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Abstract. Dysarthria is a neuro-motor speech defect that causes speech
to be unintelligible and is largely unnoticeable to humans at various
severity-levels. Dysarthric speech classification is used as a diagnostic
method to assess the progression of a patient’s severity of the condition,
as well as to aid with automatic dysarthric speech recognition systems
(an important assistive speech technology). This study investigates the
significance of Generalized Morse Wavelet (GMW)-based scalogram fea-
tures for capturing the discriminative acoustic cues of dysarthric severity-
level classification for low-frequency regions, using Convolutional Neural
Network (CNN). The performance of scalogram-based features is com-
pared with Short-Time Fourier Transform (STFT)-based features, and
Mel spectrogram-based features. Compared to the STFT-based baseline
features with a classification accuracy of 91.76%, the proposed Continu-
ous Wavelet Transform (CWT)-based scalogram features achieve signifi-
cantly improved classification accuracy of 95.17% on standard and statis-
tically meaningful UA-Speech corpus. The remarkably improved results
signify that for better dysarthric severity-level classification, the infor-
mation in the low-frequency regions is more discriminative, as the pro-
posed CWT-based time-frequency representation (scalogram) has a high-
frequency resolution in the lower frequencies. On the other hand, STFT-
based representations have constant resolution across all the frequency
bands and therefore, are not as better suited for dysarthric severity-
level classification, as the proposed Morse wavelet-based CWT features.
In addition, we also perform experiments on the Mel spectrogram to
demonstrate that even though the Mel spectrogram also has a high fre-
quency resolution in the lower frequencies with a classification accuracy
of 92.65%, the proposed system is better suited. We see an increase of
3.41% and 2.52% in classification accuracy of the proposed system to
STFT and Mel spectrogram respectively. To that effect, the performance
of the STFT, Mel spectrogram, and scalogram are analyzed using F1-
Score, Matthew’s Correlation Coefficients (MCC), Jaccard Index, Ham-
ming Loss, and Linear Discriminant Analysis (LDA) scatter plots.
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1 Introduction

Proper coordination between brain and speech-producing muscles is required for
the production of speech sounds [15]. Lack of this coordination leads to speech
disorders, such as aparaxia, dysarthria, and stuttering. These disorders affect
a person’s ability to produce speech sounds. They are further categorized as
neurological or neurodegenerative diseases, such as cerebral palsy or Parkinson’s
disease. The severity-level of these diseases might be mild or severe, depending
upon the impact on the area of the brain. In the case of mild severity, the
patient may mispronounce a few words, whereas, in high severity, the patient
lacks the ability to produce intelligible speech. Among these speech disorders,
dysarthria is a relatively common speech disorder [24]. Dysarthria is a neuro-
motor speech disorder. The muscles that produce speech are weak in people with
this disorder. Dynamic movements of articulators, such as lips, tongue, throat,
and upper respiratory tract system are also affected due to brain damage. Apart
from brain damage, cerebral palsy, muscular dystrophy, and stroke are also some
of the other factors, which can cause dysarthria [19].

Severity-level of dysarthria depends on the impact and damage to the area of
neurological injury, which is diagnosed using a brain and nerve test. The type,
underlying cause, severity-level, and its symptoms, all influence the manner in
which it is treated [4]. Due to this uncertainty in treatment, researchers are
motivated to develop speech assistive tools for dysarthric intelligibility catego-
rization.

In the literature, dysarthria severity-level classification has been exploited
extensively using Short-Time Fourier Transform (STFT) [9], and various acous-
tical features [1]. State-of-the-art feature sets, such as Mel Frequency Cepstral
Coefficients (MFCC) feature set was employed in [12] due to its capacity of
capturing global spectral envelope properties. In addition to a perceptually-
motivated state-of-the-art feature set, glottal excitation source parameters
derived from the quasi-periodic sampling of the vocal tract system were imple-
mented in [8]. In the signal processing framework, due to the wide and dynamic
range of multiple frequency components in short-time spectra, speech signals
are considered to be non-stationary signals. Due to the dynamic movements of
articulators, the frequency spectrum varies instantaneously.

