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Abstract. Classification of infant cry into normal and pathological cries
is a socially relevant research problem for a long time. Crying is the only
means that an infant use for communication. The state-of-the-art fea-
ture vectors, such as Short-Time Fourier Transform (STFT) representa-
tions and Mel Frequency Cepstral Coefficients (MFCC) have been ear-
lier reported for this task. However, quasi-periodic sampling of vocal tract
spectrum by high pitch-source harmonics of infant cry results in poor spec-
tral resolution in STFT based spectrum and hence, these feature vectors
could not produce satisfactory performance. In this work, we compare
the performance of various time-averaged feature extraction techniques of
window sizes 20, and 55 ms with three different classifiers, namely, Sup-
port Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random
Forest (RF). The experiments in this work are performed using the 10 -
fold stratified cross-validation on standard and statistically meaningful
Baby Chillanto dataset using various state-of-the-art features vectors. It
was observed that the time-averaged dynamic MFCC feature vector gives
a classification accuracy of 98.48%. Furthermore, the performance of the
proposed feature vectors was also studied using the confusion matrix and
found to be better than other features, such as LFCC and CC.

Keywords: Infant cry classification · MFCC · LFCC · Cepstral
coefficients · Time average · KNN · Random forest · SVM

1 Introduction

Crying is the only mode of communication for an infant to convey information
to the parents or caregivers. The cry of an infant can be meant for many reasons,
which indicate the emotional, physical, and pathological needs of infants. The
exact reasoning behind the infant’s cry is difficult to understand for inexperi-
enced mothers and caregivers. Hence, the infant cry classification system can be
used for the early detection and diagnosis of the infant’s condition. Research has
found that there is a typical pattern associated with various kinds of crying and
hence, the infant cry classification problem can also be seen as a pattern clas-
sification problem. Fingerprint-based biometrics [9] were developed apart from
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cry-based identification [17] to prevent the infant mortality rate due to vaccine-
preventable diseases and malnutrition.

The initial work on the infant cry started in the 1940s [10,13]. Later, in the
1960s, four types of infant cries were identified [22]. Ten distinct cry modes were
identified based on the variation of fundamental frequency (F0) and its harmonics
from the narrowband spectrogram by Xie et al. [24]. This study was extended from
normal infant cry to pathological infant cry, where dysphonation and hyperphona-
tion cry modes were found to be correlated with the pathological cry [18]. Despite
the interest in the prospects offered by the study of infant cry in the early diagno-
sis, scientific work was not restricted to this area alone. There has been research on
categorizing the cry since the 1960s [23]. While the previous works were based on a
manual study by experts and doctors, recent advances in automation and machine
learning have opened the doors for automating the detection of any discomfort
in the infant’s cry. State-of-the-art cepstral features, such as Mel Frequency Cep-
stral Coefficients (MFCC) are also recently used for cry classification tasks using
a Gaussian Mixture Model (GMM) classifier [1,14], using fuzzy logic based clas-
sifier [20], decision tree, Support Vector Machine, boosted tree [16], feedforward
network [11]. Another state-of-the-art feature vector, namely, Linear Frequency
Cepstral Coefficients (LFCC) is also used for the classification task with the k-
Nearest Neighbors classifier [7,8]. However, there hasn’t been a lot of work done
on a comparative study of normal versus pathological cry classification among
MFCC, LFCC, and Cepstral Coefficients feature extraction techniques.

In this work, we present a comparative study among multiple feature extrac-
tion techniques, such as MFCC, LFCC, and CC on different window sizes com-
bined with various classifiers, namely, k-Nearest Neighbor (KNN), Random For-
est (RF), and Support Vector Machine (SVM). MFCC being the state-of-the-art
feature vector replicates the hearing mechanism of the human ear, i.e., induc-
ing non-linear characteristics in tone perception. LFCC is a feature extraction
technique similar to the MFCC, where the Mel filterbank is replaced by a linear
filterbank. The LFCC is found to capture information at higher frequencies bet-
ter than the MFCC [8]. It is observed that the performance of the classifier with
the MFCC feature vector is better than the LFCC and CC [8]. We have used
various classification algorithms, namely, SVM, RF, and KNN. Instead of using
the MFCC, LFCC, and CC features as it is, we averaged the feature matrix
across the time-axis as most of the cepstral information of the sound wave is
captured in the first 13–14 indexes of coefficient values.

