)

Check for
updates

DICCh-D: Detecting IPv6-Based Covert
Channels Using DNN

Arti Dua! ® @, Vinita Jindal®> ®, and Punam Bedi?

1 Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
arti.batra@bcas.du.ac.in
2 Keshav Mahavidyalaya, University of Delhi, Delhi, India
vjindal@keshav.du.ac.in
3 Department of Computer Science, University of Delhi, Delhi, India
pbedi@cs.du.ac.in

Abstract. Stegomalware uses Information hiding techniques within Network pro-
tocols to leak out sensitive data and/or to exchange hidden commands between
secretly communicating parties. Internet Protocol version 6 (IPv6) is a network
layer protocol that is rapidly replacing Internet Protocol version 4 (IPv4). This has
resulted in an increase in the availability of IPv6 packets over the internet, thereby
making IPv6 a good candidate for the establishment of Network covert channels
(NCCs). NCCs use either network flows or network packets to communicate in a
hidden way such that no one notices the presence of secret information inside them.
This secret information can be injected into network flows or network packets in
the inter-packet delays and/or in any of the redundant, unused, reserved storage
areas of the packets. Substantial research work has already been done in the area
of covert channel detection in IPv4. Now, with IPv6 taking over the internet, the
focus has shifted towards the detection of possible covert channels in IPv6. Thus
this paper proposes DICCh-D, a model for the Detection of IPv6-based Covert
Channels using DNN. For experimentation, the dataset was constructed using nor-
mal IPv6 packets obtained from CAIDA’s dataset and covert IPv6 packets created
by running an IPv6-based covert packets generation tool. The proposed method
outperforms CNN, LSTM and SVM in terms of accuracy with acceptable training
and testing time. DICCh-D attained an accuracy of 99.59% and a recall value of
0.99, which is better than the existing technique used in literature.

Keywords: Network covert channel detection - Stegomalware - IPv6 - CAIDA
dataset - Deep neural network

1 Introduction

With the growth of technology, the attackers have started using sophisticated and new
techniques to perform various attacks like crypto lockers, advanced persistent threats
(APT), etc. Stegomalware concerns the transfer of malware through some form of Infor-
mation hiding and is being used by attackers extensively [1]. Stegomalware offers hidden

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Badica et al. (Eds.): ICICCT 2022, CCIS 1670, pp. 42-53, 2022.
https://doi.org/10.1007/978-3-031-20977-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20977-2_4&domain=pdf
http://orcid.org/0000-0002-7663-5999
http://orcid.org/0000-0002-0481-4840
http://orcid.org/0000-0002-6007-7961
https://doi.org/10.1007/978-3-031-20977-2_4

DICCh-D: Detecting IPv6-Based Covert Channels Using DNN 43

transfer of malware in legitimate Internet traffic flows offering reasonable undetectabil-
ity. Network covert channels (NCCs) utilize network protocols for Information Hiding
that can further be used as a medium for performing above mentioned attacks. NCCs
can be categorized into three types:

1. Storage-Based Network Covert Channels: These NCCs utilize the storage area of
the header or payload part of a protocol to hide secret information.

2. Timing-Based Network Covert Channels: These types of NCCs utilize the inter-
packet delays between consecutive packets to hide secret information.

3. Hybrid Network Covert Channels: These types of NCCs utilize both storage and
timing-based Network covert channels simultaneously.

The efficiency of any NCC depends upon three characteristics:

1. Information hiding capacity of the covert channel
2. The undetectability of the hidden information
3. The robustness of the hiding algorithm used to develop NCC.

The usability of the Network protocol used in the NCC also affects the Information
hiding capacity of the NCC. The Network protocols that have higher usability over the
networks offer higher covert capacity. With IPv6 rapidly replacing IPv4 over the Inter-
net, the usability of IPv6 packets over the internet is also increasing day by day. This
makes IPv6 a good target for hidden communication. Some of the possible storage-based
network covert channels that may be developed using the IPv6 protocol have been pro-
posed by researchers in [2, 3]. A lot of work has already been done on the detection of
IPv4-based covert channels. To the best of our knowledge, the area of IPv6-based covert
channel detection is comparatively less explored. Thus this paper proposes DICCh-D,
a model to detect IPv6-based covert channels using Deep Neural Network. For experi-
mentation, the dataset was created using normal IPv6 packets obtained from CAIDA’s
dataset of Anonymized Internet Traces 2019 [4] and covert IPv6 packets generated by
running the pcapStego tool [5].

