
Task Offloading in Computing Continuum
Using Collaborative Reinforcement

Learning

Alberto Robles-Enciso(B) and Antonio F. Skarmeta

Department of Information and Communications Engineering, University of Murcia,
30100 Murcia, Spain

{alberto.roblese,skarmeta}@um.es

Abstract. One of the challenges in the Computing Continuum para-
digm is the optimal distribution of the generated tasks between the
devices in each layer (cloud-fog-edge). In this paper, we propose to
use Reinforcement Learning (RL) to solve the Task Assignment Prob-
lem (TAP) at the edge layer and then we propose a novel multi-layer
extension of RL (ML-RL) techniques that allows edge agents to query
an upper-level agent with more knowledge to improve the performance
in complex and uncertain situations. We first formulate the task assign-
ment process considering the trade-off between energy consumption and
execution time. We then present a greedy solution as a baseline and
implement our two RL proposals in the PureEdgeSim simulator. Finally,
several simulations of each algorithm are evaluated with different num-
bers of devices to verify scalability. The simulation results show that
reinforcement learning solutions outperformed the heuristic-based solu-
tions and our multi-layer approach can significantly improve performance
in high device density scenarios.

Keywords: Internet of things · Edge computing · Computing
continuum · Task offloading · Resource allocation · Reinforcement
learning

1 Introduction

Latency-critical applications are a major concern in today’s networks as they
are saturated by a large number of devices continuously sending tasks. The edge
computing paradigm is able to minimise end-user latency but has limited com-
puting capacity, therefore to improve its performance, Computing Continuum
proposes the combination of the edge and the cloud in a single interconnected
workflow. However, to make efficient use of devices it is necessary to define a
computation-offloading framework. Each edge device receives tasks with specific
requirements and has to decide whether to perform the computation itself or
offload the task to another edge node or the cloud.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 82–95, 2022.
https://doi.org/10.1007/978-3-031-20936-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20936-9_7&domain=pdf
http://orcid.org/0000-0002-5501-4608
http://orcid.org/0000-0002-5525-1259
https://doi.org/10.1007/978-3-031-20936-9_7


Task Offloading in Computing Continuum Using Collaborative RL 83

This problem is the “task assignment problem” and is a combinatorial opti-
mization problem defined as the process of determining where the computation
of each task is performed in order to minimise certain parameters, such as the
aforementioned latency and energy consumption. In our article we designed an
edge computing architecture in which edge devices receive tasks and can process
them locally or send them either to another edge device, to the fog server or the
cloud. The main contributions of this work as the following:

– We define the task assignment problem in edge computing as an optimisation
problem with a trade-off between latency and energy consumption.

– We introduce a reinforcement learning algorithm for the task offloading deci-
sion. Each edge device will be an RL agent that can decide to compute its
tasks locally or send them to the edge, fog or cloud layer.

– We propose a novel RL approach based on a multi-layer system in which the
RL agents of the devices can delegate the offloading decision to an agent of a
higher layer.

– The performance of the proposal is compared with a Greedy and single-layer
RL algorithm, showing that the proposed solution is superior to the other
algorithms.

This paper is organized as follows. In Sect. 2 we explore the state of the art
of the task assignment problem. In Sect. 3 we formulated the assignment prob-
lem with its main components. In Sect. 4 we introduce a simple reinforcement
learning algorithm and propose our novel multi-layer RL approach. Finally, in
Sect. 5 we evaluate the proposed algorithms and present the results.

2 Related Work

The task assignment problem can be solved by several methods using very differ-
ent techniques [4] such as convex optimization techniques, Lyapunov optimiza-
tion [13], Hungarian algorithm [7] and novel genetic algorithms [19]. In addition,
new methods based on dynamic programming and machine learning [17] tech-
niques have emerged, such as reinforcement learning (RL) and neural network
reinforcement learning (Deep RL). Nonetheless, it is difficult to find optimal
solutions to the task assignment problem, especially given the prohibitive com-
putational complexity in IoT devices, so in practice heuristic-based techniques
or methods that search for suboptimal solutions are often used.

One of the most common techniques are greedy algorithms, which provide
sub-optimal solutions but at a low computational cost. In some cases, it is pos-
sible to achieve solutions very close to the optimal solution [11,20]. Similarly, an
alternative approach to solving optimisation problems are algorithms based on
metaheuristics, the most popular are Genetic Algorithms which are inspired by
the process of natural selection [5,6].