The rest of this paper is organized as follows. Section 2 presents the proposed
work on time averaging feature extraction. Section 3 describes the standard and
statistically meaningful Baby Chillanto database. The experimental results and
the analysis of the results are presented in Sect. 4. Finally, Sect. 5 concludes the
paper along with potential future research work.

2 Proposed Work

In this work, we analyze multiple combinations of feature extraction techniques
and classifiers. We also compare different feature extraction techniques and the



592 A. Pusuluri et al.

effect of averaging of feature extraction matrix on the classification accuracy. The
work is done considering 2 window sizes for the feature extraction technique: 20
and 55 ms. The 20 ms is the default window size for the STFT function and 55
ms is the default window size for the MFCC function using the Librosa toolkit.
Apart from the above explanation, 20 and 55 ms are selected as this reflects the
clear differences in the effect of increasing the window size on the classifiers.

2.1 Mel Frequency Cepstral Coefficients (MFCC)

MFCC is one of the state-of-the-art feature extraction techniques. The speech
signal is a time-varying signal and hence, when analyzed for a short-time period,
it acts as a stationary signal. One way of short-time signal analysis is by employ-
ing MFCC, which aims to develop segmental features from audio signals. The
procedure for obtaining MFCC is shown in Fig. 1. The feature vector obtained
after the MFCC feature extraction technique for an audio file is a 2-D array or a
matrix. To perform a short-term analysis, we frame block the audio signal into
different segments called frames with each segment having a 20 ms length with
an overlap of 10 ms in general. In order to avoid the introduction of noise at
higher frequency stages, we use windowing after framing to eliminate the abrupt
chopping of the signal. In general, Hamming or Hanning windows are used as
they result in reasonable side lobes widths with the desired main lobe width
[2]. Next, Fast Fourier Transform (FFT) is used to convert the signal in the
time-domain to the frequency-domain. The results are then passed through the
Mel filterbank to change the frequency into the Mel scale. The conversion of
frequency into the Mel scale is done by [12]:

Fig. 1. Block Diagram of MFCC feature extraction [6].

Mel(f) = 2595 ∗ log(1 + f/700).

The Mel scale filterbank is a bandpass triangular filterbank followed by a loga-
rithmic function. This decreases the resolution at the higher frequencies and
improves the resolution at lower frequencies. Later, the spectrum is passed
through the DCT block to convert the spectrum to cepstrum and to decorrelate
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the sub-band energies from the frequency filterbank. After obtaining the coef-
ficients, these coefficients are termed static MFCC feature vectors. Later, upon
applying the first-order and second-order difference (i.e., numerical approxima-
tion to the derivative operator) on the static feature vector, we get a dynamic
MFCC feature vector. The dynamic features track the rate of change in features
(in particular, cepstral trajectory) w.r.t time. These dynamic features can be
useful, however, also redundant sometimes.

In the static MFCC feature extraction technique, 13 coefficients are consid-
ered, a window length of 20 and 55 ms, a hop length of 10 and 15 ms respectively,
a minimum frequency 100 Hz, and a maximum frequency of sampling rate/2. In
dynamic MFCC, 39 coefficients are considered, a window length of 20 and 55
ms, a hop length of 10 and 15 ms, a minimum frequency 100 Hz, and a maximum
frequency of sampling rate/2.