The further organization of this paper is as follows. Section 2 briefly discusses the
IPv6 Protocol and the Deep Neural Network. In Sect. 3, the related research work done
in the area of detection of IPv6-based NCCs is discussed. Section 4 elaborates on the
details and working of the proposed DICCh-D. Section 5 discusses the construction of
the dataset, experiments, and results followed by Sect. 6 which concludes this paper.

2 Background Information

This section gives a brief description of IPv6 Protocol and the Deep Neural Network
algorithm which are used in this paper.

2.1 Internet Protocol Version 6

The Internet Engineering Task Force (IETF) developed version 6 of the Internet Protocol
in the year 1998 to overcome the problem of exhausting 32 bits long IPv4 addresses.

44 A.Duaet al.

RFC 8200 [6] provides a detailed description of the IPv6 protocol. It is soon expected
to take over its prevalent predecessor IPv4 and is termed the next-generation protocol.
According to Google statistics, the adoption rate for [Pv6 reached a value of 37.25%
on January 15, 2022, which is continuously increasing [7]. The header structure of this
protocol is depicted in Fig. 1 below.

Bits
o a 8 12 16 20 24 28 32

L ! L L L L L L L L
Version | Traffic Class | Flow Label
Payload Length J’ Next Header Hop Limit
/e L n
[Destination Address -1
Next Header | Extension Header 1
E Next Header I Extension Header 2
Data From Upper Layer

Fig. 1. Header structure of IPv6 protocol

The first field in the header is the Version field. It is 4 bits long and contains the
version number of the Internet Protocol being used. For IPv6 packets, the value of this
field is fixed to 6. The second field in the IPv6 header is the Traffic Class (TC) field. This
field is 1 byte long and is used for Network Traffic Management. The subsequent field
in the IPv6 header is the Flow Label (FL) field whose size is 20 bits long and is used to
identify the packets belonging to a single flow. The fourth field in the sequence is the
Payload Length (PL) field which is 2 bytes long in size and stores the length of both
the extension headers (if any) and the data from the upper layer protocols. Next comes,
a 1-byte long Next Header (NH) field that stores the protocol number of the extension
header attached next to the fixed IPv6 header. Extension headers (EH) like Hop by Hop
EH, Destination EH, Routing EH, Fragmentation EH, Authentication EH, and Encrypted
Payload Security EH are some extension headers specified in RFC 8200 [6]. The common
upper layer extension headers are the Transmission Control Protocol header and User
Datagram Protocol header. The next field in the IPv6 header is a 1 byte long Hop Limit
(HL) field that defines the number of nodes that an IPv6 packet can traverse without
getting discarded over the Internet. Next to it are Source and Destination Address Field.
Both of these fields are 128 bits long and hold the logical source and destination address
of an IPv6 packet. Amongst all the header fields of IPv6, the highest storage-based covert
capacity is offered by the Flow Label field which is 20 bits. Further, the Traffic class
field also offers a good hiding capacity of 8 bits per IPv6 packet. The randomness in the
legitimate values of these two fields makes them suitable candidates for covert channel
creation.

2.2 DNN Model

A DNN is a machine learning algorithm. It is a special type of neural network with
three types of layers: Input Layer L; (One in number), Hidden Layers Ly, Lyo, ... Lun

DICCh-D: Detecting IPv6-Based Covert Channels Using DNN 45

(two or more in number), and Output Layer L, (One in number). Every layer contains
a certain number of neurons. Further, a neuron at one layer is connected to every other
neuron at the next layer in the forward direction making it a feed-forward network and
each of these connections is assigned some weight Wyy. There is no connection between
neurons at the same layer. During the training phase of a model, the algorithm tries to
find the best weight for each connection through back-propagation. The training of a
DNN starts with the input layer. Each neuron at this layer receives input and multiplies
this received value with the initial weights assigned to its connection with neurons at the
next layer. Further, these product values are forwarded to the hidden layer, Ly; where
a non-linear activation function is applied to the weighted input value received at each
neuron, from the previous layer. In this way, each subsequent hidden layer extracts more
significant information. The hidden layer Lyn processes the information and forwards it
finally to the output layer L, which gives a probability of the current input belonging to
the available classes/labels. If the class with the highest probability value for this input
does not match the corresponding actual class, the output value is sent back to the initial
layers to adjust the errors and update the weights again.