On the other hand, Reinforcement Learning (RL) is a novel technique based
on machine learning that is not part of the well-known supervised and unsu-
pervised learning paradigms. The purpose of reinforcement learning is to learn



84 A. Robles-Enciso and A. F. Skarmeta

an optimal, or near-optimal, policy that maximizes the reward function and
provides an optimal set of actions for different agent states and environmental
conditions. RL algorithms learn iteratively through the immediate rewards they
receive each time they perform an action based on their state [9,16].

In some cases, it is not possible to make use of a reinforcement learning
algorithm directly, such as in scenarios where the agents’ state is a large number
of variables, making Q-Learning algorithms inefficient, or even when the state
variables are not discrete. To address these limitations, researchers propose the
use of neural networks to model the agent’s learning process [2,18]. In general,
Reinforcement Learning and Deep RL algorithms have a common problem, the
convergence time. This type of algorithm requires a series of iterations to reach
the optimal solution, and in some cases using random factor policies may take
even longer to reach the optimal solution [3].

Finally, some approaches in the literature use other novel techniques to solve
TAP. In [12] Dadmehr Rahbari and Mohsen Nickray use classification and regres-
sion trees to solve the problem. In [1] Mainak Adhikari et al. design a delay-
dependent priority-aware offloading (DPTO) strategy for scheduling and pro-
cessing tasks, generated from IoT devices to suitable computing devices. In [8]
Lindong Liu et al. propose a supervised machine learning approach to solve the
TAP based on classification data mining technique.

3 Task Assignment Problem

Computing continuum systems are composed of a large number of heteroge-
neous devices with different characteristics and roles. Some devices have high
computational power and serve as a host for processing tasks, while others with
lower computational power constantly generate tasks for the applications they
run. This forms a layered architecture where devices are separated into levels
according to their role.

On top of this architecture appears a flow of offloaded tasks, as some lower-
capacity devices decide to send tasks to more powerful devices for processing.
We define a task as an indivisible piece of computation generated by a particular
application, which has its own characteristics and constraints such as maximum
latency, data size and computational resources required. One of the key compo-
nents of these architectures is the Task Assignment Problem since it is necessary
to determine the best possible distribution of tasks between devices at each layer.

3.1 System Model

Our proposed system consists of devices that are separated into three layers,
depending on their role, Fig. 1 shows the proposed offloading architecture. The
layer closest to the users is the edge layer, which consists of heterogeneous edge
devices that might have an intermittent connection and a dynamic position.
This layer has the lowest latency and computational capacity, and is where tasks
are generated from the edge devices that host IoT applications. Tasks can be



Task Offloading in Computing Continuum Using Collaborative RL 85

processed locally or sent to devices in any of the three layers according to the
decision of the offloading algorithm.

The fog layer is the middle layer where fog Servers are deployed. Fog Servers
are small datacenters with intermediate computational capacity located between
edge devices and the cloud, hence they have intermediate latency.

Fig. 1. Edge computing architecture.

The upper layer is the cloud layer, which has very high computational capac-
ity and medium-high latency. The cloud acts as a single device, but in real
deployments it is typically a large number of high-performance computers in
a datacenter, therefore its computational capacity can be very high. However,
their latency is also high due to the distance to end-users.

In the edge layer each edge device executes an offloading algorithm that
decides, using the local information of the device, where it offloads the tasks it
generates. We call to the decision-making system that uses the perception of the
environment an agent.

3.2 Problem Definition

As shown above, a device can decide to execute a task locally (a = 0) or send it
to a adjacent node (a = 1), a fog server (a = 2) or the cloud (a = 3), resulting
in a specific cost as a weighted sum of execution time and energy consumption.

We formulate the cost of our optimization problem as a piecewise function
that depends on the offloading action, which we define in detail in a paper still
under revision. In a real environment, it may be possible that the offloading pro-
cess fails (a = −1), so it is necessary to define a penalty cost δ in the segmented
function Eq. 1.

Therefore, our proposal consists of designing an optimisation scheme in which
the cost resulting from the allocation of tasks (K ) produced by a device d is
minimised. Therefore, each device d aims to perform the best possible assign-
ment of actions for each task k to minimise the resulting cost of all assignments.