2.2 Linear Frequency Cepstral Coefficients (LFCC)

LFCCs are another state-of-the-art feature extraction technique widely used.
The procedure is similar to that of MFCC, here the Mel filterbank is replaced
with a linear filterbank. Due to the presence of a linear frequency filterbank,
the resolution is better at higher frequencies compared to the MFCC as here the
spacing is not logarithmic but is linear. Hence, it captures details better at higher
frequencies compared to MFCC. Further, for both MFCC and LFCC, DCT
does the job of feature decorrelation, energy compaction, and dimensionality
reduction of the feature vector.

Here, 13 coefficients are considered, a window length of 20 and 55 ms, a hop
length of 10 and 15 ms, a minimum frequency 100 Hz, and a maximum frequency
of sampling rate/2.

2.3 Cepstral Coefficients (CC)

In this technique, there is no application of any filterbank and extract the fea-
tures skipping the filterbank procedure present in the MFCC and LFCC feature
sets.

13 coefficients are considered, a window length of 20 and 55 ms, a hop length
of 10 and 15 ms, a minimum frequency 100 Hz, and a maximum frequency of
sampling rate/2.

2.4 Time Averaging of Features

The sound files of normal versus pathology infant cry classification are record-
ings of cries and they don’t contain any time-specific information and our the
is to classify the infant cry but not detect the infant cry. Hence, the temporal
axis in the extracted features of MFCC, LFCC, and CC doesn’t contain much
information, and averaging them doesn’t lead to information loss, which can be
proved from the classification results obtained. This time-averaging technique
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helps to overcome the computational complexity while obtaining a good classifi-
cation accuracy. Another explanation to justify the averaging of feature vectors
across time is that as the window size is increased in the feature extraction tech-
nique, the time resolution decreases and the frequency resolution increases, and
the average classification accuracy increased for every feature extraction tech-
nique. This implies that for the infant cry classification, the information across
the frequency axis of the matrix obtained from the feature extraction technique
is more informative than the information obtained from the time-axis.

3 Experimental Setup

3.1 Dataset Used

Baby Chillanto dataset is used in this work. It was developed by the record-
ings conducted by medical doctors, which is a property of NIAOE-CONACYT,
Mexico [21]. Each cry signal was segmented into one-second duration (which rep-
resents one sample), and is grouped into five categories. Two groups were formed
for binary classification of healthy versus pathology. Healthy cry signals include
three categories, namely, normal, hungry, and pain resulting in 1049 cry samples.
Pathology cry signals include two categories, namely, asphyxia and deaf result-
ing in 1219 cry samples. Table 1 shows the statistics of Baby Chilanto database.
The normal class consists of 1038 samples and the pathology class consists of
1229 samples. 70% of the data is used for training, and 30% of the data is used
for testing.

Table 1. Statistics of the Baby Chillanto dataset used [21].

Class Category # Utterances

Healthy Normal 507

Hungry 350

Pain 192

Pathology Asphyxia 340

Deaf 879

3.2 Classifier Parameters

Support Vector Machines (SVM): It is a non-probabilistic binary linear
classifier as it assigns any new data sample directly to one of the classes. The
SVM is based on discriminative training and it gives an optimal hyperplane in
the higher-dimensional feature space than the dimension of the original feature
vector, given labeled training samples that categorize new examples [3]. In par-
ticular, SVM is based on Cover’s theorem on the separability of patterns, i.e., the
patterns that are nonlinearly separable in low-dimensional feature space become
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linearly separable in the high-dimensional feature space by using a suitable ker-
nel function [5]. Here the classification is done using a decision boundary. Table 2
specifies the best parameters obtained for SVM with a linear kernel using grid
search algorithm.

Table 2. Parameter tuning for SVM using grid search method for a window size of 55
ms.

Parameter Static MFCC Dynamic MFCC LFCC CC

C 0.1 1 10 100

K Nearest Neighbours (KNN): KNN is a well-known pattern recognition
method that helps to classify binary or multiple classes which are having its
own label vectors. KNN classifier determines the class based on the concept of
majority voting of the nearest neighbors. The nearest neighbors are measured
using a distance metric. The Euclidean distance metric is one of the most com-
monly used distances [3]. Here the classification is done using the concept of
clustering. Table 3 specifies the best parameters obtained for KNN using grid
search algorithm.