After the completion of the training phase, the final weights of the DNN are used to
make predictions on the testing data to test the generalization capability of the trained
model.

3 Related Work

The idea of the development of covert channels over Network communication protocol
was first given by Handel and Sandford in the year 1996 [§]. In this work, the authors
discussed how various network protocols operating at various layers of the OSI model
can be exploited for developing covert channels for secret and hidden communications.
Over the years, various researchers also proposed several techniques for the development
of covert channels over different network protocols used over the LANs (Local Area
Network) and the Internet including IPv4, TCP, UDP, ARP, ICMP [9-14]. Comparatively,
IPv6 being a younger protocol was explored by Lucena et al. [2] in the year 2005
for the possibility of the development of covert channels. The authors suggested the
possibility of 22 different storage-based covert channels using different parts of the
IPv6 header. In 2019, Mazurczyk et al. practically experimented with the possibility
and actual bandwidth of covert channels proposed by Lucena et al. over the internet
[3]. The authors used the following six IPv6 header fields individually to develop covert
channels namely Traffic Class, Flow Label, Payload Length, Next Header, Hop Limit,
and Source Address field. Bedi et al. proposed an IPv6-based covert channel that utilized
the presence/absence of an extension header in a fixed predefined order to covertly convey
a 0/1 bit at respective positions [15].

Further, this paper discusses the work done in the detection of IPv6-based Network
covert channels. In 2006, Lewandowski et al. suggested the elimination of covert chan-
nels based on Routing extension headers and Hop Limit using Traffic normalization
with the help of active wardens in IPv6 networks [16]. In [17], Luca et al. suggested
the use of code augmentation in extended Berkeley Packet Filter (¢eBPF) within Linux
kernel to collect the statistics of IPv6 header fields. Repetto et al. suggested the use of

46 A.Duaet al.

the BCC tool for running eBPF programs to obtain statistics about three specific header
fields in IPv6 viz. Flow Label, Traffic Class, and Hop Limit [18]. The authors inferred
that abnormal changes in the statistical values of these header fields can raise an alarm
about the presence of a covert channel. But this eBPF-based covert channel detection
mechanism gives good accuracy with more granular values of the number of bins which
consumes a large amount of resources. Also, short covert communications cannot be
detected using the same mechanism. Salih et al. used a Naive Bayes classifier which is a
Machine Learning technique to detect [Pv6-based covert channels with an accuracy of
94.47% [19]. They proposed a framework that uses a hybrid method for feature selec-
tion that uses Intelligent Heuristic Algorithm (IHA) in addition to a modified Decision
Tree C4.5 to create primary training data to detect hidden channels in the IPv6 network.
Al Senaid in his work [20] applied a CNN-based approach to identify covert channel
created in the code field of ICMPv6 protocol. To the best of our knowledge, there is a
scope for improvement in prediction accuracy or resource consumption for the detection
of IPv6-based covert channels. Thus, in this paper, DICCh-D, a model to detect [Pv6-
based covert channels using DNN is proposed. The next section describes the proposed
detection model.

4 The Proposed DICCh-D

This paper proposes DICCh-D, a model that detects IPv6-based covert channels using
DNN. The development of DICCh-D is divided into three phases as shown in Fig. 2.
The first phase creates the IPv6 packets dataset containing both covert and normal IPv6
packets. The second phase extracts the header fields of these IPv6 packets to create
a new dataset of header fields of covert and normal IPv6 packets. In the third phase,
the training and validation datasets are used to train and validate the DNN whereas the
testing dataset is used to test the generalization capability of the trained model. Each of
the phases is explained further in the sub-sections.

Fmmmmmmmmmmm e v ot :

.

1 | phase1 | | Phase2 | | phases | | H i

i b |
1 i

- iho - '

;]

1| 1Pv6 Header Model || | _ o) [:

I .. s s ormal PacH 1

y| Packets Fields Training, |! | Dataset o paies 6 |1

P 1 1| (Anonymized Packets |,

: Dataset 3 extraction 3| Validation |, ! Internet Dataset |1

. 1| Traces 2019 |

1| Creation and and ; | Datasen P !

