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Preface

This volume contains the papers presented at the 5th edition of The Global IoT Summit
(GIoTS 2022). GIoTS 2022 was co-located with the IoT week and held during June
20-23, 2022 in Dublin. GIoTS is an international conference established to attract and
present the latest research results on the Internet of Things (IoT). It intends to select the
best papers through a systematic peer review process.

GIoTS 2022 drove its focus on multiple critical innovations that affect today’s
research and real-world application space and will enhance our IoT ecosystem. This edi-
tion put new efforts into attracting innovative researchers from diverse cross-disciplinary
areas to address challenges in the emerging discipline with several workshops organized
around the conference. Industry leaders, academics, professionals, government officials
and student discussed and fostered knowledge in emerging technologies, business cases
and social impacts in this technological area by the means of various activities.

The program consisted of 33 technical papers, selected from 75 submissions,
aggregated into technical track sessions and workshops such as:

– IoT Enabling Technologies,
– IoT Applications, Services and Real Implementations
– IoT Experimental Results and Deployment Scenarios
– IoT Security, Privacy and Data Protection
– End-user and Human-centric IoTincluding IoT MultimediaSocietal Impacts and
Sustainable Development

Four workshops and Industry forum sessions on hot and emerging topics were held:

– W1: 4th Workshop on Internet of Things Security and Privacy (WISP)
– CITIES2030 Blockchain Food Supply Chain
– GIoTS Industry. Forum – Cross-Border Corridors: 5G for Connected and Automated.
Mobility

– IPv6-based 5G, IoT, Cloud Computing Industry

We were also honored to include three invited talks by distinguished researchers:

– Latif Ladid (Founder and President, IPv6 Forum and University of Luxembourg,
Luxembourg)

– Craig Wright (Founder and Chief Scientist, nChain, UK)
– Patrick Wetterwald (Cisco Systems, France)
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Overview of Drone Communication
Requirements in 5G

Radheshyam Singh(B) , Kalpit Dilip Ballal(B) ,
Michael Stübert Berger(B) , and Lars Dittmann(B)

Department of Photonics Engineering, Technical University of Denmark,
Kgs. Lyngby, Denmark

{radsi,kdiba,msbe,ladit}@fotonik.dtu.dk

Abstract. The ease of use and flexibility provided by drones or
Unmanned Aerial vehicles (UAV) is attracting different industries and
researchers across domains (e.g., delivery, agriculture, security, etc.).
Although maintaining a reliable and secure command and control com-
munication channel is still an open challenge and primary limitation for
using drones. Satellite and 5G are considered viable solutions for drone
communication. In this survey paper, we have explored specifications and
proposed enhancements in cellular technology specified by 3GPP to com-
mand and control UAVs. It also describes the required network Quality
of Service (QoS) parameters for drone communication. Such as end-to-
end latency to send and receive a command and control message (C2),
reliability, and message size. Along with these, it also emphasizes defining
the reliability in terms of communication and navigation of UAVs, based
on cellular technology 5G additional investigation and standardization
should be executed.

Keywords: 5G cellular technology · Unmanned aerial vehicle ·
Drones · Latency · Coverage · 3GPP

1 Introduction

We live in a technological era and try to develop a world where essential services
can be operated and controlled autonomously-for example, autonomous cars,
buses, trains, etc. Researchers, educational institutes, and some giant tech com-
panies are attentively looking into the field related to UAVs, in general, known
as drones. Drones are prominently emerging technology and attracting people to
develop some usage scenario. This technology is still in the developing phase in
terms of mass acquiescence for formulating and implementing, but drones have
already broken the conventional obstacles and proved their importance in several
fields. For instance, delivering a parcel and medical help where a human can not
reach or is incapable of performing in a timely manner, along with these it has
been used to keep an eye on the military area. Several use cases are there, where
unmanned aerial vehicles are considered as feasible tools [1,2].

Acceptance of UAVs applications and innovations across the industries
hopped from sluggish level to active level, because gradually businesses have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-20936-9_1
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started to see the potential, comprehensive scope, and worldwide reach in drone
based applications. Drones can be operated and controlled remotely via an appli-
cation installed on smartphones or autonomously. They can provide services
and support with or without manpower and conserve efforts, energy, and, most
importantly, time. All these points are very attractive to the industries and
research groups to invest their time and resources to get the profitable business
based on drones [3].

As we know, drones or UAVs can be used for a variety of applications such as
surveillance, data gathering, environment monitoring, aerial photography, deliv-
ery, etc. Along with these, it provides real-time data to help the industry design
real-time operations. A report published in “Fortune Business Insights” about
unmanned aerial vehicles or drones shows that the global service market based
on drones was 7.12 billion USD in 2020. An unfortunate situation like COVID-
19 boosted the market and allowed further investigation related to applications
based on UAVs. The drone-based market is projected to escalate from 9.56 bil-
lion USD to 134.89 billion USD by 2028 [4]. A Germany-based company, “Drone
Industry Insights,” has forecasted that the drone market will be 41.3 billion USD
by 2026. Figure 1 shows the commercial drone scale and business forecast by
2026. They have also divided the drone business market into three segments [5].

1. Hardware:- This segment includes the industries which are generating the
revenue from providing the tools, components, hardware, and systems asso-
ciated with unmanned aerial vehicles. This sector acquires 16.4% revenue of
total drone business sector [5].

2. Software:- This segment holds the 4.3% revenue of the drone market. This
revenue is generated from providing the software for drone communication,
navigation, fleet planning, computer vision, control, and management sys-
tem [5].

3. Drone based Services:- The drone-based service sector produces a huge
part of the revenue. This segment generates 79.3% revenue for the drone
business market [5].

This survey paper aims to find out the supporting capability of cellular tech-
nology, primarily of 5G for the drones or UAVs based applications. Along with
this, it will also fill the gap between the researcher in academia and on going
trends in giant tech industries by providing a comprehensive analysis. In this
survey paper, the following questions are investigated and attempted to address
with appropriate answers.

– What are the near-future potential applications of drones and which are the
giant tech companies exploring this field?

– What are the requirements for drone based applications?
– What are the technical enhancements executed or proposed by the 3rd Gen-

eration Partnership Project (3GPP) standards, especially for the UAVs based
applications?

– How 5G cellular technology can support and contribute to enhance drone
communications and applications?
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Fig. 1. Drone market projection 2021–2026 [5]

The structure of this paper is as follows, Sect. 2 gives the information about
the drone based applications and which multinational companies are looking into
the drone based business. Essential parameters for drone based communication
are explored in Sect. 3. These parameters include the government’s rules and
regulation along with technical requirements for drone based applications. Infor-
mation about some previous research works, challenges, and findings in reference
to drones or UAVs are given in Sect. 4. Section 5 demonstrates the role of 5G
cellular technology for drones or UAVs. The conclusion of this survey paper is
given in Sect. 6.

2 Applications of Drones

This section will explore the applications of drones and which corporations are
investing their time, money, and resources to design and develop a potential
application using drones or UAVs. Drone or UAV based applications can be
deployed in several sectors. Based on some ongoing developments and used cases,
we have divided drone based applications into the following sectors-

1. Delivery of Products:- Since 2013 Amazon has created a research and
development team to leverage the drones for delivering their packages. Ama-
zon has now a drone based application that can deliver packages in the range
of 24 Km and the delivery drone is capable to deliver a package of approxi-
mately 2.5 kg. In 2018 Amazon is awarded a patent for its UAVs application
by US patent [6]. Google’s parent company Alphabet is working in the field of
UAVs based package delivery applications under the project name “Wing”.
Alphabet executed its first UAVs flight test in Australia in the year 2014 [8].
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In the year 2021, Wing has delivered more than 140,000 packages to cus-
tomers [7].
Uber has published a white paper to investigate the future on-demand air
transportation, and they were more anxious to design and developed an
autonomous air travel [10]. But in the year 2018 company has shifted its inter-
est to develop a more efficient drone based application for the food delivery
business. DHL is working on UAVs since 2013 to use a quadcopter to deliver
small packages [9]. Like Amazon, Walmart is also exploring this field and
has opened an incubator in Austin, Texas in 2018. The central objective of
this tech incubator is to develop drone or UAV based applications. JD.com
China’s one of the largest e-commerce retailers is testing drones since 2016 to
deliver the products. In the year 2019 company has delivered its first product
in Indonesia [8].

2. Security and Inspection:- Drones are considered as one of the feasible
solutions for the sectors where security and inspection of a site or product
are necessary. FedEx is using UAVs to deliver the aircraft’s parts to the
ground engineers and along with this, the drone will inspect the runways at
the airports. Since 2016, IBM is developing an application to visualize natu-
ral disasters in real-time, using IBM’s Cloud, drones, and cognitive comput-
ing technologies [11]. GE provides UAVs to inspect the tools and equipment
installed in the field of energy and manufacturing sector [12]. A British-based
airline enterprise easyJet is using UAVs since 2015 to perform an inspection
of aircraft to detect damages [8].

3. Entertainment:- Drones are making the entertainment sector more realistic.
To shoot a movie’s scene a drone with a high-resolution camera is used by
the movie craters. Intel has designed and developed light-weighted fleets of
UAVs. Which are used in concerts, sports opening ceremony events, and for
the entertainment purpose [13]. The UK-based broadcasting company British
Broadcasting Corporation (BBC) is using drones for news broadcasting since
2013 [8].

4. Internet Connectivity:- In 2014 Facebook announced a project “Aquila”.
The objective of this project is to provide internet connectivity using
lightweight UAVs. Based on the estimation given by a telecom company
Otelco installing fiber optic cables costs 22000 USD per mile. This was the
reason behind deploying UAVs for internet connectivity, which is less expen-
sive than installing fiber optic cables [8]. Facebook had carried out a successful
test flight of Aquila in the year 2017 at an altitude of 3000 ft, but in the year
2018 Facebook terminated this project [14].

5. Maps and Navigation:- In the year 2012 Apple created its maps, but it
disappointed Apple’s customers because the maps were imprecision and they
were not competent to show the location directions. Apple uses drone tech-
nology to improve the gathering and transmitting of visual and geographical
real-time data [15]. In this way Apple eliminated the flaws from the Apple
maps [8].

6. Agriculture:- Microsoft and DJI are working together on a project “Farm-
Beast” since 2015. The purpose of this project is to gather agricultural
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data such as soil moisture, temperature, infected crops, and other important
parameters which could help to increase crop productions [8].

Table 1. Drone based applications [8].

Application sector Company Drone based application Starting year of R&D Application is developed/under development

Delivery Amazon Home deliveries of products
with in 24 KM of range

2013 Developed

Alphabet For delivery 2014 Application is developed got the air-carrier
certification from FAA and have legal permission
to deliver the products

Uber Forfoods delivery 2018 Under Development

JD.com For delivery n/a Developed

UPS For delivery the vaccines 2016 Developed

Walmart For delivery 2016 Under Development

DHL For delivery 2013 Under Development

Security and inspection FedEx Drones for maintaining aircraft
and inspecting runway

N/a Application is developed, soon FedEx will use
UAVs at Memphis International Airport

GE Inspection of manufacturing
sectors

2014 Developed

EasyJet To inspect the aircrafts 2015 Under Development

IBM To Visualize the natural disaster
in real-time

2016 Under Development

Entertainment Intel For entertainment purposes like
light shows, dancing drones, etc.

N/a Application is developed, used for the sports,
concerts and entertainment

BBC Real-time news brodcasting 2013 Developed

Maps and navigation Apple To enhance the maps and
navigation

2012 Developed

Internet connectivity Facebook/Meta To provide internet connectivity 2014 Terminated the program in the year 2018

Agriculture Microsoft and DJI To gather the agricultural data 2015 Under Development

3 Essential Parameters for Drone Communication and
Navigation

To fly a drone for any kind of application there are some specific rules and regu-
lations, and they are applied on both hobbyist applications as well as commercial
operations. European Aviation Safety Agency (EASA) has developed these rules
to make drone operations more secure and regulated. This section will discuss
the EASA rules for drone flights. Along with this, it will also elaborate on the
technical parameters that are essential for drone communication and navigation
based on 5G cellular technology.

3.1 Government Rules and Regulations

Following are brief information about EASA regulations which are followed by
the European Union member states along with Norway, Iceland Liechtenstein
and United Kingdom [16].

– Drone should not be flown above 120 m or 400 ft above the ground surface.
– Drones operations are prohibited under 150 m of a crowded area.
– Drones having weight less than 250 g (A1 Drones), can be operated over the

people. Drones having a weight of more than 250 g but less than 2 Kg (A2-
Drones) must have to operate at least 50 m away from people. Drones having
more than 2 kg weights should be operated well away from people.

– Drone operators should have a license to operate the drones.



8 R. Singh et al.

– No drones operations inside 1 km perimeter of airbase without permission.
– While flying the drones operators have to look always at the drones to avoid

any kind of incursions. They should look at the screen to just adjust the frame
to capture the shot or to check battery [17]. If the operator is flying drones
in line-of-site in that case operating distance should not be more than 500 m.

Depending upon the countries and regions there are more other rules. Drone
operations in Beyond Visual Line of Sight (BVLOS) have more strict rules and
regulations. Government officials are still looking thoroughly into this, to develop
a secure infrastructure for UAVs applications.

3.2 Technical Parameters

To achieve secure and reliable communication for drones using a cellular com-
munication system, drones have to exchange the information with the pilot,
nearby other drones or UAVs, and principally with the air traffic control sys-
tem. This mechanism is called UAV Control and Non-payload Communication
(CNPC) [19]. simultaneously, depending upon the applications, a drone has to
transmit or receive information on a timely basis related to the assigned task,
such that images, videos, and data packets from ground entities to the drone and
vice-versa. This operation is known as payload communication [20]. To deploy the
UAVs application on a large scale the International Telecommunication Union
(ITU) has categorized the CNPC in the following section:

1. UAV Command and Control Communication (C2):- This type of com-
munication includes UAV or drone’s status, a real-time control signal from
pilot to UAV, and flight command updates.

2. Air Traffic Control (ATC) Relay Communication:-Communication
between the air traffic control system and UAV operator via ATC relay.

3. Communication for Detect and Avoid Collision:- Capability to sense
and avoid collision from nearby UAVs and territory.

Payload communication and CNPC require different set of spectrum. Table 2
and Table 3 represents the network key points for UAV’s communication. These
communication parameters are specified in Release 17 by the 3GPP standards.

UAV Control and Non-payload Communication:- Table 2 represents the
required QoS parameters for the CNPC communication. Here, uplink (UL) data
transmission represents UAV to network side messages and downlink (DL) data
transmission represents network to UAV side messages. Control and command
communication is duplex communication and it may be integrated with video
for controlling the operation of UAVs. Therefore, when a C2 message is sent
with video, the required end-to-end latency is 1 s. A positive acknowledgment
message for downlink transmission is necessary in this mode. On the other hand,
when a C2 message is sent without video, end-to-end latency would be less
than 40 ms. This mode also requires a positive acknowledgment in downlink
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transmission. To communicate with the ATC relay, end-to-end latency should
not be more than 5 s. To sense and avoid the collision with other UAVs and
territories, the delay for the uplink transmission should be less than 140 ms and
in downlink transmission required delay is 10 ms. In this mode, the reliability
of the network should be 99.99% for the uplink transmission and 99% for the
downlink transmission. However, network reliability should be 99.9% for the rest
of the communication mode [18].

Table 2. UAV control and non-payload communication requirements [18].

Control and non-payload
communication

Message interval
(UP/DL)

Message size
(UP/DL)(byte)

Max UAV
speed (km/h)

End-to-end latency
(UP/DL)

Reliability
(UP/DL)

ACK (UP/DL)

Control & Command
message (without video)

1 s/ >= 1 s 84–140/100 300 1 s/1 s 99.9% Not
required/Required

Control & Command
message (With Video)

40 ms/40 ms 84–120/24 60 40 ms/40 ms 99.9% Not
required/Required

Communication with
UTM or ATC

1 s/1 s 1500/10K 300 5 s/5 s 99.9% Required/Required

Detect & Avoid collision
with other UAV

500 ms/500 ms 4K/4K 50 140 ms/10 ms 99.99%/99% Required/Required

UAV Payload Communication:- The 5G cellular technology shall be capa-
ble to transmit data collected by the entity which are installed on UAVs, such as
a camera to transmit images, videos, and data files. Depending upon the appli-
cations, UAVs require different uplink and downlink quality of service (QoS).
Table 3 represents the UAV payload communication requirements. To transmit
real-time video using a UAV up to 100 m above ground level requires a 100
Mbps data rate for uplink transmission and 600 Kbps for downlink transmis-
sion. The allowed latency is 200 and 20 ms for uplink and downlink transmission
respectively. Using a UAV for surveillance needs 20 ms of end-to-end latency in
both uplink and downlink transmission. The essential data rate for this kind of
application is 120 Mbps for uplink and 50 Mbps for downlink transmission. For
controlling an UAV through HD video where the speed of the UAV is less than
160 km/h, the required uplink data rate is 25 Mbps and the downlink data rate
is 20 Mbps. For this kind of application, end-to-end latency is 100 and 20 ms for
uplink and downlink transmission [18] respectively.

Table 4 represents the communication requirements for the different drone
based use cases. These requirements are published by the China Mobile in a
“4G+, 5G UAV white paper” [20].

3.3 3GPP Vision

In this section, we will discuss the UAV requirements described in the 3GPP
Release 17 [18]. The following section provides an overview of communication
services for UAVs and problems in unmanned aviation.
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Table 3. UAV payload communication Requirements [18].

UAV applications Above ground
level (m)

Max UAV
speed (km/h)

End-to-end latency
(UP/DL)(ms)

Data Rate (UP/DL)

8K Video Real-Time
Broadcasting

<100 60 200/20 100 Mbps/600 kbps

4X4K AI Surveillance <200 60 20/20 120 Mbps/50 Mbps

Remote UAV
Controller Through HD
Video

<300 160 100/20 25 Mbps/300 kbps

Table 4. Communication Requirements for drone based applications [20].

Drone based
application sector

Coverage
height (m)

End-to-end
latency (ms)

Throughput requirements
(UL/DL)

Delivery of goods 100 500 200 kbps/300 kbps

Videography and
image capturing

100 500 30 Mbps/300 kbps

Security and
inspection

100 3000 10 Mbps/300 kbps

Drone fleet show 200 100 200 kbps/200 kbps

Agriculture 300 500 200 kbps/300 kbps

Rescue mission 100 500 6 Mbps/300 kbps

1. Mobility Management: 5G network should be able to relatively quickly
adapt to the mobility pattern of UAV during an active session. This primarily
includes maintaining IP addresses and reducing packet loss and interruption
time while performing handover at relatively high speeds.

2. Security: 3GPP has paid special attention towards maintaining high-security
standards for UAV communication. Some of the features include encrypting
data exchanges between UAV and Unmanned Traffic Management (UTM)
and blocking data from unreliable UAV. 5G should be able to provide con-
fidentiality regarding personally identifiable information from UAV, and 5G
should also be able to support various levels of integrity and privacy protec-
tion.

3. Priority, QoS, and Policy Control: 5G communication systems should be
able to provide different priority levels to the services which may share the
same QoS characteristics but varying levels of priority. It should also be able
to provide mechanisms for measuring E2E QoS and the dependability of the
network and different services offered.

4. Positioning Services and Remote Identification: Accurate identifica-
tion of the location of a UAV in the cell is an extremely important feature of
the 5G system. 3GPP systems should provide a way to validate the position
reported by the UAV utilizing 3GPP and non-3GPP positioning systems. The
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network should also be able to provide UE identity by means of IMEI, IMSI,
IP, etc. UE capabilities and other flight-related information at any given time.

5. UAS Traffic Management: 5G network should be able to traffic manage
the communication between UAV and UTM with a maximum latency of
500ms. The network should be able to carry out short-range message transfer
(up to 600m) such as position and collision avoidance data intra-network as
well as inter-networks with less than 100ms of latency at a relative speed of
320 km/h

6. Service Performance Requirements: The 3GPP system should be able
to provide network-related Key Point Indicators (KPIs) (UL/DL data, packet
drop, latency, etc.) for payload (e.g., images, real-time video, sensory infor-
mation, etc.) as well as non-payload related services (e.g., C2, telemetry, etc.)
offered by the system.

4 Related Work

In this section, some previous research works and findings are given. We have
divided these findings based on cellular technical parameters, which play a sig-
nificant role in communicating and navigating the drones.

– Security: Authentication and key agreement, data integrity, cryptographic
algorithm, etc. are the key elements of the 5G security standards. 5G stan-
dard significantly improves consolidated authentication procedure than the
one used in 4G. Apart from the network-provided security improvements, it
is also crucial to provide different ways to encrypt the application data. One
such approach is described in [25] by integrating blockchain into 5G commu-
nication by implying permission blockchain technology for decentralized data
management system.

– Latency: The latency constraints imposed by the 5G standard for support-
ing critical applications is very high. For instance, a remote UAV controller
through HD videos has a latency budget of 20 ms, whereas an 8K video live
broadcast at 100 Mbps has a budget of 200 ms. The requirements get even
stricter when it comes to command and control UAV applications. UAV ter-
minated control messages have a maximum latency budget of 10 ms in an
autonomous flight. Xiaopan Zhu and et al. [21] have managed to successfully
implement a Clustering method for large-scale drone swarms to reduce the
latency. The OPNET model can effectively form different sizes of clusters to
improve the transmission efficiency and ability to execute the task. Xiang-
wang Hou and et al. [22] describes a distributed fog computing architecture
for improving the latency and reliability of wireless communication. Another
method described in the 3GPP standards is to use Network-slicing to improve
the network’s performance and reduce the latency of the communication.

– Bitrate: Most commonly described application of the use of drones is to
stream high-quality video for surveillance, remote inspection, etc. In order to
transfer HQ video from a drone to an application server, the communication
system should be able to provide high bitrate in the Uplink direction. The
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Fig. 2. Operation of UAV over cellular coverage-5G

use of millimeter-wave (mmWave) frequency band for communication will
definitely help in achieving high bitrates; however, the performance is suscep-
tible to obstacles and beam misalignment. Woongsoo NA and et.al [23] their
work proposes a deep-learning-based TCP (DL-TCP) model that can quickly
adapt to the TCP conjugation and window sizing by prediction based on the
network performance. DL-TCP shows much higher network throughput and
stability than just using TCP for the data transfer.

– Wireless Coverage: Bin Li et al. have explored some potential challenges
for drone communication in [24]. One of the crucial challenges in UAV based
application is to provide reliable coverage to command, control, and navigate.
To ensure reliable coverage in a particular direction beamforming technique
is feasible. It uses multiple antenna array to transmit uniform signal to one
direction. It helps to enhance signal strength, data transfer speed and avoid
the interference [28]. H.C Nguyen et al. have surveyed that beamforming
solution has capability to increase the Signal to Interference plus Noise Ratio
(SINR) in both uplink and downlink transmission [29]. Drones have possibility
to detect higher number of interfering signals from the cellular base stations
deployed in the vicinity [26,27]. This is because of elevated height. Interference
due to multiple neighbouring or line of sight base stations can be mitigated
using the beamforming technique. Figure 2 shows the operation of a drone
over cellular coverage using beam-forming mechanism.

5 Role of 5G in Drone Applications

Critical use cases and applications of drone have stringent requirements on the
reliability and efficiency of the communication technology used. The advance-
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Fig. 3. Summary of communication and control of UAV over 5G

ments and improvements offered by the 5G technology make it an excellent can-
didate to be used as a control and data communication technology for drones. 5G
offers guaranteed service and data delivery. 5G being a WAN technology makes
it also easy to scale up the deployment of the application. Unlike other RF-
communication technologies, the use of a private spectrum helps in controlling
the interference and noise in the communication channel. 5G also offers enhance-
ment to communication security, which is important from a critical application
perspective.

Table 5 shows the network KPIs of 5G cellular technology. It has data rate
up to 10 Gbps and 20 Gbps for uplink and downlink transmission respectively.
The promised latency of 5G network is less than 1 millisecond and reliability is
99.999%. It can connect 100x number of devices per unit area [31]. 5G standalone
system also includes the functionality of Ultra-Reliable Low Latency Commu-
nications (URLLC) and enhanced Mobile Broadband (eMBB). In Release 16,
3GPP has enhanced URLLC and able to reduce the latency up to 0.5 ms [32].
To design and develop a drone based application on cellular based command,

Table 5. 5G network key point indicators [30,31].

Service parameter Network KPI Section

Peak data rate DL: 20 Gbps, UL: 10 Gbps EMBB

Throughput DL: 100 Mbps, UL: 50 Mbps EMBB

Latency 4 ms for eMBB, 1 ms For URLLC EMBB, URLLC

Reliability 99.9999% URLLC
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control and navigation, the required communication QoS are summarised in the
Table 2 and 3. These standardized parameters are given by 3GPP. If we compare
these QoS with 5G, we can say that the 5G communication system can support
drone based applications. Figure 3 shows some substantial specifications of 5G,
that can be utilized to strengthen drone communication and control.

Based on 3GPP documentation reliability depends upon packet loss in uplink
transmission. Mentioned in release 15, reliability is defined as successfully deliv-
ery of X bytes of data packet with-in acceptable delay. Where delay is the time
taken to deliver the data packet from layer 2 of radio protocol transmitting
ingress point to layer 3 of radio protocol receiving egress point at adequate sig-
nal strength. In general, URLLC vision defined by 3GPP is 1 − 10−5, which
means in available coverage, for a single transmission, probability of successful
delivery of packet data unit should be 99.999% in 1 ms of time interval [33].
Whereas, if we define the reliability in terms of drone community or drone based
application, network connectivity should be available for 99.999% of time. Hence,
it can be inferred that cellular network operator and application developer based
on drones they have different terms for defining reliability.

It concludes, requirements specified by 3GPP are expressly overlaying user
plan. Therefore, to develop an application using 5G as communication backbone
with UAVs, end-to-end latency and reliability requirements of specific appli-
cation should also be taken into consideration. The mentioned specification of
reliability is inadequate to outline the variety of use cases such as enhanced
Vehicle to Everything (eV2X) and drone communication and navigation based
on 5G cellular communication [34]. In summary, defining reliability is critically
important for communication and navigation of drones. There should be com-
mon parameters which will be used to define the reliability for cellular based
drone communication.

6 Conclusion

In this paper, the authors have given an overview of drone communication
requirements and challenges for the upcoming 5G standard and 3GPP vision for
UAV communication. We have described improvements supported in the 3GPP
Release 17, and related works and techniques to achieve them. The paper goes
over the essential parameters for drone communication and navigation as well as
provides an overview of rules and regulations imposed by governmental bodies
in different regions at the time of writing this article. Although there are several
improvements both in the 5G standards as well as by individual researchers to
provide better UAV communication, there is still further field testing required
before autonomous drones can be deployed for various industrial applications.
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Abstract. Bluetooth Low Energy (BLE) is one of the technology for
indoor positioning. The coordinates in indoor positioning are calculated
from the radio signal strength, although distance errors occur between
the measured and calculated positions. This paper proposes the method
for selecting BLE beacons in multi-point positioning for distance error
reduction. The proposed method consists of Learning and Calculation
Phase. The correct values used in the proposed method are the values
measured with the tape measure. The Learning Phase obtains features
from the RSSI distribution of each beacon and uses them to compute
the coordinates in the Calculation Phase. The Calculation Phase is used
for navigation with an allowable distance error of 0.5 [m] based on a per-
son’s shoulder width. The proposed method calculates the typical value
from the Learning Phase based on the probability that it fits within the
distance error range of 0.5 [m]. The calculated position uses the log-
arithmic approximation to convert the beacon’s radio signal strength
to the distance. The experiment for measuring the distance error com-
pares the proposed method calculated, the existing method calculated
by two-dimensional three-point positioning, and the tape measure-based
method. The number of combinations in three-point positioning was also
changed to compare the accuracy. The mean distance error compared to
the value measured with a tape measure was 1.337 [m] for the existing
method and 0.449 [m] for the proposed method. The proposed method
is 66.3% less distance error than the existing methods.

Keywords: Internet of Things · Bluetooth low energy · Indoor
positioning · Multi-point positioning

1 Introduction

Bluetooth Low Energy (BLE) is one of the extensions to the Bluetooth specifi-
cation. BLE beacons are popular in general because they are low cost, low power
consumption, and ease of deployment [6]. The global indoor location market size
is expected to grow from USD 7.0 billion in 2021 to USD 19.7 billion by 2026 [3].
However, BLE beacon technology is sensitive to radio waves from other devices
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and causes distance errors in positioning because its frequency is based on 2.4
[GHz] radio band. The distance error is also caused by desks, chairs, and peo-
ple. BLE provides several kinds of parameters related to location estimation and
received radio signal strength indicator (RSSI). This paper focuses on RSSI, and
accurate indoor location estimation requires RSSI converted to actual length.

The rest of this paper is organized as follows. Section 2 describes the related
studies for improving the accuracy of indoor positioning using RSSI. Section 3
describes preliminary arrangements, the calculation of the coordinates, and the
use-case scenario. Section 4 describes the software architecture created and the
experiment method. Section 5 describes the evaluation. Section 6 describes the
challenges of this study and analysis the proposed method. Section 7 concludes
the paper with some final remarks.

2 Related Studies

Zixiang et al. proposed the fingerprinting method based on the RSSI ranking
of BLE [5]. Their method used Kendall Tau Correlation Coefficient. The RSSI
ranking was calculated by relating the radio wave location to multiple iBeacon
devices placed in the store. The experimental results showed that mean of the
distance error was 0.87 [m]. Their results were only done in one room. The
architecture needs to be adaptable to multiple locations.

Zhu et al. proposed the method that combines RSSI-based offline learning
with online positioning [4]. The offline learning used the classified linear approx-
imation based on the log-normal distribution model. The propagation model of
RSSI was learned to reduce the effect of different beacon locations on positioning
accuracy. A Gaussian filter was designed for pre-processing the received signals.
The online positioning utilized the weighted sliding window. The weighted sliding
window was used for online positioning to reduce the variation of the real-time
signal. The localization algorithm based on Taylor series expansion reduces the
error of target coordinates by the ordinary least squares method. The results
showed that the probability of positioning errors is less than 1.5 [m] was more
than 80%. The indoor positioning method is known as PDR [1].

Thai-Mai et al. proposed an indoor positioning system using iBeacon and
smartphone sensors [2]. The method estimated the initial position by converting
RSSI to distance and using the median filter and triangulation method. The
position determination utilized fingerprinting method. The results show that
the error was less than 1.8 [m] with more than 90% probability.

This method needs improvement because it is not adaptable to each envi-
ronment, and the error is more than 1 [m]. Indoor navigation in tight hallways
requires that the distance error be less than 0.5 [m].

3 Proposed Method

This study aims to reduce the distance error compared to the existing method
using three-point positioning of two-dimension. The proposed method is based
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on the probability of an RSSI value within the 0.5 [m] error range of the typ-
ical value per 1 min. The typical value in this paper is the statistically defined
standard value in the ever-changing RSSI that can be converted to the dis-
tance. In addition, there are two major phases in the proposed method. The
first phase obtains RSSI from each installed beacon, and the weights are calcu-
lated while selecting representative values from the frequency distribution. This
paper defines the first phase as the “Learning Phase.” The second phase is to
select several optimal beacons within the range that can be detected by the IoT
device and calculate the distance error with multi-point positioning. This paper
defines the second phase as the “Calculation Phase.”

Learning Phase

The Learning Phase calculates the weights by numericizing the differences
between each beacon. The beacons have the same standard but different radio
wave output strengths and the features are acquired by quantifying the differ-
ence. The process is handled in two ways. The first is to convert RSSI to dis-
tance using the logarithmic approximation formula. The second is to calculate
the Confidence Level for beacon selection in multi-point positioning.

The first process is described in the following sentences. The logarithmic
approximation calculates the distance between each beacon and the IoT device
from the RSSI. The radio signal strength decays with a shape closer to convex
than the Friis transmission formula. The actual distance in this paper is measured
using a tape measure. The logarithmic approximation is shown in Fig. 1.

Fig. 1. Logarithmic approximation formula for pre-processing.

Figure 1 shows RSSI values on the y-axis and the distance between the beacon
and the IoT device on the x-axis. The data is collected at four different distances
from 0.5 [m] to 2 [m]. The device collects data about 400 times in 10 min at each
distance. The polynomial for the conversion between RSSI and distance is based
on the natural logarithm approximation. The Learning Phase calculates the
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coefficient of approx. 9.1 and the intercept of approx. –24.3 for LN(x) in Fig. 1.
The radio signal strength is decayed as the distance between the transmitter and
receiver increases. The attenuation of the radio signal strength is approximated
as the convex downward asymptote. Each beacon creates a different polynomial
to convert the RSSI value to distance. The different polynomials reduce the
distance error due to individual differences. The index for selecting beacons is
called Confidence Level (CL) in the proposed method. CL is calculated from
three processes. A summary of the three processes is shown in Fig. 2.

Fig. 2. Calculation of the Confidence Level.

The first ( 1©) is to get RSSI at each beacon for a while and calculate the
Typical Value. The Typical Value is calculated for all beacons, with the currently
calculating beacon as the target beacon. The Typical Value of the i-th beacon
in the proposed method is called RSSIi. RSSIi is the mean of the maximum
number of each split. Figure 3 shows the process of calculating the Typical Value
from the frequency plot with the number of RSSI collections on the y-axis and
the radio signal strength on the x-axis. The value is set to 1 if it increases, –1 if
it decreases, and 0 if it is unchanged compared to the previous value.

Typical Value = ROUND

(
1

beaconN

beaconN∑
i=1

RSSIi

)
(1)

Confidence Level (CL) = MIN(ProbabilityA, P robabilityB , ...) (2)

RSSIi is the mean value of the spliti, including mode. The second ( 2©) is to
set the Typical Value for the target beacon by calculating the mean of RSSIi.
The number of beacons is beaconN , and the mean value of each beacon is RSSIi.
The Typical Value of the target beacon is described by the formula (1). The third
( 3©) is that it calculates CL from the probability of receiving the Typical Value.
CL is the percentage of the number of RSSI that fall within the specified range.
The Calculation Phase is as follows. The RSSI value equal to 0.5 [m] is calculated
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based on the value of the Learning Phase. The proposed method uses the range
of ±2 [dBm]. The number of RSSI in the range of ±2 [dBm] from the Typical
Value is counted, and the overall percentage is calculated.

Fig. 3. Calculation of the Typical Value for each beacon.

CL is calculated for all placed beacons. CL is calculated for the beacons
within the range of the correct RSSI to distance conversion among the placed
beacons. The flow from 1© to 3© of the proposed method is defined as the Learn-
ing Phase. Finally, the Learning Phase impacts RSSI as little as possible.

Calculation Phase

The proposed method selects beacons based on two parameters to calculate
multi-point positioning. The first parameter is the measured value that is not
changed easily based on the Learning Phase. The second parameter is close to
an IoT device that receives radio signal strength.

The process has three steps. The first is to calculate the weights based on CL
calculated in the Learning Phase and the distance between the beacon and the
IoT device. The second is to select beacons based on the weights to calculate the
coordinates of IoT devices by multi-point positioning. The third is to select the
number of beacons with the minor distance error in the multi-point positioning.

The case of nine beacons is shown in Fig. 4. The radio signal strength of
BLE becomes smaller as the distance between the IoT device and each beacon
increases, and the value of RSSI becomes an evident change. CL and distance
define the weights used for calculation in the proposed method.

The IoT device has a limited range that can convert the distance to RSSI.
This range is shown by the circle centered on the IoT device. The limited range
is the orange circle shown in Fig. 4, and the radius is defined as R. This radius
R is calculated by converting the radio signal strength to distance based on the
RSSI collected during the Learning Phase.

In this case, Beacon1, 6, and 8 are not used for multi-point positioning. The
case of four-point positioning is shown in Fig. 5. The four-point positioning is
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calculated by selecting four beacons. Each beacon is sorted in descending order
of weight (distance and CL). The number of beacons to be used is selected from
three to six for increased weight in the case of Fig. 5.

Fig. 4. Calculation of the weight for each beacon.

Fig. 5. Selecting beacons for multi-point positioning.

The result of coordinates at least needs three beacons to calculate, which
means there is a nC3 combination of coordinates when running the mean of
the calculation process. The four-point positioning calculates the mean of four
different coordinates. The proposed method is based on three dimensions and
assumes that the radio signal strength propagates spherically around three bea-
cons. The IoT device user is assumed to be at the point of intersection with the
sphere. An overview of the coordinate calculation is shown in Fig. 6.
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Fig. 6. Point of intersection with the three spheres.

A’s x, y and z coordinate is a1, a2 and a3. B’s x, y and z coordinate is b1, b2
and b3. C’s x, y and z coordinate is c1, c2 and c3. Formulas (3)-(5) show how to
calculate the BLE beacons A, B, and C radius.

(x − a1)2 + (y − a2)2 + (z − a3)2 = r2A (3)

(x − b1)2 + (y − b2)2 + (z − b3)2 = r2B (4)

(x − c1)2 + (y − c2)2 + (z − c3)2 = r2C (5)

(2a1 − 2b1)x + (2a2 − 2b2)y + (2a3 − 2b3)z

= r2B − r2A + (a21 + a22 + a23) − (b21 + b22 + b23)
(6)

(2b1 − 2c1)x + (2b2 − 2c2)y + (2b3 − 2c3)z

= r2C − r2B + (b21 + b22 + b23) − (c21 + c22 + c23)
(7)

(2a1 − 2c1)x + (2a2 − 2c2)y + (2a3 − 2c3)z

= r2C − r2A + (a21 + a22 + a23) − (c21 + c22 + c23)
(8)

Formulas (6)–(8) show how to calculate the plan, including the intersection
of the three spheres. The coordinate calculation uses two of the formulas (6)–(8).
The variables become x and y by inserting the IoT device’s z coordinate d3.

Use-Case Scenario

The proposed method can be used for indoor navigation, such as shopping malls.
The indoor navigation system determines the position in real-time. An image of
the navigation system is shown in Fig. 7.



24 Y. Takagi and T. Kushida

Fig. 7. Navigation in shopping malls using smartphone or browser.

The Use-case scenario of the proposed method requires two preconditions.
The user carries around an IoT device such as a smartphone. The user can
visually find his location on the map through the browser. The user uses the
proposed method based on these two assumptions. The IoT device receives the
radio wave from the beacon and acquires the radio signal strength. The radio
signal strength is converted to RSSI and sent to the server. The server then
converts the RSSI into the distance and calculates the coordinates on the map.
Real-time indoor positioning can be achieved by repeating the proposed method.

4 Implementation and Experimentation

An overview of the implementation is shown in Fig. 8. The implementation of
the proposed method has three major components.

Fig. 8. Overview of software.
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The first is the IoT device that obtains RSSI from the received radio wave
and sends it to the Web Server. The software is implemented using the ESP32
equipped with MicroPython. The second is the BLE beacon which sends radio
waves. The developed software is deployed in one IoT device and nine BLE
beacons. The third is the Web Server that calculates the coordinates and shows
them on the map. The web software is implemented on Python3 and Flask.
The RSSI value sent by the ESP32 is received by the Flask software and stored
in MongoDB. The RSSI is collected from MongoDB and converted to distance
using the polynomial.

The experimental environment consisted of four tables and a center stand.
Nine beacons transmitting radio waves and one receiving device are installed.
The layout is shown in Fig. 9.

Fig. 9. Layout of the experimental environment.

The tables are at two different heights, 0.7 [m] and 0.66 [m]. The difference is
used to check the three-dimensional calculation. Beacons are also placed in the
center to check the effect of distance and radio signal strength.

5 Results and Evaluation

Figure 10 shows the distance error variation obtained at the four positions in the
experiment. The location of the IoT device is at coordinates (1, 1), (1, 2), (2, 1),
(2, 2) in Fig. 10. The graph shows the number of beacons used and the distance
error. The results in Fig. 10 was 75% reproducible.

The ESP32 was placed, as shown in Fig. 9, and measurements were taken.
The distance error calculations used 15622 records in the Learning Phase and
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at least 3000 records for each coordinate in the Calculation Phase. The evalua-
tion method compares the distance error of the proposed method with existing
methods.

Fig. 10. Distance error results for four locations.

The comparisons are made between the three-point positioning of the pro-
posed method, the existing three-point positioning using the Learning Phase,
and the three-point positioning of the existing method. The proposed method
has two phases: the Learning and Calculation phases. The proposed method
is compared to existing methods to describe the most affected process. The
error calculation method uses L2 norm error. The calculated coordinates and
the actual position are defined as the points of the cuboid. The distance error
can be calculated as the straight line linking the points. The existing method
calculates the distance error using the Euclidean distance. The number of pieces
with the bit of distance error changed at different acquisition times. The distance
error due to the number of pieces decreased until the halfway point, and then
it tended to increase again. The optimal number from Fig. 10 is 5 for (a), (d)
and 4 for (b), (c). The optimal number of devices varies by location. This graph
shows that three or nine pieces increase the distance error by three or more than
the number of pieces with the smallest distance error. The optimum number of
pieces needs to be found between four and eight. The existing method had a
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mean distance error of 1.337 [m], and the proposed method had a mean distance
error of 0.449 [m]. The proposed method can reduce 66.3% of the distance error.

6 Discussions

Figure 10 shows the results obtained at 75% probability in the experiment. This
means that there is 25% probability of obtaining a very different distance error,
which needs to be reduced to a lower probability. Figure 11 showed the results
when the experiment included a large number of outliers.

Fig. 11. Case with the large number of outliers.

The lowest distance error was calculated when the number of devices placed
was the smallest in (e) and the largest in (f). The result in (e) is because the
devices selected in the fourth and fifth cases contained a large number of outliers.
The result in (f) is because the difference in RSSI distribution obtained in the
Learning Phase and the Calculation Phase appeared.

The Learning Phase can be improved in a few ways to increase the probability
of correct results. The leading cause of distance error for multi-point positioning
is the conversion from RSSI to distance. The error should be as small as possible
on converting from RSSI to distance. The Learning Phase requires obtaining
accurate coefficients of logarithmic approximation based on the more number
of RSSI values. The exact number of RSSI values is determined as the number
of RSSI values increases, increasing the reproducibility of Fig. 10. The solution
for improving accuracy in the Learning Phase is selecting the best splits among
RSSI values. The proposed method selects splits that contain mode, although
the acquired RSSI values include outliers. Selecting the correct splits without
the outliers can reduce the distance error.

It can also improve the small allowance range used in the Learning Phase.
The impact is small and is unlikely to include outliers. However, it is difficult
to calculate the RSSI deviation due to radio wave interference. The proposed
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method uses the minimum value of the 0.5 [m] change (±2 [dBm]) collected in
the Learning Phase. The allowable RSSI range can be changed for more accurate
CL calculations depending on the distance.

7 Conclusion

This paper focuses on reducing the distance error of indoor positioning using
RSSI in BLE. The proposed method was defined by the Learning Phase and the
Calculation Phase to reduce the distance error. The Learning Phase calculated
the weights by numerically differentiating between each beacon. The Calculation
Phase proposed the beacon selection method for multi-point positioning. The
beacon selection method is based on the number of RSSI values obtained within
the specified threshold range per unit of time. The paper examines the results
between the existing methods and proposed methods. The mean distance error
on the existing method was 1.337 [m], and the proposed method was 0.449 [m].
The proposed method reduces 66.3% of the distance error.
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Abstract. The concept of Edge-to-Cloud Continuum aims to signifi-
cantly reduce overall traffic to the cloud by enabling IoT data processing
as close as possible to the data sources, either on near- or far-edge devices.
In this highly dynamic environment, where IoT devices and edge nodes
are constantly changing their state and location, services running on
edge nodes have to be scheduled, deployed and managed to ensure high
service availability with appropriate Quality of Service (QoS) parame-
ters. However, once services are deployed in the edge-to-cloud contin-
uum, the question arises how to ensure continuous data delivery from
IoT devices to the appropriate services for further processing, either on
edge devices or in the cloud. In this paper, we propose a general archi-
tecture for adaptive data-driven routing in the edge-to-cloud continuum
and introduce an implementation of this architecture using the content-
based publish/subscribe approach. We evaluate the given implementa-
tion against a real-world use case scenario for federated learning in an
edge-to-cloud environment hosting digital twins. The performance eval-
uation of this scenario shows that our implementation efficiently adapts
to service failures and reconfigures the edge-to-cloud environment with
minimal latency and without data loss, while preserving data privacy and
security. In addition, the experiments show that our solution is stable in
an environment with IoT data sources generating data at high frequency.

Keywords: Internet of Things · Edge computing · Data streaming ·
Publish/subscribe · Federated learning · Digital twin

1 Introduction

The majority of Internet of Things (IoT) data traffic is transmitted today over
the Internet to cloud servers for processing/storage, causing network conges-
tion and slowing down the overall processing cycle and responsiveness to events
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detected in local smart environments. The concept of Edge-to-Cloud Continuum
(ECC) aims to reverse this trend by enabling processing of IoT data as close as
possible to the data sources, either on near- or far-edge devices, so that the
overall traffic to the cloud is substantially reduced.

Devices are organized hierarchically into layers in the ECC, starting with
IoT devices, i.e., resource-constrained devices hosting sensors/actuators, at the
bottom layer. IoT devices are connected to neighboring gateway nodes and local
devices in the far-edge layer. Far-edge nodes are in close proximity to IoT devices,
either within the same local network or one hop away, and are also resource-
constrained. Near-edge is the following ECC layer, consisting of more powerful
compute nodes, e.g., a local micro-cloud with a few server racks, followed by the
cloud at the top layer with virtually unlimited resources within data centers [2].
In this hierarchical multi-tier environment, each layer offloads the upper layer by
taking over some of its functionalities, e.g., data processing or control over the
entities of a lower layer. Compute nodes placed higher up in this hierarchy are
assumed to be further away from IoT devices in terms of network distance, and
are in general more powerful in terms of computational and network resources
compared to devices at the lower layers [8]. Moreover, there is a possibility
for edge nodes to connect to other nodes at the same layer so as to share the
processing tasks and optimize the placement of services within a given layer. By
extending the cloud with additional compute nodes in the ECC, cloud processing
and storage capabilities are brought closer to the end devices. The ECC thus
offers the following benefits to IoT solutions [12]: reduced overall Internet traffic,
improved responsiveness and shorter processing cycles, enhanced security with
privacy control, and lower operational costs.

In a highly dynamic edge-to-cloud environment where IoT devices and edge
nodes are continuously changing their state and possibly also their location,
the services running on the edge nodes have to be scheduled, deployed and
managed to ensure high service availability with appropriate Quality of Service
(QoS) parameters. In our previous work [19], we focused on QoS-aware orches-
tration of services for continuous optimal service placement on compute nodes
within edge environments with volatile QoS parameters. However, once services
are deployed in an ECC, the question arises on how to ensure continuous data
delivery from IoT devices to the corresponding services running in the ECC,
while taking into account the dynamic nature of the edge-to-cloud environment.
Moreover, data-driven routing between compute nodes at different levels of the
continuum hierarchy is required since, on the one hand, the processing output
of one node becomes the input to another node, which is typically higher up
in the hierarchy. On the other hand, the invocations of actuation functions or
device reconfiguration events (e.g., updates of sensing frequency) are sent in the
opposite direction down the hierarchy, and typically require high responsiveness
to events.

In this paper, we focus on enabling adaptive data-driven routing in the ECC
without incurring significant overhead to resource-constrained IoT devices and
services deployed in the ECC. Our routing solution is based on the content-
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based publish/subscribe approach [1,6], which enables continuous data delivery
from IoT devices (data producers) to services (data consumers) running in the
ECC that express interest in receiving specific data. In addition, content-based
publish/subscribe enables seamless reconfiguration of the ECC in the event of a
compute node/service failure or service relocation without data loss. Our rout-
ing solution differs from standard publish/subscribe solutions by introducing a
mechanism that allows data producers to influence who receives their data: We
limit the number of data consumers for a given data producer and deliver data
only to those consumers that meet the producer’s QoS requirements.

Our contribution can be summarized as follows:

• We propose a general architecture for adaptive data-driven routing in the
ECC to ensure continuous data delivery to IoT services requiring specific
data for further processing, while maintaining high QoS for IoT devices and
associated services.

• We present an implementation of the proposed architecture which employs
the content-based publish/subscribe approach.

• We evaluate the given implementation through a real-world use case using
federated learning in an edge-to-cloud environment hosting digital twins. Per-
formance evaluation of the implemented adaptive data-driven routing solution
for the edge-to-cloud continuum is performed in an emulated network environ-
ment using the Imunes network emulator [17]. Evaluation results demonstrate
that our implementation efficiently reacts to dynamic changes of the edge-to-
cloud continuum, including service failures, with low latency as the main QoS
parameter, and without data loss while preserving data privacy and security.
Moreover, the performance evaluation shows that our solution is stable in an
environment with IoT data sources generating data with high frequency.

The paper is organized as follows. Section 2 provides an overview of related
work in the field of data routing in ECC. Section 3 introduces the general archi-
tecture for adaptive data-driven routing in the ECC, and Sect. 4 presents the
implementation of the architecture using the content-based publish/subscribe
approach. Section 5 demonstrates how the presented implementation can be uti-
lized in an IoT digital twin environment which applies federated learning, and
Sect. 6 provides the evaluation results and QoS measurements from our imple-
mented case study to demonstrate the benefits of our solution. Finally, Sect. 7
provides the conclusion and lists future work.

2 Related Work

The problem of service orchestration and placement in ECC is a well-known
research topic [10,15,16]. However, the problem of continuous and efficient data
routing in ECC, which comes into play once scheduling is performed, is still
underexplored. We have identified only the following three papers in this field
which are comparable to our solution. The importance of IoT data routing in
ECC is highlighted in [8], which proposes a context-aware routing scheme that
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monitors the behavior of ECC nodes—whether they accept particular data or
not—to decide whether to skip certain nodes in the ECC hierarchy and for-
ward the data directly to nodes which typically accept it. The authors have a
similar goal of reducing the communication latency. However, our solution is
quite different, as the content-based publish/subscribe approach ensures that
IoT data is delivered only to nodes that need it for further processing. This
has the advantage of significantly reducing latency and overall communication
traffic in the ECC, as routing is optimized for node- and service-specific pro-
cessing tasks and resources. Routing can also be changed seamlessly and with
a short delay to respond to changes in the ECC. Another relevant approach for
routing of IoT data is presented in [5]. It uses Semantic Routing Trees (SRT)
which allow a node to efficiently determine whether any of the nodes below it
in the ECC hierarchy will participate in a given query over an attribute [11].
The authors propose a novel approach for parent node selection when building
a SRT to reduce communication overhead. Their solution maintains a highly
volatile network topology to optimize queries for specific IoT data. Our solu-
tion similarly enables data routing based on specific data attributes, with the
main difference being that we use the publish/subscribe approach, unlike their
solution based on ad hoc queries. Moreover, our solution can route the same
data to multiple services, with an adaptive solution to select the top-K services
based on specific QoS parameters, while their solution optimizes routing to a
single data consumer. Pham et al. [13] propose a hierarchical publish/subscribe
network for the ECC focused on latency-sensitive IoT applications. Their sys-
tem delivers IoT data to interested subscribers using topic-based subscriptions
that are propagated through publish/subscribe brokers under the coordination
of a central system coordinator. To compare, our solution also utilizes the pub-
lish/subscribe mechanism to provide continuous data delivery without a direct
connection between data producer and data consumer in a ECC. However, we
propose a fully decentralized approach that does not require an external coordi-
nator since all the routing information is shared among distributed nodes, while
we allow a data producer to limit the number of consumers receiving data to
save network bandwidth and processing power. Also, we support content-based
subscriptions to provide a fully interoperable environment where a subscriber
shows interest in specific data attributes and their value ranges.

3 Adaptive Data-Driven Routing Architecture
for the ECC

One of the main challenges of edge computing is to constantly ensure high QoS
of services deployed within the ECC, while lowering the communication and
operational costs. Since compute nodes and IoT devices are part of a hetero-
geneous and dynamic environment, a routing mechanism is required to support
continuous data delivery from IoT devices to services running in the ECC, while
enabling real-time failure recovery and relocation of services. In this section we
propose an adaptive data-driven routing architecture for the ECC and introduce
its main building blocks.
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Fig. 1. Adaptive data-driven routing architecture for the edge-to-cloud continuum.

We propose the following four main building blocks of the adaptive data-
driven routing architecture for the ECC, as shown in Fig. 1: 1) IoT device (D),
2) IoT service (S), 3) data proxy (DP), and 4) node (N).

An IoT device is a constrained device with limited resources (typically Class
1 device as classified in RFC 7228 [3]) that performs at least one of the following
tasks: It may sense the environment to generate measurements/data, send the
generated data to a compute node, or perform actuation functions. An IoT device
is connected to the Internet through a gateway since it is a resource-constrained
device requiring an additional compute node to receive and (pre)process the
generated data or to make a decision about invoking an action to be performed
by the actuator.

An IoT service is responsible for receiving data from IoT devices, data pro-
cessing/storage, and sending of actuation commands to IoT devices. An IoT
service is assigned either to IoT devices or IoT services from the underlying
layer that can also generate output data for further processing up the ECC hier-
archy. The IoT service must be autonomous, stateless, and portable to keep edge
service migrations short and service availability high. The best technology for
an easy-to-migrate service implementation is container virtualization because
once a service is packaged, it can be easily migrated with reduced startup time
compared to other methods. We use it in our implementation study.

A data proxy is the most important component in our system which deliv-
ers the data to the target services within the ECC or propagates messages to
IoT devices. This component has to be autonomous and able to quickly adapt
to changes in the dynamic edge-to-cloud environment. Its main functions are
explained in the following two subsections.

A node is the compute node of the ECC which hosts services at a data layer
and compute layer. The data layer is responsible for data routing and running
a data proxy, while the compute layer is in charge of running IoT services. This
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node must be able to start a required service with short delay and can run on
any available resource within the ECC: at the far edge, near edge or in the cloud.

3.1 ECC Topology Setup

A hierarchical network of data proxies is responsible for data routing between
IoT devices and services which act as clients to DPs. There are two types of
DP clients: data producers and data consumers. Data producers must provide a
semantic description of the data they are producing, and data consumers must
provide a description of the data they are interested in. A DP client is responsible
to connect to the DP as either a data consumer or producer, and the DP will
handle the data routing. IoT devices and IoT services act as both producers and
consumers in this architecture. If an IoT device generates data that must be
processed by an IoT service, it is a producer, and the IoT service is a consumer
of data. However, an IoT service can act as a producer when it generates new
data by processing received data, which is then forwarded to other services, or
it can generate data in the form of an action to be performed by an IoT device,
in which case the IoT device acts as a consumer.

Data proxies are interconnected in a hierarchical topology, as already shown
in Fig. 1, where each DP has exactly one parent in the upper layer of the hier-
archy. A parent DP is chosen based on the following criteria: network distance
between the child and the parent DP; and the parent DP’s load.

When a new node joins the network, it must first determine the layer in
which it will operate. The cloud node is the first node to enter the network and
must be statically configured. As a result, a new node can become either a far or
near edge node. If the node is connected to the public network, it is designated
as a near edge node. Otherwise, it acts as a far edge node. After determining its
layer, the node queries the system for the nearest upper layer nodes to which
it can connect. Then it examines the load of the identified nodes and chooses
its parent, i.e., the node with the lowest number of connected child DP’s, or
the closest one in terms of network distance. If the node loses connection to its
parent DP, the process is repeated.

Clients (IoT devices and services) begin connecting to the system once the
ECC topology has been set up. To produce or consume data, clients, both pro-
ducers and consumers, must connect to their DPs. IoT services use a simple DP
discovery mechanism as they connect to the DP running on the same node. IoT
devices use a DP discovery mechanism similar to the one used by nodes joining
the network. First, an IoT device looks for a far edge node in its private network
and, if one is found, connects to this DP. Otherwise, it retrieves the closest near
edge nodes and chooses the node with the lowest load.

3.2 Data Routing Mechanism

The routing within the network of DPs is performed based on the parameters
defined by a producer. When connecting to a DP, the producer becomes a data
source and specifies the following:
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• data description: semantic description of the data which will be produced.
• consumer limit : the maximum number of consumers allowed to receive the

data.
• QoS requirements: the requirements that are taken into account when select-

ing an appropriate consumer or consumers for the producer’s data, such as
latency, throughput or security.

Algorithm 1. Initial routing setup
Require: producer, dataDescription, consumerLimit, qos

1: consumers ← getInterestedConsumers(dataDescription)

2: if consumers.size ¿ 0 then
3: consumersSorted ← filterAndSortConsumersByQos(consumers, qos)

4: producerConsumers ← markTopKConsumers(consumersSorted, consumerLimit)
5: storeProducerConsumers(producer, producerConsumers)
6: return activateProducer(producer)

7: end if

Algorithm 1 defines the initial routing setup performed by a DP. When a
producer provides a description of the data to its assigned DP, the DP prop-
agates the description to all DPs in the system which compare the producer’s
description with the description of the data that their consumers are interested
in and return interested consumers to the assigned DP. After that, the assigned
DP filters and and sorts interested consumers based on the producer-defined
QoS parameters. The consumer’s approximate QoS level is calculated using the
information received from other DPs or an external entity. For example, the
number of network hops from the consumer to the producer can be used to esti-
mate latency. After the consumers are sorted, the top-K consumers are selected
as data destinations respecting the consumer limit, and the entire sorted list
of consumers is also stored by the DP to quickly adapt to possible consumer
failures/relocations within the ECC. Finally, if at least one consumer is selected
as a data destination for the producer, the producer is activated and can begin
sending data to the DP. Otherwise, there is no need to produce and route data
through the ECC if there are no consumers requiring the data. Note that a
special mechanism can be set up to start an adequate service for processing pro-
ducer data in the ECC, but this mechanism is outside the scope of this paper as
it relates to service orchestration and scheduling.

Algorithm 2 defines a procedure for a DP to route the received data to the
top-K consumers. After retrieving the list of top-K consumers, the DP forwards
the data to the consumer if it is directly connected to the DP or to the next DP on
the shortest path to the consumer’s DP. To reduce the overhead of computing the
top-K consumers when new data is produced, the routing algorithm retrieves the
list of previously computed top-K consumers for a given producer and forwards
the data to them. If the desired QoS level for the producer is not achieved, the
producer can re-trigger the setup procedure (Algorithm 1), which updates the
list of top-K consumers. If a producer relocates and a new DP is assigned to the
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Algorithm 2. Data routing
Require: producer, data
1: topKConsumers ← getTopKProducerConsumers(producer)
2: for consumer ∈ topKConsumers do
3: if consumer.assignedDP == currentDP then
4: forwardData(data, consumer)
5: else
6: forwardData(data, getNextDP (consumer))
7: end if
8: end for

producer, another setup procedure is triggered on the newly assigned DP, and
the data will be automatically re-routed to the new top-K consumers.

Fig. 2. Failure recovery mechanism.

One of the key requirements of the proposed architecture is failure recovery,
which is illustrated in Fig. 2 where consumer limit is set to one. To ensure real-
time failure recovery, as previously defined, producer’s DP maintains a complete
and sorted list of all consumers which are interested in data produced by pro-
ducer P1 and meet its QoS, as illustrated in Fig. 2.a, where the data from P1

is forwarded through its DP to C1. When a consumer fails or exits the system,
e.g., C1 as shown in Fig. 2.b, this information is propagated from the consumer’s
DP to the producer’s DP (which is the same DP in Fig. 2.b). The unavailable
consumer is removed from the DP’s list of consumers maintained for P1, and the
next consumer in the list is marked as the selected consumer for consuming P1’s
data. Subsequently, the produced data is forwarded by producer’s DP to the DP
on the path to the new consumer, as depicted in Fig. 2.c where P1’s DP forwards
P1’s data to C2’s DP which delivers it to C2 for processing/storage. Note that
P1 is unaware of the entire reconfiguration process which is performed by the
network of DPs.

4 Content-Based Publish/Subscribe for Adaptive
Data-Driven Routing

Publish/subscribe is a messaging pattern for continuous data delivery in dis-
tributed environments, where the data is delivered from data producers, pub-
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lishers, to data consumers, subscribers, based on their subscriptions. Consid-
ering the key requirement of the proposed architecture, i.e. continuous data
delivery to the target services which are dynamic, we concluded that the pub-
lish/subscribe mechanism is perfect for implementing adaptive data routing for
the ECC, since no direct connection between a consumer and a producer of the
data is required, and the data can be easily forwarded to a new consumer via pub-
lish/subscribe brokers in case of consumer failure or relocation. Content-based
publish/subscribe is a type of publish/subscribe middleware where subscribers
subscribe to the specific content, i.e., the specific attribute properties of the
data events [6]. We chose this approach to implement the proposed architecture
because we want to enable interoperable IoT environments where the same data
can be consumed by various services in different domains, which is enabled by
content-based subscriptions. Based on our previous research results [1,14] and
the lack of existing publish/subscribe solutions with native support for both
hierarchical topology and content-based subscriptions which limit the number of
subscribers to top-K according to publisher preferences, we decided to implement
our original content-based publish/subscribe solution in line with the require-
ments of adaptive data routing in the ECC.

Publish/subscribe solutions use three main entities which can easily be mapp-
ed to components in the proposed architecture: publisher, subscriber and broker.
Publisher can be mapped to data producer, subscriber to data consumer and bro-
ker functionality is provided by data proxies. We use the the standard publish-
subscribe-notify communication pattern enhanced with an announce message in
our solution. A data producer performs all functionalities of a publisher in the
proposed architecture. It can announce itself as a data source using the announce
message which lists the data attributes that the producer will publish, consumer
limit and QoS parameters. For example, in our use case we are minimizing
latency and limiting the geographical area where the data may be consumed
in line with privacy and security requirements of a data producer. The data is
published by a publish message sent to its DP; the DP propagates the message
further to relevant DPs and data consumers. A data consumer shows interest in
specific attributes and their values using the subscribe message which is submit-
ted to its DP. A data proxy integrates a publish/subscribe broker which is the
key entity that routes all messages and published data to the target subscribers.
Brokers residing within DPs form a hierarchical network topology following the
rules defined for creating a DP network specified in Sect. 3.1.

The routing of messages in the network of DPs is performed in the following
way. The DP receives subscribe messages from its consumers and holds them
in the local storage. When a producer sends an announce message to start pro-
ducing data, its DP forwards the message via broadcast to be delivered to all
DPs in the system. Each DP, when receiving the announce message, checks if
the announcement matches its local subscriptions and, if it does, the subscrip-
tion is propagated to the source DP using the subscribe message. The source
DP collects the subscriptions, filters them and sorts by the QoS requirements,
and activates the producer. When the producer sends a publish message, its DP
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selects the top-K subscriptions from the the producer’s list and forwards the data
to the relevant consumers through the DP network using the notify message. If
the desired QoS level of the destination service falls below a certain threshold
for the producer or the producer has changed its location, the producer restarts
the announcement process so that its DP can re-calculate the top-K subscrip-
tions. Failure recovery is implemented in line with the example illustrated in
Sect. 3.2. The assigned DP holds a list of subscriptions for the announcement of
its producer. If one of the consumers disconnects from the network, all of its sub-
scriptions are removed from the announcement subscriptions list and the next
subscriptions move forward in the list. If one of the removed subscriptions is one
of the top-K subscriptions, the next subscription in the list becomes the top-K
subscription and a path from the producer towards the respective consumer is
enabled within the network of DPs.

5 Case Study: Federated Learning for Digital Twins

Federated learning (FL) is a machine learning technique where a shared global
model is trained on a set of distributed devices with the coordination of a central
server [9]. Local devices, i.e. workers, train the model only on local data and
forward local model updates to a central server for model aggregation, which
increases security and privacy of the data set and reduces network traffic.

The motivating example for our case study is the work by Zhou et al. [18]
which points out the necessity for load balancing and data scheduling between
different FL clients. The solution identifies four control decisions: i) admission
control - accepting or denying newly arrived data; ii) load balancing - distributing
data to different edge nodes; iii) data scheduling - scheduling data for execution;
iv) accuracy tuning - selecting accuracy for the local model computation. Our
adaptive streaming solution can ensure continuous data delivery to FL clients
and support admission control. Additionally, it can activate or deactivate data
producers based on the needs of FL clients, and facilitate load balancing by
routing data to the appropriate consumers selected based on consumer load. To
highlight another important characteristic of our solution, latency-aware routing,
in the case study we implement a digital twin solution based on FL which is
modeled by Gupta et al. [7]. The authors propose a hierarchical FL model for
smart healthcare where each patient is represented by a digital twin (DT). As
patient data demands high privacy, the models are only trained on FL clients
running on hospital servers, and only model updates are shared globally. Finally,
patient DTs are updated after a global model update has been received.

In the case study shown in Fig. 3, IoT devices generate data which is sent to
a service that maintains a digital twin (DT) for a device. The DT compares the
received data with the digital representation of the device and takes action if the
current reported state does not match the desired state of the device. The action
to be taken is sent to the device. In addition, the DT service filters all outliers
and sends the filtered data to its local model client (LMC) for training. When
a sufficient data volume is received by the LMC, it performs training and sends
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Fig. 3. Case study: digital with with FL.

local model updates to the global model server (GMS) running in the cloud for
model aggregation. The GMS aggregates all model updates, combines them into
a new model, and propagates the new model to all local clients. An LMC can
also perform predictions based on the received data and can update a digital
twin based on prediction results.