Table 3. Parameter tuning for KNN using grid search method.

Parameter Static MFCC Dynamic MFCC LFCC CC

Neighbors 3 3 3 3

Random Forest (RF) Classifier: This classifier consists of a large number
of uncorrelated decision trees that work as an ensemble. Each individual tree
in the random forest spits out a class prediction and the class with the most
votes becomes our model’s prediction [3]. It uses the concept of bagging and
feature randomness while building the decision trees. Here the classification is
done using the concept of majority voting. Table 4 specifies the best parameters
obtained for RF using grid search algorithm.

3.3 Evaluation Metric and Procedure

Repeated Stratified K-Fold Valuation: A single run k -fold evaluation can
result in a noisy estimation of model performance. The repeated k -fold validation
repeated the cross-validation specified number of times which means that instead
of increasing the k value to decrease the noise in the evaluation, the number of
times the k -fold runs can be increased. The result which we consider is the mean
result of all the runs. The term stratified indicates that the proportion of positive
and negative classes in the train data and the test data is split equally.
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Table 4. Parameter tuning for RF using grid search method.

Parameter Static MFCC Dynamic MFCC LFCC CC

Maximum depth 20 50 10 50

Samples leaf 1 1 1 1

Estimators 300 150 300 150

Accuracy: Accuracy is a metric that describes how well a model is performing
in all the classes. It is used when the dataset is balanced. It is calculated by
considering the ratio between TP+TN and TP+TN+FP+FN.

4 Results and Analysis

4.1 Spectrographic Analysis

In Fig. 2, Panel-I and Panel-II represent the spectrographic analysis generated
using Librosa [15] for randomly sampled normal and pathological cry signals,
respectively. In particular, we took Fourier transform of obtained cepstral fea-
tures i.e., MFCC, LFCC, and CC. This is indeed a valid representation of log
magnitude spectrum as Fourier transform of cepstrum [18]. Figure 2a represents
the Static MFCC representations, Fig. 2b represents the dynamic MFCC repre-
sentations, Fig. 2c represents the LFCC representations, and Fig. 2d represents
the cepstral coefficient representations. It can be observed from Fig. 2a and b
that there is a difference in the pattern formed by F0 and its harmonics for
normal versus pathological cry signals. These differences in the pattern are also
visible for LFCC representation as shown in Fig. 2c. However, these differences
are more vivid for dynamic MFCC representations as shown in Fig. 2b compared
to the static MFCC and LFCC spectrogram. It might be because of the fact that
dynamic MFCC can accurately estimate the discriminative acoustic cues of the
signal over the entire frequency band considering non-linear aspects of the speech
production mechanism and also properties of airflow pattern in the vocal tract
system [19]. Furthermore, the results obtained using 10 -fold cross-validation also
validate that the dynamic MFCC gives the maximum classification accuracy in
this work. On the other hand, the dynamic MFCC is also containing redundant
information as seen in the spectrogram compared to the static MFCC, Hence,
the average accuracy of static MFCC is greater than that of dynamic MFCC.
The features captured by CC are not sufficiently discriminative. Hence, the clas-
sifiers are finding it difficult to classify using the features obtained using Cepstral
Coefficients.
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Fig. 2. Panel-I and Panel-II represent the spectrographic analysis (log-magnitude spec-
trum) of cepstral based features for normal versus pathological cry samples, respec-
tively. Figure 2a represents the Static MFCC feature set, Fig. 2b represents the dynamic
MFCC representations, Fig. 2c represents the LFCC representations, and Fig. 2d rep-
resents the cepstral coefficient representations.