1| Phase Testin; { (G]

. Dataset I |EERD | PER |

!]

| Splitting | ! creaton 1

1 1 ! Tool) 1

Fig. 2. Development framework of proposed Fig. 3. IPv6 packets dataset creation phase
DICCh-D

4.1 Phase 1: IPv6 Packets Dataset Creation

The IPv6 packet dataset consisted of normal IPv6 packets and covert IPv6 packets. The
process of dataset creation is shown in Fig. 3. The normal IPv6 packets were obtained
randomly from CAIDA’s Anonymized Internet Traces 2019 [4].

DICCh-D: Detecting IPv6-Based Covert Channels Using DNN 47

The covert IPv6 packets were created with the help of a tool called pcapStego [5].
This tool offers the creation of storage-based covert packets in IPv6 header fields. After
the creation of the IPv6 packets dataset containing normal IPv6 packets and covert IPv6
packets, the next step was the extraction of IPv6 header fields to create a new dataset.

4.2 Phase 2: Extraction of IPv6 Header Fields from IPv6 Packets Dataset

A Network protocol packet consists of two vital components, a packet header, and a
payload. A packet header contains the metadata about the current packet and the payload
part contains the actual information carried by the packet over a network. In this paper,
only the detection of storage-based network covert channels over IPv6 is considered.
Normal IPv6 packets were obtained from Anonymized Internet Traces 2019 obtained
from CAIDA [4]. The covert IPv6 packets were created with the help of a tool named
pcapStego [5]. The .pcap files for both normal and covert data packets were obtained
and the following header fields were fetched from these packets: Flow Label, Traffic
Class, Payload Length, Hop Limit, Next Header, Source IPv6 address, Destination IPv6
Address, Source Port, Destination Port, Transport Layer Protocol. The task of extraction
of IPv6 header fields was done with the help of the Wireshark tool [21]. After this, the
headers of normal IPv6 packets and headers of covert IPv6 were combined together to
form a complete dataset with labels. Subsequently, the complete dataset was divided into
the training_and_validate dataset (80% of the complete dataset) and the testing dataset
(20% of the complete dataset).

1

: I IPv6 Feature Extraction and Dataset Splitting I

: Training
f Dataset Dataset
' LD IPv6 Header containing

i Packets [fields IPv6 —) Validation
! Dataset Extraction Header Dataset
1 fields =

1 Testing
: Dataset
1

1

| Model Training, Validation and Testing Phase |

i

: Training

I Dataset Preprocessing Normal IPv6
I Tl ”‘ Packets
: DNN Model to

1

1

1

1

1

1

‘Validation
Dataset detect IPV6
based Covert

Dataset Packets

Fig. 5. Model training, validation and testing phase

The training_and_validate dataset was further split into the training dataset
(90% of the training_and_validate dataset) and validation dataset (10% of the train-
ing_and_validate dataset) to check the performance of the DNN after each epoch on the
validation dataset while training the DNN. The complete working of this phase is shown
in Fig. 4.

48 A.Duaet al.

4.3 Phase 3: Dataset Preprocessing, Training and Testing of the DNN

In this phase, three subtasks of dataset preprocessing, training, and testing the DNN are
performed as shown in Fig. 5. Before the training phase, the training dataset and the
validation dataset are preprocessed to quantize and standardize the data. This prepro-
cessed training dataset is used to train the DNN. The structure of the DNN consisted of
one input layer, three hidden layers (with 24, 12, and 6 neurons), and one output layer.
The activation function used at the hidden layers was Rectified Linear Unit (ReL.U). The
activation function used at the output layer was sigmoid. The values fed to the output
layer of the DNN are converted to respective values between 0 and 1 with the help of
the sigmoid activation function to make the predictions.

S Experimental Study

The proposed DICCh-D was developed using a 1.8 GHz Dual-Core Intel Core i5 pro-
cessor on macOS Catalina. Python version 3.6.8 was used for the development of the
proposed DICCh-D. The development of DICCh-D consisted of the creation of a dataset,
preprocessing of the dataset, training of the DNN, and testing of the DNN.