DT services are primarily placed on far edge nodes to minimize response
latency, but they can also be placed on near edge nodes for redundancy, if far
edge nodes fail. LMC’s are placed on near edge nodes, while the GMS is placed in
the cloud and replicated for redundancy. When a device connects to the network,
it sends the announcement which contains the attributes of the data which will
be generated, consumer limit set to one so that only one DT processes its data,
and latency as the QoS parameter so that its DT service is chosen to act in the
shortest time possible. DT services also serve as data sources for LMCs, and
create announcements specifying the attributes of the data which will be sent
after processing, set the consumer limit to one so that only one LMC performs the
training on it, and limit the geographical area where the data can be consumed
to increase privacy and security. Finally, LMC announces its attributes which
relate to local model updates, doesn’t set the consumer limit so the data will
end up in all GMS nodes in the cloud for redundancy, and no QoS parameters
are specified if there are no specific requirements for choosing a particular GMS
node (they are replicas in our use case scenario).

6 Evaluation Study

Since the ECC environment is very dynamic and highly distributed, it is desirable
to use a network simulation tool to simulate network delays and failures. For
this purpose, we used the Imunes network emulator/simulator. Imunes is an
integrated multiprotocol network emulator/simulator based on the FreeBSD and
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Linux operating system kernel, partitioned into several lightweight virtual nodes
that can be interconnected via kernel-level links to form arbitrarily complex
network topologies [17]. Imunes is used to simulate network delays and failures
between ECC nodes and devices which are emulated as Docker containers. The
implemented topology follows the one shown in Fig. 3: It consists of one cloud
node (cloud1 ), two near edge nodes (near1, near2 ), four far edge nodes (far1,
far2, far3, far4 ) and four devices, one per each far edge node. The delay between
the far and the near edge node is set to 10ms and the delay between the near
edge and cloud node is set to 50ms.

6.1 Performance Evaluation Scenarios

Three scenarios are designed for the DT case study to demonstrate and test
our routing solution. Scenario S1 investigates the failure recovery mechanism by
simulating DT service failures. The scenario starts at t1 with a device, connected
to node far1, generating data which is processed by the DT instance running also
on far1. Then, at t2, the DT instance is terminated and the traffic is re-routed to
the DT instance running on the node near1. Finally, at t3, the DT instance on
the near edge node crashes and the data is re-routed to the backup DT running
in the cloud.

Scenario S2 demonstrates the ability of the ECC to quickly adapt to QoS
changes. Similarly to scenario S1, a device connected to far1 starts generating
data at t1 which is processed by the DT instance on far1. However, the instance
fails at t2 and the data is re-routed to a DT instance running on cloud1. Each
DT instance is implemented so that it periodically sends receipt confirmation
message back to a device which generated the data. This message is used by
the device to determine the RTT between the device and a DT instance to
check whether the QoS requirements are met. When RTT increases and reaches
a value over 100ms, the device triggers a re-routing procedure by sending a
new announce message, as explained in Sect. 4. When the device starts the re-
announcement process at t3, a new DT instance is found on the node near1
and the data is re-routed to this DT instance which meets the device’s QoS
requirements.

Scenario S3 demonstrates the privacy-aware characteristic of our solution,
as it is vital for any FL-based use case. To continuously ensure data privacy, a
DT instance limits the geographical area where the data may be consumed by
a LMC (far1, far2, near1 ). When S3 starts at t1, the DT running on far1 is
connected to the LMC on near1. The LMC instance fails at t2, and even though
there is another LMC instance on the node near2, the data is not delivered to
this instance due to privacy restrictions, meaning that the instance is not in the
allowed area. Finally, a new LMC instance is started at t3 on far2 which is in
the allowed area, and the data is automatically re-routed to this instance.

6.2 Evaluation Results

Figure 4 shows the RTT between the device and DT for scenario S1. We can
observe that after t1 RTT is around 10ms when the device is connected to the far
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edge node running its DT, while it increases to approx 35ms after t2 because the
new DT instance is running on a near edge node. Finally, after reconfiguration
at t3, the RTT increases again as the new DT instance is running in the cloud.

Figure 5 shows the RTT between the device and DT for scenario S2. We can
observe that after t2 RTT increases significantly since the newly assigned DT
instance is running in the cloud. As the device observes that the RTT is higher
than its threshold of 100ms, the device triggers a new announcement procedure
at t3 and the RTT decreases as the processing instance is running on the near
edge node.

Figure 6 illustrates the RTT between the DT and LMC for scenario S3. The
graph shows that after t2 the data is not being sent to LMC as there is no LMC
instance which meets the privacy requirement. Finally, at t3, the data is again
being sent and processed as a new instance has been found which meets the
privacy requirements. All evaluation results show that re-routing introduces an
overhead of approximately 30ms which only affects the first message sent to the
consumer. Considering the high generating frequency of the device, set at 10ms,
this overhead may be even lower at lower frequencies, as the system has more
time to respond.

Fig. 4. Scenario S1. Fig. 5. Scenario S2. Fig. 6. Scenario S3.

7 Conclusion and Future Work

Once the services are deployed in the ECC, the question arises how to ensure
continuous data delivery from IoT devices to the appropriate services for further
processing, either on edge devices or in the cloud. In this paper, we proposed a
general architecture for adaptive data-driven routing in the ECC and presented
an implementation of this architecture using the content-based publish/subscribe
approach that enables seamless reconfiguration of the ECC in case of a compute
node/service failure or service relocation without data loss. Finally, we tested
the implementation using a real-world use case with digital twins and FL, and
the results have shown that our implementation efficiently responds to dynamic
changes of the ECC.

Another key challenge for ECC is to ensure secure interactions within the
environment considering its heterogeneity so in our future work we aim to design
an appropriate authentication and access control mechanism for our routing
solution. Furthermore, to provide a fully automated ECC environment, we intend
to integrate our solution into an ECC orchestration platform, such as K3s [4],
where our data proxy component will be used to provide continuous data routing
between clients and services.
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Abstract. The design of decentralized learning algorithms is important
in the fast-growing world in which data are distributed over partici-
pants with limited local computation resources and communication. In
this direction, we propose an online algorithm minimizing non-convex
loss functions aggregated from individual data/models distributed over
a network. We provide the theoretical performance guarantee of our algo-
rithm and demonstrate its utility on a real life smart building.

1 Introduction

The popularity of sensors and IoT devices has the potential of generating
and equivalently accumulating data in order of Zeta bytes [15] annually. High
throughput, low latency, data consumption, networking dependencies are often
the key metrics in designing high-performance learning algorithms under the con-
straint of low powered computing. In recent times, there has been an alternate
trend to process data on cloud or dump into a centralized database. Commonly
known as edge computing, the new paradigm embraces the idea of using inter-
connected computing nodes to reduce high bandwidth consuming data uploads,
privacy preservation of data and knowledge on the fly.

Smart building applications typically have a profound implication on envi-
ronment in terms of energy savings, reduction of green house emission, etc. Pre-
dicting the future often forms the basis of corrective actions taken by such apps
and can be regarded as a predominant use-case of machine learning. Usually the
data is generated across multiple zones from heterogeneous sensors and forms a
setting of decentralized learning. In recent times, the hardware-software inter-
face has benefited from advances in network communication coupled with edge
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computing. Thus deploying a machine learning model in site and processing data
on the fly has become a realistic alternative of sending data to a centralised data
base. Optimizing problems to maintain robust solutions under the uncertainty
of future is a nice to have feature for such cyber physical systems. Contrary to
the classical train-test-deploy framework, online learning offers continual learn-
ing where during run time, a batch of sensor data has the potential to update
an AI model on site.

This work aligns with the edge computing paradigm by proposing an online
and decentralized learning algorithm. Online learning helps better adapt to the
uncertainty of the future where the data pattern continually changes over time.
The designed algorithm repeatedly chooses a high-performance strategy given a
set of actions compared to the best-fixed action in hindsight. Instead of having
a centralized mediator, the decentralized setting promotes peer-to-peer knowl-
edge exchanges while prohibiting data sharing between learners. Many proposed
online decentralized algorithms use gradient descent-based methods to solve con-
straint problems. Such an approach requires projection into the constraint set
that usually involves intensive computation, which is not best suited in the con-
text of sensors and IoT. We aim to design a competitive, robust algorithm in the
decentralized and online setting that has the flexibility of being projection-free.

Problem Setting. Formally, we are given a convex set K ⊆ R
d and a set of

agents connected over a network represented by a graph G = (V,E) where
n = |V | is the number of agents. At every time 1 ≤ t ≤ T , each agent i ∈ V
can communicate with (and only with) its immediate neighbors, i.e., adjacent
agents in G and takes a decision xt

i ∈ K. Subsequently, a batch of new data is
revealed exclusively to agent i and from its own batch, a non-convex cost function
f t

i : K → R is induced locally. Although each agent i observes only function f t
i ,

agent i is interested in the cumulating cost F t(·) where F t(·) := 1
n

∑n
j=1 f t

j (·).
In particular, at time t, the cost of agent i with the its chosen xt

i is F t(xt
i). The

objective of each agent i is to minimize the total cumulating cost
∑T

t=1 F t(xt
i)

via local communication with its immediate neighbors.
When the cost functions f t

i are convex, a standard measure is the regret
notion. An online algorithm is R(T )-regret if for every agent 1 ≤ i ≤ n,

1
T

( T∑

t=1

F t(xt
i) − min

o∈K

T∑

t=1

F t(o)
)

≤ R(T )

As the cost functions in the paper are not necessarily convex, we consider a
stationary measure on the quality of solution based on the Frank-Wolfe gap [11],
and that can be considered the counter-part of the regret in the non-convex
setting. Specifically, we aim to bound the convergence gap, for every agent 1 ≤
i ≤ n:

max
o∈K

1
T

T∑

t=1

〈∇F t(xt
i),x

t
i − o〉 (1)
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In the same spirit as the regret, the measure of convergence gap compares the
total cost of every agent to that of the best stationary point in hindsight. Note
that when the functions F t are convex, the convergence gap is always upper
bounded by the regret. Moreover, when the problem becomes offline, i.e., all
F t are the same, the convergence gap measures the speed of convergence to a
stationary solution.

1.1 Our Contribution

The challenge in designing robust and efficient algorithms for the problem is
to resolve the following issues together: the uncertainty (online setting, agents
observe their own loss functions only after choosing their decisions), the par-
tial information (decentralized setting, agents know only its own loss functions
while aiming to minimize the cumulating cost), and the non-convexity of the
loss functions. As a starting point, we consider the Meta Frank-Wolfe (MFW)
algorithm [3] in the (centralized, convex) online setting and the Decentralized
Frank-Wolfe (DFW) algorithm [22] in the decentralized (offline) setting. How-
ever, these algorithms work either in the online setting or in the decentralized
one but not both together. The difficulty in our problem, as mentioned earlier,
is to resolve all issues together.

In the paper, we present algorithms, subtly built on MFW and DFW algo-
rithms, that achieves the convergence gap of O(T−1/2) and O(T−1/4) in cases
where the exact gradients or only stochastic gradients of loss functions are avail-
able, respectively. Note that in the former, the convergence gap of O(T−1/2)
asymptotically matches the best regret guarantee even in the centralized offline
settings with convex functions. Besides, one can convert the algorithms to be
projection-free by choosing appropriate oracles used in the algorithm. This prop-
erty provides a flexibility to apply the algorithms to different settings depending
on the computing capacity of local devices. Our work applies to online neural
network optimization amongst a group of autonomous learners. We demonstrate
the practical utility of our algorithm in a smart building application where zones
mimic learners optimizing a temperature forecasting problem. We provide a thor-
ough analysis of our algorithms in different angles of the performance guarantee
(quality of solutions), the effects of network topology and decentralization, which
are predictably explained by our theoretical results.

1.2 Related Work

Decentralized Online Optimization. Authors [24] introduced decentralized online
projected subgradient descent and showed vanishing regret for convex and
strongly convex functions. In contrast, Hosseini et al. [10] extended distributed
dual averaging technique to the online setting using a general regularized projec-
tion for both unconstrained and constrained optimization. A distributed variant
of online conditional gradient [8] was designed and analyzed in [26] that requires
linear minimizers and uses exact gradients. However, computing exact gradients
may be prohibitively expensive for moderately sized data and intractable when
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a closed-form does not exist. In this work, we go a step ahead in designing a dis-
tributed algorithm that uses stochastic gradient estimates and provides a better
regret bound than in [26].

Learning on the Edge. Over the year, edge computing has become an exciting
alternative for cloud-based learning by processing the data closer to end devices
while ensuring data confidentiality and reducing transmission. [23] proposes a
distributed framework for non-i.i.d data using multiple gradient descent-based
algorithms to update local models and a dedicated edge unit for global aggrega-
tion. Another popular approach is to reduce the memory size of classical machine
learning models to meet edge resource constraints. [20] and [18] similarly takes
this idea by building a tree-based learning framework with a considerable reduc-
tion in memory using compression and pruning. At the same time, [6] introduce
an edge-friendly version of k-nearest neighbor [5] by projecting the data into a
lower-dimensional space. Besides traditional machine learning algorithms, adapt-
ing deep learning models to work on edge devices is an emerging research domain.
In [4,14], the authors propose a pruning technique on convolutional network for
faster computation while preserving the model ability. Another approach using
weight quantization is proposed in [21]. The current dominant paradigm is fed-
erated learning [12,16], where offline centralized training is performed through
a star network with multiple devices connected to a central server. However,
decentralized training is more efficient than centralized one when operating on
networks with low bandwidth or high latency [9,13]. In this paper, we go one
step further by studying arbitrary communication networks without a central
coordinator and the local data (so local cost functions) evolve.

Thermal Profiling a Building. Usually, building monitoring sensors are dis-
tributed across a building and thus acts as a scattered data lake with poten-
tially heterogeneous patterns. Indoor temperature is an important factor in con-
trolling Heating Ventilation Air Conditioning systems that maintain ambient
comfort within a building [7]. Typically such embedded systems run in anticipa-
tory mode where temperature prediction [2] of controlled building zones helps
in maintaining thermal consistency. A multitude of factors effect the thermal
profile like outdoor environment, opening/closing of windows, number of occu-
pants, etc, which are hard to get and often rely on intrusive mechanisms to
gather the data. Researchers have utilized deep learning models [25] in the
context of online learning of temperature, but lack the benefit of interacting
with multiple similar sensors. This study seeks to generate a thermal profile of a
building by only utilizing temperature data from multiple zones of a building in
order to extract patterns about thermal variation. The proposed methodology
not only processes data on the fly [1], but also identifies meaningful topological
data exchange networks that can best predict multi zonal temperature settings.
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2 Conditional Gradient Based Algorithm

In this section, after introducing and recalling useful notions, we will first provide
an algorithm for the setting with exact gradients. Subsequently, building on the
salient ideas of that algorithm, we extend to the more realistic setting with
stochastic gradients.

2.1 Preliminaries and Notations

Given an undirected graph G = (V,E), the set of neighbors of an agent i ∈ V is
N(i) := {j ∈ V : (i, j) ∈ E}. Consider a symmetric matrix W ∈ R

n×n
+ defined

as follows. The entry Wij has a value of

Wij =

⎧
⎪⎪⎨

⎪⎪⎩

1
1 + max{di, dj} if (i, j) ∈ E

0 if (i, j) 	∈ E, i 	= j

1 − ∑
j∈N(i) Wij if i = j

where di = |N(i)|, the degree of vertex i. In fact, the matrix W is doubly
stochastic, i.e W1 = WT 1 = 1 and so it inherits several useful properties of
doubly stochastic matrices. We use boldface letter e.g. x to represent vectors.
We denote xt

i as the decision vector of agent i at time step t. We suppose that the
constraint set K is a bounded convex set with diameters D = supx,y∈K ‖x−y‖.

A function f is β-smooth if for all x,y ∈ K :

f(y) ≤ f(x) + 〈∇f(x),y − x〉 +
β

2
‖y − x‖2

or equivalently ‖∇f(x) − ∇f(y)‖ ≤ β‖x − y‖. Also, we say a function f is
G-Lipschitz if for all x,y ∈ K

‖f(x) − f(y)‖ ≤ G‖x − y‖

In our algorithm, we make use of linear optimization oracles where its role
is to resolve an online linear optimization problem given a feedback function
and a constraint set. Specifically, in the online linear optimization problem, at
every time 1 ≤ t ≤ T , one has to select ut ∈ K. Subsequently, the adver-
sary reveals a vector dt and feedbacks the cost function 〈·,dt〉. The objective
is to minimize the regret, i.e., 1

T

(∑T
t=1〈ut,dt〉 − minu∗∈K

∑T
t=1〈u∗,dt〉). Sev-

eral algorithms [8] provide an optimal regret bound of RT = O(1/
√

T ) for the
online linear optimization problem. These algorithms include the online gradient
descent algorithm or the follow-the-perturbed-leader algorithm (projection-free).
One can pick one of such algorithms to be an oracle resolving the online linear
optimization problem.
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2.2 An Algorithm with Exact Gradients

Assume that the exact gradients of the loss functions f t
i are available (or can

be computed). The high-level idea of the algorithm is the following. In the algo-
rithm, at every time t, each agent i executes L steps of the Frank-Wolfe algorithm
where every update vector (for iterations 1 ≤ � ≤ L where the parameter L will
be chosen later) is constructed by combining the outputs of linear optimiza-
tion oracles Oj,� and the current vectors of its neighbors j ∈ N(i). During this
execution, a set of feasible solutions {xt

i,� : 1 ≤ � ≤ L} is computed. The solu-
tion xt

i for each agent 1 ≤ i ≤ n is then chosen uniformly at random among
{xt

i,� : 1 ≤ � ≤ L}. Subsequently, after communicating and aggregating the
information related to functions f t

j for j ∈ N(i), the algorithm computes a vec-
tor dt

i,� and feedbacks 〈dt
i,�, ·〉 as the cost function at time t to the oracle Oi,�

for 1 ≤ � ≤ L. The vectors dt
i,�’s are subtly built so that it captures step-by-

step more and more information on the cumulating cost functions. The formal
description is given in Algorithm 1 and a detailed proof of Theorem 1 is given
in [17]

Algorithm 1. Online Decentralized algorithm
Input: A convex set K, a time horizon T , a parameter L, online linear optimization
oracles Oi,1, . . . , Oi,L for each agent 1 ≤ i ≤ n, step sizes η� ∈ (0, 1) for all 1 ≤ � ≤ L

1: for t = 1 to T do
2: for every agent 1 ≤ i ≤ n do
3: Initialize arbitrarily xt

i,1 ∈ K
4: for 1 ≤ � ≤ L do
5: Let vt

i,� be the output of oracle Oi,� at time step t.
6: Send xt

i,� to all neighbours N(i)
7: Once receiving xt

j,� from all neighbours j ∈ N(i), set yt
i,� ← ∑

j Wijx
t
j,�.

8: Compute xt
i,�+1 ← (1 − η�)y

t
i,� + η�v

t
i,�.

9: end for
10: Choose xt

i ← xt
i,� for 1 ≤ � ≤ L with probability 1

L
and play xt

i

11: Receive function f t
i

12: Set gt
i,1 ← ∇f t

i (x
t
i,1)

13: for 1 ≤ � ≤ L do
14: Send gt

i,� to all neighbours N(i).
15: After receiving gt

j,� from all neighbours j ∈ N(i), compute dt
i,� ←∑

j∈N(i) Wijg
t
j,� and gt

i,�+1 ← (∇f t
i (x

t
i,�+1) − ∇f t

i (x
t
i,�)

)
+ dt

i,�.

16: Feedback function 〈dt
i,�, ·〉 to oracles Oi,�. (The cost of the oracle Oi,� at

time t is 〈dt
i,�, v

t
i,�〉.)

17: end for
18: end for
19: end for
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Theorem 1. Let K be a convex set with diameter D. Assume that functions
F t (possibly non convex) are β-smooth and G-Lipschitz for every 1 ≤ t ≤ T .
Then, by choosing the step size η� = min

(
1, A

�α

)
for some A ≥ 0 and α ∈ (0, 1),

Algorithm 1 guarantees that for all 1 ≤ i ≤ n:

max
o∈K

1
T

T∑

t=1

Ext
i

[〈∇F t(xt
i),x

t
i − o〉] ≤ O

(
GDA−1

L1−α
+

AD2β/2
Lα(1 − α)

+ RT

)

where RT is the regret of online linear minimization oracles. Choosing L = T ,
α = 1/2 and oracles as gradient descent or follow-the-perturbed-leader with regret
RT = O

(
T−1/2

)
, we obtain the gap convergence rate of O

(
T−1/2

)
.

2.3 Algorithm with Stochastic Gradients

We extend the previous algorithm to the setting of stochastic gradients estimates.
As only stochastic gradient estimates are available, we use a variance reduction
technique in order to upgrade Algorithm 1 to its stochastic version (Algorithm
2). The difference between the two algorithms is stochastic gradient estimation
and an additional step for variance reduction. After making the decision, the
agent receives an unbiased gradient to perform updates and communication to
obtain stochastic estimates g̃t

i,� and d̃t
i,� of gt

i,� and dt
i,�, respectively. (Note that

the stochastic variables are denoted by the same letter as its exact counterpart
with an additional tilde symbol.) Then the agent uses Step 17 in Algorithm 2
to get the reduced variance version ãt

i,� of d̃t
i,�. The function 〈ãt

i,�, ·〉 is then
feedbacked to the oracle.

The formal description is given in Algorithm 2 in which all previous steps are
the same as Algorithm 1 and the additional variance reduction step is marked
in red. A detailed proof of Theorem 2 can be found in [17].

Algorithm 2. Stochastic online decentralized algorithm
. . .

12: Receive function f t
i and an unbiased gradient estimate ∇̃f t

i

13: Set g̃t
i,1 ← ∇̃f t

i (x
t
i,1)

14: for 1 ≤ � ≤ L do
15: Send g̃t

i,� to all neighbours N(i).

16: After receiving g̃t
j,� from j ∈ N(i), compute d̃t

i,� ← ∑
j∈N(i) Wij g̃

t
j,� and set

g̃t
i,�+1 ← (∇̃f t

i (x
t
i,�+1) − ∇̃f t

i (x
t
i,�)

)
+ d̃t

i,�.

17: ãt
i,� ← (1 − ρ�) · ãt

i,�−1 + ρ� · d̃t
i,�.

18: Feedback function 〈ãt
i,�, ·〉 to oracles Oi,�. (The cost of the oracle Oi,� at time t

is 〈ãt
i,�, v

t
i,�〉.)

19: end for

Theorem 2. Let K be a convex set with diameter D. Assume that for every
1 ≤ t ≤ T .
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1. functions f t
i are β-smooth and G-Lipschitz,

2. the gradient estimates are unbiased with bounded variance σ2,
3. the gradient estimates are Lipschitz.

Then, choosing the step-sizes η� = min{1, A
�3/4 } for some A ≥ 0, we have for all

1 ≤ i ≤ n,

max
o∈K

E

[ 1

T

T∑

t=1

Ext
i

[〈∇Ft

(
xt

i

)
,xt

i − o〉]
]
≤ O

(
DG + 2ADQ1/2

L1/4
+

2AD2β

L3/4
+ RT

)

Choosing L = T and oracles with regret RT = O
(
T−1/2

)
, we obtain the conver-

gence gap of O
(
T−1/4

)
.

3 Experiments

The data-set used for experimentation comes from a 7 storey building with 24
sensor equipped zones [19].The zone-wise knowledge exchange happens through
the edges of an undirected graph of n nodes participating in the learning process.
For every round t, each node i receives a batch Bt

i of 32 time-series sequences
corresponding to a look-back period 13 timestep to predict the temperature of
the next timestep. We extract the data from March 7th to April 20th for training,
set L equal to 360, α = 0.95 and A = 1. A min-max scaler is used to normalize
the data and we apply a rolling window with stride 1 on the original time series.
Each node is embedded with a model built from a two-layers long-short-time-
memory (LSTM) network followed by a fully connected layer. Denote the output
of the model i for a data sequence b at time t by ŷt

i,b and its ground truth by
yt

i,b. Consider the �1 loss as the objective function:

L(ŷt
i,b, y

t
i,b) =

⎧
⎨

⎩

(ŷt
i,b − yt

i,b)
2

2
if |ŷt

i,b − yt
i,b| ≤ 1

|ŷt
i,b − yt

i,b| − 1
2 otherwise.

Consider the constraint set K = {x ∈ R
d, ‖x‖1 ≤ r}, where x is the model’s

weight, d its dimension and r = 1. The (normalized) loss incurred by the data of
agent i is 1

|Bt
i |

∑
b∈Bt

i
L(ŷt

i,b, y
t
i,b). The global loss function incurred by the overall

data is

F t(x) =
1

| ∪n
i=1 Bt

i |
∑

b∈∪n
i=1Bt

i

L(ŷt
i,b, y

t
i,b),

that can be written as F t(x) = 1
n

∑n
i=1 f t

i (x) where f t
i (x) =

1
|Bt

i |
∑

b∈Bt
i
L(ŷt

i,b, y
t
i,b). Note that the non-convexity here is due to the non-

convexity of ŷt
i,b as a function of xt

i. In the following section, if not specify
otherwise, we call loss the temporal average of the global loss function F t defined
as 1

T

∑T
t=1 F t.
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3.1 Prediction Performance

Figures 1a and 1b show the loss and gap values for different network sizes. The
implementation justifies our theoretical results about the convergence of the gap.
Besides, we also observe the convergence of loss value, an expected implication
of the gap convergence. We set M the number of prediction points between the
21st and 24th of April and n the number of zones within one configuration. We
use the mean absolute error (MAE = 1

nM

∑n
i=1

∑M
m=1 |ŷi,m − yi,m|) and mean

square error (MSE = 1
nM

∑n
i=1

∑M
m=1 (ŷi,m − yi,m)2) as a measure between the

prediction and the ground truth. We observe that increasing nodes in a network
does not always lead to better online performance. In-fact, a 7 node configuration
achieves the lowest MSE (0.65) and MAE (0.78) for floors 6 and 7. We see a 40
% drop in MSE and 20 % reduction in MAE for floor 6 zonal models when 3
extra peers from floor 7 joined the group. We observe 19 % and 25 % increase in
MSE and MAE values by adding zonal nodes from floor 7 to a 10 node group.
This can be best argued by the fact that the top floor of a building has a non
identical thermal variation with the rest of the storeys.

(a) Loss Value (b) Gap Value

Fig. 1. Loss and Gap values of different network size on complete topology (Plot on
log-scale)

3.2 Effect of Network Topology

We study the effect of topology in learning for a 7 node configuration with a
complete, cycle and line graph containing 28, 7 and 6 edges respectively and
with 13 nodes having 78,13 and 12 edges respectively. For both 7 (Table 1a) and
13 (Table 1b) node configurations, we observe that the complete graph yields the
least amount of prediction error, mean absolute error ∈ [0.66, 1.3]◦C. However
we note the peculiarity that the line graph can perform better than a cycle graph
and has roughly a 10% error margin compared to the complete configuration.

3.3 Effect of Decentralization

We are interested in understanding the role of decentralization in terms of
accuracy of zonal learners. Let LMFW (t) be the loss from Meta Frank Wolfe
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Table 1. Temperature forecasting performances on different network topologies

Topology Metric Mean Var Max Min

Cycle MAE 1.09 0.48 1.80 0.56

Cycle MSE 0.78 0.21 1.09 0.52

Complete MAE 0.77 0.38 1.47 0.27

Complete MSE 0.64 0.20 1.04 0.39

Line MAE 0.81 0.53 1.95 0.24

Line MSE 0.66 0.28 1.26 0.34

(a) Impact of Topology on 7 learners configuration.

Topology Metric Mean Var Max Min

Cycle MAE 1.51 1.46 6.16 0.36

Cycle MSE 0.94 0.38 1.90 0.48

Complete MAE 1.26 0.82 3.64 0.32

Complete MSE 0.85 0.27 1.50 0.42

Line MAE 1.38 0.91 3.17 0.50

Line MSE 0.90 0.35 1.66 0.49

(b) Impact of Topology on 13 learners configuration.

Fig. 2. Loss ratio of decentralized and centralized Meta Frank-Wolfe on different net-
work size.

(MFW) at time t. The approximation ratio A(t) = LDMF W (t)
LMF W (t) at time t represents

how worse is our decentralized version compared to a centralized optimization.
A(t) ≤ Bmax will mean our algorithm performs no worse than Bmax times of
the MFW. On Fig. 2, we plot the ratio A(t) for a 13 node network and show that
A(t) ≤ 1.4. The 7 node network has the closest approximation bounded by 1.35
which can be explained by earlier insights on performance accuracy. We notice
that the 10 node network performs worse till t = 200 and after t ≥ 250 or 21 h,
the approximation ratio becomes close to centralised version with less than 20%
error.

4 Concluding Remarks

We proposed an online algorithm minimizing non-convex loss functions aggre-
gated from local data distributed over a network. We showed the bounds of the
convergence gap in both exact and stochastic gradient settings. In complement
to the theoretical analysis, we run experiments on a real-life smart building data-
set.The results make our offerings valuable for learning in distributed settings.
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Abstract. Traditional IoT setups are cloud-centric and typically
focused around a centralized IoT platform to which data is uploaded for
further processing. Next generation IoT applications are incorporating
technologies such as artificial intelligence, augmented reality, and dis-
tributed ledgers to realize semi-autonomous behaviour of vehicles, guid-
ance for human users, and machine-to-machine interactions in a trustwor-
thy manner. Such applications require more dynamic IoT environments,
which can operate locally without the necessity to communicate with
the Cloud. In this paper, we describe three use cases of next generation
IoT applications and highlight associated challenges for future research.
We further present the IntellIoT framework that comprises the required
components to address the identified challenges.

Keywords: Internet of Things · Artificial intelligence · Autonomous
systems · Human-computer interaction · Trust

1 Introduction

In today’s Internet of Things (IoT) deployments, cloud-based platforms are typi-
cally central points of data collection and processing. However, this cloud-centric
IoT model has limitations [13,16,27]: (i) unreliable cloud connectivity impedes
dependable end-to-end applications (ii) limited bandwidth restricts the amount
of data that can be processed (iii) high round-trip times prevent real-time oper-
ation, (iv) high cost of data transport and intake, as well as (v) privacy and
trust concerns. Moreover, typical hierarchical setups of IoT cloud platforms (vi)
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hinder use cases with dynamically changing context due to lacking self-awareness
of the individual subsystems and the overall system.

To enable next generation IoT applications, these issues can be overcome
through localized IoT environments comprised of heterogeneous devices (e.g.,
edge computers as well as resource-constrained devices) that can collaboratively
execute semi-autonomous IoT applications, which include functions for sens-
ing, acting, reasoning, and control. However, since IoT applications cannot be
completely autonomous in what they decide and act, they need to keep the
human-in-the-loop for control and optimization of their Artificial Intelligence
(AI).

In this paper, we derive research challenges from three key classes of Next
Generation (NG) IoT use cases: 1) a fleet of agricultural vehicles (e.g., trac-
tors) is semi-autonomously operated in conjunction with supporting devices
(e.g., drones), 2) patients are semi-autonomously guided by artificial advisors
based on IoT device input; and 3) semi-autonomous machine-to-machine col-
laboration in industrial plants (e.g., robot arms and machinery). In all three
use case areas, a human expert plays a key role in controlling, monitoring and
teaching AI-enabled autonomous systems.

The remainder of this paper is organised as follows: Sect. 2 presents the
three use case classes from agriculture, healthcare and manufacturing. Section 3
describes the IntellIoT framework to enable NG IoT application development.
Section 4 presents current research around key enablers to fulfill the vision and
highlights associated research challenges. Section 5 concludes this paper and
points to future work.

2 Next Generation IoT Use Cases

Due to the dimensions of variability, we selected three distinct use cases that
stand exemplary for a broad range of NG IoT applications.

2.1 Autonomous Operation of Agriculture Vehicle Fleets

Figure 1 describes the use case of a semi-autonomous agricultural vehicle fleet.
This use case entails the provision of new functionalities (e.g., AI algorithm
implementations) for IoT applications by technology providers (e.g. tractor man-
ufacturers) via step (1). A human operator (Farmer or Agriculture fleet man-
agement) specifies a goal for autonomous activities (e.g., ploughing or spraying
a certain farm field) of the tractor on an Edge infrastructure as depicted in step
(2). From the defined goal, a plan for IoT application instantiation is derived
and a deployment of the required functions to the involved devices, e.g., trac-
tor or drones shown in step (3), is triggered. Next, the deployed AI operates
the involved vehicles, which includes dealing with blockages or other adversar-
ial events using sensors of the vehicle (e.g., cameras or LIDAR) via step (4).
This can be facilitated by sensing the environment from multiple neighbouring
vehicles to collectively train their models and identify objects in a faster and
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more robust manner. The sensed data can also serve as a training dataset for
continually improving the underlying AI models.

Fig. 1. IntellIoT-enabled NG IoT agriculture use case.

If an obstacle is detected and the tractor cannot determine how to traverse it
(step 5), then control of the tractor is handed over to a human operator (step 6).
Data from the cameras and sensors is transmitted to the human operator who
can use AR/VR technology to have a surround view of the situation. Direct and
indirect strategies for taking over remote control are both necessary for step (7):
Direct interaction with the tractor (i.e. remotely driving the vehicle) requires a
reliable and high-speed connection enabling real-time interaction between oper-
ator and tractor. Indirect control with VR tooling aims to identify a feasible
trajectory around the tractor, and control is given back to the tractor, while
the human operator supervises the tractor remotely while it traverses the newly
defined trajectory correctly. Based on the input from the human operator, the
vehicle can refine its AI models by continually learning (step 8) how to overcome
such obstacles in the future in addition to potentially sharing the learned model
with other vehicles.

In the future, service providers will also offer such semi-autonomous vehicles
(e.g., to provide farming services). Then, contractual agreements need to be set
up using distributed ledger technology (DLT) (e.g., ownership of the farmer’s
land needs to be confirmed). This information will constitute a digital evidence
that the field owner authorized the requested services and the area in which the
smart equipment operates. Storing performed agricultural activities back in the
DLT as historic evidence (step 9) can then be utilized in business models.

2.2 Collaborative Intelligence for Remote Patient Monitoring

Advances in AI and in IoT-enabled systems may lead to significant benefits in
healthcare, enabling physicians to efficiently improve patient outcomes, safety
and comfort, for instance by leveraging the new technology to remotely guide
their patients through recovery and rehabilitation at home. The solution empow-
ers patients to focus on their recovery, giving them the confidence that they are
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safe, that the tools can support and inform them all the way, and that their
physicians are always in the loop when needed.

Figure 2 describes a system that leverages IoT device inputs to give clinical
experts accurate information on the health status of their patients and provides
AI-assisted recommendations and interventions to patients, with clinical expert
oversight. Patient users are equipped with wearable sensing devices measuring
relevant data that is transferred to a personal IoT device (e.g., smart watch)
(step 1). The AI on board of this IoT device analyses the data in step (2) to
identify the need for interventions or recommendations, according to the initial
AI model and the intervention workflows previously defined as goals by the
clinicians in charge of the patient. The model is applied on the collected data,
and when the need for an intervention is detected, either a recommendation is
sent to the patient (step 3a), or the case is escalated to involve a clinician, leading
to the human-in-the-loop (step 3b). Privacy and security-compliant exchange is
thereby crucial. The system may further implement a model for monitoring and
diagnosing technical issues with the constrained devices (step 4).

Fig. 2. IntellIoT-enabled NG IoT healthcare use case.

In the IntellIoT solution, when an escalation takes place and a clinical expert
is notified, the clinician may decide to contact the patient as shown (step 5a),
respond to the personal device (step 5b), or raise an alarm (step 5c). The clin-
ician provides feedback which is used to validate and re-train the AI model
locally on the personal IoT device (step 6). Model updates are then contributed
to the aggregated model at the edge infrastructure (e.g., of a hospital) (step 7).
This distributed AI can be implemented using federated learning and the model
update is communicated to all IoT devices, either in a device to device fashion
(step 8a) or through distribution of the aggregated model (step 8b). Further,
federated learning can be done between hospitals (step 9). All the involved com-
munications and interactions need to be covered by state-of-the-art security and
privacy provisions, catering for the intricacies of the private-sensitive user data.
Digital consent management to drive the interactions of the system (patients,
clinicians, devices) can be managed e.g. via smart contracts.
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2.3 Autonomous Collaboration of Production Machines

This use case (Fig. 3) describes an example of machine to machine collaboration.
A customer of a shared manufacturing plant orders a product by specifying a
manufacturing goal (step 1). In step (2), a machine orchestration and associated
process plan is determined to manufacture the desired product from a workpiece.
The event-based process planner monitors the manufacturing process and reacts
when the health state of a machine changes. If the process planner cannot find
a solution for the manufacturing goal on its own (step 3) it can request support
from a human plant operator or eventually customer. In step (4), a robot or
AGV is tasked to transport the workpiece to the next production step and man-
ufacturing process data is sent to involved machines. As these machines may be
operated by the plant owner or a third-party operator, contractual arrangements
need to be set up, for which a distributed ledger is used. Further, comprehensive
security mechanisms are applied to ensure privacy and security of customer data.

Fig. 3. IntellIoT-enabled NG IoT manufacturing use case.

In step (5), a local AI on board of the robot decides how the robot picks
a workpiece and places it in the next machine. If the confidence-level of the
local AI is low and it cannot pick and place the workpiece, it can request sup-
port from a human plant operator or machine owner again (step 6). Utilizing
AR/VR technology, the human can virtually grab the workpiece to support the
robot. A tactile communication needs to be established for this interaction, under
consideration of security and privacy. Additionally, 3D cameras can be used to
generate an accurate enough reconstruction of the surroundings and the robot
itself which allows the full control and visual information about the parameters
of the robot. For grabbing and haptic feedback to the user, special user input
devices (e.g., a stylus or glove) are needed. If support from a remote operator
is needed, a tactile communication may not be possible through long-distance
internet connection. Hence, the operator would be able to control a virtual robot,
rendered in the local edge, with delayed movement of the real robot. From the
human handling of the work piece, local AI on the robot re-trains itself (step
7), and federates the learned process parameters to other robots through model
update on edge (step 8).
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3 A Next Generation IoT Framework: The IntellIoT
Approach

Analyzing the above use cases, a pattern of NG IoT applications can be extrap-
olated, as shown in Fig. 4: NG IoT applications generally consist of multiple
heterogeneous devices that collaborate in a semi-autonomous way through AI.
Users interact with the system to provide knowledge and thereby may (re-)train
the AI. Interaction among the devices and with the user may have to happen in
a tactile way, with low latencies and high bandwidth.

Fig. 4. Pattern of an NG IoT Application.

Tackling the above use cases in a holistic manner is the driver of the IntellIoT
project1. It aims to develop a framework for the management of intelligent IoT
environments and their IoT applications, which is realized through an archi-
tecte comprising three building blocks (see Fig. 5): (a) distributed, self-aware,
& semi-autonomous IoT applications; (b) a human-in-the-loop to define
and support the autonomy in (a), and (c) an efficient, reliable and trustworthy
computation and communication infrastructure that enables (a) & (b).

Fig. 5. IntellIoT concept for enabling intelligent IoT environments.

1 http://intelliot.eu.

http://intelliot.eu
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3.1 Distributed, Self-aware, Semi-autonomous IoT Applications

Autonomous software agents of a novel hypermedia-based multi-agent system
(HyperMAS) [8] execute IoT applications. Interoperable access to agents and
functions is given through standardized interfaces that are hosted by IoT or edge
devices, e.g., based on W3C Web of Things specifications [20]. Using these func-
tions as building blocks, software agents can autonomously create distributed
IoT applications and execute these applications while flexibly reacting to envi-
ronment dynamics. To further facilitate IoT application development, interop-
erability is supported through components that are able to translate between
communication technologies, protocols and vocabularies. Software agents are
self-aware and observe each other, e.g., to detect and autonomously mitigate
failures. They participate in a distributed ledger to enable contractual relations
and monetization. Leveraging reinforcement and federated learning [22], dis-
tributed AI is enabled by on-device training and inference that are subject to
the device’s resource constraints.

3.2 Autonomy Defined by a Human-in-the-Loop

The human-in-the-loop provides expertise to the IoT environment and is there-
fore crucial to the system: At design time, the human defines goals and require-
ments. Then, a mechanism automatically deducts and translates an IoT appli-
cation workflow into IoT/edge device interactions with associated network con-
straints. At runtime, the human observes the AI-enabled autonomous behavior
and provides input [14] to improve it. For that, the human needs to leverage
tactile interactions through AR/VR to refine the model and avoid blockages by
e.g., teaching an industrial robot how to handle a product.

3.3 Efficient, Reliable and Trustworthy Computation and
Communication Infrastructure

Intelligent IoT environments must operate upon a communication and compu-
tation infrastructure capable of flexibly supporting the capabilities described
in 3.1 & 3.2 above, whereby resource-constrained IoT devices and more powerful
edge assets must be efficiently managed, optionally integrating cloud-based ser-
vices, and also supporting complex, cost-intensive computations (e.g., AI infer-
ence/training, as well as AR rendering). Edge resources will be diverse [28],
e.g., Multi-access Edge Computing (MEC) offered through 5G functionalities,
or an industrial edge offered by networked computing devices in a manufactur-
ing plant. Computation & communication form a closed-loop system through
which the infrastructure will be optimized in an integrated way (i.e., deploy-
ment of application functions on IoT/edge resources must be optimized under
consideration of network constraints, and the network must be dynamically man-
aged and reconfigured to optimally serve the purpose of the application and the
IoT/edge devices). The infrastructure will enable ultra-reliable and low-latency
communication through dynamic network management, through heterogeneous



62 A. Bröring et al.

network technologies (e.g., 5G NR [17], NB-IoT [15], or D2D [1]). The wireless
front end will be specifically designed to support communication requirements
of advanced techniques, such as DLTs and federated learning. Finally, security
& privacy assurance concepts will be included by design to ensure reliability and
overall trustworthiness of the developed solution.

3.4 Bringing All Together - The IntellIoT High-Level Architecture

Integrating the above concepts, a high-level view of IntellIoT’s logical architec-
ture has been derived, shown in Fig. 6. The three key concepts highlighted (i.e.,
Collaborative IoT, Human-in-the-loop and Trustworthiness) are prominently fea-
tured in the architecture.

In total, five core component groups have been identified, with individual
components falling into one of the following groups:

– Collaborative IoT enablers: Components that realize IntellIoT’s Collab-
orative IoT pillar, focusing on the cooperation of various semi-autonomous
entities to execute IoT applications.

– Human-in-the-Loop enablers: Components involved in IntellIoT’s
Human-in-the-Loop pillar, which focuses on involving the human in the pro-
cess; e.g., to solve complex situations.

– Trust enablers: Components that are part of IntellIoT’s Trust pillar. This
pillar focuses on privacy, security, and ultimately building trust into the Intel-
lIoT framework.

– Infrastructure management: The computation & communication infras-
tructure and its management capabilities, enabling the deployment and man-
agement of edge applications.

– Use-Case deployment: Components which are use case-specific, (i.e., per-
taining to the use case environment deployment), such as edge devices, edge
apps, and edge AI models.

For more details on the individual components comprising the architecture,
we defer the reader to the publicly-available architecture specification of Intel-
lIoT [9].

4 State of the Art and Research Challenges

To achieve its vision, IntellIoT improves the state of the art in the related
research areas; the key enablers and resulting research challenges are highlighted
in the subsections that follow.

4.1 Autonomy and Distributed Intelligence

Next generation IoT applications require a paradigm shift from classic ML to
distributed, low-latency and reliable ML at the wireless network edge [22]. Fed-
erated learning (FL) is a decentralized learning technique where private-sensitive
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Fig. 6. IntellIoT high-level architecture.

training data is distributed across learning agents [19]. Agents share their local
models, instead of the training data, reducing communication latencies during
ML training. Nevertheless, except few works, such as [7,26], most of the exist-
ing literature assumes ideal client-server communication conditions, overlooking
channel dynamics and uncertainties. FL uses stochastic gradient decent (SGD)
techniques (e.g., elastic SGD, entropy SGD) for local training, each with its own
intrinsic characteristics (computation requirements, accuracy etc.). However, the
impact of different ML algorithms in real-world applications is an open research
area. The continual discovery and interaction of agents within their environment
requires the use of multi-agent Reinforcement Learning (RL). Furthermore, the
branch of deep RL (DRL) [5] addresses issues arising from the larger state dimen-
sions. Model-free, value/policy-based, and actor-critic RL within DRL exhibit
efficient and accurate decision-making capabilities over classical RL. Yet the
aspects of computation-communication limitations and privacy in distributed
multi-agent RL are still not well-understood and require further investigation.
The involvement of a human expert in data collection, training, testing, and
validation is the fundamental philosophy behind the human-in-the-loop for ML.
With distributed AI techniques, the interaction between the agents and the
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human needs to consider time sensitivity, learning procedure and ability to con-
trol and train/teach remotely in the scalable systems. Hence, it is mandatory to
investigate various transfer learning methods [24] as well as suitable optimizers
and the human-in-the-loop of the training [14].

For the IntellIoT framework and realization of the envisioned use cases
(Sect. 2), distributed ML needs to consider application-specific target accuracies
and worst-case training latencies under tolerable number of failures (reliabil-
ity and robustness guarantees), wireless resources availability, on-device energy,
storage, or computing restrictions. In addition, studying the control stability
(plant, string, swarm- stabilities) of both single and multi-agent systems will
be mandatory. Investigating the co-design of ML, communication-computation
and control are crucial for developing novel distributed AI solutions. For fully
enabling the human-in-the-loop, the fusion between transfer learning, optimiza-
tion and FL/RL are being incorporated.

4.2 Next Generation IoT Computation and Communication
Infrastructure

IoT applications are moving from the cloud to the edge, so that computing hap-
pens in closer proximity to the data producers and consumers [28]. Relevant
solutions include concepts such as fog computing or multi-access edge comput-
ing (MEC), where computing resources are part of a 5G network. This has the
potential to address the concerns of response time requirements, battery life
constraints, bandwidth cost saving, or safety and privacy (e.g., [13,27]). In NG
IoT applications, a key challenge for the computation infrastructure is to decide
on which computing resource to handle a specific workload (e.g., execute an AI
algorithm). There are multiple existing allocation strategies, e.g., [6,21], which
optimize different performance metrics, e.g., response time, bandwidth, avail-
ability, or energy consumption. Therefore, components are needed for advanced,
dynamic resource management which can be flexibly applied in various private
edge environments. IntellIoT develops a mechanism for optimized allocation of
workloads to computing resources (i.e., mapping of IoT applications to devices).
It consists of a flexible algorithmic framework that builds on prior work [23]
and is adjustable to different optimality criteria at runtime. Further, it needs
to be dynamically adapting to network changes based on high-level application
requirements [4]; i.e., establishing closed-loop infrastructure management.

While IoT/edge devices can provide the computation side of the infrastruc-
ture, the communication side needs to be driven by advanced networking tech-
nologies, such as 5G New Radio (NR) and its extensions towards private networks
and Industrial IoT. Further, 5G eV2X, as a complete redesign of the LTE V2X,
can play a role for cooperative automated mobility and ’sidelink’ device-to-device
(D2D) [1] communications, e.g., between robots and machines. For “tactile”
communication links, a major challenge is to design a steer-/control-based com-
munication framework for real-time transmission of haptic information (touch,
motion, etc.) in addition to conventional audio-visual and data traffic. The pro-
vided solutions need to enable efficient spectrum usage [3] in downlink, with mas-



IntellIoT: Intelligent IoT Environments 65

sive sensory feedback on the uplink, targeting 1ms downlink, 10ms uplink with
99.99% availability. In order to support ultra-reliable and low latency (URLL)
communication towards TSN for 5G Industrial IoT, 5G mmWave radio (with
fiber data speed, real-time reactivity and massive sensorics capacity) [12] as well
as support for IEEE TSN, are being investigated. Regarding distributed net-
working support, functions for ad-hoc scheduling capabilities for enhanced D2D
communication do not include a specific scheduler, hence, IntellIoT develops a
wireless TSN-grade D2D scheduler providing deterministic QoS for decentralized
computing in the IoT context.

Building on the computation and communication infrastructure, IoT artifacts
need to be able to discover and interact with one another. A first major step
towards this goal has been the Web of Things (WoT) [20], where interactions
between devices are based on the Web architecture. Crucially, however, interop-
erability on the semantic level is a central requirement in the future evolution of
the Web. Based on efforts of the W3C WoT, new means to use hypermedia for
designing evolvable Web APIs and general-purpose clients are being explored.
IntellIoT will build up on these developments towards integrating them with
research on multi-agent systems (MAS) towards enabling a hypermedia-based
MAS (HyperMAS) [8] that are vertically and horizontally scalable with respect
to the number of agents, devices, and interactions among these components. It
will support self-aware agents within IoT environments and semi-autonomous
IoT systems.

4.3 Humans and Trust in Intelligent IoT

The wide adoption of IoT technologies in a plethora of domains, necessitates con-
sidering security, privacy, and trust requirements early in the design phase [10].
Even securely initialised devices can be compromised, allowing attackers to affect
connected devices, the network, or collaborative applications. Trust-based mech-
anisms can be used to defend against such attacks by monitoring the behaviour
of each participant. An IoT deployment must also have the intelligence to protect
itself proactively, e.g., through Moving Target Defence (MTD) techniques [25],
where AI-driven agents periodically alter the network topology and/or configura-
tion to counter attacks. Thereby, security assurance evaluations for IoT systems
are still in their infancy (e.g., [2]). Therefore, IntellIoT provides security and
trustworthiness by design, via a combination of: (i) an evidence-based continu-
ous security assurance, integrating hybrid assessments which considers different
attack surfaces and vulnerabilities; ii) trust-based computing mechanisms that
will act as distributed intrusion detection system, and (iii) MTD strategies with
security-context aware processes.

Supporting these security and trust mechanisms, IntellIoT uses distributed
ledger technologies (DLT) to encode transaction logic and policies, which include
the requirements and obligations of the party requesting access to an IoT
resource as well as its provider [18]. This can lead to a wave of novel appli-
cations, enabling trusted access to IoT resources. Therefore, the state-of-the-art
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is being progressed in three aspects (building on previous work [11]): (1) circum-
venting devices’ resource constraints; (2) advancing uplink-dominated IoT net-
work designs; (3) providing interoperability with third-party devices. In IoT, an
edge gateway with DLT solutions is equipped with the necessary computational
intelligence. Yet, devices in a blockchain should keep a copy of the DLT record,
which can be large and increasing over time and limits the scalability of the
system. Moreover, the transactions associated with smart contracts require two-
way communication traffic, which violates the common assumption that the IoT
systems are dominated by an uplink traffic. An IoT/edge device in a blockchain
network should be capable of verifying information in the blockchain, which is
associated with the downlink traffic. Therefore, the IntellIoT framework provides
an architecture that aims at trading off complexity of the device, achieved trust
and network capabilities, and maintain the trust when a device belongs to a
third party.

5 Conclusions and Future Work

The key contributions of this paper is the analysis of three classes of Next Gen-
eration IoT use cases, the extrapolation of a common pattern, the presentation
of the IntellIoT framework, and the postulation of key research challenges asso-
ciated with it. All three use cases are based on semi-autonomous behaviour of
the IoT system. Multiple heterogeneous devices are interacting and autonomous
control of their collaboration is provided through AI, which can be (re-)trained
through human intervention. This pattern can be assumed for many next gen-
eration IoT applications.

The described pattern spreads over three key areas: (1) providing the dis-
tributed artificial intelligence for autonomous behaviour, (2) providing efficient
and reliable communication and computation resources, and (3) incorporating
the human (by providing trust in the system) and learning from his input.
The described framework of IntellIoT addresses all three fields. The presented
high-level architecture combines software components to realize functionalities
required by these fields. The full implementation of this architecture is currently
in process. Thereby, the key research challenges that are being faced are outlined
and describes the further path of research for this project and beyond.
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4. Bröring, A., Seeger, J., Papoutsakis, M., Fysarakis, K., Caracalli, A.: Networking-
aware IoT application development. Sensors 20(3), 897 (2020)

5. Bu, F., Wang, X.: A smart agriculture IoT system based on deep reinforcement
learning. Futur. Gener. Comput. Syst. 99, 500–507 (2019)

6. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, pp. 69–80.
ACM Press (2016)

7. Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H.V, Cui, S.: A joint learning and
communications framework for federated learning over wireless networks. IEEE
Trans. Wireless Commun. PP, 1–1 (2020)

8. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in Hindsight: the missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the 18th International Conference on Autonomous
Agents and Multi Agent Systems, pp. 1659–1663. International Foundation for
Autonomous Agents and Multiagent Systems (2019)

9. IntellIoT consortium. Deliverable D2.3 - High level architecture (first version).
https://intelliot.eu/wp-content/uploads/2021/10/D2.3-High-level-architecture-
first-version.pdf

10. Conti, M., Dehghantanha, A., Franke, K., Watson, S.: Challenges and opportuni-
ties, Internet of Things security and forensics (2018)

11. Danzi, P., et al.: Communication aspects of the integration of wireless IoT devices
with distributed ledger technology. IEEE Netw. 34(1), 47–53 (2020)

12. Giordani, M., Polese, M., Roy, A., Castor, D., Zorzi, M.: Initial access frameworks
for 3GPP NR at mmWave frequencies. In: 2018 17th Annual Mediterranean Ad
Hoc Networking Workshop (Med-Hoc-Net), pp. 1–8. IEEE (2018)

13. Ha, K., Chen, Z., Hu,W., Richter, W., Pillai, P., Satyanarayanan, M.: Towards
wearable cognitive assistance. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 68–81. ACM (2014)

14. Holzinger, A., et al.: Interactive machine learning: experimental evidence for the
human in the algorithmic loop. App. Intell. 49(7), 2401–2414 (2019)

15. Hsieh, B.Z., Chao,Y.H, Cheng, R.G., Nikaein, N.: Design of a UE-specific uplink
scheduler for narrowband Internet-of-Things (NB-IoT) systems. In: 2018 3rd Inter-
national Conference on Intelligent Green Building and Smart Grid (IGBSG), pp.
1–5. IEEE (2018)

16. Islam, M.M, Morshed, S., Goswami. P.: Cloud computing: a survey on its limita-
tions and potential solutions. Int. J. Comput. Sci. Iss. (IJCSI) 10(4), 159 (2013)

17. Kaltenberger, F., Souza, G.D., Knopp, R., Wang, H.:The OpenAirInterface 5G new
radio implementation: current status and roadmap. In: WSA 2019; 23rd Interna-
tional ITG Workshop on Smart Antennas, pp. 1–5. VDE (2019)

18. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open chal-
lenges. Futur. Gener. Comput. Syst. 82, 395–411 (2018)
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68 A. Bröring et al.

21. Mohan, N., Kangasharju, J.: Edge-Fog cloud: a distributed cloud for Internet of
Things computations. In: 2016 Cloudification of the Internet of Things (CIoT), pp.
1–6. IEEE (2016)

22. Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence
at the edge. Proc. IEEE 107(11), 2204–2239 (2019)
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Abstract. While there are currently multiple commercial IoT and IIoT platforms
available in the market (e.g., Siemens MindSphere, Microsoft Azure, PTC Thing-
Worx, Amazon AWS), the key problem in using these platforms is lack of inter-
operability and flexibility in data exchange among these platforms. Each of these
platforms promotes its own IoT infrastructure, and they have their proprietary
protocols and interfaces, with incompatible standards, formats, and semantics
that create closed ecosystems. To address above mentioned interoperability issue,
we proposed an IoT interoperability framework to support different layers of het-
erogeneous sensors, edge devices, on-premise platform and even cloud platforms,
so as to unlock data value.

Keywords: Internet of Things · Interoperability · OPC-UA · Data model ·
Provision server

1 Introduction

The Internet of Things (IoT) [1, 2, 10–15] advancements in connectivity, communication
technology and real-time data analysis have opened the possibility of integrating the
traditional operational technology (OT) of a manufacturing plant with the Information
Technology (IT) systems. The integration between OT and IT in the manufacturing
industry provides a huge opportunity for a more efficient manufacturing process on
factory floor, seamless supply chain, efficient product and machine maintenance, as well
as flexible and agile adaption to dynamic customer demands [16–20]. Industry 4.0 [1]
refers to the trend of bringing IoT technology to the manufacturing industry towards
digital transformation for smart manufacturing. With the adoption of Industry 4.0, it is
projected that manufacturing machines are fully interconnected, monitored by sensors,
and powered by advanced machine learning techniques.

There are a number of IoT platforms available in the market (e.g., Siemens Mind-
Sphere [3],Microsoft Azure [4], PTCThingWorx [5]). Each of these platforms promotes
its own IoT infrastructure, proprietary protocols and interfaces, incompatible standards,
formats, and semantics that create closed ecosystems (sometimes called silos). It is chal-
lenging to communicate with each other and connect to devices/platforms of different
vendors. Interoperability refers to the ability for systems or their individual components
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communicate with each other, regardless of their manufacturers or technical specifica-
tions. Lack of interoperability among different platforms is a barrier of collaborations
across companies. In addition, device interoperability is the key to bridge OT and IT for
information exchange between heterogeneous devices and integration of new devices
into any IoT platform.

In this paper, we propose a layered IIoT interoperability framework, which is com-
posed of 3 layers. The bottom layer is for shopfloor with data capture from different
machines and an Edge Gateway for data store, process and transfer. Middle layer is
mainly for on-premise IoT platform with functions of data model, storage, process,
visualization and analytics, as well as smart cloud adapters. The top layers are for cloud
IoT platform such as Azure IoT Cloud, Amazon IoT Cloud, and Siemens Mindsphere.
This proposed framework is able to automatically connect and interoperate sensors, edge
devices, machines and platforms based on real-time and interactive parameters setting
and configuration updates.

2 Problem Statement

As shown in Fig. 1, IoT interoperability can be classified into different layers [2, 7–9,
21, 22].

Fig. 1. Interoperability overview

Device interoperability is the key function to bridge OT and IT so that data can be
collected and transferred for comprehensive process. IoT edge devices run applications
to collect or process data with reduced latency. However, they require costly manual
deployment and intervention which result in low efficiency and delayed software update.
With the number of devices increasing, it becomes challenging to manage and deploy
IoT devices in an automatic and scalable way. In addition, edge device presents hardware
diversity e.g., Raspberry PI is based on 64bits ARMv8 processor, NVIDIA Jetson Nano
is based onARMCortex-A57, and Intel Edison is based on Intel Atom processor. How to
provide an abstract for portable application deployment to hide the hardware difference
on edge device is a challenge?
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In today’s IoT systems, new sensor hardware is added to the existing system as it
scales. This adds complexity and confusion if no proper housekeeping is implemented.
The definition of housekeeping in this aspect refers to the syntax and semantics of the
data and finally how they are synchronized.

Most of existing IoT platforms lack interoperability to seamlessly work with each
other for establishing a big industrial IoT ecosystem. This results in vertical silos in
IoT ecosystems and scarce reusability of technical solutions. On-premise IIoT platform
provides on-site IoT services with guaranteed privacy, while Cloud IIoT platform offers
public IoT services with various functions and scalable resources. Hence, the inter-
operability between an on-premise platform and a cloud platform is essential to take
advantages between them and enable redundancy, flexibility and cost saving.

To address above mentioned interoperability issue, we proposed IoT interoper-
ability framework to support different layers of heterogeneous sensors, edge devices,
on-premise platform and even cloud platforms, so as to unlock data value.

3 Proposed Framework Architecture

This section introduces the details of Industry Internet of Things (IIoT) Interoperabil-
ity Implementation Architecture which provides a generic framework to address the
implementation challenges of IIoT interoperability.

Considering the diversity of data source, data volume, data format, machine, device,
and platform, we are facing challenges to implement an interoperable and cost effective
IIoT system. We propose a framework to address those challenges, and provide solution
for Interoperability on different layers.

As shown in Fig. 2, the proposed architecture comprises of three layers with security
firewall between layers.

• The bottom layer: it is in shopfloor with data capture from different machines, and an
Edge Gateway for data store, process, as well as protocol translation in Edge comput-
ing. Industrial automation data is captured from diverse automation devices, software
applications and some legacy devices. Leveraging on OPC-UA [6] and IT-centric
communication protocols (such as SNMP, ODBC, and web services), it provides
users with a single source for industrial data. Edge computing in this layer helps to
connect, process and publish data using OPC-UA protocol. The OPC-UA protocol
could achieve semantic interoperability and syntactic interoperability. One additional
feature of this bottom layer is that edge analytics is flexible to integrate with Edge
computing.

• Themiddle layer: it is mainly for on premise IIoT platformwhich could support most
IIoT requirements such as data model, data storage, data process, data visualization
and data analytics. In this layer, it also provides smart cloud adapterswhich are specific
to Azure Cloud, Amazon Cloud and any other cloud platforms. Provisioning server
and fleet management server are optional. Some sophisticated IIoT platforms could
support device provision and fleet management with code configuration. In this layer,
data can also be transferred to and exchange with enterprise systems such as ERP,
MES, SCADA systems.
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• The top layer: it is cloud IIoT platform such as Azure IoT Cloud, Amazon IoT Cloud,
and Siemens Mindsphere. All of them provide stream processing, data storage and
data analytics. Data is collected from the middle layer’s smart cloud adapter for each
cloud IoT platform. Enterprise could benefit from the advance machine learning tools,
data processing tools, visualization tools and many other cloud services in this layer.

Fig. 2. IIoT Interoperability implementation architecture

With the layered concept, the proposed architecture is able to increase interoperability
of the solution among different machines, software, and IIoT platforms. The flexible
device connectivity feature could connect to many types of industry devices, while Edge
processing could handle large volume and high frequent data. The OPC-UA interface
between the bottom layer and the middle layer could provide high interoperability with
many IIoT platforms and Industry systems such as ERP, MES, SCADA and PLCs. The
layered concept also enhances the security and helps the integration with IT systems.
One more feature of this architecture is that it can integrate different proprietary IIoT on
premise platforms or cloud IIoT services to provide a solution to enterprise users.

The Smart Cloud Adaptor is a key component to implement connection to cloud
platforms. It is specific to Azure Cloud, Amazon Cloud or any other cloud platforms.
For example, Azure IoT Edge comprise of Edge runtime, Edge Hub, OPC publisher and
customized analytics or processing modules. It could subscribe OPC-UA data and use
Edge hub to send it to cloud Azure IoT hub. Amazon AWS IoT Greengrass comprises
of Greengrass connector, SiteWise Connector for OPC-UA, Greengrass Core MQTT
Broker and custom Lambda function. It will send data to cloud AWS IoT Core or AWS
IoT SiteWise.
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The OPC-UA protocol in the middle layer could achieve semantic interoperability
and syntactic interoperability through the data model that we present in the next section.
In the bottom layer, device or sensors could support OPC-UAor just use native protocols.
Edge OPC-UA server sends OPC-UA data to the middle layer. The synergy of the OPC-
UA infrastructure to exchange such industry informationmodels enables interoperability
at the semantic level.

4 Data Model

Thedatamodel defines common interfaces on top ofOPC-UADevice InformationModel
with below common data structures [6]:

1) Sensor device configuration information.
2) Sensor device data capturing information and methods.
3) Sensor device on-edge data analysis algorithm.
4) Sensor device firmware information.

Applications can be built to configure, control, and read/write different sensor devices
with the OPC-UA data model, without knowing sensor device specific information.

Fig. 3. OPC UA Data Model

As showed in Fig. 3, OPC UA is built on the following Infrastructure:

• Information Modelling Access which comprises the means to expose object-based
Information Models in an Address Space and the Services to access this informa-
tion. OPC UA infrastructure exchanging such industry information models enables
interoperability at the semantic level.
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• Client-Server communication with full range of information model access is available
via services and follows the design paradigm of service-oriented architecture (SOA).

• Publish-Subscribe (PubSub) provides an alternative mechanism for data and event
notification.

• Transport which defines protocol mappings that allow establishing a connection and
exchanging well-formed messages between OPC UA Applications.

• Discovery which allows Clients to find OPC UA Servers, their supported protocols,
security policies and other capabilities.

• Security and Robustness, which are integrated into Transport and Information Access.

OPCUAachieves connectivity interoperability byTransport andDiscovery layer and
syntactic interoperability by Information Modelling Access layer. Information Models
are layered on top of the infrastructure. OPC UA provides a framework that can be
used to represent complex information as Objects in an AddressSpace which can be
accessed with standard services. These Objects consist of Nodes connected by Refer-
ences. Different classes of Nodes convey different semantics. For example, a Variable
Node represents a value that can be read or written. AMethodNode represents a function
that can be called. Every Node has number of Attributes including a unique identifier
called a NodeId and non-localized name called as BrowseName. To represent the infor-
mation model design with different type of nodes and relationships between nodes, OPC
UA uses notations showing in Fig. 4 to design information model with elements directly
mapping to Nodes in the AddressSpace.

Fig. 4. Information model

4.1 Devices Information Model

Figure 5 depicts the main components (ObjectTypes) of the base device model defined
by OPC-UA, with the data types described below.

• The TopologyElementType is the base of ObjectType for elements in a device
topology. Its most essential aspect is the functional grouping concept.
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• The ComponentType ObjectType provides a generic definition for a Device or parts
of a Device where parts include mechanics and/or software. DeviceType is commonly
used to represent field Devices.

• The ConfigurableObjectType ObjectType implements the configurable component
and is used when an Object or an instance declaration needs nothing but configuration
capability.

• The FunctionalGroupType is subtype of the OPC UA FolderType, used to structure
Nodes like Properties, Parameters and Methods according to their application.