86 A. Robles-Enciso and A. F. Skarmeta

The optimization problem is formulated in Eq. 2.

Cd,k(a) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cl
d,k if a is equal to 0

Cm
d,k if a is equal to 1

Cf
d,k if a is equal to 2

Cc
d,k if a is equal to 3

δd if a is equal to −1

(1)

Gd = min
ak

K∑

k=1

Cd,k(ak) (2)

subject to:
K′∑

k=1

T d,k
mips � Dd

mips, ∀k, Ld,k � T d,k
dl , ak ∈ {−1, 0, 1, 2, 3}

The optimization problem is subject to the following constraints: The tasks
assigned to a device (K′) must not exceed the computing capacity of the device,
no task must exceed its maximum latency (deadline) and the possible actions
that can be taken are error, local processing, offload to an adjacent node, offload
to the fog layer and offload to the cloud layer.

4 RL-Based Task Offloading Algorithm

To solve the TAP defined in Eq. 2 we use a reinforcement learning approach based
on Tabular Q-Learning. Each edge device runs its own reinforcement learning
algorithm to explore the optimal task offloading policy by minimizing the long-
term cumulative discounted cost. Figure 2 shows an overview of our agent.

Fig. 2. Q-Learning agent.

When a task is received, the agent will decide offloading action (at ∈ A =
{0, 1, 2, 3}), whenever possible, whether to process the task locally (action 0 ),
send it to a nearby node (action 1 ), send it to the fog layer (action 2 ) or send
it to the cloud (action 3 ). The decision will depend on the environment, which
is based on the characteristics of the task, the state of the device and the last
average state of fog and cloud.



Task Offloading in Computing Continuum Using Collaborative RL 87

The learning process uses a Q-Value table to store and query the value of the
Q-function for each state-action. When an action is performed, the new Q-Value
in the table is updated according to the following one-step Q update formula:

Q(st, at) = (1 − α)Q(st, at) + α (Ct + γ min
a

Q(st+1, a)) (3)

The reward obtained after the execution of an action is a piecewise function
of two elements that depends on the execution time of the task. If the execution
time of the task (T t

end−T t
start) is less than its deadline (T t

dl), the reward obtained
is a weighted sum between the execution time and the energy consumption of
the task (T t

energy). Otherwise, the reward is the same but multiplied by a penalty
δ factor.

Ct =

{
(T t

end − T t
start) + βT t

energy T t
end − T t

start < T t
dl

δ · ((T t
end − T t

start) + βT t
energy) otherwise

(4)

The reward function only considers energy and execution time, all other param-
eters are part of the state and do not need to be included as they will have an
indirect impact on the latency.

In this basic RL approach, each device works independently using its local
information and aggregated global information. Thus, decisions are made accord-
ing to the local state and knowledge of the agent. However, the biased view of
the environment and the lack of knowledge in the early stages of the algorithm
causes low performance in complex situations. To overcome this drawback, we
propose to allow the RL agent of a device to delegate the offloading decision
to a upper level agent in case it does not have enough information. The upper
level agent, e.g. deployed in the fog layer, will decide according to its knowledge
and the global state of the system. The offloading decision will be sent to the
querying device and both the local and the upper level agent will learn from the
reward obtained after executing the action. Figure 3 shows the process of the
offloading query.

Fig. 3. Offloading query process.

In this enhanced architecture, both edge devices and fog servers run an inde-
pendent RL algorithm that can collaborate between layers. The offloading query
allows a passive knowledge transfer from fog agents to edge agents, especially



88 A. Robles-Enciso and A. F. Skarmeta

useful when an edge agent starts with no knowledge and performs queries to
learn from the decisions of the upper level agent.

We extend the functionality of the RL algorithm to include in the set of
feasible actions of edge devices the new offloading query action. Edge devices
and fog servers execute the same algorithm but with different behaviour, as they
have a different view of the environment.

The edge device agent now has the action (A∪{4}) of performing the offload-
ing query. When a reward is received for an action queried to a fog server, it
is considered to have a higher value since it is assumed that the upper agent
will take better decisions. Also, the Q-Value of the query action is penalized
as it is used to decrease the probability of being selected while increasing the
agent’s local knowledge. On the other hand, the upper layer agent waits to receive
offloading queries from other agents and uses its own knowledge and view of the
current state, including cloud and fog realtime CPU usages, to take an offload-
ing decision and send it back. As a result, a reward will be obtained from the
execution of the offloading action that will improve the knowledge of both the
agent who made the request and the upper layer agent.