5.1 Dataset

The dataset for training and testing of the DICCh-D consisted of normal IPv6 packets
obtained from CAIDA’s dataset (Anonymized Internet Traces 2019) and covert IPv6
packets obtained using the pcapStego tool. The pcapStego tool hides covert data in
Flow Label, Traffic Class, and Hop limit fields individually for each IPv6 packet. Since
Flow label (20 bits) and Traffic class (8 bits) offer good hiding capacity for covert
communications, the covert data packets were generated using Traffic Class or Flow
Label fields randomly. The pcapStego tool needs to input a .pcap file that contains
normal IPv6 packets which can be used to hide data. This .pcap file was also obtained
from CAIDA’s Anonymized Internet Traces IPv6 2019 dataset. The final combined
IPv6 packets dataset was then created by combining the normal IPv6 packets and IPv6
packets carrying covert data. The combined IPv6 packets dataset contained 16091 IPv6
packets in all. Out of a total of 16091 packets, 9460 were normal IPv6 packets, and the
rest 6631 were covert IPv6 packets. Further, Wireshark software was used to fetch the
relevant header fields of captured IPv6 packets and convert that to a.csv file. This.csv
file consisted of the following header field attributes: Flow Label, Traffic Class, Payload
Length, Hop Limit, Next Header, Source IPv6 address, Destination IPv6 Address, Source
Port, Destination Port, and Transport Layer Protocol.

Testing the generalizability of a trained model is an important aspect in assuring how
a model will perform on the data it has never seen earlier. For this, the complete dataset
of 16091 packets was divided into two parts, the training_and_validation dataset, and the
testing dataset. The training_and_validation dataset consisted of 12872 packets and the
testing dataset consisted of 3219 packets. The training_and_ validation dataset contained
7584 normal IPv6 packets and 5288 covert IPv6 packets. The testing dataset contained
1876 normal packets and 1343 covert IPv6 packets. The first dataset was used to train

DICCh-D: Detecting IPv6-Based Covert Channels Using DNN 49

and validate the model. The second dataset was used to test the generalization ability
of the model trained with the first dataset. The preprocessing of both of these datasets
was done independently using the same python program to quantize and standardize the
values. Section 5.2 describes the preprocessing applied to both datasets separately.

5.2 Preprocessing

In this work, the following steps were done using a python program to preprocess the
datasets containing normal and covert IPv6 packets. Firstly, a single attribute corre-
sponding to the Source IPv6 Address field having colon-separated 8 octets was broken
into 8 different attributes. Similarly, the Destination IPv6 address was broken down into
8 different attributes. The dataset contained two categorical attributes: Protocol and Next
Header. Quantization was used to convert these categorical values into a unique number
corresponding to different values of each attribute. Input attributes have different scales
and hence there is a need for scaling or standardization in ML algorithms. In this work,
standardscalar() of sklearn library from python was used to scale all the data. The next
sub-section describes the training and testing Phase of the proposed DICCh-D.

5.3 Training and Testing Phase

Before starting with the training phase, the preprocessing of the training_and_validation
dataset and the testing dataset was done separately. At the beginning of the training
phase, the preprocessed training_and_validation dataset was divided into two parts: the
training dataset (used solely for the purpose of training the DNN) and the validation
dataset (to check the performance of the model after each epoch during the training
phase). During the training phase of any Machine learning/Deep Learning algorithm,
certain hyperparameters values need to be set such as the number of layers used for
training a model, the number of neurons used in each layer of the model, the batch
size, the learning rate, the number of epochs needed for training, the optimizer, and
the activation function used at each layer. These hyperparameters have to be chosen
carefully as it has a significant effect on the performance of the model. Hence the DNN
was trained with different configurations like 2, 3, 4 number of hidden layers, the batch
size of 10, 32, and the number of epochs from 30 to 50 with an interval of 10. The
most optimal hyper-parameters were then decided as the final configuration as follows:
number of hidden layers as 3, number of neurons at three hidden layers as 24, 12, and
6 respectively, and the activation function used at the hidden layers was ReLLU. At the
output layer, the sigmoid activation function was used. The batch size was fixed at 10
and the number of epochs was fixed at 30. The optimizer used was AdamOptimizer. The
evaluation metrics used for the evaluation of the DICCh-D are described in Subsect. 5.4.