In this work, we demonstrate the capability of Continuous Wavelet Trans-
form (CWT)-based representation (i.e., scalogram) for dysarthric severity-level
classification. According to study in [5], wavelet transform has better frequency
resolution in the low frequency regions, as compared to the STFT. In the litera-
ture, for acoustical research problems, wavelet-based features have been success-
fully implemented as in [3,22]. To that effect, the motivation of utilizing CWT
for this study is the improved frequency resolution of CWT-based scalograms at
lower frequencies as compared to the STFT-based and Mel spectrogram-based
techniques. To the best of the authors’ knowledge and belief, the use of CWT
has been explored to Model Articulation Impairments in Patients with Parkin-
son’s Disease [23]. However the use of CWT to capture discriminative acoustic
cues for dysarthric severity-level classification is being proposed for the first time
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in this study. Results are presented on standard Universal Access (UA)-Speech
Corpus.

The rest of paper is organized as follows: Sect. 2 discusses the motivation
of using scalogram-based approach over a spectrogram. Section 3 describes the
proposed approach of Morse wavelet-based dysarthric severity level classification.
Furthermore, experimental setup is described in Sect. 4, followed by experimental
results in Sect. 5. The Sect. 6 concludes the paper along with potential future
research directions.

2 Spectrogram and Scalogram

STFT-based spectrograms are made up of windows of equal and fixed lengths
that run across the length of the signal. As a result, in a spectrogram, the spread
in time, as well as frequency-domains, remains constant throughout the time-
frequency plane (i.e., constant time and frequency resolution). On the other
hand, we can achieve variable time-frequency resolution by employing CWT-
based representation (also known as scalogram). The time-frequency spread of
the wavelet atoms ψu,s determines the time-frequency resolution of scalogram.
A Heisenberg box is defined by the spread in time multiplied by the spread in
frequency in a time-frequency representation. In a scalogram, for low frequency
regions, the spread in frequency is less, leading to a better frequency resolution,
as shown by the boxes in Fig. 1. Furthermore, CWT can be computed using the
wavelet ψu,s(t), which has its Fourier transform denoted by ψ̂u,s(ω) [20]

Given that the center frequency of ψ̂(ω) is indicated by η, the wavelet ψu,s

has a center frequency at η
s . The wavelet ψu,s has an energy spread about the

center frequency of ψu,s, which is given by [20]:

1
2π

∫ +∞

0

(
ω − η

s

)2

|ψ̂u,s(ω)|2dω =
σ2

ω

s2
, (1)

where,

σ2
ω =

1
2π

∫ +∞

0

(ω − η)2|ψ̂(ω)|2dω. (2)

Furthermore, the energy density in local time-frequency plane is denoted PWf ,
given by:

PW f(u, ξ) =
∣∣∣Wf(u, s)

∣∣∣2 =
∣∣∣Wf

(
u,

η

ξ

)∣∣∣2. (3)

The Eq. (3) is nothing but a scalogram with scaled time-frequency resolution.
Figure 1 shows the motivation behind choosing CWT-based approach over

STFT. Energy conservation in STFT is [20]:

∫ +∞

−∞
|f(t)|2dt =

1
2π

∫ +∞

−∞

∫ +∞

−∞
|Sf(u, ζ)|2dζdu. (4)
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Energy conservation is preserved in analytic WT as well [20].

∫ +∞

−∞
|fa(t)|2dt =

1
Cψ

∫ +∞

0

∫ +∞

−∞
|Wf(u, s)|2du

ds

s2
. (5)

Fig. 1. Tilings of the time-frequency plane for (a) STFT and (b) CWT.

