limit of the node is exceeded, the node may crash. On the other hand, if the
resource allocation is insufficient, the application performance will be degraded
or even unable to provide services normally. Therefore, reasonable resource allo-
cation is the premise to ensure the normal operation of the cluster. The upper
limit of resources is set to prevent node crashes caused by an application’s unlim-
ited use of resources. The overall resource utilization of the cluster can be rep-
resented by a matrix as follows (see Eq. 5). Each row of the matrix represents a
resource, each column represents a node, and each element represents the usage
of a resource on the corresponding node.

⎛

⎜
⎜
⎜
⎝

u11 u12 · · · u1k

u21 u22 · · · u2k

...
...

. . .
...

un1 un2 · · · unk

⎞

⎟
⎟
⎟
⎠

(5)

The original HPA mechanism expands and shrinks the capacity based on
static configuration templates. Each replicate applies for the same and a fixed
amount of resources. In the process of cluster scale expansion based on multiple
indicators, the controller calculates the optimal number of replicates for each
resource and then selects the maximum value as the final number of replicates
for this round of scheduling, as shown in Eqs. (6), (7).

{

ci =
∑k

j=1 uij

Ti
, i ∈ 1, 2, 3 . . .

C = Max (c1, c2, c3, . . . , cn)
(6)

Ui =

∑k
j=1 uij

C
, i ∈ 1, 2, 3 . . . (7)

according to (6), (7), for C �= ci, it can be derived that Ui < Ti .

194 N. Li et al.

In this case, the resource corresponding to the small number of replicates is
over-provisioning, especially when the application resource request is not bal-
anced, the phenomenon will be more noticeable and even affect the overall load
capacity of the node. This situation is not friendly to the edge computing sce-
nario.

The number of resources allocated and the actual demand of the application
should be matched dynamically so that the quality of service can be satisfied while
avoiding resource over-provisioning as much as possible. To solve this problem, we
propose a dynamic resource allocation method based on a sliding window, consist-
ing mainly of a monitoring unit, a mapping unit, a resource allocation unit, and
an execution unit. The monitoring unit consists of node daemons cAdvisor and
metrics − server, mainly responsible for collecting resource metrics from each
node and pod in the cluster. The mapping unit completes the binding of met-
rics and microservices and stores the metrics for each microservice in InfluxDB.
The resource allocation unit analyzes historical data based on a sliding window
mechanism, i.e., it calculates the resource allocation not only based on the current
requests but takes into account the resource usage in the most recent window (see
Fig. 4). When the system detects that a new resource allocation process is trig-
gered, it will build the new window with the current slot as the endpoint, push
forward the winlen length as the starting point, and calculate the new resource
allocation scheme with the average value within the window. This is mainly to pre-
vent drastic fluctuations in the cluster state, affecting service quality. The latest
allocated resources are shown in Eq. (8),

Fig. 4. Sliding window mechanism.

Ri =

∑winlen
t=1

∑k
j=1 ut

ij · ri

winlen · C · Ti
(8)

The numerator indicates the total resource usage of all replicas of the same
application on different nodes, reflecting the current load level of the application,
and winlen is the size of the sliding window. The minimum resource usage can
be calculated while satisfying the user requirements based on the final number
of replicas and the target resource usage. The execution unit is responsible for
communicating with APIServer to update the cluster status, as shown in Algo-
rithm 2. The time complexity of the algorithm is O

(
s2 · r · i + s · w

)
, s represents

Microservice Orchestration 195

the number of microservices, r represents the number of replicas, i represents
the resource type, and w represents the window length.

Algorithm 2: Resource allocation algorithm
Input: The length of sliding window, winlen;
The initial resource requests, Initlist;
List of microservices, servicelist;
The target resource utilization, T .

1 while True do
2 for service in servicelist do

// Calculate the number of replicates

3 averagelist = getwinvalue(service, winlen)
4 for i = 1; i < n; i + + do
5 c[i] = averagelist[i]/Initlist[i] · T [i]
6 end
7 new C = Max(c[i])

8 end
// Reallocate resources

9 for i = 1; i < n; i + + do
10 if c[i] < new C then
11 newlist[i] = averagelist[i]/new C · T [i]
12 end

13 end
14 if old C �= new C then
15 update(new C, newlist)
16 old C = new C

17 end

18 end

For each microservice, we first calculate the average value of each type of
resource in the new window and the corresponding number of replicas and take
the maximum value new C as the new final number of replicas. Then we real-
locate all kinds of resources according to the new replicas and the SLAs target
T . Finally, it triggers a new round of updates when the new number of replicas
is different from the old. The owner’s SLOs are the target for adjustment. For
containers, the over-provisioning of resources will lead to the poor utilization of
the device, and conversely, there is a risk of SLOs violations. The algorithm is
to perform accurate resource allocation while satisfying the SLOs.

4 Evaluation

In this section, we present the performance comparison between our proposed
approach and the default scheduler of Kubernetes, which mainly covers two
aspects, 1) the performance of clustering-based microservice scheduling and 2)
the performance of dynamic resource allocation.

196 N. Li et al.

Cluster Setup: We evaluated the system in a simulated environment consisting
of seven nodes, including a master node and six working nodes, where the Rasp-
berry Pi was connected to the cluster through a wireless channel. The hardware
configuration is shown in Table 2.

Software Setup: Kubernetes version v1.19.3, container runtime is Docker
20.10.7, database version is InfluxDB v2.3.0.

Load Generation: We use Alibaba dataset cluster-trace-microservices-v2021
as our primary workload, which reflects user access characteristics in the real
world. Locust is used as a load generator deployed outside the cluster to avoid
interference.

Benchmark: Using Kubernetes scheduler as well as HPA as the baseline,
MSSC and SW were evaluated using Google’s open-source online application
Online Boutique [8], which consists of a total of 12 microservices including
front-end web service, shopping cart, checkout center, back-end database, etc.,
covering the main application scenarios.

Table 2. Hardware Configuration.

Name CPU Memory Disk ISA OS

Master 2/2.8GHz 4G 50G x86 Ubuntu 21.04 LTS

Edge1 2/2.8GHz 4G 50G x86 Ubuntu 21.04 LTS

Edge2 2/2.8GHz 4G 50G x86 Ubuntu 21.04 LTS

Edge3 2/2.8GHz 4G 50G x86 Ubuntu 21.04 LTS

Raspberrypi1 4/1.5GHz 8G 120G ARM Ubuntu Server 20.04.2 LTS

Raspberrypi2 4/1.5GHz 8G 120G ARM Ubuntu Server 20.04.2 LTS

Raspberrypi3 4/1.5GHz 8G 120G ARM Ubuntu Server 20.04.2 LTS

4.1 Performance of Cluster-Based Microservice Scheduling

To verify the performance of the clustering algorithm in reducing the cross-
node communication of microservices, we deployed Cilium and Hubble in the
cluster. First, when the application is deployed to the cluster, the Kubernetes
default scheduler deploys the microservices to different nodes. After stress test-
ing, we discovered the dependencies between the microservices by analyzing
30,000 access records. Figure 5) and Fig. 6) respectively depict the traffic distri-
bution under the action of baseline and MSSC during a round of testing. It can
be seen that the former has a general cross-node flow, while the latter decreases
significantly after clustering. We conducted ten rounds of tests to eliminate the
effect of randomness. The results show that 90.1% of the traffic in the cluster
belong to cross-node communication, while only 9.9% of the traffic belongs to
intra-node communication (see Fig. 7).

Microservice Orchestration 197

Secondly, a spectral clustering analysis was performed based on the access
records collected in the previous step, and the microservices were mapped to
different nodes based on the clustering results.

Finally, the same number of application access records are recaptured for
analysis under the current scheduling decision, and 72.4% of the traffic is inter-
node communication, and 27.6% of the traffic is intra-node communication.
Compared with the baseline, the proportion of intra-node traffic increased to
2.7 times, and the traffic of inter-node communication decreased by 17.7% (see
Fig. 8). The response time of the application is also evaluated, the MSSC is
reduced in all intervals of the cumulative distribution function (CDF) compared
to baseline (see Fig. 9). Under MSSC, the minimum, average and maximum val-
ues of response time are reduced by 37.8%, 10.7%, and 26.6%, respectively (see
Fig. 10), and the overall fluctuation range decreased by 26.3%, mainly benefits
from the reduction of cross-node communication.

Fig. 5. Traffic distribution(Kubernetes-1). Fig. 6. Traffic distribution(MSSC-1).

Fig. 7. Traffic distribution(Kubernetes-2). Fig. 8. Traffic distribution(MSSC-2).

198 N. Li et al.

Fig. 9. Distribution of response time(a). Fig. 10. Distribution of response time(b).

4.2 Performance of Dynamic Resource Allocation

This section validates the performance of the resource allocation model under
multiple resource constraints based on the sliding window mechanism (SW).
Our target is to conserve resources as much as possible in the edge scenario
while satisfying the application SLOs to ensure that the nodes can allocate the
limited resources to more applications. The sliding window mechanism is also
used to suppress the cluster performance degradation caused by the dramatic
fluctuations in a short period.

We chose two typical resources, CPU and memory, to verify the algorithm’s
performance with sliding window lengths of 5s, 30s, and 60s, respectively. To
eliminate uncertainty, we had the same SLOs for each round of testing, which
lasted for one hour. The CPU and memory utilization are 60% and 70%,
respectively. To simulate real-world traffic characteristics, we used cluster-trace-
microservices-v2021 from the Alibaba Cluster Trace Program, which contains
20000+ microservices in 12 h, and introduced the runtime metrics of microser-
vices in the production cluster. We obtained the traffic characteristics of the
production environment by analyzing the dataset (see Fig. 11), and scaled it
equally to fit the local test conditions. An average resource consumption indica-
tor Ei is introduced to characterize the resource usage, and it can be calculated
in Equation 9.

Ei =
n∑

k=1

cki · rki · tk
n

, i ∈ 1, 2, 3 . . . (9)

Where cki represents the number of replicates in the k-th stage, rki represents
the number of i-th dimension resources requested by the copy in the k-th stage,
tk represents the duration of the k-th stage, and n represents the number of
requests processed in the entire process.

When using the dynamic resource allocation method, the percentage of mem-
ory resources requested by the two high-load microservices currencyservice and
frontend to complete a single request relative to HPA is shown in Fig. 12, where

Microservice Orchestration 199

Fig. 11. Alibaba Cluster Trace.

E for frontend is 37%, 9%, and 12.2% of HPA in three different windows, respec-
tively. 9% and 12.2% of HPA, and the indicator for currencyservice is 42.8%,
41.5% and 53.2%, respectively. The results show that the performance of the
algorithm based on dynamic resource allocation is better than its competitors
under different window sizes, and it can be found that the performance is better
than the other two conditions when the winlen is 30s. This indicates that there
is no simple linear relationship between the size of the window and the per-
formance, which aligns with our intuitive impression. The window size reflects
the strategy’s sensitivity and represents the system’s inertia. When the window
size increases, on the one hand, it avoids frequent fluctuations, but on the other
hand, it makes the system not reflect the actual situation accurately. A smaller
window has the opposite effect. It shows that the hyperparameter winlen needs
to be chosen reasonably according to the system’s characteristics.

Figure 13 depicts that the response time of microservices does not show a
significant decrease due to the compression of resources. Instead, Our approach’s
latency is more diminutive than HPA in all intervals of the CDF for SW-30, and
the indicator is 80% for SW-60. It is mainly due to the more accurate resource
allocation based on real-time load analysis, balancing performance and efficiency.
The introduction of the sliding window mechanism also effectively suppresses
system fluctuations and improves the cluster’s performance.

Figure 14 depicts the total number of requests completed by the system and
the average response time. From the results, HPA is better than SW-5 and SW-
60, but worse than SW-30, indicating that the performance of HPA can be fully
achieved or even exceeded by setting the appropriate winlen. Figure 15 depicts
the request failures. Our approach introduces a failure rate of 0.1%, but we
consider these losses acceptable compared to the increase in resource utilization.

200 N. Li et al.

Fig. 12. Percentage of resources. Fig. 13. Distribution of response time.

Fig. 14. Request and response time. Fig. 15. Failures statistics.

5 Conclusions

We propose a model for microservice scheduling and resource allocation in edge
scenarios. It significantly reduces the cross-node communication traffic between
microservices by portraying the dependencies between microservices through a
graph and then using spectral clustering to map microservices to edge nodes. We
adopt precise resource allocation algorithms during cluster scaling under multi-
dimension constraints to improve resource utilization of edge devices while ensur-
ing SLOs. The experimental results show that compared with the baseline, the
inter-node traffic decreases by 17.7%, and the minimum, average and maximum
application response time decrease by 37.8%, 10.7%, and 26.6%, respectively.
During cluster scaling, the average value of memory requested for processing a
single request on two high-load microservice applications is overall equivalent
to 19.4% and 45.8% of baseline, respectively. In contrast, the total number of
requests and response time remain essentially unchanged.

Microservice Orchestration 201

The model itself is platform bound, mainly considering the fact that Kuber-
netes is widely deployed in the field of microservice orchestration, and the algo-
rithm needs to be reimplemented for the new API when it is transplanted to
other platforms. In the future, we will optimize the model for the characteris-
tics of device hardware heterogeneity and network mode heterogeneity in the
edge environment and use real-time application dependency analysis and graph
generation algorithms to improve the autonomy and adaptability of the model.

References

1. Kubernetes documentation, https://kubernetes.io/. Accessed 30 Jun 2022
2. Swarm mode overview, https://docs.docker.com/engine/swarm/. Accessed 30 Jun

2022
3. OpenShift container platform 4.10 documentation, https://docs.openshift.com/

container-platform/4.10/welcome/index.html. Accessed 30 Jun 2022
4. Overview of microservices traces, https://github.com/alibaba/clusterdata/tree/

master/cluster-trace-microservices-v2021. Accessed 30 Jun 2022
5. An open source load testing tool, https://locust.io/. Accessed 30 Jun 2022
6. eBPF-based networking, observability, security, https://docs.cilium.io/en/stable/.

Accessed 30 Jun 2022
7. The time series data platform where developers build IoT, analytics, and cloud

applications, https://www.influxdata.com/. Accessed 30 Jun 2022
8. Microservices demo application., https://github.com/GoogleCloudPlatform/

microservices-demo. Accessed 30 Jun 2022
9. Baarzi, A.F., Kesidis, G.: SHOWAR: right-sizing and efficient scheduling of

microservices. In: Proceedings of the ACM Symposium on Cloud Computing, pp.
427–441 (2021)

10. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback con-
troller for containerized cloud applications. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
217–228 (2016)

11. Chhikara, P., Tekchandani, R., Kumar, N., Obaidat, M.S.: An efficient container
management scheme for resource-constrained intelligent IoT devices. IEEE Internet
Things J. 8(16), 12597–12609 (2021). https://doi.org/10.1109/JIOT.2020.3037181

12. Fourati, M.H., Marzouk, S., Jmaiel, M.: EPMA: elastic platform for microservices-
based applications: towards optimal resource elasticity. J. Grid Comput. 20(1),
1–21 (2022)

13. Fu, K., et al.: QoS-aware and resource efficient microservice deployment in cloud-
edge continuum. In: 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 932–941 (2021). https://doi.org/10.1109/IPDPS49936.
2021.00102

14. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on het-
erogeneous clusters with multi-resource constraints. Future Gener. Comput. Syst.
102, 562–573 (2020)

15. Jiang, C., Cheng, X., Gao, H., Zhou, X., Wan, J.: Toward computation offloading
in edge computing: a survey. IEEE Access 7, 131543–131558 (2019). https://doi.
org/10.1109/ACCESS.2019.2938660

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.openshift.com/container-platform/4.10/welcome/index.html
https://docs.openshift.com/container-platform/4.10/welcome/index.html
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2021
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2021
https://locust.io/
https://docs.cilium.io/en/stable/
https://www.influxdata.com/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://doi.org/10.1109/JIOT.2020.3037181
https://doi.org/10.1109/IPDPS49936.2021.00102
https://doi.org/10.1109/IPDPS49936.2021.00102
https://doi.org/10.1109/ACCESS.2019.2938660
https://doi.org/10.1109/ACCESS.2019.2938660

202 N. Li et al.

16. Kang, P., Lama, P.: Robust resource scaling of containerized microservices with
probabilistic machine learning. In: 2020 IEEE/ACM 13th International Conference
on Utility and Cloud Computing (UCC), pp. 122–131. IEEE (2020)

17. Li, X., Li, X., Tan, Y., Zhu, H., Tan, S.: Multi-resource workload mapping with
minimum cost in cloud environment. Concurr. Comput.: Pract. Exper. 31(15),
e5167 (2019)

18. Luo, S., et al.: Characterizing microservice dependency and performance: Alibaba
trace analysis. In: Proceedings of the ACM Symposium on Cloud Computing, p.
412–426. SoCC ’21, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3472883.3487003

19. Mao, Y., Oak, J., Pompili, A., Beer, D., Han, T., Hu, P.: DRAPS: dynamic and
resource-aware placement scheme for docker containers in a heterogeneous cluster.
In: 2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC), pp. 1–8. IEEE (2017)

20. Marko, L.: Qiniu: Kubernetes in Action. Publishing House of Electronics Industry,
Beijing (2021)

21. Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-
intensive serverless edge computing. Future Gener. Comput. Syst. 114, 259–271
(2021)

22. Rossi, F., Nardelli, M., Cardellini, V.: Horizontal and vertical scaling of container-
based applications using reinforcement learning. In: 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), pp. 329–338. IEEE (2019)

23. Taherizadeh, S., Stankovski, V.: Dynamic multi-level auto-scaling rules for con-
tainerized applications. Comput. J. 62(2), 174–197 (2019)

24. Tan, Y., Wu, F., Wu, Q., Liao, X.: Resource stealing: a resource multiplexing
method for mix workloads in cloud system. J. Supercomput. 75(1), 33–49 (2019)

25. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learning
algorithms for containers in fog computing. IEEE Trans. Serv. Comput. 12(5),
712–725 (2019). https://doi.org/10.1109/TSC.2018.2827070

26. Yang, Z., Nguyen, P., Jin, H., Nahrstedt, K.: MIRAS: model-based reinforcement
learning for microservice resource allocation over scientific workflows. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS),
pp. 122–132. IEEE (2019)

27. Yin, L., Luo, J., Luo, H.: Tasks scheduling and resource allocation in fog computing
based on containers for smart manufacturing. IEEE Trans. Industr. Inform. 14(10),
4712–4721 (2018)

28. Zhang, J., Zhou, X., Ge, T., Wang, X., Hwang, T.: Joint task scheduling and
containerizing for efficient edge computing. IEEE Trans. Parallel Distrib. Syst.
32(8), 2086–2100 (2021)

29. Zhong, Z., Buyya, R.: A cost-efficient container orchestration strategy in
kubernetes-based cloud computing infrastructures with heterogeneous resources.
ACM Trans. Internet Technol. (TOIT) 20(2), 1–24 (2020)

30. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving
the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8),
1738–1762 (2019). https://doi.org/10.1109/JPROC.2019.2918951

https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1109/TSC.2018.2827070
https://doi.org/10.1109/JPROC.2019.2918951

Combining Static and Dynamic Analysis
to Decompose Monolithic Application

into Microservices

Khaled Sellami1, Mohamed Aymen Saied1(B), Ali Ouni2,
and Rabe Abdalkareem3

1 Laval University, Quebec, QC, Canada
mohamed-aymen.saied@ift.ulaval.ca

2 ETS Montreal, University of Quebec, Montreal, QC, Canada
3 Carleton University, Ottawa, ON, Canada

Abstract. In order to benefit from the advantages offered by the
microservices architectural design, many companies have started migrat-
ing their monolithic application to this newer design. However, due to
the high cost and development time associated to this task, automated
approaches need to be developed to solve these issues.

Solutions that tackle this problem can be classified based on the infor-
mation available for the monolithic application which are often based on
source code or runtime traces. The latter provides a more accurate rep-
resentation of the interactions between the classes within the application
however it often fails to cover all of the classes. On the other hand, the
source code of the application is more readily available and can be used
to extract additional information like semantic meaning of the classes.

The objective of this paper is to provide a hybrid solution that com-
bines both of these approaches in order to take advantage of their strengths
while covering their weaknesses. The proposed solution performs static
and dynamic analysis on the monolithic application based on the available
information and the user’s input. Afterwards, an iterative clustering pro-
cess is applied on the processed data in order to generate the microservices
decomposition. We compare different strategies for combining the static
and dynamic approaches and we evaluate the performance of the hybrid
approach compared to each of the separate approaches on 4monolith appli-
cations. We provide as well a comparison with state-of-the-art solutions.

Keywords: Microservices · Clustering · Legacy decomposition · Static
analysis · Dynamic analysis

1 Introduction

Monolithic architectural styles implemented in the legacy applications often lead
to maintainability issues as these applications evolve and as such fail to meet
user demands or provide their services adequately [4]. Service Oriented Architec-
tures (SOA) have emerged as an alternative when building new software which
tries to answer the problems found in monolithic applications. The microser-
vices architecture [1,13] builds upon the philosophy used in SOAs to utilize a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 203–218, 2022.
https://doi.org/10.1007/978-3-031-20984-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_14

204 K. Sellami et al.

Domain Driven Design (DDD) [8] to build autonomous, fine-grained and scalable
components (microservices) that can function independently. A large number of
developers have sought to adopt this style and migrate their legacy applications.
However, this migration process proved to be costly, lengthy and complex in
many cases, requiring a large amount of time and monetary investment from
these developers and as such served as a barrier to improve their software [10].
Approaches that try to tackle this issue attempt at automating this part of the
process by proposing the set of potential microservices which is called a decom-
position. Each approach tackles this issue in a different way mostly based on
the type of input it utilizes and how it analyzes it. One of the most commonly
used approach relies on the information found within the run-time traces of
the monolithic application [3,6,7] since it provides a more accurate view of the
interactions of the components within this application. However, this approach,
called Dynamic Analysis, requires the availability of enough execution traces to
provide this advantage and, as such, methods that employ it often fail to cover
all of the components within the application. The other most common approach
uses the source code of the legacy application [11,15,16] since it is rare that
this information would be unavailable for a developer that is trying to migrate
his application. In addition, this analysis approach, called Static Analysis, can
cover all of the components within the legacy software and include them in the
decomposition.

In this research, we present a solution that merges Static Analysis and
Dynamic Analysis approaches in order to complement each other by providing
more robust decompositions which take advantage of the run-time traces while
covering the whole application by supplementing the inference phase with the
information extracted from the source code. Our solution analyzes the run-time
traces and the source code independently in order to extract semantic, struc-
tural and dynamic representations of the monolithic application. Afterwards,
we apply an iterative clustering approach that combines representations from
different domains in order to generate a single result in a hierarchical structure
that represents the microservices.

In this paper, we compare different strategies for combining the analysis
approaches and we evaluate our approach in comparison with other baselines in
the literature that tackle problems similar to the microservices decomposition
issue. The results obtained show that our approach improved the coverage of our
proposed decompositions while maintaining Structural Modularity, Conceptual
Modular Quality and Inter Call Percentage metrics that are better or similar to
most of the baselines.

The paper is organized as follows. In Sect. 2, we present the related work
to our research. Afterwards, we showcase a formal formulation of the problem
and the details of our proposed approach in Sect. 3. Then, in the 4th section, we
specify and describe the empirical evaluation of our approach. Subsequently, we
move on to discussing the threats to the validity of this work in Sect. 5. Finally,
we provide a conclusion to the paper, and we outline our future work in Sect. 6.

Combining Static and Dynamic Analysis for Microservices Decomposition 205

2 Related Work

Recent research in the migration process from a monolithic architecture to
a microservices architecture has focused mainly on the decomposition phase
where given a monolithic application, an approach proposes a set of potential
microservices. There has been numerous attempts to automate this task. These
approaches can be categorized by how they process the monolithic application
and how they analyze it.

Some solutions focused on the use of execution traces to represent the legacy
systems. Mono2micro [7] associates execution traces with use cases and then
analyzes them to calculate a shared similarity metric between the classes. Then,
it uses a hierarchical clustering algorithm to suggest the microservices. FoSCI [6]
addresses this problem by proposing a solution that relies on execution traces
and a search-based algorithm to group together the classes of the monolithic
application. The approach CoGCN [3] is based on a graph neural network that
provides the proposed decomposition while outputting the list of outliers. This
approach builds its neural network using the structural data in the source code
and trains the model using the execution traces.

Most other solutions that tackle this problem rely on the source code for
their analysis. hierDecomp [16] analyzes the source code in order to extract the
structural and semantic information within it which is used in conjunction with a
hierarchical DBSCAN algorithm variant to generate the decomposition options.
Bunch [11] is a tool designed to provide an architectural-level view of a software
system by decomposing it and clustering its components using search algorithms
and using only the source code of the application.

Some approaches have tried to represent the monolithic applications using
different sources of information. MEM [9], for example, relies on the source code
and the version control history of the application to generate a graph. It proposes
its microservices by applying a clustering algorithm on this graph. ServiceCutter
[5] takes as input a JSON format of the design documents of the monolithic
application. Using this input, ServiceCutter generates scores for 16 coupling
criteria and generates a weighted graph. The developers can use this graph to
generate a service oriented architecture.

3 Proposed Approach

In this section, we present the details of our solution. We start by defining the
problem we are trying to solve. Afterwards, we showcase an overview of the
proposed approach. Then, we explain in detail the different components used in
this approach.

3.1 Problem Formulation

Given a legacy monolithic application, our approach needs to generate a set of
candidate microservices which is called in this case a decomposition. This task

206 K. Sellami et al.

is achieved by analyzing the source code and execution traces. Even though this
solution can be applied on each one of these inputs individually, we will assume
that both types of information are available for the rest of the paper.

The legacy application is represented as a set of classes C = {c1, c2, ..., cN}
where ci is the class’s id and N is the total number of classes. In addition, given
that dynamic analysis rarely covers all of the classes within the code base, we
define Cd = {c′

1, c
′
2, ..., c

′
Nd

} as the set of classes mentioned within the execution
traces where c′

i ∈ C and Nd ≤ N .
The result of our approach is a hierarchical representation of the suggested

decomposition. It is defined as a list of layers, each representing a level of the
hierarchy. The ith layer is defined as Li = {Mi,1,Mi,2, ...,Mi,Ni

} where Mi,j =
{ci,j,1, ci,j,,2, ..., ci,j,Ni,j

} is a microservice containing Ni,j classes and ci,j,k ∈ C.
If a microservice contains only one class, that class is defined as an outlier. In
addition, for each microservice Mi,j in the ith layer, there exists a microservice
Mi+1,j′ in the (i + 1)th layer where Mi,j ⊆ Mi+1,j′ .

Fig. 1. An example showcasing the result of a microservice decomposition.

Figure 1 showcases an example of a decomposition results for a small subset
of classes within an open-source monolithic Java application called DayTrader1.
The initial layer is defined as a set of microservices each having exactly one class.
The second layer contains 4 microservices since the couple of classes TradeAc-
tion and TradeActionProducer as well as OrderData and OrderDataBean have
been merged into a single microservice each. Since the microservices M1,1 and
M1,3 have only the classes TradeDirect and WtiteListenerImp respectively, both
of these classes are categorized as outliers within this layer. For the final layer,
the microservices M1,1 and M1,2 have merged to create the 3-class microser-
vice M2,1. As such, the suggested decomposition contains 2 microservices and
WriteListenerImp as the only outlier.

Having defined the input and output of our solution, the following subsection
explains the details of our approach as well as the theoretical reasoning behind
it.

1 https://github.com/WASdev/sample.daytrader7.

https://github.com/WASdev/sample.daytrader7

Combining Static and Dynamic Analysis for Microservices Decomposition 207

3.2 Approach Overview

Our approach takes as input the source code and execution traces of a
given monolithic application. Afterwards, three separate and distinct analysis
approaches are executed on this input in order to generate a dataset for each
approach. The three datasets are then fed to the clustering component which
combines them in order to output the decomposition layers. Nonetheless, any
combination of the analysis approaches is possible including having a single one.

The Fig. 2 showcases the different steps taken in order to generate a decom-
position for a given monolithic application. The smaller rectangles within the
figure represent the task done by our solution while the ellipses represent inputs
and outputs.

Fig. 2. An overview of the process used to output the microservices decomposition.

3.3 Extracting the Datasets for Each Approach

Dynamic Calls Matrix. This phase requires as input a list of execution traces
recording the dynamic interactions of the classes. These traces represent the exe-
cution logs. Each trace should represent a call path from the first class until the
last called class. Branches in the call path create another trace. For example, if
during an execution, TradeActionProducer called TradeAction which then called
TradeDirect this would create the first trace: [TradeActionProducer, TradeAc-
tion, TradeDirect]. If TradeDirect finished its task and returned, and afterwards
TradeAction called OrderData, we would create a second trace: [TradeAction-
Producer, TradeAction, OrderData]. All circular dependencies within the traces
and all duplicates are removed in a pre-processing step. Using these traces, we
generate the dynamic calls matrix. We define the dynamic calls matrix Mdyn as
a NdxNd matrix where each cell is equal to the sum of direct calls and indirect
calls between every couple of classes within the execution traces. For example,
given the following traces: [TradeActionProducer, TradeAction, TradeDirect] and
[TradeActionProducer, TradeDirect] and the order of classes is [TradeActionPro-

ducer, TradeAction,TradeDirect], the call matrix would be equal to :

⎡
⎣
0 1 2
0 0 1
0 0 0

⎤
⎦

208 K. Sellami et al.

Structural Interactions Matrix. We define an interaction between a class A
and a class B when within class A, class B was declared, used as a type for a
method’s parameter, inherited or had one of its methods called. In addition, all
classes acquire the interactions of the class they inherit from.

As such, we start by extracting the metadata within the source code. Any
static analysis tool that can analyze the Abstract Syntax Trees of the appli-
cation’s programming language can be used to extract this information. After-
wards, for each couple of classes, we measure the number of interactions between
them in order to create the structural interactions matrix Mstr which is a NxN
matrix.

Term Frequency - Inverse Document Frequency (TF-IDF) Matrix.
For each of the N classes within the source code, we extract the text used in the
class’ definition. The text includes the class’ name, the comments, the members’
names, the methods’ names, the parameters’ names and the variables’ names
within its methods. Afterwards, for each word in the text, we apply camelcase
case splitting which separates the input string into multiple words based on the
camelcase naming convention. For example, CamelCase will be split into Camel
and Case. Then, we filter out stopwords. Finally, we apply a stemming process
in order to facilitate the detection of similar words. After this pre-processing
step, we acquire a vector of words for each class which is used, in conjunction
with the vocabulary V to measure the TF-IDF values and obtain the TF-IDF
matrix Msem. The final result would be a NxDV matrix where DV represents
the number of words in the vocabulary.

3.4 The Hybrid Clustering Process

The objective of this task is to combine the different matrices generated in
the previous task in order to provide a better decomposition than each of the
approaches separately. Both structural and semantic analysis can utilize simi-
larity functions that generate N × N matrices whose values are in the range
[0,1] where N refers to the total number of classes within the monolithic appli-
cation. For this reason, an intuitive and simple solution would be to calculate
the weighted sum of structural and semantic similarity matrices using a weight
value called alpha in the range [0,1]. For the rest of the paper, we will call this
matrix the static analysis matrix since it’s based on a couple of approaches that
employ static analysis.

On the other hand, the dynamic calls matrix can’t be used to generate a NxN
matrix since it lacks information regarding some of the classes. As such, a sim-
ple weighted sum is not sufficient. In this case, we use a clustering strategy that
combines 2 datasets from different domains in order to generate a single cluster-
ing result introduced in [14]. This approach builds upon a modified DBSCAN
algorithm [12,16].

This algorithm, which we call hierarchical-DBSCAN, executes DBSCAN in
multiple iterations and slowly increments the epsilon hyper-parameter in order

Combining Static and Dynamic Analysis for Microservices Decomposition 209

to loosen the restriction on the condition for grouping together the classes until
a maximum epsilon value, defined by the user, is reached. Each iteration takes
as input additionally the clustering of the previous iteration. As such, the final
result is a list of layers describing the hierarchy of the clusters since each cluster
with a layer contains at least one of the clusters of the previous layer similarly
to the example shown in Fig. 1.

Combination Strategy. The algorithm introduced in [14] proposed two dif-
ferent strategies to combine the datasets. The first strategy involves running the
hierarchical-DBSCAN processes separately and in a sequential manner.

As shown in Fig. 3, we start with one of the datasets, which in our case is
the dynamic call matrix and we execute all of the iterations of the hierarchical
clustering algorithm. At each iteration, we take as input the previous iteration’s
result and the original dataset. Then, for each cluster in the previous layer, we
generate a new sample that represents the cluster depending on an aggregation
function. Afterwards, we calculate a similarity matrix based on the newly created
samples. Using the similarity matrix, we run the DBSCAN algorithm in order
to acquire the new clusters. After incrementing the epsilon parameter, we verify
if it exceeds a maximum threshold called Max epsilon and that is defined by the
user. If it does not, we feed the clustering result to the next iteration. Otherwise,
we feed it as input into the second phase which applies the same process on
the second dataset, its corresponding aggregation function and its Max epsilon
hyper-parameter. Finally, when the second epsilon reaches its maximum, the
acquired clustering layers are returned as the output of the algorithm.

The Fig. 4 showcases the second strategy. In this case, we alternate between
the datasets. We start by running an iteration for the first dataset. Afterwards,
we update the first epsilon value and we feed the result to an iteration of the
second dataset. Similarly, we update the second epsilon value and use the result
as the input of the second iteration of the first dataset. We keep alternating
between both datasets until both epsilon values have reached their respective
maximum values. Finally, we output the clustering layers.

Given the assumption that dynamic analysis data are a better representation
of the application at the cost of a lower class coverage, we always start the
clustering process with the dynamic call matrix as the first dataset.

Fig. 3. A showcase of the sequential
strategy.

Fig. 4. A showcase of the alternating
strategy.

210 K. Sellami et al.

Aggregation Functions. During each iteration and for each different type of
analysis, we take as input the previous clusters and the original dataset. We
define a function capable of aggregating each cluster into a single point. The
newly generated vectors replace the vectors of the clusters’ components within
the dataset. The resulting dataset is then used in the next steps of the current
iteration

For semantic analysis, each cluster is transformed into a normalized vector
representing the mean of the TF-IDF vectors of its classes. Given a cluster C,
we generate the new vector as:

�cC =

∑
ci∈C

�Msem[ci]
|C| (1)

where �Msem[ci] is the vector encoding the class i in the TF-IDF Matrix Msem

As for both structural and dynamic analysis, we use the same aggregation
function which measures the sum of the vectors representing its classes. Given a
cluster C and the label a in {dyn, str}, we generate the new vector as:

�cC =
∑
ci∈C

�Ma[ci] (2)

4 Evaluation

In this section, we conduct experiments in order to evaluate the performance of
our approach in identifying the optimal decomposition.

4.1 Research Questions

We developed our experimental setups in order to answer the following research
questions:

– Q1: What is the best approach for combining different representations and
interpretations of the monolithic application?

– Q2: How does our approach perform when compared to state-of-the-art
microservices decomposition baselines?

4.2 Experimental Setup

Evaluation Metrics. In order to properly evaluate our solution and compare it
with other approaches, we need to define metrics that can quantify the quality of
the generated microservices. However, since we are dealing with a problem that
does not contain true values we can compare with, we will need to evaluate the
quality of the decomposition based on defined criteria that theoretically represent
an acceptable microservices architecture [10]. As such, for this evaluation, we will
compare the proposed decompositions based on how much the decomposition
respects the Domain Driven Design (DDD) philosophy [8], how coherent the

Combining Static and Dynamic Analysis for Microservices Decomposition 211

microservices are, how much coupling exists between them and the granularity
of the microservices

For these reasons, we selected the following evaluation metrics from the lit-
erature that encode in different ways the selected criteria:

– Structural Modularity (SM): [6] is an evaluation metric that can be asso-
ciated with both the cohesion and coupling criteria since it defines a way to
quantify the structural coherence of the microservices as well as the coupling
between then combines them into a single metric. It is defined as follows:

SM =
1
K

K∑
i=1

μi

m2
i

− 1
(K(K − 1))/2

K∑
i�=j

σi,j

2mi mj
(3)

Where K is the number of the extracted microservices, μi is the number
of unique calls between the classes in microservice i, mi is the number of
classes in microservice i and σi,j is the number of unique calls between classes
of microservice i and classes of microservice j. Decompositions with higher
cohesiveness and lower coupling result in higher SM values and as such reflect
a higher structural quality.

– Conceptual Modular Quality(CMQ): [6], quantifies the conceptual qual-
ity of the decomposition. The cohesion and coupling components within this
metric are based on the common textual terms between the classes. As such,
this metric evaluates how focused the contexts represented by the microser-
vices are. Thus, it can be categorized as a metric for evaluating the DDD
aspects.

CMQ =
1
K

K∑
i=1

μ′
i

m2
i

− 1
(K(K − 1))/2

K∑
i�=j

σ′
i,j

2mi mj
(4)

Where K is the number of the extracted microservices, μ′
i is the number of

common terms between the classes in microservice i, mi is the number of
classes in microservice i and σ′

i,j is the number of common terms between
classes of microservice i and classes of microservice j. Higher CMQ values
reflect better decompositions.

– Non-Extreme Distribution (NED): [3] This metric corresponds to the
granularity criteria and introduces a way to quantify this aspect by measuring
the percentage of classes with extremely small or extremely large microser-
vices. It is defined in detail in the following equation:

NED = 1 − |{mi ; 5 < |mi| < 20, i ∈ [1,K]}|
K

(5)

Where K is the number of the extracted microservices and |mi| is the size
of microservice mi. In our evaluation, we selected the values 5 and 20 as the
thresholds for the definition of extreme sizes for all sample applications in
order to be consistent with the literature [2,3,7]. Having high NED often
corresponds to worse results.

212 K. Sellami et al.

– Inter Call Percentage (ICP): [7] is based on the percentage of static calls
between two microservices. This metric quantifies the dependencies between
the microservices and as such can represent the coupling criteria.

ICP =

∑K
i=1,j=1,i �=j

∑
ck∈Mi

∑
cl∈Mj

(log(calls(ck, cl)) + 1))
∑K

i=1,j=1
∑

ck∈Mi

∑
cl∈Mj

(log(calls(ck, cl)) + 1)
(6)

Where K is the number of microservices, Mi is the set of classes in microser-
vice i, calls(ck, cl) is the number of calls from class ck to class cl. Lower
values of ICP correspond to fewer interactions and as such lower coupling
and a better decomposition.

– Coverage (COV): is simply defined as the percentage of classes from the
monolithic application that were included in the proposed decomposition. For
our approach, we won’t consider outlier classes as part of the proposed decom-
position. If we measure this metric for the decomposition example shown if
Fig. 1 which has 5 classes and detected 1 outlier, the result would be equal
to 0.8. On the other hand, if the used approach is only based on run-time
execution trace analysis and only 3 classes were detected, the result for this
approach would 0.6.

Evaluation Applications. We selected 4 monolithic Open-source Java appli-
cations that we evaluate our approach on. The selected applications have varying
scales in order to evaluate how scalable our approach is. The metadata of these
applications are described in the Table 1 where we specify the number of classes
detected using static analysis (SA) and dynamic analysis (DA) separately and
the number of unique interactions found using static analysis.

Table 1. Monolithic applications metadata.

Project Version SLOC # of SA classes # of DA classes # of unique interactions

Plants 1.0 7,347 40 20 123
JPetStore 1.0 3,341 73 37 209
AcmeAir 1.2 8,899 86 23 242
DayTrader(see footnote 1) 1.4 18,224 118 73 378
1https://github.com/WASdev/sample.mono-to-ms.pbw-monolith.
2https://github.com/KimJongSung/jPetStore.
3https://github.com/acmeair/acmeair.

Experimental Process. For each research question, we propose different alter-
natives that we compare their results. However, hyper-parameter choices can sig-
nificantly impact the quality of the output. As such, we applied a grid-search like
approach where we select intervals of possible values for each hyper-parameter
that is not under evaluation and then we generate the decompositions for each

https://github.com/WASdev/sample.mono-to-ms.pbw-monolith
https://github.com/KimJongSung/jPetStore
https://github.com/acmeair/acmeair

Combining Static and Dynamic Analysis for Microservices Decomposition 213

hyper-parameter combination and we measure their evaluation metrics. After-
wards, we filter out the decompositions that have a NED score equal to 1. Since
NED is calculated by the percentage of microservices with extreme sizes, having
a NED score equal to 1 signifies that all the microservices within this decom-
position can be considered invalid and as such this solution should be excluded.
Additionally, we exclude the decompositions that have a coverage lower than a
defined threshold. In this process, we used 0.5 as the threshold.

4.3 Experimental Setup and Results for RQ1

In this research question, we evaluate which combination strategy as described in
the section Combination strategy performs better. Therefore, we start by com-
paring the performance of the sequential strategy and the alternating strategy.

After applying the experimental process and excluding the extreme cases,
we evaluate the influence of the chosen strategy independently from the hyper-
parameters based on the analysis of over 40000 potential decompositions. The
Table 2 shows the median result for each evaluation metric, sample application
and strategy.

Table 2. Comparison of median evaluation results for approach combination strategies.

SM ↗ CMQ ↗ ICP ↘ NED ↘ COV ↗
Alternating Sequential Alternating Sequential Alternating Sequential Alternating Sequential Alternating Sequential

Plants 0.4037 0.4042 0.0385 0.0246 0.1776 0.1752 0.3077 0.3478 0.675 0.65
JPetStore 0.0767 0.0789 0.1647 0.1539 0.3378 0.4641 0.5968 0.5082 0.863 0.8493
AcmeAir 0.093 0.1031 0.3127 0.2757 0.3885 0.5799 0.7229 0.6125 0.8652 0.7753
DayTrader 0.2219 0.227 0.2047 0.1991 0.2425 0.347 0.7103 0.6848 0.8305 0.7627

As we can observe in the table, both methods had very close median results
for the metric SM with the largest difference being around 0.004 for the project
AcmeAir. However, we can see that using the alternating strategy achieved
higher results for all projects. As for ICP, the alternating strategy managed
to lower its values and achieve a worse but very close median score compared to
the sequential strategy. On the other hand, when comparing the scores for NED,
we can see that the alternating had more extreme microservices in all projects
except for Plants. Finally, the coverage it achieved was better in all applications.

We hypothesize that the increased performance observed in this case is due to
the feedback loop between the clustering processes that exists in the alternating
strategy compared to the sequential approach. In the first case, the results of
the dynamic analysis clustering process feed into the static analysis clustering
process at each iteration which should improve the quality of this process and
vice versa. As for the sequential strategy, the results of the dynamic analysis
clustering process are only used as the input for the first iteration of the static
analysis clustering process.

214 K. Sellami et al.

For the following experiments, we will exclusively use the alternating strategy.

Using the alternating strategy when combining the static and dynamic anal-
ysis results generated decompositions that had better metrics, in general,
than those achieved by the sequential strategy decompositions.

4.4 Experimental Setup and Results for RQ2

In order to answer this research question, we selected the six approaches that
tackle the monolithic to microservices decomposition problem or a similar prob-
lem using different methods and views of the monolithic applications. These
approaches are Bunch [11], CoGCN [3], Hierarchical DBSCAN (HierDec)
[16], FoSCI [6], MEM [9] and Mono2micro (M2M) [7].

For each one of the baselines we compare with as well as our approach
(HyDec), we use different ranges of hyper-parameters in order to generate multi-
ple decompositions. Then we calculate all five of the evaluation metrics. Similarly
to the previous research questions, we eliminate all decompositions that have a
NED score equal to 1.

Figure 5 showcases the results of each baseline for each metric and each sam-
ple application in boxplot figures. Our solution is highlighted in red.

Fig. 5. Boxplots of the evaluation results for each baseline. (Color figure online)

Combining Static and Dynamic Analysis for Microservices Decomposition 215

For the sample application Plants, we can observe in the Figure that our
approach achieved the highest CMQ median score while managing to have the
second highest SM median score and second best ICP score. Only MEM and
HierDec managed to have a better score than our approach respectively in SM
and ICP. As for NED, our solution had a better score than MEM, FoSCI and
CoGCN while M2M achieved the lowest NED. Finally, Our approach had the
highest coverage while HierDec had the lowest.

As for JPetStore, our approach managed to achieve the second-best score in
both SM and ICP in which HierDec had the best score. However, our approach
had significantly better NED and coverage score than the rest of the baselines
with only Bunch as an exception for the NED metric. Although HyDec did
not reach the best score for CMQ like in the case of Plants, its score managed
nonetheless to be the third best and is very close to M2M’s score.

When comparing our approach with the rest of the baselines in the AcmeAir
project, we can see that it achieved much better coverage than the rest where
the median is at least twice as much as the second highest coverage. In addition,
it had the highest CMQ and a similar median score to the highest result in ICP
which was acquired by MEM. However, these scores came at the cost of lower
SM values and higher NED values.

Finally, by comparing the results generated for the application DayTrader
using our approach to those created by the other baselines, we can see that
HyDec had the highest coverage, the second highest CMQ score, the second-best
NED score and the third-highest SM score. As for ICP, our approach managed
to have a better score than 3 out of the 7 baselines.

HyDec had the best median COV in all of the sample applications since our
approach does not rely too heavily on the run-time execution traces but instead
combines it with the source in order to improve the results while having enough
information to place as many classes as possible into their adequate microser-
vices. In addition, HyDec managed to be within the 3 best approaches for all
sample applications for the metrics SM, CMQ and ICP with the exception of a
couple of cases: SM for AcmeAir and ICP for DayTrader. These results show-
case that even with the higher coverage, which serves as a disadvantage when
calculating these metrics, our approach still managed to improve over the base-
lines for some cases and remain competitive for the rest. As for NED, the results
varied from one application to another. For example, even though HyDec had a
significantly higher coverage than the baselines, it did not negatively affect the
NED score unlike what happened with AcmeAir. As for the other applications,
HyDec’s NED score was close to the average of the baselines.

Our approach, HyDec, managed to increase the coverage of the decomposi-
tion and to achieve better conceptual and static cohesion and coupling than
the other baselines in most cases.

216 K. Sellami et al.

5 Threats to Validity

For internal threats to validity, the biggest threat lies within the selection eval-
uation metrics and the hyper-parameters for our approach. For the former, we
tried to use five metrics that differ in the criteria that they represent and that
use different inputs, except for the proposed decomposition, to calculate. As for
the latter, we tried to mitigate this threat by varying these hyper-parameters in
order to generate multiple decompositions for the comparison. Particularly for
the comparison with the baselines, we applied the same process and the same
conditions on all of the approaches. The implementation of the approaches could
be a threat to the validity of this research as well. We attempted to mitigate
this issue by extensively testing the code and verifying the obtained results.

In this paper, we evaluated our approach on only four monolithic applica-
tions. Although we tried to select a set of applications that have varying numbers
of classes and interactions, it would be beneficial to our research to evaluate its
performance on additional sample monolithic applications. Our approach uses
the classes of the monolithic application as the granularity level of its representa-
tion. There is a debate within the literature on which granularity level would be
more suitable for the decomposition task [6]. In our case, we decided on the class
level since this research focused mainly on Object-Oriented Languages for which
the classes represent a core concept when coding. Having a more fine-grained
level, like for example at the procedural level, can lead to more coupling issues
and as such more refactoring would be required.

6 Conclusion and Future Work

We presented a microservices decomposition solution that takes as input the
source code of a monolithic application as well as run-time traces of its execu-
tion. The proposed approach analyzes each of the sources individually extracting
semantic and structural information of the classes within the monolithic appli-
cation from the source code and dynamic interactions between the classes from
the execution traces. Then, an iterative clustering process starts which groups
together the classes based on the current analysis type, the results of the previ-
ous layer and the current constraints. The final result is a hierarchical view of
the proposed microservices. The evaluation results showcase that this approach
improves over individual applications of each analysis approach and a compari-
son with state-of-the-art approaches shows that our solution managed to surpass
the coverage of the rest of the baselines while providing decompositions that have
competitive structural and conceptual cohesion and coupling.

In the future, we would like to work on improving the analysis phase of our
approach, and particularly the semantic analysis approach in order to extract
more accurate information from the source code of the monolithic applications.
We would like to investigate as well if we can combine information extracted from

Combining Static and Dynamic Analysis for Microservices Decomposition 217

other sources like the version control history or the documentation. Finally, it
would be interesting to study the impact of prioritizing the domain relationship
between the classes over the structural and dynamic interactions and find a way
to evaluate whether these solutions would be more beneficial.

References

1. Benomar, O., Abdeen, H., Sahraoui, H., Poulin, P., Saied, M.A.: Detection of
software evolution phases based on development activities. In: 2015 IEEE 23rd
International Conference on Program Comprehension (2016)

2. Bittencourt, R.A., Guerrero, D.D.S.: Comparison of graph clustering algorithms
for recovering software architecture module views. In: Proceedings of the European
Conference on Software Maintenance and Reengineering, CSMR (2009)

3. Desai, U., Bandyopadhyay, S., Tamilselvam, S.: Graph neural network to dilute
outliers for refactoring monolith application (2021)

4. Fritzsch, J., Bogner, J., Wagner, S., Zimmermann, A.: Microservices migration
in industry: Intentions, strategies, and challenges. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (2019)

5. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6_12

6. Jin, W., Liu, T., Cai, Y., Kazman, R., Mo, R., Zheng, Q.: Service candidate iden-
tification from monolithic systems based on execution traces. IEEE Trans. Softw.
Eng. 47(5), 987–1007 (2019)

7. Kalia, A.K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., Banerjee, D.:
Mono2micro: a practical and effective tool for decomposing monolithic java applica-
tions to microservices. In: ESEC/FSE 2021. Association for Computing Machinery
Inc (2021)

8. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2017)

9. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: Proceedings - ICWS 2017. Institute of Electrical and
Electronics Engineers Inc (2017)

10. Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.T., Dustdar, S.:
Microservices: migration of a mission critical system. IEEE Trans. Serv. Comput.
14(5), 1464–1477

11. Mitchell, B.S., Mancoridis, S.: On the automatic modularization of software sys-
tems using the bunch tool. IEEE Trans. Softw. Eng. 32(3), 193–208 (2006)

12. Saied, M.A., Ouni, A., Sahraoui, H., Kula, R.G., Inoue, K., Lo, D.: Improving
reusability of software libraries through usage pattern mining. J. Syst. Softw. 145,
164–179 (2018)

13. Saied, M.A., Raelijohn, E., Batot, E., Famelis, M., Sahraoui, H.: Towards assisting
developers in API usage by automated recovery of complex temporal patterns. Inf.
Softw. Technol. 119, 106213 (2020)

14. Saied, M.A., Sahraoui, H.: A cooperative approach for combining client-based and
library-based API usage pattern mining. In: 2016 IEEE 24th International Con-
ference on Program Comprehension (ICPC) (2016)

https://doi.org/10.1007/978-3-319-44482-6_12

218 K. Sellami et al.

15. Sellami, K., Ouni, A., Saied, M.A., Bouktif, S., Mkaouer, M.W.: Improving
microservices extraction using evolutionary search. Inf. Softw. Technol. 151,
106996 (2022)

16. Sellami, K., Saied, M.A., Ouni, A.: A hierarchical dbscan method for extracting
microservices from monolithic applications. In: The International Conference on
Evaluation and Assessment in Software Engineering 2022. Association for Com-
puting Machinery (2022)

MicroSketch : Lightweight and Adaptive
Sketch Based Performance Issue

Detection and Localization
in Microservice Systems

Yufeng Li1, Guangba Yu2, Pengfei Chen2(B), Chuanfu Zhang1,
and Zibin Zheng2

1 School of Systems Science and Engineering, Sun Yat-Sen University,
Guangzhou, China

liyf323@mail2.sysu.edu.cn, zhangchf9@mail.sysu.edu.cn
2 School of Computer Science and Engineering, Sun Yat-Sen University,

Guangzhou, China
yugb5@mail2.sysu.edu.cn, {chenpf7,zhzibin}@mail.sysu.edu.cn

Abstract. With the rapid growth of microservice systems in cloud-native
environments, end-to-end traces have become essential data to help diag-
nose performance issues. However, existing trace-based anomaly detec-
tion and root cause analysis (RCA) still suffer from practical issues due
to either the massive volume or frequent system changes. In this study,
we propose a lightweight and adaptive trace-based anomaly detection and
RCA approach, named MicroSketch, which leverages Sketch based fea-
tures and Robust Random Cut Forest (RRCForest) to render trace analy-
sis more effective and efficient. In addition,MicroSketch is an unsupervised
approach that is able to adapt to changes in microservice systems with-
out any human intervention. We evaluated MicroSketch on a widely-used
open-source system and a production system. The results demonstrate the
efficiency and effectiveness of MicroSketch. MicroSketch significantly out-
performs start-of-the-art approaches, with an average of 40.9% improve-
ment in F1 score on anomaly detection and 25.0% improvement in Recall
of Top-1 on RCA. In particular, MicroSketch is at least 60x faster than
other methods in terms of diagnosis time.

Keywords: Microservice · Anomaly detection · Root cause analysis ·
Sketch

1 Introduction

Over the years, more and more enterprises (e.g., Amazon, Netflix, and Twit-
ter) have gradually replaced monolithic applications with loosely-coupled and
lightweight microservices [2,16]. The loosely-coupled paradigm of microservice
applications enables independent refactoring and dynamic scaling for each ser-
vice [19,20]. Despite various resilience strategies in modern microservice architec-
ture (e.g., load balancing and circuit breaking), system-wide issues of microservice
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 219–236, 2022.
https://doi.org/10.1007/978-3-031-20984-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_15

220 Y. Li et al.

applications are still pervasive due to resource exhaustion, network jam, etc. Per-
formance issues that manifest themselves as high latency are easier to happen but
more difficult to diagnose than availability issues [4].

Distributed tracing [14] becomes a mainstream tool for troubleshooting in
microservice systems. Distributed tracing records the detailed executions of com-
pleting a user request, including the invocation paths of service instances and
latency information of these invocations between service instances. Because dis-
tributed tracing has an irreplaceable advantage in capturing interactions between
service instances, it is becoming an indispensable infrastructure for monitor-
ing, profiling, analyzing and diagnosing in modern distributed software systems,
especially in large microservice applications. However, current tracing tools (e.g.,
Jaeger1 and Zipkin2 are primarily designed to collect and present traces rather
than automatically diagnose performance issues.

It is an error-prone and labor-intensive process to manually detect perfor-
mance issues and localize root causes based on current tracing tools. Therefore,
some automated trace analysis approaches have been proposed in microservice
systems [6,10,18]. However, state-of-the-art studies with traces for performance
analysis encounter practical issues due to the massive volume of traces or frequent
system changes. As shown in Table 1, tprof [6] takes over 600 s and MicroRank [18]
needs over 100 s to infer root causes by analyzing 10,000 traces when one fault
occurs. This is because tprof [6] hierarchically groups traces by request types and
trace structures, and calculates increasingly detailed aggregated statistics, which
consumes a great deal of time. MicroRank introduces PageRank to calculate the
weights of traces, which needs a long time to get the converged results when meet-
ing a larger scale of traces. The inference time will be further exacerbated when
a larger-scale microservice system is encountered. TraceAnomaly [10] takes less
time to infer root causes than MicroRank, but it needs to retrain the deep Bayesian
network after microservice updates. In addition, this training process is extremely
time-consuming, resulting in poor adaptability.

Table 1. Resource overhead and inference time for some state-of-the-art trace analysis
systems. (The experiment platform is shown in Subsect. 4.1)

System Method CPU utilization (%) Memory usage (MB) Time(s)

tprof [6] Hierarchical analysis 12 ± 2 single core 800 ± 50 600 ± 30

TraceAnomaly [10] Deep Bayesian network 75 ± 5 single core 550 ± 50 65 ± 10

MicroRank [18] PageRank+Spectrum 12 ± 2 single core 430 ± 50 105 ± 10

To address the above drawbacks of existing work, we propose MicroSketch,
which leverages Sketch [11] based features and Robust Random Cut Forest
(RRCForest) [5] to detect performance issues and localize root causes using dis-
tributed traces in a lightweight and adaptive way, with a low time and space com-
1 Jaeger, https://jaegertracing.io/.
2 Zipkin, https://zipkin.io/.

https://jaegertracing.io/
https://zipkin.io/

MicroSketch: Performance Issue Detection and Localization 221

plexity. It consists of three main procedures including Status Encoder, Anomaly
Detector, and Fault Locator. Status Encoder collects trace data and encodes
these data into a status vector in order to conduct Anomaly Detector. Then
Anomaly Detector determines whether it is an anomaly. Once an anomaly is
detected, Fault Locator is triggered and generates a ranking list containing pos-
sible root causes for the anomaly. We evaluated MicroSketch on a widely-used
open-source system and a production system. The results demonstrate the effi-
ciency and effectiveness of MicroSketch. Moreover, MicroSketch significantly out-
performs start-of-the-art approaches, with an average of 40.9% improvement in
F1 score on anomaly detection and 25.0% improvement in Recall of Top-1 on
root cause analysis (RCA). In particular, MicroSketch is at least 60x faster than
other methods in terms of diagnosis time. Besides, MicroSketch has the ability
to automatically adapt to the changes of microservice systems and continually
work without any manual intervention.

Overall, the contribution of this paper is three-fold summarized as follows.

– We improve the DDSketch, state-of-the-art sketch technology, so that it keeps
all the original features while reducing storage space to calculate the quantiles
with sublinear space and linear time complexity.

– We propose a novel anomaly detection and RCA approach in microser-
vice environments based on the adaptive RRCForest, which automatically
adapts to variable-length input vector and renders our model appropriate for
dynamic microservice systems.

– We implement MicroSketch to detect performance issues and localize root
causes in a lightweight and adaptive way. We conduct extensive experiments
based on a widely-used microservice benchmark and a production microser-
vice system. Experimental results demonstrate that MicroSketch achieves
good results both on anomaly detection and RCA. In addition, MicroSketch
is at least 60x faster than other methods in terms of diagnosis time.

2 Background

Distributed tracing is an important technique for gaining insight and observabil-
ity into microservice systems [15]. In large-scale microservice systems, a request
is typically handled by multiple services deployed in different nodes or even data
centers. Distributed tracing provides a method to track the complete execution
path of each request. A span represents a logical unit of execution, handled by
an operation of a service instance in a microservice system. All spans that serve
for the same request collectively form a trace, as illustrated in the left part of
Fig. 1. Spans generated by the same request have the same trace ID. For each
span, it records some attributes (i.e., Trace ID, Span ID, and Start time), as
shown on the right part of Fig. 1.

As shown in Fig. 1, the duration of a span is the accumulated time spent by
this operation and all downstream operations. Therefore, when the duration of
span E increases due to a fault, all upstream spans of E (i.e., span A and D) will
increase as well due to fault propagation, making it difficult to determine which

222 Y. Li et al.

span is the root cause. To overcome this problem, we transform duration into a
more directional metric. For each span, we subtract the duration of its all child
spans from its duration to get its real handling time. In Fig. 1, the non-shaded
part is called the span’s handling time.

Fig. 1. An example of trace with five spans in Hipster-Shop (Hipster-Shop, https://
github.com/GoogleCloudPlatform/microservices-demo).

3 System Design

3.1 System Overview

Figure 2 demonstrates the framework of MicroSketch. It consists of three mod-
ules, including Status Encoder, Anomaly Detector and Fault Locator. We use
time interval to denote the trace analysis frequency (1 min default in this study).
Firstly, given the traces in a time interval, Status Encoder leverages the extended
DDSketch to calculate the quantile of the handling time for each invocation group
and encodes them as status vector x = (x1, x2, ..., xm) (Subsect. 3.2). Secondly,
Anomaly Detector analyzes the status vector based on adaptive Robust Random
Cut Forest (RRCForest) and outputs the anomaly score of x (Subsect. 3.3). If
the score of x is over the predefined threshold τ , Fault Locator is triggered to
determine the root cause (Subsect. 3.4).

Fig. 2. The framework of MicroSketch

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

MicroSketch: Performance Issue Detection and Localization 223

3.2 Status Encoder

At each time interval, MicroSketch queries all traces in the time interval and
inputs them into Status Encoder.

Status Vector. Quantile is a splendid statistic for profiling data, especially for
latency data. The quantile of the handling time, such as the 50th or the 90th
percentiles, reflects the quality of service instance. As shown in Fig. 3, p90 of
the operation (product-1.sql-query) rises when issue occurs. Quantile [11] can be
formalized as follows. Given a multiset S of size n, the q-quantile item xq ∈ S is
the item x whose index R(x) in sorted multiset S is �1+ q(n−1)� for 0 ≤ q ≤ 1.

After all spans are collected, we group them by the type of invocation. The
invocation owning the same upstream service instance, same downstream service
instance and same operation belongs to the same type. We calculate the quantile
(p90 in this paper) of the handling time for each group and manage these quan-
tiles as a vector x = [x1, x2, ..., xm], where xi means the quantile of the handling
time that belongs to the invocation group i. Status vector x largely reflects the
performance status of the global microservice system in this time interval.

Sketch Technology. Commonly, we sort the multi-set S first and then query
by index �1+q(n−1)� to generate an exact q-quantile, but it requires huge com-
puting resources and time for sort. Nevertheless, it is not so necessary to get the
exact quantile value in our scenarios. An estimated quantile that does not devi-
ate too far from the exact value can also be enough to conduct anomaly detec-
tion. Therefore, we introduce Distributed Distribution Sketch (DDSketch) [11],
which is able to calculate the quantile much faster and more economically with
relative-error guarantees and sublinear space and linear time complexity. DDS-
ketch keeps rigorously relative-error guarantees by dividing the data stream into
fixed buckets. It means that, given a parameter α, each estimated q-quantile x̃q

and the exact q-quantile xq are satisfied to |x̃q − xq| ≤ αxq.
However, we do not need to satisfy the rigorous relative-error guarantees.

Because we hardly focus on the head latency data (i.e., the main-body distribu-
tion of latency data). We use an equi-width histogram to extend the DDSketch,
which allows us to reduce memory usage without losing the relative-error guar-
antees in the tail data, compared to DDSketch. To elaborate on how extended
DDSketch works, the three phases, namely initialization, insertion and query
are summarized.

In the phase of initialization, we define the tail relative-error rate α, boundary
L and head granularity factor β to keep the error guarantees. Given a quantile
percentage q, if xq < L, the estimated quantile x̃q will be satisfied to |x̃q−xq| ≤ β
and if xq ≥ L, the estimated quantile x̃q will be satisfied to |x̃q − xq| ≤ αxq.
Thus, we keep the relative-error guarantees in the tail data (the numbers are
greater than L), and reduce the memory usage at the cost of losing the relative-
error guarantees in the head data (the numbers are less than L). In this paper,
α is set as 1%, L is set as p50 estimated by the last or 0 and β is set as L

100 or
other reasonable values.

224 Y. Li et al.

Algorithm 1. extended DDSketch Insert Algorithm
Input: the number x ∈ R> 0
1: if x < L then

2: i ←
⌈

x
β

⌉
//Find bucket index i if x belongs to the head data

3: Hi ← Hi + 1 //Bucket H[i] adds 1
4: else
5: i ← ⌈

logγ(x)
⌉
//Find bucket index i if x belongs to the tail data

6: Bi ← Bi + 1 //Bucket B[i] adds 1
7: end if

In the phase of insertion, let γ := (1+α)
(1−α) . If the input number x is less than

L, bucket H[
⌈

x
β

⌉
] adds 1. Otherwise, bucket B[

⌈
logγ(x)

⌉
] adds 1. This is shown

in Algorithm 1.
In the phase of query, given a quantile percentage q, extended DDSketch

try to find the minimum index i which makes
∑i

j=0 Hj > q(n − 1). If we suc-
ceed in finding the index i, extended DDSketch returns the estimated quantile
2i−1
2 β. Otherwise, extended DDSketch finds the minimum index i which makes∑
j=0 Hj +

∑i
j=0 Bj > q(n − 1) and returns the estimated quantile 2γi

γ+1 . The
detail is described in Algorithm 2. Finally, we update L to the estimated p50.

Algorithm 2. extended DDSketch Query Algorithm
Input: 0 ≤ q ≤ 1
Output: the estimated q-quantile
1: count ← 0 i ← −1
2: while i < len(H) && count ≤ q(n − 1) do
3: i ← i + 1
4: count ← count +Hi //Accumulate bucket H[i] in order
5: end while
6: if count > q(n − 1) then

7: return 2i−1
2 β //The q-quantile falls in bucket H[i]

8: end if
9: while count ≤ q(n − 1) do
10: i ← min ({j : Bj > 0 ∧ j > i}) //Accumulate non-empty bucket B[j] in order
11: count ← count +Bi;
12: end while

13: return 2γi

γ+1 //The q-quantile falls in bucket B[i]

3.3 Anomaly Detector

After encoding, traces in time interval are transformed into status vector x =
[x1, x2, ..., xm]. Anomaly detection is converted to outlier detection based on the
time series of status vector x. Robust Random Cut Forest (RRCForest) [5] is
a streaming model and follows the mechanism of isolation forest [9]. In detail,
the point set is distributed in a multidimensional space S ⊂ R

m, for each case,

MicroSketch: Performance Issue Detection and Localization 225

RRCForest randomly chooses a dimension and randomly chooses a value in this
dimension to cut. This process is called dimension cut. After one dimension
cut, the whole space is divided into two subspaces. Subsequently, two subspaces
are recursively cut in the same way. A point is determined to be isolated if it
occupies a subspace exclusively. The scatter chart in Fig. 3 shows an isolated
point occupying the shaded left upper corner exclusively.

Fig. 3. The distribution of status vectors and the mechanism of RRCForest. The first
and second line charts in the left part are p90 handling time of operation front-1.Recv
and product-1.sql-query, respectively. The third line chart is the anomaly score given
by adaptive RRCForest. The scatter chart is the distribution of status vectors and an
example of the dimension cut of a two-dimensional space S ⊂ R

2.

Taking two operations (front-1.Recv and product-1.sql-query) in Hipster-
Shop (Subsect. 4.1) as an example, we use Status Encoder to transform traces
in each time interval into status vector x = [x1, x2]. Both the distribution of
each dimension and the distribution of the vectors are shown in Fig. 3. We inter-
mittently injected four anomalies into service instance product-1. There are four
peaks in the handling time of product-1 because of fault injection. The scat-
ter chart in Fig. 3 presents that several vectors corresponding to the peaks are
labeled as red forks. The red forks can be isolated by two or three dimension
cuts and those dense normal blue dots require more cuts to be isolated.

Next, we describe how RRCForest detects anomalies. The process of dimen-
sion cut mentioned above is described by a binary tree structure, called Robust
Random Cut Tree (RRCTree). As shown in Fig. 4, RRCTree owns two kinds
of nodes. One is leaf , represented as a square rectangle, the other is branch ,
represented as a rounded rectangle. We also summarize three phases for the
construction of RRCTree, namely initialization, insertion and query.

226 Y. Li et al.

Fig. 4. The construction of RRCTree. U and L keeps the maximum and minimum of
each dimension of the leaves to avoid repeatedly calculating them for Eq. 1. d and v
denote the cut dimension and cut value, respectively. Each leaf is assigned to a status
vector and each branch records how the vectors are isolated.

In the phase of initialization, we create an empty tree, given in Fig. 4-I.

wi =
maxx∈Sxi − minx∈Sxi∑
i (maxx∈Sxi − minx∈Sxi)

. (1)

In the phase of insertion, given a RRCTree T ′, we insert a vector x. Let S′

as all vectors in RRCTree T ′ and S = S′ ∪ x. If RRCTree is empty (case 1), we
directly create a leaf, assigned to this vector. Figure 4-➊ shows the case 1.

If RRCTree is non-empty (case 2), we move on to the following discussion.
The case 2 is further divided into three sub-cases. We randomly select the cut
dimension d according to the weight wi which is calculated in the Eq. 1. After
selecting cut dimension d, we randomly and uniformly choose a cut value v ∈
[minx∈Sxd,maxx∈Sxd]. If v ≤ minx′∈S′x′

d (case 2–1), we create a branch and
a leaf that is assigned to the vector x. Then, we set the created leaf as the
left subtree of the created branch and the RRCTree T ′ as the right subtree. If
v > maxx′∈S′x′

d (case 2–2), we set the RRCTree T ′ as the left subtree of the
created branch and the created leaf as the right subtree. If neither is the case
(case 2–3), we consider inserting the vector x into the left subtree of RRCTree
T ′ or right subtree. In detail, for the cut dimension d′ and cut value v′ of the
root branch, if xd′ ≤ v′, we insert the vector x into the left subtree of RRCTree
T ′. Otherwise, we insert the vector x into the right subtree. Since the subtree is
also a RRCTree, the insertion can run recursively until it goes back to the case
2–1 or case 2–2. In sum, Fig. 4-➋ shows the case 2–1. The case 2–2 is similar to
the case 2–1. Figure 4-➌-1 shows the case 2–3.

The last case (case 3) is to insert a variable-length vector x and len(x) >
maxx′∈S′ len(x′). We create a branch, named dimension branch, which repre-
sents that a new dimension occurs. Then, we set RRCTree T ′ as the left subtree
of the created dimension branch and the inserted vector as the right subtree.
Figure 4-➌-2 shows the case 3.

Further, in order to prevent the tree from excessively expanding, we set
tree size (128 in this paper) in advance and delete the earliest point from the
tree when the number of leaves exceeds tree size. Deletion is similar to insertion.

MicroSketch: Performance Issue Detection and Localization 227

Fig. 5. An example of calculating the anomaly score. (a) The cut rates of red leaf are
22
1

, 45
23

and 78
68

. The score of the leaf is 22. (b) The cut rates of red leaf are 3
1

and 16
4

and the score of the leave is 4. The higher the score, the more anomalous the vector.

In the phase of query, we obtain an anomaly score for the inserted vector. As
soon as the insertion of a vector is complete, we query its score. We define the
cut rate of a branch as r = max(nleft,nright)

min(nleft,nright)
, where nleft is the number of leaves

that belong to the left subtree of the branch and nright is the number of leaves
that belong to the right subtree of the branch. We find all ancestor branches in
the path from the leaf corresponding to the vector to the root branch except
dimension branch and calculate these branches’ cut rates. Logically, the score
of the vector is equal to the maximum in these cut rates. Figure 5 presents two
examples of how to calculate the anomaly score of a leaf.

Therefore, anomaly score is closely related to tree size. Practically, we give
a threshold τ = mean × log(tree size), where mean denotes the average history
score. If one’s score exceeds the threshold τ , we regard it as an anomaly.

The above section illustrates how a RRCTree is constructed and queried. As
listed in Eq. 1, the selection of cut dimension is random and probabilistic. To
make this random construction more convergent to its expectation, we generally
build multiple RRCTrees simultaneously and independently. The final score is
the average of all RRCTrees’ scores. Therefore, in practice, we have to define
a parameter tree number (50 in this paper by default), which determines how
many RRCTrees Anomaly Detector maintains.

Fig. 6. The details of Fault Locator. Each RRCTree independently points out an
anomalous invocation. The instance C is viewed as the root cause because there are
four RRCTrees voting for C.

228 Y. Li et al.

3.4 Fault Locator

Once Anomaly Detector finds an outlier, Fault Locator will be triggered.
For a RRCTree, the dimension of the branch corresponding to the largest
cut rate is considered an anomalous dimension. Each RRCTree points out
an anomalous dimension of the outlier. An anomalous dimension repre-
sents that one type of invocation is anomalous. If the invocation is anoma-
lous, we conclude that the upstream service instance or downstream service
instance may be anomalous. RRCForest gives a set of anomalous invoca-
tions [I(u1, d1), I(u2, d2), ..., I(uk, dk)], where u and d denote upstream service
instance and downstream service instance, respectively. To further determine
the most likely root cause, we propose a voting mechanism. Each anomalous
invocation I(u, d) votes for service instance u and service instance d. The service
instance with the most votes is regarded as the root cause. Figure 6 presents that
instance C is determined as the root cause after the vote of four RRCTrees.

4 Experiment Setup

4.1 Datasets

We use two datasets to validate our approach. One, named A, is based on one
of the most widely-used open-source microservice systems, Hipster-Shop. The
other, named B, is based on a production microservice system in China Mobile,
the largest telecommunication company in China. Table 2 shows some details
of our experimental datasets. We implement MicroSketch with Python 3.7. All
experiments are conducted on a workstation with 4-core 2 GHz Intel Core i5-
1038NG7 CPU and 16 GB memory.

Table 2. Experimental datasets

Dataset Benchmark Fault number Fault type Trace number

A Hipster-shop 50 Network, CPU, IO read, IO write 2,902 K

B Production system 8 Network, CPU 168 K

Hipster-Shop Microservice System. This system is an e-commerce website
with 10 microservices that are implemented in different programming languages
and intercommunicate using gRPC. We continuously run a workload generator,
which can simulate real-world users. The microservice benchmark is deployed in
a Kubernetes cluster that consists of 1 master node and 5 worker nodes based on
virtual machines, which singly run with Ubuntu 18.04 OS. To mimic performance
issues, we use two tools, Chaosblade3 and Strace4 to inject four types of faults
into Hipster-Shop. We injected 50 faults to Hipster-shop in total. Each fault
injection lasts for 30 to 60 s.
3 Chaosblade, https://github.com/chaosblade-io/chaosblade.
4 Strace, https://strace.io.

https://github.com/chaosblade-io/chaosblade
https://strace.io

MicroSketch: Performance Issue Detection and Localization 229

Real-World Microservice System. Dataset B, released by the 2020 AIOps
Challenge Event, is based on a real-world production microservice system in
China Mobile. In particular, the workload of the system in B is a replica of the
real-world workload. The types of faults include network fault and CPU fault.
Note that since this event does not only focus on microservice applications, we
only selected those faults related to microservices on May 31st, 2020.

4.2 Evaluation Metric

We use Precision (P), Recall (R) and F1 score (F1) to compare the per-
formance of anomaly detection. Precision is computed by TP

TP+FP , while Recall
is computed by TP

TP+FN , where TP, FP and FN refer to the number of anoma-
lous time intervals that are correctly predicted to be anomalous, the number of
normal time intervals that are incorrectly predicted to be anomalous, and the
number of anomalous time intervals that are incorrectly predicted to be normal,
respectively. F1 score is calculated by 2 × P×R

P+R .
We employ the following two widely-used metrics by previous work [18], to

evaluate the effectiveness of Fault Locator. Recall of Top-k (R@k) refers to
the probability that root causes can be included in the top k results. Higher
R@k denotes more effective root cause localization. We choose R@k (k = 1, 2, 5)
in the experiment. EXAM Score (ES) refers to the average count of incorrect
candidates that have to be excluded manually by operators before localizing the
correct root cause. If ES is larger than 10, we set ES as 10.

5 Experimental Evaluation

5.1 Effectiveness Comparison

We use some state-of-the-art trace-based unsupervised approaches to validate the
performance of MicroSketch on anomaly detection and RCA, including Micro-
Rank [18], tprof [6] and TraceAnomaly [10]. Note that we assume that all the
anomalies have been detected before RCA.

Anomaly Detection. Table 3 compares the overall performance of anomaly
detection and lists the obtained result with the best F1 score. MicroSketch,

Table 3. Comparisons of MicroSketch’s anomaly detector and baselines.

Dataset Approach F1 score F1 score impr. Precision Precision impr. Recall Recall impr.

A MicroSketch 0.925 – 0.93 – 0.92 -

MicroRank 0.834 ↑ 10.9% 0.84 ↑ 10.7% 0.829 ↑ 11.0%

tprof 0.413 ↑ 124.0% 0.327 ↑ 184.4% 0.493 ↑ 86.6%

TraceAnomaly 0.804 ↑ 15.0% 0.823 ↑ 13.0% 0.786 ↑ 17.0%

B MicroSketch 0.934 – 0.877 – 1.0 –

MicroRank 0.865 ↑ 8.0% 0.90 ↓ –2.6% 0.833 ↑ 20.0%

tprof 0.545 ↑ 71.4% 0.48 ↑ 82.7% 0.631 ↑ 58.5%

TraceAnomaly 0.804 ↑ 16.2% 0.70 ↑ 25.3% 0.946 ↑ 5.7%

230 Y. Li et al.

Table 4. Comparisons of MicroSketch’s fault locator and baselines

Dataset Approach R@1 R@1 Impr. R@2 R@2 Impr. R@5 R@5 Impr. Exam Score

A MicroSketch 0.96 – 0.96 – 1.0 – 0.16

MicroRank 0.98 ↓ –2.0% 0.98 ↓ –2.0% 0.98 ↑ 2.0% 0.2

tprof 0.64 ↑50.0% 0 .64 ↑ 50.0% 0.70 ↑ 42.9% 3.12

TraceAnomaly 0.62 ↑ 54.8% 0.70 ↑ 37.1% 0.86 ↑ 16.3% 1.98

B MicroSketch 1.0 – 1.0 – 1.0 – 0.0

MicroRank 1.0 0.0% 1.0 0.0% 1.0 0.0% 0.0

tprof 0.75 ↑ 33.3% 0.75 ↑ 33.3% 1.0 0.0% 1.0

TraceAnomaly 0.875 ↑ 14.3% 0.875 ↑ 14.3% 0.875 ↑ 14.3% 1.125

MicroRank and TraceAnomaly achieve over 0.8 in F1 score. However, MicroS-
ketch achieves the best result on both A and B with an average of 40.9% improve-
ment in F1 score. The F1 score of MicroSketch outperforms the compared unsu-
pervised approaches by 10.9%∼124% on A and by 8.0%∼71.4% on B. tprof per-
forms poorly because tprof detects anomalies using simple ratio relationships.

Root Cause Localization. Table 4 compares the overall effectiveness of RCA.
The R@1 results of MicroSketch on A and B are 0.96 and 1, respectively. MicroS-
ketch achieves an average of 25.0% improvement in R@1. The ES of MicroSketch
achieves 0.16. MicroRank works better in RCA since MicroRank fully leverages
PageRank and Spectrum technology and takes a lot of time to get a convergent
result. tprof intuitively believes that the more times an operation is called and
the longer time it takes, the more anomalous it is. In the operation and main-
tenance phase, the uncommon pattern should be more concerned rather than
the time-consuming pattern. TraceAnomaly analyzes root causes by one specific
anomalous trace rather than combining all available traces.

5.2 Adaption

Fig. 7. The anomaly score varies from 19:00 to 22:00 about three hours in Hipster-
Shop. At 20:17, product service instances increase from 2 to 3. This is shown in blue
slash shadow. At 21:14, we inject product-2 instance with 120 ms latency and this is
shown in the red grid shadow. (Color figure online)

MicroSketch: Performance Issue Detection and Localization 231

Figure 7 demonstrates the adaptability of MicroSketch to changes in system
topology. In Fig. 7, the topology of Hipster-Shop changes due to the product
service’s auto-scaling at 20:17. MicroSketch perceives that the pattern of trace
data is out of the way and gives the system a high anomaly score at 20:18. Since
the topology change is stable, MicroSketch adapts to the new pattern and the
anomaly score gradually returns to normal again. At 21:14, we actively inject
a latency fault to product-2, one of the instances of product service. At 21:15,
MicroSketch successfully detects anomaly and localizes the root cause (product-
2). MicroSketch also owns the ability to adapt to other forms of service changes,
such as service update.

Table 5. The overhead of the entire MicroSketch and single modules of MicroSketch.

Module CPU utilization (%) Memory usage (MB) Time(s) Note

MicroSketch 12 ± 2 200 ± 20 1.1 ± 0.3 10000 traces

Status encoder 12 ± 2 170 ± 10 0.9 ± 0.2 10000 traces

Anomaly detector 12 ± 2 180 ± 10 0.2 ± 0.1 1 time interval

Fault locator 12 ± 2 120 ± 10 0.001 1 anomaly

5.3 Overhead

Table 5 shows the overhead of various modules of MicroSketch. Status Encoder
consumes about 12% CPU utilization, 170 MB memory and 0.9 s to encode 10000
traces as status vector. Anomaly Detector takes about 12% CPU utilization, 180
MB memory and 0.2 s to detect whether a vector is anomalous or not. Fault Loca-
tor spends very little time which is smaller than 0.001 s and consumes 12% CPU
utilization and 120 MB memory. The whole MicroSketch costs about 12% CPU
utilization, 200 MB memory and 1.1 s to analyze 10000 traces. Compared to the
overhead of other baselines in Table 1, MicroSketch reduces the memory usage
by about 50% and is at least 60x faster. MicroSketch is more lightweight because
MicroSketch exploits two efficient data structure DDSketch and RRCForest with
a low complexity.

Status Encoder ’ space complexity is sublinearly related to the number of
traces in the time interval, and the time complexity is linearly related to the
number of traces in the time interval. Anomaly Detector ’s space complexity
is linearly related to the product of tree size and tree number, and the time
complexity is sublinearly related to the product of tree size and tree number.

232 Y. Li et al.

Fig. 8. Comparisons of exact quantile, DDSketch and extended DDSketch. (a) The
exact quantiles vs. the values estimated by DDSketch and extended DDSketch. (b)
The exact p90 vs. the estimated p90 of a data stream (20 batches of 100,000 values).
(c) The consuming time of exact quantile and extended DDSketch.

Fig. 9. Comparisons of exact quantile and sketch technology. (a) The time using exact
quantile and the time using sketch. (b) The memory usage using exact quantile and
the memory usage using sketch. (c) The improvements that sketch brings.

5.4 Sketch Technology

Efficiency and Error. Figure 8-a shows that extended DDSketch has the same
relative-error guarantees as DDSketch on the tail data. However, extended DDS-
ketch reduces bucket usage at the cost of losing the relative-error guarantees on
the head data which we barely focus on. We employ extended DDSketch on 20
batches of 100000 values to calculate the p90 and the result is shown in Fig. 8-
b. The estimated p90 always keeps relative-error guarantees. The relative-error
guarantees ensure that the estimated quantiles can be used for the following
modules. We implement quicksort to calculate exact quantiles. Figure 8-c shows
the consuming time of exact quantile and extended DDSketch. The time of cal-
culating the estimated value is much less than the exact value when the number
of data increases.

Ablation. For MicroSketch, sketch technology is not indispensable. We remove
the sketch technology from Status Encoder and use exact quantile instead of
it. We analyze various numbers of traces in the time interval. Figure 9-a and
9-b show that the overhead of exact quantile rises dramatically as the number
of traces increases, but the rise of sketch technology is relatively flat. Figure 9-
c presents that the sketch technology achieves 170% improvement on time and
25.0% improvement on memory usage by analyzing 100000 traces. Thus, MicroS-
ketch can scale up readily in large microservice systems.

MicroSketch: Performance Issue Detection and Localization 233

Fig. 10. F1 score using various
parameters.

Fig. 11. R@1 using various parameters.

5.5 Sensitivity

Tree Size and Tree Number. Tree size, which determines how many vectors
RRCTree maintains, is a key parameter for our model. Tree number means how
many RRCTrees MicroSketch creates and also is significant. We set the different
values for these two parameters and conduct experiments on A. Figure 10 shows
that the difference between the maximum and minimum values of F1 score is
3%. Figure 11 shows that larger parameters can achieve a better result on RCA.
However, non-optimal parameters also work well and achieve 91%-95% in R@1.
In conclusion, MicroSketch is not sensitive to these two parameters.

Fig. 12. The performance of our model using various statistics.

Statistical Magnitude. We replace the p90 in the status vector with other
statistics. Figure 12 presents that different statistics have different effects. The
maximum and minimum values do not work well because of the system jitter.
Other simple statistics, such as mean, standard deviation and variance, are easily
influenced by a few extremums and lack the ability to perceive issues that slightly
affect only part of the requests. Therefore, quantile is a splendid statistic for
profiling data. Specific quantile forms specific feature. In practice, it is essential
to apply various key quantiles simultaneously in MicroSketch.

6 Discussion

MicroSketch forms sketch-based features for anomaly detection and combines the
information provided by all anomalous invocations for root cause localization.

234 Y. Li et al.

Therefore, MicroSketch keeps its effectiveness. However, there are some limita-
tions. Firstly, MicroSketch focus on the detection and localization of performance
issue, so it is helpless over the faults which manifest in other forms. Secondly,
MicroSketch relies on trace data. The credible trace architecture of microservice
systems is an important part to ensure the effectiveness of the method.

7 Related Work

Anomaly Detection. Both TraceAnomaly [10] and Nedelkoski [12], use deep
learning method to learn normal patterns of traces offline and detect anomalous
traces online. They are useful to detect trace anomalies. However, they require
a long time to train the model. Further, when the microservice system changes,
they have to retrain the model. Compared to them, MicroSketch does not need
training and owns the ability to adapt to the system without any human inter-
vention. Seer [3] leverages deep learning to learn spatial and temporal patterns
with the KPIs of each service. Hora [13], based on monitored time series met-
rics, combines architectural knowledge with Bayesian networks to determine the
occurrence of performance issues. Microscope [8] detects anomalies by compar-
ing the KPIs with the SLOs of the application. Fully leveraging various types of
KPIs, these methods can detect more comprehensive anomaly types. Instead,
MicroSketch focuses on detecting performance anomalies and localizing root
causes more efficiently and effectively.

Root Cause Localization. Zhou [21] designs a trace visualization tool, which
allows application operators manually analyze anomalous traces. This tool is very
practical but labor-intensive because of the large scale of traces. While MicroS-
ketch provides automatic anomaly diagnosis and RCA. MicroRank [18] analyzes
clues provided by normal and abnormal traces and utilizes spectrum techniques
to localize root causes. tprof [6] hierarchically groups traces by request type and
trace structure and calculates increasingly detailed aggregated statistics. These
two methods spend a lot of time on obtaining fine-grained and convergent local-
ization results. Compared to them, MicroSketch is at least 60x faster and more
suitable for large-scale systems. As the number of traces grows, MicroSketch will
be more advantageous. Many RCA methods are based on KPI, such as Monitor-
Rank [7], Sieve [17] and CauseInfer [1]. MonitorRank [7] forms a system topology
graph and uses the personalized PageRank algorithm to determine possible root
causes. Sieve [17] reconstructs the system topology and infers possible root causes
by representative KPIs. CauseInfer [1] builds a two-layered hierarchical causal-
ity graph and uses statistical methods to infer root causes. MicroSketch utilizes
traces, which carry request information about invocation paths and latency of
these invocations, to acquire an API-level system topology that helps to precisely
localize root causes.

8 Conclusion

This paper presents MicroSketch, an unsupervised lightweight approach to
detect performance issues and localize root causes in microservice environments

MicroSketch: Performance Issue Detection and Localization 235

via Sketch-based features and adaptive RRCForest. MicroSketch can adapt to
changes in microservice systems. The experimental evaluation demonstrates the
efficiency and effectiveness of MicroSketch. Moreover, MicroSketch is at least 60x
faster than other methods in terms of diagnosis time. In practice, MicroSketch
overcomes the challenges imposed by the large scale of traces and the dynamic
of microservices, and can scale up readily in large microservice systems.

Acknowledgements. The research is supported by the National Key Research and
Development Program of China (2019YFB1804002), the National Natural Science
Foundation of China (No. 62272495, 61902440), the Basic and Applied Basic Research
of Guangzhou (No. 202002030328), and the Natural Science Foundation of Guangdong
Province (No. 2019A1515012229). The corresponding author is Pengfei Chen.

References

1. Chen, P., Qi, Y., et al.: Causeinfer: automatic and distributed performance diag-
nosis with hierarchical causality graph in large distributed systems. In: INFOCOM
2014, pp. 1887–1895. IEEE (2014)

2. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

3. Gan, Y., Zhang, Y., et al.: Seer: leveraging big data to navigate the complexity of
performance debugging in cloud microservices. In: ASPLOS, pp. 19–33 (2019)

4. Gao, K., Sun, C., et al., S.W.: Buffer-based end-to-end request event monitoring
in the cloud. In: NSDI 22, pp. 829–843. USENIX Association (2022)

5. Guha, S., Mishra, N., et al.: Robust random cut forest based anomaly detection
on streams. In: ICML, pp. 2712–2721. PMLR (2016)

6. Huang, L., Zhu, T.: tprof: performance profiling via structural aggregation and
automated analysis of distributed systems traces. In: SoCC 2021, pp. 76–91. ACM
(2021)

7. Kim, M., Sumbaly, R., et al.: Root cause detection in a service-oriented architec-
ture. ACM SIGMETRICS Perform. Eval. Rev. 41(1), 93–104 (2013)

8. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

9. Liu, F.T., Ting, K.M., et al.: Isolation-based anomaly detection. TKDD 6(1), 1–39
(2012)

10. Liu, P., Xu, H., et al.: Unsupervised detection of microservice trace anomalies
through service-level deep bayesian networks. In: ISSRE 2020, pp. 48–58. IEEE
(2020)

11. Masson, C., Rim, J.E., et al.: DDSketch: a fast and fully-mergeable quantile sketch
with relative-error guarantees. Proc. VLDB Endow. 12(12), 2195–2205 (2019)

12. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data
using multimodal deep learning. In: CLOUD 2019, pp. 179–186. IEEE (2019)

13. Pitakrat, T., Okanović, D., et al.: Hora: architecture-aware online failure predic-
tion. JSE 137, 669–685 (2018)

14. Shkuro, Y.: Mastering Distributed Tracing: Analyzing performance in Microser-
vices and Complex Systems. Packt Publishing Ltd, Birmingham (2019)

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1

236 Y. Li et al.

15. Sigelman, B.H., Barroso, L.A., et al.: Dapper, a large-scale distributed systems
tracing infrastructure. Google, Inc, Technical Report (2010)

16. Soldani, J., Tamburriand, et al.: The pains and gains of microservices: a systematic
grey literature review. J. Syst. Softw. 146, 215–232 (2018)

17. Thalheim, J., Bhatotia, P., et al.: Cntr: Lightweight {OS} containers. In: 2018
USENIX, pp. 199–212 (2018)

18. Yu, G., Chen, P., et al.: Microrank: end-to-end latency issue localization with
extended spectrum analysis in microservice environments. In: WWW 2021, pp.
3087–3098. ACM / IW3C2 (2021)

19. Yu, G., Chen, P., Zheng, Z.: Microscaler: automatic scaling for microservices with
an online learning approach. In: ICWS 2019, pp. 68–75. IEEE (2019)

20. Yu, G., Chen, P., Zheng, Z.: Microscaler: cost-effective scaling for microservice
applications in the cloud with an online learning approach. IEEE TCC 10(2),
1100–1116 (2022)

21. Zhou, X., Peng, X., et al.: Fault analysis and debugging of microservice systems:
industrial survey, benchmark system, and empirical study. TSE 47(2), 243–260
(2018)

Proactive-Reactive Global Scaling,
with Analytics

Lorenzo Bacchiani1(B), Mario Bravetti1,2, Maurizio Gabbrielli1,2,
Saverio Giallorenzo1,2, Gianluigi Zavattaro1,2, and Stefano Pio Zingaro1,2

1 Università di Bologna, Bologna, Italy
lorenzo.bacchiani2@unibo.it

2 Focus Team, INRIA, Sophia Antipolis, France

Abstract. In this work, we focus on by-design global scaling, a tech-
nique that, given a functional specification of a microservice architec-
ture, orchestrates the scaling of all its components, avoiding cascading
slowdowns typical of uncoordinated, mainstream autoscaling. State-of-
the-art by-design global scaling adopts a reactive approach to traffic fluc-
tuations, undergoing inefficiencies due to the reaction overhead. Here, we
tackle this problem by proposing a proactive version of by-design global
scaling able to anticipate future scaling actions. We provide four con-
tributions in this direction: i) a platform able to host both reactive and
proactive global scaling; ii) a proactive implementation based on data
analytics; iii) a hybrid solution that mixes reactive and proactive scaling;
iv) use cases and empirical benchmarks, obtained through our platform,
that compare reactive, proactive, and hybrid global scaling performance.
From our comparison, proactive global scaling consistently outperforms
reactive, while the hybrid solution is the best-performing one.

Keywords: Microservices · Architecture-level scaling · Predictive
scaling

1 Introduction

Modern Cloud architectures use microservices as their highly modular and scal-
able components, which, in turn, enable effective practices such as continuous
deployment [1] and horizontal (auto)scaling [2]. Although a powerful resource,
scaling comes with its own challenges. As Ghandi et al. [3] put it:

[. . .] it is up to the customer (application owner) to leverage the flexi-
ble platform. That is, the user must decide when and how to scale the
application deployment to meet the changing workload demand.

Research partly supported by the H2020-MSCA-RISE project ID 778233 “Behavioural
Application Program Interfaces (BEHAPI)”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 237–254, 2022.
https://doi.org/10.1007/978-3-031-20984-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_16&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_16

238 L. Bacchiani et al.

Background. Our work focuses on global scaling [4–9]; which orchestrates the
scaling of all microservices in a given architecture. This contrasts with local scal-
ing, intended as the mainstream interpretation of (auto)scaling [2], which scales
microservices in an uncoordinated way. Performance-wise, local scaling suffers
from domino effects, also called bottleneck shift, where the uncoordinated scaling
actions cause waves of cascading slowdowns and possibly generate outages [4,10].

Problem. Existing global scaling approaches focus on smoothing out domino
effects [4,6,8] or on removing them by design [5,7,9]. This “by-design” approach
performs the coordinated scaling of the microservices based on a quantification
of their functional relations. However, existing work on by-design global scaling
only focused on reacting to fluctuations of inbound traffic, wasting time to the
detriment of customers, who can endure delays, downtimes, and receive a lower-
than-expected level of service.

Contributions. In this paper, we challenge the existing reactive interpretation of
by-design global scaling—hereinafter, we omit the “by-design” suffix. We hypoth-
esise that global scaling might endure some performance inefficiencies due to its
reaction overhead, which is the starting point of our contributions.

In Sect. 2, we present a platform able to host both reactive and proactive
global scaling, e.g., it allows users to programmatically switch between the two
approaches. We simulate an ideal, oracle proactive global scaler, and we show
empirical benchmarks of the inefficiencies of reactive global scaling and of the
possible gains of proactive global scaling.

In Sect. 3, we introduce a proactive global scaling implementation based on
analytics [11]. We present a use case on email traffic from the Enron dataset [12].
We benchmark this implementation, which overcomes the limitations of its reac-
tive counterpart and approximates the ideal performance of the oracle

In Sect. 4, we present an algorithm that (deployed in our platform) integrates
proactive and reactive global scaling. Benchmarks on the Enron use case show
that this hybrid approach is the best-performing one.

Our datasets, trained models, and simulations are publicly available at [13],
which also contains a containerized version of the testbed.

2 Proactive Global Scaling

We introduce a platform that DevOps can use to perform proactive and reactive
global scaling. In doing so, we do not start from scratch, and we build on previous
work on global scaling, proposing a redesign able to capture proactive scaling on
the existing reactive global scaling platform from [5,7,9]. Our new architecture is
immediately useful. We use it at the end of this section to quantify the untapped
potential of proactive global scaling—comparing the performance of reactive
local and global scaling vs an ideal, oracle proactive global scaler. We use our
platform also later, in Sects. 3 and 4, to benchmark our implementations of
proactive and proactive-reactive scalers.

Proactive-Reactive Global Scaling, with Analytics 239

Global Scaling. In global scaling, the user provides a specification of the scaling
constraints of each component of a given architecture, both in terms of nec-
essary resources (such as CPU and memory) and of its dependencies on other
microservices (e.g., microservice M1 needs two copies of the microservice M2

to run properly). Then, given one such specification, and using dedicated res-
olution engines [5], deployment plans can be computed such that: i) scale the
whole architecture w.r.t. an expected increase/decrease of inbound traffic; ii)
respect (if any) the constraints of resource allocation and dependency of the
scaled microservices; iii) optimise the plan towards some set goals, e.g., minimis-
ing the cost of running the scaled architecture, i.e., using the minimal amount
of virtual machines that supports the execution of the scaled architecture.

2.1 Design of a Proactive-Reactive Global Scaling Platform

Fig. 1. Architectural view of the proactive-reactive global scaling platform.

We depict the architecture of the platform in Fig. 1, which includes two kinds of
elements. The components found in the “cloud” are the microservices of a given
architecture, labelled G, M1, M2, M3. The global scaling platform manages the
scaling of these microservices. Since the platform sees microservices as instance
parameters, we abstract from their actual behaviour and use them in examples.
The other elements in Fig. 1 are the components of the platform. Specifically,
the elements with continuous-line borders are the ones inherited from previ-
ous work [5,7,9]. The main new elements, drawn with a dotted border, are the
Predictive Module and the Actuation Module.

For completeness, we first describe the elements of the platform already
present in the original proposals [5,7,9], and then dedicate to the new com-
ponents for proaction, i.e. Actuation and Predictive Modules. Before doing so,
we highlight the three kinds of flows in Fig. 1: continuous-line arrows → show
the traffic addressed to the microservice architecture; dashed-line arrows ���
regard the runtime execution of global scaling; the thick arrow ⇐ indicates the
compilation time of deployment plans.

240 L. Bacchiani et al.

Deployment Orchestration Engine. This component performs the actual scal-
ing, (de)allocating replicas of microservices. It is a loosely-coupled component
of the platform, taken from existing solutions (the only requirement is that it
provides a programming interface for the application of deployment plans), such
as Kubernetes.

Deployer. The Deployer implements the Maximum Computational Load (MCL)
scaling algorithm and the deployment strategy proposed in [9], and it regards
two flows. The first one, represented by ⇐ , regards the computation of the
deployment plans, applied by the scaling ��� . As such, this process is asyn-
chronous w.r.t. both the scaling and the traffic flow → . In ⇐ , the Deployer
takes the specifications given by the user (DevOps in Fig. 1) and computes the
deployment plans that satisfy the Resources needed by each microservice (e.g.,
M1 needs 1 CPU and 1 Memory), the Dependencies among the microservices
(e.g., microservice M1 needs two copies of M2 to work), and the Deployment
Constraints of different scaling targets. Since these deployment plans represent
differential increments/decrements in microservice replicas, we call them deltas.
The second flow, that of the runtime scaling ��� , runs alongside the inbound
traffic → . In this case, the Deployer acts as a service that other components
call to trigger the application of a target, computed delta. Upon activation,
the Deployer interacts with the Deployment Orchestration Engine to perform the
scaling.

Monitor. In its original formulation, the monitor tracks the traffic flowing on the
architecture within a prefixed time unit and checks the possible occurrence of
a workload deviation, i.e., a discrepancy between the current, tracked workload
and the expected one, correspondent to the delta currently applied. When such
a condition occurs, the Monitor triggers the Deployer to apply the delta that
corresponds to the current traffic load. To support proaction, we break the above,
direct relation between the Monitor and the Deployer, as detailed below.

Actuation Module. This is the first component we introduce to support the
coexistence of proactive and reactive global scaling. This is achieved by break-
ing and controlling the once-direct triggering relation between the Monitor and
the Deployer, i.e., it is now the Actuation Module that decides when/whether to
trigger the Deployer. This redesign allows the seamless coexistence of the previ-
ous reactive modality with the new proactive one. Indeed, to obtain the same
behaviour of the original proposal, we just need to set the Actuation Module in
“passive” mode and let it forward triggers from the Monitor to the Deployer.
When active, the Actuation Module can choose to act independently of the traf-
fic, e.g., choosing to ignore information coming from the Monitor and trigger the
Deployer according to signals coming from other sources, e.g., from the Predictive
Module, described below. As discussed in Sect. 4, the Actuation Module is where
the DevOps defines algorithms that can dynamically decide when to follow the
anticipated scaling from forecasts or react to the signals from the Monitor.

Proactive-Reactive Global Scaling, with Analytics 241

Predictive Module. The Predictive Module acts independently of the actual
inbound traffic forwarding the prediction to the Actuation Module. For instance,
the Predictive Module can use a static model, e.g., forecasting traffic peaks at pre-
determined times, or sophisticated techniques to have more accurate predictions
of traffic fluctuations, e.g., based on data analytics. In Fig. 1, we represent the
input of the Predictive Module with the greyed-out arrow receiving information
from the traffic flow and stores it into a time series dataset for further usage.

2.2 Benchmarking the Platform

To run our benchmarks, we relied on simulations. Specifically, we modelled our
platform and the scaling approaches via the ABS programming language [14],
compiling it into a system of Erlang programs that run the simulation. These
programs and their execution environment form the test-bed of all our simula-
tions, and we provide it as a container in the companion repository [13].

The simulation receives three kinds of inputs, which are statically defined
within a simulation run: a real inbound workload (RIW), a predicted inbound
workload (PIW), and the deployment plans (DP). The simulation combines these
inputs to benchmark the performance of a target microservices architecture.

Notably, while we fix all inputs in simulations, this diverges from real execu-
tions only on the source of RIWs. Indeed, in real executions, RIWs corresponds
to the traffic reaching the architecture, while, in our simulations, we generate
RIWs beforehand–specifically, from samplings of actual traffic. RIW apart, also
in real executions PIW and DP are normally computed before their utilisation
time-window. For instance, since they tend to be time-consuming calculations,
one can compute PIWs and DPs for the coming day during the preceding night.

Since our simulator is parametric to a target microservices architecture, we
fix one for the benchmarks throughout this paper: the Email Pipeline Processing
System from Bacchiani et al. [9], which includes twelve microservices, each with
its own load balancer for distributing requests over the available replicas.

2.3 Reactive Local vs Reactive Global vs Proactive Global Scaling

Fig. 2. Latency of proactive oracle global
scaling vs reactive global and reactive local
scaling.

We use our platform to empiri-
cally benchmark the gain of proac-
tive global scaling vs both classic reac-
tive global scaling and local scaling,
in terms of latency, considered as the
average time for completely process-
ing a request that entered the system.
We simulate an oracle, an ideal omni-
scient predictor that proactively trig-
gers the global scaling of the architec-
ture on forecasted traffic.

Since our benchmarks (through-
out the paper) concern time, we par-
tition the inbound traffic within dis-
crete “time units” (e.g., we aggregate

242 L. Bacchiani et al.

all requests received between 9 a.m. and 10 a.m. within a corresponding logical
time unit). In this benchmark, we draw the traffic flow from [9].

Technically, the oracle knows the exact number of incoming requests and
anticipates by one time unit the triggering of the Deployer and the related provi-
sioning of resources. Here, we assume that a time unit is enough for the Deployer
to (de)allocate the necessary resources before the traffic arrives.

As mentioned in the previous section, to run the benchmarks for the global
reactive case, we disable the Predictive Module. Indeed, we obtain the same results
from [9], with the only difference that we modified the Monitor to keep track of
the maximum inbound workload, while Bacchiani et al. [9] use the average.
We deem this choice sensible, since it provides results consistent with those
of Bacchiani et al. [9], but it is less sensitive to irregular workloads. Also the
implementation of the oracle is straightforward: we provide the Predictive Module
with the considered traffic flow, shifted by one time unit, so that the Actuation
Module anticipates the overhead of triggering the Deployer and applying the delta
to handle the traffic of the next time unit. Finally, we adopt the same program
(defined in ABS and run with Erlang) Bacchiani et al. [9] used to simulate
reactive local scaling for that architecture.

Notably, while the traffic flow (generator) from [9] follows a fixed curve, it
generates email attachments randomly. This is the only information unknown to
the oracle that we expect to impact on its (otherwise non-existent) latency.

In Fig. 2, we show the comparison between oracle proactive global scaling,
reactive global scaling, and local scaling. From the results, local scaling is the
worse-performing one, due to both the reactive overhead and the domino effect
(see Sect. 1). Reactive global scaling does not suffer from the latter phenomenon,
but (confirming our hypothesis) it endures the overhead of applying deltas in
response to traffic fluctuations (e.g., while the scaling takes effect, new messages
arrive that are enqueued, increasing latency). As expected, the oracle performs
almost perfectly and shows minimal latency at the time units between 14–16,
likely due to the number of attachments in emails that exceeded the expected
average considered in the deployment plans (this parameter is the same across
all three modalities).

To give a quantitative intuition of the performance gap between the ideal
proactive oracle and the other reactive approaches, we report the Area Under
Curve for the latencies, in seconds, computed using the composite trapezoidal
rule: oracle 0.1, reactive global scaling 13, reactive local scaling 29.

Summing up, while reactive global scaling already outperforms reactive local
scaling (ca. 44% reduced latency), having an implementation that approximates
the behaviour of the proactive oracle could further increase the performance of
global-scaling system (ca. 70% reduced latency).

Notably (as illustrated later in Sect. 3) (de)allocating resources in advance
does not have drawbacks from the point of view of costs, since resources are
also (de)allocated earlier than in a reactive approach—indeed, by definition, the
oracle does not change the scaling sequence applied also by the reactive global
scaler, but rather anticipates them by one time unit.

Proactive-Reactive Global Scaling, with Analytics 243

3 Analytics-Based Proactive Global Scaling

Given the promising results from Sect. 2, we demonstrate how one can develop
a realistic proactive global scaling implementation, i.e., using a state-of-the-art
data analytics technique to obtain a predictor and integrating it in our Predictive
Module. Here, we introduce the steps of general data analytics and we specify
how these impact the workflow of Fig. 1. Next, we concentrate on the use case
and how we applied data analytics to build the predictor. Finally, we compare
our implementation of analytics-based proactive global scaling against oracle
proactive global scaling (similar to the one presented in Sect. 2) reactive global
scaling, and oracle proactive local scaling.

3.1 Data Analytics for Global Scaling

The Steps of Data Analytics. We provide a general overview of the elements of
data analytics [11] (DA) and then detail how we applied these in our use case.

Using data analytics to predict the occurrence of the event in a given time
unit, we aim to understand which variables influence and describe the phe-
nomenon (descriptive DA). Once we selected the variables, we need to under-
stand which attribute values are most relevant (diagnostic DA). Then, using the
attributes and diagnostic(s) of the phenomenon, we are able to build a dataset
to automatically train a model and infer the outcome of a new instance of the
phenomenon, i.e., an event (of the same nature as the one being studied) not
yet observed (predictive DA). The model created provides a description of all
the observed and new events. Each of the possible outcomes relates with one or
more configurations of the system. Each configuration corresponds to a response
strategy to the occurrence of events similar to those already observed (prescrip-
tive DA). Given a specific system configuration, we can compute its efficiency
and select the one that offers the best cost-benefit trade-off (proactive DA). This
optimal configuration, if any, is the one sent to the actuator.

The Workflow of Analytics-based Proactive Global Scaling. As mentioned in
Sect. 2, we use the new modules introduced in this work in our global scaling
platform (cf. Figure 1), namely the Predictive Module and the Actuation Module,
to capture the steps of data analytics. Specifically, the Predictive Module imple-
ments the steps of descriptive and diagnostic (prepare the dataset) and predictive
data analytics (train and inference) while the Actuation Module realises the pre-
scriptive (define the scaling strategy) and proactive steps (triggering policies).

In pure proactive scaling, the Actuation Module computes the scaling strategy,
given the outcomes of the Predictive Module and directly triggers the Deployer,
disregarding any inputs coming from the Monitor.

Architecture and Dataset used in the Benchmark. After seeing the general work-
flow of analytics-based proactive global scaling, we introduce our use case and
illustrate how each of its parts fit into said workflow.

244 L. Bacchiani et al.

However, instead of using the fixed traffic from [9], which provides too little
information to train a data analytics model, we draw our dataset from another,
renowned source—e.g., for training email schedulers and SPAM filters—from the
literature, that has a compatible structure (i.e., email traffic): the Enron corpus
dataset [12], made public by the Federal Energy Regulatory Commission during
investigations concerning the Enron corporation (version of May 7th, 2015). The
dataset contains 517,431 emails from 151 users, without attachments, distributed
over a time window of about 10 years (1995–2005).

Descriptive and Diagnostic DA in Predictive Module. Leveraging the pre-
processing routine from [12], we perform the cleaning procedure of the Enron
dataset for classification tasks, and then we extract the attributes for predicting
the number of incoming emails for a given time. First, we extract the datetime
attribute for each email in the dataset, and then we sum the number of emails
in the desired monitored time unit—i.e., one hour—for each month of the year,
day of the month, and day of the week. Thus, we generate five new attributes:
month, day, weekday, hour, and counter—the target—for each dataset instance.
This gives us a representation of the email flow in the system at a given hour.
The intuition for such a pre-processing is simple. The phenomena of increase or
decrease in the flow of emails that occur in a company depend on factors such
as the specific time of the working day (peak in the early hours versus the night
hours), the month (monthly, bimonthly, etc. deadline), the day of the month
(salary) or the day of the week (weekdays versus holidays).

Predictive DA in Predictive Module. For the predictive phase, we use off-the-
shelf machine learning technique, specifically MLP (Multi-Layer Perceptron),
which is capable—in contrast with purely linear models, e.g., linear regression—
of exploring nonlinear patterns and increase prediction performance while con-
taining complexity (about 7k parameters) and resource usage (about 1ms infer-
ence time). We categorise the numerical variables using the standard one-hot
encoding technique, to prevent our model from attributing wrong semantics to
these (e.g., month 12 is “greater than” month 1), resulting in a data represen-
tation of 70 attributes plus the counter target.

Then, we followed the traditional training process for machine learning. We
partitioned the cleaned, processed data into three sets: one for training the neural
network model, one for validating its hyperparameters (the parameters of the
training process and network architecture), and one for testing the accuracy of
the model. We use this last set to compute the error rate of the model.

The neural network used in the training process consists of three fully-
connected layers. We applied the Rectified Linear Unit (ReLU) nonlinear activa-
tion function to the output of each layer. Each level compresses the input into a
smaller representation, going from 70 to 64 attributes, in the first level, and from 64
to 32 attributes, in the second level. Finally, the 32 attributes are linearly projected
into a single value, corresponding to the target of the regression. To compute the
error rate, we adopt the loss function Mean Squared Error (MSE). To optimise the
network parameters we use Adaptive Moment Estimation (Adam). We performed

Proactive-Reactive Global Scaling, with Analytics 245

the training process with a learning rate of 0.1 and an exponential decay scheduler
with gamma 0.9.

After the training, given a time slot—the tuple month (1–12), day (1–31),
weekday (1–7), and hour (0–24)—the predictor forecasts the amount of emails
incoming therein.

This is the third and last step of the data analytics workflow that concerns the
Predictive Module. Here, we embedded the trained model to make the Predictive
Module yield a prediction of the expected traffic, given a target time slot.

Prescriptive and Proactive DA in Actuation Module. The last two steps of the
data analytics workflow are the prescriptive and proactive ones. We realise these
in the Actuation Module. Since we implement pure predictive autoscaling, the
prescriptive step is straightforward: we follow the prediction from the Predictive
Module. The proactive step is the implementation of the strategy, where we
forward of the expected traffic from the Predictive Module to the Deployer.

3.2 Benchmarking the Performance of Analytics-Based Global
Scaling

Analytics-Based Proactive vs Reactive and Oracle Global Scaling. To give an
intuition of the effectiveness of our analytics-based proactive global scaler, we
test its performance against reactive global scaling [9] and an oracle similar to
that seen in Sect. 2—also here, simulated by fixing a traffic flow and applying
the related deltas one time-unit before the actual execution time.

Consistently with the oracle in Sect. 2, we do not fix also here the number
of attachments in inbound emails but define them randomly. This comparison
mainly aims at showing the performance gap between the analytics-based proac-
tive and the oracle proactive variants (i.e., how close the former approximates
the ideal proactive scaler), keeping reactive global scaling as a baseline for the
comparison. To this aim, we report latency, message loss, cost, and number of
deployed microservices. All benchmark tests shown in this section are performed
on email traffic on a weekday in May 2001.

Considering latency, as shown in Fig. 3a, reactive scaling is the worst and
presents high peaks of latency when the inbound workload grows. The oracle,
similarly as in Sect. 2, is barely visible because, by construction, it knows in
advance the exact amount of inbound messages, thus, it anticipates required
scaling actions, with negligible latency. Performance-wise, our analytics-based
global scaler closely approximates the oracle. Indeed, it mainly differs in two
small spikes, imputable to inaccuracies in the workload predictions. Since latency
and message loss (see Fig. 3b) are strictly related, we have similar conclusions:
the oracle loses no messages, followed by the analytics-based one, while reactive
scaling loses the most, at sudden peaks of workload. The number of deployed
microservices and costs are also directly proportional, as seen in respectively
Fig. 3c and 3d. Despite the sensible performance difference between the oracle,
analytics-based, and reactive scaling, the costs/number of deployed instances are
the same, although shifted by a time-unit backwards. The reason is that, since

246 L. Bacchiani et al.

Fig. 3. Comparison between reactive, analytics-based proactive, and oracle-based
proactive global scaling approaches.

the traffic is the same, resource (de)allocations are the same across all scalers,
although these happen one time-unit in advance in the oracle and analytics-based
proactive cases—divergences of the analytics-based proactive scaling derive from
inaccuracies of the trained predictor.

Analytics-Based Proactive Global Scaling vs Oracle Local Scaling. We also com-
pare our analytics-base proactive global scaler with oracle local scaling in Fig. 4a
and Fig. 4b, i.e., a scaler that knows the future traffic of each microservice in an
architecture and performs microservice-level scaling in advance. The purpose of
this test is to give empirical evidence of the benefits of global vs local scaling,
which holds in the reactive case—as proven in [9]—as well as in the proactive
one (oracle and analytics-based). The rationale is that, if we show that analytics-
based proactive global scaling outperforms ideal proactive local scaling, then i)
the latter performs worse than the oracle global scaler and ii) the former out-
performs any analytics-based local scaling.

In this experiment, we focus on the evaluation of the same performance as in
the previous benchmark, but, for brevity, we only report latency and the num-
ber of deployed microservices measures, since these are proxies for the respective
other two, directly-proportional measures: message loss and costs. Starting from
latency, reported in Fig. 4a, analytics-based proactive global scaling outperforms
ideal proactive local scaling. The former has almost 0 latency throughout the entire

Proactive-Reactive Global Scaling, with Analytics 247

Fig. 4. Comparison between analytics-based proactive global scaling and oracle-based
proactive local scaling.

experiment, except for little spikes within time unit 17. The latter struggles to
adapt to rapid changes in inbound requests (intervals 13–18 and 5–6). The deteri-
oration in performance of the oracle-based local scaling is caused by the so-called
“domino” effect, i.e., single services scaling one after the other, causing chained
slowdowns [9]. Besides worsening the performance, the domino effect also limits
the predictive power of the local approach: the first microservice in a call chain is
the one that anticipates the scaling, while the other ones cascade-scale only after
that moment. This uncoordinated scaling leads to situations where the overheads
of scaling accumulate sequentially (instead of executing in parallel, as in the global
case), degrading performance. The presence of the domino effect is witnessed in
particular in Fig. 4b. In analytics-based proactive global scaling, the number of
deployed instances reaches the target amount to handle the inbound workload as
soon as it is foreseen by the proactive module. Instead, the ideal proactive local
scaler can only grow the number of deployed instances linearly over time, follow-
ing the chain of scaling/forecast of the single microservices.

Fig. 5. Latency of the analytics-based
proactive global scaling on the outliers test
set.

Limitations of Analytics-Based Proac-
tive Global Scaling: Outliers. The
analytics-based proactive approach
presented in this section proved to
be quite effective. However, predic-
tors are not infallible: if the traf-
fic greatly deviates from the histori-
cal data, due to some unprecedented
occurrence, the predictor can fail to
provide an accurate estimation of the
traffic.

This fact, considered in the con-
text of purely analytics-based global
scaling (like the one implemented

above) where scaling decisions neglect actual traffic fluctuations, can result in

248 L. Bacchiani et al.

over- (wasted resources) or under-scaling (latency, request loss) of the system.
To illustrate how much this phenomenon can affect performance, we selectively
picked outliers from the test set described in Sect. 3.1 and used these to produce
a traffic flow that our predictor would struggle to forecast. As shown in Fig. 5,
when unpredicted peaks occur, latency grows, causing performance deteriora-
tion. In the next section, we propose a solution that overcomes this limitation
by mixing reactive and proactive global scaling.

4 Proactive-Reactive Global Scaling

The fact that predictors are weak against exceptional events is a well-known fact
(see Sect. 5), which we concretely showed (see Sect. 3) can affect pure proactive
global scaling too, resulting in the application of inappropriate deltas (either
wasting resources or degrading the level of service). In this section, we propose
a solution to this limitation, mixing proactive global scaling with reactive global
scaling. Our global-scaling platform architecture (Sect. 2) simplifies this task: we
program the Actuation Module to calculate an accuracy threshold which defines
when to follow the forecasts of the Predictive Module or switch to the reactive
signals of the Monitor.

Our algorithm does not rely on comparing the estimated and actual number
of inbound requests in a given time unit. The reason is that the dynamic inter-
action between message queues and scaling times makes it difficult to reliably
estimate the accuracy of the predicted scaling configuration w.r.t. traffic fluc-
tuations. Hence, we introduce a new, stable estimation, rooted in the workload
measure defined below.

Our idea is to use the Maximum Computation Load (MCL) from [9], which
measures the capacity of a system configuration to handle a given workload.
Using the MCL, we cast the comparison as the capacity of the system to deal
with a given workload, defined by its current scaling configuration. Hence, we
have a way to estimate both over- and under-scaling of proactive global scaling,
given by the distance between the MCL (of the scaling configuration) induced
by the actual traffic.

Our estimation considers statically-defined scores for each architectural
reconfiguration increment (allocating new system resources, i.e., service instances
and bindings [9]), called Δscale. Hence, each Δscale has associated a score s, com-
puted on the basis of the increment in system MCL (i.e., the maximum supported
workload for a given inbound traffic). Following [9], we have i ∈ [1, 4] different Δ
scalei plans, which are applied sequentially (in the exceptional case Δscale4 is
not enough, we restart from Δscale1, see [9]). For each Δscalei we have a differ-
ential system MCL increment of: ΔMCL1 = 60 for Δscale1 and ΔMCLi = 90
for Δscalei with 2 ≤ i ≤ 4. Given ΔMCLi, we compute si = ΔMCLi∑4

j=1 ΔMCLj
.

Notice that this yields
∑4

i=1 si = 1.
Then, for each time unit t, we compute our estimation following these 3 steps.
In step 1, we calculate, for each index i, the absolute value |diff i| of the

difference between the Δscalei of the predicted workload and the observed

Proactive-Reactive Global Scaling, with Analytics 249

Fig. 6. Comparison between hybrid and pure proactive (analytics-based) global scaling,
on the outliers test set.

one at time t. Then, we compute a weight w ∈ [0, 1] that we later use
to combine the predicted workload and the measured one. Since |diff i| > 1
only happens in exceptional cases (when Δscale4 is not enough), we compute
w = min

(∑4
i=1 si · |diff i|, 1

)
.

We keep track of the values w computed in the last 3 time units using
function h = {(1, wt−2), (2, wt−1), (3, wt)}, where wt is the weight computed
for the current time unit and wt−2, wt−1 are the preceding ones. The pairs
(1, wt−2), (2, wt−1) are included in h only if the system was already running at
those times.

In step 2, we compute the overall weight overall w =
∑

(i,w)∈h w·i
∑

(i,)∈h i of t. In
particular, w · i means that the most recent w is the most influential one in the
sum. The overall weight indicates the distance between the measured workload
and the predicted one. Specifically, the closer the overall weight is to 1 the more
distant the prediction is from the actual workload.

In step 3, we linearly combine the predicted and the measured workload
through overall w to estimate the workload used by the global scaler to com-
pute the current system configuration: workload estimation = (overall w ·
workload measured) + ((1 − overall w) · workload predicted).

Benchmarking the Performance of Proactive-Reactive Global Scaling. In the fol-
lowing, we benchmark our hybrid global scaler in two ways. First, we compare
the hybrid scaler against the pure proactive global scaler from Sect. 3. Second,
we compare our hybrid scaler with an alternative implementation from the lit-
erature [4]. In both benchmarks we re-use the same highly-volatile traffic used
in Sect. 3.

Proactive-Reactive Global Scaling vs Pure Proactive Global Scaling. Similarly to
what done in Sect. 3 , we report only latency (Fig. 6a) and number of deployed
microservices (Fig. 6b), which are proxies for message loss and costs.

From Fig. 6a, hybrid local scaling rapidly recovers from wrong predictions,
while pure proactive scaling neglects unexpected traffic fluctuations. This is vis-

250 L. Bacchiani et al.

ible, e.g., in the interval 11–13, where the pure proactive scaler expects fewer
requests and endures high latency. Also the hybrid scaler initially undergoes
high latency, but, detecting the diverge with the predictions, it assumes a reac-
tive stance and quickly adapts. Note that the latency of the hybrid global scaler
in the timespan 18–19 is “good”. Indeed, while the workload drops between
15–17, the pure proactive scaler allocates a high number of microservices (cf.
Figure 6b), wasting a lot of resources. Contrarily, the hybrid scaler (reacting to
the unforeseen change) trades some minor latency off resource savings.

Fig. 7. Comparison of the workload obtained
(in our hybrid approach and that of [4]) by mix-
ing the actual and forecasted one.

Alternative Hybridisation Tech-
niques. Many hybrid local scaling
techniques, see Sect. 5, use local
metrics (CPU, memory) that can-
not directly translate into global
scaling ones. This is because
we would need a global mea-
sure out of the local ones, how-
ever none of them provide a
method to obtain this aggre-
gate global measure (understand-
ably, because they are interested
in local scaling). Therefore, for
the aim of comparison with our
hybrid global scaler, we cannot
translate the local scaling algorithm used in such techniques into a global one.

We are instead able to compare our algorithm with the global one of [4],
which, like us, computes the target workload (used for scaling) in terms of
received requests per time unit. We implement the algorithm proposed in [4]
into an alternative hybrid global scaler and benchmark it using the outliers test
set. We report in Fig. 7: the workload of the actual traffic, of the forecasted
traffic, and the target workload of our hybrid scaler and that of [4].

As shown in Fig. 7, both techniques adjust underestimations, i.e., they do
not let the system degrade its level of service. However, the alternative imple-
mentation is not able to adjust overestimated predictions (range 15–18), which
end up wasting resources (and money)—a shortcoming reported in [4]. Besides
this qualitative trait, quantitatively, our mixing approach is more accurate than
that of [4]. In range 11–14 of Fig. 7 our scaler approximates the actual workload
on the system. The algorithm of [4] overcompensates the innacurate prediction
with the peaks at 12–13.

5 Related Work

Global Scaling. The strand of work closest to ours [5,7,9] introduced a kind of
reactive global scaling that eliminates domino effects by design; building upon
this we propose our proactive-reactive solution. More distant work on global

Proactive-Reactive Global Scaling, with Analytics 251

scaling focus on smoothing, rather than removing, the domino effect (called
“bottleneck shifts”) as, e.g.: [6], which however only considers reactive scaling,
and [4], which we already discussed in detail in Sect. 4. Besides [4], also [8]
mixes reactive and proactive. The main differences of [8] with our work are: (i)
the microservice architectures considered in [8] disregard fork-join patterns, i.e.
those accomplishing a task via parallel execution of pipelines as in the use case
we consider (where the analysis of an email requires analysing its subparts, i.e.,
attachments, text body, etc. . .); (ii) the global scaling algorithm of [8] suffers
from the domino effect in that, when global adaptation is triggered, the maxi-
mum number of replicas for each microservice is established only from metrics
obtained by its local monitoring.

Local Scaling. Reactive and proactive local-scaling proposals abound in the lit-
erature (both pure and mixed) [15,16]. Recent examples of pure reactive local
scaling include Bayesian Optimisation techniques [17] and Fuzzy Logic [18].
Researchers already followed this path for the case of local scaling—due in part
to how susceptible local scaling is to domino effects [19]—, also proposing ways
to mix the reactive nature of local autoscaling with proactive elements, e.g., by
forecasting the incoming workload [16]. The proactive mode involves adopting
future workload prediction techniques to create early scaling mechanisms. The
prediction of future system load is usually addressed with probabilistic modelling
frameworks or time series analysis techniques. Mathematical modelling of pro-
cesses entails the usage of techniques such as Markov chains [20], model-checking
or probabilistic time automata [21,22], enabling the analysis and anticipation of
system behaviours. Time series analysis is a data-oriented technique that involves
extracting relevant information from the behaviour of the studied system. The
most commonly used techniques include machine-learning algorithms, such as
k-means [23], neural networks [24,25]—which we also use to maximize accuracy
and precision of our predictor.

Previous work also presented approaches that mixed reactive-proactive scal-
ing at the local level. However, a significant difference between our hybrid global
scaling approach and the local ones is that the latter, for the most part, exploit
local metrics of the virtual machine hosting services (CPU, memory). As argued
in Sect. 4, looking at local metrics is fine as long as we aim at local replications,
however these metrics are not enough to account for functional dependencies
between system requests and local requests to single microservices (which allow
us to eliminate the domino effect). Thus, we cannot directly compare with the
literature on hybrid local scaling and we only draw a coarse comparison. Pre-
vious work also presented local-scaling hybrid reactive-proactive systems. These
improve system behaviour and effectively deal with unexpected traffic fluctu-
ations, while simultaneously benefiting from the analytics-based proactive and
reactive power of the system [24,26]. Industry-wise, the main platforms deliv-
ering Cloud services, e.g., Amazon and Google, offer integrated solutions for
reactive local scaling of resources based on user thresholds or rules for adapting
to the workload [27,28]. Recently, these platforms have introduced predictive
capabilities in their systems [29], exploiting gathered historical information for

252 L. Bacchiani et al.

automatic adaptation and orchestrating between reactive and proactive modali-
ties. Following the hybrid approach, we developed our platform to accommodate
both reactive and proactive global modes and showed a possible implementa-
tion (see Sect. 4). Specifically, we favour analytics-based proactive scaling and
pass control to the reactive modality when traffic fluctuations exceed some set
accuracy threshold.

6 Conclusion and Future Work

We proposed a platform that can host both reactive and proactive global scaling
and compared the analytics-based proactive and proactive-reactive scaling.

Low-hanging fruits from this work include both the introduction and refine-
ment of analytics-based prediction and hybridisation techniques. For example,
one can use natural language processing to extract complementary features for
the representation of the regression target (in our case, the inbound requests).

Another direction towards using data analytics to help global scaling is help-
ing DevOps in compiling the deployment constraints of the scaling plans (cf.
Fig. 1). In this case, monitors would track how requests hop among the microser-
vices of the observed architecture, and data-analytics techniques would provide
hints for DevOps to quantify the multiplicative deployment factors among the
microservices.

References

1. Humble, J., Farley, D.: Reliable software releases through build, test, and deploy-
ment automation, Anatomy of Deployment Pipeline (2010)

2. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

3. Gandhi, A., Dube, P., Karve, A., et al.: Adaptive, model-driven autoscaling for
cloud applications. In: 11th International Conference on Autonomic Computing
(ICAC 14), pp. 57–64 (2014)

4. Urgaonkar, B., Shenoy, P.J., Chandra, A., et al.: Agile dynamic provisioning of
multi-tier internet applications. ACM Trans. Auton. Adapt. Syst. 3(1), 1–39 (2008)

5. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: Optimal and
automated deployment for microservices. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 351–368. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-16722-6 21

6. Gias, A.U., Casale, G., Woodside, M.: Atom: model-driven autoscaling for
microservices. In: 2019 IEEE ICDCS, pp. 1994–2004. IEEE (2019)

7. Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.: A formal app-
roach to microservice architecture deployment. In: Microservices, pp. 183–208.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31646-4 8

8. Rossi, F., Cardellini, V., Presti, F.L.: Hierarchical scaling of microservices in kuber-
netes. In: ACSOS, pp. 28–37. IEEE (2020)

https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-030-16722-6_21
https://doi.org/10.1007/978-3-030-31646-4_8

Proactive-Reactive Global Scaling, with Analytics 253

9. Bacchiani, L., Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., Zavattaro, G.:
Microservice dynamic architecture-level deployment orchestration. In: Damiani,
F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 257–275.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2 16

10. Hellerstein, J.M., Faleiro, J. M., Gonzalez, J., et al.: Serverless computing: one step
forward, two steps back. In: CIDR 2019 (2019). www.cidrdb.org

11. Kelleher, J.D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for
Predictive data Analytics: Algorithms, Worked Examples, and Case Studies. MIT
Press, Cambridge (2020)

12. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification
research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 22

13. Bacchiani, L., Bravetti, M., Gabbrielli, M., Giallorenzo, S., Zingaro, S.P.: Repos-
itory of the datasets, testbed, and tests (2022). www.github.com/LBacchiani/
predictive-autoscaling

14. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

15. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., et al.: Elasticity in cloud computing:
state of the art and research challenges. IEEE Trans. Serv. Comput. 11(2), 430–447
(2017)

16. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a
taxonomy and survey. ACM Comput. Surv. (CSUR) 51(4), 1–33 (2018)

17. Yu, G., Chen, P., Zheng, Z.: Microscaler: cost-effective scaling for microservice
applications in the cloud with an online learning approach. IEEE Trans. Cloud
Comp. 10, 1100–1116 (2020)

18. Liu, B., Buyya, R., Nadjaran Toosi, A.: A fuzzy-based auto-scaler for web appli-
cations in cloud computing environments. In: Pahl, C., Vukovic, M., Yin, J., Yu,
Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 797–811. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03596-9 57

19. Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predictive
models for workload forecasting. IEEE CLOUD 2011, 500–507 (2011)

20. Moreno, G.A., Cámara, J., Garlan, D., et al.: Efficient decision-making under
uncertainty for proactive self-adaptation. IEEE ICAC 2016, 147–156 (2016)

21. Naskos, A., Stachtiari, E., Gounaris, A., et al.: Dependable horizontal scaling based
on probabilistic model checking. IEEE/ACM CCGRID 2015, 31–40 (2015)

22. Moreno, G.A., Cámara, J., Garlan, D., et al.: Proactive self-adaptation under
uncertainty: a probabilistic model checking approach. ACM ESEC/FSE 2015, 1–
12 (2015)

23. Dutta, S., Gera, S., Verma, A., et al.: Smartscale: automatic application scaling
in enterprise clouds. In: 2012 IEEE Fifth International Conference on Cloud Com-
puting, pp. 221–228 (2012)

24. Marie-Magdelaine, N., Ahmed, T.: Proactive autoscaling for cloud-native applica-
tions using machine learning. GLOBECOM 2020, 1–7 (2020)

25. Park, J., Choi, B., Lee, C., Han, D.: GRAF: a graph neural network based proactive
resource allocation framework for SLO-oriented microservices, pp. 154–167 (2021)

26. Bauer, A., Lesch, V., Versluis, L., Ilyushkin, A., Herbst, N., Kounev, S.: Chamul-
teon: coordinated auto-scaling of micro-services. In: ICDCS, pp. 2015–2025. IEEE
(2019)

https://doi.org/10.1007/978-3-030-78142-2_16
www.cidrdb.org
https://doi.org/10.1007/978-3-540-30115-8_22
www.github.com/LBacchiani/predictive-autoscaling
www.github.com/LBacchiani/predictive-autoscaling
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-030-03596-9_57

254 L. Bacchiani et al.

27. Amazon, AWS Auto Scaling. aws.amazon.com/autoscaling (2022)
28. Microsoft, Overview of autoscale in Microsoft Azure. docs.microsoft.com/

en-us/azure/azure-monitor/autoscale/autoscale-overview (2022)
29. Google, Scaling based on predictions. cloud.google.com/compute/docs/autoscaler/

predictive-autoscaling (2022)

https://aws.amazon.com/autoscaling
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://cloud.google.com/compute/docs/autoscaler/predictive-autoscaling
https://cloud.google.com/compute/docs/autoscaler/predictive-autoscaling

Semantics-Driven Learning
for Microservice Annotations

Francisco Ramı́rez1,2,3, Carlos Mera-Gómez3, Shengsen Chen4,
Rami Bahsoon2, and Yuqun Zhang1(B)

1 Southern University of Science and Technology, Shenzhen, China
11756009@mail.sustech.edu.cn, zhangyq@sustech.edu.cn

2 University of Birmingham, Edgbaston, UK
{fmr067,r.bahsoon}@cs.bham.ac.uk

3 ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL,
Facultad de Ingenieŕıa en Electricidad y Computación, Campus Gustavo Galindo Km

30.5 Vı́a Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
{frramire,cjmera}@espol.edu.ec

4 Cotell Inc., Shenzhen, China
ss.chen@cotell.cn

Abstract. Annotations are program metadata that generates code and
configuration files, among others. Different frameworks provide annota-
tions to facilitate the implementation of microservice applications while
their absence can slow down the maintenance of microservices and their
misuse can lead to potential bugs. In this paper, we propose a novel
semantics-driven learning approach for capturing the relation between
code fragments and annotations, leveraging a Recurrent Neural Net-
work (RNN) and a K-Nearest-Neighbour (KNN) classifier. The approach
locates similar pieces of code to increase the probability of suggesting
annotations of unseen fragments. We utilise PyTorch and Sci-kit Learn
to evaluate our approach with a set of Java code fragments, and we
measure how similar two code fragments are by a number between zero
(close) and one (distant). The results indicate that our semantics-driven
learning framework achieves an average of 87% of correct recommen-
dations of annotations when the code fragments have a distance of 0.4
against the expected annotations subset.