Fig. 5. Devices Information Model

4.2 Interface Model

Interfaces are ObjectTypes that represent a generic feature. The Interfacemodel specifies
the rules and mechanisms. Some general rules for defining Interfaces are as follows:

• InterfaceObjectTypes shall be abstract subtypes of theBaseInterfaceTypeObjectType.
• InstanceDeclarations on an Interface shall only have ModellingRules Optional or
Mandatory.

• Interfaces shall not be the source of HasInterface References.
• The first letter of an Interface should be ‘I’.

Clients can detect the implementation of Interfaces by filtering for the HasInterface
Reference into the Browse Service request.
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4.3 OPC-UA Interfaces ObjectType for Sensor Device

To abstract different sensor devices functions, features, and requirements with a common
data model, three Interface ObjectTypes are defined in the next subsections.

IConfigurationType
This interface represents functions of sensor device configurations. An example of this
kind of configuration is sample rate for an audio sensor device. ConfigurableObjectType
from Device model is used in this interface. Figure 6 shows the definition of IConfigura-
tionType. The Interface has a sub object Configurations with ConfigurableObjectType.
This sub object would be used as a placeholder to hold all configuration variables or
objects supported by the sensor device.

IDataCaptureType
Sensor devices define their own data format and data type. OPC-UA infrastructure could
exchange these data at semantic level. But client still has no information to understand
which data are captured by sensors. In order to solve this issue and define a common
behavior for sensor device data capturing, interface IDataCaptureType is defined. This
interface represents data capture capability for sensor devices. FunctionalGroupType
from Device model is used in this interface. Figure 7 illustrates the definition of IDat-
aCaptureType. The Interface has a sub object DataValues with FunctionalGroupType.
This sub object would contain all the data values captured by the sensor device within
one sampling. To control the data capturing process from client side, a variable Cap-
tureStatus and two methods StartCapture and StopCapture are defined in the interface.
CaptureStatus may have values for different data capturing status: idle, running or error.
According to this variable value, client may call method StartCapture or StopCapture to
start or stop data capturing.

Fig. 6. IConfigurationType
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Fig. 7. IDataCaptureType

IAnalyticsType
This interface represents data processing functionality of the device connected to
the sensor. For instance, sensor raw data could be processed by classification, sort-
ing or calculations to generate new features. Figure 8 illustrates the definition of
IAnalyticsType.

The interface defines a variable AnalyticsType which is used to indicate the type of
data processing. For instance, “FFT” AnalyticsType could be used for audio sensor to
capture PWM data format and generate frequency spectrum features. This can be set
by user from OPC-UA client side and OPC-UA server at the IoT edge device side will
switch to the new analytics type if the function is supported.

The Interface has another sub object Features which is a FunctionalGroupType
defined by Device Information Model. Similar to DataValues for IDataCaptureType,
this object type holds all the features generated by the data processing function specified
by IAnalyticsType for one data analytics round. One or multiple data sampling could be
used within one analytics round to generate one set of features.

SensorDeviceType
To represent a sensor device in OPC-UA address space, An ObjectTypes SensorDevice-
Type is defined. Figure 9 illustrates the definition of SensorDeviceType. SensorDevice-
Type is sub ObjectTypes of DeviceType from Device Information Model, and it would
inherit all the properties, variables, and objects from DeviceType.

SensorDeviceType implements three Interfaces ObjectTypes: IConfigurationType,
IDataCaptureType and IAnalyticsType. An actual sensor device object does not need to
implement all three interfaces. To support which interfaces depends on the sensor data
type, device capability and requirement.
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Fig. 8. IAnalyticsType

Fig. 9. SensorDeviceType

5 Provisioning Server for Fixable Device Connectivity

Device connectivity is one of the key enablers of IoT interoperability. With the num-
ber of devices increasing, it becomes challenging to manage and deploy a fleet of IoT
heterogeneous devices in an automatic and scalable manner. To address this issue, we
developed Flexible Device Connectivity as shown in Fig. 10. In particular, a provision
server is developed for deploying IoT applications for heterogeneous devices. It supports
flexible sensor-edge-platform connection, remote application deployment, automatic
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model update, secure device connection and management by fully leveraging container
technology.

Fig. 10. Overview of flexible device connectivity

Fig. 11. Design of provision server

Figure 11 shows the details of provision server and itsworkingmechanism. Provision
server is designed by fully leveraging container with following functions:

• Enable IoT device management and configuration to deploy and manage device in
scale way with support of device fleet management and interactive web interface to
add and configure sensor/devices

• Support different networking protocols (e.g., CoAP, MQTT, AMQP, OPC UA and
Rest API) including low level device-edge and edge-platform communication.
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• Connect edge devices to various platforms includingAzure IoT cloud andOn-premise
IoT platforms, and enable re-directing the data to different platform on-the-fly.

• Support automatic application deployment for uploading software and data analytics
models on remote devices.

• Apply light-weight container technology to reduce network traffic and footprint
requirement by only updating container deltas with small footprint.

• Support wide variety of chipset architectures and thus enable software portability
across different hardware platforms

• Embedded security and authentication support for network communication, using
secure token and certificate.

The interface of provision server is shown in Fig. 12. A number of devices, grouped
in to multiple fleets, are managed through the interactive interface. User can configure
application containers with different parameters, push software updates, check device
status, view logs, and so forth. In addition, it also support automatic and remote machine
learning (ML) model deployment on edge device.

Fig. 12. Interface of the flexible device connectivity

6 Conclusion

We proposed a layered IIoT interoperability framework, which is composed of 3 layers.
In the middle layer, there is a provisioning server for adaptive system configuration,
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lightweight container for remote deployment, as well as automatic application update
and quick failure recovery mechanisms. With this framework, sensors, edge devices,
machines, platforms are automatically connected and interoperated, according to real-
time and interactive parameters setting and configuration file updates. Data model is also
proposed to enable sematic interoperability.
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Abstract. One of the challenges in the Computing Continuum para-
digm is the optimal distribution of the generated tasks between the
devices in each layer (cloud-fog-edge). In this paper, we propose to
use Reinforcement Learning (RL) to solve the Task Assignment Prob-
lem (TAP) at the edge layer and then we propose a novel multi-layer
extension of RL (ML-RL) techniques that allows edge agents to query
an upper-level agent with more knowledge to improve the performance
in complex and uncertain situations. We first formulate the task assign-
ment process considering the trade-off between energy consumption and
execution time. We then present a greedy solution as a baseline and
implement our two RL proposals in the PureEdgeSim simulator. Finally,
several simulations of each algorithm are evaluated with different num-
bers of devices to verify scalability. The simulation results show that
reinforcement learning solutions outperformed the heuristic-based solu-
tions and our multi-layer approach can significantly improve performance
in high device density scenarios.

Keywords: Internet of things · Edge computing · Computing
continuum · Task offloading · Resource allocation · Reinforcement
learning

1 Introduction

Latency-critical applications are a major concern in today’s networks as they
are saturated by a large number of devices continuously sending tasks. The edge
computing paradigm is able to minimise end-user latency but has limited com-
puting capacity, therefore to improve its performance, Computing Continuum
proposes the combination of the edge and the cloud in a single interconnected
workflow. However, to make efficient use of devices it is necessary to define a
computation-offloading framework. Each edge device receives tasks with specific
requirements and has to decide whether to perform the computation itself or
offload the task to another edge node or the cloud.
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This problem is the “task assignment problem” and is a combinatorial opti-
mization problem defined as the process of determining where the computation
of each task is performed in order to minimise certain parameters, such as the
aforementioned latency and energy consumption. In our article we designed an
edge computing architecture in which edge devices receive tasks and can process
them locally or send them either to another edge device, to the fog server or the
cloud. The main contributions of this work as the following:

– We define the task assignment problem in edge computing as an optimisation
problem with a trade-off between latency and energy consumption.

– We introduce a reinforcement learning algorithm for the task offloading deci-
sion. Each edge device will be an RL agent that can decide to compute its
tasks locally or send them to the edge, fog or cloud layer.

– We propose a novel RL approach based on a multi-layer system in which the
RL agents of the devices can delegate the offloading decision to an agent of a
higher layer.

– The performance of the proposal is compared with a Greedy and single-layer
RL algorithm, showing that the proposed solution is superior to the other
algorithms.

This paper is organized as follows. In Sect. 2 we explore the state of the art
of the task assignment problem. In Sect. 3 we formulated the assignment prob-
lem with its main components. In Sect. 4 we introduce a simple reinforcement
learning algorithm and propose our novel multi-layer RL approach. Finally, in
Sect. 5 we evaluate the proposed algorithms and present the results.

2 Related Work

The task assignment problem can be solved by several methods using very differ-
ent techniques [4] such as convex optimization techniques, Lyapunov optimiza-
tion [13], Hungarian algorithm [7] and novel genetic algorithms [19]. In addition,
new methods based on dynamic programming and machine learning [17] tech-
niques have emerged, such as reinforcement learning (RL) and neural network
reinforcement learning (Deep RL). Nonetheless, it is difficult to find optimal
solutions to the task assignment problem, especially given the prohibitive com-
putational complexity in IoT devices, so in practice heuristic-based techniques
or methods that search for suboptimal solutions are often used.

One of the most common techniques are greedy algorithms, which provide
sub-optimal solutions but at a low computational cost. In some cases, it is pos-
sible to achieve solutions very close to the optimal solution [11,20]. Similarly, an
alternative approach to solving optimisation problems are algorithms based on
metaheuristics, the most popular are Genetic Algorithms which are inspired by
the process of natural selection [5,6].

On the other hand, Reinforcement Learning (RL) is a novel technique based
on machine learning that is not part of the well-known supervised and unsu-
pervised learning paradigms. The purpose of reinforcement learning is to learn
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an optimal, or near-optimal, policy that maximizes the reward function and
provides an optimal set of actions for different agent states and environmental
conditions. RL algorithms learn iteratively through the immediate rewards they
receive each time they perform an action based on their state [9,16].

In some cases, it is not possible to make use of a reinforcement learning
algorithm directly, such as in scenarios where the agents’ state is a large number
of variables, making Q-Learning algorithms inefficient, or even when the state
variables are not discrete. To address these limitations, researchers propose the
use of neural networks to model the agent’s learning process [2,18]. In general,
Reinforcement Learning and Deep RL algorithms have a common problem, the
convergence time. This type of algorithm requires a series of iterations to reach
the optimal solution, and in some cases using random factor policies may take
even longer to reach the optimal solution [3].

Finally, some approaches in the literature use other novel techniques to solve
TAP. In [12] Dadmehr Rahbari and Mohsen Nickray use classification and regres-
sion trees to solve the problem. In [1] Mainak Adhikari et al. design a delay-
dependent priority-aware offloading (DPTO) strategy for scheduling and pro-
cessing tasks, generated from IoT devices to suitable computing devices. In [8]
Lindong Liu et al. propose a supervised machine learning approach to solve the
TAP based on classification data mining technique.

3 Task Assignment Problem

Computing continuum systems are composed of a large number of heteroge-
neous devices with different characteristics and roles. Some devices have high
computational power and serve as a host for processing tasks, while others with
lower computational power constantly generate tasks for the applications they
run. This forms a layered architecture where devices are separated into levels
according to their role.

On top of this architecture appears a flow of offloaded tasks, as some lower-
capacity devices decide to send tasks to more powerful devices for processing.
We define a task as an indivisible piece of computation generated by a particular
application, which has its own characteristics and constraints such as maximum
latency, data size and computational resources required. One of the key compo-
nents of these architectures is the Task Assignment Problem since it is necessary
to determine the best possible distribution of tasks between devices at each layer.

3.1 System Model

Our proposed system consists of devices that are separated into three layers,
depending on their role, Fig. 1 shows the proposed offloading architecture. The
layer closest to the users is the edge layer, which consists of heterogeneous edge
devices that might have an intermittent connection and a dynamic position.
This layer has the lowest latency and computational capacity, and is where tasks
are generated from the edge devices that host IoT applications. Tasks can be
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processed locally or sent to devices in any of the three layers according to the
decision of the offloading algorithm.

The fog layer is the middle layer where fog Servers are deployed. Fog Servers
are small datacenters with intermediate computational capacity located between
edge devices and the cloud, hence they have intermediate latency.

Fig. 1. Edge computing architecture.

The upper layer is the cloud layer, which has very high computational capac-
ity and medium-high latency. The cloud acts as a single device, but in real
deployments it is typically a large number of high-performance computers in
a datacenter, therefore its computational capacity can be very high. However,
their latency is also high due to the distance to end-users.

In the edge layer each edge device executes an offloading algorithm that
decides, using the local information of the device, where it offloads the tasks it
generates. We call to the decision-making system that uses the perception of the
environment an agent.

3.2 Problem Definition

As shown above, a device can decide to execute a task locally (a = 0) or send it
to a adjacent node (a = 1), a fog server (a = 2) or the cloud (a = 3), resulting
in a specific cost as a weighted sum of execution time and energy consumption.

We formulate the cost of our optimization problem as a piecewise function
that depends on the offloading action, which we define in detail in a paper still
under revision. In a real environment, it may be possible that the offloading pro-
cess fails (a = −1), so it is necessary to define a penalty cost δ in the segmented
function Eq. 1.

Therefore, our proposal consists of designing an optimisation scheme in which
the cost resulting from the allocation of tasks (K ) produced by a device d is
minimised. Therefore, each device d aims to perform the best possible assign-
ment of actions for each task k to minimise the resulting cost of all assignments.
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The optimization problem is formulated in Eq. 2.

Cd,k(a) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cl
d,k if a is equal to 0

Cm
d,k if a is equal to 1

Cf
d,k if a is equal to 2

Cc
d,k if a is equal to 3

δd if a is equal to −1

(1)

Gd = min
ak

K∑

k=1

Cd,k(ak) (2)

subject to:
K′∑

k=1

T d,k
mips � Dd

mips, ∀k, Ld,k � T d,k
dl , ak ∈ {−1, 0, 1, 2, 3}

The optimization problem is subject to the following constraints: The tasks
assigned to a device (K′) must not exceed the computing capacity of the device,
no task must exceed its maximum latency (deadline) and the possible actions
that can be taken are error, local processing, offload to an adjacent node, offload
to the fog layer and offload to the cloud layer.

4 RL-Based Task Offloading Algorithm

To solve the TAP defined in Eq. 2 we use a reinforcement learning approach based
on Tabular Q-Learning. Each edge device runs its own reinforcement learning
algorithm to explore the optimal task offloading policy by minimizing the long-
term cumulative discounted cost. Figure 2 shows an overview of our agent.

Fig. 2. Q-Learning agent.

When a task is received, the agent will decide offloading action (at ∈ A =
{0, 1, 2, 3}), whenever possible, whether to process the task locally (action 0 ),
send it to a nearby node (action 1 ), send it to the fog layer (action 2 ) or send
it to the cloud (action 3 ). The decision will depend on the environment, which
is based on the characteristics of the task, the state of the device and the last
average state of fog and cloud.
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The learning process uses a Q-Value table to store and query the value of the
Q-function for each state-action. When an action is performed, the new Q-Value
in the table is updated according to the following one-step Q update formula:

Q(st, at) = (1 − α)Q(st, at) + α (Ct + γ min
a

Q(st+1, a)) (3)

The reward obtained after the execution of an action is a piecewise function
of two elements that depends on the execution time of the task. If the execution
time of the task (T t

end−T t
start) is less than its deadline (T t

dl), the reward obtained
is a weighted sum between the execution time and the energy consumption of
the task (T t

energy). Otherwise, the reward is the same but multiplied by a penalty
δ factor.

Ct =

{
(T t

end − T t
start) + βT t

energy T t
end − T t

start < T t
dl

δ · ((T t
end − T t

start) + βT t
energy) otherwise

(4)

The reward function only considers energy and execution time, all other param-
eters are part of the state and do not need to be included as they will have an
indirect impact on the latency.

In this basic RL approach, each device works independently using its local
information and aggregated global information. Thus, decisions are made accord-
ing to the local state and knowledge of the agent. However, the biased view of
the environment and the lack of knowledge in the early stages of the algorithm
causes low performance in complex situations. To overcome this drawback, we
propose to allow the RL agent of a device to delegate the offloading decision
to a upper level agent in case it does not have enough information. The upper
level agent, e.g. deployed in the fog layer, will decide according to its knowledge
and the global state of the system. The offloading decision will be sent to the
querying device and both the local and the upper level agent will learn from the
reward obtained after executing the action. Figure 3 shows the process of the
offloading query.

Fig. 3. Offloading query process.

In this enhanced architecture, both edge devices and fog servers run an inde-
pendent RL algorithm that can collaborate between layers. The offloading query
allows a passive knowledge transfer from fog agents to edge agents, especially
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useful when an edge agent starts with no knowledge and performs queries to
learn from the decisions of the upper level agent.

We extend the functionality of the RL algorithm to include in the set of
feasible actions of edge devices the new offloading query action. Edge devices
and fog servers execute the same algorithm but with different behaviour, as they
have a different view of the environment.

The edge device agent now has the action (A∪{4}) of performing the offload-
ing query. When a reward is received for an action queried to a fog server, it
is considered to have a higher value since it is assumed that the upper agent
will take better decisions. Also, the Q-Value of the query action is penalized
as it is used to decrease the probability of being selected while increasing the
agent’s local knowledge. On the other hand, the upper layer agent waits to receive
offloading queries from other agents and uses its own knowledge and view of the
current state, including cloud and fog realtime CPU usages, to take an offload-
ing decision and send it back. As a result, a reward will be obtained from the
execution of the offloading action that will improve the knowledge of both the
agent who made the request and the upper layer agent.

Algorithm 1: ε-greedy Multilayer Q-Learning Algorithm
Parameters: discount factor γ, learning rate α, exploration rate ε, penalty factor δ, query reward factor ρ

and query use penalty ω

1 begin

2 for each step t do

3 Observe actual state st

4 Determine feasible action set A′ from A

5 isQuery ← false

6 e ← random number from [0,1]
7 if e < ε then

8 at ← randomly select an action from A′
9 else

10 at ← arg min
a∈A′ Q(st, a)

11 end

12 if at is to ask a fog server then

13 isQuery ← true

14 Send the offloading request to a fog server
15 at ← get the fog server decision

16 end

17 Execute or send the offloading action at
18 Wait for the task to be completed
19 Observe new state st+1
20 Calculate reward Ct by (4)
21 if isQuery then

22 Ct ← ρ · Ct

23 C
q
t ← ω · t · Ct

24 Update Q(st, 4) using (3) with C
q
t

25 end

26 Update Q(st, at) according to (3) with Ct
27 end

28 end

The proposed multilayer solution to the offloading problem based on ε-greedy
Q-Learning is shown in Algorithm 1. As mentioned before, all devices run the
same algorithm but with their own view of the state and their own knowledge.
This means that each device will manage an independent Q-Table that will be
trained locally. In addition, the upper layer agent will take advantage of all
interactions with the devices to update their global status.



Task Offloading in Computing Continuum Using Collaborative RL 89

5 Performance Evaluation

In this section we will evaluate our proposed solution compared to a greedy and
a single layer reinforcement learning approach in a simulated edge computing
environment. We will perform simulations to compare the performance of each
algorithm using a set of metrics. The simulation results are available in our
GitHub repository [15].

5.1 Methodology

The purpose of our evaluation is to obtain enough data to fairly compare the
offloading algorithms. Therefore, we will make use of an edge computing simu-
lator to test the behaviour of the algorithms from low-density to high-density
device scenarios. The output of each simulation will be a set of metrics used to
determine the performance of the algorithm in the specific simulation scenario.
To prevent inaccurate results caused by the random component of the simulator,
the metrics will be calculated by averaging the result of several simulations on
the same conditions.

5.2 Experiment Setup

The evaluation has been performed on a modified version of PureEdgeSim v4.2
[10], the source code of our extension is available on GitHub [14]. The simulated
edge computing scenario consists of three layers of devices (edge-fog-cloud) ran-
domly distributed over an area of 200× 200 metres.

To verify the scalability of the proposed algorithms, the number of edge
devices in each simulation is increased by 10 until 200. Each simulation lasts
10 min and is executed 10 times per configuration to calculate the average result.
The bandwidth of the connection between devices is 100 megabits per second at
the edge and fog layers, while the connection to the cloud layer is 20 megabits
per second. The maximum range of the wireless connection of the edge devices
is 40 m. The simulation parameters of the PureEdgeSim environment are sum-
marised in Table 1.

5.3 Metrics

To compare the performance of each algorithm we define the following bench-
mark metrics:

– Task Success Rate: The percentage of the tasks that finish their execution
over the total. A task is not considered to complete its execution correctly if
its execution time exceeds its deadline or if the offloading process fails. This
metric is one of the most important for the evaluation.

– Average Total Time: The total time required to complete successfully a
task, which includes the execution time and the time to send the task to the
processing node. This metric is especially useful for comparing the latency
incurred by each algorithm.
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Table 1. PureEdgeSim simulation parameters

Simulation Parameter Value

Simulation duration 10 min

Number of averaged simulations 10 per configuration

Min number of edge devices 10

Max number of edge devices 200

Simulation area 200 m × 200 m

Edge and Fog Bandwidth 100 Mbps

Cloud Bandwidth 20 Mbps

Edge devices range 40 m

– Complete Average Total Time: Same as Average Total Time but also
considering the time wasted on tasks that were not executed successfully.

– Failed tasks due to latency: The number of tasks that have failed because
their execution time exceeds their maximum allowed latency.

– Average CPU Usage per device: Average CPU usage of a device. Useful
to determine how much the computational resources of the devices are used.

– Average Energy Consumption per Device: Average power consumption
of one device.

5.4 Compared Methods

We have implemented in the simulator three algorithms to evaluate their per-
formance. The greedy solution will serve as a reference for comparison with the
single-layer RL algorithm and our proposed multi-layer guided RL.

In addition, we designed three methods based on the implementations of
the reinforcement learning solutions explained in previous sections. The first
one is the basic implementation of a RL algorithm that runs locally on each
device without external knowledge, in the tests we will denote it as “Local RL”.
The second and third methods are the same implementation of the multi-layer
RL algorithm but with different initial conditions. The “RL Multilayer Empty”
version starts each simulation with all Q-Tables (knowledge) of the devices com-
pletely empty, while “RL Multilayer” version uses on the fog servers the Q-Table
resulting from the previous simulations, with the same configuration, to simu-
late the behaviour of a system that starts with knowledge to improve initial
performance. The parameters used by both methods are summarised in Table 2.
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Table 2. Reinforcement learning algorithm parameters

Parameter/RL Algorithm Single Multi

Learning rate α 0.6 0.6

Latency-Energy Trade-off β 0.003 0.003

Discount factor γ 0.3 0.3

Failure penalty δ 1000 1000

Average CPU refresh rate 60 s 60 s

Query reward factor ρ - 0.2

Query use penalty ω - 10

Initial Q-Value 200 200

Initial Query Q-Value - 10

5.5 Experimental Results and Analysis

In this section we will show the most important results of the simulations per-
formed for each algorithm and configuration. Each of the subfigures of 4 repre-
sents the metrics that were defined to make the comparison between algorithms.

One of the most critical results is the success rate in task execution, since
in practice this has the most negative impact on the end-user. Figure 4a shows
the success rate resulting from each algorithm when performing the simulation.

Fig. 4. Simulations results
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As we can see, in low device density scenarios, the greedy method outperforms
the others until it reaches a medium density, 70 devices, where its success rate
starts to drop. In the high device density scenarios the performance of the greedy
method and the RL single-layer are very low while both multi-layer methods are
able to keep an acceptable performance.

This behaviour is due to the fact that in low device density scenarios there
are not a large number of tasks and most of them can be executed by the fog and
cloud servers without saturation, so the heuristics of the greedy method gives
a better result than the reinforcement learning algorithms. When a medium
density of devices is reached, the appropriate use of resources becomes more
relevant and algorithms using reinforcement learning techniques are able to adapt
dynamically to keep the success rate as high as possible. In high density scenarios
with a large number of tasks the optimal use of processing nodes is critical,
therefore the greedy method cannot achieve good results and even the single-
layer RL method cannot improve the result. In contrast, multi-layer RL methods
achieve a high success rate due to the possibility of delegating offloading decisions
to higher level agents. In fact, the best success rate is achieved with multi-layer
RL method that start with the Q-Table of the fog servers filled with the values
learned from previous simulations since it allows to provide useful knowledge to
the devices in the early stages of the learning process.

The average time required to complete a task for each algorithm and number
of devices is shown in Fig. 4b. Similar to the success rate, the average total time of
the greedy algorithm drastically changes its performance based on the number
of devices, while reinforcement learning algorithms slowly change the average
total time. The three RL methods provide a similar average total time as this
metric only considers tasks that have successfully completed their execution.

If we consider the time lost due to tasks that do not execute correctly because
of latency, we can see in Fig. 4c the real impact of the algorithm’s actions when
deciding to do an unsuitable offloading. The behaviour of the greedy algorithm
is similar to Fig. 4b, but the single-layer RL method substantially increases the
time in high device density scenarios as the impact of bad decisions in complex
situations is very high. In contrast, multi-layer RL methods avoid the initial
uncertainty by delegating the decision, thereby making better offloading deci-
sions that reduce latency failures as can be seen in Fig. 4d.

One more relevant result that can be analysed is the average CPU usage per
device, which indicates the degree of utilization of the system’s computational
resources. A proper distribution of tasks among the devices results in a high
average CPU usage per device as resource utilisation is maximised. In contrast,
low CPU usage indicates that the algorithm is saturating a few devices while
many others are idle. As shown in Fig. 4e, which represents the simulator output
for this metric, the two multi-layer RL methods stand out from others, and the
greedy method shows a low use of computational resources.

Similarly, the performance of algorithms can be measured in terms of their
energy consumption as this is one of the components of the optimization prob-
lem, Fig. 4f shows the average energy consumption per device obtained from
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the simulations. The greedy algorithm presents the highest energy consumption
while the RL algorithms show the lowest energy consumption.

After having seen the performance of the algorithms in different simulator
scenarios, we can conclude that the greedy algorithm offers acceptable perfor-
mance in low and medium device density scenarios. However, as device density
increases, more complex methods must be applied to maintain system perfor-
mance. Reinforcement learning algorithms are able to adapt to complex scenarios
at a low computational cost, thus providing the best results in simulations. Fur-
thermore, our multi-layer approach stands out from other methods because in
complex high-density scenarios it shows high performance in the most impor-
tant metrics. This improvement is due to enhanced offloading decision system by
using external knowledge and serves as evidence of the good performance of our
multi-layer RL proposal. Therefore, reinforcement learning algorithms are good
methods for solving the task assignment problem and our proposal is a useful
and easily applicable extension to any RL algorithm to improve its performance.

6 Conclusion

In this paper, we have presented the task assignment problem as a key component
of collaborative edge computing architectures. As shown in the first section, there
are several methods for solving TAP, but those based on artificial intelligence
are the most promising. Reinforcement learning is presented as a solution for the
task offloading process in our proposed three-layer edge-fog-cloud architecture.

In this work we have studied different configurations to understand the
impact of task distribution and limited vision of RL agents and how this impacts
the performance behaviour of the algorithm in complex situations. To overcome
these drawbacks, we propose a novel extension of reinforcement learning tech-
niques that allows agents to query an upper-level agent with more knowledge
and a broader view of the environment.

We have implemented our proposals together with a greedy alternative in
a modified version of PureEdgeSim simulator and performed several tests to
compare the performance of each algorithm in different situations following a
set of metrics, providing access to the results and simulations for reproducibility.
The experimental results showed that, compared with the greedy and classical
RL algorithms, under multiple conditions, our proposed multilayer RL algorithm
achieved much better performance in scenarios with a high number of devices
and tasks.
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Abstract. The recent focus on deep learning accuracy ignored economic and
environmental cost. Introduction of Green AI is hampered by lack of metrics
that balance rewards for accuracy and cost and thus improve selection of best
deep learning algorithms and platforms. Recognition and training efficiency uni-
versally compare deep learning based on energy consumption measurements for
inference and deep learning, on recognition gradients, and on number of classes.
Sustainability is assessed with deep learning lifecycle efficiency and life cycle
recognition efficiency metrics that include the number of times models are used.
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1 Introduction

Artificial Intelligence (AI) and machine learning (ML) have revolutionized how indus-
tries address data deluge. Stagnating performance of CPUs [1] has triggered specialized
computing architectures where frequently used functions are accelerated rebalancing
performance and flexibility [2, 3]. Since 8 years, AI considerably improved accuracy
in deep learning (DL) models but training cost increased 300,000× which is not sus-
tainable. The focus on accuracy ignores sustainability [4] which asks for a stronger
focus on Green AI [7]. Low-power accelerators are crucial for edge ML since infer-
ence accounts for 90% cost [1]. DL progress requires efficient balancing of flexibility,
number of classes, and accuracy. DL is inherently compute-intensive: The flexibility
that outperforms expert models makes it expensive, scaling faster than necessary [10].
Computing time for training grows as square of data points and fourth power of per-
formance, while inference energy grows with the square of classes. DL excels because
of over-parametrization, while regularization makes the complexity tractable. Graphic
Processors (GPU)- andASIC-based DL led to widespread adoption, but computing grew
faster, at 10× pa. Since 2012 [6].

To identify energy-efficient CNNs, accurate runtime, power, as well as energy mod-
els and measurements are important. Common metrics for CNN complexity are too
crude to predict energy consumption since it depends on architecture and hardware
platform. The Energy-Precision Ratio (M) rewards both accurate and energy efficient
CNN architectures. It uses the classification error (Error) with adjustment exponent
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alpha, and energy consumption per data item (EPI). Higher A enlarges the importance
of accuracy over energy consumption but for a fair comparison the number of classes
(Cl) has to be included in an assessment. Edge computing proliferated due to reduced
latency, bandwidth, improved availability, and better privacy. With federated learning
(FL) clients compute an update with local data and communicate this for model aggrega-
tion. Communication cost is reduced by structured updates [8–11]. FL preserves privacy
by distributed training deep neural networks (DNNs) on local data to optimize global
models by averaging trained gradients [12, 13]. FL is heavy on batteries, but a two-
layered process provides 20% energy savings [14]. Mobile inference reduces latency
with billions of operations. Frequent inferences drain batteries unless compressed mod-
els, minimize data transfer, and offloading reduces consumption. Quantization is also
efficient in reducing computation and communication.

2 Methods

2.1 Devices, Models, and Frameworks

To cover a wide accelerator spectrum, we used: (1) the Intel MovidiusX processor
(NCS2) [16], (2) the Google Coral Dev Board (TPU) [15], (3) the Nvidia Jetson (JNA)
[17], (4) a RPi4, and (5) a Windows workstation as reference (Fig. 1A). We tested dif-
ferent models of vastly different complexity: 1) Heart rate variability parameters (HRV
par): The model distinguishes between 4 stress classes. The data consists of RR intervals
used for training of a two-layer MLP model with 128 neurons followed by a dense layer
of 4 and a SoftMax activation. 2) Heart rate variability from RR intervals: The model is
a 1D CNN applied on the raw RR intervals [18]. 3) Environmental Sound Classification
(ESC) contains 2000 5 s clips recorded with 44.1 kHz separated into 50 different classes
[19] fromwhichwe used 30. 4) ImageClassification: To be comparable to literature three
image classificationmodel architectures were included:MobileNet (V2, 1.0), ResNet-50
and VGG-16, trained on the ImageNet dataset with image input size 224 × 224 pixels
and 1000 distinct classes [20].

2.2 Power and Energy Measurements

A inference latency measurement consists of a starting and an ending time-stamp defin-
ing the latency in milliseconds. For USB powered devices the metering device [21] was
plugged between power adapter and USB port. For other devices power was recorded
with the Smart-me [22] (Fig. 1A f and g). Inference duration and power consumption
measurements were logged with timestamps. The inference power was calculated with
start and end timestamps. For comparison between devices baselines recorded average
power consumption for 40 s (~100 data points) while idling. The amount was subtracted
from the power recorded during the inference to calculate the energy. Inferences are
run repeatedly with the same data and power consumption is recorded after a delay
to remove ramp-up effects. Timestamps are stored afterwards to avoid I/O influence
on the measurement. A good baselining process improves the accuracy of power mea-
surements in small and even more in larger multi-user, multi-tenant Cloud systems. A
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baseline measurement is done every time before a measurement is taken on all platforms
with the assumption that background processes do not considerably change during the
monitored process. Spurious activities happen, but statistically cancel since baselines
and measurements are repeated often and averaged (Fig. 1B).

Fig. 1. A) Platforms used and of the tools for acquisition of electrical power consumed: a)Movid-
ius NCS2, b) Coral Dev board c) Coral Dev Sick, d) Jetson Nano, e) Raspberry Pi4, f) Joy-IT
UM25C, g) SmartMe. (B) Power measurement graph showing how the baseline was recorded
to isolate the energy associated with inference and/or training. The line colors show the differ-
ent phases (init, green; warmup, red; rollout, violet; and power logger, blue) that were isolated
from the inference process of MobileNet V2 (yellow), or ResNet-50 V1 (brown) to improve the
accuracy. (C) Process to determine recognition gradient for Top-1 (blue line) up to Top-5 image
classification tasks. The values for Top-1 are higher because to determine the gradient, accuracies
are divided by N for Top-N predictions (Color figure online).

2.3 Recognition Gradient

Evaluation metrics are important: Accuracy (acc) or error rate (err) are simple to com-
pute for multi-class/label problems and easy-to-use but biased to majority class data.
Acc evaluates the quality based on percentage of correct predictions over total number
of instances.Err evaluates percentage of incorrect predictions [23].WhereTp is true pos-
itive, Tn is true negative, Fn is false negative, and Fp is false positive. Alternative metrics
are F-Measure and geometric-mean. Recognition gradient (RECgrad) is the probabil-
ity difference between best and second-best class or the gradient between Tp and next
best probability. For a Fp the gradient Tp - Fp becomes negative. For search results the
gradient is calculated similar to classifications. RECgrad including the 95% confidence
interval are calculated statistically from>100 test cases (Fig. 1C and Fig. 2d). The con-
fidence intervals are typically of the order of 30%. To reduce the confidence intervals
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more test cases would be needed which were not available in this study. In 1–20%where
no true label is found, the gradient is subtracted. This approach makes RECgrad more
stable and useful compared to classical accuracy calculations when a large number of
test cases is used. RECgrad is used both with recognition and training efficiency. While
top 5 accuracy is a more balanced assessment for single events, the statistical analysis
reaches a better result for top 1 analyses. As expected, the risk for a top-1 miss is higher
than for a top-5 miss but this is compensated by higher values.

3 Results

DL models for image, audio, and HRV data are compared on accelerated platforms. 2D
image data is computationally more demanding than 1D audio data (44 kHz) and heart
rate or heart rate variability data (1 Hz). The complexity difference is more than 10000×
which is also reflected in the power consumed. We start out with a comparison of energy
consumption for inference and learning.

3.1 Energy and Accuracy

Figure 2A shows that large models (brown) consume more energy than medium (violet)
and small (red) models. The factor is >6’500 between the largest (VGG-16) on Cloud
and the smallest (MobileNet) on TPU. This factor becomes 300’000 when audio (green)
and HRV pars (blue) are included. On the same platform (NCS2, JNA) the inference
energy Einf varies from 578 mJ (large), over 186 mJ (medium) to 70 mJ (small). This
factor is larger on TPU. Small image recognition models save 10-1000× energy, albeit
at slightly smaller accuracies, but the accuracy difference is much smaller than the
energy consumption difference. Accuracy wise ESC30 is low and VGG-16 high on the
M graph (Fig. 2a). But VGG-16 classifies 1000 while ESC only 30 classes. Energy
measurements with our method are very accurate of the order of 1 and up to 15% of
a few cases (Fig. 2a) with a standard deviation that is much smaller than confidence
intervals found for RECgrad (Fig. 2d).

The comparison is unfair since TPUs use quantization. The NCS2 and JNA consume
2x more energy for the large model, and 10–20× more for the small MobileNet model.
The power consumption of Cloud is 100× larger for VGG-16 and >1000× larger for
MobileNet irrespective whether computed on GPUs or CPUs. This is due to the added
data transfer energy to the Cloud (70 kB for Images, 50 kB for sounds, and 0.5 kB for
RR). The transfer energy for a GB from aMobile/IoT device to the cloud is 202 J/Mbyte
[24, 25]. Inference comparisons between platforms are unfair for models with different
accuracies. It would be better to balance energy consumption and accuracy.

3.2 Energy-Precision Ratio

Energy-Precision ratioMcomparesmodels and platforms including accuracy [7].M with
(A = 4, Fig. 2b) provides a better angle than energy consumption and nicely compares
models trained on the same dataset. However, it fails on datasets with different Cl: 1000
(image), 30 (audio), and 4 (RR). Selecting among 4 classes is simpler leading to lowM
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than among 1000 classes. Due to the low Einf , HRV pars (blue) reaches a lowM value.
The lowest M is reached by the ESC30 model because the accuracy is high. M is more
than 1000× lower on the same platform than VGG-16 and 100× lower than MobileNet.
M is high onARMand server CPU/GPUs.Discussions based on energy-precision graphs
do not enable a far better understanding on model, library, and platform efficiency than
energy consumption.

Fig. 2. (a) Inference energy in mJ for stress recognition from HRV pars (blue), or raw HRV
(orange), ESC-30 sounds (green), and image recognition for MobileNet model (red), ResNet-50
(violet) and VGG-16 (brown). The left column is from the NCS2 (16 bit), the next two from TPU
(Board/Stick), the fourth from the JNA at 5W (16 bit) and the fifth form JNA at full power (32bit),
the sixth from the RPi 4 platform, and the final two from a Windows PC (GPU/CPU). (b) Energy
precision ratio M for A = 4 which emphasizes accuracy over power consumption, (c) Recognition
efficiency RE calculated using Eq. 1. M in (b) and RE in (c) are shown for the same models and
platforms with the same colors as in (a). (d) Recognition gradients used for the RE determination
are shown with 95% confidence intervals (Color figure online).

3.3 Recognition Efficiency

For this reason, we introduce the “Recognition Efficiency” (RE) as follows:

RE = RECgrad × Cl
2
√
Einf

(1)

where RECgrad is the recognition gradient, Cl the number of classes and Einf the energy
in mJ for the inference computation. RE uses the square root of energy. Figure 2c shows
a superior RE of MobileNet (red) on TPU followed by JNA low power, NCS2, JNA
MAXN, the ARM on RPi4. RE is much lower for Cloud. ResNet-50 model (violet) is
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on par with the accelerated platforms while Cloud performs 10× worse. For ResNet-50
the TPU performs less than JNA and NCS2. For the VGG-16 model (brown) the TPU
board performs 100×worse than NCS2 and Jetson. Still JNA and NCS2 are 3–6× better
than Cloud. The audio (green) and time-based models, are ranked as follows: RE is even
among accelerated platforms except for Cloud. ESC 30 RE is 10× better on RPI4 than
on Cloud which also performs 30× worse than the best accelerated platform. For the
HRV Par (blue) with 4 classes the TPU performs 4x better than the NCS2. Surprisingly,
RE of HRV Par is high on the RPi4 and the Cloud performs two orders of magnitude
worse. The RE confidence intervals are around 30% (black bars) and are comparable
among models and platforms with a few exceptions: VGG on TPU and most models on
RPi4 are larger due to memory management issues. While image recognition models
were optimized, we show that RE compares maturity/efficiency on best recognition for
the least amount of inference energy.

3.4 Cloud-Centric and Federated Learning

Etrain is similar to Einf , but with 4–6 orders of magnitude larger power consumptions.
Einf is more important because it is used much more often. Training large and medium
size models takes weeks on Cloud consuming MWh - too big for edge systems. The
only approach accessible for smaller systems is FL with several edge systems and an
integrating server for ESC50, RR, and HRV. Training on systems that generate data
(camera, Mobile Hub) and receive labels, reduces the energy wasting movement of data
to Cloud and leaves personal data with the owner. Table 1 shows Etrain on Cloud and on
edge systems. RECgrad applied to training leads to the training efficiency (TE):

TE = (RECgrad × Cl)2

2
√
Etrain

(2)

whereRECgrad is the recognition gradient,Cl the number of classes andEtrain the energy
in kJ for DL training. TE scales with the square of energy invested. With the 4th power of
accuracy TE rewards models that distinguish among many classes with a good RECgrad .
For a complete evaluation, inference and training need to be combined with a usage
factor. The combined term is called deep learning lifecycle efficiency (DLLCE):

DLLCE = 1 / (Etrain/(Einf x F)+ ) (3)

where Etrain is the training energy, Einf the inference energy, and F the factor how more
often inference is used. DLLCE shows that Etrain is larger than Einf but with often used
models the investment is amortized andDLLCE approaches 1 for large F. Table 1 shows
that Etrain is 1000–10’000× larger than Einf and is reflected as inverse square root of
TE. TE in Eq. 2 rewards a steep RECgrad and large Cl to distinguish different models
because data volume for training and model size increase more than linearly with Cl.
RECgrad decreases with Cl. Etrain is for the last training and not for model development.

Etrain for HRV pars, RR raw, and ESC50 was measured while Etrain for MobileNet,
ResNet-50, and VGG-16 is from literature [26, 27]. Table 1 shows a higher RE on JNA
compared to Cloud. For the RPi4 only theHRVparsmodel is more efficient while the RR
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and ESC50 models perform worse. Current FL with many epochs leads to higher Etrain

since we have not reduced the model communication overhead like few-shot learning
[18]. FL requires more epochs for the same accuracy. Federated Averaging, Federated
Stochastic VarianceReducedGradient, andCO-OP on theMNIST dataset show a similar
accuracy with the same training epochs with IID data [28]. Trainings were not possible
on NCS2 and TPU since these devices are too much limited.

Table 1. Training/Life cycle energy and efficiency

Platform Model Etrain (kJ) TE Etrain FL (kJ) TE FL

RPi 4 HRV pars 0.461 5.06 2.73 1.89

RR raw 15.84 1.23 18.74 1.27

ESC 30 83.25 1.7 104.9 1.66

JNA HRV pars 0.12 8.88 2.79 1.87

RR raw 0.606 7.06 10.34 1.71

ESC 30 10.45 5.26 42.9 2.60

Cloud / HRV pars 1.58 2.48

PC / RR raw 3.71 2.86

Work ESC 30 31.1 3.05

station MobileNet V2 14578 95.9

ResNet-50-V1 604800 21.4

VGG-16 392000 18.6

Fig. 3. Deep learning lifecycle efficiency (left) for centralized and (right) FL approaches as func-
tion of number of uses (F). Training on Cloud (dotted) need longer amortization than on JNA
or RPi4 (solid, dashed). Small models (HRV pars, blue and RR, brown) are quickly amortized.
ESC30 models trained on Cloud (green, solid) need much more to amortize training. (bottom)
Recognition efficiency (RE) over the entire lifecycle (left) for centralized and (right) federated
learning approaches as function of number of uses (F). With models and platforms as in DLLC
(Color figure online).

Etrain of VGG-16 and ResNet-50 require weeks of training on multi-GPU clusters.
This improves for MobileNet that is optimized for low network complexity so that RE
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becomes high. Etrain for FL is higher leading to a 10× shift of the HRV pars curve on
RPi4 (blue, solid) towards higher F. Unfortunately, we cannot give values for Etrain FL
on Cloud (Table 1 right columns). Because these values are not published.

3.5 Life Cycle Aspects

Figure 3 shows the life cycle efficiencyof image, sound, and stress recognition as function
ofF:With>100’000× usesEtrain reducesRE by<10%butwith<100× uses the energy
consumption is 100× enlarged. For Cloud training (Fig. 3, left), Etrain for ESC30 is 3.1
million x larger thanEinf with aDLLCE = 0.03 for 1000 uses. ESC30 needs>1’000’000
uses so that training adds <5% overhead. For ESC30 on JNA (green, dotted line) Etrain

is 1000× larger than Einf . If used 1000× the Etrain overhead is 20%. For direct use of
RR-intervals Etrain is fully amortized to<1% overhead with 100 uses. For HRV pars
on JNA Etrain needs 1000 uses for a full amortization. FL is not more efficient because
models are as large as datasets. The lifecycle energy consumed for a DL application is
calculated by Einf . Multiplied by F and divided by DLLCE. Curves in Fig. 3 are drawn
using DLLCE (Eq. 3) and F sweeping from 100 to 10,000,000.

Table2 shows DLLCE for 10’000 uses in kJ and for 100 million uses in MJ which
is very small for HRV pars on RPi4 and JNA and 10× larger on Cloud. For ESC-30 the
ratio is: JNA 8× smaller compared to RPi4 and 10× smaller than on Cloud. DLLCE
omits model development needing vast hyper-parameter tuning with grid searches. In
such cases AI model lifecycle energy exceeds 200’000 MJ, more than the energy a car
uses in its lifetime. No detailed information about hyper-parameter tuning is available
in literature; for this reason, we have not included number of development and tuning
cycles in the Etrain and total energy values).

Figure 3c,d show how RE varies with included training energy:

RELC = RECgrad ∗ Cl
2
√
Einf /Etrain/F

(4)

The lifecycle recognition efficiency (RELC) rewards efficientmodels (RELC > 1) like
HRV pars (blue) or RR intervals (yellow) on RPi4 (solid) or JNA (dashed). MobileNet
on Cloud (red dotted) and ResNet on Cloud (violet dotted) reach this threshold only
at F > 10’000’000. Most models need >100’000× uses before the training energy
is deprecated. Below that most models are Etrain dominated. Models with intermediate
RELC (0.1–1) are ESC 30 on JNA (green dashed) and VGG-16 on Cloud (brown dotted).
In the worst category (RELC <0.1) are ESC30 model on Cloud and rarely used image
analysis models (VGG-16 and ResNet50, F < 1 Million). The situation is similar also
for FL trained models because data for inference remain on the edge and Einf dominates.
F was selected from 100–10’000’000 in Fig. 3 since for most models the transition from
training to inference energy domination happens in this range.

Figure 4b shows the effective recognition efficiency that is reached by a given imple-
mentation as functionof number of uses. The rangevaries from1000 to 100billion (1011).
It becomes clear that sophisticated models have to be used very often in between re-
training in order to reach the pure inference efficiency as given in Fig. 4a. The curves for
all models and platforms show three different phases (1) a linear increase, (2) a transition
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Table 2. Training/Life Cycle Energy and Efficiency

Plat-form Model DLLCE 10’000 DLLCE
100’000’000

Energy (kJ)
10’000

Energy(MJ)
100’000’000

RPi4 HRV pars 0.044 0.975 0.462 0.0093

RR raw 0.029 0.945 15.85 0.148

ESC 30 0.950 0.995 84.01 7.690

JNA HRV pars 0.288 1 0.135 0.112

RR raw 0.248 1 0.646 0.399

ESC 30 0.248 1 10.69 2.331

Cloud / HRV pars 0.677 1 2.914 13.36

PC / RR raw 0.554 1 5.352 16.45

Work ESC 30 0.850 1 112.0 809.4

station MobileNet 0.509 1 486.0 1261

ResNet 0.014 0.830 604934 1947

VGG-16 0.019 0.891 392150 1894

where the slope is gradually reduced, and (3) a flat phase to the right of the transition
phase. Phase 1 is training energy dominated, while phase 3 is inference energy domi-
nated. Thus, efforts to reduce training energy will move the transition phase towards the
left or lower number of uses. If models are implemented on efficiency accelerated edge
platforms, the phase 3 levels will be reduced to lower RE while the transition will move
to the right or to higher number of uses.

Going through a few examples can better explain the mechanism. The model and
platform combination with the earliest transition from training energy domination to
inference energy domination (green dotted, 1000’10’000) is the ESC30 model on win-
dows because inference in the cloud is inefficient. If the inference is done on a non-
accelerated edge platform (RPi4) then RELC improves but the transition shifts to the
right (green solid, 1–10 million). A very similar transition is also observed for the HRV
Par. Model (blue dotted and solid), here the improved going to the RPi4 platform is
very impressive (RELC going from 0.15 to 6). MobileNetV2 reaches a RELC of 5 when
inference is done in the cloud (red, dotted) but reaches RELC = 150 when the inference
is done on the Edge TPU platform (red, dash-dotted). Here the transition from training
to inference domination changes from 1–10 million in Cloud to 10 billion for the Edge
TPU platform. For VGG-16 the RELC values are lower (RELC = 0.65 on edge TPU and
3 on Cloud brown dash-dotted and dotted) because the too large complexity reduces the
gains for edge inference.
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Fig. 4. (a) Recognition efficiency shown for the same models and platforms with the same colors
as in Fig. 2. RE above 100 is class A(green), RE between 10 and 100 is class B (blue), RE from 1
to 10 is class C (yellow), RE below 1 is class D (orange), and RE below 0.1 is class E (red). This
is valid for all models, libraries, and platforms. (b) Recognition efficiency over the entire lifecycle
(RELC) for centralized learning approaches as function of number of uses (F). Training on Cloud
(dotted) need longer amortization than on JNA or RPi4 (solid, dashed). Small models (HRV pars,
blue and RR, brown) are quickly amortized. ESC30 models trained on Cloud (green, solid) need
much more to amortize training (Color figure online).

4 Discussion, Summary, and Outlook

4.1 Discussion

Accelerated edge systems contribute toGreenAI to renderDL sustainable. Edge systems
reach similar accuracies like but spend 1000–10’000× less energy. Recently, models
were optimized only for performance or accuracy which caused non-sustainable Red
AI. New universal metrics are needed that establish a better balance between accuracy
and energy. A linear comparison between accuracy and energy is unfair, but with the
square root energy term for inference andwith 0.25 power for training a better assessment
is possible. To enable universality, we additionally introduced the number of classes a
model distinguishes so that with RE the most efficient models, libraries, and platforms
that improve efficiency of DL can be selected. The universal RE and TE metrics were
introduced since ML efficiency evaluation lacked accurate, universal tools [24, 54].
CNNs improved accuracy at the cost of strongly increased energy consumption leading
to VGG-16 but MobileNet started to revert this trend [29]. Networks have to be selected
that meet optimizing needs on energy and satisficing needs on accuracy. Accuracy is the
optimizing metric, because it needs to correctly detect an object. The time and energy
is the satisficing metric [30]. On edge devices, Once-for-All (OFA) outperforms state-
of-the-art NAS methods while reducing many orders of magnitude GPU hours and CO2
emission [31].

Leader boards avoid disclosure of AI’s environmental costs but to accelerate transi-
tion toGreenAI transparencyneeds to be enforcedbyonly allowing results that document
energy demand and overall efficiency. Measuring the carbon footprint of computing and
publishing this information is important to raise awareness about the implications of
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AI adoption [32]. Curbing black box decisions is essential too - Black Boxes are nei-
ther socially responsible nor Green. Explainability in AI has to include transparency on
usefulness with the recognition efficiency metric.

4.2 Summary and Outlook

MACS or MADDS are not suitable to compare efficiency, but new metrics are optimal:
Recognition efficiency RE, training efficiency TE, deep learning lifecycle efficiency
DLLCE, and life cycle recognition efficiencyRELC. For a lifecycle assessmentDLLCE
and RELC show how close the efficiency is compared to the inference or RE, rewarding
lean models that are used frequently between re-training. Red AI optimizes the perfor-
mance independent of the energy demand which is an optimizer approach which – with
respect to human development would not have allowed survival. Thus, there is a need
to switch to a satisficer approach to direct Red AI towards a Green AI to save the cli-
mate and our survival. To develop in this direction, we need metrics that allow satisficer
decisions: These are recognition efficiency RE, training efficiency TE, deep learning
lifecycle efficiency DLLCE, and Life cycle recognition efficiency RELC .

Over the last years, the computational power of smartphones and tablets has grown
dramatically, reaching desktop computers available not long ago [34–36]. DSPs, GPUs,
NPUs and dedicated AI cores enable AI and DL-based computations. Android Neural
Networks API, an Android C API has enabled a widespread use of DL on smartphones.
In the next years all high-end chipsetswill get enough power to runDLmodelswhichwill
result in more AI projects targeting mobile devices as the main platform for deployment.
Progress on the software stack is slower: There is still only TensorFlow Lite, providing
functionality and ease of deployment, while also having a large developer community.
Due to limitations of Android and IoS with respect to implementation of mostly Python
based leading AI solutions a study including mobile platforms will have to be carried
out as part of a later study.

Following the quote from Peter Drucker: “If you can’t measure it, you can’t improve
it” a universalmetric is needed [33, 37].Ourwork is crucial to driveRedAI towards green
AI. Based on these metrics, a similar standard like Energy Star for appliances and
computers can be created: RE above 100 is class A (green), RE between 10 and 100 is
class B (blue), RE from 1 to 10 is class C (yellow), RE from 0.1 to 1 is class D (orange),
and RE below 0.1 is class E (red). This is valid for all models, libraries, and platforms
(see Fig. 4). As technology develops thresholds for class A will increase reaching 1000
in the near future. To support large number of uses for a model the classification has to
be done on the lifecycle recognition efficiency RELC .
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Abstract. Atrial fibrillation (AF) is a cardiac arrhythmia occurring
when the atria lose their normal rhythm causing the heart to beat
erratically. The estimated number of individuals with atrial fibrillation
globally in 2010 was 33.5 million. Despite continued research in this
area there is no universal standard for detecting atrial fibrillation. The
majority of published detectors rely on manual classification techniques
that are implemented on standalone devices. This paper proposes a dual
convolutional neural network (CNN) based AF detection system. The
proposed system transforms 5 s windows of electrocardiogram data to
two-dimensional images via a stationary wavelet transform to serve as
CNN inputs. The dual CNN system implements a model tailored for
an IoT gateway device to prescreen arrhythmia cases locally. Less obvi-
ous arrhythmia cases are transferred to a secondary model hosted on a
cloud server for further prediction. Local classification of AF reduces the
overheads for cloud storage capacity and transfer of data. The proposed
runtime system ultimately received an F1 score of 0.94 when evaluated
using previously unseen data.

Keywords: Internet of Things · Deep learning · Convolutional neural
network · ECG · Atrial fibrillation

1 Introduction

Atrial fibrillation (AF) is a cardiac arrhythmia caused by erratic sinoatrial node
activity which leads to irregular heart rhythm. Capturing the heart cycle via an
electrocardiogram (ECG) reveals the cycles’ comprising elements, called PQRST
waves, which can be seen in Fig. 1. AF can be diagnosed via an ECG due to
irregular morphology of PQRST waves and inconsistency of wave intervals. The
most recent worldwide study into the prevalence of AF performed by the World
Health Organisation found that the condition was estimated to affect 33.5 million
people globally [6]. Predictions indicate that 6–12 million people will be affected
by atrial fibrillation in the USA by 2050 and 17.9 million people in Europe by
2060 [5,13,17]. Left untreated AF can lead to complications such as blood clots,
strokes and heart failure.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 111–123, 2022.
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Fig. 1. Typical PQRST wave comprising of P-wave, Q-wave, R-wave, S-wave and T-
wave.

Traditionally there are two forms of AF detection techniques;

1. Atrial activity analysis-based i.e., morphology analysis of P wave absence or
F wave presence.

2. Ventricular response analysis-based methods i.e., time between peaks of con-
secutive beats, typically RR intervals.

Some traditional classification techniques have demonstrated high scoring
metrics on test data. Machine learning techniques are becoming more popu-
lar and increasingly, deep learning based solutions are proposed [10,18]. Such
works have achieved accuracy comparable to that of traditional feature-based
approaches. Deep learning solutions are amongst the best-in-class detectors
developed for use with the following datasets: MIT-BIH Atrial Fibrillation
Database (AFDB), MIT-BIH Normal Sinus Rhythm Database (NSDB), MIT-
BIH Arrhythmia Database (ADB) and the Computers in Cardiology Challenge
(C3) 2001 and 2017 databases. The discussion that follows is based on the fact
that deep learning solutions provide the best methods to detect AF.

The research outlined in this paper was motivated by the lack of mobile or
IoT based deep learning AF detection systems. The proposed system implements
a dual deep learning model for detection of AF with an F1 score of 0.94 on test
data which is in line with previously published detection mechanisms and also
with the findings in [10], which states that ensembles of multiple approaches
can achieve greater results. The system utilises a model on a local IoT device
and a backup cloud model. The combination of both models allows for local
classification in the majority of cases with dual prediction being used in more
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difficult cases. This reduces the server requirements needed to host multiple
clients and ensures that potentially sensitive information is not being sent to the
cloud unnecessarily.

1.1 Existing Techniques for AF Detection

Described traditionally AF is detectable by examining R peak time intervals
[7,16,23]. Some detectors collect RR intervals and use techniques such as Shan-
non entropy [7,15,27] or root mean square of successive differences [15] and sym-
bolic dynamics [27,28] to identify AF. Wave morphology can be used to detect
the lack of P waves due to F waves oscillating about the baseline during AF
episodes, as described in [3,14,21]. It can be beneficial to combine both interval
and morphology based approaches, as demonstrated in [2]. This allows handling
of ectopic beats, a problem that hinders interval techniques, and handling of
signal noise, a problem that effects the wave morphologies captured. Machine
learning detection methods have also been shown to achieve excellent results
[1,8]. A machine learning based detector has been adapted into a mobile to
cloud infrastructure by Cheng et al. [4], with a possible opportunity to improve
the level of specificity that can be achieved. There are a number of deep learning
based methods capable of detecting AF [12]. A convolutional neural network
(CNN) system by Xia et al. is the best performing detector on the AFDB [26].
These authors implement a stationary wavelet transform (SWT) to convert input
from the time domain to the time-frequency domain. The time-frequency data
is used as an input array to a two-dimensional (2D) CNN resulting in sensi-
tivity, specificity and accuracy metrics of 98.79, 97.87 and 98.63% respectively.
Another detector that utilises some of these techniques was proposed by Wu et
al. [25], and they reported equally high levels of performance. The objective of
the research outlined in this paper was to create a detector with performance
metrics similar to the detector proposed by Xia et al. and implement it in a
system with an architecture similar to the detector proposed by Cheng et al.

2 Data Preparation

2.1 Data Source

The AFDB is used as the only data source for this project. This data source
has 25 instances of dual channel ECG recordings spanning 9 h. Only 23 of the
recordings contain an ECG trace. The 23 recordings were split into training,
validation and test datasets on a per record basis while attempting to keep
approximately matching numbers of AF and healthy data in each dataset. The
split was performed on a per patient basis i.e., each source recording is desig-
nated to a mutually exclusive subset. This split prevents data from the same
patient existing in multiple subsets. The training data contained 13 recordings,
the validation data contained 6 recordings and the test data contained 4 record-
ings. Each recording is split into 5 s adjacent windows of ECG data leading to
a total of 332,122 instance of 5 s data across all datasets. Of that total; the
training data contained 76,090 AF instances and 113,214 healthy instances, the
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validation data contained 36,386 AF instances and 48,403 healthy instances and
the test data contained 20,027 AF instances and 38,003 healthy instances.

2.2 Prepossessing

The source recordings originate from a standard two lead ECG acquisition sys-
tem and have undergone no previous signal processing [9]. Using signal processing
techniques will remove unwanted artifacts from the signal. The main sources of
these artifacts which are outlined in [11] are summarised below.

1. Baseline wander caused by the respiration and movement of the subject,
thus baseline wander is an artifact in most cardiac ECG data. This is a low
frequency artifact that affects ECG data by moving the trace away from 0 V
during times of no heart activity.

2. Powerline interference due to electromagnetic fields caused by electrical pow-
erline interference with the monitoring device. This causes noise in the range
of 50–60 Hz and can severely effect wave morphology, thus affecting classifi-
cations of arrhythmias.

3. Myoelectric noise interfering with the ECG signal is caused by the electri-
cal activity generated by muscles. Myoelectric noise is difficult to eliminate
because the frequency of the noise is not predictable.

To eliminate these artifacts a zero phase second order Butterworth bandpass
filter is implemented in the range of 0.5–50 Hz. The effect of this filter can be seen
in Fig. 2. To alleviate the data set imbalances and improve model generalisation
4,900 augmented AF training instances were created using the approach outlined
in [24] i.e.;

1. Jittering and off centering by addition of Gaussian noise to the signal with
a 0.2 mean and variance of 0.02. This adds slight variance to the values of
individual data points and moves the mean of the entire signal away from 0.

2. Dynamic time warping by stochastically compressing the length of the array
values. The resulting empty indexes are zero padded to maintain the 5 s win-
dows. This results in a slight increase in PQRST frequency.

3. Array reversing by flipping the data in the window.

In order to transform the images into 2D, a modified SWT was implemented.
The SWT allows a time invariant and multiresolutional analysis of an input
signal by implementing a series of high and low pass filters, the output at each
stage is upsampled by zero padding between adjacent elements to maintain the
original input length [19]. Equations (1) and (2) and Fig. 3 all describe the process
of the recursive SWT of signal Xk, where Gn and Hn are low and high pass
filters. Detail and approximation coefficients of the SWT are represented by Vn

and Wn. The outputs of the SWT were reshaped into squares and converted to
RGB images with inter-area interpolation, which can be seen in Fig. 4.

Vi(x) =
∑

n

GnVi−1(x− 2i−1n) (1)

Wi(x) =
∑

n

HnVi−1(x− 2i−1n) (2)
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Fig. 2. The effect of Butterworth bandpass filtering on Record 08378 from the AFDB.

3 Deep Learning Models

3.1 Development

The two models were designed with different architectures to generate a non-
overlapping classification strategy to reduce the likelihood of both models making
the same misclassification. The final classification would be categorised by the
highest softmax P-valve achieved by a committee of classifiers. Training took
place on the Google Colab Pro environment using the Keras API. The various
models created throughout the design process were trained three times and the
median performance was taken as representative.

The cloud model architecture can be seen in Table 1. This model was trained
for 100 epochs. All models were trained using the Adam optimiser with learning
rate of 0.01. Each model consists of multiple convolutional blocks and a fully
connected block at the head of the model. The cloud model uses 5× 5 convo-
lution and a larger input image and max pooling is utilised at the end of all
three convolutional blocks. Regularisation was attained during model training
by implementing dropout with a P value of 0.5 and the application of the Image-
DataGenerator class to flip instances on their vertical axis to create additional
synthetic training data.

The local IoT model is designed to minimise computational load on the
embedded device. It was trained for 50 epochs and the architecture as can be
seen in Table 2, contains two convolutional blocks each with two subblocks. The
subblocks contain stacked convolutions with 3× 3 kernels before pooling. The
double 3× 3 convolution achieves the same receptive field as the single 5× 5
convolution used in the cloud model but uses fewer parameters. As the depth of
the network increases the features extracted become more representative of the
input data. Global max pooling is utilised to implement feature wide pooling
along all 24 input maps, resulting in the most useful features being selected
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Fig. 3. Representation of the tree structure of a multi-level SWT.

Fig. 4. SWT coefficient response converted to RGB image.

and reducing the total number of parameters in the system. The local model
incorporates additional regularisation techniques via the application of ridge
regression to the kernel (weights) and to the activity (output) of a layer in
the fully connected subblocks. Both models utilise the softmax function which
returns an array of two probability scores, which sum to one.
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Table 1. Cloud model architecture.

Layer Block Outputs Pooling Size

Conv2D0 1 251, 251, 16 5× 5

Batch Normalisation 251, 251, 16

Max Pooling 83, 83, 16 2× 2

Relu 83, 83, 16

Conv2D1 2 79, 79, 16 5× 5

Batch Normalisation 79, 79, 16

Max Pooling 26, 26, 16 2× 2

Relu 26, 26, 16

Conv2D2 3 22, 22, 16 5× 5

Batch Normalisation 22, 22, 16

Max Pooling 7, 7, 16 2× 2

Relu 7, 7, 16

Flatten FC 784

Dense 50

Relu 50

Dropout (0.5) 50

Dense 2

Softmax 2

3.2 Deployment

The cloud model is hosted on an EC2 virtual server. Cloud model deployment
is achieved using a docker container of TensorFlow Serving. The cloud model is
converted from Keras to TensorFlow and the docker container launches Tensor-
Flow Serving which hosts the model. The runtime system can be seen in Fig. 5.
The user specifies a test recording to analyse. The program loads 5 s of ECG
data from both signals and applies bandpass filters and the SWTs to achieve
images for each signal source and predictions are made. If the difference in pre-
dicted value is less than an empirically determined threshold of 0.7 the cloud
model is utilised. Then the argmax of the 8 attained prediction values is the final
classification.

3.3 Gateway

The gateway was initially deployed and tested using a desktop machine but
the model was developed with a view to deploying it on an embedded Linux
device, where the device acts as a gateway that makes local predictions after
receiving data from a separate wearable ECG monitor. The desktop runtime
system is capable of loading data, preprocessing and making local predictions in
approximately 80 ms consistently. In cases where the backup cloud model was
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Table 2. IoT model architecture.