5.4 Evaluation Metrics

To measure the effectiveness of the proposed DICCh-D, metrics like accuracy, precision,
recall, and F1-score were calculated for the testing dataset that was used to check the
generalizability of the proposed model. True Positives (TP) is the number of samples

50 A.Duaet al.

classified correctly by a model. False Positives (FP) depicts the number of samples
mistakenly classified as being positive by a model. True Negatives (TN) denotes the
number of samples which are correctly classified by a model as being negative. False
Negatives (FN) depicts the number of samples which are incorrectly classified as being
negative. Accuracy describes the total number of samples which are correctly classified
by the model. Precision denotes the number of samples actually belonging to a class out
of all the samples that were predicted by a model as belonging to that class. Recall is
defined as the number of samples correctly predicted by a model out of all the samples
belonging to that class. F1-Score is defined as the harmonic mean of the Recall and
Precision value. Equations (1) to (4) are used to calculate the Accuracy, Precision,
Recall, and F1-Score of a model.

TP + TN

Accuracy = (L
TP + FP + TN + FN
. TP

Precision = —— 2)

TP + FP

TP
Recall = —— 3)
TP + FN

2 % Precision * Recall
F1 — Score = — @)
Precision + Recall

The evaluation results of all experiments done using the above-mentioned metrics for
different configurations of models in consideration are discussed in the next sub-section.

5.5 Results

The performance of DICCh-D was compared with state-of-the-art Deep-Learning algo-
rithms (CNN, LSTM) and a Machine Learning algorithm (SVM). The CNN was experi-
mented with three different configurations of 1, 2, and 3 1D-Convolutional layer(s), each
with a batch size of 10, adopting AdamOptimizer as the optimizer and iterated over 50
epochs. Next, the LSTM model was iterated over 25 epochs each time for three config-
urations of 1, 2, and 3 LSTM layer(s). Finally, the SVM model was experimented with
four different kernel values viz. Linear, sigmoid, polynomial, and RBF. The proposed
DICCh-D was experimented with three different configurations of DNN each having 2,
3, and 4 hidden layers respectively. The results for accuracy for each of the classifiers
taking different hyperparameters are shown in Fig. 6.

DICCh-D: Detecting IPv6-Based Covert Channels Using DNN 51

97.63
98.17
98.42
97.79
98.47
98.51
97.6
97.11

100
90
80

60
50
40
30
20

Accuracy %
o 35 3
% I 95.75
<,
% I 9959
% I 98.76
2.
75.65

S & & S S S P
«a@ﬂvfﬁaﬁ‘@@»ﬂ‘@@«_@,
SRR RO G
FFITFIFTIFTITFTS \éo & & &

SRS

IR IR IR OIS & &
S S S T & 9 WY 4
F&FF TFTE Vé‘@ 3}‘“ s &

Fig. 6. Performance comparison based on accuracy of DNN, LSTM, CNN and SVM models

Further, the recall, precision, and F1-score values for each of the classifiers taking
different hyperparameters each time are shown in Table 1.

Table 1. Performance comparison of DNN, LSTM, CNN and, SVM models with different
configurations on the created dataset.

Model Train- | Predic- | Accuracy Precision Recall F1-Score
ing tion % Normal | Covert | Normal | Covert | Normal | Covert
Time Time(s)
(s).
i DNN (3 Hid- | 54.76 0.30 99.59 0.99 1.00 1.00 0.99 1.00 1.00 i
I | den Layers) I