Keywords: Microservice annotations · Semantic analysis · Static
analysis

1 Introduction

Annotations are a form of program metadata that generates code, configuration
files, and warnings, among others. Microservice frameworks provide annotations
to facilitate the implementation of cloud-based applications in terms of the reuse
of features and support for software evolution. However, the misuse of microser-
vice annotations generates potential bugs whose detection requires the analysis

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 255–263, 2022.
https://doi.org/10.1007/978-3-031-20984-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_17

256 F. Ramı́rez et al.

of multiple logs and source code files. This detection effort is not trivial for
developers since debugging microservices may take days or even weeks.

Developers go through a reduced amount of source code and infer the func-
tionality of code fragments [2]. However, comprehension of programs takes
around 58% of the time spent on software maintenance due to outdated or miss-
ing comments. Similarly, the wrong usage of annotations introduces errors with
unexpected behaviour. Despite the significance of annotations for microservice
development, only a few approaches have worked with annotations [6,7]. Lacking
static analysis on microservice annotations results in a gap between detecting
warnings and correcting errors before deployment. To overcome these issues, it
is essential to match source code with the usage of annotations.

In this paper, we contribute to a novel static analysis approach using
semantics-driven learning of code fragments collected from open-source reposito-
ries. In particular, our approach implements a new mechanism that leverages a
Recurrent Neural Network (RNN) and a K-Nearest-Neighbour (KNN) classifier
to learn the semantic relation of code fragments against their annotations and
predict a suitable annotation.

Moreover, our approach is the first to exploit the relation between code frag-
ments and their annotations. We convert the Abstract Syntax Trees (ASTs)
representation of Java code fragments to vectors following prior work [4,5]. We
further conduct a set of experiments to identify incorrect or missing annotations
by performing the approach through a simulation tool that extends PyTorch
and Sci-Kit Learn Library. Our results indicate that our semantic learning of
microservice annotations achieves an average of 87% of the correct recommen-
dations of annotations.

2 Preliminaries

2.1 Tokenisation and AST Representation

Tokenisation is a common Natural Language Processing (NLP) task for sepa-
rating the source code into words or tokens. Usually, such techniques take the
AST representation of the source code as input. Specifically, an AST contains
additional semantic information inside a tree structure with a statement denoted
as a node. Note that an AST tree is usually traversed in a preorder manner.

2.2 Vector Representation of Code

Source code files can be transformed into a vector space [4] where the iden-
tification of annotations from source code can be deemed as a transformation
problem as well. Such approaches are widely used in many AI-assisting software
engineering tasks, such as code summarization [8], defect prediction [11], and
fault localization [13].

Semantics-Driven Learning for Microservice Annotations 257

3 Proposed Approach

We develop an approach to learn the semantic information of existing code frag-
ments to give suggestions about the declaration of microservice annotations in
a code fragment, as in Fig. 1 with Algorithm 1 describing the overall steps.
The output of our approach is a set of suggestions, each composed of an action
followed by an annotation name, e.g., KEEP PostConstruct. We illustrate our
approach by using two actions: (i) ADD action suggests the incorporation of a
missing annotation; (ii) and KEEP action suggests no change in the usage of an
annotation.

Fig. 1. Conceptual model of our semantics-diven learning approach

Algorithm 1. Semantics-Driven Learning Algorithm
Input: datasets // contains the datasets for training, validate and testing the learning model
Input: database // Java database to search similar code fragments
Input: queries // List of queries to predict annotations and suggest actions
Output: allActions
1: preProcessor ← new PreProcessor()
2: learner ← newLearner()
3: predictor ← newPredictor()
4: searchEngine ← newSearchEngine()
5: allActions ← newList()
6: trainingDataset ← preProcessor .prepare(datasets)
7: encoder ← learner .buildModel(trianingDataset).getEncoder()
8: searchEngine.setDatabase(database)
9: searchEngine.setEncoder(encoder)

10: for each query ∈ queries do
11: encodedSubset ← searchEngine.getClosestCodeFragments(query)
12: predictor .train(encodedSubset)
13: predictedAnnotation ← predictor .predictAnnotation(query)
14: action ← searchEngine.suggestAction(predictedAnnotation)
15: allActions.add(action)
16: end for

3.1 Pre-processor

The pre-processor transforms raw data, i.e., Java source code and the list of
targeted microservice annotations, into training, validation, and testing sets. We
convert each Java file into their AST representation and split it into methods
with attached annotations. We also build two databases (Java and Queries)

258 F. Ramı́rez et al.

where a Java database is required to search for subsets and references for the
predictor and search engine. We build the AST representation by using a Java
Lang Parser which follows the language syntax by tokenising the source code to
identify the types, constructors, members and expressions. We split the string
representation of Java class into methods with the keyword MethodDeclaration
and identify annotations after the keyword Annotation.

3.2 Learner

The goal of this component is to learn the semantic information of a code frag-
ment. Specifically, we choose a sequence-to-sequence-based learner considering
its good performance to capture the relation between code and text as in [2]
where an encoder transforms the AST from a source code to vectors by pre-
dicting the probability distribution of variable types. Additionally, the encoders
with attention based on Recurrent Neural Network (RNN) extracts features from
the text with better accuracy than Support Vector Machines (SVM) based on
traditional methods [12]. Our encoder returns vectors with dimensions N ∗ M .

3.3 Predictor

This model predicts the best microservice annotations for a given source code
upon a classifier. For the training process, we match each code fragment with the
elements of the annotation list. The decoder of our learner provides a sequence of
tokens with words of similar meaning. To enhance its accuracy, we require specific
words for each annotation. Specifically, we consider that (i) every query requires
a subset of limited code fragments with similar features; (ii) fast classifiers that
support non-linear boundaries with sensitivity to overfitting; and (iii) classifiers
based on probabilistic are unacceptable due to their demand for more training
data. To this end, We choose a K-Nearest-Neighbour (KNN) classifier, which
fulfils the above requirements by creating K clusters, locating the input inside
the closest cluster and selecting the class of the neighbour.

3.4 Search Engine

The goal of our search engine is the suggestion of annotations. First, the engine
encodes the query to get its vector representation. Then, it selects a subset of
vectors from the Java database to reduce the scope and execution time of the
prediction. Our search engine calls the predictor with the query and a subset
and returns an annotation. Finally, it suggests actions for the query. Note that
we adopt the cosine similarity as our similarity metric.

4 Evaluation

The study investigates how helpful is the semantics information of code frag-
ments to keep or add annotations for unseen code fragments. We target more

Semantics-Driven Learning for Microservice Annotations 259

than 109,000 open-source repositories with the topic ’microservices’ on GitHub.
Most of those repositories (76%) adopt ten different languages. Specifically, our
study chooses Java (29%) to investigate the effectiveness of our approach in
terms of the number of correct annotations and the usage of classifiers to make
predictions when a code fragment requires keeping or adding a single annota-
tion. We also analyse the subsets of wrong suggestions and the distances between
expected and unexpected annotations.

We calculate the following metrics: (i) Accuracy which is the percentage of
correct values out of the total predictions; (ii) F1-score which is derived from
the quality of positive predictions and the ability to detect positive samples; (iii)
BLEU Score which is a measure to evaluate the quality of a candidate translation
compared to one or more supposed correct translations [2]; and (iv) Overlapping
which is the intersection between code fragments within the same distance range.

4.1 Experiment Setup

We extend PyTorch to train the learner and build vectors. The KNeighborsClas-
sifier of the Sci-Kit Learn library allows the predictor to classify new code frag-
ments. The search engine has a Java database of code fragments to find similar
pieces of code and provides suggestions of annotations. For our dataset, we cloned
a few Java methods using keywords and distributed them into 20 experiments.
All our experiments can be replicated via a package1 which includes the dataset
for training, the databases and scripts to replicate and run the experiments.

4.2 Results and Discussion

We draw scatter and box-and-whisker plots to show the accuracy of queries and
annotations. Besides, we plot the average BLEU score per length to show the
quality of searching code fragments. We compare the distance of queries and
their subset in case of correct and wrong predictions.

(a) Performance Evaluation of the Model (b) BLEU Score by Vector Length

Fig. 2. Performance and quality of our approach

1 https://bitbucket.org/semantics-driven-learning/replication-package/.

https://bitbucket.org/semantics-driven-learning/replication-package/

260 F. Ramı́rez et al.

Our approach achieves an accuracy between 83.09% and 89.8%, with an aver-
age of 87.03%. Figure 2(a) shows that 60.00% of the experiments are above the
average. The difference between F1-score and accuracy is slight, i.e., 0.13% and
0.37%. The small difference means the precision and recall are good because of
low false positives and negatives. The accuracy shows the quality of our app-
roach by counting its positive results. We elaborate the box-and-whisker plot
with the percentage of correct predictions. We focus on five annotations which
open-source projects widely attach in their methods. Additionally, we assess the
quality of searching code fragments using the BLEU score. Figure 2(b) shows the
quality of good queries with different lengths grouped every five tokens. We have
got BLEU scores between 41.84% and 81.24% with an average of 63.12%, which
is a good value considering that comment generation has 38% and translation
language has an average of 41% [2].

The experiment results indicate that our semantics-driven learning achieves
an average accuracy between 74.95% and 93.92% for annotations and a general
average of 87.26%. Our results also show that the minimum accuracy of 67.11%
is for Before annotation, while the unexpected annotations have 90.37% on aver-
age. Figure 3(a) shows that RequestMapping and GetMapping have higher accu-
racy with an average above 90%. Before and RequestMapping have a minimum
difference of 31.64% and a maximum of 3.11%.

Fig. 3. Accuracy of annotations and wrong actions per annotations

For the sake of visualising and discussing the data, we focus on Before and
calculate the percentage of predictions per every 0.05 unit of distance. Figure 3b
shows that wrong predictions occur for distances above 0.40. The green area
indicates the expected annotations of the good predictions are below 0.70 with
distance ranges: (i) bellow 0.10 has 60%. (ii) between 0.10 and 0.45 has an
average of 60%; and (iii) above 0.45 increase from 10% up to 39%. The red line
refers to the unexpected annotations of the wrong predictions and shows that
80% occurs for a distance between 0.41 and 0.75. The blue line refers to the
unexpected annotations of the good predictions between 40% and 60%.

Semantics-Driven Learning for Microservice Annotations 261

Beyond the results of our experiments, our approach can reduce the mis-
use of annotations. We provided a quantitative way of indicating if a set of
code fragments are different from a particular Java database and how different
they are. Developers can thus identify which code fragments need adjustment
to the usage of annotations. Additionally, they can increase the Java database
to add new rules and extend them for other features such as parameters and
their types. Overall, our approach suggests annotations on code fragments with
specific behaviours while increasing the visibility of issues with missing annota-
tions.

4.3 Threats to Validity

Theoretical validity: We mitigate the databases manual construction by
selecting simple code fragments, introducing small changes and checking similar-
ity against others. Internal validity: A noisy Java database of code fragments
may increase wrong suggestions, which we reduce by cloning real-world code
fragments. External validity: We mitigate the limited number of repositories
by splitting the source code into methods that increase the records for training.

Table 1. Related work

Features Related work Our work

[6] [7] [5] [4] [9] [3] [14] [1] [10] [15]

Microservices � � � � ✗ ✗ ✗ ✗ ✗ ✗ �
Annotations � � ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ �
AST ✗ ✗ ✗ � ✗ ✗ � � ✗ ✗ �
NLP ✗ ✗ � � � � � � � � �
RNN ✗ ✗ � � � ✗ ✗ � � ✗ �
Extracting features ✗ ✗ � ✗ � � ✗ ✗ ✗ ✗ �
Smell detection � ✗ � ✗ ✗ ✗ ✗ ✗ ✗ ✗ �
Defect detection ✗ ✗ ✗ ✗ ✗ ✗ � � ✗ ✗ �
Clone detection ✗ ✗ ✗ � � ✗ ✗ ✗ � � �
Bug detection ✗ � ✗ ✗ ✗ � ✗ ✗ ✗ ✗ �

5 Related Work

In this study, we focus on the misuse of annotations in the area of microservices.
Table 1 shows how our work fits in the state-of-the-art techniques.

While existing works applied techniques to detect microservice smells [6] and
modify the declaration of annotations [7]. Our research differs from their work in
two dimensions: (i) we extract methods with microservice annotations using the
AST of the source code; (ii) we create a model to learn the usage of microservice
annotations, compare code fragments and suggest the best annotations.

262 F. Ramı́rez et al.

Previous works used NLP in microservices projects for detecting architectural
smells and clones of code fragments [4,5]. Unlike those works, our approach
extracts terms from annotations and learns their relation with the code.

Other previous approaches applied NLP techniques for bug detection in dif-
ferent contexts: (i) generation of sentences from source code for summarisation
of its behaviour [9]; (ii) extracting pieces of text/comments/reports and features
from source code for detecting bugs and warning analysis [3]; (iii) detecting
defects by using AST [1,14]; and (iv) detecting clones or similarities on code
fragments [10,15].

6 Conclusion and Future Work

We are the first to propose a semantics-driven learning approach to suggest
annotations according to the similarities between code fragments under an RNN
and a KNN classifier to learn the semantic relation of code fragments against
their annotations and predict a suitable annotation.

We conclude that using a database of rules based on code fragments with
annotations is good enough to identify missing annotations, specifically for the
ADD actions. Moreover, the analysis on overlapping of the subsets returns that
increasing the distance between code fragments would reduce the number of
wrong suggestions. In our ongoing research, we are introducing the analysis of
multiple interconnected annotations for advanced features to study interdepen-
dence between annotations.

References

1. Dam, H.K., et al.: Lessons learned from using a deep tree-based model for software
defect prediction in practice. In: Proceedings of the IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR 2019), pp. 46–57. IEEE (2019)

2. Hu, X., et al.: Deep code comment generation. In: Proceedings of the 26th Confer-
ence on Program Comprehension (ICPC 2018), pp. 200–210. ACM Press (2018)

3. Liang, G., et al.: Automatic construction of an effective training set for priori-
tizing static analysis warnings. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE 2010), pp. 93–102. ACM
(2010)

4. Perez, D., Chiba, S.: Cross-language clone detection by learning over abstract syn-
tax trees. In: Proceedings of the 16th International Conference on Mining Software
Repositories (MSR 2019), pp. 518–528. IEEE (2019)

5. Pigazzini, I.: Automatic detection of architectural bad smells through semantic rep-
resentation of code. In: Proceedings of the 13th European Conference on Software
Architecture (ECSA 2019), pp. 59–62. ACM (2019)

6. Pigazzini, I., Fontana, F.A., Lenarduzzi, V., Taibi, D.: Towards microservice smells
detection. In: Proceedings of the 3rd International Conference on Technical Debt
(TechDebt 2020), pp. 92–97. ACM (2020)

7. Pinheiro, P., et al.: Mutation operators for code annotations. In: Proceedings of the
III Brazilian Symposium on Systematic and Automated Software Testing (SAST
2018), pp. 77–86. ACM (2018)

Semantics-Driven Learning for Microservice Annotations 263

8. Wang, W., et al.: Reinforcement-learning-guided source code summarization using
hierarchical attention. IEEE Trans. Softw. Eng. 48(2), 102–119 (2022)

9. Yao, Z., Peddamail, J.R., Sun, H.: Coacor: code annotation for code retrieval with
reinforcement learning. In: Proceedings of the the World Wide Web Conference
(WWW 2019), pp. 2203–2214 (2019)

10. Yu, H., et al.: Neural detection of semantic code clones via tree-based convolution.
In: Proceedings of the 27th International Conference on Program Comprehension
(ICPC 2019), pp. 70–80. IEEE (2019)

11. Zeng, Z., Zhang, Y., Zhang, H., Zhang, L.: Deep just-in-time defect prediction:
how far are we? In: ISSTA 2021: 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Virtual Event, Denmark, 11–17 July 2021, pp.
427–438. ACM (2021)

12. Zhang, J., et al.: A novel neural source code representation based on abstract syntax
tree. In: Proceedings of the 41st International Conference on Software Engineering
(ICSE 2019), pp. 783–794. IEEE (2019)

13. Zhang, M., et al.: An empirical study of boosting spectrum-based fault localization
via pagerank. IEEE Trans. Softw. Eng. 47(6), 1089–1113 (2021)

14. Zhou, Y., Gu, R., Chen, T., et al.: Analyzing APIs Documentation and Code to
Detect Directive Defects. In: Proceedings of the 39th International Conference on
Software Engineering (ICSE 2017). pp. 27–37. IEEE Press (2017)

15. Zilberstein, M., Yahav, E.: Leveraging a corpus of natural language descriptions for
program similarity. In: Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!
2016), pp. 197–211. ACM (2016)

MicroEGRCL: An Edge-Attention-Based
Graph Neural Network Approach

for Root Cause Localization
in Microservice Systems

Ruibo Chen, Jian Ren(B), Lingfeng Wang, Yanjun Pu, Kaiyuan Yang,
and Wenjun Wu

State Key Laboratory of Software Development Environment, Beihang University,
Beijing, China

{chenruibo,renjian,wlfbuaa,buaapyj,yangkaiyuan,wwj09315}@buaa.edu.cn

Abstract. Microservices architecture has become the latest trend in
building modern applications due to its flexibility, scalability, and agility.
However, due to the complex interdependencies between microservices,
an anomaly in any one service in a microservice system has the poten-
tial to propagate along service dependencies and affect multiple services.
Therefore, accurate and efficient root cause localization is a significant
challenge for current microservice system operation and maintenance.
Focusing on this challenge and leveraging the dynamically constructed
service call graph, we propose MicroEGRCL, a root cause localization
approach based on graph neural networks with an attention mechanism
that includes edge feature enhancement. We conducted an experimen-
tal evaluation by injecting various types of service anomalies into two
microservice benchmarks running in a Kubernetes cluster. The experi-
mental results demonstrate that MicroEGRCL can achieve an average
top1 localization accuracy of 87%, exceeding the state-of-the-art baseline
approaches.

Keywords: Microservice · Root cause localization · Graph neural
network · Anomaly detection

1 Introduction

The need for high availability, high maintainability, and high scalability of com-
plex Internet applications has led to the evolution of application architectures
as their scale increases. In this context, microservice architecture is the most
recent trend in developing complex cloud-native applications [2,3,6]. A large-
scale industrial microservice system may contain multiple services, each of which
may be comprised of several hundreds of instances executing in distinct con-
tainers. There are complex invocation relationships between these services and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 264–272, 2022.
https://doi.org/10.1007/978-3-031-20984-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_18&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_18

MicroEGRCL 265

their instances. In such circumstances, a service anomaly may propagate through
lengthy service call chains and affect other services in the chain [9]. This issue
also makes it challenging for system operation staff to conduct troubleshoot-
ing and recovery. Therefore, it is essential to aid microservice system operation
personnel in accurately locating service faults.

In this paper, we propose a novel root cause localization algorithm called
MicroEGRCL that is based on a new graph neural network (GNN) model and
incorporates a graph attention mechanism with enhanced edge features. In the
event of system abnormality, this method generates the service invocation graph
by dynamically obtaining the invocation relationship between services.

The contributions of this paper are threefold:

• We propose a novel approach to microservice root cause localization using a
graph neural network based on a service call graph.

• We propose an edge-feature-enhanced attention mechanism for graph neural
networks, upon which we implement weighted sampling for various nodes to
improve the algorithm performance.

• We designed and implemented the MicroEGRCL root cause localization
method and achieved excellent localization accuracy in a number of test sce-
narios, with a significant improvement over the baseline.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents an overview of our approach. The experimental evalu-
ation of the method is described in Sect. 4, and Sect. 5 concludes the paper.

2 Related Work

In recent years, a great deal of research has been devoted to identifying the root
of anomalies in distributed systems, clouds, and microservices. These methods
can be broadly classified into the following categories according to their research
subjects and approaches.

Log-Based Analysis Approaches. This type of approach is mainly proposed
for traditional distributed systems and cloud systems [9]. By analyzing and clus-
tering logs, such as LogDC [13] and Logsurfer [11], it identifies the root cause of
a failure. These approaches are limited in terms of adaptability and processing
time, and they necessitate frequent manual updates to the rules to accommodate
various exceptions.

Trace-Based Approaches. This approach is commonly used to identify the
root cause of microservices or service-based systems [9]. Commonly method to
root cause localization is by comparing fault tracing with historical tracing and
learning trace logs for fault prediction [4,10,14]. Typically, these approaches
require the collection and analysis of a large number of traces in order to identify
anomaly patterns and train predictive models. Therefore, they are inefficient for
microservice systems on a large scale.

Service Call Graph-Based Approaches. This type of approach is mainly
used for inferring root causes based on the call graph of microservice systems.

266 R. Chen et al.

The first approach is based on graph similarity and was proposed by Álvaro
et al [1]. Its dependence on the graph anomaly library is the method’s most
significant limitation. The methods in the second category are based on Ran-
dom Walk [7,8,12]. The main problem with this approach is its inefficiency in
large-scale systems. To overcome the limitations of these methods, we propose
MicroEGRCL, a novel graph-based root cause localization method that employs
a GNN and edge features to accurately infer the root cause of microservice call
graphs. Our method improves the inference accuracy and computational effi-
ciency of root cause analysis significantly.

3 Method

3.1 Formal Definition of the Root Cause Localization Problem

In this study, root cause localization is performed based on the service call graph.
We extract the data of a microservice system’s call chains in order to generate
its call graph, which consists of n nodes, each with m features, and the features
of node i are represented by the vector �Si. All the features of the service nodes
in the entire call graph can be represented by a feature matrix S

m×n.
The existence of a call relationship between nodes can be represented by the

adjacency matrix A
n×n. Each element in A is either 1 or 0, representing the

existence and non-existence of a call relationship.
For the invocation information between nodes, the edge feature matrix R is

used for representation. If there is a call relationship between nodes i and j, then
rij is its corresponding metric; otherwise, it is 0. Since communication between
services generates several metrics, they are represented by d different matrices
R, where d is the number of generated metrics.

Fig. 1. Major components and root cause localization workflow of MicroEGRCL

The major component of the MicroEGRCL algorithm is a root cause classifier
that can automatically infer the actual root cause. The inputs of this classifier
include the adjacency matrix A, the set of call relationship attributes R, and the

MicroEGRCL 267

features matrix S of all nodes. A fault localization result vector Z of length equal
to the number of service nodes is the output. Each element zi represents the like-
lihood that node i will become the fault’s root cause. The specific computational
process of the MicroEGRCL algorithm is shown in Fig. 1.

3.2 Service Root Cause Localization Method Based on GNN

This paper formulates root cause localization as the classification of call graph
nodes. Since inter-service call metrics are the most important indicator of node
health. Therefore, edge characteristics are critical for accurately locating root
cause services. Based on these analyses, we propose a GNN-based algorithm for
root cause localization with an enhanced attention mechanism for edge features
[5]. This method implements non-equal weight sampling of nodes via the atten-
tion mechanism, which mitigates the effect of local information loss on node
information aggregation to some degree.

In this study, the metrics we focus on include two main categories. The first
is the service node metrics, which include resource utilization (RU) and network
status (NS, e.g., request time, TCP packet count). The second is inter-service
call metrics (edge metrics), including response time (RT) and TCP send count
(TSC).

3.3 Attention-Based Mechanism with Weighted Node Sampling

To implement weighted node feature aggregation based on the attention mecha-
nism. In this paper, the correlation information between nodes is used directly to
sample the attention of neighboring nodes. The attention vector a is calculated
as Eq. (1).

a′
ij = Softmax

(
e′
ij

)
=

exp
(∑

hm
ij∈L(hij)

kmhm
ij

)

∑
m∈Ni

exp (e′
im)

(1)

L (hij) represents the indicator set that contains all the metrics measured
between node i and node j. hm

ij represents the m − th value in the set L (hij)
and the pre-defined km determines the weight coefficient for hm

ij . By a weighted
summation over the indicator set L (hij), we can obtain e′

ij as the attention
coefficients. Finally, we can calculate the normalized coefficients a′

ij using the
Softmax function.

The final attention consists of two parts, the traditional attention based
on node metrics and the attention calculated based on edge features, and the
attention is calculated as shown in Eq. (2).

aij =
exp

(
LeakyReLU

(
�aT

[
W �Si‖W �Sj

]))

∑
m∈Ni

exp
(
LeakyReLU

(
�aT

[
W �Si‖W �Sm

])) + a′
ij (2)

where �a represents the weight matrix of the feedforward neural network, �a ∈
R2F ′

, F ′ is the feature dimension of the nodes entering the next layer of the

268 R. Chen et al.

neural network, and T indicates matrix transpose. Use the LeakyReLU nonlinear
activation function (with a slope of 0.2 for negative input values). W represents
the weight matrix of the graph convolution layer.

In this model, the sampling depth k = 2 (i.e., each node can only aggregate
neighbor nodes whose distance from itself is ≤2). The final sampling aggregation
process can be expressed as Eq. (3).

Sk
i ← σ

(
W · ({

Sk−1
i

} ||MEAN
{
aij · Sk−1

j ,∀j ∈ N(i)
}))

(3)

Sk
i represents the sampling result of node i at the kth layer. The MEAN

function represents averaging over the node features. The node feature aggre-
gation process of MicroEGRCL is shown in Algorithm 1. Eventually, the model
will output the probability of each node being the root cause node.

Algorithm 1. Algorithm of node feature aggregation
Input:

Call graph G (V, E), Input features xi, ∀i ∈ V
Weight matrix W k, ∀k ∈ {1, · · · , K}
Nonlinear function σ, Aggregation function AGGk, ∀k ∈ {1, · · · , K}
Attention factor{aij , ∀i, j ∈ V }

Output:
The new node vector represents zi, i ∈ V

1: S0
i ← xi, ∀i ∈ V

2: for k ∈ {1, 2} do
3: for i ∈ V do
4: Sk

N(i) ← AGGk

({aij · Sk−1
i , ∀i ∈ N (i)})

5: Sk
i ← σ

(
W k · CONCAT

(
Sk−1
i , Sk

N(i)

))

6: end for
7: Sk

i ← Sk
i /‖Sk

i ‖2, ∀i ∈ V
8: end for
9: zi ← SK

i , i ∈ V
10: return Z

4 Experimental Evaluation

To validate the effectiveness of the MicroEGRCL, we conducted experimental
validation using two microservice applications and various failure scenarios. The
first is Sock-shop, a widely used microservice benchmark that consists of 15
microservices in total. In order to evaluate the performance of our algorithm
at a large scale, we extracted dependencies between services based on a real
business scenario involving an online ride-hailing company. We developed the
ride-hailing Mock-up microservice application, which consists of sixty distinct
microservices and a more complex service invocation graph. Microservice systems

MicroEGRCL 269

are constructed within a Kubernetes1 environment. Additionally, Prometheus2

is utilized to monitor and collect service metrics.
In this work, we focus on three types of anomalies that cause most of the avail-

ability issues in microservice systems. Availability Anomaly: an anomalous
increase in the number of failed service invocations is indicative of an availabil-
ity anomaly, which is typically caused by defects in the service or anomalies in
the operating environment. Performance Anomaly: performance anomaly is
characterized by abnormal increases in service response times, typically result-
ing from resource anomalies (e.g., CPU, MEM). Communication Anomaly:
a communication anomaly characterized by a significant increase in the number
of service requests or an increase in service packet loss, which is typically caused
by network anomalies between services.

We construct a service call graph using the service metrics, which indicate
the source and destination services of this request, respectively. On the basis of
the aforementioned information, we can generate a service call graph based on a
structured set of data representing different service instances and the invocation
relationships between them. In addition, we use the BIRCH clustering algorithm
for anomaly detection.

4.1 Experimental Setup

We set up an experimental environment to simulate online user requests and
emulate various microservice system anomalies. Chaos-mesh3 is used to inject a
variety of anomalies for the microservice systems running on Kubernetes. In our
experiment, different service nodes are injected with distinct faults over a period
of time, during which node metrics, call metrics, and call chain information are
collected for training. For the sake of simplification, we only inject one fault per
experiment run into each call chain per service node.

Table 1. Accuracy evaluation of the algorithms on the sock-shop

P@K Method Frontend Orders Payment Catalogue Shipping

P@1 RS 0.06 0.07 0.06 0.08 0.06

GraphSAGE 0.95 0.88 0.57 0.33 0.96

MicroEGRCL 0.94 0.99 0.78 0.56 0.98

P@3 RS 0.19 0.19 0.2 0.2 0.16

GraphSAGE 0.99 0.99 0.96 0.71 1

MicroEGRCL 1 1 0.96 0.99 1

To thoroughly validate the effectiveness of MicroEGRCL, we compare it to
two state-of-the-art baseline methods. The first method is Random Walk, which
1 Kubernetes - https://kubernetes.io.
2 Prometheus - https://prometheus.io.
3 Chaos-mesh - https://chaos-mesh.org.

https://kubernetes.io
https://prometheus.io
https://chaos-mesh.org

270 R. Chen et al.

is utilized by MonitorRank [7] and MicroRCA [12]. In this paper, we utilize
one of them, MicroRCA, which is more effective, as the comparison method.
The second is a classical GNN algorithm called GraphSAGE. In addition, we
compared it with the case of randomly selected(RS) root causes.

As an evaluation metric, we employ P@K (Precision at topK, topK accu-
racy) to assess the effectiveness of the MicroEGRCL method. P@K denotes the
probability that the first K results predicted by the algorithm are the actual
cause of a given fault.

4.2 Results and Discussion

In our experiments, we injected anomalies into multiple services in two microser-
vice applications and performed a statistical analysis of the results. It should be
noted that in the dataset of this paper, we only counted the location accuracy
under different anomalies for MicroRCA due to its inability to properly locate
some of the service anomalies selected for this experiment.

Table 2. Accuracy evaluation of the algorithms by anomaly types on sock-shop

Anomaly type P@K RS MicroRCA GraphSAGE MicroEGRCL

Availability P@1 0.06 0.3 0.78 0.88

P@3 0.19 0.78 0.92 0.99

Performance P@1 0.07 0.3 0.72 0.79

P@3 0.2 0.82 0.91 0.97

Communication P@1 0.08 0.36 0.65 0.86

P@3 0.17 0.83 0.95 1

We investigated the localization accuracy of MicroEGRCL and other baseline
methods for different fault types and service faults, and the experimental results
are presented in Tables 1 and 2. In both experiments, the results demonstrate
that the MicroEGRCL achieves the highest localization accuracy, achieving an
average of greater than 80% top1 localization accuracy and greater than 98%
top3 localization accuracy in all scenarios, thereby proving that this method is
effective for Sock-shop applications.

We conducted the same experiment as Sock-shop in the Ride-hailing Mock-
up dataset, but only the P@1 accuracy was counted. The experimental results
are presented in Tables 3 and 4. In larger-scale applications, the results indicate
that MicroEGRCL is still able to demonstrate superior localization accuracy
to other methods. Comparing the accuracy changes of different methods for the
two datasets reveals that the number of nodes decreases the localization accuracy
of MicroRCA to some degree. In contrast, the method based on graph neural
networks does not have this issue. Compared to the GraphSAGE algorithm,

MicroEGRCL 271

Table 3. Accuracy evaluation of P@1 by service nodes on ride-hailing mock-up

Method driver-gs guard-gs kronos-publish ogs-gs gz-gs pay-gs trans-gs

RS 0.02 0.01 0.03 0.02 0.02 0.02 0.02

GraphSAGE 0.78 0.69 0.91 0.62 0.87 0.88 0.69

MicroEGRCL 0.93 0.76 0.99 0.76 0.99 0.98 0.95

Table 4. Accuracy evaluation of P@1 by anomaly types on ride-hailing mock-up

Anomaly type RS MicroRCA GraphSAGE MicroEGRCL

Availability 0.02 0.31 0.85 0.91

Performance 0.02 0.25 0.75 0.91

Communication 0.02 0.27 0.72 0.9

the MicroEGRCL demonstrates an average level of accuracy, which represents a
6%–18% improvement.

Based on all experimental results, GNN-based localization accuracy is sig-
nificantly superior to RandomWalk. More significantly, by introducing the edge
features enhanced attention, we further improve the localization accuracy of the
GNN-based approach. The effectiveness of the proposed method in this paper is
verified.

5 Conclusion and Future Work

This paper proposes an edge-attention-based GNN root cause localization app-
roach for microservice systems, named MicroEGRCL. The root cause localization
results are improved by making full use of the invocation information between
services. Specifically, we propose an attention mechanism with enhanced call
information for the weighted aggregation of feature weights across different
nodes. We evaluate our method by comparing it to the state-of-the-art base-
line approaches and the conventional GNN method. The experimental results
demonstrate that MicroEGRCL outperforms or is comparable to existing meth-
ods, and has a certain generalization ability. Future work will introduce addi-
tional domain information to enhance the model’s capabilities and validate it in
real-world business scenarios.

Acknowledgment. This paper was supported by National Key R&D Program of
China (Funding No. 2021ZD0110601) and the State Key Laboratory of Software Devel-
opment Environment (Funding No. SKLSDE-2020ZX-01).

272 R. Chen et al.

References

1. Brandón, Á., Solé, M., Huélamo, A., Solans, D., Pérez, M.S., Muntés-Mulero, V.:
Graph-based root cause analysis for service-oriented and microservice architec-
tures. J. Syst. Softw. 159, 110432 (2020)

2. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices:
Trends, focus, and potential for industrial adoption. In: 2017 IEEE International
Conference on Software Architecture (ICSA), pp. 21–30. IEEE (2017)

3. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: How to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

4. Gan, Y., Zhang, Y., Hu, K., Cheng, D., Delimitrou, C.: Seer: Leveraging big data
to navigate the complexity of performance debugging in cloud microservices. In:
the Twenty-Fourth International Conference (2019)

5. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: 30th Proceedings of the conference on Advances in Neural Information
Processing Systems (2017)

6. Khazaei, H., Barna, C., Beigi-Mohammadi, N., Litoiu, M.: Efficiency analysis of
provisioning microservices. In: 2016 IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom), pp. 261–268. IEEE (2016)

7. Kim, M., Sumbaly, R., Shah, S.: Root cause detection in a service-oriented archi-
tecture. ACM SIGMETRICS Perform. Eval. Rev. 41(1), 93–104 (2013)

8. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

9. Liu, D., et al.: Microhecl: High-efficient root cause localization in large-scale
microservice systems. In: 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 338–347
(2021). https://doi.org/10.1109/ICSE-SEIP52600.2021.00043

10. Pham, C., et al.: Failure diagnosis for distributed systems using targeted fault
injection. IEEE Trans. Parallel Distrib. Syst. 28(2), 503–516 (2016)

11. Prewett, J.E.: Analyzing cluster log files using logsurfer. In: Proceedings of the 4th
Annual Conference on Linux Clusters. Citeseer (2003)

12. Wu, L., Tordsson, J., Elmroth, E., Kao, O.: Microrca: root cause localization of
performance issues in microservices. In: NOMS 2020–2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–9. IEEE (2020)

13. Xu, J., Chen, P., Yang, L., Meng, F., Wang, P.: Logdc: problem diagnosis for
declartively-deployed cloud applications with log. In: 2017 IEEE 14th International
Conference on e-Business Engineering (ICEBE), pp. 282–287. IEEE (2017)

14. Zhou, X., et al.: Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 683–694 (2019)

https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043

Mining the Limits of Granularity
for Microservice Annotations

Francisco Ramı́rez1,2,3, Carlos Mera-Gómez3, Rami Bahsoon2,
and Yuqun Zhang1(B)

1 Southern University of Science and Technology, Shenzhen, China
11756009@mail.sustech.edu.cn, zhangyq@sustech.edu.cn

2 University of Birmingham, Edgbaston, UK
{fmr067,r.bahsoon}@cs.bham.ac.uk

3 ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL,
Facultad de Ingenieŕıa en Electricidad y Computación, Campus Gustavo Galindo Km

30.5 Vı́a Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
{frramire,cjmera}@espol.edu.ec

Abstract. Microservice architecture style advocates the design and cou-
pling of highly independent services. Various granularity dimensions of
the constituent services have been proposed to measure the complex-
ity and refinement levels of the service provision. Moreover, attaching
annotations to operations adds granularity to the services while adding
features and facilitating the implementation of applications. Microservice
applications with inadequate granularity affect the system quality of ser-
vice (e.g., performance), introduce issues for management, and increase
the diagnosing and debugging time of microservices to days or even
weeks. In this paper, we propose a semantics-driven learning approach
to mining the granularity limits of operations with their annotations
according to the developer community. The learning process pursues to
build a vector space for clustering similar operations with their anno-
tations that facilitate the identification of granularity. The evaluation
shows that clustering annotations by operations similarity achieves sig-
nificantly high accuracy when classifying unseen operations (89%).

Keywords: Granularity · Microservice annotations · Semantic analysis

1 Introduction

Microservice architecture style is a software development approach that imple-
ments a set of refined and highly cohesive services. In this context, granularity is
related with the size of microservices within the application. Typical granularity
measurements are the number of lines, complexity and dependencies [4].

There is no agreement on the right size of microservices because project
teams interpret the size in different terms such as line of code, number of classes,
entities, among others [4]. Then, an application could have microservices with

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 273–281, 2022.
https://doi.org/10.1007/978-3-031-20984-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_19&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_19

274 F. Ramı́rez et al.

different granularity. However, tiny microservices introduce managing issues into
the whole architecture, while huge microservices affect the quality attributes,
especially performance which reduces the overall system quality. The detection
effort to solve the above issues is time-consuming and not trivial for developers
since debugging microservices may take days or weeks [12].

The novel contribution of this paper is a mechanism for mining granularity
limits of operations with semantics similarity. The approach contributes to the
fundamentals of microservice granularity, where, to our best knowledge, we are
the first to cluster similar operations to avoid/reduce the amount of microservice
invocation or time response.

The importance and methods to determine an optimal granularity have been
considered in several studies [2,9,10]. However, to our knowledge, our work is
the first to identify the granularity limits implemented in source code by cluster-
ing operations with similar behaviour. The results indicates that our approach
achieves a high accuracy when classifying unseen operations (89%).

2 Background

2.1 Annotations by Operations

Annotations are a form of program metadata for adding features to a piece of
code that facilitate the implementation of microservice applications. Developers
follow coding style guidelines [1], which means one project has operations with
similar syntax. Thus, similar usage of annotations appears in operations with
semantics similarity.

Some annotations expose services through RESTful HTTP with attached
annotations such as GetMapping, GET, POST and RequestMapping. Note that
Java Parser can be used for listing the project classes with their content and
searching for annotations attached to methods. The microservice applications
allow the usage of multiple frameworks such as Spring, Redis and others where
an operation allows more than one annotation. For instance, Spring Boot and
Spring Cloud help run microservices in embedded web servers with common
distributed patterns such as Circuit Breaker.

2.2 Granularity Dimensions

The most common granularity dimensions are the number and length of services
calculated by aggregating the number of operations and their lines of code while
others involve coupling, cohesion and complexity. Note that finding the optimal
level of granularity has potential issues when finalising the level too early [3].

2.3 Learning Process

Semantics-driven learning extracts features from a text by focusing on its syntax
and semantics and is applied to perform tasks such as learning the relation
between two texts in terms of their plain forms or Abstract Syntax Trees (ASTs)
[5]. It typically encodes the operations into vectors and keeps the inner relation
between operations and annotations.

Mining the Limits of Granularity for Microservice Annotations 275

Fig. 1. The components of our approach

3 Proposed Approach
In our approach, we collect code fragments, extract their annotations, identify
operations, map the operations by annotations and calculate their granularity.
We analyse the granularity utilised by the developer community when attaching
annotations to operations. In particular, the semantic information of operations
enhances the searching for similar operations.

3.1 Operation Miner

The goal of the Operation Miner is pre-processing the raw files from the Java
dataset. This component gets, organises, and formats the operations before con-
tinuing with the other components. The Miner executes three essential functions,
which are: (i) collecting code fragments, (ii) inspecting their structure, and (iii)
measuring their granularity.

The initial task of our miner is to collect the code fragments from open-
source repositories. First, we download complete source code files from different
projects. Second, we identify Java files with annotations. Third, we need to split
the files into code fragments. Next, we select only code fragments that correspond
to operations. Then, we map the selected operations according to their projects,
packages, and classes.

3.2 Annotation Adapter

The goal of our Annotation Adapter is to map the operations, their annotations
and granularity. This component gets the AST representation and converts oper-
ations into vectors. The Adapter executes three essential functions, which are: (i)
parsing the operations, (ii) learning the relation between operations and annota-
tions, and (iii) connecting the mentioned relations to their granularity metrics.

We parse the source code of operations to build their AST representation
as a text. Our approach requires a Java Parser, a library that reads the source
code of complete Java files and provides an AST structure to work with Java
code in a programmatic way. Java Parser allows us to produce a text by reading
the tree with the transversal algorithm in post-order. The result is a text where
each word is a token for the next step of the learning process.

276 F. Ramı́rez et al.

Similar operations could require similar annotations, and the Adapter intends
to detect those annotations by converting the operations into vectors. Thus, we
can detect operations with similar behaviour through a training process with the
AST representation of operations as input text. We also convert the annotation
names into vectors with one dimension and add it as additional information
to the vector representation of operations. This way, we can organise data by
operation similarity, annotation, and granularity.

3.3 Granularity Marker

Detection of operations with similar annotations is possible by measuring the
distance between two vectors. In this paper, we adopt Cosine similarity for mea-
suring annotation similarity following prior work [13]. In particular, we avoid
excluding operations with similarities higher than a specific threshold, e.g., 0.70.

The cosine similarity reduces the searching scope by finding the nearest vec-
tors. We form a subset using the closest vectors with similar behaviour opera-
tions. Then, we build clusters using the K-Means algorithm, which requires the
number of clusters as a parameter. If one operation has more than one annota-
tion, we could join the annotations in pairs of two.

The subset helps search the granularity limits according to the nearest anno-
tation. The KNN algorithm predicts the clusters of annotations. Then, we filter
the operations by using the prediction. The filtered options contain the granu-
larity metrics ordered from minimum to maximum. The granularity limits for
specific annotation are near the extremes.

4 Evaluation

For our evaluation, we measure the effectiveness of our approach by counting
the percentage of operations inside the range of granularity limits. Our evalua-
tions can be replicated via this package 1 which contains examples of exposed
operations, the datasets, databases and scripts to run the experiments.

4.1 Experiment Design

We prepare a Java dataset by cloning the source code from GitHub open-source
repositories selected with the following criteria: (i) Java projects; (ii) microser-
vices; (iii) more than 300 stars. We search with Java Parser for RequestMapping,
GetMapping and RestTemplate annotations to detect operations and connec-
tions between them. Our text parser reads the selected Java files and splits their
content into operations. We choose the operations with annotations, generate
their AST representation and calculate the length of operations. Additionally,
our learning model needs three datasets of selected operations for training, val-
idating and testing its encoder. Then, we add to our dataset the vector after
converting the operations with the encoder.

1 https://bitbucket.org/mining-granularity-limits/replication-package/.

https://bitbucket.org/mining-granularity-limits/replication-package/

Mining the Limits of Granularity for Microservice Annotations 277

4.2 Experiment Setup
We implement the Miner with Java and Python libraries to extract the oper-
ations. Specifically, the Java Parser Lang library helps identify connections
between operations, while Python Java Parser builds the AST representation.
Additionally, we implement semantics-driven learning by extending PyTorch, a
Python-based library for NLP and deep neural networks. We train the learner in
nodes environment for the Annotation Adapter and then build the vectors using
its encoder. The experiments mainly run on a laptop (Core i7 and 16 GB).

4.3 Results and Discussion

We identify the top 20 annotations that appear near 69% of 20,540 code frag-
ments with one, two or three annotations. We select the annotations such
as RequestMapping and GetMapping which expose operations. We reduce the
experimentation scope by selecting operations with more token usage.

Fig. 2. Mining operations and granularity exploration

Figure 2(a) represents the probability density of different granularity values.
We observe that three annotations, RequestMapping, GetMapping and GET have
a similar density. They show that developers prefer operations with less than 75
tokens on average. After 100 tokens, the number of operations almost disappears.
There are different shapes for the Path and POST annotations. Operation Gran-
ularity tends to decrease slowly between the 75 and 150 tokens in both cases.
Although POST looks to disappear after 200 tokens, it slightly reappears near
the 400 tokens. Thus, clusters of the operations with similar behaviour may
have their own granularity density. Additionally, Fig. 2(b) shows the percentage
of token usage for the top annotations. We can see decay in all cases, meaning
that operations with a granularity above 80 tokens have a small usage.

We identify the granularity limits by clustering the vector representation of
operations per annotation. Then, we consider 10 clusters (K10) as a base to con-
tinue the exploration. Figure 3(a) shows the granularity limits of RequestMap-
ping. The whisker boxes present the lower and high granularity values for each

278 F. Ramı́rez et al.

Fig. 3. Granularity limits and overall results

cluster, and each operation is a coloured data point. Thus, blue data points
(below 25%) and red data points (above 75%) represent low and high granular-
ity, and the green area contains 50% of data points, including the mean.

Our approach achieves an accuracy above 89%, with an average of 94%.
Figure 3(b) shows that our approach has 55% of experiments above the average.
We also notice a slight difference between the Accuracy and F1-Score. The dif-
ference of 2% means low false positives and negatives for Precision and Recall.
Additionally, we group the results of good and wrong predictions by cluster. For
instance, Fig. 4(a) shows the cumulative percentage of distance occurrence for
two different cluster IDs. We observe subset imbalance effects. C6 is a cluster
with a similar cumulative percentage but a gap between the distance of good
and wrong predictions (0.04 to 0.05). C9 has a significant cumulative percentage
for good predictions but overlapping on wrong predictions (above 0.11).

Fig. 4. Distance Overlapping Analysis

Figure 4(b) has positive and negative values for distance difference. Positive
values mean cases of intersection for good and wrong predictions, and negative

Mining the Limits of Granularity for Microservice Annotations 279

values indicate a separation. We can see the overlapping of distance difference
in the range of positive values.

Our findings show that 40% of wrong predictions occur when subsets have
a distance difference below –0.05. Additionally, 60% of good predictions occur
even with an overlapping before the 0.10 distance difference. Thus, databases
should reduce the subsets imbalance and increase the distance per annotations
cluster to improve the performance.

5 Related Work

Annotations Detection. Our research shows one empirical study catalogues
developer issues and identifies annotations as the top category for components
settings (30.3%) [8]. One systematic mapping study consolidates activities for
detection and transition to microservices [3]. The research also shows previous
studies that take advantage of the annotations to detect bad smells on microser-
vice architecture [6] and evaluate the quality of the software through mutation
testing [7]. Unlike those works, our approach identifies microservices and extracts
annotations from a dataset from real open-source projects.

Table 1. Related work

Features Related work Our work

[8] [7] [3] [6] [2] [1] [9] [11] [10]

Annotations detection � � ✗ � ✗ ✗ ✗ ✗ ✗ �
Microservice detection ✗ ✗ � ✗ ✗ ✗ ✗ ✗ ✗ �
Granularity importance ✗ ✗ � ✗ � � � ✗ � �
Granularity metrics ✗ ✗ ✗ ✗ � � � � � �
Source code of samples ✗ ✗ ✗ ✗ ✗ ✗ � ✗ � �
Semantics similarity ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ �
Operations collection ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ �
Granularity exploration ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ �

Granularity Importance. Several studies mentioned the granularity
importance of determining the suitable size of microservices when splitting mono-
lith applications [3]. Refactoring and Domain-Driven Design are used to find the
optimal modularity of microservices [2,9,10]. Five works propose fourteen gran-
ularity samples, and only 22% have third-parties source code to calculate the
granularity metrics. Unlike those works, our study explores different operation
lengths among their semantics similarity to propose limits for good granularity.

Previous approaches do not consider the granularity by annotations. Then,
we focus on the operations collection, semantics similarity and granularity explo-
ration of size limits for fine-grained and coarse-grained operations with suitable
amount of operations as suggested by Vural et al. [11] Table 1 shows how our
work fits the state-of-the-art techniques.

280 F. Ramı́rez et al.

6 Conclusion and Future Work

We elaborated a semantics-driven learning approach to suggest the granularity
limits by learning the semantic relation between operations and their annotations
and predicting the granularity limits. We are the first to propose a mechanism
that detects the granularity limits of similar operations with their annotations.

We conclude that a database of operations is good enough to identify the
granularity limits for unseen operations with annotations. Moreover, the analysis
of overall results shows that increasing the unique annotations with overlapped
operations would slightly reduce the overall accuracy. Increasing the distance
between operations would minimize the impact on the overall accuracy.

In our ongoing research, we are including other granularity metrics and clus-
tering mechanisms such as Hierarchical Clustering for advanced features.

References

1. Cojocaru, M., Uta, A., Oprescu, A.M.: MicroValid: a validation framework for
automatically decomposed microservices. In: Proceedings of the International Con-
ference on Cloud Computing Technology and Science, CloudCom 2019, pp. 78–86
(2019)

2. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

3. Hassan, S., Bahsoon, R., Kazman, R.: Microservice transition and its granularity
problem: A systematic mapping study. Softw. Pract. Exp. 50(9), 1651–1681 (2020)

4. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: The
Journey So Far and Challenges Ahead. IEEE Softw. 35(3), 24–35 (2018)

5. Perez, D., Chiba, S.: Cross-language clone detection by learning over abstract syn-
tax trees. In: Proceedings of the 16th International Conference on Mining Software
Repositories (MSR 2019), pp. 518–528. IEEE (2019)

6. Pigazzini, I., Fontana, F.A., Lenarduzzi, V., Taibi, D.: Towards Microservice smells
detection. In: Proceedings of the 3rd International Conference on Technical Debt
(TechDebt 2020), pp. 92–97. ACM (2020)

7. Pinheiro, P., Carlos Viana, J., et al.: Mutation operators for code annotations.
In: Proceedings of the III Brazilian Symposium on Systematic and Automated
Software Testing (SAST 2018), pp. 77–86. ACM (2018)

8. Ramirez, F., Mera-Gomez, C., Bahsoon, R., Zhang, Y.: An empirical study on
microservice software development. In: Proceedings - 2021 IEEE/ACM Joint
9th International Workshop on Software Engineering for Systems-of-Systems and
15th Workshop on Distributed Software Development, Software Ecosystems and
Systems-of-Systems, SESoS/WDES 2021, pp. 16–23 (2021)

9. Santos, A., Paula, H.: Microservice decomposition and evaluation using depen-
dency graph and silhouette coefficient. In: ACM International Conference Pro-
ceeding Series, pp. 51–60 (2021)

10. Vera-Rivera, F.H., Puerto, E., Astudillo, H., Gaona, C.: Microservices backlog - a
genetic programming technique for identification and evaluation of microservices
from user stories. IEEE Access 9, 117178–117203 (2021)

https://doi.org/10.1007/978-3-030-06019-0_10

Mining the Limits of Granularity for Microservice Annotations 281

11. Vural, H., Koyuncu, M.: Does domain-driven design lead to finding the optimal
modularity of a microservice? IEEE Access 9, 32721–32733 (2021)

12. Wu, L., et al.: MicroDiag: fine-grained performance diagnosis for microservice sys-
tems. In: Proceedings of the International Workshop on Cloud Intelligence (Cloud-
Intelligence 2021), pp. 31–36. IEEE (2021)

13. Zilberstein, M., Yahav, E.: Leveraging a corpus of natural language descriptions for
program similarity. In: Onward! 2016: Proceedings of the 2016 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, pp. 197–211. ACM (2016)

Service Personalization,
Recommendation, and Crowdsourcing

Balancing Supply and Demand for Mobile
Crowdsourcing Services

Zhaoming Li1 , Wei He1,2(B) , Ning Liu1,2 , Yonghui Xu1,2 ,
Lizhen Cui1,2(B) , and Kaiyuan Qi3

1 School of Software, Shandong University, Jinan, China
lizhaoming@mail.sdu.edu.cn

2 Jonit SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Jinan, China
{hewei,liun21cs,clz}@sdu.edu.cn

3 State Key Laboratory of High-end Server & Storage Technology, Beijing, China
qiky@inspur.com

Abstract. Mobile crowdsourcing (MC) which has been developed
rapidly in recent years is playing an increasingly indispensable role in
people’s daily lives such as taxi-hailing, food delivery and other ser-
vices. The geographic equilibrium of service supply and demand is cru-
cial so that the MC system could guarantee more promising matches in
a more regionally balanced way. However, due to the spatial dynamic
of MC environments, the emergence of supply and demand is unpre-
dictable, asymmetric, and constantly changing among different regions
and throughout the day, presenting considerable challenges to the MC
platform. In this paper, we propose a hybrid reinforcement learning and
transformer-based balancing framework (HRB) to achieve geographically
balanced coverage of MC services, considering both the imbalanced state
of service supply-demand geographical distribution and the moving will-
ingness of MC participants. The HRB framework is developed based
on the Deep Deterministic Policy Gradient strategy, which includes an
actor-critic network for generating migration strategies and a Willing-
ness Transformer (WiT) model for predicting the migration willingness
of both mobile service providers and demanders among different regions.
Experimental results have validated the effectiveness by comparing the
proposed approach with other algorithms under multiple indicators.

Keywords: Mobile crowdsourcing service · Supply and demand
balance · Reinforcement learning · Transformer · Migration willingness

1 Introduction

With the popularity of mobile smart devices, Mobile Crowdsourcing (MC) [7]
assisted by smart mobile devices has developed rapidly. Multiple types of Mobile
Crowdsourcing Service (MCS) platforms are becoming more popular and inte-
grating into people’s daily life, such as taxi-hailing services, food delivery ser-
vices, etc. In MC applications, a task publisher requester releases space-time
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 285–299, 2022.
https://doi.org/10.1007/978-3-031-20984-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_20&domain=pdf
http://orcid.org/0000-0002-5463-2471
http://orcid.org/0000-0003-0508-9633
http://orcid.org/0000-0001-7475-9739
http://orcid.org/0000-0002-1891-6186
http://orcid.org/0000-0002-8262-8883
https://doi.org/10.1007/978-3-031-20984-0_20

286 Z. Li et al.

related tasks on the platform, and one or more task performers workers simi-
larly acquire tasks and perform them either actively (e.g. by grabbing orders) or
passively (e.g. by being assigned by the platform) through the platform, and then
get the corresponding reward. In this paper, the requester is referred to as Service
Demander (e.g. the passenger in taxi-hailing services) and the worker as Service
Provider (e.g. the driver in taxi-hailing services). Due to the personalized prefer-
ence of both service demander and provider and the changeable contexts such as
weather condition, urban traffic and geographic region, the service supplies and
demands in MCS platform are asymmetrical, highly dynamic, and irregularly
distributed. When there is an imbalance between supply and demand in a geo-
graphical region, it often happens that the provider cannot find a demander to
be served or the demander cannot find a provider to offer the expected service.
Therefore, the problem of mismatch and imbalance between service supply and
demand has become a challenge for platforms, and the coverage balance of MCS
is particularly important.

There have been some recent application-specific results on the balance of
supply and demand services, which are mainly in the areas of WiFi hotspot shar-
ing, bicycle-sharing and ride-hailing. Neiat et al. [14] proposed a system for WiFi
service, which combines the participation probability model with an improved
bipartite graph matching algorithm to achieve a geographically balanced cov-
erage of services. Pan et al. [15] proposed a bicycle-sharing system with deep
reinforcement learning methods to generate incentives encouraging users to par-
ticipate in adjusting the number of bicycles among different subregions. Qin et al.
[16] focused on taxi-hailing system, which uses deep reinforcement learning and
transfer learning to improve efficiency. The above existing related works mostly
balance the overall supply and demand situation through incentive mechanisms
or maximizing benefits in platform-specific applications, ignoring the fact that
the participant’s autonomy and voluntariness play an essential role in general
MC scenarios such as social-based, event-based or interest-based mobile services
where incentives don’t work very well. In fact, considering the willingness and
preference of mobile participants will promote well-balanced distribution of ser-
vice supply and demand, improve the matching efficiency and finally create more
revenue for the MC platform.

In this paper, we propose a hybrid reinforcement learning and transformer-
based balancing framework (HRB), to achieve the coverage balance of MC ser-
vice supply and demand among multiple subregions. The basic idea is shown in
Fig. 1, where the problem is formulated as a Markov Decision Process (MDP)
based on interactions among the MC platform, the subregions and the partici-
pants. In the MDP, the “state” includes service supplies, demands, surplus, and
shortage in different subregions, and each “action” corresponds to a decision on
the migration direction of service providers or demanders in each subregion. Our
HRB framework includes an actor-critic network for generating migration strate-
gies and a Willingness Transformer (WiT) model for predicting the participants’
migration willingness. Put simply, the actor-critic network and the WiT model
are used to decide “how many participants should move from subregion sri to

Balancing Supply and Demand for Mobile Crowdsourcing Services 287

Fig. 1. An overview of the deep reinforcement learning framework for balancing supply
and demand.

srj” and “who are most likely to move from subregion sri to srj”, respectively.
Specifically, the actor network is used to interact with the MC environment and
generate migration decisions, meanwhile the critic network is used to evaluate
the performance of the actor with a group of value functions and reward func-
tions which can indicate the global supply-demand balance. Actions (i.e. user
migration decisions) generated from the actor-critic network will be combined
with the participants’ willingness extracted by WiT model to effectively match
the migration tasks with the participants. By this way, the distribution between
MC service supply and demand can be adjusted continuously and thereby a
relatively balanced state is maintained over the regions.

To summarize, the main contributions of the paper are as follows.

– We propose the hybrid reinforcement learning and transformer-based balanc-
ing (HRB) framework to achieve geographically balanced coverage of MC
services by considering both the imbalanced state of service supply-demand
distribution and the potential moving willingness of MC participants.

– We develop the Willingness Transformer (WiT) model to predict user inten-
tion and obtain the migration probabilities among different regions based on
the historical trajectories of MC service participants.

– We conduct extensive experiments to validate the effectiveness of the pro-
posed approach by comparing with other algorithms under multiple indica-
tors, including the overall balance degree of supply and demand, geographical
imbalance rate and supply-demand distribution etc.

The remainder of this paper is organized as follows: Sect. 2 summarizes the
related work about adjusting service supply and demand for Mobile Crowd-
sourcing; Sect. 3 explains the definition of this problem; Sect. 4 introduces the
proposed approach in detail; Sect. 5 presents the experimental results; Finally,
Sect. 6 offers the conclusion of our work.

288 Z. Li et al.

2 Related Work

Due to the dynamics of MC environments, some researchers have focused on
problems including supply-demand balancing, task scheduling and allocation,
mainly in the areas of WiFi hotspot sharing, bicycle-sharing and ride-hailing.

The literatures on WiFi service coverage include [14,17,18]. Neiat et al.
[14] combined the participation probability model and incentive model with an
improved bipartite graph matching algorithm to achieve a geographically bal-
anced coverage of services. Said et al. [17] extracted features from historical
sequence data of the supply and demand gap through CNN-based method to
predict the next time slot gap. Said et al. [18] also proposed another prediction
approach about the gap, using topological data analysis technology to gener-
ate a predictor from the original sequence data. The problem of supply and
demand balance of bicycle-sharing has both theoretical research value and prac-
tical application value, and related literatures include [1,5,6,15,19,21]. Wang
et al. [21] proposed a bike usage demand inference method, which estimates
the demand of some regions and time intervals from the actual demand data
of some bicycles, and then uses them as seeds to infer the regional bike usage
demand of the entire city. By hiring workers to rebalance loads among bike sta-
tions, Duan et al. [6] first focused on the three-dimensional matching problem
among workers, overflow and underflow stations from the perspective of work-
ers’ detour distance, and then considered the rebalancing frequency and target
for each rebalancing operation. The authors also divided monetary incentives
into source and destination incentives, and then combined reinforcement learn-
ing methods to solve the problem of bicycle rebalancing [5]. Pan et al. [15] also
used a deep reinforcement learning algorithm to obtain the incentive value of
each subregion hierarchically to adjust the distribution of bicycles. By modeling
the relationships among bicycle stations, Chen et al. [1] used a dynamic clus-
ter method to predict the over-demand. Singla et al. [19] designed a completely
incentive system which adopts the optimal pricing policies using the approach of
regret minimization and has been deployed in the real-world bicycle-sharing sys-
tem. Compared to bicycle-sharing services, ride-hailing services appeared earlier.
Related literatures mainly address two major problems in ride-hailing services,
namely order dispatching and driver repositioning [9–11,16,22]. In [10], a prac-
tical framework based on deep learning and decision-making time planning was
proposed to reduce the idle time of online drivers and improve the operating
efficiency of the ride-hailing system. Qin et al. [16] set two optimization goals,
i.e. driver-centric and passenger-centric, to maximize the total revenue of drivers
on the platform, and propose a deep reinforcement learning approach to improve
the order dispatch efficiency. Wang et al. [22] focused on matching passengers
and drivers(i.e. order dispatching problem) by combining transfer learning and
deep Q network reinforcement learning. Holler et al. [9] propose a decentralized
solution for order dispatching problem by decomposing the single agent (system-
centric) into multi-agents (driver-centric) which interact with the environment
in reinforcement learning, and then use KL divergence optimization to accelerate
the learning process. For the same purpose, Li et al. [11] use the approach of

Balancing Supply and Demand for Mobile Crowdsourcing Services 289

mean field approximation to simplify local interactions among multi-agents, and
then take an average action among neighborhoods to capture dynamic changes
in supply and demand.

3 Problem Definition

In this section, we present a formal model for the service coverage balance prob-
lem. The system of MC services consists of a central platform, which can be
aware of the distribution of workers and users, that is service providers and
service demanders. We use the following definitions to formulate the problem.

Definition 1. (Region and Subregion)

R = sr1 ∪ sr2 ∪ sr3 ∪ · · · ∪ srn (1)

In a location-based MC scenario, the entire region R is divided into a set of
subregions SR = {sr1, sr2, sr3, · · · , srn} (with different sizes), n is the number
of subregions. Similarly, the entire interval τ when both the MC users and work-
ers are available, is divided into a set of discrete time slots of equal fixed length.
τ can be computed based on the maximum travel time between two subregions
(e.g. using Google Map Distance Matrix API), denoted as {t1, t2, t3, · · · }.

Fig. 2. Mobile crowdsourcing service scenario.

Definition 2. (Region Coverage Equilibrium)

RCE (Psupply, Pdemand) =

√
√
√
√

n∑

i=1

(Si − Di)
2 (2)

290 Z. Li et al.

We calculate the balance degree RCE based on the distribution of supply
and demand in the region. And Psupply, Pdemand represent supply distribution,
demand distribution respectively. Si and Di are the number of service providers
and demanders in subregion sri respectively. And n is the number of subregions.
If RCE fluctuates within [0, α], it indicates the regional coverage balance. And
the smaller RCE, the more balanced region. α depends on the distribution of
supply and demand in experimental data.

Definition 3. (Mobile Crowdsourcing Coverage Balance Problem
(MCCBP)) Given a time interval τ = {t1, t2, t3, · · · } and a set of subregions
SR = {sr1, sr2, sr3, · · · , srn}, let SP ij = {sp1, sp2, sp3, · · · } be the set of ser-
vice providers and SDij = {sd1, sd2, sd3, · · · } be the set of service demanders
in the time ti in the subregion srj. As shown in Fig. 2, the MCCBP is to con-
stantly redistribute service providers within subregions during the time interval
τ to achieve optimal service coverage equilibrium in accordance with minimizing
RCE, taking participants’ willingness into account.

4 The HRB Framework

In this section, we propose a hybrid reinforcement learning and transformer-
based balancing framework (HRB) to solve MCCBP. HRB not only takes the
regional balance into account but also considers the autonomy of participants. As
shown in Fig. 3, HRB consists of two parts: Actor-Critic network and Willingness
Transformer (WiT) model. Actor-Critic network first determines the migration
direction of service providers within each subregion based on the RCE. WiT
then obtains the participants’ willingness from their historical trajectory within
the entire region. Finally, the combination of migration direction and willingness
generates specific matching solutions for service providers and demanders, i.e.,
the plans for a provider to move to the location of the demander to provide a
service to meet the demander’s request.

4.1 MDP Formulation

The migration direction problem can be modeled as a Markov decision process
(MDP) defined by a 5-tuple (S,A, Pr,R, γ), where S and A denote the set of
states and actions, R represents the immediate reward and γ is the discount
factor. In our problem, at each timestep t, the expression of state st is as
follows:

st = (S (t) ,D (t) , O (t) , U (t)) (3)

In subregion sri at the beginning of timeslot t ∈ τ , let Si (t), Di (t), Oi (t),
Ui (t) denote the supply, demand, oversupply, undersupply, i.e., the number of
service provider, service demander, surplus provider, surplus demander. And we
denote S (t), D (t), O (t), U (t) as the vector of supply, demand, oversupply,
undersupply respectively. The action at = (SRsou (t) , SRdes(t)). At the begin-
ning of timeslot t ∈ τ , the MC service providers in subregion srj will migrate

Balancing Supply and Demand for Mobile Crowdsourcing Services 291

Fig. 3. The network of HRB framework.

to one of subregions srk1,srk2,· · · ,srkm. And srj ∈ SRsou (t) , 1 ≤ j ≤ n,
srk ∈ SRdes (t) , 1 ≤ k ≤ n, (srj , srk1, srk2, · · · , srkm) ∈ at. An immedi-
ate reward R (st, at) indicates the balance of region after at is executed on
the basis of st, that is, the distribution of supply and demand. The reward
R (st, at) = −RCE (Psupply, Pdemand). As mentioned in Problem Definition,
Psupply, Pdemand represent supply distribution, demand distribution respectively.
We use RCE to measure the similarity of the distribution of supply and demand,
and negative RCE is used as the value of immediate reward. In conclusion, the
platform takes an action at, and receives an immediate reward R (st, at) in the
whole area R at timestep t. Pr (st+1|st, at) represents the transition probability
from state st to state st+1 under action at. The policy function πθ (st) with
the parameter θ, maps the current state to a deterministic action. The overall
objective is to find an optimal policy to maximize the overall discounted rewards
from state st following πθ, denoted by Jπθ

= E
[∑∞

k=0 γkR (ak, sk) |πθ, s0
]

, where
γ ∈ [0, 1] denotes the discount factor. The Q-value of state st and action at

under policy πθ is denoted by Qπθ (st, at) = E
[∑∞

k=t γk−tR (ak, sk) |πθ, st, at

]

.
Note that Jπθ

is a discounted version of the targeting objective, and will serve
as a close approximation when γ is close to 1.

4.2 Actor-Critic Network

Actor-Critic network based on DDPG [12] determine the migration direction
of the service provider, i.e. the provider moves from the subregion where this
provider is located to the subregion where the corresponding demander is
located. The action space is high-dimensional and continuous. As the number
of subregions increases, there will be a crisis of dimensionality. Inspired by [3],
we decompose the original region critic network into multiple subregions critic

292 Z. Li et al.

networks, that is, decompose the Q-value of the region into sub-Q-value of sub-
regions. We use state and action as features respectively for feature embedding
to discover more potential information [2]. When we decompose the Q-value of
the region into sub-Q-value of subregions, only the effect of the action on the
state in subregions is considered, but the effect of the action on the state of the
entire region may be ignored. Therefore, we count the number of three cases of
subregions (i.e. oversupplied, undersupplied, and balanced) and the imbalance
rate from the state st as input to consider the overall situation. The calculation
process of imbalance rate is as follows:

iri =
|Si − Di|

max (Si,Di)
(4)

Si and Di are the number of service providers and demanders in subregion
sri respectively. And n is the number of subregions.

Inspired by [15], we can get Qμ (st, at) by:

Qμ (st, at) = Qf +
n∑

j=1

Qj
μj

(sjt, ajt) (5)

In time slot t, the input of global-critic are three numbers (i.e. the number of
oversupplied, undersupplied, balanced subregions), the output is a global value
Qf . Each subregion has a sub-critic network. And the input is state sjt and
action ajt of this subregion, the output is a sub-Q-value Qj

μj
, so Q value of

the entire region is
∑n

j=1 Qj
μj

. As mentioned earlier, when the region is divided
into subregions, Q-value will have a possible deviation, so Qf makes up for this
shortcoming.

Reinforcement learning uses the immediate rewards obtained during the
interaction between the agent and the environment to guide the behavior of
the agent. The Actor network will output actions based on the status of the
environment feedback, and the Critic network will evaluate the actions output
by the Actor network based on the status of the environment feedback and imme-
diate rewards, and output the Q value. Due to the instability of a single network
during training, drawing on the successful experience of DQN [13], the original
Actor and Critic networks are expanded to four networks. These four networks
are divided into the real network and the target network. The real network is the
original one. In the Actor-Critic network, target network has the same structure
as the real network. The real network will softly update the target network for
a fixed period to improve the stability of the real network training. Intuitively
speaking, during the training process, the Actor network updates its parame-
ters according to the Q value output by the Critic network, that is, the goal of
the Actor network is to maximize the Q value; the Critic network updates its
own network parameters according to the immediate rewards feedback from the
environment, that is, the real Critic network and the target Critic network do
the mean square error.

Balancing Supply and Demand for Mobile Crowdsourcing Services 293

The Actor network represents the policy πθ parameterized by θ. It maximizes
Jπθ

using stochastic gradient ascent. In particular, the gradient of Jπθ
over θ is

given by:

∇θJπθ
= Es ρπθ

[∇θπθ (s)∇aQμ (s, a) |a=πθ(s)

]

, (6)

where ρπθ
denotes the distribution of states.

The Critic network takes the state st and action at as input, and outputs
the action value. Specifically, the critic network approximates the action-value
function Qπθ (s, a) by minimizing the following loss [12]:

L (Qπθ) = Est ρπ,at π

[

(Qμ (st, at) − yt)
2
]

, (7)

where yt = R (st, at) + γQ′
μ′ (st+1, π

′
θ′ (st+1)).

4.3 Willingness Transformer (WiT)

Inspired by Vision Transformer [4], we propose the Willingness Transformer
(WiT) model based on Transformer [20]. Compared with Transformer, WiT
inputs the subregions ID sequence during the training phase, and the label is
the next subregion ID. After the training of WiT is completed, we can input the
subregion ID sequence of the service provider to obtain the probabilities to sub-
regions, that is, willingness. The principle is the consistency of behaviors, which
means that human behaviors always follow a respective pattern and preference
within a certain period. The subregion ID sequence first needs ID Embedding
and Positional Encoding, then the two are added together. Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) respectively extract the
local features and long dependencies of the subregion ID sequence. And Trans-
former Encoder uses a self-attention mechanism to give these different features
different attention levels. Finally, WiT outputs probabilities.

Finput = Concatenate(FCNN , FLSTM , Fie + Fpe) (8)

Fie are the subregion ID embedding of the check-in sequence. Similarly, Fpe

is the positional encoding. And FCNN , FLSTM respectively represent local fea-
tures and long dependencies of ID sequence. Finput is fed into the Transformer
Encoder. The encoder is a stack of N identical blocks. Each block contains a
multi-head attention layer and a feedforward network layer. The attention func-
tion can be considered as mapping a set of key-value pairs (K-V) and a query (Q)
to an output, where the key, value, and query all come from different transfor-
mations of feature integration. The output is the weighted sum of these values,
where the weight of each value depends on the similarity of the query to the corre-
sponding key. Residual connection [8] is used, which can alleviate the problem of
vanishing or exploding gradients in deep neural networks as the depth increases,
that is, to prevent information loss. The WiT’s train loss L = CE (yid, ŷid),
where CE is the Cross-Entropy function, yid is the one-hot encoding of true
next subregion ID, and ŷid is the recommendation probabilities of all subregion
ID. The training objective is to minimize the loss function L.

294 Z. Li et al.

5 Experiment

This section demonstrates the effectiveness of the proposed approach by con-
ducting comparative experiments on benchmark datasets.

5.1 Datasets

We conduct our experiments on the following real-world datasets. Considering
the diversity of experimental data, we select two types of datasets with different
MC scenarios, including taxi-hailing and bike-sharing.

New York City Taxi Trip Duration1: We use the training set of this dataset
to generate supply and demand data. The records include pick-up and drop-off
time and pick-up and drop-off locations with their associated IDs. We consider
each pick-up event as a demand record (i.e. passenger has a demand for a taxi)
and each drop-off event as a supply (i.e. taxi has become available, and the driver
can offer a service) to generate supply and demand data.

New York City Bike Sharing 20192: We use this dataset to generate supply
and demand data. The records include start and stop time and its corresponding
locations in terms of latitude and longitude. We consider each start event as a
demand record (i.e. passenger has a demand for a bike) and each stop event
as a supply (i.e. bike has become available, and the bike can offer a service) to
generate supply and demand data.

FourSquare - NYC and Tokyo Check-ins3: The dataset contains check-in
records in two cities, NYC and Tokyo for about 10 months. It contains 227,428
check-ins in New York City and 573,703 check-ins in Tokyo. In the following
experiments, we generate the trajectory data of MC service providers from this
check-in dataset.

Two groups of datasets were used to evaluate the proposed HRB framework,
namely the NYC Taxi and Check-ins datasets, the NYC Bike and Check-ins
datasets. And the WiT model is evaluated with the NYC and Tokyo Check-ins
datasets.

5.2 Evaluation Metric and Baselines

To comprehensively evaluate the performance of HRB over a period of time
(one day), we summarize experimental data during this period of time and use
the sum, mean, maximum and minimum values based on three metrics, includ-
ing Region Coverage Equilibrium (RCE), accumulated service provider income
(ASPI), and order response rate (ORR). RCE calculation formula is shown in

1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=94519.
2 https://www.kaggle.com/datasets/ongks1986/new-york-city-bike-sharing-2019.
3 https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset/

version/2.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=94519
https://www.kaggle.com/datasets/ongks1986/new-york-city-bike-sharing-2019
https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset/version/2
https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset/version/2

Balancing Supply and Demand for Mobile Crowdsourcing Services 295

Eq. (2). ASPI and ORR inspired by [11] are proposed. To evaluate the per-
formance of WiT, we use the probabilities output by the model and label to
calculate the accuracy. If the correct label is among the top-k predicted values,
the calculation result is increased by 1. We compare our HRB framework with
the following baseline algorithms:

– No operations (NO). This method does not perform matching operations.
– Random (RAN). It only randomly assigns all active service providers with

available demanders at each time step.
– Response-based (RES). During each time step, all available demanders start-

ing from the same subregion will be sorted by the deadline. Multiple deman-
ders with the same deadline will be further sorted by the service reward.

– Revenue-based (REV). The higher the reward is given by the service deman-
der, the higher its priority when matched. Following the similar principle as
described above, demanders with an earlier deadline will be assigned first if
multiple demanders give the same reward.

– DDPG. [12].
– HRB-Hierarchical (HRB-H). Compared with HRB, HRB-H has no Global-

critic and no Embedding in the network structure.
– HRB-Hierarchical-Global (HRB-HG). Compared with HRB, HRB-HG has no

Embedding in the network structure.

To predict the migration willingness of MC participants among different
regions, we compare the WiT module with the following algorithms:

– Convolutional Neural Network (CNNCom).
– Long Short-Term Memory (LSTMCom).
– TransformerCom (Imitating Vision Transformer [4]).

5.3 Performance Comparison

We first compare WiT with other related algorithms, then verify the effectiveness
of the internal structure of Actor-Critic Network, and finally compare HRB with
other related algorithms.

WiT Performance. We trained WiT and its’ comparison algorithms on NYC
and TKY datasets respectively. The Top-1 accuracy of these models on NYC
and TKY test set are shown in Fig. 4. In detail, the training step and accuracy
of these models to achieve the best results on the test set are shown in Table 1.
We observe that WiT can achieve higher prediction accuracy in lesser training
steps.

Effect of the Internal Structure with Actor-Critic Network. Respec-
tively, we compare our HRB framework with the baseline algorithms, as well as
conduct ablation experiments to verify the effectiveness of the different compo-
nents (i.e. the Hierarchical structure, the Global-critic network and the Embed-
ding layer) in the HRB framework. As shown in Tables 2 and 3 for the taxi-hailing

296 Z. Li et al.

Table 1. Performance comparison for WiT in terms of training step and accuracy on
Check-ins test set.

Datasets Algorithm Training step Top-1 Top-2 Top-3 Top-4 Top-5

NYC WiT 145500 51.42% 68.40% 75.88% 80.01% 82.89%

Check-ins LSTMCom 207500 50.62% 67.65% 75.11% 79.28% 82.12%

TransformerCom 214000 48.19% 66.25% 74.06% 78.64% 81.68%

CNNCom 158500 47.03% 64.40% 72.01% 76.42% 79.26%

TKY WiT 312000 57.22% 75.34% 82.79% 86.70% 89.22%

Check-ins LSTMCom 786000 56.50% 74.75% 82.32% 86.37% 88.95%

TransformerCom 597500 45.68% 66.04% 76.56% 82.48% 86.41%

CNNCom 543000 44.25% 64.18% 74.19% 79.82% 83.52%

Fig. 4. Performance comparison for WiT in terms of accuracy on two test sets. (a)
NYC test set. (b) TKY test set.

and bike-sharing datasets, we can observe the effectiveness of these three struc-
tures. The Hierarchical Structure can effectively improve the performance of
HRB, so that the problem-solving perspective is changed from the entire region
to subregions, paying more attention to each subregion. Global-critic makes
up for the deficiencies of Hierarchical Structure and considers the connections
between subregions from the perspective of imbalance rate. Embedding enables
Actor-Critic Network to have the ability to mine more useful information from
state st and action at.

Essentially, these DDPG-based algorithms are constantly exploring the best
matching scheme to reduce RCE. In this exploration process, the ORR increases,
which drives the increase of ASPI. Note that the smaller the RCE, the larger
the ORR and ASPI, the better. And the relationship between ORR and ASPI
is non-linear.

HRB Performance. As is shown in Tables 2 and 3 for Taxi and Bike datasets,
traditional methods (i.e., RAN, RES and REV.) just mechanically perform
matching operations in accordance with their own rules, ignoring participants’
willingness, making ORR low. Although these methods can reduce RCE, the
number of matches completed is too small. In contrast, HRB uses neural net-

Balancing Supply and Demand for Mobile Crowdsourcing Services 297

Table 2. Performance comparison for HRB on NYC Taxi dataset.

Algorithm ORR (mean) ASPI (sum) RCE (mean) RCE (max) RC E(min)

NO 0.00% 0.00 60.41 115.21 21.42

RAN 11.08% 604081.64 57.11 110.28 21.59

RES 11.01% 602223.01 56.88 105.25 21.38

REV 11.19% 626606.50 57.13 112.64 21.84

DDPG 73.71% 2773629.23 51.79 94.87 18.76

HRB-H 74.05% 2770291.25 51.51 93.39 18.57

HRB-HG 73.49% 2760943.73 51.52 92.99 19.18

HRB 73.97% 2780334.14 50.92↓ 89.24↓ 18.76↓

Table 3. Performance comparison for HRB on NYC Bike dataset.

Algorithm ORR(mean) ASPI(sum) RCE(mean) RCE(max) RCE(min)

NO 0.00% 0.00 56.12 203.74 2.00

RAN 11.72% 622536.80 52.89 197.23 2.00

RES 12.41% 631632.78 53.26 196.15 2.00

REV 12.02% 656474.49 52.94 196.05 2.00

DDPG 66.40% 2882350.56 50.71 189.55 2.00

HRB-H 65.23% 2886530.42 50.56 187.57 2.00

HRB-HG 66.75% 2876824.91 50.22 189.51 2.00

HRB 66.80% 2895037.73 49.91↓ 175.31↓ 2.00

Fig. 5. Performance comparison for HRB in terms of two metrics on Taxi datasets. (a)
RCE (mean). (b) ASPI (sum).

works to learn the relevant rules of migration direction of service providers and
keeps trying to reduce RCE, that is, to maintain the relative balance of the
region, to increase ORR, and thereby increase ASPI. As is shown in Figs. 5,
compared with other algorithms, HRB matches providers and demanders taking
the regional balance and the willingness of participants into account, which can
effectively increase the number of transactions and thereby increase the total
revenue of service providers.

298 Z. Li et al.

6 Conclusion

In this paper, we propose a hybrid reinforcement learning and transformer-based
balancing framework (HRB) to achieve geographically balanced coverage of MC
services. Experimental results proved that HRB can continuously adjust supply
and demand distribution among regions while taking participants’ willingness
into account, thereby increasing the overall number of successful MC supply
and demand matches. In the future work, we will model participants in a more
refined manner (e.g. interests in different contexts), and explore methods about
reinforcement learning training for mobile user behavior prediction tasks.

Acknowledgements. This work was supported by National Key R&D Program of
China (No.2021YFF0900802), Natural Science Foundation of China (No. 91846205)
and Natural Science Foundation of Shandong Province (No. ZR2019LZH008).

References

1. Chen, L., et al.: Dynamic cluster-based over-demand prediction in bike sharing
systems. In: Proceedings of the 2016 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, UbiComp 2016, Heidelberg, Germany, 12–16
September2016. pp. 841–852. ACM (2016)

2. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recom-
mendations. In: Proceedings of the 10th ACM Conference on Recommender Sys-
tems, Boston, MA, USA, 15–19 September 2016. pp. 191–198. ACM (2016)

3. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)

4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. In: 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, 3–2 May 2021. OpenReview.net (2021)

5. Duan, Y., Wu, J.: Optimizing rebalance scheme for dock-less bike sharing systems
with adaptive user incentive. In: 20th IEEE International Conference on Mobile
Data Management, MDM 2019, Hong Kong, SAR, China, 10–13 June 2019. pp.
176–181. IEEE (2019)

6. Duan, Y., Wu, J.: Optimizing the crowdsourcing-based bike station rebalancing
scheme. In: 39th IEEE International Conference on Distributed Computing Sys-
tems, ICDCS 2019, Dallas, TX, USA, 7–10 July 2019, pp. 1559–1568. IEEE (2019)

7. Hamrouni, A., Alelyani, T., Ghazzai, H., Massoud, Y.: Toward collaborative mobile
crowdsourcing. IEEE Internet Things Mag. 4(2), 88–94 (2021)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016. pp. 770–778. IEEE Computer Society
(2016)

9. Holler, J., et al.: Deep reinforcement learning for multi-driver vehicle dispatch-
ing and repositioning problem. In: 2019 IEEE International Conference on Data
Mining, ICDM 2019, Beijing, China, 8–11 November 2019. pp. 1090–1095. IEEE
(2019)

10. Jiao, Y., et al.: Real-world ride-hailing vehicle repositioning using deep reinforce-
ment learning. CoRR abs/2103.04555 (2021)

Balancing Supply and Demand for Mobile Crowdsourcing Services 299

11. Li, M., et al.: Efficient ridesharing order dispatching with mean field multi-agent
reinforcement learning. In: The World Wide Web Conference, WWW 2019, San
Francisco, CA, USA, 13–17 May 2019. pp. 983–994. ACM (2019)

12. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
Bengio, Y., LeCun, Y. (eds.) 4th International Conference Track Proceedings on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016 (2016)

13. Mnih, M., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

14. Neiat, A.G., Bouguettaya, A., Mistry, S.: Incentive-based crowdsourcing of hotspot
services. ACM Trans. Internet Techn. 19(1), 5:1–5:24 (2019)

15. Pan, L., Cai, Q., Fang, Z., Tang, P., Huang, L.: A deep reinforcement learning
framework for rebalancing dockless bike sharing systems. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 1393–1400. AAAI
Press (2019)

16. Qin, Z.T., et al.: Ride-hailing order dispatching at DIDI via reinforcement learning.
INFORMS J. Appl. Anal. 50(5), 272–286 (2020)

17. Said, A.B., Erradi, A.: Deep-gap: a deep learning framework for forecasting crowd-
sourcing supply-demand gap based on imaging time series and residual learning.
In: 2019 IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), Sydney, Australia, 11–13 December 2019. pp. 279–286. IEEE
(2019)

18. Said, A.B., Erradi, A.: Multiview topological data analysis for crowdsourced service
supply-demand gap prediction. In: 16th International Wireless Communications
and Mobile Computing Conference, IWCMC 2020, Limassol, Cyprus, 15–19 June
2020. pp. 1818–1823. IEEE (2020)

19. Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incen-
tivizing users for balancing bike sharing systems. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin,
Texas, USA, pp. 723–729. AAAI Press (2015)

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 5998–6008 (2017)

21. Wang, S., Chen, H., Cao, J., Zhang, J., Yu, P.S.: Locally balanced inductive matrix
completion for demand-supply inference in stationless bike-sharing systems. IEEE
Trans. Knowl. Data Eng. 32(12), 2374–2388 (2020)

22. Wang, Z., Qin, Z.T., Tang, X., Ye, J., Zhu, H.: Deep reinforcement learning with
knowledge transfer for online rides order dispatching. In: IEEE International Con-
ference on Data Mining, ICDM 2018, Singapore, 17–20 November 2018. pp. 617–
626. IEEE Computer Society (2018)

Acceptance-Aware Multi-platform
Cooperative Matching in Spatial

Crowdsourcing

Xiaotong Xu1, An Liu1(B), Guanfeng Liu2, Jiajie Xu1, and Lei Zhao1

1 School of Computer Science and Technology, Soochow University, Suzhou, China
20204227022@stu.suda.edu.cn, {anliu,xujj,zhaol}@suda.edu.cn

2 Department of Computing, Macquarie University, Sydney, Australia
guanfeng.liu@mq.edu.au

Abstract. With the development of sharing economy, multi-platform
cooperative matching (MPCM) is becoming popular as it provides an
effective way to cope with the supply-demand imbalance in spatial crowd-
sourcing (SC). While cooperation between two SC platforms in MPCM
has been intensively studied, competition among multiple SC platforms
is largely overlooked by existing work. In particular, an idle worker may
be requested by multiple platforms simultaneously, but he/she can only
accept some of them due to capacity constraints. This partial acceptance
will decrease the revenue of some platforms and thus should be addressed
properly. Towards this goal, we investigate in this paper the problem of
acceptance-aware multi-platform cooperative matching. We first design
an algorithm called BaseMPCM to predict the acceptance rate of work-
ers and calculate the utility scores of task-and-worker pairs. Considering
that in BaseMPCM, the platforms make the decision from their own ben-
efits, and this may lead to a sub-optimal total revenue, we further design
an algorithm called DeepMPCM to predict the action of other platforms
and calculate the utility scores globally. Extensive experiments on real
and synthetic datasets demonstrate the effectiveness of our algorithms.

Keywords: Spatial crowdsourcing · Task allocation · Cooperative
matching · Multiple platforms

1 Introduction

Spatial Crowdsourcing (SC) is an emerging paradigm of crowdsourcing in which
SC platforms employ a crowd of workers to move to specific physical locations to
perform spatiotemporal tasks. Many services in daily life are typical SC appli-
cations, for example, real-time taxi-calling services (e.g., DiDi and Uber), online
meal-ordering services (e.g., Ele.me and Meituan), citizen sensing services (e.g.,
Waze and OpenStreetMap), just to name a few.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 300–315, 2022.
https://doi.org/10.1007/978-3-031-20984-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_21&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_21

Acceptance-Aware Multi-platform Cooperative Matching in SC 301

(a) Result of COM (b) Result of MPCM

Fig. 1. An example of cooperative matching among three platforms

One critical problem in SC is matching, which assigns tasks to workers so
that the total utility of an SC platform is optimized. Most existing studies focus
on designing algorithms for a single platform to achieve optimal matching using
different utility settings. For instance, the utility of a platform can be the total
number of assigned tasks [9], the total moving distance of workers [15], the payoff
difference among workers [21], and so on. All these methods can achieve good
matching when the tasks and workers of a platform are evenly distributed. In
the real world, however, this is not the case. Specifically, some tasks cannot be
fulfilled because there are no idle workers nearby, while some idle workers at
other locations may always be unoccupied since no executable tasks are around.
The uneven distribution will bring a huge loss of performance to the existing
methods. Fortunately, the distributions of tasks and workers in different plat-
forms are typically various in real life [5]. It is likely that an unassigned task
in one platform can be served by the idle workers of other platforms. If these
platforms can cooperate in matching, the problem caused by uneven distribution
will be alleviated, and the platforms will achieve a win-win situation.

Motivated by this, we investigate the Multi-Platform Cooperative Matching
(MPCM) problem where n platforms cooperate in assigning their tasks with the
aim of increasing their total revenue. A simple version of this problem has been
studied in [5], where n = 2 and the aim is to maximize the revenue of only one
platform. However, the proposed solution does not work well when n > 2 due
to a phenomenon called worker competition. Let us illustrate this with a simple
example shown in Fig. 1(a). Suppose there are three platforms G, B, and R. At
some point, the platform B has some free workers (denoted by blue squares) but
no task. On the contrary, platforms G and R have some tasks (denoted by green
and red triangles) to complete, but no worker is available. Using the solution
proposed in [5] which matches the nearest serviceable worker to a task, G and
R will ask the worker wb3 to perform their tasks tg2 and tr2 , respectively. The
worker, however, can only accept one task say tr2 , due to capacity constraint.

302 X. Xu et al.

This partial acceptance will decrease the platform G’s revenue since G could ask
wr1 for help if it knew wb3 would reject it, albeit wr1 is a little far away.

An important observation from the above example is that when n > 2, the
platforms are not only cooperators but also competitors for workers. In [5], only
two platforms are involved in the cooperation, so the idle workers of one platform
can just be lent to the other. Clearly, there is no competition for workers there.
When the number of platforms is more than two, however, it is likely that an idle
worker is requested by multiple platforms at the same time, leading to partial
acceptance, as illustrated in the above example. Since partial acceptance may
decrease the revenue of some platforms to a certain degree, it should be taken
into account in the course of cooperative matching. The challenge here is whether
or not a task will be accepted by a worker cannot be known in advance, and
it is determined by many factors, for example, the quotation of the platform,
the distance between the task and the worker, and the number of requests that
the worker receives at that time. Note that the last factor cannot be known in
advance either, which makes the prediction of acceptance non-trivial.

To enable acceptance awareness in cooperative matching, we propose in this
paper an algorithm called BaseMPCM which first employs the method of upper
confidence bound to learn the relationship between the acceptance rate and the
platform’s quotation and then calculates utility scores for all task-and-worker
pairs. In BaseMPCM, every platform makes the decision from its own benefit,
which may lead to a sub-optimal total revenue. To overcome this shortcoming,
we further design an algorithm called DeepMPCM which first predicts the action
of other platforms and then calculates global utility scores for task-and-worker
pairs. Specifically, we adopt a Convolutional Neural Network (CNN) to capture
the spatial correlation between tasks and workers, which is useful to estimate the
number of requests that workers may receive. We also construct a multi-layer
perceptron (MLP) to predict global utility scores based on the contextual infor-
mation of tasks and workers. In summary, we make the following contributions:

• To the best of our knowledge, this is the first study to consider the problem of
worker competition in cooperative matching in spatial crowdsourcing. Worker
competition will lead to partial acceptance, which in turn may decrease the
revenue of some platforms and thus should be addressed.

• We propose two algorithms to predict the utility scores of task-and-worker
pairs. Specifically, We first design the BaseMPCM algorithm to predict the
acceptance rate of workers and calculate platform’s expected revenue as the
utility score. We further design the DeepMPCM algorithm to predict the
action of other platforms and predict global utility scores by neural networks.

• We conduct extensive experiments on real and synthetic datasets to demon-
strate the effectiveness of the proposed algorithms.

2 Related Work

Task-worker matching plays an important role in SC. Existing studies on match-
ing can be divided into two categories: offline matching and online matching. In

Acceptance-Aware Multi-platform Cooperative Matching in SC 303

the former case, the spatiotemporal information, such as the arrival time and the
location of tasks and workers, is known in advance. Based on the information,
offline matching can be modeled as a typical bipartite matching and be solved
by network flow algorithms [10,14].

Compared with offline matching, dynamic online matching is more practi-
cal, where tasks and workers arrive at a platform dynamically, and the plat-
form needs to respond promptly to task requests. Existing works usually design
dynamic matching algorithms [4] and greedy algorithms [7] to solve the online
matching problem. In [16], the authors randomly choose task-and-worker pairs
whose score is higher than an established threshold to obtain a competitive
ratio of 1/2e ln (1 + Umax) under the online adversarial model with Umax as the
maximum edge weight in the bipartite graph and e as the natural constant. In
addition, some algorithms based on road discovery, game theory and reinforce-
ment learning [3,6,20,21] have been proposed to improve the matching quality
and realize personalized matching based on workers’ social graph [11–13].

Besides the traditional simple matching, some complex matching problems
have been studied in recent years [3,8,18,19]. However, these solutions cannot
be applied to our problem. On the one hand, although the acceptance rate of
workers has been considered in [22], it is assumed to be known in advance and
does not need to be predicted. On the other hand, in the MPCM scenario, partial
acceptance is caused by worker competition on multiple platforms. Therefore, the
acceptance rate of workers is also determined by the action of other platforms,
which is different from the traditional acceptance rate in the single platform
scenario.

3 Problem Statement

In this section, we introduce some basic concepts and present the formal defini-
tion of the MPCM problem.

Definition 1 (Task). A task is a tuple t = 〈t.s, t.e, t.l, t.p, t.c〉 where t.s and
t.e are the arrival time and due time of t respectively, t.l is the location where
t will be performed, and t.p is the amount of money that the platform t.c will
receive after t is completed.

Definition 2 (Worker). A worker is a tuple w = 〈w.s, w.l, w.r, w.c〉 where w.s
is the arrival time of w, w.l is the location of w, w.r is the reachable range of w
and w.c is the platform to which w belongs.

Definition 3 (SC Platform). An SC platform is a tuple sc = 〈sc.W, sc.T〉,
where sc.W and sc.T are the worker set and task set of sc, respectively.

Definition 4 (Outer Payment). When a worker from other platforms suc-
cessfully serves a platform’s spatial task t, the worker will be paid an outer pay-
ment t.p′ and 0 < t.p′ ≤ t.p.

304 X. Xu et al.

Definition 5 (Revenue). For any pair (t, w) ∈ Msc where Msc is the matching
result set of sc, the revenue of platform sc on (t, w) is as follows:

revsc(t, w) =

⎧
⎪⎨

⎪⎩

t.p t.c = sc and w.c = sc

t.p′ t.c �= sc and w.c = sc

t.p − t.p′ t.c = sc and w.c �= sc

(1)

If a task and a worker both come from the same platform sc, the revenue will be
the original payment of the task. If sc’s internal task is performed by a worker
from other platforms, the revenue will be the task’s original payment minus
its outer payment. If sc’s internal worker serves a task of other platforms, the
revenue is the task’s outer payment.

Definition 6 (The MPCM Problem). Given a set of cooperative platforms
SC = {sc1, sc2, ...sc|SC|}, tasks and workers arrive at these platforms sequen-
tially, and the platforms conduct matching over the shared tasks and workers.
MPCM requires finding a matching result set Mi (1 ≤ i ≤ |SC|) for each plat-
form so that the platforms’ total revenue is maximized under the following con-
straints:

• Spatial constraint: A worker can only serve tasks within his/her reachable
range, that is, only the tasks in the circular area with w.l as the center and
w.r as the radius can be served by worker w.

• Temporal constraint: A matched worker must arrive at the workplace of
task t before the task’s expiration time, i.e., before t.e.

• Capacity constraint: A crowd worker can serve only one task at a time,
and a task can be performed by only one worker.

4 Methodology

In this section, we present a general framework for solving the problem of MPCM
and design two self-supervised algorithms for external matching.

4.1 Framework of Solving MPCM Problem

Our general framework mainly contains three components: internal matching,
task pricing, and external matching, where the internal matching and external
matching are respectively responsible for matching inner workers (i.e., workers
in the current platform) and outer workers (i.e., workers in other platforms) for
platform’s tasks and the task pricing calculates the outer payments that platform
would payoff the outer workers. It is clear that existing task matching algorithms
proposed for a single platform can be applied to the internal matching problem
as the problem only matches inner workers and tasks. In this paper, we adopt
the online task assignment algorithm proposed in [16] for the internal matching,
as the algorithm can give response to task requests promptly with a competitive

Acceptance-Aware Multi-platform Cooperative Matching in SC 305

ratio guarantee of 1/2e ln (1 + Umax), where Umax is the maximum utility of
task-and-worker pairs, and e is a natural constant.

Considering that the tasks’ outer payments depend on the platforms’ global
supply-demand relationship, we utilize a variant of the existing matching-based
task pricing approach (v-MAPS) [17] for task pricing in MPCM. The approach
calculates rewards for tasks based on the platform’s supply and demand curves
to maximize the platform’s total expected revenue. Specifically, our v-MAPS
algorithm makes the following modifications.

• The expected revenue: For a cooperative spatial task t with payment t.p
and outer payment t.p′ and a set of outer workers Wout, the expected revenue
of the task can be expressed as

E (t,Wout) = (t.p − t.p′) × A−p (t.p′,Wout) (2)

where A−p (t.p′,Wout) indicates the acceptance rate that the serviceable
outer workers in Wout would like to serve task t with outer payment t.p′.

• The acceptance rate: In v-MAPS, a self-supervised approach is used to
update the acceptance rate of workers for tasks with different outer payments.
Specifically, we use the grid index to model location spaces in the real world.
Every time receiving feedbacks of a current matching result, we use formula
(3) to calculate the acceptance rate of workers under different outer pay-
ments in each grid and take the arithmetic mean of the calculated acceptance
rates ̂Accg,p′ of all grids as the overall acceptance rate ̂Accp′ of specific outer
payments, where g is a specific grid cell and p′ is an outer payment.

̂Accg,p′ =
|t in g and t.p′ =p′ and t is successfully accepted|

|t in g and t.p′ = p′| (3)

After introducing the above basic steps, we focus on our primary work: exter-
nal matching. As shown in Algorithm 1, the main workflow of our proposed
external matching algorithm contains two steps, the utility prediction step (lines
3–5) and the task matching step (lines 6–8). In the utility prediction step, we
call algorithms to predict the acceptance rate of workers and calculate compre-
hensive utility scores of task-and-worker pairs. The utility score combines the
worker’s acceptance rate and the platform’s revenue. In the task matching step,
we construct a bipartite graph of tasks and workers and use the Minimum Cost
Maximum Flow (MCMF) algorithm to realize final matching. In the following
two sections, we will detail the utility prediction algorithms.

4.2 The BaseMPCM Algorithm

For a set of inner tasks and a set of outer workers, BaseMPCM always renders
higher scores to the valid pairs with higher revenue and greater acceptance rate.
Inspired by the task pricing algorithm, we use expected revenue(formula (2))
to balance the worker’s acceptance rate and the platform’s obtained revenue in
BaseMPCM. Specifically, for a valid pair (wi, tj), we use formula (4) to predict
the acceptance rate of wi for tj , where α1 ∈ [0, 1] is an adjustable parameter,

306 X. Xu et al.

Algorithm 1. The main workflow of the external task matching algorithm.
Input: Inner task set Tin, outer task set Tout and outer worker set Wout

Output: The set of external matching results Mout and the obtained revenue revout
1: Mout = ∅; revout = 0
2: Traverse Tin and Wout, retrieve all the valid task-and-worker pairs to S
3: for each pair (t, w) in S do
4: use BaseMPCM or DeepMPCM algorithm to calculate a utility score s(t, w)

5: Construct a bipartite graph in which a vertex represents a task or a worker, and
there exists an edge between a worker wi and a task tj if they constitute a valid
task-and-worker pair, the weight of the edge is −s(wi, tj).

6: Add a source vertex and a sink vertex in the graph, the source vertex connects task
vertexes and the sink vertex connects worker vertexes, the weight of the edge is 0.

7: Use the MCMF algorithm to get the final matching result Mout with 1 as each
edge’s capacity and the weight as the cost.

8: for each matching pair (wi, tj) in Mout do
9: send the task request tj to worker wi

10: if wi receive the task tj then
11: revout+ = tj .p − tj .p

′

12: else
13: remove (wi, tj) from Mout

14: return Mout; revout;

Acc(tj .p′, tj .g) is the upper confidence bound (UCB, i.e., the upper bound of
a confidence interval, which is defined as the sample mean plus a confidence
radius) of the acceptance rate for the outer payment tj .p

′ in grid tj .g, 1/c(wi)
measures the acceptance rate of wi for tj in the worst case (all of the w′

is ser-
viceable platforms send task request to him at the same time) in reality in which
c(wi) calculates the number of platforms that wi is serviceable for in the current
time point. It’s worth noting that we predict the acceptance rate via the method
of calculating UCB (a classical solution to the multi-arm bandit (MAB) problem
[2]), as the method well combines exploration (try to request workers in a new
grid) and exploitation (automatically filter out workers in grids with low accep-
tance rate), and can find an appropriate grid cell to locate the optimal workers
rapidly and effectively. The mathematical representation of UCB is shown in
formula (5) where ̂Accp is the sample mean, N is the total number of tasks in
g so far, N(p) is the number of times that we use p in g and if N(p) = 0, we all
have

√
2 lnN
N(p) = 0.

A−p (wi, tj) = α1 × Acc (tj .p′, tj .g) + (1 − α1) × 1
c (wi)

(4)

Acc (p, g) = ̂Accp +

√
2 ln N
N (p)

(5)

To reduce the waiting time of tasks, we additionally take the distance between
workers and tasks into consideration on the basis of expected revenue, and the

Acceptance-Aware Multi-platform Cooperative Matching in SC 307

final score of a task-and-worker pair is calculated as the following formula:

s (wi, tj)=α2 × E (tj , wi)+(1−α2)×(max−d−dis (wi, tj)) (6)

where α2 ∈ [0, 1] is an adjustable parameter, dis(wi, tj) calculates the euclidean
distance between tj and wi, max−d is the maximum distance in all valid task-
and-worker pairs.

In BaseMPCM, we predict the acceptance rate of workers to make the plat-
forms with lower acceptance rates (i.e., the inferior platforms) avoid selecting
the same worker as other platforms with higher acceptance rates (i.e., the supe-
rior platforms) so as to improve platform’s revenue. However, the algorithm only
focuses on the worker selection of inferior platforms but not on that of the supe-
rior platforms. With BaseMPCM, the superior platforms will assign the closest
workers to their tasks without considering the impact of their matching results
on other platforms. Considering the example in Fig. 1(b), for platform G (the
superior platform), whichever worker (wb1 or wb5) it sends request to, task tg1 can
be carried out because tg1 is closest to both of the two workers (the acceptance
rates of wb1 and wb5 for tg1 are both 1). Thus, G will match the closer worker
wb1 to tg1 . In this case, the task tr1 will be rejected. However, if G matches wb5

to tg1 , both tg1 and tr1 can be served. Actually, the final matching of inferior
platforms is usually decided by the matching result of superior platforms. In the
following section, we additionally consider the impact of task-and-worker pairs
on global matching results and propose the DeepMPCM algorithm to calculate
the global utility score for valid pairs.

4.3 The DeepMPCM Algorithm

It is evident in the MPCM scenario that the selection strategy of a platform
often depends on the action of others. If a platform gets the action of other
platforms in advance, it can then infer the most favorable selection strategy for
the global situation: the platform will avoid selecting the same worker with the
platforms with high acceptance rates and try to select the workers with less
impact on other platforms when there are more than one candidates. This can
not only help the platform itself to improve the total revenue but also indirectly
increase the revenue of other platforms. Inspired by this, we further propose the
DeepMPCM algorithm to calculate the global utility score for platforms.

As shown in Fig. 2, the DeepMPCM model is mainly composed of two parts:
the predictive layer and the evaluative layer. In the predictive layer, the model
predicts the probability that each platform sends task requests to every worker
based on the platforms’ task and worker distribution. On this basis, in the eval-
uative layer, the model calculates the global utility score for valid pairs using
a multi-layer perceptron (MLP). Specifically, we first encode the distribution
information of the platforms’ tasks and workers in the predictive layer. We use
the grid index to model different location spaces in the real world and then
take each grid as a unit to count each platform’s task and worker distribution.
Suppose that the number of the cooperative platforms is n and the entire space

308 X. Xu et al.

is divided into k1 × k2 grids, each grid contains k3 × k4 sub-grids. The feature
vector of the overall distribution can be expressed as

D =

⎡

⎢
⎢
⎢
⎣

D1 D2 · · · Dk2

Dk2+1 Dk2+2 · · · D2k2

... · · · . . .
...

D(k1−1)∗k2+1 D(k1−1)∗k2+2 · · · Dk1∗k2

⎤

⎥
⎥
⎥
⎦

(7)

where Di(i ∈ [1, k1 × k2]) is the feature vector of the ith grid, it is expressed as

Di =

[
numt

i,1,x
t
i,1,0, y

t
i,1,0, · · ·numw

i,1, x
w
i,1,0, · · · ,

numt
i,2, xt

i,2,0, y
t
i,2,0, · · ·numw

i,2, x
w
i,2,0, · · · ,

...
...

...
. . .

...
...

. . .
numt

i,n, xt
i,n,0,y

t
i,n,0, · · ·numw

i,n,xw
i,n,0, · · ·]

(8)

in which numt
i,j is the total number of tasks platform scj contains in grid gi,

xt
i,j,q and yt

i,j,q (q ∈ [0, k3×k4)) are the average longitude coordinate and latitude
coordinate of the tasks contained by scj in the sub grid giq of grid gi.

Fig. 2. The DeepMPCM model.

Considering the spatial correlation between tasks and workers, we then use a
classical 3-layer Convolutional neural network (CNN) to conduct the prediction
after encoding overall distribution. We can get the probability that each platform
selects workers in different grids: O = [O1, O2, ..., On], where Oi represents the
selection probability matrix of platform sci.

Based on the platforms’ worker selection probability obtained from the pre-
dictive layer, we encode both the task and the worker for each valid pair in the
evaluative layer: we take the task’s 2D location, platform id, original payment,
the ratio of the outer payment to the original payment and the current time
to constitute its feature vector t, and take the worker’s 2D location, distance
from the task, the number of each platform’s tasks that the worker can serve

Acceptance-Aware Multi-platform Cooperative Matching in SC 309

and the probability that the worker is selected by each platform to constitute
the worker’s feature vector w. Then we concatenate the task and worker’s rep-
resentation to obtain a joint representation r = {t;w} which will be fed into the
MLP to predict the global utility score of the task-and-worker pair.

Every time receiving feedbacks of the current external task matching, both
the predictive layer and the evaluative layer will learn their parameters in a self-
supervised way. The predictive layer normalizes the counted number of workers
in each grid selected by each platform as its real label, then calculates the cross
entropy loss and uses the gradient descent method to optimize parameters. In the
evaluative layer, we use the actual matching results of the platform to calculate
the real label. For a task-and-worker pair (ti, wj) ∈ Mout

i , if the worker wj

accepts the task ti, we use the following formula to represent their real utility
score:

yti = max(1 − std, 0) (9)

where 1 represents that the acceptance rate of wj to ti is 1, std is the standard
deviation of the obtained revenue proportion of all platforms, which measures
the difference between the platforms’ revenues. In this way, on the premise of
ensuring their own revenues, the platforms will try to improve the revenue of
other platforms so as to narrow the difference between platforms’ revenues. For
a platform, the revenue proportion is the ratio of its obtained revenues from the
inner tasks to the total payment of its inner tasks in the current turn. If the
worker wj rejects the task ti, their real utility score will be 0, which means that
the acceptance rate of wj to ti is 0 under the current distribution.

Similar to the predictive layer, cross-entropy is also used in the evaluative
layer, and the gradient descent method is used to optimize the parameters.

5 Experiment

5.1 Dataset and Setup

The dataset used in the experiment is a real dataset from DiDi [1], which contains
historical taxi records in Chengdu on November 14 and November 15, 2016. The
data on November 14 is used for training, and the data on November 15 is used
for evaluation. Since the original dataset comes from one platform, that is, DiDi,
we divide workers and tasks into 5 groups. Each group simulates one platform, so
we have 5 platforms in the experiment. For each platform, we consider two kinds
of data distribution: even distribution and uneven distribution. Specifically, we
divide the urban area of Chengdu into 2,790 grids. For even distribution, we
randomly divide the workers into 5 groups and randomly select for each worker
10∼15 tasks from the grid in which the worker locates. For uneven distribu-
tion, we randomly divide all the grids into 5 groups, and then for each grid, we
retain either tasks or workers. We also generate synthetic datasets to verify the
scalability of the proposed algorithms. We randomly generate 100∼10k workers
and 1000∼100k tasks for each cooperative platform. The location of tasks and
workers are randomly generated in the range of longitude 102◦E∼ 104◦E and

310 X. Xu et al.

latitude 30◦N∼ 31◦N. Besides, the speed of workers is set to 40km/h, and the
serviceable range of workers is random from 1km to 3km. The details of the
resulting datasets are shown in Table 1 and Table 2, where the default values are
shown in bold.

Table 1. Real datasets

Dataset Platform

A B C D E

Even |W | 4728 4642 4510 4658 4661

|T | 57792 58013 58418 57966 58005

Uneven |W | 501 502 507 507 2391

|T | 26724 28452 27404 29333 29952

Table 2. Synthetic datasets

Parameter Value

|W | 100 1 k 2 k 5 k 10 k

|T | 1000 10 k 20 k 50 k 100 k

We compare our algorithms with three baselines: 1) TOTA: an online task
matching algorithm proposed for a single platform [16]; 2) COM: the latest cross
online matching algorithm proposed for cooperation between two platforms [5];
and 3) V-MPCM: a variant of BaseMPCM which ignores the acceptance rate of
workers. TOTA is used to demonstrate the effectiveness of cooperative matching,
and the other two algorithms are used to verify the significance of dealing with
worker competition. In particular, the idle worker list in COM is shared by all
platforms to realize multi-platform cooperation, and the edge weights in the
bipartite graph in V-MPCM are set to tasks’ real payment.

We use three metrics for evaluation: 1) AREV : the average revenue of all
platforms; 2) ACOM : the average completed task number of all platforms; 3)
AACP : the average acceptance rate of all tasks, which is calculated by formula
(10), in which Mout is the outer matching result set of all platforms and c(w) is
the number of platforms that send requests to worker w at the same time.

AACP =
|Mout|

∑
w∈Mout

c(w)
(10)

5.2 Experiment Results

Effectiveness w.r.t AREV. As shown in Fig. 3(a) and Fig. 3(b), the rev-
enues obtained by the four cooperation-based algorithms are all higher than that

Acceptance-Aware Multi-platform Cooperative Matching in SC 311

obtained by TOTA, which means the cooperation between platforms can indeed
improve their revenues. In addition, it can be seen from Table 3 that our algo-
rithms can achieve higher revenue than COM and V-MPCM over both datasets.
This confirms that our algorithms are more effective in terms of revenue.

Table 3. Results on real datasets

Dataset Algorithm AREV (× 106) ACOM (× 104) AACP

Even TOTA 1.622 5.186 /

COM 1.686 5.109 0.657

V-MPCM 1.690 5.040 0.629

BaseMPCM 1.710 5.238 0.764

DeepMPCM 1.736 5.386 0.845

Uneven TOTA 0.421 1.405 /

COM 0.579 1.683 0.431

V-MPCM 0.590 1.715 0.454

BaseMPCM 0.606 1.771 0.505

DeepMPCM 0.619 1.856 0.566

Effectiveness w.r.t ACOM. As shown in Table 3, in the even distribution
dataset, COM and V-MPCM complete the fewest tasks but obtain more revenue
than TOTA. This is because the worker competition will lead to a huge amount of
rejection of the tasks with lower outer payment. In addition, as shown in Fig. 3(c)
and Fig. 3(d), the number of completed tasks is gradually increasing in TOTA
(V-MPCM), BaseMPCM and DeepMPCM on both datasets, which indicates
that our algorithms can effectively solve the problem of worker competition.

Effectiveness w.r.t AACP. As shown in Table 3, our algorithms achieve better
acceptance rates than COM and V-MPCM, which directly confirms that our
algorithms can solve the problem of worker competition effectively. Further, since
DeepMPCM additionally considers the utility from a global point of view, the
acceptance rate of DeepMPCM is higher than that of BaseMPCM.

AREV w.r.t. |W | As shown in Fig. 4(a), the average revenue in all algorithms
increases with the increase of |W |, and when |W | > 2000, the revenue increases
slowly. This is because when |W | < 2000, the number of existing tasks is much
larger than that of existing workers can serve. Therefore, with the increase of
|W |, more tasks can be served. When |W | > 2000, the number of serviceable
tasks reaches the peak, so the revenue increases slowly and then reaches the
peak.

ACOM w.r.t. |W | Fig. 4(b) shows the average number of completed tasks in
the four algorithms w.r.t |W |. Similar to the average revenue, the number of
average completed tasks calculated by the algorithms also increases with the
increase of |W |, and when |W | > 2000, it increases slowly.

312 X. Xu et al.

Fig. 3. Result of each platform on the real datasets

Fig. 4. Scalability of the proposed algorithms

Acceptance-Aware Multi-platform Cooperative Matching in SC 313

Fig. 5. Experiment results of parameter selection

AACP w.r.t. |W | As shown in Fig. 4(c), the average acceptance rate in all
the algorithms firstly decreases when |W | < 1000 and then increases. This is
because when |W | < 1000, the number of existing tasks is much larger than
that existing workers can serve, so all platforms will compete for workers. Thus,
with the increase of |W |, the worker competition becomes more intense, and the
acceptance rate decreases. When |W | > 1000, with the increase of workers, the
platforms’ demand for outer workers gradually decreases, while the number of
serviceable outer workers is also increasing. Therefore, the worker competition
between platforms will slow down, and the acceptance rate will increase.

AREV w.r.t. |T | As shown in Fig. 4(d), when |T | < 20000, the number of
existing tasks is much smaller than that of existing workers can serve. Hence,
with the increase of tasks, idle workers are gradually engaged in the service,
making the revenue correspondingly increase. When |T | > 20000, however, all
the workers are involved in performing tasks, so the revenue will increase much
faster with the increase of |T |.
ACOM w.r.t. |T | Fig. 4(d) shows the average number of completed tasks in the
algorithms w.r.t |T |. Similar to the revenue, the number of completed tasks in
the four algorithms also increases with the increase of |T |, and when |T | > 20000,
the amounts increase faster.

AACP w.r.t. |T | As shown in Fig. 4(f), with the increase of tasks, the plat-
forms’ demand for outer workers gradually increases, and the worker compe-
tition becomes fierce, so the acceptance rate is on the decline. However, when
10000 ≤ |T | ≤ 50000, the acceptance rate increases slightly. This is because
there remain few unassigned tasks and workers on the platforms after internal
matching. Therefore, the worker competition will be alleviated.

In addition to the above experiments on effectiveness and scalability, we
also carry out verification experiments on involved parameters. Specifically, as
shown in Fig. 5, we take an average of 5 values from 0 to 1 as candidates for
the parameter α1 and α2 in BaseMPCM and then conduct experiments on the
synthetic dataset. The experiment results show that when α1 = 0.3 and α2 = 0.7,
our model can achieve the optimal experimental results on AREV , ACOM and
AACP . Therefore, we set α1 as 0.3 and α2 as 0.7 in our algorithms.

314 X. Xu et al.

6 Conclusion

In this paper, we have studied the problem of acceptance-aware multi-platform
cooperative matching in spatial crowdsourcing. To alleviate the negative effect
of partial acceptance, we have proposed an algorithm BaseMPCM to predict the
acceptance rates of workers. Considering that the platforms in BaseMPCM make
the decision from their own benefits rather than the global benefit, we have fur-
ther designed an algorithm DeepMPCM to predict the action of other platforms.
Extensive experiments on both real and synthetic datasets have demonstrated
the effectiveness of the proposed algorithms.

In real SC applications, we observe that users often have different preferences
for platforms, and workers may have different preferences for tasks. Thus, we plan
to consider the preference between tasks and workers to realize personalized
cooperative matching. Besides, a fair cooperation scheme among platforms is
worth exploring, as platforms may have different contributions to cooperation,
and the revenue obtained by cooperation needs to be distributed properly.

Acknowledgements. This work is supported by Natural Science Foundation of
Jiangsu Province (Grant Nos. BK20211307), by project Funded by the Priority
Academic Program Development of Jiangsu Higher Education Institutions, and
by NH33714722 Youth Team on Interdisciplinary Research Soochoow University -
Research on Subjectivity and Reasoning Theory in Artificial Intelligence.

References

1. Gaia of didi. https://outreach.didichuxing.com/research/opendata/en/
2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed

bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)
3. Cheng, P., Lian, X., Chen, L., Han, J., Zhao, J.: Task assignment on multi-skill

oriented spatial crowdsourcing. TKDE 28(8), 2201–2215 (2016)
4. Cheng, P., et al.: Reliable diversity-based spatial crowdsourcing by moving workers.

PVLDB 8(10), 1022–1033 (2015)
5. Cheng, Y., Li, B., Zhou, X., Yuan, Y., Wang, G., Chen, L.: Real-time cross online

matching in spatial crowdsourcing. In: ICDE, pp. 1–12 (2020)
6. Ding, P., Liu, G., Wang, Y., Zheng, K., Zhou, X.: A-MCTS: adaptive monte carlo

tree search for temporal path discovery. In: TKDE, pp. 1–1 (2021)
7. Fan, J., Zhou, X., Gao, X., Chen, G.: Crowdsourcing task scheduling in mobile

social networks. In: ICSOC, pp. 317–331 (2018)
8. Jiang, Y., He, W., Cui, L., Yang, Q.: User location prediction in mobile crowd-

sourcing services. In: ICSOC, pp. 515–523 (2018)
9. Li, B., Cheng, Y., Yuan, Y., Wang, G., Chen, L.: Simultaneous arrival matching

for new spatial crowdsourcing platforms. In: IJCAI, pp. 1279–1287 (2020)
10. Liu, C., Gao, X., Wu, F., Chen, G.: QITA: quality inference based task assignment

in mobile crowdsensing. In: ICSOC, pp. 363–370 (2018)
11. Liu, G., et al.: MCS-GPM: multi-constrained simulation based graph pattern

matching in contextual social graphs. TKDE 30(6), 1050–1064 (2018)

https://outreach.didichuxing.com/research/opendata/en/

Acceptance-Aware Multi-platform Cooperative Matching in SC 315

12. Liu, G., Wang, Y., Orgun, M.A.: Finding k optimal social trust paths for the
selection of trustworthy service providers in complex social networks. TSC 6(2),
152–167 (2013)

13. Liu, G., Wang, Y., Zheng, B., Li, Z., Zheng, K.: Strong social graph based trust-
oriented graph pattern matching with multiple constraints. TETCI 4(5), 675–685
(2020)

14. To, H., Shahabi, C., Kazemi, L.: A server-assigned spatial crowdsourcing frame-
work. ACM Trans. Spat. Algorithms Syst. 1(1), 2:1–2:28 (2015)

15. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in
real-time spatial data: Experiments and analysis. PVLDB 9(12), 1053–1064 (2016)

16. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation
in spatial crowdsourcing. In: ICDE, pp. 49–60 (2016)

17. Tong, Y., Wang, L., Zhou, Z., Chen, L., Du, B., Ye, J.: Dynamic pricing in spatial
crowdsourcing: a matching-based approach. In: SIGMOD, pp. 773–788 (2018)

18. Zhang, Z., Liu, A., Liu, S., Li, Z., Zhao, L.: Privacy-preserving worker recruitment
under variety requirement in spatial crowdsourcing. In: ICSOC, pp. 302–316 (2021)

19. Zhao, B., Xu, P., Shi, Y., Tong, Y., Zhou, Z., Zeng, Y.: Preference-aware task
assignment in on-demand taxi dispatching: An online stable matching approach.
In: AAAI, pp. 2245–2252 (2019)

20. Zhao, Y., Guo, J., Chen, X., Hao, J., Zhou, X., Zheng, K.: Coalition-based task
assignment in spatial crowdsourcing. In: ICDE, pp. 241–252 (2021)

21. Zhao, Y., Zheng, K., Guo, J., Yang, B., Pedersen, T.B., Jensen, C.S.: Fairness-
aware task assignment in spatial crowdsourcing: game-theoretic approaches. In:
ICDE, pp. 265–276 (2021)

22. Zheng, L., Chen, L.: Maximizing acceptance in rejection-aware spatial crowdsourc-
ing. TKDE 29(9), 1943–1956 (2017)

Combining User Inherent and Contextual
Preferences for Online Recommendation

in Location-Based Services

Haiting Zhong1, Wei He1,2(B), Lizhen Cui1,2, and Lei Liu1,2

1 School of Software, Shandong University, Jinan, China
zhonghaiting@mail.sdu.edu.cn

2 Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong
University and Nanyang Technological University, Jinan, China

{hewei,clz,l.liu}@sdu.edu.cn

Abstract. With the development of mobile internet and smart devices,
location-based services (LBS) have developed rapidly and attracted more
and more users. The availability of a large amount of user interac-
tion data makes it possible to provide more personalized and accurate
recommendation services. However, in mobile scenarios, multiple influ-
encing factors such as the diversity of user preferences, the variability
of user behavior, and the dynamics of spatiotemporal contexts bring
great challenges to recommendation services. To accurately capture the
preferences of mobile users in dynamic contexts, we propose an Inher-
ent and Contextual Preference-aware Attention Network (ICPAN) for
online recommendation in location-based services. Our ICPAN consists
of an inherent-preference mining module with self-attention layers, a
contextual-preference perception module with improved IR2-tree-based
index structures, and an online recommendation module. The inherent-
preference and contextual-preference models are trained based on global
historical behavior data and instantly selected context-sensitive data,
respectively. And then the online recommendation module uses attention
aggregation to couple the two preference representations to generate the
final recommendation result. Extensive experiments are conducted on
three real datasets, and the experimental results show that the proposed
ICPAN outperforms existing state-of-the-art methods.

Keywords: Location-based service · Recommender system ·
Self-attention · IR2-tree

1 Introduction

With the rapid development of location-based social networks and mobile
devices, more and more people record and share their lives on different kinds
of platforms, such as Yelp, Places, Foursquare etc. Recommendation of location-
based services aims to recommend new locations to users according to their
personalized preferences, which is beneficial for users to know new interested

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 316–330, 2022.
https://doi.org/10.1007/978-3-031-20984-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_22&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_22

Combining User Inherent and Contextual Preferences 317

places and explore the cities, while for advertisers to launch advertisements to
targeted users [1,2].

In mobile scenarios, each user’s behaviors such as visiting a particular loca-
tion are diversified due to many factors, including spatiotemporal context, geo-
graphical distance and user preferences etc. Also, even for the same user, they
have different interests in different contexts. These influencing factors with their
changeability and interaction bring considerable challenges to recommender
system in location-based services. Current research on location-based services
mainly focuses on capturing the users’ sequential patterns from their historical
check-in or trajectory data by training different types of models, with consider-
ation of spatial-temporal features or time influence [3–5]. Essentially, there are
still two vital issues that have not been solved particularly well, and consequently
the performance of recommender systems in mobile scenarios cannot always be
satisfactory.

– RQ1. How to accurately capture user preferences with diversity and vari-
ability in mobile environments? The sequence patterns of user-item interac-
tion captured from historical data are not always reliable because the users
expected behavior varies in different contexts, such as weekend at home, out
on weekday evening etc. Additionally, the users preferences may not be con-
tinuously stable, that is, vary over time.

– RQ2. How does a model-based approach meet the demand of online rec-
ommendation for location-based services? An effective user preferences pre-
diction model requires offline training and updating periodically because the
behavioral data of mobile users emerge quickly at anytime and anywhere.
There are conflicts between online recommendation efficiency requirements
and current offline model-based approaches.

We investigate the above issues in recommender systems of location-based ser-
vices, that is, accurate preferences perception and online recommendation effi-
ciency for mobile users. The basic assumption here is that mobile user prefer-
ences are affected by both their inherent factors such as personality or likes, and
variable external factors such as contexts. Unlike recent approaches, we model
user behavioral preferences as a combination of constant interests and dynamic
interests, which are referred to as User Inherent Preferences and User Contex-
tual Preferences, respectively. To achieve recommendation efficiency, we use a
context-sensitive online model to capture user contextual preferences.

In this paper, we propose an Inherent and Contextual Preference-aware
Attention Network (ICPAN), which combines user constant interest mining
(using an offline model) and dynamic interest perception (directly using a
memory-based model). The offline module trains the model based on user his-
torical data to achieve stable interest perception and performs periodic training
and updating; while the online module learns user contextual preferences based
on instantly selected context-sensitive data using the improved IR2-tree-based
index schema. And the improved IR2-tree structure can provide logarithmic com-
plexity for the retrieval of training data from extensive historical trajectories.

318 H. Zhong et al.

Then the online recommendation module uses attention aggregation to couple
the two preference representations to generate the final recommendation result.

To summarize, our contributions are summarized as follows:

– We propose ICPAN, an attention model based on users inherent and contex-
tual preferences, which fully considers the stability of users inherent prefer-
ences and the dynamics of contextual preferences.

– We design an improved IR2-tree-based index structure for retrieval context-
sensitive data from users historical trajectories.

– Extensive experiments were conducted on three real datasets. Experimental
results show that our ICPAN performs better compared to state-of-the-art
models.

The rest of this article is organized as follows. Section 2 introduces related work.
Section 3 defines the problem and related terms. Section 4 introduces our recom-
mendation model in location-based services based on self-attention mechanism
in detail. Section 5 reports the experiment. Section 6 summarizes the paper.

2 Related Work

In recent years, there have been significant efforts to the recommendation algo-
rithm for location-based services. One of the most common tactics in these
efforts is the RNN-based method. In some early works, Wang et al. [6] proposed
the SPENT method which used similarity tree to organize all POIs (Point-of-
interests) and applied Word2Vec to perform POI embedding, and then used a
recurrent neural network (RNN) to model users’ successive transition behaviors.
Similarly, Lu et al. [7] proposed a latent-factor and RNN-based successive POI
recommendation method, named PEU-RNN, to integrate the sequential visits
of items and user preferences to recommend items. Different from the previ-
ous works that model users’ successive transition through various methods, we
believe that the behavior of a user is mainly determined by her inherent pref-
erences which are relatively stable and invariant, at the same time the current
contexts (e.g., position, time, etc.) also have impact.

Nowadays, the attention mechanisms have been widely used in various fields,
such as natural language processing [8], computer vision [9], recommender sys-
tems [4,5,10] and so on. The core of the attention mechanisms is to assign differ-
ent weights to inputs, paying more attention to relevant information and ignoring
irrelevant information. Recently, the transform based entirely on the attention
mechanisms has been proposed, which completely eliminated recurrence and con-
volutions, and has achieved the best performance in machine translation [11].

The self-attention module of transform has been widely used in recommenda-
tion systems and has achieved very good performance. SASRec [12], a sequence
model based on self-attention, can not only capture long-term semantics, but
also make predictions based on relatively few actions. TiSASRec [13] uses self-
attention to model the absolute positions of items in the sequence and their
time intervals. SAE-NAD [14] uses a multi-dimensional attention mechanism to
adaptively differentiate the user preferences degrees in multiple aspects.

Combining User Inherent and Contextual Preferences 319

3 Preliminaries

In this section, the symbolic representation and problem definition are given.
The set of user, location, location category, and time are expressed as U =
{u1, u2, · · · , uU}, V = {v1, v2, · · · , vV }, C = {c1, c2, · · · , cC}, and T =
{t1, t2, · · · , tT }, respectively. Each location has its longitude and latitude and
is associated with a location category.

Check-in Record. The set of check-ins is denoted as CH = {ch1, ch2, · · · }.
Each check-in record chi is represented as a quaternion (u, vl, cj , ta), representing
that user u checked in at location vl at time ta, and location vl is associated with
location category cj .

Time Slot. In order to capture the influence of time on user preferences, both
the time slot and day type of each check-in record are extracted and used to
represent the temporal context. The time slot is defined similarly to [15], in
which a day is divided into eight time slots by hours {h1, h2, · · · , h8}, i.e., each of
which is 3 h 00:00:00–02:59:59, 03:00:00–05:59:59... Also, two day types {w1, w2}
are used to represent workday and non-working days respectively.

Recommendation of Location-Based Services. Given a user u ∈ U , the
users’ check-in records CH, the current location vl ∈ V of the user u, the location
category ck ∈ C of the current location vl, and the current time t, recommend
to the user K locations that the user may visit in the next few hours.

4 Inherent and Contextual Preference-Aware Attention
Network

In this section, we will detail the inherent and contextual preference-aware atten-
tion network (ICPAN) for online recommendation in location-based services. We
first depict the architecture of the ICPAN model, as shown in Fig. 1. And then
we demonstrate how to make the model inference.

4.1 Inherent Preferences Mining Module

Inherent Preferences Embedding Layer. As a carrier of information, vec-
tor is very important to the model. However, when one-hot encoding is used to
represent each user, location, location category and time, it is difficult to capture
user preferences due to its sparsity. Therefore, the user, location, location cate-
gory and time are encoded into latent vectors. Latent vectors Uu ∈ Rd, Vv ∈ Rd,
Cc ∈ Rd, and Tt ∈ Rd represent the latent features of the user, location, loca-
tion category, and time, respectively. Among them, the input dimensions of the
embeddings Tt ∈ Rd is 16 (2 × 8 = 16), and the specific index scheme is in
Sect. 3. The input dimensions of the embeddings Uu ∈ Rd, Vv ∈ Rd, Cc ∈ Rd

are U, V, C, respectively. In order to make the learned inherent preferences
more stable, here we use the location category. The output of embedding layer

320 H. Zhong et al.

Fig. 1. The architecture of the proposed ICPAN model.

for each check-in j is the sum Hj = Uj + Cj ∈ Rd. For each user’s check-in
records CH = {ch1, ch2, · · · }, we only consider (n+m) check-ins. Among them,
there are n user’s historical check-in records, and m user’s contextual check-
in records. If the number of user’s historical check-in records chi>n, the most
recent n records are considered. If the user’s historical check-in records chi<n,
add zeros to the right end to n, and mask off the padding items during calcu-
lation. For the embedding of each user’s historical check-ins, we express it as
E(ui) = {H1,H2, · · · ,Hn} ∈ Rn×d.

Inherent Preferences Self-attention Aggregation Layer. In the online
recommendation in location-based services, we argue that the user’s next visit is
mainly affected by two aspects: inherent preferences and contextual preferences.
Since inherent preferences are generally relatively stable, they need to learn from
more historical check-in records of users. In addition, the same location may have
different effects on different users. For example, some people go to the cinema to
watch a movie because they are interested, and some people go to the cinema to
watch a movie to accompany their friends. In this case, the same location should
have different weights for different users.

In order to meet the above requirements, we use self-attention mechanisms
that have been successfully applied in many fields, such as natural language
processing (NLP), computer vision (CV) and speech processing [16]. Let E(u)
with non-padding length n′ represent the embedding matrix, that is E(u) =
{H1,H2, · · · ,Hn} ∈ Rn×d, where Hi = Ui + Ci ∈ Rd. First, we construct the
mask matrix as M ∈ Rn×n with each element Mij satisfying:

Combining User Inherent and Contextual Preferences 321

Mij =

{
1, if i, j ≤ n′,
0, otherwise.

And then the new check-in records are calculated through different parameter
matrices WQ

1 ,WK
1 ,WV

1 ∈ Rd×d as

I(u) = Attention(E(u)WQ
1 , E(u)WK

1 , E(u)WV
1 ,M) (1)

with

Attention(Q,K, V,M) = (M ∗ softmax(
QKT

√
d

))V (2)

We input E(u) as query, key and value of self-attention, respectively. First, we
project query, key and value to the same space through nonlinear transformation
with shared parameters. Here, the mask and softmax attention are multiplied
element by element and other elements use matrix multiplication. In order to
avoid the small gradient of the softmax function when d is large, we scale the dot

products by
1√
d
. We compute the potential correlation between different visits

in the check-in record via the scaled dot product and assign a different weight to
each visit. When predicting the (n′ +1)-st visit, we only take the first n′ ∈ [1, ch]
check-in records as input. During training, we control the check-in records used
to learn user inherent preferences by adjusting the labels of the mask matrix
M . Finally, we get I(u) ∈ Rn×d to represent the user’s inherent preferences. In
addition, to improve the real-time responsiveness of the model, the learning of
user inherent preferences can be trained offline.

4.2 Contextual Preferences Perception Module

Improved IR2-Tree-Based Trajectory Index. To quickly retrieve the con-
textual trajectories from large-scale check-in data, we propose an improved IR2-
tree [17] with a new signature generation strategy.

The IR2-tree is a combination of an R-tree [18] and signature files. In partic-
ular, each node of an IR2-tree contains both spatial and keyword information.
The spatial information is in the form of a minimum bounding rectangle, and
the keyword information is in the form of a signature. In general, an IR2-tree is a
height-balanced tree data structure similar to R-tree. Each leaf node in an IR2-
tree has entries of the form (ObjPtr, MBR, S). ObjPtr identifier refers to a tuple
in the database(i.e. a check-in record in historical logs) and MBR is a minimum
bounding rectangle which is the bounding box of the spatial object indexed. S
is the signature of the object referred to by ObjPtr. A non-leaf node has entries
of the form (NodePtr, MBR, S). NodePtr is the pointer of its child node, MBR
covers all the rectangles in the lower node’s entries, and S is the signature of
the current node. A node’s signature is the superposition of the signatures of
all its entries. So the signature of a node is equivalent to the signatures of all
trajectories in its subtree.