3 Proposed Work

3.1 Continuous Wavelet Transform (CWT)

Due to lack of co-ordination between brain and articulators, the speech produced
by dysarthric patients have change in energy. To analyse this energy change in
different severity-levels, recent investigations using spectrogram are made in [9].
However, to get better insight of energy spread in time-frequency representa-
tion, we propose CWT-based scalogram approach through this study. The key
idea for employing CWT-based scalogram approach for dysarthric severity-level
classification is to exploit the energy spread in the low frequency regions for
different severity-levels in time-frequency distributions. A wavelet is a waveform
with a zero-average and an effectively restricted duration, i.e., it is wave for a
short duration and hence the name wavelet. It is defined as [17]:

ψu,s(t) =
1√
s
ψ∗

( t − u

s

)
, s ∈ R+, u ∈ R, (6)
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where the dilation (scaling) parameter is denoted by s and the translational
(positional) parameter is denoted by u. The CWT of a signal f(t) is

Wf (u, s) = <f(t), ψu,s(t)>,

=
1√
s

∫ ∞

−∞
f(t)ψ∗

(
t − u

s

)
dt,

(7)

where <·, ·> indicates inner product operation to compute wavelet coefficients,
and ∗ denotes complex conjugate. The scalogram is defined as the square of
absolute of the CWT coefficients, i.e., |Wf (u, s)|2.

3.2 Exploiting Morse Wavelet for CWT

There are various types of analytic wavelets in the literature, such as Cauchy,
complex Shannon, lognormal, Derivative of Gaussian, and Morlet wavelets [10,
13,20]. However, due to the existence of various types of wavelets, choosing an
appropriate wavelet for a particular task becomes an issue. Generalized Morse
Wavelets (GMWs) is considered as a superfamily of analytic wavelets that are
causal in the frequency-domain. In frequency-domain, the Morse wavelet is given
by [16]:

ψ̂β,γ(ω) =
∫ ∞

−∞
ψβ,γ(t)e−iωtdt = U(ω)aβ,γωβe−ωγ

, (8)

where β and γ are the two parameters of the Morse wavelet, which control the
shape and size, respectively, of the wavelet and U(ω) is unit-step function due to
causality in the frequency-domain. The parameter β is called as the order and
the parameter γ represents the family of wavelets. With each value of γ, one
can get a family of wavelets from the Morse wavelet representation as shown in
Eq. (8) [16]. The amplitude of the wavelet is normalized by a real-valued constant
factor given by αβγ . The value of the constant scaling factor αβγ is given by [17]:

αβγ ≡ 2
(

eγ

β

) β
γ

. (9)

Furthermore, the “wavelet duration” denoted by P 2
β,γ is given by the 2nd

order derivative of Morse wavelet. Mathematically, P 2
β,γ can be defined as [17]:

P 2
β,γ ≡ −ω2

β,γψ̂
′′
β,γ(ωβ,γ)

ψ̂β,γ(ωβ,γ)
= βγ. (10)

The number of peak frequency oscillations that may be fitted in the central

window of a wavelet in the time-domain is given by P 2
β,γ

2π . The Morse wavelet with
parameter γ = 3 (also known as ’Airy family’ ) is used in this study. The optimum
Heisenberg area Aβ,γ , reached at γ = 3 even for a small wavelet duration (as
shown in Fig. 2), justifies our choice of γ = 3. For a Morse wavelet, Aβ,γ is given
by [5,18]:

Aβ,γ ≡ σtσω, (11)
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Fig. 2. Effect of γ parameter on the time-frequency Heisenberg area Aβ,γ w.r.t. wavelet
duration Pβ,γ/π. After [16].

where time spread σ2
t and frequency spread σ2

ω of wavelet atom representation
are given by [17]:

σ2
t = ω2

ψ

∫
t2|ψ(t)|2dt∫ |ψ(t)|2dt

and, (12)

σ2
ω =

1
ω2

ψ

∫
(ω − ω̃ψ)2|ψ(ω)|2dω∫ |ψ(ω)|2dω

, (13)

where ω̃ψ represents the energy frequency of the Morse wavelet (which is also
the mean of |Ψ(ω)|2) [17]. The study, reported in [16] shows that all the Morse
wavelets attain the information concentration of Aβ,γ = 1/2. For γ = 3, degree
of concentration of information, i.e., Aβ,γ is the highest even for a small value
of wavelet duration, Pβ,γ/π, as shown in Fig. 2. To that effect, in this work,
scalogram images were extracted using MATLAB with γ = 3 and β = 20 (i.e.,
P 2

β,γ = 60) as the default parameter setting for Morse wavelet-based scalogram
for full frequency band upto 8 kHz (since sampling frequency Fs = 16 kHz). Each
scalogram image extracted is of 512×512×3 dimension. These scalogram-based
features are then fed as input to the CNN classifier. The experimental setup is
explained in the following Section.