4.2 Performance Evaluation

The performance analysis of various classifiers is done using 3 -repeat 10 -fold
stratified cross-validation. The static coefficients of MFCC and dynamic coeffi-
cients of MFCC performed similarly resulting in an average fold accuracy across
all the classifiers of 95.22 and 93.71%. The features provided by the dynamic
MFCC can be redundant features in some cases meaning it degrades the per-
formance of some classifiers, like SVM with a soft margin [4]. In general, the
dynamic MFCC represent the trajectory of MFCCs over time by using differen-
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tial (delta) and accelerated (delta-delta) coefficients. Hence, even though we are
considering 39 coefficients with additional features delta and delta-delta, we are
not receiving any additional information other than the information obtained
from static MFCC. Hence, the features of the dynamic MFCC feature vector act
as redundant features reducing the performance of classifiers.

The average repeated 10 -fold accuracy of LFCCs is 94.17%. LFCCs have a
linear filterbank meaning that the resolution is better in higher frequencies than
the MFCC’s higher frequency logarithmic resolution. The LFCC feature vector is
having an average accuracy across all the classifiers higher than dynamic MFCC
but less than the static MFCC. This indicates that the amount of information
obtained from the higher frequencies is significant and cannot be neglected, but
at the same time, the average classification accuracy of static MFCC is higher
showing that lower frequencies also contain significant crucial information. This
comparison also shows the effect of redundancy on the accuracy of dynamic
features, when compared with static MFCC and LFCC. The cepstral coefficient
feature vector has the worst classification accuracy since it doesn’t have any
filterbanks as in the case of MFCC and LFCC feature sets.

Coming to the classifiers, all three classifiers handle the redundant data dif-
ferently as the classification technique of all the 3 classifiers vary. The SVM
classifier uses a decision boundary of the linear kernel to classify among the
classes. While the KNN classifier uses the clustering concept and assigns a label
based on the majority voting of neighbors, the RF classifier assigns a label based
on the majority voting on the output of all the decision trees. Hence, we can see
a decrease in the performance of some classifiers, when we go from static MFCC
to dynamic MFCC feature vector; while the others remain unaffected. The SVM-
linear kernel performs better only when the feature extraction is done well else
the classification results are poor, and the SVM classifier is affected by the
redundant data. The KNN classifier, on the other hand, is a pattern recognition
algorithm, which is also another algorithm that is highly dependent on features
extracted, it works using the concept of clustering for classification. Hence, when
the feature extraction is done properly, the performance of KNN is better than
the linear SVM due to the clustering classification technique and the classifica-
tion with a linear decision boundary is ineffective; which can be observed from
the results. The Random Forest classifier tries to outperform both these classi-
fiers (i.e., SVM and KNN) in all the feature extraction techniques. In the RF
classifier, the classification accuracy is better compared to the other classifiers
across all the feature vectors because the classifier combines many uncorrelated
decision trees, as the number of decision trees increases the chances of correct
prediction also increase. The RF classifier fails to handle redundant data as the
importance score misleads the model.

The average classification accuracy of KNN across all the feature extraction
techniques is 89.42%. The number of neighbors parameter for the KNN classi-
fier is obtained using the grid search algorithm and the KNN performed best
when the number of neighbors is 3. The average classification accuracy of the
Random Forest classifier across all the feature extraction techniques is 90.29%.
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The parameters maximum depth, minimum sample leaf, and several estimators
are tuned using a grid search algorithm and set to 20, 1, and 300, respectively
to obtain the best result of 98.27%. The average classification accuracy of SVM
with the linear kernel is 78.82%. The parameter C is tuned using a grid search
algorithm and set to 10 for the best result of 87.75%.

From Tables 5, and 6, we can see the effect of window size (20 and 55 ms)
on the classification accuracy. The last column of Tables 5 and 6 represents the
average performance of various classifiers. The last row of Tables 5 and 6 rep-
resents the average accuracy of using various feature extraction techniques. As
the window size is increased in any feature extraction technique, the time reso-
lution decreases, and the frequency resolution increases. So, when we increased
the window size from 20 to 55 ms, we can see an increase in accuracy across the
classifiers indicating that the temporal information can be neglected. The Fig. 3
shows the multi-bar plot of various feature sets for a window size of 55 ms using
various classifiers.