Algorithm 1: ε-greedy Multilayer Q-Learning Algorithm
Parameters: discount factor γ, learning rate α, exploration rate ε, penalty factor δ, query reward factor ρ

and query use penalty ω

1 begin

2 for each step t do

3 Observe actual state st

4 Determine feasible action set A′ from A

5 isQuery ← false

6 e ← random number from [0,1]
7 if e < ε then

8 at ← randomly select an action from A′
9 else

10 at ← arg min
a∈A′ Q(st, a)

11 end

12 if at is to ask a fog server then

13 isQuery ← true

14 Send the offloading request to a fog server
15 at ← get the fog server decision

16 end

17 Execute or send the offloading action at
18 Wait for the task to be completed
19 Observe new state st+1
20 Calculate reward Ct by (4)
21 if isQuery then

22 Ct ← ρ · Ct

23 C
q
t ← ω · t · Ct

24 Update Q(st, 4) using (3) with C
q
t

25 end

26 Update Q(st, at) according to (3) with Ct
27 end

28 end

The proposed multilayer solution to the offloading problem based on ε-greedy
Q-Learning is shown in Algorithm 1. As mentioned before, all devices run the
same algorithm but with their own view of the state and their own knowledge.
This means that each device will manage an independent Q-Table that will be
trained locally. In addition, the upper layer agent will take advantage of all
interactions with the devices to update their global status.



Task Offloading in Computing Continuum Using Collaborative RL 89

5 Performance Evaluation

In this section we will evaluate our proposed solution compared to a greedy and
a single layer reinforcement learning approach in a simulated edge computing
environment. We will perform simulations to compare the performance of each
algorithm using a set of metrics. The simulation results are available in our
GitHub repository [15].

5.1 Methodology

The purpose of our evaluation is to obtain enough data to fairly compare the
offloading algorithms. Therefore, we will make use of an edge computing simu-
lator to test the behaviour of the algorithms from low-density to high-density
device scenarios. The output of each simulation will be a set of metrics used to
determine the performance of the algorithm in the specific simulation scenario.
To prevent inaccurate results caused by the random component of the simulator,
the metrics will be calculated by averaging the result of several simulations on
the same conditions.

5.2 Experiment Setup

The evaluation has been performed on a modified version of PureEdgeSim v4.2
[10], the source code of our extension is available on GitHub [14]. The simulated
edge computing scenario consists of three layers of devices (edge-fog-cloud) ran-
domly distributed over an area of 200× 200 metres.

To verify the scalability of the proposed algorithms, the number of edge
devices in each simulation is increased by 10 until 200. Each simulation lasts
10 min and is executed 10 times per configuration to calculate the average result.
The bandwidth of the connection between devices is 100 megabits per second at
the edge and fog layers, while the connection to the cloud layer is 20 megabits
per second. The maximum range of the wireless connection of the edge devices
is 40 m. The simulation parameters of the PureEdgeSim environment are sum-
marised in Table 1.

5.3 Metrics

To compare the performance of each algorithm we define the following bench-
mark metrics:

– Task Success Rate: The percentage of the tasks that finish their execution
over the total. A task is not considered to complete its execution correctly if
its execution time exceeds its deadline or if the offloading process fails. This
metric is one of the most important for the evaluation.

– Average Total Time: The total time required to complete successfully a
task, which includes the execution time and the time to send the task to the
processing node. This metric is especially useful for comparing the latency
incurred by each algorithm.



90 A. Robles-Enciso and A. F. Skarmeta

Table 1. PureEdgeSim simulation parameters

Simulation Parameter Value

Simulation duration 10 min

Number of averaged simulations 10 per configuration

Min number of edge devices 10

Max number of edge devices 200

Simulation area 200 m × 200 m

Edge and Fog Bandwidth 100 Mbps

Cloud Bandwidth 20 Mbps

Edge devices range 40 m

– Complete Average Total Time: Same as Average Total Time but also
considering the time wasted on tasks that were not executed successfully.

– Failed tasks due to latency: The number of tasks that have failed because
their execution time exceeds their maximum allowed latency.

– Average CPU Usage per device: Average CPU usage of a device. Useful
to determine how much the computational resources of the devices are used.