Layer Block Outputs Pooling size Regularisation

Conv2D0 1.0 127, 127, 12 3× 3

Batch normalisation 127, 127, 12

Relu 127, 127, 12

Conv2D1 1.1 127, 127, 12 3× 3

Batch normalisation 127, 127, 12

Relu 127, 127, 12

Max pooling 63, 63, 12 2× 2

Conv2D2 2.0 63, 63, 24 3× 3

Batch normalisation 63, 63, 24

Relu 63, 63, 24

Max pooling 31, 31, 24 2× 2

Conv2D3 2.1 31, 31, 24 3× 3

Batch normalisation 31, 31, 24

Relu 31, 31, 24

Global max pooling 24

Flatten FC 24

Dropout (0.5) 24

Dense 48 L2 Kernel & Activity (0.005)

Dropout (0.5) 48

Relu 48

Dense 48

Softmax 2

utilised, the time taken for prediction typically increased to 800 ms due to the
time necessary for handshake i.e. transmission, cloud operations and receipt of
data. When deployed on a Raspberry Pi 4, it is estimated that the time taken
to load, preprocess and make local predictions will increase to 240 ms. In cases
where the cloud model is required it is estimated that the maximum prediction
time will not exceed 2.5 s. This system has been designed to predict new AF
instances every five seconds as new data becomes available from a wearable
device and the estimated prediction times stated using local and cloud models
suggest that the proposed system should be capable of real-time operation on
an embedded Linux device.

4 Results

In this paper, two CNN models have been proposed with individual perfor-
mance metrics on the test dataset seen in Table 3. Both local IoT and cloud
models were optimised using the validation set until there was no consistent
improvements gained. Most improvements came from reducing overfitting by
strategically eliminating model parameters. During the evaluation of the run-
time system the threshold to utilise the cloud model was set at 0.7. If either
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local IoT model prediction score have a difference less than the threshold, the
cloud model is also used.

As shown in Table 4, the proposed runtime system results have been com-
pared with a range of other notable high scoring detectors in the literature. The
other detectors have been created using a range of traditional and deep learning
techniques.

Table 3. Model F1 results.

Class Local Cloud Dual Local & Cloud

AF positive 0.95 0.92 0.94

Healthy 0.94 0.96 0.95

Accuracy 0.90 0.90 0.94

Macro avg 0.94 0.94 0.94

Weighted avg 0.94 0.94 0.94

Table 4. Comparison between the proposed method and previous works.

Detector Sensitivity Specificity Accuracy F1 Method Dataset

Xia et al. [26] 0.987 0.978 – – SWT, CNN AFDB

Wu et al. [25] 0.983 0.988 – – CWT, CNN AFDB, ADB

Singh et al.
[22]

– – 0.875 – ECG Image, CNN ADB

Lee et al. [15] 0.982 0.977 – – Time Varying
Coherence,
Shannon Entropy

AFDB, NSDB

Babaeizadeh
et al. [2]

0.93 0.98 – – Interval Markov,
P-wave
Morphology

AFDB

Proposed
(Runtime)

0.953 0.940 0.946 0.945 SWT, Dual CNN AFDB

5 Analysis

The CNN input equates to 5 s of ECG data, this allows for classification much
faster than the majority of detectors, which typically need 30 s of ECG data.
And although there have been 1D AF detectors implemented such as [20], the
task of creating a robust classification model using just 5 s of 1D input data does
not appear to be possible.

The F1 performance of each individual model on the test dataset is 0.90,
meaning that these detectors could be considered suitable for use independently
of each other. The dual model system improves the F1 score to 0.94. The pro-
posed model achieves performance levels that are in line with some of the best
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performing deep learning-based detectors in the literature as seen in Table 4,
noting that differing evaluation strategies make it difficult to compare techniques
directly. In the majority of systems, a single model is forced to choose a category
for a single input. In this case, each 5 s event generates two features from the
temporally aligned ECG signals, implementing an ensemble of model predictions
allows for the model with the greatest probability value to decide the final classi-
fication. The hypothesis regarding the implementation of two contrasting model
architectures in order to prevent double misclassification has proven to be effec-
tive. An investigation into misclassifications found that many are located within
adjacent samples of ECG data and thus correspond to the same false positive
event. The AFDB dataset contains no patient specific information; it is unknown
if patients suffer from atrioventricular blocks, are fitted with a pacemaker or take
heart rate controlling medicine. Further information on this would potentially
improve the classification performance of this system.

The detector by Lee et al. [15] can be considered the true best performing
detector on the AFDB. This detector implements RR intervals in two adjacent
windows; during normal rhythm there is a high spatial coherence between win-
dows, if AF occurs the spatial coherence drops, and Shannon entropy between
windows is utilised to make classifications. The detector by Babaeizadeh et al. [2]
implements both RR interval and wave morphology yet achieved an inferior per-
formance in comparison to the detector by Lee et al. Perhaps a dynamic method
to change between RR interval or morphology-based classification depending on
the noise levels within the signals will yield an improved performance.

6 Conclusions

The proposed system achieves a level of performance that is in line with some of
the best performing detectors in the literature, however, it is developed specif-
ically for use in an IoT setting and is deployed as a distributed committee of
classifiers which makes it unique when compared to the other previously pub-
lished detectors.

The opportunity exists to eliminate dataset imbalances by artificially creat-
ing AF data using a Generative Adversarial Network. These networks can be
used to generate independently and identically distributed synthetic ECG data.
ECG QRS complexes have been artificially generated but a system that extends
multiple beats into data that resembles AF requires a higher level of abstraction.
Such a system did not exist at the time of writing and will be the subject of
further research in this area.
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Abstract. The present study aimed at developing a system capable of collecting
atmospheric data from physical sensors distributed throughout the city of São
Paulo and to notify users in real-time, to provide people with early flood warnings.
In addition to the development of this system, this study also aimed to show, via
a real-life case study, how the use of web technologies, coupled with the Internet
of Things, could help solve the day-to-day problems of large cities.

Keywords: Flood alert ·Web technologies · IoT

1 Introduction

Unlike the Internet, which is the network that directly or indirectly connects computers
around the world, the World Wide Web (WWW) is an information system that includes
documents and other resources present in the network through a single address, using
a standardized format known as Uniform Resource Locators (URL). Berners-Lee1 con-
ceived the first version of the WWW in 1989, as an attempt by the European Organiza-
tion for Nuclear Research (CERN) to solve a problem they, as well as other institutions
around the world, faced daily: allowing their members to access different but interrelated
documents stored in different locations (Berners-lee 1992).

In 1991, CERN physicists carried out the first public demonstration of this idea, still
only with texts, during the ACM Hypertext 91 Conference.2 To ensure that the WWW
could grow and reach the largest possible audience, in April 1999, CERN opened the
source code for the software responsible for implementing the WWW protocol.

Although the WWW is a system that allows information to be shared between com-
puters in different locations, its initial use was almost entirely based on man-machine
interactions, with human beings in control, sending commands to a computer program,
knownas abrowser,which in turnmade requests to other computers in searchof resources

1 https://www.w3.org/People/Berners-Lee/.
2 https://www.w3.org/Conferences/HT91/Overview.html.
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like documents. This interaction ends up assigning different roles to those involved in the
communication. The party that actively makes the request, in this case, the browser, is
known as the client. The party that passively waits to receive requests and answer client
queries is known as a server. Thus, the interactions that occur via the WWW follow the
classic client-server paradigm (Comer 2016).

This entire process underwent an enormous evolution in the following decades. Not
only has the speed of data transmission within the network increased substantially but
the processing speed and storage capacity of the computers involved in communication
have also experienced staggering growth (Comer 2016) and (Höller 2014).

Furthermore, the increase in computational power was followed by the miniatur-
ization of the electronic circuits with which traditional computers were created. This
enabled the construction of small electronic equipment that was capable, not only of
sending and receiving information but also of processing the information autonomously,
without having to send it to another larger computer only for processing purposes. In
other words, small electronic devices were no longer limited to capturing and sending
data; they were now able to process their data. Thus, it became possible for two devices
to communicate directly without the need for human intervention, giving rise to the
concept of machine-to-machine communication, or M2M (Höller 2014).

Although there are other simpler and much older forms of communication between
devices dating back to the early 1900s, the first M2M interactions to use more sophis-
ticated protocols began in the late 1990s and early 2000s. They took place between
industrial sensors and digital instrumentation and did not require the use of the Internet
or the WWW, using other proprietary protocols, via wired or wireless means (Höller
2014).

In general, the term M2M is used to describe any communications between two
devices that do not require human intervention to interpret the data received and pro-
duce a response, although humans are usually involved in analyzing the data produced.
Unlike the basic operation of the WWW, M2M communications may or may not follow
the client-server paradigm, since each device involved can actively send requests and
information to the other (Höller 2014).

Although there were machines capable of communicating with other physically dis-
tant machines, most of the initialM2M communications between small devices occurred
in the same physical environment, or nearby physical environments, because of the
absence, at the time, of miniature circuits capable of allowing communications through
other means and protocols, such as the Internet or the WWW. This scenario would
only change significantly thanks to a new wave of circuit miniaturization that occurred
between the mid-1990s and the mid-2000s (Fleisch 2010).

With the emergence of these new circuits, it became possible to load basic computer
functionalities into small mobile devices, such as the ability to communicate using more
elaborate protocols such as the TCP/IP protocol and the HTTP protocol, which are the
basis of communication on the WWW (Tanenbaum 2011). For demonstration purposes
only, at a technology fair in England, and still far from commercial production, the
first embedded device to connect to the WWW was an electric toaster created by John
Romkey in 1990 (Maschietto 2021). However, it would not be long before industrial
processes evolved to allow the mass production of miniature devices effectively capable
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of communicatingwith each other over the Internet and theWWW,materializing the term
Internet of Things (IoT), which was created in 1985 by Peter T. Lewis (Bernardi 2017).

Although the use of the WWW and the HTTP protocol had already become com-
monplace in distributed systems in the mid-2000s, the advent of devices with significant
computational power has brought forth a range of new means of communication and
protocols, some open, another proprietary, such as the MQTT protocol (Maschietto
2021). The emergence of different protocols can be justified, in part, because of the
needs inherent to the different contexts in which the devices are immersed. Each of
these communication protocols seeks to simplify the issues of the media in which they
are inserted. However, this comes at an additional cost to the distributed system as a
whole: each device must be able to understand the information input and output proto-
cols, which sometimes forces two or more different protocols to exist on the same device
or requires the presence of other intermediate devices just to translate one protocol into
another.

A scenario that exemplifies this mix of different protocols is that of a traditional
WWW system, involving a server and different clients using the HTTP protocol, which
also needs to communicatewith distributed IoT devices using protocols other thanHTTP.
In this case, the webserver would need to be able to interpret protocols other than
HTTP, increasing the complexity of its development, or even creating security gaps by
requiring it to communicate with intermediate systems responsible for translating sensor
information from one protocol to another.

Thus, the present study seeks to demonstrate the technical feasibility of creating
a system for the WWW, or simply a web system, in which the server communicates
directly with both human clients from any part of the world and with autonomous IoT
devices distributed throughout a city, always through the HTTP protocol, dispensing
with the need for other systems or intermediate devices to translate information between
different protocols.

2 Objective

Todevelop aproof of concept of a large-scale data collection,monitoring, anddistribution
system using open protocols and WWW standard definitions.

3 System Architecture

The development of the proof of concept of the present study resulted in the creation of
six distinct artifacts:

1. An application programming interface (API) encoded in JSON standard (ECMA,
2017) to transmit atmospheric and rainfall data via HTTP protocol;

2. IoT devices that act as sensors that monitor atmospheric and rainfall conditions of
where they are installed and report this information to the central web server through
the proposed API;
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3. A central web server responsible for receiving, processing, and storing the infor-
mation received in a database through the proposed API, in addition to making the
stored data available to two other web applications, also through the same API;

4. A web application that allows users to receive notifications about floods coming
from the sensors and provides manual notifications about floods in their region of
the city of São Paulo, which are then relayed in real time to other registered users;

5. A secondweb application, a public website, which displays the consolidated weather
information received from the IoT sensors;

6. An administrative web interface that manages the registration of IoT sensors in the
system.

3.1 API, Sensors, and Web Server

The first step in developing the system’s proof-of-concept was to create an API to
standardize communication between the different IoT devices and the system’s central
web server. This version of the system connected sensors from the São Paulo Flood
WarningSystem (SAISP) andPluvi.On, a private company that provides access to rainfall
sensors in several regions of Brazil.

The data obtained from the SAISP sensors are fed into the history of reported rainfall
in the Metropolitan Region of São Paulo and can be accessed publicly at https://www.
saisp.br/historic/index.jsp?C=N;O=D. The SAISP sensors consist of multiple radars and
devices of public agencies of the city of São Paulo. The raw data is sent to a web service
that receives, processes, compiles it, and then offers it publicly in a user-friendly way at
https://www.saisp.br/online/ and https://www.saisp.br/online/prec_acum_sabesp/.

The measurements sent by the SAISP sensors contain the sensor identifier, its name,
address, geographical location, a textual description of the type of sensor, the sensor
installation date, the rainfall values measured in the period, and a marking with the date
and time of the measurement.

The sensors provided by Pluvi.On collect information about rainfall, temperature,
wind, and other atmospheric characteristics. Because they belong to a private company,
23 of the sensors located in the city of São Paulo were accessed by hiring the company’s
service for the duration of this proof of concept.

Each measurement sent by the Pluvi.On sensors contains the sensor identifier, its
name, description, and geographical location, a textual description of the type of sen-
sor, the sensor installation date, temperature, relative humidity, precipitation intensity
and volume, wind speed and direction, and a marking with the date and time of the
measurement.

All sensor data is encoded on the device itself in JSON standard (ECMA 2017)
before being transmitted to the system’s web server, following the architectural style
of Representational State Transfer (REST) (Fielding 2000). The web server, in turn,
receives, decodes and stores the data in a database. The sensors, the web server, the two
web applications, and the administrative web interface all use the same data standard and
follow the specifications of the same system standard API, simplifying communication
among all parts of the system.

https://www.saisp.br/historic/index.jsp?C=N;O=D
https://www.saisp.br/online/
https://www.saisp.br/online/prec_acum_sabesp/
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The system API was developed based on the OpenAPI Specification (OpenAPI ini-
tiative 2021). The OpenAPI specification (OEA) defines a standard, which is a language-
agnostic interface for any type of REST API that allows humans and computers to dis-
cover and understand the service’s resources without the need to access the source code,
documents, or network traffic inspection. When the system is properly defined, con-
sumers of remote services can understand and interact with this service with a minimal
amount of implementation logic (OpenAPI initiative 2021).

The web server, built in Perl language with the Catalyst framework, exposes parts
of the API publicly, while keeping other parts of the API private, available only to the
two web applications and the administrative web interface.

The publicly exposed part of the API only allows the sensors to communicate with
the web server. This allows the safe connection of sensors belonging to government
organizations, such as SAISP sensors, of third-party companies, such as Pluvi.On, and
also those of any other enthusiasts wanting to build their own sensors, as long as they
follow the standards of the API used in the project.

The private part of the API allows for the complete manipulation of the data in the
database. Thus, the two web applications and the administrative web interface can send
information, query data, and even manipulate sensor configurations remotely.

3.2 Notifications Web Application

The fourth artifact of the system’s proof of concept, the web application that allows users
to receive and send notifications about floods in their region of the city of São Paulo,
was also developed using only open WWW standards.

Because it is an application, and not a web page with the features of a document, the
concept of progressive web applications (PWA) was used (Google 2020). A PWA is not
an API or a specific tool, but a software development methodology that allows the devel-
opment of hybrid applications, coupling traditional well-consolidated web techniques
with features that were once found only in applications native to the system, whether on
personal computers or smartphones.

A PWA could be at risk of not working properly on older browsers, or on certain
operating systems, because it merges traditional, established features with new ones.
However, the methodology foresees this scenario, which is why it bears the word “Pro-
gressive” in its name. PWAs adapt to the browsers on which they run, with regard to
several variables, including user input, such as mice or touch screens, screen size and
many other attributes. At the other extreme, they also adapt to lack of specific features,
a scenario where PWAs do not fail completely, but only cease to offer such feature to
users (Google 2020).

There is no need to publish or download PWAs in app stores, because they are
accessed through browsers, like regular web pages. However, for convenience, it is
possible to create shortcuts to quickly access them on device desktops (Google 2020).
Even when run from inside browsers, all PWAs canwork disconnected from the Internet,
thanks to recent data storage techniques in browser caches, coupledwith the use of service
workers, who can access and manipulate this data (W3C 2021 B).

Because the application allows users to send manual notifications, which are then
retransmitted to other users registered in the system, and because the users that receive the
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notifications do not keep the application open on their browsers at all times, two APIs
were used: Push API (W3C 2021 A), which allows applications to receive messages
even when they are in the background, and Notification API (Whatwg 2021), which
enables applications to display screen notifications even when they are running in the
background.

To send manual notifications and also receive notifications about floods, users must
create a basic registration, including their name, e-mail and phone number, just to ensure
the uniqueness of the registration. The application, shown in Fig. 1, also collects the
geographical location of the users, but only when they create a manual flood notification.
In addition to the basic registration data, users must also choose the regions of the city
(North, South, East, West and Center) about which they wish to receive notifications.

Fig. 1. Home screen of the application on a smartphone.

In a future version of the system, all flood notifications, both those coming from
SAISP and those from Pluvi.On sensors, like those sent by users, will be forwarded to
an administrative center that will verify their validity before the system sends it to all
users who have expressed an interest in the flood regions. However, during the proof
of concept, all notifications were sent directly to users, without prior validation by an
administrative center. The application (in Portuguese) can be accessed at https://pwa-
radardoalagamento.nicdev.com.br.

3.3 Public Website

The fifth artifact of this system’s proof of concept, the public website, was created to
present all the sensor data in the form of tables, along with graphs to assist in data
visualization. In addition to sensor data, the public website also displays all the manual
notifications sent in by registered users. The purpose of the website is to make the data

https://pwa-radardoalagamento.nicdev.com.br
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public, serving as the basis for the creation of other projects, also using open WWW
standards.

The website’s layout is simple, allowing easy navigation, and displaying the data
divided into two categories:

• Sensors: Displays all SAISP and Pluvi.On sensors connected to the platform, along
with the raw data received from them.

• Regions: Displays all manual notifications sent in by users, separated by regions of the
city of São Paulo. The data of users who send in notifications is not publicly displayed,
for privacy reasons.

In addition to allowing users to view the data on the screen, the website also allows
the same data to be downloaded in structured CSV or JSON files. The website (in
Portuguese) can be accessed at https://website-radardoalagamento.nicdev.com.br/.hy.

3.4 Administrative Web Interface

The sixth artifact of the system’s proof of concept is the administrative web interface,
which was developed using the Vue.js framework. It manages sensor registration and
controls their notifications. It also enables the management of all manual notifications
sent in by system users, in addition to creating and sending out other notifications to all
users registered in the system.Manualmanagement of notifications is a necessary feature
because the system does not yet have automatic routines to control the notifications.

Figure 2 shows the screen of the administrative web interface, which displays all the
sensors registered in the system and the latest data received by them, and provides access
to a button that forces the system to send a flood notification from a specific sensor, as
if the sensor has made this notification.

Fig. 2. Administrative web interface screen.

https://website-radardoalagamento.nicdev.com.br/.hy
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Because the administrative web interface provides access to a sensitive part of the
system, with destructive operations, access is password-protected and limited to only a
few users.

4 Results

Atotal of 383,048measurementswere taken from38 sensors installed throughout the city
of São Paulo. Of the 38 sensors, 11 belong to SAISP, for which 330,416 measurements
were collected between November 24, 2017 and July 5, 2018. The other 27 sensors
belong to Pluvi.On, and they collected 52,632 measurements between October 3, 2018
and March 8, 2019.

The SAISP sensors sent their measurements to the web server every 10 min, regard-
less of the weather situation. Therefore, 122,807 of the 330,416 measurements taken by
the SAISP sensors were taken at times without any precipitation. This was unlike the
Pluvi.On sensors, which reported measurements to the server twice an hour, but only
when some type of precipitation or adverse atmospheric condition had been detected.

SAISP’s 11 sensors reported only the number of millimeters of precipitation accu-
mulated between each measurement, while Pluvi.On’s 27 sensors captured a range of
information from the region, such as wind speed, maximum and minimum temperature,
and precipitation intensity. The total measurement counts for each sensor, together with
their locations, are shown in Table 1. The Pluvi.On sensors are indicated with the word
PLUVION. Figure 3 presents a map with the sensors’ geographical locations.

In addition to sensor measurements, the system received 200 manual notifications of
floods, on a test basis, from team members and guests. The notifications are distributed
as follows, according to the administrative regions of the city of São Paulo:

• Center: 22 alerts;
• East: 38 alerts;
• North: 15 alerts;
• West: 62 alerts;
• South: 63 alerts.

Table 1. Summary of measurements gathered by sensors

Legend
(map)

Measurements Latitude Longitude Sensor description

1 blue 29580 – 23.5660583 – 46.7558577 Precipitation Radar Jaguar Basin

1 red 840 – 23.521969 – 46.709967 PLUVION_41C514-PLUVION_41C514

2 blue 29580 – 23.6051334 – 46.8128505 Precipitation Radar - P1-Tizo Park

3 Blue 29580 – 23.5834923 – 46.7718237 Precipitation Radar - P2 - Springs

4 blue 29580 – 23.5766225 – 46.6898323 Precipitation Radar - P3 - Jacarezinho

(continued)
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Table 1. (continued)

Legend
(map)

Measurements Latitude Longitude Sensor description

5 blue 29580 – 23.5722249 – 46.7564377 Precipitation Radar- P4 - Água Podre

6 blue 29580 – 23.5517223 – 46.7394049 Precipitation Radar - P5 - Kentiki

7 Blue 29580 – 23,5808440 – 46,7567142 Precipitation Radar - P6 - Sapê

A 32106 – 23.5732336 – 46.7792928 Córrego Itaim - Rua Joaquim L. Veiga

B 32090 – 23.5680505 – 46.7591848 Córrego Jaguaré - Rua Jorge Ward

C 29582 – 23.5591155 – 46.6982622 FCTH-USP

D 29578 – 23.5570464 – 46.7328786 Córrego Jaguaré -Polytechnic School

E 2864 – 23.510784 – 46.776861 PLUVION_41C496

F 2547 – 23.559442 – 46.735154 PLUVION_41C484

G 2236 – 23.52783 – 46.679356 PLUVION_41C517

G 573 – 23.52783 – 46.679356 PLUVION_41C501

H 2869 – 23.51266 – 46.794101 PLUVION_41BF05

I 2597 – 23.528092 – 46.733469 PLUVION_41D2C7

J 2173 – 23.521997 – 46.695152 PLUVION_41C523

J 474 – 23.521997 – 46.695152 PLUVION_41D2B0

K 2770 – 23.529876 – 46.743841 PLUVION_41C48F

L 2170 – 23.539581 – 46.718342 PLUVION_41C488

L 597 – 23.539581 – 46.718342 PLUVION_41C594

M 2458 – 23.521593 – 46.725474 PLUVION_41C47E

N 2775 – 23.526528 – 46.686099 PLUVION_41C493

O 2581 – 23.506822 – 46.691231 PLUVION_41C533

P 2755 – 23.49237 – 46.756206 PLUVION_41C48B

Q 2716 – 23.536563 – 46.737348 PLUVION_41C539

R 2787 – 23.535594 – 46,707332 PLUVION_41C48A

S 2310 – 23.558464 – 46.754273 PLUVION_41C51A

T 2481 – 23.544205 – 46.696453 PLUVION_41C516

U 2438 – 23.538147 – 46.756859 PLUVION_41C505

V 2514 – 23.507489 – 46.733895 PLUVION_41C47D

W 1651 – 23.525927 – 46.684601 PLUVION_41C527

X 348 – 23.553709 – 46.659391 PLUVION_41BF0D

Y 646 – 23.529051 – 46.666418 PLUVION_41CD05

Y 545 – 23.529051 – 46.666418 PLUVION_41C486

Z 917 – 23.526829 – 46.710391 PLUVION_41C59F

5 Future Work

The next step of the project is to analyze the data received from the sensors to create an
appropriate model, giving the system the ability to send users accurate, automatic flood
notifications, and allowing other government services, such as flood protection actions,
to be fed by the system’s data and notifications.
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Fig. 3. Map of sensor locations

Another future improvement of the system is the creation of mechanisms, in terms
of both software and procedures, that allow users to create their own sensors and connect
them to the system through the API, expanding the area monitored by the system.
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Abstract. Crowd counting is of great importance to many applications
in various scenarios. Wi-Fi Channel State Information (CSI)-based crowd
counting is a highly accurate privacy-conscious method. However, the
problem with CSI-based crowd counting is the size and cost of the CSI
collecting tool. Most studies benefiting from CSI collection use laptops
with specific Network Interface Cards (NICs). The size and cost of the
laptops restrict the practicability of such systems and limit active reposi-
tioning and mobility of the devices. This research aims to realize highly
accurate CSI-based crowd counting using only one pair of lightweight
and low-cost IoT devices. The devices are very agile and can easily be
deployed even in space-limited environments. However, they have the dis-
advantage of poor data transportation compared to laptops. We compen-
sate for this drawback by adjusting the deployment location, using multi-
ple preprocessing methods depending on the situation, and standardizing
the data for each subcarrier. We conducted evaluations of crowd count-
ing in two representative scenarios. For the scenario of crowd sizes of 0,
1, 2, and 3 persons, when we used a weighted moving average (WMA)
filter and phase sanitization as the preprocessing methods, the accuracy
was 70.3%. When we used percentage of nonzero elements (PEM) and a
moving average (MA) filter as the preprocessing methods, the accuracy
was 84.6%. For the scenario of crowd sizes of 0, 5, 10, 15, and 20 persons,
when we used a WMA filter and phase sanitization as the preprocessing
methods, the accuracy was 76.5%. When we used PEM and a MA filter
as the preprocessing methods, the accuracy was 75.9%. We found that
the appropriate preprocessing method differs between the case of a small
number of people and the case of a large number of people.

Keywords: Wi-Fi sensing · Channel state information · Crowd
counting · ESP32 · Deep neural network

1 Introduction

Crowd counting is of great importance to many applications in various scenarios.
For example, building management systems can adjust the light and ventilation
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according to the occupancy level and optimize energy consumption. Crowd count-
ing can also help avoid infection with Covid-19.

Vision-based recognition has been widely deployed in many public places
for crowd counting [1]. However, this method has limitations in terms of pri-
vacy and user acceptance. Non-image-based solutions typically leverage radio
devices to locate objects, such as RFID tags [2] and mobile phones [3], but they
require people to carry devices for surveillance. Several device-free approaches
have been proposed to tackle the problem, utilizing sensor nodes [4], wireless
sensor networks [5]. However, they require setting up a dedicated infrastructure
for surveillance. The high cost hinders their broad deployment.

Channel state information (CSI) has the potential to overcome the drawbacks
above. This information describes how a signal propagates from the transmitter
to the receiver. We can count the number of people in the environment by
extracting characteristics of human movements from the CSI. This method can
use the existing Wi-Fi infrastructure, which results in a low deployment cost.

However, the size and cost of CSI collecting tools are limitations of this
method. Most studies related to CSI collection use laptops with specific Network
Interface Cards (NICs). The size and cost of the laptops restrict the practicability
of such systems and limit active repositioning and mobility of the devices.

Because of this problem, this research aims to realize highly accurate CSI-
based crowd counting using only one pair of lightweight and low-cost IoT devices.
The devices are very agile and can easily be deployed even in space-limited envi-
ronments. However, they have the disadvantage of poor data transportation
compared to laptops. We compensate for this drawback by adjusting the deploy-
ment location, using multiple preprocessing methods depending on the situation,
and standardizing the data for each subcarrier.

We conducted evaluations of crowd counting in two representative scenarios.
The contributions of this work are summarized as follows.

1. The solution is based on only one pair of lightweight IoT devices. This system
reduces the time and effort required to deploy and maintain it and makes it
more portable and easy to place.

2. We evaluated crowd counting for about 20 people. This evaluation enabled us
to verify the usage scenario in laboratories and meeting rooms where privacy
and confidentiality are required.

3. We found that the appropriate preprocessing method varied depending on
the number of people and the room’s scale.

The rest of the paper is organized as follows. In Sect. 2, we review CSI-based
crowd counting. We also review related work on CSI-based crowd counting and
CSI-based sensing with lightweight and low-cost devices. In Sect. 3, we explain
the problems of the existing CSI-based crowd counting studies and the limi-
tations of lightweight IoT devices. In Sect. 4, we discuss the objective of this
research and present the proposed system design. In Sect. 5, we evaluate the per-
formance of the proposed system and discuss the experimental results. Finally,
in Sect. 6, we conclude the paper.
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2 Background and Related Work

2.1 CSI-Based Crowd Counting

CSI characterizes how wireless signals propagate from the transmitter to the
receiver at certain carrier frequencies [6]. We can realize CSI-based crowd count-
ing by capturing characteristics of human movements in CSI through machine
learning.

CSI represents the amplitude attenuation and phase shift of the Wi-Fi signal
from the transmitter and the receiver. The link between each pair of transmitting
and receiving antennas has multiple subcarriers. The signals in the link between
the transmitting and receiving antennas can be expressed as follows:

Y (t) = H(t)X(t) + N, (1)

where X(t) and Y (t) are the vectors of the transmitting and receiving signals
on each subcarrier of the link, H(t) is the CSI matrix, t is the time point, and
N is the noise vector.

The CSI amplitude and phase are affected by the presence and movement
of people in the environment. Each CSI value has a channel frequency response
(CFR) at each subcarrier. The CFR can be expressed as follows:

h(f ; t) =
N∑

n

an(t)e−j2πfτn(t), (2)

where h(f ; t) is the CFR, an(t) is the amplitude attenuation factor, τn(t) is
the propagation delay, and f is the carrier frequency. This equation shows that
the displacements and movements of the transmitter, receiver, and surrounding
objects and humans affect the CSI amplitude and the phase.

Using the CSI, we can build a machine learning model that represents the
number of people in the environment. Collected CSI values include a lot of
noise due to hardware/software errors and environmental inferences. We need
to remove the noise through various preprocessing methods before we build a
machine learning model to infer the number of people with high accuracy.

2.2 Related Work

CSI-Based Crowd Counting. Several studies have conducted CSI-based
crowd counting. First, we review the equipment used in the experiments, pre-
processing, machine learning model, experimental environment, and accuracy.

Liu et al. [7] performed the first study that used machine learning for CSI-
based crowd counting. They used one laptop with three receiving antennas and
one router with two transmitting antennas. The experimental environment was
indoors, in their lab. For preprocessing, they used the weighted moving average
(WMA) filter and the Butterworth filter for the amplitude and phase sanitization
for the phase. For model, they used a deep neural network (DNN). The accuracy
was 78.0% for five people.
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Zhao et al. [8] constructed an integrated system that detects people enter-
ing the room and counts the number of them. They used one laptop with three
receiving antennas and one router with two transmitting antennas. They con-
structed a CNN + LSTM model after preprocessing the amplitude with the
WMA filter and the phase with phase sanitization. The average accuracy was
85.2% for five people.

Xi et al. [9] proposed a metric percentage of nonzero elements (PEM), which
describes the variance of CSI, for CSI-based crowd counting. They conducted
experiments indoors and outdoors using one laptop as a transmitter and three lap-
tops as receivers. They placed the laptops at each of the four corners. In the indoor
experiment, 98% of the results were within the counting error of± 2. In the outdoor
experiment, 70% of the results were within the counting error of ± 2.

Sandaruwan et al. [10] performed CSI-based crowd counting outside using two
pairs of an ESP32 and a NodeMCU. The amplitudes were preprocessed with an
exponentially weighted moving average filter, and the phases were preprocessed
with phase sanitization. Then, DNN and 1D-CNN models were built to count
the number of people. The accuracy was 79% for 12 people.

CSI-Based Sensing with Lightweight and Low-Cost Devices. In recent
years, lightweight and low-cost CSI collecting tools have been proposed. We
review CSI-based sensing works with lightweight and low-cost IoT devices.

Hernandez and Bulut [11] and Atif et al. [12] presented a method for enabling
a standalone ESP32 microcontroller to access CSI data directly. ESP32 is
lightweight (<10 g) and low cost (<$ 10); therefore, their contribution extended
the practicability and scalability of CSI-based sensing.

Hernandez and Bulut [11] also pointed out that the performance of CSI-based
sensing varies depending on the device location. The classification accuracy of
the direction of human movement changed by 29.4% depending on the location
of the ESP32. In experiments conducted by Liu et al. [7] and Zhao et al. [8], the
CSI recording equipment was placed near the center of the room. This location
could have been chosen due to the size and weight limitations of the laptops.
This point could be utilized to improve the accuracy of crowd counting.

3 Problems

The problem with CSI-based crowd counting is the size and cost of CSI collecting
tools. Most of the CSI-based research used laptops with specific NICs. The size
and cost of laptops restrict the practicability and scalability of such systems.
On the other hand, lightweight and low-cost IoT devices that collect CSI have
limitations of poor data transportation.

We compared the characteristics of CSI collecting tools, such as the size, cost,
and frequency, used in previous studies. We compared the following tools based
on 570 papers listed on the tools’ websites [11–14]: (i) the Linux 802.11n CSI Tool
for Intel 5300 NIC, (ii) the Atheros CSI Tool for a range of Atheros NIC, (iii)
the ESP32-CSI-Tool for the ESP32, and (iv) Wi-ESP for the ESP32. We must
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Table 1. Comparison of tools for collecting CSI.

Tool Specific NIC + laptop ESP32

Proportion 99.1 % 0.9 %

Size >30 cm× 20 cm <5.0 cm× 3.0 cm

Weight >1 kg <10 g

Cost $ 10+ laptop <$ 10

Bandwidth Up to 1000 Hz Up to 650 Hz

No. of antennas 3 1

consider that NICs cannot work alone and to run, require a direct connection to
either a laptop or a desktop computer. Of the 570 papers, 99.1% used laptops,
while 0.9% used ESP32s. On the other hand, the difference in size and cost
between laptops and ESP32s is considerable. Laptops are >30 cm× 20 cm, >
1 kg, and $ 100, while ESP32s are <5.0 cm× 3.0 cm, <10 g, and <$ 10. These
results were summarized in Table 1.

We also compared the data transportation of laptops and ESP32s. The sam-
pling bandwidth of the ESP32 is limited to approximately 650Hz, while that
of NICs is up to approximately 1000Hz. Although human movements, such as
walking, are not fast enough to require 650Hz to capture, sampling bandwidth is
critical because packet loss can prevent enough samples from capturing the char-
acteristics of movements. Moreover, only one antenna is attached to the ESP32,
while three antennas are attached to laptops. The smaller number of anten-
nas results in less CSI data transportation because today’s Wi-Fi devices are
equipped with multiple input multiple output (MIMO), which raises through-
put by using multiple antennas simultaneously when transmitting Wi-Fi signals.

4 System Design

This research aimed to realize highly accurate CSI-based crowd counting using
only one pair of lightweight and low-cost IoT devices. We compensate for the
disadvantage of poor data transportation by adjusting the deployment location,
using multiple preprocessing methods depending on the situation, and standard-
izing the data for each subcarrier.

We use one pair of lightweight and low-cost IoT devices as the transmitter
and the receiver and use the CSI data collected by the receiver. We remove noise
from the raw data with two methods and standardize the distribution of the data
for each subcarrier. We use a DNN as a machine learning model. An overview
of the system is shown in Fig. 1.

4.1 CSI Data Extraction

A pair of lightweight and low-cost IoT devices are the transmitter and the
receiver, and the CSI data collected by the receiver is used. We set the IoT
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Fig. 1. Wi-Monitor framework.

devices on opposite sides of the rooms. Before we remove the noise from the raw
CSI data, we need to calculate the CSI amplitude and phase.

Lightweight IoT devices decrease the restriction on the deployment location,
which enables us to set the transmitter and the receiver on opposite sides of
the room easily. Hernandez and Bulut [11] pointed out that the classification
accuracy of the direction of human movement changed by 29.4% depending on
the location of the transmitter and the receiver. This result implies that the
accuracy of crowd counting could vary depending on the devices’ deployment
location.

The data acquired by ESP32 must be converted into amplitude and phase.
They are given in imaginary and real numbers for each subcarrier. Although
the ESP32 provides CFR values for 64 OFDM subcarriers, 10 subcarriers have
null values, and the first two do not vary with time [15]. We calculate the CFR
amplitude and phase for each of the effective 52 subcarriers using the following
equations for 1 � k � 52:

Ak,t =
√

(x2
k,t + y2

k,t), (3)

φk,t = tan−1(
xk,t

yk.t
), (4)

where Ak,t and φk,t are the amplitude and the phase of the CFR, respectively,
and xk,t and yk,t are the imaginary and real parts of the kth subcarrier CFR,
respectively, at time t.

4.2 Noise Removal

We used two types of preprocessing methods: WMA/phase sanitization proposed
in [7,8] and PEM proposed in [9] and a moving average (MA) filter. The orig-
inal CSI amplitude and phase information extracted from ESP32s is noisy due
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Fig. 2. Preprocessing on data of some subcarriers.

to hardware/software problems and environmental interfaces, which prevent us
from inferring the number of people with high accuracy. The original and pre-
processed amplitude and phase are shown in Fig. 2.

Weighted Moving Average Filter/Moving Average Filter. We utilized
the WMA and MA algorithms to remove the noise. WMA provides more weight
the more recent the value, while MA provides the same weight in a window. The
formula is as follows:

A
′
t =

1
m + (m − 1) + ... + 1

[mAt + (m − 1)At−1 + ... + At−m+1], (5)

A
′′
t =

1
m

[At + At−1 + ... + At−m+1], (6)

where A
′
t and A

′′
t are the value filtered by WMA and MA at time t, and m is the

weighted relationship between current values and historical values. Figure 2(a),
Fig. 2(b), and Fig. 2(c) illustrate this process.

Phase Sanitization. Hardware/software noise, such as the carrier frequency
offset (CFO) and the sampling frequency offset (SFO), affect original phase
information. To cancel these offsets, we looked at adjacent time samples and
adjacent subcarrier samples, assuming that the phase offsets are the same across
the packets and subcarriers. We show the complete algorithm in Algorithm 1.
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The raw phase values are wrapped within the range of [−π, π] due to the
rotational nature of the phase. Assuming that the actual phase is continuous
to some extent between adjacent subcarriers, we unwrapped the CSI phases
according to an algorithm based on [16]. Figures 2(d) and 2(e) illustrate this
process.

To remove the CFO and the SFO, we utilize a simple linear transformation.
The phase PM we get can be expressed as follows:

PM = P + 2π
mi

N
Δt + β + N, (7)

where P is the genuine phase, Δt is the time lag due to the SFO, β is the
unknown phase offset due to the CFO, and N is the noise. Assuming that the
phase offsets are the same across the adjacent packets and subcarriers, we can
remove Δt and β by using a simple linear transformation based on an algorithm
in [17]. We show the results in Fig. 2(f).

PEM. PEM represents the variation of CSI data in a subcarrier, which was pro-
posed in [9]. This method is divided into three steps: transform the CSI ampli-
tude values into two-dimensional matrices, dilate the elements in the matrix,
and calculate the percentage of nonzero elements in the matrix. In the follow-
ing explanation, Cd is a matrix of the acquired CSI amplitude values, S is the
number of subcarriers, Cmax and Cmin are the maximum and minimum values
in Cd, M is a newly created matrix, M is the number of rows of M, D is the
dilation coefficient, and P is the number of packets.

First, the CSI amplitude values on each subcarrier are transformed into a two-
dimensional matrix. For each subcarrier i and for every P sample in the acquired
CSI data, we make a matrix of M × P (M), whose elements are initialized to 0.
For each subcarrier i, we convert the CSI value Cd[i][j](1 � j � P ) into integers
k by k = [ Cij−Cmin

Cmax−Cmin
(M − 1)] + 1, and then we set the elements in row k and

column j in M to 1. One of the elements in each column is changed to 1, and
all the other elements in the column remain 0. Then, the value j is moved in
the range of 1 � j � P . The distance of the row numbers (k) between adjacent
columns becomes larger when the CSI amplitude values take dramatic turns.
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Second, we transform the elements around elements 1 to 1. This process is
called matrix dilation. We transform the elements within a distance of D from
the elements 1 to 1. There is less overlap of dilated elements when the CSI
amplitude values change more sharply. Less overlap results in more elements
becoming the element 1 in M .

Finally, we calculate the percentage P[i] of the nonzero elements in the matrix
M, which is the PEM of the ith subcarrier. The value P[i] becomes larger when
significant changes in CSI amplitude values often occur.

The complete algorithm is shown in Algorithm 2. Figures 2(a) and 2(c) illus-
trate this process.

4.3 DNN Model Building

We employ a DNN with N fully connected hidden layers with Ki(i = 1, 2, ..., N)
neurons on layer i. We took this crowd counting problem as a regression task.
Before the model building, we standardize the data distribution for each subcar-
rier. The distribution of the acquired CSI data is different for each subcarrier. In
the DNN, features with a larger scale distribution of the values disproportion-
ately impact the model. Standardizing the distribution of features could improve
the accuracy.

5 Evaluation

We conducted evaluations of crowd counting in two representative scenarios.
The first testbed was in a corridor with crowds of 0, 1, 2, and 3 people, and the
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Fig. 3. The testbeds.

second testbed was in a rectangular meeting room with crowds of 0, 5, 10, 15, and
20 people, as illustrated in Fig. 3. We found that the appropriate preprocessing
method varies depending on the number of people and the room’s scale.

In each testbed, two ESP32s (one was the TTGO T8 V1.8, and the other
was the ESP32-DevKitC ESP-WROOM-32) formed the transmitter and receiver
pair, each working in the 2.4GHz band. The chosen DNN model had three hidden
layers with neurons of [100, 100, 100]. While the training data were collected, the
participants walked casually in the Wi-Fi-covered area without any restrictions
or limitations on their movements.

5.1 Scenario 1: In a Corridor

The first testbed was in a corridor in front of our laboratory with up to three
people, as illustrated in Fig. 3(a). When the counting error was within ± 0.5, the
data were labeled “correct”. The proportion of “correct” data in the test data was
defined as “accuracy”. We conducted model training and evaluations numerous
times on the same parameter and calculated the mean accuracy. When we used
WMA and phase sanitization as the preprocessing methods, the mean accuracy
was 70.4%. When we used PEM and MA as the preprocessing methods, the
mean accuracy was 84.2%. We found that PEM was suitable for preprocessing
when the number of people was small.

Both ESP32s were set on chair seats at a height of 0.5m. The number of
people was changed in the following order: 0, 1, 2, 3, 2, 1, 3, and 0. Data were
collected for 3min for each group. The first four scenes were used as training
data and the last four scenes as test data.

Results. In the case of WMA and phase sanitization, after 96 model builds and
evaluations, the mean accuracy was 70.4%; the highest accuracy was 75.4%,
and the lowest accuracy was 64.8%. In the round when the accuracy was 70.3%,
which was closest to the average accuracy, the number of correct answers and
the number of predictors were compared, as shown in Fig. 4(a), Fig. 4(c).

In the case of PEM and MA, after 62 rounds of model builds and evaluations,
the mean accuracy was 84.2%; the highest accuracy was 90.5%, and the lowest
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Fig. 4. Comparison of the predicted values and the true number of people in Scenario 1.

Fig. 5. Comparison of the predicted values and the true number of people in Scenario 2.

accuracy was 77.2%. In the round when the accuracy was 84.6%, which was
closest to the average accuracy, the number of correct answers and the number
of predictors were compared, as shown in Fig. 4(b), Fig. 4(c).

Discussion. PEM and MA were more accurate than WMA and phase saniti-
zation. Therefore, we conclude that preprocessing using PEM and MA is more
suitable for crowd counting in small rooms with few people.

5.2 Scenario 2: In a Meeting Room

The second testbed was in a meeting room with up to 20 people, as illustrated
in Fig. 3(b). When the counting error was ± 2.5, the data were labeled “correct”.
The proportion of “correct” data in the test data was defined as “accuracy”. We
conducted model training and evaluations numerous times on the same param-
eter and calculated the mean accuracy. When we used WMA and phase saniti-
zation as the preprocessing methods, the mean accuracy was 76.5%. When we
used PEM and MA as the preprocessing methods, the accuracy was 75.9%. We
found that WMA/phase sanitization was suitable for preprocessing when the
number of people was large.

Both ESP32s were set on desks at a height of 1.0m. The number of people
was changed in the following order: 0, 5, 10, 15, 20, 22, 20, 15, 10, 5, and 0. Data
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were collected for 3min each. The first five scenes were used as training data
and the last five as test data.

Results. In the case of WMA and phase sanitization, after 59 rounds of model
builds and evaluations, the mean accuracy was 76.5%; the highest accuracy was
83.7%, and the lowest accuracy was 67.2%. In the round when the accuracy
was 76.5%, which was closest to the average accuracy, the number of correct
answers and the number of predictors were compared, as shown in Fig. 5(a) and
Fig. 5(c).

In the case of PEM and MA, after 50 rounds of model builds and evaluations,
the mean accuracy was 75.9%; the highest accuracy was 89.4%, and the lowest
accuracy was 55.1%. In the round when the accuracy was 75.9%, which was
closest to the average accuracy, the number of correct answers and the number
of predictors were compared, as shown in Fig. 5(b) and Fig. 5(c).

Discussion. WMA/phase sanitization were more accurate than PEM and MA,
and the accuracy range was much smaller for the WMA/phase sanitization pat-
tern. For PEM and MA, the accuracy was 55.1% in one case, although we used
the same parameters as when the average accuracy was maximized. This low
accuracy could be problematic in practice.

The significant accuracy variations for PEM and MA could be due to the
small amount of data. PEM preprocessing requires a large amount of data. It
may be that the PEM pattern could not capture the characteristics of human
movement in Scenario 2. Increasing the amount of data would be required.

5.3 Discussion

The evaluation results for crowd counting showed that appropriate preprocessing
method differs between the case of a small number of people and the case of a
large number of people. One possible reason is that the features that largely
affect crowd counting are different depending on the situation. For a few people,
the CSI variations caused by human movement were effective. For many people,
the CSI values themselves caused by the presence of people were effective. These
reasons may be related to the Fresnel zone.

A Fresnel zone is one of a series of ellipsoidal regions between and around a
transmitter and a receiver. Their boundaries represent the line that the difference
in the propagation distance is nλ/2 (n = 1, 2, 3...) between the radio waves that
travel in a straight line from the transmitter to the receiver and the radio waves
that arrive at the receiver after being reflected by obstacles. These elliptical lines
are illustrated in Fig. 3. Waves reflected within an even number of Fresnel zones
are out of phase π with the direct wave. Therefore, the amplitude of the wave
lowers. However, waves reflected within an odd number of Fresnel zones do the
opposite, raising the wave’s amplitude.

The reason for the difference in the appropriate preprocessing method
between the case of a small number of people and a large number of people
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could be as follows. Models for CSI and the number of people would be affected
by two factors: the attenuation of the Wi-Fi signal due to reflections on people,
and the fluctuations in the Wi-Fi signal by people movement between adjacent
Fresnel zones. The attenuation is extracted by WMA/phase sanitization, while
PEM extracts the fluctuation. In the case of a small number of people, the effect
of reflections on people would be small, while the effect of fluctuations would be
large. As the number of people becomes large, the effect of fluctuations could
reach equilibrium, and the effect of reflections on people could become large.

6 Conclusion

This paper proposed a CSI-based crowd counting method with one pair of
lightweight and low-cost IoT devices. We evaluated the proposed method in
two scenarios and found that for crowd sizes of 0 1, 2, and 3 people, the count-
ing error was ± 0.5 people for 84.6% of the cases, and for crowd sizes of 0, 5, 10,
15, and 20 people, the counting error was ± 2.5 people for 76.5% of the cases.
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Abstract. Ports are essential nodes in global maritime trade. As such,
their efficency is key to ensure sustainable supply chains across the world.
Current studies point interoperability and data integration as the next
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and how it enables the acquisition, homogenization, and processing of
the heterogeneous data, judiciously handled to generate advanced data-
exhaustive services. Finally, it presents a practical usage example aimed
to improve the business processes in the port of Valencia.
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1 Introduction

The future of the port industry points towards the smart ports: this term defines
an innovative port that possesses a competitive advantage thanks to technolog-
ical innovations. A smart port should be able to automate as many services and
operations as possible, using intelligent data-driven systems. To become so, Port
Authorities need to have a digital transformation strategy, adopting IoT tech-
nologies producing valuable data from multiple sources (including sensors) [1].
In the seaports of the future, IoT and 5G technologies are key enablers for data
transmission and data traffic management. The data generated by IoT sensors
drive the service creation for fleet traffic management, asset tracking and ship-
ping containers monitoring, logistics operations, environmental condition moni-
toring, inventory management, access and parking control or operational safety
and security, among other purposes. This allows the smart port authorities to
offer valuable services and attract new clients. Adopting IoT approaches will
bring ports closer to real automation in an increasingly data-driven market,
where numerous stakeholders and users may benefit from [2].

Although the exchange of data from several sources opens a new range of pos-
sibilities, such as the provision of innovative Artificial Intelligence (AI) services,
it involves technical requirements that must be met [3]. First, it needs a platform
capable of overcoming all the technical challenges related with the acquisition,
aggregation, processing and analysis of the data coming from different sources.
Second, it needs a secure and trusted platform offering efficient and effective
data sharing among stakeholders, in addition to a reliable source of truth that
guarantees the quality, validity and veracity of the data, including procedures
and policies for data governance. From this need appears the DataPorts project,
which has been funded by the European Commission within the frame of the
H2020 Big Data Value PPP programme. The project relies on the experience of
its partners to address the identified open challenges in the sector and cover the
technology gaps as described in the previous paragraph. This paper describes
how DataPorts enables the new generation of cognitive data-supported services
addressing more open, connected and transparent frameworks that provide intu-
itive interactions, learning capabilities, data processing and analytic services
under a protected environment for maritime ports.

2 Context, Motivation and Related Work

DataPorts aims to design and implement a seaport-oriented technological plat-
form that will enrich and enhance the existing digital infrastructures with some of
the most advanced state-of-the-art technological innovations. It will be deployed
in two European seaports (Valencia and Thessaloniki), where it is expected to
boost the data value chain to an upper level and solve real port constrains. The
DataPorts platform intends to interconnect the cluster of heterogeneous digi-
tal infrastructures currently present in digital seaports into a unique integrated
ecosystem. Besides, the platform tries to establish the policies and rules for a reli-
able and trusted data sharing. It also includes novel Big Data Analytics services
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Fig. 1. Overview of the proposed solution.

to solve some of the most important seaport challenges regarding data man-
agement and data mining. Finally, DataPorts aims to enable the establishment
of a single Data Space for all European seaports, thus collaborating with the
EC global challenge of generating a Common European Data Space [4]. These
objectives entail several relevant technical challenges regarding the scalability of
the solution, the heterogeneity of the data sources, whose volumes of data are
unknown, and the data governance mechanisms, among others.

This paper presents a use case from the Port of Valencia to illustrate the
use and advantages of the DataPorts platform. The Port of Valencia is mainly
specialized in containerized merchandise traffic, for which it has three big ter-
minals managed by the most important shipping lines in the world. Moreover,
it also manages other types of freight traffic, such as liquid and solid bulk and
ro-ro cargo. The port also receives a significant number of cruise ships annually.
From a technical point of view, the Port of Valencia has been involved in several
relevant research projects in the areas of IoT [2] and Big Data [5].

3 Design of the Proposed Solution

The proposed solution consists of three main building blocks (Fig. 1): i) the Data
Access Component, which provides access to the different data sources connected
to the DataPorts platform, ii) the Data Processing Services, which act as the
functional connection between the data sources and the Data Analytics services
provided by the platform and iii) the Data Analytics and Cognitive Applications,
which provide mechanisms to develop cognitive services using AI technologies.

3.1 Data Access Component

The Data Access Component (DAC) distributes data to the upper layers and
provides an interface to manage and run agents that integrate data into the
DataPorts platform. The component is divided into two sub-components (Fig. 2):
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Fig. 2. Data Access Component implementation.

– Agents: Set of software components that perform the initial movement
of data from its source to the platorm. The agents have been developed
using pyngsi [6], which is a NGSI Python framework intended to build
FIWARE NGSI Agents and was developed within the context of H2020
Project PIXEL [7].

– Data Access Manager: Manages the agents available in the platform. To
do so, it provides a REST API to interact directly with the agents and a UI
that displays the information regarding the agents as well as the results of
the actions executed over them via the API. In addition, it offers an SDK
with a series of predefined templates to facilitate the creation of agents. The
UI was developed using Element [8] or vue-element-admin [9]. The REST
API was developed in Node.js following the MVC pattern [10] and makes
use of the Docker API to manage agents as containers and MongoDB to
store the templates used to build the agents with the SDK functionality. The
specification of the API is done in Swagger.

The DAC enables the direct management of data sources on the platform.
This feature of the platform brings other benefits such as the possibility to create
instances of the different data sources or to delete those that are no longer of
interest. It simplifies the process of creating agents (it is quick and visual), and
it allows managing the information in a centralised way. The DAC allows the
users to control the data sources available on the platform, how often the data
will be retrieved, as well as to see the actionable data and subscriptions.

3.2 Data Processing Services

This block is composed by the Semantic Interoperability Component and
the Data Abstraction and Virtualization Component. These components work
closely with the DAC to provide input data to the Data Analytics Services.
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Semantic Interoperability Component. This component acts as a middle-
ware that distributes the data coming from the agents to the different compo-
nents of the platform. It enables semantic interoperability by providing a unified
API to access the data, as well as a common data model to allow a shared
understanding of the information.

Regarding the implementation (Fig. 2), the Orion Context Broker [11], which
is part of the FIWARE ecosystem and provides a NGSI interface, is the core ele-
ment of the Semantic Interoperability Component. In the context of the Data-
Ports platform, Orion receives data from the agents, provides a publish/subscribe
interface and a common data format and keeps a local registry of the available
data sources and agents. In addition, a custom On Demand component has been
implemented to enable access to the historical data because Orion only stores
the last value of an entity. The Semantic Interoperability Component exposes
a common API to access the data and metadata. Finally, the DataPorts Data
Model is hosted in a Git repository, which contains the JSON schema documents
describing the syntax and JSON-LD context documents, which provide a unique
definition of the terms by mapping them to URIs and the documentation. The
data model reuses concepts from existing data models and ontologies, such as
the FIWARE Smart Data Models [12], the UN/CEFACT data model [13], the
SAREF ontology [14] and the IDSA Information Model [15].

Data Abstraction and Virtualization. This component (DAV) is responsi-
ble for duly pre-processing, cleaning, and filtering the incoming historical data,
storing them to a scalable data lake, and delivering them as data ponds to any
potential consumers, such as the analytics components of the platform (Fig. 3).
Data ponds are a subset of the data lake that focuses on a particular topic.
They are created by applying specific filtering actions (rules), defined by the
recipients, in order to retrieve only the portion of data they are interested in,
thus minimizing the processing and the network workload [19]. In addition, DAV
transforms the data into the requested format, such as Parquet or CSV, and also
exposes useful metadata for all the pre-processed datasets, via a RESTful API.

To execute the processing tasks, DAV relies on Apache Spark, which is a
unified analytics engine for large-scale data processing. The structure of the data
lake is based on MongoDB, along with its sharding and replication features to
ensure scalability and availability, while Kubernetes is the orchestration platform
to manage the shards and replicas. Regarding the exposure of the data, Apache
Nifi is used due to its flow-based programming philosophy.

The goal of DAV is to introduce a middleware based on the Data as a Service
notion, which aims at improving the productivity of developers in creating data-
intensive applications, by abstracting the details on data access and storage
[20]. Following that notion, developers just define the content and format of the
data, leaving to the middleware the burden of retrieving, storing, processing and
serving them, putting also special emphasis on data quality and performance.
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Fig. 3. Data Abstraction and Virtualization (DAV) functionalities and technologies.

3.3 Data Analytics Services and Cognitive Applications

The Data Analytics Services and Cognitive Applications are advanced features
to extract and provide real-world insights from seaports’ data. Their main goal
is to upgrade the current port domain scenario by implementing advanced AI
capabilities, thus enabling the exploitation of the data ecosystem to enhance
the understanding of business processes and KPIs. Consequently, port operators
will be enabled to apply state-of-the-art data analytics and machine learning
techniques to predict new intrinsic patterns and tendencies previously unknown,
without the necessity of having deep technical background in Big Data Analytics.

Automatic Model Training Engine. This component creates cognitive ser-
vices oriented to tackle port’s business needs. It is composed of a robust train-
ing engine capable of automatically searching the best Machine Learning (ML)
model from a vast collection of state-of-the-art algorithms to make predictions of
a desired KPI from a port-oriented dataset available at the DataPorts platform.
For that, the training engine generates a set of advanced data pipelines to thor-
oughly manage the data by performing techniques such as data cleansing, fea-
tures selection and hyperparameters optimization. Following a distributed app-
roach, the instances of such pipelines are concurrently run, drastically reducing
the processing time. Finally, the selected model is packaged into a REST service
and deployed as a Cognitive Service able to make predictions over new incom-
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Fig. 4. Architecture of the Automatic Model Training Engine.

ing data. The component also provides a Training Web Interface that allows
potential users, who may not have a technical background, to interact with
the component and create new Cognitive Services to perform predictions over
DataPorts datasets. The technological approach followed with the component is
based on the implementation of some of the most suitable Big Data Analytics
technologies currently available. To implement this component, parallelization,
compression, data processing, distribution, and deployment frameworks were
utilized, as showed in Fig. 4.

The Automatic Model Training Engine tries to fill the gap of the lack of AI
capabilities in ports by introducing an automatic tool that implements state-of-
the-art ML technologies to enhance the understanding of their business process
and KPIs. Hence, it facilitates the design of data analytics services that support
the configuration of predictive models from the data available at the platform.

Process-Based Analytics. This component provides advanced capabilities
to monitor and adapt running business processes in the port domain. To this
end, the Process-based Analytics Component (PBAC) combines different state-
of-the-art ML techniques, in particular reinforcement learning and explainable
AI. Examples of business processes in the port domain are the flow of vessels
within the port’s service area and the transport operation for containers. In a
transport operation process scenario, the goal of PBAC is to monitor processes’
delivery time, notifying process managers about potential delays and suggest-
ing adaptations to prevent them. By proactively predicting the future states of
the ongoing process, the PBAC component provides forward-looking perspec-
tives and decision support for terminal and process operators. It thereby facili-
tates proactive management of port processes, assisting port authorities in their
decision-making. The PBAC leverages the prediction models trained as part of
the Automatic Model Training Engine (AMTE) and connects the outcomes of
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this prediction model with two novel sub-components, each of which utilises a
different, complementary set of ML techniques:

Explainable Predictive Process Monitoring : This sub-component explains the
forecasts made by the prediction model trained in the AMTE component [16].
Predictive business process monitoring is usually performed via deep learning
models, such as the LSTMs. Although such models consistently achieve higher
prediction accuracy than simple models, a major drawback is their lack of inter-
pretability, which limits their adoption in practice. By using recent explainable
AI techniques, this sub-component helps answering the question ”why was this
prediction made?”.

Prescriptive Process Monitoring : For this sub-component, an approach was
devised based on Online Reinforcement Learning to resolve a fundamental
trade-off between prediction accuracy and prediction earliness [17]. This sub-
component provides indicators that estimate the reliability of individual pre-
dictions made by the predictive models of the AMTE component. Such relia-
bility estimates quantify the likelihood of a correct prediction, which provides
additional information for decision making. Process managers should obviously
only make decisions based on accurate predictions, although adaptations typi-
cally have non-negligible latencies. Thus, process managers should act sufficiently
early, i.e., with enough lead time for the adaptation to become effective [18].
This sub-component, thus, helps answering the question ”when to adapt?”.

Regarding the implementation (Fig. 5), the Reinforcement Learning agent
used for Prescriptive Process Monitoring is based on the proximal policy optimi-
sation (PPO) algorithm, implemented using Tensorflow. It is trained at runtime
by using the prediction model outcomes created from real-time process data. To
implement the Explainable Process Monitoring sub-component, authors have
developed the Loreley technique [16]. Loreley is a model-agnostic explainable AI
technique that generates explanations in the form of counterfactuals. The out-
put of the PBAC is made available through a user interface and a REST API to
facilitate its integration into existing port solutions. The API of the PBAC was
implemented using Django and the Django REST framework.

4 Use Case Driven Validation

The DataPorts platform will be validated in different scenarios of the project’s
pilot use cases. In this paper, one of those scenarios is presented to illustrate
how the components of the platform work together. In this scenario, the Port
of Valencia makes use of the Data Analytics services of the DataPorts platform
to generate predictions based on the vessel calls in order to improve transport
operation management processes.

4.1 Provision of Data

The interaction between the components of the platform is highlighted using
the Port Community System (PCS). This data source provides, among other,
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Fig. 5. Architecture of the Process-based Analytics Component (PBAC).

Fig. 6. Data Access Component UI for managing the agent for the historical data.

information about real-time and historical vessel port calls (PCS traffic data).
The first step of the scenario is to acquire and register those data, along with their
metadata. For that reason, data access agents were developed (more specifically,
an agent for the historical data and another for the real-time data). Figure 6
shows the UI of the DAC and the agent developed for the historical data.

These agents are also responsible for performing the translation of the infor-
mation into the common data model, which is provided by the Semantic Inter-
operability component. The latter offers a common API to show the metadata
of the available data sources and agents as well as to provide access to the data.
Therefore, DAV component calls that API to retrieve the historical PCS traf-
fic data. It then proceeds to pre-process and clean them for quality purposes.
However, the analytics components might need to consume only specific data
ponds of the PCS traffic dataset. For example, the Status of a port call can be
Estimated, Authorized, Operational, or Completed; but the Authorized vessels
are not useful for the analytics performed by the Automatic Model Training
Engine (AMTE). Consequently, when AMTE asks DAV to retrieve the data, it
attaches the corresponding filtering rule, along with the request. The rules follow
the subject-operator-object syntax and are structured in JSON format (Fig. 7).
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Fig. 7. Data Abstraction and Virtualization filtering rule.

4.2 Data Analytics

Automatic Model Training Engine. The Automatic Model Training Engine
provides an easy-to-use Web Interface to allow an automated creation of new
cognitive services, which selects the best ML model to make predictions over a
specific port KPI (see Fig. 8). The tool also allows the user to manage existing
cognitive services, explore the ML models associated with a trained cognitive
service and interactively analyse the results of a trained cognitive service.

Fig. 8. Training Web Interface of AMTE.

The training data needed by the ML models is provided by the Data Access
component and the metadata is offered by DAV, so the details of the available
datasets can be displayed in the Web Interface. Also, the training data is pre-
processed and delivered in parquet format by the DAV component. Once the
cognitive service is created with the training data, new predictions over new
real-time incoming data might be performed thanks to the injection of such
data by the Semantic Interoperability component.

Process-Based Analytics. As part of the Port of Valencia use case scenario,
the PBAC combines data from the port’s AIS system, which tracks the movement
of vessels within the port area, and data about the arrival and departure forecasts
of vessels. From this data the PBAC constructs a business process trace for each
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ship scheduled to arrive at the port, where each trace is completed when the
respective vessel leaves the port. PBAC leverages the prediction models trained
by the AMTE component to predict the outcome of business processes, such as
the time of departure of vessel after it has entered the port. A positive outcome
is achieved when the vessel leaves the port ahead or in its planned time of
departure. Conversely, a vessel being delayed constitutes a negative outcome,
also called a violation. The end users of the PBAC may thus use the PBAC
outcomes to proactively schedule port services. The PBAC allows end users to
interact via its user interface and API. End users can 1) request and receive
business process metadata, 2) request/receive predictions and explanations for
historical business process instances, and – when interacting via the API – 3)
subscribe to a specific business process to receive real-time outcomes.

The PBAC receives historical data from the DAV component, which is
already pre-processed (structured, cleaned, formatted). Using the historical data
and the predictive model of the platform, the PBAC trains its ML models. After
training, the PBAC receives real-time data from the Semantic Interoperability
component, which is similarly pre-processed and provided in the same format as
specified for the historical data. Using the real-time data instances, the PBAC
creates its results, immediately making them available through its user interface
and API, both for querying as well as for notifying subscribers.

5 Future Work and Conclusions

This paper highlights how maritime ports can leverage the huge amount of data
generated by many heterogeneous sources using a set of technical components
and, as a result, boost their evolution to smart and cognitive ports. This includes
a Semantic Approach for Data Acquisition, Sharing and Pre-processing to pave
the way for creating Novel Cognitive and AI-Based Services aimed at solving
specific problems of the port.

Future versions of the platform will integrate components devoted to the
creation of a secure data platform that allows sharing the information not only
between port agents but also with other ports. As a result, port companies will
be able to collaborate with each other to optimise port operations. The final
version of the platform, which will integrate the prototype presented in this
paper and the components that guarantee security and data governance, will be
delivered during 2022. This follows the overall timeline of the EC global objective
of creating a Common European Data Space for all maritime ports of Europe.
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Abstract. The COVID-19 era has reshaped the world regarding the
contact-less economy, healthcare systems, remote work environment,
people’s lifestyle and their daily routines, etc. The consumer products
(CP) industry is being impacted due to the behaviours of consumers dur-
ing self-quarantine. This accelerates adopting digital transformation and
upgrading the business models for the contact-less CP industry. Accord-
ingly, this study provides a step toward the contact-less CP industry
during and post-pandemic. First, we have proposed a conceptual frame-
work for the contact-less CP industry that aims to bring together the
key advanced technologies (e.g., Digital Twin (DT), blockchain, AI, cloud
computing, 5G, and robots). The combination of the advanced technolo-
gies provides data monitoring, transparency, traceability, automation,
and data sharing among consumers and CP partners. The proposed
framework will enable a more contact-less personalized interaction that
will work towards higher levels of consumer satisfaction while maintain-
ing contact-less economy growth. Then, we have described how the pro-
posed framework can be applied for contact-less delivery services for the
CP industry during and post-pandemic.