4 Experimental Setup

4.1 Dataset Used

The Universal Access dysarthric Speech (UA-Speech) corpus [25] is used to eval-
uate the proposed CWT-based approach. In this study, a dataset configuration
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Fig. 3. Dysarthic speech utterance (for vowel /e/) for male speaker with various
dysarthic severity-level (Panel I), corresponding STFT (Panel II), corresponding Mel
spectrogram (Panel III), and corresponding Morse Wavelet Scalogram (Panel IV) for
(a) normal, dysarthic speech with severity-level as (b) very low, (c) low, (d) medium,
and (e) high. Best viewed in color. (Color figure online)

identical to that described in [9] is used. It has 8 speakers, out of which 4 are
male and 4 are female speakers. Furthermore, 90% of the dataset is dedicated
to training set and the remaining 10% is dedicated to the testing partition.

4.2 Feature Details

In this study, the energy capturing capabilities of scalogram at low frequencies
are compared with the baseline spectrogram and Mel spectrogram. As men-
tioned in [9], the STFT was applied to generate a time-frequency representation
with a window size of 2 ms, and window overlap of 0.5 ms. Furthermore, the
performance of scalogram was also compared with Mel spectrogram, which are
generated with a window of size 2 ms and overlap of 0.5 ms. The dimensions of
the generated Mel spectrogram are 512 × 512 × 3. As discussed in Sect. 3, the
scalograms of dimension 512 × 512 × 3 were generated with γ = 3, and β = 20
(i.e., Pβ,γ = 60) as the default parameter setting.

4.3 Classifier Details

Based on the experiments presented in [12], the Convolutional Neural Network
(CNN) is used as a classifier in this study. According to a study reported in [12],
CNN gives comparable results with the other deep neural network (DNN)-based
classifiers for the UA-Speech corpus. For this study, the CNN model was trained
employing the Adam optimizer algorithm, four convolutional layers with kernel
size of 5 × 5, and one Fully-Connected (FC) layer [14]. Mel spectrograms and
scalograms, both of size 512×512, were used in these investigations. A max-pool
layer and Rectified Linear Activation (ReLU) are utilised. For loss estimation, a
learning rate of 0.001 and cross-entropy loss are chosen.
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4.4 Performance Evaluation

F1-Score. It is a widely used statistical parameter for analyzing the perfor-
mance of the model. As stated in [7], it is calculated as the harmonic mean of
the model’s precision and recall. Its value ranges from 0 to 1, with a score closer
to 1 indicating higher performance.

MCC. It shows the degree of correlation between the expected and actual class
[21]. For model comparison, it is typically regarded as a balanced measure. It is
in the range of −1 to 1.

Jaccard Index. The Jaccard index is a metric for determining how similar and
different the two classes are. It is in the range of 0 to 1. It is described as [2]:

Jaccard Index =
TP

TP + FP + FN
, (14)

where TP, FP, and FN, represent True Positive, False Positive, and False Nega-
tive, respectively.

Hamming Loss. It considers class labels that were predicted wrongly. The
prediction error (prediction of an incorrect label), and the missing error (predic-
tion of a relevant label) are normalized across all the classes and test data. The
following formula can be used to determine Hamming loss [6]:

Hamming Loss =
1

nL

n∑
i=1

L∑
j=1

I(yj
i �= ŷj

i ), (15)

where yj
i and ŷj

i are the actual and predicted labels, and I is an indicator func-
tion. The more it is close to 0, the better the performance of the algorithm.