DNN (2 Hid- | 52.81 0.22 98.75 0.98 1.00 1.00 0.97 0.99 0.98
den Layers)
DNN (4 Hid- | 59.20 0.32 98.76 0.98 1.00 1.00 0.97 0.99 0.98
den Layers)
LSTM (1 334 0.93 97.79 0.96 1.00 1.00 0.95 0.98 0.97
Layer)
LSTM (2 634.38 | 1.69 98.47 0.98 1.00 1.00 0.97 0.99 0.98
Layers)
LSTM (3 955.28 | 2.76 98.51 0.98 0.99 1.00 0.97 0.99 0.98
Layers)
CNN (1 123.70 | 0.30 97.63 0.96 1.00 1.00 0.94 0.98 0.97
Layer)
CNN (2 Lay- 168.69 | 0.37 98.167 0.97 1.00 1.00 0.96 0.98 0.98
ers)
CNN (3 Lay- | 312.58 | 0.48 98.42 0.97 1.00 1.00 0.96 0.99 0.98
ers)
SVM (Kernel | 4.34 0.23 92.29 0.89 0.98 0.99 0.84 0.94 0.90
= linear)
SVM (Kernel | 0.617 0.39 97.6 0.96 1.00 1.00 0.94 0.98 0.97
= 1bf)
SVM (Kernel 3.17 0.55 75.65 0.75 0.76 0.86 0.59 0.80 0.66
= sigmoid)
SVM (Kernel | 0.94 0.158 97.11 0.96 0.99 1.00 0.94 0.98 0.96
= poly)

The proposed DICCh-D (DNN with 3 hidden layers) took slightly more time than
some of its counterparts but in terms of accuracy it clearly outperformed the DNN

52 A.Duaet al.

algorithm with 2 and 4 hidden layers, and all CNN, LSTM and SVM configurations in
consideration. It showed an accuracy of 99.59% on the testing dataset, and recorded a
precision and a recall value of 1.00 and 0.99 for identifying the IPv6 packets carrying
covert data.

Table 2. Comparison of DICCh-D with the existing technique

Model Training Accuracy(%) | Precision | Recall
Time (s)
Naive Bayes by Salih etal [19] 0.15 94.47% 0.960 0.985
Proposed DICCh-D 52.81 99.59% 1.00 0.99

Salih et al. used a Naive Bayes classifier to detect IPv6-based covert channels with
an accuracy of 94.47% [19]. They proposed a framework that uses a hybrid feature
selection technique using Intelligent Heuristic Algorithm (IHA) in addition to a modified
Decision Tree C4.5 to create primary training data to detect hidden channels in the IPv6
network. A comparison of DICCh-D with the same, in terms of training time, accuracy,
precision, and recall is shown in Table 2. Although DICCh-D takes a longer time to train
in comparison to the framework proposed by Salih et al., it surely outperforms the same
in terms of accuracy, precision, and recall values.

6 Conclusion

In this paper, DICCh-D, a model that detects IPv6-based covert channels using a DNN
has been proposed. The dataset needed to train, validate and test DICCh-D was devel-
oped using normal IPv6 packets taken from CAIDA’s Anonymized Internet Traces 2019
dataset and the covert IPv6 packets. The covert IPv6 packets were generated using the
pcapStego tool for hiding data in the Traffic Class and Flow Label fields in the headers of
IPv6 packets. Moreover, for testing the generalization ability of the proposed DICCh-D,
a testing dataset was kept aside before the model creation and validation phase. The
proposed DICCh-D obtained an accuracy of 99.59% and precision and recall rate of
1.00 and 0.99 respectively for identifying IPv6 packets with covert data in the testing
dataset. When compared with the state-of-the-art Deep Learning methods like CNN
and LSTM, DICCh-D gave better results in terms of time taken for training and testing
with comparable accuracy, precision, and recall values. The proposed DICCh-D also
outperformed SVM in terms of accuracy.

References

1. Mazurczyk, W., Caviglione, L.: Information hiding as a challenge for malware detection.
IEEE Secur. Priv. 2(13), 89-93 (2015)

2. Lucena, N.B., Lewandowski, G., Chapin, S.J.: Covert channels in IPv6. In: Danezis, G.,
Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 147-166. Springer, Heidelberg (2006).
https://doi.org/10.1007/11767831_10

https://doi.org/10.1007/11767831_10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

DICCh-D: Detecting IPv6-Based Covert Channels Using DNN 53

. Mazurczyk, W., Powojski, K., Caviglione L.: IPv6 covert channels in the wild. In: Proceedings

of the Third Central European Cybersecurity Conference, pp. 1-6 (2019)

. The CAIDA UCSD Anonymized Internet Traces Dataset - [20 Jan 2019, 21 Jan 2019], Cen-

ter for Applied Internet Data Analysis (2021). https://www.caida.org/data/passive/passive_d
ataset. Accessed 20 Dec 2021

. Zuppelli, M., Caviglione, L.: pcapStego - a tool for generating traffic traces for experiment-

ing with network covert channels. In: The 16th International Conference on Availability,
Reliability and Security, pp. 1-8 (2021)

. Deering, S., Hinden, R.: Internet Protocol, Version 6 (Specifications). Internet Engineering

Task Force. https://tools.ietf.org/html/rfc8200#section-6. Accessed 10 Dec 2021

. Google: Google IPv6 (2022). https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-

adoption. Accessed 15 Jan 2022

. Handel, T.G., Sandford, M.T.: Hiding data in the OSI network model. In: Anderson, R. (ed.)