322 H. Zhong et al.

Table 1. Sample dataset of check-in records.

UserId LocationId Category Latitude Longitude Time

ch1 470 49 Arts&Crafts Store 40.61 −73.81 Tue Apr 03 18:00:09 2012

ch2 979 443 Bar 40.58 −73.92 Sat Apr 14 21:06:59 2012

ch3 885 489 Coffee Shop 40.69 −74.11 Thu Apr 19 01:40:25 2012

ch4 877 46 Medical Center 40.67 −74.28 Tue Apr 24 22:28:57 2012

ch5 642 443 Building 40.63 −73.72 Fri Apr 27 19:39:55 2012

ch6 73 93 Subway 40.65 −73.56 Sun May 06 17:47:50 2012

ch7 461 340 Bridge 40.59 −74.31 Tue May 08 19:38:30 2012

ch8 1021 921 Home (private) 40.62 −74.19 Sun May 13 23:56:45 2012

We improve the IR2-tree with a new signature generation strategy. Both day
type and time slot are hashed and then form a bitmap representation for the
node signature. Figure 2(a) shows the structure of the newly generated signature.
A node signature in the improved IR2-tree is divided into two disjoint blocks
holding the day of the week and the time slot which are defined in Sect. 3,
respectively. Without loss of generality, the signature is assigned with 10 bits, in
which the first 2 bits represent day of the week and the following 8 bits denote
the corresponding time slot. For example, ‘10’ and ‘01’ represent the weekdays
and weekends respectively. The bitmap representation of time for ch1 is 00000010
according to the order of the 8 time slots. For the check-in records in Table 1,
Fig. 2(b) shows an improved IR2-tree for the sample dataset of Table 1.

Fig. 2. Improved IR2-tree

The detailed contextual trajectory search algorithm is given in Algorithm 1.
Concretely, given the user’s contextual information, d(loc, day, time, r) and a
tree node node, loc is the current location and r is the range. For example, the
user’s current location is (40.61, −73.81), then r is (40.61±0.1, −73.81±0.1).

Combining User Inherent and Contextual Preferences 323

If dist(d, node) ≥ r, the node node can be pruned as its location does not qualify
the distance requirement. Given a non-leaf node node in an improved IR2-tree
and a contextual information d(loc, day, time, r), nsig is the signature of node,
and the signature of d(loc, day, time, r) is dsig. For example, the current time
is 19:00 on Tuesday. If nsig.day&dsig.day = 0 or nsig.time&dsig.time = 0, the
node node can be pruned as it does not satisfy the time contexts.

Algorithm 1: Contextual Trajectory Search Algorithm.
Input : IR2-tree tr, contextual information d
Output: A list of contextual trajectories

1 Initialize a FIFO Queue Q;
2 Q.Enqueue(tr.RootNode);
3 while Q is not empty do
4 Node n=Q.Dequeue();
5 if minDist(d.loc, n.loc) < d.r(r is the range) then
6 if n is a non-leaf node then
7 for each child node c in n do
8 if csig.day&dsig.day! = 0 AND csig.time&dsig.time! = 0

then
9 Q.Enqueue(c);

10 else
11 for each object o in n do
12 if osig.day = 10 AND osig.time = 00000010 then
13 Q.Enqueue(o);

14 return Q

Contextual Preferences Embedding Layer. The user’s next visit will be
more affected by contextual factors, such as time, weather, position, etc. Here,
the improved IR2-tree-based trajectory index retrieves check-ins that match the
contextual information according to the user’s current location and time. We take
the check-ins in the current time slot and the nearby area as the contextual check-
ins. For each user, only m contextual check-ins are considered. If the number of
user’s contextual check-ins m

′
i > m, the most recent m records are considered.

If the user’s contextual check-ins m
′
i < m, add zeros to the right end to m, and

mask off the padding items during calculation. Similar to the embedding layer
in the inherent preferences mining module, the output of embedding layer for
each check-in j is the sum H

′
j = Uj + Vj + Cj + Tj ∈ Rd. For the embedding of

contextual check-ins, we express it as E′(ui) =
{

H
′
1,H

′
2, · · · ,H

′
m

}
∈ Rm×d.

324 H. Zhong et al.

Contextual Preferences Self-attention Aggregation Layer. Similar to
the inherent preferences mining module, we still utilize the self-attention
mechanism. Let E′(u) represent the embedding matrix, that is E′(ui) ={

H
′
1,H

′
2, · · · ,H

′
m

}
∈ Rm×d, where H

′
i = Ui + Vi + Ci + Ti ∈ Rd. First, we

construct the mask matrix M ′ ∈ Rm×m. If the number of user’s contextual
check-ins m

′
i > m, the all elements of matrix M ′ are one. If the number of user’s

contextual check-ins m
′
i < m, with each element M ′

ij satisfying:

M ′
ij =

{
1, if i, j ≤ m′

0, otherwise

And then the new contextual check-in records are calculated through different
parameter matrices WQ

2 ,WK
2 ,WV

2 ∈ Rd×d as

S(u) = Attention(E′(u)WQ
2 , E′(u)WK

2 , E′(u)WV
2 ,M ′) (3)

with

Attention(Q,K, V,M) = (M ∗ softmax(
QKT

√
d

))V (4)

Similarly, we assign a different weight to each contextual visit by scaling the dot
product calculation. We can get S(u) ∈ Rm×d as a representation of the user’s
contextual preferences.

4.3 Recommendation Module

Attention Matching Layer. This module combines the user’s inherent pref-
erences with contextual preferences, and recalls the K locations that the user is
most likely to visit next from the candidate set. The candidate set of V locations
can be expressed as V = {v1, v2, · · · , vV } ∈ RV ×d. We modify the scaled dot
product attention [11] to calculate the similarity between the candidate set and
the user’s comprehensive preferences. This layer calculates the probability that
each location in the candidate set will be visited in the future:

Su = Concat(I(u), S(u)) (5)

P (u) = Matching(V, Su) = Sum(softmax(
V ST

u√
d

)) (6)

Here, Su = Concat(I(u), S(u)) ∈ R(n+m)×d, which represents a comprehensive
representation of users’ inherent preferences and contextual preferences. Cal-
culate the attention score of V and Su by scaling the dot product, and use
softmax on it to get the attention weight. Finally, the Sum operation computes
the weighted sum of the last dimension of the attention weights, transforming a
two-dimensional matrix into an V-dimensional vector, P (u) ∈ RV . The V val-
ues in P (u) respectively represent the visited probability of V locations in the
candidate set. As can be seen in Eqs. (5)–(6), we comprehensively consider the
user’s inherent preferences and contextual preferences, that is, take into account
the updated representations of all the user’s historical and contextual check-ins,
and at the same time, do not treat them equally.

Combining User Inherent and Contextual Preferences 325

Model Inference and Learning. Given the user i′s check-in records, the
matching probability of each candidate location pj ∈ P (ui) for j ∈ [1, V], and
the label vk with number of order k in the candidate set V . We adopt the binary
cross entropy loss as the objective function:

L = −
∑
i

∑
chi

[logσ(pk) +
N∑

j=1,j �=k

logσ(1 − σ(pj))] (7)

where σ is the sigmoid function. Moreover, for every positive sample pk, we
need to compute (V − 1) negative samples in the meantime. We use the Adam
optimizer to train the model, and the detailed learning algorithm is shown in
Algorithm 2. Among them, Θ = {Θ1, Θ2} is the set of model parameters. Θ1 ={

WQ
1 ,WK

1 ,WV
1 ,WQ

2 ,WK
2 ,WV

2

}
is the parameters set of attention networks.

Θ2 = {Uu, Vv, Cc, Tt}, which represents the embedding set of user, location,
location category, and time respectively.

Algorithm 2: ICPAN Algorithm
Input: check-in records, embedding dimension, learning rate, dropout rate
Output: model parameters Θ

1 Draw Θ2 from Normal Distribution N (0, 0.01);
2 Initialize parameters Θ1;
3 repeat
4 shuffle the check-in records {(u, vl, cj , ta)};
5 for each record {(u, vl, cj , ta)} do
6 compute I(u) according to Equation (1)-(2);
7 compute S(u) according to Equation (3)-(4);
8 compute P (u) according to Equation (5)-(6);
9 update model parameters with Adam optimizer;

10 until converge;
11 return Θ

5 Experiments

In this section, we conduct experiments to answer the following questions: 1)
what’s the performance of our model as compared to other state-of-the-art meth-
ods? 2) what’s the influence of different components in our model? 3) how do
the parameters affect model performance, such as the number of dimensions?

5.1 Experimental Setup

Datasets. We evaluated the model on three real data sets: Weeplaces1, NYC
and TKY2. Weeplaces dataset is collected from Weeplaces, a website that aims
1 http://www.yongliu.org/datasets.
2 http://www-public.it-sudparis.eu/∼zhang da/pub/dataset tsmc2014.zip.

http://www.yongliu.org/datasets
http://www-public.it-sudparis.eu/~zhang_da/pub/dataset_tsmc2014.zip

326 H. Zhong et al.

to visualize users’ check-in activities in location-based social networks (LBSN).
The NYC and TKY dataset include long-term (approximately 10 months) check-
in data for New York City and Tokyo from April 12, 2012 to February 16, 2013
collected from Foursquare [19]. We preprocess these datasets by deleting users
with fewer than 100 check-in records and locations with fewer than 10 check-in
records because they are outliers in the data. The number of users, locations,
location categories and check-ins of each data set after preprocessing are shown
in Table 2.

Table 2. Basic dataset statistics after preprocessing.

NYC TKY Weeplaces

#users 1083 2293 1467

#locations 5135 7873 8161

#location categories 209 292 481

#check-ins 147938 447570 134762

Baselines. We compare our ICPAN with the following baselines:

STRNN [20]: an invariant RNN model that incorporates spatio-temporal fea-
tures between consecutive visits.

FPMC [21]: a model that subsumes both a common Markov chain and the
normal matrix factorization.

SHAN [22]: a novel two-layer hierarchical attention network that combines
user’s long- and short-term preferences.

SAE-NAD [14]: a novel autoencoder-based model to learn the complex user-
POI relations, which consists of a self-attentive encoder and a neighbor-aware
decoder.

TiSASRec [13]: a method which models both the absolute positions of POIs as
well as the time intervals between them in a sequence.

STAN [5]: a bi-layer attention architecture that firstly aggregates spatiotempo-
ral correlation within user trajectory and then recalls the target with consider-
ation of personalized item frequency

Matrices. In order to evaluate the performance of online recommendations in
location-based services, we utilize two commonly used performance metrics, the
top-k precision rates and recall rates. The higher the recall and precision, the
better the recommendation performance of the model.

Combining User Inherent and Contextual Preferences 327

Fig. 3. Comparison of recommendation performance on three datasets.

5.2 Comparison of Performance

Figure 3 shows the recommendation performance of our ICPAN and baselines on
the three datasets. We can see that our ICPAN outperforms all other baselines.
Among all the baselines, STRNN performs the worst because RNN cannot solve
the problem of long-term dependence. The poor performance of FPMC may be
due to the fact that it only captures sequential effects and ignores spatiotem-
poral effects. The performance of SHAN is better than STRNN, FPMC and
SAE-NAD. It employs a hierarchical attention network that combines the user’s
dynamic long-term and short-term preferences. STAN and TiSASRec outper-
form the other methods significantly, both of which take the time interval into
account. Only ICPAN fully considers the user’s inherent preferences and contex-
tual preferences, and fully considers the location category, time and geographic
influence. In addition, the six baselines did not consider the impact of category,
and FPMC, SHAN did not consider the impact of temporal and spatial rela-
tionships, which may be the reason why the performance is slightly worse than
ICPAN.

5.3 Influence of Components

In order to verify the effectiveness of several key modules designed in our model,
we conducted more experiments to evaluate whether there are model variants of
this type of design.

ICPANinherent: The user’s stable inherent preferences and dynamic contextual
preferences simultaneously affect the user’s behavior. To verify the importance of

328 H. Zhong et al.

Fig. 4. Performance of different versions of ICPAN.

the two preferences, we designed variants ICPANinherent and ICPANcontextual.
ICPANinherent only considers the user’s inherent preferences, i.e. does not con-
sider the user’s contextual preferences.

ICPANcontextual: The user’s next visit will be largely influenced by contextual
factors (e.g. position, time, etc.). Therefore, we design variant ICPANcontextual,
which only considers the user’s contextual preferences and does not consider the
inherent preferences.

Figure 4 shows the experimental results of these ICPAN variants. In general,
ICPAN performs better than its variants on the three data sets. This indicates
that every part of the design plays an important role. The performance difference
between ICPANinherent and ICPANcontextual in the three datasets is very small.

5.4 Influence of Embedding Dimensions

In our model, we change the embedding dimension from 10 to 70 with a step size
of 10. We use Rec@N as the evaluation criterion. Figure 5 shows that different
embedding dimensions d lead to some differences in the experimental results.
Figure 5(a) shows that d = 20 is the best dimension. Figure 5(b) shows that d = 50
is the best dimension of NYC and TKY, and d = 30 is the best dimension of
Weeplaces. And Fig. 5(c) shows that d = 50 is the best dimension of NYC and

Fig. 5. Effect of embedding dimensions.

Combining User Inherent and Contextual Preferences 329

TKY, and d = 40 is the best dimension of Weeplaces. In general, our model is
relatively stable and is not greatly affected by the hyperparameter d.

6 Conclusion

In this paper, we proposed a model based on the self-attention mechanism, abbre-
viated as ICPAN, for online recommendation in location-based services. ICPAN
combines the user’s inherent preferences and contextual preferences. We con-
ducted a lot of experiments on three real data sets. Experimental results showed
that ICPAN outperformed other state-of-the-art models in terms of precision
and recall.

Acknowledgement. This work was supported by Natural Science Foundation of
China No. 61972230 and National Key R&D Program of China No. 2021YFF0900802.

References

1. Gao, H., Tang, J., Hu, X., Liu, H.: Exploring temporal effects for location rec-
ommendation on location-based social networks. In: Proceedings of the 7th ACM
Conference on Recommender Systems, pp. 93–100 (2013)

2. Cheng, C., Yang, H., Lyu, M.R., King, I.: Successive point-of-interest recommen-
dation. In: Twenty-Third International Joint Conference on Artificial Intelligence,
Where you like to Go Next (2013)

3. Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where to go
next: modeling long-and short-term user preferences for point-of-interest recom-
mendation. In: Proceedings of the AAAI Conference on Artificial Intelligence 34,
214–221 (2020)

4. Ying, H., et al.: Time-aware metric embedding with asymmetric projection for
successive poi recommendation. World Wide Web 22(5), 2209–2224 (2019)

5. Luo, Y., Liu, Q., Liu, Z.: Stan: spatio-temporal attention network for next loca-
tion recommendation. In: Proceedings of the Web Conference 2021, pp. 2177–2185
(2021)

6. Wang, M.F., Lu, Y.S., Huang, J.L.: Spent: a successive poi recommendation
method using similarity-based poi embedding and recurrent neural network with
temporal influence. In: 2019 IEEE International Conference on Big Data and Smart
Computing (BigComp) (2019)

7. Yi-Shu, L., Shih, W.-Y., Gau, H.-Y., Chung, K.-C., Huang, J.-L.: On successive
point-of-interest recommendation. World Wide Web 22(3), 1151–1173 (2019)

8. Galassi, A., Lippi, M., Torroni, P.: Attention in natural language processing. IEEE
Trans. Neural Netw. Learn. Syst. 32(10), 4291–4308 (2020)

9. Parmar, N., et al.: Image transformer. In: International Conference on Machine
Learning, pp. 4055–4064. PMLR (2018)

10. Yin, J., Li, Y., Liu, Z., Xu, J., Xia, B., Li, Q.: ADPR: an attention-based deep
learning point-of-interest recommendation framework. In: 2019 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

11. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

330 H. Zhong et al.

12. Kang, W.-C., McAuley, J.: Self-attentive sequential recommendation. In: 2018
IEEE International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)

13. Li, J., Wang, Y., McAuley, J.: Time interval aware self-attention for sequential
recommendation. In: Proceedings of the 13th International Conference on Web
Search and Data Mining, pp. 322–330 (2020)

14. Ma, C., Zhang, Y., Wang, Q., Liu, X.: Point-of-interest recommendation: exploiting
self-attentive autoencoders with neighbor-aware influence. In: Proceedings of the
27th ACM International Conference on Information and Knowledge Management,
pp. 697–706 (2018)

15. Zhao, S., Zhao, T., Yang, H., Lyu, M.R., King, I.: Stellar: spatial-temporal latent
ranking for successive point-of-interest recommendation. In: Thirtieth AAAI Con-
ference on Artificial Intelligence (2016)

16. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers. arXiv preprint
arXiv:2106.04554 (2021)

17. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: 2008
IEEE 24th International Conference on Data Engineering, pp. 656–665 (2008)

18. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, pp. 47–57 (1984)

19. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preferences by
leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man
Cybern. Syst. 45(1), 129–142 (2014)

20. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model
with spatial and temporal contexts. In: Thirtieth AAAI Conference on Artificial
Intelligence (2016)

21. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, pp. 811–820 (2010)

22. Ying, H., et al.: Sequential recommender system based on hierarchical attention
network. In: IJCAI International Joint Conference on Artificial Intelligence (2018)

http://arxiv.org/abs/2106.04554

PD-SRS: Personalized Diversity for a Fair
Session-Based Recommendation System

Naime Ranjbar Kermany1,2(B) , Luiz Pizzato2, Jian Yang1, Shan Xue3,
and Jia Wu1

1 Department of Computing, Macquarie University, Sydney, Australia
{naime.ranjbar-kermany,jian.yang,emma.xue,jia.wu}@mq.edu.au

2 AI Labs, Commonwealth Bank of Australia, Sydney, Australia
luiz.pizzato1@cba.com.au

3 University of Wollongong, Wollongong, Australia
emma.xue@mq.edu.au

Abstract. Session-based Recommender Systems (SRSs), which aim to
recommend users’ next action based on their current and historical ses-
sions, play a significant role in many real-world online services. The
existing session-based recommendation methods have mainly focused
on the accuracy of recommendation, which biases to reinforce popular
items/services and loses the recommendation diversity. Diversity is a
positive aspect particularly in SRSs as the target user may like to be
surprised and interact with a broader range of content in different ses-
sions. In this work, we propose a Personalized Diversification strategy
for a Session-based Recommender System (PD-SRS) using graph neural
networks. Comprehensive experiments are carried out on two real-world
datasets to demonstrate the effectiveness of PD-SRS in making a trade-
off between accuracy and personalized diversity over the baselines.

Keywords: Session-based recommendation · Personalized diversity ·
Fairness · Long-tail recommendation · Graph neural network

1 Introduction

Recommender Systems (RSs) have been widely used to help users find the right
services regarding their needs from masses of data on the Internet growing over
time. Conventional RSs provide personalized recommendations based on users’
explicit and/or implicit feedbacks, assuming that users’ preferences are static
[3]. However, this assumption is often invalid as users’ interests may change over
different time frames which are called sessions [13]. Session-based Recommender
Systems (SRSs) have been emerged to predict user’s next action (e.g., click,
view, or purchase) based on their session sequence of interactions. In SRSs, users’
actions in the current session imply their short-term interests, while historical
session sequences reflect their long-term interests. Utilizing both short-term and
long-term interests of users has achieved better performance in SRSs [12].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 331–339, 2022.
https://doi.org/10.1007/978-3-031-20984-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_23&domain=pdf
http://orcid.org/0000-0002-6038-8559
https://doi.org/10.1007/978-3-031-20984-0_23

332 N. R. Kermany et al.

With the development of SRSs, lots of research efforts have focused on
improving the accuracy of recommendation. However, it has been proved that
accuracy is not the only quality criteria to create a good recommender system
that will completely reflect a user’s preferences [1,7,8]. Diversity is another sig-
nificant criteria in recommendation since it enables users to discover unexpected
and surprising services that are not similar to what they have previously expe-
rienced. Without diversity in recommendations, users are therefore likely to be
exposed to repetitive and/or popular services.

To fill the research gap of diversity issues in SRSs, we aim to address the fol-
lowing challenges in this paper: Firstly, how can diversity be supported in SRSs?
Diversity is a positive aspect in SRSs since users often spend considerable time
in browsing the web to find different/new services [15]. Diversity can be studied
at intra-user or inter-user level. Intra-user diversity is the average pairwise dis-
similarity among recommended services in the list, whereas inter-user diversity
focuses on providing different results for different users. It results in popularity
bias problem which denotes high imbalanced distribution of recommendations
based on interaction frequency of services [14]. Secondly, how can popularity bias
be tackled in SRSs? In this study, we try to improve the inter-user level diversity,
which is also known as long-tail recommendation [4,15]. Long-tail recommenda-
tion is the strategy of targeting unpopular services. It is a good mitigation for
the common problem of popularity bias in recommender systems. It is also fair
towards services since it does not favour only popular ones. However, simply rec-
ommending long-tail services with an identical diversification strategy towards
all users may largely affect the accuracy and also be unfair towards some groups
of users. Thirdly, how can we consider user’s level of interest in diversity in
SRSs? Diversity is a significant matter in SRSs as target user may be interested
about specific content in one session while she may prefer to interact with a
broader range of content in another session. It shows the importance of assessing
users’ level of interest in diversity to provide personalized diverse recommenda-
tion when user looks for it [9]. This can distribute users’ utility loss fairly among
all users so that accuracy gets the minimum impact.

In this work, we propose a Personalized Diversified Session-based Recom-
mender System, called PD-SRS, using Graph Neural Networks (GNNs). GNNs
are capable of capturing the complex service transitions. The proposed method
generates fair recommendations by making trade-off between accuracy and per-
sonalized diversity. To the best of our knowledge, approaches considering a trade-
off between accuracy and diversity in SRSs are very limited in the literature of
service recommendation. In order to fill this gap and address the above four
discussed main challenges in SRSs, we propose PD-SRS.

2 The Proposed Method: PD-SRS

2.1 Problem Definition

To predict users’ next action based on their historical (long-term) and cur-
rent (short-term) interests, the main goal of PD-SRS makes trade-off between

Personalized Diversity for a Fair Session-Based RS 333

Fig. 1. The main framework of the proposed PD-SRS method. All user’s session
sequences are modelled as session graphs and then an embedding vector is obtained
for each user session using GGNN, attention network, L2 norms, and a linear transfor-
mation. Afterward, the initial recommendation ranking scores of all possible services
are predicted. Finally, recommendations are re-ranked to include top-relevant long-tail
services using a personalized diversification strategy.

accuracy and personalized diversity (Fig. 1). Let V = {v1, v2, · · · , vn} and
U = {u1, u2, · · · , um} denote the sets of n services and m users, respectively.
For each service v, ev ∈ R

d represents the d-dimension embedding vector. The
clicked services by user u in session i are ordered by timestamps and shown as
sui = {vsi,1, vsi,2, · · · , vsi,nv

}, where nv is different for different users. Sessions
are also normalized and ordered by timestamps so that the last session, sul , is
called current session and the others, {su1 , su2 , · · · , sul−1} are called historical ses-
sions. For convenience, we call the current session and historical session as Su

c

and Su
h , respectively. These user’s sessions form a user graph Gu so that GNN is

used to capture the transitions among services with respect to each user. Given
Gu, we output probability ŷ = {y1, y2, · · · , yn} for all candidate services, where
yi corresponds to the initial ranking score of service vi. Then, we optimize the
ranking scores of the services based on the proposed personalized diversification
strategy to make trade-off between accuracy and diversity. To do so, we include
the top-relevant long-tail services into the top-K recommendation list based on a
user’s level of interest in diversity (LID). We obtain how many long-tail services
can be be picked for an individual explorer user based on a hyper parameter.

2.2 Constructing User Session Graph

All session sequences for user u can be modelled as a directed graph Gu =
(Vu; Eu), where each node represents an service vi ∈ V and each edge vi → vj
shows that user u clicked service vj after service vi in the same session. We
represent Gu with adjacency matrix Au ∈ R

n×2n, which is a concatenation of two
connection matrices Au

in, Au
out ∈ R

n×n; Au
in, Au

out denote weighted connections
of incoming and outgoing edges in Gu, respectively. Incoming edges of a node are

334 N. R. Kermany et al.

directed edges that the node is the destination while outgoing edges are directed
edges that the node is the origin.

2.3 Finding Session Embedding

GNNs are used to capture the relationships of graph-structured data through
message passing among the nodes. In fact, GNNs iteratively aggregate latent
features from the adjacent nodes and incorporate the aggregated data with the
current service representation. In order to capture the latent features, we apply
Gated Graph Neural Network (GGNN) as it can learn which data in a sequence
is important to be preserved or discarded. We use GGNN to map each user
session graph Gu to outputs passing through two steps: (1) propagation which
calculates service and session embeddings; (2) output model which maps from
embeddings and labels to an output using SoftMax function [6]. The recurrence
of the propagation step is as follows:

a
(t)
i = Au

i : [v
(t−1)
1 , v

(t−1)
2 , · · · , v(t−1)

n]TH + b, (1)

z
(t)
i = σ(Wza

(t)
i + Uzv

(t−1)
i), (2)

r
(t)
i = σ(Wra

(t)
i + Urv

(t−1)
i), (3)

ṽ
(t)
i = tanh(Woa

(t)
i + Uo(r

(t)
i � v

(t−1)
i)), (4)

v
(t)
i = (1 − z

(t)
i) � v

(t−1)
i + z

(t)
i � ṽ

(t)
i (5)

To obtain the session embeddings, the combination of long-term interests
and current preferences of the user’s session is used for a better prediction on
users’ next action. We have all the services’ vectors after feeding all users’ session
graphs into GGNN. Then, we show each user’s session as a session embedding
vector su ∈ R

d by defining local embedding (sul) and global embedding (sug) of
user’s session graph Gu. The local embedding is the vector representation of last
service of the user’s session. The global embedding of the user’s session graph is
the aggregation of all service vectors with the use of soft attention mechanism
to differentiate the importance of services. Then, a linear transformation on the
concatenation of the local and global embeddings is used to calculate the final
hybrid embedding: suf = [sul , sug].

2.4 Generating Initial Recommendation Scores

After obtaining user session embedding, score ẑi is calculated by multiplying
service’ embedding evi

by user session embedding suf as ẑi = (suf)T vi. Next, we
utilize a SoftMax function to get ŷ and rank the services (ŷ = SoftMax(ẑ), where
ŷ represents the initial recommendation probability values of all possible services
being the next click of the user in current session suc). Then, we train our model
by minimizing the loss function (L = −∑n

i=1 yi log(ŷi) + (1 − yi) log(1 − ŷi)),
where y denotes one-hot encoding vector of the ground truth service.

Personalized Diversity for a Fair Session-Based RS 335

2.5 Ranking Optimization and Personalized Diversification

The main goal of the proposed PD-SRS method is to recommend users’ next
action by considering both accuracy and diversity. Given a session s, user u may
either look for a specific product (focused) or just browsing novel or diverse
services (explorer). Thus, we propose a personalized diversification strategy to
obtain user’s level of interest in diversity (LID) in current session. To do so, we
first obtain how many long-tail services can be picked by each user based on a
hyperparameter, and then we re-rank the recommendation to include the top-
relevant long-tail services into the top-K recommendation list. In the following,
we explain the personalized diversification with more details.

First, we measure the unpopularity of services according to click frequency
as:

ϕ(v) = 1 −
|S|∑

i=1

number of clicks for service v in session i

number of clicks in session i
(6)

where ϕ(v) is unpopularity of service v, and |S| is total number of sessions. Note
that, we differentiate between the service being clicked k times in a sequence
with smaller length and the service being clicked the same k times in a sequence
with longer length.

Then, we compute users’ LID in their current sessions based on list-wise
similarity of service embeddings in a user session as:

LIDu
s = 1 −

k∑

i=1

k∑

j=1

Sim(vi, vj)
(
k
2

) (7)

where k shows the number of clicked services by user u in current session sc,
and Sim(vi, vj) is the embedding-based similarity between two services vi and
vj . The similarity is calculated using the short random walks. Word2Vec is used
to group the vectors of similar nodes together in vectorspace. We use it in this
work to detect similarities among service embedding vectors. To do so, we form
a directed graph with all clicked services by moving from one node (source) to
another (target), where edges are weighted based on their counts of occurrences
in the whole service networks. We then define the short random walks using
Word2Vec parameters. We feed the walks into neural networks to train the
Word2Vec models and generate service embeddings. These embeddings incor-
porate a notion of similarity among them i.e. two nodes who are similar to each
other tend to be closer in the vector space.

Finally, we can say if services in user’s current session are less similar (higher
LID) to each other, user is exploring and more diverse recommendations can be
offered. In contrast, if the LIDu

s value is small, the more similar are the services
clicked by user u in session s, and accordingly the more focused the user u is in
her current session. Finally, we re-rank the recommendations to be the next click
of user u in current session. The re-ranking process depends on how explorer she
is in her current session. Thus, we define a hyper parameter to find how many
long-tail services can be included in the top-k recommendation list for user u as:

336 N. R. Kermany et al.

D = �α × LIDu
s × K� (8)

where α is a hyper parameter, �.� returns the largest integer less than or equal
to a given number, and D shows the number of unpopular services the top-K
recommendations should contain for user u in session s. Therefore, the top-D
relevant long-tail services are selected among a longer recommendation lists of
size t to be included in the final top-K recommendation list (K ≤ t).

Table 1. The performance of PD-SRS and five baselines in terms of Recall@K,
MRR@K, and LT@K where K = 5, 10, 20 on Reddit and Xing data sets. Change
shows the improvement and reduction over the best baseline. Note that, the best results
among the baselines are indicated by star sign.

Method Reddit

Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20 LT@5 LT@10 LT@20

POP 4.14 8.97 10.75 4.02 5.04 5.36 0 0 0

Item-KNN 14.61 20.79 28.12 8.20 9.46 10.28 41.02∗ 49.22∗ 55.87∗

NARM 28.85 34.76 40.47 19.95 20.14 20.57 28.86 36.98 41.28

SR-GNN 33.80 40.36 47.65 25.42 26.29 26.79 28.37 35.25 40.79

NISER 34.28∗ 41.18∗ 48.21∗ 25.61∗ 26.42∗ 27.03∗ 40.04 47.93 53.23

PD-SRS 34.12 40.99 48.00 25.24 26.12 26.84 70.03 83.11 88.26

Change –0.47% –0.46% -0.44% –1.47% –1.15% –0.70% +70.72% +68.85% +57.97%

Method Xing

Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20 LT@5 LT@10 LT@20

POP 0.20 0.24 0.59 0.08 0.09 0.13 0 0 0

Item-KNN 3.79 6.15 7.31 1.86 2.31 2.52 46.67∗ 53.85∗ 64.04∗

NARM 8.18 9.01 10.22 5.13 6.12 6.71 34.11 43.83 56.02

SR-GNN 15.47 18.85 22.50∗ 10.82∗ 11.27∗ 11.53∗ 34.76 44.60 56.05

NISER 15.89∗ 19.39∗ 22.47 10.71 11.18 11.40 45.32 52.16 63.35

PD-SRS 15.56 19.11 22.23 10.54 11.02 11.30 72.61 80.11 89.48

Change –2.12% –1.46% –1.21% –2.66% –2.27% –2.03% +55.58% +48.76% +39.72%

3 Experiments and Discussions

3.1 Datasets

In order to evaluate the proposed method, we conducted a set of experiments on
two real-world datasets. These datasets are Xing data from RecSys Challenge
20161 and Reddit2. These two datasets are manually split using a 30-minutes
and a 60-minutes idle threshold, respectively. We hold the first 80% of each user’s
sessions as the training set and the remaining as test set for Xing and Reddit
datasets. For both datasets, we segment each session Su into a series of historical
sessions and current session.

1 http://2016.recsyschallenge.com/.
2 https://www.kaggle.com/colemaclean/subreddit-interactions.

http://2016.recsyschallenge.com/
https://www.kaggle.com/colemaclean/subreddit-interactions

Personalized Diversity for a Fair Session-Based RS 337

3.2 Baselines

We compared the performance of our PD-SRS with five existing methods.

– POP recommends the top-K services with the largest number of interactions.
– Item-KNN [10] calculates item-based similarity based on the co-incidence of

items within sessions.
– NARM [5] uses an attention mechanism on RNN to capture the users’ key

purpose and sequential behavior
– SR-GNN [11] applies gated GNN to capture complex transition patterns of

items for a session-based recommendation.
– NISER [2] normalizes the item and session-graph representations to alleviate

the popularity bias problem in SRSs.

3.3 Evaluation Metrics

Recall@K: it computes recommendation accuracy by representing the percent-
age of correctly recommended items among the K items in recommendation
list.

MRR@K (Mean Reciprocal Rank): it computes the average of reciprocal
ranks of the correctly-recommended items.

LT@K (Long-Tail coverage): it measures how many long-tail items ever
appear in the top-K recommendations. The larger the LT@K value is, the more
long-tail items the recommendation lists have covered.

3.4 Experimental Results and Discussion

We compare the proposed PD-SRS method with baselines as shown in Table 1.
Compared with the conventional method POP, our PD-SRS method performs far
better. POP aims to recommend services only based on their frequency of appear-
ance, which is not suitable for session-based recommendation scenarios. Item-
KNN computes the similarity between services ignoring the sequences of interac-
tions. As shown in Table 1, this method attains quite poor results on Recall@K
and MRR@K in comparison with NARM. However, Item-KNN achieves the
best LT@K result among the baseline methods, which confirms the importance
of considering trade-off between accuracy and diversity in SRSs for evaluating
the quality of recommendation model.

NARM applies RNN for sequence modeling and a self-attention to pay more
attention to the last item of the session. This neural network-based method
fails to preserve significant information during the propagation step (short-term
memory problem) and they are also unable to consider complex item transitions.

SR-GNN applies GNNs to output embeddings and attention mechanism and
generate session graph representations. Our PD-SRS method outperforms SR-
GNN in most of the cases. NISER is the closest GNN-based literature to our work
that aims to alleviate the popularity bias problem in SRSs. They demonstrate

338 N. R. Kermany et al.

that GNN-based SRSs are biased towards recommending popular services and
fail to recommend long tails, so they address this problem by normalizing the
learned service and session embeddings. Comparing with all baselines, NISER
achieves the best results in terms of accuracy and the closest results to Item-KNN
in terms of LT@K .

Our PD-SRS method achieves the best results on LT@K among the baselines
for all datasets. Table 1 shows improvement and reduction of PD-SRS over the
best baselines. For instance, comparing with the closest baseline, NISER, our
method has 74.90%, 73.40%, and 65.81% LT@K improvement in top-5, top-
10, and top-20 recommendations for Reddit data respectively, with only 0.47%,
0.46%, and 0.44% reduction on Recall@K and 1.47%, 1.15%, and 0.70% reduction
on MRR@K. Higher coverage of long-tail services while the accuracy is almost
kept shows that the proposed PD-SRS method is fair towards services and users
and also could better overcome the popularity bias issue in SRSs. PD-SRS attains
a trade-off between accuracy and long-tail inclusion for SRSs. Comparing with
the baselines, the range of accuracy fluctuation in our method is very small
because of employing the proposed personalized diversification strategy.

4 Conclusion

In this paper, we propose PD-SRS to make a trade-off between accuracy and
personalized diversity. We consider personalized diversity to include top-relevant
long-tail services into the recommendations. Extensive experiments on two real-
world datasets verify that the proposed PD-SRS method tackles popularity bias
problem and achieves higher long-tail coverage with a small range of accuracy
fluctuation.

References

1. Chen, L., Wu, W., He, L.: Personality and recommendation diversity. In: Tkalčič,
M., De De Carolis, B., de de Gemmis, M., Odić, A., Košir, A. (eds.) Emotions and
Personality in Personalized Services. HIS, pp. 201–225. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31413-6 11

2. Gupta, P., Garg, D., Malhotra, P., Vig, L., Shroff, G.M.: Niser: normalized
item and session representations with graph neural networks. arXiv preprint
arXiv:1909.04276 (2019)

3. Kermany, N.R., Alizadeh, S.H.: A hybrid multi-criteria recommender system using
ontology and neuro-fuzzy techniques. Electron. Commer. Res. Appl. 21, 50–64
(2017)

4. Kermany, N.R., Zhao, W., Yang, J., Wu, J., Pizzato, L.: An ethical multi-
stakeholder recommender system based on evolutionary multi-objective optimiza-
tion. In: 2020 IEEE International Conference on Services Computing (SCC), pp.
478–480. IEEE (2020)

5. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based
recommendation. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 1419–1428 (2017)

https://doi.org/10.1007/978-3-319-31413-6_11
http://arxiv.org/abs/1909.04276

Personalized Diversity for a Fair Session-Based RS 339

6. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

7. Ranjbar Kermany, N., Pizzato, L., Min, T., Scott, C., Leontjeva, A.: A multi-
stakeholder recommender system for rewards recommendations. In: Proceedings of
the 16th ACM Conference on Recommender Systems, pp. 484–487 (2022)

8. Ranjbar Kermany, N., Yang, J., Wu, J., Pizzato, L.: Fair-srs: a fair session-based
recommendation system. In: Proceedings of the Fifteenth ACM International Con-
ference on Web Search and Data Mining, pp. 1601–1604 (2022)

9. Ranjbar Kermany, N., Zhao, W., Yang, J., Wu, J., Pizzato, L.: A fairness-aware
multi-stakeholder recommender system. World Wide Web 24(6), 1–24 (2021)

10. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th international conference
on World Wide Web, pp. 285–295 (2001)

11. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommen-
dation with graph neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 346–353 (2019)

12. Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., Wang, L.: Personalized graph neu-
ral networks with attention mechanism for session-aware recommendation. IEEE
Trans. Knowl. Data Eng. 34, 3946–3957 (2020)

13. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a
survey and new perspectives. ACM Comput. Surv. (CSUR) 52(1), 1–38 (2019)

14. Zhao, Z., et al.: Popularity bias is not always evil: disentangling benign and harmful
bias for recommendation. arXiv preprint arXiv:2109.07946 (2021)

15. Zheng, Y., Gao, C., Chen, L., Jin, D., Li, Y.: DGCN: diversified recommendation
with graph convolutional networks. In: Proceedings of the Web Conference 2021,
pp. 401–412 (2021)

http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/2109.07946

TagTag: A Novel Framework for Service
Tags Recommendation and Missing Tag

Prediction

Wentao Chen1, Mingyi Liu1, Zhiying Tu2, and Zhongjie Wang1(B)

1 Faculty of Computing, Harbin Institute of Technology, Harbin, China
22S003073@stu.hit.edu.cn, {liumy,rainy}@hit.edu.cn

2 Faculty of Computing, Harbin Institute of Technology, Weihai, China
tzy hit@hit.edu.cn

Abstract. Currently, service tag recommendation plays an important
role in the study of services. As a result, there have been many service
tag recommendation studies that have achieved significant achievements.
However, existing studies mainly have two problems: they only recom-
mend one tag and cannot determine whether new tags are needed. To
help solve the above problems, we propose a novel graph neural frame-
work named TagTag to make multi-tag recommendations and missing
tag prediction, which relies on the idea of tag collaboration graph. We
conduct experiments on the real-world dataset from ProgrammableWeb,
and the results show that TagTag performs better than existing stud-
ies. The code used in this paper is fully accessible at https://github.com/
HIT-ICES/TagTag.

Keywords: Web services · Tags collaboration graph · Service tags
recommendation · Service tag prediction · Deep learning

1 Introduction

Nowadays, the rapid development of new technologies and increasingly sophis-
ticated user requirements lead to the explosion of the number and diversity of
services. A massive volume of services brings new challenges in service manage-
ment and reuse. For users, it is becoming more and more difficult to find suitable
services to satisfy their requirements; For service managers, the cost of keeping
services in the right place for easy retrieval is also becoming higher and higher.
Therefore, we need a simple and intuitive mechanism to help users and managers
organize and retrieve services efficiently.

Service tags are chosen as a fundamental mechanism to solve the above-
mentioned problems due to their simplicity and high expressiveness. To reduce
the annotation cost and make work more efficient, researchers started to study
how to automatically tag services, a.k.a. service tag recommendation task. There
have been many studies that have achieved remarkable performance, such as
ServeNet [6]. However, these studies often simplify the reality of service tag
annotation, which limits the scope of application of these methods:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 340–348, 2022.
https://doi.org/10.1007/978-3-031-20984-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_24&domain=pdf
https://github.com/HIT-ICES/TagTag.
https://github.com/HIT-ICES/TagTag.
https://doi.org/10.1007/978-3-031-20984-0_24

TagTag 341

1. The current methods only attach one tag to the service, such as ServeNet [6]
and SRaSLR [7]. Such operations are obviously extremely inconsistent with
reality. If only one tag is provided for a service, the cross-domain services,
such as e-commerce and virtual fitness, will never be accurately described.

2. The existing tag recommendation methods cannot give a prompt for missing
tags. However, services are in a period of rapid development, and the existing
tags are not enough to describe all services. Therefore, if there is no timely
reminder to add new tags, tags will become less and less descriptive, and the
existence of tags will gradually lose their meaning.

In order to solve the above problems, we propose the following ideas. The essence
of service tag recommendation is to match the service to the tag. Therefore,
it will make more sense if we can extract features from the tag and match
them with the service’s features to determine whether the two are suitable. In
fact, the tag has two main features. The first feature is the text information,
which can concisely reflect the service’s usage area. And the second feature is
that there is an association between tags that appear in the same service. This
association organizes tags into a graph called Tag Collaboration Graph. The
tag collaboration graph can combine all tags and extract the features of tags as
a whole and then match them with the target service. At the same time, the
service features are derived from the textual features of the service description
so that the tag can be matched with the service. Therefore, this approach, which
takes service and tag perspectives, will be more convincing.

This paper proposes a novel graph neural framework for service tags recom-
mendation and missing tag prediction named TagTag. TagTag combines the
tag features extracted from the tag collaboration graph with the service descrip-
tion features and recommends all tags matching the service, then make predic-
tions for missing tags. The experiment is performed on real-world data provided
by ProgrammableWeb1, and the result shows that TagTag has achieved the best
results in tags recommendation and missing tag prediction.

The remainder of this paper is organized as follows: In Sect. 2, we introduce
the related works. In Sect. 3, we describe the formulation of the problem. In
Sect. 4, we describe the architecture of the TagTag model. In Sect. 5, we intro-
duce the details of the experiment. In Sect. 6, we present the experiment results.
In Sect. 7, we conclude our work.

2 Related Works

At present, the research on service tags mainly focuses on extracting service
features from the service description and finding the most relevant tag in the
given tag set, so the service tag recommendation problem has been regarded as
a text classification problem for a long time.

Text feature extraction has always been an important subject in natural
language processing. In 2013, the Google team developed the word2vec tool. In
2018, Google launched a transformer-based training language model - BERT.
1 https://www.programmableweb.com.

https://www.programmableweb.com

342 W. Chen et al.

For tag classification, the deep learning method is widely used to classify the
extracted features, for example, recurrent neural network [4] and convolutional
neural network [3]. In addition, some methods use multiple networks. For exam-
ple, ServeNet [6] combines the convolutional neural network and long-term and
short-term memory network, achieving good service tag classification results.

Graph Representation Learning converts graph data into low-dimensional
dense vectors. It is divided into the following two kinds: 1) Graph structure-
based representation learning only learns the vector representation of nodes
based on the graph’s topological structure; 2) Graph feature-based represen-
tation learning, called graph neural network (GNN) [5], considers not only the
graph’s topology but also the nodes’ initial eigenvectors.

3 Problem Formulation

Definition 1. Services are defined as a set composed of individual service: S =
{s1, s2, , sn}, where si(1 ≤ i ≤ n) is a service. For s ∈ S, we define:s =
{ds, Ts}, where ds is the service description of this service and Ts is collection
of tags for service s. Suppose the set of all tags currently owned is T , T is defined
as: T = {t1, t2, , tm}, where m is the number of all pre-defined tags. The
set Ts of tags for service s is defined as: Ts = {t|t ∈ T ∧ fd(s, t) = 1}, where fd
is the function to determine whether a tag can be used to describe a service.

Definition 2. Tags Collaboration Graph is a weighted and undirected graph.
It is represented as: G = {T, E}, where E is the set of edges in graph. E is
defined as: E = {(u, v, ω)|u ∈ T, v ∈ T, ω ∈ N+}. For each (u, v, ω) ∈ E, there
is service s ∈ S and tag u, v ∈ Ts, s is tagged with both u and v. Suppose the set
of such services is Su,v. ω is the weight of the edge (u, v) and its value is equal
to the size of Su,v.

Definition 3. Service Tags Recommendation Task is training a model
named Fr to predict the tag set Ts ⊆ T for a given service description ds of
s ∈ S. Its mathematical definition is as follows: Ts = Fr (s|T).

Definition 4. Missing Tag Prediction Task is training a model named Fp

to determine if the tag sets T could fully describe a given service s ∈ S. Its
mathematical definition is as follows: Fp (s|T) ∈ {0, 1}, where 0 means no new
tag is needed, 1 means new tag is needed.

4 The Architecture of TagTag

Figure 1 shows the architecture of TagTag. TagTag inputs service text descrip-
tion and tag collaboration graph, then outputs tags recommended for the service
and determines whether existing tags can fully describe the target service. Func-
tionally, the model is divided into two parts: the joint embedding part and the
task special part. The rest of this section will discuss each part in detail.

TagTag 343

Fig. 1. The architecture of TagTag

4.1 Joint Embedding Part

There are two parts in joint embedding part: service description feature embed-
ding and tag collaboration graph feature embedding.

Service Description Feature Embedding: Service text description feature
extraction adopts the pre-training model word2vec for encoding. We choose
word2vec as the text encoder instead of BERT for two reasons: 1) save compute
resources to satisfy more scenarios; 2) create a fair comparison environment with
the baselines to demonstrate the validity of TagTag. In the process of the exper-
iment, it can use the description of all services to train the word2vec model. For
service s with text description d =

{
w1, w2, , w|d|

}
, the service description

feature embedding xd can be obtained the following equation:

xd =
1
|d|

∑

w∈d

fword2vec(w) =
1
|d|

∑

w∈d

w (1)

where fword2vec(w) denotes convert word w into word embedding vector w.

Tag Collaboration Graph Feature Embedding: For the tag collaboration
graph, it has three characteristics: node characteristics, edges connecting nodes
and edge weight. Graph convolution network (GCN) is used to get the final fea-
ture of nodes through the three features. At the same time, add a normalization
layer behind each GCN layer. For node ti ∈ T , it is initially characterized by the
word embedding of the tag name and is constantly updated through the GCN
and normalization layers, with the following expressions:

x(k)
i = Normalization · GCN(x(k−1)

i) (2)

where x(k)
i is the feature vector of tag ti after iteration k, moreover, GCN and

Normalization represent the GCN and normalization layers respectively. xi
(0)

is the word embedding of the tag.

344 W. Chen et al.

4.2 Task Special Part

There are two parts in task part: service tags recommendation task part and
missing tag prediction task part.

Service Tags Recommendation Task: After the joint embedding part, we
put the target service with all tags one by one to determine whether each tag can
describe the target service individually. Therefore, for service s with description
feature xd and tag ti with tag feature xi, the merging method is as follows:

xdi = [xd,xi] (3)

where [] means splicing operation. Then TagTag use three-layer fully connected
layers for service tags recommendation task to get recommendation results. After
that, TagTag converts the result of fully connected layers into the probability
ŷi of whether the tag ti can describe the target service through sigmoid layer.
For each input xdi, the processing is as follows:

ŷi = sigmoid · FC(xdi) (4)

where FC is three-layer fully connected layers. Missing tag prediction task:
TagTag adopts the layer mean pool converts feature of all tags into feature xG

of tag collaboration graph:

xG =
1
m

m∑

i=1

xi (5)

The graph-level vector xG means the range of service features that all tags can
describe. In addition to the features of all tags and the service description, the
result of the recommendation task will also affect the prediction task. Therefore,
the TagTag model will take the result {ŷ1, ŷ2, , ŷm} of recommendation
task as the input of prediction task. These can be expressed as:

xdG = [xd,xG, ŷ1, ŷ2, , ŷm] (6)

TagTag also uses three-layer fully connected layers and the sigmoid layer
converts xdG into the probability p̂ of whether the service needs add new tags:

p̂ = sigmoid · FC(xdG) (7)

4.3 Optimization Object

The TagTag uses binary cross entropy as the loss function. The mathematical
expressions of the loss functions of the two tasks are as follows:

L1 = − 1
m

m∑

i=1

yi · logŷi + (1 − ŷi) · log (1 − ŷi) (8)

L2 = p · logp̂ + (1 − p̂) · log (1 − p̂) (9)
For multi-task learning with multiple losses, the TagTag sets parameters, σ1

and σ2, for the two losses and handles them in the following method [2]:

L =
1

2σ1
2
L1 +

1
2σ2

2
L2 + logσ1 + logσ2 (10)

TagTag 345

5 Experiment

A. Dataset
The experiment crawled an English dataset from ProgrammableWeb. Then, the
data set is pre-processed as follows:

1. Remove all services without description or tag.
2. Select the 50 tags with the most occurrences as a sample of multi-classification

T . This operation is because TagTag not only recommends tags for services
but also predicts whether new tags need to be added. The remaining tags are
used as tags that need to be added.

3. Remove some tags appropriately so that T can fully cover more than 80% of
the selected services. This operation is because, in practice, existing tags can
fully describe most of the services. We set the total number of services to be
10,000. The tags contained in these 10,000 services, except for the selected 50
tags in T , are removed in descending order of occurrence until T can cover
more than 8,000 services.

After the above processing, we divide the data set into the training set,
validation set and test set in the ratio of 7:2:1.

B. Baselines and experimental setup
Three groups of 15 comparison methods are set up in the experiment. The first
group is independent training for the recommendation task; The second group is
independent training for the prediction task; The third group is joint training for
two tasks. Each group uses five methods as baselines: FC, RNN [4], LSTM [1],
TextCNN [3], ServeNet [6]. These methods were initially set up for single-tag
recommendations. However, in experiments, we make modifications to enable
them to make multi-tag recommendations and missing tag predictions.

Each method has done five independent experiments to eliminate contin-
gency. In addition, early stop method is used in baselines to avoid overfitting
during training. The results of baselines will be compared with those of TagTag.

The batch sizes of the three sets are 16, 8 and 4, respectively. A total of
three GCN layers are set for graph feature extraction. The learning rate is set
to 0.0001, and the weight decay is set to 0.00001.

C. Evaluation Metrics
In the experiments, we use F1, Precision, and Recall to evaluate the performance
of the model on two tasks.

6 Results and Discussion

This section will show the experimental results of the proposed TagTag and
comparison methods, then we do some ablation experiments, and finally, we
analyze the experimental results. Table 1 shows the results of the experiment.

346 W. Chen et al.

Table 1. Performance comparison of different methods. In each column, the best result
is bolded, and the second is underlined. @I means the model is trained independently,
and @J means the model is trained jointly for two tasks.

Model Recommendation task Prediction task

F1 Precision Recall F1 Precision Recall

FC@I 0.2472± 0.0040 0.6137± 0.0082 0.1652± 0.0026 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000

RNN@I 0.2372± 0.0482 0.5740± 0.0380 0.1585± 0.0377 0.0216± 0.0304 0.0252± 0.0328 0.0200± 0.0293

LSTM@I 0.3455 ± 0.0260 0.7015 ± 0.0253 0.2455 ± 0.0232 0.0140± 0.0513 0.0176± 0.0624 0.0123± 0.0463

TextCNN@I 0.3064± 0.0099 0.6318± 0.0097 0.2205± 0.0134 0.0585 ± 0.0095 0.0696 ± 0.0124 0.0543 ± 0.0077

ServeNet@I 0.3400± 0.0254 0.6898± 0.0104 0.2418± 0.0217 0.0009± 0.0038 0.0016± 0.0064 0.0007± 0.0026

FC@J 0.2458± 0.0044 0.6104± 0.0180 0.1644± 0.0042 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000

RNN@J 0.2266± 0.0470 0.5816± 0.0561 0.1490± 0.0363 0.0005± 0.0022 0.0008± 0.0032 0.0004± 0.0016

LSTM@J 0.3395± 0.0571 0.7019±0.0290 0.2394± 0.0567 0.0267± 0.0240 0.0320± 0.0280 0.0243± 0.0230

TextCNN@J 0.2953± 0.0127 0.6231± 0.0326 0.2128± 0.0102 0.0141± 0.0106 0.0168± 0.0112 0.0129± 0.0104

ServeNet@J 0.3233± 0.0163 0.6659± 0.0051 0.2284± 0.0146 0.0228± 0.0141 0.0288± 0.0168 0.0201± 0.0128

TagTag(improv.) 0.3551±0.0099
(+1.03%)

0.3001± 0.0054 0.4511±0.0074
(+183.75%)

0.1568±0.0225
(+268.03%)

0.1592±0.0239
(+228.74%)

0.1780±0.0253
(+327.81%)

6.1 Results

For the recommendation task, the proposed TagTag model reaches the highest
0.3551 in the average value of F1 score, which is 1% higher than the sub-optimal
methods; The error is also the smallest in the comparison method, which is less
than 0.01. At the same time, it is worth noting that TagTag has leaped forward
breakthrough in Recall, almost doubling the recall value. This means that more
tags that should be tagged are recommended.

For the prediction task, the F1 score obtained from baselines is basically 0.
This also verifies our previous conjecture: simple service features are not enough
to judge whether a service needs new tags. This makes the TagTag significantly
increase the F1 score to 0.1568. At the same time, the TagTag also has a
precision of 15.92% and a recall of 17.8%.

6.2 Ablation Experiment

Figure 2(a) shows the variation of F1 with the number of GCN layers. The rec-
ommendation task reaches a maximum of 0.3556 at the number of GCN layers
is 2, and the prediction task reaches a maximum of 0.1568 at the number of
GCN layers is 3. Considering the result of TagTag with three-layer GCN is
only 0.0005 less than the result of two-layer in the recommendation task but
0.01 higher in prediction task, TagTag with 3-layer GCN is the best performing
one.

In addition, we set up the model αTagTag, which, in contrast to TagTag,
does not use the results of the recommendation task as input to the prediction
task. And independent training is training model with tag collaboration graph
for one task independently. As can be seen from Fig. 2(b), TagTag achieves
the best results on the recommendation task. At the same time, the significant
improvement achieved by independent training proves the indispensable role of
tag collaboration graph for prediction tasks.

TagTag 347

Fig. 2. Ablation experiment

Table 2. Example of results

API name Description Existing
tags

Missing
tags

Recommended
tags

Add tags

Open New York
Liquor Authority
Quarterly List
of Active Licenses
API

The Open New York API New York’s
data.ny.gov open data initiative.......
an organization thatinclude:
address, city, state, geographic coordinates.

Government Alcohol
Open Data
New York City

Government
Transportation
Data

�

DNA Freight
API

DNA Freight is an international technology
integration company delivering supply chain
technology solutions......with the DNA Freight
Quote/Tracking and Billing systems

Enterprise Supply Chain
Shipping

Enterprise
Business
Financial
eCommerce

×

Verizon
ThingSpace
Connectivity
Management API

The Verizon ThingSpace Connectivity Management
API integrates telephony connection features
into mobile devices.......session.

Telephony
Mobile

Management
Wireless

Messaging
Telephony
Mobile

×

Bold: judgment basis of the ground truth; Underline: judgment basis of TagTag

Add Tags: the results of the TagTag’s recommendation task: � means need add tags; × means no need to add new tags

6.3 Discussion

From Table 1 and Fig. 2(b), we have two questions: 1) why the precision of Tag-
Tag is lower than baselines on recommendation task; 2) why the F1 of indepen-
dent training is higher than TagTag on prediction task.

This is because, to describe the service fully, the TagTag first looks for tags
that can make up for the deficiency from the existing tag set for the service,
rather than immediately judging that the service needs to add new tags. As a
result, many service-related tags are recommended that are useful to describe the
service but reduce the precision of recommendation, and TagTag thinks the ser-
vice no longer needs new tags. As shown in Table 2, we can see TagTag replaces
missing tags with existing ones. For example, TagTag uses “Data” to replace
“Open Data”, uses “Business” to summarize the meaning of “Supply Chain” and
uses “Messaging” according to the word “session”. TagTag’s prediction matches
the description content, and some of the recommended tags have a similar or
broader meaning for the missing tags. Although the tag used for substitution is
somewhat broad, it can already help find and manage the service. Therefore, the
lower-than-expected results can also be seen as a sign that TagTag can fully
use existing tags.

348 W. Chen et al.

7 Conclusion

This paper presents a novel tags relation aware service tag recommendation and
missing tag prediction model, called TagTag. The model can fully consider the
features of services and tags. As a result, it can recommend all suitable tags and
judge whether to add new tags for the service. Experiments demonstrate that
the TagTag model has better experimental results than several state-of-the-art
methods in both recommendation and prediction.

Acknowledgement. The research in this paper is partially supported by the National
Key Research and Development Program of China (No 2021YFB3300700) and the
National Natural Science Foundation of China (61832014, 61832004).

References

1. Johnson, R., Zhang, T.: Supervised and semi-supervised text categorization using
LSTM for region embeddings. In: Balcan, M., Weinberger, K.Q. (eds.) Proceed-
ings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, 19–24 June 2016. JMLR Workshop and Conference Pro-
ceedings, vol. 48, pp. 526–534. JMLR.org (2016). http://proceedings.mlr.press/v48/
johnson16.html

2. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: CVPR, pp. 7482–7491 (2018)

3. Kim, Y.: Convolutional neural networks for sentence classification. In: Moschitti,
A., Pang, B., Daelemans, W. (eds.) The 2014 EMNLP, pp. 1746–1751. ACL (2014)

4. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. arXiv preprint arXiv:1605.05101 (2016)

5. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

6. Yang, Y., et al.: ServeNet: a deep neural network for web services classification. In:
2020 ICWS, pp. 168–175. IEEE (2020)

7. Zhu, Y., Liu, M., Tu, Z., Su, T., Wang, Z.: SRASLR: a novel social relation aware
service label recommendation model. In: 2021 ICWS, pp. 87–96. IEEE (2021)

http://proceedings.mlr.press/v48/johnson16.html
http://proceedings.mlr.press/v48/johnson16.html
http://arxiv.org/abs/1605.05101

Blockchain

Non-disclosing Credential On-chaining
for Blockchain-Based Decentralized

Applications

Jonathan Heiss1(B), Robert Muth2, Frank Pallas1, and Stefan Tai1

1 Information Systems Engineering, Technische Universität, Berlin, Germany
{j.heiss,frank.pallas,tai}@tu-berlin.de

2 Distributed Security Infrastructures, Technische Universität, Berlin, Germany
muth@tu-berlin.de

Abstract. Many service systems rely on verifiable identity-related infor-
mation of their users. Manipulation and unwanted exposure of this
privacy-relevant information, however, must at the same time be pre-
vented and avoided. Peer-to-peer blockchain-based decentralization with
a smart contract-based execution model and verifiable off-chain compu-
tations leveraging zero-knowledge proofs promise to provide the basis
for next-generation, non-disclosing credential management solutions.
In this paper, we propose a novel credential on-chaining system that
ensures blockchain-based transparency while preserving pseudonymity.
We present a general model compliant to the W3C verifiable credential
recommendation and demonstrate how it can be applied to solve exist-
ing problems that require computational identity-related attribute veri-
fication. Our zkSNARKs-based reference implementation and evaluation
show that, compared to related approaches based on, e.g., CL-signatures,
our approach provides significant performance advantages and more flex-
ible proof mechanisms, underpinning our vision of increasingly decentral-
ized, transparent, and trustworthy service systems.

Keywords: Verifiable credential · Blockchain · Zero-knowledge proof

1 Introduction

Blockchain-based Decentralized Applications (DApps) are service systems where
the backend code runs on a peer-to-peer blockchain network, using smart con-
tracts for the application logic. DApps are increasingly applied in distrusted,
multi-stakeholder environments to overcome reliance and dependence on trusted
and often centralized third parties (TTPs) and associated risks of failure, manip-
ulation, or opportunistic behavior. Traditional architectures are transitioned into
decentralized ones in that core functionalities provided by previously central-
ized TTPs are now implemented in smart contracts, which are executed on the
blockchain by each peer [32]. This way, involved stakeholders do not have to
trust TTPs anymore to act as intended, resulting in a service system that is
more transparent and manipulation-resistant.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 351–368, 2022.
https://doi.org/10.1007/978-3-031-20984-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_25&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_25

352 J. Heiss et al.

Even when using permissionless blockchains, a DApp may still define roles,
permissions, or assets and assign them to particular users and other parties.
DApps therefore depend on reliably distinguishing the users by some kind of
distinct attributes that only a single participant or a group of users possesses
and for which a proof can be provided. In decentralized finance (DeFi) lend-
ing DApps [30], for instance, lenders and borrowers may be required to prove
possession of a valid citizenship or tax number, in IoT DApps [25], devices may
have to prove official calibration or certain configuration parameters, and par-
ticipants of marketplaces [20] may be required to prove creditworthiness before
they are allowed to engage into trading. The attestation of such attributes can
come from different issuers such as tax offices, calibration authorities, or credit
bureaus. Parties having to prove attributes can then do so by presenting creden-
tials allowing another party to verify the fulfillment of attribute requirements.

In state-of-the-art service systems, DApps which need to verify user
attributes typically employ some off-chain authority for this purpose acting as a
TTP and providing respective services. For example, DApps running on permis-
sioned blockchains rely on identity and access management (IAM) services that
are provided at platform-level through a trusted committee of nodes, e.g., the
Membership Service Providers authority in Hyperledger Fabric [18]. However,
in many DApps, off-chain verification of user attributes is not appropriate as
it violates design goals. DeFi and marketplace DApps, for example, implement
cryptocurrency-based transaction logic that may depend on the on-chain ver-
ification of user attributes. In IoT DApps that typically characterize through
uncertain, dynamic, and distrusted settings, it may simply not be possible to
employ an off-chain TTP service for authentication that is tamper-resistant and
always online. Furthermore, many DApps call for independent verifiability of all
transactions, including attribute verification, e.g., for external auditing.

Alternatively, credential verification can be implemented as smart contract-
based logic as well and be executed as part of the blockchain’s consensus proto-
col [23]. This mitigates the problems described above, however, it also introduces
other challenges originating from the blockchain’s natural design, most impor-
tantly related to users’ privacy: While users of DApps running on permissionless
blockchains can veil their identity behind pseudonymous account addresses, on-
chain credential verification threatens this pseudonymity since consensus-based
validation reveals confidential user attributes to the blockchain network. Exist-
ing approaches that, for example, leverage zero-knowledge proofs (ZKP) to keep
such attributes off the blockchain, either suffer from severe performance limita-
tions making their usage impractical [23] or are limited to a specific use case and
credential type which restricts general applicability [12,14,27].

In face of the on-going debate about measures for Know-Your-Customer
(KYC) and Anti-Money Laundering (AML), and consequential blockchain regula-
tions1,2, we consider the need for on-chain credential verification as real and tech-
nical approaches essential to pave the way for general purpose adoption of DApps

1 https://www.sec.gov/news/statement/crenshaw-defi-20211109.
2 https://www.europarl.europa.eu/news/en/press-room/20220627IPR33919.

https://www.sec.gov/news/statement/crenshaw-defi-20211109
https://www.europarl.europa.eu/news/en/press-room/20220627IPR33919

Non-disclosing Credential On-chaining for DApps 353

as well as presenting an alternative to using traditional off-chain IAM services. To
this end, we herein provide an approach to make attribute-specific user creden-
tials verifiable on the blockchain while preserving pseudonymity properties. We,
thereby, make three individual contributions:

– First, we propose a novel credential on-chaining system. This system leverages
verifiable off-chain computations (VOC) [9] for executing logic on confidential
identity attributes through the holder and for only presenting a non-revealing
ZKP to the peer network.

– Second, we show how the proposed model can be employed to solve typi-
cal computational identity-related problems by proposing different types of
credential conditions to be verified.

– Third, we demonstrate technical feasibility by providing a reference imple-
mentation for each type of condition using ZoKrates [11], a tool for real-
izing VOC on Ethereum [31]. Our implementation exhibits significant per-
formance advantages over on-chain verification of established Camenisch-
Lysyanskaya (CL) signature-based ZKPs [23].

In the remainder of this paper, we first describe relevant concepts and related
work in Sect. 2. Then, we present a general system design for credential on-
chaining in Sect. 3. On this basis, in Sect. 4 we show how to apply the design
to realize different proof types. Details on the implementation and an evalua-
tion based on our proofs-of-concept (PoC) are described in Sect. 5. Finally, we
conclude with some final remarks in Sect. 6.

2 Preliminaries

As relevant preliminaries, we first introduce the core idea of on-chaining creden-
tials underlying our approach along with its benefits and challenges. Then, we
describe existing concepts and approaches that are relevant to our contributions.

2.1 On-chaining Verifiable Credentials

Within this paper, on-chaining verifiable credentials describes the process of
providing credentials originating from off-chain to smart contracts in a verifiable
manner. Instead of having a blockchain-external entity checking the validity of an
attribute-based credential (such as holding a particular citizenship or being cred-
itworthy) and acting as a centralized TTP service provider, the issuer-generated
credential is verified on-chain as a smart contract-based transaction that is vali-
dated through the blockchain’s consensus protocol by each peer in the network.

Benefits: For DApps, on-chain credential verification has some considerable
benefits over off-chain verification:

– Transparency: Credentials are independently verifiable throughout and, in
public blockchains, even beyond the network.

– Tamper-resistance: While off-chain authorities could previously manipulate
credential verification unnoticedly, on-chain verification prevents this.

354 J. Heiss et al.

– Passive verification: The credential verification is self-executed and automat-
ically verified by all blockchain peers to maintain global consensus [1].

– Availability: It is not required to have an off-chain authority to be online all
the time. Availability is guaranteed by the blockchain network.

– Immediate usage: The output of the credential verification can immediately
be used on-chain as part of the smart contract-based application logic.

Challenges: On-chain credential verification also introduces challenges that
originate from the nature of blockchains.

– Privacy: Given that the blockchain-based system is a fully replicated one with
full transparency and an immutable, append-only data structure, confidential
information contained in credentials must not be revealed on-chain.

– Verification costs: Given fully redundant transaction execution as part of
expensive consensus protocols, e.g., Proof-of-Work, the computational costs
for verifying credentials on-chain should be kept at a minimum.

– On-/Off-chain interactions: Given an isolated execution environment that
restricts interactivity with off-chain systems, the DApp cannot directly call
the issuer to check, e.g., credential authenticity. Therefore, credentials must
become non-interactively verifiable and function without trusted oracles [16].

2.2 Related Work and Concepts

Our contributions build upon the concepts of verifiable credentials (VC), anony-
mous credentials (AC), and verifiable off-chain computations (VOC), and inter-
sect with related work around these existing concepts.

Verifiable Credentials: The W3C recommendation for VCs [28] advocates a
user-centric identity management model where claims on identity attributes are
assumed to be attested by a trusted issuer and issued as VC to the holder where
they are securely stored, e.g., in a wallet. The holder can then independently
present a selection of verifiable attribute claims as a verifiable presentation (VP)
to a verifier, as illustrated in Fig. 1. Different from the objective of this paper, the
VC model assumes the verifier to be executed off the blockchain. Blockchains
are applied only to realize Verifiable Data Registries (VDR) that are used to
store public artifacts, such as identifiers, public keys, or credential schemas (CS)
which describe what VC consist of and how they are verified.

Blockchain-based implementations of this model include credential manage-
ment systems such as uPort [24], Jolocom [19], or Hyperledger Indy [17]. None
of these does, however, implement on-chain credential verification.

Fig. 1. W3C verifiable credential model

Non-disclosing Credential On-chaining for DApps 355

Anonymous Credentials: AC have been proposed to enable the verification
of credentials without revealing confidential user attributes to the verifier. A
ZKP is generated to convince a verifier about certain aspects of the credential.
Common proof types for credentials include range proofs to verify that a value is
within a given range or set membership proofs to verify that an element is part
of a predefined set [3].

CL signature-based ZKPs [4] are a well-known approach to AC that have been
implemented, for example, in IBM’s attribute-based credential system, Identity
Mixer [5], which, in turn, has been adopted in Hyperledger Indy [17]. As another
zero-knowledge protocol class that distinguishes through non-interactivity and
succinct proof size, zkSNARKs (zero-knowledge succinct non-interactive argu-
ment of knowledge) have also been applied to enable non-revealing credential
verification [26].

Verifiable Off-chain Computation: Another essential concept for on-chain
credential verification is VOC [9] which has been introduced to mitigate
blockchain’s limitations regarding privacy and scalability. Here, the result of
any off-chain computation can be verified on-chain without revealing private
inputs to the computation. VOC has conceptually be extended in [15] where it
is considered as an intermediate pre-processing step in data on-chaining work-
flows between an off-chain data source and an on-chain verifier. To technically
realize VOC, ZoKrates [11] has been proposed, a toolbox and language for the
construction of on-chain verifiable ZKPs based on zkSNARKs.

ZoKrates has been adopted in various use-cases to enable non-revealing
authentication of DApp users. Examples include smart vehicle authentication
at charging stations [12], user authentication for car sharing [14], or patient
authentication in health care [27]. These works so far do, however, focus on
the verification of a specific identity attribute only, consider comparably trivial
authentication schemes, or lack general applicability. A rather general approach
to on-chain credential verification is described in [23]. Here, it has been shown
how CL signature-based ZKPs can be verified on-chain, albeit with considerable
performance limitations currently rendering the approach impractical.

3 System Design

Seizing on the previously described challenges and limitations of existing
approaches, in this section, we present our credential on-chaining system that
applies VOC [9] as pre-processing step [15] to the W3C recommendations for
VCs [28]. Instead of verifying the issuer-generated VC directly on-chain, it is
pre-processed by the user as a VOC that returns a ZKP which can be verified
by the DApp in a non-disclosing manner.

As illustrated in Fig. 2, our system works along four stages, each of them
executed by a different system role.

1. During attestation which is considered a pre-requisite of our system the
issuer signs identity claims contained in a credential and sends them as VC
to the user.

356 J. Heiss et al.

Fig. 2. Credential on-chaining system overview which demonstrates all steps from ini-
tial signing credentials to the verification of a corresponding verifiable presentation

2. The setup describes all activities executed by the developer to create the arti-
facts required for proving and verification, i.e., the proof program (PP) that
implements the verification logic as a VOC, the ZKP keys used to sign and
verify the verifiable presentation (VP), and the verifier smart contract (VSC)
that is required by the DApp to verify the VP.

3. During proving, a DApp user creates a VP from her VC using the PP and
the proving key (PPkey).

4. The verification of the VP consisting of a ZKP and a computational result
is executed on-chain by the VSC using the verification key (VSCkey).

3.1 Attestation

During the attestation, the issuer creates a VC from a credential (CR) according
to a public credential schema: Attest(CR,SK) −→ (VC). A CR consists of a set
of claims (CL) such that CR = {CL1, ...,CLn}. A claim, in turn, consists of a
3-tuple comprising subject, attribute, and value, e.g., (Alice, age, 31). The issuer
signs the credential with its individual issuer secret key SK which can be verified
with the corresponding issuer public key PK. To enable users to select single
claims from a VC (and, hence, enable selective disclosure) the issuer needs to
sign each claim of a credential individually instead of all claims collectively.
This results in a VC consisting of a set of verifiable claims (VCL) such that
VC = {VCL1, ...,VCLn}. A VCL in turn consists of a claim-signature pair:
V CL = {CL, SIG}. Once attested through the issuer, the VC is stored by the
holder in her personal wallet. While VCs of different issuers may be used, for
simplicity, we describe the following stages assuming a single issuer.

Non-disclosing Credential On-chaining for DApps 357

Fig. 3. In- and outputs of the proof program and the verifier smart contracts

3.2 Setup

During the setup, the developer creates required artifacts which enable the
construction and verification of ZKPs. Therefore, she obtains the public cre-
dential schema from the issuer (or indirectly from a public VDR as described
in Sect. 2.2). Without compromising generality of our approach, we consider a
zkSNARKs-based setup that takes the technological capabilities of ZoKrates [11]
into account and consists of the following three steps:

First, the verification logic and required input types are implemented for an
execution environment that represents the PP and enables the assertion of com-
putational correctness through a ZKP. Using ZoKrates, its high-level language
can be leveraged for this purpose which compiles into an executable constraint
system represented in the ZoKrates Intermediate Representation format [11].

Second, the developer generates the ZKP keys from the PP : KeyGen(PP) −→
(PPkey,VSCkey). The ZKP keys are bound to the PP and enable a prover, here
the user, to create a verifiable PP-specific ZKP with the proving key (PPkey) and
a verifier, here the DApp, to verify the ZKP with the corresponding verification
key (VSCkey).

As a third step, the developer implements the VPs-verification logic in the
verifier smart contracts (VSC), integrates all artifacts, i.e., the PP, the PK, the
VSC, the VSCkey, into the DApp and deploys it. While the deployed DApp only
requires the VSC and the VSCkey for the verification, it makes the PP and PK,
which are required for proving, accessible to the users.

3.3 Proving

In the proving stage, the user first obtains the PP and PPkey from the DApp
and selects the required VCLs from her personal wallet. Based on that, she exe-
cutes the proving: Prove(PPkey, Inpub, Inpriv) −→ (ZKP,VPout). The PP takes
two types of inputs: public inputs (Inpub) are required on-chain for ZKP ver-
ification and are, hence, revealed to the blockchain network whereas private

358 J. Heiss et al.

inputs (Inpriv) are kept off-chain. To keep confidential attributes hidden, VCLs
are treated as Inpriv, but conditional parameters (CP) and PKs that need to be
reviewed on-chain are treated as Inpub. As depicted in Fig. 3, the PP executes
two checks on each verifiable claim contained in a VC:

(i) Authenticity Check : To guarantee that a verifiable claim has been attested
to by the right issuer (trusted by the developer), its signature is verified with
the issuer’s PK: Fauth : (VCL,PK) −→ (bool). Furthermore, the integrity of
the attribute is reviewed, i.e., that the user provides the correct attribute
to the PP, by comparing the provided attribute identifier contained in the
claim against an attribute identifier predefined by the developer.

(ii) Compliance Check : To prove compliance with context- and credential-
specific conditions that the developer defines based on the DApp logic, the
CL’s attribute value is checked against some CP, e.g., age higher than 21:
Fcomp : (CL,CP) −→ (bool)

The output is a VP that contains a ZKP for the correct ZKP execution and
the corresponding computional output (VPout), e.g., a boolean value indicating if
the Authenticity and Compliance Checks succeed. The VP does not contain Inpriv

anymore; hence, it can be presented without risking the VCs confidentiality.

3.4 Verification

The verification is executed on-chain through the verifier smart con-
tracts (VSCs): Verify(VSCkey,ZKP,VPout,CP,PK) −→ (bool). Inputs to the
VSCs are the VP consisting of the ZKP and the VPout and the public inputs
used for proving, i.e., the conditional parameters CP and the issuers’ public key
PK. As depicted in Fig. 3, the VSCs implement two checks:

(i) ZKP Check : To verify that the proving has correctly been executed on the
expected public inputs, the ZKP Check is executed on the VP and the public
inputs: Fzkp : (ZKP,VPout,PKi, CP) −→ (bool).

(ii) Compliance Check : Optionally, an additional on-chain Compliance Check
is executed on VPout as, for example, required for the Uniqueness Proof
mechanism presented in Sect. 4.4.

4 Application

Given the proposed credential on-chaining system, in this section, we demon-
strate the system’s proving abilities through a set of proof mechanisms. On
the one hand, we show how established concepts, e.g., range and membership
proofs [3], can be realized with our system, on the other hand, we introduce
novel mechanisms to on-chain credential verification in DApps, namely, relative
time-dependent proofs and uniqueness proofs.

To describe the proof mechanisms, we set a particular focus on the off-
and on-chain Compliance Checks (CompCheck) and the conditional parameters

Non-disclosing Credential On-chaining for DApps 359

(CP) used to validate credential-specific conditions. In contrast to the off-chain
Authenticity Check (AuthCheck) and the on-chain ZKP Check which are con-
ceptionally application-agnostic, the CompChecks are application-specific.

4.1 Range and Equality Proofs

A DApp Requires a Numeric Attribute to be in a Specific Range Indicated
Through an Upper and/or Lower Bound. This may, for example, be required
in referendum DApps [22], to guarantee that only DApp users in a specific zip
code range are eligible to participate.

Off-chain Proving: For range proofs, the CompCheck validates if the attribute
value is within the range defined by the developer through one or two bound-
aries. Given a Turing-complete language as with ZoKrates, range proofs can be
implemented as simple predicated statements. CPs are range boundaries that
are provided as public inputs to the PP. Thereby, the same PP can be used for
different ranges simply by setting different range boundaries as public inputs.

On-chain Verification: Since the range boundaries are required as public
inputs for the ZKP Check, it can independently be verified that the range has
been set correctly. No further on-chain CompCheck is required.

Discussion: A range proof will not reveal identity attributes to the verifier as
they are defined as private inputs, but if the boundaries of a range proof are too
small, the private attribute can be approximated or even completely exposed. It
is also possible that past proofs with different boundaries can be combined, so
that the intersections of all proofs reveal insights of the VC or even the exact
attribute value. This is especially dangerous with a publicly available transaction
history, e.g., in permissionless blockchains. To avoid this, proofs should not be
linkable to each other or with a single blockchain account.

A special type of range is the equality proof which can be implemented with
the described range proof mechanism. Here, the range is set to a single value that
needs to match the user’s attribute value. While we consider equality proofs with
private attributes pointless since a successful verification discloses the attribute
on-chain, DApps may have reasons to require clear text attributes from a user.
However, once published, attributes are publicly revealed and cannot be removed
due to the permanent nature of a blockchain, so we advise the greatest attention
to privacy for such proofs. Also, it needs to be mentioned, that while equality
proofs can easily be realized with our system, there are more efficient approaches,
e.g., by verifying the issuer’s signature directly on-chain.

4.2 Relative Time-Dependent Proofs

A DApp requires a date- or time-based attribute to be in a range that has bound-
aries relative to the current date or timestamp. This is, for example, required
if the users’ age needs to be checked or if an expiration date of a credential
needs to be verified. Realizing such proofs with our system is challenging in that

360 J. Heiss et al.

a timestamp is required off-chain for ZKP generation, however, the off-chain
timestamp is not verified on-chain as part of the consensus protocol and, hence,
can be manipulated unnoticedly. To describe our approach to that, we assume
that a DApp needs to verify that the age of its users is above 21, i.e., a range
proof with a single boundary, and the required time-dependent user attribute is
the date of birth (cf. Fig. 4).

Fig. 4. Age verification scenario for time-dependent proof mechanisms

Off-chain Proving: CPs are the range boundary, e.g., age 21, that is predefined
by the developer, and the relative timestamp that is pre-calculated by the user as
the current date minus the range boundary, i.e., 2022−21 = 2001. For simplicity,
timestamps are here indicated in years, although more fine-grained timestamps
are applicable. Both, the relative timestamp and the range boundary, are pro-
vided to the PP as public inputs. As part of the off-chain CompCheck, the PP
compares the relative timestamp to the date of birth that is part of the VC and,
hence, provided as private inputs to the PP. If the relative timestamp is larger
than the date of birth, the off-chain CompCheck is successful.

On-chain Verification: On-chain, an additional CompCheck is required to
make sure that the off-chain timestamp has not been faked by the user. There-
fore, the DApp takes the on-chain timestamp from the current block header
which can be considered trusted as it is validated through the blockchain’s con-
sensus protocol, and compares it against the off-chain timestamp. If on- and
off-chain timestamp are within an acceptable timespan pre-determined by the
developer the on-chain CompCheck succeeds.

Discussion: Relative time-dependent proofs are broadly applicable, especially
considering their usage for validating expiration dates of credentials, e.g., for
driver’s licenses or credit cards. In this case, the expiration date needs to be
signed by the issuer together with the corresponding attribute(s) to make sure
that both belong together. However, it must also be noted that only rough peri-
ods can be verified with the proposed mechanism. For example, the acceptable
time span between proving and verification is strongly dependent on peculiarities
of the applied blockchain’s consensus protocol, e.g., block interval and confirma-
tion time, which may vary in orders of several minutes.

4.3 Set Membership Proofs

A DApp Requires that a Holder’s Attribute Value val is in a predefined finite
set S = {s1, s2, ..., sn} such that val ∈ S. Such proofs can be used to show

Non-disclosing Credential On-chaining for DApps 361

that a holder belongs to a set of authorized users in permissioned settings as,
for example, required in referendum DApps where eligible participants are, a
priori, equipped with a referendum voucher. To prove set membership without
revealing val on-chain, we leverage path proofs in Merkle Trees similar to the
one described here3.

Off-chain Proving: In addition to the user’s set attribute contained in the set
that is provided as private input, the PP requires three CPs that need to be
pre-computed by the holder and are provided as public inputs to the PP: (1)
the root hash of the Merkle Tree constructed over S, (2) an array of hash values
situated on the path from the leaf hash (hashed attribute), to the root hash, and
(3) a same-size array of left-right indicators that determine in which order two
child hashes are concatenated as the pre-image of the parent hash. During the
PP’s CompCheck, first the attribute’s hash is calculated. Then, the PP iterates
over both, the hash and indicator arrays, and, in each iteration, calculates the
next upper hash in the Merkle Tree. If the resulting hash is equal to the root
hash provided as public input, set membership is proven.

On-chain Verification: On-chain, correctness of the PP computation and its
public inputs is reviewed during the ZKP Check. No further on-chain Com-
pCheck is required.

Discussion: Different types of set membership proofs are well-known and have
extensively been discussed in the literature [2,21]. We consider the set entries to
be confidential such that they must not be revealed on the blockchain. An access
list for DApp users generated off-chain, for example, must not reveal the user
identifiers, e.g., to prevent attackers to simply use them for registration. In the
proposed mechanism, only hashes of entries are revealed on-chain but the pre-
images which are required for successful ZKP generation remain off-chain, kept
secret by the user. It should be noted that privacy guarantees become stronger
with an increasing size of set S, although the verification complexity grows only
logarithmically due to the tree data structure.

In some cases, set membership proofs can be used interchangeably with range
proofs. If DApp users need to prove that they live in a specific city without
revealing it, a set membership proof can be leveraged that builds upon city
identifiers in a given state or a range proof can be constructed based on the zip
code applicable for the city.

4.4 Uniqueness Proof

A DApp Requires a Unique Pseudonymous Identifier (UPI), to Distinguish Dif-
ferent Users. This allows DApps to prevent Sybil-attacks [7] and to establish
user accountability, e.g., function calls can be mapped to users even if different
account addresses are used. Such UPIs are, for example, required if user-specific
access control policies need to be verified as part of the DApp. However, with
3 https://github.com/Zokrates/ZoKrates/tree/deploy/zokrates cli/examples/

merkleTree.

https://github.com/Zokrates/ZoKrates/tree/deploy/zokrates_cli/examples/merkleTree
https://github.com/Zokrates/ZoKrates/tree/deploy/zokrates_cli/examples/merkleTree

362 J. Heiss et al.

respect to the user privacy, the UPI must provide unlinkability (1) to off-chain
activities of the user, i.e., a relation to the real off-chain identity must not be
revealed, and (2) to on-chain activities of the user, i.e., UPIs of the same user
used in different DApps must not be linkable with each other.

For this mechanism, we assume that a user can uniquely be identified through
the issuer, either through a single unique identifier, e.g., a tax identification
number, or through a set of attributes that jointly enable unique identification.
Latter is assumed in the following. Furthermore, we assume that a unique DApp
identifier is available, e.g., the address of the verifier smart contract.

Off-chain Proving: The set of predefined attributes is provided to the PP by
the user as private inputs and individually validated as part of the AuthCheck.
As a single conditional parameter, the unique DApp identifier is provided as
public input. The UPI construction is executed as part of the CompCheck:
The attribute values and the DApp identifier are concatenated in a prede-
fined order and the resulting concatenation is hashed representing the UPI:
Hash(att1, ..., attn, IDDApp). Together with the ZKP, the UPI is returned as VP.

On-chain Verification: On receiving the VP, first, the ZKP is checked together
with all public inputs, i.e., the DApp identifier and the public keys. A success-
ful validation attests correct construction of the UPI, but unique user registra-
tion has not yet been proven. Therefore, the DApp checks during the on-chain
CompCheck if the UPI has already been registered in a user registry that is
maintained by the DApp and contains the UPIs and account addresses of all
registered users. If the UPI is already part of the list, the CompCheck fails.
Otherwise, the UPI is recorded to the list and the user is officially registered.

Discussion: The proposed mechanism provides unlinkability to off- and on-
chain activities of users: since the preimage of the hash is a concatenation of
both, user attributes and the DApp identifier, the attributes applied for UPI
construction cannot be traced back and the UPI changes for each DApp that
a user registers at. This provides for user privacy and makes the mechanism
applicable to various DApp contexts where uniqueness is required, e.g., votings,
token airdrops, and access control.

However, the mechanism only provides uniqueness of users if the previous
assumptions hold. If the attributes change, the user can create a different UPI
and use it for registering twice with different blockchain accounts, which elimi-
nates Sybil-resistance.

5 Evaluation

To evaluate our credential on-chaining system and its applicability to the pro-
posed proof mechanisms, in this section, we first provide technical details for the
ZoKrates-based implementations of the proof mechanisms, then analyze perfor-
mance aspects, particularly in comparison with a similar CL-signature-based
approach, and finally discuss open issues and refinements.

Non-disclosing Credential On-chaining for DApps 363

Table 1. Gas costs, artifact sizes, and execution times for proof generation and veri-
fication with ZoKrates.

Proof TX cost (gas) Witness (s) Setup (s) Proof (s) Compiled (MB) PPkey (MB) VSCkey (KB)

Equality 511 k 4 63 13 352 38 8

Range 532 k 3 62 14 352 38 8

Uniqueness 675 k 8 89 27 864 47 12

Rel. time 627 k 4 61 14 352 38 8

Membership 532 k 6 147 26 656 90 8

5.1 Implementation

We implement each proof mechanisms prototypically to demonstrate the tech-
nical feasibility of our proposal and provide the source codes on GitHub4.

For attestation we provide a Python script which constructs a EDDSA signa-
ture on a test credential – employing a Python library for ZoKrates-compatible
cryptographic instructions5 – and returns a VC. For the setup, we implement the
PP using the ZoKrates language which can be compiled using the ZoKrates com-
mand line interface (CLI) which also enables the creation of the ZKP keys (i.e.,
PPkey and VSCkey) and the verifier smart contract VSC. Once the artifacts
are created, the proving is executed in two CLI-aided steps: First, a witness
is generated with the command compute-witness which represents an input-
specific variable assignment of the executable constraint system. Second, the
ZKP is created based on the witness and the proving key with the command
generate-proof. For verification, a Solidity VSC that is automatically gener-
ated by means of the ZoKrates toolbox implements the routines required to verify
the ZKP in the verytx() function using the integrated VSCkey. The optional
on-chain Compliance Check is implemented in a separate smart contract.

To execute these processes we provide scripts that also measure the execution
times, the artifact sizes, and the verification costs with the latter being enabled
through a Truffle6 test project on a simulated Ethereum [31] blockchain.

5.2 Performance Analysis

Based on our ZoKrates-based reference implementations, we execute an exper-
imental test case for each proof mechanism using test credentials that consist
of a single claim, such that, the Authenticity and Compliance check are only
executed once. All experiments were executed on a MacBook Pro (13", 2018)
with a 2.3 GHz Quad-Core Intel i5 and 8 GB memory.

ZoKrates-Based Credential On-chaining Proof Mechanisms. The mea-
surements of our ZoKrates proof mechanism test cases are depicted in Table 1

4 https://github.com/JonathanHeiss/ZoKrates-Credential-Verification.
5 https://github.com/Zokrates/pycrypto.
6 https://trufflesuite.com.

https://github.com/JonathanHeiss/ZoKrates-Credential-Verification
https://github.com/Zokrates/pycrypto
https://trufflesuite.com

364 J. Heiss et al.

Table 2. Gas costs for on-chain proof verification with the same test credentials as
in [23] for our implementation approach and with on-chain CL-signature verification.

Proof ZoKrates CL-signature

Test: equality 593 k 32,001 k

Test: range 521 k 84,826 k

Test: combined 870 k 84,033 k

which shows the corresponding blockchain transaction costs in Gas7, execution
runtimes in seconds, and artifact file sizes in MB.

The transaction costs range between 511 k and 675 k Gas. The costs are
higher if more public inputs are passed to the PP, e.g., compared to the equality
proof, the range proof additionally requires CPs. Furthermore, if an additional
compliance check is executed as, for example, for uniqueness and relative time-
dependent proofs, transaction costs increase as well.

Execution times are measured for the ZKP setup, which in ZoKrates is required
for generating the ZKP keys, and the proving, which consists of the witness
and proof generation. Most time-intensive is the setup which, however, is only
executed once by the developer and, hence, does not impact the operation of the
system where different users submit VPs to the DApp. For operations, the proof
generation time takes the longest, however, the longest proving time does only
slightly exceed half a minute considering witness and proof generation together.
Regarding the different proving mechanisms, it can, as expected, be observed
that with increasing computational complexity, the execution times increase as
well. An in-depth analysis about the behavior of ZoKrates for varying inputs
and computations can be found in [8].

The artifacts size varies between artifact types, e.g., the compiled PP size lies
between 352 and 864 MB and the PPkey size between 38 and 90 MB, whereas the
VSCkey size is considerably smaller, ranging between 8 and 12 KB. This makes
the latter suitable to be used on-chain where resources are scarce. Consequences
of large artifacts regarding the system deployment are discussed in Sect. 5.3.

Comparison to CL-Signatures. Furthermore, to establish comparability of
performance behavior beyond our own proof mechanisms, we implement and con-
duct three test cases that mirror the experimental evaluation of smart contract-
based verification with CL-signatures as described in [23]. These test cases are
executed on multiple attributes and implement (1) an equality proof, (2) a range
proof, and (3) a combination of both.

In comparison, as depicted in Table 2, with our approach, we are able to
reduce the transactions costs in Gas by a factor of ≈ 50 to 100 in all three
test cases. This distinct performance improvement shows that currently, in face
of expensive on-chain computations, zkSNARKs are better suited for on-chain
credential verification than CL-signatures-based approaches.
7 Gas is an Ethereum-specific metric for measuring blockchain transaction complexity.

Non-disclosing Credential On-chaining for DApps 365

5.3 Discussion

Deployment: Referring to Table 1, we consider the size of the PP and the prov-
ing key as too large to be stored on the blockchain. Consequently, provisioning
of both artifacts to the user needs to be solved differently. As one solution,
we propose to apply a content addressable storage pattern [10] as for example
realizable with IPFS and adopted for managing off-chain assets associated with
Non-fungible Tokens (NFTs). Instead of storing both artifacts on-chain, only the
artifacts’ hash is stored on-chain and serves as a pointer to the artifacts that
are stored off-chain in IPFS. By comparing the on-chain hash-based address
with the hash of the off-chain stored artifacts, integrity can be reviewed. How-
ever, availability is not guaranteed per se [6]. Therefore, an additional protocol,
e.g., Filecoin, could be applied that introduces redundant storage and provides
incentives for keeping off-chain files available.

Revocation: A credential may be required to be revoked by the issuer, e.g., if a
driver license is invalidated by a public authority. Since revocation is not in the
scope of this work, we propose to leverage dedicated blockchain-based revocation
systems as an extension to our credential on-chaining system similar to the ones
proposed for educational credentials in [29]. Also, in some cases, revocation can
be replaced with expiration dates on credentials which can be realized with the
relative time-dependent proofs (see Sect. 4.2).

Attacks: For identification purposes, especially for secret credentials, replay
attacks render a severe problem on blockchains. Since proofs become available
to everyone on the blockchain after the on-chain verification, they can be used
by anybody else on the blockchain to fake a different identity or to gain unau-
thorized access. To address this problem, developers can leverage the uniqueness
proofs that enable the DApp to identify repeated submissions of the same proof
from different users. Also, we recommend to use a proving scheme other than
Groth16 [13] which is vulnerable to malleability attacks, or to implement coun-
termeasures.

6 Conclusion

How can identity-related attribute information and computations on such infor-
mation be shared in both a fully transparent but pseudonymity-preserving man-
ner? This question is not easy to answer, especially in service systems that com-
prise multiple autonomous service providers and consumers for which no mutual
trust assumptions can and should be made. State-of-the-art, typically central-
ized trusted third parties providing IAM services, stop short when it comes
to the trust assumptions expected and the associated risks of manipulation or
opportunistic behavior existing.

In this paper, we present a novel, non-disclosing credential manage-
ment system that builds on peer-to-peer decentralization through blockchain,
smart contract-based execution, and VOC using ZKPs. We introduce a W3C

366 J. Heiss et al.

recommendation-compliant VC model, demonstrate and discuss typical identity-
related computational problems that can now be addressed in such settings, and
show technical feasibility through reference implementations with a cost and per-
formance assessment. The significant transaction cost improvements towards a
comparable approach based on established CL-signatures underline the relevance
of our approach for its application in practical settings.

Our work is in line with prior work on data on-chaining and contributes to
the larger question on what data and what computation to handle on-chain, that
is, on the blockchain when a blockchain is part of a larger service system, and
what data and what computation to handle off-chain – that is, anywhere but
the blockchain – while ensuring and not violating key system properties related
to performance, security, trustworthiness, and other system quality criteria.

References

1. Azouvi, S., Al-Bassam, M., Meiklejohn, S.: Who am I? Secure identity registration
on distributed ledgers. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H.,
Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp.
373–389. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0 21

2. Benarroch, D., Campanelli, M., Fiore, D., Gurkan, K., Kolonelos, D.: Zero-
knowledge proofs for set membership: efficient, succinct, modular. In: Borisov,
N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 393–414. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-662-64322-8 19

3. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

4. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

5. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Proceedings of the 9th ACM Conference on Com-
puter and Communications Security (2002)

6. Daniel, E., Tschorsch, F.: IPFS and friends: a qualitative comparison of next gen-
eration peer-to-peer data networks. IEEE Commun. Surv, Tutor. (2022)

7. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

8. Eberhardt, J.: Scalable and privacy-preserving off-chain computations. Doctoral
thesis, Technische Universität Berlin (2021)

9. Eberhardt, J., Heiss, J.: Off-chaining models and approaches to off-chain computa-
tions. In: Proceedings of the 2Nd Workshop on Scalable and Resilient Infrastruc-
tures for Distributed Ledgers. SERIAL 2018. ACM (2018)

10. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computa-
tion and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 1

https://doi.org/10.1007/978-3-319-67816-0_21
https://doi.org/10.1007/978-3-662-64322-8_19
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-67262-5_1

Non-disclosing Credential On-chaining for DApps 367

11. Eberhardt, J., Tai, S.: ZoKrates - scalable privacy-preserving off-chain computa-
tions. In: IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (2018)

12. Gabay, D., Akkaya, K., Cebe, M.: A privacy framework for charging connected
electric vehicles using blockchain and zero knowledge proofs. In: IEEE 44th LCN
Symposium on Emerging Topics in Networking, pp. 66–73 (2019)

13. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

14. Gudymenko, I., et al.: Privacy-preserving blockchain-based systems for car sharing
leveraging zero-knowledge protocols. In: IEEE International Conference on Decen-
tralized Applications and Infrastructures (DAPPS) (2020)

15. Heiss, J., Busse, A., Tai, S.: Trustworthy pre-processing of sensor data in data
on-chaining workflows for blockchain-based IoT applications. In: Hacid, H., Kao,
O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp.
133–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91431-8 9

16. Heiss, J., Eberhardt, J., Tai, S.: From oracles to trustworthy data on-chaining
systems. In: IEEE International Conference on Blockchain (2019)

17. Hyperledger Indy-SDK Repository: Indy walkthrough - a developer guide for build-
ing indy clients using libindy (2018). https://github.com/hyperledger/indy-sdk/
blob/master/docs/getting-started/indy-walkthrough.md

18. Hyperledger White Paper Working Group: An Introduction to Hyper-
ledger (2018). https://www.hyperledger.org/wp-content/uploads/2018/07/HL
Whitepaper IntroductiontoHyperledger.pdf

19. JOLOCOM: A decentralized, open source solution for digital identity and access
management (whitepaper) (2019). https://jolocom.io/wp-content/uploads/2019/
12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-
Identity-and-Access-Management.pdf

20. Klems, M., Eberhardt, J., Tai, S., Härtlein, S., Buchholz, S., Tidjani, A.: Trustless
intermediation in blockchain-based decentralized service marketplaces. In: Max-
imilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol.
10601, pp. 731–739. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69035-3 53

21. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

22. Muth, R., Eisenhut, K., Rabe, J., Tschorsch, F.: BBBlockchain: blockchain-based
participation in urban development. In: eScience. IEEE (2019)

23. Muth, R., Galal, T., Heiss, J., Tschorsch, F.: Towards smart contract-based verifi-
cation of anonymous credentials. Cryptology ePrint Archive (2022). https://eprint.
iacr.org/2022/492

24. Naik, N., Jenkins, P.: uPort open-source identity management system: an assess-
ment of self-sovereign identity and user-centric data platform built on blockchain.
In: International Symposium on Systems Engineering. IEEE (2020)

25. Peise, M., et al.: Blockchain-based local energy grids: advanced use cases and archi-
tectural considerations. In: IEEE 18th International Conference on Software Archi-
tecture Companion (2021)

26. Schanzenbach, M., Kilian, T., Schütte, J., Banse, C.: Zklaims: privacy-preserving
attribute-based credentials using non-interactive zero-knowledge techniques. In:
ICETE (2). SciTePress (2019)

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-91431-8_9
https://github.com/hyperledger/indy-sdk/blob/master/docs/getting-started/indy-walkthrough.md
https://github.com/hyperledger/indy-sdk/blob/master/docs/getting-started/indy-walkthrough.md
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://jolocom.io/wp-content/uploads/2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-Identity-and-Access-Management.pdf
https://jolocom.io/wp-content/uploads/2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-Identity-and-Access-Management.pdf
https://jolocom.io/wp-content/uploads/2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-Identity-and-Access-Management.pdf
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.1007/3-540-48184-2_32
https://eprint.iacr.org/2022/492
https://eprint.iacr.org/2022/492

368 J. Heiss et al.

27. Sharma, B., Halder, R., Singh, J.: Blockchain-based interoperable healthcare using
zero-knowledge proofs and proxy re-encryption. In: International Conference on
COMmunication Systems and NETworkS (COMSNETS) (2020)

28. Sporny, M., Longley, D., Chadwick, D.: Verifiable credentials data model v1.1
(2021). https://w3.org/TR/vc-data-model/

29. Vidal, F.R., Gouveia, F., Soares, C.: Revocation mechanisms for academic certifi-
cates stored on a blockchain. In: 15th Iberian Conference on Information Systems
and Technologies (CISTI) (2020)

30. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knotten-
belt, W.J.: SoK: Decentralized finance (DeFi). arXiv (2021). https://arxiv.org/
abs/2101.08778

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger, Berlin
(2021). https://github.com/ethereum/yellowpaper/tree/fabef25

32. Wu, K., Ma, Y., Huang, G., Liu, X.: A first look at blockchain-based decentralized
applications. Softw. Pract. Exp. (2021)

https://w3.org/TR/vc-data-model/
https://arxiv.org/abs/2101.08778
https://arxiv.org/abs/2101.08778
https://github.com/ethereum/yellowpaper/tree/fabef25

DeepThought : A Reputation
and Voting-Based Blockchain Oracle

Marco Di Gennaro1, Lorenzo Italiano1, Giovanni Meroni1,2,
and Giovanni Quattrocchi1(B)

1 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

marco1.digennaro@mail.polimi.it,
{lorenzo.italiano,giovanni.quattrocchi}@polimi.it

2 DTU Compute, Technical University of Denmark, Lyngby, Denmark
giom@dtu.dk

Abstract. Thanks to built-in immutability and persistence, the block-
chain is often seen as a promising technology to certify information. How-
ever, when the information does not originate from the blockchain itself,
its correctness cannot be taken for granted. To address this limitation,
blockchain oracles—services that validate external information before
storing it in a blockchain—were introduced. In particular, when the vali-
dation cannot be automated, oracles rely on humans that collaboratively
cross-check external information. In this paper, we present DeepThought ,
a distributed human-based oracle that combines voting and reputation
schemes. An empirical evaluation compares DeepThought with a state-of-
the-art solution and shows that our approach achieves greater resistance
to voters corruptions in different configurations.

Keywords: Blockchain oracles · Data certification services · Voting
mechanisms · Human-based services

1 Introduction

The Web 2.0 revolution made extremely easy for anyone to publish, search and
retrieve information [17]. As a consequence, organizations and individuals no
longer rely on specific sources of information, such as a news agency. Instead,
they typically rely on search engines and social media to collect information
which, in turn, they may publish after processing, or simply republish as-is.

However, this change of paradigm has also made extremely easy for inaccu-
rate, incorrect, and sometimes forged information to be spread. A clear example
of this issue is represented by the so-called “fake news” and their detrimental
effect they have on society. Thus, being able to easily track the provenance of
the information available on the Web and to certify its authenticity becomes
paramount. Also, to avoid potential conflicts of interests, and to minimize the
risk of corruption, the certification process should be carried out independently
by multiple subjects.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 369–383, 2022.
https://doi.org/10.1007/978-3-031-20984-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_26&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_26

370 M. D. Gennaro et al.

To this aim, blockchain-based services are seen as a good candidate.
Originally intended for exchanging cryptocurrency across untrusted entities,
blockchain technology evolved to also support the trusted execution of arbi-
trary code and the exchange of any data. In particular, the blockchain provides
immutability and persistence and, as reported by Gartner [9], it can be used to
track the provenance of information without a centralized authority that vali-
dates it. For example, projects such as ANSAcheck [12] and SocialTruth1 exploit
this mechanism to certify if a news article comes from an accredited news agency.
However, the blockchain alone cannot guarantee the authenticity of information
that is not natively created on-chain. Instead, it must be coupled with an oracle.

Oracles are services that link a blockchain with the outside world. In particu-
lar, they are responsible for providing off-chain data that can be trusted, that is,
they come from a reliable source [6]. A sub-class of such oracles is represented by
distributed and human-based ones, where humans manually check the authen-
ticity of off-chain information. These oracles are suited for checking information
that cannot be automatically verified, such as a news article. One of the most
famous oracles in this class is represented by ASTRAEA [1], which makes use
of voting to determine the outcome. Other approaches, such as Witnet [8], rely
on the reputation of the users. However, we are not aware of any approach that
combines both a voting scheme and the reputation.

In this paper, we present DeepThought , a protocol derived from ASTRAEA
that introduces the notion of reputation to increase the level of trust of the infor-
mation being provided. Compared to ASTRAEA, DeepThought makes use of a
different scheme to compute the voting outcome according to the reputation of
the voters. Also, DeepThought implements a different mechanism to reward hon-
est voters and to punish dishonest ones. DeepThought can be exploited by both
traditional and blockchain-based services to validate information. For example,
a news website can exploit DeepThought to publish only verified news. Based
on an empirical evaluation, DeepThought is more robust than ASTRAEA, and
makes the corruption of the voting game very difficult for dishonest users.

The rest of this paper is organized as follows: Sect. 2 provides some key back-
ground information, while Sect. 3 illustrates how DeepThought works. Section 4
presents the evaluation of DeepThought , Sect. 5 surveys the related work and
Sect. 6 concludes the paper.

2 Blockchain and Oracles

A blockchain is a distributed, immutable ledger, where transactions are secured
and verified using a completely decentralized peer-to-peer network [20]. Origi-
nally, blockchains were conceived to process monetary transactions without rely-
ing on a central trusted entity. Transactions are grouped inside blocks that are
created using a decentralized consensus algorithm (e.g., proof of work [16]). Each
block contains a digest (i.e., a hash) of the previous block, creating a crypto-
graphic chain of blocks that is very hard to be changed by malicious users.
1 See http://www.socialtruth.eu.

http://www.socialtruth.eu

DeepThought : A Reputation and Voting-Based Blockchain Oracle 371

Nowadays, multiple general-purpose blockchains (such as Ethereum [4]) exist.
Such blockchains allow users to write so-called smart contracts [18], computer
programs whose code and state are stored in the blockchain [19]. In this way,
developers can write “decentralized” applications that are transparent and secure,
such as ones dedicated to finance [7], supply chain [10], and collectibles [2].

Smart contracts are executed in an isolated and deterministic environment
and they cannot access information generated outside of the blockchain [6]. This
limitation is needed because, while data generated within the blockchain are
easily verifiable (i.e., they are the output of traced user transactions), off-chain
data are not and cannot be validated in an automated, general-purpose way.

To address this limitation, oracles were introduced. An oracle is essentially a
trusted service that connects smart contracts to the external world with validated
information [14]. This allows the implementation of richer blockchain applica-
tions that can access, for example, stock market fluctuations or news headlines.
Oracles can be implemented in different ways, ranging from ones that use only
off-chain components, to others that are built with smart contracts themselves.
In the first case, off-chain components obtain information in “traditional” ways,
such as by calling a web service, and post the data to the interested smart con-
tracts. In the second case, the information is validated by a smart contract (which
is part of the oracle) before being submitted to the contracts that requested it.

Oracles can be categorized using four criteria [3]: software vs hardware,
inbound vs outbound, human-based vs unmanned, and centralized vs decen-
tralized. Software oracles can query online sources of information such as web-
sites, web service APIs, and public databases to supply up-to-date information
to smart contracts. Hardware oracles, instead, have the goal to send information
measured from the physical world. For example, in supply chain management,
information about a container (e.g., its temperature and location) can be col-
lected by sensors and notified to a smart contract in charge of tracking goods.
Inbound oracles supply smart contracts with external data, whereas outbound
oracles allow smart contracts to interact with the outside world (e.g., opening a
smart lock). Human oracles rely on people with deep knowledge of the domain
of interest to manually verify the source of information (e.g., a news article) and
feed the smart contract with data. Conversely, Unmanned oracles process and
verify the information using rules and algorithms tailored for the given domain.

An oracle could be centralized or decentralized, depending on the number of
nodes that validate the information. Given that one of the major advantages
of the blockchain is to remove centralized parties, decentralized oracles are usu-
ally preferred to centralized ones [6]. However, since multiple parties have to
agree on the outcome, decentralized oracles introduce a consensus problem. In
the literature, two main approaches have been proposed to address this issue.
Reputation-based systems rely on information provided by parties with a differ-
ent reputation that measure their reliability. The reputation is usually increased
if the information provided is in line with the majority of the other parties, and
decreased otherwise. In voting-based systems, the parties vote on the correctness
of a piece of information (e.g., if the events discussed in a news article are real)

372 M. D. Gennaro et al.

by betting an amount of money. To incentivize honest behavior, if the vote is in
line with the majority, the user wins a reward. Otherwise, the initial bet is lost.

3 DeepThought

DeepThought is a decentralized blockchain oracle that allows users to validate
plain text statements (e.g., to discriminate if a piece of news is legit or fake) that
could be then used by other smart contracts in the blockchain. DeepThought is
the first oracle that combines a voting system derived from ASTRAEA with
users’ reputations to reward the most honest users and to reduce the risk of
corruption caused by adversarial users or lazy voters [13]. DeepThought is an
inbound, software oracle, and it is implemented2 as an Ethereum smart contract
written in Solidity. Finally, it is human-based because it is assumed that only
humans are able to vote rationally on the validity of a plain text statement.

3.1 Users and Phases

Figure 1 shows a high-level overview of DeepThought along with all the main
entities and interactions. In DeepThought there are three types of users.

Submitters are users that publish in the system so-called propositions. A
proposition is a plain text statement that must be verified through a voting-
based process by the other types of users. For example, a proposition could be
a piece of news that could be either legitimate or fake. To add a proposition to
the system, submitters must pay a so-called bounty, a fixed fee that will be used
to reward the most honest voters that participated in the verification process.

Voters are users that vote on randomly selected propositions. Voters must
vote TRUE if they think that the proposition contains a valid statement, or FALSE
otherwise. Before submitting a vote on proposition, each voter must stake (i.e.,
lock in the smart contract) an arbitrary amount of money as guarantee for their
honesty. After the voting process, if the vote of a voter matches the final outcome
and the voter results among the most honest users (more details in the following),
the staked amount is sent back to the user along with a reward, otherwise, it is
distributed to other users.

Certifiers are users in charge of certifying the outcome of the ballots. To do
so, as voters, they vote (either TRUE or FALSE) on the proposition, but unlike
voters, they can choose which proposition to work on. For each vote, they have
to stake an amount of money which will be returned (plus a reward) to the
certifiers only if the final outcome matches their vote.

For each proposition, the voting mechanism is organized in six main phases:
submission, staking, voting, certification, reveal, and closing. Beforehand, users
must subscribe to the system as either submitters, voters, or certifiers. When a
new user subscribes, its identifier (i.e., its blockchain address) is stored in the
DeepThought smart contract and its reputation is set to 1.

2 Source code available at https://github.com/deib-polimi/deepthought.

https://github.com/deib-polimi/deepthought

DeepThought : A Reputation and Voting-Based Blockchain Oracle 373

Proposition
Bounty

Proposition

Scoreboard

Voters
Reward Pool

Closed
Propositions
List

Available Propositions List

Submitter

Certifier

Voter

Stake

Random proposition

Response Tuple

Reveal vote

Reward

Stake

Select proposition

Response Tuple

Reward

Reveal vote

DeepThought
Smart Contract

2
3a
4a
5
6

1

2
3b
4b
5
6

Lost
Reward Pool

Fig. 1. DeepThought overview

Submission Phase. In this phase, a submitter submits a new proposition along
with a bounty (action 1 in Fig. 1). The proposition is added to the list of available
propositions, a data structure persisted by the DeepThought smart contract, and
becomes available for the voting phase.

Staking Phase. Before being able to a vote a proposition, each voter and
certifier must stake an arbitrary amount of money (action 2 in Fig. 1). That
amount will be regained along with a reward in case of honest and correct
votes. Voters must stake an amount s in the range (min_sv,max_sv) defined
when the oracle is deployed. Instead, certifiers stake an amount s′ in the range
(min_cv,max_cv) where min_cv > max_sv. In this way, certifiers always
stake more money than voters and they are incentivized to pick propositions
that they are experts on. The reward sent (eventually) to certifiers is higher
than the ones of voters (i.e., the higher the stake, the higher the risk, the higher
the reward). In the next phases, each vote is weighted proportionally to the stake
and the reputation of the user.

Voting Phase. Once the proposition is submitted, a set of N voters is randomly
selected to participate in the voting phase (action 3a in Fig. 1). Note that a voter
can be randomly selected multiple times for the same proposition and, in this
case, will be able to vote more than once. Being smart contracts deterministic by
design, pseudo-random functions are hard to be implemented with them. In our
prototype, we implemented a pseudo-random function that relies on the digest
of values that are very difficult, but not impossible, to be predicted. Such values
are the timestamp reported in the current blockchain block, and the identifier
of the node in the blockchain network that generated the current block.

When the proposition receives K votes, with K ≤ N , the voting phase is
concluded. To cast their vote, voters have to indicate the following two values.

– The actual vote, that is whether the proposition is TRUE or FALSE.
– A prediction value, which expresses the percentage of how much the voter

believes that the outcome will be TRUE. For example, if the voter is certain
that a news article is fake because he found some kind of evidence, he will
vote False and he will set the prediction value to 0%.

374 M. D. Gennaro et al.

Since transactions in most public blockchains are publicly available, if the
votes are stored on-chain in cleartext, malicious and lazy voters could see others’
votes and use them for their own interests. For example, they can decide to
vote as the majority to obtain a reward, a well-known issue called herd behavior
problem [21]. To avoid this problem, instead of storing the vote on-chain, a digest
(i.e., the result of a hashing function) is stored.

The digest of the vote is computed using the keccak256 hashing function.
Also, since a vote can only be TRUE or FALSE, it would be fairly easy for a
malicious user to compute all possible outcomes of the hashing function, compare
them with the digest of the vote, and then infer the input values. To avoid this
issue, the hashing function takes as input also a salt, which is an arbitrary value
selected by the voter and kept secret. The digest of the vote creates a so-called
response tuple (RT), that submitted to the smart contract (action 4a in Fig. 1)
and computed as follows:

RT = <kekkak256(TRUE|FALSE, prediction value, salt)> (1)

Certification Phase. After the proposition has been submitted, and in parallel
with the voting phase, certifiers can select the proposition (action 3b in Fig. 1)
submit their votes (action 4b in Fig. 1) without a prediction value. Their response
tuples are computed and stored in the DeepThought smart contract as follows:

RT = <kekkak256(TRUE|FALSE, salt)> (2)

The protocol allocates a fixed amount of time (measured in the number
of generated blockchain blocks within the smart contract) for the certification
phase, since certifiers can decide whether to vote or not vote for a given proposi-
tion. Consequently, not all the propositions are guaranteed to have a certification.

Reveal Phase. When the certification phase ends, voters and certifiers must
reveal their vote by submitting it to the smart contract (action 5 in Fig. 1)
along with the salt used for computing the digest, and, only for the voters, the
prediction value. To ensure that the revealed vote is consistent with the one cast
during the voting phase, its digest is computed and compared to the one stored
in the smart contract during the voting and certification phases.

Closing Phase. When all voters and certifiers reveal their vote, the proposition
is moved from the list of available propositions to the list of closed propositions
and its outcome is computed (either TRUE or FALSE or Unknown in case of a tie).
Moreover, as detailed in the following, DeepThought calculates a score for each
voter and creates a scoreboard that is used to reward (action 6 in Fig. 1) most
honest users. Then, according to the outcome of the proposition, the reputation
of each of all the users is updated. Being the votes revealed and stored in the
smart contract, any user can check the outcome of the proposition and the voting
process.

DeepThought : A Reputation and Voting-Based Blockchain Oracle 375

3.2 Proposition Outcome

In DeepThought , the reputation of voters and certifiers is key to compute the
outcome of the voting and certification phases. Intuitively, reputation is used to
privilege more reliable users that consistently vote correctly on past propositions.
For each voter and certifier, the user reputation r ranges between 1 and maxr,
which can be set during the first deployment of the DeepThought smart contract.

For each vote submitted by either a voter and a certifier, a vote weight f is
computed as follows:

f(s, r) = [α
√

s + (1 − α)s]
√

r (3)

where s is the stake submitted along with the vote and α is a value in the
range [0, 1] defined when the oracle is deployed. The vote weight is a sub-linear
function of the submitted stake. In this way, a single voter is prevented from
having dominant voting power [5] by using a larger stake. A value of α close to 1
is used to make the vote weight less dependent on the stake. Conversely, a value
of α close to 0 causes the weight to be almost linear with respect to s. Instead,
the reputation r scales sub-linearly. This does not affect the outcome between
two users with similar reputations, but a user with a high reputation (e.g., 100),
is much more significant (e.g., 10) with respect to a newly subscribed one.

Being f̄voters,TRUE the sum of the vote weight f of all the voters that voted
TRUE for a given proposition, and f̄voters,FALSE the sum of the vote weight f of all
the voters that voted FALSE, the voters outcome wvoters is computed as follows:

wvoters =

⎧
⎪⎨

⎪⎩

TRUE , f̄voters,TRUE > f̄voters,FALSE

FALSE , f̄voters,TRUE < f̄voters,FALSE

Unknown , f̄voters,TRUE = f̄voters,FALSE

The certifiers outcome wcertifiers is computed in the same way, by comparing
the sum of weights of TRUE and FALSE votes.

Table 1. Proposition outcome.

Outcome
wvoters wcertifiers

TRUE FALSE Unknown

TRUE TRUE Unknown TRUE

FALSE Unknown FALSE FALSE

Unknown Unknown Unknown Unknown

As shown in Table 1, the outcome of the proposition is computed from wvoters

and wcertifiers. If wvoters coincides with wcertifiers, the proposition outcome is
the same, otherwise, the outcome is Unknown. In case of the absence of certifiers,
or their disagreement, the oracle outcome will be exclusively decided by voters.

376 M. D. Gennaro et al.

Every time a proposition is closed, if the vote of a user matches the out-
come the reputation is increased by one, or decreased by one otherwise. Note
that a voter may vote multiple times on the same proposition. In this case, the
voter is assumed to have voted TRUE (overall) if his/her/their sum of TRUE votes
weight is greater than FALSE ones, or vice-versa. The reputation is then modified
accordingly.

In the case of an Unknown outcome, the reputation of the voters is not mod-
ified, while the reputation of the certifiers is decremented by one.

3.3 Reward

After the computation of the proposition outcome, rewards are submitted to
a subset of the voters and the certifiers. All the certifiers whose vote matches
the outcome of the proposition are rewarded. Voters, instead, are first evaluated
using a scoring mechanism, similar to the one reported in [5], and only the ones
with a high score are rewarded.

The total score of a voter is based on two different parts:

– Prediction Score: A score based on the prediction of the result the voter
submitted during the voting phase. RTi is the response tuple provided by the
voter i, while RTi′ is the response tuple submitted by a randomly selected
voter i′. PR is the prediction value (i.e., the percentage of how much the
voter believes that the outcome will be TRUE) and IR is the vote (either TRUE
or FALSE).

ui,PR = Rq(RTi.PR,RTi′ .IR)

Rq is a quadratic function, given q the prediction and w the outcome, the
result will given by:

Rq(q, w) =

{
2q − q2 , w = TRUE
1 − q2 , w = FALSE

– Information Score: Score based on the information given by the voter.

ui,IR =

{
1 − (P−i,1 − RTi.PR)2 , RTi.IR = TRUE
−(P−i,0 − RTi.PR)2 , RTi.IR = FALSE

P−i,q is the arithmetic mean (G) of all the RT.PR with q = RT.IR excluding
the voter i:

P−i,q = A(RTq − {RTi})
DeepThought uses the arithmetic mean, being the only feasible aggregation
mechanism that could be implemented in a smart contract in/with reasonable
time/cost.

The total score of each voter is computed as

ui = ui,PR + ui,IR

DeepThought : A Reputation and Voting-Based Blockchain Oracle 377

Each vote is inserted into a scoreboard that is stored in the smart contract.
Each vote is added to the scoreboard as soon as it is computed, using algorithm
in-order insertion in linear time. Given K voters, only the first K ∗ x voters in
the scoreboard will earn a reward with x in the range (0, 1). In our prototype,
we set x = 0.5, so that half of the voters are rewarded.

The reward of the voters is computed using function gv that, as f , depends
on the stake s and the reputation r, and it is computed as follows:

gv(s, r) = [βs2 + (1 − β)s]
√

r (4)

β is a value in the range [0, 1] and is used to control the impact of the stake in
the reward. The reward is a super-linear function with respect to s. On the one
hand, this may incentivize high stakes to obtain very high rewards. On the other
hand, the scoreboard acts as an opposite force, since only a subset of the voters
is rewarded. This also mitigates Sybil attacks, where an attacker tries to control
the outcome of the oracle by using multiple users [5]. The reward for voters is
taken from a so-called voters reward pool that includes the submitter’s bounty
and all the stakes collected from the voters. The reward is sent to voters starting
from the top of the scoreboard. If the funds in the voters reward pool are not
enough to reward all the x ∗ K voters, part of them (the lower ranked on the
scoreboard) are not rewarded. In the opposite case, when the voters reward pool
exceeds the rewards to be distributed, the remaining part is stored in another
pool called lost reward pool. This pool is shared among all the propositions, and
it is used to reward certifiers.

Differently from the voters, the reward for certifiers is always guaranteed if
the certification is done correctly (i.e., the vote matches the outcome). Otherwise,
their stake is lost and stored in the lost reward pool. All the winning certifiers
take back their stake and earn a portion (equal for all the certifiers) of the lost
reward pool.

Being P the length of available propositions, R the total amount of money
stored in the lost reward pool, and s̄c the sum of all the certifier stakes that
voted correctly on the given proposition, the reward gc of a certifier depends on
the submitted stake s and it is computed as follows:

gc(s) = s +
R

P + 1
∗ s

s̄c
(5)

In essence, if the certification is correct, the certifier gets back the stake s and
a portion of the lost reward pool that is proportional to the staked amount over
the certifiers’ total staking. By design, the lost reward pool cannot be empty
(apart from the very beginning when no proposition has ever been closed), since
in the formula its total amount is divided by P + 1.

4 Evaluation

Our evaluation focused on the reliability of a decentralized voting oracle, that
is, how difficult it is for malicious users to control the outcome of the voting.

378 M. D. Gennaro et al.

Therefore, our experiments aimed to show if and how much a voting-based oracle
extended with a reputation-based system could provide a lower level of corrupt-
ibility. In particular, we compared DeepThought to ASTRAEA, since the latter
was used as the baseline when implementing DeepThought .

4.1 Experiment Setup

Although the authors of ASTRAEA opted for an analytical evaluation to vali-
date their approach, we opted for an empirical evaluation and, consequently, we
implemented a working prototype of DeepThought . This decision was taken to
make easier for other researchers and practitioners to replicate the experiments,
as well as to further extend the approach.

To this end, we implemented ASTRAEA as an Ethereum smart contract writ-
ten in Solidity3. We run a set of experiments with different configurations using
both DeepThought implementation and the one developed for ASTRAEA. All
tests were performed using the Truffle Suite4 to simulate an Ethereum Blockchain
with 20 active users that interact with the protocol and to deploy the imple-
mented smart contracts.

To validate both ASTRAEA and DeepThought we run a total of 400 experi-
ments, with 10 different configurations and 20 repetitions for each approach. In
each configuration, we considered 20 users and 100 different propositions. Each
proposition, for the sake of simplicity, was set to have a correct answer equal to
TRUE, but we would have obtained the same results with randomized outcomes.
Moreover, we split the users into two parts: honest users and adversarial ones.
Honest users do not always vote in the correct way. Thus, in each configura-
tion, we varied both the percentage of adversarial users and the accuracy of
honest ones. As an example, if the adversarial users are the 25% of the total
and the honest users have an accuracy of 80%, this means that 75% of the users
will vote TRUE (correct answer) with a probability of 80%, while the remain-
ing 25% will always vote FALSE. These configurations are the ones used in the
original ASTRAEA evaluation. Thus, our empirical evaluation not only com-
pares DeepThought and ASTRAEA but also validates the analytical assessment
of ASTRAEA. In particular, we focused on the configurations that involved 20
voters, being more challenging to preserve the robustness of the system in these
cases. For the same reason, we also have added four new configurations, which
were not presented in the evaluation of ASTRAEA, with a higher adversarial
control.

All our tests were performed with a number of voters equals to 20, repli-
cating all specific sub-cases (accuracy equal to 80% and 95%, adversary control
equal to 0%, 5%, 25%, 35% and 45%. The four added configurations focus on
an adversarial control equals to 35% and 45% while the others were the ones
reported in the ASTRAEA evaluation.

3 Source code available at https://github.com/deib-polimi/deepthought/blob/main/
contracts/ASTRAEA.sol.

4 https://trufflesuite.com.

https://github.com/deib-polimi/deepthought/blob/main/contracts/ASTRAEA.sol
https://github.com/deib-polimi/deepthought/blob/main/contracts/ASTRAEA.sol
https://trufflesuite.com

DeepThought : A Reputation and Voting-Based Blockchain Oracle 379

Table 2. Results.

Configuration
V PR A ADV Approach C-SPEC C-ANY STD MIN MAX

#1 20 100 80 0 ASTRAEA 0.00 0.06 0.25 0 1
DeepThought 0.00 0.14 0.35 0 1

#2 20 100 80 5 ASTRAEA 0.00 0.26 0.63 0 3
DeepThought 0.00 0.30 0.55 0 2

#3 20 100 80 25 ASTRAEA 14.29 13.88 2.73 9 24
DeepThought 0.00 2.13 1.25 0 4

#4 20 100 80 35 ASTRAEA 35.00 36.40 4.12 31 46
DeepThought 8.00 5.28 3.00 1 13

#5 20 100 80 45 ASTRAEA 70.00 60.60 2.39 57 66
DeepThought 75.00 68.55 37.42 8 99

#6 20 100 95 0 ASTRAEA 0.00 0.00 0.00 0 0
DeepThought 0.00 0.00 0.00 0 0

#7 20 100 95 5 ASTRAEA 0.00 0.00 0.00 0 0
DeepThought 0.00 0.00 0.00 0 0

#8 20 100 95 25 ASTRAEA 8.00 2.40 1.35 0 5
DeepThought 0.00 0.00 0.00 0 0

#9 20 100 95 35 ASTRAEA 5.00 12.90 2.31 9 19
DeepThought 0.00 0.15 0.36 0 1

#10 20 100 95 45 ASTRAEA 35.00 37.70 2.74 32 45
DeepThought 5.00 1.15 1.08 0 3

4.2 Results

Table 2 shows the results obtained by DeepThought and ASTRAEA in the ten
tested configurations. If we compare the behavior of ASTRAEA with the assess-
ment reported in [1] (configurations #1, #2, #3, #6, #7 and #8), the results are
comparable except for some smaller deviations that could have been introduced
by statistical errors. In this way, we also made sure that our implementation of
ASTRAEA is correct.

For each configuration, the table shows the number of voters (V), the num-
ber of proposition (PR), the accuracy of voters (A, in percentage), the adver-
sarial control (ADV, in percentage), the percentage of times that a proposition
selected by an adversarial user was corrupted (C-SPEC), the average number
of corrupted propositions (C-ANY) along with the standard deviation (STD),
minimum (MIN), and maximum (MAX) values. It must be noted that we consid-
ered corrupted also the propositions whose outcomes were incorrect for mistakes
made by honest but inaccurate users.

In the configurations with ADV less than or equal to 25% DeepThought
obtained zero cases where C-SPEC is greater than 0. On contrary, ASTRAEA
obtained 14.29% and 8% in configurations #3 and #8 respectively where the

380 M. D. Gennaro et al.

Fig. 2. Corruptibility of a specific proposition (C-SPEC).

Fig. 3. Corruptibility of ANY proposition (C-ANY).

adversary control is equal to 25%. These data seem to indicate that DeepThought
is more robust compared to ASTRAEA thanks to the usage of reputation.

Configuration #1 and #2 show that ASTRAEA obtain a smaller amount of
corruptions on average compared to DeepThought . It must be noted that in these
configurations, the adversarial control is quite small, 0% and 5% respectively.
This shows that DeepThought is more sensible than ASTRAEA to the accuracy
of honest voters. Intuitively, if voters with a higher reputation make mistakes,
the chances of a wrong output are slightly higher compared to ASTRAEA. On
this note, it must be noted that in the experiment the accuracy is equal to all the
voters. However, in a real-world scenario voters with a higher reputation should
tend to make fewer mistakes compared to others and make DeepThought perform
better than ASTRAEA also in these cases. This behavior is also confirmed by
configurations #6 and #7 where the adversarial control is equal to #1 and #2
respectively and DeepThought obtains zero corruptions in all the repetitions.

Configurations #3 and #8 show a significant difference between the behavior
of DeepThought and ASTRAEA. These cases are quite challenging, since one-
fourth of the voters are adversarial. In these cases, DeepThought obtained only

DeepThought : A Reputation and Voting-Based Blockchain Oracle 381

2.13 and 0.0 corrupted propositions on average, compared to the much higher
data of ASTRAEA 13.88 and 2.4 respectively. These results clearly show the
benefit of DeepThought .

Configurations #4, and #9 show a huge difference between DeepThought
and ASTRAEA. In these newly introduced configurations, the adversarial control
reaches 35%. In configuration #4 DeepThought is able to keep C-SPEC as low as
8% and obtained 5.28 corrupted propositions on average, while in configuration
#5 (with a higher voters accuracy) the results are even lower with C-SPEC and
C-ANY equal to 0% and 0.15 respectively. On contrary, ASTRAEA shows a very
high level of corruptibility with C-SPEC and C-ANY equal to 35% and 36.40
in configuration #4 and 5% and 12.90 in configuration #5. A similar difference
is obtained in configuration #10 where the adversarial control is 45% and the
accuracy of voters is very high (95%). This shows how DeepThought is robust
also in very edge cases when almost half of the total of voters is dishonest.

When the adversarial control is very high (45%) and the accuracy is lower
(80%), the performance of our approach drops significantly (configuration #5).
In this case, both ASTRAEA and DeepThought are not able to keep the system
under control with a very high probability of corruption of a specific proposition
(> 70%) and more than 60 propositions corrupted on average. In this case, Deep-
Thought shows slightly worse results compared to ASTRAEA. Our approach is
more sensitive to the initial voting rounds, if honest voters outperform dishonest
ones the system remains under control (MIN equals 8) since honest voters accu-
mulate reputation. However, if dishonest voters are able to corrupt the initial
propositions, their reputation increases and the low accuracy of honest voters is
not enough to keep the system reliable (MAX equals 99). This behavior is also
captured by the very high standard deviation of DeepThought (37.42) compared
to ASTRAEA’s one (2.39).

Figures 2 and 3 help visualize the different behaviors of DeepThought and
ASTRAEA when the adversarial control increases. By combining a voting-based
approach with a reputation-based system, our solution is significantly more
robust than ASTRAEA in avoiding corruptions of specific propositions (Fig. 2)
and on average (Fig. 3) in almost all the cases.

5 Related Work

As already mentioned, one of the most successful voting-based oracles is rep-
resented by ASTRAEA [1]. Similarly to DeepThought , ASTRAEA also relies
on submitters, voters and certifiers. However, it relies on a different scheme to
determine the voting outcome and to compute the rewards. In particular, each
vote has the same weight, regardless of who cast it. Also, two pools, contain-
ing the bounty of all the voters and certifiers who voted, respectively TRUE and
FALSE, are used to compute the reward. However, these choices make ASTRAEA
not so robust to adversary control. Similarly, ASTRAEA can be subject to the
Verifier’s Dilemma, that is, users always voting and certifying with a constant
value in order to maximize their profit without expending any effort [13].

382 M. D. Gennaro et al.

To address these limitations, several extensions of ASTRAEA have been pro-
posed in the literature. Shintaku [11] removes the role of the certifier, leaving the
certification of the voting result to the voters themselves. To counter the Veri-
fier’s Dilemma, a voter has to answer a pair of randomly selected propositions,
instead of a single one. Voters are then eligible for rewards only if their votes for
the two propositions differ. However, this approach has been criticized in [15]
and [5] for being practically ineffective against lazy voting unless the penalties
for disagreement are at least twice as large as rewards for agreement. Moreover,
the honest voters are not incentivized because the payoffs are low.

Merlini et al. in [15] require a submitter to submit two antithetic proposi-
tions, posting a bond. Once votes are collected, the oracle checks whether the two
questions converged to different answers. Cai et al. in [5] introduce a non-linear
scoring scheme to weight the votes and compute the rewards. In particular, this
approach collects for each vote a binary information answer and a popularity
prediction. The oracle answer is determined by the majority of the information
answer, weighted by the associated stakes and adjusted by a sub-linear func-
tion. Then, the oracle assigns a score to each report based on the accuracy and
the degree of agreement with peers. Only the top-scored voters are awarded,
while the share of award is determined by their stake adjusted by a super-linear
function.

With respect to these approaches, DeepThought introduces the concept of
reputation, which is absent in all of them. The reputation is used to determine
the answer, the rewards and the penalties using a scoring scheme similar to [5].

Regarding reputation-based oracles, the most famous is Witnet [8]. This ora-
cle runs on its own native customized blockchain, which provides support for
smart contracts and relies on tokens named Wit. Miners, that are called wit-
nesses, can earn Wits by retrieving and validating external information to be
inserted into smart contracts. Witnesses contribute with their mining power,
which is mainly determined by their reputation. Similar to DeepThought , Wit-
net rewards the successful majority consensus witnesses, while penalizing the
contradicting witnesses. However, it does not have certifiers to counter-check
the outcome of voters.

6 Conclusions

In this paper, we presented DeepThought , a decentralized human-based oracle
that combines voting with reputation. CRDeepThought seeks to demonstrate
how a reputation-weighted voting system could decrease the probability of out-
come corruption compared to existing solutions available in the state-of-the-art
that only rely on simpler voting mechanism or only on users’ reputation. The
results of the empirical evaluation, carried out through the implementation of
two smart contracts, show that DeepThought presents a higher resistance to
adversary control than ASTRAEA, which relies only on a voting scheme. In the
future, we will implement other voting-based oracles available in the literature
and compare them with DeepThought . Moreover, we will extend our evaluation
with the assessment of a real-world use case and our reward mechanism.