5 Experimental Results

5.1 Spectrographic Analysis

Panel I of the Fig. 3 show the speech segment of vowel /e/. Panel II, III, and IV
shows the spectrogram, Mel spectrogram, and scalogram, respectively, for (a) nor-
mal, (b) very low, (c) low, (d) medium, and (e) high dysarthric severity-level for
the same speech segment. It can be observed from Fig. 4 that the scalogram-based
features can capture energy-based discriminative acoustic cues for dysarthric
severity-levels more accurately than the STFT and Mel spectrogram-based fea-
tures. Furthermore, from scalogram, it can be observed that as the dysarthtic
severity-level increases, patients struggle to speak the prolonged vowel, /e/. This
may be due to the lack of coordination between articulators and the brain. Due to
this, the energy spread is seen over the entire time-axis. However, the utterance of
vowel /e/ is of short duration for medium and high dysarthtic severity-levels.
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Fig. 4. Scatter plot obtained using LDA for (a) STFT, (b) Mel spectrogram, and (c)
Scalogram. After [11]. Best viewed in color.

Table 1. Results in (% classification accuracy) for CNN classifier.

Feature set CNN

STFT 91.76

Mel-spectrogram 92.65

Scalogram 95.17

5.2 Performance Evaluation

The performance evaluation for various feature sets is done via % classification
accuracy (as shown in Table 1). On CNN, the scalogram performs relatively bet-
ter with a classification accuracy of 95.17% than the baseline STFT, and Mel
spectrogram. The analyses in the following sub-Section and the % classification
accuracy obtained through the CNN classifier, show the capabilities of the scalo-
gram in capturing the energy spread generated during the speech production
mechanism for various dysarthric severity-level. Furthermore, Table 2 shows the
confusion matrix of the STFT, Mel spectrogram, and scalogram for CNN model.
It can be observed that the scalogram reduces the false prediction error, which
indicates the better performance of the scalogram w.r.t the baseline STFT, and
Mel spectrogram. Additionally, Table 3 shows the comparison between statisti-
cal measures using the F-1 score, Jaccard index, MCC, and Hamming loss for
various feature sets. It can be observed from Table 3 that scalogram performs
relatively better than the baseline STFT and Mel spectrogram.

5.3 Visualization of Various Features Using Linear Discriminant
Analysis (LDA)

The capabilities of scalogram for the classification of the dysarthic severity-level
is also validated by LDA scatter plots due to it’s higher image resolution and bet-
ter projection of the given higher-dimensional feature space to lower-dimensional
than the scatter plots obtained using t-sne plots [11]. Here, the LDA plot of
STFT, Mel spectrogram, and scalogram are projected onto 2-D feature space,
and represented using the scatter plot shown in Fig. 4 (a), Fig. 4 (b), and Fig. 4
(c), respectively. From Fig. 4, it can be observed that wavelet-based scalogram
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Table 2. Confusion matrix obtained for STFT, Mel-spectrogram, and scalogram.

Feature Set Severity High Medium Low Very Low

High 63 6 3 3

Medium 10 79 3 1

Low 3 4 79 7
STFT

Very Low 1 2 1 89

High 69 1 3 2

Medium 5 81 4 3

Low 4 1 91 0

Mel-

Spectrogram

Very Low 4 0 2 89

High 69 5 1 0

Medium 3 89 1 0

Low 1 1 90 1
Scalogram (Morse Wavelet)

Very Low 3 0 1 89

Table 3. Various statistical measures of STFT, Mel spectrogram, and scalogram.

Feature set F1-score MCC Jaccard index Hamming loss

STFT 0.87 0.83 0.776 0.124

Mel spectrogram 0.92 0.90 0.86 0.073

Scalogram 0.95 0.91 0.94 0.05

has low intra-class variance and high inter-class variance, which increases the dis-
tance between the clusters w.r.t baseline STFT, and Mel spectrogram, thereby
better classification performance by the Morse wavelet.

6 Summary and Conclusion

In this study, we investigated CWT, in particular, the Morse wavelet, to achieve
improved resolution in time and frequency representation for various dysarthric
severity levels. The low-frequency resolution of Morse wavelet-based scalogram is
higher than the resolution of STFT and Mel spectrogram. Therefore, the energy
spread corresponding to the dysarthric severity in low-frequency region is bet-
ter visualized in the scalogram. Hence, the low-frequency discriminative cues are
better classified using a scalogram. This can also be observed with the significant
increase in % classification accuracy as compared to the STFT and Mel spec-
trogram. Furthermore, it was also observed that as the severity-level increases,
due to difficulty for patients to utter the complete word, the energy spreading
is more in frequency representation over the entire time-axis. The performance
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of the scalogram is also analyzed using various statistical performance parame-
ters, such as F1-Score, MCC, Jaccard Index, Hamming Loss, and LDA scatter
plots. Other dysarthric speech corpora, such as TORGO and Homeservice, will
be used to further validate this work in the future. Our future efforts will focus
on extending and validating this work on other dysarthric speech corpora, such
as TORGO and Home service.
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Appendix