– Average Energy Consumption per Device: Average power consumption
of one device.

5.4 Compared Methods

We have implemented in the simulator three algorithms to evaluate their per-
formance. The greedy solution will serve as a reference for comparison with the
single-layer RL algorithm and our proposed multi-layer guided RL.

In addition, we designed three methods based on the implementations of
the reinforcement learning solutions explained in previous sections. The first
one is the basic implementation of a RL algorithm that runs locally on each
device without external knowledge, in the tests we will denote it as “Local RL”.
The second and third methods are the same implementation of the multi-layer
RL algorithm but with different initial conditions. The “RL Multilayer Empty”
version starts each simulation with all Q-Tables (knowledge) of the devices com-
pletely empty, while “RL Multilayer” version uses on the fog servers the Q-Table
resulting from the previous simulations, with the same configuration, to simu-
late the behaviour of a system that starts with knowledge to improve initial
performance. The parameters used by both methods are summarised in Table 2.



Task Offloading in Computing Continuum Using Collaborative RL 91

Table 2. Reinforcement learning algorithm parameters

Parameter/RL Algorithm Single Multi

Learning rate α 0.6 0.6

Latency-Energy Trade-off β 0.003 0.003

Discount factor γ 0.3 0.3

Failure penalty δ 1000 1000

Average CPU refresh rate 60 s 60 s

Query reward factor ρ - 0.2

Query use penalty ω - 10

Initial Q-Value 200 200

Initial Query Q-Value - 10

5.5 Experimental Results and Analysis

In this section we will show the most important results of the simulations per-
formed for each algorithm and configuration. Each of the subfigures of 4 repre-
sents the metrics that were defined to make the comparison between algorithms.

One of the most critical results is the success rate in task execution, since
in practice this has the most negative impact on the end-user. Figure 4a shows
the success rate resulting from each algorithm when performing the simulation.

Fig. 4. Simulations results



92 A. Robles-Enciso and A. F. Skarmeta

As we can see, in low device density scenarios, the greedy method outperforms
the others until it reaches a medium density, 70 devices, where its success rate
starts to drop. In the high device density scenarios the performance of the greedy
method and the RL single-layer are very low while both multi-layer methods are
able to keep an acceptable performance.

This behaviour is due to the fact that in low device density scenarios there
are not a large number of tasks and most of them can be executed by the fog and
cloud servers without saturation, so the heuristics of the greedy method gives
a better result than the reinforcement learning algorithms. When a medium
density of devices is reached, the appropriate use of resources becomes more
relevant and algorithms using reinforcement learning techniques are able to adapt
dynamically to keep the success rate as high as possible. In high density scenarios
with a large number of tasks the optimal use of processing nodes is critical,
therefore the greedy method cannot achieve good results and even the single-
layer RL method cannot improve the result. In contrast, multi-layer RL methods
achieve a high success rate due to the possibility of delegating offloading decisions
to higher level agents. In fact, the best success rate is achieved with multi-layer
RL method that start with the Q-Table of the fog servers filled with the values
learned from previous simulations since it allows to provide useful knowledge to
the devices in the early stages of the learning process.

The average time required to complete a task for each algorithm and number
of devices is shown in Fig. 4b. Similar to the success rate, the average total time of
the greedy algorithm drastically changes its performance based on the number
of devices, while reinforcement learning algorithms slowly change the average
total time. The three RL methods provide a similar average total time as this
metric only considers tasks that have successfully completed their execution.

If we consider the time lost due to tasks that do not execute correctly because
of latency, we can see in Fig. 4c the real impact of the algorithm’s actions when
deciding to do an unsuitable offloading. The behaviour of the greedy algorithm
is similar to Fig. 4b, but the single-layer RL method substantially increases the
time in high device density scenarios as the impact of bad decisions in complex
situations is very high. In contrast, multi-layer RL methods avoid the initial
uncertainty by delegating the decision, thereby making better offloading deci-
sions that reduce latency failures as can be seen in Fig. 4d.

One more relevant result that can be analysed is the average CPU usage per
device, which indicates the degree of utilization of the system’s computational
resources. A proper distribution of tasks among the devices results in a high
average CPU usage per device as resource utilisation is maximised. In contrast,
low CPU usage indicates that the algorithm is saturating a few devices while
many others are idle. As shown in Fig. 4e, which represents the simulator output
for this metric, the two multi-layer RL methods stand out from others, and the
greedy method shows a low use of computational resources.