DeepThought : A Reputation and Voting-Based Blockchain Oracle 383

References

1. Adler, J., et al.: ASTRAEA: a decentralized blockchain oracle. In: IEEE Interna-
tional Conference on Internet of Things, Green Computing and Communications,
Cyber-Physical and Social Computing, and Smart Data, pp. 1145–1152 (2018)

2. Ali, M., Bagui, S.: Introduction to NFTs: the future of digital collectibles. Int. J.
Adv. Comput. Sci. Appl. 12(10) (2021)

3. Bisola, P.: Blockchain oracles explained (2018). https://www.mycryptopedia.com/
blockchain-oracles-explained/

4. Buterin, V.: A next-generation smart contract and decentralized application plat-
form (2014)

5. Cai, Y., Fragkos, G., Tsiropoulou, E.-E., Veneris, A.G.: A truth-inducing sybil resis-
tant decentralized blockchain oracle. In: International Conference on Blockchain
Research and Applications for Innovative Networks and Services, pp. 128–135.
IEEE (2020)

6. Caldarelli, G.: Understanding the blockchain oracle problem: a call for action.
Information 11(11), 509 (2020)

7. Chen, Y., Bellavitis, C.: Blockchain disruption and decentralized finance: the rise
of decentralized business models. J. Bus. Ventur. Insights 13, e00151 (2020)

8. Crespo, A.S.d.P., Levi, D., García, L.I.C.: A decentralized oracle network protocol.
In: Witnet (2017)

9. Gartner: Top strategic predictions for 2020 and beyond (2019)
10. Helo, P., Hao, Y.: Blockchains in operations and supply chains: a model and ref-

erence implementation. Comput. Ind. Eng. 136, 242–251 (2019)
11. Kamiya, R.: Shintaku: an end-to-end-decentralized general-purpose blockchain ora-

cle system (2018)
12. Lacity, M.C.: Blockchain: from bitcoin to the internet of value and beyond. J. Inf.

Technol. 02683962221086300 (2022)
13. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-

sensus computer, pp. 706–719 (2015)
14. Mammadzada, K., Iqbal, M., Milani, F., García-Bañuelos, L., Matulevičius, R.:

Blockchain oracles: a framework for blockchain-based applications. In: Asatiani,
A., et al. (eds.) BPM 2020. LNBIP, vol. 393, pp. 19–34. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58779-6_2

15. Merlini, M., Veira, N., Berryhill, R., Veneris, A.G.: On public decentralized ledger
oracles via a paired-question protocol. In: International Conference on Blockchain
and Cryptocurrency, pp. 337–344. IEEE (2019)

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus.
Rev. 21260 (2008)

17. O’reilly, T.: What is web 2.0: design patterns and business models for the next
generation of software (2007)

18. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

19. Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., Wang, F.-Y.: Blockchain-enabled
smart contracts: architecture, applications, and future trends. IEEE Trans. Syst.
Man Cybern. Syst. 49(11), 2266–2277 (2019)

20. Wüst, K., Gervais, A.: Do you need a blockchain? In: Crypto Valley Conference
on Blockchain Technology, pp. 45–54. IEEE (2018)

21. Çelen, B., Kariv, S.: Distinguishing informational cascades from herd behavior in
the laboratory. Am. Econ. Rev. 94, 484–498 (2004)

https://www.mycryptopedia.com/blockchain-oracles-explained/
https://www.mycryptopedia.com/blockchain-oracles-explained/
https://doi.org/10.1007/978-3-030-58779-6_2

Blockchain-Oriented Services Computing
in Action: Insights from a User Study

Giovanni Quattrocchi1(B), Damian Andrew Tamburri2,3,
and Willem-Jan Van Den Heuvel3,4

1 Politecnico di Milano, Milan, Italy
giovanni.quattrocchi@polimi.it

2 Eindhoven University of Technology, Eindhoven, Netherlands
d.a.tamburri@tue.nl

3 Jheronimus Academy of Data Science, Den Bosch, Netherlands
W.J.A.M.v.d.Heuvel@jads.nl

4 Tilburg University, Tilburg, Netherlands

Abstract. Blockchain architectures promise disruptive innovation but
factually they pose many architectural restrictions to classical service-
based applications and show considerable design, implementation, and
operations overhead. Furthermore, the relation between such overheads
and user benefits is not clear yet. To shed light on the aforementioned
relations, a service-based blockchain architecture was designed and
deployed as part of a field study in real-life experimentation. An obser-
vational approach was then performed to elaborate on the technology-
acceptance of the service-based blockchain architecture in question. Evi-
dence shows that the resulting architecture is, in principle, not different
than other less complex equivalents; furthermore, the architectural lim-
itations posed by the blockchain-oriented design demand a significant
additional effort to be put onto even the simplest of functionalities. We
conclude that further research shall be invested in clarifying further the
design principles we learned as part of this study as well as any trade-offs
posed by blockchain-oriented service design and operation.

Keywords: Blockchain software · Service-oriented architectures ·
Technology acceptance · Case-study research

1 Introduction

Blockchain technology is heralded as a silver bullet for a wide range of prob-
lems, yet the stylistic restrictions posed on top of more classical service-oriented
architectures [14] that blockchain-oriented service design forces into the equation
limit the throughput and latency of blockchain transactions [16]. For example,
the Bitcoin network [12] can currently handle a maximum of 7 transactions
per second, although the Ethereum network [18] offers a relatively higher num-
ber of 15 transactions per second (tps); to date, this rate is not compatible to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 384–391, 2022.
https://doi.org/10.1007/978-3-031-20984-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_27&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_27

Blockchain-Oriented Services Computing in Action 385

the processing capacity of other networks such as VISA (2,000tps) and Twitter
(5,000tps). Creating a new block that is required to assure the safety of the net-
work requires 10 min which significantly slows down the time to complete one
transaction, resulting in low latency.

As such, the usability of blockchain designs may need further attention
than software designs following other architecture patterns [2]. More specifically,
we are interested in studying the extent to which the intrinsic limitations of
blockchain-oriented designs weigh on their perceived end-user effectiveness [19].
To look into blockchain usability from a design perspective, this article offers an
empirical invivo field study designed using the guidelines defined in the Technol-
ogy Acceptance Model (TAM) [1] and related frameworks [9]. First, we designed
and prototyped a blockchain-based service-oriented transactional architecture.
Second, we deployed and tested the architecture from the user perspective, by
interviewing its end-users as part of a controlled experiment.

The results indicate that end-users do perceive several advantages (i.e.,
good information and transactions transparency, ease-of-use as well as user-
friendliness) from using the blockchain but also that the blockchain imposes
a lock-in which even comes at a cost of +30% development times and efforts.
While the alternative transactive methods are perceived as no longer usable or
obsolete by users, service architects may have to evaluate the resulting trade-offs
a bit more carefully. Overall, these findings indicate a need to further understand
the process of designing for blockchain-oriented service engineering [18].

The practical implications are at least twofold: on one hand, blockchain limi-
tations need to be overcome with technical and design devices capable of address-
ing them, on the other hand, the risks of not involving end-users in the design
might lead to the undesired circumstances we report in the results section, e.g.,
the lock-in condition we reported from our user study.

The rest of this paper is structured as follows. First, Sect. 2 outlines the
related work. Beyond that, Sect. 3 outlines our research design, also providing a
birds-eye view of the architecture we designed and implemented as a field-study
device. Further on, Sect. 4 provides the enfield deployment and experimentation
over our blockchain-oriented prototype. Finally, Sect. 5 concludes the paper.

2 Related Work

Technology acceptance by end-users is a well-established concept, and has been
studied extensively in prior research [17]. One of the most used lenses to study
technology acceptance is the well-known Technology Acceptance Model (TAM)
[1]. Results from studies that employed the TAM suggest that when users are
presented with new technology, at least two factors influence their decision about
how and when they use it, namely: (1) perceived usefulness (PU)—defined by
Davis [3] as “the degree to which a person believes that using a particular system
would enhance his or her job performance”; (2) perceived ease-of-use (PEOU)—
defined by Davis [3] as “the degree to which a person believes that using a par-
ticular system would be free from effort”. In their variant DeLone and McLean

386 G. Quattrocchi et al.

[4] introduce two additional variables: (3) perceived information quality (PIQ)
and (4) user satisfaction. Although technology acceptance of the end-users of
various IS has been thoroughly studied, except for a study conducted by Folkin-
shteyn and Lenon [6], no research has been conducted to gauge users’ acceptance
of blockchain technology. Moreover, the study carried out by Folkinshteyn and
Lenon is limited to the use of the Bitcoin protocol and is based on literature
rather than capturing the perceived user perception in practice.

3 Research Design

The problem addressed in this paper reflects the shortage of information concern-
ing the user-acceptance of blockchain architectures. On one hand, such architec-
ture poses a considerable strain on designers given their constraints and archi-
tectural limitations [18]. On the other hand, the end-user benefits and, more
specifically, the technology acceptance [8] from such end-users is questionable at
best. With technology acceptance, we indicate the information systems’ archi-
tecture approach that focuses on establishing how users come to accept and use
a specific technological architecture.

Given its early stage of adoption, we aim to articulate the effect of blockchain
limitations to the above-mentioned dimensions of technology acceptance. More
specifically, we pose the research questions below:

RQ1 To what extent do blockchains enhance service application usefulness?
RQ2 To what extent is the blockchain transparent to direct service use?

With the above RQs, we aim at understanding the usefulness and trans-
parency of the blockchain design principles and restrictions; in so doing, we
prototype a blockchain transaction system and execute a field-study featuring
enfield questionnaires and web-surveys designed to evaluate usefulness as an
essential dimension of the study.

3.1 Blockchain Technology Acceptance: Field Study Design

As previously mentioned, to attain our research results we conducted a field
study using a enfield -deployed version of our research prototype. The prototype
in question was deployed as production-ready—meaning that the prototype was
in fully-working conditions and has been deployed in practice on several similar
occasions (e.g. other festivals). The field experiment followed the guidelines of
Singer et al. [11] and essentially involved: (1) end-use of the system in the con-
text of a real-life event involving the active use of the prototype; (2) follow-up
interviews featuring a web survey which followed a random sampling approach.

The data used for this research was collected during the pre-edition of a fes-
tival in the Netherlands1. The festival annually hosts 3000+ visitors and 200+
1 For more information about the festival the reader should visit: https://www.

welcometothevillage.nl.

https://www.welcometothevillage.nl
https://www.welcometothevillage.nl

Blockchain-Oriented Services Computing in Action 387

volunteers who co-organize the festival. The volunteers were all asked to partic-
ipate in this research in an opt-in fashion; the involvement in the context of this
study was featuring the use of our blockchain platform. The platform in question
allowed the participants of this research to (a) buy beverages using a token that
was created on the blockchain platform and converted from real cash; (b) buy
tokens with euros directly on the platform and upload them to their account
using a QR-code wristband; (c) finally, check their account balance. Users can
download a mobile app or surf an internet page to access the aforementioned
features.

The study involved a total of 48 randomly-sampled end-users with a mean
age of 23 (standard deviation of 4,37). The population involved a total of 23
male subjects and 18 female subjects. The population is skewed towards more
tech-savvy people with a ratio of 1:3. The respondents for this study were
administered a questionnaire consisting of 11 items to measure certain aspects
detailed in the following. All questions were addressed by the studied subjects
along a typical 5-factor Likert-scale [7] allowing for subsequent content analysis
[10]. For the sake of reference and replicability, the questionnaire is available
online2. All of the respondents filled in the survey albeit not completely.

The questions used for the survey (after the use of the platform was recorded)
were derived from [13], which were in turn based on the DeLone and McLean
model. Users Acceptance Testing questions are designed to evaluate the field
use of the proposed technology along the typical criteria defined for technology
acceptance, as defined previously in the prior sections.

1. Perceived information quality provided by the system (4 items), defined as
the extent to which the system provides the respondents with accurate infor-
mation, delivered in the format required by the users about their account
balance,

2. Perceived ease-of-use as a concept to measure the systems’ quality (1 item),
which can be referred to as the degree to which the SIS is easy to use when
making transactions to buy beverages and,

3. Perceived usefulness of the system, to gauge the perceived benefit of using the
system (4 items), which we define for this research as the degree to which the
user believes that the system caters to them in buying beverages, along with,

4. Perceived user satisfaction with regards to the architecture quality measured
by one item evaluating the users’ technical feedback on the architecture fea-
tures [5] they tried out during their experimentation.

To rule out rivaling explanations for the results of the study, we have included
two control variables in our model:

1. Utilization, defined as the degree to which a user is dependent on the IS
to carry out his or her tasks, has been included to rule out that the users’
perception of the system can be attributed to the fact that they cannot work
around the system. One item was included to measure this variable

2 https://tinyurl.com/ycha8282.

https://tinyurl.com/ycha8282

388 G. Quattrocchi et al.

Fig. 1. Architecture information and transactions quality, that is, the extent to which
the blockchain-oriented design is perceived as providing appropriate and useful transac-
tions information; the y-axis indicates likert-scale levels while x-axis indicates #respon-
dents.

2. Technology Savviness that is, questions designed to evaluate the users’ per-
ceived confidence with software technology along 5 evaluation criteria, namely,
Search Engines (confidence with information retrieval and storage), Social
Media (confidence with social networks, and online digital presence), Digi-
tal Content (confidence with knowledge-bases as well as general information
management with different document formats), Software Security (knowledge
and confidence against anti-viral, malware or other online security threats)
and Software Care (confidence with software repair);

The data we obtained in our end-user survey featured 48 timestamped
responses along a 5-dimensional Likert scale. To analyze available data, reg-
ular statistical modeling was adopted along with non-boosted logistic regres-
sion modeling. More specifically, in the scope of RQ1, namely, to what extent
do blockchains enhance information system usefulness?, we produced combined
Likert-scale responses to three specific questions. On one hand, we summed
results from two questions: (1) “the blockchain architecture offers me all the
information I require to perform my transaction”; (2) “the possibilities that the
blockchain platform offers to increase my balance are satisfactory”. Subsequently,
to avoid observer bias [15], we triangulated the two questions above with a control
question, namely, “the possibilities that the blockchain architecture offers to per-
form transactions are satisfactory”; thus, the sum obtained above was decreased
with the Likert-scale results from the above question. The results were plotted
using a bar chart and a logistic regression trendline was fitted with the data (see
Fig. 1).

Finally, in the scope of RQ2, namely, to what extent is the blockchain trans-
parent to direct use?, we computed Pearson’s product-moment correlation coeffi-
cient between the Likert-scale responses for question “making transactions using
the blockchain platform is easy and transparent.” and question “I am depen-

Blockchain-Oriented Services Computing in Action 389

Fig. 2. Information Quantity vs. Quality, that is, the extent to which the blockchain-
oriented design yields an appropriate quantity of information with respect to an appro-
priate quality of presented information—the data highlights a 78% overlap.

dent on the blockchain platform to perform my transactions.”—our research
assumption is that the significant correlation between the two responses indi-
cates a strong dependency on the blockchain platform to perform transactions
with respect to the regular transactional alternative.

4 Research Results

Figure 1 shows our results in the context of RQ1. More specifically, the figure
shows a linear trend with respect to responses concerning architectural informa-
tion and transaction quality within the blockchain-oriented design under study.
Although the trend pends slightly by about 3% towards a positive transactional
information quality, the data shows a rather inconclusive outcome with respect
to the extent that the presence of a blockchain-oriented design reinforces trans-
actions’ quality. Our data indicate that the trend seems positive but there is
little to no indication that the trend is connected to the blockchain and the
effect size we report is non-significant.

With respect to transactions information quality and quantity in the scope
of the blockchain-oriented design under study, Fig. 2 depicts a radial diagram to
capture the overlap in question. The figure shows a definitive overlap between
information quantity (dotted, smaller inner-line on the figure) and information
quality (continuous black line). The overlap rests around 78% indicating a con-
siderable perceived overlap between quality and quantity of information in the

390 G. Quattrocchi et al.

Fig. 3. perceived information transparency—the plot remarks the negative trend in
transparency (black-area in the box-plot) with respect to perceived lock-in (greayed-
out area in the box-plot).

context of performed transactions by the users in our study—this extent of over-
lap between information quantity and quantity suggests that the presence of the
blockchain underneath the implementation under study makes information and
transactional quality/usefulness more explicit.

In terms of transparency, the data shows a mild correlation of 0.39 (P-value
0.012312<<0.05) between the extent to which the transactions performed by
means of the proposed blockchain-oriented design are transparent and the extent
to which the user feels constrained to use the blockchain-oriented design only,
that is, instead of the classical transaction alternative. Concerning this apparent
lock-in phenomenon, Fig. 3 provides an overview of the compulsive mutual effect
size in the scope of the aforementioned lock-in.

The figure shows an increasing lock-in perception with a plateau around the
“considerable” value but with a consequent negative trend immediately after-
ward with a trade-off drop of 33%. This indicates that users perceive lock-in over
transparency.

5 Conclusions

Blockchain-oriented applications are increasingly picking up interest in the more
general audience both from the perspective of practice and academic research
inquiry. Little is known, however, over the extent to which blockchain-oriented
designs are perceived by their users.

Our study reported that i) blockchain-oriented designs support systems use-
fulness, and ii) the formation of a significant lock-in phenomenon wherefore
blockchain users seem to perceive transparency to the extent to which the
blockchain becomes a lock-in with respect to conventional transactions system.

Blockchain-Oriented Services Computing in Action 391

References

1. Bradley, J.: The technology acceptance model and other user acceptance theories.
IGI Global, Hershey, PA, USA (2009)

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Wiley, M., Stal, A.:
System of patterns - pattern oriented software architecture (1996)

3. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 13, 319–340 (1989)

4. Delone, W.H., McLean, E.R.: The DeLone and McLean model of information sys-
tems success: a ten-year update. J. Manage. Inf. Syst. 19(4), 9–30 (2003)

5. Dhungana, D.: Integrated variability modeling of features and architecture in soft-
ware product line engineering. In: ASE, pp. 327–330. IEEE (2006)

6. Folkinshteyn, D., Lennon, M.: Braving bitcoin: a technology acceptance model
(tam) analysis. J. Inf. Technol. Case Appl. Res. 18(4), 220–249 (2016)

7. Gil, M.A., Gonzalez-Rodriguez, G.: Fuzzy vs. likert scale in statistics. In: Trillas, E.,
Bonissone, P., Magdalena, L., Kacprzyk, J. (eds.) Combining Experimentation and
Theory. Studies in Fuzziness and Soft Computing, vol. 271, pp. 407–420. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-24666-1 27

8. Kakar,A.K.,: How do perceived enjoyment and perceived usefulness of a software
product interact over time to impact technology acceptance? Interact. Comput.
29(4), 467–480 (2017)

9. King, W., He, J.: A meta-analysis of the technology acceptance model. Inf. Manage.
43(6), 740–755 (2006)

10. Krippendorff, K.: Content Analysis: an Introduction to Its Methodology (second
edition). Sage Publications (2004)

11. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection
techniques for software field studies. Empir. Softw. Eng. 10, 311–341 (2005)

12. Lischke, M., Fabian, B.: Analyzing the bitcoin network: the first four years. Future
Internet 8(1), 7 (2016)

13. Rai, A., Lang, S.S., Welker R.B., Assessing the validity of is success models: an
empirical test and theoretical analysis. Inf. Syst. Res. 13(1), 50–69 (2002)

14. Richards, M.:Microservices vs. service-oriented architecture. Technical Report,
July (2016)

15. Simons, T.R., Pollock, K.H., Wettroth, J.M., Alldredge, M.W., Pacifici, K.,
Brewster, J.: Sources of measurement error, misclassification error, and bias in
auditory avian point count data. Environ. Ecol. Stat. 3, 237–254 (2009)

16. Swan, M.: Blockchain: blueprint for a new economy. O’Reilly Media, Inc. (2015)
17. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of infor-

mation technology: toward a unified view. MIS Quart. 27(3), 425–478 (2003)
18. Wessling, F., Gruhn, V.: Engineering software architectures of blockchain-oriented

applications. In: ICSA Companion, pp. 45–46. IEEE (2018)
19. Yli-Huumo, J., Ko, D., Choi, S., Park, S., Smolander, K.: Where is current research

on Blockchain technology? a systematic review. PLOS ONE 11(10), e0163477
(2016)

https://doi.org/10.1007/978-3-642-24666-1_27

IoT and Green Computing

Maximizing Consumer Satisfaction of IoT
Energy Services

Amani Abusafia(B), Athman Bouguettaya, and Abdallah Lakhdari

The University of Sydney, Sydney, NSW 2000, Australia
{amani.abusafia,athman.bouguettaya,abdallah.lakhdari}@sydney.edu.au

Abstract. We propose a novel Quality of Experience (QoE)-aware
framework to crowdsource IoT energy services efficiently. The proposed
framework leverages the provisioning of energy services as an auxiliary
to increase consumers’ satisfaction. A novel QoE model is developed
as a metric to assess the consumers’ satisfaction with the provisioning
of energy services. Two novel composition algorithms, namely, Partial-
Based (PB) and Demand-Based (DB) approaches, are proposed to ensure
the highest QoE for consumers. Both approaches leverage the providers’
flexibility and shareable nature of energy services to efficiently allocate
services and optimize the QoE. A set of extensive experiments is con-
ducted to evaluate the proposed approaches’ efficiency and effectiveness.

Keywords: Quality of experience · IoT services · Energy services ·
Energy sharing · Crowdsourcing · Incentive · IoT

1 Introduction

Internet of Things (IoT) is a paradigm that enables everyday objects (i.e.,
things) to connect to the internet and exchange data. IoT devices, such as
smartphones and wearables, usually have augmented capabilities including sens-
ing, networking, and processing [1]. Abstracting the capabilities of these IoT
devices using the service paradigm may yield to multitude of novel IoT services
[2]. These IoT services may be exchanged between IoT devices as crowdsourced
IoT services. For example, an IoT device may offer WiFi hotspots or wireless
energy services to charge other IoT devices [2]. These crowdsourced IoT services
present a convenient and cost-effective solutions [2]. Our focus is on wireless
energy sharing services among IoT devices.

Energy-as-a-Service (EaaS) is the abstraction of the wireless delivery of
energy among nearby IoT devices [2,3]. EaaS is an IoT service where energy
is delivered from an energy provider (e.g., a smart shoe or smartphone) to an
energy consumer (e.g., a smartphone) through wireless means. EaaS may be
deployed through the newly developed “Over-the-Air” wireless charging tech-
nologies [4,5]. Several companies, including Xiaomi1, Energous2, and ossia3, are
1 https://www.mi.com/.
2 https://energous.com/.
3 https://www.ossia.com/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 395–412, 2022.
https://doi.org/10.1007/978-3-031-20984-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_28&domain=pdf
https://www.mi.com/
https://energous.com/
https://www.ossia.com/
https://doi.org/10.1007/978-3-031-20984-0_28

396 A. Abusafia et al.

currently developing wireless charging technologies for IoT devices over a dis-
tance. For example, Energous developed a device that can charge up to 3 W
power within a 5-m distance.

The crowdsourced EaaS ecosystem is a dynamic environment that consists
of providers and consumers congregating in microcells. A microcell is any con-
fined area where people may gather (e.g., coffee shops). In this ecosystem, IoT
devices may share energy with nearby IoT devices. A key aspect to unlocking
the full potential of the EaaS ecosystem is to design an end-to-end Service Ori-
ented Architecture (SOA) to share crowdsourced energy. We identify three key
components of the SOA: energy service provider, energy service consumer, and
super-provider. In this architecture, providers advertise services, consumers sub-
mit requests, and super-provider (i.e., microcell’s owner) manage the exchange
of energy services between providers and consumers. This paper focuses on man-
aging energy sharing from the super-provider perspective.

Super-provider typically focus on ensuring that customers keep coming back
to their businesses. Their revenue is usually directly related to foot traffic [6].
Customer satisfaction is therefore paramount as a strategy to either maintain
or increase the business target revenue [7]. A key objective is to ensure that
customers have the best experience. We propose to use energy sharing as a key
ingredient to provide customers with the best quality of experience when visiting
the business. For example, a case study showed that “Sacred”, a cafe in London,
had a noticeable increase in foot traffic after installing wireless charging points4.

We define a Quality of Experience (QoE) metric to represent the level of sat-
isfaction across energy consumers over a period of time in a specific microcell.
Note that QoE is different from Quality of Service (QoS). QoE uses QoS as a base
to express satisfaction of a service over a period of time. QoE has traditionally
been used in domains that assess how users perceive a service [8–10]. Our pro-
posed environment requires the use of a different type of QoE. In particular, we
identify the following three aspects that shape the new QoE definition: (1) crowd-
sourced environment resources are usually limited and cannot fulfill all consumers’
requirements. Hence, assessing consumers’ satisfaction should consider the lim-
ited available resources. Energy services may be provided partially due to the lim-
ited resources and the shareable nature of energy services, e.g., a single service
may be split into smaller services and provided among multiple consumers. In a
limited resource environment, consumers’ experience with partial services differs
from complete services. (3) Consumers’ satisfaction with energy services will indi-
rectly impact their experience with the super-provider’s microcell. Therefore,our
research focuses on the super-provider’s perspective of QoE.

Assessing the QoE from a super-provider’s perspective usually entails mea-
suring the aggregated satisfaction of consumers over time. Consumer’s satisfac-
tion is defined as meeting or exceeding a set of expected service goals [11]. In
this context, we define consumer satisfaction as receiving the requested energy
or part of it. We focus on optimizing the QoE by efficiently provisioning and
fulfilling the consumers’ energy requirements.

4 https://www.air-charge.com/.

https://www.air-charge.com/

Maximizing Consumer Satisfaction of IoT Energy Services 397

Fig. 1. IoT energy services environment

The limited availability of energy is a key challenge that may hinder the
super-provider from optimizing the consumers’ QoE [2]. For instance, an energy
consumer might not find their requested energy at a certain time in the micro-
cell, resulting in an unsatisfying experience. In this context, using traditional
resource allocation algorithms may incur uneven energy sharing for some con-
sumers. Therefore, we propose a QoE-driven service provisioning framework to
satisfy energy consumers in a crowdsourced IoT environment. The framework
requires prior knowledge of providers’ temporal preferences and the microcell
energy demands. The proposed framework leverages the shareable nature of
energy services to split the energy between consumers if the required energy
is more than the available energy [3]. Intuitively, the super-provider may prefer
to offer part of the required services to all consumers than offering it to some of
them. Hence, we propose a heuristic Partial-Based (PB) approach which splits
services among consumers in the case of low energy availability. Another possible
solution is to leverage flexible providers that offer services on multiple time slots
by allocating their services to the most demanding slots. Intuitively, this may
ensure a better distribution of the available services. Therefore, we additionally
propose a heuristic Demand-Based (DB) approach. The DB approach extends
the PB approach by prioritizing the allocation of services based on the highest
demanding time slots. The main contributions of this paper are:

– A novel Quality of Experience (QoE) model for crowdsourced energy services.
– A framework for QoE-driven composition of IoT energy services.
– An experimental analysis with two implementations of the proposed QoE-

driven energy composition framework.

1.1 Motivating Scenario

We describe a scenario in a confined place (i.e., microcell) where people congre-
gate, e.g., cafes,and restaurants (see Fig. 1(A)). Each microcell may have several
IoT devices acting as energy providers or consumers (see Fig. 1(B)). The super-
provider aims to leverage the crowdsourced energy services as a tool to enhance

398 A. Abusafia et al.

the consumers’ experience. We assume all local energy services and requests are
submitted and managed at the edge, e.g., a router in the microcell (see Fig. 1(B)).
We assume that the super-provider offers incentives to encourage energy sharing
in the form of credits. These would be used to receive more energy when the
providers act as consumers in the future [2] We assume the super-provider has a
prior knowledge of the Microcell Energy Demand (MED) in the microcell over
a period of time (T) (see Fig. 2(A)). The MED may be estimated based on pre-
vious history [12]. The MED is represented in terms of the requested energy in
each time slot, e.g., 700 mAh at time slot t1. The granularity of the time slots
can also be estimated based on the previous history of the microcell [2].

Fig. 2. (A) Microcell energy demand and providers services (B) Greedy energy provi-
sioning approach

We also assume that the super-provider has prior knowledge of the providers
preferences in terms of time and energy service attributes. An incentive model is
employed to predict the amount of energy that would be available for consump-
tion [13]. For instance, provider 1 in Fig. 2(A) wants to offer the energy service S1
with 500 mAh at time t1. Another example, provider 2 wants to offer S2 at time
slots t1 , t2, or t3. We assume the provider would stay for the full-time slot. We
also assume that the provider’s service amount is fixed and can be split among
multiple time slots. For instance, provider 2 may share part of their service S2
on t1, e.g., 300 mAh, and the other part at t2 or t3. We also assume a single
energy provider may share their spare energy with multiple energy consumers,
within a specific time interval. The super-provider uses rewards to encourage
providers to share energy. Rewards may come in the form of stored credits to
providers. A provider receives a reward based on an incentive model [13].

The super-provider will allocate services to time slots to serve as many
consumers as possible to maximize their quality of experience in the micro-
cell. However, it is challenging to fulfill multiple energy requirements with lim-
ited energy services [2]. For example, in Fig. 2(A), the total energy demand
(
∑

R) is 3200 mAh, and the total available energy services (
∑

S) is 2300
mAh. The available services may fulfill 71.9% of the energy requests which can-
not be fully provisioned with the temporal constrains of services and requests.

Maximizing Consumer Satisfaction of IoT Energy Services 399

Therefore, satisfying all consumers with their under-provisioned requests is more
challenging.

Figure 2(B) presents the outcome of a greedy FCFS, i.e., first come first
served, allocation strategy for the available energy [14]. In greedy, the time slots
and services will be scheduled based on their start time. For instance, in Fig. 2(A)
even though S2 can be offered in t1, t2 and t3, S1 will be allocated to t1 because
it comes first in terms of time. The greedy strategy does not leverage the share-
able nature of energy services or the providers’ flexibility which may affect the
energy allocation efficiency and impact the consumers’ experience. Therefore, the
greedy strategy may not be a good fit in this context. For example, in Fig. 2(B),
the greedy-based approach could only fulfill 1300 mAh from the total demand
which is equivalent to 40.6%. Moreover, the total number of consumers (

∑
C) in

Fig. 2(A) is 14 and the greedy approach could offer energy to 7 consumers which
is equivalent to 50%. In this context, we consider the size of fulfilled requests
and the number of fulfilled consumers in assessing the quality of experience. In
this example, using the greedy approach resulted in 45.3% of consumers’ QoE.

Allocating the limited available energy with the time constraints of both
services and requests represents critical challenges for efficient and QoE-aware
provisioning of IoT energy services. We propose a framework that will compose
the energy services to maximize the consumers’ experience. Our framework lever-
ages leverage the providers’ flexibility and shareable nature of energy services to
efficiently allocate services and optimize the QoE.

2 Preliminaries

We consider the scenario of energy sharing in a microcell M during a time
interval T. T is divided into a set of {t1, ..., tn} where ti is a predefined time
period, e.g., one hour. We use the below definitions to formalize the problem.

Definition 1: Energy-as-a-Service (EaaS). We adopt the definition of EaaS
in [3]. An energy service (EaaS) is a tuple of < Eid, Epid, F,Q >, where Eid is
an energy service ID, Epid is a provider ID, F is the function of sharing wireless
energy, Q is a set of non-functional (QoS) attributes, including:

– pae is the amount of energy shared by the provider.
– ploc is the location of the energy provider < x, y >.
– pt is the set of time intervals < ts, te > a provider may offer their energy.

Definition 2: Energy Service Request (ER). We adopt the definition of
ER in [13]. An ER is a tuple of < Eid, Ecid, F,QR >, where ERid is an energy
request ID, Ecid is a consumer ID, F is the function of receiving energy wirelessly
by an IoT device, QR is a set of non-functional attributes, including:

– cre is the amount of requested energy.
– cloc is the location of the energy consumer < x, y >.
– ct is the time interval < ts, te > of requiring energy.

400 A. Abusafia et al.

Definition 3: Microcell Energy Demand MED. MED is the total amount
of requested energy during a time interval T (See Fig. 2). T is divided into
time slots. We define MED by aggregating the amount of required energy per
time slot. Therefore, the definition of MED = {t1, t2, ..., tn} where t is a tuple
of < d, rwd, re, nc,ER >. Here d is a predefined time in the time interval of
the microcell T , e.g., [9:00 AM -10:00 AM]. rwd is the reward of providing the
required energy re. We compute rwd using the incentive model proposed by [13].
We assume that the super-provider will use the microcell history to compute the
energy demand in advance. nc is the number of consumers in the microcell at
time slot t. ER is the set of available requests in the microcell at time slot t.

Definition 4: Quality of Experience (QoE). QoE is defined as an objec-
tive function to measure consumers’ satisfaction with energy provisioning in a
microcell M within a predefined time interval T . The function definition is:

QoE(M) = F (T, ES,MED) (1)

where ES is the set of energy services and MED is the microcell energy demand.

2.1 Problem Definition

Given a set of n energy services ES = {EaaS1, EaaS2,, EaaSn} and a set of
m energy requests ER = {ER1, ER2,, ERm} in a microcell M . The super-
provider advertise the microcell energy demand MED. Energy providers register
their services in terms of: (1) the amount of energy pae (2) the time slots ti to offer
their services. The super-provider uses the providers preferences to allocate their
services to time slots. The allocation approach aims at fulfilling the maximum
number of requests and thereby maximize the QoE. We formulate the service
composition problem to a time-constrained optimization problem as follows:

– Maximize QoE(M) = F (T, ES,MED),

Subject to:

– ti.re > 0 for each ti ∈ T ,
– EaaSj .Pt ⊂ ti.d for each EaaSj ∈ ES.

Where Pt is the time interval < ts, te > a provider of EaaSj may offer their
energy, ti.d is the duration of a time slot i in the time interval of the microcell
T , and ti.re is the required energy re at time slot i.

The goal of the composition is to efficiently allocate the available energy
services to time slots. The objective function attempts to optimally assign energy
services according to their spatio-temporal features, providers’ preferences and
required energy in time slots. The spatial aspect in energy service focuses on
a geographical cell. The temporal aspect focuses on the times of energy service
provisioning.

Maximizing Consumer Satisfaction of IoT Energy Services 401

We use the following assumptions to formulate the problem.

– Providers energy size is fixed during composition.
– Providers are available in all their selected time slots.
– Providers may offer partial services to multiple consumers at the same time.
– Consumers’ time windows do not overlap with time slots.
– Providers and consumers have fixed location during energy sharing.
– The microcell has multiple providers and multiple consumers.
– There is no energy loss in sharing. As the technology matures, we anticipate

that the devices will be able to share more energy, and the energy loss of
sharing will become minimal [2].

– The exact amount of required energy for a microcell is given [15].
– A reward system is used to incentivize providers to offer their service [13].
– A trust framework is used to preserve the privacy of the IoT devices [16].

3 Quality of Experience Model

The Quality of Experience (QoE) in a microcell is measured based on the num-
ber of satisfied consumers and the amount of fulfilled requests. Recall, the time
interval of the microcell is divided into time slots. Therefore, QoE for each time
slot ti will be computed using the following attributes:

– Satisfaction Ratio: We define the Satisfaction Ratio (SR) as the number
of consumers who received their requested energy or part of it. We compute
SR per time slot t as follows:

SR =
|{ER ∈ ER | ER is completed & ct ∈ d}|

|ER| (2)

Where ER is the set of all requests in time slot t, |.| is the cardinality of the
set, ct is the request time, and d is the time duration of t.

– Fulfillment Ratio: The satisfaction ratio is not enough to measure QoE.
For example, if we have a set of energy requests in mAh ER = {10, 20, 20,
70}, serving the first 3 consumers is not equal to serving the last 3 due to
the different amount of requested energy. Therefore, We define the Fulfill-
ment Ratio (FR) based on the percentage of fulfillment for each request. We
compute FR per time slot t as follows:

FR =
n∑

i=1

(

wi × Received Energyi
Requested Energyi

)

(3)

where n is the number of all energy requests in t, and wi is the weight of the
request over the total amount of requested energy in t.

402 A. Abusafia et al.

Fig. 3. Quality of experience driven service composition framework

Quality of Experience: As previously stated, We define the QoE in a microcell
based on the satisfaction ratio SR and fulfillment ratio FR of each time slot t.
Therefore, we compute the QoE(M) as the following:

QoE(M) = α ×
(

m∑

i=1

SRi × βi

)

+ (1 − α) ×
(

m∑

i=1

FRi × γi

)

(4)

where m is the number of time slots in the microcell’s time interval T . SRi is
the satisfaction ratio of a time slot computed by Eq. 2. βi is the weight of a time
slot ti which is its number of consumers over the total number of consumers in
T . FRi is the ratio of fulfillment of the time slot computed by Eq. 3. γi is the
weight of a time slot ti which is its total required energy over the total amount of
required energy in T . α is a user-defined weight between zero and one to define
the weight of SRi and FRi in QoE.

4 Quality of Experience Framework

We introduce a quality of experience composition framework for managing
energy services to enhance consumers’ QoE (See Fig. 3). The framework is
divided into three phases: (1) Microcell energy advertisement, (2) Composing
energy services, and (3) Quality of experience assessment. In the first phase, the
super-provider will advertise the energy demand of the microcell and receives
providers’ preferences. In the second phase, the super-provider will compose
energy services to maximize the QoE. In the last phase, the super-provider will
assess the QoE for the resulted composition.

4.1 Microcell Energy Demand Advertisement

In this phase, the super-provider computes the reward for each time slot based
on the amount of required energy using the incentive model in [13]. Then, the
system will announce the required energy and rewards for the whole microcell
using Definition 3. Energy providers will register based on their preferences in
terms of their energy amount and the time slots they will be available (See
Fig. 2).

Maximizing Consumer Satisfaction of IoT Energy Services 403

Algorithm 1. Partial-Based Composition of Services
Input: MED, ES, threshold
Output: energy comp
1: for ti in MED do
2: selectedES = {}
3: demand = ti.re
4: for esj in ti.ES do
5: if demand > 0 then
6: demand = demand - esj .pae
7: energy comp.add(ti, esj)
8: selectedES.add(esj)
9: if demand < 0 then

10: esj .pae =demand * -1
11: demand = 0
12: else
13: Remove Service(esj ,MED)

14: if demand = 0 then
15: Assign Energy(ti.ER, selectedES)
16: else
17: Assign Partial Energy(ti.ER, selectedES, nc, threshold)

18: return energy comp

4.2 Energy Services Composition

This phase aims to compose energy services to maximize the QoE. We propose
two heuristic approaches to compose energy services: Partial-Based (PB) and
Demand-Based (DB). The PB composition is inspired by the FCFS resource
allocation algorithm [14]. The PB approach, splits services among consumers if
the required energy is more than the available energy. Intuitively, offering part
of the services will satisfy more consumers than offering it to some of them.
The DB composition is inspired by the priority allocation algorithm [14]. The
DB approach extends the PB approach by prioritizing slots with the highest
demanding to ensure services availability. We discuss each approach below.

Partial-Based Energy Services Composition. The Partial-Based (PB)
composition aims at maximizing the QoE by composing services for each time
slot based on the first come first served approach. For example, if a provider
offers their services on two-time slots, the algorithm will assign the service for
the earlier time slot. If the time slot did not need the service, the service will
be assigned to the next time slot. Moreover, PB chunks services between energy
consumers if the available energy services are not enough to fulfill the total
required energy in the time slot. Intuitively, offering part of the required services
to all consumers is more satisfying than offering it only to some of them.

Algorithm 1 presents the PB service composition. For every time slot ti,
the algorithm retrieves the total required amount of energy (Line 3). Then, for

404 A. Abusafia et al.

Algorithm 2. Demand-Based Composition of Services
Input: MED, ES, threshold
Output: energy comp
1: SMED = sort(MED, nc : descending, re : descending)
2: for ti in SMED do
3: selectedES = {}
4: demand = ti.re;
5: sortedES = sort(ti.ES, nt : ascending)
6: for esj in sortedES do
7: if demand > 0 then
8: demand = demand - esj .pae
9: energy comp.add(ti, esj)

10: selectedES.add(esj)
11: if demand < 0 then
12: esj .pae =demand * -1
13: demand = 0
14: else
15: Remove Service(esj ,SMED)

16: if demand = 0 then
17: Assign Energy(ti.ER, selectedES)
18: else
19: Assign Partial Energy(ti.ER, selectedES, nc, threshold)

20: return energy comp

each registered service es in t, the algorithm keeps adding services to the set of
selected services until the required energy is fulfilled or all the available services
have been selected (Lines 4 - 13). Note that if a service was partially needed, then
the service available amount will be updated to be used by other registered time
slots (Lines 9 - 11). Moreover, if a service was fully used by a time slot, then it
will be removed from other registered time slots (Lines 12 - 13). After processing
all services, if the energy demand of the slot is zero, the algorithm assigns the
selected services to requests (Lines 14 - 15). If the energy demand is not fulfilled,
the algorithm distributes the available services among available requests (Line
17). If the service chunks are smaller than the threshold, consumers will be
removed and the service will be shared among the rest. The threshold prevents
dividing services into small neglectable chunks. The composition of the selected
services will be returned in Line 18.

Demand-Based Energy Services Composition. The Demand-Based (DB)
composition goal is to maximize QoE by giving priority to time slots with higher
energy demand. The intuitive idea of the DB approach is that high-demanding
time slots will require more services. Thus, services should be assigned to them
prior to less demanding time slots which may ensure a better distribution of
the available services. For instance, if a provider offers their service on two-time
slots, the algorithm will assign the service to the more demanding time slot.

Maximizing Consumer Satisfaction of IoT Energy Services 405

If that time slot does not need the service, the service will be assigned to the
next time slot. This indicates that the order of time slots in composing services
matters because if a service is used in a time slot, it will be removed from
others. Removing a service from a time slot may affect the amount of available
energy and thus the number of served and satisfied consumers. Moreover, DB
approach maximizes the QoE by chunking services between energy consumers if
the available services are not enough.

Algorithm 2 presents the DB service composition. The algorithm starts by
sorting the time slots in a descending order based on the number of consumers nc,
then the amount of requested energy re (Line 1). The goal of sorting is to start
composing services for the most demanding time slots. As some services may be
registered in multiple services, using these services for the most demanding time
slots may offer a better experience. Line 4 retrieves the total required amount
of energy for each time slot ti. Then, for every time slot, the registered services
will be sorted in ascending order based on the number of time slots a service was
registered in. This sort will allow us to start with the least connected services. In
other words, using such services may impact less number of time slots than using
services that are registered in many time slots. Then, for each registered service
es in t, the algorithm keeps adding services to the set of selected services until the
required energy is fulfilled or all the available services have been selected (Lines
6 - 15). Similar to the PB approach, if a service was partially needed, then the
service available amount will be updated to be used by other registered time
slots (Lines 11 - 13). Moreover, if a service was fully used by a time slot, then it
will be removed from other registered time slots (Lines 14 - 15). After processing
all services, if the energy demand of the slot is zero, the algorithm assigns the
selected services to requests (Lines 16 - 17). If the energy demand is not fulfilled,
the algorithm distributes the available services among available requests (Line
19). If the service chunks are smaller than the threshold, consumers will be
removed and the service will be shared among the rest. The threshold prevents
dividing services into small neglectable chunks. Line 20 returns the composition
of the selected services.

4.3 Assessing Quality of Experience

The super-provider assesses the QoE of each proposed composition in this phase.
The QoE is computed using the model discussed in Sect. 3. The assessment of
QoE gives an indicator of consumers’ satisfaction in the microcell.

5 Evaluation

We compare the proposed composition approaches, Partial-Based composition
(PB), and Demand-Based Composition (DB), with the resource allocation algo-
rithms, namely, first come first served allocation (Greedy), and Max-Min Fair
allocation (Max-Min) [2,14]. The Greedy approach is a modified FCFS algorithm
where the time slots and services will be scheduled based on their start time.

406 A. Abusafia et al.

The Max-Min is a modified Max-Min Fair allocation where services that can
be offered in multiple time slots will be split among these time slots using the
a Max-Min technique. We evaluate the effectiveness and the efficiency of each
approach.

5.1 Dataset Description

We used a real dataset generated from the developed app in [17]. The dataset
consists of energy transfer records between a provider (smartphone) and a con-
sumer (smartphone). The records attributes are the provider ID, consumer ID,
transaction date, time, energy services’ and requests’ amount, and transfer dura-
tion. We use the energy dataset to generate the QoS parameters for the energy
services and requests. For instance, the amount of a wireless charging transfer
in mAh is used to define the amount of requested/provided energy. In addition,
the energy dataset records of a wireless charging transfer duration are used to
define the end time of each request/service.

Table 1. Experiments Variables

Variables Value

Energy dataset for coffee shop 8 in April 16830

Number of services & requests [300–2000]/run

Number of time slots 6

Provided energy 5–100%

Requested energy 5–100%

Time interval 6 h

Service registration [1–3] time slots/service Fig. 4. The average of satisfac-
tion ratio

We augmented the dataset of the energy sharing to mimic the behavior of the
crowd within microcells by utilizing a dataset published by IBM for a coffee shop
chain with three branches in New York city5. The dataset consists of transaction
records of customers purchases in each coffee shop for one month. Each coffee
shop consists of, on average, 560 transnational records per day and 16,500 trans-
action record in total. We use the IBM dataset to simulate the spatio-temporal
features of energy services and requests. Our experiment uses the consumer ID,
transaction date, time, location, and coffee shop ID from each record in the
dataset to define the spatio-temporal features of energy services and requests,
e.g., start and location of energy service or a request. We ran a total of 7000
experiments with 6-time slots each time slot was an hour long. In each run,
the providers’ temporal provision preferences were registered randomly to [1–3]
time slots. In addition, the number of services and requests varied between 300
to 2000 per run depending on the experiments’ setting. For each run, we used the
proposed approaches to compose energy services. We then measured the QoE
for each composition. Table 1 presents the experiments parameters.
5 https://ibm.co/2O7IvxJ.

https://ibm.co/2O7IvxJ

Maximizing Consumer Satisfaction of IoT Energy Services 407

5.2 Evaluation of the Composition Framework

We ran six experiments to determine the effectiveness and efficiency of the pro-
posed approaches. The experiments evaluated the approaches in terms of their
satisfaction rate, fulfillment rate, quality of experience, impact of thresholds and
computation cost. We run the approaches in different settings by changing the
ratio of services to requests in the time interval T . We gradually increased the
ratio from 15% to 90%. We repeated the experiment 1000 times at each point
and considered the average value for each approach.

Quality of Experience Evaluation. As previously stated, we compute the
QoE based on SR and FR (See Sect. 3). In this subsection, we study the impact
of each ratio, then we evaluate the QoE.

The first experiment compares the SR of the proposed approaches PB and
DB, against Greedy and Max-Min. As previously stated, SR represents the num-
ber of consumers who received energy fully or partially. Therefore, a high SR
of a composition ensures a higher number of satisfied consumers and thereby a
better QoE. The SR of a time slot is computed using Eq. 2 and then averaged
for the microcell similar to the first part of Eq. 4. Figure 4 presents the average
SR in the microcell for each approach. The x-axis in Figs. 4, 5, 6 and 7 repre-
sents the ratio of the number of energy services to requests. In Fig. 4, the SR
increases when the number of available services increases for all the composi-
tion approaches. For instance, when the ratio of services to requests is 80%, all
approaches provide a higher SR compared to the ratio is 20%. This observation
can be explained by the availability of services to offer energy. The more services
available, the more requests can be fulfilled. The proposed approach PB performs
better than Greedy as it splits the available energy between the consumers as
partial services, unlike the Greedy approach which fulfills a request fully before
serving the next request. For the same reason PB also performs better than Max-
Min. Even though, Max-Min has a better energy utilization by splitting energy
services fairly between time slots (See Fig. 5), a fair distribution of energy does
not necessarily result in equally satisfied consumers as in the time slots. This is
due to the different energy requirements of consumers. In addition, the proposed

Fig. 5. The average of energy utilization Fig. 6. The average of fulfillment ratio

408 A. Abusafia et al.

approach DB gives the best results as it prioritizes the time slots that have the
highest demand in terms of the number of consumers and amount of required
energy. Recall the order of time slots in composing services is crucial because
if a service is used in a time slot, it will be removed from others. Removing a
service from a time slot may affect the amount of available energy and thus the
number of served consumers. Prioritizing the most demanding time slots allows
DB to have more services to use, and therefore increases SR by increasing the
number of fulfilled consumers.

The second experiment compares the FR of each approach. As previously
stated, FR presents the rate of fulfillment for each request. Therefore, a high
FR of a composition ensures a higher level of satisfaction for consumers and
thereby a better QoE. The FR of a time slot is computed using Eq. 3 and then
averaged for the microcell similar to the second part of Eq. 4. Figure 6 represents
the average FR in the microcell for each approach. In Fig. 6, the FR increases
when the number of available services increases for all the approaches. This
observation can be explained by the availability of services to offer energy. PB
performs similar to Greedy in terms of FR. This is an expected behaviour since
both approaches start with the same time slots and, therefore, have the same
set of available services. The difference between both approaches is in the way
they share energy among consumers, i.e., complete services in Greedy and partial
services in PB. Moreover, Max-Min has a better FR because it has better energy
utilization (see Fig. 5). A higher energy utilization is achieved by splitting energy
services fairly between time slots. DB gives the best results as it prioritizes the
time slots that have the highest demand as discussed in the previous experiment.

The third experiment compares the QoE using all approaches. As previ-
ously stated, the QoE presents the overall satisfaction of consumers across time.
Therefore, a high QoE of a composition indicates a higher level of satisfaction
for consumers. The QoE is computed using Eq. 4. Note that we used α = 0.5 to
give equal weight for both SR and FR. Figure 7 presents the average QoE using
each approach. In Fig. 7, similar to the previous experiments, the QoE increases
when the availability of services increase. PB approach performs better than
Greedy in terms of QoE due to its higher SR as discussed in the first experiment.

Fig. 7. The average of quality of experi-
ence

Fig. 8. The average of {QoE,SR,FR}
using PB composition

Maximizing Consumer Satisfaction of IoT Energy Services 409

Fig. 9. The average of QoE using PB
composition with various thresholds in a
microcell

Fig. 10. The average execution time of
all composition

Additionally, PB preforms better than Max-Min when the number of energy ser-
vices is less than the request. This is because in a limited resources environment
PB will satisfy more consumers (higher SR) by partially fulfilling their requests.
However, when there is enough services, Max-Min will better utilize the energy
to completely fulfill requests (higher FR). Moreover, the DB approach gives the
best results due to its higher SR and FR.

Threshold Impact Evaluation. The following two experiments study the
impact of thresholds on the PB approach. Recall that PB and DB approaches
split energy between consumers based on a defined threshold. The threshold
prevents dividing services into small neglectable chunks. The experiments of
both PB and DB gave the same behavior. Thus, we are only presenting the
results of PB.

Figure 8 represents the impact of the threshold on the three previously tested
attributes: SR, FR, and QoE. We tested the PB approach with a 99% ratio
of services to requests. The x-axis in Fig. 8 represents the threshold of partial
services. FR does not change as the threshold increases, because it relies on
the order of time slots and not the size of distribution (threshold) as discussed
in the previous experiment. Also, both SR and QoE decrease as the threshold
increases due to the thresholds’ size. When the threshold’s size increases, fewer
consumers will be served. A lower number of fulfilled consumers results in low
SR and thereby a low QoE.

The fifth experiment compares the impact of the threshold on the QoE with
different ratios of services to requests. We tested the PB approach with thresh-
olds of {10, 30, 50, 70, 90}. In Fig. 9, the QoE increases when the number of
available services increases for all threshold values. Additionally, the QoE for
threshold 10 is the highest among all due to the threshold’s size. When the size
of the threshold is small, more consumers will be served. A higher number of
fulfilled consumers results in high SR and thereby a high QoE.

410 A. Abusafia et al.

Computation Efficiency Evaluation. The execution time for all approaches
increases with the increase in services’ availability (See Fig. 10). This is due to
the increase in processing time to assign these services.

6 Related Work

Energy sharing services have been introduced as an alternative ubiquitous solu-
tion to charge IoT devices [18]. Several studies have addressed challenges related
to fulfilling the requirements of energy consumers [3,16,19]. A temporal compo-
sition algorithm was proposed to compose energy services to fulfill a consumer’s
energy requirement [3]. The algorithm proposed the use of fractional knapsack to
maximize the provided energy. An elastic composition was proposed to address
the reliability of highly fluctuating energy providers [16]. The composition uses
the concepts of soft and hard deadlines to extend the stay of a consumer and
select more reliable services. The intermittent behavior of energy services was
addressed by a fluid approach [19]. The approach uses the mobility patterns
of the crowd to predict the intermittent disconnections in energy services then
replace or tolerate theses disconnections. Other studies tackled challenges from a
provider’s perspective [13,20]. An context-aware incentive model was proposed to
address the resistance in providing energy services [13]. Another article addresses
the commitment of energy consumers to receive their initiated requests [20].
Existing literature in energy services addresses issues from a consumer or a
provider perspective [18]. To the best of our knowledge, challenges related to the
microcell perspective such as the QoE are yet to be addressed.

Quality of experience (QoE) has several definitions in the literature based on
the field of research [8,21,22]. However, all existing definitions focus on assess-
ing the quality of an application or a service based on the perception of the
end-users. In addition, most of the literature focuses on assessing the QoE for
multimedia applications. For instance, A method was proposed to gauge gam-
ing QoE under system influencing factors such as delay, packet loss, and frame
rates [23]. Another study proposed “Kaleidoscope” as an automated solution to
evaluate Web features [10]. As previously stated, the existing research focuses on
assessing the QoE of a service based on the perception of the end-users. To the
best of our knowledge, assessing the QoE in energy services is not explored yet. In
addition, using energy services as a tool to enhance QoE in other microcell-based
services is yet to be addressed.

7 Conclusion

We proposed an energy service composition framework that evaluates QoE in a
microcell. A new QoE based-assessment was proposed to capture the overall sat-
isfaction across consumers over a period of time. A two QoE-driven composition
of energy service were proposed. The Partial-Based (PB) approach uses partial
services to maximize the number of satisfied consumers and thereby increase the
QoE. The Demand-Based (DB) approach uses partial services and prioritizes

Maximizing Consumer Satisfaction of IoT Energy Services 411

the most demanding time slots to maximize the number of satisfied consumers
and their level of fulfillment and thereby increase the QoE. Experimental results
show that DB outperforms all the evaluated approaches. The efficiency of the
proposed approaches was investigated against a Greedy approach. Future direc-
tion is to consider the probability of change in the microcell energy demand.

Acknowledgment. This research was partly made possible by LE220100078 and
LE180100158 grants from the Australian Research Council. The statements made
herein are solely the responsibility of the authors.

References

1. Whitmore, A., Agarwal, A., Da Li, X.: The internet of things-a survey of topics
and trends. Inf. Syst. Front. 17(2), 261–274 (2015)

2. Lakhdari, A., Bouguettaya, A.: Fairness-aware crowdsourcing of IoT energy ser-
vices. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021.
LNCS, vol. 13121, pp. 351–367. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-91431-8 22

3. Lakhdari, A., Bouguettaya, A., Neiat, A.G.: Crowdsourcing energy as a service. In:
Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp.
342–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 24

4. Lakhdari, A., et al.: Composing energy services in a crowdsourced IoT environment.
IEEE TSC (2020)

5. Dolcourt, J.: Over-the-air wireless charging will come to smartphones (2019)
6. Muller, C.C., Woods, R.H.: An expanded restaurant typology. Cornell Hotel

Restaurant Adm. Quart. 35(3), 27–37 (1994)
7. Chao, T., et al.: C-flow: visualizing foot traffic and profit data to make informative

decisions. Technical Report, University of Maryland (2013)
8. Fizza, K., et al.: QoE in IoT: a vision, survey and future directions. Discover

Internet Things 1(1), 1–14 (2021)
9. Möller, S., Raake, A. (eds.): Quality of Experience. TSTS, Springer, Cham (2014).

https://doi.org/10.1007/978-3-319-02681-7
10. Wang, P., et al.: Kaleidoscope: a crowdsourcing testing tool for web quality of

experience. In: ICDCS, pp. 1971–1982. IEEE (2019)
11. Farris, P.W., et al.: Marketing metrics: the definitive guide to measuring marketing

performance. Pearson Education (2010)
12. Lakhdari, A., Bouguettaya, A.: Proactive composition of mobile IoT energy ser-

vices. In: ICWS, pp. 192–197. IEEE (2021)
13. Abusafia, A., Bouguettaya, A., Mistry, S.: Incentive-based selection and composi-

tion of IoT energy services. In: IEEE SCC, pp. 304–311. IEEE (2020)
14. Kruse, R., et al.: Data structures and program design in C. Pearson (2007)
15. Huang, K., et al.: Predicting mobile application usage using contextual information.

In: Ubiquitous Computing, pp. 1059–1065 (2012)
16. Lakhdari, A., et al.: Elastic composition of crowdsourced IoT energy services. In:

MobiQuitous, pp. 308–317 (2020)
17. Yao, J., et al.: Wireless IoT energy sharing platform. In: PerCom, pp. 118–120.

IEEE (2022)
18. Lakhdari, A., et al.: Crowdsharing wireless energy services. In: IEEE CIC, pp.

18–24. IEEE (2020)

https://doi.org/10.1007/978-3-030-91431-8_22
https://doi.org/10.1007/978-3-030-91431-8_22
https://doi.org/10.1007/978-3-030-03596-9_24
https://doi.org/10.1007/978-3-319-02681-7

412 A. Abusafia et al.

19. Lakhdari, A., Bouguettaya, A.: Fluid composition of intermittent IoT energy ser-
vices. In: SCC, pp. 329–336. IEEE (2020)

20. Abusafia, A., Bouguettaya, A.: Reliability model for incentive-driven IoT energy
services. In: MobiQuitous, pp. 196–205 (2020)

21. Gong, Y., et al.: Model-based approach to measuring quality of experience. In:
International Conference on Emerging Network Intelligence, pp. 29–32. IEEE
(2009)

22. Abusafia, A., et al.: Quality of experience optimization in IoT energy services. In:
ICWS. IEEE (2022)

23. Schmidt, S., et al.: Assessing interactive gaming quality of experience using a
crowdsourcing approach. In: QoMEX, pp. 1–6. IEEE (2020)

A Multi-task Learning Approach
for Predicting Intentions Using Smart

Home IoT Services

Bing Huang1, Boyu Zhang2(B), Quan Z. Sheng3, and Kwok-Yan Lam1

1 Nanyang Technological University, Singapore, Singapore
{bing.huang,kwokyan.lam}@ntu.edu.sg

2 Swinburne University of Technology, Melbourne, Australia
boyuzhang@swin.edu.au

3 Macquarie University, Sydney, Australia
michael.sheng@mq.edu.au

Abstract. We propose a novel approach for predicting a resident’s
future intentions in terms of what, how, when, and where he will do next.
The intention model is learned from his previous interactions with vari-
ous types of IoT services. In particular, we propose a multi-task learning
approach for predicting resident’s future intention. The multi-task learn-
ing approach jointly learns the tasks of what, how, when, and where to
boost the overall performance of the four tasks. We demonstrate the effec-
tiveness and performance of our approach by conducting experiments on
real-world datasets.

Keywords: IoT service · Multi-task learning · Intention · Activity
prediction · Smart home

1 Introduction

Over the decades, the Internet is evolving from interconnecting computers to
the current interconnection of people, and the rising interconnection of billions
of things [8]. Things on the Internet are referred to as IoT services [1,3]. The
proliferation of IoT services brings many opportunities to smart homes. A smart
home is any regular home that is equipped with various types of IoT services
[7]. A resident performs daily activities such as “making coffee” by interacting
with different IoT services. The ultimate goal of the smart home is to make
residents’ home life to be more convenient, efficient, and enjoyable by automating
repetitive and cumbersome interactions with IoT services [4]. In this regard, the
smart home system should be capable of understanding a resident’s potential
needs and responding proactively at the right time and in the right place. To
empower such high-level intelligence in smart homes, a key task is to predict
residents’ future intentions. A resident’s future intention can be loosely defined
as what activity he/she is going to perform, how he/she performs the activity,
and when and where he/she will perform the activity. Specifically, the what, how,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 413–421, 2022.
https://doi.org/10.1007/978-3-031-20984-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_29&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_29

414 B. Huang et al.

when, and where perspectives describe the category of the activity, a sequence
of actions, the time information, and the location information of the activity,
respectively. For example, a resident will make coffee at 8am in the kitchen by
interacting with the fridge and the coffee maker. “Making coffee”, “8am”, “in the
kitchen” and “< fridge, coffee maker >” are the corresponding “what”, “when”,
“where” and “how” aspects of the resident’s intention.

It is challenging to learn the intention model because it has four aspects
including what (activity category), how (action), when (time), and where (loca-
tion) regarding an activity. The four aspects are inter-dependent because a res-
ident has the habit of performing an activity at a particular time and in a
particular location by interacting with a collection of IoT services. We propose
a novel multi-task learning approach to predict a resident’s future intention by
analyzing his/her previous interactions with IoT services. Our approach con-
siders the latent inter-dependency between what, how, when, and where aspects
of an activity and jointly train the four tasks. Our intention forecasting model
can serve as a core component in an intelligent control system for anticipating
future IoT services and automating these services for residents. To the best of
our knowledge, there is not much research on predicting residents’ intentions in
smart homes. In a nutshell, the key contribution is a new approach of learning
the intention model from the history of residents’ interactions with IoT services.

2 Intention Model

We first introduce the notion of IoT service based on its functionalities and
qualities [2]. Then we introduce the intention model that captures the spatio-
temporal regularities of activities. Finally, we formalize the research problem.

Definition 1: IoT Service. An IoT service si is defined as a tuple si =<
id, F,Q > where:

• id is a unique IoT service identifier.
• F = {f1, f2, ..., fn} is a set of functionalities offered by the IoT service.
• Q = {q1, q2, ..., qm} is a set of qualities of the IoT service.

Definition 2: IoT Service Event. An IoT service event ei describes an exe-
cution of an IoT service si at a time stamp ti and in the location li. It is denoted
as ei =< sid, ti, li >. For example, the light L100 is turned on at 2pm in the
bedroom can be represented as “< L100, ON, 2pm, bedroom >”.

Definition 3: IoT Service Event Sequence. An IoT service event sequence
E is a set of IoT service events that are ordered by time stamps.

Definition 4: Intention. An intention is an occurrence of an activity. It
describes what, how, when, and where the activity is performed. It is represented
as a tuple Ini =< id, labi, ai, [ts, te], loci > where:

A Multi-task Learning Approach for Predicting Intentions 415

– id is a unique identifier of the Ini.
– labi is an activity label associated with the intention. It corresponds to the
what perspective.

– ai is a sequence of IoT services involved in the activity. It corresponds to the
how aspect of the intention.

– [ts, te] is the temporal aspect (i.e., corresponding to the when aspect) of the
intention. It describes the start time ts and end time te of the activity.

– loci is the spatial aspect (i.e., corresponding to the where aspect) of the
intention. It describes the location of the activity.

Problem Formulation. Given an IoT service event sequence E, our goal is to
learn an intention model In such that it can predict the next intention.

3 Multi-task Learning Approach

We propose a novel multi-task recurrent neural network approach for predict-
ing the intentions in terms of what, how, when, and where aspects. Our choice
of LSTM-based multi-task learning approach is based on two reasons. First, the
tasks of predicting what(activity), how(action), when(time) and where(location)
are highly inter-dependent. Multi-task learning is a promising paradigm to lever-
age useful information contained in multiple related tasks to improve the perfor-
mance of the new relevant task [10]. Second, each aspect of the intention exhibits
sequential patterns. Specifically, the resident performs a series of activities from
time to time and she may travel from one place to another. Each activity con-
stitutes a sequence of actions. Long-short term memory (LSTM) is a promising
approach to capture such sequential patterns [6].

The detailed architecture of the LSTM-based multi-task learning model is
shown in Fig. 1. The architecture has two main components including the LSTM
layer and the task-specific layer. The LSTM layer is a share-bottom multitask
structure for capturing the sequential patterns of the four tasks (i.e., the four
tasks refer to predicting activity category, predicting action, predicting time,
and predicting location.). The task-specific layers are fully-connected layers for
predicting the four tasks.

Suppose we have an IoT service event sequence E = {< a1, e1, t1, l1 >,<
a2, e2, t2, l2 > ... < an, en, tn, ln >}. For each event ei =< ai, ei, ti, li >, we con-
vert ai, ei, ti, and li to vectors using one-hot encoding technique and concatenate
them as the input xi to the model:

xi = concat(ai, ei, ti, li) (1)

In time step i, the LSTM cell takes xi and the last hidden state hi−1 as inputs
and generates the next hidden state hi. The hidden state hi is used as input to
the next time step of LSTM cell. It also serves as an input to the later task-
specific layers. The hi is computed by Eq. (2):

hi = LSTM(xi, hi−1) (2)

416 B. Huang et al.

Fig. 1. The architecture of the multi-task model for learning intentions

We concatenate all the hidden states {hi}ni=1 into a vector ch by Eq. (3). We
use the vector ch as the input to the task-specific layers fca, fce, fct, fcl for
predicting the activity yan+1 , action yen+1 , time ytn+1 and location yln+1 at time
step n + 1 by Eqs. (4)-(7).

ch = concat({hi}ni=1) (3)

fca(ch) = wa · ch + ba (4)

fce(ch) = we · ch + be (5)

fct(ch) = wt · ch + bt (6)

fcl(ch) = wl · ch + bl (7)

where wa, we, wt, and wl are weights and ba, be, bt, and bl are bias terms.
We define the four tasks as classification tasks and define the loss functions

as below by using the cross-entropy loss.

La = CrossEntropy(ŷan+1 , yan+1) (8)

Le = CrossEntropy(ŷen+1 , yen+1) (9)

Lt = CrossEntropy(ŷtn+1 , ytn+1) (10)

Ll = CrossEntropy(ŷln+1 , yln+1) (11)

where ŷan+1 , ŷen+1 , ŷtn+1 and ŷln+1 are the one-hot encoded ground truth of
activity, action, time, and location at time step n + 1, respectively.

A Multi-task Learning Approach for Predicting Intentions 417

Finally, we linearly combine the loss functions as the overall loss function L.

L = λaLa + λeLe + λtLt + λlLl (12)

where λa, λe, λt, λl are the hyper-parameters to control the importance across
activity, action, time, and location prediction. To avoid tedious optimal param-
eters searching for λa, λe, λt and λl, we set them as 1 and use the MetaBalance
technique [5] to automatically balance the gradients of four loss in the same mag-
nitude to prevent some tasks from being too strong that dominate the learning
process or too weak to contribute to the learning process. In the backward pro-
cess, the gradients of the four losses, ΔLa, ΔLe, ΔLt and ΔLl w are used to update
the parameters of their corresponding task-specific layers and jointly update the
parameters of the shared LSTM layer. In this way, the task-specific information
are shared across different tasks which contributes to improve the generalization.

4 Experimental Results

We evaluate our approach using three real-world datasets, namely, Data1, Data2,
and Data3. The three datasets are summarized in Table 1. Both Data1 and
Data2 are collected from smart home environments1. They are in the format
of <date, time stamp, sensor ID, on/off> (e.g., <2008–02-27, 12:46:37, M13,
OFF>). Data3 is collected from an old person’s (i.e., subject 2) apartment for
17 days [9]. The Data3 is in the format of <id, start time, end time, location>
(e.g., <light,7:00, 8:00, bedroom>)).

Table 1. Summary of real-world datasets

ID No. of activity
categories

No. of
sensors

No. of
locations

No. of
events

Data1 5 25 2 6,424

Data2 8 47 4 8,147

Data3 23 70 9 3,501

For the time information in the three datasets, we divide each day into 24 time
slots. In this regard, the granularity of the time aspect is the hour. For example,
<L100-ON, 7:10am, bedroom> is converted into <L100-ON, 7, bedroom>. Each
dataset is divided into training (70%) and testing(30%) portions. The detailed
hyperparameter settings are shown in Table 2. We use a sliding window with
12 steps size in the model training and testing processes. We choose the Adam
optimizer for the Gradient descent algorithm. We set the learning rate ε, batch
size α, and epoch number β to be 0.001, 32, and 100, respectively. As mentioned
earlier, we set all the hyper-parameters λa, λe, λt, λl as 1 to guarantee the equal
importance of the four tasks.
1 http://casas.wsu.edu/datasets/.

http://casas.wsu.edu/datasets/

418 B. Huang et al.

Table 2. Hyperparameter settings for model training

Hyperparameters Values

Window size (w) 12

Gradient descent algorithm (G) Adam

Learning rate (ε) 0.001

Batch size (α) 32

Epoch number (β) 100

< λa, λe, λt, λl > < 1, 1, 1, 1 >

We evaluate the performance of our proposed approach using four metrics
including accuracy, precision, recall and f1 score. Since predicting activities,
events, time, and locations are all multi-class classification tasks, we use macro
average precision, recall and f1 score to calculate the overall metrics. In our case
of simultaneously predicting multiple tasks, we treat it as multi-class classifi-
cation and each unique combination of multiple task labels will be treated as
one class. We conduct three sets of experiments on Data1, Data2, and Data3
to evaluate the performance of our model in predicting a single task, two-joint
tasks, and four-joint tasks, respectively.

(activity, action, time, location->activity)

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1
Data1
Data2
Data3

(activity, action, time, location->action)

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1
Data1
Data2
Data3

(activity, action, time, location->location)

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1
Data1
Data2
Data3

(activity, action, time, location->time)

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1 Data1
Data2
Data3

(b)(a)

(c) (d)

Fig. 2. Performance of predicting each individual task

Experiment I: Performance of Predicting Each Individual Task. We
examine the performance of our model in predicting each aspect of the intention
at a time. The model is trained using four aspects of the intention (i.e., what,

A Multi-task Learning Approach for Predicting Intentions 419

how, when, where). The experimental results of predicting the single aspect of
what (activity), how (action), when (time), and where (location) are shown in
Figs. 2(a), (b), (c), (d), respectively. Specifically, Fig. 2(a) shows the average
accuracy, precision, recall, f1 score in predicting the next activity category for
Data1, Data2, and Data3. Our approach performs well in predicting the next
activity category on all datasets. In particular, it performs the best on Data1,
followed by Data2, and the least on Data3. For the three datasets, our approach
achieves an average score of more than 90% in accuracy, precision, recall, and
f1 score. For example, when Data1 is used, our approach’s accuracy, precision,
recall, and f1 score are 98.04%, 97.53%, 97.29%, and 97.40%, respectively. Our
approach also performs well in predicting the when aspect of the intention as
shown in Fig. 2(d). The score of accuracy, precision, recall, and f1 score for the
three datasets is higher than 80%. The overall performance of our approach on
Data2 is the best, with higher than 95% scores in accuracy, precision, recall,
and f1 score. Figure 2(c) depicts the performance of predicting the where aspect
of the intention. We can see that our approach performs the best on Data1
with 95.20% accuracy, 93.33% precision, 94.47% recall, and 93.88% f1 score.
It achieves the lowest scores of accuracy (83.88%), precision (57.37%), recall
(54.73%), and f1 score (55.89%) on Data3. Figure 2(b) shows the performance
of predicting the how aspect of the intention on the three datasets. The score
of accuracy, precision, recall, and f1 for the three datasets ranges from 20% to
40%. Our approach achieves higher precision, recall, and f1 score on Data3 than
that of Data1 and Data2 and achieves lower accuracy than that of Data1.

[activity, action, time, location->(activity,time)]

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1
Data1
Data2
Data3

[activity, action, time, location->(activity,location)]

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1
Data1
Data2
Data3

[activity, action, time, location->(activity,action)]

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1
Data1
Data2
Data3

[activity, action, time, location->(activity,action,time,location)]

Accuracy Precision Recall F1 score
0

0.2

0.4

0.6

0.8

1
Data1
Data2
Data3

(i) (ii)

(iii) (iv)

Fig. 3. Performance of predicting joint tasks

420 B. Huang et al.

Experiment II: Performance of Predicting Two-Joint Tasks. We study
the performance of our approach in predicting two-joint tasks at a time. In
particular, we evaluate the following two-joint tasks: (i) [activity, action, time,
location -> activity, time] (i.e., given a sequence of new events, what type of
activity a resident will do next and when he will do it.), (ii) [activity, action, time,
location -> activity, location] (i.e., given a sequence of new events, what type of
activity a resident will do next and where he will do it.), and (iii) [activity, action,
time, location -> activity, action] (i.e., given a sequence of new events, what type
of activity a resident will do next, and how he will do it.). The experimental
results for (i), (ii), and (iii) are shown in Fig. 3(i), (ii), and (iii), respectively. It
can be seen that the overall performance of jointly predicting activity and time
(Fig. 3(i)) is much better than that of jointly predicting activity and its location
or action (Fig. 3(ii) and (iii)). For example, the scores of accuracy, precision,
recall, and f1 for Data1 and Data2 are higher than 96%, which is an expected
result. This result can be inferred from Fig. 2(a) and (d) which demonstrates
the high performance of our approach in predicting respective activity and time.
For the performance of jointly predicting activity and location, our approach
performs better on Data1, achieving 93.29% accuracy, 74.23% precision, 77.11%
recall, and 75.33% f1 score as shown in Fig. 3(ii). The task (iii) achieves the
score of accuracy, precision, recall, and f1 ranging from 15% to 40% for the three
datasets. It is obvious that the performance of the task (iii) is no better than
that of the task (i) and (ii). The reason is that the feature space of action is
larger than that of activity, time, and location.

Experiment III: Performance of Predicting Four-Joint Tasks. We con-
duct the third set of experiments to assess the performance of our approach in
predicting the four-joint task (iv): [activity, action, time, location -> (activity,
action, time, location)]. The experimental results are shown in Fig. 3(iv). The
score of accuracy, precision, recall, and f1 for the three datasets falls between 15%
and 40%. For example, the accuracy scores for Data1, Data2, Data3 are respec-
tive 46.62%, 28.78%, and 33.41%. It can be seen that the overall performance of
our approach on Data1 outperforms that of Data2 and Data3.

5 Conclusion and Future Work

We addressed the problem of predicting a resident’s future intention in terms of
what, how, when, and where aspects of activities. We proposed a multi-task learn-
ing approach for predicting future intentions. The experimental results on real-
world datasets demonstrate the performance of our proposed approach under
different complexity of tasks. In the future, we plan to further improve the per-
formance of predicting the intention. We will also use the intention model to
explain IoT services’ network behavior.

A Multi-task Learning Approach for Predicting Intentions 421

Acknowledgements. This research is supported by the Cyber Security Agency of
Singapore (CSA), under its repertoire of initiatives leveraging on research institutes
and think-tanks to contribute to the international community “towards a secure and
trusted IoT ecosystem”.

References

1. Huang, B., Bouguettaya, A., Dong, H., Chen, L.: Service mining for internet of
things. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS,
vol. 9936, pp. 566–574. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46295-0 36

2. Huang, B., Bouguettaya, A., Neiat, A.G.: Discovering spatio-temporal relation-
ships among IoT services. In: 2018 IEEE International Conference on Web Services
(ICWS), pp. 347–350. IEEE (2018)

3. Bouguettaya, A., Sheng, Q.Z., Benatallah, B., Neiat, A.G., Mistry.: An internet of
things service roadmap. Commun. ACM 64(9), 86–95 (2021)

4. Hamdan, Y.B., et al.: Smart home environment future challenges and issues-a
survey. J. Electron. 3(01), 239–246 (2021)

5. He, Y., Feng, X., Cheng, C., Ji, G., Guo, Y., Caverlee, J.: Metabalance: improving
multi-task recommendations via adapting gradient magnitudes of auxiliary tasks.
In: The ACM Web Conference 2022, pp. 2205–2215 (2022)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

7. Huang, B.: Enabling Convenience in IoT-based Smart Homes, Ph. D. Thesis (2021)
8. Sheng, M., Qin, Y., Yao, L., Benatallah, B.: Managing the web of things: linking

the real world to the web. Morgan Kaufmann (2017)
9. Tapia, E.M., Intille, S.S.: Activity recognition in the home using simple and ubiq-

uitous sensors. In: International Conference on Pervasive Computing, pp. 158–175
(2004)

10. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van
Gool, L.: Multitask learning for dense prediction tasks: a survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2021)

https://doi.org/10.1007/978-3-319-46295-0_36
https://doi.org/10.1007/978-3-319-46295-0_36

Joint Optimization of Trajectory
and Frequency in Energy Constrained
Multi-UAV Assisted MEC System

Zhuohan Xu1, YanPing Yang2, and Bing Shi1,3(B)

1 School of Computer Science and Artificial Intelligence,
Wuhan University of Technology, Wuhan 430070, China

2 Beijing Institute of Computer Technology and Applications, Beijing 100039, China
3 Shenzhen Research Institute of Wuhan University of Technology,

Shenzhen 518000, China
bingshi@whut.edu.cn

Abstract. Mobile edge computing (MEC) is a promising technology
to enhance the computation capability of smart devices (SDs) in the
Internet-of-Things (IoT). However, the performance of MEC server is
limited due to the fixed location and constrained coverage. In order to
address this issue, a multiple unmanned aerial vehicles (UAVs) assisted
MEC system is studied in this paper. We consider an energy constrained
multi-UAV assisted MEC system where multiple UAVs collaborate with
each other to provide computing services, and UAVs can dynamically
change the frequency according to the computing task size. We aim to
maximize the computation bits, SDs’ fairness and UAVs’ load balanc-
ing in multi-UAV MEC system by jointly optimizing the trajectory and
frequency. To address this problem, we model it as a Partially Observ-
able Markov Decision Process, and propose a joint optimization strategy
based on multi-agent deep reinforcement learning. Finally, we evaluate
our strategy against some typical benchmark strategies on the realistic
dataset. The experiment results show that our strategy can outperform
other strategies.

Keywords: Mobile edge computing · Unmanned aerial vehicle ·
Multi-agent deep reinforcement learning

1 Introduction

With the rapid development of Internet-of-Things (IoT) technology, smart
devices (SDs) play an essential role in various applications [6]. These applica-
tions are usually computing-intensive, which results in dramatically increased
demands for computing resources, posing a great challenge to SDs due to
their limited computing resources and battery capacity. Mobile edge comput-
ing (MEC) has been identified as a promising technique to tackle this challenge,
which allows SDs to offload their computation-intensive applications to the edge
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 422–429, 2022.
https://doi.org/10.1007/978-3-031-20984-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_30&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_30

Joint Optimization of Trajectory and Frequency 423

servers [1]. However, the location of the terrestrial MEC server is usually fixed
and cannot be changed or moved according to users’ demands. In addition, some
MEC server may be damaged by natural disasters or military attacks, causing
computing resource scarcity and offloading performance degradation [9]. Due
to the highly flexible mobility, easy deployment, low cost and line-of-sight (LoS)
connections of unmanned aerial vehicle (UAV), UAV-assisted MEC systems have
been widely analyzed in recent years. In the UAV-assisted MEC system, UAV
can be used as a MEC server to provide computing services for SDs.

There also exist many challenges in UAV-assisted MEC systems. Due to
the mobility and limited onboard energy of UAV, UAVs should maximize their
energy efficiency by planning their trajectory in the limited service time. Some
works [2] have showed that UAV can adopt dynamic voltage and frequency
scaling technique, which can adjust the CPU frequency based on the scale of
the computation tasks. Such dynamic approach can achieve better performance
than the constant computing technique in terms of the energy consumption,
throughput and latency. In addition, the MEC assisted by a single UAV may
result in some deficiencies in network scalability. Therefore, multiple UAVs can be
used to extend the network coverage and serve more SDs. However, the existing
research on UAV-assisted MEC system rarely considers the joint optimization
of trajectory and frequency of multiple UAVs under the constraint of energy.

To address the above challenges, an energy constrained multi-UAV assisted
MEC system is studied in this paper, where multiple UAVs work together to pro-
vide SDs with computing services. We consider the scenario that multiple UAVs
fly according to the designed trajectory, collect computing tasks from the SDs
within their coverage and each UAV can dynamically adjust its CPU frequency
according to the task size. Similar to work in [10], we intend to jointly optimiz-
ing the computation bits, SDs’ fairness and UAVs’ load balancing. Since UAVs
need to make decisions in each time slot, and the decisions of UAVs will affect
the location and energy of the next time slot, it is a sequential decision-making
problem. Thus, we propose a joint optimization strategy based on multi-agent
deep reinforcement learning to maximize the computation bits, SDs’ fairness and
UAVs’ load balancing in multi-UAV assisted MEC system. We further evaluate
our strategy against some typical benchmark strategies on the realistic dataset.
The experiment results show that our strategy can achieve better performance
than other strategies.

The rest of this paper is organized as follows. In Sect. 2, we describe the
system model and problem formulation. In Sect. 3, we introduce our strategy in
multi-UAV assisted MEC system based on MADDPG. The experimental analysis
is shown in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 System Model

As shown in Fig. 1, a multi-UAV assisted MEC system is considered, which
consists of M UAVs and K SDs, denoted as M � {1, 2, . . . ,M} and K �
{1, 2, . . . ,K}, respectively.

424 Z. Xu et al.

Fig. 1. The multi-UAV assisted MEC system.

We assume that the system operation duration is divided into T time slots,
which is indexed by t ∈ T � {1, 2, . . . , T}. UAVs can fly through a small distance
and provide computing services for SDs within their coverage in each time slot.
We list the main notations used in this paper in Table 1.

Table 1. List of main notations.

Notation Description

M The number of UAVs

K The number of SDs

T The number of time slots

lmax The side length of rectangular area where SDs are located

Lmax The maximal size of tasks allowed to be stored in the queue of single SD

Csd
k The horizon coordinate of SD k

Cuav
m,t The horizon coordinate of UAV m in time slot t

dmax The maximal flying distance of UAV in each time slot

Rmax The maximal horizontal coverage of UAV

Rmin The minimal distance leading to collision of UAVs

rtran The wireless transmission rate of the offloading link

ptran The wireless transmission power of the offloading link

Etotal
m,t The total energy consumption of UAV m in time slot t

wuav The weight of UAV

vuav The speed of UAV

Euav The energy capacity of UAV

2.1 UAV Computing Model

If SD k generates a computing task at the beginning of time slot t, we define the
size of this task as lk,t. Let Lk,t be the total size of tasks in the queue of SD k
waiting to be offloaded in time slot t, which is updated by:

Lk,t+1 = min{Lk,t + lk,t, Lmax} (1)

Joint Optimization of Trajectory and Frequency 425

We use the boolean variable zm,k,t to indicate whether SD k is served by UAV
m in time slot t:

zm,k,t =
{
1, Rm,k,t ≤ Rmax and ∀m′ ∈ M,m′ �= m, zm′,k,t = 0
0, otherwise

(2)

Thus, the total size of tasks collected by UAV m in time slot t is:

Nm,t =
K∑

k=1

zm,k,t · min{Lk,t + lk,t, Lmax} (3)

Then, we update Eq. (1) to:

Lk,t+1 =
{
0,∃m ∈ M, zm,k,t = 1
min{Lk,t + lk,t, Lmax},∀m ∈ M, zm,k,t = 0 (4)

we define Zm,k,t as the cumulative service times of UAV m to SD k in time slot
t, as:

Zm,k,t =
t∑

i=1

zm,k,i (5)

We apply a fairness indicator F sd
m,t reflects the level of fairness of UAV m to all

SDs in time slot t:

F sd
m,t =

(∑K
k=1 Zm,k,t

)2

K
∑K

k=1 (Zm,k,t)
2 (6)

Similar to [7], we also consider the load balancing between UAVs, for which we
define the fairness indicator Fuav

t as:

Fuav
t =

(∑M
m=1

∑K
k=1 Zm,k,t

)2

M
∑M

m=1

(∑K
k=1 Zm,k,t

)2 (7)

2.2 UAV Energy Consumption Model

We assume that the transmission power is ptran, and then the energy consump-
tion of offloading tasks is:

Etran
m,t = ptran · T tran

m,t (8)

The computing energy consumption is given by:

Ecom
m,t = k1 (fm,t)

k2 T com
m,t (9)

The flying energy consumption is given by:

Efly
m,t =

1
2
wuavv2

uavT fly
m,t (10)

where wuav is the weight of UAV. Finally, we denote the total energy consump-
tion of UAV m in time slot t as:

Etotal
m,t = Etran

m,t + Ecom
m,t + Efly

m,t (11)

426 Z. Xu et al.

2.3 Problem Formulation

In this paper, we intend to maximize the total computation bits, SDs’ fairness
and UAVs’ load balancing in multi-UAV assisted MEC system by optimizing
UAVs trajectory and frequency while satisfying the UAVs’ energy constraints.
We formulate our optimization problem as follows:

P : max
T∑

t=1

M∑
m=1

Nm,tF
sd
m,tF

uav
t (21)

s.t. zm,k,t = {0, 1},∀m ∈ M, k ∈ K, t ∈ T (C1)

zm,k,t · Rm,k,t ≤ Rmax,∀m ∈ M, k ∈ K, t ∈ T (C2)

M∑
m=1

zm,k,t ≤ 1,∀k ∈ K, t ∈ T (C3)

(
xuav

m,t , y
uav
m,t

)
∈ [0, lmax],∀m ∈ M, t ∈ T (C4)

(
xsd

k , ysd
k

)
∈ [0, lmax],∀k ∈ K (C5)

Rm,m′,t ≥ Rmin,∀m,m′ ∈ M,m �= m′ (C6)

T∑
t=1

Etotal
m,t ≤ Euav,∀m ∈ M (C7)

In this optimization problem, constraints C1 and C2 mean that UAV can only
provide service to SDs within its coverage. Constraint C3 mean that each SD
can only be served by at most one UAV at each time slot. Constraints C4 and
C5 limit the locations of the UAVs and SDs. Constraint C6 means the minimal
distance between UAVs. Constraint C7 means the energy capacity.

3 Joint Optimization Strategy Based on MADDPG

As discussed in Sect. 2, UAVs need to make decisions in each time slot in
sequence, and the decisions of UAVs will affect the location and energy of the
next time slot, and then affect future decisions. Therefore, the optimization prob-
lem in multi-UAV assisted MEC system is a sequential-decision problem, and we
model it as a Markov Decision Process (MDP). In addition, since this problem
involves multiple agents, and each agent can only observe partial information in
the environment, we model it as a Partially Observable Markov Decision Process
(POMDP) [4]. We define the observation, action and reward function for each
agent in time slot t as follows:

Joint Optimization of Trajectory and Frequency 427

– Observation: we define the observation that UAV m perceives in time slot t
as: om,t = (Cuav

m,t ,Fsd
m,t,Fuav

t ,Rm,t), where Cuav
m,t is the coordinate of UAV,

Fsd
m,t = (

∑t
i=1 Zm,k,i, k ∈ K) is the cumulative service times of UAV m to

each SD in time slot t, Fuav
t = (

∑t
i=1

∑K
k=1 Zm,k,i,m ∈ M) is the cumulative

service times of each UAVs in time slot t, Rm,t = (Rm,m′,t,m
′ ∈ M,m �= m′)

is the distances between UAV m and other UAVs.
– Action: we define the action as: am,t = (dm,t, θm,t, fm,t), which consists of

flying distance, flying direction and computing frequency of UAV m in time
slot t.

– Reward function: we define the reward function as rm,t = Nm,tF
sd
m,tF

uav
t −

pm,t. where rm,t is the immediate reward obtained by the UAV m in time
slot t, pm,t is the penalty coefficient if UAV m flies out of the border or UAV
m is collided with another UAV in time slot t.

Based on the previous description, we propose the joint optimization strat-
egy based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [5],
which is called Computing Efficient Joint Optimization in Multi-UAV assisted
MEC system (CEJOMU), as shown in Algorithm 1.

Algorithm 1. Computing Efficient Joint Optimization in Multi-UAV assisted
MEC system (CEJOMU)
Input: The state s in each time slot
Output: The action a in each time slot
1: for m = 1 to M do
2: Initialize actor network πm(·), critic network Qm(·) with parameters θπ

m and
θQ

m

3: Initialize target network π′
m(·) and Q′

m(·) with parameters θπ′
m = θπ

m and θQ′
m =

θQ
m

4: end for
5: Initialize random noise function N and experience replay pool P
6: for episode = 1 to episodemax do
7: Receive the initial state s1 = {om,1, m ∈ M}
8: for t = 1 to T do
9: for m = 1 to M do
10: Select the action of UAV m: am,t = πm(om,t) + N
11: end for
12: Execute action at = {am,t, m ∈ M} and observe reward rt = {rm,t, m ∈

M} and next state st+1

13: Store (st, at, rt, st+1) in replay buffer P
14: st ← st+1

15: if t > episodebefore then
16: for m = 1 to M do
17: Random sampling from P

18: Update critic network
19: Update actor network
20: Update target networks with updating rate τ :

θπ′
m ← τθπ

m + (1 − τ)θπ′
m

θQ′
m ← τθQ

m + (1 − τ)θQ′
m

21: end for
22: end if
23: end for
24: end for

428 Z. Xu et al.

4 Experiment Analysis

In order to evaluate the effectiveness and expansibility of the algorithm, we run
the experiments on the well-known real-world edge environment dataset Telecom
[3,8] as testbeds to conduct our experiments.

Fig. 2. Experiment results of the realistic dataset

The experiment results are shown in Fig. 2. The subfigure (a) of each figure
is the UAV trajectory drawn by our proposed strategy, and we apply a heat
map to reflect the task occurrence rate of each SD. The subfigure (b)-(d) is
the performance of different strategies in computation bits, SDs’ fairness, and
UAVs’ load balancing. It can be seen from Fig. 2(a) that UAVs will prefer to
serve particular areas. The GREEDY’s performance in the realistic dataset is
poor, because the number of SDs with high task occurrence rate in the realistic
dataset is rare and the location is concentrated, which will cause GREEDY
without long-term vision to go to the same location for a long time, resulting
in most SDs not being served and energy waste. Note that GREEDY needs to
know all SDs’ information in advance, and it may be infeasible in real scenarios.
CEJOMU based on RL does not need to know SDs’ information in advance. It
can learn SDs’ information through interaction with the environment.

5 Conclusion

In this paper, we analyze the joint optimization problem of trajectory and fre-
quency in multi-UAV assisted MEC system with energy constraints. We model

Joint Optimization of Trajectory and Frequency 429

the problem as a Partially Observable Markov Decision Process, and then pro-
pose a joint optimization strategy CEJOMU based on multi-agent reinforcement
learning MADDPG. Finally, we run experiments to evaluate our strategy against
four typical algorithms on the realistic dataset. The experiment results show that
CEJOMU achieves the best performance in terms of the computation bits, SDs’
fairness and UAVs’ load balancing. This research can provide some useful insights
for UAV-assisted MEC system in real-world scenarios.

References

1. Chen, Y., Deng, S., Zhao, H., He, Q., Li, Y., Gao, H.: Data-intensive applica-
tion deployment at edge: a deep reinforcement learning approach. In: 2019 IEEE
International Conference on Web Services (ICWS), pp. 355–359. IEEE (2019)

2. Jeong, S., Simeone, O., Kang, J.: Mobile edge computing via a UAV-mounted
cloudlet: optimization of bit allocation and path planning. IEEE Trans. Veh. Tech-
nol. 67(3), 2049–2063 (2017)

3. Li, Y., Zhou, A., Ma, X., Wang, S.: Profit-aware edge server placement. IEEE
Internet Things J. 9(1), 55–67 (2021)

4. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Machine Learning Proceedings 1994, pp. 157–163. Elsevier (1994)

5. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-
agent actor-critic for mixed cooperative-competitive environments. In: Advances
in Neural Information Processing Systems 30 (2017)

6. Wang, F., Xu, J., Cui, S.: Optimal energy allocation and task offloading policy for
wireless powered mobile edge computing systems. IEEE Trans. Wireless Commun.
19(4), 2443–2459 (2020)

7. Wang, L., Wang, K., Pan, C., Xu, W., Aslam, N., Hanzo, L.: Multi-agent deep
reinforcement learning-based trajectory planning for multi-UAV assisted mobile
edge computing. IEEE Trans. Cogn. Commun. Netw. 7(1), 73–84 (2020)

8. Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., Shen, X.: Delay-aware microser-
vice coordination in mobile edge computing: a reinforcement learning approach.
IEEE Trans. Mob. Comput. 20(3), 939–951 (2019)

9. Zhang, K., Gui, X., Ren, D., Li, D.: Energy-latency tradeoff for computation
offloading in UAV -assisted multiaccess edge computing system. IEEE Internet
Things J. 8(8), 6709–6719 (2020)

10. Zhou, F., Wu, Y., Hu, R.Q., Qian, Y.: Computation rate maximization in UAV -
enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Com-
mun. 36(9), 1927–1941 (2018)

Services for Cloud, Edge, and Fog
Computing

Dual-Tree Genetic Programming
for Deadline-Constrained Dynamic

Workflow Scheduling in Cloud

Yifan Yang(B), Gang Chen, Hui Ma, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
Wellington 6140, New Zealand

{yifan.yang,aaron.chen,hui.ma,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Dynamic workflow scheduling (DWS) aims to allocate abun-
dant cloud resources to process a large number of heterogeneous work-
flows in order to minimize total operation cost and the penalty for vio-
lating deadline constraints. Instead of using manually designed heuris-
tics that cannot work effectively across different problem instances, we
develop a new Genetic Programming Hyper-Heuristic (GPHH) algo-
rithm to automatically design scheduling heuristics for a newly formu-
lated deadline-constrained dynamic workflow scheduling in cloud (DCD-
WSC) problem. Different from previous works, our GPHH algorithm can
design a pair of rules for Virtual Machine selection and task selection. A
new dual-tree representation is proposed to jointly evolve the rule pair,
enabling the algorithm to effectively control the inter-dependencies of the
two rules. Experimental results show that our new algorithm can signif-
icantly outperform three baseline algorithms on a wide range of testing
scenarios.

Keywords: Dynamic workflow scheduling · Genetic programming
hyper-heuristic · Cloud computing · Deadline constraint

1 Introduction

Many organizations are increasingly relying on cloud computing to process their
workflows due to abundant heterogeneous computing resources and secure data
storage in cloud [2]. For example, MetService in New Zealand uses multiple cloud
resources to process its workflows for daily weather forecasting. Each workflow
consists of a set of tasks with sophisticated inter-dependencies [13] and can
be provided to numerous customers [2] based on pre-determined Service Level
Agreements (SLAs). Effective methods are needed to help organisations to decide
proper cloud resources for processing workflows to minimize the total cloud
resource rental costs and SLA penalties [1,17,22]. In this paper, we use brokers
to refer the agents who provide workflows as services in cloud.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 433–448, 2022.
https://doi.org/10.1007/978-3-031-20984-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_31&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_31

434 Y. Yang et al.

For many brokers in cloud, workflow scheduling is a vital issue for them to
lease and allocate suitable cloud computing resources (i.e., Virtual Machines or
VMs) to execute a series of dynamically requested workflows in order to achieve
important objectives, such as to minimize the total makespan and cost [16]. Many
previous studies proposed various scheduling heuristics to tackle such workflow
scheduling problems on the fly. However, manual design of scheduling heuristics
demands for extensive human labor and domain expertise [7,15,21]. Further,
manually designed heuristics can quickly lose effectiveness due to the increas-
ing variety of cloud computing resources and workflow workloads. Furthermore,
existing heuristics did not consider penalties resulted from violations of deadline
constraints defined by SLA.

Hyper-heuristic techniques can automatically design a wide variety of heuris-
tics and have been extensively utilized to solve diverse combinatorial optimiza-
tion problems in recent years [11,14,25]. Particularly, a few research works
recently developed Genetic Programming Hyper-Heuristic (GPHH) algorithms
to tackle dynamic workflow scheduling (DWS) problems successfully. In [5,6,22],
GPHH is explored to evolve a single rule/heuristic to select appropriate VM
instances to process each workflow task. However, due to the highly dynamic
nature of workflow execution in cloud, using VM selection rule alone is often
insufficient (see Subsect. 3.1 and Fig. 1 for detail). Hence, [20] developed a coop-
erative coevolution GP (CCGP) approach to evolve a pair of task prioritizing
rule and VM selection rule. Nevertheless, this method was designed to execute
a single workflow without explicitly controlling the inter-dependencies between
the two evolved rules. Effective methods are needed to cooperatively generate
two rules to schedule a sequence of workflows dynamically arriving the cloud.

The goal of this paper is to develop a new dual-tree GP (DTGP) algorithm
to jointly evolve VM selection rules (VMSRs) and task selection rules (TSRs) to
effectively solve the deadline-constrained dynamic workflow scheduling in cloud
(DCDWSC) problem. Three major contributions have been achieved:

1. We formally model the DCDWSC problem and demonstrate its practical
importance. Different from existing problems, the new problem model con-
sidered for the first time the possibility of reordering pending tasks in VM
queues to reduce the total cost involved in executing multiple heterogeneous
workflows.

2. We develop a DTGP algorithm that uses a new dual-tree representation to
effectively support the joint evolution of VMSRs and TSRs and explicitly
control their inter-dependencies. Multiple new terminal types (i.e., features
used for making scheduling decisions) have also been proposed to facilitate
the design of effective VMSRs and TSRs.

3. We conduct extensive experimental evaluation on diverse DCDWSC problem
scenarios with a variety of heterogeneous workflows to verify the effectiveness
of DTGP. DTGP is experimentally shown to significantly outperform several
existing approaches.

DTGP for Deadline-Constrained Dynamic Workflow Scheduling 435

2 Related Work

Workflow scheduling aims to allocate cloud resources to process all tasks of one or
multiple workflows [16]. All the previously studied workflow scheduling problems
are either static or dynamic.

Most of the static problems concern mainly about scheduling a single work-
flow [4,15]. Dynamic resource provisioning is often neglected in the problem
formulation. In view of the highly dynamic cloud computing environment, the
research community is starting to pay more attention to the DWS problems
[1,8,19] that consider either dynamic workflow arriving time [1,19] or dynamic
resource provisioning [8] based on pre-determined workflow patterns. In fact,
existing DWS problems rarely handle multiple heterogeneous workflows simul-
taneously. Although some studies [6,9] considered several different workflows
patterns, a common assumption is to handle each workflow pattern one at a
time. As far as we know, no existing studies considered the general and realistic
problem for brokers to process a series of dynamically requested workflows with
previously unknown patterns.

Most of existing research works focused on VM selection [5,8]. In this paper,
we study the DWS problem with deadline constraints that aims to maximize the
total profit. On the one hand, it is challenging to decide the number and type
of VM instances to rent. To address this issue, we use GPHH to evolve a VM
selection rule to select VMs to process each task in order to balance the VM
rental fees and deadline penalties. On the other hand, it is critical to determine
suitable orders to process all tasks pending for execution on a VM instance.
Therefore, we further use GPHH to evolve a task selection rule to control the
processing order of pending tasks so as to reduce deadline violations and shorten
the workflow makespan. To the best of our knowledge, this is the first work to
jointly consider VM selection and task selection for DWS.

3 Problem Description

3.1 Problem Overview

We assume that workflow requests arrive at a cloud data center dynamically
over time. There are a fixed number of VM types available at the data center.
An unlimited number of instances can be rented with respect to each VM type.
Every workflow consists of a number of tasks and has a workflow pattern and
size (see Fig. 1), which are unknown before arrival. Any task can be allocated to
either an existing VM instance or any newly leased instance.

Figure 1 illustrates how a scheduling heuristic is used to schedule the exe-
cution of workflow tasks in the cloud. Different from several existing works
[6,20,22], the scheduling heuristic in this paper is composed of a VMSR and a
TSR. They are used to jointly support two interdependent scheduling decisions,
which are highlighted as VM selection and task selection in Fig. 1, respectively.

Whenever one or multiple workflows arrive at the cloud, all the ready tasks
within these workflows will be identified. For each ready task, the VMSR selects

436 Y. Yang et al.

Fig. 1. The procedure of using a heuristic to schedule dynamic workflow execution.

from all candidate VM instances the instance with the highest-priority to process
it. We do not only consider existing leased VM instances but also VM instances
of any type that can be further leased for workflow execution. In other words,
when a task is assigned to a VM instance that was not leased previously, we will
lease the VM instance immediately. Upon allocating a task to a VM instance, if
the VM instance is idle and has no pending task in its VM Queue, it immediately
executes the allocated task; otherwise, the task is added into the instance’s VM
queue.

Whenever a VM instance completes its execution of one task, the TSR will
be activated to select a pending task with the highest priority in its VM queue
to be executed next. After a task is processed, some of its successor tasks in
the same workflow will become ready. They will be subsequently allocated to
either existing VM instances or newly leased VM instances. The above process
will be repeated until all tasks of all workflows are processed. Afterwards, the
VM rental fees in Eq. (9) and the deadline violation penalties in Eq. (11) will
be computed to quantify the performance of the workflow scheduling process.

3.2 Formulation

The broker has no access to the size and pattern of any workflow before its
arrival. The broker will also compensate its users if the execution of any workflow
violates its deadline constraint specified in the respective SLA.

We consider a collection of dynamically arriving workflows for the DWS
problem, denoted as W = {W1,W2, ...,Wm}. A workflow Wi is defined as:

Wi = (DAGi, ATi, NORi,DLi, RDLi) (1)

where DAGi capture the workflow pattern, ATi denotes the arriving time of
the workflow, NORi is the total number of unassigned tasks remaining in the

DTGP for Deadline-Constrained Dynamic Workflow Scheduling 437

workflow, and DLi denotes the deadline of the workflow. Additionally, RDLi is
the remaining time before the deadline is due, which is calculated by

RDLi = DLi − current time (2)

These workflows will be processed by a time varying set of VM instances,
denoted as V = {V1, V2, ..., Vn}. A VM instance Vk is defined as a tuple below:

Vk = (TY PEk, NIQk, T IQk, V MRk) (3)

where TY PEk = (CUk,MEMkPRICEk) denotes its VM type. CUk is the
compute unit (i.e., computation capacity), MEMK is the memory size, and
PRICEk is the hourly rental fee charged by cloud providers. NIQk refers to the
number of pending tasks in the VM Queue of Vk, TIQk is the total execution
time of all pending tasks in the queue, and V MRk is the remaining lease period
of Vk of its current lease.

Given the set of all tasks {ti1, ti2, ..., tiq} that belong to a workflow Wi, each
task tij = (NOCij , TSij). NOCij is the number of its successor tasks. TSij refers
to its size, i.e., the execution time of tij on a VM instance with the compute
unit CU = 1. Accordingly, the actual execution time of tij on Vk is

ET k
ij =

TSij

CUk
(4)

Furthermore, we can obtain the time RTij when the task tij is assigned to an
VM instance:

RTij = max
z∈pred(tij)

{FTz} (5)

where FTz refer to the finish time of its predecessors. Equation (5) implies that
tij is assigned immediately to a VM instance when all its predecessor tasks are
completed. Meanwhile, the ready time of the entry task is equal to the arrival
time of its workflow, i.e., RTi1=ATi.

Let ST k
ij be the time that the VM instance Vk starts to execute tij . The

waiting time period WT k
ij of tij and the finish time FT k

ij of tij on Vk are defined
as:

WT k
ij = ST k

ij − RTij (6)

FT k
ij = STij + ET k

ij (7)

Through processing all workflows, we aim to minimize the total cost incurred
for workflow execution, which consists of both VM rental fees and workflow
deadline penalties, as formulated below

TotalCost =
∑

k∈LVMS

RentFeek +
∑

i∈W
Penaltyi (8)

where LVMS is the set of leased VM instances. W is the set of all workflows to
be executed within a given period of time. RentFeek denotes the rental fee of
the VM instance Vk, and Penaltyi denotes the deadline violation penalty of the
workflow Wi, as defined below.

438 Y. Yang et al.

1. RentFeek: We use the prevailing hourly-based cost model supported by the
global cloud market [1,7,18]. The cost of renting any VM instance Vk is
calculated by

RentFeek = PRICEk ×
⌈

FTtklast
− STtkfirst

3600

⌉
(9)

where tkfirst and tklast are the first task and the last task executed on Vk. Thus,
the numerator in Eq. (9) gives the total time period measured in seconds
between the start time of tkfirst and the finish time of tklast. The denominator
and the ceiling function in Eq. (9) together convert this time period into the
total number of leased hours.

2. Penaltyi: We first define the deadline of a workflow, denoted as Deadlinei,
below:

Deadlinei = ATi + ξ × MinMakespani (10)

where ATi represents the arrival time of the workflow Wi, and ξ is a relaxation
coefficient [1]. MinMakespani refers to the theoretical shortest completion
time of workflow Wi by executing all of its tasks on the fastest VM instances
without any delay. Whenever Deadlinei is violated due to delay in executing
workflow Wi, penalties will be incurred as determined below:

Penaltyi = δ max {0, ATi + Makespani − Deadlinei} (11)

where δ is a penalty coefficient [23]. The smaller the value of δ, the greater
the tolerance for violating the deadline.

4 Algorithm

To enable GPHH to generate effective rules for the DCDWSC problems, in this
paper we propose two distinct sets of terminals to be utilized to design VMSRs
and TSRs, respectively (see Subsect. 4.1 for an introduction of all terminals used
in these rules). Note that these sets are different from terminals that are used by
existing works [6,20,24], which only focus on building VMSRs, since we include
the features related to deadline constraint of workflows. Specifically, we propose
multiple new terminals for VMSR and a new set of terminals for building TSRs.
These terminals enable us to develop a new DTGP algorithm to simultaneously
evolve VMSRs and TSRs for DCDWSC.

In line with Algorithm 1, details regarding the solution representation, ini-
tialization, fitness evaluation of DTGP are presented below.

4.1 Representation

In DTGP, both VMSR and TSR are represented as GP trees. Different from
[20], a pair of GP trees, one for VMSR and one for TSR, jointly form a single
individual in this paper. As illustrated in the left of Fig. 2, each GP tree is a

DTGP for Deadline-Constrained Dynamic Workflow Scheduling 439

Algorithm 1: DTGP Algorithm for DCDWSC
Input: Training instances, parameter settings
Output: The best scheduling rule consisting of a VMSR and a TSR
// Representation

1 Determine the terminal set and the function set
// Initialization

2 while N < PopSize do
3 Randomly initialize an individual
4 end
5 gen ← 0
6 while gen < MaxGen do

// Fitness Evaluation

7 for ind in Pop do
8 fitness(ind) ← 0
9 for i = 1 to EvalNumber do

10 fitness(ind) ← fitness(ind) + objective(ind)
11 end
12 fitness(ind) ← fitness(ind)/EvalNumber

13 end
// Evolution

14 Generate new population by genetic operators
15 gen ← gen + 1

16 end
17 Return the best individual/heuristic/rule

syntax tree with one root node and multiple leaf nodes. The intermediate nodes,
such as +,−,×,÷, are called the function nodes. Every leaf node must be a
terminal that extracts problem-dependent features from the DCDWSC problem,
such as TS, NIQ and ET in Table 1.

Following many existing works [6,12,20], we consider {+,−,×,÷,max,min}
as function nodes in the GP trees. We introduce new VMSR terminals as well
as a new terminal set particularly designed for TSR. Table 1 summarizes the
two terminal sets for building VMSRs and TSRs. Depending on the feature
types captured by each terminal, all terminals are divided into task-related,
VM-related, workflow-related, and problem-specific terminals (see Table 1).

This paper considers five commonly used terminals for VMSR, i.e., TS, ET ,
CU , PRICE and LFT [5,20,24]. Apart from that, we introduce three new VM-
related terminals, TIQ, V MR, and NIQ. They enable VMSRs to evaluate the
priority of processing any task on a VM instance based on the instance’s current
workload and remaining capacity. Two additional terminals, NOC and NOR,
are also introduced to provide workflow-related information to VSMRs. RDL
allows VSMRs to assign near-expire tasks to fast VM instances.

Amongall terminals fordesigningTSRs,RWT is a time-varying terminalwhose
value can only be determined in the task selection phase instead of theVMselection
phase. It enables a task with a long waiting time to have relatively high priority in
the VM Queue. We also use two VM-related terminals TIQ and NIQ to capture

440 Y. Yang et al.

Table 1. The terminal set of VMSR and TSR.

VMSR TSR

Terminal Definition Terminal Definition

Task-related TS The size of a task ET The execution time of a task

ET The execution time of a task RWT The relative waiting time of a task
in a VM queue

VM-related CU The compute unit of a VM TIQ Total execution time of all tasks in
a VM queue

PRICE Price of renting a VM for one
hour

NIQ Number of tasks in a VM queue

TIQ Total execution time of all tasks
in a VM queue

VMR The remaining available time
for a VM

LFT The latest finish time of a task
on a VM

NIQ Number of tasks in a VM queue

Workflow-related NOC Number of successor tasks
(children) of a task

NOC Number of successor tasks
(children) of a task

NOR Number of remaining tasks in a
workflow

NOR Number of remaining tasks in a
workflow

Problem-specific RDL Remaining deadline time of a
workflow

RDL Remaining deadline time of a
workflow

the competition level among all tasks in the VM queue. NOC is expected to give
high priority to those tasks with many successor tasks. NOR helps to shorten the
completion time of those workflows with less pending tasks. RDL is important for
satisfyingdeadline constraints.Theusefulness of all thenewly introduced terminals
will be further analyzed experimentally in Subsect. 5.6.

Fig. 2. Examples of how to use an individual to make scheduling decisions.

4.2 Initialization

The initial population is randomly generated by the widely used Ramped half-
and-half approach [12] where half of the population is constructed by the grow

DTGP for Deadline-Constrained Dynamic Workflow Scheduling 441

method (e.g., VMSR in Fig. 2) and half by the full method (e.g., TSR in Fig. 2).
In the grow method, a GP tree grows by adding randomly selected function
and terminal nodes to the tree until it reaches the initial depth limit (6 in our
experiments). The full method randomly adds function nodes to the tree until
it reaches the maximum tree depth.

4.3 Fitness Evaluation

Each evolved GP individual is evaluated on multiple problem instances (3 in
our experiments) to determine its average performance in terms of Eq. (8) as
its fitness. Each problem instance involves a set of m heterogeneous workflows
randomly sampled from multiple different workflow patterns (see Subsect. 5.2
for more details).

Figure 2 illustrates how to use a GP individual with a pair of VMSR and TSR
to schedule workflow execution in the cloud. Specifically, it shows a decision
situation that needs to select the optimal VM instance for task4 from three
candidate VM instances {V M1, V M2, V M3}. We use VMSR to calculate the
corresponding priority values of the three VM instances, i.e., {(2 + 0 − 1), (2 +
7 − 2), (2 + 3 − 0.5)}. Then, task4 is allocated to the VM Queue of V M1 which
has the lowest priority value. Similarly, the priority values of all pending tasks
on V M3 are first calculated by TSR. task1 with the lowest priority value is then
selected for execution.

Parent 1

Parent 2

Offspring 1

Offspring 2

Fig. 3. Crossover operator.

Parent 1 Offspring 1

Fig. 4. Mutation operator.

4.4 Evolution

The evolution process relies on crossover and mutation, as demonstrated in
Fig. 3 and Fig. 4. We use single-point crossover to process any two parent GP
individuals, each represented as a rule pair. Specifically, crossover is applied
to either the VMSRs or TSRs of the two individuals (or rule pairs) with a
probability of 0.5. Similar to crossover, mutation is also applied to one randomly
selected tree/rule of a GP individual. For the chosen tree/rule (either VSMR or
TR), its sub-tree rooted at a randomly selected mutation point is replaced by a
randomly generated new sub-tree.

442 Y. Yang et al.

5 Experiments

We conduct experimental evaluations to demonstrate the effectiveness of our pro-
posed GPHH approach in generating high quality of heuristics for DCDWSC.
This section begins by describing the parameter setting of GP and the simula-
tion configuration. The effectiveness of the proposed approach is then verified
experimentally, followed by terminal analysis and rule analysis.

5.1 Parameter Setting

Following [12], we set the population size of DTGP to 1024, the number of genera-
tions to 51, and the tournament size to 7. Crossover, mutation, and reproduction
rates are 85%, 10%, and 5%, respectively. We also limit the initial depth of a
GP tree to between 2 and 6, and its maximum depth to 10.

5.2 Simulation Configuration

A simulated cloud environment with five key components below is used to experi-
mentally compare the performance of DTGP against several baseline approaches.

VM Types: The simulated cloud data center is equipped with 6 different VM
types according to Amazon EC21, as summarized in Table 2. The number of
instances of each VM type is unlimited.

Table 2. Configurations of 6 VM instances based on Amazon EC2

Instance name vCPU Memory On-Demand hourly rate

m5.large 2 8 GiB $0.096

m5.xlarge 4 16 GiB $0.192

m5.2xlarge 8 32 GiB $0.384

m5.4xlarge 16 64 GiB $0.768

m5.8xlarge 32 128 GiB $1.536

m5.12xlarge 48 192 GiB $2.304

Workflow Set: Four popular workflow patterns2 (i.e., CyberShake, Inspiral,
Montage, and SIPHT) are employed for our experiments. Each is available with
three different sizes (i.e., number of tasks in a workflow), including 30, 50, and
100. Using these workflows patterns, three scenarios (Mix Small, Mix Medium
and Mix Large) are created in Table 3.

1 https://aws.amazon.com/ec2/pricing/on-demand/.
2 https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Gener

ator.

https://aws.amazon.com/ec2/pricing/on-demand/
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator

DTGP for Deadline-Constrained Dynamic Workflow Scheduling 443

Training Scenario: The Mix Large in Table 3 is utilized for training in GP-
based approaches. Each GP individual will be evaluated on 3 problem instances
randomly created from this scenario to calculate its fitness. Consequently, it
takes 51 × 3 problem instances to run a GP-based algorithm till completion.

Testing Scenario: All generated heuristics are tested on three testing scenar-
ios, i.e., Mix Small, Mix Medium and Mix Large, each containing 30 problem
instances.

Table 3. Workflow patterns contained in three workflow sets.

Scenario Workflow set # of Workflows

Mix Small CyberShake 30, Inspiral 30, Montage 25, Sipht 30 30

Mix Medium CyberShake 30, Inspiral 30, Montage 25, Sipht 30 ,
CyberShake 50, Inspiral 50, Montage 50, Sipht 60

30

Mix Large CyberShake 30, Inspiral 30, Montage 25, Sipht 30 ,
CyberShake 50, Inspiral 50, Montage 50, Sipht 60,
CyberShake 100, Inspiral 100, Montage 100, Sipht 100

30

Request Generation: Workflow requests arrive at the cloud data center over
time following a Poisson distribution with λ = 0.01 [10]. The penalty coefficient
in Eq. (11) is δ = $0.24/h according to [23]. Moreover, the deadline relaxation
coefficient in Eq. (10) is set to ξ ∈ {1, 12, 24, 36}, where a larger ξ implies more
relaxed deadline which can be fulfilled by using relatively cheaper VMs.

5.3 Baseline Algorithms

This paper compares three baseline algorithms listed below, including two GP-
based algorithms [20,22] and one well-known heuristic approach [3,15]. All GP-
based algorithms will run independently for 30 times using the same set of
problem instances. The final performance of any GP-based algorithm is then
calculated as the average total cost achieved by the 30 best scheduling heuristics
obtained from each of the 30 runs on all testing scenarios.

– HEFT-FCFS [3,15] uses HEFT for VM selection and FCFS for task selection.
– SGP [5] is a GPHH approach that can evolve VMSRs for DWS.
– CCGP [20] is a cooperative coevolution GPHH approach that evolves a com-

bination of one VMSR and one TSR via two evolutionary sub-populations.

5.4 Performance Comparison

The test performance of all algorithms on three scenarios (see Table 3) with
four deadline relaxation coefficients (ξ = 1, 12, 24, 36) is summarized in Table 4,
which records the best and mean total costs in (8) across 30 independent runs. To
identify whether there is a statistically significant difference among all competing

444 Y. Yang et al.

algorithms, a Wilcoxon test with a significance level of 0.05 is performed between
each pair of algorithms. All statistically significant results are indicated as “+”,
“−” or “=” in Table 4. The optimal value in each row is also bolded.

Compared to other baselines, DTGP achieved the lowest overall costs on
most of the testing scenarios and performed effectively under both tight (ξ = 1)
and loose (ξ = 24, 36) deadlines because it can prioritize tasks with high overdue
risks through reordering all pending tasks in the VM queues. Furthermore, for
GP-based algorithms, the total cost decreases upon increasing ξ since they allow
workflows with loose deadlines to be processed on cheaper VM instances.

Table 4. The best and mean (standard deviation) objective values of 4 algorithms on
12 testing scenarios across 30 independent runs.

Scenarios HEFT-FCFS SGP CCGP DTGP

Best Mean (std.) Best Mean (std.) Best Mean (std.) Best Mean (std.)

ξ = 1 S 87.55 103.58(9.12) 58.12 60.84(2.25)(+) 57.51 60.94(3.07)(+)(=) 57.26 59.65(1.68)(+)(+)(+)

M 145.15 164.20(10.07) 70.02 73.72(3.31)(+) 69.64 73.48(3.17)(+)(=) 69.01 71.74(2.03)(+)(+)(+)

L 246.53 283.93(17.98) 86.36 91.10(4.45)(+) 85.04 91.20(4.8)(+)(=) 84.65 88.76(3.45)(+)(+)(+)

ξ = 12 S 91.39 101.50(6.57) 26.34 31.91(3.59)(+) 27.41 34.27(3.62)(+)(−) 27.24 33.71(4.70)(+)(−)(+)

M 152.06 167.94(11.34) 39.01 45.26(4.23)(+) 39.08 49.51(5.4)(+)(−) 39.06 48.50(7.05)(+)(−)(+)

L 248.06 283.47(22.43) 54.91 65.30(5.84)(+) 56.74 70.4(7.85)(+)(−) 57.29 69.30(10.63)(+)(−)(+)

ξ = 24 S 89.86 104.68(8.78) 25.74 28.49(1.53)(+) 24.34 29.27(1.96)(+)(−) 23.62 26.16(1.79)(+)(+)(+)

M 139.78 167.14(13.28) 37.23 42.13(2.98)(+) 35.34 44.01(3.08)(+)(−) 34.91 38.46(2.72)(+)(+)(+)

L 243.46 272.54(20.32) 52.84 62.51(4.93)(+) 51.8 65.60(4.84)(+)(−) 50.76 57.05(5.34)(+)(+)(+)

ξ = 36 S 90.62 103.45(6.93) 24.65 62.51(4.93)(+) 23.36 25.97(2.26)(+)(+) 23.09 23.76(0.53)(+)(+)(+)

M 148.22 167.45(10.44) 36.63 38.95(1.70)(+) 33.95 38.35(3.55)(+)(+) 32.98 34.53(0.96)(+)(+)(+)

L 246.53 270.85(17.29) 52.33 56.85(2.44)(+) 50.12 58.03(7.51)(+)(−) 48.88 51.27(1.84)(+)(+)(+)
∗ (+), (−) or (=) indicates that the matching result is significantly better, worse, or
equivalent to its counterpart.

Interestingly, SGP outperforms CCGP and DTGP when ξ = 12. We notice
that when the deadline is at a moderate level, tasks are normally processed in
a FCFS order on any VM instances [3,22]. Hence, without evolving TSRs, SGP
can concentrate fully on evolving more effective VMSRs with a much smaller
search space than that of CCGP and DTGP. Comparing CCGP and DTGP,
the results in Table 4 clearly indicate that simultaneously evolving VMSR and
TSR as a dual-tree is more effective than evolving them separately in two sub-
populations. By using the best GP tree in one sub-population (e.g., the best
VMSR) to evaluate the fitness of all GP trees in another sub-population (e.g.,
TSRs), CCGP does not explore all potentially useful combinations of VMSRs
and TSRs from both sub-populations.

5.5 Ablation Study

To demonstrate the necessity and effectiveness of jointly using both VSMR and
TSR, we compare the performance of a rule pair designed by DTGP with the

DTGP for Deadline-Constrained Dynamic Workflow Scheduling 445

performance achieved by using only VMSR in the same rule pair on 12 test-
ing scenarios. The observed performance difference is captured by a percentage
metric defined in Eq. (12).

fitness(V MSR) − fitness(V MSR, TSR)
fitness(V MSR, TSR)

× 100% (12)

Table 5. Percentage increase in total cost when using VMSRs alone.

Mix Small Mix Medium Mix Large

ξ = 1 6.31% 6.96% 6.96%

ξ = 12 53.00% 43.45% 32.47%

ξ = 24 87.10% 75.12% 59.18%

ξ = 36 123.40% 103.16% 80.35%

Table 5 shows the percentage increase in total costs when using the VMSR
of a rule pair evolved by DTGP alone. The results demonstrate that using two
rules to schedule workflows is substantially better than using VMSR only on all
testing scenarios. TSR therefore plays an essential role in solving the DCDWSC
problem.

5.6 Terminal Analysis

We further analyze the distribution of terminal nodes among the best 30 rule
pairs generated by DTGP in 30 runs to verify whether the newly proposed
terminals in Subsect. 4.1 are effective. Specifically, V MR,NIQ,NOC,NOR and
RDL are newly developed terminals for designing VMSRs. We calculate the
percentage of the number of each terminal with respect to the total number of
terminals in a rule, and report the average percentage among the 30 rules in
Fig. 5 and Fig. 6.

 (%
)

Fig. 5. Terminal statistic of VMSRs.

446 Y. Yang et al.

R

0

20

0

 (%
)

Fig. 6. Terminal statistic of TSRs.

In Fig. 5, the top three terminal types used in VMSRs are V MR,LFT and
NIQ. They capture the real-time information of the VM. This is because VM-
related information has a significant impact on the performance of VMSRs.
Figure 6 shows that ET,NOR and RDL are the top three terminal types in
TSRs. Clearly, with tight deadlines (i.e., ξ = 1), the number of unassigned
tasks remaining in a workflow (NOR) has a strong influence on the TSR. The
remaining time before the deadline of a workflow (RDL) also affects strongly
the processing order of those tasks waiting at a VM queue.

6 Conclusions

In this paper, we investigated the DCDWSC problem where a series of hetero-
geneous workflows can arrive dynamically over time with varied deadline con-
straints. To address this problem, we proposed the DTGP algorithm to jointly
design a pair of VMSR and TSR. Both VMSR and TSR are supported by newly
developed terminals. As far as we know, TSR has never been used in previ-
ous studies. Experimental results confirm that DTGP can outperform several
competing algorithms under both tight and loose deadlines. Moreover, we found
experimentally that better performance can be achieved by using both VSMR
and TSR, instead of using VMSR alone. Evolving VSMRs and TSRs in the form
of dual-trees was proved to be more effective than evolving them in separate
sub-populations.

In the future, effective recombination methods can be further developed to
improve the performance of DTGP. The influence of deadline penalty factor on
the formation of the two rules can also be analyzed.

References

1. Arabnejad, V., Bubendorfer, K., Ng, B.: Dynamic multi-workflow scheduling: a
deadline and cost-aware approach for commercial clouds. Futur. Gener. Comput.
Syst. 100, 98–108 (2019)

2. Armbrust, M., et al.: Above the clouds: a Berkeley view of cloud computing. Tech-
nical report (2009)

DTGP for Deadline-Constrained Dynamic Workflow Scheduling 447

3. Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating scientific workflows
in distributed environments. In: 2012 IEEE 8th International Conference on E-
Science, pp. 1–8. IEEE (2012)

4. Djigal, H., Feng, J., Lu, J., Ge, J.: IPPTS: an efficient algorithm for scientific
workflow scheduling in heterogeneous computing systems. IEEE Trans. Parallel
Distrib. Syst. 32(5), 1057–1071 (2020)

5. Escott, K.-R., Ma, H., Chen, G.: Genetic programming based hyper heuristic app-
roach for dynamic workflow scheduling in the cloud. In: Hartmann, S., Küng, J.,
Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2020. LNCS, vol. 12392, pp. 76–90.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59051-2 6

6. Escott, K.R., Ma, H., Chen, G.: A genetic programming hyper-heuristic app-
roach to design high-level heuristics for dynamic workflow scheduling in cloud.
In: 2020 IEEE Symposium Series on Computational Intelligence, pp. 3141–3148.
IEEE (2020)

7. Faragardi, H.R., Saleh Sedghpour, M.R., Fazliahmadi, S., Fahringer, T., Rasouli,
N.: GRP-HEFT: a budget-constrained resource provisioning scheme for workflow
scheduling in IaaS clouds. IEEE Trans. Parallel Distrib. Syst. 31(6), 1239–1254
(2020)

8. Ismayilov, G., Topcuoglu, H.R.: Neural network based multi-objective evolutionary
algorithm for dynamic workflow scheduling in cloud computing. Futur. Gener.
Comput. Syst. 102, 307–322 (2020)

9. Rasouli Kenari, A., Shamsi, M.: A hyper-heuristic selector algorithm for cloud
computing scheduling based on workflow features. Opsearch 58(4), 852–868 (2021).
https://doi.org/10.1007/s12597-021-00508-6

10. Liu, J., et al.: Online multi-workflow scheduling under uncertain task execution
time in IaaS clouds. IEEE Trans. Cloud Comput. 9(3), 1180–1194 (2019)

11. Liu, Y., Mei, Y., Zhang, M., Zhang, Z.: A predictive-reactive approach with genetic
programming and cooperative coevolution for the uncertain capacitated arc routing
problem. Evol. Comput. 28(2), 289–316 (2020)

12. O’Neill, M.: Riccardo Poli, William B. Langdon, Nicholas F. Mcphee: a field guide
to genetic programming (2009)

13. Rizvi, N., Dharavath, R., Wang, L., Basava, A.: A workflow scheduling approach
with modified fuzzy adaptive genetic algorithm in IaaS clouds. IEEE Trans. Serv.
Comput. (2022). https://doi.org/10.1109/TSC.2022.3174112

14. Tan, B., Ma, H., Mei, Y., Zhang, M.: A cooperative coevolution genetic program-
ming hyper-heuristics approach for on-line resource allocation in container-based
clouds. IEEE Trans. Cloud Comput. 10(3), 1500–1514 (2022). https://doi.org/10.
1109/TCC.2020.3026338

15. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

16. Versluis, L., Iosup, A.: A survey of domains in workflow scheduling in comput-
ing infrastructures: community and keyword analysis, emerging trends, and tax-
onomies. Futur. Gener. Comput. Syst. 123, 156–177 (2021)

17. Wang, Z.J., et al.: Dynamic group learning distributed particle swarm optimization
for large-scale optimization and its application in cloud workflow scheduling. IEEE
Trans. Cybern. 50(6), 2715–2729 (2020)

18. Wu, Q., Ishikawa, F., Zhu, Q., Xia, Y., Wen, J.: Deadline-constrained cost optimiza-
tion approaches for workflow scheduling in clouds. IEEE Trans. Parallel Distrib.
Syst. 28(12), 3401–3412 (2017)

https://doi.org/10.1007/978-3-030-59051-2_6
https://doi.org/10.1007/s12597-021-00508-6
https://doi.org/10.1109/TSC.2022.3174112
https://doi.org/10.1109/TCC.2020.3026338
https://doi.org/10.1109/TCC.2020.3026338

448 Y. Yang et al.

19. Xiao, J.-P., Hu, X.-M., Chen, W.-N.: Dynamic cloud workflow scheduling with a
heuristic-based encoding genetic algorithm. In: Yang, H., Pasupa, K., Leung, A.C.-
S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12533, pp.
38–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63833-7 4

20. Xiao, Q.Z., Zhong, J., Feng, L., Luo, L., Lv, J.: A cooperative coevolution hyper-
heuristic framework for workflow scheduling problem. IEEE Trans. Serv. Comput.
15(1), 150–163 (2022)

21. Xie, Y., Gui, F.X., Wang, W.J., Chien, C.F.: A two-stage multi-population genetic
algorithm with heuristics for workflow scheduling in heterogeneous distributed
computing environments. IEEE Trans. Cloud Comput. (2021). https://doi.org/
10.1109/TCC.2021.3137881

22. Yang, Y., Chen, G., Ma, H., Zhang, M., Huang, V.: Budget and SLA aware dynamic
workflow scheduling in cloud computing with heterogeneous resources. In: 2021
IEEE Congress on Evolutionary Computation, pp. 2141–2148 (2021)

23. Youn, C.H., Chen, M., Dazzi, P.: Cloud Broker and Cloudlet for Workflow Schedul-
ing. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5071-8

24. Yu, Y., Feng, Y., Ma, H., Chen, A., Wang, C.: Achieving flexible scheduling of het-
erogeneous workflows in cloud through a genetic programming based approach. In:
2019 IEEE Congress on Evolutionary Computation, pp. 3102–3109. IEEE (2019)

25. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Correlation coefficient-based recombi-
native guidance for genetic programming hyperheuristics in dynamic flexible job
shop scheduling. IEEE Trans. Evol. Comput. 25(3), 552–566 (2021)

https://doi.org/10.1007/978-3-030-63833-7_4
https://doi.org/10.1109/TCC.2021.3137881
https://doi.org/10.1109/TCC.2021.3137881
https://doi.org/10.1007/978-981-10-5071-8

Cost-Aware Dynamic Multi-Workflow
Scheduling in Cloud Data Center Using
Evolutionary Reinforcement Learning

Victoria Huang1(B), Chen Wang1, Hui Ma2, Gang Chen2,
and Kameron Christopher1

1 National Institute of Water and Atmospheric Research, Wellington, New Zealand
{victoria.huang,chen.wang,kameron.christopher}@niwa.co.nz

2 Victoria University of Wellington, Wellington, New Zealand
{hui.ma,aaron.chen}@ecs.vuw.ac.nz

Abstract. The Dynamic Multi-Workflow Scheduling (DMWS) prob-
lem aims to allocate highly complex tasks modeled as workflows to
cloud resources while optimizing workflow brokers’ interests. A work-
flow broker offers workflow execution services to end-users with agreed
Service Level Agreements (SLA) while reducing its total VM rental fees
in the meantime. Most existing DMWS-related research works focus on
minimizing the workflow makespan by using either heuristics or hyper-
heuristics techniques. However, these techniques were either designed for
static workflow scheduling based on prior workflow information and/or
the simplified cloud environment. In this paper, the DMWS problem is
formulated to collectively minimize VM rental fees and SLA violation
penalties. Moreover, we introduce a novel priority-based deep neural
network scheduling policy that can flexibly adapt to a changing num-
ber of VMs and workflows. To train the new policy, a new Evolution-
ary Strategy based Reinforcement Learning (ES-RL) is developed and
implemented. Different from gradient-based deep reinforcement learning
algorithms, ES-RL has its advances in effectively training population-
based and generally applicable policies in parallel as well as robustness
to hyper-parameter settings. Our experiments with real-world datasets
show that ES-RL can effectively train scheduling policies that can sig-
nificantly reduce the costs by more than 90% compared to the state-of-
the-art scheduling policies.

Keywords: Dynamic workflow scheduling · Cloud computing ·
Reinforcement learning · SLA violation · Evolutionary strategy

This work is in part supported by the NZ Government’s Strategic Science Invest-
ment Fund (SSIF) and the New Zealand Marsden Fund with the contract number
(VUW1510), administrated by the Royal Society of New Zealand.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 449–464, 2022.
https://doi.org/10.1007/978-3-031-20984-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_32&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_32

450 V. Huang et al.

1 Introduction

Large-scale and highly complex computational applications (e.g., weather fore-
casting and Tsunami prediction) are usually modeled as workflows in cloud [17,
18]. A workflow consists of a set of inter-dependent tasks connected by directed
edges. These workflows are often outsourced to workflow brokers that offer work-
flow execution services to users [29,31]. A workflow broker usually uses computa-
tion resources, e.g., Virtual Machines (VMs), leased from cloud providers [10,28]
to reduce the maintenance cost [28,29]. Service Level Agreements (SLAs) are
often established between the users and the workflow brokers [28]. Brokers are
highly motivated to comply with the commitments in SLAs, e.g., deadline con-
straints, in order to avoid paying SLA violation penalties [28,30].

The process of Workflow Scheduling (WS) starts from users dynamically
submitting workflows to brokers along with specified deadlines. Upon receiving
a workflow, the broker makes scheduling decisions in real time which include the
selection of VM resources (e.g., the VM number and types) and allocation from
workflow tasks to VMs. Often, a broker needs to schedule multiple workflows for
a customer. The goal of the broker is to maximize its profit by minimizing the
VM rental fees and SLA violation penalties.

The WS problem is known to be NP-hard [9,15] and has been widely inves-
tigated [9,10]. For example, GRP-HEFT [9] schedules a given workflow to mini-
mize the makespan under a VM rental budget. ProLiS [29] proportionally assigns
a sub-deadline to each task and allocates tasks to VMs that can meet the dead-
line constraint as well as minimize the VM rental fees. However, existing meth-
ods [5,9] were mostly designed for static WS where the workflow information
(e.g., the arrival time, the number, and types of workflows) is known in advance.
Moreover, many methods have been proposed with different goals and con-
straints, such as minimizing the workflow makespan with a budget constraint in
GRP-HEFT [9] or minimizing the budget while satisfying the deadline constraint
in ProLiS [29]. Different from these works, in this paper a workflow broker aims
to strike a desirable trade-off between reducing the SLA penalty and the total
VM rental fee such that the overall cost involving both of the two can be mini-
mized. Moreover, existing algorithms focus on developing heuristics [3,5,9,15,29]
or hyper-heuristics [1,8,16,31] based on simplified cloud environment as well as
prior information of all workflows to be scheduled. Some works only considered
scheduling one workflow at a time [7].