A.1. Energy Conservation in STFT
The energy conservation in STFT for any signal f(t) ∈ L2(R) is given by

∫ +∞

−∞
|f(t)|2dt =

1
2π

∫ +∞

−∞

∫ +∞

−∞
|Sf(u, ζ)|2dζdu, (16)

Here, u and ζ indicate the time-frequency indices that vary across R and hence,
covers the entire time-frequency plane. The reconstruction of signal can then be
given by

f(t) =
1
2π

∫ +∞

−∞

∫ +∞

−∞
Sf(u, ζ)g(t − u)eiζtdζdu. (17)

Applying Parseval’s formula to Eq. (17) w.r.t. to the integration in u, we get

Sf(u, ζ) = e−iuζf ∗ gζ(u), (18)

Here, gζ(t) = g(t)eiζt. Hence, Fourier Transform of Sf(u, ζ) is f̂(ωζ)ĝ(ω).
Furthermore, after applying the Plancherel’s formula to Eq. (16) gives

1
2π

∫ +∞

−∞

∫ +∞

−∞
|Sf(u, ζ)|2dudζ =

1
2π

∫ +∞

−∞

1
2π

∫ +∞

−∞
|f̂(ω+ζ)ĝ(ω)|2dωdζ. (19)

Finally, the Plancheral formula and the Fubini theorem result in 1
2π

∫ +∞
−∞ |f̂(ω+

ζ)|2dζ = ||f ||2, which validates STFT’s energy conservation as demonstrated in
Eq. (16), It explains why the overall signal energy is the same as the time-frequency
sum of the STFT.
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A.2. Energy Conservation in CWT
Using the same derivations as in the discussion of Eq. 17, one can verify that

the inverse wavelet formula reconstructs the analytic part of f :

fa(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wfa(u, s)ψs(t − u)

ds

s2
du. (20)

Applying the Plancherel formula for energy conservation for the analytic part
of fa given by

∫ +∞

−∞
|fa(t)|2dt =

1
Cψ

∫ +∞

0

∫ +∞

−∞
|Waf(u, s)|2du

ds

s2
. (21)

Since Wfa(u, s) = 2Wf(u, s) and ||fa||2 = 2||f ||2. If f is real, and the variable

change ζ = 1
s in energy conservation denotes that

||f ||2 =
2

Cψ

∫ +∞

0

∫ +∞

−∞
Pwf(u, ζ)dudζ. (22)

It reinforces the notion that a scalogram represents a time-frequency energy
density.
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work to model articulation impairments in patients with Parkinson’s disease. In:
INTERSPEECH, Stockholm, pp. 314–318 (2017)

24. Young, V., Mihailidis, A.: Difficulties in automatic speech recognition of dysarthric
speakers and implications for speech-based applications used by the elderly: A
literature review. Assist. Technol. 22(2), 99–112 (2010)

25. Yu, J., et al.: Development of the CUHK dysarthric speech recognition system
for the UA speech corpus. In: INTERSPEECH, Hyderabad, India, pp. 2938–2942
(2018)

https://doi.org/10.1007/978-0-387-78189-1_8

	Continuous Wavelet Transform for Severity-Level Classification of Dysarthria
	1 Introduction
	2 Spectrogram and Scalogram
	3 Proposed Work
	3.1 Continuous Wavelet Transform (CWT)
	3.2 Exploiting Morse Wavelet for CWT

	4 Experimental Setup
	4.1 Dataset Used
	4.2 Feature Details
	4.3 Classifier Details
	4.4 Performance Evaluation

	5 Experimental Results
	5.1 Spectrographic Analysis
	5.2 Performance Evaluation
	5.3 Visualization of Various Features Using Linear Discriminant Analysis (LDA)

	6 Summary and Conclusion
	References