IH 1996. LNCS, vol. 1174, pp. 23-38. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-61996-8_29

. Bedi, P, Dua, A.: Network steganography using the overflow field of timestamp option in an

IPv4 packet. Procedia Comput. Sci. 171, 1810-1818 (2020)

Giffin, J., Greenstadt, R., Litwack, P, Tibetts, R.: Covert messaging through TCP timestamps.
In: International Workshop on Privacy Enhancing Technologies (2002)

Sabeti, V., Shoaei, M.: New high secure network steganography method based on packet
length. ISC Int. J. Inf. Secur. 12(1), 24-44 (2020)

Bedi, P, Dua, A.: ARPNetSteg: network steganography using address resolution protocol.
Int. J. Electron. Telecommun. 66(4), 671-677 (2020)

Dua, A., Jindal, V., Bedi, P.: Covert communication using address resolution protocol
broadcast request messages. In: 2021 9th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 1-6. IEEE
(2021)

Ray B., Mishra S.: Secure and reliable covert channel. In: 4th Annual Workshop on Cyber
Security and Information Intelligence Research: Developing Strategies to Meet the Cyber
Security and Information Intelligence (2008)

Bedi, P, Dua, A.: Network steganography using extension headers in IPv6. In: Badica, C.,
Liatsis, P., Kharb, L., Chahal, D. (eds.) ICICCT 2020. CCIS, vol. 1170, pp. 98-110. Springer,
Singapore (2020). https://doi.org/10.1007/978-981-15-9671-1_8

Lewandowski, G., Lucena, N.B., Chapin, S.J.: Analyzing network-aware active wardens in
IPv6. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol.
4437, pp. 58-77. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74124-4_5
Caviglione, L., Mazurczyk, W., Zuppelli, M., Schaffhauser, A., Repetto, M.: Kernel-level
tracing for detecting stegomalware and covert channels in Linux environments. Comput.
Netw. 191, 108010 (2021)

Repetto, M., Caviglione, L., Zuppelli, M.: bccstego: a framework for investigating net-
work covert channels. In: The 16th International Conference on Availability, Reliability and
Security, pp. 1-7 (2021)

Abdulrahman, S., Ma, X. Peytchev, E.: Detection and classification of covert channels in IPv6
using enhanced machine learning. In: Proceedings of International Conference on Computer
Technology and Information Systems (2015)

Senaid A., Rashid F.: A deep learning-based approach to detect covert channels attacks and
anomaly in new generation internet protocol IPv6. Master’s thesis (2020)

Wireshark. https://www.wireshark.org. Accessed 29 Dec 2021

https://www.caida.org/data/passive/passive_dataset
https://tools.ietf.org/html/rfc8200#section-6
https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
https://doi.org/10.1007/3-540-61996-8_29
https://doi.org/10.1007/978-981-15-9671-1_8
https://doi.org/10.1007/978-3-540-74124-4_5
https://www.wireshark.org

	DICCh-D: Detecting IPv6-Based Covert Channels Using DNN
	1 Introduction
	2 Background Information
	2.1 Internet Protocol Version 6
	2.2 DNN Model

	3 Related Work
	4 The Proposed DICCh-D
	4.1 Phase 1: IPv6 Packets Dataset Creation
	4.2 Phase 2: Extraction of IPv6 Header Fields from IPv6 Packets Dataset
	4.3 Phase 3: Dataset Preprocessing, Training and Testing of the DNN

	5 Experimental Study
	5.1 Dataset
	5.2 Preprocessing
	5.3 Training and Testing Phase
	5.4 Evaluation Metrics
	5.5 Results

	6 Conclusion
	References