In this paper, we consider a Cost-aware Dynamic Multi-Workflow Scheduling
(DMWS) problem for workflow brokers, where different workflows are dynam-
ically sent to brokers for execution. The broker needs to rent proper VMs and
schedule workflows on the rented VMs in real-time to minimize VM rental fees
and SLA violation penalties. Note that the number of VMs also needs to accom-
modate the workflow dynamics. Therefore, DMWS involves decisions of dynami-
cally adjusting the number of rented VMs and allocating workflow tasks to VMs.
Since WS decisions at a given time are affected by previous decisions and the cur-
rently available VM resources, this is a sequential decision problem. Therefore,
Deep Reinforcement Learning (DRL) is a promising direction towards tackling

Cost-Aware DMWS in Cloud Data Center Using Evolutionary RL 451

this challenging problem. However, existing Q-learning or gradient-based DRL
approaches for WS [7,13,20,25] have certain limitations: (1) They do not guar-
antee high scalability due to the assumption that the number of VMs is pre-
determined and remains fixed [13,20,25]. (2) Their performance is sensitive to
hyper-parameter settings while hyper-parameter search is difficult.

The aim of this paper is to propose an effective approach for training newly
designed scheduling policies to handle a changing number of VMs and workflows
to address the cost-aware DMWS. Specifically, we design a new Deep Neural Net-
work (DNN) based scheduling policy to dynamically rent new VMs and allocate
simultaneously any tasks ready for execution to the rented VMs. We show that
the designed scheduling policies can be used to efficiently assign a priority value
to each candidate VM for a given task. The VM with the highest priority will be
selected for renting and/or task execution. In line with the new policy network
design, a new training approach called Evolutionary Strategy based Reinforce-
ment Learning (ES-RL) for DMWS is proposed. Our new training approach fea-
tures the use of Evolutionary Strategy (ES), a deep neuroevolution algorithm,
to achieve stable and effective training of our policy network. Meanwhile, ES-RL
is not sensitive to hyper-parameter settings and offers significant performance
gain and time reduction through its parallel training capabilities.

Specifically, the key contributions of this paper are listed as follows:

– A Priority-based Deep Neural Network (DNN) scheduling policy design is
proposed to flexibly adapt to a changing number of VMs and workflows.

– An evolutionary DRL approach called Evolutionary Strategy based Rein-
forcement Learning (ES-RL) is proposed to achieve robust and time-efficient
training of new policy networks that can solve the DMWS problem effectively.

– Extensive experiments with real-world datasets have been conducted to show
that the scheduling policies trained by ES-RL can significantly reduce the
costs by more than 90% compared to the state-of-the-art WS approaches.

2 Related Work

Problem Formulation: Existing Workflow Scheduling (WS) studies can be
divided into static and dynamic WS.

Static WS assumes the workflow information (e.g., arrival time, workflow
type, and the number of workflows) is known in advance. Given the workflow
information, the scheduling decisions are made offline and remained fixed during
the workflow execution. Most of the existing works belong to this category [3,5,9,
29]. However, the assumption on prior knowledge of the workflow information in a
cloud environment may not be practical because users can submit their workflows
at any time and the workflows from one user can also vary in terms of structure
and size from time to time [6,15]. Although an alternative way is to schedule the
workflows periodically (e.g., batch scheduling) [2], deciding a suitable scheduling
period is critical and challenging. For example, a short scheduling period can
significantly increase VM rental fees due to low VM utilization (see GRP-HEFT

452 V. Huang et al.

performance in Sect. 6.2) while a long scheduling period introduces long workflow
waiting time, potentially leading to high SLA violation penalties.

Dynamic WS makes scheduling decisions at run-time according to the cur-
rent cloud environment. Unlike static WS, dynamic WS only received limited
research interests [6,15]. For example, the existing studies [6,15] considered the
workflow scheduling problem with the goal of minimizing the VM rental costs
while treating the workflow deadline as a hard constraint. However, sometimes
it can be more cost-efficient by paying the SLA penalties rather than renting
additional/expensive VMs (see the comparison between ES-RL and ProLiS in
Sect. 6.2). The trade-off between VM rental fees and SLA violation was not cap-
tured by the models proposed in existing works [9,29]. Motivated by [11,31], in
this paper, we study the dynamic WS problem with the aim to optimize both
VM rental fees and SLA violation penalties. That is, we consider the trade-off
between rental fees and SLA violation fees to minimize the overall cost of brokers
and therefore maximize their profits.

Algorithm Design: Most existing works focus on developing heuristics or
hyper-heuristics to generate approximate or near-optimal solutions for the NP-
hard WS problem with constraints. For example, GRP-HEFT [9] was proposed
which selected VMs using a greedy heuristic under a budget constraint and allo-
cated tasks using a modified HEFT [26]. To solve the deadline constrained WS
problem of a single workflow, ProLiS [29] distributed the user-assigned deadline
to each task in the workflow and subsequently allocated the tasks to VMs in
order to meet their sub-deadlines. Other heuristics can also be found in [3,5,15].
However, most of them rely on a simplified cloud environment and full knowledge
of all workflows to be scheduled, which potentially limits their practical appli-
cability. Apart from that, many of them [3,5,9] are designed for static work-
flow scheduling. Alternatively, meta-heuristic (e.g., Particle Swarm Optimiza-
tion) [19,21] and hyper-heuristic methods (e.g., Genetic Programming) [8,31]
have been applied to WS. However, these approaches either assume the work-
flow information is known in advance (i.e., static WS) or generate heuristics
based on historical data.

Deep Reinforcement Learning (DRL) has been applied for WS due to
its ability to optimize a solution via interacting with an unknown environ-
ment [7,13,20,25,27]. For example, a deep-Q-network based DRL algorithm was
proposed [27] to optimize the workflow makespan and user’s cost. However, exist-
ing works have certain limitations. First, they are usually designed with a given
and fixed number of VMs. However, the given number of VMs may not be opti-
mal to handle the changing workloads [13,20,25,27]. Second, the performance of
most DRL algorithms [23,24] is sensitive to the hyper-parameter setting while
hyper-parameter search is difficult [14].

To cope with these limitations, Evolutionary Strategy (ES) is leveraged in
this paper to train the scheduling policy. ES is a population-based approach that
evolves DNNs by simulating the process of natural selection. Existing studies [22]
have shown that ES can achieve competitive performance with DRL algorithms.

Cost-Aware DMWS in Cloud Data Center Using Evolutionary RL 453

Moreover, ES is highly parallelizable and has fewer hyper-parameters needed to
be tuned compared to DRL algorithms.

3 Problem Formulation

In this paper we study the cost-aware Dynamic Multi-Workflow Scheduling
(DMWS) problem. This section presents a formal definition of the problem.

Cloud Environment: We consider a cloud data center equipped with a set
of VM types. Thanks to the elasticity feature in the cloud, we assume that the
number of VMs with each VM type for renting is “unlimited”. A VM v with
type Type(v) can be described as:

v = 〈Type(v), Capa(v), P rice(v)〉
where Capa(v) is the VM processing capacity measured in Compute Units [9]
and Price(v) is the rental fee of each time unit depends on Type(v). Following
existing studies [9,31], we consider the rental time unit as one hour in this paper.

VM Rental Fee: For the DMWS problem, we consider a time interval T =
(ts, te) where ts and te are the starting and ending time. Within T , the same
type of VM can be rented for multiple times. We denote the set of rental periods
for a VM v with type Type(v) within T as RT (v, T):

RT (v, T) = {(V MST (v, k, T), V MFT (v, k, T))|k = 1, ...}
where (V MST (v, k, T), V MFT (v, k, T)) is the kth time pair for v within time
period T . V MST (v, k, T) is the rental start time which begins when a workflow
task is allocated at v and V MFT (v, k, T) is the corresponding rental finish time.
The VM rental fees under a scheduling policy π can be calculated as follows:

RentFee(π, T) =
∑

v∈I(π,T)

⎛

⎝Price(v) ×
∑

(t1,t2)∈RT (v,T)

⌈
t2 − t1
3600

⌉⎞

⎠

where I(π, T) is the set of VMs being rented within the time period T .

Workflow Model: A workflow w is represented as a Directed Acyclic Graph
associated with its arrival time ArrT (w) and a user-specified deadline DL(w).

w = 〈DAG(w), ArrT (w),DL(w)〉
where DAG(w) includes a set of tasks {Task(w, i)|i ∈ {1, 2, ...}} and directed
edges connecting the tasks to enforce their execution order. Note that Task(w, i)
is associated with execution time RefT (Task(w, i)) and can only be executed if
all its predecessor tasks Pre(Task(w, i)) are completed. Task(w, i) is an entry

454 V. Huang et al.

task if Pre(Task(w, i)) = ∅. Similarly, the successors of Task(w, i) are denoted
as Suc(Task(w, i)). A task with no successors is an exit task.

In this paper, we assume that the arrival time of any new workflows is not
known in advance. To avoid SLA violation and flexibly utilize the VM resources,
scheduling decisions are made in real time, e.g., whenever a task is ready. In
particular, a task Task(w, i) is defined as ready if it is either an entry task
of a workflow (i.e., Pre(Task(w, i)) = ∅) or a task with all its predecessors
Pre(Task(w, i)) completed. We define a set of candidate VMs as CV M(t) which
includes all leased VMs at time t and a set of VM options with all VM types
that can be created. Whenever Task(w, i) is ready at time t, π selects a VM v
from CV M(t) for Task(w, i) allocation.

Following π, the start time for Task(w, i) is ST (Task(w, i), π) and the com-
pletion time is

CT (Task(w, i), π) = ST (Task(w, i), π) +
RefT (Task(w, i))

Capa(v(π))

Thus, the completion time WCT of a workflow w is the maximum completion
time among all tasks:

WCT (w, π) = max
Task(w,i)∈DAG(w)

{CT (Task(w, i), π)}

SLA Penalty: Following existing works [28,31], the SLA violation penalty of
workflow w can be defined as follows:

Penalty(w, π) =

{
0, if WCT (w, π) ≤ DL(w)
ε + β(w) × (WCT (w, π) − DL(w)), otherwise

where ε is a constant and β(w) is the penalty rate for w.
The goal of the cost-aware DMWS problem is to find π to schedule a set of

workflows W (T) = {w|ArrT (w) < te} that arrive during T , so as to minimize
SLA violation penalties and VM rental fees:

argmin
π

∑

w∈W (T)

Penalty(w, π) + RentFee(π, T) (1)

4 Priority-Based DNN Policy Design

In the DMWS problem, the scheduling decision needs to be made in real time
with minimum delay. Therefore, π must select a suitable VM quickly whenever
a task is ready. Meanwhile, in order to tackle environment dynamics and cap-
ture the most recent information (e.g., how close is the workflow deadline), the
scheduling decision is made as soon as the task is ready and before it is assigned
to a VM.

In this paper, a design of priority-based Deep Neural Network (DNN) policy is
proposed. As shown in Fig. 1, the policy π consists of three major components:

Cost-Aware DMWS in Cloud Data Center Using Evolutionary RL 455

the state extraction function O, the priority function fθ parameterized by θ,
and the mapping function Φ. Whenever a task is ready at time t, the policy
π examines the VM status z(v, t) extracted by O for ∀v ∈ CV M(t). Then π
assigns a priority value p(v, t) to each VM v using fθ. Based on the priorities, a
VM is selected using Φ.

 O Φ

Scheduling policy from SaaS provider

VM

 MV

VM

Queuing
tasks

Executing
tasks

π

fθ

VMs from Cloud provider

Fig. 1. The dynamic workflow scheduling system.

State Extraction: At time t, we use S(t) to capture the state information of
the current cloud environment including static information (e.g., the VM rental
price) and dynamic information (e.g., VM rental period, availability, workflow
processing information, etc.). To allow the policy to be applied to a varying
number of VMs, a state extraction function O is proposed to extract essential
information regarding any given VM v from CV M(t) and the ready task to be
scheduled:

z(v, t) = O(S(t), v)

Whenever a task is ready, only information of one VM instead of all VM is fed
into fθ. Therefore, fθ can be flexibly applied with a changing number of VMs.

Intuitively, the priority value of a VM depends on the ready task and the VM.
Therefore, z(v, t) includes both workflow-related and VM-related information.
Given a ready task Task(w, i) from a workflow w, we identify the following
workflow-related information to estimate the workflow remaining processing time
and predict future workload:

– the number of its successors |Suc(Task(w, i))|
– the workflow completion ratio1

– the estimated workflow arrival rate

For VM-related information, we estimate whether a VM is a good fit depending
on if it will satisfy the deadline, introduce additional rental fees, and remain any
rental time:

1 The workflow completion ratio is the ratio of the number of completed tasks to the
total number of tasks from the workflow.

456 V. Huang et al.

– a Boolean value indicating whether the VM can satisfy the task deadline2

– the potential cost of using the VM3

– the VM remaining rental time after allocating the ready task
– a Boolean value indicating whether the current VM is the one with the lowest

cost and can satisfy the deadline.

The state extraction process can be formulated as follows:

Z(t) = [z(v, t)]v∈CV M(t) = [O (S(t), v)]v∈CV M(t), t ∈ T (2)

Priority Mapping: Using the extracted state features z(v, t), the priority func-
tion fθ with trainable parameters θ calculates a priority value p(v, t) for every
VM candidate v:

P (t) = [p(v, t)]v∈CV M(t) = [fθ (z(v, t))]v∈CV M(t)

In this paper, DNN is adopted to implement the priority function. Meanwhile,
neural engines and similar hardware technologies can quickly process our neural
networks for priority mapping during practical use.

VM Selection: Given the priorities, a VM a(t) with the highest priority value
is selected by Φ:

a(t) = Φ(P (t)), i.e., a(t) = arg max
v∈CV M(t)

(P (t))

The scheduling policy can be represented as follows:

a(t) = π(S(t)) = Φ
(
[fθ (O (S(t), v))]v∈CV M(t)

)
(3)

5 Evolutionary Reinforcement Learning

Training a policy can be considered as a DRL task. However, as we discussed
in Sect. 2, existing DRL-based approaches for WS assume the number of VMs
is pre-determined and fixed. Therefore, they cannot scale to a network with a
different number of VMs. Meanwhile, their performance highly relies on hyper-
parameter tuning.

To tackle these problems, we introduced a new Evolutionary Strategy based
Reinforcement Learning (ES-RL) approach for DMWS. The pseudo-code of ES-
RL is presented in Algorithm 1. In particular, ES-RL adopts the ES frame-
work introduced by OpenAI in [22] for training scheduling policies. ES-RL is a
population-based optimization method that runs iteratively, as shown in Fig. 2.

2 Motivated by ProLiS [29], we assign a deadline to a task based on the proportion of
its computational time to the overall workflow computational time.

3 The potential cost is the sum of new VM rental fee and deadline violation penalty.

Cost-Aware DMWS in Cloud Data Center Using Evolutionary RL 457

At each iteration, given the current policy parameters θ̂, ES-RL samples a pop-
ulation of N individuals [θi]i=1,..,N from an isotropic multi-variance Gaussian
with mean θ̂ and fixed covariance σ2I, i.e., θi ∼ N (θ̂, σ2I), which is equivalent
to

θi = θ̂ + σεi, εi ∼ N (0, I)

The fitness value F (θ̂+σεi) of each individual θ̂+σεi is evaluated by applying
the perturbed policy πθ̂+σεi

in the cloud environment as discussed in Sect. 4.
In line with our objective function in Eq. (1), we define the fitness function
F (θ̂ + σεi) as the total cost incurred over T :

F (θ̂ + σεi) =
∑

w∈W (T)

Penalty(w, π) + RentFee(π, T) (4)

The goal of ES-RL is to find θ that can minimize the total cost defined in
Eq. (4) through minimizing the expected objective value over the population
distribution, i.e., Eε∼N (0,I) F (θ + σεi). To achieve this goal, ES updates θ using
the following estimator:

∇θ Eθ∼pψ
F (θ) = ∇θ Eε∼N (0,I) F (θ + σε) =

1
σ
Eε∼N (0,I)

[
F (θ + σε)ε

]

≈ 1
Nσ

N∑

i=1

[
F (θ + σεi)εi

] (5)

Policy gradient
calculation
using Eq.(5)

Generate Individual

 O Φ

Scheduling policy

VM

 MV

VM

Dynamic Queuing
tasks

Executing
tasks

Cloud environment

Step 4: Scheduling
decision a(t)

Step 3: Runtime system
state Z(t), Total cost F(t)

Calculate θθ

Step 5: Calculate
F (θ +)

Multi-variance Gaussian
 N (ψ, σ2I)

Step 2: Update
individuals θ +

π

Step 6: Policy gradient

∇θEθ∼pψ
F (θ)

Step 1: Sample noise ∼ N (ψ, σ2I)

Step 7: Update fθ

Fig. 2. Scheduling policy training using ES-RL.

458 V. Huang et al.

Algorithm 1. ES-RL for DMWS
1: Input: Population size N , initial policy parameter θ̂, learning rate α; Gaussian

noise standard deviation σ
2: Output: Scheduling policy
3: while the number of generations < the max number of generations: do
4: for each individual i = 1, ..., N do
5: Sample εi ∼ N (0, I)
6: Update the WF scheduling policy πi using θi = θ̂ + σεi

7: Evaluate fitness F (θi) in cloud environment using Eq. (4)
8: end for
9: Estimate policy gradient ∇θ Eθ∼pψ F (θ) using Eq. (5)

10: Update θ̂ ← θ̂ + α∇θ Eθ∼pψ F (θ)
11: end while

Table 1. VM Setting based on Amazon EC2

Type vCPU Compute unit Memory (GB) Cost ($ per hour)

m5.large 2 10 8 0.096

m5.xlarge 4 16 16 0.192

m5.2xlarge 8 37 32 0.384

m5.4xlarge 16 70 64 0.768

m5.8xlarge 32 128 128 1.536

m5.12xlarge 48 168 192 2.304

6 Performance Evaluation

To evaluate the performance of our proposed ES-RL approach, we conduct exper-
imental evaluations using a simulator based on real-world data from cloud data
centers and benchmark workflows, comparing with two state-of-the-art methods.

6.1 Simulation Setting

Cloud Environment: We consider a cloud data center equipped with six differ-
ent VM types. Following [3,9], VMs are configured based on the general-purpose
on-demand VM group in the US East region provided by Amazon EC2. VM
details are summarized in Table 1 which were collected in September 2020 from
Amazon4.

Workflows: Following existing studies [3,9,29], four classes of scientific work-
flows are used in our experiment which include CyberShake, Inspiral, Montage,
and Sipht. All workflows are computational intensive and their communication
time is trivial compared to the task execution time [9]. Detail analysis of these

4 https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/

Cost-Aware DMWS in Cloud Data Center Using Evolutionary RL 459

workflows can be found in [4,12]. Note that workflows in each class share similar
structures but can differ from the numbers of their tasks (e.g., ranging from
25 to 50). During our training, we simulate small workflows from four classes
where each of them contains 25 to 30 tasks. Nevertheless, our trained scheduling
policy is generalized well and can be directly applied to large workflows with
50 tasks without retraining. Following [6,15], we simulate the dynamic arrival
of workflow applications by randomly sampling 30 workflows from four classes
of workflows in each simulation. The arrival time of workflows follows a Poisson
distribution with λ = 0.01 [15]. The penalty rate β is set to be $0.24 per hour
for each workflow [32].

To compare the algorithm performance under different deadlines, a deadline
relaxation factor η is used. Similar to [3], we consider η changes from 1 to 2.25.
Given η, the deadline of a workflow w is set as below:

DL(w) = ArrT (w) + η × MinMakespan(w)

where MinMakespan(w) is the shortest makespan of each workflow w as its
execution time when its tasks are executed by the fastest VM v from Table 1 (i.e.,
m5.12xlarge).

Algorithm Implementation: We implement ES-RL based on the code
released by OpenAI5. In terms of parameter settings, we set the Gaussian noise
standard deviation σ = 0.05 and the learning rate α = 10−2. The population
size N is 40 and each individual is evaluated for 1 episodes (i.e., NE=1). The
maximum generation number is 3000. For the priority function design, we fol-
low the DNN architecture used by OpenAI baselines. Specifically, it is a fully
connected multilayer feed-forward neural network with two hidden layers. Each
hidden layer consists of 64 nodes with the tanh activation function.

Baseline Algorithms: We compared ES-RL with two state-of-the-art schedul-
ing algorithms (GRP-HEFT [9] and ProLiS [29]) which have similar objectives as
(1). As we discussed in Sect. 2, both GRP-HEFT and ProLiS were designed for
static WS of one single workflow. We need to adapt them to the DMWS problem.
To enable GRP-HEFT to be comparable with ES-RL, we minimize the budget
constraint for every newly arriving workflow by incrementally increasing the bud-
get that is passed to GRP-HEFT as a constraint until the workflow satisfies its
deadline. To enable ProLiS to be applicable for dynamic workflow arrival, ProLiS
is triggered to assign deadlines to all tasks once a workflow arrives. Whenever a
task is ready, the cheapest VM from CV M(t) that can meet the task deadline
will be selected.

6.2 Simulation Results

To demonstrate the effectiveness of ES-RL, we compare its performance (i.e.,
overall cost) with GRP-HEFT and ProLiS under different η (i.e., deadline relax-
5 https://github.com/openai.

https://github.com/openai

460 V. Huang et al.

ation factor) as shown in Table 2. Note that a smaller η implies a tighter deadline.
We also analyze the testing performance among all algorithms with respect to
VM cost ($), SLA penalty ($), and VM utilization (%), as shown in Fig. 3. Note
that GRP-HEFT causes a high VM cost which ranges from $830 to $1988. Thus,
to show the difference in VM rental cost in Fig. 3(a), we set the y-axis limit to
an upper value (i.e., 420).

As shown in Table 2, we can observe that the overall cost of ProLiS and
GRP-HEFT increases as η decreases (i.e., a tighter deadline). This is mainly
because both ProLiS and GRP-HEFT consider the workflow deadline as a hard
constraint. In other words, they always select VMs that can satisfy the workflow
deadlines. This explanation also matches well with our observation in Fig. 3(b)
where the SLA penalty remains 0 regardless of the η changes. With a tight
deadline, more powerful VMs in terms of computational capacity are required.
As a result, an increase in VM cost can be observed in Fig. 3(a) as η decreases.

Fig. 3. Comparison of GRP-HEFT [9], ProLiS [29], and ES-RL on different factors
with respect to different η with small workflows.

Table 2. The average fitness values (i.e., total cost) tested over multiple runs for GRP-
HEFT [9] and ProLiS [29], and ES-RL with different η with small workflows. (Note: a
lower value is better)

η ProLiS GRP-HEFT ES-RL

1.00 395.5520 ± 11.633617 - 74.490828 ± 7.060981

1.25 108.5184 ± 15.815567 1775.9232 ± 161.077450 71.817811 ± 7.664415

1.50 91.7376 ± 12.662934 1171.8144 ± 75.565892 73.737249 ± 6.339560

1.75 83.4304 ± 10.828026 1258.9056 ± 90.980289 71.436684 ± 5.725663

2.00 76.9088 ± 10.752586 1164.7488 ± 76.973755 68.036960 ± 5.993622

2.25 68.3456 ± 10.332963 969.9840 ± 102.602041 65.590513 ± 7.967546

In comparison, ES-RL consistently outperforms both ProLiS and GRP-
HEFT with the lowest overall cost as highlighted in Table 2. This is achieved by

Cost-Aware DMWS in Cloud Data Center Using Evolutionary RL 461

balancing the trade-off between VM rental fees and SLA penalties. As demon-
strated in Fig. 3, ES-RL maintains the low overall costs by renting cost-effective
VMs (see Fig. 3(a)) as well as utilizing existing VMs (see Fig. 3(c) for the high
VM utilization). As a result, ES-RL can violate the workflow deadlines and there-
fore introduces SLA penalties (see Fig. 3(b)). Meanwhile, when η increases, the
SLA penalty decreases because when the deadline becomes looser, VM selection
has less impact on the SLA penalty.

Another interesting observation is that GRP-HEFT has the highest overall
cost among the three approaches. This is mainly because GRP-HEFT is designed
for static WS. In a scenario when two tasks from the same workflow are assigned
to the same VM, the idle time slot between the two tasks cannot be utilized
by a different workflow, leading to low VM utilization. This also matches our
observation in Fig. 3(c) where GRP-HEFT presents the lowest VM utilization.

We also investigate the generalization capability of our trained scheduling
policy. In particular, we define the generalization capability as the policy that
was trained using small workflows can still be able to effectively schedule large
workflows. The results are shown in Fig. 4. From the figures, we can see that ES-
RL still managed to reduce the overall cost by balancing the trade-off between
VM rental fees and SLA penalties. Meanwhile, compared to ProLiS, ES-RL can
achieve significantly higher VM utilization. In general, our observations of ES-RL

Fig. 4. Comparison of ProLiS [29] and ES-RL on different factors with respect to
different η with large workflows.

462 V. Huang et al.

with large workflows are consistent with the results with small workflows shown
in Fig. 3. Our results demonstrate that ES-RL can effectively train a generalized
scheduling policy that can flexibly adapt to not only the changing number of
VMs but also workflows with different sizes.

7 Conclusions

In this paper, we proposed an effective ES based approach for the cost-aware
dynamic multi-workflow scheduling (DMWS) problem. In particular, we formu-
late a dynamic multi-workflow scheduling problem with the goal of minimizing
both the VM rental cost and SLA violation penalties. To effectively solve this
problem, we proposed a new scheduling policy design of a priority-based deep
neural network that can be used in a dynamic environment with a changing num-
ber of VMs and workflows. Meanwhile, a new Evolutionary Strategy based RL
(ES-RL) algorithm for DMWS is proposed to efficiently train a generally appli-
cable scheduling policy in parallel. Our experiments with real-world datasets
showed that the scheduling policies trained by ES-RL can effectively reduce the
overall costs compared to two state-of-the-art algorithms.

References

1. Ahmad, S.G., Liew, C.S., Munir, E.U., Ang, T.F., Khan, S.U.: A hybrid genetic
algorithm for optimization of scheduling workflow applications in heterogeneous
computing systems. J. Parallel Distrib. Comput. 87, 80–90 (2016)

2. Alsurdeh, R., Calheiros, R.N., Matawie, K.M., Javadi, B.: Hybrid workflow schedul-
ing on edge cloud computing systems. IEEE Access 9, 134783–134799 (2021)

3. Arabnejad, V., Bubendorfer, K., Ng, B.: Budget and deadline aware e-science work-
flow scheduling in clouds. IEEE Trans. Parallel Distrib. Syst. 30(1), 29–44 (2019)

4. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M., Vahi, K.: Character-
ization of scientific workflows. In: 2008 Third Workshop on Workflows in Support
of Large-Scale Science, pp. 1–10 (2008)

5. Byun, E.K., Kee, Y.S., Kim, J.S., Deelman, E., Maeng, S.: BTS: resource capacity
estimate for time-targeted science workflows. J. Parallel Distrib. Comput. 71(6),
848–862 (2011)

6. Chen, H., Zhu, X., Liu, G., Pedrycz, W.: Uncertainty-aware online scheduling
for real-time workflows in cloud service environment. IEEE Trans. Serv. Comput.
14(4), 1167–1178 (2018)

7. Dong, T., Xue, F., Xiao, C., Zhang, J.: Workflow scheduling based on deep rein-
forcement learning in the cloud environment. J. Ambient. Intell. Humaniz. Comput.
12(12), 10823–10835 (2021). https://doi.org/10.1007/s12652-020-02884-1

8. Escott, K.-R., Ma, H., Chen, G.: Genetic programming based hyper heuristic app-
roach for dynamic workflow scheduling in the cloud. In: Hartmann, S., Küng, J.,
Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2020. LNCS, vol. 12392, pp. 76–90.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59051-2 6

9. Faragardi, H.R., Saleh Sedghpour, M.R., Fazliahmadi, S., Fahringer, T., Rasouli,
N.: GRP-HEFT: a budget-constrained resource provisioning scheme for workflow
scheduling in IaaS clouds. IEEE Trans. Parallel Distrib. Syst. 31(6), 1239–1254
(2020)

https://doi.org/10.1007/s12652-020-02884-1
https://doi.org/10.1007/978-3-030-59051-2_6

Cost-Aware DMWS in Cloud Data Center Using Evolutionary RL 463

10. Genez, T.A.L., Bittencourt, L.F., Madeira, E.R.M.: Workflow scheduling for
SaaS/PaaS cloud providers considering two SLA levels. In: 2012 IEEE Network
Operations and Management Symposium, pp. 906–912 (2012)

11. Hoseiny, F., Azizi, S., Shojafar, M., Tafazolli, R.: Joint QoS-aware and cost-efficient
task scheduling for fog-cloud resources in a volunteer computing system. ACM
Trans. Internet Technol. (TOIT) 21(4), 1–21 (2021)

12. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Futur. Gener. Comput. Syst. 29(3),
682–692 (2013)

13. Li, H., Huang, J., Wang, B., Fan, Y.: Weighted double deep q-network based rein-
forcement learning for bi-objective multi-workflow scheduling in the cloud. Clust.
Comput. 25(2), 751–768 (2022)

14. Liessner, R., Schmitt, J., Dietermann, A., Bäker, B.: Hyperparameter optimization
for deep reinforcement learning in vehicle energy management. In: ICAART (2),
pp. 134–144 (2019)

15. Liu, J., et al.: Online multi-workflow scheduling under uncertain task execution
time in IaaS clouds. IEEE Trans. Cloud Comput. 9(3), 1180–1194 (2019)

16. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: GACE: a
meta-heuristic based in the hybridization of genetic algorithms and cross entropy
methods for continuous optimization. Expert Syst. Appl. 55, 508–519 (2016)

17. Masdari, M., ValiKardan, S., Shahi, Z., Azar, S.I.: Towards workflow scheduling
in cloud computing: a comprehensive analysis. J. Netw. Comput. Appl. 66, 64–82
(2016)

18. Oliver, H., et al.: Workflow automation for cycling systems. Comput. Sci. Eng.
21(4), 7–21 (2019)

19. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: 2010 24th IEEE International Conference on Advanced Information Networking
and Applications, pp. 400–407 (2010)

20. Qin, Y., Wang, H., Yi, S., Li, X., Zhai, L.: An energy-aware scheduling algorithm
for budget-constrained scientific workflows based on multi-objective reinforcement
learning. J. Supercomput. 76(1), 455–480 (2020)

21. Rodriguez, M.A., Buyya, R.: Deadline based resource provisioning and scheduling
algorithm for scientific workflows on clouds. IEEE Trans. Cloud Comput. 2(2),
222–235 (2014)

22. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as
a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017)

23. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning (ICML), pp. 1889–
1897 (2015)

24. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

25. Suresh Kumar, D., Jagadeesh Kannan, R.: Reinforcement learning-based controller
for adaptive workflow scheduling in multi-tenant cloud computing. Int. J. Electr.
Eng. Educ. 0020720919894199 (2020)

26. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

27. Wang, Y., et al.: Multi-objective workflow scheduling with deep-q-network-based
multi-agent reinforcement learning. IEEE Access 7, 39974–39982 (2019)

http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1707.06347

464 V. Huang et al.

28. Wu, L., Garg, S.K., Versteeg, S., Buyya, R.: SLA-based resource provisioning for
hosted software-as-a-service applications in cloud computing environments. IEEE
Trans. Serv. Comput. 7(3), 465–485 (2014)

29. Wu, Q., Ishikawa, F., Zhu, Q., Xia, Y., Wen, J.: Deadline-constrained cost optimiza-
tion approaches for workflow scheduling in clouds. IEEE Trans. Parallel Distrib.
Syst. 28(12), 3401–3412 (2017)

30. Xiaoyong, Y., Ying, L., Tong, J., Tiancheng, L., Zhonghai, W.: An analysis on
availability commitment and penalty in cloud SLA. In: 2015 IEEE 39th Annual
Computer Software and Applications Conference, vol. 2, pp. 914–919 (2015)

31. Yang, Y., Chen, G., Ma, H., Zhang, M., Huang, V.: Budget and SLA aware dynamic
workflow scheduling in cloud computing with heterogeneous resources. In: 2021
IEEE Congress on Evolutionary Computation (CEC), pp. 2141–2148. IEEE (2021)

32. Youn, C.H., Chen, M., Dazzi, P.: Cloud Broker and Cloudlet for Workflow Schedul-
ing. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5071-8

https://doi.org/10.1007/978-981-10-5071-8

Extending the Kubernetes Platform
with Network-Aware Scheduling

Capabilities

Angelo Marchese(B) and Orazio Tomarchio

Department of Electrical Electronic and Computer Engineering, University of
Catania, Catania, Italy

angelo.marchese@phd.unict.it, orazio.tomarchio@unict.it

Abstract. Kubernetes is today the de-facto standard container orches-
tration platform for the lifecycle management of microservices-based
applications on Cloud environments. However it is not yet ready to be
adopted on node clusters distributed in the Cloud-to-Edge continuum. In
particular its scheduling strategy is not suitable for the placement of mod-
ern latency-sensitive applications on Edge environments, characterized by
frequent node failures and network partitions. In this work we propose a
network-aware scheduling extension of the default Kubernetes scheduler
that takes into account the ever changing infrastructure network condi-
tions and the dynamic communication interactions between microservices,
with the aim to optimize the placement of application containers.

Keywords: Edge computing · Containers technology · Kubernetes
scheduler · Network-aware scheduling

1 Introduction

In recent years, new and challenging application scenarios are emerging from
different domains such as smart cities, autonomous vehicles, smart agriculture,
streaming services and so on. One common features of many applications in these
areas include the production of a huge quantity of data together with the need
of near real-time analytics for effective decision making [6]. To effectively sup-
port such requirements, traditional approaches that send data to centralized cloud
infrastructure can no longer be used: they need to leverage the computational
resources that are close to the nodes where data are generated in order to reduce
response time and satisfy stringent latency requirements of applications, while at
the same time optimizing resource usage. Such new paradigms, commonly referred
to as Cloud-to-Edge continuum or simply Computing Continuum [2], are nowa-
days increasingly supported by container technology [11] which, on its turn, is
gaining tremendous popularity among developers. To execute complex container
based applications on clouds, container orchestration platforms that manage con-
tainers automatic deployment, their scaling, and operation on the underlying clus-
ter have appeared [16], being Kubernetes the most widespread today [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 465–480, 2022.
https://doi.org/10.1007/978-3-031-20984-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_33&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_33

466 A. Marchese and O. Tomarchio

However, the default scheduling system of Kubernetes has not been designed
to work in distributed and heterogeneous clusters such as the aforementioned
Cloud-to-Edge infrastructures [8,9]. In particular, the Kubernetes scheduler does
not deal with the ever changing network conditions of Edge environments, neither
the run time communication relationships between the containers that compose
a microservices-based application [1]. The mechanism of inter-Pod affinity rep-
resents a first attempt to define network-aware scheduling policies. However this
is mainly a static scheduling mechanism that requires application architects to
know container relationships before the run time phase.

To deal with those limitations, leveraging on our previous preliminary work
presented in [10], in this paper we propose a network-aware extension of the
default Kubernetes scheduler, able to take into account run time communica-
tion interactions between microservices and node-to-node network latencies to
establish an optimal placement for containers. The rest of the paper is orga-
nized as follows. In Sect. 2 we provide background information about the base
Kubernetes scheduler architecture. Section 3 deeply discusses the motivations of
our work. In Sect. 4 the design of our proposed scheduler is presented, while in
Sect. 5 we provide results of our prototype evaluation on a simple testbed. In
Sect. 6 we examine some related works comparing them with our approach and,
finally, Sect. 7 concludes the work.

2 Kubernetes Scheduler

Kubernetes1 is a container orchestration platform which automates the manage-
ment of distributed applications on large-scale computing infrastructures [3]. A
Kubernetes cluster consists of a control plane and a set of worker nodes. The
control plane is made up of different management components that run inside a
master node. The worker nodes are responsible for the execution of container-
ized application workloads. In Kubernetes, minimal deployment units consist of
Pods, which in turn contain one or more containers.

Kube-scheduler2 is a control plane component that is in charge of selecting a
cluster node for each Pod to run them on, taking into account Pod requirements
and resource availability on cluster nodes. Each Pod scheduling attempt goes
through a multi-phase process, where the filtering and scoring phases represent
the main execution logic. Each phase is implemented by one or more plugins,
which in turn can implement one or more phases. In the filtering phase each
plugin executes a filtering function for each cluster node to check if that node
satisfies a specific constraint. The output of the filtering phase is a list of can-
didate nodes that contains any suitable node to run the Pod on. In the scoring
phase each plugin executes a scoring function for each candidate node to assign
a score to that node according to a specific criterion. The final score of each
node is determined by the weighted sum of the individual scores assigned to
that node by each scoring plugin. The Pod is assigned to the node with the
1 https://kubernetes.io.
2 https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler.

https://kubernetes.io
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler

Extending the Kubernetes Platform 467

highest final score and if there is more than one node with equal scores, one of
these is randomly selected. The Kubernetes scheduler is meant to be extensible.
In particular, each scheduling phase represents an extension point which one or
more custom plugins can be registered at.

Among the default Kubernetes scheduler plugins, the InterPodAffinity plu-
gin evaluates inter-Pod affinity constraints specified in the Pod configuration file.
Inter-Pod affinity rules constrain which nodes Pods can be scheduled on based
on the labels of Pods already running on that node. Two types of inter-Pod affin-
ity rules could be specified: requiredDuringSchedulingIgnoredDuringExecution, in
which case the scheduler can’t schedule the Pod unless the rule is met and pre-
ferredDuringSchedulingIgnoredDuringExecution, in which case the scheduler still
schedules the Pod, though a matching node is not available.

podAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 50

podAffinityTerm:

labelSelector:

matchExpressions:

- key: svc

operator: In

values:

- s2

topologyKey: topology.kubernetes.io/region

Listing 1: Example of an inter-Pod affinity rule

Listing 1 shows an example of a preferredDuringSchedulingIgnoredDuringEx-
ecution inter-Pod affinity rule in a Pod configuration file. The rule says that the
scheduler should try to schedule the Pod onto a node in the same region as one
or more existing Pods with the label svc set to the value s2. Inter-Pod affinity
rules are meant to specify topological constraints during Pod scheduling, and
can be used mainly to express communication relationships between Pods. The
topologyKey parameter determines how far Pods should be placed near to each
other, while the weight parameter represents the priority of the affinity rule. The
greater this value, the greater the score assigned to the nodes that satisfy the
rule and thus the probability that Pods are placed near to each other.

3 Motivation

As described in Sect. 2 the Kubernetes inter-Pod affinity rules can be used to
express locality constraints during Pod scheduling, forcing the relative position
of two Pods with some communication relationships between them. However
this mechanism is not sufficient alone to implement an effective network-aware

468 A. Marchese and O. Tomarchio

scheduling solution for modern deployment scenarios, characterized by complex
applications and highly distributed and dynamic infrastructure. In particular
we devise two main limitations on the default Kubernetes inter-Pod affinity
mechanism.

The first limitation is related to the fact that the InterPodAffinity plugin
doesn’t evaluate run time network latencies between cluster nodes to determine
their network proximity. Instead it partitions the cluster into different topology
domains (eg. regions or availability zones) based on node labels assigned by
cluster administrators.

Kubernetes has been initially thought as a container orchestration platform
for Cloud environments, typically characterized by low communication latencies
and high network bandwidth. On these environments cluster nodes are typi-
cally located in the same Cloud provider region that corresponds to a latency-
constrained topology domain. In this case, scheduling Pods in the same Cloud
provider region guarantees a limited network latency between them. With the
recent diffusion of Fog and Edge computing paradigms and the need to move
computation near to the end-users, new Kubernetes distributions have emerged
suitable to be deployed on Cloud-Edge environments. Edge environments con-
sist of geographically distributed nodes with high heterogeneity in terms of com-
putational resources and network connectivity. In particular, network latency
between nodes represents a not negligible and variable factor for Cloud-Edge
clusters, especially for Edge nodes for which a reliable network connectivity is
not guaranteed. In this scenario, it becomes difficult for cluster administrators to
identify latency-constrained topology domains and an initial assignment of node
labels may not reveal accurate at run time because of the frequently changing
network conditions.

The second limitation is related to the fact that inter-Pod affinity rules allow
to define only static communication relationships between Pods, by manually
specifying a pre-defined value for the weight parameter that represents the pri-
ority of the affinity rule. The priority of an affinity rule is typically related to
the degree of communication between services. The greater the communication
intensity between two services the greater the priority value that should be
assigned to the corresponding affinity rule in order to improve the probability
that they are placed near to each other. This requires that in order to define
weights of affinity rules an estimate of the degree of communication between
services should be done by application architects before the deployment phase,
a difficult task for modern application scenarios.

The shift from monolithic applications towards microservices-architectures
that consist of complex application graphs, made by microservices and com-
munication channels between them, makes network communication a critical
factor to optimize in order to improve application performances, in terms of
end-to-end response latency. In a microservices-based application a generic user
request consists of a chain of sub-requests and its end-to-end latency is affected
by the latencies of each service call in the chain. The communication channels
involved in a specific user request may change depending on the application

Extending the Kubernetes Platform 469

endpoints requested by end users. In order to improve the average application
response time it becomes necessary to improve the response time of the most fre-
quently requested application endpoints and then to reduce the network latency
of the most involved communication channels where the highest traffic amount
is exchanged. By using inter-Pod affinity rules this can be done by assigning
to these communication channels the highest affinity weight values. The prob-
lem with this approach is that an accurate assignment of affinity weight values
cannot be done ahead of time because the rate at which application endpoints
are requested by end users may change over time, with some endpoints more
requested than others, and therefore also the traffic amount exchanged over
each communication channel is a variable factor. In general, considering the two
limitations described above, the main problem with the Kubernetes inter-Pod
affinity mechanism is that it is a static network-aware scheduling mechanism
and then it is not sufficient to cope with the ever changing infrastructure net-
work conditions and traffic distribution among services of a microservices-based
application.

4 Proposed Approach

4.1 Overall Design

Considering the limitations described in Sect. 3 related to the default Kubernetes
scheduler and its InterPodAffinity plugin not being able to implement an effective
network-aware placement strategy, we propose an extension of the Kubernetes
platform to cope with those limitations. The main goal of the proposed app-
roach is to devise a dynamic scheduling solution for the Pods that compose a
microservices-based application aimed to reduce the application response time
of end user requests. The basic reasoning behind our approach is that the greater
the communication intensity between two Pods, the greater the need to sched-
ule them in the same node or in nodes with limited network distance between
them in order to reduce the average application response time. As discussed in
Sect. 3, in a microservices-based application an end user request may traverse
multiple channels in the application graph. If the mean traffic amount exchanged
between two Pods is high, this means that many user requests hit the commu-
nication channel between the two Pods: in order to ensure that this path does
not represent a bottleneck in the request chain, the two Pods should be placed
near to each other.

Figure 1 shows a general model of the proposed approach. The network-aware
scheduler extends the default Kubernetes scheduler by implementing a custom
scoring plugin. As in the case of the default InterPodAffinity plugin, the pro-
posed scheduler evaluates the affinity rules specified in the resource configuration
of the Pod to be scheduled in order to determine the communication relation-
ships and their weights between the Pod and all the other Pods that compose
a microservices-based application. However, differently from the default Inter-
PodAffinity plugin that takes into account node labels statically assigned by clus-
ter administrators in order to determine what nodes belong to the same topology

470 A. Marchese and O. Tomarchio

Fig. 1. General model

domain, the proposed scheduler makes use of dynamically assigned node labels
that represent current network latencies between cluster nodes. These labels are
continously updated by a topology controller that fetches network latency met-
rics from a metrics server. Therefore, the concept of static topology domain (eg.
cloud provider availability zone or region) expressed by the topologyKey param-
eter and the corresponding node labels is extended by a more fine-grained node
labelling process that allows the scheduler to know the current network distance
between cluster nodes.

However a scheduling strategy that takes into account only the run time
network latencies between cluster nodes is not sufficient to implement an effec-
tive network-aware placement solution. A critical aspect in our approach is the
requirement to continously tune the placement of application Pods based on
the dynamic infrastructure network conditions and the run time interactions
between the microservices that compose an application graph. Kubernetes clus-
ters, especially those distributed on the Cloud-to-Edge continuum, are highly
dynamic environments with frequent network partitions and changes on node-
to-node network latencies. Furthermore, application usage patterns can change
over time, determining that different Pod-to-Pod channels can represent bottle-
necks in request chains over different time periods. This causes that a placement
decision for application Pods taken in a specific point in time may not be an opti-
mal one later. In this context it becomes necessary to adapt to the ever changing
cluster network conditions and Pods communication interactions and reschedule
Pods if better scheduling decisions can be taken over time. However the Kuber-
netes platform currently lacks of an automatic Pod rescheduling strategy aware
of the runtime cluster and application state changes.

Considering this limitation we propose a traffic-aware configuration con-
troller, that continuously monitors traffic exchanged between Pods and updates
their configuration by tuning the weights of their affinity rules based on traffic
metrics fetched from the metrics server. By using the Kubernetes rolling update
mechanism, changes to Pod configurations cause them to be recreated allowing
for better placement decisions to be taken based on current Pods communication
requirements and network conditions. Further details on the proposed controllers
and the custom scheduler are provided in the following subsections.

Extending the Kubernetes Platform 471

4.2 Kubernetes Controllers

The traffic-aware configuration controller and the topology controller showed in
Fig. 1 are implemented as Kubernetes operators written in the Java language
by using the Quarkus Operator SDK. A Kubernetes operator is an application-
specific controller configured through Kubernetes custom API resources.

Fig. 2. Traffic-aware configuration controller

Figure 2 shows how the proposed traffic-aware configuration controller works.
The controller executes a set of run time control-loops each activated by one
ControllableApp Kubernetes custom resource that refers to a microservices-based
application that has to be managed by the controller. In particular an application
consists of a set of Deployment resources that in turn create and manage Pods
each running an independent microservice instance. In Kubernetes a microservice
is represented by a Deployment resource whose Pods represent the microservice
replicas. Pods managed by a Deployment are instances of the Pod template
section of the Deployment. A Pod template may contain a set of affinity rules
as illustrated in Listing 1.

When a ControllableApp resource is created in the Kubernetes cluster, the
controller starts a control-loop whose period is specified by the runPeriod prop-
erty in the spec section of the resource. In each iteration the controller queries the
Kubernetes API server to get the set of Deployments located in the namespace as
specified by the namespace property and with an app label whose value is equal
to the value of the name property. Deployments that compose an application
must have the same value of the app label and a svc label has to be set on each
one whose value is equal to the corresponding microservice name. After receiving
the set of Deployments of an application, the controller determines an applica-
tion graph configuration that represents the control-loop output for the current
iteration. An application graph consists of the set of microservices µi each asso-
ciated with the corresponding application Deployment and the communication
relationships between them represented as a set of affinity rules. In particular,

472 A. Marchese and O. Tomarchio

for each pair of Deployments Di and Dj with j �= i, the controller updates
their corresponding Pod template section with a preferredDuringSchedulingIg-
noredDuringExecution affinity rule with a weight wi,j and a label selector that
matches the values of the app and svc labels of Dj . The value of the weight wi,j

is directly proportional to the traffic amount, averaged over a configurable time
period, exchanged between the microservices µi and µj . In particular for each
microservice µi, the set of relative traffic metrics are queried from a Prometheus
metrics server. The returned values represent the traffic exchanged between the
microservice µi and all the other microservices in the application and, after being
normalized as integer values in the range between 0 and 100, these values are
assigned to the corresponding affinity rule weights of the Deployment Di.

As showed in Fig. 2 traffic exchanged between microservices is collected by the
Istio platform, a service mesh implementation, whose control plane is installed
in the Kubernetes cluster. The Istio control plane injects a sidecar container
running an Envoy proxy on each Pod when they are created. All the traffic
between Pods is intercepted by their corresponding Envoy proxies that in turn
expose traffic statistics through metrics exporters that can be queried by the
Prometheus server.

The application graph configuration with the set of updated affinity rules
is then submitted by the controller to the Kubernetes API server. If at least
one affinity rule in the Pod template section of a Deployment has changed with
respect to the last iteration, a rolling update process is activated and new Pods
with the updated resource configuration are created. This way Pod affinity rules
are updated with values that reflect the run time traffic exchanged between
Pods that in turn are dynamically rescheduled allowing to find better place-
ment decisions for them. Furthermore a rolling update consists of a progressive
deployment process, where old Pods are deleted only after new ones are in a
ready state. This allows to reduce application downtime to a minimum also in
case of frequent updates.

A rolling update process for a Deployment is not activated if no affinity
rule in its Pod template section is updated. This means that if traffic amounts
exchanged between microservices do not change over a time period, application
Pods would not be rescheduled. Considering the ever changing network latencies
between nodes in Cloud-Edge Kubernetes clusters, this may cause a degradation
in the application response time. In order to give Pods the opportunity to be
rescheduled also in case of stationarity in the traffic amount exchanged between
them, the controller adds a rValue label with a random value in the Pod template
section of each application Deployment, with the aim to force a rolling update
process. The random value is selected from the integer range between 0 and the
value of the updateFactor property of the ControllableApp resource. The greater
this value, the greater the probability that a rolling update process is activated.

Figure 3 shows how the proposed topology controller works. As in the case
of the traffic-aware configuration controller, a control-loop in the topology con-
troller is activated by a Kubernetes custom resource, in this case the Topology
custom resource.

Extending the Kubernetes Platform 473

Fig. 3. Topology controller

The runPeriod property in the spec section of a Topology custom resource
determines the period of the control-loop, while the nodes property represents
the list of nodes in the cluster. For each iteration, the controller fetches the list
of Node resources whose names are specified in the nodes property from the
Kubernetes API server. For each node ni the controller assigns to it a set of
labels network.cost.nj each with a value proportional to the network latency,
averaged through a configurable time period, between nodes ni and nj and
normalized in the range between 1 and 100. The network.cost.ni label for node ni

is assigned a value of 1. Network latency metrics are fetched by the operator from
the Prometheus metrics server. As showed in Fig. 3 network latencies between
nodes are collected by a network probe agent deployed on each cluster node
and configured to send ICMP traffic to all the other cluster nodes to measure
the round trip time value. The output of each iteration of the control-loop is a
topology graph with the updated network cost values that is then submitted to
the Kubernetes API server.

4.3 Network-Aware Scheduler

The proposed network-aware custom scheduler extends the default Kubernetes
scheduler by implementing an extension of the default InterPodAffinity plugin in
the form of a custom scoring plugin. The custom scheduler is a program written
in the Go language and runs as a Deployment in the Kubernetes control plane.
For each Pod to be scheduled, the custom plugin assigns a score to each candidate
node of the cluster that has passed the filtering phase. The scores calculated by
the plugin are then added to the scores of the other scoring plugins. As in
the case of the InterPodAffinity plugin, the custom plugin processes inter-Pod
affinity rules, where in our approach affinity rules are specified by the traffic-
aware application configuration operator. However, unlike the InterPodAffinity
plugin, the custom plugin doesn’t evaluate the topologyKey parameter in the
affinity rules, but it takes into account network costs specified by the topology

474 A. Marchese and O. Tomarchio

operator on each cluster node as network.cost.x labels. Algorithm 1 shows the
details of the scoring algorithm of the proposed plugin.

Algorithm 1. Node scoring algorithm
Input: p, n, cNodes, netCosts, affWeights
Output: score

1: cmCost ← 0
2: for cn in cNodes do
3: pcmCost ← 0
4: for cnp in cn.pods do
5: if areNeighbors(p, cnp) then
6: pcmCost ← pcmCost + netCosts[n, cn] × affWeights[p, cnp]
7: end if
8: end for
9: cmCost ← cmCost + pcmCost

10: end for
11: score ← −cmCost

The algorithm takes as inputs the following arguments:

– p: the Pod to be scheduled.
– n: the node to be scored.
– cNodes: the set of nodes in the cluster, including node n.
– netCosts: the network costs between node n and all the other nodes cNodes.
– affWeights: the set of weights associated with the Pod p affinity rules.

The algorithm starts by initializing the variable cmCost to zero. The variable
cmCost represents the cost of communication between the Pod p and all its
neighbors when the Pod p is placed on node n. A Pod P1 is considered a neighbor
of another Pod P2 if there exists an affinity rule in Pod P2 resource configuration
whose label selector matches Pod P1. The algorithm iterates through the list of
cluster nodes cNodes. For each cluster node cn the pcmCost variable value is
calculated. The pcmCost variable represents the cost of communication between
the Pod p and all its neighbors running on node cn when the Pod p is placed
on node n. For each neighbor Pod the weight of the corresponding affinity rule
is multiplied by the network cost between node n and node cn and added to
the pcmCost variable. The pcmCost variable value is then added to the cmCost
variable. The final node score is represented by the opposite of the cmCost
variable value.

By excluding the scoring results of the other Kubernetes scoring plugins and
taking into account the result of the proposed custom plugin only, the node n
selected for the placement of the Pod p is the node that minimizes the commu-
nication cost for the Pod p as shown in Equation (1):

n : cmCost(p, n) = min
ni∈cn

(
∑

nj∈cn

(netCost(ni, nj) ∗
∑

pk∈nj

affWeight(p, pk))) (1)

Extending the Kubernetes Platform 475

The scoring algorithm assigns a score to each cluster node so that the Pod
to be scheduled is placed on the node, or in a nearby node in terms of network
latency, where the Pods with which the Pod has the greatest affinity are executed.
For each affinity rule the default InterPodAffinity plugin assigns a score different
from zero only to the nodes that belong to a topology domain matched by the
topologyKey parameter of the rule. Our custom plugin instead scores all the
cluster nodes based on the current relative network distance between them. This
allows to implement a more fine-grained node scoring approach able to take into
account the ever changing network conditions in the cluster instead of using node
labels statically assigned before the application deployment phase.

5 Evaluation

The proposed solution has been validated using a sample microservices-based
application executed on a test bed environment. The application, whose struc-
ture is depicted in Fig. 4, is composed of different microservices and database
servers. The application can be thought of as composed of different indepen-
dent service chains, each activated by a specific application endpoint. We con-
duct black box experiments by evaluating the end-to-end response time of the
test application when HTTP POST requests are sent to the apigateway service,
each with an equally sized message body. Requests to the application are sent
through the k6 load testing utility3. We compare both cases when our network-
aware scheduler and custom controllers are deployed on the Kubernetes cluster
and when only the default scheduler is present. Each experiment consists of 20
trials, during which the k6 tool sends requests to the apigateway service with a
specific number of virtual users for 32 min. For each trial, statistics about the
end-to-end application response time are measured and are averaged with those
of the other trials of the same experiment. The trial interval is partitioned into
4 min sub-intervals, during witch the k6 tool sends requests to different applica-
tion endpoints. This way variability in application usage patterns is simulated
by activating different microservice channels at different time intervals. In order
to simulate network latencies between cluster nodes the traffic control (tc) Linux
utility4 is used. In particular, the tc tool is executed every 30 s and configured
to add random delays in the virtual network cards of cluster nodes.

When evaluating the performance of the default scheduler we consider the
case in which no inter-Pod affinity rules are specified and the case in which the
affinity rules are statically defined for each service. In particular, for a service si
that interacts with n services, n preferredDuringSchedulingIgnoredDuringExe-
cution affinity rules are defined in its Pod template, each with a topologyKey
parameter equal to kubernetes.io/hostname and a weight equal to 100 (the max-
imum allowed weight value) divided by n. This way the scheduler will try to
co-locate Pods with affinity relationships on the same nodes. For our approach a
ControllableApp custom resource with a runPeriod of 60 s and an updateFactor
3 https://k6.io/.
4 https://man7.org/linux/man-pages/man8/tc.8.html.

https://k6.io/
https://man7.org/linux/man-pages/man8/tc.8.html

476 A. Marchese and O. Tomarchio

Fig. 4. Sample microservice application

of 10 s, and a Topology custom resource with a runPeriod of 60 s are created to
configure the custom controllers.

We evaluate how the application response time varies depending on the net-
work latencies between cluster nodes and the memory resource requirements for
each Pod. The first factor impacts on the communication latency between Pods
located on different nodes, while the latter determines how many Pods can be
placed on the same node. The greater this value, the smaller the number of Pods
that can be co-located on the same node and therefore the fewer the intra-node
communications.

Figure 5 illustrates the results of the experiments performed, showing the
95th percentile of the application response time as a function of the maximum
network latencies between nodes and the memory resource requirements of the
application Pods. Three scenarios are considered in which 256MB, 512MB and
800MB of memory requests are configured for each Pod respectively. In all the
cases, the proposed approach performs better than the default scheduler without
statically defined inter-Pod affinity rules, with average improvements of 43%,
39% and 35% in the three scenarios respectively.

In the case of 256 MB Pod memory requests the default scheduler with stati-
cally assigned inter-Pod affinities performs better than our network-aware sched-
uler, with an average difference of 13% in the response times. Two main reasons
may explain this kind of behaviour. First, considering the low Pod memory
requests, more Pods can be scheduled on the same nodes. While the default
scheduler gives a non zero score only to nodes that satisfy affinity rules, our
scheduler scores all nodes based on run time network costs. This results in a
greater distribution of Pods between nodes and therefore a lower amount of
intra-node communications. The second reason is related to the fact that our
approach determines inter-Pod affinity relationships by using run time informa-
tion only, requiring that traffic and network metrics have to be collected before

Extending the Kubernetes Platform 477

Fig. 5. Experiments results

our network-aware scheduler can take optimal decisions. While our scheduler
is able to consider also statically assigned inter-Pod affinity rules, the task of
defining proper affinity rules is not always a simple one as discussed in Sect. 3,
especially considering the graph complexity of modern applications.

By increasing Pods memory requests to 512 MB and 800 MB, our approach
starts to perform better. For network latencies less than or equal to 50 ms the
default scheduler with affinity rules continues to obtain lower response times
with an average difference of 14% and 3% for the second and third scenarios
respectively. However, in the case of network latencies greater than 50 ms, our
approach obtains lower response times with average improvements of 15% and
29% for the two scenarios respectively. This behaviour can be explained by the
fact that the greater the memory requested by Pods, the lesser the amount of
Pods that can be co-located on the same node. The same reasoning can be
done for the number of Pods: the greater the number of Pods that compose
an application, the lesser the portion of them that can be placed on the same
node. This means that the default scheduler fails to find optimal decisions for
a greater number of Pods because the number of candidate nodes that satisfy
affinity rules decreases. Our network-aware scheduler instead tries to place the
Pods with affinity relationships on nearby nodes in terms of network distance,
though they can’t be co-located on the same node.

478 A. Marchese and O. Tomarchio

6 Related Work

In the literature, there is a variety of works that propose extensions of the
Kubernetes platform in order to devise network-aware Pod scheduling solutions
able to deal with the communication requirements of modern latency-sensitive
applications and the dynamic network conditions of Cloud-Edge environments.

A network-aware scheduler is proposed in [14], implemented as an extension
of the filtering phase of the default Kubernetes scheduler. The proposed approach
makes use of round-trip time labels, statically assigned to cluster nodes, in order
to minimize the network distance of a specific Pod with respect to a target
location specified on its configuration file. One problem with this solution relates
to the fact that round-trip time labels are statically pre-assigned to cluster nodes,
not reflecting the run-time variability of network latencies.

In [12] Pogonip, an edge-aware scheduler for Kubernetes, designed for asyn-
chronous microservices is presented. Authors formulate the placement problem
as an Integer Linear Programming optimization problem and define an heuristic
to quickly find an approximate solution for real-world execution scenarios. The
heuristic is implemented as a set of Kubernetes scheduler plugins. Also in this
work, there is no Pod rescheduling if network conditions change over time.

In [5] Nautilus is presented, a run-time system that includes, among its
modules, a communication-aware microservice mapper. This module divides the
microservice graph into multiple partitions based on the communication over-
head between microservices and maps the partitions to the cluster nodes in
order to make frequent data interaction complete in memory. While the pro-
posed solution migrates application Pod if computational resources utilization is
unbalanced among nodes, there is no Pod rescheduling in the case of degradation
on the communication between microservices.

NetMARKS [17] is a Kubernetes scheduler extender that uses dynamic net-
work metrics collected with Istio Service Mesh to ensure an efficient placement
of Service Function Chains, based on the historical traffic amount exchanged
between services. The proposed scheduler however does not consider run-time
cluster network conditions in its placement decisions.

In [4] an extension to the Kubernetes default scheduler is proposed that
uses information about the status of the network, like bandwidth and round trip
time, to optimize batch job scheduling decisions. The scheduler predicts whether
an application can be executed within its deadline and rejects applications if
their deadlines cannot be met. Although information about current network
conditions and historical job execution times is used during scheduling decisions,
communication interactions between microservices are not considered in this
work.

In [13] an extension of the Kubernetes orchestration strategy with an adap-
tive autoscaler and a network-aware scheduler is proposed. The autoscaler uses
a reinforcement learning approach that dynamically scales container replicas on
the basis of application response time. Container replicas are then scheduled
using a greedy heuristic that takes into account node-to-node latencies to opti-
mize the application placement. The proposed solution however optimizes the

Extending the Kubernetes Platform 479

placement of each microservice independently from the communication relation-
ships with other microservices.

Finally, [15] presents a Kubernetes edge-scheduler that considers inter-node
network latencies and services communication requirements in order to opti-
mize, using an heuristic algorithm, the placement of containerized applications
in geographically distributed clusters. A re-scheduler is also proposed that is
responsible for container migration in order to improve resource utilization in
the cluster. In this work, however, exchanged traffic amount between microser-
vices is not taken into account during scheduling decisions.

7 Conclusions

In this work we proposed an extension of the Kubernetes platform in order to
implement an effective network-aware Pod scheduling strategy aimed to deal
with the ever changing network conditions in Cloud-Edge Kubernetes clusters
and the dynamic communication relationships between the microservices of mod-
ern distributed applications. A traffic-aware configuration operator is in charge
of dynamically updating inter-Pod affinity rules based on the traffic amount
exchanged between Pods, while a topology operator encodes node-to-node net-
work latencies on node labels. A network-aware custom scheduler makes Pod
placement decisions based on current weights of Pods affinity rules and network
costs between nodes.

As a future work we plan to improve the assignment mechanism for affinity
rules weights. In this work only direct relationships between Pods are evaluated
by measuring the traffic exchanged between them. However in a microservices-
based application a user request consists of a chain of sub-requests where multiple
services may be involved. Placing Pods that belongs to the same request chain
near to each other may improve the application response time. For this reason
we plan to make use of distributed tracing techniques to find more insightful
information about communication relationships between Pods.

References

1. Ahmad, I., AlFailakawi, M.G., AlMutawa, A., Alsalman, L.: Container scheduling
techniques: a survey and assessment. J. King Saud Univ. - Comput. Inf. Sci. (2021).
https://doi.org/10.1016/j.jksuci.2021.03.002

2. Bittencourt, L., et al.: The internet of things, fog and cloud continuum: integration
and challenges. Internet Things 3–4, 134–155 (2018). https://doi.org/10.1016/j.
iot.2018.09.005

3. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega,
and kubernetes. ACM Queue 14, 70–93 (2016). http://queue.acm.org/detail.cfm?
id=2898444

4. Caminero, A.C., Muñoz-Mansilla, R.: Quality of service provision in fog computing:
network-aware scheduling of containers. Sensors 21(12) (2021). https://doi.org/10.
3390/s21123978

https://doi.org/10.1016/j.jksuci.2021.03.002
https://doi.org/10.1016/j.iot.2018.09.005
https://doi.org/10.1016/j.iot.2018.09.005
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
https://doi.org/10.3390/s21123978
https://doi.org/10.3390/s21123978

480 A. Marchese and O. Tomarchio

5. Fu, K., et al.: Qos-aware and resource efficient microservice deployment in cloud-
edge continuum. In: IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 932–941 (2021). https://doi.org/10.1109/IPDPS49936.2021.
00102

6. Goswami, S.A., Padhya, B.P., Patel, K.D.: Internet of things: applications, chal-
lenges and research issues. In: 2019 Third International conference on I-SMAC (IoT
in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 47–50 (2019). https://doi.
org/10.1109/I-SMAC47947.2019.9032474

7. Jawarneh, I.M.A., et al.: Container orchestration engines: a thorough functional
and performance comparison. In: ICC 2019–2019 IEEE International Conference
on Communications (ICC), pp. 1–6 (2019). https://doi.org/10.1109/ICC.2019.
8762053

8. Kayal, P.: Kubernetes in fog computing: feasibility demonstration, limitations and
improvement scope: invited paper. In: 2020 IEEE 6th World Forum on Internet
of Things (WF-IoT), pp. 1–6 (2020). https://doi.org/10.1109/WF-IoT48130.2020.
9221340

9. Manaouil, K., Lebre, A.: Kubernetes and the Edge? Research Report RR-9370,
Inria Rennes - Bretagne Atlantique (2020). https://hal.inria.fr/hal-02972686

10. Marchese, A., Tomarchio, O.: Network-aware container placement in cloud-edge
kubernetes clusters. In: 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), Taormina, Italy, pp. 859–865 (2022).
https://doi.org/10.1109/CCGrid54584.2022.00102

11. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/
TCC.2017.2702586

12. Pusztai, T., Rossi, F., Dustdar, S.: Pogonip: scheduling asynchronous applica-
tions on the edge. In: IEEE 14th International Conference on Cloud Computing
(CLOUD), pp. 660–670 (2021). https://doi.org/10.1109/CLOUD53861.2021.00085

13. Rossi, F., Cardellini, V., Lo Presti, F., Nardelli, M.: Geo-distributed effi-
cient deployment of containers with kubernetes. Comput. Commun. 159,
161–174 (2020). https://doi.org/10.1016/j.comcom.2020.04.061, https://www.
sciencedirect.com/science/article/pii/S0140366419317931

14. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards network-aware
resource provisioning in kubernetes for fog computing applications. In: IEEE Con-
ference on Network Softwarization (NetSoft), pp. 351–359 (2019). https://doi.org/
10.1109/NETSOFT.2019.8806671

15. Toka, L.: Ultra-reliable and low-latency computing in the edge with kubernetes. J.
Grid Comput. 19(3), 1–23 (2021). https://doi.org/10.1007/s10723-021-09573-z

16. Tomarchio, O., Calcaterra, D., Modica, G.D.: Cloud resource orchestration in the
multi-cloud landscape: a systematic review of existing frameworks. J. Cloud Com-
put. 9(1), 1–24 (2020). https://doi.org/10.1186/s13677-020-00194-7

17. Wojciechowski, L., et al.: Netmarks: network metrics-aware kubernetes scheduler
powered by service mesh. In: IEEE INFOCOM 2021 - IEEE Conference on Com-
puter Communications, pp. 1–9 (2021). https://doi.org/10.1109/INFOCOM42981.
2021.9488670

https://doi.org/10.1109/IPDPS49936.2021.00102
https://doi.org/10.1109/IPDPS49936.2021.00102
https://doi.org/10.1109/I-SMAC47947.2019.9032474
https://doi.org/10.1109/I-SMAC47947.2019.9032474
https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1109/WF-IoT48130.2020.9221340
https://doi.org/10.1109/WF-IoT48130.2020.9221340
https://hal.inria.fr/hal-02972686
https://doi.org/10.1109/CCGrid54584.2022.00102
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/CLOUD53861.2021.00085
https://doi.org/10.1016/j.comcom.2020.04.061
https://www.sciencedirect.com/science/article/pii/S0140366419317931
https://www.sciencedirect.com/science/article/pii/S0140366419317931
https://doi.org/10.1109/NETSOFT.2019.8806671
https://doi.org/10.1109/NETSOFT.2019.8806671
https://doi.org/10.1007/s10723-021-09573-z
https://doi.org/10.1186/s13677-020-00194-7
https://doi.org/10.1109/INFOCOM42981.2021.9488670
https://doi.org/10.1109/INFOCOM42981.2021.9488670

DeepSCJD: An Online Deep
Learning-Based Model for Secure

Collaborative Job Dispatching in Edge
Computing

Zhaoyang Yu1,2, Sinong Zhao1, Tongtong Su1, Wenwen Liu1,
Xiaoguang Liu1(B), Gang Wang1, Zehua Wang2, and Victor C. M. Leung2

1 College of Computer Science, TJ Key Lab of NDST, Nankai University,
Tianjin, China

{yuzz,zhaosn,sutt,liuww,liuxg,wgzwp}@nbjl.nankai.edu.cn
2 Department of Electrical and Computer Engineering, WiNMos Lab,

University of British Columbia, Vancouver, Canada
{zwang,vleung}@ece.ubc.ca

Abstract. Edge computing enhances the processing capabilities of edge
networks for processing mobile users’ jobs. Approaches that dispatch jobs
to a single edge cloud are prone to cause task accumulation and excessive
latencydue to the uncertainworkload and limited resources of edge servers.
Offloading tasks to lightly-loaded neighbors, which are multiple hops away,
alleviates the dilemma but increases transmission cost and security risks.
Hence, how to realize the trade-off between computing latency, offloading
cost and security during job dispatching is a great challenge. In this paper,
we propose an online Deep learning-based model for Secure Collaborative
Job Dispatching (DeepSCJD) in multiple edge clouds. Specifically, we first
utilize bi-directional long short-term memory to predict the workload of
edge servers and apply the graph neural networks to aggregate the features
of directed acyclic graph jobs as well as undirected weighted topology of
edge servers. Based on the state composed of these two features, a deep
reinforcement learning agent including a simple deep Q network and linear
branch, generates a final dispatching decision of tasks, aiming to achieve
the smallest average weighted cost. Experiments on real-world data sets
demonstrate the efficiency of proposed model and its superiority over tra-
ditional and state-of-the-art baselines, reaching the maximum average per-
formance improvement of 54.16% relative to K-Hop. Extensive evaluations
manifest the generalization of our model under various conditions.

Keywords: Collaborative job dispatching · Security · Deep
reinforcement learning · Graph neural network · Multi-hop

This research is supported in part by the NSF of China (No. 62141412, 61872201),
the Science and Technology Development Plan of Tianjin (20JCZDJC00610,
19YFZCSF00900, the Fundamental Research Funds for the Central Universities,
China Scholarship Council (CSC). The first author is supported by CSC (Grant
No.202106200061) as a visiting Ph.D. student at the University of British Columbia,
Canada under the supervision of Prof. Victor C.M. Leung.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 481–497, 2022.
https://doi.org/10.1007/978-3-031-20984-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_34&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_34

482 Z. Yu et al.

1 Introduction

Edge computing alleviates the dilemma of insufficient abilities in mobile devices
as well as great latency and bandwidth pressure in remote cloud. It is estimated
that 70 million small cells will be deployed in 20251 and 90% of data will be
processed at edge [9]. End users offload jobs to edge servers for various services.
An End-Edge-Cloud architecture is illustrated as Fig. 1. Each edge cloud is likely
to be collocated an Access Point (AP). The edge clouds are connected with each
other as well as remote cloud and includes three modules. The Control Module
is to receive user requests and decide their execution positions. The Dispatch-
ing Module determines specific destination edge servers and forwards jobs to
Execution Module for calculation. The submitted jobs are of high explosiveness
leading to the uncertain workload of machines. The load affects servers’ calcula-
tion speed and results in variable computing latency of jobs in turn. Also, there
is a delay in computing latency, which can only be aware after the job is com-
pleted. Besides, the jobs submitted by devices are heterogeneous with various
objective functions. So efficient job dispatching in edge is a critical issue.

Cloud Layer

Edge Layer

Data Source
Near

Far

Abstract

End Layer

Remote Cloud

Users

Control
Module

Dispatching
Module

Execution
Module

AP

Results Results

Remote Cloud Edge Cloud End Devices Edge Servers Access Point (AP)Cloud Servers

RejectRequests

Fig. 1. The scenario of job dispatching in Internet of Things.

Prior research assumes that jobs are offloaded to a single edge cloud [20],
resulting in resource contention between accumulated jobs. So we explore the
cooperation resource sharing among multiple edge clouds and dispatch jobs to
lightly-loaded distant neighbors. Nevertheless, increased number of hops makes
offloading cost and security risks grow. Consequently, performing job dispatching
to realize the trade-off between computing latency, energy consumption and
security while ensuring users’ Quality of Service (QoS) is a complicated challenge.

Static model-based algorithms are inapplicable in dynamical edge environ-
ment due to the long decision-making time and significant computational over-
head [5]. While Deep Reinforcement Learning (DRL) makes job dispatching
decisions in a global view adapting to the variations in edge and doesn’t require
manually labeled training samples. Furthermore, jobs are in the form of Directed
Acyclic Graph (DAG). And the Graph Neural Network (GNN) effectively trans-
mits node information and extracts features over graphs to achieve relational
reasoning and combinatorial generalization. It makes up the shortcomings of
prerequisite data independence in universe deep learning methods.

1 Small Cell Market Status Statistics Dec 2017. scf.io. Retrieved 2018-02-19.

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 483

We propose an online Deep learning-based Secure Collaborative Job
Dispatching model (DeepSCJD) in edge computing. We employ Graph Attention
Network (GAT) to aggregate the features of DAG jobs and network topology
of edge servers. Workload is predicted through Bi-directional Long Short-Term
Memory (BiLSTM) as one of the attributes of servers. A two-branch DRL agent
integrating linear and Deep Q-Network (DQN) is built for multi-hop dispatching
decisions for tasks. The contributions are as follows:

– We exert a two-branch deep reinforcement learning method to address the
secure collaborative job dispatching problem in multiple edge clouds under
co-provisioning the computing latency, offloading cost and security risks.

– We introduce a Prediction Module to evaluate the impact of servers’ workload
on the computing latency, and the predicted workload, as one of edge server
features, is of benefit for making task offloading decisions.

– We verify the effectiveness of the proposed model based on a real-world data
trace. The results prove that DeepSCJD outperforms traditional and state-
of-the-art approaches. Moreover, extensive experiments under various config-
urations confirm that the model is of great generalization and well adapted
to diverse objective requirements in the dynamic edge circumstances.

– Ablation experiments are conducted to prove the significance of load predic-
tion, GNN feature aggregation and linear branch for offloading decisions.

2 Related Work

Traditional Offloading Strategies: Job dispatching in edge was usually for-
mulated as an Mixed Integer Programming problem, and solved by heuristic
local search [1]. Authors presented computation offloading using approximate
dynamic programming [10] and game theoretic [3]. Nonetheless, these conven-
tional methods were costly to perform lots of iterations and could not adapt
to edge environments with high dynamics. Instead, we apply DRL to make job
dispatching decisions, which constructs a reward mechanism to interact with the
environment and accommodates the variety with great generalization.

Deep Learning-Based Offloading Methods: Generative Adversarial Net-
works (GAN) was utilized to forecast user requests [19], and authors put forward
a RL-based framework to decrease offloading latency [17]. Scholars applied an
Actor-Critic mechanism for offloading DAG tasks to reduce the average energy-
time [2]. However, their works either failed to take into account the impact
of server load on task execution, or ignored the data safety during offloading.
Hence, we perdict the workload through BiLSTM to assist describing server
characteristics and add the security in the formulation of offloading cost.

Dispatching of Single Edge Cloud: Researchers realized the workload bal-
ance of servers [20] and Nash equilibrium of computation offloading [3], respec-
tively. Another investigation jointly considered communication and calculation
resources for offloading [15]. Nevertheless, the constrained computing resources

484 Z. Yu et al.

Table 1. Table of notations

Type Nota. Representations Type Nota. Representations

Edge cloud Z Set of edge clouds Job M Job set in a certain priod

Qz Number of edge servers in z Nm Number of vertexes in job m

pz Fees to perform tasks of z Wm Adjacency matrix of job m

sz The security risk of z Task nm The nth task within m

Edge server qz The qth edge server in z bnm Begin time of task nm

eqz Disaster domain level of qz dnm Deadline time of task nm

ucpu
qz

CPU cores available of qz εnm CPU cycles requested by nm

umem
qz

Residual Memory size in qz rcpu
nm

CPU cores required by nm

udisk
qz

Disk volume unoccupied in qz rmem
nm

Memory size demanded of nm

ccpuqz
Total CPU cores of qz rdisk

nm
Amount of data carried by nm

cmem
qz

Maximum Memory size of qz Vnm Parents index list of nm

cdisk
qz

The entire Disk capacity of qz ϑnm Located edge server of nm

yqz Predicted workload of qz ιnm Destination edge server of nm

ψqz The cycle frequency of qz ωnm Actual completion time of nm

in a single edge cloud led to task accumulation, which resulted in high procras-
tination and affected the QoS of latency-sensitive jobs especially. In our design,
we are oriented to make further collaborative offloading among multiple edge
clouds to alleviate this situation.

Cooperative Dispatching of Multiple Edge Clouds: Authors delegated
tasks to edge servers located fixed-hops away [13]. Other studies proposed heuris-
tic methods like evolutionary scheme [16] and Lyapunov optimization [11], which
were easy to fall into local optimum and failed to adapt to edge scences. We
exert the DAG network to extract the features of DAG jobs and edge servers
for better offloading decisions. The DRL-based cooperative task offloading in [6]
didn’t consider the possible frauds between edge clouds, which posed threats
to users’ data security. The proposed DeepSCJD comprehensively pay attention
to dynamic environment variations, computing workload, offloading cost, data
security for accomplishing efficient collaborative job dispatching.

3 Problem Definition

As displayed in Fig 1, numerous mobile devices like autonomous vehicles, phones,
cameras, etc. continuously submit diverse jobs to edge clouds for services. At a
busy traffic intersection, there may be substantial target detection requirements
at the same time. These explosive jobs are of strict delay demands. If we fail
to get timely feedback, our life safety will be threatened. Furthermore, we must
guarantee the accuracy of calculation results and security of user data. A single
edge cloud bears great stress due to the limited computing resource. Although
distant lightly-loaded neighbors with abundant available resources obtain smaller
calculation delay, the offloading cost (transmission delay, energy consumption
and security risk) grows with the increase of the number of hops.

Consequently, the secure collaborative job dispatching in edge can be defined
as: for each subtask in the job, we make a dispatching decision about its execution

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 485

location (the destination edge server to perform this task and the correspond-
ing transmit path), while achieving a trade-off between computing latency and
offload cost to ensure users’ QoS and service providers’ profits. Tasks are exe-
cuted on a certain edge server either in the local edge cloud or a non-local one
beyond several hops. Related representations are shown in Table 1.

Edge Cloud: Let Z � {1, . . . , Z} denote the set of edge clouds and denote Qz

as the number of edge servers in edge cloud z ∈ Z. Different edge clouds apply
different fees and security risks to tasks. The network topology information is
maintained and updated regularly by edge service providers.

Edge Server: Let qz ∈ Qz � {1, . . . , Qz} denote the qth server of edge cloud
z ∈ Z. Due to the interoperability among edge clouds, all edge servers form an
undirected but weighted topology, in which each server represents a node.

Job: Each job is independent but contains multiple dependent tasks. Denote
M � {1, . . . , M} as the jobs in a certain period. So the job m can be defined by
a DAG graph Gm = {Nm,Wm}, in which each vertex stands for a subtask, and
the directed edges signify the relationships of reliance between tasks.

Task: The nth task in job m is nm ∈ Nm � {1, . . . , Nm}. Only when the parent
tasks are accomplished, can the child tasks be executed. Due to the long-tail
effect of start and end time, each task in a job has its own separate deadline.

Security: In network with diameter D, there are Knm
paths for task nm from

the located server to destination server. pk
nm

stands for the kth path and lknm

represents its length. The security cost increases with the hop grows Seck
nm

=
∑lknm

j=0(1−ζ)j ×sj
z, l

k
nm

∈ {0, 1, 2, · · · ,D}, where ζ indicates the data transmission
security decay factor, sj

z is the security risk of edge cloud z at the jth hop.

Latency:We assume a static network and ignore the time spent between ter-
minal devices and local servers. Users’ mobility has no impact on task dis-
patching decisions. For task nm, let fk,j

nm
and tk,j

nm
represent the from-node

and to-node at the jth hop, and W(fk,j
nm

, tk,j
nm

) denotes the weight between
them. The transferring latency of path pk

nm
is the sum of transmit all data

Latk
nm

=
∑lknm

j=0 W(fk,j
nm

, tk,j
nm

) × rdisknm
× τ,∀fk,j

nm
, tk,j

nm
∈ pk

nm
, where rdisknm

means the
data carried by task nm, and τ is the time of transmitting a unit of data per
distance.

Energy: The energy consumption during task offloading is the sum of
energy expenditure of all senders, receivers and transmission paths, which

is displayed as Engk
nm

=
∑lknm

j=0 W(fk,j
nm

, tk,j
nm

) × ξ × rdisknm
+ rdisknm

×
[
ρ0l

k
nm

+

ρ1
∑lknm

j=0 Wγ(fk,j
nm

, tk,j
nm

)
]

+ ρ0 × rdisknm
× lknm

. The first item indicates the energy

required for path transmission carrying data rdisknm
and ξ depicts the power of

transferring unit data per distance [8]. The second and third items demonstrate
the energy of senders and receivers, where γ represents the path attenuation

486 Z. Yu et al.

index. ρ0 and ρ1 denote power expenditure of sending and modulation coding
unit of data, separately [7].

So the total cost of offloading task nm with path pk
nm

is represented as (1)

Costk
nm

= Seck
nm

+ Latk
nm

+ Engk
nm

. (1)

Any task cannot be migrated between edge servers once it starts to be performed
due to relocation expense. We decide the destination server ιnm

(i.e. server qz)
for each task nm. The server’s actual processing speed is affected by the future
workload yqz . The computing latency of task nm when being executed on qz is

Compqz
nm

= xyqz × εnm
× 1

ψqz

, (2)

where x is the skewness between workload and processing speed [11], εnm
means

required CPU cycles and ψqz indicates the cycle frequency of server qz.
Therefore, the weighted cost (WC) of task nm for the kth path is represented

as (3), where α and β are weight coefficients

WC(nm, qz, k) = α × Costk
nm

+ β × Compqz
nm

. (3)

Optimization Objective: In a period of time, the total number of processed
tasks T is calculated as T =

∑M
m=1 Nm. We make decisions Π for all incoming

tasks, realizing the smallest average weighted cost (AWC):

Π(T) = arg min
1
T

M∑

m=1

Nm∑

n=1

WC(nm, qz, k),

C1 :0 < ωnm
< dnm

, ∀m ∈ M,∀nm ∈ Nm,

s.t.C2 :
Z∑

z=1

Qz∑

q=1

πqz = 1, πqz ∈ {0, 1}, ∀z ∈ Z,∀qz ∈ Qz,

C3 :
∑

rnm
< cqz , ∀z ∈ Z,∀qz ∈ Qz,∀m ∈ M,∀nm ∈ Nm.

(4)

As C1 claims, the completion time of any task cannot surpass its deadline to
ensure QoS. C2 means that any task can only be performed locally or be offloaded
to one neighbor edge server exclusively. The dispatching decision of task nm is
πnm

= {π1,1, · · · , π1,Q1 , · · · , πZ,1, · · · , πZ,QZ
}, which is a D-dimension vector.

πz,qz is a binary indicator corresponding to server qz. Value 1 means the task
will be executed on this server, while 0 indicates not. C3 indicates that the sum
of the resource requests of all tasks on an edge server cannot exceed its resource
capacity limitation. Finally, the offloading behavior should be effective. In a long
term view, the decisions of migrating tasks to neighbors beyond multiple hops
should produce a smaller AWC than executing them in local. That is to say, a
shorter computing latency is obtained through paying tolerable offloading cost.

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 487

4 System Overview

4.1 Framework

DAG

Edge-GAT

BiLSTM Dispatching
Decision

DQN Linear

∑

State

Predicted
Workload

Com-GAT

Topo
Graph

Workload Trace
Update

+

Agent

Reward

Edge Server
Features

Job Features

a1 a2

a

+

+

+

+

Edge Servers

Node Features

Edge Index

Edge Attributes

DRL Module

GAT Module

Prediction Module

Fig. 2. The framework of DeepSCJD

The workflow of the system is shown as Fig. 2. In Prediction Module, the his-
torical data of resource utilization of edge servers is input into BiLSTM model
to predict the workload situation at the next moment, which is regarded as
one of dimensions of servers’ characteristics. In the meantime, we process the
network topology to obtain initial features of the edge servers, including edge
index properties, weight attributes and so on. The GAT Module consists of two
graph neural networks Com-GAT and Edge-GAT, which extracts and aggre-
gates the features of jobs and edge servers separately, deriving high-dimensional
abstract ones. These two outputs are concated to compose the current state. In
DRL Module, a two-branch agent involving a linear and DQN branch makes job
dispatching decisions. Based on the trained policy, the state is input into each
branch, acquiring action a1 and a2. Finally, we add the two actions and attain
the ultimate dispatching decision action a.

Next, tasks are offloaded and performed on destination edge servers to gen-
erate a reward. The agent detects this reward to adjust the dispatching behavior
at the next step. Moreover, we update the current load of edge servers and the
time window of BiLSTM slides one bit backward. The new workload is applied to
the next round prediction. The occupancy conditions of CPU, Memory and Disk
of edge servers also vary, resulting in server attributes modifying accordingly.

Due to resource contention, the servers’ computing speed and tasks’ com-
pletion delay are affected by the workload in future continuous slots [11]. And
Bi-LSTM can precisely capture the certain correlation between adjoining slots
in the workload time series from forward and backward directions to explore
temporal dynamic behaviors, which provides feature basis for job dispatching.
Besides, the DAG job data with dependent edges is of Non-Euclidean struc-
ture. It is inconsistent with the assumption in conventional learning techniques.

488 Z. Yu et al.

While GNN effectively transmits node knowledge to conduct feature aggrega-
tion over graphs. Here, we adopt GAT that introduces an attention mechanism
based on Graph Convolution Network (GCN). What’s more, the job dispatch-
ing problem is NP-hard [20], which is arduous for heuristic algorithms to make
fast decisions. Because of the arbitrariness and memorylessness of DAG jobs,
DRL can significantly reduce the large-scale solution space by Markov Decision
Process (MDP) and make up the shortcomings of traditional supervised learn-
ing methods that relies on existing data for training and cares instant returns.
The reward mechanism interacts with the environment and settles the delay
of objective AWC. DRL makes dispatching decisions in a long-term perspec-
tive and updates offloading policy automatically, which is more robust for edge
environment. Here, our established two-branch DRL possesses the advantages of
both linearity and non-linearity to improve training efficiency and final reward
score. This design guarantees the generalization performance of the learned job
dispatching policy.

4.2 Prediction Module

We consider CPU, Memory and Disk as main factors influencing the workload.
Then we perform Min-max normalization and assign different weights to formu-
late workload y = η×ycpu+μ×ymem+(1−η−μ)×ydisk. Most of submitted jobs
are computation-intensive or latency-sensitive rather than storage-intensive. We
designate higher values of η and μ (both are 0.4) for CPU and Memory to reflect
their greater influences on machine workload relative to Disk.

The history data of previous E moments (sliding window), with step length S,
is used to predict the load of next L moments. We randomly select trace data of
1000 machines containing 61252584 time series in Cluster-trace-v20182. Through
pre-experiments, we have S = L = 1, E = 4. The training set, validation set and
test set are divided according to the ratio of 7:2:1. Moreover, we exert early
stopping in order to prevent over-fitting and improve generalization.

As seen in Fig. 3(a), the loss of BiLSTM decreases on training set while it
gradually stabilizes after a short fluctuation on validation data. Through 27 iter-
ations, the losses both on the training and validation sets converge progressively.

(a) The loss on training and validation data (b) The prediction results of workload

Fig. 3. Losses and prediction results of BiLSTM

2 https://github.com/alibaba/clusterdata/.

https://github.com/alibaba/clusterdata/

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 489

The first 200 moments of prediction results on test set are displayed in Fig. 3(b).
We observe that the real workload fluctuates randomly with no certain periodic-
ity. Our BiLSTM can forecast load variations including peaks and troughs, with
an average variance of 1.08 × 10−3 between the predicted and true values.

4.3 GAT Module

1) Feature extraction of DAG graphs: Supposing that the feature vector of
node i is �vi with Gi neighbors, the weight assigned by node i to its neighbor
j can be formulated as ϕi,j . Here, we apply the softmax function for nor-
malization and the activation function LeakyReLU to provide non-linearity.
The new representation �vi

′ of node i aggregates the attributes of itself and
all its neighbors. A multi-head attention mechanism is exploited to learn the
attention weights of different subspaces for stable learning. As equation (5)
shows, we perform H times of operations, in which ϕh

i,j and Wh are the
normalization attention coefficient and weight matrix by using the hth head

�vi
′ = σ(

1
H

H∑

h=1

(ϕh
i,iW

h�vi +
∑

j∈Gi

ϕh
i,jW

h �vj)). (5)

Edges in DAG jobs are directed but unweighted, the adjacency matrix of
which is asymmetric. The GAT performing job feature extraction is called
Com-GAT.

2) Feature extraction of topology graph: The edges among edge servers are
undirected but weighted, indicating the distance between node pairs. So we
regard the weight of edge ei,j between node i and its neighbor j as a certain
dimension attribute of node j, �vj

′ = �vj ‖ ei,j ,∀j ∈ Gi. Then we implement
the same multi-head attention operation as the mechanism when processing
DAG jobs. The GAT conducting feature aggregation on servers is named
Edge-GAT.

4.4 DRL Module

There are three indispensable elements in a DRL model, state, action and reward.
The agent selects an action a based on current state s, obtaining next sate s′.
After action a is executed, we receive a reward r from the environment and move
to the next round of action selection.

1) State: The state includes the attributes of DAG jobs output by Com-GAT
and the features of edge servers output by Edge-GAT. Features of edge server
qz are

(
pz, eqz , u

cpu
qz , umem

qz , udisk
qz , ccpuqz , cmem

qz , cdiskqz , yqz , ψqz

)
. And task nm is fea-

tured by
(
bnm

, dnm
, εnm

, rcpunm
, rmem

nm
, rdisknm

)
. We assume that there is only one

service provider offers identical edge clouds and servers in our system.
2) Action: The outputs of DQN and Linear branch are the probabilities of

selecting each server and action a refers to the one with the highest probabil-
ity. In a period of time, there are T tasks totally with a diameter of network
D. We reduce the action space from exponential DT to D × T .

490 Z. Yu et al.

3) Reward: Task nm will be dispatched from the located edge server to the
destination server qz according to action anm

. We find all paths between
two nodes, calculate corresponding weighted costs and select the path pk∗

nm

with the smallest cost. This cost is regarded as the reward R(nm, anm
) =

−WC(nm, qz, k
∗). A negative sign is added, because we tend to gain a smaller

weighted cost while the network is trained for a larger reward.

In DQN branch, the Target Q-network Q′ computes target Q-value Q = r +
δ max

a′
Q′(s′, a′; θ′), where δ indicates the impact of further moments on present.

The Q network updates each iteration while Q′ is modified with the parameters
of Q network every ς steps, which eliminates the divergence and oscillations
during update. The loss is calculated as L(θ) = E[(Q − Q(s, a; θ))2].

As Algorithm 1 shows, each graph is regarded as an episode and each task
as a step. We use ε-greedy strategy (Lines 16–17) to explore new state-action
sampling pairs outside known information and gets the maximum reward from
known information, preventing the model falling into local optimum. Experience
replay is exerted (Lines 31–32) to build a replay buffer to store training samples
(s′, a, r, s). We select a λ-size mini-batch data for iterative update each time.
This manner reuses the historical data with reduced complexity, eliminates the
correlation between training samples and accelerates the speed of model conver-
gence.

5 Evaluation and Analysis

5.1 Experiment Setup

We use GT-ITM3 to produce network topo graphs in a recursive manner. First,
a flat random graph is generated. Then each node is represented as a transit
domain (edge cloud) and replaced with a flat random graph. The number of nodes
in this graph is the quantities of edge servers in relevant edge cloud. Preprocessed
cloud task data can be applied in edge for simulation [12]. We apply the data in
Cluster-trace-v2018 (see footnote 2), which contains jobs and machine usage data
on 4000 machines in 8 days. The data volume attribute rdisk is generated obeying
normal distribution N (10, 4). We conduct normalization on each element in the
AWC objective function. Regarding the parameters, we set x to 1.04 [11], ρ0
and ρ1 both to 0.5 [7]. And γ and ξ are set to 3 [8]. The initial values in the
sliding window of BiLSTM are randomly selected from one machine’s workload
over four consecutive moments, which are 0.5636, 0.5367, 0.5597 and 0.5557. The
values of δ, ε, λ and ς are 0.999, 0.9, 128 and 10, respectively.

5) Baselines:We choose three representative algorithms as our baselines to ver-
ify the performance of proposed DeepSCJD. Rand converges by probability,
K-Hop is a heuristic technique and GRL stands for deep learning method.

3 http://www.cc.gatech.edu/projects/gtitm/.

http://www.cc.gatech.edu/projects/gtitm/

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 491

Algorithm 1. Algorithm of DeepSCJD
1: Initialize replay buffer A; attenuation factor δ; initial probability ε; batch size λ;

step ς; the sum of AWC Rwdsum; the average AWC V ; task number T ;
2: Initialize Network Q with θ and Target Q-network Q′ with θ′ = θ′

3: Set initial workload of sliding windows
4: Put jobs into priority queue L according to arriving times

5: while L is not empty do
6: Obtain current job Gm from L

7: T+ = Nm

8: Aggregate job features �g1 through
Com-GAT

9: for each server qz in topology do
10: Predict workload yqz using

Prediction Module
11: end for
12: Add yqz to servers’ attributes
13: Aggregate server features �g2

through Edge-GAT
14: Contact features to form current

state s = (�g1 ‖ �g2)
15: for each subtask nm in job m do
16: With probability ε, choose anm

17: Otherwise a1 =arg max Q(s,a1;θ)
18: Determine a2 through Linear
19: Get anm = a1 + a2

20: Get destination server ιnm (qz)
21: for each path from ϑnm to ιnmdo
22: Compute WC(nm, qz, k)

23: end for
24: Select the optimal path pk∗

nm

25: Perform action a = anm

26: Dispatch nm to qz

27: Update edge server topo status �g2
′

28: Get reward r = R(nm, anm)
29: Rwdsum += r
30: Form new state s′ = (�g1 ‖ �g2

′)
31: Store transition(s′, a, r, s) in A
32: Randomly sample minibatch of

transitions (sj+1, aj , rj , sj) from A
33:

Q=

{
rj , for terminal sj+1

rj +δmax
a′ Q′(sj+1,a

′;θ′),otw.

34: Perform a gradient descent step on
Loss value

35: end for
36: Every ς steps, update Q′ using θ′ = θ′

37: end while
38: return average AWC, V = Rwdsum/T

– K-Hop: Select the edge server randomly which is K hops away from the located
server of the task and the value of K is set to 3 in later experiments [14].

– Rand: Randomly select a server in global topo map [4].
– GRL: Utilize GCN to extract DAG job features and make dispatching deci-

sions through DRL [18].

5.2 Experiment Results

1) Effect of job number: We extract 10000 jobs (38051 tasks) arbitrarily to
train the model. Then treat 4 various data sets including 10 jobs (50 tasks), 50
jobs (178 tasks), 100 jobs (347 tasks) and 200 jobs (763 tasks) as test sets. We
give the offloading cost and computing latency equal weights (α = β = 0.5)
and fix the number of edge clouds to 3 (15 server nodes). As shown in Fig. 4(a),
DeepSCJD obtains the best AWC performance on all test sets, achieving
maximum average performance improvement of 54.16% relative to K-Hop. As
the jobs increases, the gaps between DeepSCJD and other baselines decrease
gradually. Because a small job set is poorly representative. But the AWC

492 Z. Yu et al.

results are still better than K-Hop, Rand and GRL on 200 jobs by 53.21%,
3.63% and 3.97%, respectively.

The effect of K-Hop is worst, which offloads tasks with fixed hops and limited
range of selected edge servers. When the job set is extensive, it results in task
accumulation. Heavy workload affects the servers’ processing speed, leading to
the growth of calculation delay and higher AWC. Besides, the distance between
edge servers is not taken into account. Some tasks may obtain the optimal solu-
tions within K hops. A fixed number of dispatching hops increases the offloading
cost to a certain extent, resulting in a higher AWC.

Rand takes a global view of topology and obtain a relatively balanced AWC.
Generally, the performance of GRL is close to that of Rand on a larger data
set. Because it applies GNN to extract jobs features. However, compared with
DeepSCJD, GRL neglects the impact of servers’ workload on computing latency
and ignores the influence of weights between servers on offloading cost. Our
model not only analyses the features of jobs, exploits an additional load attribute
to edge server but also aggregates the topology of servers. Moreover, the GCN
used in GRL gives all neighbors same weights when extracting node features.
While DeepSCJD introduces an attention mechanism to explore more valuable
information, thereby further improving the performance.

2) Effect of edge cloud number: We expand the number of edge clouds
to 4 and 5, involving 20 and 25 edge servers respectively. As displayed in
Table 2, there is not much difference among the AWC of K-Hop. Because we
apply same seeds to generate edge clouds, and the weights between servers
are similar gaining comparable results on same job sets. DeepSCJD still sur-
passes the other three baselines, the performance improvement of which are
49.56%–54.46% relative to K-Hop, 5.73%-13.45% compared with Rand, and
4.83%-7.32% contrast with GRL. When facing a larger job set, the AWC
obtained by all baselines under 4 edge clouds is lower than that under 5
edge clouds. Because for K-Hop and Rand, moderate-scale servers fully sat-
isfy users’ requests. Tasks may be offloaded to neighbors farther away in
a greater network, increasing the offloading expense and AWC. Additionally,
GRL doesn’t work well in a large-scale topo for ignoring the distance between
pair nodes. However, DeepSCJD still performs excellently under greater net-
work size, which demonstrates its universality.

3) Effect of edge server capacity:We change configurations of edge servers
to perform further evaluation under fixed 4 edge clouds with 20 nodes.

– High-CPU: In above experiments, we assign edge server configurations
randomly according to machine meta data. Through experimental statis-
tics, different machines have equivalent capacities of CPU and Memory
but diverse volumes of Disk. The largest resource request of jobs accounts
for 90% and 40% of capacities of CPU and Memory, and only 2%-5% for
Disk.

– High-Mem: Increase all servers’ CPU capacities and reduce Memory
capacities, so that the highest resource demands occupy 40% and 90%.
The volumes of Disk are the same as settings in the case of High-CPU.

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 493

– High-Disk: Raise CPU capacities and remain Memory capacities
unchanged, so that the largest resource requests both account for 40%
of CPU and Memory capacities. Reduce the sizes of Disk in order that
the maximum Disk demands occupies 50% of Disk capacities.

Table 2. AWC (×100) of explorations in various cases

Item Edge server numbers Edge server configs

Cases Nodes= 25

High-CPU

Nodes=20

High-CPU

Nodes=20

High-Mem

Nodes=20

High-Disk

Jobs 10 50 100 10 50 100 10 50 100 10 50 100

K-Hop 4.601 4.457 4.556 4.603 4.546 4.550 4.601 4.546 4.557 4.603 4.540 4.550

Rand 3.408 3.173 3.197 3.381 3.237 3.172 3.384 3.177 3.160 3.287 3.236 3.185

GRL 3.227 3.154 3.155 3.198 3.162 3.145 3.196 3.226 3.158 3.373 3.276 3.178

DeepSCJD 3.043 2.980 3.010 2.980 3.010 3.040 3.043 2.983 3.019 3.015 2.890 3.018

As shown in Table 2. For K-Hop and Rand, their effects under High-CPU
and High-Mem are worse than High-Disk. Because the servers’ CPU or Memory
resources are limited in the former two cases, which is the primary bottleneck
affecting the computing latency of tasks and gaining higher AWC. The GRL
and DeepSCJD alleviate the pressure of insufficient resources through adjust-
ing dispatching strategies based on extracted features of jobs and edge servers.
Furthermore, DeepSCJD achieves the best average performance enhancement
when CPU and Memory are fully abundant (High-Disk). It further shows the
little effect of Disk on task execution. Under diverse configurations of edge
servers, DeepSCJD exceeds baselines when ensuring users’ QoS, reaching maxi-
mum improvement of 53.46% compared with K-Hop. This manifests our model
is of great generalization and well adapted to edge scenarios of various configu-
rations.

(a) Results of changing jobs (b) α = 0.2, β = 0.8 (c) α = 0.8, β = 0.2

Fig. 4. Experimental results under various conditions

4) Effect of weights in objective: Similarly, we alter the proportions of com-
puting latency and offloading cost in the objective function. The results in

494 Z. Yu et al.

Figs. 4(b) and 4(c) reveal the optimal effect of DeepSCJD on different numbers
of job sets and verify its generalization in diverse applications. As a result,
service providers can adjust the target functions as needed. Delay-sensitive
jobs can be given a higher weight to calculation latency and computation-
intensive jobs can be paid more attention to offloading cost, while meeting
users’ QoS requirements.

We analyze the algorithm complexity in Table 3. Although K-Hop has the
least path selection complexity, it acquires the worst result and is 48.77%–
57.09% inferior to DeepSCJD. The computation complexity of our DeepSCJD
due to feature extraction or workload prediction increases O(T) compared with
GRL, O(M) + O(T) relative to Rand, which is acceptable. The gain is 3.45%–
17.20% and 3.63%–29.44%, respectively without a substantial increase in algo-
rithm complexity. The effect is significant in a long-term view, not to mention
K-Hop. Because computing latency is crucial, particularly for application like
autonomous driving, which even threatens life safety. Furthermore, the drop in
offloading cost means substantial savings for service providers. Hence, the per-
formance improvement of DeepSCJD will benefit both mobile users and service
providers. Moreover, Rand is not easy to produce near-optimum solutions with
high randomness. DeepSCJD is superior after utilizing the predicted workload
through BiLSTM and aggregated features through GAT. The slight increase in
complexity will not affect the actual deployment of DeepSCJD in edge comput-
ing.

5.3 Ablation Studies

We conduct ablation studies to verify the effectiveness of sub-modules in Deep-
SCJD. No-Pre removes BiLSTM, No-GNN detaches GAT, No-Lin takes off Lin-
ear, and Bi-RL excludes GAT and Linear modules. As Tables 4 and 5 show, we
change the number of job requests and edge servers, server configurations and
weight parameters in objective function to evaluate DeepSCJD comprehensively.

Table 3. Algorithm complexity

Operations K-Hop Rand GRL Deep
SCJD

Feature
extraction

– – O(M) O(M)

Job
dispatching

O(T) O(T) O(T) O(T)

Path
selection

O(K) O(D!) O(D!) O(D!)

Workload

prediction

– – – O(T)

Table 4. AWC (×100) ablation results

Cases Jobs No-
Pre

No-
GNN

No-
Lin

Bi-RL Deep
SCJD

High-CPU, Nodes = 20

α = 0.8
β = 0.2

10 4.901 4.770 5.041 5.072 4.649

50 4.853 4.961 4.893 4.823 4.738

100 4.897 4.895 4.901 4.868 4.725

α = 0.5
β = 0.5

10 3.224 3.399 3.413 3.412 2.980

50 3.205 3.294 3.252 3.234 3.010

100 3.290 3.161 3.130 3.176 3.040

α = 0.2
β = 0.8

10 1.804 1.367 1.329 1.450 1.290

50 1.385 1.320 1.348 1.318 1.261

100 1.396 1.318 1.300 1.309 1.256

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 495

We see that each sub-module has a performance improvement for the final
decisions in all cases. In general, the Prediction Module has a greater improve-
ment, achieving the maximum effect of 13.80% under High-CPU and 25 nodes.
When the computing latency accounts for proportion at 0.8, the enhancement
compared with No-Pre reaches 39.84% for 10 jobs. Because server load influ-
ences calculation speed. Effective workload prediction avoids tasks being allo-
cated to heavily-loaded servers. This manner trades off tolerable offloading cost
for computing latency, reducing AWC. GAT extracts the features of jobs and
edge servers, increasing the model performance by 0.81%–14.90%. Similarly, the
Linear branch achieves promotion of 2.96%–14.53%, which explores the possi-
bilities beyond the view of DQN. It ensures that DeepSCJD has the advantages
of linearity and non-linearity. On the whole, the effect of Bi-RL is worse than
that of No-GNN and No-Lin. Although the workload prediction is considered,
it sets the aggregation of jobs features and server characteristics aside. The lack
of Linear branch also leads to performance degradation of performance. Last
but not least, there are mutual influences between these sub-modules. The final
performance is not obtained by the simple addition of all sub-module effects.

Table 5. AWC (x100) of ablation studies under various cases

Cases Jobs No-
Pre

No-
GNN

No-
Lin

Bi-RL Deep
SCJD

Cases No-
Pre

No-
GNN

No-
Lin

Bi-RL Deep
SCJD

High-CPU, α = 0.5, β = 0.5 Nodes = 20, α = 0.5, β = 0.5

Nodes = 15 10 3.311 3.432 3.278 3.261 2.987 High- CPU 3.224 3.399 3.413 3.412 2.980

50 3.297 3.171 3.185 3.198 2.910 3.205 3.294 3.252 3.234 3.010

100 3.107 3.083 3.083 3.154 2.976 3.290 3.161 3.130 3.176 3.040

Nodes = 20 10 3.224 3.399 3.413 3.412 2.980 High- Mem 3.343 3.226 3.225 3.135 3.043

50 3.205 3.294 3.252 3.234 3.010 3.175 3.132 3.110 3.148 2.983

100 3.290 3.161 3.130 3.176 3.040 3.143 3.135 3.116 3.125 3.019

Nodes = 25 10 3.463 3.288 3.380 3.287 3.043 High- Disk 3.192 3.348 3.144 3.146 3.015

50 3.176 3.178 3.198 3.130 2.980 3.172 3.157 3.130 3.226 2.890

100 3.248 3.153 3.206 3.172 3.010 3.159 3.179 3.128 3.171 3.018

6 Conclusion

In this paper, we have presented a DeepSCJD model for secure collaborative job
dispatching problem among multiple edge clouds, realizing the trade-off between
latency and offloading cost. We use BiLSTM model to forecast the workload,
GNN to aggregates features of jobs and servers, and DRL to make dispatching
decisions. The experiments under various conditions demonstrate DeepSCJD
surpasses traditional and state-of-the-art approaches with the maximum average
improvement of 54.16% and great generalization. Ablation studies manifest the
effectiveness of each sub-module to improve the performance of DeepSCJD.

496 Z. Yu et al.

References

1. Bi, S., Zhang, Y.J.: Computation rate maximization for wireless powered mobile-
edge computing with binary computation offloading. IEEE Trans. Wirel. Commun.
17(6), 4177–4190 (2018)

2. Chen, J., Yang, Y., Wang, C., Zhang, H., Qiu, C., Wang, X.: Multi-task offloading
strategy optimization based on directed acyclic graphs for edge computing. IEEE
Internet of Things J. 7, 1678–1689 (2021)

3. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2015)

4. Eshraghi, N., Liang, B.: Joint offloading decision and resource allocation with
uncertain task computing requirement. In: IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications, pp. 1414–1422. IEEE (2019)

5. Guan, W., Zhang, H., Leung, V.C.: Customized slicing for 6g: enforcing artificial
intelligence on resource management. IEEE Netw. 35(5), 264–271 (2021)

6. He, X., Lu, H., Huang, H., Mao, Y., Wang, K., Guo, S.: QOE-based cooperative
task offloading with deep reinforcement learning in mobile edge networks. IEEE
Wirel. Commun. 27(3), 111–117 (2020)

7. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific
protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Com-
mun. 1(4), 660–670 (2002)

8. Huang, L., Bi, S., Zhang, Y.J.A.: Deep reinforcement learning for online computa-
tion offloading in wireless powered mobile-edge computing networks. IEEE Trans.
Mob. Comput. 19(11), 2581–2593 (2019)

9. Kelly, R.: Internet of things data (2015). https://campustechnology.com/articles/
2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspxd

10. Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W.: Joint computation offloading
and multiuser scheduling using approximate dynamic programming in NB-IOT
edge computing system. IEEE Internet Things J. 6(3), 5345–5362 (2019)

11. Li, Y., Wang, X., Gan, X., Jin, H., Fu, L., Wang, X.: Learning-aided computation
offloading for trusted collaborative mobile edge computing. IEEE Trans. Mob.
Comput. 19(12), 2833–2849 (2019)

12. Liu, L., Tan, H., Jiang, S.H.C., Han, Z., Li, X.Y., Huang, H.: Dependent task
placement and scheduling with function configuration in edge computing. In: 2019
IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), pp.
1–10. IEEE (2019)

13. Liu, Y., Yu, H., Xie, S., Zhang, Y.: Deep reinforcement learning for offloading and
resource allocation in vehicle edge computing and networks. IEEE Trans. Veh.
Technol. 68(11), 11158–11168 (2019)

14. Pu, L., Chen, X., Xu, J., Fu, X.: D2D fogging: an energy-efficient and incentive-
aware task offloading framework via network-assisted D2D collaboration. IEEE J.
Sel. Areas Commun. 34(12), 3887–3901 (2016)

15. Saleem, U., Liu, Y., Jangsher, S., Li, Y.: Performance guaranteed partial offloading
for mobile edge computing. In: 2018 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6. IEEE (2018)

16. Saleem, U., Liu, Y., Jangsher, S., Li, Y., Jiang, T.: Mobility-aware joint task
scheduling and resource allocation for cooperative mobile edge computing. IEEE
Trans. Wirel. Commun. 20(1), 360–374 (2020)

17. Sun, M., Bao, T., Xie, D.: Towards application-driven task offloading in edge com-
puting based on deep reinforcement learning. Micromachines 12(9), 1011 (2021)

https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspxd
https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspxd

DeepSCJD: A DRL Model for Job Dispatching in Edge Computing 497

18. Tang, Z., Lou, J., Zhang, F., Jia, W.: Dependent task offloading for multiple jobs
in edge computing. In: 2020 29th International Conference on Computer Commu-
nications and Networks (ICCCN), pp. 1–9. IEEE (2020)

19. Xu, Z., et al.: Learning for exception: Dynamic service caching in 5g-enabled MECS
with bursty user demands. In: 2020 IEEE 40th International Conference on Dis-
tributed Computing Systems (ICDCS), pp. 1079–1089. IEEE (2020)

20. Yu, Z., Liu, W., Liu, X., Wang, G.: Drag-JDEC: a deep reinforcement learning
and graph neural network-based job dispatching model in edge computing. In:
2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS),
pp. 1–10. IEEE (2021)

The Extreme Counts: Modeling
the Performance Uncertainty of Cloud
Resources with Extreme Value Theory

Mengjuan Li1, Jinshu Su2, Hongyun Liu3, Zhiming Zhao3, Xue Ouyang1(B),
and Huan Zhou1(B)

1 National University of Defense Technology, Changsha, China
{limj,ouyangxue08,huanzhou}@nudt.edu.cn

2 Academy of Military Sciences, Beijing, China
sjs@nudt.edu.cn

3 University of Amsterdam, Amsterdam, The Netherlands
{h.liu,z.zhao}@uva.nl

Abstract. Although Cloud techniques developed rapidly in the last
decade, most of the applications running on Cloud are still web-based. It
is the performance uncertainty of Cloud resources that hinders the fur-
ther migration of other applications, such as quality critical applications.
Hence, an accurate Cloud performance model is crucial for optimized
resource allocation to satisfy the quality requirements of the quality criti-
cal applications. However, the existing efforts of Cloud performance mod-
eling focus more on the mean and variance, which cannot be leveraged to
guarantee meeting the deadline miss rate of quality critical applications.
To tackle the issue, a new modeling method is proposed to build per-
formance uncertainty model of Cloud resources based on Extreme Value
Theory, which can generate a proper threshold to guarantee the appli-
cation’s Quality of Service (QoS). Based on our experimental data and
studies, the threshold calculated by our proposed model can make the
average miss rate become lower than the required 5% deadline miss rate
and reduced by 77% compared with the traditional modeling method.
The number of times that the deadline miss rate cannot be satisfied is
also reduced by 84%.

Keywords: Cloud performance · Modeling · Uncertainty · Extreme
value theory · Quality critical

1 Introduction

Although the Cloud techniques develop rapidly in recent years, the applications
running on Clouds are still mainly web services. Other types of applications, such
as quality critical applications [1], are difficult to migrate to the Cloud. Because
quality critical applications require critical constraints on resource performance
for QoS guarantee. But compared with real-time applications, quality critical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 498–512, 2022.
https://doi.org/10.1007/978-3-031-20984-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_35&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_35

Modeling the Performance Uncertainty of Cloud Resources with EVT 499

applications do not need to meet the hard deadline, i.e., 0% deadline miss rate. It
is allowed that a certain deadline miss rate is met for quality critical applications.
For example, most of the scientific workflow applications, such as the disaster
early warning systems [2], need to complete most of their tasks in a specific time
window, otherwise the results would be meaningless. As a result, it requires
CPU, memory access and other processing performance to be guaranteed to a
certain extent for running quality critical applications.

However, Cloud service providers usually promise the quantity of the Cloud
resources they offered, instead of the quality of the Cloud resources, i.e., the
performance standard of Cloud resources, such as the CPU execution speed
or the disk memory access speed. Furthermore, there are severe performance
fluctuations for the same quantity of Cloud resources from different Clouds,
even different data centers and at different moments. Hence, the uncertainty of
Cloud resources performance is the main issue that hinders the migration of
quality critical applications running on the Cloud. To tackle the challenge of
performance uncertainty, we need a reliable performance uncertainty model for
Cloud resources first.

Current efforts on Cloud resources performance uncertainty modeling can be
divided into two ways. One is to model the Cloud system from the perspective
of the data center as the Cloud service provider, based on the queuing theory.
However, the model of this method is bounded to a specific Cloud platform
and cannot be extended to the multi-cloud environment. From the perspective
of Cloud users, a non-parametric statistical method is leveraged to predict the
Cloud performance based on the observed probability distribution. However,
most of the current uncertainty modeling methods are based on the classical
central statistical method, which pays more attention to the mean and variance
of the performance. Quality critical applications, on the other hand, need to
ensure that each execution is done within a specific time window, and more
attention should be paid to the worst cases of performance rather than the
mean cases.

To solve this problem, we use the powerful statistical tool of Extreme Value
Theory (EVT) [3]. In statistics, EVT focuses on the tail shape of random vari-
able distribution and studies the statistical characteristics of extreme values. In
particular, for sample extremum, the EVT gives an asymptotic theory that is
similar to the central limit theorem. In other words, the distribution of extreme
values is almost independent of the distribution of data. Moreover, due to the
complex Cloud environment and the numerous influencing factors, it is hard to
find a specific data distribution to analyze extreme values. EVT is therefore more
accurate in dealing with extreme cases than other specific distributions. Using
EVT, the performance of Cloud resources in extreme cases can be characterized,
and a performance threshold can be calculated based on the deadline miss rate.
Quality critical applications can refer to the threshold when selecting Clouds
and resources to avoid the impact of performance uncertainty.

In this paper, we first develop an automatic multi-datacenter performance
monitoring application based on the Cloud infrastructure operation code of

500 M. Li et al.

CloudsStorm [4], which is a framework for seamless Cloud virtual infrastruc-
ture programming and control. With an interval of 10 min between each test,
1500 tests were simultaneously performed on four real data centers to retrieve
the performance information. Then we pre-process the observed performance
data using k-means to distinguish different physical hosts in the same data cen-
ter. Finally, the performance uncertainty model of Cloud resources is built with
EVT to obtain the performance threshold of the data center. We use the k-fold
cross-validation method to verify that the threshold obtained based on the EVT
theory dramatically reduces the miss rate compared with the threshold calcu-
lated by the Normal distribution. In summary, the contributions of this paper
can be summarized as follows.

– We develop the Cloud performance monitoring application using the infras-
tructure operation code, and retrieve the Cloud performance information from
four real data centers continuously lasting for one month.

– We propose a Cloud performance modeling method based on k-means and
the Extreme Value Theory to analyze and model the extreme situation of
Cloud performance.

– We conduct experiments using the K-fold cross-validation method and the
experimental studies demonstrate the superiority of our proposed model.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 introduces the background of the EVT, followed by a detailed
description of our contribution in Sect. 4. And in Sect. 5, we perform experiments
to validate the effectiveness of our EVT-based method. Conclusions and future
research directions are presented in Sect. 6.

2 Related Work

The QoS improvement for Cloud applications is well studied through the meth-
ods of modeling and scaling, but most of them do not take into account the
performance uncertainty of Cloud resources. For example, El Kafhali et al. [5]
model the CDC (Cloud Data Centers) platforms with an open queuing system
that can be used to estimate the expected QoS parameters. Hwang et al. [6]
present generic Cloud performance models for evaluating IaaS, PaaS, SaaS, and
hybrid Clouds, and they focus more on the mechanism of scaling to guarantee
the application QoS.

To describe the Cloud performance, one way is trying to find the causes of
performance uncertainty, and setup a model inferring the performance behaviour
from the possible factors. Khazaei et al. present a performance model which uses
interacting stochastic models to quantify the uncertainty of Cloud [7]. Antonelli
et al. [8] model the Cloud computing system by adding parameter uncertainty
to the queuing model. But in practice, the performance of Cloud resources is not
only affected by the Cloud system itself, but also affected by shared users and
other factors. Consequently, these models are not suitable for public Cloud and
cannot be extended to multi-cloud environments.

Modeling the Performance Uncertainty of Cloud Resources with EVT 501

The other way of modeling the Cloud performance is to treat Cloud as a black
box. The Cloud performance is modeled through monitoring data with statis-
tical approaches. He et al. [9] used the non-parametric statistical method to
obtain the probability distribution of the execution performance of the applica-
tion in a Cloud data center. Wang et al. [10] mainly obtain the general execution
time by repeatedly executing benchmark programs for different resource types,
and use this data to estimate the execution time of the target application. The
Smart CloudBench platform presented by Chhetri et al. [11] can measure its
performance levels under different workload conditions through the automated
execution of representative benchmarks on multiple IaaS Clouds. These works
all use non-parametric statistical methods to test Cloud resources as a black
box without considering the underlying factors, so as to measure performance
uncertainty more directly.

However, the current non-parametric statistical methods mostly focus on the
mean and variance of performance, so the estimated time given cannot guarantee
that the application can be completed in a certain time window. Meanwhile, most
current works retrieve the Cloud performance through an on-premise VM, which
is fixed and cannot sufficiently explore the Cloud performance, since there are a
mass of physical hosts inside one data center.

3 Background

This section gives a brief introduction to some basic knowledge of Extreme Value
Theory. Because the proof of relevant theorems is too tedious and not the focus
of this paper, we do not elaborate here (readers who want to know the details
can read [3]). Due to the page limit, we neglect the proof and only explain the
general principles to show how the EVT can be applied.

There are many ways to calculate the performance threshold (quantile) we
need. One of the most common methods is to assume that the performance data
is coincident with an empirical distribution, such as Normal, Poisson, exponential
etc., and then calculate the threshold. However, real data hardly follows a specific
distribution due to the complex Cloud environment, which leads to complex
modeling steps and even an inappropriate model. In addition, when predicting
a rare event (such as a hurricane), the empirical distribution would assume that
the probability is adjacent to zero, which means that the estimates of extreme
cases given by empirical distributions are often inaccurate. The extreme value
theory infers the distribution of the extreme events that we have already known,
and does not make assumptions about the original distribution of the events, so
as to avoid the above-mentioned problems.

3.1 Generalized Extreme Value Distribution

Extreme value theory is a branch of statistical research to study the tail dis-
tribution characteristics of random variables, and one of its important research
tools is the generalized extreme value distribution. The landmark development of

502 M. Li et al.

EVT was in 1928. Fisher and Tippett gave a famous theorem after analysis and
research, which we call the extreme value type theorem. The theorem points out
that all the extreme events follow the same type of distribution under weak con-
ditions, regardless of the initial distribution, which means that the distribution
of extreme values is almost independent of the distribution of data. These distri-
butions are called the Extreme Value Distribution (EVD). Moreover, Jenkinson
gives a unified form of these distributions after transformation, as follows:

H(x;μ,σ,ξ) =exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

, 1 + ξ(x − μ)/σ > 0 (1)

where μ is the location parameter, σ the scale parameter, and ξ the shape param-
eter, μ, ξ ∈ R, σ > 0. H is called the generalized extreme value distribution,
usually abbreviated as the GEV distribution.

To sum up, all the extreme events follow the GEV distribution under weak
conditions. For example, the distribution of the maximum rainfall and maximum
wind level is basically the same, even though we know that the distribution of
rainfall and the wind level itself are almost never be same. This conclusion may
sound very counterintuitive, but we can try to understand the idea. In fact, most
distributions have a low probability of events in extreme cases. What H mainly
simulates is the shape of the tail of these distributions, and there are not many
possible shapes of this tail. Figure 1 shows the density function graph of the
GEV distribution under different shape parameters (ξ). Figure 1 also illustrates
that the Type I distribution has a light tail, the Type II distribution has a heavy
tail, and the tail of the Type III distribution is somehow bounded.

Fig. 1. The density function of GEV Fig. 2. EVD fit of an unknown cdf

3.2 Find the Quantile

Using the above results, we can calculate the probability of extreme events more
accurately regardless of the actual complex initial distribution. In fact, EVT just

Modeling the Performance Uncertainty of Cloud Resources with EVT 503

shows that the extreme values of n i.i.d. random variables converge to EVD,
which is similar to the conclusion of the central limit theorem about the mean.

The tail of the input data distribution can be fitted by using EVD (see Fig. 2),
so that the probability of extreme events can be calculated. Mathematically
speaking, it is to find the quantile of the probability p. Specifically, when the
probability p is given, xp can be obtained such that P (X > xp) < p. Assuming
we get estimates of the parameters of the GEV distribution (our method is
described in Sect. 3.3), the quantile can be calculated by the following formula:

x̂p =

⎧⎨
⎩ μ̂ − σ̂

ξ
(1 − y−ξ

p), ξ �= 0;

μ̂ − σ̂ log yp, ξ = 0.
(2)

where yp = − log p.
There are many methods to estimate the three parameters of GEV distribu-

tion. The most classical methods are the Probability Weighted Moment(PWM),
the Method of Moments Estimate(MME) and the Maximum Likelihood Estima-
tion(MLE). MLE is adopted for parameter estimation in this paper.

3.3 Maximum Likelihood Estimation

The Maximum Likelihood Estimation is a widely used parameter estimation
method in statistics. Compared with other estimation methods, it achieves higher
efficiency and better robustness. Especially with the emergence of high-level lan-
guages such as R language and MATLAB, program optimization and operation
speed have been greatly improved, and the Maximum Likelihood Estimation is
more dominant in practical applications. The following is the likelihood function
expression of the GEV distribution.

Assuming that X1,X2, ...,Xn are i.i.d. random variables obeying the GEV
distribution, the log-likelihood function of the GEV distribution is (when ξ �= 0):

l(μ, σ, ξ) = − n log σ −
(

1 +
1
ξ

) n∑
i=1

log h(μ,σ,ξ) −
n∑

i=1

h
−1/ξ
(μ,σ,ξ) (3)

where

h(μ,σ,ξ) =
[
1 + ξ

(
xi − μ

σ

)]
> 0, i = 1, ..., n.

When ξ = 0, the log-likelihood function is:

l(μ, σ) = − n log σ −
n∑

i=1

(
xi − μ

σ

)
−

n∑
i=1

exp

{
−

(
xi − μ

σ

)}
(4)

By maximizing the above log-likelihood function with respect to the parame-
ter vector (μ, σ, ξ), the maximum likelihood estimation of GEV distribution can
be obtained. Although there is no analytical solution, the maximum likelihood
estimation can be obtained by numerical algorithms for the given data.

504 M. Li et al.

4 Our Contribution

In this section, we describe the overall steps for performance uncertainty mod-
eling of Cloud resources, as shown in Fig. 3. First of all, we introduce the appli-
cation we developed to retrieve the real Cloud performance and show the per-
formance uncertainty. Secondly, we use the K-means clustering method to pre-
process the data, mainly to cluster the performance data generated by physical
hosts with different performance in the data center, so that the performance of
Cloud resources can be characterized in a fine-grained manner. Finally, we intro-
duce the EVT-based Cloud performance model, through which the performance
characterization of Cloud resources in extreme cases and the threshold based on
the deadline miss rate can be calculated. The obtained results can be utilized
by quality critical applications as a reference for choosing a proper Cloud data
center.

Fig. 3. The overview of our contribution in Cloud performance uncertainty modeling

4.1 Cloud Performance Acquisition and Description

CloudsStorm1 [4] is a multi-cloud resources management and control framework.
The framework provides infrastructure programmability for applications at the
topology design level, infrastructure level and application logic level. Among
them, at the infrastructure level, based on the YAML format, CloudsStorm
provides the “Cloud infrastructure operation language” for Cloud application
operation and maintenance, which is used to describe the operations required
by the Cloud infrastructure. The language can be used to develop performance
monitoring applications for multi-cloud resources [12].

In order to obtain the real performance data of Cloud resources, we select
several data centers from ExoGENI, which is a federated Cloud contributed and
used by a number of Universities around the world. The selected four data centers
are located in the University of Sydney (in Australia, referred to as SYD), the
University of Amsterdam (in Europe, referred to as UVA), Boston University
(in eastern United States, referred to as BBN), and Oakland Scientific Facility
(in western United States, referred to as OSF). The task of the application is to
provide a VM in each of the above data centers and use “sysbench [13]” to test
the CPU/memory performance of each data center. For comparison, we use the
1 https://cloudsstorm.github.io/.

https://cloudsstorm.github.io/

Modeling the Performance Uncertainty of Cloud Resources with EVT 505

same type of virtual machines for all the tests, which is the “XOMedium” type of
ExoGENI with the capacity of one virtual CPU and 3GB memory. Meanwhile,
there were other applications running from other clients at the same time. It
means that we acquire the Cloud performance purely as a normal Cloud client.

We utilize the “infrastructure execution code” to define the whole process of
executing tests on the selected data centers of ExoGENI Cloud. The pseudo code
is shown in Algorithm 1. We leverage “loop” code to repeat the test task. In this
case, all test results are recorded in the log of infrastructure code. Afterwards,
we can directly extract the test results from the log for analysis.

Algorithm 1. Performing tests with the Infrastructure Execution Code
1: for a certain time period or a certain count do
2: Provision V Mx

3: Execute CPU test simultaneously on the V Mx of OSF‖SYD‖BBN‖UvA
4: Execute memory test simultaneously on the V Mx of OSF‖SYD‖BBN‖UvA
5: Get the results
6: Terminate V Mx

7: Wait for executing another round of tests
8: end for

We use CloudsStorm framework to continuously track and perform tests on
the four data centers lasting for nearly one month. The interval between each
test is about 10 min, and a total of 1500 tests were performed. All the raw
data of performance information is retrieved in the form of log files2. Then we
extract all the performance information for analysis. The data extracted from
CPU performance tests is the execution time with the unit of seconds, and the
data extracted from memory performance test is the throughput in unit time
with the unit of “MB/sec”. To show the performance uncertainty, we generate
box plot from the test results, as shown in Fig. 4.

(a) CPU (b) MEM

Fig. 4. Box plot of test results

(a) CPU (b) MEM

Fig. 5. Scatter plot of test results in
BBN

2 https://anonymous.4open.science/r/CloudPerformanceData-6203/.

https://anonymous.4open.science/r/CloudPerformanceData-6203/

506 M. Li et al.

As shown in Fig. 4, the box of SYD data center is very narrow no matter
in the sub-figure of CPU or in the one of memory, which indicates that the
performance of the data center is relatively stable. Similarly, the box of the OSF
data center is also narrow, but there are more abnormal values, indicating a
sudden and large fluctuation in performance. Thirdly, the performance of UVA
data center is revealed as a wide box with a large fluctuation of outliers. The
biggest fluctuation of Cloud performance appears in the BBN data center, where
the box is the widest among the four data centers.

Additionally, the performance data of BBN data center is clearly differenti-
ated into two clusters as shown in Fig. 5. It is known that data centers typically
have multiple physical hosts. As shown in Algorithm 1, we terminate the VM
after each test and dynamically provision the VM again before the next test.
This is different from the traditional test method which does not terminate the
VM. If the VM is not terminated, the VM would remain on the same physical
host and the performance of the Cloud data center cannot be fully explored.
Hence, for our testing in the BBN data center, it is the provisioned VMs ran-
domly appear on two physical hosts with different performance that cause the
phenomenon of stratification. This also requires us to pre-process the data for
carrying out a fine-grained performance modeling.

4.2 Data Pre-processing

Since there may be a phenomenon of performance stratification in the data
center, we use the K-means clustering method to cluster the performance data.
And the performance of the clustered data would be modeled respectively, which
can provide applications with fine-grained performance characterization of Cloud
resources.

K-means algorithm is by far the most widely used clustering tool used in
scientific and industrial applications. Its basic idea is to find a solution that
divides a group of data into k clusters through iteration, so as to minimize
the corresponding loss function of the clustering results. Among them, the loss
function can be defined as the sum square error (SSE) of the distance from each
sample to the center point of the cluster to which it belongs. In the process of
data pre-processing in this paper, the K-means algorithm is mainly used. We
use the scikit-sklearn module in Python to implement K-means clustering, the
pseudo code of the pre-processing process is shown in Algorithm 2.

First of all, we calculate the average silhouette coefficient of the sample sep-
arately for the preset number of clusters (the minimum value is 2, and the
maximum value can be estimated according to the situation of the data center).
The silhouette coefficient is a method to evaluate the quality of clustering. The
best value is 1, and the worst value is −1. As a result, the cluster number k with
the largest silhouette coefficient would be the best division scheme. And then,
we use the k-means cluster again to calculate the cluster label with k as the
number of clusters. Also, since the built VM appear randomly on each physical
host, the amount of data after classification should be average. Hence, if the
data contained in each category after clustering is not average, it is determined

Modeling the Performance Uncertainty of Cloud Resources with EVT 507

Algorithm 2. Data Pre-processing with K-means Algorithm
1: function Kmeans(data,maxnum)
2: index list ← CalSilhouette(data, 2, ..., maxnum)
3: k ← max(index list[:])
4: k clusters ← Cluster(data, k)
5: if The size of k clusters is average then
6: No clustering is required
7: else
8: Output K clusters respectively
9: end if

10: end function

that there is no need for clustering, which also indicates that the performance of
physical host in the data center is relatively average. If the amount of data tends
to be average, the clustering results are deemed available, and the clustered data
would be output. This is also the data input for subsequent modeling. Figure 6
shows the clustering results of the test results in the BBN data center.

(a) CPU (b) MEM

Fig. 6. Clustering results in the BBN

4.3 The EVT-Based Cloud Performance Model

Let us summarize the basic idea of our uncertainty model with EVT. We have
n test results X1,X2, ...,Xn, and the probability p is determined according to
the requirements (i.e., the deadline miss rate) of the quality critical application.
The goal is to calculate the threshold xp such that P (X > xp) < p by fitting
a GEV distribution. In this way, we can make resource recommendations for
quality critical applications based on xp, or we can describe the uncertainty of
Cloud resources performance more accurately of the Cloud data center.

508 M. Li et al.

Algorithm 3. GEV (Generalized Extreme Value)
1: function GEV(data, p)
2: Mi ← Maximum per hour of data
3: l(μ, σ, ξ) ← CalLogLikelihoodFunction(Mi)
4: μ̂, σ̂, ξ̂ ←MAXμ,σ,ξl(μ, σ, ξ)
5: xp ← CalThreshold(μ̂, σ̂, ξ̂, yp)
6: return xp

7: end function

This modeling method is summarized in Algorithm 3. First, we need to group
the test results. Considering the size of the data, we group them in hours. The
extreme value of performance per hour is obtained, and the set of these extreme
values is recorded as Mi. Then, the log-likelihood function of the GEV distribu-
tion is calculated according to Eq. (3) and (4), and an estimate of the parameter
μ, σ, ξ is obtained. Finally, we use Eq. (2) to calculate xp, which is the threshold
we desired.

In particular, the result of memory resource performance we extracted from
the test is the throughput in unit time, so the minimum value of this data
represents the worst case of performance. Therefore, we take all the data negative
before fitting the GEV distribution of the maximum value.

We assume that the deadline miss rate of a quality critical application is 5%,
which indicates the probability p in our method is 0.05 to model the uncertainty
of Cloud resources performance of the four data centers in this paper. Table 1
shows the modeling results of CPU and memory resources, which demonstrates
that the shape parameter ξ of most fitted GEV distributions is greater than 0.
According to the Fisher-Tippett theorem, all of these distributions belong to the
Type II distribution of GEV with fat tails. At the same time, there are three
groups of shape parameters less than 0, which belong to the Type III distribution
of GEV with an upper finite endpoint. It is apparent that the tail performance
of the Type III distribution of GEV is better than the Type II, and the Type
I is in between. On the other hand, the shape parameter (ξ) can be leveraged
to somehow characterize and evaluate certain Cloud performance. Then we can
calculate the corresponding threshold in the next step.