Keywords: Contact-less · Blockchain · Digital twin · Consumer
products industry · COVID-19 · Post pandemic

1 Introduction

For more than two years, the COVID-19 worldwide pandemic has persistently
continued to affect the lives of millions in several countries. Therefore, to combat
the COVID-19 pandemic, the governments announced some restrictions such as
self-quarantine, lockdown, and practising social distance. However, these restric-
tions have changed the way people live; people work, study from home and shop
from home. Therefore, the COVID-19 restrictions cause a big challenge for mar-
keting industries and force them to rapidly adapt to contact-less marketing to
meet consumer needs while maintaining their expectations to achieve desired
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growth. Consequently, digital transformation for companies has been acceler-
ated by the COVID-19 pandemic [1,2]. Furthermore, during and post-pandemic
era likely also come with some significant challenges, which leads the companies
to rethink their business models [3,4].

The consumer products (CP) industry provides consumers with everything
from food, beverages, toiletries, personal care, and small appliances. It is con-
sidered one of the industries which adopt digital transformation technologies.
According to the Deloitte CP industry outlook survey at 2022 [5], the CP indus-
try is one of strong financial performance, which has derived a more significant
revenue in the last year. Most consumers are shifting from a go-to-market man-
ner to a contact-less marketing manner during pandemic time according to the
change circumstances [6]. Regarding consumer behaviour during the COVID-19
pandemic, the authors in [3] have addressed the impact of COVID-19 on con-
sumer behaviour, strategic decision-making, and marketing policies for short-
term and long-term actions. Also, the authors in [7] have proposed a method-
ological toolkit to assess the purchasing behaviour of online consumers during
the COVID-19 pandemic. They have concluded that consumers have become
more aware of shopping and more experts for making meaningful purchases.
Crosta et al. [8] have focused their studies on psychological factors and con-
sumer behaviour during the COVID-19 pandemic. They administered an online
survey during the first peak period of the contagion in Italy. The authors have
concluded that the consumer’s behaviour is changed due to the pandemic, which
raises marketing opportunities that contribute to economic growth. Also, there
is more extensive study has been done on 55 countries in the first peak of the
pandemic by Ulpiano et al. [9]. The study’s empirical results have proved that
exigency motivation is positively linked to purchasing essential goods.

Consequently, this shifting to the contact-less shopping paradigm raises chal-
lenges for the CP companies at the post-pandemic time to satisfy their con-
sumers’ needs and keep their business growth rate. Some CP industry challenges
include supply chain (e.g., labour shortage, delayed delivery due to difficulties
with international transportation, out of stock products), consumer preferences
(e.g., personalized needs and privacy), transparency, offering online platforms
for CP companies and so on. Furthermore, trust is critical since consumers
won’t engage and share data with companies they don’t trust. Consequently,
the changes during and post-pandemic contact-less society significantly need
transforming strategies to combat the COVID-19 outbreak and deal with the
new circumstances. In addition, these changes have required adopting new tech-
nologies that open the door for researchers to investigate different contact-less
solutions during and post-pandemic.

Regarding adopting digital transformation technologies for online marketing
during the COVID-19 pandemic, the authors in [10] have introduced a design of
a resilient, transparent, and sustainable supply chain. The proposed design aims
to develop localization, agility, and digitization characteristics using blockchain
technology and circular economy principle capabilities during the COVID-19
pandemic. Also, Pratiksha et al. [11] have proposed a blockchain-based frame-
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work to enable the traceability of products in the supply chain to help pre-
vent the spread of the coronavirus. The blockchain is used to track delivery
personnel’s medical test status and trace the travel history of delivery per-
sonnel to different locations. Alsamhi et al. [12] have proposed a framework
based on blockchain and multi-robot collaboration to provide a tactical solution
for combating the COVID-19 pandemic. The blockchain network enables multi-
robot to fight COVID-19 collaboratively and efficiently by sharing information
autonomously and accessing each other’s data. Furthermore, the authors of [1]
introduced blockchain-empowered DTs to combat COVID-19 by supporting DTs
collaboration for decentralized alerts during COVID-19.

The authors in [13] have addressed the management of delivery for the food
supply chain in COVID-19. They have used blockchain technology to maintain
data sharing and improve decentralized distribution among competing supply
chain partners. Burgos et al. [14] have addressed the COVID-19 pandemic’s
impact on the food retail supply chain with the help of a discrete-event simu-
lation methodology using the DT of the anyLogistix supply chain. The authors
confirmed the importance of DT in the supply chain to provide end-to-end visi-
bility for the food retail supply chain. Sahal et al. [15] have proposed a framework
to fulfill the DTs collaboration requirements for smart transportation. They have
discussed how the framework is applied for logistics services during the COVID-
19 pandemic for the consumers who prefer a safer and faster delivery method.

On the other hand, some research related to social manufacturing (SM) is
related to the contact-less CP industry. The SM is a new business model to
connect nearly everyone, and everything [16]. Also, the SM concept has been
raised recently to support the sharing participation among individuals in the
production of physical goods. Substantially, the SM concept comes to support
the product personalized customization based on the customer’s requirements
[17,18]. In comparison, the contact-less CP industry concept empowers contact-
less services to provide autonomous, secure contact-less solutions for the CP
industry during and post-pandemic.

Because only a few publications exist in the CP industry regarding shifting
to online marketing during the COVID-19 pandemic, the end-to-end contact-
less concept has not yet been a focus in the literature to date. This motivates
us to consider different emerging technologies to deliver an end-to-end contact-
less framework for the CP industry during and post-pandemic. Consequently,
combining the emerged technologies (e.g., DTs, blockchain, AI, cloud computing,
5G, and robots) empowers contact-less services for the CP industry. The data
derived across the stages of the contact-less CP industry can be accessed and
shared by stakeholders, retailers, organizations, or countries. The products could
be tracked at every stage of the supply chain, meeting consumer demands with
minimal wastage and contact-less. Figure 1 depict the high-level of contact-less
remote applications for CP industry to combat COVID-19 and empower contact-
less economy. To the best of our knowledge, there is no framework based on the
contact-less CP industry proposed to deliver contact-less services to mitigate
the unnecessary risk of people contacting during and post-pandemic. Therefore,
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this research work introduces a conceptual framework for the contact-less CP
industry. Our main contributions to this paper can be summarized as follows:

– We propose a conceptual framework for the contact-less CP industry that
aims to bring the combination of advanced technologies (e.g., DT, blockchain,
AI, cloud computing, 5G, and robots). Furthermore, the proposed framework
aims to support the contact-less CP industry by providing data monitoring,
transparency, traceability, automation and data sharing among consumers
and CP partners.

– We describe how the proposed framework can be applied for contact-less
delivery service for the CP industry during and post-pandemic.

Fig. 1. The high-level of contact-less remote applications for the CP industry to combat
COVID-19 and empower contact-less economy.

The remainder of this paper is organized as follows: The proposed conceptual
framework of the contact-less CP industry is introduced in Sect. 2. Next, the
description of the contact-less delivery service for the CP industry is provided
Sect. 3. Finally, the open challenges, discussion and conclusion are presented in
Sect. 4 and 5 respectively.

2 Conceptual Framework of Contact-Less Consumer
Products Industry

A combination of the emerged technologies (e.g., DT, blockchain, AI, cloud com-
puting, 5G, and robots) has the benefits of empowering a contact-less economy
by supporting contact-less industries during the COVID-19 post-pandemic era.
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In Fig. 2, we have described the proposed conceptual framework of the contact-
less CP industry. The proposed framework’s merit is exploiting the emerged
industrial technologies’ capabilities to provide autonomous, secure contact-less
solutions for the CP industry during and post-pandemic. Four layers are used
to equip the conceptual framework for the contact-less CP industry with the
intelligence of marketing data. As seen in Fig. 2, the four layers are the physi-
cal layer which contains the CP industry participants, the DTs layer, the driver
industrial technologies layer and the applications layer. These layers will be elab-
orated flowingly. Further details of how these layers can work together to provide
end-to-end contact-less delivery service for the CP industry are demonstrated in
Sect. 3.

Fig. 2. The proposed conceptual framework for the contact-less CP industry during
and post-pandemic.

2.1 Physical Layer

The physical layer contains all nodes involved in the CP industry, ranging from
the factory to the consumer. These nodes could be grouped into different cat-
egories, including supply chain, in-store and human participants. The supply
chain participants can be factories, assets, warehouses, suppliers, products, mon-
itoring devices (e.g., CCTV and sensor devices), robotic devices and auto-cars.
The nodes for the in-store category are products on shelves, malls, supermar-
kets, and delivery robots. Finally, the human participants can be the people who
can contribute by using their operational data (e.g., consumers, decision-makers,
workers, employees, HR, security staff and so on).
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2.2 Digital Twins Layer

The digital twins, digital models, and digital shadows are making the manufac-
turing revolution which makes our lives easier. These three concepts are used
interchangeably in the digitization world. Regarding our work, we are using
the DT concept to provide a virtual representation of products, processes, con-
sumers, and other participants within the CP supply chain. Then, these DTs
collaborate to automate the contact-less CP industry. The collaborative DTs
of products, processes, consumers and other participants within the CP sup-
ply chain increase the speed of the contact-less CP industry. Furthermore, the
DTs provide real-time data for the tracking stage of the products applicable to
logistic companies, supply-chain managers, in-store processes, equipment sen-
sors, purchasing, delivering, etc. Therefore, this layer is responsible for defining
DTs within the CP industry at different stages (e.g., the products from being
manufactured to being consumed) by providing multiple collaborative DTs with
up-to-date operational and marketing data. The data-driven DTs collaborations
help to understand the DT status, interact with other DTs at the edge level,
learn from other DTs, and share common semantic knowledge within industrial
manufacturing systems [19]. The DT-driven data are used as inputs for pre-
dictive models to predict the potential risks within the product lifecycle. The
intelligence of DT-driven data help makes a timely decision to avoid product
wastage and delayed delivery, reduce shipping cost and maximize profits of the
contact-less CP industry.

2.3 Industrial Technologies Layer

This layer briefly highlights emerging industrial technologies’ role in building a
concert contact-less solution for the CP industry.

– AI technology: Pairing AI with DTs technologies creates new efficiencies
for the contact-less CP industry. The AI technologies (e.g., machine learning
(ML) and deep learning (DL)) could be applied using data-driven DTs. The
ML/DL techniques provide predicted potential risks to the CP industry, such
as product wastage, corrupted products, and estimated delivery [20,21]. Fur-
thermore, AI technologies can build an intelligent experience engine based
on the consumer experience to provide more insights and personalised rec-
ommendations for consumer satisfaction. For example, the author in [22] has
proposed a prediction model for anticipating the consumers’ behaviour using
ML methods during the COVID-19 pandemic. Also, the authors in [23] have
conducted a comprehensive analysis based on evolutionary computing. Then,
they have proposed a dynamic algorithm for gaining valuable insights into
semiconductor manufacturing processes.

– Blockchain: The blockchain network connects multiple DTs of the partic-
ipants within the contact-less CP industry using distributed ledger technol-
ogy (DLT). The DT-based blockchain network increases traceability capabil-
ity to monitor products by affording end-to-end flow of information about
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the products. Also, the DT-based blockchain network offers distributed oper-
ational data management and secure data sharing across contact-less CP
industry participants [15,24]. Blockchain technology has been used to com-
bat COVID-19 by supporting decentralization for multi-robot collaboration
[12]. Also, blockchain technology is used to enable the traceability of products
in the supply chain and help prevent the spread of the coronavirus [11].

– Cloud/edge computing: Due to large volumes of CP industry data gen-
eration, the operational data analysis is performed on computing paradigms
such as cloud and edge computing. Furthermore, both remote cloud resources
and local edge resources leverage extra computing capabilities for real-time
analysis within the contact-less CP industry [25].

– 5G technology: The 5G technology offers many benefits for the contact-
less CP industry by providing reliable, high connectivity private networks
and real-time interaction with consumers that open the doors to online busi-
ness models within the contact-less CP industry [26]. Moreover, online shop-
ping based on powerfully connectivity empowers personalized interactions
that make consumers’ lives easier and more convenient. It also helps com-
bat pandemics by limiting people’s contact and virus spread. The 5G and
B5G technology capabilities may be successfully used to address COVID-19
difficulties both now and in the post-COVID-19 period. The authors of [27]
highlighted the utilization of 5G e-health and digital services during and post
pandemics.
On the other hand, the authors of [28] highlighted the role of 5G networks in
empowering AI in the prediction of future pandemic outbreaks and enhancing
the digitization to develop a pandemic resilient society. Substantially, because
AI approaches are often data-driven, providing support for significant device
connections and IoT networks via (Massive Machine-Type Communications)
mMTC services in 5G networks would give enough data for AI model train-
ing and deployment. Furthermore, AI technologies are often computationally
heavy. Therefore, advancements in memory and processor technology and
the inclusion of caching and edge computing in 5G would aid in adopting and
using AI technologies. Moreover, the software-defined nature of 5G networks
and associated architectures like network slicing, network function virtual-
ization, data-control plane separation, and so on would make AI approaches
for intelligent and dynamic network management and orchestration easier to
implement.

– Data visualization: The industrial data visualization tools provide useful
dashboards to visualize and track the products based on the DTs opera-
tional data in real-time. Also, the visualization tools allow the decision-makers
within the contact-less CP industry to conclude insights more quickly for
reducing costs and achieving maximum cash flow.

– Robot technology: Robot technology plays a vital role in combating
COVID-19 by reducing human interaction, monitoring, and delivering goods
within in contact-less CP supply chain [12]. Furthermore, the multi-robots
collaborate to achieve a contact-less CP industry by integrating with other
technologies within the proposed framework, such as DTs, decentralized
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blockchain networks, efficient 5G connections and powerful AI engines. The
authors of [29] introduced the role of robotics in healthcare domains for com-
bating COVID-19. Moreover, the space robots and ground robots collabora-
tions play a vital role in combating COVID-19 and reducing the outbreak
with the help of blockchain technology [30]. Furthermore, the authors of [31]
proposed the hospitality industries treat the uncertainties by using service
robots. Therefore, the service-based robots will support the contact-less CP
industry by providing better and more efficient service than humans.

– Decision making: Good decisions make great products and competitive ser-
vices, save time and maximise profit which delivers value for consumers and
the business within the CP industry. In the case of the contact-less CP indus-
try, distributed decision-making algorithms are needed to empower contact-
less services and prepare for the new changes of the post-pandemic world. In
particular, the consensus algorithms are used to improve the contact-less CP
industry by utilising the agreement of most nodes regarding the potential risk
to notify the decision-makers within the CP supply chain. Some examples of
the use of the consensus algorithms include Proof of Work (PoW), Practi-
cal Byzantine Fault Tolerance (PBFT), Proof of Stake (PoS), Proof of Burn
(PoB), Proof of Capacity, and Proof of Elapsed Time.

2.4 Contact-Less Remote Applications Layer

The contact-less remote applications can be used in all CP industry solutions at
different levels, from the product being manufactured to being delivered and con-
sumed (e.g., online shopping, contact-less payment, zero-touch delivery, remote
tracking and so on). Furthermore, the contact-less remote applications pave the
way for the post-pandemic future and contribute to contact-less economy growth.

3 Contact-Less Delivery Service for Consumer Products
Industry During and Post-pandemic Era

The contact-less delivery service describes how the proposed conceptual frame-
work could be applied to provide a complete delivering service to the consumer
from the beginning to the end. In particular, the goal of the contact-less delivery
service is to deliver the contact-less CP industry’s services efficiently with high
quality and security to satisfy the consumers. The contact-less delivery service
can also serve people in the quarantine areas and residential areas by utiliz-
ing the intelligence of data generated by the participants (e.g., malls, medical
suppliers, people, robots, drones, etc.) [12,15]. In the contact-less delivery ser-
vice, a consumer ( e.g., quarantined person) makes an online order for delivery,
e.g., food, beverages, medicine, toiletries, personal care, .etc. Figure 3 depicts the
high-level of mapping our the proposed framework to the contact-less delivery
service. Further details are elaborated following. Then, a detailed mapping of
our proposed framework to provide end-to-end contact-less delivery service for
the CP industry is discussed.
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Fig. 3. The contact-less delivery service for CP industry during COVID-19 and post-
pandemic era.

Digital Twins Collaboration in Contact-Less Delivery Service. DTs
represent the participants collaborating to provide a complete, efficient, high
quality and secure delivery service in the contact-less delivery service. The core
participants of the contact-less delivery services include malls, suppliers, super-
markets, people, robots, auto-driver cars, drones,.etc. These participants could
be represented in interoperable and collaborative DTs to show high visibility of
the contact-less delivery service without physical interactions to limit contact-
ing and coronavirus outbreaks. In addition, the DTs are collaborating to track
the contact-less delivery service among the participants. The DTs’ collaboration
can understand each DT’s status, interact with other DTs, learn from other
DTs, and share common semantic knowledge across geographically delivery ser-
vices. Furthermore, the DT-based data is used to allow data visualization. For
example, the visualized contact-less delivery products enable consumers to track
their orders. Also, it will enable the managers and decision-makers to conclude
insights for actionable decisions.

On the other hand, there are different data models for the DTs in contact-
less delivery services based on the requirements of each participant. In particular,
the DTs for the contact-less delivery service are represented the data generated
from sensors attached to products containers, robots, and drones to capture
real-time data about delivered products and report on-time data about environ-
mental changes. For example, the DTs of the warehouse are used to monitor
the weather, e.g., temperature and humidity in the warehouse for storing safety
products. For physical assets such as malls, suppliers, and supermarkets, DT
models represent information about them, such as their locations and product
storage. For example, the product’s availability is updated in real-time to help
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the management department in-store to request the products from the nearest
supplier in case of the product is out of stock. Also, the DT model represents the
delivery robots used to serve the consumer by transporting ordered products.
The models of the delivery robot DT have information about the robot status,
the product condition, the location, and so on [12].

Blockchain and Operational Contact-Less Delivery Data Sharing.
Blockchain technology is required to provide high quality, secure connectiv-
ity, decentralized, traceability, and tracking transactions for safe communication
between delivery robots, food suppliers, and in-stores [12]. In particular, DLT is
needed to provide high-quality, secure connectivity to improve the security and
safety of the communications between the participants of the contact-less deliv-
ery service. For example, DLT is used to acquire secure real-time data exchange
and analysis across multiple participants, such as detecting attack vectors for
stealing robots. In addition, DLT can implement collaborative DTs that allows
data of delivery service sharing among multiple DTs in a decentralized contact-
less delivery system. Therefore, sharing DTs-based data among DLTs can offer
high data reliability in product delivery, faster access, high availability, and col-
laboration among contact-less delivery participants.

Data-Driven Digital Twins Based Predictive Analytics. In such a
contact-less delivery service, the examples of the potential risks within the decen-
tralized delivery service include faults with robots and drones, lack of products,
etc. To avoid the potential fault risk of the movable assets, including auto-cars,
robots and drones, monitoring DT-based data is required from these assets,
including location, speed, and sensing environment. The real-time collected data
from DTs of the auto-cars, robots and drones could be fitted into the data-driven
DTs-based predictive analytics to predict the potential fault to perform early
maintenance for these movable assets and avoid any delay in the delivery ser-
vice. DT-based data acquisition can also identify any spoof attack vectors during
the robots travelling to deliver products to the quarantine/residential areas. On
the other hand, to assess the potential risk of lacking products, products avail-
able within the retails are evaluated based on the locations and the real-time
demand. The decision-makers can direct the request to the closest in-stores to
avoid delayed delivery services. Furthermore, these potential risks of lacking
products can help decision-makers better supply plans and increase money flow
within the contact-less CP industry.

Decision Making in Contact-Less Delivery Service. A consensus is a
decision-making process in the contact-less delivery service to avoid the potential
risks, including fault diagnosis and lack of products. Using collaborative DTs
provides a better understanding of potential risks for the delivery system and
facilitates consensus-building among participants involving the decision-makers.
Multiple participants represented in DTs are divided into various consensus sets.
The consensus mechanism is chosen based on the potential risk scenario (e.g.,
hijacking and theft of robots, faulty auto-cares, robots, drones, harmful products,
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expired food, and so on). The consensus algorithms will then be used to agree on
the potential risk provided by collaborative DTs to notify the decision-makers
about the potential risk that could delay the contact-less delivery service.

4 Open Challenges and Discussion

Right now, the contact-less CP industry is still a vision for the future of the
contact-less economy. However, many challenges stand in developing a concrete
contact-less CP industry. Therefore, we will explore some of those challenges and
ways of addressing them.

Privacy and Regulation. The security and privacy associated with consumers
are challenging within the contact-less CP industry because of the risk of sensi-
tive marketing data created from consumers’ preferences. Therefore, the contact-
less CP industry should analyze consumers’ data locally using federated learning
and then share only the model to the blockchain instead of sending the raw data.
Thus, the issue of security can be solved by using blockchain technology, while
privacy can be solved by using federated learning. Combining both techniques
can significantly enhance the security and privacy of the contact-less CP indus-
try.

Security. Data security is crucial for the contact-less CP industry due to hacker
attacks. Consumers must be confident that their data is secure, transparent, and
accessible. Blockchain technology can be applied to the contact-less CP industry
to protect consumers’ accounts access. However, blockchain technology faces
various security and trust issues, such as attacks against consensus mechanisms
and propagation processes [32].

Timing, Speed, and Response. Timing and speed are tricky for delivering
products. Also, time enhances decision-making and reaction times for consumer
demands requiring high accuracy to avoid long delivery delays.

Data Modeling. Standardization is essential for designing a contact-less CP
industry system. The fully connected contact-less CP industry participants need
to use standard models to define each participant based on the relevant schema.
The schema is determined based on the corresponding physical assets and the
communication behaviour within the CP supply chain. These standards are com-
plex to facilitate DTs of CP participants for interactions and collaboration. Fur-
thermore, these standards can range from the file format of the data storage
to the details of how the DTs are communicating within the CP industry at
different stages (e.g., the products from being manufactured to being consumed)
[33].
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5 Conclusion

This paper introduces a conceptual framework for the contact-less CP indus-
try due to COVID-19 and post-pandemic. The proposed framework’s merit
is exploiting the emerged industrial technologies’ capabilities to provide
autonomous, secure contact-less solutions for the CP industry during and post-
pandemic. Four layers are used to equip the conceptual framework for the
contact-less CP industry, including the physical layer, which contains the CP
industry participants, the DTs layer, the driver industrial technologies layer and
the applications layer. Consequently, the CP companies can effectively execute
their business functions for the post-pandemic through an efficient combination
of technologies within the proposed framework. Furthermore, we have described
a contact-less delivery service during COVID-19 and post-pandemic, together
with a detailed mapping of our proposed framework. In future, more work is
required to be done to improve contact-less services in different sectors ( e.g.,
hospitality industry) by utilizing the improvement in the robot, 5G, blockchain
and so on.

Acknowledgement. This research has emanated from research supported by
a research grant from Science Foundation Ireland (SFI) under Grant Number
SFI/16/RC/3918 (CONFIRM), and Marie Sk�lodowska-Curie grant agreement No.
847577 co-funded by the European Regional Development Fund.

References

1. Sahal, R., Alsamhi, S.H., Brown, K.N., O’Shea, D., Alouffi, B.: Blockchain-based
digital twins collaboration for smart pandemic alerting: decentralized covid-19 pan-
demic alerting use case. Comput. Intell. Neurosci. 2022 (2022)

2. Li, S.: How does covid-19 speed the digital transformation of business processes
and customer experiences? Rev. Bus. 41(1), 1–14 (2021)

3. Hoekstra, J.C., Leeflang, P.S.: Marketing in the era of covid-19. Ital. J. Mark.
2020(4), 249–260 (2020)

4. Bhatti, A., Akram, H., Basit, H.M., Khan, A.U., Raza, S.M., Naqvi, M.B.: E-
commerce trends during covid-19 pandemic. Int. J. Future Gener. Commun. Net-
working 13(2), 1449–1452 (2020)

5. Deloitte: 2022 consumer products industry outlook. https://www2.deloitte.
com/content/dam/Deloitte/us/Documents/consumer-business/us-deloitte-2022-
consumer-products-industry-outlook.pdf

6. Sheth, J.: Impact of covid-19 on consumer behavior: will the old habits return or
die? J. Bus. Res. 117, 280–283 (2020)
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Abstract. This paper summarizes the key findings of a qualitative study based on
feedbacks of experts from thewind industry followed by a democase of blockchain
technology. This study includes investigation on mapping of supply chain and
commodity products related end-to-end life cycle associated data and operational
events. Furthermore, identification and blueprinting of the requirements have been
pursued for enabling traceability at various stages of their life cycle utilizing
blockchain. In this study context, blockchain offers digital traceability of opera-
tional events and associated data sharing with complete immutability, ownership,
confidentiality, trust, and transparency across distributed supply chain which com-
prises of multiple stakeholders. In addition, digital technology intervention like
IoT has been leveraged to support quality of operations in quantitative manner
through real time data driven digitized operations. Thereby, providing economy
of scale over operations execution on commodity products in wind industry. This
study has focused only on bolts and fasteners associated commodity products and
related supply chain. However, this provides a steppingstone foundation for future
which can be scaled and mapped to any other commodity product and related
supply chain in wind industry. Finally, this study also presents a demonstrator
developed in a controlled lab environment to demystify the use of blockchain
technology in related manufacturing and supply chain setups of the wind industry.

Keywords: Blockchain · IIoT · Bar code · QR code · Digitalization · lifecycle ·
Digital traceability · Sustainability · Supply chain · Business

1 Introduction

The hype around blockchain technology in industry4.0 [1] is well established [2, 3],
but its utility in a practical and operational settings is limited [4]. To better understand
how the technology may be useful for specific industry sectors, projects which involve
qualitative analysis of stakeholders for problems identification and realization of demo
cases are typically running at national/European level in controlled environments. This
paper presents the finding of such project, named as “UnWind”, focusing on wind
industry in Denmark. As goals of this case study project, first an investigation of the wind
turbine industry’s value supply chain is conducted to identify and map processes with
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their potential benefits from blockchain technology. Second, an active collaboration has
been done with companies/stakeholders of value chain who will get potential benefits
from the findings of the first activity. This was done to consider their perspective and
associated real world challenges to build a business use case and prototype demonstrator.
Finally, the actual realization of a demonstrator with blockchain technology as a solution
has been developed for the challenges identified during a series of workshops with the
collaborated stakeholders/companies.

For this study, qualitative data was collected in the period January 2020 to March
2022 using an action research-inspired approach [5] with dual-focus on academia and
practice. The qualitative data was collected through 10 unstructured interviews, 15 semi-
structured interviews and 17 development workshops in which the industrial partners
from the wind turbine industry have been interviewed/observed.

The Fastener project, which is an industry born initiative and closely connected to
goals of UnWind project, seeks to standardize the procurement procedure for bolts and
fasteners to simplify the buyer-supplier relationship between fastener/bolt supplier and
wind turbine manufacturers (the buyer). From the bolt/fastener supplier’s perspective
this is intended to make the production setup simpler as they will no longer have to
live up to individual demands from each of the turbine manufacturers. From the turbine
manufacturer’s perspective, the situation is improved due to reduction of the bull-whip
effect as production errors at the supplier end are reduced and by extension the chance
of delays in delivery is lessened as well. From both the buyer and supplier’s perspec-
tive, there is also an added advantage of increasing batch sizes of fasteners, meaning
economy of scale will be beneficial. In addition, there is less risk in storing backup
components in warehouses, as there are more potential users of the safety stock if all
bolts and fasteners are made to fit in with the standard schematics of all the wind tur-
bine manufacturers production schemes. An important question arises here is that how
these bolts and fasteners components are tied to blockchain context. The answer to that
lies in the part of their procurement standardization process which also guides on how
components in wind industry operations are traced across the value chain throughout
the years. Practically, there is no need for high level traceability on all fasteners/bolts, as
only larger fasteners are of critical importance for the wind turbine’s operational perfor-
mance. For this reason, the traceability standardization only applies to larger fasteners
(8 + mm in thickness). To map the fasteners from the physical world to the blockchain
in the digital world, a gateway technology in the form of Quick Response (QR) codes
is utilized. Practically, each batch of fasteners will have a unique QR-code and through
QR-code the information on the given batch of bolts is then digitally tied and stored to
the blockchain. The way that each individual fastener becomes identifiable comes in the
next steps of its life cycle.

1.1 The Fastener Lifecycle: Events and Data-Points in the Blockchain

The Fig. 1 is illustrating the lifecycle of the fastener it goes through and the events
that occur in its journey along with their data points that are logged and traced into the
blockchain through the scanning of the QR-codes. The lifecycle consists of two major
phases; 1) Manufacturing and installation of the fasteners (prior to the operational start
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of the turbine) and 2) Service and decommissioning of the fasteners (post operational
start of the turbine).

Fig. 1. An overview of events and data-points in the supply chain and life cycle of common
products such as bolts used in wind industry

It should be noted that each event in the two phases can be considered a block
of information (or transactions) in the chain of events making up the lifecycle of the
fasteners thus forming the basis of representing these blocks in blockchain system.
Two consistent data points that are recorded at every event, per transaction level, in
the lifecycle, is a timestamp and a digital notation of the organization uploading the
new event/operations. The first phase, where elements are marked blue (top row) on
Fig. 1, starts with the supply chain associated events for each fastener and ends after the
fastener is installed in the fully assembled turbine. As touched upon earlier, the first event
ties to the manufacturing of the fasteners (also called commodity component tier one
supplier) and includes data points containing information on product specifications and
a sample (quality) test performed on each batch of bolts produced at the manufacturer
end. Second comes the transportation event of the fasteners,which includes geo-physical
data for the relocation sites. This relocation may either lead directly to a turbine erection
event (i.e., where the turbine is put under operation) or the fasteners may be sent to the
module installation which then subsequently be transported to the turbine erection site.
Regardless of whether there is module installation event or not, new data is logged into
the blockchain when the fastener is no longer an individual component, but a part of a
larger schematic (as a module or in the fully assembled turbine). This new data consists
of registering the schematic location of the fastener, the value of torque with which the
fastener is tightened and potentially the identification (ID) of the service technician who
performs the installation operation of the fastener into turbine.
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The second phase consists of events in the fastener’s lifecycle that occur during the
turbine’s operational period and is illustrated with green and orange (3rd row) boxes. As
opposed to the events that occur in the first phase, this second phase includes repeated
events of maintenance or service, in which similar information may be updated repeat-
edly over 20–30 years in which the turbine remains operational. When maintenance is
performed on the fasteners, several data-points are logged and updated in the blockchain.
The torque value during each service cycle is registered, the information of technician
facilitating the maintenance is logged and in case, a smart tool is used such as a digital
wrench, the ID and calibration value of the tool is also logged. If everything occurs as
intended, this event will occur regularly until the end of the turbine’s life after which
the fastener will be decommissioned along with the turbine, resulting in the logging and
update of several data points again. In the case of a replacement event, which occurs
between the maintenance and decommissioning phase, there is a need to replace the
broken fastener with a new one in the physical world. This results in addition of new
lifecycle to the blockchain based on the new fastener’s lifecycle events (all the infor-
mation logged as per phase 1). In principle, the replacement protocol can also occur
multiple times and this has not been included in the Fig. 1 to avoid complexity. After
this, the final event, which is marked as orange color (last box in 3rd row), occurs in
the fastener lifecycle wherein the component is transported away and (ideally) sent to
recycling, at a location which is logged into the blockchain as the final entry.

2 Business and Sustainability Implications of Blockchain
Technology in Large Scale Wind Turbine Setups

Economies of scale: One of the primary points of the associated business case of the
UnWind blockchain solution is to create the ideal conditions for turbine manufacturers
to take advantage of economies of scale, so that turbines are cheaper to build as such,
making the renewable energy production cheaper and more desirable for investments.
Bolt/fastener suppliers also take advantage in the economy of scale as developing larger
batches are cheaper, less time consuming and with fewer production risks in comparison
to produce smaller batches of varying bolts/fasteners. This initial use case of the wind
industry leveraging blockchain exclusively focused on bolts and fasteners which are
considered commodity (non-compete) items amongst the turbine manufacturers. How-
ever, the intention is to expand the principle for all other critically important components
of the turbine involved in the supply chain to improve their operational functionality in
terms of quality, ownership, transparency, and monitoring.

The key selling point of the blockchain is tied to how the technology enables trace-
ability across organizational bounds in the value chain [3]. By registering each event
in commodity components lifecycle, it becomes easier to pinpoint where malfunctions
occur or errors are made on the turbine’s components – and most importantly, it enables
actions to be taken faster and more accurately. For example, if a technician while per-
forming maintenance on a turbine finds a fastener is broken, while it is still valid for
its lifetime span, the technician can report this to be a potential issue with a replace-
ment event in the component lifecycle. Via the blockchain this latest event can then
be identified, and the responsible company can be informed, and other tasks can also
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be double-checked at other locations where fasteners are being used thereby enabling a
more proactive approach to performmaintenance and service. Similarly, it may be found
that a component issue tracks all the way back to a batch at the supplier level in which
case the blockchain data can be utilized to identify other locations of fasteners from that
batch and test if they also need replacement or maintenance service.

In extension of the traceability argument, the recording of events and product details
also enables transparency [2] in what is inside the turbinesmeaning it is easier for service
organizations to bring the right tools and equipment, as well as the rightfully certified
personnel to perform tasks. One key issue in the wind turbine industry today (that is
particularly expensive and time-consuming for offshore turbines) is that technicians are
sent to perform tasks to turbine sites, only to realize upon arrival that they are either
not properly certified or equipped to be able to perform their job. Furthermore, service
contracts are rarely withheld by one company over the turbine’s lifetime, meaning it is
critical to pass reliable, accurate information to the companies taking over. However,
since the original service provider is done with their commitment, they currently have
little incentive to pass on information properly to their replacement. Even more critical
is the fact that service contracts will often be taken over by competitors of the original
service providers, meaning there may be reluctance to provide the competitor with
accurate information. The blockchain, however, enables transparency through its data
point registration, removing (or at least minimizing) the risk of inaccurate or lackluster
documentation for former events.

Sustainability: Overall, the characteristics of a blockchain can enable better mainte-
nance and monitoring for wind turbines, reducing production downtime which in turn
enables more energy production per turbine over its lifetime, meaning each turbine has
a larger amount of value that can help pay back the initial investment of the turbine. This
translates to a lower levelized cost of energy for wind-based power generation, thereby
improving the conditions of the industry. In other words, blockchain is an opportunity for
wind turbine manufacturers to collaborate with their immediate competitors (other wind
turbine manufacturers) to better compete with other energy producing industries like
solar [6], fossil or nuclear fuels. In other words, blockchain technology holds promise to
improve sustainability aspects for the service part of the wind industry [7], in addition to
other ways this technology is perceived to be an enabler for more sustainable practices
[8].

3 Realization of Demonstrator in Controlled Environment

To realize the system context of blockchain contribution in wind turbine supply chain
industry, a demo has been designed and developed in a controlled lab environment
known as DigiMicroFactory Lab at department of Business Development and Tech-
nology, Aarhus University in Herning, Denmark. Typically, as discussed earlier, wind
turbine industry is based on supply chain consisting of multiple stakeholders, work-
flows, events, data points, and their supplied services or commodities. The different
stakeholders that are involved, but are not limited to - wind manufacturers, first tier ven-
dors, services operations staff. There are different system operations associated to the
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supply chain workflow, such as transportation, assembly, installation, service (replace-
ment/modifications) maintenance and de-commissioning of wind turbine components
[9]. This needs to be performed by the relevant service personnel or engineer at spe-
cific value chain lifecycle events either at the onsite or remote location. Each of these
operations are associated with lots of data which is usually stored in traditional internet
web (including cloud) enabled IT systems based on the inputs of service engineer[10].
Some of these inputs are collected based on output/outcome of mechanical operations
directly or via digital systems placed in support to mechanical operations. The service
engineer records the output/outcome and enters them in the system interface manu-
ally. This human intervention is often prone to errors. For example, consider a scenario
wherein a bolt needs to be fastened by wrench (normal or digital) and engineer applies a
force on the bolt to be tightened up for the target torque. The service engineer interprets
the outcome (i.e., success or failure) of the operation, based on his cognitive skills and
updates the system related user interface qualitatively. Therefore, many suchmechanical
operations where end-to-end digital intervention is not present are often prone to human
errors. Additionally, such small errors could cost heavily in energy production running
phase of the wind turbine, in terms of down time due to failed operations, quality com-
promised, missing proactive handling of incorrect operations, and incorrect interpreted
information flow to different stakeholder that may leads to conflicting situations and
inappropriate action flows. As explained earlier in Fig. 1, the service and maintenance
aspects of the wind turbine case are really where the complexity comes to grow and are
also the potential areas of issue in the value chain.

For the service technicians to both gain and give value to the blockchain solution,
they must be able to interact with the solution, and this requires a user interface and
backbone technologies in which the technicians can read and update the blockchain
data without necessarily understanding the technology. Practically, the technicians will
interact with the blockchain by scanning the Bar/QR-code with a tablet/mobile, which
will give them access to either a website or an application through which the relevant
information can be accessed and updated. Furthermore, there are multiple IT web sys-
tems (referred to as traditional/legacy systems/applications) involved and active from
many years, such as delivery tracking, inventory management, service management,
quality metrics etc. These systems run in the organizational boundaries, as they belong
to different stakeholders, thus creatingmultiple data silos aswell. To overcome this situa-
tion, their information or data sharing needs inter-organizational related cross functional
system interfaces development. These interfaces should be abstracted and converged
into a unified data format among all stakeholders in a trusted, traceable, and transpar-
ent manner. At the same time, their organization boundaries need to be protected and
defended with complete trust and security. These objectives pose data integration, secu-
rity, integrity and ownership challenges among different systems and their stakeholders.
Therefore, there is need to build a novel framework in place, which can address these
challenges and fulfill the relevant objectives at their design level. This is exactly what has
been achieved through the developed blockchain enabled unwind demonstrator system
concept presented in this paper.
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3.1 Overall High-Level Architecture

The high-level architecture of the unwind demo concept is illustrated in Fig. 2. The
assumption for the design architecture is the single commodity component operation
support i.e., fastener or bolt related value chain in wind industry. The operational use
case is a scenario of bolt fastening in wind turbine assembly with capabilities of digital
recording its fastening operations with trust to support quality. In the architecture, the
following functional layers are shown from the operations point of view:

a) Wind Turbines at onsite location – These are the target entities to perform oper-
ations upon in the wind turbine supply chain. To build a turbine at onsite, it needs
transportation of components like bolts, blades, rotors, motors, electronics equip-
ment, poles etc. Once they transported, then there is a assembly and installation
workflow of components needs to be executed. Here, it is assumed that all operations
are performed onsite with end-to-end digital traceability in support of mechanical
operations. This wind turbine related operational data at onsite acts as a data source.

b) IoT Edge Device (Bolt/fasten control) – This is the system interface available at
onsite to support turbine operations digitally. In our architecture, it is the kind of
bolt fasten control system which monitors the bolt screw operations and related
data and then send this data towards systems in upstream flow in real time. These
types of systems can communicate with wind turbine systems using internet (e.g.,
via 5G/LTE/Wi-Fi) and radio (Bluetooth, LoraWan [11], etc.) interfaces and are
available close to the wind turbine [12]. That is why it has been referred as IoT edge
device in the given architecture. This also gives the scope of improving operations,
in terms of low latency, aligned to edge computing goals in future [13, 14].

c) Traditional organizational level centralized systems: These are the enterprise
level IT web enabled systems (usually enterprise resource planning – ERP - appli-
cations) which belong to different stakeholders. These systems record data coming
from onsite locations for various events in value chain, process and store them in
their databases. It is important to mention here, that the architecture supports the
traditional systems flow as is, since they are functional and can save on investments
made already and offer ease of work over familiar system. Therefore, this architec-
ture does not suggest replacing the existing systems, rather advocates complement
the existing system by adding a new system/network of blockchain.

d) Blockchain Network: This is the new system in place which aims at supporting
complete supply chain of wind turbine in a distributed sharing, trustable, immutable,
transparent, and secure manner by design. Blockchain systems perfectly fit in this
context as they offer the same by design and that is the reason it has been chosen as
an integral part of this architecture. Additionally, with the advent of modern tech-
nologies like Blockchain, IoT and edge computing and their integration is expected
to benefit [15] the traditional way of managing the wind turbine supply chain. These
technologies integration induce lots of capabilitieswhich includes real time data gen-
eration, collection, and processing through IoT, distributed storage, transparency,
trust, quality, and traceability among different stakeholders using blockchain and
low latency driven decision near the data sources (i.e. wind turbine sites) using edge
computing and many more [16].
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Fig. 2. The overall digital traceability system architecture at high level.

3.2 Demonstrator Realization and Code Snippet

For the demonstrator different digital equipment’s were used as illustrated in Table 1.

Table 1: Equipment and services used for the realization of blockchain demonstrator

Item Purpose

Wind Turbine A small demo turbine installed in lab upon which the Bolt
operations to be performed to replicate the real-world scenario

Bolt 12 mm Bolt that needs to be fasten to the wind turbine

Digital Wrench To fasten the bolt and digital monitoring of the torque readings

Raspberry Pi+ LCD display Acted as an edge device to collect the data from different tools
during installation or maintenance operation. LCD is used on top
of RaspberryPi to display real time data from real time operations

BAR/QR Code Scanner To scan the QR and Bar codes present on the different components
of Wind turbine assembly and to identify them uniquely

QR/BAR Code printers This is used to print the QR/BAR code for digitalize tagging of
the physical assets

Blockchain as a Service Public Blockchain service (Ethereum [17] based) from Unwind
Project that has REST APIs offering over internet to ingest and
query data related to supply chain operations

Local blockchain enabled Edge server Private blockchain service (Hyperledger Fabric [18] - HFabric -
based) running at edge server to simulate permissioned blockchain
service in a controlled and constrained lab environment

Programming Flow Node-red based programming flow developed to control/manage
devices and related data processing towards blockchain

Following the architecture (Fig. 2), a demonstrator has been developed while focus-
ing only on bolt fastening operation at wind turbine is shown in Fig. 3. The physical com-
ponents such as wind turbine and the bolt to be fastened is tagged with QR code. These
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Fig. 3. The digital traceability with HFabric or Ethereum Blockchain demonstrator within the
DigiMicrofactory lab at Aarhus University BTECH.

codes are generated by registering the turbine and batch of bolts details in blockchain
system beforehand. To read these QR codes, a digital bar code scanner has been used
in our demo. This tagging and scanning of QR code is one of the methods to represent
identifications of physical systems in digital world in unique manner. In other words, it
identifies the specific operation being performed at specific wind turbine with specific
component at relevant geolocation. In our case, it establishes a semantic relationship
(one to many type) [11] of specific bolt from a specific vendor/supplier associated with
the digital wrench (tool/device) operation performed by specific service engineer on spe-
cific wind turbine which belongs to a specific owner/operator at specific onsite/offshore
location. An information tied in such semantic relationshipmodel offers semantic search
and traceability capabilities with multiple dimensions at ease.

The demonstrator consists of digital wrench device which fastens the bolt to the pre-
defined torque threshold. There is a raspberry Pi, which acts as an edge gateway/device
providing internet connectivity to upstream systems in order to send them recorded data
and as well as radio interfaces connectivity (based on Bluetooth) towards digital wrench
and bar code scanner, to monitor onsite component operations. Additionally, the same
edge device in the demo has also been used to install and implement a custom program-
ming service flow (based on node-red), as shown in Fig. 4. This service is used to control
andmanage the bolt screw devices, collect, display, and send data to upstream traditional
systems as well as blockchain systems (Hyperledger fabric or Ethereum based) in real
time via REST based application programming interfaces (APIs) [19]. The complete
operational flow is given as follows:
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a) Register the turbine and related batch of bolts with blockchain application. The
output of registration event generates a QR code.

b) Tag the turbine and related components with QR code labels.
c) Using programming flow running at edge device, register all the devices (scanner

and digital wrench) over Bluetooth interface.
d) Scan all the QR codes (wind turbine and bolt related).
e) Perform bolt fasten operation using digital wrench. This will send torque specific

reading in real time to the programming flow running at edge.
f) Metadata (data about wind turbine and bolt identification) and data from specific fas-

ten operation, in semantic relationship manner, is merged in programming flow and
send into two different flows upstream traditional systems and blockchain systems
via REST APIs.

Fig. 4. Code snippet for connecting all reader devices and enabling dataflow and registration with
Blockchain

Note: The APIs serves as the interface for storage and retrieval of data related to bolt,
wind turbine, and technical operations to/from Hyperledger fabric (used as a private) or
Ethereum (used as public) based blockchain. The registration of the bolt batches, wind
turbine, documented technical service and recycling data invokes corresponding solidity
based smart contracts in the blockchain that validates and stores the respective informa-
tion. TheAPIs endpoints process and forward the requests to the smart contract bymeans
of the web3 library. Different stakeholders, choose to be part of the blockchain network,
can access the data of their interest based on their privileges (as per the smart contract
agreements among the stakeholders) in near real time, shareable, reliable, traceable,
secure, and transparent manner. Thus, able to perform the required actions (proactive or
course of correction) as per the need of the situational event.
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4 Conclusions

Throughout this industry 4.0 case study, we examined with qualitative methods the chal-
lenges which wind industry is facing during manufacturing and operational phases for
the entire wind turbine life cycle of commodity components. We analyzed the findings
and identified the area of the supply chain for commodity products where blockchain
technology can contribute significantly as solution to enhance the economy of scale for
commodity products in terms of digital traceability, quality, operations with trust and
transparency as well as to establish a more sustainable supply chain. Furthermore, we
developed a working demo in a controlled lab environment to demonstrate the feasi-
bility of using blockchain in the digital traceability of commodity products such like
bolts/fasteners adding value to the entire life cycle of wind turbines in this industry .
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Abstract. The flexible PCB medical device developed at our research
lab calculates a single-channel EOG. We develop an infrastructure for our
device, including an IoT structure for capturing data. As well as an algo-
rithm that can detect Sleep Stages using EOG data from our device. Pre-
vious attempts at classifying sleep always use data from double-channel
EOG data. Initially, we used a labelled sleep dataset from the University
of Wisconsin to train our neural network. We then apply transfer learn-
ing to the sleep classifier with data extracted from our device. Overall,
we were able to successfully create a model with data from the medical
device and obtain a 81.19% sleep stage classification accuracy.

1 Introduction

The Electrooculogram (EOG) measures a potential difference between the cornea
and the retina of an eye. This potential relates to eye movements, reflex, and
blinking. By measuring the change in the potential we obtain a signal useful in
tracking multiple conditions, including the sleep. The magnitude of the EOG
potential is correlated with the displacement of the eye from a neutral position
during eye movement [1,2]. Usually in EOG measurements the recording elec-
trode placed on the left and right eyes are referred to as E1 and E2 respectively.
EOG is the difference between two electrodes, as shown in Fig. 1. If the eye moves
towards one electrode it becomes relatively positive, the other relatively nega-
tive. The EOG signals can be used to determine wide variety of eye activities,
whether it is blinking, winking, moving your eyes and even sleeping.

Sleep is characterized by multiple stages. According to the American
Academy of Sleep Medicine’s (AASM), there are 5 stages of sleep, and each
stage has different types of eye movements:

1. N1 and N2 Sleep
– Slow Eye Movements (SEM)

2. N3 sleep
– No Eye Movement

3. REM
– “conjugate, irregularly, sharply peaked eye movements with an initial

deflection lasting <500 ms”
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 187–198, 2022.
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Fig. 1. Electrode placement for EOG recordings [3]

In a nights sleep, a typical person will shift through each of these stages. During
sleep the eyes move depending on which stage of sleep we are in. One distinctive
stage of sleep, known as Rapid Eye Movement (REM), is characterized by rapid
movements of the eyes in multiple directions [4]. Since each stage of sleep has
different eye movements, if we record EOG signals while sleeping we are able to
determine which stage of sleep the participant is in.

We work with a flexible PCB circuit that calculates the Electrooculography
(EOG) signal from both eyes. It calculates the difference between the corneal
potential of both eyes, and it is referenced to a neutral site that sits on the
center of the forehead. The device will be referred to as “Flex-EOG”. It out-
puts single-channel EOG data. The device when worn while sleeping will record
EOG data from the movements of the eyes [1]. Our goal is to be able to classify
Sleep Stages with data from Flex-EOG. We will accomplish this by developing
an infrastructure to capture and process data from the Flex-EOG. This is signif-
icant because: there is a lack of sleep classification studies that use EOG data,
especially single-channel. Furthermore, there are few studies that evaluate the
effectiveness of using publicly available data to train a prototype medical device;
especially for sleep detection.

2 Background

There are several types of sleep tracking devices. Some track the bio-potential
signals: such as the brain waves, or the eye movement. In this category we see
devices like the Muse, which gives Sleep Stages from EEG signals.

Other devices track your body movement, position, and sleeping noises. There
are many commercially available devices in this category; The Google Nest Hub
uses a radar sensor to track your movements. This millimeter-wave sensor emits a
radio wave, and uses the reflected signal to figure out if someone has moved; their
velocity and distance. The radar sensor data is trained on a Machine Learning
model for sleep stage tracking [5]. Another similar device that tracks movement
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has been recently patented by Apple. It is a “layered sensor having multiple lat-
erally adjacent substrates in a single layer”. The sensor is piezoelectric, meaning
it generates electric signals in response to pressure. It is placed underneath the
user like a bed sheet, and can track their movement since the piezoelectric sensor
will be sensing their movement [6].

Lastly, there are devices that are a combination of both: fitness watches track
the heart rate and the movement.

For this research we are focused on classifying sleep using bio-potential sig-
nals. We will develop machine learning models to classify sleep. There are some
sleep classification models that have been trained using bio-potential signals.
EOGNET is a neural network model that implements sleep tracking using sin-
gle channel EOG signals. The researchers use deep learning techniques such as
CNNs to classify Sleep Stages. The model uses a residual block. The residual
block structure is derived from a ResNet model, and is known to produce bet-
ter accuracy than a normal sequential model [7]. Overall, EOGNET attains a
promising classification accuracy of 85% and 82.1% on two separate datasets for
sleep stage classification [8].

The work in [9] uses single channel electroencephalography (EEG) captures
of brain wave signals for sleep stage classification. It first converts data to the
frequency domain, before passing it into a neural processing pipeline consist-
ing of an Autoencoder & CNN. A decent accuracy is achieved, with accuracies
above 80% for all Sleep Stages (except N1 Sleep). Overall [9] has a classification
accuracy of 88.4% and 87.6% on two separate datasets.

3 Methodology

Fig. 2. Technique used to create Flex-EOG dataset

We take overnight recordings of EOG. Participants wear the Flex-EOG device
while sleeping. As a ground truth we use two separate sleep stage detection
devices, in order to track the participants Sleep Stages. A Muse electroen-
cephalography (EEG) (www.choosemuse.com), and The Google Nest Hub (2nd
Gen) [10]. Both Muse and Google have developed sleep scoring algorithms, that
allows us to determine the Sleep Stages of participants.

http://www.choosemuse.com
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By using the EOG recordings from Flex-EOG, and sleep stage labels from
MUSE, Google we are able to create a sleep stage classification algorithm for
the Flex-EOG device. Figure 3 shows an overnight recording from the Nest. We
can also note from Fig. 3 that the Sleep stages are not close in their duration,
especially REM Sleep which happens for only a fraction of the time as Light and
Deep Sleep.

As shown in Fig. 2, we obtain two separate ground truth labels from Muse,
Nest Hub. Then, for each epoch we randomly choose our sleep stage label from
one source to form our resultant sleep stage label. By using data from two
different sources, our sleep stage labels are less prone to error. We then combine
our resultant sleep stage label with our Flex-EOG data to create a dataset that
will be used to update our model.

We propose a sleep stage classification algorithm to work on Flex-EOG
device. It is a deep Convolutional Neural Network, that has been trained on
data extracted from the University of Wisconsin Sleep study (WSC). Then the
model is updated with the dataset we created from our Flex-EOG device.

Fig. 3. Overnight sleep recording from Nest Hub

3.1 Experimental Setup

As shown in Fig. 4, both devices are worn at the same time when sleeping.
The Muse EEG band is worn above the Flex-EOG band. Since the Flex-EOG
band should be positioned right above the eyes, in order to retrieve corneal bio-
potentials. The Google Nest Hub is also setup. It is positioned on a bedside table
next to the participant, and the radar sensor is pointed towards their torso.
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Fig. 4. Placement of Muse and Flex-EOG bands on face.

Fig. 5. The Flex-EOG device setup with three electrode configuration [1]

Flex EOG Device. The functionality of the Flex-EOG device is shown in
Fig. 5. The eye bio-potentials from the electrode are sent to the EOG amplifier
circuit, after which the circuit communicates to an iOS Application via Bluetooth
module.

Muse EEG Device. The Muse EEG device is a low cost, portable EEG device.
It has been used for numerous research purposes in multiple medical contexts
including human visual attention, stroke diagnosis, event-related brain potentials
(ERP) research [11–13].

The Muse iOS App has built in sleep tracking with four different Sleep Stages.

1. Awake
2. Light Sleep

– Corresponds to N1, N2
3. Deep Sleep

– Corresponds to N3
4. REM

These Sleep Stages are measured using brainwave EEG signals. According
to the AASM manual on Sleep Stages, the differences between Sleep Stages can
also be measured by brain wave activity using EEG signals [14]. This technique
is used by the Muse EEG Device.

Google Nest Hub. Google has trained their own sleep stage detection model,
by using data received from a millimeter-wave frequency-modulated continuous

https://apps.apple.com/us/app/muse-meditation-sleep/id849841170
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wave (FMCW) radar transceiver. It has been trained by over a million hours
of sleep data. The Sleep Stages for the Nest are the same as the Muse device:
Awake, Light Sleep, Deep Sleep, REM. This means that we can use both labels
without worrying about compatibility with the Machine Learning model.

Wisconsin Sleep Study Dataset. Since we are in the early stages of the Flex-
EOG project, we have not conducted clinical trials. So our dataset is small in size.
Since smaller datasets are prone to overfitting, we populate our model with the
Wisconsin Dataset (WSC) dataset. Once we obtain the Flex-EOG recordings,
we update our model. This is a technique known as Transfer Learning. Like
in this paper, for Transfer Learning we train our model with similar data to
the classification problem we are trying to solve. This raises the accuracy of
our model. Transfer Learning is used in a wide variety of domains, like speech
processing, image detection [15–17].

The WSC study currently contains 2570 overnight Polysomnography (PSG)
recordings [18], from 1500 participants. Each recording is sleep scored by a tech-
nician at an interval of 30 s [19,20]. Compared to other research studies, the
WSC dataset has a far superior dataset size. The MIT-BIH dataset used in
[9] for example only contains 9 overnight recordings. We use the entire WSC
dataset, this can allow the models to reach a higher classification accuracy and
prevents the model from overfitting. For Sleep Stage detection using our model,
transfer learning is not limited to the WSC dataset but it was chosen because
its larger size is beneficial.

From the WSC dataset we extract:

1. EOG values
– E1 (Eleft), E2 (Eright) which is obtained from left and right eyes.

2. Sleep stage labels
3. Epoch number
4. Seconds elapsed

Fig. 6. Structure of Flex-EOG app

IoT Infrastructure. There was a substantial infrastructure and pipeline that
had to be developed to be able to receive and synchronize data from three
different sources. The Nest, MUSE, and Flex-EOG were concurrently connected
to an iPhone device. The Nest and Muse each had their own applications that
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we used to extract sleep data, so we did not have do develop any infrastructure
for them. For the Flex-EOG an iOS application was built.

The iOS application packages the EOG data into a dataset which contains
multiple variables necessary for processing the data. All of the added variables
correspond to the same measurements found in a majority of sleep studies includ-
ing the WSC dataset.

1. EOG Value
2. Seconds elapsed
3. Epoch Number
4. UNIX Timestamp

Once the iOS App processes and packages the Flex-EOG data into a dat-
apoint known as a Sleep Notification, it sends the data to the Cloud. The
Cloud will load the data into a csv formatted dataset.

Figure 6 shows the communication protocol of the iOS app. It is notable
that in medical environments, the quality and accuracy of measurements are
important. For Sleep detection, having an accurate time measurement accross all
three devices was important. In order to maintain synchronization, we attached a
UNIX timestamp to our Sleep Notification data structure. This ensured accurate
time measurements when adding concurrent sleep labels from the Muse and Nest
Hub. Especially, in scenarios where the internet connectivity is poor and data is
not being written to the cloud.

One thing we observed was that the Flex-EOG’s sampling frequency varied
between 115–130 Hz. Standard medical-grade EOG devices had a sampling fre-
quency 100 Hz. To address this discrepancy, the Sleep Notification data structure
contained a seconds and epoch measurement. If any given second measurement
had more than 100 epochs attributed to it, we would clip the remainder of the
output. The epoch variable is used to sort the data. This is important since the
Cloud does not sort data chronologically. The seconds measurement allows us to
process and label our data in 30-s intervals, which is the standard interval for
sleep studies. Overall, we noted that iOS devices are powerful tools that can be
used to obtain medical data.

4 Sleep Stage Detection Model

4.1 Data Preprocessing

WSC Data. Most sleep studies have double channel recordings, that need to
be converted to single channel. This is because the machine learning model is
built for the single channel Flex-EOG. Algorithm 1 lays out the steps taken to
convert the WSC dataset from double channel to single channel.

Algorithm 2 lays out the steps we used to preprocess all single channel EOG
data. We convert the data to frequency domain and extract the power spectral
density from Enew. This is done by using the Welch transform. We use the Welch
transform, in order to reduce the noise and to extract key patterns from the data
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Algorithm 1. WSC Preprocessing: How to create single channel EOG data
from double Channel.
1: if Double Channel EOG then
2: for Every epoch do
3: Create single Channel EOG data: Enew = Eleft − Eright

4: end for
5: end if

Algorithm 2. EOG Data Preprocessing: Overview of the steps taken to pre-
process the datasets from both sources.
1: for All single Channel EOG data do
2: for Each 30 second interval do
3: Compute Welch Transform using Scipy Welch [21]
4: end for
5: Apply SMOTE to Training Data [22]
6: end for

Fig. 7. Sample of the raw Flex-EOG data

[23]. As shown in Fig. 3, Sleep datasets are unbalanced. So, we use a technique
called SMOTE to oversample our dataset. SMOTE uses a K-Nearest Neighbors
approach to draw new datapoints between two randomly selected neighbors. We
use SMOTE to balance our dataset to all have an equal number of samples
[22]. Oversampling is a technique only applied to the training dataset to ensure
that the model performance is measured against real life recordings. Another
technique we use is to conduct more trials, and extract only the minority Sleep
Stages. This can be thought of as undersampling, where we discard extra samples
from the majority class.

Flex-EOG Data. Figure 7 shows the raw EOG data from the Flex-EOG that
is passed through the Algorithm 2. The data we input to the Welch transform is
the raw EOG data. Since the Flex-EOG device already outputs single-channel,
we do not need to process the data beforehand.

Algorithm 3 is a summary of the steps we take to train the classifier for use
on the Flex-EOG device. We first train our model with the WSC dataset. Then
we update our neural network with the new data from our Flex-EOG dataset.
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Algorithm 3. Steps taken to create Sleep Stage Detection Model
1: for All processed WSC EOG Data do
2: Train Neural Network (Fig. 8)
3: end for
4: Then Get Flex-EOG recordings
5: for All recorded Flex-EOG data do
6: Add Sleep Stage Labels from Muse, Google Nest
7: Process using Algorithm 2
8: Update Neural Network (Transfer Learning)
9: end for

4.2 Deep Learning Model

The Deep Learning model is shown in Fig. 8. It contains multiple Batch Normal-
ization layers, this is done in order to bridge the gap between the two different
data inputs: Flex-EOG and WSC. Since both the data have corresponding pat-
terns, but have different values and magnitudes.

Fig. 8. Neural network structure

The model structure is shown in Fig. 8. The model is inspired by the ResNet
architectures [7]. The model has multiple skipped connections that feed earlier
outputs to the model. It allows us to create a more deeper model, that can be
optimized for higher accuracies. We also have Long Short-Term Memory (LSTM)
layers at the start and end. They are used to learn sequential patterns in the
data. The excessive use of Batch Normalization is theorized to help the data
calibrate accross devices, by constantly re-centering the data and alleviating
any variation due to differences in magnitude between the two data sources.

Training on WSC Dataset. In the WSC dataset 70% of the dataset is used
for training, 15% is used for test and validation each.
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Transfer Learning on Flex-EOG Data. We apply transfer learning to our
model. We update it with the Flex-EOG dataset after it is trained on the WSC
dataset. Our model is then fine tuned to the Flex-EOG device.

We use recordings from 4 participants taken from the Flex-EOG dataset at
different times of the night. Overall, we have around 18 h of data. 55% of the
Flex-EOG data is used for training, and 27.5% is used for test and validation
each. Given our limited dataset size, we deliberately chose to create a small
training dataset. This is because SMOTE is used to add training data.

4.3 Model Results

Fig. 9. Confusion matrix for Flex-EOG

The model gives a classification accuracy of 89% on the WSC dataset. After
applying transfer learning to the Flex-EOG dataset, there is an accuracy of
81.19%. The model has an F-1 Score of 0.8107. It’s Precision of 0.8147 shows
that it can correctly identify Sleep Stages. A Recall of 0.812 shows that it can
differentiate between different Sleep Stages. Overall, the model has a strong
performance. One exception is the Awake stage, which has an Recall score of
71%. Meaning that our classification of the Awake stage has many false negatives.
This is likely due to the nature of the Awake stage: it varies accross participants.
When awake, some participants like to lie in bed with their eyes open, others
prefer to close their eyes. Therefore the variability can lead the model to falsely
classify the Awake stage as another Stage. A possible remedy for this would be to
train the model on more Awake data, and to use data augmentation techniques
such as test-time Augmentation [24] (Fig. 9).

5 Conclusion

Overall, we were able to build a model that can detect the different Sleep Stages
on a wearable PCB device that measures EOG signals. We show that it is possible
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to obtain related data from medical datasets to create an initial model and
calibrate the model according to data from an experimental medical device.

Transfer learning allows us to obtain a good fit model without the need to
conduct medical trials to obtain the necessary data that is required to train the
model and prevent overfitting. This finding is impactful since it gives us a low
cost, effective and efficient solution for creating viable classification models.
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Abstract. Creating an appropriate energy consumption prediction
model is becoming an important topic for drone-related research in
the literature. However, a general consensus on the energy consump-
tion model is yet to be reached at present. As a result, there are many
variations that attempt to create models that range in complexity with
a focus on different aspects. In this paper, we benchmark the five most
popular energy consumption models for drones derived from their phys-
ical behaviours and point to the difficulties in matching with a realistic
energy dataset collected from a delivery drone in flight under differ-
ent testing conditions. Moreover, we propose a novel data-driven energy
model using the Long Short-Term Memory (LSTM) based deep learn-
ing architecture and the accuracy is compared based on the dataset. Our
experimental results have shown that the LSTM based approach can eas-
ily outperform other mathematical models for the dataset under study.
Finally, sensitivity analysis has been carried out in order to interpret the
model.

Keywords: Unmanned aerial vehicle · Drone energy model · Energy
consumption · Deep learning · Long short-term memory

1 Introduction

Unmanned Aerial Vehicles (UAVs) are being used in many diverse operations in
a range of fields at present, including but not limited to aerial surveillance, search
and rescue operations, parcel delivery, and agriculture [1,2]. However, one of the
most critical design issues for UAVs is that they often suffer from short flight
time, typically tens of minutes, mainly due to their high power requirements
and limited battery capacity [3,4]. Thus, it is important to correctly estimate
the flight time and range to ensure reliable operation and energy-efficient path
planning. To accomplish this, an accurate drone energy consumption model is
essential, which enables quantifying the impact of different factors, i.e., wind
speed, payload, ground speed, altitude, etc., affecting the energy consumption
of drones in various scenarios.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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However, it is a challenging task to incorporate all such factors into a
single energy consumption model. There are numerous factors related to the
drone design (weight, number of rotors, battery weight/efficiency, avionics), the
environment (wind conditions, weather, ambient temperature), drone dynamics
(acceleration, angle of attack, flight angle/altitude), and operational require-
ments (flight time, payload). Existing models on drone energy consumption
focuses on certain aspects of drones and usually consider a subset of factors [5].
Some models can only be applied to particular conditions such as hovering
largely ignoring the impact of the air speed [6]. There are models focusing
more on drones acting like fixed-wing aircrafts [7] or more like helicopters [6].
This results in conflicting predictions across different energy consumption mod-
els despite same input parameters and trajectories [5]. Apart from the models
taking theoretical approaches [6–9], there have been attempts to use regres-
sion models [10,11] to match the model better to the realistic measurements.
In particular, black box modeling of drones also reports decent results across
the missions starting from take-off to return [11]. The work also reports that to
account for impacts of control profiles, which is often ignored in other models, a
time-series machine learning methods needs to be investigated.

In this paper, we aim at comparing some prominent drone energy consump-
tion models in the literature and propose a long-short term memory (LSTM)
deep learning-based architecture, useful for prediction of time-series data, for
energy consumption model of drones. Despite such efforts to accurately model
the drone energy consumption and decent accuracy reported in the literature,
there has been few works on directly comparing different types of models on
a real measured data. Our efforts to apply the energy consumption models to
a recently published measurement data [12], have shown that significant dis-
crepancies exist between the predicted values and the independently-collected
real-world measurement. Therefore, we consider a deep learning approach to
create an energy consumption model that considers all aspects of flight (take-
off, landing, cruising, hovering) from empirical data and the prediction results
have been compared with model-based approaches fitted to the real-world data.