Similarly, the performance of algorithms can be measured in terms of their
energy consumption as this is one of the components of the optimization prob-
lem, Fig. 4f shows the average energy consumption per device obtained from



Task Offloading in Computing Continuum Using Collaborative RL 93

the simulations. The greedy algorithm presents the highest energy consumption
while the RL algorithms show the lowest energy consumption.

After having seen the performance of the algorithms in different simulator
scenarios, we can conclude that the greedy algorithm offers acceptable perfor-
mance in low and medium device density scenarios. However, as device density
increases, more complex methods must be applied to maintain system perfor-
mance. Reinforcement learning algorithms are able to adapt to complex scenarios
at a low computational cost, thus providing the best results in simulations. Fur-
thermore, our multi-layer approach stands out from other methods because in
complex high-density scenarios it shows high performance in the most impor-
tant metrics. This improvement is due to enhanced offloading decision system by
using external knowledge and serves as evidence of the good performance of our
multi-layer RL proposal. Therefore, reinforcement learning algorithms are good
methods for solving the task assignment problem and our proposal is a useful
and easily applicable extension to any RL algorithm to improve its performance.

6 Conclusion

In this paper, we have presented the task assignment problem as a key component
of collaborative edge computing architectures. As shown in the first section, there
are several methods for solving TAP, but those based on artificial intelligence
are the most promising. Reinforcement learning is presented as a solution for the
task offloading process in our proposed three-layer edge-fog-cloud architecture.

In this work we have studied different configurations to understand the
impact of task distribution and limited vision of RL agents and how this impacts
the performance behaviour of the algorithm in complex situations. To overcome
these drawbacks, we propose a novel extension of reinforcement learning tech-
niques that allows agents to query an upper-level agent with more knowledge
and a broader view of the environment.

We have implemented our proposals together with a greedy alternative in
a modified version of PureEdgeSim simulator and performed several tests to
compare the performance of each algorithm in different situations following a
set of metrics, providing access to the results and simulations for reproducibility.
The experimental results showed that, compared with the greedy and classical
RL algorithms, under multiple conditions, our proposed multilayer RL algorithm
achieved much better performance in scenarios with a high number of devices
and tasks.

Acknowledgments. This work was supported by the FPI Grant 21463/FPI/20 of the
Seneca Foundation in Region of Murcia (Spain), partially funded by project PID2020–
112675RB–C44 and PTAS–20211009 MCIN/AEI/10.13039/501100011033 and by the
“European Union NextGenerationEU/PRTR”.



94 A. Robles-Enciso and A. F. Skarmeta

References

1. Adhikari, M., Mukherjee, M., Srirama, S.: DPTO: a deadline and priority-aware
task offloading in fog computing framework leveraging multilevel feedback queue-
ing. IEEE Internet Things J. 7, 5773–5782 (2020)

2. Alfakih, T., Hassan, M., Gumaei, A., Savaglio, C., Fortino, G.: Task offloading
and resource allocation for mobile edge computing by deep reinforcement learning
based on SARSA. IEEE Access 8, 54074–54084 (2020)

3. Argerich, M.F., Fürst, J., Cheng, B.: Tutor4RL: guiding reinforcement learning
with external knowledge. In: AAAI Spring Symposium: Combining Machine Learn-
ing with Knowledge Engineering (2020)

4. Bellendorf, J., Ádám Mann, Z.: Classification of optimization problems in fog
computing. Futur. Gener. Comput. Syst. 107, 158–176 (2020). https://doi.org/
10.1016/j.future.2020.01.036

5. Ghanavati, S., Abawajy, J., Izadi, D.: An energy aware task scheduling model
using ant-mating optimization in fog computing environment. IEEE Trans. Serv.
Comput. 15(4), 2007-2017 (2020)

6. Jia, Z., Yu, J., Ai, X., Xu, X., Yang, D.: Cooperative multiple task assignment
problem with stochastic velocities and time windows for heterogeneous unmanned
aerial vehicles using a genetic algorithm. Aerosp. Sci. Technol. 76, 112–125 (2018).
https://doi.org/10.1016/j.ast.2018.01.025