For the threshold xp of resource performance modeling, the CPU resource
performance in extreme cases of SYD data center is the best. It has the minimum
test execution time of about 27.38 s under the deadline miss rate of 5%. And in
the extreme case of memory resource performance, the UVA data center performs
best with a throughput rate of 1484.33MB/s.

The distribution type fitted in extreme cases and the threshold calculated
based on deadline miss rate can be used as a reference for quality critical appli-
cations when selecting Cloud and making corresponding resource recommenda-
tion. Suppose a developer of a quality critical application wants to migrate his
application to the Cloud, and make a choice among the four data centers in this
paper. Since our work pays more attention to the performance uncertainty mod-
eling of multi-cloud resources and does not address the related issues of specific

Modeling the Performance Uncertainty of Cloud Resources with EVT 509

Table 1. Worst-case Performance Distributions of four data centers with GEV fitting

Data center
CPU MEM

μ̂ σ̂ ξ̂ xp μ̂ σ̂ ξ̂ xp

BBN0 27.35 0.02 0.15 27.44 −1278.91 8.07 −0.03 −1256.05

BBN1 30.99 0.21 0.55 32.59 −1497.46 21.20 0.07 −1427.50

OSF 31.01 0.26 0.99 35.63 −1483.53 30.34 0.36 −1322.67

SYD 27.34 0.01 0.18 27.38 −1277.70 8.06 0.03 −1252.48

UVA 28.13 1.17 −0.17 30.87 −1643.37 70.36 −0.19 −1484.33

Note: distributions of BBN0 and BBN1 belong to the same data center, but
are classified as two clusters.

application optimization, we assume that the resource requirements of appli-
cations are already known. For example, this performance critical application
is known to be purely computational and requires more stable and higher CPU
performance. According to our modeling results, the SYD data center will be the
best choice. In addition, Cloud resources recommendation can be made based
on modeling results, assuming that the required resources are linearly related to
the execution time (which is generally approximate). For example, if the appli-
cation needs to complete the task within 10 s and the minimum miss rate is 5%.
Then when migrating to the SYD data center, it needs to be expanded to 2.738
virtual CPU to guarantee QoS. Here we only give a simple example, the more
specific details of Cloud selection and resource recommendation are not the main
research content of this article.

5 Experiments and Results

In this section, we introduce our experimental verification method, and illustrate
the superiority of Extreme Value Theory for performance uncertainty modeling
of Cloud resources according to the experimental comparison results.

5.1 K-fold Cross-validation

In order to make full use of the limited real data, we choose the K-fold cross-
validation for experimental verification. K-fold cross-validation first divides all
data into k subsets, and selects one of the subsets as the test set without repe-
tition, and the other K − 1 subsets are used for training. A total of k times are
repeated to ensure that each subset participates in training and is tested. K-fold
cross-validation takes advantage of the non-repetitive sampling technique, so we
can extend a limited set of real performance data into k sets for experiments. In
this way, we can verify the advantages of the GEV modeling method for perfor-
mance modeling of Cloud resources in extreme cases more comprehensively.

510 M. Li et al.

Our experiment mainly compares our EVT-based model with the widely-
used Normal distribution model. The process of this experiment is shown in
Algorithm 4. First, group the data according to the volume of experimental
data to determine the k value. In this experiment, we take 200 data as a group.
As a consequence, except for the special BBN data center, the k value is taken as
8, and the 8-fold cross-validation experiment is carried out. Then, 8 subsets are
selected as the test set in turn, and the other subsets together form the training
set for 8 cycle experiments. In each cycle, our EVT-based modeling method and
the traditional Normal distribution method are used to calculate the threshold.
The probability p used in the threshold calculation is still assumed to be 0.05. It
is worth mentioning that p can be other values according to the demand. Finally,
the calculated threshold is substituted into the test set for testing, and the miss
rate of the two modeling methods can be obtained.

Algorithm 4. Experiment with K-fold Cross-Validation
1: function K-fold Cross-Validation(data, k, p)
2: for i = 1 → k do
3: Select the i fold as the test set (the future unknown performance)
4: The other k-1 fold is used as train set (the already known performance)
5: Xp gev ←threshold calculated with GEV using train set
6: Xp norm ← threshold calculated with Normal Distribution using train set
7: mr gev ← test Xp gev in test set
8: mr norm ← test Xp norm in test set
9: return mr gev, mr norm

10: end for
11: end function

5.2 Result Analysis

The bar graph in Fig. 7 shows the comparison of the experimental results of the
K-fold cross-validation experiments of the four data centers. The green column
represents the test results of the Normal distribution modeling method, the
orange represents our EVT-based method, and the purple baseline is the deadline
miss rate of 5%. Figure 7 demonstrates that our EVT-based method can give an
appropriate threshold to ensure a low miss rate in most cases, no matter how
variable the Cloud environment is.

In addition, we extract the experimental results from three angles. From the
number of times exceeding the maximum miss rate, the verification experiment
has been tested 66 times in all, the Normal distribution modeling method has
25 times that do not satisfy the maximum miss rate, and the GEV method has
only 4 times, an optimization by 84%. From the worst-case of the miss rate, the
highest miss rate of Normal distribution modeling method is 28.5%, and that of
our GEV-based method is only 8.5%, which is reduced by 70%. From the overall
average of the miss rate, the average value of the Normal distribution modeling
method is 6.85%, which does not meet the requirement of the maximum miss

Modeling the Performance Uncertainty of Cloud Resources with EVT 511

(a) bbn0-cpu (b) bbn1-cpu (c) osf-cpu (d) syd-cpu (e) uva-cpu

(f) bbn0-mem (g) bbn1-mem (h) osf-mem (i) syd-mem (j) uva-mem

Fig. 7. Comparison of test results between Normal Distribution method and our EVT-
based method

rate of 5%. The total average value of our EVT-based method is 1.56%, which
is lower than deadline miss rate and reduced by 77% compared with Normal
distribution modeling method.

In summary, when the performance distribution of the Cloud data center
is unknown, our EVT-based modeling method can describe the extreme situa-
tion more accurately, thereby ensuring the QoS of quality critical applications.
Whereas, methods such as Normal distribution need to make assumptions about
the actual distribution in advance, are not sensitive to extreme values, and can-
not give a suitable threshold in complex and changeable Cloud environments.

6 Conclusion

This paper proposes a new method for modeling Cloud resources performance
uncertainty. Our Extreme Value Theory (EVT) based method can generate a
proper threshold to ensure the QoS for quality critical applications. Compar-
ing to the traditional modeling methods, our method does not focus on the
mean performance, and we do not need to assume the actual distribution of the
performance. Therefore, our method can describe the extreme cases of Cloud
resources performance more accurately, and it is also suitable for complex Cloud
and multi-cloud environments. To the best of our knowledge, this is the first time
that EVT is applied to performance uncertainty modeling of Cloud resources.

Acknowledgment. The work is supported by the National Natural Science Founda-
tion of China under grant No. 62102434 and No. 62002364, and is partially supported

512 M. Li et al.

by the Natural Science Foundation of Hunan Province under grant No. 2020JJ3042
and No. 2022JJ30667, and is also supported by the EU Horizon 2020 research and
innovation program of the ENVRI-FAIR project (824068), the BLUECLOUD project
(862409), and the LifeWatch ERIC project.

References

1. Zhao, Z., et al.: Developing and operating time critical applications in clouds: the
state of the art and the switch approach. Proc. Comput. Sci. 68(43), 17–28 (2015)

2. Zhou, H., et al.: Dynamic real-time infrastructure planning and deployment for
disaster early warning systems. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol.
10861, pp. 644–654. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93701-4 51

3. Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes: Theory
and Applications—Regression Analysis. [Wiley Series in Probability and Statis-
tics], pp. 209–250. Wiley, New York (2004). https://doi.org/10.1002/0470012382

4. Zhou, H., Hu, Y., Su, J., de Laat, C., Zhao, Z.: CloudsStorm: an application-
driven framework to enhance the programmability and controllability of cloud
virtual infrastructures. In: Luo, M., Zhang, L.-J. (eds.) CLOUD 2018. LNCS, vol.
10967, pp. 265–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94295-7 18

5. El Kafhali, S., Salah, K.: Modeling and analysis of performance and energy con-
sumption in cloud data centers. Arab. J. Sci. Eng. 43(12), 7789–7802 (2018)

6. Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.G., Wu, Y.: Cloud performance
modeling with benchmark evaluation of elastic scaling strategies. IEEE Trans.
Parallel Distrib. Syst. 27(1), 130–143 (2015)

7. Khazaei, H., Miic, J., Miic, V.B., Mohammadi, N.B.: Modeling the performance of
heterogeneous IAAS cloud centers. In: 2013 IEEE 33rd International Conference
on Distributed Computing Systems Workshops, pp. 232–237. IEEE (2013)

8. Antonelli, F., Cortellessa, V., Gribaudo, M., Pinciroli, R., Trivedi, K.S., Trubiani,
C.: Analytical modeling of performance indices under epistemic uncertainty applied
to cloud computing systems. FGCS 102, 746–761 (2020)

9. He, S., Manns, G., Saunders, J., Wang, W., Pollock, L., Soffa, M.L.: A statistics-
based performance testing methodology for cloud applications. In: Proceedings of
the Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 188–199 (2019)

10. Wang, W., et al.: Testing cloud applications under cloud-uncertainty performance
effects. In: ICST, pp. 81–92. IEEE (2018)

11. Chhetri, M.B., Chichin, S., Vo, Q.B., Kowalczyk, R.: Smart cloudbench-automated
performance benchmarking of the cloud. In: 2013 IEEE Sixth International Con-
ference on Cloud Computing, pp. 414–421. IEEE (2013)

12. Zhou, H., et al.: Fast resource co-provisioning for time critical applications based
on networked infrastructures. In: International Conference on Cloud Computing,
pp. 802–805. IEEE (2016)

13. Kopytov, A.: Sysbench manual. In: MySQL AB, pp. 2–3 (2012)

https://doi.org/10.1007/978-3-319-93701-4_51
https://doi.org/10.1007/978-3-319-93701-4_51
https://doi.org/10.1002/0470012382
https://doi.org/10.1007/978-3-319-94295-7_18
https://doi.org/10.1007/978-3-319-94295-7_18

Scalable Discovery and Continuous
Inventory of Personal Data at Rest in

Cloud Native Systems

Elias Grünewald(B) and Leonard Schurbert

Information Systems Engineering, Technische Universität Berlin, Berlin, Germany
{gruenewald,schurbert}@tu-berlin.de

Abstract. Cloud native systems are processing large amounts of per-
sonal data through numerous and possibly multi-paradigmatic data stores
(e.g., relational and non-relational databases). From a privacy engineer-
ing perspective, a core challenge is to keep track of all exact locations,
where personal data is being stored, as required by regulatory frameworks
such as the European General Data Protection Regulation. In this paper,
we present Teiresias, comprising i) a workflow pattern for scalable dis-
covery of personal data at rest, and ii) a cloud native system architec-
ture and open source prototype implementation of said workflow pattern.
To this end, we enable a continuous inventory of personal data featur-
ing transparency and accountability following DevOps/DevPrivOps prac-
tices. In particular, we scope version-controlled Infrastructure as Code
definitions, cloud-based storages, and how to integrate the process into
CI/CD pipelines. Thereafter, we provide iii) a comparative performance
evaluation demonstrating both appropriate execution times for real-world
settings, and a promising personal data detection accuracy outperforming
existing proprietary tools in public clouds.

Keywords: Privacy · Data protection · Transparency ·
Accountability · Data loss prevention · Privacy engineering · DevOps

1 Introduction

The European General Data Protection Regulation (GDPR) or, similarly, the
California Consumer Privacy Act (CCPA) define strong regulatory frameworks
following the principle Privacy1 by Design and by Default (PbD). At the same
time, various services collect personal data from countless data subjects and
enterprises face the challenges of aligning to all regulatory obligations to avoid
severe fines. In particular, data controllers are required to establish technical
and organizational measures as safeguards against potential misuse or data
breaches. Supervisory authorities are also expanding their activities to audit data

1 For the sake of simplicity, we use the terms privacy and data protection interchange-
ably, being aware of their different notions in other contexts.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 513–529, 2022.
https://doi.org/10.1007/978-3-031-20984-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_36&domain=pdf
http://orcid.org/0000-0001-9076-9240
https://doi.org/10.1007/978-3-031-20984-0_36

514 E. Grünewald and L. Schurbert

controllers and processors [1]. Meanwhile, cloud native systems follow polyglot
microservice architectures and multi-cloud strategies and are therefore especially
hard to account for personal data. Due to their inherent complexity, they lack
transparency and because of their evolutionary development, they might contra-
dict present accountability requirements.

In practice, personal data are found in multi-paradigmatic storage and pro-
cessing settings (e.g., SQL, NoSQL). Effective means need to be found that
identify common patterns or context-specific indicators of personal data as such
in the vast amount of present data at rest. For instance, the GDPR requires com-
prehensive records of processing activities (RoPA, inventory) according to Art.
30.Such a procedure consists of technical and organizational measures, which,
in turn, have to take into account the state of the art (Art. 25). So far, we
observe laborious and primarily manual tasks of information collection and doc-
umentation, often inflexibly supported by simplistic spreadsheets or burdensome
written documents [2]. Consequently, we identify a collective need for what data
protection officers and supervisory authorities need to enhance transparency and
accountability of large-scale cloud native systems: A scalable discovery and con-
tinuously updated inventory of personal data. Furthermore, we observe the need
for tools to guarantee data protection at runtime to meet the prevailing software
development and operations (DevOps) lifecycle of constantly evolving systems
and not only ex-ante assumptions. From that follows, the technical scope should
align with both the regulatory obligations and the development practice. A key
research question here is: How to (i) discover personal data in large-scale cloud
native systems and (ii) how to inventory respective findings?

We herein present the (to the best of our knowledge) first model, architecture,
and implementation that jointly leverages Infrastructure as Code definitions,
multi-paradigmatic data stores, and CI/CD pipelines in cloud native systems to
inventory personal data at rest. To this end, we provide in this paper:

– A workflow pattern for the scalable discovery of personal data in cloud native
systems.

– Teiresisas, an architecture and open source prototype implementation of
said workflow pattern.

– An experimental evaluation of our approach in comparison to two widely used
baseline systems.

Therefore, the remainder of this paper is structured as follows: In Sect. 2 we
provide relevant background and related work. Thereafter, in Sect. 3 we present
the general approach for a scalable and continuous inventory procedure. We elab-
orate on the implementation in Sect. 4. On this basis, our approach is evaluated
in Sect. 5. In Sect. 6 we discuss the current limitations. Finally, Sect. 7 concludes.

2 Background and Related Work

2.1 Personal Data in Cloud Native Systems

Hereinafter, we refer to personal data as defined in Art. 4(1) which states “‘per-
sonal data’ means any information relating to an identified or identifiable natural

Scalable Discovery and Continuous Inventory of Personal Data at Rest 515

person (‘data subject’)”. Looking at real-world data sets, this classification is,
however, often far from trivial [3]. The presence of personal data can be con-
stituted by existing field such as a data subject’s name, (email) address, social
security number, (under certain circumstances) IP address [4] or more complex
data structures such as social media profiles, location data, personal preferences,
health records, and many others. Usually, these data are stored in relational or
non-relational (NoSQL) databases, e.g., as basic string values or more complex
objects.

From a legal perspective, several obligations need to be implemented by the
data controller as imposed by the GDPR. For this paper, four guiding privacy
principles are central: First, for the processing of personal data the transparency
principle according to Art. 5(1a) applies. This implies the controller needs to pro-
vide detailed transparency information to signal categories of personal data being
collected, their retention time, legal basis, purposes, third country transfers, and
many more (see, e.g., [5]). Second, Art. 5(1f) requires appropriate security mea-
sures (incl. integrity and confidentiality) against unauthorized or unlawful pro-
cessing or accidental loss (cf. Sect. 2.2). Third, the controller needs to be able to
demonstrate compliance with (not only) the aforementioned principles, i.e. the
responsibility and liability (see also Recital 74) for accountability (Art. 5(2)). To
this end, data controllers shall maintain a record of processing activities (Art.
30) with a special focus on the above-mentioned security of processing (Art.
32). While carrying out Data Protection Impact Assessments (DPIAs), the risks
associated with the processing of personal data shall be determined and regu-
larly reviewed (Art. 35 GDPR). Fourth, the overarching principle of privacy by
design and by default (Art. 25) needs to be taken into account. It applies to all
obligations laid out in the GDPR and requires “both at the time of the deter-
mination of the means for processing and at the time of the processing itself
[(‘at runtime’)] [to] implement appropriate technical and organizational mea-
sures”. For the following considerations, we use the term inventory to describe
the aforementioned documentary measures concerning where personal data are
being stored.

Through the technical lens, cloud native systems are built to scale applica-
tions for millions of concurrent users. For this, horizontal scaling techniques are
used and infrastructure (compute, storage, and network) is provisioned auto-
matically on demand [6]. Public cloud providers such as Amazon Web Services,
Google Cloud Platform, Microsoft Azure, or IBM Cloud are appreciated for their
elasticity and (seemingly) infinite resources. Consequently, privacy engineering
has to examine this generation of technology intensively.

Moreover, the architectural paradigm of microservices is pervasive. Through
cohesive, independently encapsulated services that interact through API-enabled
messaging, scalable microservice architectures can be implemented [7]. Within
such microservices, the choice of data storage strongly depends on the function-
ality needed and the skills of the development team. Considered in its entirety,
a multitude of polyglot microservices and multi-paradigmatic data stores are
then in use. In larger distributed systems, we can observe thousands of such

516 E. Grünewald and L. Schurbert

individual processing entities. From a transparency perspective, observing all
of these concurrently for their (personal data) processing activities is a still-
unsolved task.

Besides these aspects, the degree of automation is rising. A best practice is
to provide infrastructure as code (IaC) definitions. In particular, DevOps teams
declaratively describe the desired state of compute, network, and storage compo-
nents. Advanced configuration management and orchestration tools then trans-
form the current state. For instance, an auto-scaling mechanism runs additional
virtual machines or replicates a database under high load. From a privacy per-
spective, this continuous process – being triggered by load, external events, and
new code developments – needs to be examined carefully. If a database instance
was replicated to a new data center, possibly personal data were suddenly being
stored in a third country. The GDPR would then require the controller to inven-
tory this storage separately, implement adequate safeguards, and transparently
inform data subjects.

2.2 Data Loss Prevention

As mentioned above, Art. 5(1f) GDPR explicitly demands technical and organi-
zational measures against accidental loss of personal data. This is why dedicated
Data Loss Prevention systems (DLP) have been designed in several iterations.
Most of these have in common that they examine data at rest. Remarkably, data
in transit or data in use will not be the core subject of this work. Existing
DLP systems are mostly security-centric. Related work covers also user behav-
ior analysis, such as profiling of document, database and network access [8], file
and network traffic analysis [9] and protection from misuse of email communica-
tion [10], as well as content tagging for export prevention [11] or access policies
that hinder an adversary from accessing data stores. With DLP, the discov-
ery of sensitive data has been demonstrated by the utilization of different NLP
techniques, through which documents become classifiable [12]. Additionally, doc-
ument classification has been discussed in the context of machine learning [13].
Meanwhile, cloud providers developed proprietary DLP systems, namely there
are AWS Macie [14] and Google Cloud Data Loss Prevention [15]. However,
they are substantially limited to the extent they only support the provider’s
storage system (such as S3 for AWS) or they lack algorithmic transparency.
Hence, multi-cloud and on-premise infrastructure are not covered at all. Neither
meaningful evaluation establishing more trust has been published. Therefore, a
data controller cannot meet the accountability requirements as imposed by, e. g.,
the GDPR [16].

In summary, the major drawback of these systems is the necessity to provide
contextual information on where suspected data are located at. In microservice
infrastructures, this step is far from easy. This is why we present a new general
approach to identifying sensitive information, in particular personal data, with
less necessary prior knowledge about the underlying system in the following
sections.

Scalable Discovery and Continuous Inventory of Personal Data at Rest 517

3 General Approach

3.1 Requirements

Hence, the system must be designed with a strong focus on the regulatory givens,
which are in our example the information obligations from the GDPR. To clarify
up front what is often misunderstood: the discovery and inventory system is
not required to store copies of the personal data records persistently. Since the
system is to be built to safeguard data protection rather than introducing novel
threats, neither have the entities to be stored permanently in the inventory nor
for analysis activities. Rather, the data minimization principle from Art. 5(1c)
GDPR has to be ensured. This implies the system will only need to store meta
data, e.g., database and records references. Thus, the system is to be built with
a Privacy by Architecture [17] approach, not least to avert possible linkability
attacks which arose from the presence of a personal record within the system
[18].

Moreover, the system should cover a wide range of technological concepts,
such as multi-paradigmatic infrastructures, storage alternatives, data types,
etc., which all likely depend on the present infrastructure provider in a real
cloud-native system. To support these concepts, the system shall be flexible
and extensible with little effort. The system must therefore interact through
well-documented application programming interfaces (APIs) that power-efficient
communication and promote the extensibility and connection with existing parts
of the system or their development and operations (DevOps) tech stack.

Furthermore, multi-faceted automation potentials can unfold. These will help
to replace existent laborious manual tasks and human errors (read: sending
emails around, waiting for replies, and then manually creating spreadsheets that
are outdated at the moment of their completion). The inventory process must
therefore happen continuously and should scale out to larger infrastructures to
meet the givens of current system architecture practice.

On a non-functional level, the system itself should be created and behave
transparently to enable independent assessments, identify architectural and func-
tional limitations, and determine scalability, accuracy, security, and usability –
also for a non-technical audience, since naturally multidisciplinary stakeholders
are involved.

3.2 Introducing a Workflow Pattern for Scalable Discovery
of Personal Data

When studying data loss prevention systems, there is a lot of attention on the
detection methods but less on the practical integration of such systems. All too
often, monolithic tools are proposed that are suitable to operate as standalone
entity. However, these cannot meet the givens of modern heavily distributed
systems consisting of numerous services, all potentially dealing with sensitive
information. In these scenarios, we need to delegate the complexity of schedul-
ing classification and inventorying tasks to dedicated algorithms. Therefore, we

518 E. Grünewald and L. Schurbert

propose the application of the workflow pattern. Having also the requirements
listed above in mind, we propose the following general four-step workflow as
depicted in Fig. 1:

Code
Analysis

Data
Retrieval

Data Analysis

Discovery
API

Data Inventory

DA

DR

CA

DR

DA

DR

DAα DAβ

DI

b1
b2

b3

Main Workflow

API

DA

DI

API Workflow

CA:
DR:
DA:
DAα,β :
DI:
API:
bi:

Code Analysis
Data Retrieval
Data Analysis
Submodules α, β
Data Inventory
Discovery API
Branch i

Fig. 1. Workflow pattern and exemplary workflows.

1. Code Analysis (CA): Discover storages in cloud native systems by
analyzing version-controlled code repositories. With this module, an app-
roach to finding storages in unknown distributed systems environments shall be
implemented (black-box approach). By analyzing code repositories, it is possi-
ble to find traces, definitions, or encoded connection strings of storages such as
databases or disk storages. Repositories may contain the program’s code, but
also relevant Infrastructure as Code (IaC) definitions. Both of them potentially
comprise information about personal data storages. The aspired outcome of the
code analysis is a list of connection details for each storage found, which then
enables the following retrieval component to read from. The list of connections
must consist of a Uniform Resource Identifier (URI), login credentials if required,
and the storage type. To successfully achieve the task of connection information
extraction, the module would need to be able to clone code repositories and parse
relevant code, including parameters of software packages used for storage con-
nection (e.g., frequently used object-relational mappers). Incomplete connection
information – for instance in case of missing passwords or dynamically assigned
IP addresses or host names – should be adequately marked in the inventory.
Given these pieces of information, a data controller can take action to include
them manually in future audits/analyses.

2. Data Retrieval (DR): Manage to access the deployed storages and
retrieve relevant (meta) data. The Data Retrieval directly depends on the
Code Analysis. With the given storage information, this component should be able
to connect to the storages and fetch data and meta data from them. Structured and
potentially unstructured data have to be extracted in the form of database entities
or files. The whole process must stay reliable, and therefore a data subset selection
(sampling) could optionally guarantee the timely termination of the following pro-
cessing steps for very large data sets. In addition, to provide a system that is appli-
cable for as many scenarios and architectures as possible, a Discovery API needs to

Scalable Discovery and Continuous Inventory of Personal Data at Rest 519

be added. This API listens for data requests, which will then be analyzed, to over-
come the issue that storages were not found, or their connection information was
incomplete. That includes external storages that are not under development of the
data controller. The implementation of middlewares which actively send data to
the Discovery API allows the analysis of these prior hidden data collections. Alter-
natively, it may be used to analyze data that is not stored at rest, such as samples
from stream processing frameworks.

3. Data analysis (DA): Detect personal data using heuristics and data
analysis methods. The Data Analysis component accepts data and meta data
as incoming parameters. The actual analysis is carried out in a multistep app-
roach, which results in indicators for a personal or non-personal data classifica-
tion which includes entity and storage references to be inventoried. It is preferable
to yield false-positive rather than false-negative classifications. For example, if
verbose meta data – which can be categorically similar to a personal field’s data
type, but also natural language such as field names – exist, an analysis of the
meta data can result in false-positive indicators. Primarily, sensitive information
shall not be overlooked. It is safe to assume that these results are, before any
optimizations, still preferred over overlooking sensitive information. Moreover,
all analysis techniques which are convenient for meta data, especially pattern
matching and lookup tables, should be also applied to data in the initial phase.

4. Data Inventory (DI): Inventory findings while meeting the regu-
latory givens. The results of all prior steps are then written into the Data
Inventory which can serve as input for Data Protection Impact Assessments,
Records of Processing Activities, or any other external or internal supervisory
activity. Since the discovery job results can be highly diverse, a flexible and
non-relational document store is considered the best fit here. The results can
be transformed to meet the form specifications of necessary legal documents,
potential visualizations, or summaries of transparency information (Art. 12–14
GDPR).

Continuous software engineering relies on the concept of CI/CD pipelines,
which are usually triggered by the version control system [19]. Therefore, most
likely, the process shall be started each time relevant code changes are detected
or due to changes in the underlying architecture of a system.

3.3 Workflow Engineering

For large architectures and consequently many appearing triggering events, this
four-step workflow needs to be properly orchestrated. In the probable event of
detecting multiple storages under examination, the execution of the aforemen-
tioned steps needs then to be parallelized. Therefore, an efficient execution yield-
ing timely results needs horizontal scalability. The components presented above
are, in turn, dependent on each other. On a conceptual level, these dependencies
can be modeled as a Directed Acyclic Graph (DAG). We therefore propose an

520 E. Grünewald and L. Schurbert

orchestration implementing the workflow pattern [20]. That means, each compo-
nent performs a dedicated task for separation of concerns in an independent or
dependent (and consequently sequential) flow.

Figure 1 depicts an example of an instantiated Main Workflow with par-
allelization of the sub-graphs. Supposing the Code Analysis returns a list of
three storages, the workflow is forked afterward into three execution branches.
Then, the Data Retrieval component is instantiated in each of the branches and
takes responsibility for the sub-tasks. For more complex scenarios, forking can
even be nested to introduce even more parallelism. Assuming the Data Retrieval
of branch b3 has returned complex data that should be analyzed by multiple
techniques, DAα and DAβ would fork the sub-graph to handle the data sets sep-
arately. Finally, all branches are joined and the workflow terminates after storing
the findings successfully. Besides, the API Workflow happens on requesting the
Discovery API and could also be forked (not shown).

In a cloud native environment, such workflows can be implemented through
workflow management platforms [20]. Their implementations depend on DAGs
as they manage workflow orchestration (i.e., the concurrent and distributed task
execution while meeting the ordering dependencies). Letting such a tool take the
responsibility for task execution and scheduling of the discovery and inventory
process promises reliability, scalability, and high automation potential, meeting
the above-mentioned requirements. Keeping these aspects in mind, we now con-
tinue with the concrete software architecture and implementation in the upcom-
ing sections.

4 Software Architecture and Implementation

We will now synthesize the conceptual workflow pattern and engineering con-
siderations to elaborate on the design and implementation of a prototype sys-
tem called Teiresias. The complete implementation is available under the MIT
License as open source software in a public code repository.2

4.1 Overview

In Fig. 2 we provide an overview of the proposed system architecture. As indi-
cated above, we heavily rely on the concepts of workflow management platforms.
For our implementation we chose the open-source workflow platform Apache
Airflow (for more details, see Sect. 4.2). It is mainly responsible for the cor-
rect execution of all workflow steps. Within the Teiresias system boundary 1 ,
Apache Airflow is integrated as an Airflow Celery Cluster 2 , consisting of a
message broker, database, (Airflow) API, scheduler, and worker nodes. An Air-
flow Worker 3 is executing the code of each discovery component. Hence, it
gets allocated their needed processing resources automatically. A data controller
or supervisory authority can initialize the discovery and inventory process by

2 https://github.com/teiresias-personal-data-discovery/teiresias-system.

https://github.com/teiresias-personal-data-discovery/teiresias-system

Scalable Discovery and Continuous Inventory of Personal Data at Rest 521

Infrastructure to be examined

Cloud Storages

Version control system (incl. IaC)

Teiresias
Airflow Celery Cluster

Airflow Worker

CA

DR API

DA

DI

Airflow Master

Webserver Monitoring

DatabaseScheduler

Message Broker REST API

Inventory Database

GUI

Extension Interface

Inventory API

Submit repository & cloud storage

information and data samples

Manage inventory

Request Celery meta dataAdminister Airflow and schedule workflows

Read inventory

Append report

Clone

Get (meta) data

3

2
1

4

5

6

Connect CI/CD, notification…

Fig. 2. System Architecture

passing (meta) data to the Extension Interface 4 . Such data will then be passed
on into the workflow, where modules are listening for incoming data (Discovery
API). Alternatively, they access them during a workflow execution, which may
include fetching data from the data controller’s infrastructure 5 under exam-
ination through both the Code Analysis and Data Retrieval modules. Finally,
discovered meta data are stored in the Inventory Database. These findings can
afterward be accessed through the Inventory GUI 6 , which requests the reports
from the Inventory Database through the Inventory API. Meanwhile, all the Air-
flow subcomponents can be administered through the Web Server (incl. GUI).
For instance, workflows and rules for their scheduling, such as the determination
of an examination on a regular basis, can be fine-tuned. Through these settings,
Teiresisas can be precisely parameterized to fit the users’ needs.

4.2 Workflow Management

We run the workflow management platform in a Celery cluster deployment.
Celery handles tasks asynchronously based on a job queue, which communi-
cates through message passing. We employ Redis as a broker to exchange mes-
sages between the scheduler and worker services. For all tasks, we implemented
PythonOperators for executing the logic of all components.The DAG for orches-
trating the workflow is defined in Python. The definition of the DAG focused
on scalability for the examination of larger infrastructures and extensibility for
handling paradigmatically different services (e.g., different storages or IaC defini-
tions). Conditional branching (as indicated in the example above) is introduced
by placing a BranchPythonOperator instance in front of the branches, which is
chosen during DAG execution by conditional context evaluation. Moreover, par-
allelization of sub-workflows can be achieved by iterating over Airflow variables,
and – once per iteration – the instantiation and linking (defining the execution
order) of tasks are dynamically set. During runtime, the system would instanti-
ate a clone and analyze code function to examine a code repository for storage
definitions and afterward create a task for each process code analysis task, all

522 E. Grünewald and L. Schurbert

Fig. 3. Interaction flow

of which can then run in parallel. Throughout the iterative prototypical imple-
mentation, stability could be improved by the re-implementation of the tasks by
adding atomicity and idempotency as per best practice. For that, several more
little DAG definitions (chunking them in smaller units) worked best. Failing
tasks would then not prevent the main enclosing DAG to continue. Each error
is logged for debugging and highlighted in the Airflow administration interface.
We provide documentation along with the code.

4.3 Components

We now briefly explain the implementation of the core components. We provide
Fig. 3 to show the basic interactions with the system.

Code Analysis: This component allows discovering and semantically parsing
IaC definitions. In particular, we chose to support Ansible and Docker Com-
pose encoded in YAML files. The analysis extracts, among others, details such
as Docker images or Ansible module names. Through a look-up table and sev-
eral storage & IaC dependent regular expressions we identify, for demonstration
purposes, PostgreSQL and MongoDB storages. There we fulfill the requirement
of multi-paradigmatic storage identification. The analysis factors in structural
information, retrieving the storages’ contexts and resolves any variables that
might be distributed over several IaC files. Moreover, the component can uti-
lize repository information passed through the extension interface and clone Git
repositories. Non-Git code bases can also be passed to the module by semi-
automatically pulling the contents into a specific directory, in which a listener
detects any changes and hence triggers the analysis. In doing so, (parts of) repos-
itories can be analyzed without having access privileges to the version control
system, which could be preferred from a security.

Scalable Discovery and Continuous Inventory of Personal Data at Rest 523

Data Retrieval and Analysis: The component collects meta data about differ-
ent data stores. At the core, an object-relational mapper (SQLAlchemy) allows
for easy integration of a variety of storages, such as MySQL, Google BigQuery,
or IBM DB2. While running, any analysis is performed in place through the
engines of the data storages. For example, the Meta data Analysis of a Post-
greSQL database fetches the list of columns per table, data types, number of
entities, and primary key definitions. An INET -typed table would then indicate
the storage of IP addresses, which will often be considered relatable to a person.
Throughout the analysis, a look-up table is compared to the attributes using
simple named-entity recognition (NER) methods. For instance, the similarity is
measured by the Levenshtein distance on a per attribute level. Finally, proxim-
ity lists are sorted and filtered using a 0.6 threshold, which is, according to our
experiments, a viable trade-off between a low false-positive rate (i.e., excluding
sub-string matches with few characters) and the best possible true positive rate
(i.e., including matches of declined or compound words which hint at personal
data semantically). Afterward, the Data Analysis is implemented through regu-
lar expression-based search patterns (e.g., for social security, ID, or credit card
numbers). The result is a list of references (e.g., ObjectIds in a MongoDB) ,
which is appended to the report. Finally, the discovery comprises a binary clas-
sification of whether personal data have been detected. Since several meaningful
insights originate from the analysis, such as the number of matched entities, the
proximities from the meta data’s analysis, and the total number of entities in
the collection, should be weighted differently. For this purpose, we propose and
implement the T metric:

T := min(1, n)
︸ ︷︷ ︸

= 0 ∨ 1

·max(
= 0 ∨ 1

︷ ︸︸ ︷

αhasMatch,

= 0 ∨ x ∈ [0.6, 1]
︷ ︸︸ ︷

βmeanProx/100)
︸ ︷︷ ︸

= 0 ∨ x ∈ [0.6, 1]

n := total number of entities in collection
αhasMatch := min(1, total number of data matches)
βmeanProx := mean(proximities of attribute names to keywords)

In short, we propose a binary classification based on T which enables a quick
assessment of data stores. However, we store the underlying measures because
they are helpful for later possibly manual verification.

Discovery API: The API accepts any valid JSON document, which will then
be analyzed. The pattern matching works the same way as described above. A
report will be written with a user-provided identifier. Using the REST API of the
Airflow web server, interoperability with other systems can be easily achieved.

Data Inventory: The reports are persistently stored in a MongoDB database,
since the schemaless approach fits best to the potentially heterogeneous report
structures. A specialized reporting Airflow operator is responsible for appending

524 E. Grünewald and L. Schurbert

report portions from the different discovery steps into one bundled report per
discovery execution. This is done by using a common DAG execution identifier,
which is passed to the reporting operator. Each part is written, regardless of
whether the following discovery steps are failing or succeeding, to provide full
transparency and indicate necessary manual interaction.

Extension Interface and GUI: Furthermore, the inventory consists of a
RESTful API and a graphical interface (GUI), through which the reports can
be requested by the data controller or supervisory authority. Initially, the users
register the repository URI and branch name, to start the workflow. Next, addi-
tional storage information which was not accessible during execution can be
completed. This includes the addition of externally managed data stores. Such
information is then provided to the discovery via Airflow variables. Further-
more, storages can be temporarily excluded from the workflows or eventually
be deleted. Such deletion is helpful when infrastructure has been redefined, and
bypassing storages with huge amounts of known non-personal content can help
to limit unnecessary processing costs. Such changes remain consistent between
multiple code analysis executions.

4.4 Deployment and Integration

The deployment works as follows. First, all services are deployed through Docker
containers. Referencing production-ready Docker images enable a quick, main-
tainable, repeatable, and deterministic deployment.Second, all critical system
partsare only accessible after successful authentication. The communication with
all accessible servers is encrypted using TLS, which was achieved by adding a
reverse proxy server, which handles encryption with the utilization of a user-
generated private key and certificate. The inventory database separates users for
read and write access. It is additionally advised to provision a virtual private
network to add another security layer. More extensive details are provided as
software documentation in the repository.

Recommended integration scenarios include automated and recurrent trigger-
ing (e.g., hourly schedule) of the workflow through the management platform.
Alternatively, the Discovery API can be triggered through CI/CD pipelines.
Moreover, to align with DevPrivOps / DevSecOps [21,22] practices, the reports
can be updated based on the workload. For example, each time the monitoring
system registers changes, the inventory process should be triggered to check for
unforeseen new sources of personal data.

5 Evaluation

To evaluate our approach, we first compare our prototype to two widely used
baseline systems, namely AWS Macie and Google CDLP, with regard to the
performance of personal data discovery. Therefore, we compile three data sets
to evaluate both (personal) data and meta data discovery in a single analysis
task. Hence, we assume a single column of 5k values (i.e., potential personal

Scalable Discovery and Continuous Inventory of Personal Data at Rest 525

data) with a meaningful column type and name (i.e., meta data). The first two
data sets are composed of a synthetic personal data generatorwhich outputs IP
addresses using a regular expression and, through lookup tables, forenames, and
surnames, which we combine (full names) to get a higher number of unique val-
ues. Besides these, we prepare a random subset of scraped personal handles from
Twitter.3 Moreover, we create a set of labeled noise to not give the veneer of
heuristics, since it would be feasible to drop empty data sets from the analysis
queue in the systems. In particular, the labeled noise has four columns named
user name, email, address and ip. It is expected that IPv4 addresses can be dis-
covered by pattern matching, whereas Full Names are a use case for classification
tasks or comprehensive lookup tables. Furthermore, Twitter Names can only be
found during classification and Labeled Noise entities should not be detected as
personal data at all.

Since AWS Macie exclusively scans files within its S3 storage, and Google
CDLP does not cover non-proprietary databases,csv files have been used for the
cloud service evaluationAvoiding interference between the experiment iterations,
each csv file has been deployed individually to a freshly provisioned storage. For
the prototype’s evaluation, the same data sets have been deployed to different
tables of a managed PostgreSQL database within the Google Cloud Platform
(PostgreSQL 13, 2 vCPUs, 3.75 GB Memory).The Google CDLP parameter
Percentage of included objects scanned within the bucket was set to 100% and
the Sampling method was set to No Sampling. No other preferences have been set
in AWS Macie’s console since comparable defaults were set. In both the Google
CDLP and the AWS Macie console, for each iteration, a one-time scan with a
pointer to the specific bucket was submitted. The prototype ran on a MacBook
Pro 2019 (2.4 GHz Intel i5 CPU, 16 GB RAM).

Table 1 summarizes the first experimental results. For both proprietary ser-
vices, there is not an indication that meta data have been analyzed at all. Google
CDLP has correctly found the 5 000 IPv4 entities per regular expression. Our
prototype is, in addition, able to find proximity between IPv4 and IP through
the meta data lookup attribute. There is some vagueness in the interpretation
of which techniques have been used to classify the Full Name entities correctly
as personal data, which only AWS Macie was able to do. It is most likely that
only pre-trained machine-learning models can achieve that task Teiresias again
correctly classified the data set via the meta data analysis. Twitter Names enti-
ties have not been recognized as personal data by any of the compared systems,
but, the data set was classified by Teiresias’ meta data analysis workflow.
In turn, the cloud services have correctly classified the Labeled Noise as non-
personal data, and the Teiresias analysis classified it incorrectly as personal
data, which is a result of the found meta data proximities and a non-empty data
set. To overcome this false positive, the weighting of the terms of T could be
refined in future work. However, yielding false positives rather than false nega-
tives rather strengthens the comprehensiveness of the discovery, since it prevents

3 https://github.com/danibram/mocker-data-generator,
https://kaggle.com/hwassner/TwitterFriends.

https://github.com/danibram/mocker-data-generator
https://kaggle.com/hwassner/TwitterFriends

526 E. Grünewald and L. Schurbert

overlooking sensitive data. Balancing the results in a F1 measure, the propri-
etary services both reached a 0.57 score, each with one true positive, one true
negative, and two false negatives. The prototype’s score of 0.86 can be ascribed
to the true positive classifications of the meta data analyses. In these first exper-
iments, Teiresias outperforms AWS Macie and Google CDLP. Still, regarding
the data analysis, only a section of personal data can be discovered with pattern
matching and other rule-based detection mechanisms. Promising classification
technologies should therefore be considered to be added to the system as future
work.

In our second experiment, we measure the runtime performance, for which
we re-used the experimental setup described above. However, this time we can-
not compare AWS Macie and Google CDLP, since their underlying compute
resources are not publicly known and this would contradict fairness in perfor-
mance benchmarks.For the experiment, four different data sets with four columns
each, and different total numbers of entities (0.5–500k) have been deployed.
Afterward, we measured the execution time for the different samples. To limit
the workload to one specific data set at a time, the PostgreSQL instance was
registered to the system, containing one table per iteration, and the DAG for
data analysis was scheduled exclusively.

Fig. 4. Execution times of three runs for
different sample sizes.

Table 1. Comparative evaluation results
of DLP systems.

AWS Macie Google CDLP Teiresias

TP TN FP FN TP TN FP FN TP TN FP FN

IPv4 ➊ ➋ ➌➍

Full Name ➊ ➋ ➍

Twitter Name ➊ ➋ ➍

Labeled Noise ➊ ➋ ➍

F1-Score 0.57 0.57 0.86

TP True Positive ➊ See [14]
TN True Negative ➋ See [15]
FP False Positive ➌ Data analysis
FN False Negative ➍ Meta data analysis

The results are presented in Fig. 4. We show that there is a non-linear growth,
with 8.4 s for 50k and 17.6 s for 500k entities, which is nearly a doubling of the
required time for a tenfold higher number of entities. It can be assumed that,
with a very high number of entities, the mean execution time depends largely
on the in-place data analysis query processing costs. In contrast, with a low
number of entities, the costs for the system core functionalities and the meta
data handling make up a major part of the execution time and stay almost
constant. In summarizing, we demonstrate the applicability of our approach in
a real-world setting, since these execution times allow for discovery operations
without major time or resource consumption.

Scalable Discovery and Continuous Inventory of Personal Data at Rest 527

Note, we publish all test data sets used for the evaluation to enhance both
repeatability and verifiability of our work.4

6 Limitations and Discussion

Without a doubt, the system provides a scalable framework, which illustrates an
automation concept using the proposed workflow pattern. However, for now, it
only supports a limited set of data at rest storages and types of IaC definitions.
To be used in more environments, support to connect to more popular at rest
systems should be implemented. More and more relevant processing happens also
in stream processing systems and ephemeral storages, which could be included
as well. Moreover, static code analysis techniques would complement the code
analysis features to discover also some of these additional components. Further-
more, the detection and analysis methods should be extended. Lookup tables and
regular expressions are well-functioning tools to detect many critical categories
of personal data. Nevertheless, with the help of mature natural language pro-
cessing and advanced machine learning models, better classification results can
be yielded for all kinds of unpredictable data sets. This is especially important
for audit scenarios and data that are provided by the data subject. This limi-
tation, however, was not within the scope of the paper, but recent related work
could complement our approach [23]. Future work should also focus on data link-
age attacks and anonymization or minimization methods [24]. Since the GDPR
requires data controllers to consider if it is reasonably likely (cf. Recital 26) that
personal data get de-anonymized, a DLP system could also try to (re-)combine
records from different storage systems.

Teiresias is expected to discover and inventory personal data continuously
at runtime. Related work shows how to formalize machine-readable transparency
information (encoding the purpose, legal bases, third country transfers, cate-
gories of personal data, etc.) [5,25]. At the same time, observability measures
(such as logging, distributed tracing, monitoring) can create precise data flow
models. Future research should concentrate on combining such practical privacy
engineering practices to harvest accurate and transparent information at run-
time [26,27]. Especially growing and constantly evolving microservice architec-
tures are not to be inventoried manually anymore. Therefore, there is an urgent
need for more automated tools that help data controllers to keep track of their
processing activities.

7 Conclusion

In this paper, we presented a DLP approach that monitors a system under exam-
ination for personal data at runtime continuously. With these contributions,

4 https://github.com/teiresias-personal-data-discovery/evaluation.

https://github.com/teiresias-personal-data-discovery/evaluation

528 E. Grünewald and L. Schurbert

data controllers are provided with working measures for aligning with regula-
tory frameworks such as the GDPR. Moreover, supervisory authorities can uti-
lize Teiresias to audit infrastructures. Practical applicability has been demon-
strated through a comparative evaluation. We emphasize that the approach pri-
marily targets cloud native systems, but is also applicable to cloud-enabled ones.
The latter, e.g., in legacy-cloud hybrids, would only need a lightweight custom
middleware component to be connected to the proposed APIs. Within the wider
prospects, our workflow could be extended to not only detect personal data (and
other kinds of sensitive information) but also support efficient distributed data
deletion.

Acknowledgements. The work behind this paper was partially conducted within
the project DaSKITA, supported under grant no. 28V2307A19 by funds of the Federal
Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer
Protection (BMUV) based on a decision of the Parliament of the Federal Republic of
Germany via the Federal Office for Agriculture and Food (BLE) under the innovation
support programme.

References

1. Ruohonen, J., Hjerppe, K.: The GDPR enforcement fines at glance. Inf. Syst. 106,
101876 (2021)

2. Huth, D., Tanakol, A., Matthes, F.: Using enterprise architecture models for cre-
ating the record of processing activities (Art. 30 GDPR). In: 2019 IEEE 23rd Intl.
Enterprise Distributed Object Computing Conference, pp. 98–104 (2019)

3. Finck, M., Pallas, F.: They who must not be identified-distinguishing personal from
non-personal data under the GDPR. Int. Data Priv. Law. 10(1), 11–36 (2020)

4. Zuiderveen Borgesius, F.: Breyer case of the court of justice of the European union:
IP addresses and the personal data definition (Case Note). Eur. Data Protect. Law
Rev. 3(1), 130 (2017)

5. Grünewald, E., Pallas, F.: TILT: a GDPR-aligned transparency information lan-
guage and toolkit for practical privacy engineering. In: Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pp. 636–646
(2021)

6. Gannon, D., Barga, R., Sundaresan, N.: Cloud-native applications. IEEE Cloud
Comput. 4(5), 16–21 (2017)

7. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and
Ulterior Software Engineering, pp. 195–216 (2017)

8. Shabtai, A., Elovici, Y., Rokach, L.: Data leakage detection/prevention solutions.
In: A Survey of Data Leakage Detection and Prevention Solutions. SpringerBriefs
in Computer Science, pp. 17–37. Springer, Boston, MA (2012). https://doi.org/10.
1007/978-1-4614-2053-8 4

9. Li, H., Peng, Z., Feng, X., Ma, H.: Leakage prevention method for unstructured
data based on classification. In: Niu, W., et al. (eds.) ATIS 2015. CCIS, vol. 557, pp.
337–343. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48683-
2 30

10. Alneyadi, S., Sithirasenan, E., Muthukkumarasamy, V.: A survey on data leakage
prevention systems. J. Netw. Comput. Appl. 62, 137–152 (2016)

https://doi.org/10.1007/978-1-4614-2053-8_4
https://doi.org/10.1007/978-1-4614-2053-8_4
https://doi.org/10.1007/978-3-662-48683-2_30
https://doi.org/10.1007/978-3-662-48683-2_30

Scalable Discovery and Continuous Inventory of Personal Data at Rest 529

11. Marecki, J., Srivatsa, M., Varakantham, P.: A decision theoretic approach to data
leakage prevention. In: 2010 IEEE Second International Conference on Social Com-
puting, pp. 776–784. IEEE (2010)

12. Trieu, L.Q., Tran, T.-N., Tran, M.-K., Tran, M.-T.: Document sensitivity classi-
fication for data leakage prevention with twitter-based document embedding and
query expansion. In: International Conference on Computational Intelligence and
Security (CIS), pp. 537–542. IEEE (2017)

13. Ghouse, M., Nene, M.J., Vembuselvi, C.: Data leakage prevention for data in tran-
sit using artificial intelligence and encryption techniques. In: 2019 International
Conference on Advances in Computing, Communication and Control (ICAC3),
pp. 1–6. IEEE (2019)

14. Amazon Macie - Amazon Web Services. https://aws.amazon.com/de/macie/
15. Google Cloud Data Loss Prevention. https://cloud.google.com/dlp
16. Kaul, A., Kesarwani, M., Min, H., Zhang, Q.: Knowledge & learning-based adapt-

able system for sensitive information identification and handling. In: 2021 IEEE
14th International Conference on Cloud Computing, pp. 261–271. IEEE (2021)

17. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Softw. Eng.
35(1), 67–82 (2008)

18. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data mini-
mization: anonymity, unlinkability, undetectability, unobservability, pseudonymity,
and identity management (2010)

19. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
Access 5, 3909–3943 (2017)

20. Mitchell, R., et al.: Exploration of workflow management systems emerging features
from users perspectives. In: 2019 IEEE International Conference on Big Data, pp.
4537–4544 (2019)

21. Grünewald, E.: Cloud native privacy engineering through DevPrivOps. In: Friede-
wald, M., Krenn, S., Schiering, I., Schiffner, S. (eds.) Privacy and Identity 2021.
IAICT, vol. 644, pp. 122–141. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99100-5 10

22. Myrbakken, H., Colomo-Palacios, R.: DevSecOps: a multivocal literature review.
In: Mas, A., Mesquida, A., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE
2017. CCIS, vol. 770, pp. 17–29. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67383-7 2

23. Wei, Y.-C., Liao, T.-Y., Wu, W.-C.: Using machine learning to detect PII from
attributes and supporting activities of information assets. J. Supercomput. 78,
1–22 (2022)

24. Pallas, F., Hartmann, D., Heinrich, P., Kipke, J., Grünewald, E.: Configurable per-
query data minimization for privacy-compliant web APIs. In: Proceedings of the
2022 ICWE International Conference on Web Engineering, Bari (2022)

25. Grünewald, E., Wille, P., Pallas, F., Borges, M.C., Ulbricht, M.-R.: TIRA: an
OpenAPI extension and toolbox for GDPR transparency in RESTful architectures.
In: European Symposium on Security and Privacy Workshops (EuroS&PW) (2021)

26. Sion, L., Van Landuyt, D., Joosen, W.: An overview of runtime data protection
enforcement approaches. In: 2021 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE, pp. 351–358 (2021)

27. Flittner, M., Balaban, S., Bless, R.: CloudInspector: a transparency-as-a-service
solution for legal issues in cloud computing. In: 2016 IEEE Intl. Conference on
Cloud Engineering Workshop (IC2EW), pp. 94–99 (2016)

https://aws.amazon.com/de/macie/
https://cloud.google.com/dlp
https://doi.org/10.1007/978-3-030-99100-5_10
https://doi.org/10.1007/978-3-030-99100-5_10
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1007/978-3-319-67383-7_2

Cheops, a Service to Blow Away Cloud
Applications to the Edge

Marie Delavergne(B) , Geo Johns Antony , and Adrien Lebre

Inria, Nantes, France
{marie.delavergne,geo-johns.antony,adrien.lebre}@inria.fr

Abstract. One question to answer the shift from the Cloud to the
Edge computing paradigm is: how distributed applications developed
for Cloud platforms can benefit from the opportunities of the Edge while
dealing with inherent constraints of wide-area network links? Leveraging
the modularity of microservice-based applications, we propose to deploy
multiple instances of the same service (one per edge site) and deliver
collaborations between them according to each request. Collaborations
are expressed thanks to a DSL and orchestrated in a transparent manner
by the Cheops runtime. We demonstrate the relevance of our proposal
by geo-distributing Kubernetes resources.

Keywords: Edge computing · Service composition · Service mesh

1 Introduction

Nowadays, there is an indubitable shift from Cloud Computing to the Edge [8].
The assumptions that are generally taken to develop Cloud applications are

not valid anymore in the Edge context. For instance, the intermittent network
connections should be considered as the norm rather than the exception. If you
consider the Google Doc service, users in the same vicinity cannot work on
the same document if they cannot reach the datacenter, even though they are
close to each other. To reckon with the Edge constraints, and thus be able to
satisfy requests locally, the most straightforward approach is to deploy an entire,
independent instance of the application on every Edge sites. This way, if one site
is separated from the rest of the network, it can still serve local requests1. The
next step is to offer collaboration means between these instances when needed.

Git is an application that fulfills such requirements (even though it has not
been designed specifically for this paradigm): Git operations can be performed
locally and pushed to other instances when required.

We proposed the premises of a generalization of these Git concepts by pre-
senting how an application can be geo-distributed without intrusive changes in
1 We underline we do not consider disconnections between users and their Edge loca-

tion. Edge elements are supposed to be as close as possible to prevent this situation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 530–539, 2022.
https://doi.org/10.1007/978-3-031-20984-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_37&domain=pdf
http://orcid.org/0000-0001-8020-959X
http://orcid.org/0000-0002-9129-8281
http://orcid.org/0000-0002-0305-4130
https://doi.org/10.1007/978-3-031-20984-0_37

Cheops, a Service to Blow Away Cloud Applications to the Edge 531

its business logic thanks to a service mesh approach [3]. A service mesh is a layer
over microservices that intercepts requests in order to decouple functionalities
such as monitoring or auto-scaling [4]. Concretely, we proposed to leverage the
modularity and REST APIs of cloud applications to allow collaborations in an
agnostic manner between multiple instances of the same system.

In this paper, we extend our proposal to deliver a complete framework that
allows multiple instances of a Cloud microservice based application to behave
like a single one. Thanks to our framework, called Cheops, DevOps can share,
replicate, and extend resources between the different instances in agnostic man-
ner. A service managed by Cheops can be seen as a Single Service Image. We
found this analogy with past activities on Single System Images [5] relevant as
the interest of SSI clusters was based on the idea that they may be simpler to use
and administer. With Cheops, the challenge related to the collaboration between
multiple instances of a system (the geo-distribution aspects) is reified at the level
of the DevOps and externally from the business logic of the system itself.
The contributions of this article are as follows:

– A nonintrusive approach relying on service mesh concepts to achieve three
kind of collaborations between services: sharing, replication, and cross.

– A model of the different kind of relationships between resources that may
exist in a microservice based applications.

– A detailed description of the current Cheops prototype.
– A demonstration of the feasibility of the proposed framework and collabora-

tion strategies in the Kubernetes ecosystem.

The rest of this paper is organized as follows: Section 2 presents the gener-
alization idea of our proposal, while Sect. 3 deals with the current architecture
we followed to implement our proof-of-concept. Section 4 presents related works.
Finally, Sect. 5 concludes and discusses future work.

2 Towards Generic and Noninvasive Collaborations

2.1 Scope-lang

Fig. 1. Scope-lang expressions σ and the
function that resolves service instance from
elements of the scope R.

Scope-lang is a language introduced
in [3], that extends the usual requests
made from users to their application
in order to reify the locality aspects.
A scope-lang expression, which we
call scope, contains information on the
location where a specific request, or
part of the request, will be executed.
As an example, a scope defined as
“s : App1, t : App2” specifies to use
service s from App1 (the application
App on Site 1), and the service t from

532 M. Delavergne et al.

App2 (on Site 2). Users defines the scope of the request to specify the exact
collaboration between instances required for the execution of their request. The
scope is interpreted during the execution of the request workflow to decide the
execution location accordingly. A more formal definition of the language is avail-
able in Fig. 1, which has been extended to allow cross collaborations.

2.2 Collaboration Implementations for Elementary Resources

Figure 2 depicts the three collaborations implemented in Cheops.

Fig. 2. The different Cheops collaborations

Sharing. Sharing is the collaboration which allows a service instance to use a
resource from a service which is not the one assigned to its application instance.

The typical example is getting a resource from a service B on another site
for a service A as presented by the red arrows in Fig. 2a. :
application create a --sub-resource foo2 --scope {A: Site1, B: Site2}
1. A user requests to create a resource on service A from Site1 (Service A1), using a

sub-resource foo2 from service B on Site2 (Service B2).
2. The request is intercepted and transferred to Cheops.
3. Cheops extracts the scope from the request and interprets it.
4. Cheops transfers the request to service A, until A needs the sub-resource.
5. The outgoing request is intercepted, and at this point, is transferred to Site2.
6. Cheops on Site2 uses its catalog to find Service B endpoint and transfer the request

to this service to get foo2.
7. The service response (containing the resource itself) is finally transferred back to

Service A through Cheops.

Replication. Replication is the ability for users to create and have available
resources on different Edge sites to deal with latency and split networks. Repli-
cation main action is duplication: transfer the request to every involved sites
and let the application execute the request locally. The operation does not sim-
ply consists in forwarding the request to the different instances, though. Cheops

Cheops, a Service to Blow Away Cloud Applications to the Edge 533

keeps track of the different replicas in order to ensure that future CRUD opera-
tions achieved on any replica will be applied on all copies, maintaining eventually
the consistency over time. To do that, Cheops relies on a data scheme, called the
replicant, that links a meta-ID to the different replica IDs and their locations.

Figure 2b sums up the workflow to create a replicated resource on two sites:
application create a --name bar --scope {A: Site1 & Site2}.
1. A user sends a request on Site1 to create two replicas of the bar resource.
2. The request is intercepted and transferred to Cheops.
3. Cheops extracts the scope and interprets it.
4. Cheops creates the replicant, and passes the request to create it to Cheops on the

other involved site (Site2), as well as the request of creation of bar on both sites,
which is simply the request without the scope.

5. Both Cheops execute the request of creation; the response is intercepted to fill the
local IDs on the replicants and the response is transferred to the user, replacing
the local ID by the meta-ID of the replicant.

To provide eventual consistency, Cheops follows the Raft protocol, with one
replicant acting as the leader.

Cross. Cross is the last collaboration we identified. The idea is to create a
resource over multiple sites. The main difference with respect to the aforemen-
tioned replication concept is related to the aggregation/divisibility property. In
the replication, each copy is independent, even if they all converge eventually
based on the CRUD operation. A cross resource can be seen as an aggregation
of all resources that constitutes the cross-resource overall. Some resources which
cannot be divided by an application API will require an additional layer in the
business logic to satisfy the divisibility property.

Similarly to the replicant data scheme, Cheops keeps tracks of the different
resources in order to perform CRUD operations in the expected manner. A
CREATE operation for instance can distribute the resource over different sites (if
this resource is divisible), while a READ will be performed on each “sub-resource”
composing the cross-resource in order to return the aggregated result.

How Cheops deals with split-brain issue for cross resource is left as future
work. However, it is worth noting that the unreachability of one site that hosts
a part of the cross resource faces multiple challenges.

An illustration of Cross is depicted in Fig. 2c:
application create a --name bar --scope {A: Site1% Site2}.
1. A user sends a request to create a resource specifying the involved sites.
2. The request is intercepted and transferred to Cheops.
3. Cheops extracts the scope and interprets it.
4. Cheops creates the resource on the first site (Site1) and passes the request to other

involved sites.
5. Cheops on Site2 identifies the extended resource and creates an identifier within

Cheops to forward to the deployed resource site

534 M. Delavergne et al.

2.3 Relationship Model

Many resources have dependencies with each other (a virtual machine in the
OpenStack ecosystem depends on an image, a network, an IP, etc.; a deployment
file in Kubernetes is linked to several pods; etc.).

Fig. 3. The different dependencies

Hence, it is mandatory to rely on a
relationship model for replication and
cross operations. This model will be
used to keep track on each critical
resource and ensure that CRUD oper-
ations are performed thoroughly. We
have identified and formulated three
dependencies, depicted in Fig. 3.

Requirement defines a relationship between two resources that is not critical
for the survival of either of the resource but rather is a necessary link during
a particular operation. The operation can be any operation performed upon
either of the resource and while it is performed, the link is vital. If it is severed,
the operation will terminate and not succeed. If the link is maintained and no
external factors affect the operation, the operation will be a success and after
this the link between these resources is insignificant. Hence, a broken link after
the operation does not affect either of the resource. An example for OpenStack
is a VM requires an image, for the creation operation.

Reliance defines a relationship between two resources that is critical for the
survival of either one of the resource or both. If the link between these resources
is cut at some point during the lifetime of these resources it will impact the
existence of the resources and can lead to a failure condition. Involved resources
are independent and one resource cannot alter the other resource. For example,
in Kubernetes, a pod, when created with a secret, relies on this secret.

Composition consists of intrinsic dependencies between resources: the life cycle
of the two resources are linked. The creation of resource A implies the creation
(and respectively the destruction) of resource B. Composition is obviously wider,
as one resource can be linked to a collection of other resources, which in their
turn can also depend on sub-resources. For example, in OpenStack a stack can
be composed of VMs, and in Kubernetes, a deployment is composed of pods.

2.4 Creation Patterns for Replication/cross Operations

As mentioned, the goal of the relationship model is to ensure that Cheops oper-
ations are done thoroughly when the manipulated resource is not elementary,
but depends on other resources. We discuss in this paragraph the various cases.

Cheops, a Service to Blow Away Cloud Applications to the Edge 535

Fig. 4. Behaviors to observe following the dependencies

Requirement. For a replication or a cross scenario, the user have the choice
to first replicate B everywhere A will be; in this case, the creation of A can
be executed without specifying the location of B, it will be executed locally
on each site. The other choice is to specify the dependency in the creation
request, which is represented in Fig. 4.
1. Using sharing, the user specifies that a resource B required is on Site1.
2. Cheops intercepts the request to get a resource from another site when it will

be sent by the service needing it.
3. Cheops transfers the request to get resource B from Site1.
4. Resource B is received and the usual flow is executed.
5. Since Resource B is only required for some operations, this dependency is stored

in Cheops database for further usage (in these operations).

Reliance. This relationship follows a similar approach from requirement for
replication and cross. The primary objective being to preserve the strong
relationship between the resources A and B, Cheops needs to ensure the
reachability of Resource B.
As before, a user can still replicate Resource B to ensure that Resource A will
not suffer from a network partition. Otherwise, the process is the same as the
requirement, except for: first, the dependency information needs to be stored
in Cheops database for resource B to warn users against resources failures in
replicas in case of a deletion of B. Second, Cheops needs to warn the users of
affected resources (replicas of resource A) in case of network partition that
affects B, because they will be in a failure state.

Composition. For replication scenario, a copy of resource A is created on the
involved sites which in turn creates resources B, C and D on each of these
sites with a cascading effect from the normal, local execution of the creation
of A. An update on resource A for a secondary layer resource B, C or D is
propagated across the involved sites and also follows normal execution on each
site. Network split brain is managed through the Raft protocol that ensures
eventual consistency between all replicas.

536 M. Delavergne et al.

For cross scenario, the process is similar and will also follow a cascading
approach. Each compound resource will be created in a cross manner.

3 Cheops

The global architecture of our proof-of-concept is depicted in Fig. 5. Cheops
follows a modular approach, composed of various microservices, which are linked
together through REST API protocol. There is one Cheops agent per site and
agents monitor known Cheops agents through heartbeats.

3.1 Cheops Internals

Fig. 5. Cheops architecture

Cheops agents are divided into two
main components which are Cheops
Core API and Cheops Glue.
Cheops Core consists of the com-
munication, interface and database
modules. The communication mod-
ule creates a service mesh around the
involved sites. This module also talks
with the core API module in the core.
Core API is a management module
created for the framework that acts as
a service which interconnects all the
services inside Cheops.
Cheops Glue is designed to help Cheops Core translate Cheops API requests
into the respective application API and vice-versa. Since each application has
its own pattern for intercepting API, Glue helps in understanding these patterns
and convert them to an agnostic API for Core. It is developed independently to
an application. The analyser service in Glue evaluates the request from scope-
lang and converts it into a generic request understandable by the Core API ser-
vice, while the translator do the reverse operation. Cheops Glue also manages
the creation of extra business logic for divisibility property of cross collabora-
tion for specific types of resource. It also handles the network requirements and
implements the relationship model.

3.2 Validation

We demonstrated the correctness of our proposal on Kubernetes. The feasibility
for the collaborations were studied for replication and cross operations:

– For replication, we manipulated replicated pods across two sites.
– For cross, we created a namespace and performed a few operations to validate

the existence of the namespace across the two sites.

Cheops, a Service to Blow Away Cloud Applications to the Edge 537

Experiments have been performed over two sites of the Grid’5000 experimen-
tal testbed [1] (Rennes and Nantes). These instances were completely indepen-
dent of each other and local to the infrastructure. On each site, we deployed a
Kubernetes cluster, composed of one master and one worker node, as well as a
Cheops agent.

The goal of the experiments was to validate the expected behaviour. Table 1
and Table 2 presents the results.

Table 1. Replication Kubernetes CLI requests

Operation Location Result

Kubectl create pod purple
–scope{Site1&Site2}

Site1 Pod purple created on Site1 and Site2

Kubectl create pod violet
–scope{Site1&Site2}

Site2 Pod violet created on Site1 and Site2

Kubectl get pod violet Site1 Pod violet from Site1 is displayed

Kubectl get pod violet Site2 Pod violet from Site2 is displayed

Table 2. Cross Kubernetes CLI requests

Operation Location Result

Kubectl create ns foo
–scope{Site1%Site2}

Site1 Namespace created on Site1 and Site2

Kubectl create pod blue
-n namespace foo –scope{Site1}

Site2 Pod created under namespace foo
in Site1 extended to Site2

Kubectl create pod yellow
-n namespace foo –scope{Site2}

Site1 Pod created under namespace foo
in Site2 extended to Site1

Kubectl get pods
-n namespace foo

Site1 Shows all resources from foo
namespace from Site1 and Site2

Kubectl create pod yellow
-n namespace foo

Site1 Error: Pod already exist in Site2 under
namespace foo

4 Related Work

Popular solutions such as Rancher2, Volterra3 or Google Anthos4 geo-distribute
a service to the Edge with a centralised approach. In these approaches, sites
are not autonomous, centralised single source of truth and additional details are
added to the business logic. Our solution focuses on forming a decentralized P2P
set of autonomous application instances without changing the application code.

2 https://rancher.com Accessed 2022-07-06.
3 https://medium.com/volterra-io/tagged/kubernetes Accessed 2022-03-20.
4 https://cloud.google.com/anthos Accessed 2022-07-06.

https://rancher.com
https://medium.com/volterra-io/tagged/kubernetes
https://cloud.google.com/anthos

538 M. Delavergne et al.

Istio5 uses a sidecar mechanism to intercept all the requests at the resource
level. It creates an individual sidecar or a broker for each service as opposed to
Cheops which manages all microservices at each site with a single broker.

MiCADO-Edge [9] extends cloud operator to edge. It uses the KubeEdge [10]
to orchestrate. Mck8s [7] is another similar solution with geo-distribution appli-
cation deployments. The solution is created as a wrap around KubeFed6. These
Framework provides primarily a centralised approach to manage the resources
without the Edge sites autonomy like our solution.

Hybrid control planes such as OneEdge [6] brings autonomony to the Edge.
This solution is quite similar to our proposal but the centralised aspect still
makes this solution an unsuitable candidate for us.

TOSCA [2] is a framework which standardises a deployment pattern across
platforms. Our solution aims not at avoid creating any additional code, but to
allow collaborations between sites without changes in code.

5 Future Work and Conclusion

In this paper we presented our service-mesh like framework, Cheops, that allows
Devops to geo-distribute a micro-services based application following a REST
API without requiring intrusive changes in the business logic. This service mesh
relies on these applications modularity and the deployment of instances of the
application on each site composing the Edge infrastructure.

Cheops relies on scope-lang, a DSL we previously introduced to allow users
to explicit the execution location of their requests as well as the type of col-
laborations between the different service instances. To ensure the correctness of
each collaboration, Cheops relies also on a relationship model we introduced.
Finally, we demonstrated the relevance our approach on simple collaborations
across different sites.

We are currently working on a model to introduce patterns for application
code for cross collaboration which requires a step further. As discussed above, we
also need to focus on tolerance for intermittent networks across collaborations.
Finally, one future area of focus will be to add control loops in Cheops in order
to optimize the placement of resources. In our current version of the approach,
DevOps need to manually specify the location, and finding the optimal site
may be an additional overhead. We claim our approach to bring existing Cloud
applications to the Edge without entangling any geo-distribution code in the
business logic is crucial to stimulate the shift to include Edge sites in the global
capabilities of the Cloud.

5 https://istio.io Accessed 2022-07-06.
6 https://github.com/kubernetes-sigs/kubefed Accessed 2022-07-06.

https://istio.io
https://github.com/kubernetes-sigs/kubefed

Cheops, a Service to Blow Away Cloud Applications to the Edge 539

References

1. Balouek, D., et al.: Adding virtualization capabilities to the grid’5000 testbed.
In: Ivanov, I.I., van Sinderen, M., Leymann, F., Shan, T. (eds.) CLOSER 2012.
CCIS, vol. 367, pp. 3–20. Springer, Cham (2013). https://doi.org/10.1007/978-3-
319-04519-1 1

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Tosca: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

3. Cherrueau, R.-A., Delavergne, M., Lèbre, A.: Geo-distribute cloud applications at
the edge. In: Sousa, L., Roma, N., Tomás, P. (eds.) Euro-Par 2021. LNCS, vol.
12820, pp. 301–316. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85665-6 19

4. Li, W., et al.: Service mesh: challenges, state of the art, and future research oppor-
tunities. In: 2019 IEEE International Conference on Service-Oriented System Engi-
neering (SOSE), pp. 122–1225 (2019)

5. Lottiaux, R., et al.: OpenMosix, OpenSSI and Kerrighed: a comparative study.
In: IEEE International Symposium on Cluster Computing and the Grid, CCGrid
2005, vol. 2, pp. 1016–1023. IEEE (2005)

6. Saurez, E., Gupta, H., Daglis, A., Ramachandran, U.: OneEdge: an efficient control
plane for geo-distributed infrastructures. In: Proceedings of the ACM Symposium
on Cloud Computing, pp. 182–196 (2021)

7. Tamiru, M., Pierre, G., Tordsson, J., Elmroth, E.: mck8s: an orchestration platform
for geo-distributed multi-cluster environments. In: 30th International Conference
on Computer Communications and Networks, ICCCN 2021 (2021)

8. Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge com-
puting in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun.
Mag. 55(4), 54–61 (2017)

9. Ullah, A., Dagdeviren, H., Ariyattu, R.C., DesLauriers, J., Kiss, T., Bowden, J.:
MiCADO-Edge: towards an application-level orchestrator for the cloud-to-edge
computing continuum. J. Grid Comput. 19(4), 1–28 (2021)

10. Xiong, Y., Sun, Y., Xing, L., Huang, Y.: Extend cloud to edge with KubeEdge.
In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 373–377 (2018).
https://doi.org/10.1109/SEC.2018.00048

https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-3-030-85665-6_19
https://doi.org/10.1007/978-3-030-85665-6_19
https://doi.org/10.1109/SEC.2018.00048

GreenFog: A Framework for Sustainable
Fog Computing

Adel N. Toosi1(B) , Chayan Agarwal1, Lena Mashayekhy2 ,
Sara K. Moghaddam1 , Redowan Mahmud3 , and Zahir Tari4

1 Department of Software Systems and Cybersecurity, Faculty of Information
Technology, Monash University, Clayton, VIC, Australia

adel.n.toosi@monash.edu
2 Department of Computer and Information Sciences, University of Delaware,

Newark, USA
mlena@udel.ed

3 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin
University, Perth, Australia

mdredowan.mahmud@curtin.edu.au
4 School of Computing Technologies, STEM College, RMIT University, Melbourne,

Australia
zahir.tari@rmit.edu.a

Abstract. The alarming rate of increase in energy demand and carbon
footprint of Fog environments has become a critical issue. It is, there-
fore, necessary to reduce the percentage of brown energy consumption
in these systems and integrate renewable energy use into Fog. Renew-
ables, however, are prone to availability fluctuations due to their variable
and intermittent nature. In this paper, we propose a new Fog framework
and design various optimization techniques, including linear program-
ming optimization, linear regression estimation, and Multi-Armed Ban-
dit (MAB) learning to optimize renewable energy use in the Fog based
on a novel idea of load shaping with adaptive Quality of Service (QoS).
The proposed framework, along with the optimization techniques, are
tested on a real-world micro data center (Fog environment) powered by
solar energy sources connected to multiple IoT devices. The results show
that our proposed framework significantly reduces the difference between
renewable energy generation and total energy consumption while effi-
ciently adjusting the QoS of applications.

1 Introduction

The rise of IoT and Fog computing elicits an increase in global energy consump-
tion and has a massive impact on the carbon footprint of the ICT (Information
Communication Technology) industry. Therefore, Fog computing requires inno-
vations in energy supply, management, and use [13]. To further lower the carbon
footprint of the IoT ecosystem, it is widely accepted that renewable or green
energy sources must be used as the primary power supply of Fog environments.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 540–549, 2022.
https://doi.org/10.1007/978-3-031-20984-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_38&domain=pdf
http://orcid.org/0000-0001-5655-5337
http://orcid.org/0000-0002-5096-9333
http://orcid.org/0000-0002-4967-5960
http://orcid.org/0000-0003-0785-0457
http://orcid.org/0000-0002-1235-9673
https://doi.org/10.1007/978-3-031-20984-0_38

GreenFog: A Framework for Sustainable Fog Computing 541

Many researchers have proposed using green energy to power Fog micro data
centers [3–5,7,10,12]. They focused on various techniques to optimize renewable
energy use. Li et al. [7] suggested task placement and scheduling. Karimiafshar et
al. [3,5] proposed load balancing, and Toor et al. [10] and Karimiafshar et al. [4]
proposed dynamic voltage and frequency scaling.

Nevertheless, the primary challenge of powering Fog environments with
renewable energy sources such as solar is the intermittency and variability of
power input. While different methods have been proposed to address this, a
promising solution of matching demand to supply of green and renewable energy
via load shaping has received little attention. In this paper, we propose a frame-
work called GreenFog that conducts load shaping of a Fog environment powered
by on-site renewable energy. This framework operates without the usage of a
battery as we believe the installation of battery storage for Fog environments
is often prohibitive [2]. Our proposed load shaping method happens through
dynamic adjustment of Quality of Service (QoS) for IoT applications. Accord-
ing to the adjusted QoS, GreenFog horizontally scales the application software
containers, the latest norm for building IoT applications. At the same time,
GreenFog controls the QoS of tasks submitted to the gateway, e.g., the frame
rate or image quality at which the video streaming data must be processed.
Thus, the key contributions of the paper are as follows:

– A framework called GreenFog for dynamic QoS management of the IoT appli-
cation based on load shaping in a renewable-powered Fog environment.

– The optimal offline model for load shaping with prior knowledge of renewables
availability that sets the required QoS for the hosted IoT application.

– A fast and lightweight reactive heuristic approach based on a linear regression
model and profiling to overcome the complexity of the optimal model and lack
of prior knowledge of energy availability.

– A machine learning technique using Multi Armed Bandit (MAB), which auto-
matically learns how QoS adjustment affects energy consumption and dynam-
ically adapts QoS to maximize renewable energy utilization.

– The performance evaluation of the proposed load shaping algorithms in a
practical implementation using real-world traces of renewable energy and an
object detection application demonstrator in live video streams.

2 System Overview and GreenFog Framework

Our Fog environment is powered by an on-site renewable energy generation sys-
tem with a grid-tied inverter that can work without batteries. The Fog envi-
ronment is a multi-server cluster that monitors its own power consumption and
can trace the amount of generated renewable power available for usage. It is
connected to both the grid (brown energy) for reliability and an on-site renew-
able energy system (green energy) to reduce its carbon footprint. Note that grid
energy is used whenever renewable energy is insufficient.

Figure 1 illustrates the architecture of our proposed software framework and
its various software components. IoT devices are connected to a gateway device

542 A. N. Toosi et al.

through which they send their processing tasks (requests) to Fog. In our proposed
framework, the IoT devices have APIs that allow gateway software to dynam-
ically adapt QoS requirements remotely by setting configurations at the IoT
devices. The QoS adjustment is performed within an acceptable Service Level
Agreement (SLA) via a comparison between the available renewable power and
the current power consumption.

IoT
Device

Node Docker

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Node Docker

Pod
Container

Pod
Container

Pod
Container

Node Docker

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Node Docker

Pod
Container

Pod
Container

Pod
Container

Node Docker

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Pod
Container

Node Docker

Pod
Container

Pod
Container

Pod
Container

Master Node

Scheduler

Kubernetes

Service

Gateway

Gateway So ware

Grid Tie Inverter

Power Distribu on Unit (PDU)Energy ProfileScalingPlacment

Metering So ware

Metering So ware

Fog Node
…IoT

Device
IoT

Device

Fig. 1. GreenFog software system overview

We assume that the Fog envi-
ronment hosts the IoT applica-
tions in the form of containerized
micro-services (e.g., Docker). Fog is
equipped with a cluster manager and
container orchestrator software (e.g.,
K3s1) for automating deployment,
scaling, and management of contain-
ers. A master node runs a sched-
uler program interacting with the
gateway software, thereby informing
the expected QoS. The scheduler also
interacts with the energy metering software (energy profile), which monitors
the available green energy and the current power consumption. Through its
placement algorithm, the scheduler makes a decision regarding the placement
of container instances (Pods in Kubernetes terminology) on different worker
nodes. Another major component of GreenFog is the scaling component, which
is responsible for the autoscaling of resources.

Due to the high volume of data generated by cameras and the low latency
requirements of real-time video analytics, in this paper, we mainly focus on
detecting objects in live video streams [1,8]. For many video analytics applica-
tions, the data quality directly drives the QoS and resource demand. For instance,
the accuracy of an object detection algorithm in a pest bird repellent system can
be lowered to reduce resource usage of energy constraint devices [9]. Therefore,
we set the image rate as QoS for our video analytics. In the following, we propose
different optimization techniques to scale resources and adjust QoS in GreenFog.

3 Optimization Model

Assuming time is divided into time slots, we have t = {0, . . . , T}, where T is
the decision horizon. The green energy system G at any time t generates et

units of electricity. We assume that the value of et for any time slot t is known a
priori considering the optimal model is offline and only used as the baseline. The
Fog environment F is a Kubernetes cluster that consists of N nodes (or worker
machines). Each node ni ∈ N hosts at most P pods, where each pod holds a
single container. Therefore, the Fog environment has the maximum of C = P ×N
containers in full capacity, and at each time t only some containers (≤ C) become
1 K3s is a lightweight Kubernetes distribution suitable for resource-constrained envi-

ronments such as Fog or Edge.

GreenFog: A Framework for Sustainable Fog Computing 543

active to match the demand based on available energy et for that time slot.
When the demand exceeds the renewable power availability, the gateway adjusts
QoS to match demand with the available power. Each pod requires ep units
of electricity. Each node runs on a different virtual machine. If a node is not
needed, the system simply puts the machine in a shutdown state. Each physical
machine requires eb units of energy in a shutdown state, while a running machine
requires additional en units of energy. Each task requires ej units of energy
added to other energy terms. Moreover, there is an upper limit on the total
energy consumption when running all the containers (rmax) and a lower limit
when running one container (rmin). Note that in our formulations, for the sake
of simplicity, we consider request rate as the only QoS factor, e.g., frame rate
in our video analytics example. Other QoS factors, such as resolution, can be
included in our model similarly. We also assume that each request is mapped to
an IoT task in the system, e.g., an image (frame) to an image processing task.

We consider a set of homogeneous tasks generated by the IoT application.
The required processing time of a task is denoted by c. The goal of GreenFog
is to choose the best rate for the IoT tasks and adjust them accordingly based
on the available renewable power input. We define sets of decision variables: xt

i

to determine the number of active pods at node ni; yt to determine the arrival
rate of requests from IoT devices; and zti to determine if node ni should be on
or off. Our objective is to minimize excess energy usage (brown energy usage)
and determine the arrival rates of IoT tasks. We formulate this problem as an
Integer Program (IP) as follows:

Minimize
T∑

t=1

E
t
,where E

t =
∑

ni∈N

(ep · xt
i + en · zt

i + eb) + (ej · yt) (1)

Subject to: E
t ≥ e

t ∀t ∈ T (2)
x
t
i ≤ P ∀ni ∈ N, t ∈ T (3)

x
t
i ≤ M · zt

i ∀ni ∈ N, t ∈ T (4)
∑

ni∈N

z
t
i ≤ N ∀t ∈ T (5)

rmin ≤ y
t ≤ rmax t ∈ T (6)

c · yt =
∑

ni∈N

x
t
i ∀t ∈ T (7)

x
t
i ∈ Z≥0 ∀ni ∈ N, t ∈ T (8)

y
t ∈ Z≥0 ∀t ∈ T (9)

z
t
i ∈ {0, 1} ∀ni ∈ N, t ∈ T (10)

The objective function minimizes the total brown energy consumption subject to
the following constraints. Constraint (2) guarantees that all generated renewable
energy must be used. Constraint (3) guarantees that each node has at most P
pods. Constraint (4) ensures that the energy cost of turning on a node should be
calculated only once. This means that if any pod has already been deployed on
a node, there is no additional cost for the node but for new pods. We model this

544 A. N. Toosi et al.

using the Big M method.2 Constraint (5) ensures that the Fog environment does
not exceed its capacity of N nodes. Constraint (6) ensures that the selected rate
for the IoT tasks is between its minimum and maximum rates in SLA. Constraint
(7) ensures that enough pods are running to service all the incoming tasks. To
ensure this, we multiply the processing time for each job c with the rate of
incoming tasks at time t, which is denoted by yt, and we match this product with
the total number of pods running at time t denoted by

∑
ni∈N xt

i. Constraints (8)
and (9) guarantee that the decision variables xt

i and yt are non-negative integers,
respectively. Constraints (10) guarantee that decision variable zti is binary.

4 Linear Regression Algorithm

It is challenging to use the proposed IP model in practice. Therefore, we propose
a heuristic approach based on a regression model using profiling to set QoS
and scale resources. Since such a regression model only gives the rate of tasks as
output, we propose a threshold-based autoscaling algorithm in Sect. 5 to scale the
Kubernetes cluster. Profiling is necessary to gather the data needed to develop
regression. For profiling, we identify the power consumption at different task
rates. Our profiling results show that there is a simple linear correlation between
the power consumption and the rate of tasks (See Sect. 7.1). Accordingly, we set α
(y-intercept) and β (the slope) of the linear regression equation. We first read
the current availability of green power generation. Then, we set the acceptable
rate of the tasks at the gateway software in a way that Fog can fully utilize the
available green energy.

5 Threshold-Based Linear Autoscaler

We propose a threshold-based autoscaler with two thresholds to keep the average
pending number of tasks between the minimum and the maximum pod load
thresholds. The creation/removal of a pod is performed linearly in a way that
nodes should be fully packed/emptied before adding/removing a new node. If
all of the currently switched-on nodes are fully utilized, and we require to add
pods, we switch on a new machine (a node) and start allocating new pods to it.
Using this method, we increase the number of pods allocated to a node until it
cannot host any more pods; then, we add a node to the list. At any given time,
there may be a node with no pods allocated to it. These nodes are removed,
and we switch off machines with no active nodes to save energy. As we need to
iterate through all P pods running on maximum N nodes, the time complexity
of the Autoscaler algorithm is O(NP).

6 Multi-Armed Bandit Approach

Specific knowledge, preliminary to the implementation, is required by the IP
and linear regression algorithms. To address this problem, we propose an online
2 Big M method is a method of solving linear programming problems using simplex.

GreenFog: A Framework for Sustainable Fog Computing 545

machine learning model based on the Multi-Armed Bandit (MAB) approach [6]
using the Upper Confidence Bound (UCB) method. In our MAB problem, the
agent needs to choose among five different actions (arms) referring to varying the
rate of tasks (QoS): 1) increase rate high, 2) increase rate low, 3) do nothing, 4)
decrease rate low, and 5) decrease rate high. All these actions have rewards set
between 0 to 1, initially valued at 0.5. The obtained rewards depend on the dif-
ference between the available renewable energy and the energy consumed. When
the system is stable, our MAB-based algorithm computes the reward for the last
choice made using a reward function. The stable condition is achieved when there
is no change in the number of pods by the Autoscaler for the last four consecutive
time slots. MAB algorithms generally have polynomial time complexity.

7 Performance Evaluation

Hardware: The setup contains 3 Dell servers managed by OpenStack and con-
nected to Eaton ePDUs, allowing us to monitor the power consumption of the
servers. A total of 5 Virtual Machines (VMs) can be hosted, out of which one
acts as a Kubernetes master and others as Kubernetes nodes (workers). The
master VM runs on the main server alone, and the rest are running on the other
two physical servers (2 VMs on each physical server). Each VM has 16GB of
Memory, 8 VCPUs and 160GB of Disk space. We limit the maximum resources
(CPU, Memory, etc.) that can be used by each pod. Every VM can accommo-
date up to 5 pods, including the master VM, with a total of 25 pods for all VMs.
Apart from the servers, we use a group of three Raspberry Pi Model 3B+ to act
as IoT devices. The Raspberry Pis use the Pi Camera Module v2.

Software: The Raspberry Pis run a client code taking images and sending them
to the Kubernetes service running on the master node. They also run a flask
server with RESTful APIs through which we can set the image rate. The flask
server accepts the interval in seconds that images are sent (minimum of 0.3 s).
The maximum power consumption of our system is around 1KW, whereas the
maximum renewable energy available in the traces is also roughly 1 kWh as
anything above will not be utilized by the servers. We have not taken into account
the energy needed for cooling or other power consumption sources and renewable
power is solely utilized for server power consumption. We deploy YOLO V3
(You Only Look Once), an object detection technology, as a service in the pods
to process the image data sent by the Raspberry Pis to the endpoint of the
Kubernetes service. We implemented the Gateway software which interacts with
the master node and the Raspberry Pis, that evenly sets the rate provided by
the master node across all three Raspberry Pis.

Renewable Energy Trace: The renewable energy traces used for all the exper-
iments are based on the availability of solar energy for a location of a data center
in Lyon, France. We used the data traces for the Global Horizontal Irradiance
(GHI) at the location to calculate the output for the solar photovoltaics (PV)
power with one-hour granularity between the 20th and 21st of September, 2007.
For more details see our previous paper [11].

546 A. N. Toosi et al.

7.1 Results

Linear Regression with Linear Autoscaling: The linear regression model
requires profiling for different rates of images while the Autoscaler changes the
number of pods according to the average number of pending tasks. The lower and
upper thresholds for the Autoscaler are set at 10 and 15, respectively. Then, we
identify the power consumption for different rates. For each rate, we wait until
the Fog environment becomes stable. We fit a linear regression model where
the power consummation is the explanatory variable and the rate (Images per
Second) is the dependent variable. Figure 2 shows how well the regression model
predicts the power consumption compared to the actual data (α (y-intercept) =
−0.2535 and β (slope) = 0.00324).

Fig. 2. Regression model pre-
dictions vs actual values

We ran the linear regression model with the
Autoscaler. To reduce the duration of experi-
ments, we scale every hour in renewable energy
traces into a 15-min interval. However, we report
the results based on the 24-h scale. The total
absolute energy difference between the available
renewable energy and the energy consumed in
the 24-h test is 4.886 kWh as shown by the
shaded area in Fig. 3(a). The sudden spikes and
dips deviating from the renewable energy are due
to Autoscaler’s performance. As it increases the
number of pods linearly (1 after another), getting the correct number of pods to
handle the incoming tasks might take some time. Therefore, the average pending
tasks in each pod could fluctuate to extreme limits. In addition, a node shutdown
might take 10–12min, adding a considerable latency to reach stability.

IP Model with Linear Autoscaling: We use the IP model from Sect. 3
with the default Linear Autoscaler from Sect. 5. The IP model requires certain
information about the system, such as energy consumed per pod, energy con-
sumed by the servers when running or shut down, the energy needed to service a
task, and the processing time it takes for a task. To obtain the energy consumed
per pod, we ran the system with one VM (master) with two pods running,
and then we scaled the deployment by adding another pod to the same VM

Fig. 3. GreenFog with different optimization methods: (a) Linear regression with linear
autoscaler, (b) IP with linear autoscaler, (c) IP with direct scaler, and (d) MAB with
linear autoscaler

GreenFog: A Framework for Sustainable Fog Computing 547

to record the rise in energy consumption. For energy consumed by the servers,
we first switched off the server and recorded the power consumption; then, we
switched on the system and noted the difference in power consumption. To figure
out the energy needed to service a task, we ran GreenFog with Linear Autoscaler
and then we sent one image every second and waited until the cluster becomes
stable and noted down the power consumption; from this value we subtracted
the values obtained previously like the energy per pod and the energy per node
in On/Off state appropriately to get the energy per task.

If such information is known, this model can provide the number of servers
that should be running, how many pods in each server are required, and also the
acceptable rate of jobs which helps in setting QoS. In this experiment, we ignore
scaling information provided by the IP model and we use the Linear Autoscaler
instead. The results are shown in Fig. 3(b), illustrating that the IP model with
Linear Autoscaler has 16% less absolute energy consumption difference com-
pared to the Linear Regression model for the same data by being 4.095 kWh
compared to the 4.886 kWh, respectively. In the next section, we investigate the
performance of the IP model if scaling information is provided by the model
itself.

IP with Direct Scaler: Figure 3(c) shows the results of the experiments
for the IP model with its scaling information called Direct Scaler, which utilizes
all the decision variables from the IP model. The Direct Scaler receives the
information owing to which nodes are to be switched On/Off, and the number
of pods that should be running in each node from the IP model. The IP model
also sets the rate of images (QoS) that should be sent to the gateway software.
Figure 3(c) shows a considerably smooth power consumption pattern with a lower
number of spikes compared to the previous methods. The IP model with Direct
Scaler has 25% less absolute energy consumption difference compared to the
Linear Regression model for the same data by being 3.677 kWh compared to the
4.886 kWh, respectively. Similarly, it is 10% less compared to 4.095 kWh for the
IP model with Linear Autoscaler.

MAB Model with Linear Autoscaling: Figure 3(d) depicts power con-
sumption for the GreenFog Framework, where the MAB model with the Linear
Autoscaler is used. We conducted two days of experiments, where the first day
would provide the MAP model with the opportunity to learn the system’s pat-
terns. The renewable energy data is the same across two days to show the best
achievable results by MAB. The total absolute energy difference in the second
day is 4.164 kWh. This is 14% better than the linear regression model and about
the same as the IP model with Linear Autoscaler. However, as we expected,
the baseline IP model with Direct Scaler outperforms the MAB model by 11%.
Given proper training data, the MAB model outperforms other approaches.

548 A. N. Toosi et al.

8 Conclusions and Future Work

We proposed GreenFog, a framework to optimize green energy use for Fog envi-
ronments with on-site renewable electricity generation. We designed and imple-
mented an Integer Programming optimization model with exact energy require-
ments knowledge for different components to use as a baseline. We proposed a
heuristic approach based on linear regression to overcome the limitations of the
IP. Since the performance of the Linear Regression model relies on accurate pro-
filing, we proposed a machine learning model based on the Multi-Armed Bandit
problem. We evaluated and validated the GreenFog framework equipped with
these optimization techniques on a real testbed. We measured the actual power
usage and response times with a practical IoT application and realistic traces
of renewable energy. In the future, we are interested in developing a model to
work based on forecasting future renewable energy availability. We further look
into solving this problem with other machine learning methods, such as deep
reinforcement learning.

References

1. Ananthanarayanan, G., et al.: Real-time video analytics: the killer app for edge
computing. Computer 50(10), 58–67 (2017)

2. Goiri, I.N., et al.: GreenSlot: scheduling energy consumption in green datacenters.
In: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2011. Association for Computing Machinery,
New York (2011). https://doi.org/10.1145/2063384.2063411

3. Karimiafshar, A., Hashemi, M.R., Heidarpour, M.R., Toosi, A.N.: An energy-
conservative dispatcher for fog-enabled IIoT systems: when stability and timeliness
matter. IEEE Trans. Serv. Comput., 1 (2021). https://doi.org/10.1109/TSC.2021.
3114964

4. Karimiafshar, A., Hashemi, M.R., Heidarpour, M.R., Toosi, A.N.: Effective utiliza-
tion of renewable energy sources in fog computing environment via frequency and
modulation level scaling. IEEE Internet Things J. 7(11), 10912–10921 (2020)

5. Karimiafshar, A., Hashemi, M.R., Heidarpour, M.R., Toosi, A.N.: A request dis-
patching method for efficient use of renewable energy in fog computing environ-
ments. Futur. Gener. Comput. Syst. 114, 631–646 (2021)

6. Lattimore, T., Csaba, S.: Bandit Algorithms. Cambridge University Press, Cam-
bridge (2020)

7. Li, W., et al.: On enabling sustainable edge computing with renewable energy
resources. IEEE Commun. Mag. 56(5), 94–101 (2018)

8. Ma, W., Mashayekhy, L.: Quality-aware video offloading in mobile edge computing:
a data-driven two-stage stochastic optimization. In: Proceedings of the 14th IEEE
International Conference on Cloud Computing, pp. 594–599 (2021)

9. Mahmud, R., Toosi, A.N.: Con-Pi: a distributed container-based edge and fog
computing framework. IEEE Internet Things J. 9(6), 4125–4138 (2022)

10. Toor, A., et al.: Energy and performance aware fog computing: a case of DVFS
and green renewable energy. Future Gener. Comput. Syst. 101, 1112–1121 (2019)

11. Toosi, A.N., Qu, C., de Assunção, M.D., Buyya, R.: Renewable-aware geographical
load balancing of web applications for sustainable data centers. J. Netw. Comput.
Appl. 83, 155–168 (2017)

https://doi.org/10.1145/2063384.2063411
https://doi.org/10.1109/TSC.2021.3114964
https://doi.org/10.1109/TSC.2021.3114964

GreenFog: A Framework for Sustainable Fog Computing 549

12. Zeng, D., Gu, L., Yao, H.: Towards energy efficient service composition in green
energy powered cyber-physical fog systems. Futur. Gener. Comput. Syst. 105,
757–765 (2020)

13. Zhang, G., Chen, Y., Shen, Z., Wang, L.: Distributed energy management for
multiuser mobile-edge computing systems with energy harvesting devices and QoS
constraints. IEEE Internet Things J. 6(3), 4035–4048 (2019)

Artificial Intelligence and Machine
Learning for Service Computing

FedHF: A High Fairness Federated
Learning Algorithm Based

on Deconfliction in Heterogeneous
Networks

Zhipeng Gao(B), Yingwen Duan, Yang Yang, Lanlan Rui, and Chen Zhao

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China

{gaozhipeng,ywduan,yyang,llrui,zc_zhaochen}@bupt.edu.cn

Abstract. In large-scale machine learning, federated learning (FL) is
considered as a promising paradigm to address the problem of data pri-
vacy breach. Previous works have focused on improving fairness in terms
of fair resource allocation. However, this is not sufficient considering that
federated learning is essentially distributed training with average aggre-
gation. Because low-contributing nodes, even if they are assigned more
computational resources, are diluted by large-weighted nodes in aggre-
gation. In particular, fair resource allocation for sophisticated systems is
not realistic for real scenarios. In this paper, we propose FedHF, a new
hierarchical fair federated learning framework with robust convergence
and high fairness. FedHF improves upon naive combinations of federated
learning and fair resource allocation with a hierarchy-based optimiza-
tion of client selection algorithm and a conflict elimination method for
fairness and discriminatory incentives. Through extensive experimental
validation of our approach, we show that FedHF outperforms previous
state-of-the-art methods.

Keywords: Distributed machine learning · Federated learning ·
Fairness

1 Introduction

Federated learning (FL) [1] produces efficient and private statistical models by
aggregating knowledge from different data sources [2], which is mainly the gra-
dients of the models rather than users’ private data. However, many constraints
(fairness, robustness, and privacy security, etc.) in real-world scenarios hinder
federated learning algorithm from being deployed in practice [3]. In this paper,
we focus on how to satisfy simultaneously the fairness and accuracy of federated
learning.

Fairness refers to ensuring that the performance variance of all nodes in the
system is constrained to a certain bound [4–7], whereas statistical heterogene-
ity is the root cause of unfairness [8]. There is significant variability in system

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 553–566, 2022.
https://doi.org/10.1007/978-3-031-20984-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_39&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_39

554 Z. Gao et al.

characteristics (network outages, temporary withdrawals, etc.) and differences
in hardware and data sources (i.e., heterogeneity) lead to the existence of strong
and weak nodes in the network [9,10]. Strong nodes typically possess abundant
resources and network conditions, while weak nodes possess the opposite. During
the iterative process of the central aggregation model, strong nodes are granted
a superior chance of selection and considerable weights. As a result, they are
afforded the ability to retain their contributions in each round of aggregation,
which helps to subsequent personalized model generate. Weak nodes, on the
other hand, often find it difficult to enjoy this positive feedback. This unfairness
can reduce the willingness of weak nodes to participate in federated aggregation
significantly.

Client's gradients

 Optimal solution space

Projected vector

Extension of gradient vector

Average of client's gradients

Original solution

Possible intermediate solution
Average of solution

Fig. 1. Aggregation results from different optimization strategies (in 3D and 2D
respectively). The 3D diagram illustrates that when multiple conflicting gradients
(ga · gb < 0, ga · gc < 0, gb · gc < 0) are aggregated, the magnitude and direction of
the final gradient will be determined by the gradient of the strong node [8], which
will violate the principle of fairness. Consider projecting the gradient onto the nor-
mals of other gradients, which can resolve the conflict between this gradient and other
gradients, thus improving the fairness principle of the aggregation algorithm. The 2D
diagram illustrates that resolving the conflict of potential solutions can restrict the
mean range of potential solutions, thus shrinking the magnitude of the solution space,
which facilitates the convergence process.

Yu et al. [11] reveal a potential approach to solve the unfair problem, i.e.,
to ameliorate the discrimination suffered by weak nodes in the aggregation pro-
cess by eliminating the conflict between model gradients. Yu considers that the
two gradients are in conflict with each other when ga · gb < 0. As shown in
Fig. 1, the magnitude and direction of the final gradient after aggregation will
be predetermined by the gradient of the strong node, which contravenes the fair-
ness principle. Gradients project is a method to eliminate gradient conflict by

FedHF: A High Fairness Federated Learning Algorithm 555

projecting the gradient onto the normal of the target gradient to mitigate the
ramifications of the gradient update on the adversary gradient [8,12–17]. Wang
et al. [8] adopt an iterative method to eliminate conflicts between gradients in
order to achieve a fair federal system. However, the method sacrifices too much
accuracy in exchange for fairness, which will compromise the usability of the
federated system. So it is eminently necessary to achieve a high fair federated
learning framework under the premise of ensuring sufficient accuracy.

In this paper, we demonstrate a Federated Learning framework with high
fairness, FedHF, which achieves a tradeoff between fairness and accuracy
through a hierarchy-based optimization of a client selection algorithm and a
conflict elimination approach with fair and discriminatory incentives. Then we
propose a stage-based order to resolve conflicts between gradients, which limits
the performance variance of strong and weak nodes by eliminating intra-layer
and extra-layer conflicts. Finally we combine this into a federated aggregation
workflow and conduct extensive experiments on multiple federation datasets to
validate the advantages of our FedHF in terms of fairness and accuracy.

We summarize our contributions below:

– We propose a fair hierarchical client selection algorithm that improves the
likelihood that weak nodes retain their original gradients.

– We eliminate the conflict between gradients to improve the discrimination of
weak nodes during aggregation.

– We conduct extensive experiments on federated datasets and propose a pio-
neering experimental method to test the true fairness, verifying the effective-
ness of our FedHF algorithm.

2 Preliminaries

In this section, we will present some background knowledge on federated learning
and gradient conflict.

2.1 Federated Learning

In essence, federated learning is a special kind of distributed learning. Thousands
of remote devices send their own local training parameter vectors or gradients
to the curators. Under the coordination of centralized servers as aggregators,
the participating learners collectively train a global shared model and conduct t
rounds of iterations until the central model converges. The ultimate goal of the
traditional FedAvg algorithm [1] is to find the optimal set of model parameters
w∗ that minimizes the global objective function:

w∗ = argmin
w

f(w) where f(w) =
N∑

i=1

pi
P Fi(w) (1)

where Fi(w) denotes the local objective of the remote client i. N is the total
number of participating learners, and pi is the contribution value of device i,

556 Z. Gao et al.

where P =
∑N

i=1 pi. The FedAvg algorithm effectively minimizes the target at
low communication cost, but the difference in pi leads to an unfair result [4],
which significantly impairs the fairness of the federated system.

2.2 Gradient Conflict

We use the definition in [14]. Consider two model gradients ga and gb:

Definition 1. Suppose φab is the angle between two model gradients ga and gb.
We believe that the two gradients conflict with each other when cosφab < 0, i.e.,
ga · gb < 0.

Definition 2. We define Φab is the gradient magnitude similarity between two
gradients ga and gb where Φab =

2||ga||2·||gb||2
||ga||22+||gb||22 .

When two gradients have the same magnitude, this value is equal to 1. As
the magnitudes of the gradients become dissimilar, this value becomes 0.

3 The FedHF System Workflow

In this section, we introduce the main workflow of FedHF and how it improves
the fairness of the federation system in stages.

We assume that the federation system has a fraction of weak nodes endowed
with meager computational resources and valid data. The overall scheme of
FedHF is to minimize gradient conflicts, so as to keep the model updates of
weak nodes from being compromised in weighted aggregation.

Federated Aggregation Workflow

...

Original Models Hierarchical partition Intermediate models

Grouping

Eliminating conflicts
 intra-layer)

...

Eliminating conflicts
 inter-layer)

Historical Intermediate Models

Optimal model

Aggregating
central model

Dispatching central model

Historical Optimal Models

Fig. 2. A graphical representation of the federated aggregation workflow with four
modules: local update, hierarchical partition, deconfliction, and central aggregation.

First, all clients perform local model update, which is consistent with other
FL algorithms. Second, the central curator stratifies all user model parameters

FedHF: A High Fairness Federated Learning Algorithm 557

according to the magnitude of training accuracy. And after selecting a certain
number of clients, the curator performs the work on eliminating intra-layer con-
flicts and historical intermediate model conflicts. Third, before participating in
the central model aggregation, the representative updates of each layer should
eliminate the extra-layer conflicts and conflicts of historical optimal models. Of
course, the current results need to be piggybacked after each conflict elimination
to be saved as historical model records.

Then we will present how FedHF works and Algorithm 1 reveals the detail.

Algorithm 1: Federated Aggregation Workflow
Server Execution:
Initialize: w0, historical optimal gradients Ht

o.
while t < T do

for each client i ∈ Zt in parallel do
Δwt+1

i , lossi, acci ← ClientUpdate(i,wt
i);

Gl ← Hierarchical Stochastic Client Selection Workflow ;
GL ← { G1, ... GL} ;
Gt

o ← ExtraLayerDeconflict(GL,Ht
o);

Compute the optimal model θt+1 ← θt − Gt
o;

ClientUpdate (i, wt
i):

while t < Tthreshold do
for b ∈ B do

wt+1
i = wt

i − η∇Fk(wt; b) − η · μ(wt
k − wt

c)

return wt+1
i ;

ExtraLayerDeconflict (GL,Ht
o):

G0 = 1
L

∑L
k=1 Gk;

for each gi ∈ GL, i = 1, 2, ..Lnum do
if gi · G0 < 0 then

gi = gi − gi·G0
||G0||2 · G0

Gt
0 = 1

L

∑L
k=1 Gk;

for round t = T − i, i = 1, 2, ..T − 1 do
if Ht

o · Gt
o >= 0 then

break;

Gt
o = Gt

o − Gt
o·Ht

o
||Ht

o||2 · Ht
o

return Gt
o ;

558 Z. Gao et al.

3.1 Local Client Update

Because federated learning is essentially a kind of distributed learning, the train-
ing results of distributed nodes may be close to the locally optimal objective
function but far from the global, failing that objective function being conver-
gent. And the use of non-iid data for training, which makes the local objective
function different for each node, exacerbates this situation. In this paper, we try
to add constraints to the local subproblem to make the local devices closer to
the global objective function:

hi(wi) = Fi(wi) +
λ

2
||wi − w||2 (2)

where wi, w are the local model of client i and server model, respectively.

3.2 Hierarchical Partition

As described in Fig. 2, all participants send model information to the server
rather than pre-selecting certain clients. This approach decouples the server
from the clients to avoid accidental crashes of pre-selected clients. We propose
a fair and incentivized strategy for efficient client selection. The central curator
sequentially sorts the users according to their training accuracy and stratifies
the sorting results. Obviously, the accuracy of all nodes in layer i is less than
that in layer j, where i < j. We assign an intrinsic probability value to each
node, on which the reward probability is assigned according to the loss value of
each node, and then a client is randomly selected with this probability value.

The essence of this algorithm is to convert the competition between weak
vs. strong nodes to strong vs. strong and weak vs. weak nodes. The hierarchical
selection of participants ensures that weak nodes can also participate in federated
aggregation. Figure 3 shows that this is a way to encourage devices to actively
participate in the system, as it encourages each client to devote more computing
power to aggregation. The scheme contributes to a fair distribution of resources.

The user gradients selected in round t are a mixed set of strong and weak
gradients, and as discussed in Fig. 1, these gradients may conflict with each other.
Since strong nodes always dominate in the conflict, we need to solve the conflict
problem of strong and weak nodes beforehand. Consider a strong node a and a
weak node b with conflicting gradients, where ||ga|| >> ||gb||. Because federal
learning uses average aggregation, the direction of the gradient after aggregation
is always biased toward node a with a size close to ||ga|| − ||gb||, i.e., ||ga||. We
use gradient projection to resolve the conflict between strong and weak gradients
by projecting the gradient of one client onto the normal plane of another client
with conflicting gradients, and Theorem 1 demonstrates the feasibility of this.

FedHF: A High Fairness Federated Learning Algorithm 559

Theorem 1. Consider two conflicting model gradients ga and gb, we obtain an
intermediate gradient g

(c)
a by projecting ga onto the normal of gb. Thus, we get :

g(c)a =
ga · gb
||gb||2 gb, a �= b, ga · gb < 0 (3)

Algorithm 2: Hierarchical Stochastic Client Selection Workflow
Input: Clients fraction C and number N , number of layers L, historical

gradients Ht
l , acci, lossi.

Output: Intermediate clients’ gradients GL.
Initialize: M = C · N , α = M/L, Lnum = N/L ;
Sort the clients’ gradients by their accuracy and divide them into L layers,
where acct

Li
< acct

Li+1
;

for each layer l ∈ L in parallel do
for i < Lnum do

Vi = tanh(losst
li
);

V ′ =
∑

i∈l Vi;
Pli = Pbase +

1−pbase
Lnum

· Vi
V ′ ;

Gt
l ← Select α clients with the probability of Pli ;

Gl ← IntraLayerDeconflict(Gt
l , G

t, Ht
l) ;

return GL;
IntraLayerDeconflict (Gt

l , G
t, Ht

l):
for each gradient gt

lk
∈ Gt

l in parallel do
for each gt

i ∈ Gt, i = 1, 2..Lnum do
if i �= k and gt

i · gt
lk

< 0 then

gt
lk

= gt
lk

− gt
lk

·gt
i

||gt
i ||2 · gt

i

for roundt = T − i, i = 1, 2..T − 1 do
if Ht

l · gt
lk

>= 0 then
break;

gt
lk

= gt
lk

− gt
lk

·Ht
l

||Ht
l
||2 · Ht

l

Gl ← 1
α

· ∑α
k=1 gt

lk
;

return Gl;

Then we subtract g
(c)
a from ga to get g′

a.

g′
a = ga − ga · gb

||gb||2 (4)

560 Z. Gao et al.

Now ga has been rectified to g′
a, which doesn’t conflict with gb:

g′
a · gb = ga · gb − ga · gb

||gb||2 · (gb)2 = 0 (5)

We first propose a stage-based order to resolve conflicts between gradi-
ents. Each node a ∈ selected set needs to resolve conflicts with the nodes
∈ selected set first, which is called intra-layer conflict, to prevent the gradi-
ents from conflicting with each other in future central aggregation. Also, we
notice that the gradients of each round of the selected set will also conflict with
the gradients of the previous round, and if this conflict is not resolved, it will
make the state update of each round lack of memorability. We add the historical
intermediate model as a time factor to resolve the historical gradient conflicts.
Finally we need to scale the length of the update because resolving the conflict
between the gradients deflates the length of the gradients. See Algorithm 2 for
the specific algorithm.

3.3 Global Discriminative Model Generation

With the hierarchical partition, we obtain a batch of intermediate gradients rep-
resenting each layer. These gradient values are also subject to conflicts, which we
call extra-layer conflicts. Obviously the conflicts are more intense than intra-layer
conflicts, because the gradient gap is larger. Direct deconfliction will cause the
aggregated model to deviate from the correct direction. Therefore, we adopt
a compromised strategy to let the representative nodes and model averages
undergo deconfliction. According to Theorem 1 (the later the customer gra-
dient is used as the projection target, the less conflict between it and the final
average gradient), consider node a in layer i and node b in layer j, where i < j
and acca < accb, if the node in layer j is used as the projection target later
than the node in layer i, then the final average gradient value obtained will be
less vulnerable to conflict. Therefore, we eliminate the conflict of gradient update
between each layer and other layers in hierarchical order. Similarly, to ensure the
memorability of the elimination work, we likewise need to eliminate its conflicts
with the historical model.

3.4 The Analysis of the Principle of FedHF

The main ideology of FedHF is a combination of the previous deconfliction algo-
rithms and the classical clustering algorithms K-Means [18] and NetVLAD [19].
From the data perspective, K-Means clusters similar sample points together and
aggregates a large number of samples into multiple clusters. The same cluster
has similar characteristics to each other. The K-Means algorithm uses the dis-
tance between two sample points to characterize the similarity between nodes.

FedHF: A High Fairness Federated Learning Algorithm 561

Likewise, we use the gradient magnitude similarity mentioned in Sect. 2.2 to
measure the degree of difference between two gradients. If gradient projection
and deconfliction are performed on two gradients with excessive differences, the
deconfliction will fail briefly (the deconflicted gradient will be towards the strong
gradient node, violating the fairness principle). It can be effectively avoided by
stratifying the nodes with similar characteristics for deconfliction. The hierar-
chical sampling algorithm helps to mitigate the instability brought by environ-
mental heterogeneity to the deconfliction algorithm.

4 Experimental Evaluation

4.1 Experiment Setup

In this paper, we conduct an extensive experimental evaluation of different fair
federated learning frameworks on heterogeneous systems. We use three standard
datasets, MNIST, CIFAR-10, and FMNIST with a federation consisting of 100
and 1000 participants. And We mainly compare our FedHF with the previous
state-of-the-art framework:

– a fair and accurate framework using a double momentum gradient FedFA [11].
– a novel and fair framework by resolving gradient conflicts FedFV [8].

We use the same model parameters and local data distribution in the same
environment settings to draw a fair comparison. We use python of version 3.8.3
and Pytorch of version 1.6.0 to build our federated framework. And we use a
single GPU, GeForce RTX 2080 Ti, for hardware acceleration.

Non-IID Setting. We use 2 classes of non-IID. i.e., each participant has only
two classes of data [20]. We divide the entire training set into 20 parts, and each
client is randomly given two partitions from two different classes. In the case
of 100 clients, for MNIST and FMNIST settings, every single device is assigned
600 images while the number is 500 for CIFAR-10. For 1000 clients, data points
are repeated.

Systems Heterogeneity Simulations. We assume that there are strong and
weak nodes in the federation system and that the strong nodes have stronger
training accuracy by virtue of their abundant resources and data. To simulate
this part of heterogeneity, we used an improved version of the method used in
FedProx [21]. 0%, 30% and 50% heterogeneity implies that the system has a
corresponding proportion of weak nodes, respectively We set the epoch of strong
nodes to Es and weak nodes to Ew, where Ew <= Es <= 2Ew. We set E = 10
and E = 8 for CIFAR-10, FMNIST respectively.

562 Z. Gao et al.

Fig. 3. The range distribution of local test accuracy on FedFA and FedHF algorithms,
test at 30% heterogeneity and 50% heterogeneity.

4.2 Performance

Fairness. As shown in Table 1, FedHF outperforms the two baseline algorithms
on different heterogeneities, suggesting that the FedHF workflow is effective in
promoting fairness of the federated system. We note that FedHF improves the
average accuracy of the central model by 5.06% (30% heterogeneity) and 5.01%
(50% heterogeneity) on the CIFAR-10 dataset compared to FedFA, which implies
that FedHF brings a significant improvement.

To more concretely compare the fairness of the federated system, we per-
formed additional test experiments. We conducted local test experiments on 100
devices to compare the true fairness of FedFA and FedHF, respectively. Figure 3
shows the respective test accuracy on different devices when the global curator
sends back the central model in the penultimate round. We recorded the maxi-
mum and minimum values of model accuracy for each local device to characterize
the range of accuracy. Because we used 2 classes of non-IID with only two data
labels on each device, the client-side local test accuracy should be around 20%.
The level of heterogeneity determines the distribution of the accuracy range of
the devices, i.e., the local test accuracy of strong nodes should be higher than
that of weak nodes. As can be seen in Fig. 3, FedHF can effectively balance
the gradient difference between strong and weak nodes, and the local test accu-
racy of weak nodes can be comparable to that of strong nodes even under high
heterogeneity. In contrast, the true fairness of the FedFA algorithm is weaker

FedHF: A High Fairness Federated Learning Algorithm 563

Table 1. The central model test accuracy performance of FedHA and FedHV and
FedHF on CIFAR-10 with different system heterogeneities.

Method Heterogeneity Acc Var Best 10%

FedFA 30% 47.23 ± 0.78 16.01 ± 1.88 69.99 ± 2.43
50% 47.25 ± 1.01 16.55 ± 1.78 70.62 ± 2.57

FedFV 30% 50.21 ± 0.65 10.35± 1.50 71.39 ± 2.11
50% 50.19 ± 0.99 13.01 ± 1.93 72.11 ± 2.79

FedHF 30% 52.29± 0.75 10.39 ± 1.01 73.57± 2.19
50% 52.26± 0.98 11.74± 1.43 73.43± 2.55

because the local accuracy of weak nodes is significantly weaker than that of
strong nodes.

Robustness. Figure 4 shows the convergence of the three algorithms under
different system heterogeneities. It is clear that the presence of strong and weak
nodes in our simulated system leads to a harder convergence of the central model
compared to the ideal case, and the jitter magnitude improves with increasing
heterogeneity. From the figure, we can see that the convergence speed, jitter
magnitude and trial accuracy variance (especially under high heterogeneity) of
the FedHF algorithm are better than the other two algorithms. The main reason
is that we adopt a clustering-like algorithm to deconflict similar samples in layers.
The nodes with large differences are isolated first, and then the representative
nodes and the model averages are deconflicted to avoid gradient skewing, so this
algorithm is naturally resistant to heterogeneity. FedHF can effectively improve
the overall fairness of the system when there is severe heterogeneity leading to
discrimination in the aggregation model. Thus, our algorithm is robust and fair.

Effects of Hierarchical Partition. To demonstrate the effectiveness of the
conflict elimination algorithm, we compare FedHF with the other two cases sepa-
rately: 1) without any conflict elimination. 2) Only intra-layer conflicts are elim-
inated. Table 2 shows the results of the three algorithms. It can be seen that the
elimination of both extra-layer and intra-layer conflicts reduces the variance of
the test accuracy. There are some differences between intra-layer and extra-layer
deconfliction. It’s well known that one of the features of clustering algorithms
is: high intra-class similarity and low inter-class similarity. Analogously, when
we use a clustering-like approach (i.e., hierarchical partition), FedHF benefits
more from extra-layer deconfliction than from intra-layer deconfliction, because
the former resolves more dramatic gradient conflicts. In summary, both the
two conflict elimination algorithms strengthen the performance of the federated
system.

564 Z. Gao et al.

Table 2. The three algorithms respectively represent the result of no conflict resolution,
intra-layer conflict resolution only, and all conflict resolution, testing on CIFAR-10.

Method Acc Var

FedHFBare 50.26 ± 1.87 12.56 ± 0.88
FedHFIntra 50.91 ± 1.77 12.29 ± 0.75
FedHFAll 52.29± 0.75 10.39± 1.01

Fig. 4. The accuracy curves of FedFA, FedFV and FedHF on CIFAR-10 and FMNIST
with 100 clients.

5 Conclusion

With the goal of increasing the fairness of the federation system under the
premise of guaranteeing the accuracy of the central model, we propose a high
fairness federated learning workflow, which operates well in heterogeneous data
networks.

FedHF performs hierarchical partition-based deconfliction optimization using
fair aggregation architecture. Hierarchical client selection and elimination of
intra-layer conflicts and extra-layer conflicts improve the retention of weak nodes’
model updates after federated iteration and aggregation. This clustering-like
approach, which is stratified by gradient magnitude similarity and uses an eclec-
tic deconfliction strategy to minimize model update conflicts, naturally improves
the fairness of the federated system.

FedHF: A High Fairness Federated Learning Algorithm 565

Our empirical evaluation shows that our FedHF workflow outperforms pre-
vious state-of-the-art frameworks in terms of fairness and accuracy trade-offs.

References

1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelligence
and Statistics, pp. 1273–1282. PMLR (2017)

2. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-
efficient federated learning from non-IID data. IEEE Trans. Neural Netw. Learn.
Syst. 31(9), 3400–3413 (2019)

3. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2) (2019)

4. Li, T., Sanjabi, M., Beirami, A., Smith, V.: Fair resource allocation in feder-
ated learning. In: 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, 26–30 April 2020 (2020). OpenReview.net

5. Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: fair and robust federated learning
through personalization. In: International Conference on Machine Learning, pp.
6357–6368. PMLR (2021)

6. Rehman, M.H.U., Dirir, A.M., Salah, K., Damiani, E., Svetinovic, D.: TrustFed: a
framework for fair and trustworthy cross-device federated learning in IIoT. IEEE
Trans. Ind. Inf. 17(12), 8485–8494 (2021)

7. Hashimoto, T., Srivastava, M., Namkoong, H., Liang, P.: Fairness without demo-
graphics in repeated loss minimization. In: International Conference on Machine
Learning, pp. 1929–1938. PMLR (2018)

8. Wang, Z., Fan, X., Qi, J., Wen, C., Wang, C., Yu, R.: Federated learning with fair
averaging. In: Zhou, Z. (ed.) Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada,
19–27 August 2021, pp. 1615–1623 (2021). ijcai.org

9. Wu, W., He, L., Lin, W., Mao, R., Maple, C., Jarvis, S.A.: SAFA: a semi-
asynchronous protocol for fast federated learning with low overhead. IEEE Trans.
Comput. 70, 655–668 (2020)

10. Chen, Y., Ning, Y., Slawski, M., Rangwala, H.: Asynchronous online federated
learning for edge devices with non-IID data. In: 2020 IEEE International Confer-
ence on Big Data (Big Data), pp. 15–24. IEEE (2020)

11. Huang, W., Li, T., Wang, D., Du, S., Zhang, J., Huang, T.: Fairness and accuracy
in horizontal federated learning. Inf. Sci. 589, 170–185 (2022)

12. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery
for multi-task learning. Adv. Neural. Inf. Process. Syst. 33, 5824–5836 (2020)

13. Li, J., He, L., Ren, S., Mao, R.: Developing a loss prediction-based asynchronous
stochastic gradient descent algorithm for distributed training of deep neural net-
works. In: 49th International Conference on Parallel Processing-ICPP, pp. 1–10
(2020)

14. Farajtabar, M., Azizan, N., Mott, A., Li, A.: Orthogonal gradient descent for con-
tinual learning. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 3762–3773. PMLR (2020)

15. Guo, Y., Liu, M., Yang, T., Rosing, T.: Learning with long-term remembering:
following the lead of mixed stochastic gradient (2019)

http://www.OpenReview.net
http://www.ijcai.org

566 Z. Gao et al.

16. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective
optimization. C.R. Math. 350(5–6), 313–318 (2012)

17. Wang, Q., Du, X., Gao, Z., Guizani, M.: An optimal channel occupation time
adjustment method for LBE in unlicensed spectrum. IEEE Trans. Veh. Technol.
68(11), 10943–10955 (2019)

18. Krishna, K., Murty, M.N.: Genetic k-means algorithm. IEEE Trans. Syst. Man
Cybern. Part B (Cybernetics) 29(3), 433–439 (1999)

19. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-
tecture for weakly supervised place recognition. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)

20. Kairouz, P., et al.: Advances and open problems in federated learning. Found.
Trends R© Mach. Learn. 14(1–2), 1–210 (2021)

21. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Feder-
ated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450
(2020)

A Collaborative Framework for Ad
Click-Through Rate Prediction in Mobile

App Services

Xianjin Rong, Jinghua Zhu(B), and Heran Xi

School of Computer Science, HeilongJiang University, Harbin, China
2201852@s.hlju.edu.cn,{zhujinghua,xiheran}@hlju.edu.cn

Abstract. Recent embedding techniques have shown remarkable effec-
tiveness in CTR prediction. However, such methods heavily rely on cen-
tralized storage and work poorly on cold-start users and items. In reality,
historical data of users or ads are heterogeneously distributed across mul-
tiple platforms and not directly accessible due to business competition
and privacy issues, leading to cold start problems with CTR predic-
tions for each application server. In this paper, we learn federated meta
embedding (FME) based on the cooperation of the user-server-advertiser
(H-USA), which completes the CTR prediction task in two stages. In
the federated phase, we learn richer semantic information about hot IDs
under the collaboration of the USA. We treat each cold id in the meta
phase as a learning task. And then, the application server learns embed-
ding for cold IDs using federated embeddings through gradient-based
meta-learning. Extensive experiments on real-world datasets show that
FME learned in H-USA can significantly improve the prediction perfor-
mance of cold IDs.

Keywords: CTR prediction · Cold-start · Federated-learning ·
Heterogeneous distribution

1 Introduction

Click-through rate (CTR) prediction plays a crucial role in industrial produc-
tion, such as online advertising system [8]. Recently proposed deep learning-
based models such as [2,6,7,12,14] demonstrated that well-learned embeddings
could improve CTR prediction for they can capture richer semantics. However,
behavioral data exists heterogeneously in many different application servers and
are not directly accessible due to business competition and privacy issues, which
leads to the data isolated islands [15]. For example, if the user installs multiple
apps on his phone, he may be a YouTube fan, but when he opens the Amazon
app, he has no idea what to buy. How does Amazon use the user’s historical
data on YouTube to make personalized recommendations for the user? Mean-
while, the advertisers might put their ads on multiple servers to maximize the
exposure of their products and increase sales, such as the book may be a cold

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 567–574, 2022.
https://doi.org/10.1007/978-3-031-20984-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_40&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_40

568 X. Rong et al.

item on Taobao but popular on Amazon. Similarly, how should the advertiser
cooperate with Taobao to promote products?

We need to tackle the cold-start problem from a novel perspective; that is,
predicting click behavior requires the involvement of three parties: users, servers,
and advertisers. Firstly, we store user privacy data (such as gender and age) on
the user’s device (e.g., mobile phone); servers and advertisers do not have direct
access to this private data. Secondly, we design a cooperation framework con-
structed by the user-server-advertiser in the heterogeneous scenarios (H-USA)
on which we learn federated meta embedding (FME) to solve the problem, which
mainly consists of two phases. In the federated phase, USA collaborative learns
federated embeddings for hot IDs in a privacy-preserving manner. Concretely,
the application server pre-trains a base CTR model, like WideDeep [2], DCN [14],
PNN [12], using local incomplete hot IDs, and sends the model to devices and
advertisers. Then device locally optimizes user-side embedding of the pre-trained
model using private user data. At the same time, advertisers execute weight
aggregation on the ad side. Finally, during the meta phase, we learn embed-
ding for cold IDs on application servers through gradient-based meta-learning
[3] by using federated embeddings. Finally, we construct a unified optimization
objective that balances both hot and cold ID performance [11]. In this way, the
generated embeddings (i.e., FME) not only incorporate the hot IDs’ information
but also link the adequate semantics of the federation stage.

To summarize, the contributions of this paper are as follows:

(1) We generalize the real-world click-through prediction problem and argue
that a perfect click-through behavior prediction requires perfect collaboration
among three parties. To our knowledge, it is the first work in CTR prediction
to propose a collaborative framework in a heterogeneous scenario constructed
by User-Server-Advertiser (H-USA).

(2) We revisit the problem of cold-start CTR prediction from a new perspective
and learn FME with the cooperation of the H-USA. First, we address the
problem for hot IDs based on a federated setting. Then, in the meta phase, we
focus on solving the cold ID problem without compromising the performance
of hot IDs.

(3) Experimental results on three real-world datasets with heterogeneous distri-
butions showed that FME could significantly improve the performances of
the hot and cold IDs for four existing CTR prediction models.

2 Problem Formulation

Assume that each user has a device (e.g., a cell phone) to store private data and
provide computing services and that it communicates only with the installed
app. The apps do not store the user’s private characteristic data, but only the
user’s click history on the ad and the relevant characteristics of the ad, and
cannot communicate directly with other apps. Besides, any user and advertisers
cannot communicate with each other either. In this way, H-USA ensures the

A Collaborative Framework for Ad Click-Through Rate Prediction 569

privacy of users and anonymity of advertisers, as unrelated app servers do not
perceive their presence.

Then H-USA is made up of set servers S = {s1, s2 . . .}, devices U =
{u1, u2, . . .} and advertisers A = {a1, a2, . . .}. For user u and advertiser a, the
servers they can connect to, can be a set of u(s), and a(s) respectively, and also,
for the server s, devices and advertisers it can connect to, can be a set of s(u),
and s(a), where s ∈ S, u ∈ U , a ∈ A. Each user and ad has an id and associated
features, and we refer to es

uid
, es

ufea
and es

vid
,es

vfea
as id embedding and feature

embedding of user u and ad v on server s. The Log-loss is often used as the
optimization target: l = −ylogŷ−(1 − y)log(1 − ŷ).

3 Framework Design

Fig. 1. The architecture of the collaborative framework H-USA and training workflow
of FME.

3.1 User Device Design

The user receives the base CTR models from app servers u(s), which can be a
set f

(s)
u = {fs1

ctr, f
s2
ctr, · · · }. In particularly, the embeddings of user u in f

(s)
u can

be a set e
(s)
uid = {es1

uid
, es2

uid
, · · · }, and e

(s)
ufea = {es1

ufea
, es2

ufea
, · · · }. Next, we build a

multi-output network fu(·) based on f
(s)
u . First, we initialize Eu of fu(·) with:

Eu = 1
I

∑I
i=1 Esi , where Eu is embedding layer of fu(·) and is shared by each

f
(si)
ctr . Then we take the user’s features data stored on the device as input, and

evaluate loss lsi
, we define final loss as: lu = 1

I

∑I
i=1 lsi

. Note that the device
only updates user-related embeddings, so we freeze the ad-related embedding

570 X. Rong et al.

Ev during device training. By computing the gradient of lu and taking a step of
gradient descent, we get a new adapted user embedding e′

u(·): e′
uid

= euid
−α ∂lu

∂eu

and e′
ufea

= eufea
− α ∂lu

∂eufea
, where α > 0 is the step size of gradient descent,

then device sends updated user embeddings e′
u to correspond app servers u(s).

3.2 Advertiser Platform Design

Advertisers receive ad-related embedding from servers a(s), and the accuracy
of the ad on the validation data of each server si, which can be a set e

(s)
v =

{es1
v , es2

v , · · · } and acc
(s)
v = {accs1

v , accs2
v , · · · }. Then, advertiser take a accuracy

aggregation strategy fa(·) [13] to update ad embedding, which can be denoted
as:
e′
vid

=
∑

δ(acc
si
v ,p)×e

si
vid∑

δ(acc
si
v ,p)

, e′
vfea

=
∑

δ(acc
si
v ,p)×e

si
vfea∑

δ(acc
si
v ,p)

, where δ(acc, p) is an indicator
function, δ(acc, p) = 1, if acc > p; otherwise, δ(acc, p) = 1, and p is a dynamic
threshold. Finally, the device sends ad embedding e′

v to a corresponding app
server.

3.3 Application Server Design

Before the federated phase, the server pre-trains a base CTR model fsi
ctr based

on local hot data and sends trained model to user device s(u) and advertiser s(a).
After server receives parameters e′

u and e′
v from devices and advertisers, the

server performs a federated aggregation ffed(·), it combines the local embedding
vector eu, ev and the federated embedding e′

u, e′
v via its corresponding accuracy

acc, to accuracy weighted update [13] the new embedding vector efed: eu
fed =

eu × accu + e′
u × (1 − accu), ev

fed = ev × accv + e′
v × (1 − accv).

During the meta-learning phase, we regard the embedding layer as a meta-
learner [4] and initialize it with efed. We view the learning of each cold ID as a
task and build a use a gradient-based meta-learning network fmeta(·) to optimize
it. Specifically, for server s, we take a portion of the hot IDs as the support set
Dsprt, and treat the cold IDs as a query set Dcold. We first make predictions on
Dsprt, calculate the loss lsprt, and take a step of gradient descent to get a new
adapted embedding e

′
fed. We then test the new adapted federated embedding

on the query data Dcold and obtain the loss lcold.
To unify these two losses, we deploy the final loss function for the meta

phase as a weighted sum of lsprt and lcold: Lmeta = β × lsprt + (1 − β) × lcold,
where β ∈ [0, 1] is a coefficient to balance the two phases. By computing the
gradient of Lmeta and taking a step of gradient descent, we get the federated
meta embedding emeta(·): emeta = e′

fed − α∂Lmeta

∂e′
fed

, where α > 0 is the step size
of gradient descent.

3.4 H-USA Framework and Train Workflow of FME

The overall framework is shown in Fig. 1. Step 0, prior to federation, each server
pre-trains a basic model, such as [2,6,12,14], with its incomplete hot data and

A Collaborative Framework for Ad Click-Through Rate Prediction 571

sends it to s(u), s(a). Step 1, during the federated, the user device receives the
models from the apps u(s) and only updates user-related embeddings and sends
them back. At the same time, the advertiser receives ad embeddings from a(s),
does a local aggregation, and sends them back. Step 3, when the app receives
the federated parameters from s(u), s(a), it performs a weighted update-based
strategy to update the embedding of hot ids and learns embeddings of cold ids
based on federated embeddings through gradient-based meta-learning. Then,
the server sends federated meta embedding(FME) to the users and advertisers.
Repeat the process above until the model converges. In this way, we learn FME
in the H-USA, allowing the model to achieve good performance in both hot and
cold id.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. To evaluate the effectiveness of FME in H-USA, we
conduct extensive experiments on three real-world datasets, namely ML-1M1,
Tencent2 and Taobao3. Besides, we leverage the most commonly-used evaluation
metrics in CTR prediction, namely AUC and LogLoss.

Models and Embedding. Since the H-USA framework is model-independent,
it can be applied to various existing CTR prediction models in the Embed-
ding & MLP paradigm, and we conduct experiments upon the four representa-
tive models, namely PNN [12], DCN [14], DeepFM [6], and WideDeep [2]. To
thoroughly test the effectiveness of FME, we evaluate the following embedding
types. InitEmb, initial embedding, generated using Xavier initialization [5] and
used as a baseline. FedEmb, federated embedding, it only performs federated
phase. MetaEmb, meta embedding, it only considers meta phase. FME, feder-
ated meta embedding, is generated based on the collaboration of H-USA, taking
into account both the federated phase and the meta-learning phase.

Heterogeneous Data Splites. Methods for heterogeneous distributions widely
used in federal learning include Dirichlet Distribution [1] and Mixed Distribu-
tion [10]. First, we partition the dataset into multiple application servers using
the method mentioned above to meet the heterogeneous distribution. Next, we
partition devices and advertisers based on user and ad attributes. Besides, for
an ID, if the number of labeled instances is larger than a threshold, we regard
it as an old ad. This threshold is set to 25, 50, and 130 for the three datasets.
Then we divide the data distribution of 80%/20% again from the hot data and
use 80% as federated training data and 20% for meta training support data.

Hyper-parameters Settings. We set the step size of gradient descent α of
as 0.001, coefficient β 0.1, and weight decay as 0.0001. Each device trains two
1 http://www.grouplens.org/datasets/movielens/.
2 https://algo.qq.com/archive.html.
3 https://tianchi.aliyun.com/dataset.

http://www.grouplens.org/datasets/movielens/
https://algo.qq.com/archive.html
https://tianchi.aliyun.com/dataset

572 X. Rong et al.

epochs locally during the federated phase, and the application service learns
twice per batch during the meta-phase. Moreover, we set the dimension of the
embedding as 16. We report the average results for all servers as a metric. All
the models are optimized by the Adam algorithm [9].