Table 5. % Fold accuracy for multiple time-averaged feature vectors with a window
size of 20 ms.

Model Static MFCC Dynamic MFCC LFCC CC Average acc.

KNN 97.98 98.38 96.74 61.28 88.59

RF 97.66 96.49 96.78 67.98 89.72

SVM linear 86.91 86.99 87.67 58.30 79.96

Average acc. 94.18 93.95 93.73 62.52

Table 6. % Fold accuracy for multiple time-averaged feature vectors with a window
size of 55 ms.

Model Static MFCC Dynamic MFCC LFCC CC Average acc.

KNN 98.42 98.48 97.50 63.30 89.42

RF 97.92 96.61 97.27 69.37 90.29

SVM linear 85.44 86.07 87.75 56.05 78.82

Average acc. 93.92 93.72 94.17 62.90

Since temporal information is not very important in the classification of
normal versus pathological cry, we averaged the temporal-axis of the matrix
obtained from the feature extraction technique and converted it into a 1 -D vec-
tor. The results show that there is not much loss of information as the maximum
stratified 10 -fold accuracy obtained is 98.48% (Table 6). This also reduces the
computational complexity while feeding the features into the classifiers or deep
learning architectures.

The secondary goal is to keep the false positive count to a minimum so that
the misclassification of pathology cry as normal is less which is very important in
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Fig. 3. % Classification accuracy of various feature vectors of window size 55 ms with
various classifiers.

realistic scenarios. This is consistently achieved in static MFCC feature vectors
across all three classifiers and the best results are seen using dynamic MFCC
feature extraction with KNN and RF as classifiers as shown in Fig. 4 and Table 7.

Table 7. Confusion Matrix for Dynamic MFCC using various classifiers.

Classifier Class Normal Pathology

KNN Normal 300 4

Pathology 5 370

RF Normal 290 15

Pathology 2 380

SVM Normal 260 43

Pathology 61 320

The results obtained apparently gave counterintuitive analysis, i.e., dynamic
MFCC performed better than static MFCC for a few classifiers. This might be
because of the fact that each classifier selected has a different method of deciding
the classification boundary, hence the additional data obtained using dynamic
MFCC affects the classifiers uniquely. However, it should be noted that the gra-
dient time-averaged feature vector implicitly captures dynamic information, as
it is the concatenation of static features, delta features, and delta-delta features.
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Fig. 4. False positive count of various feature vectors of window size 55 ms with various
classifiers.

5 Summary and Conclusion

In this work, we presented a comparative study of various time-averaged fea-
ture extraction techniques such as MFCC, LFCC, and Cepstral Coefficients.
The effect of different window sizes was also studied in this work. It was found
that the dynamic MFCC feature vector with a window size of 55 ms along with
the KNN classifier results in the best relative classification accuracy of 98.48%
with 5 false positives. It was also observed that there was an increase in the
classification accuracy of about 0.5% on KNN and RF classifiers with static
MFCC, however, there was a minor change in the classification accuracy by
using dynamic MFCC. Hence, it can be concluded that the infant’s cries con-
tain discriminative cues in the spatial or the frequency plane rather than the
temporal or time plane. Hence, the feature extraction techniques are averaged
across the time-axis reducing a 2-D array into a 1-D array for each audio file. It
was also observed that the amount of information in lower frequencies is slightly
higher than in the higher frequencies. However, the linear kernel SVM failed to
perform well enough compared to the other classifiers. To that effect, our future
work will be directed toward exploring non-linear kernels, such as Radial Basis
Functions (RBF), and polynomial kernels for SVM. Furthermore, Deep learning
architectures like Convolutional Neural Network (CNN) and Light CNN (LCNN)
along with data augmentation can be explored for the classification task across
various feature extraction techniques.
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