The key contributions in this paper can be summarized as follows:

– We evaluate the performance of several existing drone energy consumption
models using the specific realistic dataset [12].

– We propose a learning-based approach using the Long-Short Term Memory
(LSTM) deep learning based architecture for power consumption prediction
of drones.

– We carry out sensitivity analysis on the trained LSTM model to give some
insights on feature importance, i.e., interpretability of the model.

The remainder of this paper is organised as follows. Section 2 elaborates
the technical background on some prominent drone energy consumption models
in the literature. Section 3 presents our key research problem and propose the
LSTM-based system architecture to address the design issue. Section 4 discusses
our evaluation results using different models. Finally, Sect. 5 concludes the paper.
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2 Background: Drone Power Models

In this section, we introduce drone energy models used in the literature. Prior
works on path planning algorithms assume drone energy models for evaluating
battery usage. As the flight distance and the number of turns a drone makes
determines the paths, energy consumption models regards the factors important
in estimating the energy consumption [13].

Other factors such as wind speed, wind angle, and altitude are not consid-
ered in the work. More elaborate models consider the impact of acceleration and
deceleration [14]. Several tests were performed in this study which focuses on
three main performance metrics: straight line distance, the effects of velocity,
and the effects of turning. The study has shown that higher speeds result in
lower overall energy consumption and higher turning angles resulted in higher
overall energy consumption. Analysis of all aspects of on-board electronics to
form total energy consumption is also explored and is validated using empirical
data from a commercial drone [15]. Energy consumption primarily comes from
the motors, followed by communications, processors, and sensors. Communica-
tions, processors, and sensors were discovered to be minimal in contribution but
not negligible in total energy consumption.

Among such models, we selected representative ones to be investigated in this
paper also designated as “five fundamental models for drone energy consumption
of steady level flight’ in a recent survey [5], dubbed D’Andrea, Dorling et al.,
Stolaroff et al., Kirchstein, and Tseng energy models.

2.1 D’Andrea Energy Model

The D’Andrea energy model is based on the drone’s lift-to-drag ratio [5,16]. The
formula is optimised for steady drone flight and uses the drone’s mass, airspeed,
lift-to-drag ratio, and the power transfer efficiency of the battery. The model
comes in two variations; a standard variation with no account for wind, and
one that does account for wind in terms of headwind experienced by the drone.
The model is further expanded by implementing “empty returns”, which occurs
when the drone drops off the payload before taking the return flight [7]. The
model makes several assumptions to create their energy consumption model.
The payload of the drone is no heavier than 2 kg and has an operating range of
10 km. A lift-to-drag ratio of a constant value is selected, inspired by helicopter
lift-to-drag ratios and used for comparison with them. Variables such as cruising
speed during missions are set to a predetermined value of 45 km/h. The power
transfer efficiency is set to 0.5 [16]. A constant pavio is added to account for
vehicle avionics.

P =
∑3

k=1 mkva
370ηr

+ pavio, (1)

where mk represents the mass of each drone component including drone weight
(k = 1), battery weight (k = 2) and payload weight (k = 3). va is the drone
airspeed, i.e., the speed of drone relative to air, η is the power transfer efficiency,
r is the lift-to-drag ratio, and pavio is the power required for drone avionics [5].
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2.2 Dorling et al. Energy Model

The Dorling energy model only takes into consideration drone hovering, and thus,
cannot detail energy consumption for the take-off, cruising, and landing [5,6].
However, this model does consider the components used in the drone such as
the number of rotors and propeller area. Through testing, the equations that
dictate the energy consumption was reduced to a linear function dependent on
the battery and payload of the drone. The model is derived from the equation
used to calculate the power of a helicopter and is adapted for multi-rotors. The
mass components of drone mk are used as parameters alongside gravity (g), air
density (ρ), number of rotors (n), and propeller area (ζ).

P =
g(

∑3
k=1 mk)

3
2

√
2nρζ

(2)

2.3 Stolaroff et al. Energy Model

The Stolaroff energy model designs its model using the physics of drone flight
including the forces experienced by the drone due to its weight, parasitic drag,
and induced drag [5,8]. The model accounts for heavy winds by utilising an
adapted version of the previous model by using the angle of attack of the drone.
However, it was noted that large values of the angle of attack resulted in unstable
results. The model consists of the thrust produced (T ), angle of attack (α), power
transfer efficiency (η), and the induced speed caused by the drone (vi). It can
be presented as follows:

P =
T (vasin(α) + vi)

η
(3)

where T = g
∑3

k=1 mk +0.5ρ
∑3

k=1 CDk
Akv

2
a with the drag coefficient CDk

, and
the projected area perpendicular to travel of each drone component Ak [5].

2.4 Kirchstein Energy Model

The Kirchstein energy model is based on the drone’s environmental conditions
and flight trajectory [5,9]. It is another component model with a focus on opti-
mised take-off angle, cruising altitude, level flight, descent, and landing. This
model takes into consideration a wide range of factors such as the power required
for climbing, avionics, and different power losses resulting from the electric motor
and power transmission inefficiencies. The model covers the power consumption
from air drag from the drone’s profile and the rotor profile, the lift required for
flight, the climb to the designated altitude, and power supplied to any electronics
on-board.

P =
1
η
(κTw +

1
2
ρ(

3∑

k=1

CDk
Ak)v3

a + κ2(g
3∑

k=1

mk)1.5 + κ3(g
3∑

k=1

mk)0.5v2
a) +

Pavio

ηc
,

(4)
where κ, κ2, κ3 are constants, w is the downwash coefficient, and ηc is the battery
charging efficiency [5].
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2.5 Tseng Energy Model

The Tseng energy model differs from the other energy models as it consists of
a nine-term nonlinear regression model created from collected data [10]. This
model was created from horizontal and vertical speeds and accelerations, pay-
load, mass, and wind speed data gathered from empirical testing. The drone used
for data collection was a DJI Matrice 100 and tested for payloads of 0, 0.3, and
0.6 kg. The drone used for testing consisted of three experiments that recorded
the drone’s ability to hover without any input or movement, ability to climb
and descend, and ability to move horizontally. The model assesses the impact of
motion through these tests and the payload weights to create the model. A 3DR
Solo drone was also used to create an alternative version of the model for smaller
sized drones with the expression for energy consumption shown below. Note that
the model is essentially a function of payload mass m3 and the airspeed va [5].

P = −2.595va + 0.197m3 + 251.7. (5)

3 Data-Driven Model and Proposed LSTM Architecture

In this section, we introduce the data-driven model to fit the realistic dataset [12].
We first present the problem statement for the model fitting task, then we present
details for the dataset, and finally we demonstrate the proposed architecture.

3.1 Problem Statement

The key problem that we are considering here is to build an energy consumption
model which can take a sequence of input feature data from a drone and predict
the corresponding energy consumption of the drone as output. More specifically,
the input data essentially captures the characteristics, dynamics and environ-
mental context, e.g., wind speed, payload, ground speed, for the drone under
test in a given scenario.

Mathematically, let Ft ∈ R
N be the feature vector consisting of the N fea-

tures for the drone at time t. Let Et ∈ R denote the energy consumption of the
drone at time t. For a given time window T := {1, 2, . . . , T}, our objective is to
find a learning function H(.) which is able to address the following problem:

min
H

∑

t∈T
(Et − Êt)2

s.t. Êt = H(Ft)
(6)

where Êt denotes the predicted energy consumption of the drone at time t with
respect to the input feature vector Ft.
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3.2 Experimental Dataset

The experimental dataset used in this work is from the paper [12]. The dataset
presents some very recent energy consumption information for a DJI Matrice
100 drone that consists of a total of 195 test flights with variations in payload,
speed, and altitude. A total number of 28 features were recorded onboard which
were taken from the battery state, Global Positioning System (GPS), Inertial
Measurement Unit (IMU), and the wind measurement unit. A total number of 21
features was included from the dataset in order to create our energy prediction
model, the details of which are summarized as follows:

– Wind Speed: Speed of wind recorded by the anemometer in meters per second
(m/s).

– Wind Angle: Angle of the airspeed recorded by the anemometer with respect
to north in (degrees).

– Position X, Y, Z: Longitude, latitude and altitude recorded by the GPS
(degrees).

– Orientation X, Y, Z, W: Orientation as recorded by the IMU in (quar-
ternions).

– Velocity X, Y, Z: Ground speed recorded by the GPS and IMU in meters per
second (m/s).

– Angular X, Y, Z: Angular velocity recorded by the IMU in radians per second
(rad/s).

– Linear Acceleration X, Y, Z: Linear acceleration recorded by the IMU in
meters per second squared (m/s2).

– Speed: Input ground speed before flight in meters per second (m/s).
– Payload: Payload mass attached to the drone prior to a test in grams (g).
– Altitude: Input altitude the drone rises to before following flight route in

meters (m).

3.3 System Architecture

To find out the learning function H, we propose the LSTM architecture which is
shown in the Fig. 1 below. Specifically, the proposed LSTM architecture consists
of two bidirectional LSTM layers stacked together with a dropout layer attached
to the second LSTM layer before connecting to a dense layer for output. Some
details for model and network setup are reported as follows:

– The activation function used for the output layer was a tangent function.
– The number of hidden cells for each LSTM layer was defined as 128.
– The Adam optimizer was chosen for model training.
– The proposed model was assembled using Keras at the backend.

In order to achieve the optimal performance for energy prediction using the
proposed architecture, we considered dropout, batch size and learning rate as
hyperparameters for model tuning through grid search. For each setting of the
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hyperparameters, a 5-fold cross-validation was carried out on the dataset to eval-
uate the performance of the resulting model. The best set of parameters which
results in the minimum averaged mean square error (MAE) was chosen as the
optimal hyperparameters for the proposed model. Table 1 presents our results for
the hyperparamters tuning in different settings. We also present the calculation
results for the root mean square error (RMSE) in the table for reference, and
it can be seen that the optimal hyperparameters for the model are presented
in the third row of the table, and this finding is consistent with both perfor-
mance metrics, i.e., averaged RMSE and averaged MAE. Finally, the training
and validation loss under the optimal configuration are shown in Fig. 2, where
two curves are converging gradually in a few number of epochs.

Fig. 1. The proposed stacked bidirectional LSTM-based system architecture.
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Table 1. Hyperparameter tuning for the proposed model

Dropout Learning rate Batch size Avg. RMSE Avg. MAE

0.2 0.001 128 47.4891 5.7213

0.2 0.0001 128 50.7283 6.0008

0.5 0.001 128 46.9918 5.6942

0.5 0.0001 128 48.3828 5.8538

0.5 0.01 128 63.1021 6.8779

0.5 0.001 64 51.3855 5.9844

Fig. 2. Training and validation loss curves using the optimal configuration.

4 Results and Discussion

4.1 Performance Evaluation

In this section, we present our experimental results using the five prominent
mathematical models as well as the proposed LSTM model in its optimal con-
figuration. Our objective is to illustrate the differences of model prediction per-
formance based on the realistic dataset [12], and reveal the superiority of the
model performance using our proposed LSTM-based architecture. Specifically,
we applied all models to a specific flight (flight 276) which had not been used for
model training. While the five models originated from different studies, unified
notation between parameters was used for fair comparison similar to the app-
roach used in [5]. Input parameters from the dataset were airspeed and the weight
components of the drone, which were adapted to use in all models. The predic-
tion results for different models under test are illustrated in Fig. 3 and Fig. 4,
where Fig. 3 compared the performance for all mathematical models and Fig. 4
compares performance for the LSTM-based model only. The key performance
metrics are also summarised and reported in Table 2 for ease of comparison.
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Table 2. Energy model comparison

Author Avg. RMSE Avg. MAE

D’Andrea 745.9512 21.7650

D’Andrea (With Headwind) 919.2040 23.7520

Dorling 365.1678 18.3391

Stolaroff 291.6590 16.2421

Kirchstein 275.8223 13.8690

Tseng 131.3750 9.5263

Proposed LSTM model 36.2770 4.9080

Fig. 3. Comparison of the five mathematical models for energy consumption.

Among the five fundamental models, the D’Andrea model performs poorest
with the highest averaged RMSE found for the model variant with the head-
wind being factored in. In contrast, the Tseng energy model achieves the best
prediction result in that both performance metrics, i.e., averaged RMSE and
averaged MAE, are lowest. This conclusion can also be further validated in Fig. 3
where the Tseng model maintains a flat prediction throughout the duration of
the evaluation which is clearly closest to the ground truth. However, none of
these fundamental models achieves a promising result when compared with the
proposed LSTM model where the averaged MAE is found as low as 4.908. In
practice, this simply implies that on average the predicted energy only incurs
4.9080 W bias compared with the realistic energy consumption.
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Fig. 4. Comparison of the proposed LSTM model with the ground truth.

4.2 Sensitivity Analysis

To further illustrate some interpretability of the trained LSTM model, we now
carry out a sensitivity analysis for the learned model. In particular, we are inter-
ested in answering the following question, that is how the altitude, payload and
speed as input features can contribute to the energy consumption for drones.
Our results are shown in Table 3 and Fig. 5. More specifically, the divergent bar
chart in Fig. 5 takes intervals at steps and half steps, where steps are taken as the
minimum or maximum value of the input parameter, and half steps are the mid-
points from the mean. Table 3 shows the steps taken for each feature of interest.
Figure 5 shows payload contributing the most towards change in overall power
consumption followed by speed and altitude. Interestingly, the figure also demon-
strates that the speed factor is negatively correlated to power consumption of
the drone while the altitude factor can positively contribute to the power con-
sumption. Such insight on speed is consistent with what we found in the Tseng
model where airspeed is also negatively correlated with power consumption.

Table 3. Power Consumption Sensitivity Data Table

Step-1 Step-1/2 Step 0 Step+1/2 Step+1

Altitude (m) 25.00 43.75 62.50 81.25 100.00

Payload (g) 0 187.50 375.00 562.50 750.00

Speed (m/s) 4.00 6.00 8.00 10.00 12.00
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Fig. 5. Sensitivity of power consumption to key features

5 Conclusion

In this paper, we propose a learning-based approach using the LSTM-based deep
learning architecture for accurately modelling energy consumptions of drones.
We have revealed the efficacy of the proposed model by comparing its perfor-
mance with the five fundamental mathematical based energy models using a
realistic dataset that can be publicly accessed in [12]. Finally, we have also imple-
mented a sensitivity analysis on the trained model with a view to provide some
insights and explainability for the fine-tuned model. To conclude, we believe
that the work presented in this paper is an important step towards using a data-
driven method to understand energy consumption pattern for drones. However,
we note that one obvious limitation in our current work is that the proposed deep
learning model has not been validated comprehensively across different energy
datasets. This challenge will be addressed as part of our future work. In addi-
tion, we shall investigate the effectiveness of using a federated learning based
framework [17] to further improve accuracy of the proposed model.
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Abstract. A set of quality metrics (e.g., timeliness, completeness)
together represent the Quality of Context (QoC); their values deter-
mine the usability of context to context consumers (IoT applications).
Therefore, obtaining adequate ‘QoC from the context providers (context
sources) represents a significant research challenge. This paper presents a
framework called conQeng that addresses such a challenge through novel
approaches in QoC-aware selection, QoC measurement and validation.
ConQeng selects the potential context providers that deliver an adequate
QoC during runtime, assesses their performance - for further selection,
and transfers QoC-assured context to the context management platforms
(CMPs). We have implemented conQeng in a simulated scenario involv-
ing autonomous cars, marketing service agencies as context consumers,
and thermal and video cameras as context providers. The results demon-
strate that it outperforms three heuristic approaches in reducing context
acquisition cost and improving effectiveness and performance efficiency
while obtaining adequate QoC.

Keywords: Context management platforms · QoC-aware selection ·
QoC measurement · Selection framework

1 Introduction

Current IoT applications collect and infer raw data from data sources (e.g., sen-
sors), through which they analyse situations and deliver relevant services to the
end-users. Such inferred IoT data is referred to as ‘context’. The work in [1]
defined it as ‘any information that is used to characterise the situation of an
entity ’ (entity represents a real-word item). IoT applications that use context
and the data sources at the entities that generate context are known as the con-
text consumers and context providers, respectively. CMPs emerged to abstract
and mediate between context consumers and providers to quash concerns in IoT
environments (e.g., context provider’s availability and privacy). Through CMPs,
context consumers can publish, monitor and query the context without discov-
ering the potential providers. Most advanced CMPs possess similar architecture
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Fig. 1. Overview of context-aware IoT environment; numbers indicate the data flow
among the involved systems.

and functionalities [2]. As Fig. 1 depicts, the CMP, associated context consumers
and providers form a context-aware IoT environment.

The data flow in a context-aware IoT environment occurs as in Fig. 1. In
step 1, a context consumer conveys its requirements to CMP through a context
query. Such queries are pre-defined in context consumers by forming them using
languages such as ‘Context Definition Query Language’ [3]. In step 2, the CMP
parses it as context requests (CR); each CR contains the entity details, respec-
tive context attribute and Quality of Context (QoC) requirements. The context
attributes (Ca) represent the entity’s specific characteristic (e.g., temperature),
also called low-level context. The QoC was defined as ’any information that
describes the quality of information that is used as context’ [4]. In simple terms,
QoC represents the quality of a context attribute. In step 3, the CMP discov-
ers, selects, and invokes the relevant context provider for each CR. The invoked
providers then collect and send the context attributes to the CMP in steps 4
and 5. Next, the CMP aggregates them as high-level context, representing the
entity’s inferred situation. Finally, the CMP completes the context query by
delivering it to the consumer in step 6.

Metrics such as timeliness and completeness—to name a few, represent the
QoC of a context attribute. Context providers’ owners guarantee such metrics
during registration with the CMP. The model in [5] selects appropriate con-
text providers by matching such guarantees with the context request’s QoC
requirements. Proactively selecting context providers that deliver adequate QoC
is known as QoC-aware selection. Most QoC-aware selection models rely on
context providers’ design time characteristics (e.g., hardware, QoC guarantees),
which are vulnerable to runtime inconsistencies (e.g., faulty hardware), lead-
ing to selection uncertainties. Using QoC measurement models alongside the
QoC-aware selection models handles such uncertainties, as they measure the
QoC metrics and discard inappropriate context responses. However, such a sys-
tem requires re-selecting the context providers when obtaining inadequate QoC,
affecting the cost and CMP’s credibility. Therefore, a CMP requires a QoC-aware
selection model that selects the context providers based on their runtime QoC
outcomes.
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Furthermore, QoC-measurement models rely on context-response annota-
tions to measure QoC metrics. For instance, using ‘timestamp at which context is
generated’ measures the ‘timeliness’. However, these models limit measuring the
‘correctness’—a QoC metric representing context accuracy. This metric’s ade-
quacy heavily relies on context providers’ vulnerability to the associated entity’s
situations (e.g., weather patterns). Such uncertainty due to external factors hin-
ders the provisioning of correctness guarantees on the service level agreements
(SLAs). Besides, annotating the context with the ground truth to measure cor-
rectness requires human intervention in the IoT environment. Hence, the related
work (e.g., [6]) is bound to measure its probable values instead of exact cor-
rectness. Nevertheless, considering that the context consumer’s decision-making
relies on the correctness of the context: a QoC-aware selection approach must
also include the provision of adequate correctness as a selection requirement.

This paper presents a framework called conQeng (context Quality engine)
that performs QoC-aware selection, QoC measurement and validation. These
processes respectively enable appropriate context providers selection, their run-
time performance assessment, and determination of the contexts’ alignment to
complete context requests in CMPs. ConQeng relies on two metrics associ-
ated with context providers: overall QoC (or ‘OQoC’) and ‘relative reputation-
value’ (or ‘RR-value’) to perform QoC-aware selection. The OQoC and RR-
value refer to the context provider’s rate in delivering QoC aligning with its
guarantees and the correct context to a particular context consumer. ConQeng
uses a novel feedback-based approach to assess RR-value. Correctness require-
ments vary based on the context consumer; for instance, consumers related to
emergency services may require higher correctness than recreational services.
Therefore, conQeng obtains feedback on correctness delivered by the invoked
providers from the context consumers; then builds context providers’ reputation
(RR-value) exclusive to each context consumer type.

This paper’s organisation is as follows: Sect. 2 provides a motivating sce-
nario elaborating our contributions’ significance. Section 3 presents related work.
Section 4 discusses key definitions, conQeng’s overview and functioning. Section 5
discusses implementation and simulation details. Section 6 discusses the evalua-
tion procedure and results. Section 7 presents conclusion and future work.

2 Motivating Scenario

Using the context ‘pedestrian count’ at locations, the autonomous cabs (Didi
aims to launch autonomous cabs [7]) and marketing service agencies can analyse
driving conditions and advertising opportunities. Currently, the sensors deployed
at entities (e.g., busy streets) in major metropolitan cities (e.g., Melbourne)
generate the pedestrian count, which the CMPs can access through APIs [8].
Nevertheless, the context consumers vary in requirements for QoC and cost of
context. For instance, an autonomous cab would require a context with a higher
QoC whilst not concerning cost, but a marketing service would be more con-
cerned with cost. As discussed below, for fulfilling such varying expectations
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Fig. 2. Use-case– Cc 1 and Cc 2 are the marketing service agency and autonomous car
respectively. Crowd icons indicate entities, and cameras to their left and right indicate
video and thermal cameras. Blue and yellow arrows represent the autonomous car’s
main and alternative route to reach ‘Cinema nova’ (the destination). (Color figure
online)

requires context providers with various QoC and cost characteristics that pro-
duce similar context.

Popular devices for counting people include image processing video [9] and
thermal [10] cameras. The video camera has lower context cost due to the lower
initial (device) and maintenance (power consumption) costs; simultaneously,
their data quality is more vulnerable to external factors (e.g., weather). On
the other hand, thermal cameras have a higher cost and produce context with a
higher QoC. Therefore, deploying these context providers at each entity suffices
the requirements of context consumers mentioned above. Assuming that such
deployment is in place, we have formed the use-case in Fig. 2.

Use-case: The autonomous cab (Cc 2) aims to reach Cinema Nova (desti-
nation icon) by selecting one of two available routes: (i) The main route (blue
arrow) - a shorter route with more crowded entities; (ii) an alternative route
(yellow arrow) - a longer route with less crowded entities. The cab requires the
pedestrian count from entities on these routes to find the route with the shortest
travel time. Concurrently, the marketing service agency requires such context to
determine the advertising opportunities.

Each entity contains an image processing video and a thermal camera that
relays the pedestrian count to the CMP upon request. Consider that timeli-
ness, completeness, representation, and correctness are required QoC metrics
for both consumers. These metrics define the context’s value regarding time,
number of context attributes, representation format, and accuracy. Context
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providers’ internal factors affect all metrics except correctness. For instance,
network latency delays the context delivery, affecting timeliness. These metrics’
outcomes are within context providers’ control; hence they guarantee these met-
rics’ to the CMP through SLAs. However, despite such guarantees, these metrics
may vary during runtime (e.g., due to malicious context providers). Furthermore,
the correctness is omitted from such guarantees because, as Sect. 1 discusses, the
context providers’ external factors also affect it. We made the following asser-
tions on the given context providers’ correctness outcomes based on their sensing
characteristics: The thermal camera’s sensing approach (thermal imaging) pro-
duces higher correctness than a video camera; because data accuracy in such an
approach is less vulnerable to external factors (e.g., adverse weather). On the
other hand, a video camera produces relatively lower correctness as it relies on
regular images; their accuracy is more vulnerable to external factors.

A CMP would not know the context providers’ runtime QoC outcomes, and
the context consumers’ required QoC and cost vary. Therefore, a CMP must
perform QoC-aware selection (including cost as a factor) to select and invoke
the context providers that satisfy each context consumer’s requirements dur-
ing runtime. Furthermore, it should perform QoC measurement and validation
followed by QoC-aware selection to ensure adequate QoC acquisition. These pro-
cesses measure and compare the QoC metrics in context responses with context
requests’ requirements and discard the responses with inadequate QoC. Besides
this, the QoC metrics in context responses represent its provider’s near real-time
performance - thus, their aggregate can be used as a metric for QoC-aware selec-
tion. Therefore, conQeng enables the functionalities mentioned above in CMPs
to obtain adequate context responses in the metrics in (e.g., timeliness) and out
(e.g., correctness) of context providers’ control.

3 Related Work

According to Li et al. [11], most CMPs exhibit high-level mechanisms (e.g., inter-
operability and fault tolerance); despite such advancement, they lack standard
models related to QoC. This section reviews the current QoC-aware selection
and QoC measurement models—discussing their applicability in CMPs.

The popular QoC-aware selection models are based on reputation in social
IoT (SIoT), design time QoC characteristics, and filtering incoming context
streams. The works in [12,13] discuss the reputation-based QoC-aware selec-
tion models in SIoT, where the context consumers maintain context providers’
reputations, indicating their rate of delivering adequate QoC. The context con-
sumers find suitable providers in their repositories; upon not finding them, they
rely on other context consumers’ recommendations. However, CMPs abstract
the context providers and consumers, limiting the implementation of SIoT based
models. Furthermore, the model in [12] maintains the context providers’ reputa-
tions at the CMP and context consumer levels. Therefore, the context consumers
rely on the CMP upon not finding the suitable context provider through their
peers. However, the reputation at the CMP level is assessed based on feedback
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from various context consumer types—making it coarse-grained. On the other
hand, the acceptance levels for correctness vary based on the consumer type;
thus, this model may invoke unsuitable providers.

The work in [5] discussed the QoC-aware selection models based on design
time QoC characteristics; works in [14,15] discuss the models based on filter-
ing incoming context streams. Both these models select the context providers
based on the match of context providers’ QoC characteristics (e.g., hardware,
QoC guarantees) with the context requests’ QoC requirements. However, the
model in [5] invokes one context provider at a time, then measures the QoC, and
invokes the next provider upon obtaining inadequate QoC. At the same time,
the models in [14,15] invoke all the context providers that possess the required
QoC characteristics, measure and filter the context responses with inadequate
QoC. These models’ repetitive and redundant context provider invocations lead
to time and cost-inefficiencies.

Popular QoC measurement models include OWL-DL ontology [16], QoCIM
Meta-Model [17], and other models [5,14]. These models measure the QoC in
a low-level context using annotations; the measurement outcomes indicate the
QoC metrics’ alignment with the context request. However, due to abstraction
between the actors, the context providers negotiate their QoC guarantees and
cost with CMP. So, the QoC should be measured to determine its alignment
with provided guarantees - to measure the context acquisition cost (as the cost
of context depends on SLA satisfaction rate [18]); then, the context should be
validated for compliance with the context request. Furthermore, works in [6,19]
have discussed the approaches to measure context correctness. Both models are
bound to measure the probable correctness. The model in [6] uses Bayesian the-
ory and [19] analyses the context produced by similar context providers. The
‘correctness’ in the model [6] indicates the probability of the event represented
by the context to occur. Therefore, it does not show the accuracy of the informa-
tion in such an event, which is prime for decision-making using context. Further-
more, the model in [19] requires the invocation of multiple providers to measure
correctness—causing cost-inefficiencies.

4 ConQeng’s Design and Process

As Fig. 3 depicts, conQeng contains QoC-aware selection, QoC measurement
and validation modules. Components in the former module include the Initia-
tor, Selector, Selection Repository, Reputation and RR processors. The latter
contains the QoC Evaluator and RR Evaluator. ConQeng interacts with the
CMP’s processes and context providers for functioning. The yellow and grey
arrows represent the data collected/sent by conQeng’s components and CMPs
processes (represented by gear icon).

Key Definitions. The following are the external concepts related to con-
Qeng’s functioning. (i) Context consumer type: a specific type of context-
aware IoT application. (ii) Context request: as Sect. 1 defines, a context request
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Fig. 3. Process flow in conCQeng (yellow arrows) occurred among its components
and with the CMPs processes. The CMPs data flow with the context consumers and
providers, which is relevant to conCQeng (grey arrows). (Color figure online)

contains the context requirements. (iii) SLA: a contract between the context
provider and the CMP; containing the context provider’s service details. Our
previous work in [18] discusses SLA templates containing three components:
Actors, Service Description, and QoC and CoC. The first component contains
the CMP and context provider’s identities. The next component contains the
entity (e.g., a place—represented by geographic coordinates) and generated con-
text attribute(s) details. The last component contains the QoC guarantees (e.g.,
‘timeliness’: ‘2–4 s’, ‘representation’: ‘JSON’), and cost of context per response.
(iv) Feedback: context consumer’s report, indicating context correctness ade-
quacy.

The following are conQeng’s internal concepts. (i) RR-collection: the data
indicating potential context providers’ adequate QoC delivery rate for a context
request related to a particular context consumer type. Each RR-collection is
structured by a unique context request and context providers’ SLAs that meet
QoC requirements. The following metrics indicate each context provider’s ade-
quate QoC delivery rate in RR-collections: sum of OQoC units, total number of
OQoC units, sum of RR-units, total number of RR-units, R-value, RR-value, and
RR. Here, ‘OQoC’ (overall QoC) indicates the average QoC guarantees fulfilled
by a context provider. Further, ‘RR-unit’ (relative reputation-unit) indicates the
correctness adequacy in context to a particular context consumer type. Hence,
the total number and sum of OQoC and RR-units indicate the count of OQoC
and RR-units related to a context provider and those values’ respective sum.
R-value (reputation-value) and RR-value indicates the context provider’s OQoC
delivery rate and the satisfaction rate of a particular context consumer type
with the correctness delivered by the context provider. Finally, RR indicates the
context provider’s rate in delivering adequate OQoC and correctness.
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Process Flow in ConQeng. Each of conQeng’s components possess a signif-
icant functionality: (i) Initiator creates the RR-collections. (ii) Selector selects
the context providers with a high QoC adequacy delivery rate for requests, from
which it invokes cost-effective context providers. (iii) Selection Repository holds
the RR collections, on which other components perform CRUD operations for
QoC-aware selection and QoC measurement. (iv) QoC Evaluator measures the
QoC metrics in context responses and generates the OQoC units. (v) RR Evalu-
ator collects feedback to assess context correctness and generates RR-units. (vi)
Reputation Processor assesses the metrics related to OQoC (vii) RR Processor
assesses the metrics related to correctness, and RR.

The process flow among components occurs, as shown in Fig. 3. The CMP
sends the context requests (CRs) and suitable context providers (CPs) for each
CR to the Initiator in steps 1 and 2, respectively. For each CR, in step 3, the
Initiator checks for an RR-collection containing a similar CR from the request-
ing context consumer type. When such a collection is not found, the Initiator
creates a new RR collection; structuring it with the context consumer’s id, CR,
and suitable context providers’ SLAs. Alternatively, on finding a similar RR-
collection, the Initiator updates it with the SLAs of context providers not present
in the collection. In either case, the metrics related to new context providers’
correctness delivery rate (sum and total RR-units) are initiated as ‘0’ - requiring
the context consumer’s feedback for their assessment. However, their metrics
related to OQoC (sum and total OQoC units) are derived from their existing
values in other RR-collections or assigned as ‘0’ - for those non-existent in other
RR-collections. In step 4, the Selector finds the relevant RR collections for the
CRs by matching the context consumer’s id and elements in CRs with the same
elements in RR-collections. Then, selects the context providers with the highest
RR from each matched RR-collection. In step 5, the Selector issues those context
providers with a low cost for invocation.

In step 6, from each invoked context provider, the QoC Evaluator obtains
context and respective QoC parameters (e.g., timestamp of context generation);
using them and the respective provider’s SLA, it computes the QoC metrics
values. Discussing approaches to compute QoC metrics is beyond this paper’s
scope. Currently, we are using the approaches discussed in our previous work [18]
to compute timeliness, completeness and representation; obtaining these metrics’
in the range 0 to 1 - this scale ranges from violation of a QoC guarantee to its
complete fulfilment. Furthermore, the QoC Evaluator measures the OQoC using
(1). The work in [20] measures OQoC as the weighted average of QoC metrics,
where the context consumer specifies the weights. However, OQoC in our work
represents the compliance rate of QoC metrics with their guarantees; as these
guarantees have similar significance, defining weights is inconsequential, so we
have modified OQoC as (1). After measuring OQoC, the QoC Evaluator validates
the context; by checking for QoC metrics’ miss-match with their requirements.
In case of detecting such a miss-match, the context will be discarded, and the
framework re-initiates the selection process to replace it with adequate context.
Finally, a valid context is delivered to the CMP in step 7.
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OQoC =
n∑

i=1

QoCi/n (1)

In (1) ‘QoCi’ represents the ith QoC metric, ‘n’ represents the number of QoC
metrics and i ranges from 1 to n.

Upon CMP processing valid context and delivering the resultant high-level
context to the consumer, the RR Evaluator receives the consumer’s feedback
from the CMP in step 8. For each context attribute, the context consumer pro-
vides the feedback as ‘0’ or ‘1’ - indicating the correctness adequacy (where ‘0’
and ‘1’ indicate the correct and incorrect context attribute, respectively). In
step 9, the RR Processor receives such feedback as RR-units; simultaneously,
the Reputation processor receives the OQoC-units. These components compute
the RR of each context provider in steps 10 and 11 as follows. First, the Repu-
tation processor assesses the R-values using (2); the RR processor assesses the
RR-value using (3). The Reputation Processor then computes the RR using (4).
Finally, the RR processor re-initiates the selection procedure when receiving
negative feedback on context correctness. Re-selection is performed based on
the consumer’s acceptance of a new context after the context delivery.

R-value = ((
n1∑

i=1

OQoC) + OQoCnew)/(n1 + 1) (2)

RR-value = ((
n2∑

j=1

RR− unit) + RR− unitnew)/(n2 + 1) (3)

RR= (R− value + RR− value)/2 (4)

The R-value and RR apply to all RR-collections that contain the invoked
context provider. Whereas RR-value applies to the RR-collection from which
the context provider is selected, i.e., the RR-collection between requesting con-
text consumer type and the invoked context provider. The

∑n1
i=1 OQoC and∑n2

j=1 RR − unit indicate the sum of provider’s existing (historic) OQoC and
RR-units. OQoCnew and RR−unitnew indicates newly assessed OQoC and RR-
unit. The i and j indicate an OQoC unit and RR-unit, n1 and n2 represent the
total number of existing OQoC units and RR-units respectively.

5 Implementation and Simulation Setup

We have developed conQeng’s processing components for all modules using
Express.JS and implemented the Selection Repository on Mongo DB. ConQeng
performs the data transfer via the REST API. We have also developed a React.Js
based front-end application to visualise conQeng’s context and QoC-related out-
comes (e.g., OQoC, RR) and provide inputs (e.g., feedback) to it. We have
simulated the use case in Sect. 2 using the ‘IoT-data simulator’ [21]. It allows
customising the data schema (create or use existing data sets), specifying data
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push-intervals, and target system to deliver such data. The data delivered to
a target system from a defined data schema is a ‘session’. We have used six
types of sessions: two each to produce the autonomous car and marketing ser-
vice agency’s context requests, produce thermal and video cameras’ SLAs, and
generate these providers’ respective context responses. Table 1 depicts the data
schema of context requests and SLAs in their sessions.

Table 1. Data schema and the values in the simulated context requests and context
providers’ SLAs. The first row and column represent the session types and the contained
data attributes, respectively. Each field indicates the data value generated for the
attribute represented by its row; in the session type represented by its column.

Data/Sess AC CR MSA CR TC SLA VC SLA

Cc or Cp AC MSA TC VC

Entity Ei..5 Ei..5 Ei..5 Ei..5

Ca [CP(P),CP(R)] [CP(P),CP(R)] [CP(P),CP(R)] [CP(P),CP(R)]

QoC requ: requ: gaur: gaur:

T(age) 5 sec 10 sec 2–3 sec 2–3 sec

Comp [Ca1: 0.3,Ca2: 0.7] [Ca1: 1,Ca2: 1] [Ca1,Ca2] [Ca1,Ca2]

Rep CO: JSON, CO: JSON CO: JSON, CO: JSON,

[Ca1:Int, Ca2:Int] [Ca1:Int, Ca2:Int] [Ca1:Int, Ca2:Int] [Ca1:Int, Ca2:Int]

Corr or Cost 90% 80% 10 units 5 units

In Table 1, AC CR and MSA CR represent the session type for autonomous
car and marketing service agency’s context requests. TC SLA and VC SLA
represent the session type for thermal and video camera SLAs. The column values
represent the data generated by these session types for respective attributes.

Replicating the use case in Sect. 2 - we have created five sessions for each
context consumer to produce context requests related to the entities in Fig. 2.
As Table 1 depicts, for the data attribute Cc (context consumer), the sessions
related to AC CR produce values ‘AC’, whereas the MSA CR’s sessions produce
value ‘MSA’, representing the autonomous car and marketing service agency,
respectively. Ei represents the Entity; the value of i ranges from 1 to 5 (as there
are five entities) depending on the Entity represented by the session. ‘CP(P)’
and ‘CP(R)’ indicate the Context attributes (Ca) ‘count of pedestrians on the
pavement’ and ‘count of pedestrians on the road’. Furthermore, the sessions
produce 5 and 10 s as individual context age requirements (timeliness parameter)
in AC CR and MSA CR. Here, age represents the time the context must be
delivered after production. Next, they produce 90 and 80% as AC CRs and MSA
CRs’ respective correctness requirements. Finally, AC CRs produce CP(R) with
a higher weight, as this context attribute is curtailed in driver and pedestrian
safety in autonomous cars. Whereas MSA CRs produce both context attributes
with equal weight. Hence, we defined individual completeness requirements for
CP(P) and CP(R) as 0.3 and 0.7 for AV CRs, and 1 each for MSA CRs. Lastly,
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the CMP required the context responses in JSON format; and the contained
context attributes as the integer values. Hence they produce CO as ‘JSON’; ‘Int’
for Ca1 (i.e., CP(P)) and Ca2 (i.e., CP(R)).

We have initiated five sessions for each context provider to generate their
respective SLAs related to the entities. As Table 1 depicts, the SLAs are gen-
erated with the values for entity and Ca to match with the context requests.
The QoC guarantees contain the age as 2–3 s, two context attributes CP(P)
and CP(R) as the completeness guarantees, and JSON as context responses rep-
resentation in which the Ca1 and Ca2 are represented as integers. Thus, these
guarantees align with the context requests QoC requirements to support the
RR-collection initialisation. However, the simulated QoC outcomes in context
responses vary during runtime.

6 Evaluation and Results

We aim to evaluate conQeng’s efficiency and effectiveness in obtaining adequate
QoC compared to existing models, which are discussed in Sect. 3. The simulation
shows that (i) conQeng effectively obtains adequate QoC than ‘naive selection’
models that select context providers based on the design time QoC character-
istics. ‘Effectiveness’ is obtaining adequate QoC without having to re-select the
context providers; (ii) It delivers the correct context while reducing context-
acquisition cost over general reputation (assessed using feedback from different
consumer types) based models; (iii) It exhibits higher performance than filtering
approaches.

We created the sessions to generate the context responses containing the
context provider’s id, entity details, context and QoC parameters, and cost of
context to evaluate our aims. Furthermore, the generated QoC parameters vary
in the range we define. The correctness and cost vary based on the context
provider’s type. Moreover, conQeng assesses the RR using feedback on the cor-
rectness alignment with the ground truth in a real-world deployment. Hence,
we have initiated other sessions that generate the ground truth for providers’
context responses to generate such feedback.

To realise the aim (i): we produced both consumers’ context requests for all
entities and SLAs of related context providers, and performed the selection using
conQeng and the naive selection model. Then, we collected the results of OQoC
and QoC validity from the invoked providers prior to these models re-selecting
the context provider when obtaining inadequate QoC. Furthermore, RR main-
tains the context provider’s reputation exclusive to each context consumer type
to address the limitation (as discussed in Sect. 2) in general reputation-based
approaches that affect the context acquisition cost. To demonstrate the cost-
effectiveness obtained by RR while attaining the correctness adequacy, i.e., to
realise aim (ii): producing more MSA CRs than AC CRs, we performed the selec-
tion using RR and general reputation models. We produced the context responses
with consistent QoC outcomes with the given guarantees and degraded context
correctness. The level of such degradation varied based on the context provider:
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Fig. 4. Results - comparing conQeng with native, general reputation and filtering
approaches in terms of effective QoC acquisition, cost and performance efficiency.

the thermal camera (TC) exhibits higher correctness than the video camera
(VC); thus, we defined them to produce 90% and 80% correctness, respectively.
We performed this procedure for thirty minutes and collected the context acqui-
sition cost in both approaches at each minute.

Furthermore, RR addresses the limitation in the filtering approach (invoking
similar context providers) by selecting a potentially better performing provider.
To realise aim (iii), assuming that there are a variable number of context
providers (up to ten) at each entity, generating a random number between 1–10,
we determined their number at each entity and created their sessions to generate
SLAs. Next, we selected a few context providers from each entity and had their
context outcome sessions produce an adequate QoC—thus, having the highest
RR. Finally, by performing QoC-aware selection for AC CRs using the RR and
filtering approach, we measured their execution time in obtaining adequate QoC.

Charts 1 and 2 in Fig. 4 indicate the OQoC and Request Success Rate (RSR)
of conQeng and naive approaches in forty context requests. Here, RSR indicates
the valid QoC delivery rate from a model in a period, where the period represents
a duration of engagement between the context consumer and CMP [18]. Both
models selected the VCs for the initial context requests (five AC and MSA CRs
in request numbers 1–10) - as initially, both context providers have a high RR. In
turn, they have attained equal and adequate OQoC. However, upon reducing the
VC’s timeliness outcomes - to violate its guarantees, both models have obtained
inferior OQoC in the second repetition (in request numbers 11–20). However,
the conQeng has maintained the QoC adequacy from subsequent repetitions (in
request numbers 21–30 and 31–40) by selecting the TCs - as VCs possess low RR
due to prior QoC violations; hence, exhibiting a higher OQoC at most instances
and RSR. According to the results, conQeng reacts to QoC inadequacies to
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select better providers for future CRs. Therefore, conQeng can potentially act
as middleware that effectively obtains adequate QoC.

Charts 3 and 4 depict the number of MSA CRs and AC CRs produced per
minute and the associated context acquisition cost. Due to low cost and equal ini-
tial Reputation (RR is 1 for new context providers), these models have selected
and invoked the video camera for both CRs. Nevertheless, upon reducing the
VCs’ correctness (from the 10th minute) beyond the AC CRs’ tolerance, due to
negative feedback, the general reputation (Gen R in Fig. 4) approach selected
thermal camera for both CRs from subsequent requests; increasing total con-
text acquisition costs for MSA CRs. In contrast, the RR has only switched the
provider in the case of AC CRs; until it has produced the context within MSA
CRs’ tolerance (till 19th minute), thus having lower context acquisition costs.
Therefore, RR enables the CMP to provide correct context to the consumers at
a lower cost. Chart 5 depicts the total context providers in each entity that suit
the CR, the number of context providers invoked and validated by conQeng and
the filtering approach until finding the one with adequate QoC. As depicted, con-
Qeng invoked only one context provider. Filtering invoked all context providers
and validated their QoC outcomes until they found an adequate context. Thus,
as chart 6 depicts, filtering approach has higher execution times.

7 Conclusion and Future Work

In this paper, we have proposed a framework called conQeng that acquires a
cost-effective and QoC aligned context for the CMP through QoC-aware selec-
tion, QoC-measurement and validation processes. Through a novel procedure
that assesses the context provider’s runtime performance in completing QoC
metrics that rely on their internal and external factors, we have demonstrated
that conQeng effectively selects the context providers delivering an adequate
QoC and delivers QoC-assured context to the CMP. Furthermore, our eval-
uation confirmed that conQeng improves the efficiency and effectiveness in
QoC-aligned context acquisition compared to three heuristic approaches. Next,
we plan to integrate conQeng with CMPs such as Context-as-a-Service and
FIWARE [22,23], implement it in various industry-related projects, and eval-
uate its performance using real-time data streams.
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Abstract. The Internet of Things (IoT) is becoming pervasive and at each new
installation of IoT platform legacy internal and external brokers have to be inte-
grated. Internal brokers are those under control of the platform, while external
brokers aremanagedby third parties.Both brokers kindmaybemultiservice/multi-
tenant, and may manage multiple Data Models. The interoperable management
of these complex network has to pass from the IoT device registration which is
typically a recurrent operation since the IoT networks are in continuous evolution.
In this paper, the above-mentioned problems have been addressed by the introduc-
tion of our concept of IoT Directory and reasoning tools to (i) manage Internal and
External brokers, (ii) perform the automated registration by harvesting and rea-
soning of devices managed into external brokers single- or multi-tenant services,
(iii) perform the automated registration and management of Data Models, and any
custom Data Model. The solution has been developed and tested into Snap4City,
an 100% open source IoT platform for Smart Cities and Industry 4.0, official
FIWARE platform, EOSC, and lib of Node-RED. The specific IoT Directory has
been developed in the context of Herit-Data Project, the results have been vali-
dated in wide condition of the whole Snap4City network of more than 18 tenant,
and billions of data.

Keywords: Internal and external IoT brokers · Automated IoT device
registration · Smart data model · IoT network · Snap4city

1 Introduction

The Internet of Things (IoT) defines a paradigm for the computation and communication
among things that everyone uses more andmore daily. It is due to the intense deployment
campaign worldwide about Low-Power Wide Area Network technologies [1]. Nowa-
days, the user’s environment includes a wide variety of devices (such as bulbs, fridges,
benches, pole, totems) connecting them to an IoT infrastructure. In this scenario, the
real world and IoT devices are integrated tother with some human in the loop. Com-
munication among devices may support various protocols (e.g., MQTT, NGSI, AMQP,
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COAP) thus, the cloud-fog infrastructures are exploited, as well as the management of
the information [2]. In terms of data management, the complexity is growing, not only
for the huge amount of data but also for the needs of interoperability and abstraction. The
Gateway concept is a relevant entity to manage IoT devices into an IoT Platform. It
may be integrated with one or several IoT Brokers to send/receive data to/from devices.
The Gateways and its IoT Brokers are typically based on a single protocol and managed
by third parties as a public service for several customers interested in the same area (for
example LoraWAN services [3]). A Gateway may abstract from the IoT Broker level
managing them for multiple organizations/tenant (which can be regarded as customers
of Gateway services to manage a number of IoT Devices), via some API and/or Web
user interface. Typical IoT Brokers are capable to manage only one organization, and
thus they are single-tenant, in the sense that they broker messages using the topic con-
cepts (which can be regarded as the key for subscription) without any internal partition
of services as a sort of family of devices and subscriptions. Some IoT Brokers can be
multi-tenant, such as the FIWARE Orion Broker, which provides a partition of the
devices in groups, and each of them may have a dedicated service/path for a specific
scope (or of a specific customer), devices of different tenants could exist physically in
different places (even having identical ID), and the subscription to the broker’s tenant
may imply to get all messages/services in the partition, and it is feasible only if the
subscriber knows the identifier of the service path and, in the cases of access control,
has the grant to access at the services. The complexity of IoT Platforms grows with the
needs of managingmultiple IoT Brokers which can bemanaged by third parties different
from the IoT Platformmanager, i.e., IoT External Brokers, and/or directly managed by
the IoT Platform tools, i.e., IoT Internal Brokers, may be adopting different protocols,
formats.

For the IoT External Brokers, the entities (IoT Devices) are directly registered
on the IoT Broker which is not under the control of the IoT Platform. Thus, the IoT
Platform does not know the IoT Device data structure nor the composition of messages
and services. A multi-tenant External Broker could have many partitions referring to
different Organizations (customers, service areas), so that the IoT Platform to interact
with themmust be capable to copewith this complex scenario.Most of the IoT Platforms
neglect these interoperability and integration aspects and provide simplified solutions.
They do not care about Internal/External Brokers, just providing the possibility to set up
end-to-end solutions with some restricted usage, for example using only internal brokers
they provide. Thus, AWS IoT by Amazon (https://aws.amazon.com/iot) and Siemens
MindSphere (https://siemens.mindsphere.io/en) make the broker structure transparent
to their users unless they buy a specific add-on. While IoT Platform like Google IoT
Cloud (https://cloud.google.com/solutions/iot) shows the Broker architecture but allows
the usage of only one kind of protocol (e.g., MQTT). At least, solutions like MS Azure
IoT (https://azure.microsoft.com/en-us/overview/iot) or IBMWatson (https://www.ibm.
com/watson) are more flexible. MS Azure does not provide to cluster their objects, in
other words, supporting only one organization on broker; the IBM solution does not
allow the connection of External Brokers. In summary, most of the solutions provide
simple scenario, and mainly assume to have customers starting to use their solution
from scratch (on cloud or on premise), offering limited capabilities to deeply integrate

https://aws.amazon.com/iot
https://siemens.mindsphere.io/en
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https://azure.microsoft.com/en-us/overview/iot
https://www.ibm.com/watson
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the platform with legacy IoT Broker and Network. Nevertheless, all of them provide the
possibility of connecting to other IoT Brokers and Network by means of REST Call on
API. Thus, the developer has to know the entities to be connected and the API to be
called. Naturally, in those scenarios, the third-party brokers are not directly connected
and neither managed in terms of IoT Device registration, subscription, data storage,
search, etc.

The IoT Devices may be registered to one or more IoT Brokers and communicate
by using simple or mutual authentications. The IoT Device identifier is typically called
Topic for the Broker, to which clients can be subscribed. IoT Devices connected to a
broker adopt the same protocol andmay use different data models. If the message format
is based on JSON, the corresponding schema may be defined and used for validation,
while variables/attributes can be differently defined. For example, FIWARE Orion Bro-
ker adopts the NGSI protocol with the possibility of managing the so-called Smart Data
Models from which IoT Devices can be templated out [4]. The IoT Devices of a Broker
may provide different message schema (data models). Hence, the IoT Platform or Gate-
waymust recognize these IoTDeviceModels andmanage them (registering, processing,
producing, storage, etc.), especially in the case of IoT External Brokers, in which the
IoT Platform may not know the IoT device models, and neither the identifier (topic) of
the IoT Devices managed by the IoT External Broker. In this case, at the arrival of a
message from a unknown device (which can partially provide information in its body,
typically not themetadata, sincemost of the devices minimize the data transmission), the
IoT Platform is not in the condition of registering the device, and neither to correct link
the message to the former devices. Thus, the adoption of standard Data Models can be a
way to make the IoT network more interoperable. The devices and messages are easily
managed when a new external device is added to the IoT Platform if the data model
adopted is known. In other words, if the IoT Platform knows the data model adopted by
a device it is easier to identify the data structure and so it could automatically manage
the relationships among data entities and verify coherence. For all these reasons, the
Data Model concepts and formalisms are crucial.

In this paper, the above-mentioned problems and other aspects have been addressed
to design and implement a solution for leveraging IoT network interoperability and
the management of Data Models. To this end, we have created the concept and tool
named IoT Directory in the Snap4City architecture (https://www.snap4city.org). The
IoT Directory supports: (i) Internal and External brokers, (ii) the automated registra-
tion of devices managed into External Brokers single- or multi-tenant services, (iii) auto-
mated registration by harvesting and reasoning of IoT Devices compliant with standard
models such as FIWARE Smart Data Model, and any custom Data Model in Snap4City
IoT Device Model providing a formal semantic definition of attributes. The research
presented in this paper has been developed for Snap4City architecture presently quite
diffuse in Europe as 100% open source IoT platform for Smart Cities and Industry 4.0
and it is an official FIWARE platform and solution, and of EOSC, Node-RED [5, 6]. The
specific IoT Directory has been developed in the context of Herit-Data Project which
promotes the use of smart and open data to better manage tourism flows in natural and
cultural heritage sites, the results have been validated in wide condition of the whole
Snap4City network of more than 18 tenant, and billions of data.

https://www.snap4city.org
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The Paper is Organized as Follows. Section 2 presents the major requirements for
data model and broker interoperability in IoT Platforms. Section 3 shows the role of
IoT Directory in IoT architecture for managing internal/external brokers with the aim
of automated registration, management vs data models and formal definition of their
attributes. In Sect. 4, some details regarding the validation of the solution are reported.
The validation included verifying the processing timing and giving a general numeric
KPI about the shape of the entities. In Sect. 5, the conclusions are drawn.

2 Requirements Analysis and Related Work

In this section, the requirements that an IoT Platform for IoT Network management and
exploitation should satisfy are reported and commented. They have been identified in
the context of analysis for the development and exploitation of the Snap4City platform
covering smart city and Industry 4.0 domains. The requirements for the IoT Platform
are presented in logical order from R1 to R10 as follows. The following list of the
requirement refer also to a set of well-known platforms: AWS IoT by Amazon (AWS),
Google IoT Cloud (Google IOT), MS Azure IoT (MS Azure), Siemens MindSphere and
IBM Waston. Therefore, an IoT Platform should provide support to:

1. Manage different kinds of IoT Brokers, IoT Devices and IoT Edge Devices.
They should be based on different protocols, formats, and modalities to establish
connections with the IoT Platform. Focusing on the Platform considered, all of
them support MQTT and HTTP, while Google IoT and Azure IoT support only
MQTTBroker. It is important to highlight thatmost of the platformsprovide specific
components for different protocols, for instance: AmazonMQ that supports Broker
with AMPQP, MQTT, OpenWire and STOMP protocol.

2. Connect External and Internal Brokers. They could be multiservice and could
provide different protocols. Internal Brokers should be deployed and registered by
the IoT Platform, while the External Brokers would be only registered to use them.
In the Platform considered, the brokers are the products’ core of stakeholders offers,
for this reason the requirement is partially satisfied. In that sense, AWS IoT and
Siemems MindSphere offer a paid add-on.

3. Register, manage and use messages conformant to any Data Model with any
data type. Providing, receiving, managing, storing, and retrieving messages for
any IoT Device of any Data Model with its attributes and data types, and related
access control. A Data Model provides a model format for IoT Device messages
with several variables/parameters/attributes with their specific data types. For the
listed Platforms, the messages from the IoT Devices are freely shaped, so to assure
the data flexibility to the detriment the data model. For example, Google IoT and
IBM Watson use formats as JSON or XML.

4. Verify the correctness of IoT Messages of IoT Devices. The platform should
be capable of verifying correctness of messages in terms of model and format
including verification at level of attributes, before accepting/sending them. Please
note: this requirement is satisfied by each solution considered since the IoTDevices
are formally defined at the registration phase.
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5. Semantic Interoperability. This requirement is fundamental to achieve the coher-
ence among different IoT Devices (e.g., provided by different builders, addressing
the same concepts, information on attributes). An IoT Platform should be capable
to recognize/classify/retrieve information/attributes and behave accordingly to the
semantic datamodel and types. For example, an IoT application should not riskmis-
understanding the unit of measure assigned to attributes of different devices which
have the same name, but different units. Thus, to set the temperature of an air con-
ditioner (expecting it in Celsius), while the sensor is just providing temperature in
Fahrenheit, thus a direct exploitation is not possible.

6. Support automatics deploy of Internal IoT Brokers. The IoT Platform should
provide support for the automated deployment of IoT Broker internally managed.
And thus, Internal Brokers are directly managed by the Platform which directly
perform the registration of IoT Devices on them. The result is an easy experience
for the user and an easy way to populate the network. This requirement can be
implemented only if the Platform allows the registration and the management of
new IoT Brokers. For this reason, this requirement is satisfied only in the Core of
Siemens MindSphere and by all FIWARE Platforms for definition.

7. Register External Brokers. The platform must support the registration of IoT
External Brokers. This means that the IoT Platform should be capable of registering
IoT Devices/Services of the External Broker into the IoT Platform. In other words,
this is a specification of abstraction requirement. Brokers can be single- or multi-
tenant and to recover the IoT Devices data model managed by the Broker is the first
step to perform their registration. In the case of External Broker, the endpoint URL
and the service and/or service path specifications would be needed to subscribe.
None of the commercial platforms considered provides a solution for registering
External Brokers, and thus making automated registration of their devices.

8. Discover IoT Devices on IoT Brokers. The platform must be capable to abstract
IoT Devices from their IoT Brokers and protocols. This is needed for the regis-
tration of them and for their classification and search, which is based on their
position, nature, value types and units, etc. In other words, it should be possible
to discover/search (subscribe, get, send data) to/from IoT Devices independently
from their position/connection in the IoT Network. The process of discovery must
be manageable in the sense that its execution time can be scheduled, and possible
with brokers that support a process for device discovery. The result should consist
of an automated or semi-automated registration process of IoT Devices.

9. Easy management graphic interface to list and test IoT Brokers, and IoT
Devices and query them. For each IoT Device, it has to be possible to perform
testing activities such as: seeing all details including those regarding setting on
authorization, seeing the last message, sending a new message in the broker. As
seen before, not all the above-mentioned Platforms manage the IoT Broker, unless
they use a specific add-on. So, this requirement is satisfied by each of them only
for the kind of Devices they put in the offer.

10. Manage IoT Device Model and Device Data Type ownership and access grant.
This permits assignment/changing of the ownership and the creation of access grant
to the entities (Brokers, Devices, Models, etc.). In delegation management, it must
be possible to list them (check the grants provided) and revoke the delegations.
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According to GDPR, any entity must start as private of the owner, which is the only
one that may decide to change ownership and provide access grant. The delegation
should be possible for organizations, groups of users, and single users.

On other aspects, surveys about IoT Platforms are provided in [6–8].

3 The Role of IoT Directory in Snap4City Architecture

In order to enforce the above-described requirements into Snap4City IoT Platform we
have designed and developed a new concept that we have called IoTDirectory. It extends
the features of generic IoT Platforms with the management of (i) IoT Data Models, (ii)
IoT External Brokers, (iii) discovery of IoTDevices of External Brokers, (iv) support the
multi-tenancy, (v) support several organizations, (vi) GDPR compliance, etc. In order to
fully understand the capabilities and role of the IoT Directory, three different scenarios
are described, in Fig. 1: -) the registration of an IoT Broker, -) the registration of Internal
Devices, -) the automated registration of Devices of External Brokers, and in Fig. 2 the
message communication flow.

Fig. 1. (left) registration of an IoT Broker, (right) registration of an IoT Device. The solid lines
indicate the registrations, while the dashed lines indicate the data flow of the subscriptions.

In Fig. 1(left), the registration process of IoT Brokers (Internal or External) in the
Snap4City Platform is reported, where the organization is denoted by the subscription
in the Broker name. At the Broker registration into the IoT Directory, a number of
parameters are needed including: the end point, security, name, External/Internal, single/
multiple-tenant, etc. Themost important difference for Internal/external Brokers consists
in the IoT Device management as explained in the following. The broker to be usable
has to be granted to each specific user or public [6]. An user only belongs to a single
organization for security and privacy aspects.
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Once a Broker is registered, the IoT Directory automatically performs the subscrip-
tion of the data platform to the new Broker for all its devices/topics, so that each new
message that will be generated by the broker would be directly brokered to the data
storage. In Fig. 1(right), the subscriptions are denoted by dashed lines, while the regis-
trations are shown as solid lines. In most of the IoT Platforms, the storage is called Data
Shadow, and allows to create the historical data of the IoTDevices. In Snap4City, the data
storage feeding is performed by Apache NiFi, so that, the IoT Directory automatically
performs the association between NiFi and the topics of the new Internal or External
Broker. This is due to the necessity of having a robust, scalable tool with low latency to
handle huge volume of data entering on the storage and coming from several devices and
brokers. In Fig. 1(right), the processes of IoT Device registrations are depicted in both
cases. In the case of Internal Brokers, the IoT Device registration is performed on the
IoT Directory. The user may select the IoT Broker among those of the Organization and
set a number of details. The registration may start with the exploitation of an IoT Device
Model, the device ID, and then with the definition of GPS location, and all instance
details. In Snap4City, the process can be performed: (i) on the IoT Directory via the user
interface exploiting a model or not, (ii) exploiting API of the IoT Directory, (iii) using
MicroServices in Node-RED which are based on the same API of (ii), (iv) using a set of
automated registration processes starting from Excel Files/tables. Each registered IoT
Device is registered on the Knowledge Base, KB, (implemented with Virtuoso on the
basis of Km4City Ontology [10] for the semantic relationships and with Open Search for
the time Series data) with all its information and metadata (static information). The KB
management allows to index the device and establish all the relationships with the other
city entities located in the same area, place, city, region, road, GPS position, etc. This
information would be very useful when new messages arrive from a IoT Device in the
storage via NiFi (which is represented by the ServiceMap in Fig. 1(right), with Smart
City API for providing access to the storage) they are connected to the right IoT Device
description and relationships. The correct and complete indexing and Smart City API
are fundamental to enable the exploitation of IoT data by IoT Applications (Node-RED
microservices [7]) and Dashboards [9].

Finally, Fig. 2 shows the data flow during the usage, it illustrates the event-driven
data flows. There are four ways for generating new IoT Messages, from:

• IoT Devices pass from a Broker and are passed to: (a) the NiFi, thus reaching the
KB and storage, becoming part of historical data which can be accessed and queried
from IoT App, Data Analytic and Dashboards; (b) Kafka to directly reach subscribed
Dashboards via WebSockets, and IoT App.

• IoT Appsmay be sent to IoT Broker or to Kafka front end broker. Thus, the message
can reach: IoTDevice for acting on it, storage, IoTApp, Dashboards, etc. If a message
is sent by a sensor-actuator (Internal or External), his Broker broadcasts it to Ni-Fi,
which spreads it in turn. The IoT Apps are also used for massive registration of
IoT Devices, and to perform data adaptation, ETL/ELT (Extract Transform/Load)
processes.

• Dashboards are passed via Kafka toward the IoT App, or to an Internal Broker or
direly into the storage. These messages can be regarded as Virtual IoT Devices to act
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on some sensors/actuators IoT Device, or even to simulate it. The produce messages
may be sent to Internal/External Brokers, and so on.

• IoT Directory may generate a new message towards an IoT Broker (and may also
read the last message from the broker). The generation of messages from the IoT
Directory is typically used to check if the Internal Broker is alive and works correctly,
and if the IoT Device messages are accepted.

Fig. 2. IoT Messages exchanged among entities: continuous lines are data flows, dashed lines
indicate the tests that the user can perform to verify the IoT Devices/Brokers.

In the case of registration of IoT Devices on an External Broker, the Broker is
not managed by the IoT Directory, and thus the Devices are registered in the External
Broker by the third-party gateway manager without informing the IoT Directory. Thus,
the IoT Directory need to recover the information needed for registering and indexing
the devices into the KB. Then, the IoT Directory queries/harvest the external broker
to get the structures of the IoT Devices (also called Discovery has to be started). The
harvesting process may start having the broker API end point and also the service path
in the case of the multi-tenancy broker. The harvesting has to be performed at the broker
registration and every time a new Device is added, thus a periodic Discovery is needed.
Figure 3 shows the results of the harvesting process. For the harvesting, the IoTDirectory
recognizes the Data Model and Data Types of the attributes to register them in KB in
proper manner, to validate them. In the following subsections, the registration of IoT
Devices on Internal and External Brokers are discussed. Please note that the registration
of devices from External Brokers is one of the innovative aspects addressed by the IoT
Directory which is capable to harvest the brokers and resolving semantic gaps on IoT
device attributes/variables, see Sect. 3.2.
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Fig. 3. Result of the discovery process into amulti service/tenantExternalBroker.Devicesmarked
in Green are registered. New devices are marked in yellow when they are invalid or partially valid.

3.1 Registration of IoT Devices on Internal Brokers

The IOT Directory is fundamental for the definition and registration of IoT Device
Models, i.e., data models. Focusing on the Internal IOT Brokers, the platform provides
three ways to deploy IoT Devices:

• Manual process: the user can register an IoT Device by using a graphic interface,
to input information. It is possible to register a device on the basis of a specific IoT
Device Model, and to refer at a specific IoT Broker.

• Bulk process: the user can upload a file with a list of Devices, defining the IoT Broker,
Model and Edge.

• IoT App process: The user can build an IoT APP using Node-RED on which specific
nodes can be used. The nodes accept JSON with parameters related to the chosen
Device Model to register new Devices.

The registered IoT Devices are shown in a table (see Fig. 4) in which the users can
manipulate only those he/she created, no matter of the generation process. The users
can also see in the list the public devices of the same organization, while the general
administrator has a full visibility of all devices of all the organizations.
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Fig. 4. On the left, the list of IoT device is shown. On the right, the creation of the device by IoT
App is shown.

3.2 Discovering and Registering IoT Devices from External Brokers

The Snap4City Platform allows the registration of External Brokers using the broker
URL or the couple URL and service identifier in the case of multi-tenancy. After the
registration of an External Broker, the user can start the harvesting process and choose
the time period for the update. It is important to highlight that Snap4City Platform
may know a set of IoT Device Model (data models). Thus, in the best case, when the
harvesting starts, it can recognize the device and its model (message format and device
ID).

If the IoTDirectory does not recognize theDevice, theDevice has to beRegistered.
To this end the IoT Directory can query the Broker to have more information to register
it. On the other hand, the IoT Device may be compliant with a Data Model or not.
If it is compliant the registration is straight forward. It is not compliant, each single
attribute has to be recognized in terms of Value Type, Value Unit and Data Type (e.g.,
Temperature, Celsius, Float). The list of recognized/registered and non recognized/non
registered Devices is presented. Through this interface, the user can resolve the problems
manually defining the missing data and enabling the registration.