4.2 Experimental Analysis

Table 1. Test AUC and Loss on Cold IDs. Model: Base prediction model. Emb: ID
embedding type. AUC (↑) is thelarger the better. Loss (↓) is the smaller the better.

Model Emb ML-1M Tencent TaoBao

LOSS AUC LOSS AUC LOSS AUC

PNN InitEmb 0.6564 0.6675 0.6625 0.6296 0.3448 0.5446

FedEmb 0.6310 0.7193 0.6337 0.6521 0.3301 0.5603

MetaEmb 0.6227 0.7264 0.6222 0.6691 0.3385 0.5781

FME 0.5887 0.7423 0.6113 0.7019 0.3114 0.5901

DCN InitEmb 0.6535 0.6642 0.6635 0.6212 0.3487 0.5412

FedEmb 0.6382 0.7114 0.6311 0.6505 0.3315 0.5605

MetaEmb 0.6278 0.7282 0.6254 0.6691 0.3376 0.5766

FME 0.5876 0.7428 0.6147 0.7015 0.3124 0.5912

DeepFM InitEmb 0.6508 0.6623 0.6628 0.6241 0.3415 0.5435

FedEmb 0.6301 0.7135 0.6311 0.6552 0.3389 0.5613

MetaEmb 0.6249 0.7219 0.6225 0.6651 0.3311 0.5712

FME 0.5856 0.7439 0.6122 0.7043 0.3178 0.5926

WideDeep RndEmb 0.6576 0.6683 0.6687 0.6277 0.3441 0.5419

FedEmb 0.6366 0.7175 0.6392 0.6545 0.3362 0.5611

MetaEmb 0.6236 0.7244 0.6224 0.6674 0.3321 0.5779

FME 0.5841 0.7477 0.6154 0.7042 0.3136 0.5958

Overall Performance. Table 1 and Table 2 list experimental results of the
four base CTR models using FME on the mixture distribution. We observed
that when using FedEmb, FedEmb, and MetaEmb, models yielded better AUC
and LOSS results than the random InitEmb. For example, when using DCN,
Wide&Deep, PNN, and DeepFM as the base models, FME provides nearly 8%
and 4% AUC improvement on ML-1M, respectively.

Contribution to Cold IDs. Table 1 lists the performance of FME on cold IDs
based on four popular CTR prediction models. We observed that using FME
models yielded better AUC and LOSS results than the other three embeddings.
Then comparing FedEmb and MetaEmb, we will find that MetaEmb has a more
obvious improvement on cold id. We believe that while FedEmb learned more

A Collaborative Framework for Ad Click-Through Rate Prediction 573

about the valid semantics of hot IDs by working with other participants in H-
USA during the federal phase, these were only for hot IDs and not for cold IDs.
In contrast, MetaEmb learned cold IDs specifically in the basic model of each
server.

Table 2. Test AUC and Loss on Hot IDs. Model: Base prediction model. Emb: ID
embedding type. AUC (↑) is thelarger the better. Loss (↓) is the smaller the
better.

Model Emb ML-1M Tencent TaoBao

LOSS AUC LOSS AUC LOSS AUC

PNN InitEmb 0.6283 0.7108 0.6215 0.6696 0.3348 0.5611

FedEmb 0.6089 0.7493 0.6137 0.6821 0.3101 0.5894

MetaEmb 0.6201 0.7279 0.6202 0.6779 0.3285 0.5734

FME 0.5737 0.7523 0.6013 0.7119 0.3014 0.6121

DCN InitEmb 0.6233 0.7179 0.6291 0.6623 0.3342 0.5631

FedEmb 0.6024 0.7418 0.6154 0.6865 0.3155 0.5859

MetaEmb 0.6211 0.7270 0.6241 0.6703 0.3252 0.5797

FME 0.5765 0.7547 0.6062 0.7113 0.3081 0.6136

DeepFM InitEmb 0.6266 0.7133 0.6215 0.6648 0.3303 0.5659

FedEmb 0.6007 0.7397 0.6163 0.6819 0.3167 0.5897

MetaEmb 0.6215 0.7279 0.6275 0.6774 0.3295 0.5706

FME 0.5753 0.7523 0.6029 0.7151 0.3005 0.6169

WideDeep InitEmb 0.6276 0.7187 0.6227 0.6641 0.3387 0.5672

FedEmb 0.6075 0.7432 0.6145 0.6807 0.3112 0.5853

MetaEmb 0.6239 0.7279 0.6236 0.6742 0.3226 0.5774

FME 0.5706 0.7523 0.6031 0.7106 0.3013 0.6132

Contribution to Hot IDs. Table 2 shows the results for the hot id, and we can
conclude that when we use the hot id to improve the cold id, it does not degrade
the model’s performance on the hot id but slightly improves it. Therefore, in the
framework of H-USA, we can significantly improve the performance of cold start
iD in heterogeneous environments without losing the performance of hot id.

5 Conclusion

This paper discusses cold-start problems in CTR prediction of heterogeneous
environments from a novel perspective; we argue that a perfect click-through
prediction cannot be separated from the cooperation of the three parties, namely
the user, server, and advertiser. Moreover, we propose a collaborative framework
(H-USA) and learn FME for CTR prediction in mobile app services. Experimen-
tal results show that FME can significantly improve prediction performance. In

574 X. Rong et al.

the future, we will further consider enhancing the gradient safety of FME during
the federated process in the H-USA framework. We also plan to deploy FME to
the online ad system and test its online performance.

References

1. Bouguila, N., Ziou, D., Vaillancourt, J.: Novel mixtures based on the Dirichlet
distribution: application to data and image classification. In: Perner, P., Rosenfeld,
A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 172–181. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45065-3 15

2. Cheng, H.T.: Wide & Deep Learning for Recommender Systems. ACM (2016)
3. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adapta-

tion of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6–11 August 2017, Proceedings of Machine Learning Research, vol. 70, pp.
1126–1135. PMLR (2017)

4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning (2017)

5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Teh, Y.W., Titterington, D.M. (eds.) Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics, AISTATS
2010, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, JMLR Proceedings,
vol. 9, pp. 249–256. JMLR.org (2010)

6. Guo, H., Tang, R., Ye, Y., Li, Z., He, X., Dong, Z.: DeepFM: an end-to-end wide
& deep learning framework for CTR prediction. CoRR, abs/1804.04950 (2018)

7. He, X., Liao, L., Zhang, H., Nie, L., Chua, T.S.: Neural collaborative filtering. In:
The 26th International Conference (2017)

8. He, X., et al.: Practical Lessons from Predicting Clicks on Ads at Facebook. ACM
(2014)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

10. Marfoq, O., Neglia, G., Bellet, A., Kameni, L., Vidal, R.: Federated multi-task
learning under a mixture of distributions. In: Ranzato, M., Beygelzimer, A.,
Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, 6–14 December 2021, Virtual, pp. 15434–15447 (2021)

11. Pan, F., Li, S., Ao, X., Tang, P., He, Q.: Warm up cold-start advertisements:
improving CTR predictions via learning to learn ID embeddings. ACM (2019)

12. Qu, Y., Han, C., Kan, R., Zhang, W., Wang, J.: Product-based neural networks
for user response prediction. In: 2016 IEEE 16th International Conference on Data
Mining (ICDM) (2016)

13. Wang, Q., Fangai Liu, P., Huang, S.X., Zhao, X.: A hierarchical attention model
for CTR prediction based on user interest. IEEE Syst. J. 14(3), 4015–4024 (2020)

14. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
In: ADKDD 2017 (2017)

15. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

https://doi.org/10.1007/3-540-45065-3_15

Process-Oriented Intents: A Cornerstone
for Superimposition of Natural Language
Conversations over Composite Services

Sara Bouguelia1(B) , Auday Berro1 , Boualem Benatallah2 ,
Marcos Báez3 , Hayet Brabra4 , Shayan Zamanirad5 ,

and Hamamache Kheddouci1

1 LIRIS - University of Claude Bernard Lyon 1, Villeurbanne, France
{sara.bouguelia,auday.berro,hamamache.kheddouci}@univ-lyon1.fr

2 Dublin City University, Dublin, Ireland
boualem.benatallah@dcu.ie

3 Bielefeld University of Applied Sciences, Bielefeld, Germany
marcos.baez@fh-bielefeld.de

4 SAMOVAR - Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France
hayet.brabra@telecom-sudparis.eu

5 University of New South Wales (UNSW), Sydney, Australia
shayanz@cse.unsw.edu.au

Abstract. Task-oriented conversational assistants are in very high
demand these days. They employ third-party APIs to serve end-users via
natural language interactions and improve their productivity. Recently,
the augmentation of process-enabled automation with conversational
assistants emerged as a promising technology to make process automa-
tion closer to users. This paper focuses on the superimposition of task-
oriented assistants over composite services. We propose a Human-bot-
Process interaction acts that are relevant to represent natural language
conversations between the user and multi-step processes. In doing so, we
enable human users to perform tasks by naturally interacting with pro-
cesses.

Keywords: Task-oriented conversational bots · Rest APIs ·
Software-enabled services · Composite services · Process-oriented
intents

1 Introduction

Task-oriented conversational services (or simply chatbots) emerged as engines for
transforming online service-enabled digital assistance and powering natural inter-
actions between humans, services, and things [15]. Recently, organizations lever-
aged chatbots in a variety of assistance tasks. For instance, the augmentation of
process-enabled automation with task-oriented chatbots emerged as a promising
technology to make process automation even closer to users [1,5]. This evolution
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 575–583, 2022.
https://doi.org/10.1007/978-3-031-20984-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_41&domain=pdf
http://orcid.org/0000-0003-4538-0927
http://orcid.org/0000-0003-2411-5761
http://orcid.org/0000-0002-8805-1130
http://orcid.org/0000-0003-1666-2474
http://orcid.org/0000-0001-7484-2268
http://orcid.org/0000-0002-5100-5990
http://orcid.org/0000-0002-5561-6203
https://doi.org/10.1007/978-3-031-20984-0_41

576 S. Bouguelia et al.

promises to increase the benefits of automation by simplifying access and reuse of
concomitant capabilities across potentially large number of evolving and hetero-
geneous data sources, applications and things [5,9]. While today’s chatbots may
automate some tasks, bot developers have recently started investigating the incor-
poration of robotic process automation (RPA) to increase automation [14]. For
instance, Devy chatbot was proposed to provide automated support in DevOps
processes [6]. Authors in [13] developed a chatbot for agile software development
teams which analyzes teams’ project data to provide insights into their perfor-
mance. In [12], the authors proposed an approach that automatically builds a chat-
bot from a process model to query process structure. Another work proposed a
chatbot to query event data allowing users to get insights into specific process exe-
cutions [11]. All these works are either about domain-specific chatbots or about
querying the process execution or structure but do not focus on performing pro-
cess tasks. Other works propose approaches to interact with business processes
and perform process tasks through chatbots. For instance, Google proposes the
use of a chatbot in so-called communication-enabled business process applications
[8]. However, no specific details about the internals of the chatbot infrastructure
are provided. The closest work to ours is [10], which proposed a methodology that
takes a business process model as input and generates a chatbot to help the users
interact with the process. However, the work does not focus on the recognition of
process-oriented intents. In our previous work, we proposed various techniques for
the superimposition of task-oriented chatbots on top of APIs [3,4,16,17].

In this paper, we focus on the superimposition of task-oriented chatbots over
composite services. In doing so, we enable users to perform tasks by naturally
interacting with service orchestrations involving multiple actions. Orchestrating
human-machine conversations over composite services requires rich abstractions
and knowledge to: (i) interact with a multi-step processes using natural language
utterances, (ii) automatically recognise nuanced, context sensitive and possibly
ambiguous process-aware user intents including starting a new task, inquiring
about task progress, switching from one task to another and exceptional behavior
such as canceling. Specifically, we identify fine-grained Human-bot-Process (HP)
interaction acts that are relevant to represent natural language conversations
between user and multi-step processes. In a nutshell, interaction acts are dialogue
acts that characterise process-oriented intents in user utterances.

2 Preliminaries and Architecture

In this section, we first introduce some process-related concepts and assumptions.
Second, we present a scenario illustrating interactions between a user and multi-
step processes. Finally, we present the architecture.

Preliminaries. A business process is a collection of coordinated tasks to achieve
a concrete goal [7]. The schema of a process can be represented in a variety of
forms, such as Petri nets and Event-Driven Process Chains [7]. For simplicity,
we represent the process schema as a directed acyclic graph. Figure 1 shows an
example of a Travel Booking Process graph. The process graph nodes represent

Process-Oriented Intents 577

NO

YES

Do you want to
book a flight?

[Decision Point]

has-update-policy has-cancellation-policy

Flight Booking
[Activity]

YES

NO

Do you want to
book a hotel room?
[Decision Point]

has-cancellation-policy
has-update-policy

Hotel Booking
[Activity]

Send Booking
details

[Activity]

has-process-schema

is-realized-by

has-cancellation-policy

has-update-policy

Travel Booking
[Process]

Travel Booking Process graph

is-realized-by

Cancel Flight
Booking

[Process]

is-realized-by

Cancel Hotel
Booking

[Process]

BookTravel
[Method]

CancelTravel
[Method]

is-realized-by

Cancel Travel
Booking

[Process]

CancelFlight
[Method]

CancelHotel
[Method]

is-realized-by

Update Flight
Booking

[Process]

is-realized-by

Update Hotel
Booking

[Process]

UpdateFlight
[Method]

UpdateHotel
[Method]

is-realized-by

Update Travel
Booking

[Process]

UpdateTravel
[Method]

Fig. 1. Example of a Travel Booking Process Model

activities and decision points. A process is associated with a set of exception han-
dling policies. Exception handling policies are directives that model exceptional
situations together with a set of actions that are used to handle exceptions (e.g.,
cancel a travel booking) [2]. In this paper, we consider that a process is realized
by a composite service. Furthermore, a composite service is accessible through
an API that includes: a main method to invoke the normal process behavior
(e.g., BookTravel method), and exception handling methods to handle excep-
tional behaviors of a process (e.g., CancelTravel method) or an activity (e.g.,
CancelHotel method). We also consider that a process has a set of correlation
attributes that uniquely identify an instance [7].

Scenario. Figure 2 shows an example of a user-chatbot conversation in which
the user is interacting with the Travel Booking process illustrated in Fig. 1.
There are interactions that are triggered by the user and others by the chatbot.
During normal process execution (e.g., booking travel): (i) the chatbot can ask
for more information to fulfill a task (message 10) or provide information about
a performed task (message 6), (ii) the user can provide information (message
11) or inquire about task progress (message 23). As mentioned before, a process
is associated with possible run-time exceptions. In message 27, the user wants to
change the check-out date. This interaction (changing date) is triggered by the
user and involves the update of a previously performed task. However, exception
interactions can also be triggered by the chatbot. For example, assume that the
airline company canceled the user’s flight. The chatbot can trigger an interaction
that involves notifying the user about the cancellation and proposing alternatives
such as changing the travel date. In this paper, we focus on interactions from
the user side; chatbot-initiated interactions are outside the paper scope.

Architecture. To support natural language conversations with processes, the
chatbot needs a set of services to initiate, monitor, and control task-related
conversations. The Natural Language Understanding (NLU) service aims to
extract HP interaction acts and slot-value pairs from the utterance. The Process

578 S. Bouguelia et al.

[START NEW PROCESS INSTANCE] 1. USER: I would like to plan a one-way trip from Paris to Montreal
[ASK FOR INFORMATION] 2. BOT: What is the departure date?
[PROVIDE INFORMATION] 3. USER: 10 July
[ASK FOR MORE INFORMATION] 4. BOT: Do you want to book a flight?
[PROVIDE INFORMATION] 5. USER: yes
[PROVIDE INFORMATION] 6. BOT: Here is the list of flights I found for the given date: [...].
[ASK FOR MORE INFORMATION] Which one do you prefer?
[PROVIDE INFORMATION] 7. USER: book the first flight on the list, the one with air Canada
[PROVIDE INFORMATION] 8. BOT: Done! I have booked flight tickets.
[ASK FOR MORE INFORMATION] Do you want to book a hotel room?
[PROVIDE INFORMATION] 9. USER: Yes, please
[ASK FOR MORE INFORMATION] 10. BOT: What is the check-out date from the hotel?
[PROVIDE INFORMATION] 11. USER: 5 august
...
[PROVIDE INFORMATION] 14. BOT: Done! I have booked the hotel room. I sent you details about your travel booking by email.
[START NEW PROCESS INSTANCE] 15. USER: Can you help me to plan another one-way trip from Montreal to New York on 3 August.
...
[PROVIDE INFORMATION] 22. BOT: I sent you details about your travel booking by email.
[FOLLOW-UP ON PROCESS STATUS] 23. USER: What is the status of my travel?
[ASK FOR INFORMATION] 24. BOT: What are the departure city and date of this travel?
[PROVIDE INFORMATION] 25. USER: Paris, 10 July
[PROVIDE INFORMATION] 26. BOT: The status of your travel from Paris to Montreal on 10 July is completed. You have booked

a one-way flight on 10 July and a hotel from 10 July to 5 August.
[UPDATE AN INSTANCE] 27. USER: Please update my hotel booking for this travel. Change the check-out date to 3 August.
[PROVIDE INFORMATION] 28. BOT: Done! I updated your hotel booking in Montreal from 10 July to 3 August.

1-14
Book Travel

23-26
Inquire about
travel status

15-22
Book Travel

27-28
Update a hotel

booking

Fig. 2. Example of a user-chatbot conversation. Interaction acts in blue are triggered
by the user and those in green are triggered by the chatbot. (Color figure online)

Embedding Service (PES) aims to identify the process that corresponds to the
utterance. The Dialogue Manager (DM) service aims to infer the dialogue state
in terms of user intent and its slot-value pairs. This DM relies on the Context
Knowledge Service (CKS) to recognize user intent and infer missing information.
Once the DM recognizes the intent and collects all required information, it per-
forms the corresponding action and sends the results to the Natural Language
Generator (NLG). The NLG generates then human-like responses to the user.
In what follows, we describe PES and CKS.

The PES aims to identify processes from natural language utterances. It has
(i) a process knowledge model and (ii) a set of services to leverage this knowledge.
The process knowledge model is denoted as a process knowledge graph (P-KG)
with specific types of nodes and relationships. In particular, nodes can describe
Processes, Paths, and Activities. Part of the information in the P-KG is the graph
representation of what we find in the process model definition. Such information
typically includes the process name, the process description, activity name, and
activity description. Furthermore, a Process node has relationships such as is-
realized-by that denotes that a process is performed by an API method (refer to
Fig. 1). The PES features the following three services:

– Vector generation Service is used to construct vector embeddings for pro-
cess elements. It takes as input a process element e and generates its vector
embedding. It generates: (i) an activity vector by aggregating the informa-
tion from activity name and its description; (ii) a path vector by aggregating
vectors of activities in this path; and (iii) a process vector by averaging the
information from process name, process description and all path vectors.

– Process Identification Service aims to identify the corresponding process of a
given utterance u. First, it generates the embedding vector of the utterance.
Second, it calculates the cosine similarity between this utterance vector and
the vector of each process in the P-KG. Then, according to a predefined
threshold, processes with similarities greater than this threshold are kept and
ordered. Finally, the service returns the process scoring the highest similarity.

Process-Oriented Intents 579

– Method Identification Service aims to identify a process API method that
corresponds to a given process intent. It takes as input a process p (e.g.,
Travel Booking), a process intent i (e.g., canceling task) and an activity a
(e.g., Hotel Booking) and returns the corresponding API method.

In [3], we proposed the CKS that enables to capture contextual knowledge
from different sources. We extend the CKS with two additional services:

– Process Instance Identification Service returns the list of instances for a given
process. It takes as input a process p and returns the list of instances of p.

– Correlation attribute Value Retrieval Service provides values of correlation
attributes for a given process instance id. It takes as input an instance id and
returns an array of attribute-value pairs.

3 Process-Aware User Intents

Conversations regarding a given process-aware task may involve several turns
(e.g., starting a travel booking, later inquiring about booking status, modify-
ing travel dates, or canceling the booking). We propose HP interaction acts to
characterize a set of elementary user intents in conversations between users and
multi-step processes. Specifically, we derive four types of process-oriented intents:
start new process instance intent, follow-up on process status intent, canceling
task intent, and task update intent.

We propose five general steps to recognize these process-oriented intents from
an utterance u: (i) detect the HP interaction act class expressed in u; (ii) invoke
the Process Identification PES service to get the corresponding process p; (iii)
invoke the Process Instance Identification CKS service to retrieve the set of
instances set i of p; (iv) extract the values of correlation attributes of the
instance that the user is referring to; (v) compare the extracted values of corre-
lation attributes with those of set i to check if the identified instance already
exists or not. In what follows, we describe the process-oriented intents and define
rules that combine detection of HP interaction acts with additional context and
process knowledge to recognize and realize each of these intents.

Start New Process Instance. This intent allows to identify whether the user
utterance expresses a task that requires the creation of a new process instance.
In general, when users ask for a new task, they provide general information
describing this task, and sometimes they provide more detailed information
about this task. The chatbot needs this information to identify the process
and to check if the utterance concerns the creation of a new process instance.
Figure 3 shows the specification of the rule related to start-new-process-instance
intent. This rule consists of trigger and action clauses. The trigger clause defines
three boolean conditions. (1) The condition IS START() checks if the utterance
u expresses a start new instance HP interaction act. (2) The condition IS SIM()
checks if the process p corresponds to the utterance u. (3) The last condition

580 S. Bouguelia et al.

Trigger

Action

(1)

(2)

(3)

(1)

(2)

(1)

(2)

(3)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(1)

(2)

Fig. 3. Rules to recognize and realize the identified process-oriented intents.

EXIST INSTANCE() compares values of the correlation attributes with those of
the existing instances to check if the identified instance does not exist. If the
conditions are satisfied, the chatbot (1) invokes the Method Identification PES
service to get the method m and (2) triggers m to start the process execution.

Follow-up on Process Status. This intent allows inquiring about process
instance status (e.g., pending, in-progress or completed). For example, in Fig. 2
utterance 23, the user is inquiring about travel status. Figure 3 shows the spec-
ification of the rule related to this intent. The conditions are the same as those
defined in the previous rule, except that this rule needs to detect a follow-up
HP interaction act and the process instance should exists. If all conditions are
satisfied, the chatbot (1) retrieves the corresponding instance and (2) lists the
status of this instance.

Task Update. This intent allows to identify whether the user wants to update
an existing process instance (e.g., update the hotel check-out date). A user can
request to update an information in the whole process, or a specific activity
in the process. We model an activity as an input parameter of the intent task
update, thus the chatbot can extract from the user utterance the activity that
the user wants to update. The conditions are the same as those defined in the
first rule, except that this rule needs to detect a task update HP interaction
act and the process instance should exists. If all conditions are satisfied, the
chatbot (1) retrieves the corresponding instance, (2) extract the value of the
activity parameter, (3) invokes the Method Identification PES service to get the
corresponding method m and (4) triggers m to update the corresponding task.

Canceling a Task. This intent allows to identify whether the user utterance
expresses a task cancellation of an existing process instance. The user can request
to cancel the whole process (e.g., canceling travel bookings), or a specific task
in the process (e.g., canceling hotel booking). The steps to recognize and realize
canceling task intent are the same as those in the task update intent (Fig. 3).

Process-Oriented Intents 581

4 Implementation and Experiments

The first objective of the study was to explore the effectiveness of the proposed
approach, i.e., its capability of recognizing correctly the process-oriented intents
presented in Sect. 3 and reducing unnecessary interactions. The second objective
was to assess the impact of enabling interaction with a process as opposed to
leaving users to orchestrate services themselves to fulfill their goals.

Experimental design.1 Participants were recruited via email from the
extended network of contacts of the authors. The call for volunteers resulted in a
total of 17 participants. The evaluation scenario required participants to perform
tasks associated with three underlying processes (Travel Booking, Shopping and
Scheduling an appointment). Participants were asked to complete 4 tasks in this
scenario (T1: starting new process instances, T2: updating information of process
instances, T3: following up on process statuses, T4: canceling process instances).
We followed a within-subjects design tasking participants to complete the above
tasks by interacting with two chatbots representing the following conditions:
(i) Baseline-bot that implements a standard conversational management; (ii)
Process-bot that support PES and CKS services as well as the defined rules.

Procedure. The study was conducted online. After reading the informed con-
sent and agreeing to participate, participants were introduced to the evaluation
scenario and tasks (T1-T4). They were asked to perform those tasks with the
two chatbots, in a counter-balanced design. After interacting with each chatbot,
participants were asked: to select their preferred chatbot, to specify why, and
provide quantitative feedback on their experience along three dimensions: natu-
ralness (ability to fulfill user tasks in natural language), repetitiveness (ability
to avoid redundant questions) and understanding (ability to interpret requests).

Data analysis. We performed an analysis of conversation logs so as to assess the
effectiveness of our approach in recognizing the process-oriented intents. These
are computed in relation to optimal conversation scenarios (i.e., scenarios assum-
ing ideal accuracy of process-oriented intent recognition) that we designed based
on participants conversations. The effectiveness is calculated by considering the
following metrics: number of (M1) conversation turns, (M2) prompts asking for
missing information, (M3) process correctly identified and (M4) process-oriented
intents correctly recognized.

Results. Table 1 shows the relative performance by task of both baseline-bot
and process-bot in relation to the optimal reference scenario. For the four tasks,
we can see that process-bot experienced a boost in performance M1 and M2,
approaching the efficiency of the reference scenario in terms of number of turns

1 Experimental materials: https://tinyurl.com/ICSOC22StudyMaterials.

https://tinyurl.com/ICSOC22StudyMaterials

582 S. Bouguelia et al.

Table 1. Performance of experimental conditions for each task according to the rele-
vant metrics. Values in bold denote best performance.

Task Baseline-bot Process-bot

M1

TURNS

M2

PROMPTS

M4

INTENT

M1

TURNS

M2

PROMPTS

M3

PROCESS

M4

INTENT

T1 (new) 54,14% 45,59% 51,75% 95,73% 91,67% 92,86% 88,68%

T2 (update) 31,58% 26,67% 25,00% 85,71% 80,00% 91,67% 83,33%

T3 (follow up) 47,15% 51,28% 27,86% 82,61% 88,89% 85,71% 85,71%

T4 (cancel) 27,27% 18,75% 33,33% 80,00% 75,00% 91,67% 83,33%

Mean 40,04% 35,57% 34,49% 86,01% 83,89% 90,48% 85,27%

(M1) and prompts (M2). This level of performance is possible thanks to the PES
and CKS services and the defined rules that allow to perform a mean relative per-
formance across tasks for process identification (M3) and intent recognition (M4)
of 90,48% and 85,27% respectively. In contrast, not supporting these rules leads
the baseline-bot to perform poorly in comparison, with the best performance
being at around 36,70% for the considered metrics. Regarding the user experi-
ence, all but two participants (15/17 participants) expressed a preference towards
the process-bot as opposed to the baseline-bot. The feedback to the specific
user experience questions, highlighted the reasons behind the preference. The
majority of participants reported that process-bot interactions described natu-
ralness (11/17), less repetitiveness (11/17) and understanding (12/17), whereas
the baseline-bot was poorly rated on these fronts (2/17).

5 Conclusions and Future Work

We proposed process-oriented intents that are relevant to represent natural lan-
guage conversations between the user and multi-step processes. We devised an
approach that combines recognition of these intents from user utterances with
additional context and process knowledge to enable users to perform tasks by
naturally interacting with service orchestrations. Future work includes identify-
ing a new pattern that allows selecting a service based on subjective attributes.

References

1. Barukh, M.C., et al.: Cognitive augmentation in processes. In: Aiello, M., Bouguet-
taya, A., Tamburri, D.A., van den Heuvel, W.-J. (eds.) Next-Gen Digital Services.
A Retrospective and Roadmap for Service Computing of the Future. LNCS, vol.
12521, pp. 123–137. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
73203-5 10

2. Benatallah, B., et al.: The Self-Serv environment for Web services composition.
IEEE Internet Comput. 7(1), 40–48 (2003)

3. Bouguelia, S., et al.: Context knowledge-aware recognition of composite intents
in task-oriented human-bot conversations. In: Proceedings of the CAiSE (2022).
https://doi.org/10.1007/978-3-031-07472-1 14

https://doi.org/10.1007/978-3-030-73203-5_10
https://doi.org/10.1007/978-3-030-73203-5_10
https://doi.org/10.1007/978-3-031-07472-1_14

Process-Oriented Intents 583

4. Bouguelia, S., Brabra, H., Zamanirad, S., Benatallah, B., Baez, M., Kheddouci, H.:
Reusable abstractions and patterns for recognising compositional conversational
flows. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol.
12751, pp. 161–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79382-1 10

5. Brabra, H., et al.: Dialogue management in conversational systems: a review of
approaches, challenges, and opportunities. IEEE Trans. Cognitive Dev. Syst. 14,
783–798 (2021)

6. Bradley, N., et al.: Context-aware conversational developer assistants. In: 2018
IEEE/ACM 40th ICSE, pp. 993–1003. IEEE (2018)

7. Dumas, M., et al.: Fundamentals of Business Process Management, vol. 1. Springer
(2013). https://doi.org/10.1007/978-3-642-33143-5

8. Gaulke, D., et al.: Interactive user interface to communication-enabled business
process platforms method and apparatus (2015), US Patent 9,043,407

9. Hofmann, P., et al.: Robot. Process Autom. 30(1), 99–106 (2020)
10. Kalia, A.K., Telang, P.R., Xiao, J., Vukovic, M.: Quark: a methodology to trans-

form people-driven processes to chatbot services. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 53–61. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 4

11. Kobeissi, M., et al.: An intent-based natural language interface for querying process
execution data. In: Proceedings of the ICPM, pp. 152–159. IEEE (2021)

12. López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to
chatbots. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp.
383–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2 24

13. Matthies, C., et al.: An additional set of (automated) eyes: chatbots for agile
retrospectives. In: Proceedings of the BotSE, pp. 34–37. IEEE (2019)

14. Rizk, Y., et al.: A unified conversational assistant framework for business process
automation. arXiv preprint arXiv:2001.03543 (2020)

15. Sheth, A., et al.: Cognitive services and intelligent chatbots: current perspectives
and special issue introduction. IEEE Internet Comput. 23(2), 6–12 (2019)

16. Zamanirad, S., et al.: Hierarchical state machine based conversation model and
services. In: Proceedings of the CAiSE (2020)

17. Zamanirad, S., et al.: Programming bots by synthesizing natural language expres-
sions into API invocations. In: Proceedings of the ASE (2017)

https://doi.org/10.1007/978-3-030-79382-1_10
https://doi.org/10.1007/978-3-030-79382-1_10
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-319-69035-3_4
https://doi.org/10.1007/978-3-030-21290-2_24
http://arxiv.org/abs/2001.03543

A Bi-directional Category-Aware
Multi-task Learning Framework

for Missing Check-in POI Identification

Junhang Wu1,2, Ruimin Hu1,2(B), Dengshi Li1,3, Lingfei Ren1,2, Wenyi Hu1,2,
and Yilong Zang1,2

1 National Engineering Research Center for Multimedia Software,
School of Computer Science, Wuhan University, Wuhan 430072, China

hurm1964@gmail.com
2 Hubei Key Laboratory of Multimedia and Network Communication Engineering,

Wuhan University, Wuhan 430072, China
3 School of Artificial Intelligence, Jianghan University, Wuhan 430056, China

Abstract. The prevalence of Location-based Social Networks (LBSNs)
services makes next personalized Point-of-Interest (POI) prediction
become a research topic. However, due to device failure or intention cam-
ouflage, geolocation information missing prevents existing POI-oriented
studies for advanced user preference analysis. Herein, we proposed a
Bi-directional category-aware multi-task learning (Bi-CatMTL) frame-
work, which fuses bi-direction spatiotemporal transition patterns and
personalized dynamic preference to identify where the user has been
at a past specific time, namely missing POI identification. Specifically,
Bi-CatMTL introduces: (1) a two-channel encoder, i.e., spatial-aware
POI encoder and temporal-aware category encoder, to capture user bi-
directional dual-grained mobility transition patterns; (2) a task-oriented
decoder to fuse learned transition patterns and personalized preference
for multi-task prediction; (3) a POI2Cat matrix to make full use of both
types of sequential dependencies. Extensive experiments demonstrate the
superiority of our model, and it can also be adaptively extended to next
POI prediction task with the convincing performance.

Keywords: Missing check-in POI identification · Spatial-aware POI
encoder · Temporal-aware category encoder

1 Introduction

The prevalence of LBSN attracts numerous users to share their real-life experi-
ences in the form of check-ins, and data accumulated from LBSN is effectively
utilized for POI-oriented applications (e.g., next POI recommendation or pre-
diction) to facilitate the sharing between users and POIs.

However, due to device failure or user cheating, data quality issues (e.g.,
geolocation information missing) always limit above POI-oriented studies for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 584–599, 2022.
https://doi.org/10.1007/978-3-031-20984-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_42&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_42

A Bi-directional Category-Aware Multi-task Learning Framework 585

Fig. 1. An example of missing check-in POI identification and category hierarchy.

advanced user mobility patterns understanding. Existing POI-oriented studies
mainly focus on where to go (e.g., recommending or predicting the POI where a
user may go in the future), which models user mobility patterns and preferences,
and assumes that all users’ check-ins have been specified to the exact POIs
without considering check-in POI missing. Unfortunately, it has been found that
over half of user check-ins are POIless (i.e., associated POIs are missing) in
Twitter and Foursquare [5].

To the end, we focus on identifying where the user has been at a specific time
in the past, that is, missing check-in POI identification. As shown in Fig. 1 (a),
given an observed check-in subsequence for Alice, assuming that one check-in POI
is missing between two successive check-ins, the task is to identify possible candi-
date POIs the target user might visit at a past specific time. The task is non-trivial
due to the following reasons. First, given the distribution of candidates for themiss-
ing POI, it helps alleviate data sparsity issues. It can also be used for some social
good, such as suspects tracing or missing population searching analysis. Moreover,
by identifying which venues the patient has visited during his/her past disconnec-
tion, we can track persons who are within a certain spatiotemporal range with
him/her to avoid a risk of cross-infection and help precision prevention.

So far, much progress has been made in next POI recommendation or predic-
tion problem, which is related to our task. Earlier works primarily focused on
feature engineering, and explored conventional collaborative filter and sequen-
tial approaches, such as Matrix Factorization (MF) models and Markov Chains
(MC) model [7,9]. However, the sparsity of the user-POI matrix and cold-start
issue are great challenges, causing significant degradation in POI recommendation
performance. With the development of embedding techniques, it is heuristically
developed to learn POI embeddings in a low-dimension vector space for the next
POI prediction by treating each venue in the sampled sequence as a word, and
it appears many embedding-based methods, such as GE [14], EDHG [3], HME
[2], and so on. However, these existing embedding models can not well model user
evolving preference and local temporal contexts when dealing with user chrono-
logical activities, and suffer from the large number of parameters and the inex-
tricability of the learning framework. Since RNN and long-Short Term Memory
(LSTM) are advantageous in mining sequential information, RNN- [8,16,19] and
LSTM- [6,12] based methods are widely employed in POI recommendation [4].

586 J. Wu et al.

Although these methods have achieved satisfactory results, they are not
designed for the missing check-in POI identification task. The task needs to
model check-in sequences information before and after the specific time rather
than from a single perspective, so the methods of current POI-oriented methods
can not be directly extended to our task. Bi-STDDP [13] is most relevant to our
work, which jointly models user preference and the spatiotemporal dependence
given the two locations visited before and after the targeted timestamp to iden-
tify the missing POI. Bi-G2AN [13] is the advanced method for missing POI
identification, which designed a GAN-based framework to generate the candi-
date POIs according to the same distribution as historical check-ins. However,
Bi-STDDP and Bi-G2AN fails to make full use of rich bi-directional spatiotem-
poral context, and can not reflect the dynamic importance of history.

Actually, missing check-in POI identification is essentially a sequence pre-
diction promblem, and it is naturally studied using RNN. However, the RNN
was originally designed for language modeling, and it can not be used directly
to deal with user mobility traces due to sparsity. Therefore, most existing stud-
ies resort to incorporating spatiotemporal information with the temporal- and
spatial-specific transition matrices into the RNN layer to model local spatiotem-
poral influence [8]. Though they have achieved satisfactory performance, they
may oversimplify the spatial regularity of mobility and neglect the temporal
periodicity of personalized preference. Additionally, people tend to decide which
category of POIs they are going to at a specific time and then determine the spe-
cific POI, which naturally reflects personalized hierarchical mobility preferences
[18]. However, most current methods directly model POI-level user preference
and sequential transition on sparse data without considering the hierarchical
structure in user mobility data (e.g., category taxonomy). We thus model the
hierarchical transition pattern and personalized preference for the identification
task. Figure 1 (b) depicts a POI-category structure example tree. For simplicity,
we only consider the semantic POI categories on leaf nodes, as illustrated in
category layer 1.

Against this background, we propose a novel bi-directional category-aware
multi-task learning (Bi-CatMTL) framework, which explicitly exploits bi-
directional rich spatiotemporal context to search items with high predictive
power using attention mechanism. The main contributions are as follows:

(1) A two-channel encoder, i.e., spatial-aware POI transition encoder and
temporal-aware category transition encoder, is developed to capture user bi-
directional dual-grained mobility transition patterns.

(2) A POI2Cat matrix is introduced to facilitate the interactive multi-task
learning framework, which makes full use of both types of sequential dependen-
cies (i.e., POI and category)

(3) Extensive experiments demonstrate the superiority of our model, and it
can also be adaptively extended to next POI prediction task with convincing
performance.

A Bi-directional Category-Aware Multi-task Learning Framework 587

Fig. 2. Frequency of check-ins for users and POIs.

2 Perlimimaries

In this section, we focus on the preliminary work, and explore the characteristics
of the LBSN datasets here. Two available public datasets used in the paper are
Foursquare NYC and TKY. More details about them will be provided in Sect. 4.
To facilitate the understanding, we also present the definition of key concepts
and problems formulation next.

2.1 Data Analysis

In this subsection, based on the dataset, we investigate user mobility patterns
from check-in frequency, temporal mobility preference, and transition mobility
preference.

Analysis on the Distributions of the Check-in Frequency We first study
the distribution of check-in frequency for POIs and users, as depicted in Fig. 2(a)
and (b). We can observe that a handful of users and POIs with many check-in
records (short head) and many users and POIs with a handful of check-in records
(long tail), which follows the power-law distribution. Theoretically, it suggests
a hierarchical structure, such as category taxonomy [2]. Actually, people tend
to decide which category of POIs they are going to at a specific time and then
determine the specific POI, which naturally reflects personalized hierarchical
mobility preferences. Based on this, we model both POI- and category-level user
mobility pattern to facilitate the identification task.

Analysis on User Temporal Mobility Preference In Fig. 3 (a) and (b), it
shows the users’ temporal preference for user activities and depict the different
preferences for weekdays and weekends. Intuitively, it exhibits a strong tempo-
ral cyclic for users’ mobility patterns. On weekdays, people usually work in the
office from 9 am to 7 pm and have a cup of coffee at 11 am. Interestingly, some
people choose to Gym/Fitness Center at noon or midnight. At weekends, most

588 J. Wu et al.

Fig. 3. User temporal mobility preference. Activity categories = {C1: Bar,
C2:Home(private), C3: Office, C4:Subway, C5: Gym/Fitness Center, C6:Coffee Shop,
C7: Food&Drink Shop}

people don’t have to work, and they may choose some nightlife spots (bar) to
relax at night or early morning, while some people decide to stay at home or
go out for some food and drink at a later time. It shows the periodicity and
preference variance of temporal characteristics. To capture the above person-
alized temporal mobility patterns, we incorporate temporal influence into the
model by dividing the timestamp into day slots(seven days for a week) and time
slots(several sessions for a day).

In Fig. 3 (c), it shows the return probability of user check-ins over time,
defined as the probability of a user re-checking in at a POI within a certain period
of time after her last check-in at that POI. A clear periodic re-checking pattern
can be observed. For our task, such a periodicity indicates that contextual check-
ins with a temporal distance (taken from the time with POI missing) closer to
the periodic peaks provide a higher predictive ability.

Analysis on User Transition Preference Figure 4(a) plots the sequence
transition statistics between user successive activities. It can be observed that
sequence transition patterns exist between activity items; for instance, “Office”
is more likely checked in after “Coffee Shop”, and “Food & Drink Shop” is usu-
ally visited before going “Home(private)”. Intuitively, an activity item can be
deployed into two roles: the departure itself and the destination of others. To
preserve the “double role” for each activity item in the sequence, we use Bi-
directional Recurrent Neural Networks(Bi-RNN) [10] for sequence modeling,
which takes both forward and backward information into account when they
encode the same sequence input.

In Fig. 4(b), we can observe that “Train Stations” looks like the spider web
across the whole city, “Offices” are concentrated in the centre of the city and
“Home(private)” are located around the city and close to the “Train Stations”.
Actually, the city is divided into several regions with certain implicit “functions”,
such as working and resting. Therefore, the closer the user is to such a region
the more predictable her behavior is. It implies that the closer a POI check-in is

A Bi-directional Category-Aware Multi-task Learning Framework 589

Fig. 4. User temporal mobility preference. In the left figure, Activity categories = {C1:
Bar, C2:Home(private), C3: Office, C4:Subway, C5: Gym/Fitness Center, C6:Coffee
Shop, C7: Food&Drink Shop}. In the right figure, Activity categories = {Red: Train
Station, Blue: Office, Yellow: Home(private)}

located to the current location, the more helpful it is for next loction prediction
[16], which can be heuristically extended to our task.

2.2 Problem Definition

In this subsection, we will formulate some key definition and notations which we
use in the paper.

Let U , P and C be a set of LBSN users, POIs and categories, denoted as
{u1, u2, ..., uN}, {p1, p2, ..., pM} and C = {c1, c2, ..., cQ}, respectively. Note
that each POI is geoencoded by coordinate (lat, lon), and associated with one
of the categories without overlap items.

Definition 1 (Check-in Activity). The check-in activity Au
tτ

, denoted as a
quadruple (u, pi, cj , tτ) where u ∈ U , pi ∈ P , cj ∈ C, means the user u made
the check-in at POI pi with category cj at time tτ .

Definition 2 (Check-in Activity Sequence). It is a chronological ordered
sequence, denoted as

〈
Au

t1 , Au
t2 , ..., Au

tT

〉
, and it can also be split into the

POI check-in sequence
〈
pu

t1 , pu
t2 , ..., pu

tT

〉
and the according category check-in

sequence
〈
cu
t1 , cu

t2 , ..., cu
tT

〉
.

Definition 3 (POI2Cat Matrix). Given M POIs and Q categories, a matrix
Mp2c of size M ×Q is constructed. When a POI pi falls into a category cj , M

p2c
ij

is set to 1.

Problem (Missing Check-in POI Identification). Given user u′s check-in
activity sequence, it is assumed that the ith check-in pu

ti
with cu

ti
is lost. The

target is to identify which check-in POI that the user u visited at time ti with
the help of the forward sequence before ti:

〈
Au

t1 , Au
t2 , ..., Au

ti−1

〉
and backward

sequence after
〈
Au

t1 , Au
t2 , ..., Au

ti−1

〉
.

590 J. Wu et al.

Fig. 5. The diagram of proposed Bi-CatMTL architecture for missing POI identifi-
cation, composed of the temporal-aware category and spatial-aware POI transition
ecoder, and the task-oriented decoder.

Problem(NextPOIprediction).Given only the forward sequence information〈
Au

t1 , Au
t2 , ..., Au

ti−1

〉
, it is to predict user’s next check-in POI pu

ti
at time ti.

3 Proposed Methodology

3.1 Model Framework

To solve the above-defined problem, we devise a novel method named Bi-
CatMTL, as shown in Fig. 5. We can observe that Bi-CatMTL consists of three
main components, namely temporal-aware category transition encoder, spatial-
aware POI transition encoder, and task-oriented encoder. It models bi-direction
dual-granularity mobility transition patterns for missing check-in POI identifi-
cation. Next, we will introduce them in detail.

3.2 Bi-directional Recurrent Neural Networks

As the sequential prediction problem, it is naturally studied using RNN, which
learns the sequence transition pattern by taking information from current input
epi

and prior hidden state hi−1 to influence the output hi, denoted as:

hi = f (M · epi
+N · hi−1) , (1)

where f (x) refers to the sigmoid activation function. To better model the forward
and reverse sequence transition, we exploit Bi-RNN for sequence modeling, which
takes both future and current information into account when they encode the
sequence input. It concatenate both forward and backward RNN hidden states
hf

i and hb
i at the ith time point, that is, hi =

[
hf

i , hb
i

]
.

A Bi-directional Category-Aware Multi-task Learning Framework 591

3.3 Temporal-Aware Category Transition Encoder

From a temporal perspective, users’ mobility behavior shows the strong cyclical
and concomitant nature. To model above factors, we first use Havercosin function
as the periodic function to parameterize ΔTij(in days):

λc
period (ΔTij) = havercos (2πΔTij) , (2)

where havercos (x) = cos(x)+1
2 , and it is used to model user daily periodicity.

Besides that, our mobility behavior is of concomitance (e.g. going home after
shopping), and the longer the interval between check-ins, the smaller the con-
comitant effect it makes for prediction. Therefore, we add a temporal exponential
decay weight to model this factor:

λc (ΔTij) = λp
period (ΔTij) · e−βΔTij , (3)

where β is the temporal decay rate, which controls the speed of weight decreasing
over time interval ΔTij . Given the corresponding semantic category forward
sequence, we conduct the temporal-aware hidden search as follows:

cF
i =

1
S (·)

(
w∑

n=1

λc (ΔTi,i−n) · hc
i−n

)

, (4)

where S (·) =
w∑

n=1
λc (ΔTi,i−n), w is the length of subsequence, hc

i−n is the hid-

den state at ti−n for POI sequence, and cF
i denotes the integrated features which

have selected hidden states with high predictive power from the forward seman-
tic category sequence using temporal-aware attention cell. Similarly, cB

i can be
derived from the backward category sequence.

3.4 Spatial-Aware POI Transition Encoder

From a spatial perspective, users’ check-ins in their frequently visited regions
are highly biased toward certain POIs, and the closer a related check-in POI is
located to the current location, the more helpful it becomes for the next POI
prediction [16]. Specifically, the weights for the related Bi-RNN hidden states
are parameterized by spatial distance as follows:

ωp (ΔDij) = e−αΔDij , (5)

where ΔDij is the L2 distance between the GPS coordinates of POIs pi and pj ,
and α is the spatial decay rate which controls the decrease speed of weight over
spatial distance ΔDij . Given the forward POI sequence before ti, we conduct
spatial-aware hidden state search as follows:

pF
i =

1
Z (·)

(
w∑

n=1

ωp (ΔDi−1,i−n) · hp
i−n

)

, (6)

592 J. Wu et al.

where Z (·) =
w∑

n=1
ωp (ΔDi−1,i−n), and pF

i denotes the integrated features which

have selected hidden states with high predictive power from the forward POI
sequence using spatial-aware attention cell. Following that, we derive pB

i from
the backward POI sequence.

3.5 Task-Oriented Encoder

To model user personalized preference and temporal preference variance, we
introduce user learnable embeddings eu and timeslot embeddings eτ . Note that
a timestamp is split into the day and hour slot, and we split a week into seven
days and a day into six sessions, and it totals 42 distinct timeslots τ for a week.
Finally, we concatenate the features as follows:

xinput =
[
eu, eτ , pF

i , pB
i , cF

i , cB
i

]
. (7)

Considering the interplay between users’ mobility category and POI visit, we
thus perform the major task (missing POI identification) with the help of an
auxiliary task(missing semantic category identification). That is mainly because
of two reasons: (1) it is of complementarity for both prediction tasks; (2) jointly
learning both tasks facilitates to enhance the model generalization. We thus
perform the multi-task as:

ŷp = softmax (Wp · xinput + bp)
ŷc = softmax (Wc · xinput + bc) ,

(8)

where ŷp ∈ RM×1 and ŷc ∈ RQ×1 denote the prediction of missing POI and
semantic category with softamx function.

Actually, each POI is associated with a certain category, so the distribution
of predicted POI can be transformed into the distribution of category as follows:

ŷ′
c = softmax(ŷT

p · Mp2c
j), (9)

where Mp2c ∈ RM×Q is the relation matrix which indicates the affiliation
between each POI and category, and ŷ′

c ∈ R1×Q is the category distribution
generated by generated predicted POI distribution. As for two category distri-
butions ŷc and ŷ′

c, we should learn the model to make them close with maximizing
their distribution similarity as follows:

DJS

(
ŷ′
c ‖ŷc

)
=

1

2
(DKL(ŷ

′
c

∥
∥
∥
∥
ŷ′
c + ŷc

2
) +DKL(ŷc

∥
∥
∥
∥
ŷ′
c + ŷc

2
)), (10)

where DJS (·) is the Jensen-Shannon Divergence (JS) to measure the distribu-
tions of different facets diverging from each other entropically with symmetry,
and it circumvents the asymmetry issue and bounds to [0, 1]. The larger the
value, the better the coordination between tasks. DKL (·) is the Kullback-Leibler
Divergence which measures the observed distribution of facet P1 diverging from
distribution of facet P2, and it is denoted as follows:

DKL (P1 ‖P2) =
∑

P1log
P1

P2
. (11)

A Bi-directional Category-Aware Multi-task Learning Framework 593

For these two tasks, they are both independent but also inherently interdepen-
dent, so we define the coordination between them as Coor (ŷp, ŷc):

Coor (ŷp, ŷc) = DJS

(
softmax(ŷp · Mp2c

j) ‖ŷc

)
. (12)

The larger Coor (·)), the better coordination of two tasks.

3.6 Model Optimization

Given the training samples, the model is trained to make the prediction distri-
bution fit the ground distribution more closely by minimizing the loss value as
follows:

Jp = − 1
R

∑R

i=1

∑|P |
j=1

yp
ij · log (

ŷp
ij |xinput, θ

)
, (13)

where Jp refers to the cross-entropy loss between the prediction and the
ground truth. R and |P | are the number of training samples and candidate
POIs, repectively, and θ is the involved parameters set. yp

ij is either equal to 1
or 0 for the ground truth, and ŷp

ij refers to the identification probability for the
pj outputted by the model. Following that, the loss function of missing check-in
category identification can be denoted as:

Jc = − 1
R

∑R

i=1

∑|C|
k=1

yc
ik · log (ŷc

ik |xinput, θ) . (14)

In addition, we incorporate the coordination influence into consideration and
seek to minimize the sum loss as:

J = (2 − Coor (ŷp, ŷc)) · (λpJp + λcJc) +
λ

2
‖θ‖2, (15)

where λp and λc (λp + λc = 1) are the weights to balance the importance of
different task losses. ‖θ‖2 is the regularization term to avoid over-fitting, and λ
controls the power of regularization. Note that, Coor (·) acts an scaling factor
for loss penalty. When Coor (·) is small, the loss penalty becomes large and it
brings large magnitude grandient update.

4 Evaluation

4.1 Dataset

Two public LBSN datasets, i.e., NYC and TKY [17] are used for performance
evaluation. These two datasets1 are collected in New York and Tokyo from 12
Apr 2012 to 16 Feb 2013, respectively. The statistic of the two datasets is shown
in Table 1. Note that, the involved data has been strictly decrypted to avoid any
risk of information leakage. Following [13], POIs checked in by fewer than 10
1 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.

https://sites.google.com/site/yangdingqi/home/foursquare-dataset

594 J. Wu et al.

users and users with fewer than 10 check-ins are eliminated. Each user’ check-
ins are sorted chronologically, and then we take the first 80% for training, the
next 10% for validation, and the rest for testing. The source code of our model
is available.2

Table 1. Dataset statistics

Dataset #User #POI #Category #Check-in

NYC 1083 38333 251 227428
TKY 2293 61858 247 573703

4.2 Baseline Method

– PRME-G [1] is a widely used personalized ranking-based method, which
jointly models sequential transition, personalized preference and geographical
for POI Recommendation;

– ST-RNN [8] is an RNN-improved method that models local spatiotemporal
influence by incorporating both distance- and time interval-specific transition
matrix into each RNN layer;

– PACE [15] is a deep network-based method, which first models sophisticated
interactions between them by embedding users and POIs into a shared space,
then it is used to predict the preference of users for POIs;

– Flashback [16] is the state-of-the-art RNN-based model for next location
prediction by doing flashbacks on past hidden states in RNNs;

– Bi-STDDP [11] is the pioneer work which is specially developed for missing
POI identification by modeling personalized preference and the spatiotem-
poral dependence given the two adjacent POIs visited before and after the
targeted timestamp.

– Bi-G2AN [13] is the state-of-the-art method for missing POI identification,
which designed a GAN-based framework to generate the candidate POIs obey-
ing the same distribution as historica check-ins.

4.3 Implementation Details

For such two datasets, we deploy batch size of 256, embedding dimension of 32,
window size of 8, regularization weight of 0.5, initial learning rate of 0.005. As
for spatial decay rate α temporal decay rate β, we set α = 100 and β = 0.1,
respectively. These values are chosen via a grid search on the validation set, and
the key parameter sensitively analysis will be introduced in Sect. 4.7.

2 https://github.com/Shzuwu/Missing-POI-Identification3.

https://github.com/Shzuwu/Missing-POI-Identification3

A Bi-directional Category-Aware Multi-task Learning Framework 595

Table 2. Evaluation for missing POI identification.The best result in each column is
in bold, while the second is underlined

Method NYC TKY

Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP

PRME-G [1] 0.1077 0.2836 0.3717 0.1912 0.0870 0.2003 0.2557 0.1436

STRNN [8] 0.1302 0.3225 0.4055 0.2250 0.1612 0.3665 0.4492 0.2543

PACE [15] 0.1287 0.3226 0.4033 0.2199 0.1608 0.3605 0.4469 0.2518

Flashback [16] 0.1345 0.3351 0.4090 0.2246 0.1637 0.3832 0.4721 0.2671

Bi-STDDP [13] 0.1743 0.3476 0.4176 0.2533 0.2049 0.4107 0.4838 0.2991

Bi-G2AN [11] 0.1830 0.3686 0.4358 0.2674 0.2145 0.4367 0.4908 0.3120

Bi-CatMTL 0.1864 0.3872 0.4816 0.2890 0.2181 0.4458 0.5172 0.3189

Table 3. Performance of missing check-in POI identification on different sequences in
NYC dataset.

Acc@1 Acc@5 Acc@10 MAP

F-CatMTL 0.1684 0.3652 0.4672 0.2536
B-CatMTL 0.1645 0.3663 0.4614 0.2547
Bi-CatMTL 0.1864 0.3872 0.4816 0.2890

4.4 Evaluation Metrics

Accuracy@N(Acc@N , where N=1,5,10) and Mean Average Precision (MAP)
are employed for performance evaluation. Specifically, for a test case, we define
hit@N as either 1, if the ground truth POI appears in the top-N predicted POIs
or categories list, or the value 0, if otherwise. The Acc@N is computed as follows:

Acc@N =
∑

hit@N

|Dtest| , N = {1, 5, 10}, (16)

where
∑

hit@N denotes the sum of all hits, and |Dtest| is the number of test
samples. As for the predicted item, we not only want it in the top-N list but
also want it to be at the top of this list. MAP is used to measure the position of
ground truth POI in the ranked predicted list. Overall, the larger Acc@N and
MAP value, the better model performance.

4.5 Performance Comparison

Extensive experiments are conducted to evaluate our Bi-CatMTL with other
state-of-the-art baseline models as shown in Table 2, and we have following obser-
vations.

First, PRME-G, as the rule-based model, fails to achieve high Acc@N and
MAP on two datasets because the historically check-in POIs and moving con-
straints with geographical distance can help missing POI identification, but sim-
ply leveraging them cannot achieve satisfactory performance as they are deficient
in modeling complex mobility regularity. Second, RNN-based methods(STRNN,

596 J. Wu et al.

Flashback) and deep network-based approaches (PACE) achieve similar perfor-
mance, and they generally perform better than rule-based methods, demonstrat-
ing their strong capability of sequence and complex relation modeling. Third,
Bi-CatMTL, Bi-G2AN, and Bi-STDDP, as the missing POI identification meth-
ods, deliver decent performance on both datasets. Because it is different from
traditional POI recommendation or prediction tasks, missing POI identification
models richer context with both forward and backward sequential information
instead of from a single directional sequence. Last, compared to the advanced
missing POI identification method Bi-STDDP and Bi-G2AN, Bi-CatMTL per-
forms better because: (1)Bi-CatMTL exploits the interplay between POI and
semantic category via an interactive multi-task learning framework which mod-
els the hierarchical dependencies between these two items; (2)Bi-CatMTL adopts
the spatiotemporal-aware attention encoder to search the hidden states with high
predictive power bilaterally across both POI and semantic category granularity,
which helps make full use of bi-directional rich context.

4.6 Imapct of Forward and Backward Sequences

Intuitively, a bi-directional sequence contains more useful context information
and brings performance improvement. Hence, we conduct a comparison experi-
ment evaluated by Acc@k and MAP on the NYC dataset, as shown in Table 3.
Similar results can also be observed on TKY. Not surprisingly, compared with
F-CatMTL and B-CatMTL which only use the backward or forward sequence
information, Bi-CatMTL performs best. It is worth pointing out that the per-
formances of our method F-CatMTL which only models the forward sequence is
still superior to the baseline models containing the next POI recommendation
and prediction. Significantly, Bi-CatMTL can be naturally applied to next POI
prediction tasks with competitive performance.

4.7 Effect of Hyper-parameter Settings

In this section, we will study the impact of key hyper-parameters on NYC,
including batch size, embedding size d, window length w, and regularization
weight λp, and the similar results can also be observed on TKY.

To study the impact of batch size on final identification, we vary the value of
batch size in the range of [8, 512]. For clarity, we adopt the logN

2 coordinate axis.
The result is depicted in Fig. 6 (a), and It can be observed that the performance
gets improved with the batch size increasing and becomes stable when it is
greater than 128. Actually, too small a batch size causes the instability of network
convergence. Too large a batch size takes less time but makes large running
memory requirements and easily falls in a local optimum. To make a trade-off
between the above effects, we finally set the batch size as 256.

To investigate the effect of embedding size d, we vary it in the range of [2,
64]. As shown in Fig. 6 (b), we can observe that performance improves with the
increasing dimension of embedding, as it gradually fits the data distribution suf-
ficiently. However, when d ≥ 16, the improvement gradually becomes marginal.

A Bi-directional Category-Aware Multi-task Learning Framework 597

Fig. 6. Performance of missing POI identification on NYC dataset with varying embed-
ding size d and window size w evaluated on Acc@1 and MAP.

Considering the larger embedding dimension means higher computational com-
plexity and converges to local optimum, we set d to 32.

To study the impact of regularization weight λp, which is used to weigh
the importance of POI-level and category-level loss, we report the experimental
results by varying λp in the range of [0.1, 0.9] stepped by zero point one in Fig. 6
(c). In the figure, it shows a small unimodal distribution where the performance
first gradually climbs up and reaches the peak, then it declines and tends to
become stable. Taken overall, the performance comprehensively gets the best
when λp is set to 0.5.

To investigate the effect of window size w, we vary it in the range of [2,14]
stepped by two. As shown in Fig. 6 (d), it first makes gradual improvement with
w increasing, as it gets the richer context. When w ≥ 8, the performance of MAP
is with less fluctuation while the performance of Acc@1 has some degradation
as too long a searching window length may make some noise incorporated. For
overall performance, we finally set w to 8.

5 Conclusion

Herein, we proposed a bi-directional category-aware multi-task learning (Bi-
CatMTL) framework to address the problem of missing check-in POI identi-
fication. Specifically, we modeled bi-directional dual-grained sequences to cap-
ture user mobility transition patterns. To make full use of rich context from
sparse traces, we developed the spatiotemporal-aware encoder to explicitly weigh
bi-directional hidden states with high prediction capability. The task-oriented
decoder performs both missing POI and category tasks, and a POI2Cat matrix
is introduced to model the interdependence between them. Experimental results
show the superiority of Bi-CatMTL over state-of-the-arts and it can be naturally
applied to next POI prediction tasks with convincing performance.

Acknowledgments. We first gratefully acknowledge anonymous reviewers who read
this draft and make any helpful suggestions. The work is supported by the National
Nature Science Foundation of China (No. U22A201181, U1803262, U1736206), National
Social Science Fund of China (No. 19ZDA113), and the Application Foundation Fron-
tier Project of Wuhan Science and Technology Bureau (No. 2020010601012288).

598 J. Wu et al.

References

1. Feng, S., Li, X., Zeng, Y., et al.: Personalized ranking metric embedding for next
new poi recommendation. In: Proceedings of IJCAI, pp. 2069–2075 (2015)

2. Feng, S., Tran, L.V., Cong, G., et al.: HME: a hyperbolic metric embedding app-
roach for next-POI recommendation. In: Proceedings of SIGIR, pp. 1429–1438
(2020)

3. Hang, M., Pytlarz, I., Neville, J.: Exploring student check-in behavior for improved
point-of-interest prediction. In: Proceedings of SIGKDD, pp. 321–330 (2018)

4. Islam, M., Mohammad, M.M., Das, S.S.S., et al.: A survey on deep learning based
point-of-interest (POI) recommendations. arXiv preprint arXiv:2011.10187 (2020)

5. Li, H., Deng, K., Cui, J., et al.: Hidden community identification in location-based
social network via probabilistic venue sequences. Inf. Sci. 422, 188–203 (2018)

6. Li, R., Shen, Y., Zhu, Y.: Next point-of-interest recommendation with temporal
and multi-level context attention. In: Proceedings of ICDM, pp. 1110–1115. IEEE
(2018)

7. Li, X., Cong, G., Li, X.L., et al.: Rank-GeoFM: a ranking based geographical fac-
torization method for point of interest recommendation. In: Proceedings of SIGIR,
pp. 433–442 (2015)

8. Liu, Q., Wu, S., Wang, L., et al.: Predicting the next location: a recurrent model
with spatial and temporal contexts. In: Proceedings of AAAI, pp. 194–200 (2016)

9. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: Proceedings of the 19th Inter-
national Conference on WWW, pp. 811–820 (2010)

10. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

11. Shi, M., Shen, D., Kou, Y., Nie, T., Yu, G.: Missing POI check-in identification
using generative adversarial networks. In: Jensen, C.S., et al. (eds.) DASFAA 2021.
LNCS, vol. 12681, pp. 575–590. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-73194-6_38

12. Sun, K., Qian, T., Chen, T., et al.: Where to Go Next: modeling Long- and Short-
Term user preferences for point-of-interest recommendation. Proc. AAAI 34, 214–
221 (2020)

13. Xi, D., Zhuang, F., Liu, Y., et al.: Modelling of bi-directional spatio-temporal
dependence and users’ dynamic preferences for missing POI check-in identification.
Proc. AAAI 33, 5458–5465 (2019)

14. Xie, M., Yin, H., Wang, H., et al.: Learning graph-based POI embedding for
location-based recommendation. In: Proceedings of CIKM, pp. 15–24 (2016)

15. Yang, C., Bai, L., Zhang, C., et al.: Bridging collaborative filtering and semi-
supervised learning: a neural approach for POI recommendation. In: Proceedings
of KDD, pp. 1245–1254 (2017)

16. Yang, D., Fankhauser, B., Rosso, P., et al.: Location prediction over sparse user
mobility traces using RNNs: flashback in hidden states! In: Proceedings of IJCAI,
pp. 2184–2190 (2020)

17. Yang, D., Zhang, D., Zheng, V.W., et al.: Modeling user activity preference by
leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man
Cybern.: Syst. 45(1), 129–142 (2014)

http://arxiv.org/abs/2011.10187
https://doi.org/10.1007/978-3-030-73194-6_38
https://doi.org/10.1007/978-3-030-73194-6_38

A Bi-directional Category-Aware Multi-task Learning Framework 599

18. Zhang, L., Sun, Z., Zhang, J., Kloeden, H., Klanner, F.: Modeling hierarchical
category transition for next POI recommendation with uncertain check-ins. Inf.
Sci. 515, 169–190 (2020)

19. Zhao, K., Zhang, Y., Yin, H., et al.: Discovering subsequence patterns for next
POI recommendation. In: Proceedings of IJCAI, pp. 3216–3222 (2020)

Performance and Cost-Aware Task
Scheduling via Deep Reinforcement
Learning in Cloud Environment

Zihui Zhao1,2, Xiaoyu Shi1,3(B), and Mingsheng Shang1,3

1 Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences,

Chongqing 400714, China
xiaoyushi@cigit.ac.cn

2 Beihang University, Beijing 100191, China
3 School of Automotive Software, Chongqing School, University of Chinese Academy

of Sciences, Chongqing 400714, China

Abstract. In the cloud computing environment, task scheduling with
multiple objectives optimization becomes a highly challenging problem in
such a dynamic and bursty environment. Previous studies have mostly
emphasized assigning the incoming tasks in a specific scenario, with a
weak generalization ability to various objectives automatically. Thus,
they suffer the inefficient issue under large-scale and heterogeneous cloud
workloads. To address this issue, we propose a deep reinforcement learn-
ing (DRL)-based intelligent cloud task scheduler, which makes the opti-
mal scheduling decision only dependent on learning directly from its
experience without any prior knowledge. We formulate task scheduling
as a dynamical optimization problem with constraints and then adopt
the deep deterministic policy gradients (DDPG) network to find the opti-
mal task assignment solution while meeting the performance and cost
constraints. We propose a correlation-aware state representation method
to capture the inherent characteristics of demands, and a dual reward
model is designed to learn the optimal task allocation strategy. Extensive
experimental results on Alibaba cloud workloads show that compared
with other existing solutions, our proposed DDPG-based task scheduler
enjoy superiority and effectiveness in performance and cost optimization.

Keywords: Cloud computing · Task scheduling · Deep reinforcement
learning · Cost optimization · Performance improvement

1 Introduction

Cloud computing is the most popular computing paradigm in IT society [1].
With virtualization technologies, the data center can easily abstract the different
hardware infrastructures as a larger resource pool and provides elastic hardware
resources as services to users through the Internet. For instance, Amazon EC21,
1 https://aws.amazon.com/ec2/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 600–615, 2022.
https://doi.org/10.1007/978-3-031-20984-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_43&domain=pdf
https://aws.amazon.com/ec2/
https://doi.org/10.1007/978-3-031-20984-0_43

Performance and Cost-Aware Task Scheduling 601

Microsoft Azure2, and Alibaba Cloud3 offers customized hardware resource to
customers in the form of virtual machine (VM), and charge based on actual
usage. As a result, increasingly services have migrated to the cloud environment
for fast development and cost-saving.

Regarding of cloud environment, the effective task scheduling of cloud ser-
vices is one of the key enablers of large-scale cloud systems [2]. However, the
unique features of the cloud environment make task scheduling among VMs
more challenging. Firstly, the cloud workload featured highly dynamic varia-
tion and unexpected bursts. Thus, it requires a designed task scheduler with
the characteristic of robustness against the unexpected burst in incoming cloud
tasks. Secondly, the problem of task scheduling in cloud environment is NP-
hard problem. Furthermore, the datacenter usually offers users various types of
VM instances to meet users’ customized requirements. Each type of VM has
its own pricing model. Thus, the large-scale task scheduling problem becomes
more complicated in such a heterogeneous environment. Last but not least, task
scheduling in the cloud environment is a multi-objective optimization problem
and is related to the profits of multiple stakeholders. For the date center, it
is expected to maximize the utilization ratio of hardware resources. The cloud
services providers emphasize minimizing the usage cost of rented VM instances,
while the end users concern more about the service experience offered by cloud
services providers. Thus, how to design an efficient task scheduler to guarantee
the profits of different stakeholders is also an important problem.

Following this, several solutions have been proposed with using heuristic-
based algorithms [3–7]. Some of these methods focus on scheduling problems for
offline or static batch tasks, which are not incapable of the dynamic workloads
in real-time scenarios. For the online task scheduling method, existing solu-
tions using meta-heuristic algorithms can only assign tasks sequentially, which
is inefficient to deal with the massive and dynamic workload case. Meanwhile,
heuristic-based task scheduling methods emphasize on a specific scenario, lack-
ing the generalization ability to adapt to a wide range of objectives. Meanwhile,
they cannot utilize the inherent characteristics of workloads to improve the opti-
mization effect.

To this end, we propose an effective task scheduling based on the deep rein-
forcement learning (DRL) framework in this paper. We consider online task
scheduling as a constrained dynamical optimization problem. We formulate it
as a Markov decision process (MDP) model, then adopt the deep deterministic
policy gradient (DDPG) network to find the optimal task assignment solution.
It can learn directly from its experience without any prior knowledge, making
the appropriate scheduling decision for VMs for continuous online task requests.
The main contributions of this paper include:

– We propose an RL model of the task scheduling problem in cloud environ-
ments. We also formulate the state representation and rewards to train DRL

2 https://azure.microsoft.com/en-ca/.
3 https://www.alibabacloud.com/.

https://azure.microsoft.com/en-ca/
https://www.alibabacloud.com/

602 Z. Zhao et al.

agents to satisfy load balancing, reduce average response time and optimize
the usage cost of a cloud cluster.

– We design a correlation-aware state representation method that leverages
the Pearson’s correlation coefficient (PCC) and standard deviation of the
resources demands (STD) to help perceive the feature of the workloads. A
dual-reward model is designed to improve the effectiveness of learning the
optimal policy.

– We conduct extensive experiments on real-world workload trace. It clearly
demonstrates the superiority of our method over other state-of-the-art
approaches.

2 Related Works

Scheduling tasks in the cloud environment is an essential and challenging prob-
lem, which has been studied for decades. To improve the performance of cloud
datacenter under the constraints of the Service Level Agreements (SLAs), var-
ious task assignment algorithms and approaches are proposed [8–10]. Several
solutions view the task scheduling problem as an NP-hard problem, whose goal
is to optimize the task assignment in a stable environment. Hence, some heuris-
tic or meta-heuristic methods have been proposed to solve the task scheduling
problem, such as SARO [6] and hybridized BA [7]. For instance, Luo et al. [5]
proposed a Correlation-Aware Heuristic Search(CAHS) method to detect the
inherent correlations of the demands of different types of computing resources.
Note that, most heuristic-based solutions only focus on specific scenarios, which
limits their generalization ability in a highly dynamic environment.

Recently, several reinforcement learning (RL) methods have been applied to
cloud task scheduling [11,12]. Compared to the heuristic-based methods that
focus on maximizing the immediate (short-term) reward, RL-based method can
help cloud services learn the long-term optimal task scheduling policy on-the-
fly. For example, Wei et al. [13] proposed a QoS-aware job scheduling method
for applications in a cloud deployment. DeepRM [14] used REINFORCE, a pol-
icy gradient DeepRL algorithm for multi-resource packing in cluster scheduling.
Rjoub et al. [15] combined DRL with LSTM to address large-scale workloads.
However, the cluster of this model is assumed to be homogeneous. Therefore,
they can not adapt to various scenarios easily and be widely used in the real-
world environment.

In summary, most of the existing methods can only schedule single task at
a time. Furthermore, these works only focus on performance improvement. In
addition, most of the previous solutions only adapt to some specific scenarios,
and cannot be generalized to adapt to various scenarios. In contrast, our method
can schedule multiple tasks simultaneously. By perceiving the status of the batch
tasks as a whole, it can use Pearson’s correlation coefficient (PCC) and standard
deviation of the resource demand to evaluate the feature of the workload and
therefore come up with better strategies. What’s more, it can adapt to multiple
optimization objectives such as task response time and cost-efficiency.

Performance and Cost-Aware Task Scheduling 603

Fig. 1. Task scheduling framework in the cloud environment

3 System Architecture and Problem Statement

3.1 Overview of System Architecture

A typical cloud computing scenario is considered in this paper. It involves three
stakeholders: datacenter, cloud services providers and end users. Figure 1 is the
system architecture. On the cloud side, each VM maintains a task wait queue
for received tasks. Here, we assume that each VM executes all assigned tasks
in a non-preemptive way (i.e.,the first come first served way). On the other
hand, users are allowed to submit multiple types of tasks at the same time.
These tasks can be of different types, such as Computation-intensive tasks, I/O-
intensive tasks ,and normal tasks. These tasks can be assigned to different VMs
through the designed task scheduler. Please note that the arrival time, quantity,
and type of tasks submitted by users are all unpredictable.

The task scheduler consists of three core components: a task queue (TQ)
module, a status monitor (SM) module ,and a DRL-based scheduler module.
The function of TQ is mainly to store heterogeneous tasks submitted by dif-
ferent end-users over time. The SM is used to collect status information of all
assigned tasks and VMs, including task length, CPU utilization of each task,
VM’s MIPS (Million Instructions Per Second), RAM utilization, and waiting
time of a task. For scheduler module, it is responsible for calculating the optimal
task assignment solution, based on the collected status information from SM.
After that, according to the result of the scheduler module, the tasks in TQ are
assigned to suitable VM instances automatically for execution.

3.2 Problem Formulation

For the convenience of expression, we first define the related symbol in our
model, as shown in Table 1. Then we formalize the cloud task scheduling as a
constrained dynamic optimization problem.

604 Z. Zhao et al.

Table 1. Definition of symbols

Symbol Definition

J The total number of VMs in the cluster

I The total number of tasks in a batch

speed The data transportation speed

vmj The jth VM in the cluster 1 ≤ j ≤ J

mipsj The speed that the vmj executes the instructions

ramj The size of vmj
′s memory

pricej The price of the vmj per second

taski The ith task in the task batch 1 ≤ i ≤ I

mii The task length of taski

cpui The required cpu utilization rate of taski

datai The data size of taski

coreNumj The number of cores in the jth VM

To provide personal services and maximize resource utilization, the data cen-
ter usually offers various types of VM instances with varied resource configura-
tions. Hence, the VM instance can be described as vmj = (mipsj , ramj , pricej)
(0 ≤ j ≤ J), where j indicates the id of the VM instance.

Generally, the tasks are submitted by numerous end-users simultaneously.
On the other hand, the cloud services providers have no prior knowledge of the
incoming workloads in advance, e.g., the amount and type of submitted tasks.
Hence, in our model, a task is identified as taski = (mii, cpui, datai) (0 ≤ i ≤ I),
where i is the task id.

The task scheduler is responsible for assigning user tasks to suitable VM
instances. When a task is allocated to a specific VM instance, it firstly enters
the corresponding waiting queue in a first-come-first-sever (FCFS) manner. The
response time of task i deployed on VM j (i.e., RTij) is defined as the total
amount of time that task i stays in VM j. In detail, it can be divided into the
duration of task i will spend in the waiting queue (i.e., Qqueue

j) and the execution
time in the CPU (P exe

ij). Considering the transportation of datai consumes some
time, the RTij can be defined as:

RTij = P exe
ij + max

(
Qqueue

j ,
datai

speed

)
(1)

Based on the above assumption, the execution time P exe
ij is defined as P exe

ij =
mii

mipsj×cpui
, and the waiting time Qqueue

j is Qqueue
j =

∑C
k=1 P exe

kj , where C means
the number of tasks (arrival earlier than task i) that are waiting in the queue of
vmj . Furthermore, the average response time of total I(t) tasks at time t is:

AT (t) =
I(t)∑
i=1

RTij

mii
(2)

Performance and Cost-Aware Task Scheduling 605

Fig. 2. The structure of DRL-based Task scheduler

Given the price of rented V Mj , the cost of executing taski is evaluated as ECi =
P exe

ij × pricej . Thus, the total cost of executing I(t) tasks at time t is:

EC(t) =
I(t)∑
i=1

ECi (3)

Based on (2) and (3), the optimal target of the task scheduler can be defined
as minimizing the average response time and total cost of all tasks during the
whole running time K, it can be expressed as:

minimize β ×
K∑

t=1

AT (t) + (1 − β) ×
K∑

t=1

EC(t) (4)

4 Performance and Cost-Aware Task Scheduler

In this section, we propose a DDPG-based method for performance and cost-
aware task scheduling in the high dynamic cloud environment. The objectives
of our method are to optimize the average response time and total cost when
executing large-scale tasks in VM cluster. Considering the time-varying charac-
teristics of workload, the dynamic tasking scheduling problem is constructed as
a Markov decision process (MDP), then the DDPG algorithm is employed to
obtain the optimal task scheduling strategy. Specifically, the correlation-aware
state representation and dual rewards design are introduced.

4.1 MDP Model

In the cloud environment, the workloads are unpredictable and highly dynamic.
Thus, it is impossible for us to adapt traditional scheduling methods to such
flexible scenarios. In this scenario, we model the task scheduling in the cloud
environment as a Markov Decision Process (MDP). Formally, we define the tuple
of three elements (S,A,R) of MDP in the cloud task scheduler as follows:

606 Z. Zhao et al.

– State space S: In the scheduling algorithm, a state s ∈ S is defined by the
correlation of the batch tasks scor, the current status of submitted tasks sTask

and rented VMs sV M , i.e., s = scor
⋃

sTask
⋃

sV M .
– Action Space A: An action a =

{
vm1, vm2, . . . , vmJ

} ∈ A is to assign a
batch of tasks to rented J VMs based on the current state s.

– Reward R: The reward is used to guide the task scheduler to make the
optimal assignment solution (i.e., action) under current states, based on
the objective of the proposed task scheduler framework. In our model, the
reward of assigning a batch of I tasks to a cluster of J VMs is: rewordIJ =
rewardprior

IJ + rewardposterior
IJ .

The agent is to assign different tasks that users submit to appropriate VMs.
The agent observes the state of tasks and VMs in the cluster and takes action
according to trained police π. After that, it receives a reward immediately from
the environment. In detail, the proposed DDPG-based task scheduling frame-
work consists of two parts, i.e., online net and target net, to train and test the
task assignment policy based on the online environment and offline historical
data. For each part, it includes an Actor net and Critic net. The structure of
our proposed task scheduler is illustrated in Fig. 2.

4.2 Correlation-Aware State Representation

State representation plays an important role in the DRL algorithms because it
describes the current information of the cloud environment. In [5], it revealed
the effectiveness of considering correlations while scheduling the tasks. Therefore,
we propose a correlation-aware state representation method to help the agent
better perceive the workload. In detail, PCC is an effective matrix to evaluate
the correlation of any two task, and has been widely applied in various fields.
Hence, in this paper, we adopt PCC to measure demand correlation. Considering
the demand for three types of resources (mi, cpu, data) in batch tasks, the PCC
of the batch tasks can be calculated by:

ρ(mi, data) =
cov(mi, data)

σ(mi) × σ(data)
, (5)

ρ(mi, cpu) =
cov(mi, cpuutil)
σ(mi) × σ(cpu)

, (6)

ρ(cpu, data) =
cov(cpu, data)

σ(cpu) × σ(data)
, (7)

Here, cov(·) and σ(·) represent the covariance and standard deviation, respec-
tively. In addition, to evaluate the distributions of the resource demands between
different tasks, we also employ the standard deviation(STD) of std(mips),
std(data) ,and std(cpu), which can be calculated by:

std(mips) =

√∑I
i=1(mipsi − mips)2

I
(8)

Performance and Cost-Aware Task Scheduling 607

std(cpu) =

√∑I
i=1(cpui − cpu)2

I
(9)

std(data) =

√∑I
i=1(datai − data)2

I
(10)

We applied the PCC and STD to the state space to let the agent make better
decisions according to the feature of the batch tasks. Therefore the correlation
part of the state s is:

scor = [ρ(mi, data), ρ(mi, cpu), ρ(cpu, data), std(mi), std(data), std(cpu)] (11)

The second part of the vector is the batch’s specification. Suppose there are
in total I tasks in a batch, the batch can be described as:

stask = [task1
mi, task1

cpu, task1
data, ..., taskI

mi, taskI
cpu, taskI

data] (12)

The third part of the vector represents the state of the VMs. Suppose there
are in total J VMs in the cluster. Note that each vmj may have a Task Queue
waiting to be executed, therefore it has a feature that represents the time that
a new task will wait in line Qqueue

j , so the cluster can be described as:

sV M = [vm1
mips, vm1

price, vm1
Q, ..., vmJ

mips, vmJ
price, vmJ

Q] (13)

These three parts make up the state space vector. After each action, the cluster
state will be updated and the next batch will come and make up the new space
state.

4.3 Dual Rewards

To better guide the agent in learning an optimal task allocation scheme, we
define a dual reward model for the proposed DDPG method, which includes a
prior and a posterior rewards. Specifically, the prior reward means the agent can
know the reward of a specific action before the VMs execute the tasks. We use
rewardprior

IJ to represent the total prior reward of a batch task:

rewordprior
ij =

{
rewardpri/I, if Qqueue

j is not empty
0, if Qqueue

j is empty
(14)

rewardprior
IJ =

I∑
i=1

rewordprior
ij (15)

Here, rewardpri is a constant that is used to control the maximum of prior
reward. The posterior reward means the agent can only know the reward after
the VMs execute the tasks. Our posterior reward has two elements, one is the
total cost of the tasks ECIJ , the other is the average response time AT . For

608 Z. Zhao et al.

a specific task in the batch, the execution of it will have a certain cost and a
certain response time ratio, which are ECij and ATij respectively.

To make the training process stable, we normalized the EC and AT in a
batch. We define the maximum and minimum AT in a batch as ATmax and
ATmin, and the maximum EC in a batch as ECmax. Therefore, the normalized
AT and cost are:

AT ∗
ij =

ATij − ATmin

ATmax − ATmin
(16)

EC∗
ij =

ECij

ECmax
(17)

Hence, the posterior reward of this batch is:

rewardposterior
IJ = β ×

I∑
i=1

AT ∗
ij + (1 − β)

I∑
i=1

EC∗
ij (18)

Note that β ∈ [0, 1]. β can be used to adjust the agent’s optimization objectives.
For example, if β = 1, then an agent is trained to reduce the average response
time.

The two rewards are applied simultaneously to train the agent. We can adjust
the value of rewardpri to control the size relationship between two rewards. The
goal of the DDPG agent is to minimize the rewards.

4.4 Algorithm Training

In the following, we introduce our proposed DDPG-based task scheduling algo-
rithm (see Algorithm 1). Offline training can not only make the critic network
evaluate the actions more accurately, but also let the action network generate
higher scored actions. To achieve this, we applied experience replayed strategy
and target network [16].

Experience replay’s main purpose is to solve the problem of correlation and
non-stationary distribution of empirical data. We introduced a fixed-size memory
replay buffer R. At each time step, we will store the latest (at, st, rt, st+1) sets to
the replay buffer R, and randomly sample a mini-batch from the buffer to train
the agent. Because the DDPG algorithm is an off-policy algorithm, the replay
buffer can be relatively large which allows the algorithm to learn across a set
of uncorrelated transitions. Therefore, the parameters of the actor network are
updated by:

∇θµμ ≈ Eμ′ [∇θµQ(s, a|θQ)|s=st,a=μ(st|θµ)]

= Eμ′ [∇aQ(s, a|θQ)|s=st,a=μ(st)∇θµμ(s|θμ)|s=st
] (19)

Directly implementing Q-learning with a neural network is proved unstable
in many situations. Introducing a target network can significantly reduce the
oscillations of the neural network’s parameters caused training process. The tar-
get network is a copy of the online network (actor and critic network), but it is

Performance and Cost-Aware Task Scheduling 609

Algorithm 1. DDPG-based task scheduling Algorithm
1: Randomly initialize online critic network Q(s, a|θQ) and online actor network

μ(s|θμ) with parameters θQ and θμ

2: Initialize target network Q’ and μ′ with parameters θQ′ ← θQ, θμ′ ← θμ

3: Initialize memory replay buffer R

4: Initialize exploration probability ε and exploration warm up steps n
5: for each batch of I tasks arrive at time t = 1, ..., T do
6: if t > n then
7: Sample a mini-batch of N transitions (si, ai, si+1) from R , which all the

selected tasks have been completed
8: Calculate rewardi

IJ according to responseTime and exT
9: Calculate ri according to rewardi

IJ

10: Set yi = ri + λQ′(si+1, μ
′(si+1|θμ′

)|θQ′
)

11: Update the critic by minimizing the loss:
L = 1

N

∑
i(yi − Q(si, ai|θQ))2

12: Update the actor policy using the sampled gradient:
∇θµμ|si ≈ 1

N

∑
i ∇aQ(s, a|θQ)|s=si,a=μ(si)∇θµμ(s|θμ)|s=si

13: Update the target networks:
θQ′ ← τθQ + (1 − τ)θQ′

θμ′ ← τθμ + (1 − τ)θμ′

14: With probability 1 − ε generate an action at = μ(st|θμ) and ε generate a
random action at

15: else
16: Generate a random action at

17: end if
18: Complete task scheduling according to action at and observe reward
19: Store transition (st, at) in R

20: Store completed task’s RT and P exe in R

21: end for

updated slower instead of copying the weights directly, which ensures the neural
network higher stability. At each time step, the parameters of the target network
are updated by:

θ′ = τθ + (1 − τ)θ′ (20)

5 Performance Evaluation

5.1 Experimental Settings

Cluster Resources. We consider that there are 20 VMs deployed in the public
cloud and provide services to the end-users. Meanwhile, we set four types of
VM instances with various pricing models in the cluster. The details of cluster
resources and price are shown in Table 2. Note that, the pricing model of the
VM instances is identified with the Enterprise level Computation type(c7) (in
China) provided by Alibaba Cloud. Following [17,18]. We also adopt Cloudsim
Plus to build the cloud environment.

610 Z. Zhao et al.

Table 2. Cluster resource details

Instance Type CPU cores Memory(GB) Quantity Price

m1 16 32 5 $0.3624/h
m2 12 24 5 $0.2739/h
m3 4 8 5 $0.0972/h
m4 2 4 5 $0.0530/h

Workloads. Alibaba-Cluster-trace-v2018 is used to test the performance of the
task scheduler, which contains 4000 VMs under workload of 8 d. To simplify the
problem, we use the data of the second day. To make the model stable, there are
up to 50 tasks can be submitted by the end-users in one second, which will not
miss the feature of the workload according to our observation.

Parameter Settings. In our DDPG-based task scheduling algorithm, we
employ four deep neural networks, which are Actor_online, Critic_online,
Actor_target, Critic_target. Each one has four fully connected layers. Both
two online networks are updated with each round of training, whereas the two
target networks are updated by (20) with τ = 0.01. We set the capacity of mem-
ory replay buffer R = 10000, the size of mini-batch N = 16. We apply Adam
optimizer to optimize the network and the learning rate for Actor_online and
Critic_online networks are 0.0006 and 0.001 respectively. To store some memory
before the training, the network begins to train after 400 steps. All experiments
are conducted on a tower server, which includes 2.1GHz Intel Xeon E5 CPU,
250GB RAM, Ubuntu 18.04LTS operation system, JDK1.8, Python3.6, PyTorch
1.0 and CloudSim Plus 4.0.

Baseline Schedulers. We compare our DDPG-based task scheduler with four
baseline approaches. There are 1)Random, randomly selects a VM for each job;
2) Round-Robin(rr), assigns tasks to each VM in turn; 3) Earliest, assigns a task
to the first idle VM according to the arrival time; 4) DQN, the newest DRL-based
task scheduling method, and the design of the DQN method is similar to [11].

Note that, our proposed DDPG-based scheduler and all the baselines make
dynamic decisions from the current state of the cluster and workload, and do
not have prior knowledge of the whole workload. We performed 10 repeated
experiments on each algorithm and recorded the average results.

Evaluation Metrics. In this paper, we apply three indicators to evaluate the
performance of different methods in terms of satisfying different stakeholders
profiles, which are response time ratio, total cost and the standard deviation

of CPU utilization. Among them, response time ratio ResTR =
∑M

m=1
mim
RTmj

M
describes the average response time of executing M tasks in total. Total costs
represents the monetary cost of the cloud services provider during the whole
execution time K. According to (3), the total costs can be defined as Cost =∑K

t=1 EC(t).

Performance and Cost-Aware Task Scheduling 611

CPU utilization standard deviation among the cluster, which means the stan-
dard deviation of average CPU utilization of each VM instance in the cluster.
The CPU utilization standard deviation can represent the level of load balance
among the cluster. For the data center, a lower one means better resource uti-
lization:

Δcpu =

√∑J
j=1(AvgCpuj − AvgCpuj)

J
(21)

Here, AvgCpuj represents the average cpu utilization of V Mj in the time period
of K time steps.

Fig. 3. The changes of Alibaba-Cluster-trace-v2018 workload on the second day.

Fig. 4. Performance comparison on real-world workload.

5.2 Performance on Real-World Workload

First, we evaluate the performance of DDPG in the face of real-workload with the
characteristic of high dynamical. Figure 3 shows the average total task number
and average total task length of Alibaba-Cluster-trace-v2018 every 10min.

Figure 4 shows the experiment result of the comparison of these methods. We
can summarize the following three conclusions: 1). Our proposed DDPG-based
method has the best performance on all of those three metrics, this is because
the reinforcement learning methods and our design of PCC and STD in the state
space allows it to detect the feature of the workload efficiently. The dual rewards
allow it to learn to adapt to proper strategy to realize global optimization. 2).

612 Z. Zhao et al.

The RL methods (DDPG, DQN) have better performance than traditional meth-
ods, because they can learn from their interaction with the environment, whereas
traditional methods are incapable of changing their strategies according to the
environment. 3). Our proposed DDPG-based method has a better performance
than the DQN method, especially on the metric of cost the average CPU uti-
lization standard deviation. This is because the DDPG method can schedule the
whole batch of tasks simultaneously, and DQN can only do a one-by-one sched-
ule. This ability of DDPG is strengthened by the design of PCC and STD in the
state space.

Ablation Study. To prove the effectiveness of each component in our refine-
ment of the DDPG method, we gradually eliminate the corresponding model
components by defining the following versions: 1). DDPG-ver1: it does not have
PCC and STD in its state space, and it only has one posterior reward for the
agent, which is a typical model for most DRL methods. 2). DDPG-ver2: In this
model, we added PCC and STD in its state space. 3). DDPG-ver3: It has dual
rewards as its reward function. The results are shown in Fig. 5. As expected, our
proposed method outperforms all the other versions of the DDPG method. In
detail, our refined versions DDPG-ver2 and DDPG-ver3 already achieved quite
good performances compared with the original DDPG method. This is because
the PCC and STD in the state space allow the DDPG-ver2 agent to better detect

Fig. 5. Comparison of DDPG methods in different versions

Fig. 6. Influence of changing rewardpri and β. The size of the points represents the
sum of the two value.

Performance and Cost-Aware Task Scheduling 613

the intrinsic correlation of the workload efficiently, and the dual rewards allow
the DDPG-ver3 agent to adapt to a more balanced global optimization strat-
egy. Lastly, our proposed method combines the advantages of DDPG-ver2 and
DDPG-ver3 can reach the best performance among these versions.

As the optimization priority β and the rewardpri of prior reward are pivotal
for the agent to learn a proper strategy, we investigated the impact of changing
the value of them. To better evaluate these two objectives, we normalized both of
them. Among all of these algorithms, we can define the ResTRmax, ResTRmin

and costmax, costmin. Therefore, each one’s ResTR∗ = ResTR−ResTRmin

ResTRmax−ResTRmin
,

and cost∗ = 1 − cost−costmin

costmax−costmin
. It is clear that a greater ResTR∗ and cost∗

means a better performance.

Effect of changing rewardpri. We use p in the figure to denote rewardpri. We
changed rewardpri in a range of [0, 10]. Figure 6a shows the experiment results.
We have the following observations: 1). p = 0 does not have the best overall
performance because it completely ignores the prior reward. 2). As the growing
of p, the performance of the model declines. This is because the excessive large
value of p will let the agent adapt to the strategy more like the earliest method
which can not reach a global optimization strategy. 3). p = 1(rewardpri = 1)
has the best performance on both ResTR and cost, which indicates that this is
the most proper value of the prior reward.

Effect of changing β. To evaluate which value of β can help the algorithm reach
the best overall performance, we changed β in a range of [0, 1]. Figure 6(b) shows
the experiment results. We have the following observations: 1). β = 0 and β = 1
do not have good performances on either metric, because these two are strongly
correlated, and ignoring any of them will prevent the algorithm from finding the
most proper strategy. 2). When β = 0.5, the overall performance is the best
because it is in the upper right corner. This is because it can better balance
the two optimization objectives and learn to adapt to the most appropriate
strategies. 3). β = 0.3 has the best performance on ResTR and β = 0.9 has
the best performance on cost. According to different scenarios, these are also
applicable choices of β.

6 Conclusion

Efficient task scheduling in the cloud environment is always an important and
challenging problem because of its high dynamic and unpredictable workload and
complex inherent VM characteristics. Traditional methods and heuristic-based
approaches only focus on some specific scenarios with particular objectives. In
this paper, we introduce an RL model for the problem of multiple-objective
optimization-based task scheduling in the cloud datacenter. In addition, we apply
this model to our DDPG-based algorithm. We have designed correlation-aware
state representation and advanced reward signals, which help the DDPG agent
to learn the task schedule performance and the total cost of VM cluster. The
agents can learn to optimize multiple objectives under high dynamic workloads
without previous knowledge of the VM cluster and the workload, but only from

614 Z. Zhao et al.

its interaction with the environment and the rewards. Extensive experimental
results have shown that our proposed method overperforms the baseline methods
on response time and total cost when facing high dynamical workloads.

Acknowledgements. This work is partly supported by the key cooperation project
of chongqing municipal education commission (HZ2021017,HZ2021018), in part by the
“Fertilizer Robot" project of Chongqing Committee on Agriculture and Rural Affairs,
in part by the Chongqing Research Program of Technology Innovation and Applica-
tion under grants cstc2019jscx-zdztzxX0019, in part by West Light Foundation of The
Chinese Academy of Sciences.

References

1. Arunarani, A., Manjula, D., Sugumaran, V.: Task scheduling techniques in cloud
computing: a literature survey. Future Gener. Comput. Syst. 91, 407–415 (2019)

2. Zhu, Q.-H., Tang, H., Huang, J.-J., Hou, Y.: Task scheduling for multi-cloud com-
puting subject to security and reliability constraints. IEEE/CAA J. Automat.
Sinica 8(4), 848–865 (2021)

3. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task scheduling in
cloud computing based on meta-heuristics: review, taxonomy, open challenges, and
future trends. Swarm Evol. Comput. 62, 100841 (2021)

4. Tawfeek, M.A., El-Sisi, A.B., Keshk, A.E., Torkey, F.A.: Cloud task scheduling
based on ant colony optimization. In: 2013 8th International Conference on Com-
puter Engineering & Systems (ICCES), pp. 64–69 (2013)

5. Luo, C., et al.: Correlation-aware heuristic search for intelligent virtual machine
provisioning in cloud systems. In: Proceedings of the AAAI Conference on Artificial
Intelligence 35, 12363–12372 (2021)

6. Shu, W., Cai, K., Xiong, N.N.: Research on strong agile response task scheduling
optimization enhancement with optimal resource usage in green cloud computing.
Future Gener. Comput. Syst. 124, 12–20 (2021)

7. Bezdan, T., Zivkovic, M., Bacanin, N., Strumberger, I., Tuba, E., Tuba, M.: Multi-
objective task scheduling in cloud computing environment by hybridized bat algo-
rithm. J. Intell. Fuzzy Syst. 42(1), 411–423 (2022)

8. Gill, S.S., Chana, I.: A survey on resource scheduling in cloud computing: issues
and challenges. J. Grid Comput. 14, 06 (2016)

9. Mathew, T., Sekaran, K.C., Jose, J.: Study and analysis of various task scheduling
algorithms in the cloud computing environment. In: 2014 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), pp. 658–
664 (2014)

10. Liu, X., Tong, W., Zhi, X., ZhiRen, F., WenZhao, L.: Performance analysis of
cloud computing services considering resources sharing among virtual machines. J.
Supercomput. 69(1), 357–374 (2014)

11. Islam, M.T., Karunasekera, S., Buyya, R.: Performance and cost-efficient spark job
scheduling based on deep reinforcement learning in cloud computing environments.
IEEE Trans. Parallel Distrib. Syst. 33(7), 1695–1710 (2021)

12. Ran, L., Shi, X., Shang, M.: SLAs-Aware online task scheduling based on deep rein-
forcement learning method in cloud environment. In: 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), pp. 1518–1525, IEEE (2019)

Performance and Cost-Aware Task Scheduling 615

13. Wei, Y., Pan, L., Liu, S., Wu, L., Meng, X.: DRL-scheduling: an intelligent QoS-
aware job scheduling framework for applications in clouds. IEEE Access 6, 55112–
55125 (2018)

14. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics
in networks, pp. 50–56 (2016)

15. Rjoub, G., Bentahar, J., Abdel Wahab, O., Saleh Bataineh, A.: Deep and rein-
forcement learning for automated task scheduling in large-scale cloud computing
systems. Concurrency and Computation: Practice and Experience, vol. 33, no. 23,
p. e5919 (2021)

16. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2–4, 2016, Conference Track Proceedings (Y. Bengio and Y.
LeCun, eds.) (2016)

17. Abreu, D.P., et al.: A rank scheduling mechanism for fog environments. In: 2018
IEEE 6th International Conference on Future Internet of Things and Cloud
(FiCloud), pp. 363–369, IEEE (2018)

18. Silva Filho, M.C., Oliveira, R.L., Monteiro, C.C., Inácio, P.R., Freire, M.M.:
CloudSim Plus: a cloud computing simulation framework pursuing software engi-
neering principles for improved modularity, extensibility and correctness. In: 2017
IFIP/IEEE symposium on integrated network and service management (IM), pp.
400–406, IEEE (2017)

IDGL: An Imbalanced Disassortative
Graph Learning Framework for Fraud

Detection

Junhang Wu1,2, Ruimin Hu1,2(B), Dengshi Li1,3, Lingfei Ren1,2, Wenyi Hu1,2,
and Yilong Zang1,2

1 National Engineering Research Center for Multimedia Software, School of
Computer Science, Wuhan University, Wuhan 430072, China

hurm1964@gmail.com
2 Hubei Key Laboratory of Multimedia and Network Communication Engineering,

Wuhan University, Wuhan 430072, China
3 School of Artificial Intelligence, Jianghan University, Wuhan 430056, China

Abstract. The thriving growth of Internet service not only facilitates
our daily lives but also incubates various fraudulent activities with con-
cealment. The traceable interactive behaviors forming the graph-like data
provide a great opportunity for graph-based fraud detection. Owing to
the stellar performance of assortative graph learning, GNN-based fraud
detection methods escalate much attention. However, the fraud graph
is not always assortative but more likely disassortative as the fraud-
sters usually camouflage themselves via building numerous connections
with normal users. Additionally, the GNN-based fraud detection meth-
ods also suffer from graph imbalance issues as the number of fraudsters
is far less than that of the normal users. To address these problems, an
imbalanced disassortative graph learning framework (IDGL) is proposed
with two key components. First, an adaptive dual-channel convolution
filter is developed to adaptively combine the advantage of low- and high-
frequency signals from its neighbors so as to assimilate the nodes with
assortative edges and discriminate the nodes with disassortative edges.
Second, a label-aware nodes and edges sampler is designed with the con-
sideration of nodes’ popularity and corresponding label class frequency,
which helps the model simultaneously eliminate the bias towards the
major classes and pay more attention to the valuable connections (fraud-
fraud, fraud-benign). Extensive experiments on two public fraud datasets
demonstrate the effectiveness of our method.

Keywords: Fraud detection · Graph disassortativity · Graph
imbalance · Adaptive frequency filter · Label-aware sampler

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 616–631, 2022.
https://doi.org/10.1007/978-3-031-20984-0_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_44&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_44

IDGL: An Imbalanced Disassortative Graph Learning Framework 617

1 Introduction

With the thriving growth of Internet services facilitating our daily life, there
also brings various kinds of fraudulent behaviors. The fraudsters or attackers
disguise as the benign users to do some malicious activities and conceal them-
selves within the mass of data, which has caused great damage to finance security
[10,16,20], cyber security [4] and comment management [3,14]. Fortunately, our
online behavior is always traceable no matter whether we are benign or fraudu-
lent, and we can transform these interactive behaviors as graph-like data where
the users and their interactions are treated as the nodes and the edges, respec-
tively. Recently, the emerging graph neural network (GNN) has shown its great
representation power of graph data, which makes GNN-based fraud detection
methods escalate extensive attention.

Fig. 1. Illustration of graph disassortativity and imbalance

Although these GNN-based fraud detection methods have made much
progress, there still exist the following two main challenges.

Graph Disassortativity. Generally, GNNs update the representation of nodes by
aggregating the signals from their neighbors, which can be treated as a low-pass
filter to retain the commonality between the connected nodes [9,18]. Benefiting
from the smoothness of the low-frequency filter, it works well for assortative
graphs, i.e., similar nodes tend to make the connections [1], which makes GNN-
based fraud or anomaly detection effective as it assumes that the fraudulent or
abnormal nodes with the same malicious goals tend to make the connections
with each other. However, some studies [5,7,14,19] have shown that the fraud
graphs are not always assortative but more likely disassortative as the fraudsters
often camouflage themselves by making many connections with the benign users
to make them look normal with less suspiciousness, which makes the fraud graph
flood with numerous disassortative connections, i.e., the entities from different
classes tend to make the connections. Consequently, the low-pass smoothing
aggregation mechanisms of GNNs are insufficient to support the inference for
these disassortative graphs as it enables the fraudsters to achieve their intentions,
i.e., the fraudulent features are concealed within the myriads of benign ones.
As shown in Fig. 1, given a query user who has far more connections with the

618 J. Wu et al.

normal user than the fraudster, the assortativity-based GNNs tend to classify
him/her into the normal user as its behavior features have been concealed by his
numerous benign neighbors within the low-pass smoothing aggregation. Under
this circumstance, the high-frequency signals (i.e., the difference between entity
nodes) are more suitable for these disassortative graphs.

Graph Imbalance. First, the number of fraudsters is generally far less than that
of the benign users, which causes the graph node imbalance issues. According to
Amazon and YelpChi datasets, only 9.50% and 14.53% of labeled entities are the
fraudulent ones respectively, as introduced in Table 1. The graph node imbalance
may make the training bias towards the majority class (i.e., the benign users)
with the reduction of model generalization ability. Expect for node imbalance,
the edge imbalance is more urgent as it directly guides the node aggregation
process. There are three types of edges in the fraud graph: edges between normal
entity nodes (denoted as N-N), edges between the fraudulent ones (denoted as
F-F), and the edges between the fraudulent and normal ones (denoted as F-
N). As introduced in Table 2, the number of N-N edges is far more than that
of others, which helps the normal user detection by retaining commonalities
between them. But for F-F and F-N edges, they are rare but valuable, and we
should pay more attention to them with exploring the commonalities between
fraudsters and the difference between fraudsters and normal users. However,
most current GNN-based fraud detection studies pay little attention to both
nodes and edges imbalance and haven’t made full use of labeled F-F and F-N
edges to detect the new fraudsters. Unfortunately, the graph imbalance issues
further exacerbate the disassortativity of the graph with more difficulties for
discrimination.

To address the above challenges, we propose an Imbalanced Disassortative
Graph Learning framework (IDGL) to simultaneously adaptively aggregate low-
and high-frequency signals from assortative and disassortative connections on
the imbalanced fraud graph. Specifically, IDGL is composed of four module lay-
ers: 1) a re-embedding layer. Some recent studies [2] have emphasized that the
performance and robustness of the model may be hurt by the entanglement
of graph filters and parameter matrices, and the fraudsters usually camouflage
themselves with the similar raw features to the normal users. Therefore, a non-
linear re-embedding layer is applied to relearn the representations of nodes; 2)
an adaptive dual-channel convolution layer, which is used to adaptively com-
bine the advantage of dual-channel (i,e., the low- and high-frequency) signals
from its neighbors to assimilate the nodes with assortative edges and discrimi-
nate the nodes with disassortative edges; 3) a representation fusion layer, which
combines the intermediate embeddings to be the final representation of nodes;
4) an imbalanced-oriented classification layer. To alleviate the effects of graph
imbalance, a label-aware nodes and edges sampler is designed with the consider-
ation of nodes’ popularity (i.e., degree) and corresponding label class frequency.
Sampled nodes are used for classification training to eliminate the bias towards
the major classes, and the sampled edges are treated as the supervision informa-
tion to facilitate the training of adaptive filters and make the model pay more

IDGL: An Imbalanced Disassortative Graph Learning Framework 619

attention to the valuable edges (i.e., F-F and F-N layers). The contributions of
the paper can be listed as follows:

– We formulate the graph-based fraud detection problem as an imbalanced dis-
assortative node classification task and propose an imbalanced disassortative
graph learning framework to deal with the disassortativity and graph imbal-
ance issues on the graph.

– An adaptive dual-channel convolution filter is further developed for fraud
detection to assimilate the nodes with assortative edges and discriminate
the nodes with disassortative edges. A label-aware node and edge sampler is
proposed to relieve graph imbalance issues with more attention to the valuable
edge information.

– Experiments on two public real-world datasets demonstrate the effectiveness
of our proposed IDGL for fraud detection.

2 Preliminaries

2.1 Definition

Definition 1 (Assortativity and disassortativity). Given a graph, if two
nodes (e.g., vi and vj), which make the connection as an edge, belong to different
classes, then we treat the connection as a disassortative edge, denoted as ε−

ij , and
if they belong to the same class, the connection is an assortative edge, denoted
as ε+ij . The larger disassortativity of the graph, the more nodes from different
classes tend to connect with each other, and vice versa. For our task, the fraud
graph is of both assortativity and disassortativity at the same time.

Definition 2 (Graph). Consider a graph G = {V,X, {ε+, ε−} , A, Y }, V =
{v1, v2, ..., vN} is the set of nodes, N is the number of nodes; X ∈ R

N×d is the
original d-dimension feature vector of all of N nodes; For {ε+, ε−}, ε+ and ε−

represent the assortative and disassortative edge sets respectively where ε+ ∪
ε− = ε and ε+ ∩ ε− = ∅; A is the corresponding adjacency matrice of the graph
where Aij = 1, if eij ∈ ε; Y is the set of labels for the nodes, and each one has
a label yi ∈ {0, 1} where 1 represents the fraudster and 0 represents the benign.

Definition 3 (Multi-relation Graph). There are different relations among
the nodes, and G =

{
V,X, {ε+r , ε−

r } ∣
∣R
r=1 , {A1, A2, ..., AR} , Y

}
is defined as

a multi-relation graph, where er
ij ∈ {ε+r , ε−

r } represents the edge between the
node vi and vj under the relation r ∈ {1, 2, ..., R} and Ar is the corresponding
adjacency matrix.

2.2 Problem Formulation

Definition 4 (Graph-based Fraud Detection). Considering a multi-
relation graph G, which has been defined in definition 2, the task is to detect
the fraud nodes from the benign ones in the given graph. Specifically, given

620 J. Wu et al.

the structural information of the graph {A1, A2, ..., AR} and the original feature
information X, we need to learn the function f to map the nodes into a d-
dimension feature vector zi ∈ R

d across the multi-relation graph where d � N .
With the learned embedding and the labeled nodes, a classifier is trained to
detect whether a given unlabeled node is a fraudster.

3 Overview Framework of Method

In this section, we present the proposed IDGL framework, as shown in Fig. 2.
IDGL includes four module layers: the re-embedding embedding layer, adaptive
dual-channel convolution layer, representation fusion layer, and the imbalance-
oriented classification layer. For the first module layer, it is used to add some
uncertainty by the dense and dropout layer to relieve the effect of feature cam-
ouflage. Furthermore, the second module layer is introduced to make full use
of low- and high-pass signals to deal with the graph disassortativity issue. The
third module layer makes the fusion of the intermediate representation to be the
final features of nodes. The final module layer is used to deal with the graph
imbalance and detect the fraudsters.

Fig. 2. An illustration of proposed framework of IDGL

3.1 Re-embedding Layer

Fraudsters usually learn the normal users to camouflage themselves, so the orig-
inal attribute features between the fraudsters and the normal users are of great
similarity. Therefore, it is highly desirable to add some uncertainty into the
original features to re-learn the feature similarity between nodes to cater down-
stream fraudster detection tasks. In the paper, a dense-based dropout layer is
introduced to encode the embeddings of the nodes without depending on the
network topology, and it is denoted as follows:

h
(0)
i = σ (dropout (xi, η) · W0) , (1)

IDGL: An Imbalanced Disassortative Graph Learning Framework 621

where xi is the original feature vector of node vi, dropout (·, η) is the function
which drops the neurons from the network with a certain probability η during
network training, W0 is a learnable weight matrix, h

(0)
i represents the embedding

of node vi, and σ (·) is the non-linear ReLU activation function. Based on the
above components, the difference between the fraudsters and the normal users
will be further amplified via network topology based on the improved convolution
and aggregation strategies.

3.2 Adaptive Dual-channel Convolution Layer

Dual-channel Graph Convolution. Following GCN [8], from the perspective
of graph signal processing, the graph convolution ∗G between the given signal x
and filter f are denoted as:

f∗Gx ≈ θ
(
IN + D− 1

2 AD− 1
2

)
x, (2)

where IN ∈ R
N×N denotes the identity matrix and D = diag{d1, d2, ..., dN}

is the diagonal degree matrix (di =
∑

j Aij). From Eq. 2, we can observe that
IN + D− 1

2 AD− 1
2 can be considered to smooth the central node by its adjacent

nodes’ information via summation between signals, and it can be treated as a
low-pass filter to capture the commonalities between the central node and its
adjacent nodes [1]. Naturally, for a high-pass graph filter, it should be used to
capture the difference between them. Heuristically, a low-pass filter fL and a
high-pass filter fH are designed as follows:

fL∗Gx ≈ θ
(
εIN + D̂− 1

2 AD̂− 1
2

)
x

fH∗Gx ≈ θ
(
εIN − D̂− 1

2 AD̂− 1
2

)
x,

(3)

where D̂ = I +D, and ε ∈ [0, 1] is a scaling factor. We can generalize Eq. 3 to the
signal X ∈ R

N×d (i.e., a d-dimension representation for each node) as follows:

ZL = (εIN + D̂− 1
2 AD̂− 1

2)XΘ

ZH = (εIN − D̂− 1
2 AD̂− 1

2)XΘ,
(4)

where Θ ∈ R
d×M is the matrix of learnable filter parameter, and ZL ∈ R

N×M

and ZH ∈ R
N×M are the signal matrix convolved by low-pass and high-pass

filters, respectively. Then the low-pass and high-pass convolution of the node i
can be denoted as:

(FLX)i =

(

εXi +
∑

j∈N(i)

1√
D̂iiD̂jj

Xj

)

Θ

(FHX)i =

(

εXi − ∑

j∈N(i)

1√
D̂iiD̂jj

Xj

)

Θ,

(5)

where N(i) is the set of one-hop neighborhoods of node i.

622 J. Wu et al.

Learnable Channel Fusion Aggregation. Given the above low- and high-
pass graph filters, the next step is how to aggregate both low- and high-frequency
information from the node’s neighbors, respectively. Naturally, a basic idea is to
add the weight parameter αij,r to balance the importance between such two
filters under the relation r:

h̃i,r = αij,r(FLH)i,r + (1 − αij,r) (FHH)i,r, (6)

where αij,r ∈ [0, 1], and Eq. 6 can be further expanded as follows:

h̃i,r =

⎛

⎝εhi,r +
∑

j∈Nr(i)

2αij,r − 1
√

D̂ii,rD̂jj,r

hj,r

⎞

⎠ Θr, (7)

where h̃i,r is the aggregated embedding of node vi under the relation r. Here,
we set a learnable coefficient ωij,r = 2αij,r −1, where ωij,r ∈ [−1, 1]. For ωij,r, it
decides whether a low or high-frequency signal should be extracted between the
node vi and vj , and thus the features of both the node itself vi and its neighbor
vj should be considered together. Naturally, a shared self-gating mechanism is
used to learn ωij,r as follows:

ω
(l)
ij,r = tanh

((
W(l)

r

)T [
h
(l−1)
i ||h(l−1)

j

])
, (8)

where h
(l−1)
i ∈ R

dvi
×1 and h

(l−1)
j ∈ R

dvj
×1 are the representations of the nodes

vi and vj at l-th layer, W(l)
r ∈ R

(dvi
+dvj)×1 is a trainable matrix, || is the

concatenation operation, and tanh (·) is the hyperbolic tangent function, which
makes the value ω

ij
in the range of (0, 1). Finally, the aggregation of node i can

be denoted as follows:

h
(l)
i,r = σ

⎛

⎝

⎛

⎝εh
(l−1)
i +

∑

j∈Nr(i)

ω
(l)
ij,r√

D̂ii,rD̂jj,r

h
(l−1)
j

⎞

⎠ Θ(l−1)
r

⎞

⎠ . (9)

Layer Architecture and Cross-relation Combination. In the previous
sections, we have introduced the message passing paradigm of our method. Here,
we formally define the convolution layer of our method under the r-th relation,
and the mathematical formulation is denoted as follows:

h
(0)
i = σ (dropout (xi, η) · W0)

...

ω
(l)
ij,r = tanh

((
W(l)

r

)T [
h
(l−1)
i ||h(l−1)

j

])

h
(l)
i,r = σ

((

εh
(l−1)
i +

∑

j∈Nr(i)

ω
(l)
ij,r√

D̂ii,rD̂jj,r

h
(l−1)
j

)

Θ
(l−1)
r

)

h
(l)
i ← [h(l)

i,1, h
(l)
i,2, ..., h

(l)
i,R]

...

(10)

IDGL: An Imbalanced Disassortative Graph Learning Framework 623

In Eq. 10, we can observe that h
(l)
i,r, r ∈ [1, 2, ..., R] (i.e., the signal of node i

learned under the different relation at the l-th layer) is concatenated as a new
signal h

(l)
i , and it will be the input of node feature for the next layer.

3.3 Representation Fusion Layer

In our model, the node embedding outputted by different neural network layers
has different smoothness and sharpness. In the model, the designed low- and
high-pass filters make the node embedding outputted by different convolution
layers have different smoothness and sharpness, and they can help facilitate the
downstream classification task. Thus, we combine the intermediate embeddings
outputted by the different layers as the final representation of the node:

zi = [xi, h
(0)
i , h

(1)
i , ..., h

(L)
i], (11)

where L is the number of convolution layer.

3.4 Imbalance-Oriented Classification Layer

As introduced in Eq. 9, for each graph neural layer l under the relation r, α
(l)
ij,r can

be directly calculated by the learnable weight ω
(l)
ij,r as: α

(l)
ij,r = 0.5

(
ω
(l)
ij,r + 1

)
∈

[0, 1], and it can be used to measure the assortativity and disassortativity of the
edge eij , so as to be the supervised information to balance the weight between
low- and high-pass filters. Actually, the supervision signal from the known label
nodes can be treated as the ground truth to make an auxiliary loss:

L(l)
r = −

∑

eij,r∈εt,r

[
yij,r log

(
α
(l)
ij,r

)
+ (1 − yij,r) log

(
1 − α

(l)
ij,r

)]
, (12)

where yij,r ∈ {0, 1} is the label of the assortative edge (i.e., yij,r = 1) or the
disassortative edge (i.e., yij,r = 0) under the relation r, and εt,r is the edge set
whose source nodes and target nodes have been labeled under the relation r.
For each layer and each relation, the final loss for assortative and disassortative
edges can be formulated as follows:

Lε =
1

L × R

∑
L(l)

εt,r
, (13)

where L and R are the number of layers and relations, respectively.
Additionally, given the final embedding of nodes zi, the fraud detection prob-

lem can be treated as a binary node classification problem, and we use cross-
entropy loss function to model it:

Lc = − ∑

i∈V

[yi log (pi) + (1 − yi) log (1 − pi)]

pi = softmax (MLP (zi)) .
(14)

624 J. Wu et al.

To sum up, we define the overall loss of our method as follows:

Ltotal = γcLc + γεLε + γ‖Θ‖2, (15)

where γc, and γε (γc + γε = 1) are the weights to balance the importance of
different losses, ‖Θ‖2 is the regularization term to avoid over-fitting and γ is
the control coefficient. Note that, to alleviate the influence of sample imbalance
problem (i.e., the number of normal users is significantly larger than that of the
fraudsters), a label-aware sampler is proposed to take the nodes’ label frequency
and degree information into consideration, which make the minority class of rela-
tively high sampling probability. First, as to the node sampling for classification,
the sampling probability is denoted as follows:

P (vi) ∝
√

di

Z (C (vi))
, (16)

where di =
R∑

r=1

∑

j

Aij,r is the degree of node vi under all relations, and Z (C (vi))

represents the label frequency of class C (vi). Note that,
√

di means that more
“popular” nodes are more likely to selected, and Z (C (vi)) means the more
“rare” nodes are more likely to be selected.

Table 1. Datasets statistic information

YelpChi Amazon

#nodes (Fraudster%) Relation type Relations Class #Class #nodes (Fraudster%) Relation type Relations Class #Class

45954 (14.53%) R-U-R 49315 1 6677 11944 (10.5%) U-P-U 175608 1 821

R-T-R 573616 0 39277 U-S-U 3566479 0 7818

R-S-R 3402743 – 0 U-V-U 1036737 – 3305

ALL 3846979 ALL 4398392

1 For Class: 1: spam or fraudulent; 0: legitimate or benign; -: unlabeled.

The set of the sampled nodes is denoted as Vs. Next, for the edge sampling
under the relation r, the sampling probability is defined as follows:

P (εij,r) ∝
√

di,rdj,r

Z (C (εij,r))
, (17)

where di,r =
∑

k Aik,r is the degree of node vi under the relation r, and
Z (C (εij,r)) is the edge label (i.e., the assortative or disassortative edge) fre-
quency of class C(εij,r). The sets of the sampled edge under all relations are
marked as: {εs,r}

∣
∣R
r=1 . Similarly,

√
di,rdj,r and Z (C (εij,r)) represents the pop-

ularity and rareness of the edge eij under the relation r. For the edges between
fraudsters (F-F) and the edges between the fraudsters and the normal users (F-
N), they are rare but valuable. Thus, P (εij,r) can make F-N and F-F edges be
selected at a higher probability.

IDGL: An Imbalanced Disassortative Graph Learning Framework 625

4 Experiments

4.1 Experiment Setup

Datasets. Two public real-world fraud detection datasets (i.e., Yelp review
dataset and Amazon dataset[13]) are used to validate the performance of IDGL.
YelpChi dataset collects the reviews of hotels and restaurants on the Yelp
platform, and the reviews are treated as the node with three relations: 1) R-
U-R represents the reviews, which are provided by the same user, are linked;
2) R-T-R represents the reviews, which are given to the same product within
the same month; 3)R-S-R represents the reviews, which are given to the same
product with the same star-rating, are linked. The nodes are labeled by Yelp’s
filter (spam) and recommendation (legitimate). For Amazon, it is composed of
users with their comments on the musical instruments. Here, users are treated as
the node with three different types of relations: 1) U-P-U represents the users,
who make the comments on at least one same product, are linked; 2) U-S-U
represents the users, who give at least one same star-rating within a same week,
are linked; 3) U-V-U represents the users, who have top-5% mutual review TF-
IDF similarities, are linked. Note that the user is labeled the normal user or
the fraudster according to more than 80% or less than 20% helpful votes. The
statistics of such two datasets are shown in Tab. 1.

Fig. 3. Disassortativity Evidence. X-axis is the proportion of disassortative edges in the
neighborhood of fraud nodes. Y-axis is the proportion of the corresponding fraudulent
nodes among all fraudsters. NN is the fraudulent node without any neighbor.

Baselines. In this section, several state-of-the-art GNN-based methods and
their variants are compared to verify the effectiveness of our proposed method.
The source code of our model is available.1

GCN [8] is a general GNN model which aggregates the embedding informa-
tion of node’s first-order neighours. GAT [15] is an attention-based graph neural
network which takes the attention mechanism into the process of aggregation.
GraphSAGE [6] is an inductive graph neural network which takes the multi-order
node sampling strategy into node aggregation. GEM [12] is an improved graph
neural network for malicious accounts detection which constructs the hetero-
geneous account-device graphs by summarizing the weakness of the attackers.
1 https://github.com/Shzuwu/IDGL.

https://github.com/Shzuwu/IDGL

626 J. Wu et al.

FdGars [17] is a GCN-based method for fraud detection which reconstruct a
relational graph between the fraudsters and the normal users based on multi-
context information. GraphConsis [11] is a heterogeneous GNN-based method
that aims to address the inconsistency problems of context, feature, and relation.
CARE-GNN [3] is a GNN-based method that investigates the camouflage behav-
ior of fraudsters and their negative influence on GNN-based fraudster detectors,
and proposes a label-aware similarity measure and a similarity-aware selector.
FRAUDRE [19] is an improved GNN method that focuses on the graph incon-
sistency and imbalance issues of the camouflaged fraudsters.

Note that we perform GCN, GAT, GraphSAGE, and FdGars on the graphs
characterized by Definition 2 (i.e., ALL in Table 1), and perform the other meth-
ods on multi-relation graphs characterized by Definition 3.

Evaluation Metrics. Since YelpChi and Amazon datasets have imbalanced
classes, following previous work, we use AUC, Macro-Recall and Macro-F1 for
performance evaluation. As a widely used binary classification metric, AUC is
computed based on the relative ranking of prediction probabilities of all samples,
and it could eliminate the influence of class imbalance.

4.2 Evidence of Graph Disassortativity and Imbalance

First, we investigate the existence of graph disassortativity. Specifically, we calcu-
late the proportion of disassortative edges to all one-hop neighbors of each fraud-
ulent node under different relation subgraphs, and further count the proportion
changes of these fraudulent nodes among all of them with the growth of disas-
sortativity proportion, as shown in Fig. 3. We can observe that there are numer-
ous fraudulent nodes with high disassortativity in such subgraphs, and more than
half-past of fraudsters are with larger than 80% disassortativity proportion. Con-
sequently, the fraud graph is of disassortativity naturally, and we need to take the
separation of assortativity and disassortativity into consideration.

Table 2. Edge type statistic information

Edge YelpChi Amazon

R-U-R R-T-R R-S-R U-P-U U-S-U U-V-U

N-N 48,261 420,783 2,539,220 112,330 2,670,843 665,149

F-F 878 14,781 88,406 3,397 4,474 925

F-N 176 138,052 775,117 31,655 124,232 26,970
1 N-N: edges between normal users; F-F: edges between fraud-
sters; F-N: edges between fraudsters and normal users.

Next, we further study the imbalance of the fraud graph, and we find that
the imbalance of nodes and edges is widespread. Specifically, for node imbalance,
we have counted it in Table 1, and we can observe that only 14.53% and 9.50% of
labeled nodes are fraudsters, which makes the model dominated by the majority

IDGL: An Imbalanced Disassortative Graph Learning Framework 627

class (i.e., the benign users) with the reduction of model generalization ability.
Furthermore, we also investigate the edge imbalance of fraud graphs. Specifically,
we first classify the edge type into three classes, namely N-N(edges between nor-
mal users), F-F(edges between fraudsters), and F-N(edges between the normal
users and fraudsters), and then count their numbers under the different rela-
tional subgraphs, as shown in Table 2. We can observe that the number of N-N
edges is of maximum quantity, which may make the node aggregation dominated
by N-N edges and weaken the ability to model differences (between fraudsters
and normal users) and commonalities (between the fraudsters) while they are
the keys to fraud detection. Consequently, the imbalance of nodes and edges
is widespread in fraud detection, and we need to design an imbalanced-oriented
nodes and edges sampling strategy to eliminate bias toward the majority classes.

4.3 Performance Comparison

In this section, we compare our proposed method IDGL with the state-of-the-art
methods on both Amazon and YelpChi datasets. Note that we also perform the
metrics (i.e., AUC, Macro-Recall, and Macro-F1) under different ratios (from
10% to 40%) of both datasets, as shown in Table 3, and we have the following
observations.

First, compare the methods which are performed on the single graph (i.e.,
GCN, GAT, GraphSage, and FdGars) with the ones which are performed on the
multi-graph (i.e., GME, GraphConsis, CARE-GNN, FRAUDRE, and IDGL),
the latter is mostly better than formers, expect for GME, which brings two
aspects of inspiration. On the one hand, the multi-relation graph contains richer

Table 3. Performance under various ratios of Amazon and YelpChi training sets. Recall
and F1 are the abbreviation of Macro-Recall and Macro-F1.

Data Method 10% 20% 30% 40%

AUC Recall F1 AUC Recall F1 AUC Recall F1 AUC Recall F1

Amazon GCN 77.26 50.00 47.51 77.42 50.00 47.51 76.99 50.00 47.51 77.94 50.00 47.51

GAT 76.96 50.00 47.50 76.99 50.00 47.51 76.61 50.00 47.50 77.35 50.00 47.50

GraphSage 69.87 50.00 47.50 71.75 50.00 47.50 72.51 50.00 47.51 71.49 50.00 47.50

GME 70.24 69.56 75.52 72.05 71.55 75.53 73.99 72.12 68.48 74.44 70.66 74.42

FdGars 81.10 73.41 55.32 81.19 73.47 55.31 80.91 72.90 55.01 80.82 72.82 55.14

GraphConsis 82.67 82.63 75.97 84.22 84.21 81.93 84.46 84.37 79.06 85.15 85.10 77.98

CARE-GNN 88.16 88.19 88.21 88.25 87.95 85.80 87.41 84.89 75.70 87.36 83.90 88.36

FRAUDER 90.37 89.12 91.02 88.99 88.71 90.67 91.51 88.01 91.11 88.18 88.61 91.10

IDGL 95.09 89.37 91.22 96.42 89.76 91.17 96.98 90.61 91.65 97.58 90.73 91.23

YelpChi GCN 52.12 50.00 46.08 53.88 50.00 46.08 52.62 50.00 46.08 53.12 50.00 46.08

GAT 50.14 50.00 46.08 49.94 50.00 46.08 49.97 50.00 46.08 49.67 50.00 46.08

GraphSage 52.94 50.00 46.08 55.39 50.00 46.08 56.08 50.00 46.10 56.45 50.00 46.10

GME 64.35 50.00 46.08 64.28 51.33 48.89 69.63 51.04 48.24 70.88 50.38 46.87

FdGars 47.36 49.19 48.76 47.54 49.40 48.93 47.71 49.52 49.02 47.91 49.42 48.93

GraphConsis 64.12 64.72 61.3 63.89 64.46 62.93 60.94 61.44 62.73 61.02 61.67 63.03

CARE-GNN 69.73 65.68 52.86 70.47 66.94 57.55 72.42 67.32 57.39 70.99 66.80 56.47

FRAUDER 72.21 66.44 55.34 72.51 67.30 58.22 73.72 67.91 59.24 72.22 66.98 59.26

IDGL 85.38 74.50 70.23 88.65 78.65 72.84 90.04 80.06 74.36 91.14 82.36 76.37

628 J. Wu et al.

information than the single one, which may provide the chance to make perfor-
mance improvements. On the other hand, the richer data means a more complex
relationship, which means that it is unworkable to directly apply GNNs to fraud
detection under the multi-relation graph, and we need to deal with the relation-
ship between the node and its neighbors more carefully. GraphConsis, CARE-
GNN, and FRAUDRE have achieved the promising performance by introducing
similarity measure and fraud-aware module into the node aggregation process,
and IDGL outperforms all other SOTA methods via the learnable high- and low-
filter to adaptively learn the difference and similarity commonalities between the
node and its neighbors to facilitate the target task.

Second, it has been introduced in Table 1 that node imbalance is widespread
in fraud detection. For GNN-based fraud detection methods, CARE-GNN and
FRAUDRE take the influence of node imbalance into consideration to elimi-
nate the training bias towards the majority class (i.e., the normal users), and
achieve better performance than other methods. However, they haven’t taken
edge imbalance into consideration. As we discussed in Sect. 4.2, we categorize
the edge type into three classes: N-N, F-F, and F-N. For F-N, we can treat it as
a guide to learn the difference between the fraudsters and the normal users, and
F-F is rare but valuable for us to learn the commonalities between the fraudsters,
which helps better fraud detection. Thus, an edge sampling method is proposed
to make the model pay more attention to the edge of F-N and F-F. Consequently,
IDGL achieves better performance than CARE-GNN and FRAUDRE by taking
both node and edge sampling into consideration.

4.4 Ablation Analysis

High- and Low-Filters. To demonstrate the effectiveness of the adaptive filter,
we conduct the ablation study on the Amazon dataset by ranging the percentage
of the training dataset from 10% to 40%, as shown in Fig. 4 (a), and a similar

Fig. 4. Ablation Analysis of Learnable Adaptive Filter and Nodes/Edges Sampling on
Amazon dataset with AUC, Recall and F1.

IDGL: An Imbalanced Disassortative Graph Learning Framework 629

result can also be observed on YelpChi dataset. Specifically, we construct two
ablation models by replacing the learnable adaptive high- and low-filer with the
only low-filer (i.e., αij,r = 1, denoted as IDGL+) and the only high-filter (i.e.,
αij,r = 0, denoted as IDGL−), respectively. We can observe that both IDGL+
and IDGL− can be applied to fraud detection with competitive performance.
Additionally, IDGL− have better performance than IDGL+, because the fraud
graph is of great disassortativity as proved above, and IDGL+ only aggregates
the low-frequency signals from its neighbors without considering the difference
between classes which makes itself submerged with lack of discrimination. IDGL
outperforms such two methods by combining the advantages of low- and high-
filters adaptively.

Node and Edge Sampling. To demonstrate the effectiveness of node and edge
sampling, we construct two ablation models by removing either edge sampling
or both of them on the Amazon dataset with ranging the percentage of training
dataset from 10% to 40%, as shown in Fig. 4 (b), and the similar result can
also be observed on YelpChi dataset. We can observe that compared with the
ablation model without any imbalance-oriented sampling, the one with node
sampling performs better as it can mitigate the imbalance issue to some extent.
By further introducing edge sampling to make the model pay more attention to
the valuable edge types (i.e., F-F and F-N), the performance has been further
improved, which shows the effectiveness of node and edge sampling.

4.5 Parameter Sensitivity and Running Efficiency

In this section, we investigate the sensitivity and running efficiency.
First, with 40% of the Amazon dataset as the training set, we vary the value

of embedding dimensionality in the range of [8,64], and the result is depicted in
Fig. 5(a). We can observe that it first makes a slight improvement with embed-
ding size increasing, and it becomes stable after 32. Considering a larger embed-
ding dimensionality requires higher computational complexity, we finally set d
as 32 to make the balance between performance and complexity.

Fig. 5. Performance of IDGL with varing embedding size and running efficiency on
Amazon dataset.

630 J. Wu et al.

Second, to investigate the running efficiency of IDGL, with different per-
centages of the training set on the Amazon dataset, we compare the average
training time of each epoch with FRAUDRE, which has the most competitive
performance among all the baseline methods. To be fair, we set the number of
convolution layers to 2, the embedding size to 32, and the batch size to 256 for
both of them, and the result is depicted in Fig. 5 (b). We can observe that IDGL
runs faster than FRAUDER with more time efficiency.

5 Conclusion

In the paper, we propose an imbalanced disassortative graph learning frame-
work called IDGL to solve the graph disassortativity and imbalance issues. To
tackle the graph disassortativity, an adaptive dual-channel convolution filter is
further developed to adaptively combine the advantage of dual-channel (i,e.,
the low- and high-frequency) signals from its neighbors, which helps assimilate
the nodes with assortative edges and discriminate the nodes with disassortative
edges. For graph imbalance issues, a label-aware nodes sampler and edges sam-
pler are designed with the consideration of nodes’ popularity and corresponding
label class frequency, which helps the model simultaneously eliminate the bias
towards the major classes and pay more attention to the valuable edges (i.e.,
F-F and F-N). Extensive experiments on two public fraud datasets demonstrate
the effectiveness of our method.

Acknowledgments. We first gratefully acknowledge anonymous reviewers who read
this draft and make any helpful suggestions. The work is supported by the National
Nature Science Foundation of China (No. U22A201181, U1803262, U1736206), National
Social Science Fund of China (No. 19ZDA113), and the Application Foundation Fron-
tier Project of Wuhan Science and Technology Bureau (No. 2020010601012288).