7. Liang, J., Long, Y., Mei, Y., Wang, T., Jin, Q.: A distributed intelligent hungarian
algorithm for workload balance in sensor-cloud systems based on urban fog com-
puting. IEEE Access 7, 77649–77658 (2019). https://doi.org/10.1109/ACCESS.
2019.2922322

8. Liu, L., Qi, D., Zhou, N., Wu, Y.: A task scheduling algorithm based on classi-
fication mining in fog computing environment. Wirel. Commun. Mobile Comput.
2018, 1–11 (2018). https://doi.org/10.1155/2018/2102348

9. Liu, X., Qin, Z., Gao, Y.: Resource allocation for edge computing in IoT networks
via reinforcement learning. In: ICC 2019–2019 IEEE International Conference on
Communications (ICC), pp. 1–6 (2019)

10. Mechalikh, C., Taktak, H., Moussa, F.: Pureedgesim: a simulation framework for
performance evaluation of cloud, edge and mist computing environments. Comput.
Sci. Inf. Syst. 18, 42 (2020). https://doi.org/10.2298/CSIS200301042M

11. Rahbari, D., Nickray, M.: Low-latency and energy-efficient scheduling in fog-based
IoT applications. Turk. J. Electr. Eng. Comput. Sci. 27, 1406–1427 (2019)

12. Rahbari, D., Nickray, M.: Task offloading in mobile fog computing by classification
and regression tree. Peer-to-Peer Netw. Appl. 13, 104–122 (2020)

13. Ren, C., Lyu, X., Ni, W., Tian, H., Song, W., Liu, R.P.: Distributed online opti-
mization of fog computing for internet of things under finite device buffers. IEEE
Internet Things J. 7(6), 5434–5448 (2020). https://doi.org/10.1109/JIOT.2020.
2979353

14. Robles-Enciso, A.: Pureedgesim RL extension (2021). https://github.com/
alb1183/ML-RL-PureEdgeSim

15. Robles-Enciso, A.: ML-RL Simulations results (2022). https://github.com/
alb1183/ML-RL-simulations

16. Sen, T., Shen, H.: Machine learning based timeliness-guaranteed and energy-
efficient task assignment in edge computing systems. In: 2019 IEEE 3rd Inter-
national Conference on Fog and Edge Computing (ICFEC), pp. 1–10 (2019)

https://doi.org/10.1016/j.future.2020.01.036
https://doi.org/10.1016/j.future.2020.01.036
https://doi.org/10.1016/j.ast.2018.01.025
https://doi.org/10.1109/ACCESS.2019.2922322
https://doi.org/10.1109/ACCESS.2019.2922322
https://doi.org/10.1155/2018/2102348
https://doi.org/10.2298/CSIS200301042M
https://doi.org/10.1109/JIOT.2020.2979353
https://doi.org/10.1109/JIOT.2020.2979353
https://github.com/alb1183/ML-RL-PureEdgeSim
https://github.com/alb1183/ML-RL-PureEdgeSim
https://github.com/alb1183/ML-RL-simulations
https://github.com/alb1183/ML-RL-simulations


Task Offloading in Computing Continuum Using Collaborative RL 95

17. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation
offloading approaches in mobile edge computing: a machine learning-based perspec-
tive. Comput. Netw. 182, 107496 (2020). https://doi.org/10.1016/j.comnet.2020.
107496

18. Wang, J., Zhao, L., Liu, J., Kato, N.: Smart resource allocation for mobile edge
computing: a deep reinforcement learning approach. IEEE Trans. Emerg. Top.
Comput. 9(3), 1529–1541 (2019)

19. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for internet of things services. IEEE Internet Comput. 21(2), 16–24 (2017). https://
doi.org/10.1109/MIC.2017.36

20. Zhang, G., Shen, F., Liu, Z., Yang, Y., Wang, K., Zhou, M.T.: FEMTO: fair
and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet
Things J. 6(3), 4388–4400 (2019). https://doi.org/10.1109/JIOT.2018.2887229

https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/JIOT.2018.2887229

	Task Offloading in Computing Continuum Using Collaborative Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Task Assignment Problem
	3.1 System Model
	3.2 Problem Definition

	4 RL-Based Task Offloading Algorithm
	5 Performance Evaluation
	5.1 Methodology
	5.2 Experiment Setup
	5.3 Metrics
	5.4 Compared Methods
	5.5 Experimental Results and Analysis

	6 Conclusion
	References