The most common harvesting (automated registration process) problem are due
to the lack of matching with known attributes. The IoT Platform tries to identify the
attribute kind in terms of value type, value unit and data type by performing query on
data Dictionary and Km4City Ontology (via the connection from IoT Directory and
ServiceMap by using Smart City API, and Dictionary API, Fig. 2). The recognition may
have success in two cases: the data model is known but not this specific attribute or the
model is not known, so all the attribute values of the Device are not recognized. In the
first case is easy to fix the problem by applying a specific rule. In the second case, the
Platform needs to learn a Rule for solving the attributes, thus defining a new Data Model
in IoT Directory. Formally, the processing rule R is defined in EBNF as following:

R: = IF <condition list> THEN <action list>
<condition list> := <c> | <c> AND <condition list>
<c> := <variable> <op> <constant>
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<variable> := “device name” | “context broker” | “device type” | “model” | “value
name”

<op> := “is equal” | “is not equal” | “Is null” | “contains”.
<constant> := integer | float | string | list.
<action list> := <a> | <a>, <action list>
<a> := <action variable>: <action constant>
<action variable> := “Data type” | “Value type” | “Value unit” | “Editable” |
<Coded Healthiness criteria> | <Healthiness value>
< action constant >: = string.

The rule is divided into two parts: If statement and then statement. In the first part,
the user can define the condition that describes a set of devices, e.g., a device name in
common. The <op> defines the operators, two of them (“is/is not equal”) can apply
only on the number constant, others (“Is null” or “contains”) only on the string constant.
In the second part, the user can establish the action that makes devices or values valid.
In other words, for the subset of Devices identify by the <condition list>, the <action
variable> is modified as defined by <action constant>. An example of Rule can be:

IF “context broker” is equal “CONTEXTBROKER”.
AND “value name” is equal “activePower”.
THEN “value type”:“power”, “value unit”:“W”, “data type”:“float”.

In this case, the rule’s builder selects a subset of invalid attributes named activePower,
which have the Device subscripts a Broker named CONTEXBROKER which allows to
manage the multi-tenancy aspects. Then, it changes the value type, the value unit and
the data type in power, W and float (see Fig. 5).

Fig. 5. (a) illustrates the output of harvesting: a list of external Devices; (b) shows the Rule
Building/editing tool.

In the IoT Directory, it is possible to search and edit the saved rules. When the user
saves a rule, must choose the broker to which is applied. It is also possible to define a
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specific subset of service or service and service path to cope with multiservice brokers.
Thus, the application of a rule is associated to each specific Broker or Organization since
a Rule can be suitable for an organization and not functional for the others. Figure 5
illustrates the form of the rule builder.

4 Validation Experiments

Asabovediscussed, the harvesting ofExternalBrokersmay take into account one ormore
rules to recognize the attributes and data models, and thus to indexing the IoT devices in
the right manner, and shortening time to registration, dynamically add new IoT Devices
registered on the Broker, thus reducing the gap from using Internal and External Brokers.
Focusing on the timing of the various processes, the user spends around 1 min and a
half on average to fill the form to add a new device with 10 attributes, and the system
spends around 3 s to register the device. Meanwhile, if the user builds a device from a
model, these timings are less than 1 min on average to fill the form and around 1,35 s on
average to submit the new device. Furthermore, if the user records a new device through
IOT App, the system registers it in 623 ms on average.

Focusing on the registration timing and considering an external multi-tenant broker
with 37000 devices, the harvesting time is 25 min and 50 s on average. Meanwhile, the
process’s timing of the attributes of a specific FIWAREdatamodel (Streetlight) ingestion
is 37.1406 ms on average, which results in the addition of 432 new Streetlight devices
automatically. Of course, the user can make changes to IoT Devices structure after their
automated or manual registration.

5 Conclusions

The proliferation of the IOT devices, brokers, networks, data models, operators and
tenant,make the harmonization andmanagement for IoTPlatform a hard goal. This paper
offers an analysis and a comparison among relevant existing platforms and delineates
the basics requirements to achieve these aims. These identified requirements are in
most cases not addressed by major platform which prefer to stay on their own end-to-
end solutions with limited interoperability and capacity of exploiting the legacy IoT
networks in place. The interoperable management of complex network has to pass from
the IoT device registrationwhich is typically a recurrent operation since the IoT networks
are in continuous evolution. In this paper, the above-mentioned problems have been
addressed introducing our concept of IoT Directory and reasoning tools to (i) manage
Internal and External brokers, (ii) perform the automated registration by harvesting and
reasoning of devices managed into external brokers single- or multi-tenant services, (iii)
perform the automated registration and management of Data Models, and any custom
Data Model. The solution has been developed and tested into Snap4City, an 100%
open source IoT platform for Smart Cities and Industry 4.0, official FIWARE platform,
EOSC, and lib of Node-RED. Thus, the resulting platform is more flexible than the
others considered (Google IOT Cloud, MS Azure, AWS, Siemens Mindshare and IBM
Watson). Furthermore, the proposed solution is also compliant with Smart Data Model
of FIWIRE. The semantic interoperability of the platform can be improved by automatic
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generation of rules and completing the automation of the ingestion process. Furthermore,
the process is helped by Km4City ontology and Data Dictionary to recognize the new
or model data’s semantic domain. The specific IoT Directory has been developed in the
context of Herit-Data Project, the results have been validated in wide condition of the
whole Snap4City network of more than 18 tenant, and billions of data.
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Abstract. This paper addresses the development of a persuasive IoT
system for stress detection and management in students during class-
room situations. An emotion-aware persuasive architecture is developed
with four modules: Context Acquisition, Context Manager, Persuasion
Manager and Context-Aware Applications. By using the galvanic skin
response biomarker, the real-time stress level is measured by the wearable
wristband Empatica E4. The data, processed and classified on discrete
stress levels from 0 to 5, is sent to the context module that identifies situ-
ations of interest where the students need positive reinforcement from the
persuasive system. Based on the situation of interest and the user’s pro-
file, the persuasive module composes personalized persuasive messages
displayed in a mobile application. The persuasive system was evaluated
through an exploratory study during a class session, with encouraging
results in detecting stress levels and the positive effect of persuasive mes-
sages on students.

Keywords: Persuasive system · Internet of Things · Wearable
electronics · Student’s stress management · Emotion-awareness ·
Affective computing

1 Introduction

Students are exposed to various stressful situations, from homework to their
relationships [11]. Continuous stressful situations can cause psychological and
physiological problems in students, leading to reduced academic performance
and even school dropout. In the pandemics scenario, conditions causing stress
have been accentuated, while others have appeared, such as confinement and
remote education [3,18].

In this context, it is necessary to identify and mitigate these stressful situa-
tions in order to improve the academic performance of students. Usually, clinical
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laboratories and specialized professionals are in charge of performing these tasks,
but permanent supervision of each student is unfeasible. In recent years, IoT-
based wearable health monitors have been presented as an alternative accessible
and portable for detecting and monitoring physiological signals, receiving signif-
icant attention from the academic community [5,24].

Several works have addressed stress measurement using wearable health mon-
itors with an IoT-based approach. As a sample of these works, we can mention
[19], which presents an algorithm to detect the stress level of pregnant women
based on heart rate variations using an online k-means clustering algorithm and
an edge-enabled IoT system. In [29] the authors design a system monitor of
health parameters such as electrodermal activity and heart rate that sends the
data to a cloud-based server and by an application allows visualizing a stress
report. [31] deals with the student stress monitoring using a Bayesian Belief
Network (BBN) to classify stress events based on physiological measures and
a Temporal Dynamic Bayesian Network (TDBN) model to compute the stress
index. The work [16] addresses the modeling of mental stress, a wireless net-
work sensor platform detects various signals, and a convolutional neural network
(CNN) validates the severity of the stress activities. In [25], is presented an IoT
system to detect the degree of stress level using a prediction model algorithm
based on a machine learning approach. A Photoplethysmography (PPG) quality
assessment approach for IoT-based health monitoring system is proposed in [17]
using a CNN to discard the unreliable data. In [10], the authors deal the stress
state detection proposing a multi-level deep neural network with hierarchical
learning based on IoT biomarkers.

Currently, IoT-based healthcare systems are not limited only to detecting
health conditions; recent studies include systems to improve the user well-being
by various methods. For instance, an IoT system for student stress management
based on a mobile health app with relaxation content is presented in [23]. [7]
develop an Internet of Body (IoB) platform capable to measures the stress level in
firefighters and providing virtual assistance to Chronic-Obstructive-Pulmonary-
Disease (COPD) patients. In [4], the authors explore the benefits of wearable
devices and persuasion methods to motivate healthy behavior change. [9] devel-
ops a mood tracking application and tested its effect on stress reduction of
employees. [13] addresses stress detection by using an EEG device to capture
the brain waves activity and music therapy for several stress cases. In [2], the
authors propose a framework for transmitting stress control messages based on
IoT that monitors the patient’s heartbeat remotely. [1] deals with the overuse of
smartphone among university students by persuasive messages from a conversa-
tional mobile agent.

Inspired by the above discussions, the development of emotion-aware systems
able to positively influence students through persuasive messages designed for
stressful situations is a challenging issue from the point of view of the IoT and
the scientific community in general. To date, the authors have not been aware
of the use of psychology-based techniques for the development and evaluation
of persuasive messages. Compared to other works such as [1,23], we have used
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methods such as thought listing and the elaboration likehood model (ELM) for
the design and evaluation of the experimental case studies.

In this work, we propose an emotion-aware persuasive system that aim to
reduce the stress level in educational environments. The student’s physiologi-
cal signals to measure the stress level are detected by the largely used Empat-
ica E4 wristband [6,22,30]. Using signal processing algorithms it is possible to
classify these signals to detect negative emotions related to the stress level.
The implemented architecture generates persuasive notifications based on multi-
modal (text, audio, video or comic) content to the students and teachers in real-
time. The persuasive system is validated through experimental results in real
classroom situations. This work is organized as follows. Section 2 presents the
methodology used to implement the emotion-aware persuasive system, including
the hardware, architecture, and software. Section 3 describes the study design
to verify the effectiveness of the system. In Sect. 4, we present the experimental
results on stress detection and management in students. The paper is concluded
in Sect. 4 with some final remarks.

2 Persuasive System

In order to deal with stressful classroom situations in the right time, we pro-
pose an IoT-based persuasive system, which continuously monitors and identifies
students’ stress levels.

2.1 Architecture

The proposed architecture flow is shown in Fig. 1. Two context acquisition mod-
ules provide the information to the persuasive system: the context of the student
in some situation of interest such as a stress level detected and the context of
the teacher in a situation of interest related to the classroom environment [26].
The context manager processes the collected information inferring the situation
of interest and sends it to the action manager that generates the persuasive
message. Finally, the notifications are visualized in the notification presentation
module.

The four main modules and their relationships of the proposed architecture,
are based on layered (context acquisition) and event-based (notification) pat-
terns, and described as follows:

– Context Acquisition: It includes the set of sensors connected to the mobile
device to obtain data about the user’s context and environment, such as
emotion, location, activity and time.

– Context Manager: The data is processed in this module, identifying the sit-
uation of interest from the user’s context and making it available to the
persuasion module.

– Persuasion Manager: This module determines the type of notification based
on the situation of interest and the user’s profile and composes the messages
to be sent to the notification presentation module.
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Fig. 1. Kusisqa persuasive system arquicture.

– Context-Aware Applications: This module contains the applications that
allow the visualization and interaction of the user with the persuasive system
(notification presentation module).

2.2 Methodology

Several physiological signals can be used to identify mental stress in students.
In this work, we consider the galvanic skin response (GSR) biomarker through
the wearable, unobtrusive, and non-invasive wristband “Empatica E4” shown
in Fig. 2. This device, dedicated to clinical and research applications, allows
real-time biomarkers data acquisition and is equipped with blood volume pulse
(BVP), electrodermal activity (EDA), body temperature, and three-axis accel-
eration sensors. The output GSR signal is measured by two silver-coated (Ag)
electrodes with [0.01, 100] µS range with a default sampling rate 4 Hz. The digi-
tal resolution is 1 digit per 900 picoSiemens. The E4 measures precisely the skin
conductance level (SCL) while maintaining sufficient sensitivity to distinguish
the skin conductance response (SCR) under any condition. The EDA signal is
sent via bluetooth connection to the Kusisqa Mobile App, an application for
teachers and students implemented on Android SDK. The steps used to the
real-time process of the GSR signal based on [15,28] are briefly described as
follows:

– Noise reduction: Weak contact between the skin user and the wristband sen-
sors generates noise in the GSR signal. A noise filter to clean data is imple-
mented to reduce this effect by applying a median filter to the signal over a
moving window of size n = 100 samples.
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– Aggregation: An aggregation step is applied on the output signal considering
a moving window x′ of size 240 (samples per minute), where x1, . . . , xn is
aggregated to a single value x′′ = max(x′).

– Discretization: The signal is discretized by using the SAX algorithm [12]
in a discrete-time series from 1 to 5 to represent the student’s stress level.
The measure shows local relative stress levels. It is necessary to normalize
the signal to obtain a global stress level applying two steps: transforming
the original time-series into a piecewise aggregate approximation (PPA) and
transforming the PPA data into a string.

These results were validated by using WESAD [27], a publicly available data
set for variable stress and affects detection collected from wrist and chest monitor
devices during a lab study of 15 subjects. The stress report of the students can
be visualized in the mobile application and sent to the context management
system.

Fig. 2. Wristband Empatica E4.

The context manager module, implemented as a web service, identifies the
situations of interest where the students need the intervention of persuasive
messages during lectures, evaluations and homework. The module collects and
processes the students’ stress data, averages each student’s measurement, and
sends the discrete mean stress level to the persuasive module to generate the
respective persuasive messages, as shown in Fig. 3. The messages were created
through teaching-learning activities by using the following persuasion principles
[8]: Commitment, reciprocity, social proof, authority, liking and scarcity. By
using the elaboration likelihood model (ELM) [21], it is possible to evaluate the
attitude changes through persuasion considering the processing of the central
route and processing of the peripheral route. These two processing strategies
constitute the two extremes of continuous processing. That is, the process by
which”cognitive responses” are generated as a consequence of exposure to a
persuasive message. The ELM predicts the following:

– High-probability processing situation. When the motivation and ability to
process a persuasive communication is high, the probability of elaboration will
also be high. If the elaborated arguments are more favorable than unfavorable,
a positive attitude will develop.
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– Low-probability processing situation. When motivation and processing capac-
ity are low, the probability of elaboration will also be low, so that the periph-
eral processing route will be activated.

Fig. 3. Kusisqa mobile app.

3 Study Design

In order to verify the performance of our persuasive system to manage stu-
dents’ stress levels, an exploratory study was designed to collect and evaluate
students’ cognitive responses after receiving a persuasive message during class.
Seven volunteer students from the Computer Science program of the Universi-
dad Nacional de San Agust́ın de Arequipa participated in the study. The small
number of participants was due to restriction during the COVID-19 pandemic
We used the thought listing technique that addresses the analysis of cognitive
responses (CR) to identify the level of persuasion [20]. During a 55-min class
session, students are asked to use the persuasive system (wristband and mobile
application). At the end of the class, each student is sent a persuasive message
according to their measured stress level, with values from 0 to 5. Then the stu-
dents have 3 min to fill out index cards with all the ideas, reflections and thoughts
caused by the persuasive messages. Finally, students rated their thoughts by the
level of belief (where 1 is not at all and 5 is totally) and the polarity (P =
Positive, N = Negative and X = Neutral) [14].
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4 Results

Figure 4 shows an overview of the Kusisqa Dashboard that helps visualizing real
time stress levels of students during the class session, through a red heat map
with measurements in time units of 5 min. The teacher can select the course,
data and time interval to improve the flexibility in the stress level visualization.

Fig. 4. Kusisqa Dashboard.

Table 1. Persuasive messages evaluation.

Voluntary code No. CR Level of belief Polarity Polarity index

Positive Negative P N X

P01 3 3.00 3.00 1 1 1 0.00 X

P02 8 4.50 3.00 4 4 0 0.00 X

P03 7 4.00 2.50 3 2 2 0.20 P

P04 5 4.00 6.67 2 2 1 0.00 X

P05 10 4.60 0.00 5 3 2 0.25 P

P06 5 4.00 4.00 3 0 2 1.00 P

P07 8 4.00 4.45 3 2 3 0.20 P

Average 6.6 4.01 3.45 3.00 2.00 1.57

The average stress level is shown in Fig. 5. These values were the mean of
measuring the students’ stress levels during a class session of the discrete struc-
tures course. The values captured during 55 min of the seven volunteers are
shown in a graph bar, with average values ranging from 1.8 to 3.1, which are
consistent results considering the range of stress levels between 0 and 5 that the
system is capable of measuring.

The results of the exploratory study for persuasive messages validation are
summarized in Table 1, which shows the students identified by a code, then
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Fig. 5. Students’ average stress level.

the column that records the number of cognitive responses or thoughts (No.
RC). Next there are the columns that correspond to the level of belief and the
polarity of their responses. The computation of the mean belief was elaborated
for both positive and negative thoughts. The positive belief values are added and
divided by the total of positive thoughts, in the same way for calculating negative
thoughts. The polarity index, which has 3◦ (positive, negative and neutral), was
calculated using the following formula: (number of positive thoughts - number of
negative thoughts)/(number of positive thoughts + number of negative thoughts).
The results obtained range between –1 and 1, where –1 indicates an entirely
negative degree, 0 is a neutral degree, and 1 is an entirely positive degree.

Table 1 indicates that the students had an average of 6 cognitive responses
(CR), with a minimum of 3 and a maximum of 10. Regarding the mean belief,
three volunteers had a greater belief in their positive thoughts (P03 = +1.00,
P04 = +1.50 and P06 = +4.00), two a greater belief in their negative thoughts
(P02 = –0.50 and P05 = –2.07), and the rest did not show differences (0.00). This
indicator was obtained by subtracting the average belief in the positive thoughts
of each participant from the average belief in the negative thoughts. The average
belief are evaluated by using the Likert scale [14]; in positive thoughts was 4.01 or
‘Very’, and in negative thoughts, it was 3.45 or ‘Moderately’. Concerning polar-
ity, three participants had the same number of positive and negative thoughts
and four had a higher number of positive thoughts. The average number of posi-
tive thoughts (3) is higher than the average number of negative thoughts (2) and
in last place are neutral thoughts (1.43). A polarity index was calculated, with
values varying from –1 to 1, and it was shown that four students have a posi-
tive polarity index and three a neutral index. No negative indexes were found.
We consider these results to be promising for the development of our persuasive
system and can be complemented with future experiments.

5 Conclusions

In this paper, we present the development of a persuasive system for the detec-
tion and management of stress in students during classroom situations using IoT
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and wearable health technologies. An architecture based on layered and event-
based patterns was implemented with four main modules: Context Acquisition,
Context Manager, Persuasion Manager, Context-Aware Applications to manage
the situations of interest of students and teachers. The Empatica E4 wristband
was used for the acquisition of physiological signals. The GSR biomarker was
processed and discretized by the Context Manager, implemented as a web service,
to obtain students’ stress levels. The students’ context (stress level and profile)
is sent to the Persuasion Manager that generates the persuasive messages that
can be visualized in the Kusisqa Mobile App and the Kusiqa Dashboard, a web
application developed to manage and visualize the system data with different
functionalities for teachers and students. The performance of the persuasive sys-
tem was evaluated through an exploratory study in seven volunteer students, who
after a class session using the persuasive system rated the effect of the persuasive
messages through the thought list technique based on the elaboration likehood
model, having mostly positive results. These results encourage us to perform
large-scale experiments combining computational and social methodologies to
improve the performance of our persuasive system. Thus it would be interest-
ing, as future work the development of low-cost prototypes to GSR measuring,
evaluating its performance against clinically certified devices. In addition, other
physiological signals such as voice, blood pulse and respiration can be combining
and used to measure stress levels in classroom situations.
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Abstract. The wide deployment of Machine Learning models is an
essential evolution of Artificial Intelligence, predominantly by porting
deep neural networks in constrained hardware platforms such as 32 bits
microcontrollers. For many IoT applications, the deployment of such
complex models is hindered by two major issues that are usually handled
separately. For supervised tasks, training a model requires a large quan-
tity of labelled data which is expensive to collect or even intractable in
many real-world applications. Furthermore, the inference process implies
memory, computing and energy capacities that are not suitable for typ-
ical IoT platforms. We jointly tackle these issues by investigating the
efficiency of model pruning techniques under the scope of the single
domain generalization problem. Our experiments show that a pruned
neural network retains the benefit of the training with single domain
generalization algorithms despite a larger impact of pruning on its per-
formance. We emphasize the importance of the pruning method, more
particularly between structured and unstructured pruning as well as the
benefit of data-agnostic heuristics that preserve their properties in the
single domain generalization setting.

Keywords: Deep learning · Neural network pruning · Single domain
generalization · Embedded systems

1 Introduction

For many IoT domains and applications, edge computing enables to reduce band-
width requirements and unnecessary network communications that may raise
critical security threats. Due to its success across a large variety of application
domains, deploying state-of-the-art deep neural network models on edge devices
is a growing field of research [22]. However, this deployment faces several chal-
lenges of different nature, with critical ones related to the training data and
hardware constraints.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 250–261, 2022.
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Fig. 1. Illustration of the scope of our study. Pruning and single domain generalization
techniques are jointly used to train a model on a source domain and test on an unseen
target domain. The model must fit in a constrained MCU.

First, collecting and managing large-scale real-world datasets can be chal-
lenging [12], extremely time-consuming and may require large infrastructure and
human expertise. These difficulties prevent the use of neural networks, which
require large amount of data for their training. A common solution is to train
a model on a publicly available dataset similar to the target use case or to cre-
ate simulated data. Since these datasets cannot perfectly substitute real-world
data, techniques such as domain adaptation or generalization are extensively
studied in the AI community. These approaches aim at learning from a source
data distribution a well-performing model on a different (but related) target
data distribution.

Second, the necessary memory and computational requirements for an infer-
ence limit the deployment on typical IoT platforms such as 32 bits MCUs. For
example, the state-of-art InceptionTime model [8] for time series classification
has 400K parameters and requires approximately 100 MFLOPS for an inference
which may be prohibitive for most ARM Cortex-M MCUs for real-time applica-
tions. This incompatibility led to the emergence of more efficient architectures
(e.g. MobileNet [6]) and compression techniques such as quantization or pruning
that aim at removing parameters from an over-parameterized model.

This work focuses on the evaluation of the compatibility of model pruning
under the scope of the single domain generalization problem, as illustrated in
Fig. 1: training a neural network on a unique source dataset and testing it on
multiple unseen but related datasets. Our contributions are as follows:

– We perform several experiments on two typical benchmarks (digit recognition
and human activity recognition) with state-of-the-art pruning and domain
generalization techniques.

– We show that – on a whole – pruning is efficient in the domain generalization
setting even with strong compression rate.

– However, we highlight the importance of the type of the pruning as well as
the pruning heuristics, more particularly between structured/unstructured
pruning and data agnostic/dependent heuristics.

To the best of our knowledge, this work is the first to focus on model com-
pression techniques in a single domain generalization setting, yet two essential
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challenges for modern AI-based IoT systems. For reproducibility purpose and
further experiments, codes and experiments are publicly available1.

2 Background

2.1 Single Domain Generalization

Single domain generalization (hereafter, SDG) is a challenging setting where a
model is trained on a single source dataset with the objective to generalize to
unseen but related target datasets. Traditionally, the target domain represents
a real-world application with very few available training data (e.g. anomaly
detection from sensors). A source domain is selected according to its closeness
to the target domain and the ability to gather sufficient amount of labelled
data (e.g. simulated data). The most common method to tackle SDG is data
augmentation, for example with a combination of standard input transformations
found with an evolution algorithm, as in [21]. Adversarial data augmentation is
the most popular approach for SDG: it consists of alternating between training
and data augmentation phases where the dataset is augmented with samples
from a fictitious target domain that is “hard” under the current model [14].

As a reference method, we use the work from Xu et al. [23] that recently
reaches state-of-the-art performance with a scalable approach. For image clas-
sification, the authors start from the observation that semantics often relies
more on object shapes than local textures, while local textures are one of the
main sources of difference between domains (as the dogs in Fig. 1). To learn
texture-invariant representations, they augment the training dataset thanks to
random convolutions that “create an infinite number of new domains” [23]. At
each training iteration, images are augmented with a probability p up to three
times. Each augmentation is done by convolving the image with a randomly
(size, value) generated kernels. This augmentation creates copies of the input
image with different textures. Furthermore, they introduce a consistency loss
(based on Kullback-Leibler divergence) to encourage the model to predict the
same output for all augmented images. A parameter λ tunes the contribution of
the consistency loss to the global loss.

2.2 Neural Network Pruning

Nearly all pruning methods derive from [2] that removes parameters according
to a score based on a pruning heuristic. Therefore, pruning approaches can be
distinguished between four features:

– Sparsity structure: unstructured pruning [3] removes individual parameters
producing highly efficient sparse neural networks. Rather, structured prun-
ing [11] removes weights in groups, e.g. by removing entire neurons or filters.
Furthermore, some methods [2,10] prune a fixed fraction of weights across
the whole model (global pruning) while other methods [3,5] prune a fraction
of weights across each layer of the network (local pruning).

1 https://gitlab.emse.fr/b.nguyen/randconvpruning.

https://gitlab.emse.fr/b.nguyen/randconvpruning
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Table 1. Mapping of the pruning algorithms used in our study.

Pruning techniques Types [11] [5] [3] [2] [15] [10] [20] [17]

Sparsity structure Structured � �
Unstructured � � � � � �
Local � � �
Global � � � � �

Pruning heuristic Magnitude-based � � � �
Gradient-based � � �
Others �
Iterative scoring � �
Data-agnostic � � � � � �

Pruning schedule One-shot � � �
Iterative � � � � �

Retraining procedure Fine-tuning � � �
Weight Rewinding �
Learning rate rewinding �

– Pruning heuristic: due to its empirical success, estimating the importance
of an individual parameter by its magnitude [3,11] is the standard heuristic.
Gradient-based heuristics [10,17] are another popular approach. Other heuris-
tics propose to tackle different issues like FPGM [5] which handles redundancy
between filters in structured pruning. An important factor in the choice of
a heuristic is its use of training data for its computation (data-dependent or
data-agnostic).

– Pruning schedule: some methods [10,17] prune the weights in one iteration,
mainly before training. Others [3] follow an iterative procedure which alter-
nates between prune a small fraction of weights and retrain the model.

– Retraining procedure: the most common technique, fine-tuning, refers to keep
training the network using the trained weights and the last learning rate.
Some recent alternatives proposed weight [2] and learning rate [15] rewinding
in which the weights and/or the learning rate are reset at an early state before
the retraining phase.

Table 1 sums up the different approaches and the state-of-the-art references
used in this work.

The challenge of porting neural networks to constrained platforms such as
microcontrollers has led to the creation of embedding tools (e.g. TFLM2 or
STM32CubeMX-AI3) with which structured pruning is generally effortless. How-
ever, unstructured pruning (that leads to sparse structures) is more challenging

2 https://www.tensorflow.org/lite/microcontrollers.
3 https://www.st.com/en/embedded-software/x-cube-ai.html.

https://www.tensorflow.org/lite/microcontrollers
https://www.st.com/en/embedded-software/x-cube-ai.html
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and requires the use of a specific sparse computation library (e.g. [19]) to decrease
the model’s consumption and storage.

We focus our experiments on three common pruning settings. The first setting
is the one-shot global unstructured pruning at initialization. Global unstructured
pruning algorithms are known to be the most efficient methods to produce sparse
neural networks and, one-shot techniques do not increase the training budget.
The second is the iterative global unstructured pruning that reduces the loss
of accuracy at the cost of a bigger training budget. The third is the iterative
local structured pruning since structured methods are easily compatible with
standard development platforms.

3 Experiments on Digit Recognition Benchmark

3.1 Datasets and Setup

As in [23], we use digit recognition datasets: MNIST [9], SVHN [13] and USPS [7].
We use two classical CNN architectures: ResNet20 [4] and a variant of Lenet [9]
composed of two convolution layers (32 and 64 filters of 5×5 kernels) followed
by max-pooling layers and three fully connected layers (128, 128 and 10 neu-
rons). Both models have about the same number of parameters (273K and 276K
respectively). The models are trained on MNIST (the source domain). We fol-
low the experimental setting in [23] with random kernels of various sizes within
[1–7]. The original data fraction parameter p and the consistency loss factor λ
are fixed at 0.5 and 5 respectively. Unless specified, the models are trained on
150 epochs with Adam optimizer, a learning rate of 10−4, a batch size of 32 and
50 epochs of retraining for iterative pruning. Our results are averaged on three
training seeds4.

3.2 Unstructured Pruning at Initialization

Influence of Iterative Ranking. Before training, pruning a network itera-
tively (i.e. at each iteration, the heuristic is computed and a small fraction of
the network’s parameters is pruned) improves the performance of the pruned net-
work [20]. This procedure also avoids potential layer collapse (i.e. the premature
pruning of a layer that leads to an abrupt drop of accuracy [17]). To check if this
property is valid with SDG, we used two state-of-the-art algorithms, SNIP [10]
and SynFlow [17] that are applied at initialization with two ranking budgets:

– computing the parameters’ score and prune the model in one pass with a
single batch (referred as one batch, one iteration in Fig. 2),

– computing the parameters’ score and pruning the neural network using 100
iterations [17] with a single batch (one batch, 100 iterations).

As shown in Fig. 2, iteration helps SynFlow to avoid layer collapse for all
domains. But for SNIP, iterations do not affect the accuracy on the different
4 Setups are detailed in https://gitlab.emse.fr/b.nguyen/randconvpruning.

https://gitlab.emse.fr/b.nguyen/randconvpruning
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Fig. 2. Influence of iterative ranking on SNIP and SynFlow heuristics.

domains. The data agnosticism of SynFlow can explain this difference. With
enough iterations, and independently of the dataset, SynFlow is designed to
satisfy the Maximal Critical Compression axiom that implies that Synflow algo-
rithm does not prune a parameter if it leads to layer collapse and there exists
another prunable parameter which can avoid layer collapse (see [17]). Meanwhile,
SNIP heuristic is designed to discover the important connections of the network
for its training on the source task. Xu et al. [23] relax this task thanks to ran-
dom convolutions. So SNIP is less relevant and using iterative ranking does not
improve the network performance.

Influence of Pruning Heuristic. We compare the baseline magnitude pruning
to SNIP and SynFlow. The best ranking budget found in Fig. 3 is used for both
heuristics. As shown in Fig. 3 and consistent with [17], SynFlow outmatches
other heuristics at high sparsity rates on all domains and magnitude heuristic
suffers from layer collapse with Lenet networks (at 80% of sparsity). A heuristic
which outperforms other heuristics in the source domain is likely to outperform
them in other domains. However, the impact of pruning with a given heuristic
on a model performance may not be the same on the source and the target
domains. On the source domain, the accuracy begins to decrease exponentially
at an extreme sparsity rate (around 95%) while the accuracy starts to decrease
almost linearly at a high sparsity rate (around 70%) on the target domains.

3.3 Iterative Unstructured Pruning

Influence of Retraining Procedure. We compare fine-tuning, weight [2] and
learning rate [15] rewinding as retraining techniques. In order to compare these
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Fig. 3. Comparison of pruning heuristics for one-shot unstructured pruning.

three methods, the learning rate is initialized at 10−4 and is reduced by a factor
0.1 at epoch 120. Magnitude heuristic is used for pruning. After each pruning,
the network are retrained on 150 epochs.

For all domains and networks, an Occam’s hill [18] is observed in Fig. 4:
at low sparsity rate, the accuracy increases since pruning acts as a regulariza-
tion process which forces the model to focus on more important and general
aspects of the task [18]. For high sparsity rate, the collapse of the network’s per-
formance classically occurs. This local gain of generalization is confirmed with
weight rewinding where the network’s parameters receive the same number of
gradient updates for each sparsity level. Learning rate rewinding outperforms
other methods in accordance with [15]. However, the large increase of accuracy
is mostly due to the additional training iterations (gradient updates) with high
learning rate. For the following experiments, learning rate rewinding will be used.

Influence of Pruning Heuristic. We compare the baseline magnitude prun-
ing to SNIP and SynFlow. Figure 5 shows that there are few differences between
pruning heuristics at low sparsity rate. For high sparsity rate, magnitude heuris-
tic underperforms on all domains and networks.

3.4 Iterative Structured Pruning

To study the impact of structured pruning, baseline algorithms such as magni-
tude pruning [11] and FPGM [5] are used. Furthermore, we adapt SNIP and Syn-
Flow to structured pruning by averaging the parameters’ score over each filters
as in [11]. Our results presented in Fig. 6 do not enable to confirm the superiority
of a heuristic. For all domains, the accuracy decreases slightly, then this loss is
accelerated at higher sparsity rate. An important observation is that structured
pruning is not perfectly suited to domain generalization since this acceleration
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Fig. 4. Comparison of retraining procedures for iterative pruning.

appears earlier in target domains especially on SVHN. Another important, but
expected, observation is that structured pruning has a worse accuracy score than
unstructured pruning for any sparsity rate.

4 Experiments on RealWorld HAR Dataset

We scale our experiments on a second benchmark dedicated to Human Activity
Recognition (HAR) since it is a challenging task, representative of many sensor-
based IoT applications that process time series.

4.1 Datasets and Setup

The RealWorld HAR dataset [16] gathers fifteen subjects equipped with smart-
phones and smartwatches on seven different body positions (head, chest, upper
arm, waist, forearm, thigh, and shin) that perform seven activities (climbing
stairs down and up, jumping, lying, standing, sitting, running/jogging, and walk-
ing). From their devices, accelerometer and gyroscope data are sampled 50 Hz.

We follow the reference procedure of Chang et al. [1]. The accelerometer
signals are sampled in fixed width sliding windows of 3 s (no overlap). A trace
is discarded if it includes a transition of activities, timestamp noise, or data
points without labels. The neural network is trained with the data from one
body location (chest) then tested on the other body locations.

For our experiments, we use a variant of the model proposed in [1] in which
instance normalization layers are replaced with standard batch-normalization
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Fig. 5. Comparison of pruning heuristics for iterative unstructured pruning.

layers. We adapt Xu et al. [23] technique with temporal convolutions with ran-
dom kernels of various sizes within [1–7]. The original data fraction parameter
p and the consistency loss factor λ are fixed at 0.5 and 5 respectively. We keep
SynFlow heuristic since it performs well on all settings of the digit benchmarks.
Our results are averaged on three training seeds.

4.2 Impact of the Pruning Settings

For these experiments, the network is trained on 70 epochs with Adam optimizer,
a batch size of 32 and an initial learning rate of 0.001 which is divided by a
factor 2 at epochs 40 and 60. For iterative pruning, the network is retrained on
50 epochs with learning rate rewinding after each pruning. We also follow the
evaluation process of [1] and measure the F1-score with macro-averaging (mean
of all the per-class F1 scores).

A first observation from Fig. 7 is the efficiency of our customized version of
Xu et al. method [23]: for all target domains, random convolutions enable the
model to reach a greater f1-score than classically trained model despite a lower
F1-score on the source domain. Second, we highlight an interesting compatibility
between [23] and pruning techniques, since a compression ratio up to 80% and
50% can be reached without loss of accuracy on the source domains for unstruc-
tured and structured pruning respectively, although models trained with random
convolutions are more impacted by high compression rate, more particularly for
structured pruning (right).

Figure 7 shows that pruning improves the generalization capacity: without
random convolutions (bottom), the F1-score of the network increases for target
domains at high sparsity score on all pruning settings. Furthermore, with random
convolutions, this increase is also observed in the one-shot unstructured pruning



Compatibility of Domain Generalization and Model Pruning 259

Fig. 6. Comparison of pruning heuristics for iterative structured pruning.

Fig. 7. Pruning on RealWorld HAR: trained with (top) and without (bottom) ran-
dom convolutions, one-shot at initialization (left) and iterative (centre) unstructured
pruning and iterative structured pruning (right).

setting (top-left) for the farthest body positions (thigh, shin) from the source
domain (chest). On the contrary, for iterative pruning (top-centre and top-right)
pruning increases F1-score on target domains close to the source domain while
decreases F1-score on target domains far from the source domains. This effect
can be explained by the additional training iterations (gradient updates) caused
by iterative pruning with learning rate rewinding.

5 Conclusion

We experimentally evaluate the impact of pruning techniques in the single
domain generalization setting with state-of-the-art methods and two benchmarks
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on image classification and human activity recognition. Our results show an
interesting compatibility between pruning methods, that enable to significantly
reduce the number of parameters, and single domain generalization approaches.
Pruning improves the ability of a model to generalize, especially on domains far
from the source domain. Moreover, all properties of pruning techniques are valid
in the single domain generalization setting for approaches based on data-agnostic
heuristics. Therefore, the combination of these methods represents a powerful
tool to ease the deployment of neural network models on constrained platforms
like microcontrollers for real-world applications for which the availability of train-
ing data is challenging. However, this combination of methods is not free from
drawbacks since the impact of pruning on the performance is higher in the single
domain generalization setting. More particularly, the additional training steps
due to iterative pruning can cause a drop in performance on domains far from
the source domain. For pruning algorithms with data-dependent heuristic, some
properties like the benefits of using iterative scoring do not apply in the single
domain generalization setting. These results highlight the need of developing
as well as evaluating advanced domain generalization approaches for embedded
applications that use highly compressed models.
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Abstract. We present a low-overhead mechanism for self-sovereign
identification and communication of IoT agents in constrained networks.
Our main contribution is to enable native use of Decentralized Identifiers
(DIDs) and DID-based secure communication on constrained networks,
whereas previous works either did not consider the issue or relied on
proxy-based architectures. We propose a new extension to DIDs along
with a more concise serialization method for DID metadata. Moreover,
in order to reduce the security overhead over transmitted messages, we
adopted a binary message envelope. We implemented these proposals
within the context of Swarm Computing, an approach for decentralized
IoT. Results showed that our proposal reduces the size of identity meta-
data in almost four times and security overhead up to five times. We
observed that both techniques are required to enable operation on con-
strained networks.

Keywords: Decentralized identity · Secure communications ·
Constrained networks · Secure Envelope Overhead · CBOR

1 Introduction

Self-sovereign identity (SSI), also referred to as decentralized identity, is an
emerging approach that enables subjects to be in full control of their own
digital identities [6]. When applied to IoT environments, SSI facilitates device
ownership, enhances privacy, and reduces dependency on third parties [5]. IoT
approaches that rely on decentralized architectures, such as the Swarm [4], are
expected to greatly benefit from these new capabilities enabled by SSI.

Once devices are put in charge of their own identity, new challenges arise,
mainly due to the limitations of constrained devices and networks. In this paper,
we focus on reducing the overhead of self-sovereign identity in IoT networks.
We extend existing standards to reduce message footprint and propose a new
serialization method that significantly reduces the transmitted bytes.

The current approach to implement self-sovereign identity relies on the use
of Decentralized Identifiers (DIDs) [15]. A DID is a new form of identifier that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 265–276, 2022.
https://doi.org/10.1007/978-3-031-20936-9_21
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does not depend on trusted third parties and has an associated set of cryp-
tographic metadata referred to as a DID Document (DDo). This way, beyond
simple identification, a DDo enables the establishment of an end-to-end secure
channel, which can be done using a transport-agnostic protocol called DIDComm
[9]. The DID data model is extensible, and by May 2022 there are around 110
registered extensions (referred to as “DID methods”) [17].

Most works on DIDs, however, overlook the overhead of transmitting DDos, a
crucial aspect in bandwidth-constrained networks. For example, while the LoRa
network only allows packets of up to 242 bytes, the most compact of the regis-
tered DID extensions requires DDos in the order of 500 bytes. Even the works
applying DIDs in the IoT context did not consider size limitations imposed by
network bandwidth [7,18]. In one approach that does consider resource con-
straints, DIDs transmission is avoided by using OAuth tokens in a centralized
architecture [12]. Furthermore, the overhead on secure communications imposed
by the DIDComm protocol also has not been addressed in the literature.

Considering the potential benefits of the self-sovereign approach for the IoT,
and the drawbacks of existing solutions, this paper proposes a low-overhead
method for DID-based identification and secure communication. The contribu-
tions of this paper are as follows:

– A new DID method suitable for IoT networks referred to as DID Swarm,
which has smaller DID and DDo sizes when compared to existing methods.

– CBOR-based DID Documents for IoT (CBOR-DI), a novel serialization mech-
anism that can reduce DDo sizes by almost four times.

– DIoTComm, a binary envelope to replace DIDComm in IoT networks that
reduces overhead up to five times.

– Integration with the Swarm framework, a decentralized IoT approach that
enables spontaneous resource sharing.

2 Related Work

Several works have proposed identity solutions for the IoT, however, many of
them require centralized management. The Open Connectivity Foundation [8]
uses Fully Qualified Domain Names and relies on certificates for identity man-
agement, two centralized approaches. The Web of Things framework [13] relies
on Uniform Resource Identifiers (URIs), which can be decentralized, however,
the identity management is still done via certificates.

Our previous work shows the potential of DIDs as an owner-centric, privacy-
aware and decentralized identification mechanism for IoT applications [5]. One of
the challenges for DID adoption in the IoT, however, is communication overhead,
since none of the currently registered DID methods [17] has been designed to
work in constrained networks. For example, the Sovrin DID method [10] uses
approximately 500 bytes to encode a DID Document.

Existing works have applied self-sovereign identity to IoT. In one case [18],
authors propose an architecture for machine identifiers based on DIDs, along
with a storage layer based on Blockchain and IPFS. Another approach [7] com-
bines DIDs with Verifiable Credentials, a data model for signed attributes in SSI,
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to manage identification in the IoT. Others [12] have used newly generated DIDs
to populate access control lists and enable guests to access smart home devices.
None of these works, however, considered the size of the documents associated
with implementation of SSI in low-power IoT networks. Moreover, it is not clear
how these works protect the communication between agents.

To enable secure communications based on DIDs, the DIDComm protocol has
been proposed [9]. DIDComm supports authenticated message exchanges and
message routing over loosely trusted routers, and is independent of transport
protocol. Nevertheless, DIDComm uses JSON for serialization, which implies
an overhead prevents its use in low-power IoT networks. Currently there is no
known low-overhead alternative to DIDComm.

3 Background

3.1 Self-sovereign Identity

In the SSI approach each entity has full control of its own identity. Formally, the
complete self-sovereign identity of an agent is the union of all of its identifiers
and attributes across different domains [6]. The Decentralized Identifiers (DID)
specification [15] defines a new format for self-sovereign identifiers and related
metadata. A DID is composed of a DID method1 prefix and a namespace-specific
identifier (NSI) [15]. The prefix always start with the string did: and is followed
by a method name and a colon, e.g., the prefix for the Tangle DID method
is did:tangle: [2]. The NSI is a globally unique identifier, usually randomly
generated, whose size and other parameters are specified by the DID method. A
truncated example of a DID is: did:tangle:WILTZRG...Q99NA9999. Thus, the
primary use for DIDs is to uniquely identify an entity in a decentralized way.

Another use for DIDs is to associate it with related metadata, such as public
keys and service endpoints. This association is referred to as a DID Document
[15], and it is useful since it enables remote agents to securely message a DID
owner. DDos are usually serialized in JSON. Although a binary serialization is
specified [15], none of the currently registered DID methods uses it.

3.2 Swarm

Swarm is a distributed collection of cooperating things [4]. In the Swarm archi-
tecture, IoT agents interact by exchanging messages through RESTful interfaces.
Two key aspects needed to guarantee a cooperative Swarm are agent identifi-
cation and message security. Agents need to be uniquely identified so that they
can be told apart from each other, and since the Swarm is distributed and may
have trillions of devices, agent identification must be decentralized and scalable.
Messages exchanged between Swarm agents must be protected against attacks
such as spoofing and information disclosure, in a network-agnostic way.

1 A “DID method” is an extension of the DID specification;
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Fig. 1. Architecture of the proposed system.

4 Proposal

This section presents our proposal to enable self-sovereign identification and
communication of IoT agents with low overhead for heterogeneous networks.

4.1 Self-sovereign Identification and Communication of IoT Agents

Our proposal is divided into the functions of agent identification and agent com-
munication. We propose agent identification as a fully self-sovereign procedure.
Each agent generates its own identifier, in the format of a DID, as well as its own
identity metadata, in the format of a DDo, which contains service endpoints and
public keys. This approach allows devices to fully own and control their iden-
tity without depending on third parties [5]. To enable discoverability, though,
agents may choose to anchor their DDos on an Identity Blockchain, which acts
as a decentralized source of truth for identity metadata. This allows agents to
dynamically resolve the DDo associated with a specific agent, given that its DID
is known. For example, if Agent 1 knows the DID of Agent 2, the DDo of Agent
2 can be obtained by querying the blockchain, as shown in Fig. 1.

Once agents are identified, they can begin to communicate securely. We con-
sider interactions to involve an initiator agent and a receiver agent, and option-
ally the Identity Blockchain. If initiator and receiver are pre-provisioned with
each other’s DDo, communication can begin immediately, without the need to
contact a third party. If, on the other hand, an agent is only given the DID of
another agent, it needs the blockchain to retrieve its respective DDo2. The latter
case is shown in Fig. 1. Then, once the initiator has the DDo of the receiver,
it can extract the endpoint to find out where to send the messages and use the
public key to protect the messages, i.e., derive a session key for encryption.

These procedures, however, may be of limited use in constrained IoT net-
works due to the overhead of (1) DID resolution and (2) message protection,
as discussed in Sect. 1. Existing works adopting Self-Sovereign Identity in IoT
either do not consider the limitations of constrained networks, or address it by

2 Note that the DDo can be cached after the first use.
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creating a centralized adaptation layer. In this work we propose a set of exten-
sions and optimizations to reduce the overhead of both transmitting DDos and
protecting interactions between self-sovereign IoT agents. First, we propose a
lean DID method that specifies the minimum needed metadata for DDos in the
IoT. Then, we propose an alternative serialization mechanism for DDos, named
CBOR-based DID Documents for IoT (CBOR-DI), that can reduce DDo size
up to four times. Finally, we present a binary alternative to DIDComm, named
DIoTComm, that significantly reduces overhead of DID-aware communications.

4.2 The Swarm DID Method

A DID method consists of a set of definitions about the format of DIDs and
DDos, as well as on how to perform management operations [15]. In this section,
we present the Swarm DID Method (did:sw:), which will enable self-sovereign
identification of IoT agents. Although it was motivated by the Swarm architec-
ture, it is sufficiently generic to be used in general IoT architectures.

Requirements. Previously, we established that the self-sovereign approach can
satisfy the requirements of privacy and decentralization for IoT devices [5]. We
now specify the remaining requirements that need to be tackled in order to enable
self-sovereign identification of devices in heterogeneous networks. First, both
the DID and the DDo must be short since they may be carried over constrained
networks. Second, the DID should carry enough randomness to be able to identify
trillions of devices. And third, the DDo should support at least one service URL,
needed to allow remote service invocations. The next sections specify the DID
and DDo according to these requirements.

DID. In the Swarm DID method, each device is responsible for autonomously
generating its own DID. A DID is composed of a prefix and a namespace-specific
identifier (NSI). For the part of the prefix that identifies the DID method in use,
we chose the two-letter string sw. Thus the full prefix is did:sw:. Next, we
define the NSI as a short byte array of size 16, that must be generated using a
strong random number generator. The address space is 2128, what leaves more
than 288 unique identifiers for each device, considering 1 trillion devices and a
uniform distribution. A full example of a Swarm DID with a Base58-encoded
NSI is did:sw:TTbs19FJKYf6jXzS1dbnqe.

DID Document. Additional metadata about a DID can be stored in a DID
Document. The DDo usually carries the DID itself, one ore more public keys,
and zero or more endpoints [15]. Existing DID methods define that the DDo will
contain the DID itself and at least one authentication key [1,10]. We adopt this
design for the Swarm DID method, since it provides identification and authen-
tication. Next, unlike most DID methods, we propose the use of at least one
static agreement key, since it enables the creation of a secure channel without
transmission of ephemeral keys, thus saving bandwidth in constrained networks.
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One consideration we take in order to shorten the DDo is that both the
authentication and the agreement keys must use an optimized cipher suite with
respect to public key sizes. While many elliptic curves satisfy this requirement,
we adopt the curves X25519 and Ed25519 [17], which have the smallest public
keys, i.e., 32 bytes. To allow referencing specific keys within a DDo, keys may
have an arbitrary identifier that is unique in the scope of the DDo. We define
the following automated way to generate a short locally-unique key id: compute
the SHA-2 of the public key, and truncate it to the first eight bytes.

Finally, a DDo in the Swarm must support at least one service endpoint to
allow remote service invocations. The main parameter for each endpoint is an
URL, which enables remote agents to message the owner of the DDo. Optionally,
endpoints can also have a type tag and an id that shall be unique within the
DDo. Both the service type and the id are application-dependent, and if used,
they should be short.

4.3 Optimized DDo Serialization with CBOR-DI

Serialization mechanisms have direct impact on the size of messages transferred
across a network, and range from simple raw bytes encoding to complex struc-
tured data, such as the eXtensible Markup Language (XML)3. While the binary
approach has the benefit of conciseness, a structured approach facilitates arbi-
trary manipulation. Other formats, such as the JavaScript Object Notation
(JSON), have provided a reasonable trade-off, with the benefit of being human-
readable. The general specification for DIDs [15] uses JSON as its main format,
and most existing DID methods rely on JSON as well.

We provide a JSON-based serialization for the Swarm DID method, as shown
in Fig. 2 (a). It contains an identifier (DID), two public keys, and a service
endpoint. The random part of the DID is serialized in Base58, since JSON does
not allow encoding of raw bytes. The keys have each an id and a value, both
encoded in Base58, and a type indicating its format and usage. Similarly, the
service contains an id, a type, and an endpoint URL. After trimming white
spaces, the JSON document occupies 497 bytes.

Although human-readable and relatively short, the JSON-based DDo still
cannot be transmitted over low-power IoT networks, e.g., the LoRa4 network
only supports packets of up to 240 bytes. Fragmentation could be used, at the
expense of increased spectrum usage and latency. What is needed is a more
concise representation for DDos that allow transmission on constrained networks.

The Concise Binary Object Representation (CBOR) is a JSON-compatible
serialization mechanism that uses a binary encoding. Although the DID speci-
fication considers direct conversion from JSON to CBOR [15], on average this
approach only reduces document size in 20%, i.e., achieving 415 bytes.

Considering this limitation, we present a novel serialization method named
CBOR-based DID Documents for IoT (CBOR-DI) that reduces size of DDos

3 https://www.w3.org/TR/2008/REC-xml-20081126/.
4 https://lora-alliance.org/resource hub/lorawan-specification-v1-1/.

https://www.w3.org/TR/2008/REC-xml-20081126/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
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Fig. 2. Example of Swarm DID Document serialized in JSON and CBOR-DI.

in up to 75%. The technique consists in transmitting only the strictly necessary
parts of a DID Document, as exemplified in Fig. 2 (b). Specifically, we implement
the following modifications when comparing to the JSON serialization:

– Use CBOR as serialization mechanism.
– Use an array instead of a key-value mapping so that the elements have a fixed

order: DID, verification keys, agreement keys, and service endpoints.
– Remove the did: prefix of the DID, and only use the method designator, e.g.,

use sw: instead of did:sw:.
– Encode the DID and the key values as raw bytes instead of Base58. Note that

the average overhead of Base58 is close to 30%5.
– Use the key format defined in the CBOR Object Signing and Encryption

(COSE) specification [14]. It defines keys as a mapping that uses integers
instead of strings to reduce size. For example, instead of writing “type:
Ed25519VerificationKey2019”, we write “−1: 6”. Also, in Fig. 2 (b), the inte-
ger −2 points to the public part of the key. The full table with rules for key
representation is available in the Key Objects section of COSE [14].

– Finally, ignore optional fields in service endpoints and only include the URL.

As shown in Fig. 2 (b), CBOR-DI achieves a DDo size of only 128 bytes,
enabling DDo transmission in constrained networks, while losing no essential
information. Also, by leveraging existing standards, such as CBOR and COSE,
it fosters interoperability. Furthermore, the conversion process between JSON
and CBOR-DI can be automated by applying a small set of mapping rules,
e.g., convert between JSON and CBOR, Base58 and binary, and JSON keys
and COSE keys. Finally, although we proposed CBOR-DI in the context of the
Swarm DID method, the technique is generic and could be easily extended to
reduce DDo size in other methods as well.

5 https://tools.ietf.org/id/draft-msporny-base58-01.html.

https://tools.ietf.org/id/draft-msporny-base58-01.html
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Fig. 3. An overview of the DIoTComm protocol.

4.4 Secure Communication with DIoTComm

Once two agents are identified and have access to each other’s DDo, they can
exchange messages securely. The DIDComm protocol has been proposed as a
way to protect communications between self-sovereign agents [9]. It adopts the
structure and algorithms defined in the JSON Object Signing and Encryption
(JOSE) standard [11], which allows use of existing schemes for message encryp-
tion and authentication. Furthermore, it is agnostic of both DID method and
transport protocol. DIDComm also defines a set of message headers to identify
a message sender and receiver, as well as a message type, a unique message iden-
tifier, and other optional metadata. One downside of DIDComm, however, is its
reliance on JSON which causes overhead in constrained networks.

In this section we propose DID-based IoT Communication (DIoTComm),
an alternative to DIDComm that is tailored for the IoT, i.e., it uses a more
concise serialization method and simpler message headers. While in DIDComm
a JSON-based format is used for message protection, DIoTComm uses COSE,
which defines both a message format and a set of lightweight security algorithms,
leading to small-footprint protected messages. In DIoTComm the only message
header used is the sender id, as shown in Fig. 3. We are able to omit the receiver
id since the decryption by a receiver other than the intended one will fail. We
also consider that message type and unique id, if needed, will be handled at the
payload layer, e.g., if the payload is a CoAP message, its header would include
a method and path, and an id.

DIoTComm leverages the structure defined by COSE messages which have
one integrity-protected header, an unprotected header, a payload, and optional
extra fields. We define that the sender id in DIoTComm must be binary-encoded
and carried within the “key id” field of the protected header. If the message must
be encrypted, the payload will contain the cipher-text. If it must be signed, the
payload will contain the plain-text, and the message will have the signature as
a fourth parameter. In cases where a message must be protected both for non-
repudiability and confidentiality, the plain-text is first signed then encrypted.
Creation of such protected envelopes is described as follows.

For message signature, the sending agent will sign the message with its private
authentication key. The receiving agent can verify the signature using the key
available in the sender’s DDo. The COSE algorithm used is EDDSA, which
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consists in the Edwards Curve Digital Signature Algorithm that is applied over
curve Ed25519 keys.

Regarding encryption, the sending agent will obtain an encryption key using
its private agreement key that is locally stored, along with the public agree-
ment key available in the receiving agent’s DDo. A similar process is then exe-
cuted by the receiving agent to decrypt the message, wherein the receiving agent
uses its private agreement key and the sending agent’s public agreement key to
obtain the decryption key. The COSE algorithm used for key derivation is the
ECDH-SS-HKDF-256, which uses an elliptic curve Diffie-Hellman with two static
keys, along with a key derivation function based on SHA-256. The COSE algo-
rithm used for content encryption is AES-CCM-16-64-128, that is the Advanced
Encryption Standard in CCM mode with a 64-bit tag and a 13-bytes nonce.

4.5 Implementation

We implemented the proposed system in the SwarmLib, a library for building
Swarm agents, using the Python programming language. To construct COSE
messages, we used the cose library. We also modified the SwarmLib and added
several new routines to create DIDs and DDos, to register and resolve DDos,
and to protect messages before sending them to remote agents. Routines for
DDo serialization in different formats, including JSON, CBOR, and CBOR-DI
were also added to the SwarmLib. We used unit tests to validate the newly
added routines. We also implemented a blockchain mock, i.e. an API to create
and query DID Documents. The API supports DDos in three different formats:
JSON, CBOR, and CBOR-DI. It also validates the signature during the creation
of new DDos using the authentication keys from the DDos themselves, ensuring
that the DDo was registered by its own agent.

5 Evaluation

5.1 DID and DDo sizes

In this section we measure the size of our proposed DID and DID Document,
and compare it to five existing DID methods, as shown in Table 1. The meth-
ods did:ockam [1], did:io [3], and did:tangle [2] were selected since they are
specifically tailored for IoT applications. The other two, did:sov [10] and did:v1
[16], were selected as references since they provide both a complete specification
and a mature open source implementation.

As shown in Table 1, our proposed method, did:sw, has the smaller DID size,
occupying only 19 bytes when using the binary serialization described in Sect.
4.3. Among the methods tailored for IoT, did:ockam has the second smaller DID,
requiring 39 bytes. In order to compare DID Documents, we built documents
with equivalent configurations, i.e., having two public keys and, when applicable,
one service endpoint6. The measured DDos were extracted from the specification
6 Some DID methods do not use endpoints.
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Table 1. Comparison with existing DID Methods.

Prefix Focus on IoT? DID serialization DID size DDo ser. DDo size

did:sw: Yes binary 19 Binary 128

did:sov: No text 30 JSON 499

did:ockam: Yes text 39 JSON 779

did:io: Yes text 49 JSON 1112

did:v1: No text 54 JSON 1182

did:tangle: Yes text 92 JSON 853

Fig. 4. Size and overhead for DID Doc-
uments sent within a signed message
(step 2 of Fig. 1).

Fig. 5. Size and overhead for regular mes-
sages sent within a signed and encrypted
message (step 3 of Fig. 1).

of each DID method, and a second public key was added when the example
contained only one. As shown in Table 1, the did:sw method has the smallest
DDo size, which represents a reduction of almost 75% when comparing to the
second smallest DDo. These results confirm that the methods proposed in Sects.
4.2 and 4.3 indeed reduced DID and DDo sizes when comparing to previous
works.

5.2 Secure Envelope Overhead

In this section, we compare the overhead of using DIDComm and DIoTComm
to protect DID Documents and application messages for transmission in con-
strained networks.

We start by measuring the size of a signed message containing a DID Doc-
ument, using both DIDComm and DIoTComm. In doing this, we use different
DDo serializations: JSON, CBOR, and CBOR-DI. Fig. 4 shows the results. The
three leftmost bars use the DIDComm message envelope7, while the three right-
most bars use DIoTComm. We also highlight the threshold for transmission of
LoRa packets when considering Data Rate 6, which allows packets of up to 242
7 The size of DIDComm with CBOR is larger than DIDComm with JSON due to

overhead of Base64 encoding.
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bytes. Note that, although the overhead is significantly reduced when adopting
DIoTComm, the only scenario in which a DDo can be transmitted over a LoRa
network is when DIoTComm and CBOR-DI are combined.

In the next chart, shown in Fig. 5, we consider a 21-bytes application mes-
sage serialized in CBOR and sent over DIDComm and then over DIoTComm.
Differently from the previous chart, this message is not only signed, but also
encrypted, i.e. the messages are nested with two layers of headers. This confers
the DIoTComm version an even higher compression rate, with an overhead at
least five times smaller.

6 Conclusion

This paper presented a solution for self-sovereign identification and communica-
tion of IoT agents in constrained networks. While previous works either did not
consider constrained networks, or proposed centralized solutions, we proposed
a set of techniques to enable native self-sovereign identity in IoT environments.
First, we presented a specification for Decentralized Identifiers (DIDs) that focus
on reduction of metadata size by using shorter identifiers and optimized cipher
suites. We then introduced a novel serialization mechanism named CBOR-based
DID Documents for IoT (CBOR-DI), which reduces DID Documents up to four
times when compared to a JSON serialization. Finally, we proposed DIoTComm,
an optimized layer for protection of messages exchanged between self-sovereign
agents which uses a binary encoding, thus achieving five times reduction for
signed and encrypted messages. We implemented these proposals within the
Swarm framework and evaluated them with respect to metadata size and over-
head. Regarding identity metadata, we achieved a reduction of 3.89 times when
compared to related works. With respect to secure communication, we achieved
a reduction of almost five times. The combination of these techniques enable the
native use of self-sovereign identity in constrained IoT networks such as LoRa.
Future work includes evaluation in a real network scenario and integration with
a system for authentication and authorization.
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Abstract. Specific Emitter Identification (SEI) was introduced over
twenty-five years ago to grant electronic warfare systems the ability to
uniquely, distinguish between RADARs of the same type using intra-
pulse modulation features. The demonstrated success of RADAR SEI
led to its application in the identification of wireless transmitters for
the purpose of augmenting digital security measures within public and
private communication networks. The majority of SEI work has focused
on wireless channels comprised of noise only, unknown multipath fading
conditions, or fixed fading channels. Our recent works focused on SEI
performance within multipath fading channels that conform to a known
model/behavior and change from one transmission to another. However,
these works did not design the SEI process (i.e., from waveform collection
to final radio identification decision) with the singular purpose of max-
imizing SEI performance under multipath fading. In order to maximize
SEI performance under Rayleigh fading, this work analyzes the impacts
of the: (i) filter type, order, and bandwidth; (ii) Gabor Transform analy-
sis window width; as well as (iii) the number of candidate signals used by
the Nelder-Mead (N-M) channel estimator. The result is a 11.9% average
percent correct classification performance improvement for a length five
Rayleigh fading channel at a signal-to-noise ratio of 9 dB.

Keywords: Specific emitter identification · RF-DNA fingerprint ·
Rayleigh fading · Multipath · OFDM · IoT security

1 Introduction

Specific Emitter Identification (SEI) was introduced over twenty-five years ago
to provide Electronic Warfare (EW) systems the ability to uniquely, distinguish
between RADAR systems of the same type or class using intra-pulse modulation
features. These features are a byproduct of Unintentional Modulation On Pulse
(UMOP) that is attributed to the systems, sub-systems, and components (e.g.,
antenna, local oscillator, power amplifier, filters, etc.) that comprise the RADAR
emitter. The appeal of SEI lies in its: (i) passive nature, which means that the
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targeted emitter generates signals, as part of its intended mission, without exter-
nal stimulation, (ii) exploitation of distinct and unique features that are unin-
tentional and organic to the transmission process, (iii) ability to quantitatively
measure the exploited features present within the signal, and (iv) exploitation
of persistent features across time, location, and environments [1]. The success of
RADAR SEI has led to its application in the identification of wireless transmit-
ters for the purpose of augmenting digital security measures (e.g., encryption,
username & password) within public and private communication networks. The
application of SEI to the identification of wireless transmitters is often referred
to as Radio Frequency (RF) or RF-Distinct Native Attributes (RF-DNA) finger-
printing due to the unique ‘fingerprint’ that is imparted upon the radio signal
during its generation and transmission by the components (e.g., mixers, filters,
amplifiers, etc.) comprising the RF front-end. RF fingerprinting has demon-
strated success in achieving serial number (i.e., same manufacturer and model)
discrimination, which represents the most challenging case.

The preponderance of RF fingerprinting work has been focused on wireless
channels comprised of Additive White Gaussian Noise (AWGN), unknown multi-
path fading conditions, or fixed fading channels [8,10,11]. Our recent works pre-
sented the first cases in which the multipath fading conditions are known (e.g.,
Rayleigh versus Rician fading) and change from one transmission to another
[4–6]. However, the process presented in our previous works was not designed to
maximize RF fingerprinting performance under multipath fading. In this work
we analyze the impacts of the: (i) filter type, order, and bandwidth; (ii) Gabor
Transform analysis window width; as well as (iii) the number of candidate signals
used by the Nelder-Mead (N-M) channel estimator with the goal of maximizing
SEI performance under Rayleigh fading. The result is a 11.9% average percent
correct classification performance improvement for a length five (L= 5) Rayleigh
fading channel at a Signal-to-Noise Ratio (SNR) of 9 dB.

The remainder of this paper is organized as follows. Section 2 describes sig-
nal collection, detection, and the pre-processing steps. Section 3 presents the
methodology, which includes: filter design, the multipath channel model, N-M
channel estimation & equalization, RF fingerprint generation, and radio classi-
fication. The results and corresponding analysis are presented in Sect. 4 and the
paper is concluded in Sect. 5.

2 Background

2.1 Signal Collection, Detection & Pre-processing

This work uses the set of IEEE 802.11a Wireless-Fidelity (Wi-Fi) signals trans-
mitted by ND = 4 Cisco AIR-CB21G-A-K9 radios that operated in a peer-to-
peer connection and office environment, which is the same set of signals used
in [4–6]. For each radio, a total of 2,000 signals were collected using an Agilent
spectrum analyzer. Following signal collection, (i) amplitude-based variance tra-
jectory detection was used to remove individual signals from the overall collection
record, (ii) the corresponding Wi-Fi preamble extracted, (iii) carrier frequency
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offset estimation and correction performed, and (iv) down-sampled to a rate of
20 MHz.

3 Methodology

3.1 Filter Design

The work in [4–6] used a fourth order, low-pass Butterworth filter, with a
7.7 MHz bandwidth, that was selected and configured based upon successfully
published RF fingerprinting efforts [16,17]. However, the work in [16,17] used
an AWGN channel model, thus the selected filter and its configuration may not
be optimal for maximizing SEI performance under Rayleigh fading conditions.
Therefore, this work analyzes the impact of filter type, order, and bandwidth
on N-M channel estimation and SEI performance. Assessed filter designs con-
sist of: Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic Infinite
Impulse Response (IIR) filters using bandwidths of 7.4 MHz to 8.6 MHz in 5 kHz
increments, as well as orders of four, six, and eight [14].