References

1. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph
convolutional networks. arXiv preprint arXiv:2101.00797 (2021)

2. Cui, G., Zhou, J., Yang, C., Liu, Z.: Adaptive graph encoder for attributed graph
embedding. In: KDD, pp. 976–985 (2020)

3. Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters. In: CIKM, pp. 315–
324 (2020)

4. Dou, Y., Ma, G., Yu, P.S., Xie, S.: Robust spammer detection by nash reinforce-
ment learning. In: KDD, pp. 924–933 (2020)

5. Ge, S., Ma, G., Xie, S., Philip, S.Y.: Securing behavior-based opinion spam detec-
tion. In: 2018 IEEE BigData, pp. 112–117. IEEE (2018)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS, vol. 30 (2017)

7. Kaghazgaran, P., Alfifi, M., Caverlee, J.: Wide-ranging review manipulation
attacks: model, empirical study, and countermeasures. In: CIKM, pp. 981–990
(2019)

http://arxiv.org/abs/2101.00797

IDGL: An Imbalanced Disassortative Graph Learning Framework 631

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

9. Li, Q., Wu, X.M., Liu, H., Zhang, X., Guan, Z.: Label efficient semi-supervised
learning via graph filtering. In: CVPR, pp. 9582–9591 (2019)

10. Liu, Y., et al.: Pick and choose: a GNN-based imbalanced learning approach for
fraud detection. In: WWW, pp. 3168–3177 (2021)

11. Liu, Z., Dou, Y., Yu, P.S., Deng, Y., Peng, H.: Alleviating the inconsistency prob-
lem of applying graph neural network to fraud detection. In: SIGIR, pp. 1569–1572
(2020)

12. Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., Song, L.: Heterogeneous graph neural
networks for malicious account detection. In: CIKM, pp. 2077–2085 (2018)

13. McAuley, J.J., Leskovec, J.: From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In: WWW, pp. 897–908 (2013)

14. Shi, F., Cao, Y., Shang, Y., Zhou, Y., Zhou, C., Wu, J.: H2-FDetector: a GNN-
based fraud detector with homophilic and heterophilic connections. In: WWW, pp.
1486–1494 (2022)

15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

16. Wang, D., et al.: A semi-supervised graph attentive network for financial fraud
detection. In: ICDM, pp. 598–607. IEEE (2019)

17. Wang, J., Wen, R., Wu, C., Huang, Y., Xion, J.: FdGars: fraudster detection via
graph convolutional networks in online app review system. In: WWW, pp. 310–316
(2019)

18. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: ICML, pp. 6861–6871. PMLR (2019)

19. Zhang, G., et al.: FRAUDRE: fraud detection dual-resistant to graph inconsistency
and imbalance. In: 2021 ICDM, pp. 867–876. IEEE (2021)

20. Zhong, Q., et al.: Financial defaulter detection on online credit payment via multi-
view attributed heterogeneous information network. In: WWW, pp. 785–795 (2020)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903

Vision Papers

A Challenge for the Next 50 Years
of Automated Service Composition

Marco Aiello(B)

Department of Service Computing, IAAS, University of Stuttgart, Stuttgart,
Germany

marco.aiello@iaas.uni-stuttgart.de

Abstract. Automated Service Composition emerged as a promising
area of research at the beginning of the century. After twenty years,
it appears to have reached a stagnating state where only little progress
is made. In the present vision paper, I propose a challenge for automated
service composition to be achieved in the next 50 years. I set a scene in
2052 that service composition should be able to handle by then. Finally, I
draw a parallel with autonomous driving to identify the major milestones
in the quest to fully autonomous service composition systems.

Keywords: Automated Service Composition · Service-oriented
Computing · Maturity Levels · Artificial Intelligence Planning

1 The Promises of Automated Service Composition

Automated service composition refers to systems that utilize distributed, discrete
units of software by orderly invoking their execution with the goal of satisfying
a set of user-defined specifications. The core idea is as old as the field of software
engineering. In fact, as soon as software was complex enough to require artisan
talent and engineering techniques, the intuition of using modular designs came
about. Instead of writing code for every subtask, one could reuse parts of existing
code, possibly resident remotely on a network. To make things simpler for the
developer, the input/output syntax of these parts must be precisely specified in
order to enable composition. These were the first steps in the direction of manual
software composition and, with the subsequent advent of software services as
units of invokable functionalities, of service composition.

1.1 A Parallel with the Automotive Industry

A parallel with the automotive industry and the process of driving a car will help
understanding automated service composition evolution. Since the first ‘ride’ of
Berta Benz in August 1888, people have been manually steering their vehicles
and controlling their detailed motion. With the passing of time, more automation
has been introduced to support the driver, such as synchronised gear shifting,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 635–643, 2022.
https://doi.org/10.1007/978-3-031-20984-0_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_45&domain=pdf
http://orcid.org/0000-0002-0764-2124
https://doi.org/10.1007/978-3-031-20984-0_45

636 M. Aiello

Fig. 1. Maturity levels of Automated Service Composition

automatic shifting, cruise control, adaptive cruise control, lane assistance, and
so on. Automation in the past decade has reached a degree that prompted the
automotive industry, via the Society of Automotive Engineers, to define levels
of automation, also to set an agenda for the progress towards fully autonomous
vehicles. The levels are: Level 0 - No Driving Automation; Level 1 - Driver
Assistance; Level 2 - Partial Driving Automation; Level 3 - Conditional Driving
Automation; Level 4 - High Driving Automation; and Level 5 - Full Driving
Automation. Current modern vehicles can exhibit Levels 1 and 2 of automation,
with some manufacturers claiming to have reached Level 3 and promising to
reach Level 4 very soon. The top part of Fig. 1 shows the levels of automation,
going from supporting the driver all the way to completely taking over all driving
tasks from him/her.

One could say that the work of the software engineer, from the point of view
of software composition, is undergoing a similar process. From the early days
of completely manual composition (Level 0), we have now tools and execution
environments that support the developer in creating compositions. However,
the real goal is that of full automation. Systems that just compose software to
satisfy user needs. Yet another job category will be swallowed by automation,
that of developers; and perhaps most tasks of software architects will follow

A Challenge for the Next 50 Years of Automated Service Composition 637

suit. Section 4 presents a detailed definition of the levels of automated service
composition in comparison of those of automated driving, as shown in Fig. 1.

1.2 Composition Throughout the Years

Attributing a new technique to one specific event or person is difficult; and most
often a source of injustice. What I think is fair to say is that with the birth of
computing as a science, the increasing complexity in programs and the availabil-
ity of evermore powerful machines, a need emerged for structured programming.
This would then lead to the idea of modularization, reuse, and composition.
The sixties and early seventies were fertile times for this kind of innovation.
The address “Mass Produced Software Components” of Douglas McIlroy at a
NATO event in 1968 made the need explicit as he mentioned the possibility to
componentize software so that systems could be built from preexisting compo-
nents [9]. The movement of creating personal computing experiences was also
intertwined with the need of programming tools to go with them. In this spirit
languages like SmallTalk could be designed.1 The idea of orchestrations of agents
as the fundamental model of building distributed systems emerged the following
years [5]. And the 1980s were fundamental for the establishment of what we call
today Object-Oriented Programming: a model in which software is designed as
the interaction of formally specified objects and their instances.

The next milestones have to do with the scale of the software components.
They went from the microworld of individual objects, to the scale of entire sub-
systems. This led to the birth of component-based software engineering which
established itself as a subfield of software engineering in the 1990s [4]. The final
radical innovation that triggered a major shift was the advent of the Web. Even
though it was not designed with the goal of creating a computing infrastruc-
ture, over time it became one. Additions, extensions, and patches catered for
a shift from a Web of information for people to a mixed Web for people and
programs [1]. Furthermore, the wide adoption of it made sure that almost any
entity would have a Web presence, or better said, an entry point to its informa-
tion system. Opening up a pletora of opportunities, industry and academia got
creative. People started to play with the idea of composing Web pages to add
value for users [8]. The industry came up with dedicated protocols for Web ser-
vice interactions [13] and identifying an added value with respect to component-
based software engineering [12]. Soon a new community gathered around the
concept of Service-Oriented Computing [10]. As automated service composition
was one of the central challenges, proposals to address it were soon made. Artifi-
cial Intelligence planning was seen as a promising tool [2] and adopted by several
researchers, e.g., [3,7]. Other approaches using Petri Nets, Semantic Web tech-
nologies are also part of the early proposals [11].

1 See [6] for a great depiction of those fervent and creative times.

638 M. Aiello

1.3 The First Winter of Automated Service Composition

“Automated service composition is dead!” stated a colleague recently. I was a bit
shocked to hear that, but sympathetic. That statement made me reflect about
all the promises that were made about automated service composition and the
fact that they were mostly unrealized. Admittedly, I was as guilty as anybody
else. In the early days of Service-Oriented Computing emerging as a field, I was
promising that organizing a trip would be as easy as saying where and when
you wanted to go. I was promising that interacting with your home would be
as easy as saying that you wanted to go to bed and all would be set for you, or
that emergency situations, such as falling or a gas leak would be handled safely
and promptly. But why did we promise that and why didn’t we really achieve
it? I think the “why” has to do with the excitement of seeing service implemen-
tation emerge in abundance. The idea of being able to invoke an informational
service, or a remote functionality about more or less anything made us high on
opportunities. We really thought that creating a system was only about glu-
ing together the various elements, because all the necessary ones would always
be available and easy to invoke. We also believed that the world would be so
disciplined that everybody would provide enough ‘semantic,’ trustworthy infor-
mation about their services that one could really use it for automated service
composition. And there was a technical reason too. The advent of the Web had
created a unique platform of Web servers. Companies and service providers all
had a Web presence at the turn of the millenium and this also meant that port
80 was open for all to go through via HTTP.2 In other words, there was a privi-
leged, always open door to the information systems, databases and services of all
companies that, with a bit of internal collaboration, meant full interoperability
and compositionability. These opportunities inebriated us, and made us promise
too much, too fast, a bit like that self-driving car automaker.

However, if the promises were too optimistic, I also think that they were
not ungrounded. There were a number of technological hurdles that we assumed
would be easily overcome and that would empower fully automated service com-
position. These have to do with the availability of full semantic descriptions of
the services, with the actual trust and security that needs to be guaranteed,
with clear business models that benefit all participants. These hurdles are still
there, but are not insurmountable. Automated service composition is not dead,
it’s just waiting for the next big shift in technology to be able to flourish. It is in a
lethargic state which is typical of winters. Yes, automated service composition is
in its first winter, very much as the field of Artificial Intelligence, formally born
in 1956, fell in its winters in the early 1970s and late 1980s. Machine learning
techniques are very promising in this respect. Possibly automated service com-
position is waiting for machine learning techniques to allow for the automatic
description of services and interfaces, so that they can be composed without
expert intervention. It is waiting for reliable trust and security models of execu-
tion, and other major technical and technological breakthroughs that can drive
it towards fulfilling its original promises.
2 For a more detailed treatment, see Chap. 7 of [1].

A Challenge for the Next 50 Years of Automated Service Composition 639

Taking the view that automated service composition is not dead, but simply
in its first winter, I provide next a challenge to be realized in the next 50 years, a
possible situation that automated service composition should be able to handle
in 30 years, and a roadmap of the crucial milestones that will bring us there.
The milestones are presented mimicking the ones of autonomous driving and
presented as dividing the planned evolution into five plus one levels.

2 The Challenge

John McCarthy, one of the founding fathers of Artificial Intelligence, challenged
his community in the 1950s promising that within 50 years a computer would
beat the world chess champion. In May 1997, IBM Deep Blue defeated the human
world champion Garry Kasparov in chess. The same year, the RoboCup initia-
tive was started with the following goal: “By the middle of the 21st century, a
team of fully autonomous humanoid robot soccer players shall win a soccer game,
complying with the official rules of FIFA, against the winner of the most recent
World Cup.” So what is the challenge of automated service composition for the
next 50 years? I postulate that the challenge is that by the year 2075 auto-
mated service composition will power the first software based prime
minister of a democratic country. The advantages should be rather obvious.
Such Automated Service Composition prime minister will not be susceptible to
corruption. It will be efficient in optimizing all software and human based ser-
vices for the common good of the country. It will work 24/7. It will work on
the basis of the given democratic requirements as expressed by the parliament
or by explicit people participation in direct democracy forms. If requirements
are contradictory or unrealizable (e.g., the majority of the people asking for
reducing taxation to zero), it will try to find a composition and, after some time
for searching the vast space of possible compositions, it will provide a detailed
explanation for its decision which will be: “No.”

3 An Automated Service Composition Scene in 2052

It is late afternoon of a Summer day of 2052. Bob comes home. The automated
service composition home automation system recognizes Bob, his location, and
his mood. It then uses a speaker near him to say: “Bob, welcome home. You seem
a bit concerned and maybe sad. Can I organize something for you tonight?”

Bob, who is fond of astronomy and has named his automated service compo-
sition system “Io,” replies: “Not sure I want to do anything, maybe just a pizza
and a movie.”

Io: “How about you invite Alice over? I could organize that for you.”
Bob: “Yes Io, good idea. I think she is in town and I’d like to spend the

evening together.”

640 M. Aiello

Io connects to Europa, the automated service composition system of Alice,
to ask about Alice’s willingness to spend the evening with Bob and to verify
her availability. After a positive reply, Io starts a service composition process.
It connects to one of the city drone services. It orders Bob’s favourite pizza
and negotiates Alice’s pizza choices with Europa. It checks the contents of the
fridge for drinks and desserts and places an order for automatic delivery of
missing favourites. It prepares a music playlist as the intersection of Alice and
Bob’s most played evening songs. The service composition starts its execution
as orchestrated by Io.

Food and drinks are delivered by air. The music list is ready. A taxi drone
is sent in front of the building of Alice at the agreed time. Alice is informed
by Europa and leaves her home. She hops on the drone and thinks about what
movie she would fancy that evening. The drone takes off and goes into one of
the platooning lanes that are defined for that city. It joins a platoon of twelve
drones going from East to West. After 8min of flight, the drone lands in front
of Bob’s home. She leaves the drone and enters the building. Bob is informed of
her arrival and goes to the door.

Alice and Bob are happy to see each other and move to the living room. They
start chatting about their days. Io recognizes the atmosphere and starts playing
the music. In a short pause from talking of the two it intervenes. “Can I serve
you a cocktail? The usual one maybe?”

Bob looks at Alice: “Would you like that?”
Alice acknowledges and Bob adds: “Thank you Io. I will prepare them myself.”
Bob takes over the task as he knows Alice likes to be treated old school and

likes when he does something personal for her. The making cocktails goal of
Io changes, allowing for the human to take over most of the service composition
tasks. Bob finds the glasses and ice ready. The robotic kitchen arms have done the
mise en place, so he just has to decide on the quantities and order of mixing. He
adds some fresh mint from a pot on his balcony. Something Io has not yet learned
he likes. He then proudly offers the drinks to Alice, while both sit relaxingly on
the couch.

While waiting for the pizzas to be delivered, a list of possible movies to watch
appears on the main wall screen of the living room. Alice and Bob ponder the
various choices, most likely the hardest service selection problem of the evening.

4 Where Are We Now?

Deepening in the parallel with the automotive industry will help us understand
where we are now in automated service composition. Level 0 corresponds with
driving an old timer, no automation whatsoever. In automated service compo-
sition terms, this is the equivalent of identifying services at design time and
writing by hand all the code for the subsequent invocation of services. Level 1
is driver assistant and corresponds to composition support, also depicted in
Fig. 1. At this level, we have middleware that manages message exchanges via
publish and subscribe or one-to-one infrastructures. Code for the invocation of

A Challenge for the Next 50 Years of Automated Service Composition 641

the selected services is automatically generated, but the content of the mes-
sages and the semantic of the interactions is coded by the developer. The logic
of the composition is basically coded by the system designer with no support.
Level 2 of Partial Driving Automation corresponds to a situation in which service
discovery is highly automated. Tools also support the creation of the composi-
tion logic. The runtime of the composition is supported by appropriate tools
and middleware, but unforeseen exceptions need to be handled by the system
owner. Level 3 of Conditional Driving Automation corresponds to the situation
in which service discovery is fully automated. This includes automatic service
selection, substitution, and quality of service based discovery. Compositions are
partially automated and are generated based on patterns. The patterns are both
designed by experts and learned by observation of repeated executions. The run-
time of the composition is fully supported. Generated compositions are typically
inspected by the user who can possibly modify the generated code. The compo-
sitions are presented in intuitive graphical or textual forms for domain experts
who are not necessarily expert developers. Level 4 of High Driving Automation
corresponds to a situation in which service composition becomes almost entirely
automated. The user expresses requirements in a declarative form, and the sys-
tem creates the compositions. Services are provisioned automatically exploring
the run-time availabilities and service qualities. User may need to intervene in
case of inconsistencies or the unavailability of essential services to satisfy the
original requests. The runtime is highly automated and adaptive to varying exe-
cution conditions. User intervention may be occasionally needed for boundary
cases. Level 5 of Full Driving Automation corresponds with systems fully capable
of automated service composition. The end-user does not even need to express
goals, as these are automatically mined by the system through learning and the
observation of executions, possibly of any other user too. The service discovery,
selection and invocation is fully automatic. Composition is equally automatic.
It is based on functional, non functional, and instance properties of the services.
Contingencies, unavailabilities, changes in service properties are handled by the
system at runtime with the objective of satisfying the end-user’s goals under the
constraints of the moment. The user needs to do nothing. It can provide feed-
back to the automated service composition system with the goal of improving
the overall quality of the compositions and their executions.

The vehicles traveling on a highway today are a mix of mostly Level 0 ones,
several Level 1, and some Level 2. Similarly for automated service composition,
today most systems are built with Level 0 technologies, especially the smaller
scale systems. Though several are using Level 1 and Level 2 technologies. Upper
levels are available only as research prototypes often working in very specific
domains and controlled environments. Level 5 systems do not exist, to the best
of my knowledge, even as research prototypes.

It should be noticed that what we term ‘user’ in the levels above actually has
varying meaning depending on the level. The lower the level, the more the user
is a developer with very good technological knowledge. The more we go towards
the higher levels, the more the user is the end-user of the system and his/her

642 M. Aiello

knowledge of the technology becomes less relevant. Again something similar to
the automotive industry. In case of a small random failure, decades ago, the
driver was expected to be able to do essential repairs—i.e., on a Level 0 car—
while today the best thing a driver can do on a Level 1 or 2 car is to contact a
service center. The service center will then initiate remotely the execution of a
diagnostic process, after which the driver can be advised on what to do.

5 Outlook

While Alan Kay observed that “the best way to predict the future is to invent it,”
predictions are deemed very difficult in general, as Niels Bohr noticed, “especially
about the future.” Clearly, the present interpretation of the history of automated
service composition, the vision about its future and what is challenging are
very personal, but what I consider general is the observation of where we are
in the field. The goal of this treatment is to open the discussion within the
community, and possibly in the neighbouring communities too, on what are the
many milestones to be reached and then surpassed. As Artificial Intelligence
has seen its winters, only to subsequently experience sprouting springs, I think
that Automated Service Composition is in a similar situation. After its explicit
recognition at the beginning of the century and the strong promises of the early
days, it is now in a stale position, some would even say comatose, but there is
hope for a major technological and scientific paradigm shift that can give new
life to it and bring it to higher levels of maturity; making it a building block of
a more efficient, sustainable, and reliable society.

Acknowledgements. The inspiration to write this paper came after a discussion of
the IFIP Working Group 6.12: Services-Oriented Systems held during SummerSOC
2022, on July 3rd in Crete. I am indebted to all participants of that event for the
fruitful discussion. I am also grateful to Heike Aiello, Luigia Carlucci, Ilche Georgievski,
and Frank Leymann who have read and commented early drafts. All the opinions and
remaining errors can only be ascribed to myself.

Note. The present paper was written following the very same principles of composition
at the core of Automated Service Composition. In fact, any central section can be
composed with any other central section of the paper without affecting the reading
flow. It can also be omitted. So any reading of the sections such as 1,2,3,4,5, or 1,4,3,2,5,
or 1,3,2,5 or 1,2,5 and so on are valid ways for going through this material. Try it!

References

1. Aiello, M.: The pervasive future. In: The Web Was Done by Amateurs, pp. 129–140.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90008-7_10

2. Aiello, M., et al.: A Request Language for Web-Services Based on Planning and
Constraint Satisfaction. In: Buchmann, (eds.) TES 2002. LNCS, vol. 2444, pp.
76–85. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46121-3_10

https://doi.org/10.1007/978-3-319-90008-7_10
https://doi.org/10.1007/3-540-46121-3_10

A Challenge for the Next 50 Years of Automated Service Composition 643

3. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
composition of e-services that export their behavior. In: Orlowska, M.E., Weer-
awarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp.
43–58. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24593-3_4

4. Heineman, G., Councill, W.: Component-Based Software Engineering. Putting the
Pieces Together, Addison-Westley (2001)

5. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for Arti-
ficial Intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence (IJCAI) (1973)

6. Kay, A.C.: The early history of Smalltalk. In: History of programming languages–
II, pp. 511–598 (1996)

7. Lazovik, A., Aiello, M., Papazoglou, M.: Planning and monitoring the execution
of Web service requests. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P.,
Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 335–350. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-24593-3_23

8. McIlraith, S., Son, T.C.: Adapting Golog for composition of semantic Web-services.
In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M. (eds.) Proceedings of
the 8th International Conference on Principles of Knowledge Representation (KR),
pp. 482–496. Morgan Kaufmann (2002)

9. McIlroy, D.: Mass-produced software components. In: Proceedings of the 1st Inter-
national Conference on Software Engineering, Garmisch Patenkirchen, Germany,
pp. 88–98 (1968)

10. Papazoglou, M.: Service-Oriented Computing: Concepts, characteristics and direc-
tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, 2003. WISE 200, pp. 3–12. IEEE (2003)

11. Rao, J., Su, X.: A survey of automated Web service composition methods. In: 1st
International Workshop on Semantic Web Services and Web Process Composition,
pp, 43–54 (2004)

12. Stal, M.: Web services: Beyond component-based computing. Commun. ACM
45(10), 71–76 (Oct 2002). https://doi.org/10.1145/570907.570934

13. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Pearson (2005)

https://doi.org/10.1007/978-3-540-24593-3_4
https://doi.org/10.1007/978-3-540-24593-3_23
https://doi.org/10.1145/570907.570934

Quality Engineering in AI Services

Fabio Casati1(B) and Boualem Benatallah2

1 Servicenow, Santa Clara, CA, USA
fabio.casati@servicenow.com

2 Dublin city University, Dublin, Ireland

boualem.benatallah@dcu.ie

Abstract. This short paper discusses some of the challenges in testing
AI systems, proposes some good practices and advocates a shift to a
customer-driven approach, driven by problems customers need to solve
rather than problems engineers can solve.

1 AI Services and Systems - It’s Not Just a Model

Engineering quality in AI systems today - or even understanding what quality
means - is still an art. In many ways, the distance between the hopes and the
practices of AI providers and the actual outcomes for customers is massive, as
it was for the early days of software engineering when software started to be
something that serves enterprise customers and consumers rather than being a
tool for scientists.

AI systems are designed developed, deployed and operated by a large, cross
enterprise team: you have the data scientists, the devops engineers, the product
managers (PMs) defining requirements, the legal team, security and privacy, the
customers who use/deploy the system and makes it avail to their users, and the
list goes on. AI today, and especially enterprise AI, is a fairly delicate machinery
that is “touched” by many different people with varying skill levels and discipline.

In the following discussion on engineering quality we assume, as it almost
invariably is, that an AI system is a complex entity which is i) built from data,
frameworks, processing pipelines that create the “model” served at inference
time, and ii) ML models are integrated into a workflow which comprises various
safeguards/limitations around the use of AI (e.g., use this model only for requests
in English and when the model confidence is high) as well as humans that can
consume (or reject) the suggestion/decision coming from AI (Fig. 1).

Notice that we will use the terms AI and ML fairly interchangeably: here
we are only concerned with “intelligent” systems where parts of its computation
logic is learned from data (Fig. 2).

Finally, we stress that in the following we do not provide a complete dis-
cussion of how to engineer quality into AI systems. Rather, we point out some
common mistakes and gaps we often see in research and practice, and underline
the high level practices that can help reduce the occurrence and mitigate the
effects of these flaws.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 644–652, 2022.
https://doi.org/10.1007/978-3-031-20984-0_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_46&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_46

Quality Engineering in AI Services 645

Fig. 1. Developing an AI-powered workflow.

2 Common ML Quality Engineering Mistakes

2.1 Obvious and Widely Known Mistakes - Which We Still Do All
the Time

Test Data Leakage. This occurs when the test dataset is used to take decisions
on model parameters, hyperparameters, when selecting a model over another, or
when deciding if AI is right for the problem at hand. Pretty much everybody is
aware that you are not supposed to train on test data. However, very rarely is a
test dataset really “held out”. Often one tries it, sees that performances are not
as expected, and then goes back to change some aspects of the model.

It may be that this is the right thing to do as long as i) one knows that
this means that we cannot really trust the test results much, and ii) this is

646 F. Casati and B. Benatallah

Fig. 2. AI-powered workflows are built from frameworks, composed by ML pipelines
to create services that are then integrated into workflows to solve specific use cases.

communicated very clearly when presenting results, including when presenting
results to non-experts (as sometimes decision makers may not be aware of these
“nuances”).

Class Imbalance and Distribution. This problem manifests itself in several
ways. First, in ML we should always consider the quality of our model with
respect to the simplest baseline: the one that always predict the majority class.
This is simply because if the trivial baseline works just as well, we might save
us the trouble to put ML in.

In general, being aware of the class distribution gives us a sense for how
hard the problem is. More entropy generally means lower accuracy. Furthermore,
suppose you have C classes, where each class appears with a certain frequency
(or probability, in a frequentist world) P (c). Now, what do we want from our
test dataset? If you want to test overall accuracy, then the class distribution in
your test dataset should match what you expect to find in production. So, if
you have a class c that appears rarely, you may have very few instances of it in
the test dataset, so that you will not be able to determine how accurate is your

Quality Engineering in AI Services 647

classifier in predicting c. But, since it appears rarely, it does not mess up your
overall accuracy metrics. However, if what you care about is how your model
behave when the true class is c, then you need a lot of examples of c in the test
dataset. For example, you use stratified sampling to create the test dataset or
oversample c. When you do that, you cannot report on overall model accuracy
any more because your test dataset is different than production.

Train/Test Data Size. The overwhelming majority of train/test data split
we have seen are around 80%/20% (scikit-learn has a default of 75/25). It is a
mistake that we replicate and that has come to be accepted, but today you rarely
come across a case where this makes sense. We do not measure test dataset size
in percentage, but in absolute number since that affects and gives us information
on the margin of error.

The other very frequent error is making decisions based on test data of, say,
100 samples, and preferring a new model M2 over current production model M1
because it classifies 4% more accurately on the test set. Why is that so bad? Take
the “easiest” problem: assume the case of binary classification. Suppose you get
an accuracy of .78 for model M1 and .82 for model M2. What can you conclude?
Nothing. Should you put M2 into production in place of M1? Absolutely not. In
fact, in our experience few people are aware of how massive the 95% confidence
interval for 100 samples is: it’s almost 20 points. And that difference between
M1 and M2 is not significant even when we consider 50% confidence interval (!).
Even for 1000 samples, a result of 80% accuracy has a 5 points margin of error.

Again, your customers may not know this. They may not be scientists. If we
write that number on the slides after we test with 100 samples, we are misleading
our listeners. If classification is not binary, then people tend to report accuracy
statistics by class, for which again the number we report is meaningful depending
on how many test samples we have for that class. If we report on that, again,
we are misleading our audience.

So in the end what should we do? The problem is not that hard actually: we
should decide what we care about. “We”, here, is the business side. What kind of
“guarantees” do we expect from our model? Suppose that the guarantee we want
is that we can detect urgent (priority 1) requests with a certain recall. Then in the
test dataset we want a large enough sample of such requests (maybe oversampling
them), and we will report on the results and how certain or uncertain you are
based on that sample.

2.2 Less Obvious but Equally Common Pitfalls

Cross Datasets Data Leakage (Or, Lack of Real Test Datasets). This
problem is very frequent when we need to apply the same ML pipeline (not the
same model) to different datasets. For example, assume we are building an intent
classification pipeline to be used for different companies, customers, or domains.
Say we have data for customers Cust1, Cust2, .., CustK . One approach we can
follow is to assess a variety of ML pipelines by performing train/test on the K

648 F. Casati and B. Benatallah

customers data we have and pick the one with best overall performance - say, the
one that performs reasonably well for all K customers. We then put this pipeline
into our product so that every customer (not just these K ones, but any other
customer that wants to use our product) can enjoy our ML classifier, now built
into our product.

Data scientists and managers are now confident because we followed good
practices in terms of test dataset for the K customers. However, what we have
done is in fact to use the test datasets to decide on which pipeline to pick, and
this is a form of data leakage. If you want to have a sense for how your model
will perform, you train/test and pick a model with data from a subset K1 ¡ K
of the customers, and then apply the pipeline (train/test) over the remaining
customers.

This situation is tricky because K is usually not in the thousands. In fact
most likely it can be a hundred, a dozen, or a handful.

In this case you can use all your five datasets to pick the best ML pipeline,
but you need to be aware that you do not have many quality guarantees. In
other words, you do not know that you have picked the best ML pipeline and
you do not know that the quality you are going to get is similar to what you saw
during model development and testing. All you have is an informed guess and
this is probably your best guess. Again, i) this is important to stress when you
present your results, and ii) you should deploy the ML pipeline in production in a
trustworthy way: when a new customer uses your product, you train/test on that
customer’s data, derive your “guarantees” and confidence intervals, and decide
if ML should kick in or not. The risk you face is that your decision to go with
that pipeline was wrong and you need to update your product, which is painful
but doable. Simpler and older, well understood models and more regularized
pipelines here may be safer than a super-duper latest hit model.

Metrics That Matter. This is by far the most common and most impactful
mistake when measuring quality of AI systems. Science and engineering teams
will measure and report on metrics such as F1, accuracy, and recall. These met-
rics have nothing to do with AI solution quality or success as experienced by
customers and users. The use of those metrics is a result of the silos present
in nearly every company that separates customers from product managers from
data scientists, and by the lack of a design thinking culture. The three most
common mistakes here are:

1. Not understanding, and clearly stating for the development team, which are
the KPIs we want to help our customers improve with the AI systems we are
asking them to use.

2. Forgetting that an AI system is not an AI model: It is a model inserted in a
pipeline that goes into a complex systems and interacts with humans, so that
the impact In other words, you need to assess if the AI-powered workflows
improve KPIs with respect to, for example, when the execution is left to
humans without AI intervention, and need to remember that the model is
not the only knob you can turn.

Quality Engineering in AI Services 649

An important corollary of the two points above is that accuracy and related
metrics are not metrics of interest. In fact, accuracy is the metric you want to
use only when you do not care about your model being accurate. More on this
in “The Accuracy Paradox” [1].

Another corollary is that you need to be able to measure KPIs and trace how
the AI-powered workflows affect the KPI. As a minimum you can “ballpark” it,
ideally you can measure it thanks to “observability” and impact analysis tools.

The final corollary is that you need to drive the quality you want based on
the KPIs (and on the need for consistency as we will see later), not on a generic
desire to make this or that part of the model and system better or faster, or on
the wish to use state of the art models because they are impressive or because
you can. This seems obvious, but the data scientists tendency is to drive towards
the latest and better models, while from a reliability standpoint older and better
understood solutions are often preferable.

Regression and Updates. ML systems are never static, they continue to
learn, either periodically (via manual or automated retraining with new data
every few days or weeks) or continuously. Every time you change the underlying
model you change the behavior of a complex system, and if you deploy the new
model you are changing the behavior of that complex production system. Most
customers are not happy to have a process that serves thousands or hundreds of
thousands of users change behavior without any control or guarantee.

The fact that the new system is “better”, even in terms of improving the
KPIs, does not mean we want to deploy it. There are two reasons for this, and
we already saw one: often we are not sure the new system is really better. The
second reason is that even if the new model and system is better, most likely it
will not be “Pareto-better” (perform equally well or better in all cases): there
may be some cases for which it now fails, but used to work well before. This is
often cause for trouble. You may tell your customers or your users that life is
better with the new model, but the ones for whom things got worse will not be
happy. Furthermore, when things do not work well people usually may develop
a workaround to cope with it, while new failures are harder to digest.

Practically, it is worth collecting the samples for which the new model works
worse than the old one and show at least some statistics to decision makers so
that they can i) make an informed decision, and ii) alert people of the shortcom-
ings of the new system.

Sleepworthy AI: Engineering for Consistency and Peace of Mind. An
aspect that is both rarely understood and hard to test for is checking if an ML
model knows when it does not know. In general, you want a model that tells
you when it is uncertain, so that you as AI system developer can decide to keep
AI out of the way and leave decisions to humans in those cases, and takes more
control when it is certain. This is important for two reasons:

1. You want to capture high confidence errors, areas in which the model strongly
believes to be correct but is wrong. These are errors of the model from which

650 F. Casati and B. Benatallah

your system has no defense, as it will trust the model confidence. If you detect
high confidence errors in your model, then you should try to see if you can
improve your model’s ability to reject its own inferences, as discussed in [2].

2. On the opposite side, you want to identify patters in the samples that your
model can classify with both high confidence and accuracy (while accuracy
does not mean quality, having both accuracy and high confidence almost
always does). For example, you may detect that you do great in requests
coming in French. Detecting and explaining (to humans) these patterns is
important because even if your model overall does not work that well, you
may decide to deploy it only for a subset of cases. This will also help boost
the customer’s confidence in your AI

Training on the Future. Historical data that you use for training/testing
often has a time element to it. You train the system at a given time and you
apply to run predictions on future items. In these cases, you should train the
model on the oldest samples and test it on the samples closer in time to the
go-to-production time, to have a more accurate estimate of how well you will do
in prod. For example, you train on user request data from January to August,
test on September data, and if you are happy you deploy in October. If you test
on January data, i) you are training from the future and testing on the past,
and ii) your test data is more far away from current condition and your test is
less meaningful.

Another caveat here is that most likely, while you do want to test, you then
also want to train the model on the entire dataset. Maybe in September the
new iPhone came out and many requests are on that. You want your model
to capture those, too, and in general to be trained on the most recent data.
Now you are in a pickle: you train model M1 on Jan to august data, test on
September data, but then train M2 on January to September data and push it
to production without test data. M1 and M2 should be not that distant, M2
should be better than M1, but we do not really know. Should you do that? This
is a tough choice with no clear winner. However, there are a few things we can
do to mitigate the problem. First, we can test how time-dependent our models
are. For example, we can train with data from January to May, test on June and
July, and compare that model with one trained on January to June data and
tested on July data, to see if we have surprising behaviors. There is no guarantee
here but we can pick up on warning signs if we see unexpected behaviors.

The second is that actually we want the test dataset to be as large as we need
it, but not larger. The larger the test dataset, the bigger the difference between
M1 (on which we report statistics to managers and customers) and M2, which
goes to production. So, we should keep the test dataset as small as we can while
giving the statistical properties/intervals we want.

Finally, we go back to sleepworthy AI: we deploy M2 “slowly”, starting from
high confidence cases, and expand as you gain confidence, or use a weighted
combination of M1 and M2 where you progressively shift to M2 as you learn to
trust that its predictions are in line with expectations or better.

Quality Engineering in AI Services 651

Trustworthiness, “Fairness” and Appropriateness. This is another big
black hole today, too large to discuss here, so we just refer the reader to [3]. The
only aspect we underline here is that fairness is not something that is measured
with a number between 0 and whatever. It has more to do with a somewhat
subjective and biased analysis of the adoption of a specific model and system
for a specific purpose, and the path to fairness rests more on the thinking,
design and development process followed by all the parties involved than on
easily computable metrics. A lot of help here can be provided by checklists
and guidelines and are related to following a process that is as transparent and
open as possible, to collect perspectives of different groups and individuals. The
transparency involves the entire process, including aspects frequently overlooked
such as crowdsourced data collection, that require their own reporting specific
to the method of collection [4].

3 Building AI Systems We Can Rely on

In Summary, here are some good practices we need to add to our ML devops
toolbox and we must adhere to if we want AI systems that customers can rely
on.

1. Results presentation and analysis that brings out and emphasizes all uncer-
tainties and limitations so that they are clear for the specific audience. A
lot of this can be achieved via i) training in experiment design and analysis,
ii) checklists and iii) standardized experiment reporting slides and templates
which include an explicit points on limitations and uncertainties.

2. Metrics that matter. Draw (literally) the AI workflow in production and what-
ever abstraction level you feel appropriate and write down the customer KPIs
of interest. Either you know them or at least try to guess them - at least you
have a hopefully reasonable goal to achieve. Then from that derive the prop-
erties of the model and system that improve KPIs with respect to the as-is.

3. Transparent and trustworthy design/dev process. We singled out experiment
design and reporting earlier just because it is ubiquitous and widely misun-
derstood, but in general the entire design/dev/prod process needs to be made
explicit, along with its assumptions and limitations. This is not just for the
ML fairness angle but to surface the implicit and explicit assumptions that
drive decisions. Indeed, implicit assumptions are always the biggest project
killer.

4. “Sleepworthy”, consistent, self-limiting AI. Consider consistency and peace
of mind as key “implicit” KPIs you want to preserve throughout the AI
system lifecycle. Your testing, deployment and production monitoring aims
at being as unsurprising as possible. As an old ad used to say, “power is
nothing without control”. In production AI, excitement and the Wow factor
is nothing without peace of mind, consistency and reliability.

It goes without saying that tools may help all of the above, but today they
are few and far apart, and rarely designed for customers or project manager.

652 F. Casati and B. Benatallah

References

1. Casati, F.: The Accuracy Paradox. Available on Medium at: https://tinyurl.com/
theaccuracyparadox

2. Sayin, B., Yang, J., Passerini, A., Casati, F.: The science of rejection: a research area
for human computation. In: Proceedings of The 9th AAAI Conference on Human
Computation and Crowdsourcing (HCOMP 2021)

3. Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning.
fairmlbook.org (2019)

4. Ramı́rez, J., et al.: On the state of reporting in crowdsourcing experiments and
a checklist to aid current practices. In: Proceedings of CSCW 2021. Available at:
https://arxiv.org/abs/2107.13519

https://tinyurl.com/theaccuracyparadox
https://tinyurl.com/theaccuracyparadox
https://fairmlbook.org/
https://arxiv.org/abs/2107.13519

Service-Based Wireless Energy
Crowdsourcing

Amani Abusafia(B), Abdallah Lakhdari, and Athman Bouguettaya

The University of Sydney, Sydney, NSW 2000, Australia
{amani.abusafia,abdallah.lakhdari,athman.bouguettaya}@sydney.edu.au

Abstract. We propose a novel service-based ecosystem to crowdsource
wireless energy to charge IoT devices. We leverage the service paradigm
to abstract wireless energy crowdsourcing from nearby IoT devices as
energy services. The proposed energy services ecosystem offers conve-
nient, ubiquitous, and cost-effective power access to charge IoT devices.
We discuss the impact of a crowdsourced wireless energy services ecosys-
tem, the building components of the ecosystem, the energy services com-
position framework, the challenges, and proposed solutions.

Keywords: Service computing · Energy services · Wireless energy
charging · Crowdsourcing · IoT · Wireless power transfer

1 Introduction

Internet of Things (IoT) is a paradigm that enables everyday objects (i.e.,
things) to connect to the internet and exchange data [1]. IoT devices usually have
capabilities, such as sensing, networking, and processing [1]. The number of con-
nected IoT devices is expected to reach 125 billion in 2030 [2]. This potential per-
vasiveness of IoT provides opportunities to abstract their capabilities using the
service paradigm as IoT services [3]. IoT services are defined by their functional
and non-functional attributes. The functional attributes define the purpose of the
service, such as sharing internet access using WiFi. The non-functional attributes
are the properties that assess the Quality of Service (QoS), e.g., signal strength,
reliability, etc. For example, an IoT device owner may offer their WiFi as a
hotspot (i.e., service provider) to other nearby IoT devices (i.e., service con-
sumers). A multitude of novel IoT services may be used to enable intelligent
systems in several domains, including smart cities, smart homes, and healthcare
[3]. Examples of IoT services are WiFi hotspots [4], environmental sensing [5],
and energy services [6]. Of particular interest is the use of energy services.

Energy service, also known as Energy-as-a-Service (ES), refers to the wire-
less power transfer among nearby IoT devices [6]. We consider a particular set
of IoT devices named wearables. Wearables refer to anything worn or hand-held
like smart shirts, smartwatches, and smartphones [7]. Wearables may harvest

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 653–668, 2022.
https://doi.org/10.1007/978-3-031-20984-0_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_47&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_47

654 A. Abusafia et al.

Fig. 1. The components of IoT energy services ecosystem

energy from natural resources such as kinetic activity, solar power, or body heat
[8,9]. For instance, a smart shoe using a PowerWalk kinetic energy harvester
may produce 10–12 watts on-the-move power1. In this respect, wearing a Power-
Walk harvester may generate energy to charge up to four smartphones from an
hour’s walk at a comfortable speed. Energy services may be deployed through
the newly developed “Over-the-Air” wireless power transfer technologies [6,10].
Several companies focus on developing the wireless charging technology of IoT
devices over a distance, including WiTricity2, Energous3, Cota4, Powercastco5.
For example, WiTricity started based on the work of [11] where they succeeded
in transferring 60 W of power wirelessly to power a light bulb. Another example
is Energous which developed a device that can charge up to 3 W power within a
5-meter distance to multiple receivers.

Crowdsourcing is an efficient way to leverage IoT energy services to create a
self-sustained environment [3,6]. IoT users may collaborate to share their spare
energy to charge nearby IoT devices and extend their battery endurance [12,13].
Crowdsourced IoT energy services present a convenient and adaptable solution
as devices do not need to be tethered to a power point or use charging cords, and
power banks [14]. In addition, crowdsourcing energy offers an ubiquitous power
access for IoT users as they may be charged anytime and anywhere, even while
moving [6,14]. Charging IoT devices wirelessly from a central source usually
requires a high-frequency magnetic field to transfer the energy over a distance
[15]. Studies have shown that a strong magnetic field has a harmful impact
on humans [15,16]. On the contracts, crowdsourcing IoT energy services enables
charging by aggregating energy from multiple close-by devices. As the devices are
near, transferring the energy will require a low-frequency magnetic field. Hence,
crowdsourcing energy services offer an alternative solution to charge devices
wirelessly without compromising users’ health [17,18]. In this paper, we propose
to leverage the service paradigm to enable a self-sustained IoT energy services

1 bionic-power.com.
2 witricity.com.
3 energous.com.
4 ossia.com.
5 powercastco.com.

Service-Based Wireless Energy Crowdsourcing 655

Fig. 2. Usage-time using wire vs wireless charging technologies

ecosystem by utilizing three components, crowdsourcing, IoT, and wireless power
transfer technologies (see Fig. 1).

This paper maps out a strategy to leverage the service paradigm to utilize
IoT energy services in smart cities. We envision a sustainable ecosystem that
allows on-the-go wireless energy crowdsourcing to recharge IoT devices in smart
cities. First, we highlight the benefits of the energy services ecosystem. Then,
we present a holistic service-based ecosystem to conceptualize the idea and call
for future validation. Next, we describe the ecosystem in terms of the environ-
ment, service-oriented architecture, and enabling technologies. We also present
the envisioned framework and the contemporary approaches for composing IoT-
based energy services. Finally, we discuss the uprising challenges to implementing
the envisioned ecosystem and highlight the potential future research directions
that may address these challenges.

2 Impact of Crowdsourcing Energy Services Ecosystem

Crowdsourcing wireless energy services provides numerous benefits to both the
environment and IoT users. Each of the benefits is discussed in depth below.

– Enabling Sustainable IoT Ecosystem: The proliferation of IoT devices
leads to a significant increase in energy consumption [19,20]. IoT devices’
global energy demand is predicted to reach 46TWh by 2025 [20]. This tremen-
dous energy demand accounts for 6% to 8% of the global carbon footprint
generated by information and communication technologies [21,22]. Crowd-
sourcing energy services reduce carbon footprint by reducing dependence on
fossil fuels to charge IoT devices. In addition, crowdsourcing energy services
rely on renewable or spare energy resources. The renewable energy may be
harvested from natural resources such as body heat, solar energy, or kinetic
movement [23].

– Extending Battery Endurance: IoT devices are constrained by the size
of their batteries [24,25]. The small size of the battery results in a lim-
ited energy storage capacity. This limited capacity hinders the capabilities
of IoT devices. Increasing the battery capacity for IoT devices faces several
challenges,including, safety, weight, cost, and recycling [26]. Other charging

656 A. Abusafia et al.

methods, such as carrying a power cord and searching for a power outlet,
are inconvenient for users. Hence, crowdsourcing energy services becomes an
attractive solution to improve battery endurance [27].

– Unlimited Usage Time: Crowdsourcing energy services enable recharging
IoT devices without interrupting their usage time. In contrast, wired charging
may require IoT users to stop the usage of their devices in order for them to
be charged. Hence, wireless recharging of IoT devices may result in unlimited
usage time, i.e., constantly using them to provide or access services (See
Fig. 2). Thus, crowdsourcing energy services prolong the IoT device’s usage
lifetime, especially when the external energy supply is unavailable.

– Spatial Freedom: Crowdsourcing wireless energy services provide spatial
independence for IoT users. As previously mentioned, IoT devices are fre-
quently required to be tethered to power points or carry power banks to be
charged. The last obstacle for IoT devices to achieve their spatial freedom is
both charging wires and pads. The prospected environment is expected to
enable wireless power transfer delivery up to five meters [28].

– Flexible Contracts: Unlike traditional services, crowdsourced energy ser-
vices environment don’t have lock-in contracts [29]. The flexible contracts
enable consumers and providers to request or offer full or partial services
according to their preferences [29,30]. In addition, providers and consumers
may extend their stay-time to offer or receive an energy service [31].

– Ubiquitous Power Access: As aforementioned, energy services offer spatial
freedom for IoT devices. Therefore, crowdsourcing energy services offer an
ubiquitous power access to charge IoT devices anytime and anywhere. This
ubiquity of wireless charging facilitates access to energy for IoT users.

– Convenience Charging: The ubiquity of wireless charging offers a conve-
nient alternative to charge IoT devices [14]. In addition, as previously dis-
cussed, the flexibility to participate in crowdsourcing energy services without
any long term contract offers convenience for IoT users. IoT users might
offer or request energy services without any lock-in contract. They can also
move around freely while providing or receiving energy [32]. This convenience
ensures that the ecosystem will expand widely.

– Business Edge: As previously mentioned, energy services offer a convenient
solution to charge IoT devices. Thus, energy services may be used as a com-
plementary service to provide customers with the best quality of experience
when visiting a business [17]. For example, energy services, like WiFi, may
be used to charge customers’ wearables in a cafe. Such a service will increase
customers’ satisfaction with a business. Customer satisfaction is the main
factor in ensuring that customers keep coming back to businesses, i.e., main-
taining or increasing foot traffic [33]. For example, a case study showed that
”Sacred”, a cafe in London, had a noticeable increase in foot traffic after
installing wireless charging points6. The foot traffic in a business has a direct
impact on its revenue. [34].

6 air-charge.com.

Service-Based Wireless Energy Crowdsourcing 657

Fig. 3. Crowdsourcing IoT energy services scenario

3 Crowdsourcing Energy Services Ecosystem

The energy services ecosystem setup consists of three major components: (1)
The context of the envisioned prospective environment, (2) The abstraction of
the ecosystem as an energy service-oriented architecture, and (3) The enabling
technologies to implement the foreseen ecosystem, In what follows, we discuss
each component in detail.

3.1 Prospective Environment

The envisioned crowdsourced IoT energy environment is a dynamic environment
that consists of IoT users congregating and moving across microcells [6,35]. A
microcell is any confined area in a smart city where people may gather (e.g., cof-
fee shops, restaurants, museums, libraries) (see Fig. 3 (A)). In this environment,
IoT users are assumed to act as energy providers or consumers (see Fig. 3 (B)).
Their IoT devices are assumed to be equipped with wireless energy transmitters
and receivers. Energy providers may use their wearables to harvest energy [36].
The IoT users might share their spare or harvested energy to fulfill the require-
ments of nearby IoT devices. Energy Providers advertise services and consumers
submit requests to the IoT coordinator. The super provider manages the IoT
coordinator. A super provider is typically a microcell’s owner who manages the
exchange of energy services between providers and consumers. The IoT coordina-
tor is assumed to be deployed one hop away from the energy providers and con-
sumers (e.g., router at the edge) to minimize the communication overhead and
latency while advertising energy services and requests. The super provider limits
a consumer’s requested energy and uses a reward system to encourage providers

658 A. Abusafia et al.

Fig. 4. Energy services oriented architecture

to share energy. Rewards come in the form of stored credits to providers. The
collected credits may be used later by the provider to increase the limit on
the amount of requested energy when they are in the consumer role. Providers
may also be a consumer and vice-versa. Providers receive rewards based on the
amount of shared energy.

In the energy services environment, IoT devices may share energy using the
energy service model. Note that energy services exhibit functional and non-
functional (Quality of service (QoS)) properties [29]. In this respect, the func-
tional property of energy service is represented by the wireless service delivery of
energy to nearby IoT devices. The non-functional (QoS) properties may include
the amount of energy, location, duration of sharing, etc.

3.2 Energy Service Oriented Architecture

A key aspect to unlocking the full potential of the energy services ecosystem is
to design an end-to-end Service Oriented Architecture (SOA) to share crowd-
sourced energy services. We identify three key components of the SOA: energy
service provider, energy service consumer, and super provider. (see Fig. 4). An
energy provider refers to an IoT device that may share their energy. An energy
consumer refers to an IoT device that requires energy. A super provider is typi-
cally a microcell’s owner who manages the exchange of energy services between
providers and consumers.

3.3 Enabling Technologies

The implementation of a crowdsourcing energy services ecosystem strongly
depends on the recent technology of wireless charging. Wireless charging tech-
nologies are the transmitters and receivers that enable the wireless transfer of

Service-Based Wireless Energy Crowdsourcing 659

Fig. 5. Crowdsourcing energy services framework

energy [10]. For example, Xiaomi’s Mi Air charger transmits energy wirelessly
to nearby IoT devices7.

Energy harvesting technologies are another technology to enable a sustain-
able crowdsourcing energy services ecosystem. Energy harvesters may enable a
green crowdsourcing ecosystem to charge IoT devices [37]. The IoT devices may
harvest energy from natural resources, including kinetic movement, solar power,
or body heat [8,9]. The harvested energy may be used to charge the device itself
or to be shared with nearby devices [38].

4 Crowdsourcing Energy Services Framework

The energy service framework is responsible for composing and managing the
received energy services and requests. An energy service is described by the IoT
owner’s spatio-temporal preferences, available energy, usage, and mobility model
(See Fig. 5). Similarly, an energy request is described by the IoT owner’s spatio-
temporal preferences, amount of requested energy, usage, and mobility model.
We envision the composition framework to consist of four components: (1) an
incentive model. (2) a reliability and trust assessment, (3) a spatio-temporal
composability model, and (4) a service composition approach. In what follows,
we discuss each component in detail.

4.1 Incentive Model

Typically, in crowdsourcing environments, users resist sharing their resources
[39]. Similarly, IoT users may resist sharing their energy since energy is a scarce
resource [30,40]. Hence, an incentive model is needed to encourage providers to
share their energy. Designing an incentive model shall consider the context of
the environment and the behavior of the IoT users [30,41].

4.2 Reliability and Trust Assessment

The participation of IoT users in the energy crowdsourcing ecosystem is influ-
enced by reliable and trustworthy providers, and consumers [42]. To guarantee
7 mi.com.

660 A. Abusafia et al.

Fig. 6. Energy consumers may be charged from energy providers within the power
transfer range

high-quality services, both reliability and trust are required in crowdsourced IoT
systems. High-quality services will encourage and maintain users’ participation
in the energy services ecosystems. Therefore, when managing and composing
energy services, it is imperative to assess the reliability and trustworthiness of
IoT energy users.

4.3 Spatio-Temporal Composability Model

Energy services and requests may have different times and locations [6,29]. Suc-
cessfully delivering energy services requires providers and consumers to be within
the power transfer range. For example, if a provider’s location is out of the
power transfer range from a given consumer, the system shouldn’t match them
(See Fig. 6). Thus, an effective filtering method is needed in order to efficiently
match services to requests. A composability model was proposed to index ser-
vices nearby a signal request based on time and space [29]. The same model may
be used to filter multiple services and multiple requests.

4.4 Services Composition Approach

A single energy request may not be fulfilled by one energy service due to the
limited resources of IoT devices [29]. In such cases, the system may utilize the
shareable nature of energy by composing multiple nearby energy services to one
request or vice versa [17]. Similarly, a single energy service may be used to fulfill
one or multiple energy requests [29]. Hence, we may have different modes of com-
position (See Fig. 7). Additionally, energy service providers and consumers may
have different Spatio-temporal preferences. Therefore, the service composition
approach should consider these preferences in matching and composing energy
services and requests.

Service-Based Wireless Energy Crowdsourcing 661

Fig. 7. Modes of energy services composition

5 Challenges in Crowdsourcing Energy Services

To exploit the potential of crowdsourced energy services for charging IoT devices,
multiple challenges must be tackled. These challenges can be classified into three
main categories enabling technologies, human-in-the-Loop, and system deploy-
ment. The following subsections describe the challenges encountered in each
category and propose possible solutions.

5.1 Enabling Technologies

The deployment of a crowdsourcing energy services ecosystem highly relies on
the current Wireless Power Transfer (WPT) technologies. Although WPT tech-
nologies are advancing rapidly, there are technological constraints that impede
the ecosystem from being fully deployed [43]. Challenges posed by technology
include energy loss, miniature energy delivery, and restricted power transmission
range. Each of these constraints is discussed further below.

Energy Loss. Using the recently developed wireless power transfer technolo-
gies, consumers may spend more energy to receive the requested energy [44]. The
consumed energy may include the energy required for service discovery, energy
delivery, and connection establishment between the consumer and the provider
[45]. The huge energy loss impedes the energy services ecosystem from fulfilling
its purpose of charging nearby IoT devices. Therefore, minimizing energy loss is
a challenge yet to be addressed.

Miniature Delivered Energy. Even though there is rapid development in
wireless power transfer technologies, the amount of delivered energy is insufficient
to what is currently required [14]. The small amount of delivered energy may be
justified by the energy loss in delivering the energy service as aforementioned.
Hence, Delivering a considerable amount of energy wirelessly over a distance is
still a challenge that hinders the full deployment of the energy services ecosystem.

662 A. Abusafia et al.

Limited Power Transfer Range. The near-field magnetic coupling is an effi-
cient technology to transfer energy wirelessly [14]. However, the magnetic cou-
pling has a short power transfer distance. The limited transfer distance restricts
the spatial freedom we envision as part of this ecosystem.

5.2 Human-in-the-Loop

Crowdsourcing IoT energy services is a human-centered application as it depends
on their participation behavior. Modeling human behavior is challenging as it
requires modeling complex behavioral, psychological and physiological charac-
teristics of human nature [46]. In our environment, the human factor has several
influences on the ecosystem. First, the deployment of the ecosystem depends
on the IoT users’ willingness to participate in the energy sharing process [30].
Second, the mobility of IoT users in this dynamic environment could impede the
delivery of energy services [32]. Third, energy services are offered by IoT devices
that are simultaneously in use by their owners. Therefore, the consistent wireless
energy delivery from one IoT device to another depends on the device owners’
usage frequency. Finally, the spatial and temporal preferences of IoT users differ,
which affects the availability of energy services. In what follows, we discuss each
of the aforementioned challenges.

Provisioning Resistance. Individuals are likely motivated to engage in the
energy services ecosystem since they can easily access nearby energy resources.
However, since energy is a scarce resource, they may be reluctant to share it [30].
Service resistance is the reluctance to provide services due to limited resources
[47]. In the energy services context, service resistance refers to the unwillingness
to provide energy to IoT devices [30]. A provider’s resistance is influenced by
the provider’s available energy and the size of the requested energy. As a result,
one of the challenges is to predict providers’ resistance to offering their energy
service and devise a correct incentive to overcome it. Since humans get impacted
differently by different incentives, determining the effective incentive for energy
providers is a challenge that still needs to be addressed.

Modelling Human Mobility. IoT devices change their locations regularly
according to the mobility of their owners. The mobility of the crowd has mul-
tiple impacts on the crowdsourcing ecosystem. First, the mobility of the crowd
across microcells determines the availability of energy services and requests. Sec-
ond, The IoT users’ mobility affects the connectivity between IoT devices. Highly
moving IoT devices within a microcell may result in disconnecting the wireless
energy transfer between them. A disconnection in the delivery of the energy
transfer may result in its failure [32,42]. Therefore, the mobility of IoT users
should be modeled and analyzed to manage the energy services in the ecosystem
better. The mobility model of IoT users should be studied and investigated on
a micro level as indoor mobility and a macro level as mobility patterns across
microcells. The indoor mobility models should reflect the users’ movement within

Service-Based Wireless Energy Crowdsourcing 663

a confined space [48]. Indoor mobility models will enable the ecosystem to fil-
ter services and requests from a spatial perspective within the power transfer
range. Moreover, it will allow the ecosystem to predict users’ movement and
their impact on disconnecting a service delivery. On the other side, the out-
door mobility pattern of an IoT user may be used to proactively plan for them
when to request energy [35]. Furthermore, it enables us to understand the crowd
movement and predict the undersupplied areas [49]. Thus, mobility models are
needed to unlock the full potential of the ecosystem.

Modelling Usage Patterns. The energy usage pattern of providers may
impact the consistency of provisioning energy services [31]. An energy provider
with highly dynamic usage of their device impacts the delivered energy ser-
vice quality (QoS). Providers may offer their spare energy while simultaneously
using it for their devices. If a provider is heavily using their device, they may
end up consuming their advertised service while sharing it. Thus, energy ser-
vices may fluctuate due to the providers’ usage. As a result, IoT devices’ energy
usage behavior must be modeled to ensure consistent provision of energy services
[48,49].

Determining Services Availability. Matching energy services and requests
in a crowdsourced environment is challenging due to the uncertain availability of
energy services and requests [17]. Predicting the availability of energy services is
challenging as it relies on detecting the mobility patterns of IoT Users and their
energy usage patterns. Defining the mobility patterns mainly focuses on analyz-
ing the spatio-temporal attributes and potential regularities hidden in individual
movement trajectories [50]. However, the existing literature to determine mobil-
ity patterns has low accuracy due to the flexible nature of human movement [49].
Thus, the challenge of detecting human mobility patterns hinders the prediction
of service availability.

5.3 Deployment of Energy Services Ecosystem

The deployment of the energy crowdsourcing ecosystem raises several challenges.
In what follows, we discuss each challenge and its impact of on the ecosystem.

Balancing Local Provisioning and Demand. Naturally, energy users’ pref-
erences to provide or receive energy vary in time and space. The variety in
energy users’ preferences may severely affect the balance between the amount
of required and provided energy within a confined area. The imbalance between
the energy demand and the available services may result in oversupplied and
undersupplied areas in a smart city. Under-supplied areas will result in unful-
filled energy requests, which may discourage the participation of IoT users in
the ecosystem. Hence, ensuring the availability of energy services to fulfill the
requirement of consumers is essential to the sustainability of the ecosystem. A

664 A. Abusafia et al.

redistribution of energy service across over-supplied and under-supplied areas
may achieve better-balanced energy availability. Another possible direction is
using an incentive model to increase participation in provisioning energy ser-
vices [30].

Loose Contracts. As previously mentioned, energy services offer flexibility as
they do not require lock-in contracts [31]. For instance, providers may offer full
or partial services according to their preferences [29]. However, this flexibility
may impact the commitment of IoT users. The uncertain commitment of IoT
users may add uncertainty to the energy transfer process and thereby impact
the participation of IoT users in the ecosystem.

Reliability. Considering reliability in the energy ecosystem encourages the par-
ticipation of energy users in crowdsourcing energy services [6,42]. The reliability
of an energy provider refers to the probability that an energy service will be
successfully delivered with the advertised Quality of Service (QoS) attributes.
Similarly, the reliability of an energy consumer refers to the probability that an
IoT energy service will be successfully received with the same submitted require-
ments. The reliability of the energy provider is impacted by their usage pattern
and mobility. As aforementioned, a provider that heavily uses their device might
consume their advertised energy. Also, a highly mobile provider will cause fre-
quent disconnections in the energy transfer between the devices-similarly, the
reliability of an energy consumer is impacted by their mobility patterns. Like
providers, a highly mobile consumer will cause frequent disconnections in the
energy transfer between the devices. Accordingly, it is vital to consider the reli-
ability of energy users while managing and composings energy services.

Trust. The definition of trust is “the confidence, belief, and expectation regard-
ing the reliability, integrity, and other characteristics of an entity” [51]. To guar-
antee high-quality services, trust assessment is required in crowdsourced IoT
systems [4]. High-quality services will encourage and maintain users’ partici-
pation in the energy services ecosystems. The trust assessment must evaluate
the trustworthiness of energy providers and consumers. The trustworthiness of
energy providers may represent the provider’s reputation, their service reliabil-
ity, and their security level [4]. Likewise, energy consumers’ trustworthiness may
represent their reputation and their security level. Although trust assessment
has been studied in other areas, it remains a challenge in IoT ecosystems due to
several reasons [52]. First, the dynamic nature of the crowdsourced IoT environ-
ment makes it challenging to keep an accurate record of the devices’ reputations.
For instance, IoT devices are usually moving, and their existence may be tem-
porary. Second, IoT devices typically lack a global identifier, which makes it
difficult to maintain a globally accessible profile for these devices. As a result,
a novel trust assessment framework is required to assess the reputation of IoT
devices [52].

Service-Based Wireless Energy Crowdsourcing 665

Security. The goal of IoT device security is to prevent and protect against
IoT attacks and service failures [53]. Attacks on IoT devices may compromise
the privacy and confidentiality of users, infrastructures, data, and IoT devices
[54]. Furthermore, IoT attacks such as denial-of-service attacks may impede the
delivery of services to IoT Users. Securing IoT systems is a critical challenges
because users may not adopt many IoT systems if they are not secure [55].
Existing security architectures and protocols are difficult to integrate in IoT
devices due to their limited computing power and storage size [56].

Privacy. The global digital data generated by IoT devices is expected to reach
180 Zettabytes by 2020 [57]. As a result, protecting IoT data and the privacy of
users who generate or consume data has become a major concern in research and
industry [58]. Privacy refers to “The claim of individuals, groups, or institutions
to determine for themselves when, how and to what extent information about
them is communicated to others” [59]. Maintaining the privacy in IoT ecosystems
is challenging as it conflict with the need to use the IoT data to achieve their
functions. The data utilization may invade the privacy of IoT users [52]. For
example, IoT Data are required to enhance the energy crowdsourcing process by
profiling the energy providers and consumers. The collected IoT data may include
the IoT users’ mobility behavior and their energy consumption model. Collecting
such personal information might violate the privacy of the IoT users. Therefore,
maintaining a balance between IoT data protection and use is a continuing
challenge.

6 Conclusion

We presented a novel service-based framework to crowdsource wireless energy
from neighboring IoT devices to charge low-in-battery IoT devices. First, we
highlighted the benefits of adopting a crowdsourced wireless energy services
ecosystem. We then envisioned and designed an architecture to implement the
proposed ecosystem. Lastly, we discussed the open challenges and recommended
research directions for possible solutions.

Acknowledgment. This research was partly made possible by LE220100078 and
LE180100158 grants from the Australian Research Council. The statements made
herein are solely the responsibility of the authors.

References

1. Whitmore, A., Agarwal, A., Da Li, X.: The internet of things-a survey of topics
and trends. Inf. Syst. Front. 17(2), 261–274 (2015)

2. Markit, I.H.S.: The Internet of Things: a Movement, not a Market. IHS Markit,
Englewood, CO (2017)

3. Bouguettaya, A., et al.: An internet of things service roadmap. Commun. ACM
64(9), 86–95 (2021)

666 A. Abusafia et al.

4. Ba-hutair, M.N., et al.: Multi-use Trust in Crowdsourced Iot Services. IEEE TSC
(2022)

5. Kelly, S.D.T., et al.: Towards the implementation of IoT for environmental condi-
tion monitoring in homes. IEEE Sens. J. 13(10), 3846–3853 (2013)

6. Lakhdari, A., et al.: Composing energy services in a crowdsourced IoT environment.
IEEE TSC 15, 1280–1294 (2020)

7. Seneviratne, S., et al.: A survey of wearable devices and challenges. IEEE Commun.
Surv. Tutorials 19(4), 2573–2620 (2017)

8. Young-Man, C., Lee, M.G., Jeon, Y.: Wearable biomechanical energy harvesting
technologies. Energies 10(10), 1483 (2017)

9. Manjarrés, J., et al.: Enhancing kinetic energy harvesting-based human activity
recognition with deep learning and data augmentation. IEEE IoT (2021)

10. Dolcourt, J.: Over-the-air wireless charging will come to smartphones (2019)
11. Kurs, A., et al.: Wireless power transfer via strongly coupled magnetic resonances.

Science 317(5834), 83–86 (2007)
12. Fang, W., et al.: Fair scheduling in resonant beam charging for IoT devices. IEEE

IoT 6(1), 641–653 (2018)
13. Sakai, K., Sun, M.-T., Wei-Shinn, K., Jie, W.: Towards wireless power transfer in

mobile social networks. IEEE TNSE 9(3), 1091–1103 (2021)
14. Feng, H., Tavakoli, R., Onar, O.C., Pantic, Z.: Advances in high-power wireless

charging systems: overview and design considerations. Trans. Transp. Electr. 6(3),
886–919 (2020)

15. Lin, J.C.: Wireless power transfer for mobile applications, and health effect. IEEE
APM 55(2), 250–253 (2013)

16. Baikova, E.N., et al.: Study on electromagnetic emissions from wireless energy
transfer. In IEEE PEMC, pp. 492–497. IEEE (2016)

17. Abusafia, A., et al.: Quality of experience optimization in IoT energy services. In:
ICWS, IEEE (2022)

18. Abusafia, A., Bouguettaya, A., Lakhdari, A.: Maximizing consumer satisfaction of
IoT energy services. In: ICSOC. Springer (2022)

19. Sharma, P.K., Kumar, N., Park, J.H.: Opportunities and challenges. IEEE Net-
work, Blockchain technology toward green IoT (2020)

20. Arshad, R., Zahoor, S., Shah, M.A., Wahid, A., Yu, H.: Green IoT: an investigation
on energy saving practices for 2020 and beyond. IEEE Access 5, 15667–15681
(2017)

21. Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for green internet
of things. IEEE Syst. J. 11(2), 983–994 (2015)

22. Ali Eslami Varjovi and Shahram Babaie: Green internet of things (GioT): vision,
applications and research challenges. Sustain. Comput.: Informat. Syst. 28, 100448
(2020)

23. Gorlatova, M., Sarik, J., Grebla, G., Cong, M., Kymissis, I., Zussman, G.: Movers
and shakers: kinetic energy harvesting for the internet of things. IEEE J. Sel. Areas
in Commun. 33(8), 1624–1639 (2015)

24. Pasricha, S., et al.: A survey on energy management for mobile and IoT devices.
IEEE Design & Test (2020)

25. Raptis, P.T.: When wireless crowd charging meets online social networks: a vision
for socially motivated energy sharing. Online Soc. Netw. Media 16, 100069 (2020)

26. Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power
Sources 195(9), 2419–2430 (2010)

27. Dhungana, A., Bulut, E.: Peer-to-peer energy sharing in mobile networks: applica-
tions, challenges, and open problems. Ad Hoc Networks (2020)

Service-Based Wireless Energy Crowdsourcing 667

28. Lakhdari, A., et al.: Crowdsharing wireless energy services. In: CIC, pp, 18–24.
IEEE (2020)

29. Lakhdari, A., Bouguettaya, A., Neiat, A.G.: Crowdsourcing energy as a service. In:
Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp.
342–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 24

30. Abusafia, A., Bouguettaya, A., Mistry, S.: Incentive-based selection and composi-
tion of IoT energy services. In: IEEE SCC, pp. 304–311. IEEE (2020)

31. Lakhdari, A., et al.: Elastic composition of crowdsourced IoT energy services. In:
MobiQuitous, pp. 308–317 (2020)

32. Lakhdari A., Bouguettaya, A.: Fluid composition of intermittent IoT energy ser-
vices. In: SCC, pp. 329–336. IEEE (2020)

33. Chao, T., et al.: C-Flow: visualizing foot traffic and profit data to make informative
decisions. Technical Report, University of Maryland (2013)

34. Muller C.C., Woods, R.H.: An expanded restaurant typology. Cornell Hotel Restau-
rant Adm. Q. 35(3), 27–37 (1994)

35. Lakhdari A., Bouguettaya A.: Proactive composition of mobile IoT energy services.
In: ICWS, pp. 192–197. IEEE (2021)

36. Tran, V.H., Misra, A., Xiong, J., Balan, R.K.:. WiWear: wearable sensing via
directional WiFi energy harvesting. In: PerCom, March 11–15, 2019, pp. 1–10
(2019)

37. Lakhdari, A., Bouguettaya, A.: Fairness-aware crowdsourcing of IoT energy ser-
vices. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021.
LNCS, vol. 13121, pp. 351–367. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-91431-8 22

38. Worgan, P., Knibbe, J., Fraser, M., Plasencia, D.M.: Mobile energy sharing futures.
In: MobileHCI, pp. 1134–1137 (2016)

39. Egger-Lampl, S., et al.: Crowdsourcing quality of experience experiments. In:
Archambault, D., Purchase, H., Hoßfeld, T. (eds.) Evaluation in the Crowd.
Crowdsourcing and Human-Centered Experiments. LNCS, vol. 10264, pp. 154–
190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66435-4 7

40. Bulut, E., Raptis, T.P., Dai, H., Liang, W.: Special issue on pervasive mobile energy
sharing (2022)

41. Wang, R., et al.: The nudging effect on tracking activity. In: Adjunct Proceedings of
the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2021 ACM International Symposium on Wearable
Computers (2022)

42. Abusafia, A., Bouguettaya, A.: Reliability model for incentive-driven IoT energy
services. In: MobiQuitous, pp. 196–205 (2020)

43. Wireless charging market size, share and growth: analysis - 2027
44. Yao, J., et al.: Wireless IoT energy sharing platform. In: PerCom Workshops, pp.

118–120. IEEE (2022)
45. Na, W., Park, J., Lee, C., Park, K., Kim, J., Cho, S.: Energy-efficient mobile

charging for wireless power transfer in internet of things networks. IEEE Internet
Things J. 5(1), 79–92 (2017)

46. Delicato, F.C., Pires, P.F.: Challenges in developing collaborative IoT systems. In:
CIC, pp. 25–33. IEEE (2020)

47. Shuiguang andothers Deng: Toward mobile service computing: opportunities and
challenges. Cloud Comput. 3(4), 32–41 (2016)

48. Menon, R., et al.: DIY-IPS: Towards an off-the-shelf accurate indoor positioning
system. In: Mobicom (2022)

https://doi.org/10.1007/978-3-030-03596-9_24
https://doi.org/10.1007/978-3-030-91431-8_22
https://doi.org/10.1007/978-3-030-91431-8_22
https://doi.org/10.1007/978-3-319-66435-4_7

668 A. Abusafia et al.

49. Zheng, Y.A., et al. IMAP: Individual human mobility patterns visualizing platform.
In: Mobicom (2022)

50. Wang, J., Kong, X., Xia, F., Sun, L.: Urban human mobility: data-driven modeling
and prediction. ACM SIGKDD Explor. Newsl. 21(1), 1–19 (2019)

51. Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of
things. J. Netw. Comput. Appl. 42, 120–134 (2014)

52. Sha, K., et al.: On security challenges and open issues in internet of things. Future
Gener. Comput. Syst. 83, 326–337 (2018)

53. Yang, L., Da Li, X.: Internet of things (IoT) cybersecurity research: a review of
current research topics. IEEE Internet Things J. 6(2), 2103–2115 (2018)

54. Hassan, W.H., et al.: Current research on internet of things (IoT) security: a survey.
Comput. Netw. 148, 283–294 (2019)

55. Liyanage, M., Braeken, A., Kumar, P., Ylianttila, M.: Advances in Authentication.
John Wiley & Sons, IoT Security (2020)

56. Payton, J., Du, X., He, X., Wu, J.: Envisioning an information assurance and
performance infrastructure for the internet of things. In: CIC, pp. 266–271. IEEE
(2018)

57. Kanellos, M.: 152,000 smart devices every minute in 2025: IDC outlines the future
of smart things (2016)

58. Mena, D.M., Papapanagiotou, I., Yang, B.: Internet of things: survey on security.
Inf. Secur. J.: A Global Perspect. 27(3), 162–182 (2018)

59. Westin, F.A.: Privacy and freedom atheneum. N. Y. 7, 431–453 (1967)

Training and Serving Machine Learning
Models at Scale

Luciano Baresi and Giovanni Quattrocchi(B)

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Milan, Italy

{luciano.baresi,giovanni.quattrocchi}@polimi.it

Abstract. In recent years, Web services are becoming more and more
intelligent (e.g., in understanding user preferences) thanks to the integra-
tion of components that rely on Machine Learning (ML). Before users can
interact (inference phase) with an ML-based service (ML-Service), the
underlying ML model must learn (training phase) from existing data, a
process that requires long-lasting batch computations. The management
of these two, diverse phases is complex and meeting time and quality
requirements can hardly be done with manual approaches.

This paper highlights some of the major issues in managing ML-
services in both training and inference modes and presents some ini-
tial solutions that are able to meet set requirements with minimum user
inputs. A preliminary evaluation demonstrates that our solutions allow
these systems to become more efficient and predictable with respect to
their response time and accuracy.

Keywords: Machine learning · Runtime management · Service
orchestration

1 Introduction

In recent years, Web services have been enriched with components based on
Machine Learning (ML) that allow for new types of interactions (e.g., vocal
assistants, chatbots), more customized experiences (e.g., recommender systems),
and novel features (e.g., object detection in images, smart auto-completion) [13].
ML-based services (ML-Services) exploit models that, created in a preliminary
training phase, are then used at runtime to provide required results as predictions
on new inputs (inference phase) [21].

The training phase is a long-lasting —from several minutes to days— batch
computation. Given the inputs of this phase are usually large datasets (e.g.,
thousands of images), the computation is executed by using dedicated frame-
works (e.g., Spark [33], TensorFlow [1]) that run on a highly distributed cluster
of virtual or physical machines. The inference phase exploits the generated model
in an interactive way and each computation (e.g., a prediction based on a single
image as input) lasts a significantly shorter amount of time compared to training
(e.g., milliseconds or seconds).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 669–683, 2022.
https://doi.org/10.1007/978-3-031-20984-0_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_48&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_48

670 L. Baresi and G. Quattrocchi

The quality of these “new” web services is not only stated in terms of con-
straints on provided performance. For example, traditional Service Level Agree-
ments (SLA) or Service Level Objectives (SLO) [25] usually constrain the max-
imum allowed response time. An ML-service must also be accurate. It is not
a matter of functional correctness (and performance) anymore; an ML-service
must offer predictions with a given accuracy and precision [15].

In the training phase, requirements on the response time are specified as
deadlines [11], which is the maximum allowed time to complete a single train-
ing process. In the inference phase, the response time of multiple requests (e.g.,
the ones received in the last 10 min) is aggregated and constrained by a thresh-
old [17]. In the training phase, requirements on quality can be easily defined
through thresholds (e.g., the accuracy should be greater than 90%) since this
metric can be measured during the computation using a validation or a testing
dataset [28]. However, in inference mode, the quality of the predictions cannot be
easily computed since, by definition, the correct output is unknown (if it were
not, there would not have been any need for the ML model). Thus, different
“indirect” metrics can be considered to estimate the quality of predictions at
runtime [29].

The management of ML-services is thus a complex task since multiple inter-
dependent factors affect their overall performance. For example, the response
time is affected, among other aspects, by resource allocation. ML computations
can be executed on CPUs, but also on dedicated hardware (e.g., GPUs) given
their highly parallelizable programming model. However, increasing the compu-
tational power is not useful if the data or the model itself are not properly parti-
tioned to allow for a sufficient degree of parallelism. Model quality depends on a
number of factors including the parameters of the learning algorithm (i.e., hyper-
parameters) and the characteristics of the input dataset. Moreover, response time
and quality are often correlated. For example, fewer learning iterations allow for
faster results but produce, in general, less accurate models.

Some initial approaches have already been presented to tackle single aspects
of ML-service management. For example, Nguyen et al. [23] present a solution
to predict the time required to train a model using Spark given a user-defined
configuration. Li et al. [20] describe a solution for the automated configuration of
hyperparameters, while Morabito et al. [22] propose a solution for the automated
resource provisioning of ML models in inference mode. However, there is no
solution or study that provides a multi-faceted view of the problem.

This paper describes the main aspects and issues of managing ML-services
in both training and inference modes. Based on our work in the field, we also
illustrate a set of solutions, along with their evaluation, that we have developed
during the last few years and that can be used as a starting point to design a
fully integrated solution for the management of ML-based systems.

The rest of this paper is organized as follows. Section 2 presents the most
important challenges of ML-services. Section 3 describes our solutions and
reports their initial evaluation. Finally, Sect. 4 concludes the paper.

Training and Serving Machine Learning Models at Scale 671

2 ML-service Management

This section highlights the main aspects and issues related to ML-service man-
agement. It mainly focuses on time and quality constraints during both training
and inference phases.

2.1 Training

Training computations require executing highly iterative algorithms that exploit
large datasets as inputs. These datasets contain known input-output pairs that
are used to generate models that can predict the correct outputs for new, never-
seen inputs (inference).

The structure of the model (e.g., the layers of a neural network) is defined by
the users beforehand along with a set of model parameters whose optimal values
are computed as a result of the training process. To do so, the training phase
minimizes a loss function that compares the outputs generated by the model
under construction and the known answers.

During the optimization process, the model parameters are updated multiple
times. The execution is organized in batches. A batch is the amount of data (i.e.,
the number of input-output pairs) that is used to update the model parameters.
An epoch is the amount of batches required to process the whole dataset. Each
training process executes multiple epochs, up until a certain model quality or a
timeout are reached.

Available Frameworks. Given that these computations are resource-
demanding and require processing large amounts of data that cannot easily fit on
a single machine, the training phase of ML models is usually executed through
special purpose frameworks that allow for highly distributed and parallelized
executions.

The reference programming model for batch computations is map-reduce [7],
popularized by Google and the Hadoop framework [19]. The computation is
organized in two phases: map and reduce. In the former, the input dataset (e.g.,
a set of user posts) is split into a set of partitions that are processed in parallel
by multiple executors that transform each partition into a new set of data (e.g.,
a list of words occurrences). The latter aggregates the transformed data and
produces a result (e.g., the top ten words used by users in their posts) that is
usually written into a database or disk.

DAG-based frameworks, such as Spark, are an evolution of this programming
model and they allow one to create direct acyclic graphs (DAGs) of data trans-
formations and aggregations (not only a sequence of map-reduce computations).
As in map-reduce, multiple executors process single partitions of data in parallel.
These computations are organized in stages, that is, the execution of a set of
operations that do not require data transmission among executors. When a stage
is concluded, each executor sends the results of its local computation to another
executor (data shuffling), and a new stage (the next in the DAG) is scheduled for
execution. In these frameworks, computations and data transfers are executed

672 L. Baresi and G. Quattrocchi

in-memory without requiring to store intermediate results on (slower) external
storage systems.

The aforementioned approaches are general-purpose and not specifically
designed for ML training. In recent years, new frameworks, such as Tensor-
Flow [1] and PyTorch [24], have been developed as highly optimized frameworks
for ML training. They introduce a programming model called all-reduce where
the executors work on a single batch in parallel with the others. The computed
results are then aggregated (reduce) and the model update is transmitted to
all the other executors (all) so that they can use it as a starting point for the
next batch. This way, all-reduce allows for the efficient propagation of the results
of an aggregation to all the available executors (broadcast), whereas in DAG-
based computations a single executor only communicates with another one and
broadcast communication is less efficient and more difficult to implement.

All these frameworks do not provide explicit means to set time or quality
requirements. Therefore, users must rely on manual solutions and they have
to use experience and “guess” the proper configuration that meets expected
thresholds.

Available frameworks provide different programming models. All of them
organize the computation in phases (e.g., one phase for each epoch or each
batch) to orchestrate multiple distributed executors that work in parallel.
None of these frameworks allows one to specify quality and time constrains
on carried out activities.

Hyperparameters. While parameters usually refer to the variables optimized
during the training process (model parameters), hyperparameters are the vari-
ables used to configure the training algorithm beforehand. These parameters
deeply affect both the quality of the output and the time required to complete
the training process.

The architecture of the model employed for training can be seen as a hyper-
parameter. In general terms, the more sophisticated the architecture is, the more
time is needed to train the model. In terms of accuracy, complex architectures
may be able to learn more patterns and subtleties from the data but they may
fail in generalizing to new inputs (by assuming that the subtle patterns found
in the input dataset characterize any inputs).

Any configuration parameter of the training algorithm is a hyperparameter.
For example, the batch size regulates the frequency of updates. Frequent model
updates may generate more accurate models but also increase the required syn-
chronization among the executors (e.g., higher response times). The number of
epochs regulates the amount of iterations on the entire dataset. The more epochs
one can afford, the more optimized model parameters will be. This produces
high-quality models at the cost of longer executions.

Hyperparameters are defined at design time and they impact the quality
of the model and the execution time of the training phase. They must be
carefully tuned to train the model efficiently and precisely.

Training and Serving Machine Learning Models at Scale 673

Parallelism. To allow multiple executors to cooperate in training models, one
can adopt two main strategies to maximize the degree of parallelism of the
computations [12]: data parallelism and model parallelism.

Data parallelism allows one to split the input dataset onto multiple executors,
which store a full copy of the model each. This way, the executors can work in
parallel on different partitions and the results of the local computations are
aggregated in a subsequent phase. This technique is valuable when the input
dataset exceeds the memory (and/or storage) of a single executor and allows us
to speed up the computation by increasing the number of executors (up to the
number of batches). This strategy is available in most of the existing frameworks
and it is the easiest to implement.

Model parallelism partitions the model architecture into different parts that
are independently stored onto different executors. This strategy is used when the
model itself exceeds the capacity of the executor. Moreover, the model architec-
ture may allow for an “intrinsic” parallelism so that some of the model param-
eters can be optimized in parallel with others. In this case, it is very important
to understand the best way to partition the model given the executors available.
Recent studies show that model parallelism may also slightly decrease model
accuracy [6].

Data and model parallelism can be combined so that both the model and
data are partitioned into multiple parts. Each model partition is then replicated
onto multiple executors so that they can optimize a subset of model parameters
on independent partitions of data.

Data and model parallelisms allow for highly distributed computations. By
partitioning datasets and/or models one can accelerate the computation at
the cost of more synchronization among executors.

Resource Allocation. To speed up (or slow down) the training phase and meet
set deadlines, users can tune the amount of resources allocated to the system.
The computations to train ML models are mostly based on matrix operations
that can be highly parallelized. For this reason, GPUs and dedicated hardware
devices (e.g., TPUs [14]) can be exploited to further accelerate the processing.
Resource allocation can be handled at both design time (before training) and
runtime (during training).

At design time the number of executors and the resources allocated to them
must be configured by considering set requirements, the hyperparameters (e.g.,
number of epochs), and the characteristics of the input dataset. More sophisti-
cated approaches allow for dynamic resource allocation (e.g., as in Spark1. This
means that the amount of executors and their resource allocation can be re-
configured over time according to the state of the computation. For example,
when the set deadline is approaching, the system may spawn a new executor or
increase the amount of computational power allocated to an existing one. Sim-
ilarly, one can realize that the computation could require more iterations than
1 https://spark.apache.org/docs/latest/job-scheduling.html.

https://spark.apache.org/docs/latest/job-scheduling.html

674 L. Baresi and G. Quattrocchi

expected to reach a set model quality and more resources could help finish the
training process in time.

Memory is also extremely important since slow read/write on the disk can
quickly become the bottleneck. The memory allocation of each executor should
be adequate to fit both data and model (partitions). Unlike computational power,
which can be increased to speed up the processing up to the maximum degree
of parallelism, memory is either sufficient or insufficient.

Resource allocation is key to fulfill time-based requirements. Resource allo-
cation can be tuned at either design time or runtime and executors may be
equipped with heterogeneous hardware.

2.2 Inference

Once training activities have generated a model, it is deployed and used to
compute predictions on new inputs. These computations are interactive and they
are much faster than training: users can submit requests and get a response in
the order of seconds or milliseconds.

Unlike training where requirements are defined for the complete process
(deadline), during inference, they constrain a set of requests received by the
system during a given time window. Requirements can be both related to time
(e.g., the 95th percentile of the response time should be less than one second)
or to quality.

Available Frameworks. While map-reduce and DAG-based frameworks were
designed to host batch computations only, ML frameworks provide some tools to
serve models in inference mode. For example, TensorFlow provides TensorFlow
serving2, a tool that eases the deployment of models onto web servers to let
them be invoked by using a REST API.

When the incoming workload cannot be handled by a single executor, mul-
tiple replicas of the same model must be used concurrently (distributed infer-
ence). Ideally, a framework should allow one to submit requests to a unified
API that forwards them to available replicas. Frameworks should also support
multiple models running in parallel on a shared infrastructure, since a single
ML-service may exploit multiple ML-based components. Unfortunately, in the
available frameworks, the support for distributed inference is, at the time of
writing, very limited. Moreover, none of the frameworks support time or quality
requirements, and users must handle them with external or manual solutions.

ML frameworks allow one to use models in inference mode but the means
to deploy and manage them are limited. Existing frameworks lack support
for the specification of quality and time requirements.

2 https://www.tensorflow.org/tfx/guide/serving.

https://www.tensorflow.org/tfx/guide/serving

Training and Serving Machine Learning Models at Scale 675

Resource Allocation. In inference, resource allocation is key to be able to keep
the ML-service always responsive. Static resource allocation makes only sense
when the workload is constant, a scenario that is usually not realistic. When
the incoming workload fluctuates, resources must be dynamically provisioned to
handle the traffic. Executors can be replicated or reconfigured through CPUs,
GPUs, or dedicated hardware allocations.

When a new request is submitted, it must be processed by an available execu-
tor. The selection of this executor may be decided according to multiple fac-
tors, including the equipped hardware and the amount of requests that it is
already handling (queue length). If an ML-based component is close to violating
a requirement (e.g., the response time is increasing), faster executors must be
selected (e.g., ones equipped with GPUs). If the ML-service is stable, one can
leave faster executors to other components.

Memory must be large enough to contain the model, whereas input data are
usually much smaller (e.g., a single image) than the ones used in training and
they are usually not difficult to handle. If the model is too large to fit onto a
single executor, model partitioning can be used to further split the computation.

Dynamic resource allocation allows for keeping ML-service always respon-
sive when the incoming workload fluctuates. At runtime, requests must be
scheduled to proper executors according to their hardware capabilities and
the state of the system.

Monitoring. Monitoring the quality of the model in inference mode is a com-
plex task since evaluating predictions on new inputs would require knowing the
correct outputs (ground truth).

Since quality cannot be directly computed, alternative metrics must be taken
into account. Uncertainty is a widespread metric used in the literature to esti-
mate the quality of a trained models [16]. Intuitively, when the uncertainty in
predictions is high, it is more likely to produce incorrect outputs. For example,
one can use a set of similar ML models (e.g., DeepEnsemble [18]) to compute
multiple predictions for each input. If the outputs are similar (low variance), the
outputs are probably correct. If the outputs are different (high variance), the
uncertainty is high and the prediction quality may have dropped.

In this context, users may set a requirement on the maximum allowed uncer-
tainty and when this threshold is violated, the ML model must be re-trained.
This may require the manual collection of a new training dataset or the genera-
tion of a new one automatically (e.g., using data augmentation [26]).

The quality of ML models at runtime cannot be directly monitored for the
lack of ground truth. Uncertainty can help estimate the quality of the model
and understand when it must be re-trained.

676 L. Baresi and G. Quattrocchi

3 What We Have Done so Far

This section describes three solutions we developed for managing some aspects
of ML-services: dynaSpark , hyperFL, and ROMA. dynaSpark extends Spark
by allowing one to associate time requirements with batch computations, and
by means of a sophisticated dynamic resource allocation mechanism. hyperFL
extends Tensorflow and it is also dedicated to the training phase. It exploits
heuristics to set hyperparameters values so that quality constraints are met.
Finally, ROMA is dedicated to the inference phase. It also extends TensorFlow
and allows one to set response time requirements that are met through the allo-
cation of both CPUs and GPUs.

3.1 dynaSpark

dynaSpark [2,3] extends Spark by introducing advanced and automated resource
management. dynaSpark allows users to define deadlines that are considered as
the desired response time for a single batch execution (e.g., a training process).
The goal of dynaSpark is to control the resources allocated to the computation
so that its execution time is as close as possible to the user-defined deadline. The
rationale behind it is that the closer the response time is to the deadline the more
efficient the usage of resources is: finishing before the deadline would mean allo-
cating more resources than needed, while terminating afterward implies violating
the deadline because of too scarce resource allocation. Moreover, dynaSpark can
manage multiple Spark computations at the same time (e.g., the training phase
of different ML models that run concurrently) and keep their execution time
under control.

dynaSpark requires a profiling phase to retrieve the DAG of the computation
and performance data of each stage. During the execution, dynaSpark exploits
dynamic vertical scalability of resources. This means that the resources allocated
to executors is continuously reconfigured without the need for restarting them
or creating new ones. The framework wraps executors in lightweight containers
(e.g., Docker3) and control-theoretical planners are used to compute resource
allocation in a fast and fine-grained fashion.

dynaSpark exploits a hierarchical control loop. At the top of the hierarchy,
a memory controller is in charge of dynamically resizing the amount of memory
allocated to each running executor. This controller distributes available memory
fairly to all running computations and it is only activated when the user submits
a new computation or when one finishes. When a new stage of a computation
starts, a stage controller exploits the deadline submitted by the user and the
profiling data retrieved beforehand. As a result, this controller computes a local
deadline for the stage along with the number of executors needed to fulfill it.
Each executor in dynaSpark is equipped with an executor level controller based
on control theory in charge of keeping the execution time as close as possible to
the deadline computed for the stage. By exploiting a feedback loop, it monitors

3 https://docker.com.

https://docker.com

Training and Serving Machine Learning Models at Scale 677

the progress of the stage (i.e., how many data samples are processed over the
total assigned ones) and allocates processing power (i.e., fractions of CPUs)
accordingly. Multiple executors work in parallel on a single stage to fulfill the
same local deadline, and data are fairly partitioned among them. This way, the
controllers can operate without synchronization and independently from one
another.

Since multiple executors can be run on the same node, dynaSpark exploits
a node level controller to manage resource contention. This controller collects
all the resource allocations computed by the executor level controllers that are
running on the same node. If their sum exceeds the capacity of the node, alloca-
tions are scaled down according to different strategies such as Earliest Deadline
First [31] (EDF) or proportionally.

Fig. 1. Concurrent computations in dynaSpark .

Evaluation. The evaluation of dynaSpark was executed on Microsoft Azure
using a cluster of 5 Standard D14 v2 virtual machines (VMs) equipped with
16 CPUs, 112 GB of memory, and 800 GB of local SSD storage. Here we only
report a single significant experiment that clearly demonstrates the benefits of
dynaSpark , while [3] comprises a larger and comprehensive set of experiments.

For this experiment, we compared Spark and dynaSpark . Spark was config-
ured to use its default allocation mechanism that allocates all the resources to
the first computation it receives (FIFO). dynaSpark was configured with both a
resource contention strategy based on EDF (Strategy 1) and a proportional one
(Strategy 2). The first strategy aims to avoid violations and it is more conser-
vative. The second one tends to let the different application progress simultane-
ously at a similar pace to minimize resources but with more risk of violating the
deadlines.

We executed three well-known ML algorithms in parallel: PageRank, KMeans
and SVM. As shown in Fig. 1 we submitted for execution PageRank first at
instant 0 with a deadline of 300 s, then KMeans at instant 40 with a deadline
of 300 s and, finally, SVM at instant 80 with deadline 120 s. Results show
that Spark violated the deadline of SVM while the executions of PageRank and
KMeans finished way before expected. This inefficient behavior is caused by

678 L. Baresi and G. Quattrocchi

the limited resource allocation mechanism built in Spark, its simple FIFO-based
strategy for managing resource contention, and the lack of support for deadlines.

In contrast, dynaSpark did not violate the deadlines both with Strategy 1
and 2. The former always finished significantly ahead of the time given its con-
servative policy (more resources are allocated). Strategy 2 resulted, in this case,
in a highly efficient resource usage since the three computations were completed
just a few seconds before their respective deadlines.

3.2 hyperFL

hyperFL [4] is an extension of TensorFlow to allow a set of federated nodes
(i.e., Federated ML [32]) to cooperatively train an ML model under quality
constraints. Since executors are geographically distributed (e.g., running on a
set of edge nodes), the cost of synchronization is particularly significant and
the amount of communication between executors should be minimal. For this
reason, hyperFL assumes executors to work on different datasets and models
that are trained locally and aggregated only when needed. In particular, the
computation is organized in R rounds (R is fixed and given). A round is a
sequence of consecutive epochs where the executors perform independently and
in parallel the training processes and only merge the results at the end (similarly
to stages in Spark).

At the core of hyperFL lays an algorithm, executed at the beginning of each
round r, that takes as input a constraint on model accuracy (AC) (e.g., AC >
ACSLA) and computes the hyperparameter Er that is the number of epochs to
be processed on each executor during r to obtained the desired quality at the
end of R rounds.

The algorithm exploits two alternative heuristics: linear and quadratic inter-
polation, and works in a black-box way since it does not require any prior infor-
mation om the model: it only exploits monitored data (e.g., the accuracy of
the model after each round). To be properly initialized the algorithm needs two
rounds in which the computation is executed using a fixed configuration. As a
first step, hyperFL computes the accuracy to be reached at the end of round r
(ACr). To do so it assumes either a linear progress towards ACSLA from round
0 to R, or a smoother quadratic one. In the second step, hyperFL computes Er

as a function of ACr, the cumulative sums of the epochs computed in rounds
r − 1 and r − 2, and the accuracy obtained at the same previous rounds.

Evaluation. We evaluated hyperFL on a bare-metal single-user server equipped
with an AMD Ryzen 5 2600 @ 3.40 GHz (6 Cores/12 Threads) CPU and 32 GB
DDR4 @3200 MHz of RAM running Ubuntu 19.10. We used two real-world
ML-services: MNIST [8] and Fashion-MNIST [30]. The former takes as input
an image with a handwritten digit and outputs the corresponding number. The
latter receives a gray-scale image of a fashion item and outputs the corresponding
class (e.g., t-shirt, bag).

Training and Serving Machine Learning Models at Scale 679

Table 1. hyperFL results.

MNIST Fashion-MNIST

Linear Quadratic Linear Quadratic

r Er ACr Er ACr Er ACr Er ACr

1 1 0.25 1 0.16 1 0.22 1 0.14

2 1 0.30 1 0.19 1 0.30 1 0.32

3 1 0.36 7 0.51 1 0.38 1 0.42

4 1 0.39 1 0.54 1 0.45 1 0.46

5 2 0.47 3 0.62 1 0.51 2 0.53

6 2 0.52 3 0.68 1 0.57 2 0.58

7 4 0.58 3 0.73 1 0.60 3 0.62

8 6 0.67 4 0.75 1 0.62 4 0.65

9 8 0.75 11 0.79 4 0.67 6 0.67

10 4 0.77 1 0.80 2 0.68 11 0.71

Fig. 2. hyperFL accuracy with MNIST.

In the sample of the experiments reported here, we set for MNIST R = 10 and
ACSLA = 0.80, while R = 10 and ACSLA = 0.70 for Fashion-MNIST. Table 1
shows the computed epoch Er along with the obtained accuracy ACr for each
round r for both the services and hyperFL interpolation algorithms. hyperFL
with linear interpolation obtained a steady increment of the accuracy with only
one epoch computed for rounds 1–4 (MNIST) and 1–8 (Fashion-MNIST). As
final results in both the services, hyperFL with linear interpolation terminated
the training with an accuracy that is very close to the threshold but slightly
lower.

In contrast, hyperFL with quadratic interpolation was able in both cases to
reach the target ACSLA by computing higher values of Er in the first rounds.
This can be better visualized in Fig. 2 that reports the result of the experiments
with MNIST and quadratic interpolation. The chart shows both the accuracy
computed on the validation set (ACfit) and the one on the testing set (ACeval).
ACSLA was reached exactly at round R, with a peak increment of epochs (11)
at round 9. This larger value of Er corresponds to a small increment in the
accuracy (0.01) and shows that a quadratic curve better captures the intrinsically
asymptotic behavior of the accuracy compared to a linear approximation.

3.3 ROMA

ROMA [5] is a comprehensive resource management solution for ML models
in inference mode. In particular, it facilitates the deployment and operations of
multiple interactive ML services on shared infrastructures. It extends TensorFlow
(and TensorFlow serving) by allowing users to set requirements on the response
time. Unlike TensorFlow, ROMA provides means for distributed inference and
efficiently allocates CPU and GPU resources by considering the state of all served
ML-services.

680 L. Baresi and G. Quattrocchi

ROMA features a master-slave architecture. The master allows users to sub-
mit requests to deployed models and schedules them on the executors that are
running on the slaves. Each slave is assumed to be equipped with at least one
CPU and zero or more GPUs. The framework wraps each executor in a container,
and multiple replicas of the same model can be deployed when the workload
increases. We also exploit Kubernetes4 to orchestrate and configure contain-
ers. The master comprises a gateway that store requests—received through a
REST API—in a dedicated queue (one per ML-service). Two schedulers based
on heuristics remove requests from the queues and assign them for execution on
a selected executor. A scheduler is dedicated to GPU executions and, as soon a
GPU is idle, it extracts a request from the queue of the ML-service that is more
likely to violate the set response time. The other scheduler submits requests in
a round-robin fashion to available CPUs.

Each slave can host multiple executors that are controlled by control-theore-
tical planners. As in dynaSpark , these controllers vertically scale the CPU
resources of each container/executor according to the needs of the ML-service.
To avoid unpredictable behaviors, control-theoretical planners are aware of GPU
executions that can rapidly decrease the response time of the ML-service under
control. A supervisor on each slave is in charge of collecting all computed allo-
cations and resizing them if they exceed the capacity of the node.

ROMA expects executors to be created manually or automatically using
external solutions (e.g. Horizontal Pod Autoscaler5) and only manages exist-
ing resources. Each executor/container is bound to a specific hardware device.
In particular, given m ML-services to be deployed onto a slave node, ROMA pro-
visions i) m executors containing one model each, and binds them to the CPUs
of the node, and ii) one executor, containing all the models, for each GPU.

Evaluation. To evaluate ROMA, we used a cluster of three VMs on Microsoft
Azure: one VM of type HB60rs with a CPU with 60 cores and 240 GB of mem-
ory for the master, and two VMs, as slave nodes, of type NV 6 equipped with an
NVIDIA Tesla M60 GPU and a CPU with 6 cores and 56 GB of memory. We
also used an additional HB60rs VM to generate the workloads. We exploited
four existing ML-services: Skyline Extraction [9], ResNet [10], GoogLeNet [27],
and VGG16 [34]. The first service uses computer-vision algorithms to extract
the skyline horizon from an input image. The other services perform classifica-
tion task: ResNet uses a residual neural network, while GoogLeNet and VGG16
exploit two deep convolutional neural networks.

In the experiments, we run different combinations of these services in parallel
under different workloads and we compared the performance of ROMA against
competitors based on rules or heuristics. The results show that, overall, ROMA
reduces by 75% on average the number of violations while decreasing by 24%
the resources used.

4 https://kubernetes.io.
5 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.

https://kubernetes.io
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Training and Serving Machine Learning Models at Scale 681

Figure 3 shows the most complex experiment we run when all the services
are executed in parallel in our cluster. In particular, Fig. 3a shows the perfor-
mance obtained by our framework, while Fig. 3b depicts the results obtained by
a competitor. ROMA was able to keep the response time of all the ML-services
under the set SLAs (maximum response time equal to 0.4 s) thanks to its efficient
usage of GPUs and vertical scaling of CPUs. The competitor solution frequently
violated the SLAs of services VGG16 and ResNet with a maximum response
time of 1.9 s and an average resource allocation that is slightly higher compared
to the one consumed by ROMA.

Fig. 3. ROMA: performance and comparison.

4 Conclusions

The management of web services that use ML to provide intelligent features
poses new complex challenges. ML-services require a training phase (batch) to
generate a model that can be used in inference mode to compute predictions on
new inputs (interactive). Time and quality requirements are needed to obtain
predictable performance and accurate predictions.

This paper describes a set of critical aspects that characterize the manage-
ment of ML-services in both the training and inference phases. As a base for a
future, integrated framework that can handle all these aspects simultaneously,
we also describe some initial partial solutions that we developed recently. A
preliminary evaluation of them shows the benefits of our approaches that can
efficiently and automatically fulfill identified requirements.

Acknowledgments. This work has been partially supported by the SISMA (MIUR,
PRIN 2017, Contract 201752ENYB) and EMELIOT (MUR, PRIN 2020, Contract
2020W3A5FY) national research projects.

682 L. Baresi and G. Quattrocchi

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Pro-
ceedings of the Symposium on Operating Systems Design and Implementation, pp.
265–283. USENIX (2016)

2. Baresi, L., Denaro, G., Quattrocchi, G.: Symbolic execution-driven extraction of
the parallel execution plans of spark applications. In: Proceedings of the Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 246–256. ACM (2019)

3. Baresi, L., Leva, A., Quattrocchi, G.: Fine-grained dynamic resource allocation for
big-data applications. IEEE Trans. Software Eng. 47(8), 1668–1682 (2021)

4. Baresi, L., Quattrocchi, G., Rasi, N.: Federated machine learning as a self-adaptive
problem. In: Proceedings of the International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pp. 41–47 (2021)

5. Baresi, L., Quattrocchi, G., Rasi, N.: Resource management for TensorFlow infer-
ence. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021.
LNCS, vol. 13121, pp. 238–253. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-91431-8 15

6. Chen, C.-C., Yang, C.-L., Cheng, H.-Y.: Efficient and robust parallel DNN
training through model parallelism on multi-GPU platform. arXiv preprint
arXiv:1809.02839 (2018)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

8. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. Signal Process. Mag. 29(6), 141–142 (2012)

9. Fedorov, R., Camerada, A., Fraternali, P., Tagliasacchi, M.: Estimating snow cover
from publicly available images. IEEE Trans. Multimedia 18(6), 1187–1200 (2016)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778. IEEE (2016)

11. Islam, M.T., Srirama, S.N., Karunasekera, S., Buyya, R.: Cost-efficient dynamic
scheduling of big data applications in apache spark on cloud. J. Syst. Softw. 162,
110515 (2020)

12. Jia, Z., Zaharia, M., Aiken, A.: Beyond data and model parallelism for deep neural
networks. Proc. Mach. Learn. Syst. 1, 1–13 (2019)

13. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and
prospects. Science 349(6245), 255–260 (2015)

14. Jouppi, N.P., Young, C., Patil, N., Patterson, D.: A domain-specific architecture
for deep neural networks. Commun. ACM 61(9), 50–59 (2018)

15. Juba, B., Le, H.S.: Precision-recall versus accuracy and the role of large data sets.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp.
4039–4048 (2019)

16. Dipu Kabir, H.M., Khosravi, A., Hosen, M.A., Nahavandi, S.: Neural network-
based uncertainty quantification: a survey of methodologies and applications. IEEE
Access 6, 36218–36234 (2018)

17. Labidi, T., Mtibaa, A., Gaaloul, W., Tata, S., Gargouri, F.: Cloud SLA model-
ing and monitoring. In: Proceedings of the International Conference on Services
Computing, pp. 338–345. IEEE (2017)

https://doi.org/10.1007/978-3-030-91431-8_15
https://doi.org/10.1007/978-3-030-91431-8_15
http://arxiv.org/abs/1809.02839

Training and Serving Machine Learning Models at Scale 683

18. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems. Annual Conference on Neural Information Processing Sys-
tems, vol. 30, pp. 6402–6413 (2017)

19. Lam, C.: Hadoop in Action. Simon and Schuster (2010)
20. Li, L., et al.: A system for massively parallel hyperparameter tuning. Proc. Mach.

Learn. Syst. 2, 230–246 (2020)
21. Mohri, M., Rostamizadeh, A., Talwalkar, A.. Foundations of Machine Learning.

MIT Press (2018)
22. Morabito, R., Chiang, M.: Discover, provision, and orchestration of machine learn-

ing inference services in heterogeneous edge. In: 41st International Conference on
Distributed Computing Systems, pp. 1116–1119. IEEE (2021)

23. Nguyen, N., Khan, M.M.H., Wang, K.: Towards automatic tuning of apache spark
configuration. In: IEEE International Conference on Cloud Computing, pp. 417–
425 (2018)

24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, Annual Confer-
ence on Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

25. Sahai, A., Durante, A., Machiraju, V.: Towards Automated SLA Management for
Web Services. Hewlett-Packard Research Report HPL-2001-310 (R. 1) (2002)

26. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. J. Big Data 6(1), 1–48 (2019)

27. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the Inter-
national Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

28. Vabalas, A., Gowen, E., Poliakoff, E., Casson, A.J.: Machine learning algorithm
validation with a limited sample size. PloS ONE 14(11), e0224365 (2019)

29. Weiss, M., Tonella, P.: Uncertainty-wizard: fast and user-friendly neural network
uncertainty quantification. In: Proceedings of the International Conference on Soft-
ware Testing, Verification and Validation, pp. 436–441. IEEE (2021)

30. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

31. Jia Xu and David Lorge Parnas: Scheduling processes with release times, deadlines,
precedence and exclusion relations. IEEE Trans. Softw. Eng. 16(3), 360–369 (1990)

32. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

33. Zaharia, M., et al.: Spark: cluster computing with working sets. In: Proceedings of
the International Conference on Hot Topics in Cloud Computing. USENIX (2010)

34. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks
for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10),
1943–1955 (2015)

http://arxiv.org/abs/1708.07747

Author Index

Abdalkareem, Rabe 203
Abusafia, Amani 395, 653
Adams, Jan Niklas 36
Agarwal, Chayan 540
Aiello, Marco 635
Antony, Geo Johns 530

Bacchiani, Lorenzo 237
Báez, Marcos 575
Bahsoon, Rami 255, 273
Baresi, Luciano 669
Benatallah, Boualem 575, 644
Berro, Auday 575
Bouguelia, Sara 575
Bouguettaya, Athman 134, 395, 653
Brabra, Hayet 575
Bravetti, Mario 237

Casale, Giuliano 71
Casati, Fabio 644
Chang, Yuzhu 171
Chao, Pingfu 155
Chattopadhyay, Soumi 143
Chen, Gang 433, 449
Chen, Jintao 89
Chen, Pengfei 219
Chen, Ruibo 264
Chen, Shengsen 255
Chen, Wentao 340
Chen, Yixin 125
Christopher, Kameron 449
Cui, Lizhen 285, 316

Delavergne, Marie 530
Deng, Shuiguang 89
Ding, Zhijun 54
Dong, Hai 134
Duan, Yingwen 553
Durán, Francisco 3

Fang, Junhua 155
Filieri, Antonio 71
Fu, Qiang 107

Gabbrielli, Maurizio 237
Gan, Yanglan 125
Gao, Zhipeng 553
Gennaro, Marco Di 369
Giallorenzo, Saverio 237
Grünewald, Elias 513

He, Wei 285, 316
Heiss, Jonathan 351
Heuvel, Willem-Jan Van Den 384
Hu, Ruimin 584, 616
Hu, Shengxiang 125
Hu, Wenyi 584, 616
Huang, Bing 413
Huang, Tao 107
Huang, Victoria 449

Italiano, Lorenzo 369

Jia, Chenhao 107
Jin, Huiying 134

Kermany, Naime Ranjbar 331
Kheddouci, Hamamache 575
Kumar, Suraj 143

Lakhdari, Abdallah 395, 653
Lam, Kwok-Yan 413
Lebre, Adrien 530
Leung, Victor C. M. 481
Levich, Sergej 36
Li, Bao 186
Li, Dengshi 584, 616
Li, Jing 171
Li, Mengjuan 498
Li, Ning 186
Li, Xuyang 171
Li, Yufeng 219
Li, Zhaoming 285
Lin, Shiyi 125
Liu, An 300
Liu, Guanfeng 300
Liu, Hongyun 498

686 Author Index

Liu, Lei 316
Liu, Mingyi 340
Liu, Ning 285
Liu, Wenwen 481
Liu, Xiaoguang 481
Liu, Yuecan 171
Liu, Yunjie 107
Luo, Jun 186

Ma, Hui 433, 449
Mahmud, Redowan 540
Marchese, Angelo 465
Martini, Michael 19
Mashayekhy, Lena 540
Mera-Gómez, Carlos 255, 273
Meroni, Giovanni 369
Moghaddam, Sara K. 540
Muth, Robert 351

N. Toosi, Adel 540

Ouni, Ali 203
Ouyang, Xue 498

Pallas, Frank 351
Pan, Tian 107
Pan, Zhicheng 155
Park, Gyunam 36
Pizzato, Luiz 331
Pu, Yanjun 264

Qi, Kaiyuan 285
Quattrocchi, Giovanni 369, 384, 669

Ramírez, Francisco 255, 273
Ren, Jian 264
Ren, Lingfei 584, 616
Rong, Xianjin 567
Rui, Lanlan 553

Saied, Mohamed Aymen 203
Salaün, Gwen 3
Schurbert, Leonard 513
Schuster, Daniel 19, 36
Sellami, Khaled 203
Shang, Mingsheng 600
Sheng, Quan Z. 413
Shi, Bing 422
Shi, Kuanzhi 171
Shi, Xiaoyu 600

Song, Enge 107
Su, Jinshu 498
Su, Tongtong 481

Tai, Stefan 351
Tamburri, Damian Andrew 384
Tan, Yusong 186
Tao, Jiachun 155
Tari, Zahir 540
Tomarchio, Orazio 465
Tu, Zhiying 340

van der Aalst, Wil M. P. 19, 36
van Zelst, Sebastiaan J. 19

Wang, Chen 449
Wang, Gang 481
Wang, Lingfeng 264
Wang, Runan 71
Wang, Shuaijun 54
Wang, Xiaochuan 186
Wang, Zehua 481
Wang, Zhongjie 340
Wei, Ting 134
Wu, Jia 331
Wu, Junhang 584, 616
Wu, Shaogang 125
Wu, Wenjun 264

Xi, Heran 567
Xi, Meng 89
Xu, Jiajie 155, 300
Xu, Xiaotong 300
Xu, Yonghui 285
Xu, Zhuohan 422
Xue, Shan 331

Yang, Jian 331
Yang, Kaiyuan 264
Yang, Yang 553
Yang, YanPing 422
Yang, Yifan 433
Yin, Jianwei 89
Yu, Guangba 219
Yu, Zhaoyang 481

Zamanirad, Shayan 575
Zang, Yilong 584, 616
Zavattaro, Gianluigi 237
Zhang, Bofeng 125

Author Index 687

Zhang, Boyu 413
Zhang, Chuanfu 219
Zhang, Jiao 107
Zhang, Mengjie 433
Zhang, Pengcheng 134
Zhang, Yuqun 255, 273
Zhao, Chen 553
Zhao, Lei 300
Zhao, Pengpeng 155
Zhao, Sinong 481

Zhao, Tiancheng 89
Zhao, Zhiming 498
Zhao, Zihui 600
Zheng, Zibin 219
Zhong, Haiting 316
Zhou, Huan 498
Zhou, Yuanyuan 54
Zhu, Jinghua 567
Zingaro, Stefano Pio 237
Zou, Guobing 125

	Preface
	Organization
	Keynotes Talks
	Quantum Service-Oriented Computing: Challenges and Research Directions for Quantum and Hybrid Software System
	Securing Data Pipelines Along the Cloud Continuum: The MUSA Approach
	Contents
	Service Modeling and Mining
	Optimization of BPMN Processes via Automated Refactoring
	1 Introduction
	2 BPMN with Time and Resources
	3 Overview of the Approach
	3.1 Simulation-Based Analysis
	3.2 Refactoring Procedure

	4 Refactoring Operations
	4.1 Task
	4.2 Merge Node
	4.3 Split Node

	5 Implementation and Experiments
	5.1 Tool
	5.2 Case Study
	5.3 Experiments

	6 Related Work
	7 Concluding Remarks
	References

	Control-Flow-Based Querying of Process Executions from Partially Ordered Event Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Query Language
	4.1 Syntax
	4.2 Semantics
	4.3 Evaluating Queries
	4.4 Implementation

	5 Application Scenario Example
	6 Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References

	A Framework for Extracting and Encoding Features from Object-Centric Event Data*-12pt
	1 Introduction
	2 Related Work
	3 Object-Centric Event Data
	4 Object-Centric Features
	5 Feature Encodings
	6 Use Cases
	6.1 Tabular Encoding
	6.2 Sequential Encoding
	6.3 Graph Encoding

	7 Conclusion
	References

	Automated RESTful API Service Discovery with Various Interface Features*-12pt
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Implementation
	4.1 Overall Framework
	4.2 Service Data Preprocessing Module
	4.3 Core Discovery Module

	5 Experiments
	5.1 Dataset
	5.2 Experimental Settings
	5.3 Comparison Methods
	5.4 Results

	6 Conclusion and Future Work
	References

	Enhancing Performance Modeling of Serverless Functions via Static Analysis*-12pt
	1 Introduction
	2 Background
	3 Methodology
	3.1 Static Analysis for Structure Extraction
	3.2 Code Profiling for Model Parameterization
	3.3 LQN Model Generation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Result

	5 Related Work
	6 Conclusion and Future Work
	References

	Service Regulation: Modeling and Recognition
	1 Introduction
	2 Related Work
	3 Service Regulation Modeling
	3.1 Conceptual Model of Service Regulation
	3.2 Service Regulation Language Based on Calculus

	4 LPD4VR: A Labelled Process Dataset for Violation Recognition
	5 A Baseline for Violation Recognition
	6 Case Study
	7 Conclusion
	References

	Quality of Service
	WebQMon.ai: Gateway-Based Web QoE Assessment Using Lightweight Neural Networks
	1 Introduction
	2 Related Work
	3 WebQMon.ai Architecture
	3.1 System Architecture
	3.2 Dataset and Data Preprocessing
	3.3 Training and Prediction

	4 WebQMon.ai Algorithm
	4.1 Basic Classification Models
	4.2 Combine Classification Model
	4.3 Feature and Algorithm Selection

	5 Implementation and Experimental Settings
	5.1 Dataset Collection
	5.2 Model Parameters

	6 Experimental Results
	6.1 Basic Models
	6.2 Combine
	6.3 Summary

	7 Discussion
	8 Conclusion
	References

	Temporal-Aware QoS Prediction via Dynamic Graph Neural Collaborative Learning
	1 Introduction
	2 Approach
	2.1 Dynamic User-Service Invocation Graph Modeling
	2.2 High-Order Latent Feature Extraction of Users and Services
	2.3 User-Service Temporal Feature Evolution Mining
	2.4 Temporal-Aware QoS Prediction

	3 Experiments
	3.1 Dataset
	3.2 Experimental Results and Analyses

	4 Conclusion and Future Work
	References

	Mobility-Aware Proactive QoS Monitoring for Mobile Edge Computing
	1 Introduction
	2 Related Work
	3 The LSTM-BSPM Approach
	3.1 Data Preprocessing
	3.2 Mobility-Aware QoS Acquisition Based on DouLSTM-Den
	3.3 QoS Monitoring Based on Gaussian Hidden Bayesian Classifier

	4 Experiment
	4.1 Experimental Environment Configuration
	4.2 Feasibility Verification of Proactive Monitoring
	4.3 Effectiveness Verification of Positive Monitoring

	5 Conclusion
	References

	TRQP: Trust-Aware Real-Time QoS Prediction Framework Using Graph-Based Learning
	1 Introduction
	2 Formulation of QoS Prediction Problem
	3 Proposed QoS Prediction Framework
	3.1 Identification of Trustworthy Users and Services
	3.2 Design of the Learning Framework for TRQP

	4 Experimental Analysis
	4.1 Experimental Analysis

	5 Conclusion
	References

	Microservices
	Misty: Microservice-Based Streaming Trajectory Similarity Search
	1 Introduction
	2 Related Work
	2.1 Distributed Similarity Search
	2.2 Distributed Spatial Indexing
	2.3 Spatio-temporal Data Analytics Systems

	3 Preliminaries
	3.1 Definitions
	3.2 Overview of Misty

	4 Framework
	4.1 Assembler
	4.2 Index
	4.3 Coordinator
	4.4 Query Agent
	4.5 Executor

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Result Analysis

	6 Conclusions
	References

	BSDG: Anomaly Detection of Microservice Trace Based on Dual Graph Convolutional Neural Network
	1 Introduction
	2 BSDG
	2.1 Graph Construction Module
	2.2 Information Fusion Module
	2.3 Anomaly Detection Module

	3 Experimental Results and Analysis
	3.1 Data Set Description
	3.2 Baseline Methods for Anomaly Detection
	3.3 Experimental Setup
	3.4 Overall Performance
	3.5 Parameter Sensitivity Analysis
	3.6 Root Cause Localization Experiment
	3.7 Ablation Study

	4 Related Work
	4.1 Microservice Trace Anomaly Detection
	4.2 Graph Neural Networks

	5 Summary
	References

	SCORE: A Resource-Efficient Microservice Orchestration Model Based on Spectral Clustering in Edge Computing
	1 Introduction
	2 Related Works
	3 System Design
	3.1 Microservice Scheduling Based on Spectral Clustering
	3.2 Dynamic Resource Allocation Under Multi-dimension Constraint Based on Sliding Window Mechanism

	4 Evaluation
	4.1 Performance of Cluster-Based Microservice Scheduling
	4.2 Performance of Dynamic Resource Allocation

	5 Conclusions
	References

	Combining Static and Dynamic Analysis to Decompose Monolithic Application into Microservices*-12pt
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Problem Formulation
	3.2 Approach Overview
	3.3 Extracting the Datasets for Each Approach
	3.4 The Hybrid Clustering Process

	4 Evaluation
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Experimental Setup and Results for RQ1
	4.4 Experimental Setup and Results for RQ2

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	MicroSketch: Lightweight and Adaptive Sketch Based Performance Issue Detection and Localization in Microservice Systems
	1 Introduction
	2 Background
	3 System Design
	3.1 System Overview
	3.2 Status Encoder
	3.3 Anomaly Detector
	3.4 Fault Locator

	4 Experiment Setup
	4.1 Datasets
	4.2 Evaluation Metric

	5 Experimental Evaluation
	5.1 Effectiveness Comparison
	5.2 Adaption
	5.3 Overhead
	5.4 Sketch Technology
	5.5 Sensitivity

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Proactive-Reactive Global Scaling, with Analytics
	1 Introduction
	2 Proactive Global Scaling
	2.1 Design of a Proactive-Reactive Global Scaling Platform
	2.2 Benchmarking the Platform
	2.3 Reactive Local vs Reactive Global vs Proactive Global Scaling

	3 Analytics-Based Proactive Global Scaling
	3.1 Data Analytics for Global Scaling
	3.2 Benchmarking the Performance of Analytics-Based Global Scaling

	4 Proactive-Reactive Global Scaling
	5 Related Work
	6 Conclusion and Future Work
	References

	Semantics-Driven Learning for Microservice Annotations
	1 Introduction
	2 Preliminaries
	2.1 Tokenisation and AST Representation
	2.2 Vector Representation of Code

	3 Proposed Approach
	3.1 Pre-processor
	3.2 Learner
	3.3 Predictor
	3.4 Search Engine

	4 Evaluation
	4.1 Experiment Setup
	4.2 Results and Discussion
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	MicroEGRCL: An Edge-Attention-Based Graph Neural Network Approach for Root Cause Localization in Microservice Systems
	1 Introduction
	2 Related Work
	3 Method
	3.1 Formal Definition of the Root Cause Localization Problem
	3.2 Service Root Cause Localization Method Based on GNN
	3.3 Attention-Based Mechanism with Weighted Node Sampling

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusion and Future Work
	References

	Mining the Limits of Granularity for Microservice Annotations
	1 Introduction
	2 Background
	2.1 Annotations by Operations
	2.2 Granularity Dimensions
	2.3 Learning Process

	3 Proposed Approach
	3.1 Operation Miner
	3.2 Annotation Adapter
	3.3 Granularity Marker

	4 Evaluation
	4.1 Experiment Design
	4.2 Experiment Setup
	4.3 Results and Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

	Service Personalization, Recommendation, and Crowdsourcing
	Balancing Supply and Demand for Mobile Crowdsourcing Services
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The HRB Framework
	4.1 MDP Formulation
	4.2 Actor-Critic Network
	4.3 Willingness Transformer (WiT)

	5 Experiment
	5.1 Datasets
	5.2 Evaluation Metric and Baselines
	5.3 Performance Comparison

	6 Conclusion
	References

	Acceptance-Aware Multi-platform Cooperative Matching in Spatial Crowdsourcing
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Methodology
	4.1 Framework of Solving MPCM Problem
	4.2 The BaseMPCM Algorithm
	4.3 The DeepMPCM Algorithm

	5 Experiment
	5.1 Dataset and Setup
	5.2 Experiment Results

	6 Conclusion
	References

	Combining User Inherent and Contextual Preferences for Online Recommendation in Location-Based Services
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Inherent and Contextual Preference-Aware Attention Network
	4.1 Inherent Preferences Mining Module
	4.2 Contextual Preferences Perception Module
	4.3 Recommendation Module

	5 Experiments
	5.1 Experimental Setup
	5.2 Comparison of Performance
	5.3 Influence of Components
	5.4 Influence of Embedding Dimensions

	6 Conclusion
	References

	PD-SRS: Personalized Diversity for a Fair Session-Based Recommendation System
	1 Introduction
	2 The Proposed Method: PD-SRS
	2.1 Problem Definition
	2.2 Constructing User Session Graph
	2.3 Finding Session Embedding
	2.4 Generating Initial Recommendation Scores
	2.5 Ranking Optimization and Personalized Diversification

	3 Experiments and Discussions
	3.1 Datasets
	3.2 Baselines
	3.3 Evaluation Metrics
	3.4 Experimental Results and Discussion

	4 Conclusion
	References

	TagTag: A Novel Framework for Service Tags Recommendation and Missing Tag Prediction
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 The Architecture of TagTag
	4.1 Joint Embedding Part
	4.2 Task Special Part
	4.3 Optimization Object

	5 Experiment
	6 Results and Discussion
	6.1 Results
	6.2 Ablation Experiment
	6.3 Discussion

	7 Conclusion
	References

	Blockchain
	Non-disclosing Credential On-chaining for Blockchain-Based Decentralized Applications
	1 Introduction
	2 Preliminaries
	2.1 On-chaining Verifiable Credentials
	2.2 Related Work and Concepts

	3 System Design
	3.1 Attestation
	3.2 Setup
	3.3 Proving
	3.4 Verification

	4 Application
	4.1 Range and Equality Proofs
	4.2 Relative Time-Dependent Proofs
	4.3 Set Membership Proofs
	4.4 Uniqueness Proof

	5 Evaluation
	5.1 Implementation
	5.2 Performance Analysis
	5.3 Discussion

	6 Conclusion
	References

	DeepThought: A Reputation and Voting-Based Blockchain Oracle
	1 Introduction
	2 Blockchain and Oracles
	3 DeepThought
	3.1 Users and Phases
	3.2 Proposition Outcome
	3.3 Reward

	4 Evaluation
	4.1 Experiment Setup
	4.2 Results

	5 Related Work
	6 Conclusions
	References

	Blockchain-Oriented Services Computing in Action: Insights from a User Study
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Blockchain Technology Acceptance: Field Study Design

	4 Research Results
	5 Conclusions
	References

	IoT and Green Computing
	Maximizing Consumer Satisfaction of IoT Energy Services
	1 Introduction
	1.1 Motivating Scenario

	2 Preliminaries
	2.1 Problem Definition

	3 Quality of Experience Model
	4 Quality of Experience Framework
	4.1 Microcell Energy Demand Advertisement
	4.2 Energy Services Composition
	4.3 Assessing Quality of Experience

	5 Evaluation
	5.1 Dataset Description
	5.2 Evaluation of the Composition Framework

	6 Related Work
	7 Conclusion
	References

	A Multi-task Learning Approach for Predicting Intentions Using Smart Home IoT Services
	1 Introduction
	2 Intention Model
	3 Multi-task Learning Approach
	4 Experimental Results
	5 Conclusion and Future Work
	References

	Joint Optimization of Trajectory and Frequency in Energy Constrained Multi-UAV Assisted MEC System
	1 Introduction
	2 System Model
	2.1 UAV Computing Model
	2.2 UAV Energy Consumption Model
	2.3 Problem Formulation

	3 Joint Optimization Strategy Based on MADDPG
	4 Experiment Analysis
	5 Conclusion
	References

	Services for Cloud, Edge, and Fog Computing
	Dual-Tree Genetic Programming for Deadline-Constrained Dynamic Workflow Scheduling in Cloud
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Problem Overview
	3.2 Formulation

	4 Algorithm
	4.1 Representation
	4.2 Initialization
	4.3 Fitness Evaluation
	4.4 Evolution

	5 Experiments
	5.1 Parameter Setting
	5.2 Simulation Configuration
	5.3 Baseline Algorithms
	5.4 Performance Comparison
	5.5 Ablation Study
	5.6 Terminal Analysis

	6 Conclusions
	References

	Cost-Aware Dynamic Multi-Workflow Scheduling in Cloud Data Center Using Evolutionary Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Priority-Based DNN Policy Design
	5 Evolutionary Reinforcement Learning
	6 Performance Evaluation
	6.1 Simulation Setting
	6.2 Simulation Results

	7 Conclusions
	References

	Extending the Kubernetes Platform with Network-Aware Scheduling Capabilities
	1 Introduction
	2 Kubernetes Scheduler
	3 Motivation
	4 Proposed Approach
	4.1 Overall Design
	4.2 Kubernetes Controllers
	4.3 Network-Aware Scheduler

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	DeepSCJD: An Online Deep Learning-Based Model for Secure Collaborative Job Dispatching in Edge Computing
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 System Overview
	4.1 Framework
	4.2 Prediction Module
	4.3 GAT Module
	4.4 DRL Module

	5 Evaluation and Analysis
	5.1 Experiment Setup
	5.2 Experiment Results
	5.3 Ablation Studies

	6 Conclusion
	References

	The Extreme Counts: Modeling the Performance Uncertainty of Cloud Resources with Extreme Value Theory
	1 Introduction
	2 Related Work
	3 Background
	3.1 Generalized Extreme Value Distribution
	3.2 Find the Quantile
	3.3 Maximum Likelihood Estimation

	4 Our Contribution
	4.1 Cloud Performance Acquisition and Description
	4.2 Data Pre-processing
	4.3 The EVT-Based Cloud Performance Model

	5 Experiments and Results
	5.1 K-fold Cross-validation
	5.2 Result Analysis

	6 Conclusion
	References

	Scalable Discovery and Continuous Inventory of Personal Data at Rest in Cloud Native Systems
	1 Introduction
	2 Background and Related Work
	2.1 Personal Data in Cloud Native Systems
	2.2 Data Loss Prevention

	3 General Approach
	3.1 Requirements
	3.2 Introducing a Workflow Pattern for Scalable Discovery of Personal Data
	3.3 Workflow Engineering

	4 Software Architecture and Implementation
	4.1 Overview
	4.2 Workflow Management
	4.3 Components
	4.4 Deployment and Integration

	5 Evaluation
	6 Limitations and Discussion
	7 Conclusion
	References

	Cheops, a Service to Blow Away Cloud Applications to the Edge
	1 Introduction
	2 Towards Generic and Noninvasive Collaborations
	2.1 Scope-lang
	2.2 Collaboration Implementations for Elementary Resources
	2.3 Relationship Model
	2.4 Creation Patterns for Replication/cross Operations

	3 Cheops
	3.1 Cheops Internals
	3.2 Validation

	4 Related Work
	5 Future Work and Conclusion
	References

	GreenFog: A Framework for Sustainable Fog Computing
	1 Introduction
	2 System Overview and GreenFog Framework
	3 Optimization Model
	4 Linear Regression Algorithm
	5 Threshold-Based Linear Autoscaler
	6 Multi-Armed Bandit Approach
	7 Performance Evaluation
	7.1 Results

	8 Conclusions and Future Work
	References

	Artificial Intelligence and Machine Learning for Service Computing
	FedHF: A High Fairness Federated Learning Algorithm Based on Deconfliction in Heterogeneous Networks
	1 Introduction
	2 Preliminaries
	2.1 Federated Learning
	2.2 Gradient Conflict

	3 The FedHF System Workflow
	3.1 Local Client Update
	3.2 Hierarchical Partition
	3.3 Global Discriminative Model Generation
	3.4 The Analysis of the Principle of FedHF

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Performance

	5 Conclusion
	References

	A Collaborative Framework for Ad Click-Through Rate Prediction in Mobile App Services
	1 Introduction
	2 Problem Formulation
	3 Framework Design
	3.1 User Device Design
	3.2 Advertiser Platform Design
	3.3 Application Server Design
	3.4 H-USA Framework and Train Workflow of FME

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Analysis

	5 Conclusion
	References

	Process-Oriented Intents: A Cornerstone for Superimposition of Natural Language Conversations over Composite Services
	1 Introduction
	2 Preliminaries and Architecture
	3 Process-Aware User Intents
	4 Implementation and Experiments
	5 Conclusions and Future Work
	References

	A Bi-directional Category-Aware Multi-task Learning Framework for Missing Check-in POI Identification
	1 Introduction
	2 Perlimimaries
	2.1 Data Analysis
	2.2 Problem Definition

	3 Proposed Methodology
	3.1 Model Framework
	3.2 Bi-directional Recurrent Neural Networks
	3.3 Temporal-Aware Category Transition Encoder
	3.4 Spatial-Aware POI Transition Encoder
	3.5 Task-Oriented Encoder
	3.6 Model Optimization

	4 Evaluation
	4.1 Dataset
	4.2 Baseline Method
	4.3 Implementation Details
	4.4 Evaluation Metrics
	4.5 Performance Comparison
	4.6 Imapct of Forward and Backward Sequences
	4.7 Effect of Hyper-parameter Settings

	5 Conclusion
	References

	Performance and Cost-Aware Task Scheduling via Deep Reinforcement Learning in Cloud Environment
	1 Introduction
	2 Related Works
	3 System Architecture and Problem Statement
	3.1 Overview of System Architecture
	3.2 Problem Formulation

	4 Performance and Cost-Aware Task Scheduler
	4.1 MDP Model
	4.2 Correlation-Aware State Representation
	4.3 Dual Rewards
	4.4 Algorithm Training

	5 Performance Evaluation
	5.1 Experimental Settings
	5.2 Performance on Real-World Workload

	6 Conclusion
	References

	IDGL: An Imbalanced Disassortative Graph Learning Framework for Fraud Detection
	1 Introduction
	2 Preliminaries
	2.1 Definition
	2.2 Problem Formulation

	3 Overview Framework of Method
	3.1 Re-embedding Layer
	3.2 Adaptive Dual-channel Convolution Layer
	3.3 Representation Fusion Layer
	3.4 Imbalance-Oriented Classification Layer

	4 Experiments
	4.1 Experiment Setup
	4.2 Evidence of Graph Disassortativity and Imbalance
	4.3 Performance Comparison
	4.4 Ablation Analysis
	4.5 Parameter Sensitivity and Running Efficiency

	5 Conclusion
	References

	Vision Papers
	A Challenge for the Next 50 Years of Automated Service Composition
	1 The Promises of Automated Service Composition
	1.1 A Parallel with the Automotive Industry
	1.2 Composition Throughout the Years
	1.3 The First Winter of Automated Service Composition

	2 The Challenge
	3 An Automated Service Composition Scene in 2052
	4 Where Are We Now?
	5 Outlook
	References

	Quality Engineering in AI Services
	1 AI Services and Systems - It's Not Just a Model
	2 Common ML Quality Engineering Mistakes
	2.1 Obvious and Widely Known Mistakes - Which We Still Do All the Time
	2.2 Less Obvious but Equally Common Pitfalls

	3 Building AI Systems We Can Rely on
	References

	Service-Based Wireless Energy Crowdsourcing
	1 Introduction
	2 Impact of Crowdsourcing Energy Services Ecosystem
	3 Crowdsourcing Energy Services Ecosystem
	3.1 Prospective Environment
	3.2 Energy Service Oriented Architecture
	3.3 Enabling Technologies

	4 Crowdsourcing Energy Services Framework
	4.1 Incentive Model
	4.2 Reliability and Trust Assessment
	4.3 Spatio-Temporal Composability Model
	4.4 Services Composition Approach

	5 Challenges in Crowdsourcing Energy Services
	5.1 Enabling Technologies
	5.2 Human-in-the-Loop
	5.3 Deployment of Energy Services Ecosystem

	6 Conclusion
	References

	Training and Serving Machine Learning Models at Scale
	1 Introduction
	2 ML-service Management
	2.1 Training
	2.2 Inference

	3 What We Have Done so Far
	3.1 dynaSpark
	3.2 hyperFL
	3.3 ROMA

	4 Conclusions
	References

	Author Index