3.2 Multipath Channel Model

This work uses Rayleigh fading to model an indoor 802.11a Wi-Fi multipath
channel [13]. Multipath occurs when attenuated and delayed copies, that are
due to objects within the propagation environment, of the transmitted signal
combine and destructively interfere at the receiver. Each reflection is associated
with a delay and a coefficient (a.k.a., gain), which corresponds to a tap within
the Tap Delay Line (TDL) channel model. The delay spread of the multipath
components depends on the propagation environment. The coefficients for a
length L Rayleigh fading channel are given by,

αk = Ak + jBk, (1)

where k = 1, . . . , L is the index of the multipath component, Ak and Bk are zero
mean independent and identically distributed random variables with variances
given in [13]. The TDL representation of the channel is,

h(t) =
L∑

k=1

αkδ(t − τkTs), (2)

where τk is the time delay associated with the kth component normalized by Ts,
where Ts is the sampling period [7,13]. The received signal r(t) for a transmitted
802.11a signal x(t) is given by,

r(t) = x(t) ∗ h(t) + n(t), (3)

where n(t) is white Gaussian noise, and ∗ denotes convolution. Rayleigh fading
channels of length L= [2, 3, 5] are generated using the time delays and coefficient
variances presented in Table 1. A unique Rayleigh fading channel is generated
and convolved with each collected preamble.
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Table 1. The delay, τk, and normalized variance, σk, values used to generate length L
Rayleigh fading channels.

3.3 Nelder-Mead Channel Estimation and Equalization

Estimation begins by determining the delay, τ1, of the first tap and all subse-
quent delays with respect to the first [6,15]. After estimation of the time delays,
the N-M estimator, from [5], is used to estimate the coefficients αk. The N-M
estimator is built using the N-M simplex algorithm that uses function values
to minimize a d-variable function through the use of four operations: reflection,
contraction, expansion, and shrinkage [9,12]. After these four operations and
using conditions detailed in [9], the algorithm compares the newest set of func-
tion values to the best and worst points of the current simplex denoted as x1 and
xd+1, respectively. The algorithm is terminated when the function values sat-
isfy specific conditions. This work adopts the same stopping criterion presented
in [5]. For channel coefficient estimation, the N-M algorithm is used to minimize
the squared error function given by,

f(h) =
∑

m∈T

∣∣∣∣r(m) −
L∑

k=1

αkx(m − τk)
∣∣∣∣
2

, (4)

where r(m) is the received preamble, x(m) is a “candidate” preamble, αk is
the kth coefficient, and τk is the kth delay, which is consistent with the work in
[5,6]. For each radio Np candidate preambles are randomly selected (i.e., 4×Np

total) from the set of collected preambles described in Sect. 2. An estimate of
the channel’s coefficients is obtained using each of the candidate preambles.
The residual power is then calculated for each of the Np, estimated channels
and corresponding candidate. The estimated channel that results in the lowest
residual power value is selected as the “best” estimate and used for subsequent
channel correction. As in [6], channel correction is performed using an MMSE
equalizer because it accounts for the channel statistics (e.g., noise power), which
provides superior performance under degrading SNR conditions.
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3.4 RF Fingerprint Generation

RF fingerprints are generated from the Time-Frequency (T-F) representation of
each radio’s preambles. The T-F representation is the normalized magnitude-
squared coefficients of the Gabor Transform (GT) given by,

Gηξ =
MNΔ∑

m=1

s(m)W ∗(m − ηNΔ) exp
(

−j
2πξm

KG

)
, (5)

where Gηξ are the coefficients, s(m)= s(m+lMNΔ) is the input signal, W (m) =
W (m+ lMNΔ) is the analysis window, NΔ = 1 is the number of shifted samples,
η = 1, 2,. . . , M for M = 320 total shifts, ξ = 0, 1, . . . ,KG − 1 for KG = 320, and
the modulo of (M ·NΔ) and KG is zero. The analysis window is,

W (m) = exp
{(

− π

pN2
s

)
·
[
m − 1

2
(Ns − 1)2

]}
, (6)

where the width of the window is approximately Ns
√

p (i.e., as p increases in
the time-domain the bandwidth of the Gaussian window decreases) and Ns is
the number of discrete-time samples comprising the input signal s(m) [2]. RF
fingerprint generation begins by subdividing the T-F representation into NR two-
dimensional patches. Each patch is comprised of NT ×NF values, where NT and
NF represents the length of the patch along the time and frequency dimension,
respectively. The variance, skewness, and kurtosis are calculated over the one-
dimensionally reshaped patch. In addition to calculating these features for each
patch, they are also calculated over the entire T-F representation and appended
to the end of the RF fingerprint. For the RF fingerprints used to generate the
results in Sect. 4, NT = 53 and NF = 4, which results NR = 420 total patches per
T-F representation and RF fingerprints comprised of Nf = 1, 263 features.

3.5 Radio Classification

RF fingerprint-based SEI is conducted using the Multiple Discriminant Anal-
ysis/Maximum Likelihood (MDA/ML) classifier to permit comparative assess-
ment with the results presented in [6]. MDA linearly projects the Nf -dimensional
fingerprints into an ND−1 dimensional subspace that reduces within class vari-
ance while concurrently maximizing between class distance [3]. A multivariate
Gaussian distribution is then applied to represent the projected RF fingerprints’
distribution. An unknown, projected RF fingerprint (i.e., one not previously
seen by the classifier) is determined to have originated from the class (a.k.a.,
radio) associated with the largest likelihood value. Percent correct classification
is calculated by tracking the number of times the classifier assigns the unknown,
projected RF fingerprints to the correct class over all Monte Carlo trials.
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(a) Fourth order filters.
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(b) Sixth order filters.
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(c) Eighth order filters.

Fig. 1. The average squared error computed between the actual and N-M estimated
channel coefficients for the four selected IIR filter types using bandwidths of 7.4 MHz
to 8.6 MHz in 100 kHz steps.

4 Results

4.1 Filter Analysis: Average Squared Error

Comparative assessment of the selected IIR filters: Butterworth, Chebyshev
Type I, Chebyshev Type II, and Elliptic, is conducted using 1,000 ideal 802.11a
Wi-Fi preambles sampled at 20 Mhz. The assessment is conducted using: band-
widths of 7.4 MHz to 8.6 MHz in 100 kHz increments, filter orders of four,
six, and eight, as well as AWGN to simulate an SNR of 9 dB. Each instance
of AWGN is scaled and added to a preamble prior to filtering and Monte Carlo
analysis enabled by repeating this process ten times per ideal preamble. A unique
Rayleigh fading channel is generated for each preamble using a TDL comprised
of L= 5 coefficients and the corresponding values in Table 1. The coefficients of
each fading channel is stored to permit analysis of a specific filter implementation
through use of the squared error measure,

ε =
∑

m∈L

∣∣∣∣h(m) − ĥ(m)
∣∣∣∣
2

, (7)

where h(m) and ĥ(m) are the actual and N-M estimated channel coefficients,
respectively.

The results associated with this assessment are shown in Fig. 1. When consid-
ering the four IIR filter types, it is clear that the Chebyshev Type I and Elliptic
filters result in the lowest average squared error across all orders and bandwidths
with the Elliptic resulting in the lowest average square error in all cases. When
comparing fourth (Fig. 1(a)), sixth (Fig. 1(b)), and eighth (Fig. 1(c)) order filter
implementations, it can be seen that increasing the filter order does not appre-
ciably reduce the average squared error. This is important, because as the filter
order increases so does the computation time and memory storage requirements.
Thus, the use of a lower filter order proves beneficial for resource constrained
devices without negatively impacting performance. For the fourth order Cheby-
shev Type I and Elliptic filters, average squared error decreases as the bandwidth
of the filter increases with the lowest error occurring at a bandwidth of 8.6 MHz.
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(a) Bandwidths from 7.7 MHz to 9.9 MHz
in increments of 100 kHz.
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(b) Bandwidths from 8.6 MHz to 8.9 MHz
in increments of 5 kHz.

Fig. 2. Average percent correct classification performance generated using an
MDA/ML classifier and RF fingerprints extracted from 802.11a preambles that are
filtered using either a fourth order Chebyshev Type I or Elliptic filter prior to N-M
channel estimation and MMSE correction at an SNR of 9 dB.

4.2 Filter Analysis: Average Percent Correct Classification

Based upon the results and analysis in Sect. 4.1, additional assessment is con-
ducted to determine the filter bandwidth that optimizes N-M channel estimation
and SEI performance under Rayleigh fading conditions. Only the fourth order
Chebyshev Type I and Elliptic filters are used in this assessment and SEI per-
formance is used in lieu of average squared error. Specifically, percent correct
classification performance is used. This is facilitated by randomly selecting 1,000
preambles from each of the Wi-Fi radios’ 2,000 collected preambles, Sect. 2. A
unique Rayleigh fading channel is convolved with every chosen preamble and
white Gaussian noise generated, scaled, and added to achieve an SNR of 9 dB.
The addition of scaled Gaussian noise is repeated ten times to facilitate Monte
Carlo analysis. The resulting set of preambles are then filtered by fourth order
Chebyshev Type I and Elliptic filters using bandwidths of 7.7 MHz to 9.9 MHz
in 100 kHz steps prior to N-M channel estimation and MMSE equalization,
Sect. 3.3. Figure 2(a) presents the average percent correct classification perfor-
mance generated using RF fingerprints, Sect. 3.4, and the MDA/ML classifier,
Sect. 3.5, at an SNR of 9 dB. Average percent correct classification is superior
when the preambles are filtered using a fourth order Elliptic filter with band-
widths less than or equal to 9.2 MHz. Maximum performance is achieved for
bandwidths of 8.6 MHz to 9 MHz. Based upon the results in Fig. 2(a), additional
analysis is conducted using only fourth order Elliptic filters with bandwidths of
8.6 MHz to 8.9 MHz in 5 kHz increments and percent correct classification per-
formance for the individual radios. The “best” bandwidth value is designated
as the one that maximizes individual radio classification performance overall. In
other words, there may be bandwidths that achieve higher classification perfor-
mance for a given radio, but at the expense of another. For example, Radio #4’s



284 M. K. M. Fadul et al.

classification performance is maximized at a bandwidth of 8.82 MHz, but this
same bandwidth is associated with one of Radio #3’s lowest correct classification
performance values. Based upon the percent correct classification performance in
Fig. 2(b), a fourth order Elliptic filter with a bandwidth of 8.865 MHz is selected
and used for all subsequent analysis and results.

4.3 Gabor Analysis Window Width

In an effort to maximize SEI performance under Rayleigh fading conditions, the
impact of the analysis window width, in (6), is investigated. To the best of our
knowledge, this work is the first to conduct such an investigation for GT-based
SEI. The analysis window width is controlled by the value of Ns and p, however
Ns is fixed since it is the number of discrete-time samples comprising a Wi-Fi
preamble. In [5,6], the value of p was set equal to 0.015, which is the same value
used in prior GT-based SEI works [16,17]. Our investigation is conducted using
preambles that: (i) have undergone L= 5 Rayleigh fading, (ii) are at an SNR
of 9 dB through the addition of scaled white, Gaussian noise, (iii) are filtered
using a fourth order Elliptic filter with a bandwidth of 8.865 MHz, as well as
(iv) N-M channel estimation and MMSE correction. As in Sect. 4.2, Monte Carlo
simulation is facilitated by adding ten unique, scaled noise realizations to each
radio’s 2,000 preambles. For each Monte Carlo trial, the set of RF fingerprints
are subdivided into a training and blind test set using random selection. The
test set is comprised of 20% (i.e., 400) of a given radio’s 2,000 RF fingerprints.
During MDA/ML classifier model development, the training set is further sub-
divided into five subsets to facilitate k-fold cross validation. The percent correct
classification performance, computed across all trials, associated with the test
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Fig. 3. Percent correct classification performance for each of the four Wi-Fi radios gen-
erated using an MDA/ML classifier, RF fingerprints extracted from 802.11a preambles
using for p ∈ [0.01, 0.045]. All preambles undergo L = 5 Rayleigh fading, have scaled,
white Gaussian noise added to them to achieve an SNR of 9 dB and are filtered using
a fourth order Elliptic filter using a bandwidth of 8.865 MHz prior to N-M channel
estimation and MMSE correction.
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set is used as the measure to assess the selected analysis window width, p. The
values of p range from 0.015 to 0.045 using a step size of 0.0005. Figure 3 shows
percent correct classification performance for each of the four Wi-Fi radios and
the “best” value of p chosen using the same criterion described in Sect. 4.2. Thus,
the “best” analysis window width is selected as p = 0.03.

4.4 Candidate Signal Set Analysis

Using the results in Sect. 4.2 and Sect. 4.3, the number of candidate preambles,
Np, used within the N-M estimator is investigated. As with the previous two
sections, analysis is conducted using preambles that: (i) undergo L= 5 Rayleigh
fading, (ii) have white Gaussian noise added to them to produce an SNR of
9 dB, (iii) are filtered using a fourth order Elliptic filter with a 8.865 MHz band-
width, and (iv) use an analysis window width for p = 0.03 when calculating the
Gabor Transform for RF fingerprint generation. For consistency with Sect. 4.2
and Sect. 4.3, Monte Carlo analysis is conducted through the use of ten noise
realizations per preamble of each radio. Once again the RF fingerprints are sub-
divided into training and testing sets with k-fold cross validation used during
MDA/ML model development. When classifying the RF fingerprints test set for
a specific value of Np, the MDA/ML model that results in the highest average
percent correct classification performance across all Monte Carlo trials and k-
folds is selected as the “best” model and used to generate the results in Fig. 4.
As the number of candidate preambles increases, percent correct classification
performance also increases until Np = 20 candidates are used by the N-M estima-
tor. Thus, the number of candidate preambles is set to Np = 15, because (i) this

4 6 8 10 12 14 16 18 20
74

76

78

80

82

84

%
 C

or
re

ct

Radio #1
Radio #2
Radio #3
Radio #4

Fig. 4. Percent correct classification performance for each of the four Wi-Fi radios gen-
erated using an MDA/ML classifier, RF fingerprints extracted from 802.11a preambles
using Np = 5, 10, 15, or 20 candidates within the N-M estimator. All preambles undergo
L = 5 Rayleigh fading, have scaled, white Gaussian noise added to them to achieve an
SNR of 9 dB and are filtered using a fourth order Elliptic filter using a bandwidth of
8.865 MHz prior to N-M channel estimation and MMSE correction.
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amount of candidates appears to sufficiently capture the nuances of each radio’s
SEI features and (ii) the N-M channel estimation computational complexity is
lower than the Np = 20 case. If the first claim was not true, then one would
expect the classification performance to have increased when Np is set to 20.

4.5 Parallel Optimization

Up to this point, the SEI process is optimized using sequentially chosen values. In
other words, the SEI performance is optimized per stage (e.g., filter bandwidth)
and a given stage’s optimal values are selected in isolation of those selected for
the other stages. Thus, it is possible to optimize a given stage and achieve an
SEI performance that is sub-optimal overall. This possibility is attributed to the
fact that when optimizing the values of an early stage (e.g., filter bandwidth),
the latter stages (e.g., GT analysis window width) may be configured using
sub-optimal values that can negatively influence selection of the current stage’s
optimal value. This possibility is alleviated through the use of parallel optimiza-
tion. In parallel optimization an exhaustive search is performed across the values
of all stages simultaneously and recording the average percent correct classifi-
cation performance for each of the chosen values. For the results presented in
Fig. 5, parallel optimization is performed using settings and values of: (i) Elliptic
filter bandwidths from 7.7 MHz to 9.9 MHz in increments of 100 kHz, (ii) GT
analysis window widths p from 0.015 to 0.045 in steps of 0.5×10−3, and (iii)
number of N-M candidate preambles Np from 5 to 20 candidates in increments
of 5 candidates.
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Fig. 5. Average percent correct classification performance for the sequential and par-
allel optimization approaches generated using an MDA/ML classifier, RF fingerprints
extracted from 802.11a preambles that undergo L = 5 Rayleigh fading, have scaled,
white Gaussian noise added to them to achieve an SNR in the range of 9 to 30 dB
and are filtered using a fourth order Elliptic filter prior to N-M channel estimation and
MMSE correction (Color figure online).
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The highest, overall average percent correct classification performance is
achieved when the parallel optimization process sets the: (i) Elliptic filter band-
width to 8.8 MHz, (ii) GT window width p to 30×10−3, and (iii) number of
candidate preambles Np to 20.These are the same values selected by the sequen-
tial optimization approach without the use of the smaller 5 kHz bandwidth
increment.

Figure 5 presents the overlay of the average percent correct classification per-
formance when the filter bandwidth, GT analysis window width, and number
of candidate preambles are chosen using either sequential (solid, blue line, ◦)
or parallel optimization (broken, red line, �). For the sequential optimization
results the: (i) Elliptical filter bandwidth is 8.865 MHz, (ii) GT analysis window
width is the same as that of the parallel selected value of 30×10−3, and (iii)
number of candidate preambles is set to 15 per radio. The results reflect very
little (i.e., at an SNR of 18 dB) to no difference between the classification perfor-
mance achieved using the parallel optimization selected values and those selected
by the sequential optimization approach. Based upon the results in Fig. 5 the
final set of results are generated using values chosen via sequential optimization.

4.6 SEI Performance

A final set of individual radio classification performance results are gener-
ated using preambles that: (i) represent channels consisting of noise only and
L= [2, 3, 5] Rayleigh fading paths, (ii) have white Gaussian noise added to them
to produce SNR values from 9 dB to 30 dB in 3 dB steps, (iii) are filtered using a
fourth order Elliptic filter with a 8.865 MHz bandwidth, (iv) use Gabor-based RF
fingerprints that are generated using an analysis window width for p = 0.03, and
(v) N-M channel estimation performed by selecting Np = 15 candidate pream-
bles per radio. For the results shown in Fig. 6, a total of ten noise realizations
are used for every preamble within a radio’s set to facilitate Monte Carlo based
analysis. For each channel condition and SNR, an MDA/ML model is devel-
oped for each noise realization by dividing the associated RF fingerprints into
training and testing data sets comprised of 80% and 20% of the total 2,000 finger-
prints, respectively. During training, k-fold cross validation is implemented using
k = 5 and the validation performance tracked. The training model that results
in the highest validation performance across all k-folds and noise realizations
is designated as the “best” MDA/ML classifier model for the select SNR and
channel condition. The “best” MDA/ML classifier model is used to classify the
corresponding test set of RF fingerprints. It is the percent correct classification
performance associated with the classification of these test sets that is shown
in Fig. 6. Additionally, the final set of results from [6] are included, designated
using dashed lines and the word ’Butterworth’, to enable direct comparative
assessment.

For the results shown in Fig. 6, percent correct classification performance
is the same for SNR values of 21 dB or higher across all radios when com-
pared to the results in [6]. These results are not surprising due to the low noise
power, thus allowing for accurate N-M estimation of the channel coefficients and
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(a) Radio #1.
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(b) Radio #2.
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(c) Radio #3.
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(d) Radio #4.

Fig. 6. MDA/ML percent correct classification performance generated using a fourth
order Elliptic filter with a 8.865 MHz bandwidth, N-M channel estimator, and T-F
RF fingerprints. The channel conditions represent the cases of: no multipath (�) or
multipath channels of length: L = 2 (�), L = 3 (∗), or L = 5 (◦) for SNR∈[9, 30] dB.
MDA/ML classification results from [6] are included (Butterworth, dashed lines) to
facilitate direct comparative assessment.

preservation of the distinct and unique features that are exploited within the
RF fingerprinting process. However, for SNRs of 18 dB and lower, our optimized
RF fingerprinting process results in improved percent correct classification per-
formance for all four radios across all four channel conditions: noise only, as well
as L equal 2, 3, and 5 Rayleigh fading channels when compared to the results
in [6]. As SNR decreases, noise inhibits the N-M estimator’s ability to accurately
estimate the channel coefficients, thus reducing out of band noise power becomes
increasingly important. The greatest amount of improvement is associated with
the L= 5 Rayleigh fading channel case. This is also the most challenging case,
because five delayed and attenuated copies of the same signal are combined at
the receiver resulting in constructive and destructive interference that corrupts
the SEI exploited features. The largest improvement in percent correct classifica-
tion performance is for Radio #2, which achieves a 14% improvement at an SNR
of 9 dB. The smallest improvement in percent correct classification performance
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is for Radio #1, which achieves a 10.8% improvement at an SNR of 9 dB. The
average improvement is 11.9% across all four radios for the L= 5 fading channel
when the SNR is equal to 9 dB.

4.7 Comparison with State of the Art

The RF fingerprinting results–shown in Fig. 6–are compared against the Deep
Learning (DL) based approach of [4]. In [4] a Convolutional Auto Encoder (CAE)
is used to pretrain the Convolutional Neural Network (CNN) to improve classifi-
cation accuracy. For specifics on the CAE-CNN approach, the reader is referred
to [4]. Use of the DL-based approach in [4] is motivated by its use of the same
IEEE 802.11a dataset. Table. 2 shows each radio’s percent correct classification
results for an L= 5 Rayleigh fading channel and SNRs of 9 dB to 30 dB in 3 dB
steps. For Radio #1 and Radio #3, our approach achieves superior performance
for SNR≥12 dB. Our approach outperforms that of [4] when classifying Radio
#4 at SNR≥15 dB. When classifying Radio #2, the two approaches are compa-
rable for SNR of 15 dB or higher. However, for low SNRs (i.e., below 15 dB) the
DL-based approach achieves superior performance, which is attributed to the
large number of tunable parameters that permit optimization of the CAE-CNN
architecture. The large number of tunable parameters comes at the cost of higher
computational time and power, which can limit the applicability of DL-based RF
fingerprinting as an IoT security solution, Table. 3. Table. 3 shows that the DL-
based approach requires tuning of 135,619 parameters and a total training time
of over 17 h. In contrast, the approach presented herein only requires a total of
12 training hours. The approach chosen depends on the IoT device(s), their use,
and the resources available.

Table 2. Percent correct classification performance of our optimized, Feature-
Engineered RF fingerprinting approach versus the DL-based approach of [4].
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Table 3. Number of parameters and training times for our RF fingerprinting approach
versus the DL-based approach in [4].

Architecture Parameters Training Time

1D CNN 81,918 11 h

1D CAE 53,701 6 h

MDA/ML – 12 h

5 Conclusion

This work analyzed the impacts of: (i) filter type, order, and bandwidth; (ii)
Gabor Transform analysis window width; as well as (iii) the number of candidate
signals used by the Nelder-Mead (N-M) channel estimator within the developed
process with the goal of maximizing SEI performance under Rayleigh fading and
degrading SNR conditions. This results in an optimized SEI process that achieves
a 11.9% average percent correct classification performance improvement, when
compared to the results in [6], for L= 5 Rayleigh fading at an SNR of 9 dB.
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Abstract. Industries across the world produce thousands of confidential
images and other data that needs to be secured on a daily basis. With the
onset of the information era and the exponential growth of technologies
like big data, security of private and confidential information in any form
has become a challenge. Many times, these images need to be transmitted
over public networks to facilitate wireless monitoring and sharing testing
results with remote operators. This transmission needs to be secure to
ensure the safety and confidentiality of the images, thus cryptography
techniques like image steganography are required. In this prototype, we
have designed, developed and tested a Raspberry Pi LAMP web server
which stores images locally which are obtained using an ESP32-Cam,
and which facilitates transmission using the steganography technique.
There is also an option to store these images on any other widely used
cloud server, and the transmission can still use steganography encryption
for an extra layer of security. The stored images can only be accessed by
authorized users.

Keywords: ESP32-CAM · Raspberry Pi · Security · Steganography

1 Introduction

In today’s digital age, the need for security of images has become paramount.
This need for security has only increased because there has been an exponential
rise in the communication of digital products over open networks. Apart from the
obvious requirement in everyday use cases, digital image encryption and security
also finds applications in many specialized fields like medical imaging systems
and military image communications [1]. These applications also require secure
image storage, which will ensure image security before and after the transmission
is completed. To ensure secure image transmission and storage, we have decided
to use the image steganography technique. Steganography is a technique used
to embed information into some sort of covering media. The covering media
is usually an image, while the embedded information can vary between text,
images, or even audio and visual data. For our purpose, we have chosen both
- the covering media and the hidden information to be image data. In order to
fulfil the task of encryption, multiple algorithms have been proposed.
In this study, we have considered the following:
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1.1 BPCS (Bit Plane Complexity Segmentation)

BPCS is a steganography technique that can replace all “noise-like” regions
in all bit-planes of the cover image with secret data while maintaining image
quality. According to multiple experiments [2], text images can be embedded
and camouflaged successfully in the cover image. The steganography images
also have satisfactory quality.

1.2 LSB (Least Significant Bit)

According to the Least Significant Bit embedding approach, data can be con-
cealed in the cover picture’s least significant bits, and the human eye would be
unable to detect the hidden image in the cover file. This technique is used for
embedding images in 24-bit, 8-bit or gray-scale format [3].

1.3 Haar Discrete Wavelet Transform

In the Haar discrete wavelet transform technique, data is hidden in the frequency
domain. This is done because the frequency domain is the most robust area. To
avoid the loss of data from the floating point, the embedding is done in the
integer part of the transform coefficients. This is done in such a way that it
increases both, the imperceptibility and the capacity of hiding [4].

1.4 AES (Advanced Encryption Standard)

AES is a symmetric encryption algorithm. In this algorithm, only one key is
used for both encryption and decryption that can be used by the sender and
the receiver. AES can be used for 128, 192 or 259 bits long, with each of them
containing 2128, 2192 and 2256 combinations. The data maintained by the key
is secured and authentication is maintained by the key itself [5].

1.5 RGB (Red, Green and Blue)

The RGB steganography algorithm uses the same principle as LSB. As done in
the LSB algorithm, the secret algorithm is hidden in the least significant bits of
the pixels. Randomization techniques are used in the selection of the number of
bits used and the colour channels that are used. Randomization is supposed to
increase both - the security of the system and also its capacity [6]. This technique
is applied to RGB images where each pixel is represented by three bytes which
indicate the intensity of red, green and blue in that pixel.

In this paper, we have created a local server using the Raspberry Pi LAMP
functionality. We have taken live images using an ESP32-CAM and stored them
securely on the server, from which they can be accessed by authorized personnel
only. We have also used image-in-image steganography to ensure secure trans-
mission and storage of the images.
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2 Literature Review

An option to be considered for image capture and transfer is ESP32 SoC Inte-
grated Bluetooth with low power 4.2 and Wi-Fi [7]. This is used to design the
sensor and gateway nodes. The sensor node captures images using the OV2640
2 MP camera module and transmits image data to Gateway via Energy in Blue-
tooth. The gateway then stores the collected images and uploads to Firebase
via nearby Wi-Fi network connections. This image data is processed and ana-
lyzed by computer vision and a machine learning algorithm for estimating crop
growth and predicting other useful information. Google Firebase is used as a
cloud based storage for image data collected by the sensor. The sensor nodes are
designed with ESP32 SoC, a dual core Tensilica Xtensa LX6 module. It has a
microprocessor, and is Wi-Fi and Bluetooth 4.2 capable.

Feature point extraction can be required for most computer vision and
machine learning algorithms, and an Android-based application with ESP32-
CAM and PIR sensors [8] was considered for the same. PCB on-board antenna
can be used independently and extend sensitivity by connecting an exter-
nal antenna separately. The proposed unauthorized intrusion detection system
requires a connection between Arduino Uno, ESP32-CAM and the smartphone
application. The pre-processing algorithms used include Grayscale, Binarization,
Zoom, Rotation/Transformation etc.

The ESP32-CAM can be used remotely and including this possibility in our
work was explored. A remote access surveillance device [9] is a perfect example to
showcase the module’s remote operation capabilities. Apart from the surveillance
function, it is also possible to link various other peripherals to the ESP modules.
These can be soil moisture sensor, tube light, fan, water pump which basically
makes the unit fully automated. The IoT interface used in this case is the Blynk
application, which relays real time data from all sensors attached to an IoT
capable device.

Steganography is the process of hiding confidential information. There are
some security challenges revolving around harsh environments, threats from
equipment, unauthorised access and interception of node communication along
with malicious data attacks. Messages need to be encrypted so that no one
other than the sender and the intended recipient can access them. This method
of cryptography was considered because it enables secure transmission of highly
confidential information in multiple formats - images, text, audio and video. The
technique used in this case was Holding Image Encryption [10].

A new method of integrating steganography and cryptography together was
considered [11]. The strength of the system lies in the new concept of the main
image. Adding two images (cover and key) in only one (cover) position overs
can change modules randomly. This possibility does not provide a steganolytic
device but there is a possibility to find a set of predictable changes. The proposed
approach has several applications such as hiding and coding messages in standard
media, such as pictures or videos.

For any IoT system, data acquisition, storage, analysis and privacy are a
major concern [12]. Thus, using cryptography and key management, a symmet-
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ric encryption/decryption together with cryptographic hash function to design
a secure, user-authenticated key management protocol can be applied in smart
agriculture. The network model proposed protocol consists of three different
nodes, including sensor nodes, gateway nodes, and cluster head nodes. To verify
biometric authentication, the proposed protocol uses fuzzy extraction technique
and to provide privacy with end-to-end security assurance a distributed and
clustered key management framework, based on group-based keys, specifically
consisting of cluster nodes with cluster heads and edge nodes. There are some
security challenges revolving around harsh environments, threats from equip-
ment, unauthorised access and interception of node communication along with
malicious data attacks do exist.

Fog provides storage, computing, and networking services between edge
devices and traditional cloud computing data centres. It primarily solves low
latency, mobility support, and location awareness issues in many cyberphysical
systems. However, the decentralised and open structure makes it vulnerable and
vulnerable to security threats [13]. Due to the high degree of distribution of fogs,
implementing a security mechanism for data-centric integrity can have a serious
impact on its QoS. Therefore, we need to find new ways to improve the security
of the and the trust of the mist. Fog nodes are required to interact with different
hardware platforms from different vendors, so a new interface to the Fog software
is needed to ensure reliable computing.

3 Construction

The setup of the project involves two parts. The first part consists of the hard-
ware and software required to set up a basic web server to store the uploaded
the images, and the second part consists of the same for capturing images and
uploading them to the server.

A Raspberry Pi 4 Model B is used to host a local server. This is done using
a Raspberry Pi LAMP server [14]. LAMP involves Linux, Apache, MySQL and
PHP and is essential for building a basic local server to store images.

To capture images and upload them to the local server, an ESP32-CAM
module [15] is used. This module consists of a Wi-Fi module and a camera
module. ESP32-CAM can be programmed using the Arduino IDE, which is an
open source programming platform for certain development boards. An FTDI
programmer [16] is used as an interface between the host computer’s USB port
and the ESP32-CAM module. The camera module captures images every 5 s
(can be changed according to the application) and uploads them to the local
server.

Apache’s Debian-based web server service is used to local server on the Rasp-
berry Pi. PHPMyAdmin is used to create the local server using PHP, and Mon-
goDB is used as the database service to store the images. Since all the images are
stored locally, it is necessary that both - the Raspberry Pi and the ESP32-CAM
module are connected to the same network. This is done by configuring Wi-Fi
in the Raspberry Pi’s terminal and the Arduino IDE for the ESP32-CAM.
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The steganography encryption can be performed at two stages of the process.
This can either be done when the camera module has captured the image, or
when the image has been uploaded to the local web server. This means that
steganography can be performed in either the C++ programming language [17],
in PHP, or in Python (which was chosen in this case) [18]. The encryption
algorithm is written in a Linux-based machine and takes effect before the image
is uploaded to the local web server.

Since the entire process takes place on a single network connection, the
database of images can be accessed by using a web browser and the Raspberry
Pi’s IP address [19]. This allows authorized users to access, download and delete
files stored on the server. The IP address is secured using a password login.

If the contents of the database need to be accessed by users that are not con-
nected to the same wireless/wired network as the host, it can be made possible
by hosting the Apache server on a website dedicated to it. This will allow autho-
rized users from across the world to access and make changes to the database.

The images used as input (cover image and embedded image) are in the
JPG format. This format was chosen because they have a small file size, have
good colour range, are compatible and are widely supported. The encryption
algorithm gave the best results with pictures in the JPG format. The image
received as output (final image) is in the PNG format. This is because the PNG
format has lossless images and transparency support, while also being widely
supported.

The workflow of the project is shown in Fig. 1

Fig. 1. Project workflow
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Fig. 2. Hardware components

4 Result

The Raspberry Pi 4 and the ESP32-CAM are connected to the same network
connection and a local server is built using Apache’s Debian-based web server
service. The setup is shown in Fig. 2. This maximum amount of data that this
server can store is restricted by the amount of storage the Raspberry Pi 4 is
provided with. In the case of this setup, the maximum storage space was 15.4
GB. The server and the data stored on it can be accessed by authorized per-
sonnel logged on to the same network connection, and the stored images can
be modified, downloaded or deleted (as shown in Fig. 3). The storage system
hence created is very secure, allows multiple user access and allows the data to
be modified.

To enable secure transmission of the stored images, image steganography has
been used. Specifically, the RGB algorithm in image steganography algorithm
has been used. In the RGB algorithm, the embedded image (shown in Fig. 5)
is hidden in the least significant bits of the pixels of the cover image (shown
in Fig. 4). As can be seen with the help of the above images, the test image is
completely embedded into the cover image and is hidden from our eyes (shown
in Fig. 6). It can only be retrieved using reverse steganography techniques to
unmerge the two images.
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Fig. 3. ESP32-CAM gallery

Fig. 4. Cover image
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Fig. 5. Test image (To be embedded in the cover image)

Fig. 6. Final image (Test embedded into cover)
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5 Conclusion

In this project, we have built a secure image storage and transmission system.
Such a system helps in wireless monitoring and takes multiple interval in a time
interval of 5–7 s, creating an online cloud based storage system for the same.
These images can be accessed on the side of the receiver as the cloud is built on
a local server.

To make the transmission even more secure, a technique called image
steganography was implemented, which makes it almost impossible for attackers
to access the embedded images without proper authentication.

6 Future Scope

To make the system more competent and precise for commercial use, we can
use deep learning techniques that can detect anomalies and disruptions in the
images that are continuously captured and stored on the cloud. This can act
as an alert system in many industrial or domestic scenarios, and can help in a
timely emergency response.

A simple GUI can be created where the transmitter creates a password for
authentication while sending the images which can be used by the receiver to
decode the received images. This will allow the users to operate the system
smoothly and efficiently.
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Abstract. The Internet of Things (IoT) is the enabler for new inno-
vations in several domains. It allows the connection of digital services
with real, physical entities. These entities are devices of different cat-
egories and range in size from large machinery to tiny sensors. In the
latter case, devices are typically characterized by limited resources in
terms of computational power, available memory and sometimes limited
power supply. As a consequence, the use of security algorithms requires
expert knowledge in order for them to work within the limited resources.
That means to find a suitable configuration for the algorithms to per-
form properly on the device. On the other side, there is the desire to
protect valuable assets as strong as possible. Usually, security goals are
captured in security policies, but they do not consider resource avail-
ability on the involved device and their consumption while executing
security algorithms. This paper presents a resource aware information
exchange model and a generation tool that uses high-level security poli-
cies as input. The model forms the conceptual basis for an automated
security configuration recommendation system.

1 Introduction

In the Internet of Things (IoT), small devices provide real-world data to appli-
cations and services in the virtual world. Protecting this data means to apply
some form of security algorithm, usually even a combination of multiple algo-
rithms, depending on the security goals. The execution of such algorithm requires
resources on the IoT device, depending on the algorithm and its configuration.
As a consequence, inappropriate configurations can have a negative influence on
the runtime of, especially battery-powered IoT systems.

A number of security measures to protect IoT data are available. However,
selecting and configuring them is not trivial. First, the assets and the neces-
sary security goals need to be identified through talks with the stakeholder and
recorded in Security Policies (SPs). The purpose of SPs is to communicate secu-
rity goals among stakeholders and developers in an easy and understandable
way. They should be written in a brief, but at the same time precise manner.
However, at the point of creating a SP, no information about the involved IoT
devices is present nor its available resources and capabilities are considered in
relation to the overhead of applying the security measures.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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This paper addresses the problem by a) defining a resource-aware Informa-
tion Exchange Model (IEM) meta-model to describe the transport of data in
a typical IoT scenario. Then a high-level Security Policy Language (SPL) is
extended to describe the information exchange between the stakeholders in an
abstract and easy understandable way. We show how these policies can be used
to derive individual information flows of the IEM, which combine security goals
and resource constraints at the same time. Finally, we discuss how the IEM can
be used to find optimal security configurations. The main contributions of the
paper are:

– We define a meta-model to capture message flows, its security goals, and
available resources and capabilities of the participants, e.g. (IoT), at the same
time.

– We extend an existing SPL and define transformation rules into the former
mentioned IEM.

– We explain the transformation of SPs into an instance of the IEM in an
environmental monitoring system, including different grouping modes of data
assets.

The rest of this paper is organized as follows: Sect. 2 addresses the topics of
security policies and security measures in the IoT domain. In Sect. 3 the model
for a secure, resource-aware information exchange is introduced followed by a set
of instructions to transform high-level policies into an instance of the IEM model
in Sect. 4. Section 5 presents an exemplary transformation of SP into information
flows with different data assets and security goals.

2 Related Work

Applying appropriate security measures in the IoT domain is a challenging task
due to the resource constraints [1]. The authors of [2–4] compared the resource
consumption of cryptographic algorithms for both, software implementations and
hardware accelerators. They show that even small priced Micro-Controller Units
(MCUs) can provide satisfactory security in scenarios such as the environmental
monitoring system. They also indicate that the resource consumption depends
on the parametrization and that hardware implementations are not always the
fastest solutions.

Other researcher approaches try to avoid large resource consumption on the
IoT device. One proposal is to use lightweight security algorithms, also known
as Light Weight Cryptography (LWC), on constrained devices. Dhanda et al. [5]
discussed and compared the applicability of different primitives. They compared
a total of 54 implementations in the classes block cipher, stream cipher, hash
function and Elliptic Curve Cryptography (ECC). To compare the “lightweight-
ness” they used, among others, the chip area of the algorithm as a metric, i.e.
how many logic gates are required to implement the algorithm in hardware. With
the number of gates required, the chip area can be calculated in dependence of
the internal feature size of the CMOS technology. The chip area is expressed as
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Gate Equivalence (GE) and directly proportional to the energy consumption.
Another survey was conducted by the authors of [6], but is limited to a com-
parison between symmetric and asymmetric encryption algorithms. Gunathilake
et al. [7] differentiate between Ultra LWC and Ubiquitous LWC, where the for-
mer applies only to specific areas, e.g. selective microcontrollers, and the latter
is applicable to a wider range of platforms. In contrast to other works, they
included hardware crypto accelerators into their study. An example for Ultra
LWC is given by [8], where the Advanced Encryption Standard (AES) algorithm
is optimized for Long-Range Wide Area Network (LoRaWAN) communication.
Batina [9] studied the energy consumption of various AES implementations and
showed that significant differences may exist, depending on the configuration of
the security algorithms.

Another proposal to handle the resource constraints of IoT devices is to out-
source (parts of) the security algorithms to non-constrained devices. The authors
in [10] proposed a “Security Agent” in an edge-computing scenario to outsource
complex cryptographic algorithms. A survey of edge-computing based security
designs for the IoT is given by Sha [11]. Safa et al. [12] investigated the positive
effects of fog and cloud computing on the security of IoT systems and presented
a decision-making model for selecting the best fog nodes based on the available
resources at the fog node. As such, it can be seen as resource-aware routing proto-
col for data through fog/edge nodes with integrated load balancer. However, they
have not investigated the effects of different security algorithms and their con-
figuration on the IoT device itself. Green et al. [13] introduced an entity named
“proxy” that transforms Attribte-based Encryption (ABE) cipher-texts into less
complex El-Gamal [14] style cipher-texts to be decrypted on constrained mobile
devices. Manzoor et al. [15] combined Proxy Re-Encryption (PRE) algorithms
with blockchain technology to implement a secure IoT data trading system. In
[16], the authors propose a PRE based encryption scheme to reduce the compu-
tational costs in fog/edge nodes caused due to the offloading of away from the
IoT device.

3 Information Exchange Model

This section presents the developed model to describe the information exchange
between stakeholders, including the measure to secure the exchanged data in
combination with the consequent additional resource consumption. The model
is divided into the four concepts Information Flow, Devices and Resources, Per-
formance and Security Policy Specification. The following Subsects. 3.1 to 3.4
describe each concept with focus on the aspects that influence the resource con-
sumption caused by executing security mechanisms.

3.1 Information Flow F
An Information Flow F = ({A∗},M, PP , PR, P

∗, L,P) describes the exchange of
an information in the form of a message M between at least two participants , a
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data provider PP and a receiver PR. In between, other participants P ∗ may assist
in the transport by forwarding M . Participants are connected to one another by
a set of communication links L. M contains at least one asset A, which must
be protected according to the required security services as stated in the security
policy P. In the context of information flows, an asset is a piece of information,
e.g. sensor data. In the following, the individual components of an information
flow F are explained in detail.

Asset. In the context of secure information exchange, we define an asset as
digital information that can be transferred between the participants of an infor-
mation flow. The asset is the entity that needs to be protected and which is of
interest to an attacker. The loss/disclosure of the asset has negative effects for
at least one stakeholder, e.g. loss of money and/or reputation or the revealing
of confidential information.

With respect to the resource consumption in F , an asset A can be charac-
terized by two properties: the frequency Af of its collection and its size. The
frequency describes how often A needs to be sent, which depends on the report-
strategy implemented in the use-case. Three principle strategies can be identified:
a) Pull the data is requested by a consumer; b) Push the data is sent by the
IoT device, if needed or not; and c) Event-based data is sent only when its value
changes. In an IoT scenario, the size of an asset can vary between a few bits for
numerical sensor readings to several megabytes for high-quality video streams.

Message. The message is used to transfer one or more assets within an infor-
mation flow F using a specific communication protocol (including protocol over-
head). As mentioned before, a message M is transferred from one participant
(a data provider PP ) to at least one other participant (a receiver PR), but may
be routed through/processed by, any number of participants (P ∗) in between.
The frequency to send a message Mf may be determined by the measurement
frequency of the asset Af . In the simplest case, all assets are measured at the
same time and transferred in one message. In this case, both frequencies are the
same (Mf = Af ).

Participant. Participants are any number of entities involved in F . Two par-
ticipants are mandatory: a Provider (PP ) that transmits M to a Receiver (PR).
During transfer, M may pass additional entities, which can be classified as active
or passive. Passive participants will be called Gateway and active participants
Proxy. With regard to security mechanisms, the difference between both classes
is that gateways just forward a message to the next participant, while proxies
employ additional security mechanisms. The name proxy was chosen to relate
to the PRE [17] schemes.
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Communication Link. In an information flow F , each participant is con-
nected to the next one through a Communication Link. The Participants may
support different communication technologies, such as Wi-Fi, and establish mul-
tiple links, e.g. to separate signalling and payload messages. The Communication
Technology influences the resource consumption while sending or receiving M .

3.2 Devices and Resources Concept

The second concept of the IEM describes the devices and their resources avail-
able to receive or transmit messages M of the participants involved in a flow F .
Each device has a set of Resources (and Capabilities) that can be used in F . In
the context of secure message exchange in a flow F using resource constrained
IoT devices the most relevant resources are: computational power, memory, the
available communication technologies, the general energy consumption and as
non-technical metric the financial cost. Capabilities include hardware accelera-
tors for cryptographic algorithms. In addition to the resources provided by the
device, the use-case itself provides resources. In the context of an information
exchange, these are typically described in the form of use-case requirements and
include: real-time requirements, the available energy source and the financial
budget.

3.3 Performance Concept

A PM indicates the ability of a device to perform a security algorithm and
the resulting resource consumption. PM can be determined and saved into a
knowledge-base by either analysing the security algorithm itself or by experi-
mentally executing the algorithm on the target device. Alternatively, the exe-
cution of the algorithms can be emulated in order to evaluate that the avail
resources are sufficient. There are two types: a PM either describes the amount
of resources that are going to be consumed when executing the algorithm, or it
describes the amount of data (assets) that can be processed in time, e.g. how
many bytes of data can be encrypted/decrypted per second.

In addition, we define PIs as a combination of all relevant PM that influence
an algorithm for a specific use-case. The PM can be weighted to reflect use-
case resources that describe a hard threshold, e.g. real-time requirements. An
ideal solution would be, if the PI could be a normalized value, ranking suitable
algorithms in terms of resource consumption on the one hand and the security
level on the other.

3.4 Security Specification and Configuration Concept

To capture all security requirements, a system designer consults with the stake-
holder. At this stage, a security policy is described at high-level. Later on, the
policies are refined and concretized into lower levels. To reflect this, the security
specification in the IEM is also done at different levels, which are explained in
the following. The terminology used follows the definition of [18].
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Security Service (SS ) is the most abstract specification. Here, together with
stakeholders, security goals are formulated. For example, a stakeholder may spec-
ify that the information exchange shall be Confidential or that the asset(s) shall
be protected from manipulation (Integrity).

Security Mechanism (SM ) is a mechanism to map a SS . There may be mul-
tiple mechanisms to implement one SS . For example, the SS Confidentiality can
be achieved using the SM s Encryption or Steganography. The security mecha-
nisms Digital Signature or Message Authentication Code (MAC) can be used to
achieve the SS Integrity.

Security Implementation (SI ) name specific algorithms to implement a SM ,
a set of parameters for the algorithm and also references additional SI , if neces-
sary. For example, the SM Encryption can be implemented with symmetric (e.g.
AES, Twofish, Blowfish) or asymmetric (e.g. RSA, ABE) algorithms. The refer-
ence to any additional SI is required, because implementing a SM may require
multiple algorithms, e.g. Digital Signatures use an asymmetric encryption algo-
rithm and a hash function to “reduce” the amount of data to be signed.

Security Configuration (SC ) is a set of SI and their configurations, that are
usable in an information flow, that is, they are within the boundaries of the
available resources of the IoT devices. Example configuration parameters for the
SM encryption include key length, padding mechanism, specific curves in ECC,
and for block ciphers the mode of operation.

4 High-level Security Policy Language (HSPL) to IEM
Transformation

This section describes the transformation from a SP to an instance of the IEM.
We decide to use and extend the High-level Security Policy Language (HSPL)
developed in the projects SECURED [19] and ANASTACIA [20]. ANASTACIA
investigated ways to define security requirements for Software Defined Networks
(SDN). They developed a SPL, named High-level Security Policy Language
(HSPL), to be used by typically non-technical end-users and is based on a set of
predefined high level syntax. The syntax follows a subject - predicate/action -
object scheme, followed by the possibilities to add further conditions and restric-
tions in the form of key-value pairs. The SPL can be extended by re-defining or
adding own expressions.

After the security requirements have been recorded within the high-level
SPs, the individual message flows need to be extracted. For this, the policies are
transformed into an IEM instance as introduced in Sect. 3. The overall approach
is as follows: every time a certain action type is identified, a new flow F is
assumed. Policies using the same HSPL-object are assumed to belong to the
same flow. This way, by iterating over all policies, the participants can be added
to the flows. At the end, possibilities to merge flows together are searched. That
is the case when all participants and their order are identical in different flows.
A practical example for such two flows could be a temperature/humidity sensor,
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which provides both measurements at the same time. The following subsection
give details about the different steps.

4.1 Element Identification

In a first step of the transformation, the elements, as described in Sects. 3, need
to be identified. More specifically, the Participants and their roles as well as the
asset(s) must be found within the HSPL policies. To identify an asset A, we
define a special type of action named protective. A HSPL-object affected by a
protective action is classified as an asset. We defined four actions as protective
actions: protects, converts (not) authorized to access. While the “protect” action
is trivial, the others imply the security requirements indirectly. For example,
the “not authorised to access” action indicates that the following object was
protected at the provider’s side.

In order to identify the participants of a flow within HSPL policies, we intro-
duce a mapping from HSPL-subjects to the participants of an information flow
through a set of predefined HSPL-actions. In other words, we predefine the
available actions for a subject depending on its later role. This is in contrast
to the original HSPL definition by the ANASTACIA project, where in theory
each subject could execute each action. Table 1 shows the mappings between
the HSPL-actions and the participants. A special meaning has the “requests”
action of a receiver, as it indicates that the report-strategy Pull is to be used.
In addition, the HSPL-object in a policy using one of the predefined actions can
be interpreted as an asset in an information flow, as shown in the column far to
the right of the table.

4.2 Grouping Modes

After the participants and their roles have been identified, the question of how
to apply the security measure SM needs to be addressed. Different strategies
can be considered, relevant for the consumption of resources. For example, if
the flow F contains multiple assets, but all are treated the same, these assets
can be grouped before the security measure is applied. This may be beneficiary
with regard to the resource consumption, since certain operations don’t need
to be executed multiple time, e.g. initialising cryptographic routines or padding
the data for block ciphers. Different grouping modes are possible. The grouping
modes are: no grouping (each SS is applied to each asset separately); grouping
by SS (all SS that can be applied to one or more assets are grouped); grouping
by asset (all assets requiring the same SS are grouped); .

4.3 Resource Annotation

Although not explicitly stated by the ANASTACIA project [21,22], the examples
for HSPL-fields as provided in the documentation indicate that they only allow to
specify characteristics and limitations for HSPL-objects. To be able to annotate
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Table 1. Participant identification based on HSPL Actions

Type →
Action ↓ Provider Gateway Receiver Proxy Asset

Provides – – – –

Publish – – – –

Protects – – –

(not)authorised
to access

– - – ( )

Receives – – – –

Subscribes – – – –

Requests – – – –

Forwards – – – –

Converts – – – ( )

the HSPL policies with additional information required in the IEM, we introduce
a set of specific HSPL-fields that affect the HSPL-subject as well. In that respect,
we extend the original concept with the following HSPL-fields to further describe
HSPL-subjects.
is a: This field key is used to specify a device type for the corresponding HSPL
subject.
every: This field key is used to specify the update frequency of the IoT device
in which new data is provided. The field value has to be some sort of time value,
such as 1 s(s).
within: With this field key, real-time requirements in the provision of data can
be specified. In contrast to every, this field describes the maximum transfer
time of the message M from provider PP to receiver PR.
has energy source: This field key is important for IoT devices with a limited
energy source, i.e. that are battery powered. Its value describes the amount of
energy stored within the battery in mAh (mill-amp-hour).
has size: With this field, the size of an asset (i.e. the object) can be specified.
with topic: This field describes the message’s topic in a publish/subscribe pat-
tern. The topic’s size has to be added to the size of the message.

5 Implementation

For the previously presented concept, we implemented a transformation tool
applying the transformation rules, as presented in Sect. 4, from the high-level
SPs into an instance of the IEM. To visualize the information flows in an IEM,
we choose to use Business Process and Modelling Notation (BPMN) as repre-
sentation format. The use of an existing BPMN extension would benefit from
recognizability and available experience. In [23], Zarour et al. provide an exten-
sive overview over several available BPMN extensions and give a statistical eval-



310 M. Fischer and R. Tönjes

uation about types of extensions. They show that the majority of BPMN exten-
sions introduce new graphical elements to represent special, usually domain spe-
cific, process behaviour. Chergui Provides in [24] an overview of security related
BPMN extensions. Bocciarelli [25,26] developed BPMN extensions to model task
resources in the context of Cyber Physical Systems (CPS) and the industry 4.0.
However, since no extension covers both aspects, security and resource limita-
tions, at the same time, the use of a combination of two extensions is necessary.

For the IEM, the modelling of the operations of the individual participants
can be done in a very simplified way. As depicted in Fig. 1, each participant
operates in an endless loop, where at least one operation is related to the transfer
of a message. With the exception of a participant of type Gateway, another
operation is to apply/remove the security measure. Between loop iterations,
the participant of type Receiver delays for a specific amount of time to match a
message’s frequency Mf . Meanwhile, the other participants start their operations
upon reception of message M .

Fig. 1. Participant operations

The transformation is illustrated on an example with a sensor providing
temperature, humidity and air pressure readings (e.g. the BME2801). The SSs
for the temperature and humidity shall be confidentiality and integrity. The SS

for the asset “air pressure” is only integrity. Within the information flow, the
message shall pass through a gateway (Access Point). For the purpose of better
visibility, the tasks to read out the sensor and use this data, have been merged
into a single subprocess. This results in the following 9 HSPL policies:

1. Sensor; protects Confidentiality, Integrity; temperature; has size → 16 bytes;
every → 1 s

2. Sensor; protects Confidentiality, Integrity; humidity
3. Sensor; protects Integrity; air pressure
4. Bob; authorized to access; temperature
5. Bob; authorized to access; humidity
6. Bob; authorized to access; air pressure
7. Access Point; forwards; temperature
1 https://www.bosch-sensortec.com/products/environmental-sensors/humidity-

sensors-bme280/.

https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
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8. Access Point; forwards; humidity
9. Access Point; forwards; air pressure

Figure 2 shows the BPMN representation of the resulting information flow
with grouping mode “grouping by asset”. As all assets have the same PP , PR,
and the gateway, only one single flow is generated. The participants PP and PR

(top and bottom) contain four tasks each, two of which to apply the security
services. The security tasks are depicted with a padlock symbol, as suggested by
[27]. Furthermore, we also acknowledge the need to “undo” or validate a security
measure at the receiver side, which will be represented with an open padlock.
The SS applied in the task is illustrated with orange symbols. Here, we use the
symbols defined in SecBPMN [28]. That is a symbol with two hands shaking for
confidentiality and a symbol with a white document for integrity.

The sequence flows (chain of tasks within a BPMN pool) relate with the
operations for the different types of participant, as introduced in Fig. 1. On the
PP ’s side, it covers the gathering of the assets from the sensors. The tasks should
be annotated with the resource consumption to read out the hardware sensor.
Like with the BME128 sensor, this is often a single, integral step for all assets.
Thus, from a resource consumption point of view, it is possible to merge all
these tasks into one task/subprocess. In general, as a detailed sequence flow is
not necessary as long as the resource consumption is known, the same merging
can be done on the PR’s side.

The Access Point in the middle simply receives the message and directly
afterwards sends it to the PR Bob. The resource properties are provided via
an input form in a property-panel. The implementation is an extension to the
bpmn-js project [29], an open source BPMN modeller written in JavaScript.
The transformer tool is implemented in Swift and is still a work in progress. The
GUI allows constructing new HSPL policies out of the redefined sets of HSPL
elements, i.e. subjects, actions, objects and fields.

Figure 3 shows the tasks of the participant PP when using the grouping mode
“grouping by SS”. As before, two tasks are generated to protect all three assets.
However, in contrast to the first example, protecting the Integrity in the later
task only processes one asset, namely the air pressure.

6 Conclusion and Future Work

This paper addressed the topic of applying security measure while providing
data with resource constrained devices in an IoT environment. Furthermore, the
paper presented an IEM capable of capturing available/required resources. As
these policies are used by non-expert stakeholders, the use of a high-level SPL
was proposed, together with a set of transformation rules to derive individual
information flows as part of the resource-aware Information Exchange Model
(IEM).

As a next step to realize the envisioned security configuration recommenda-
tion system is to determine the PI . That means to determine relevant sets of PM

for available IoT devices. Here, an extendable emulation framework is planed,
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Fig. 2. Information flow represented as BPMN process

Fig. 3. Information flow with grouping by Security Service
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able to emulate the resource consumption of an information flow on a microcon-
troller. More precisely, the resource consumption during the execution of various
security algorithms and configurations is in the focus. First experiments with
the QEMU emulator for the ESP32 microcontroller showed mixed results with
respect to the runtime when compared with the real device.

Acknowledgement. This work is part of the research project “I4sec - Sichere Maschi-
nenkommunikation und Fernwartung von Sensoren in der Produktion”, funded by the
Federal Ministry of Education and Research of Germany (BMBF).
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Abstract. This paper provides an overview of the Advanced Threat Intelligence
Orchestrator in assisting organizations and society’s first responders in manag-
ing, prioritizing, and sharing information related to cyber security incidents. In
order to accomplish this, the capabilities and benefits of security, orchestration,
automation, and response (SOAR) systems, on which Orchestrator is based, were
promoted. The results of this survey conducted as part of the IRIS EU-funded
project to protect Internet of Things (IoT) and Artificial Intelligence (AI)-driven
ICT-enabled systems from cyber threats and attacks on their privacy facilitating
SOC/CSIRTs/CERTs.

In this context, the tool is explored inmethods of orchestrating and automating
cyber security processes and routines. The open-source tool thatwas chosen for the
creation of Advanced Threat IntelligenceOrchestrator was SHUFFLE. SHUFFLE
gives a wide variety of functionalities as it can be integrated with numerous tools
and APIS. Furthermore, the provision of schematic workflows with action steps
makes the stakeholders’ interface more intuitive.

Keywords: Orchestration · SOAR · Information management · Automation ·
CSIRTs · Threat management · SHUFFLE

1 Introduction

Security operational centers (SoCs) and enterprise experts spend hours in security depart-
ments monitoring processes, waiting for alerts and searching for clues that something
unusual is happening identified among massive amount of data. Many times, these alerts
either do not reach security centers or misinterpreted by the system for immediate action,
causing uncertainty and anxiety both within the organization and in a smart city. Even if
the alerts are received, the process of sending the information to the appropriate “place”
is time-consuming, as well as managing a massive amount of data necessitates multiple
decision-making processes. As a result, in many cases, implementing automation and
orchestration is the answer when it comes to managing and, ultimately, combating cyber
security threats.
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Advanced Threat Intelligence Orchestrator can be provided as a drastic solution in
a cyber-threat challenging world since it not only manages cyber-threat information
and processes in IoT and AI-enabled infrastructures, but it also secures smart ecosys-
tems by facilitating vulnerability management, security incident response, and security
operations automation. This technical solution adheres to the capabilities of security,
orchestration, automation, and response (SOAR). SOAR capabilities can benefit from
relying on and leveraging security information and event management (SIEM) system
information through automation and orchestration.

1.1 Data Sources in Smart Cities

IoT implementation in urban areas improves citizens’ daily lives and society’s operations
by providing safety and operational stability. These ecosystems consume static and real-
time data from a wide range of sources, such as sensors, adaptors, actuators, IDs, SIEM
alerts, CCTV cameras, and so on. Nonetheless, as IoT and AI smart ecosystems become
more complex, their capabilities increase, making them more vulnerable to malicious
actors.

1.2 State of the Art of Tools Used into SOAR

As it is mentioned by Gartner Glossary1 “SOAR refers to technologies that enable
organizations to collect inputs monitored by the security operations team. For example,
alerts from the SIEM system and other security technologies—where incident analysis
and triage can be performed by leveraging a combination of human andmachine power—
help define, prioritize and drive standardized incident response activities. SOAR tools
allow an organization to define incident analysis and response procedures in a digital
workflow format”.

SOARplatforms (SOARP) interact with several technologies such as threat detection
technology tools, vulnerability detection tools, AI/ML-powered cyber defense systems
etc. Indicatively some of them are SIEM is a piece of software that allows users to
log, monitor, alert, anticipate, correlate, and display security-related events and data
collected from networked devices [1].Unified Threat Management (UTMs), contains
a software or a hardware gathering securitymanagement information displaying security
logs in a console. Next-gen firewalls, include traditional firewalls, combine them with
filtering capabilities, network- and port-address translation (NAT), VPN support, and
other features. According to [2], the threat detection technology tools mentioned above
are unaware of an organization’s entire IT ecosystem.Vulnerability detection tools is a
software tool that according to the bibliography, there are three major types of analysis
tools and techniques for detecting software vulnerabilities: a) static analysis, which
examines the system/software without executing it, including examining source code,
bytecode, and/or binaries, b) dynamic analysis, which examines the system/software by
executing it, giving it specific inputs, and examining results and/or outputs, c) hybrid

1 https://www.gartner.com/en/information-technology/glossary/security-orchestration-automa
tion-response-soar.

https://www.gartner.com/en/information-technology/glossary/security-orchestration-automation-response-soar
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analysis, combining a, b [3]. AI/ML-powered cyber defense systems [2], using deep
learning and cutting-edge algorithms.

Despite the fact that the implementation of SOAR capabilities into a variety of
technical solutions is a relatively new phenomena, a literature study has begun to revolve
around this subject [4–7].

1.3 SOAR Solutions

There are many already existed market-oriented and Open-Source solutions. Gartner’s
2020 SOAR market guide2 entails a list of representative vendors and their prod-
ucts, including the following: Anomali ThreatStrecam, Cyware Virtual Cyber Fusion
Center, D3 Security D3 SOAR, DFLabs IncMan SOAR, EclecticIQ Platform, Fire-
Eye Helix, Fortinet FortiSOAR, Honeycomb SOCAutomation, IBM Security Resilient,
LogicHub SOAR+, Micro Focus ArcSight SOAR, Palo Alto Networks Cortex XSOAR
[8], Rapid7 InsightConnect, ServiceNow Security Operations, Siemplify SOAR Plat-
form, Splunk Phantom, Swimlane SOAR, ThreatConnect SOAR Platform, ThreatQuo-
tient ThreatQ, Tines. The open source community is also providing solutions for the
security Orchestration domain.

Some of the common elements of SOAR enabled tools include using machine
learning algorithms, workflow automation, incident response playbooks, an open plu-
gin framework, a case management visual environment, an intuitive user interface, a
command line console, and so on. Some of the products, indicatively,

Cortex XSOAR [9] unifies security automation, case management, real-time
collaboration and threat intelligence management, it also includes a registration fee.

DFLabs IncMac SOAR [2, 4] enable the planning and recovery phases through
features such as knowledge bases, key performance indicators, and advanced reporting.

Anomali ThreatStream [10], converts raw data into actionable information by
automating the collection and processing of data. This product is oriented to security
teams’ experts.

As a result, of cutting-edge research conducted through the IRIs project, SHUFLLE
open source toolwas themore interesting andmature since it facilitates to achieve project
goals.More specifically, it supports thousands of premade integrations (seeTable 1) using
open frameworks such as OpenAPI to ease migration. Provides options for automating
the digestion of trigger points. Possess a diverse set of cyber incident use cases (see
Table 1), including MISP and HIVE cases that will be used in the project.

We also considered various user-oriented criteria, which resulted in the following
benefits.

a. Maintains a well-organized GitHub repository and community
b. Contains useful documentation
c. Encourages creativity since the visual design allows you to personalize the

dashboards.
d. It has the ability to integrate a wide range of tools from various categories
e. It is available in a free version.
f. It caters to the needs of both experts and non-experts.

2 https://www.splunk.com/en_us/form/gartner-soar-market-guide-2020.html.

https://www.splunk.com/en_us/form/gartner-soar-market-guide-2020.html
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1.4 SOAR Benefits

Automate Critical Use Cases: The automatic definition of emergency cases, can be
proved as savior in cases where the time is a valuable parameter for tackling an incident.
In any case automating any kind of use cases indicates preparedness in operational and
decision-making processes.

Streamlined Operations: Each element of SOAR contributes to the streamlining of
security operations. Security orchestration aggregates data incoming from a variety
of sources. Security automation, meanwhile, can easily handle low-priority alerts and
incidents through the use of automated playbooks.

Immediate Incident Detection and Automating Response: This capability ensures
that the system responds on time and without delay during the decision-making process
of multiple data aggregation.

Faster Response Time: Security orchestration combines multiple alerts from different
systems into a single incident. Security automation saves evenmore time by allowing the
system to respond to alerts without the need for human intervention whenever possible.
Adding context to textual data and automating the decision-making process allows for
faster alert handling3.

Elevating SIEM: A SOAR solution that integrates with a Security Information and
Event Management (SIEM) is required to automate Security Operational Centers
(SOCs). A SIEM with an integrated SOAR solution allows teams to respond to threats
more quickly because all of the information they require is in one location. It also
reduces the possibility of human error and the time analysts spend switching between
tools because they can all be accessed through a unified interface.

Systems Scalability: The scalability of the system is achieved by the Web based
application of SHUFFLE solution.

2 Specifications of Advance Threat Intelligence Orchestrator

In IRIS context, Advanced Threat Intelligence Orchestrator will be a facilitator of the
communication among the external data sources and stakeholders. The end-user cate-
gories are composed by SOC teams, CSIRTS/CERTS and AI infrastructure providers.
In particular, Orchestrator will create workflows to respond to incident information sent
from infrastructures by implementing expert knowledge and processes. Eachworkflow’s
knowledge can be updated based on the most recent laws and processes.

2.1 Orchestrator’s Subcomponents

The Advanced Threat Intelligence Orchestrator is made up of six sub-components,
including two visual environments and four backend tools. The structure of the integrated
tool is presented below (Fig. 1):

3 https://www.siemplify.co/blog/security-orchestration-automation-response-benefits/

https://www.siemplify.co/blog/security-orchestration-automation-response-benefits/
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Fig. 1. The internal structure of the Orchestrator and its relationship to input and output
information.

The visual environment consisting of a) the Workflow Designer as well as b) the
Sharing, andResponseTasksManagement&Trackingwill be based on the Shuffle visual
environment, while the backend tools will provide extra functionalities to imported and
exported information.

Workflow Designer/Manager is a graphical environment that allows the creation
of multiple scenario workflows. In particular, the definition of various incident response
scenarios is the digitized form of the associated runbooks/playbooks that are executed.
The runbooks are documents comprising proper background information and proce-
dures to successfully execute security-related tasks, or address incidents, while the play-
books are documents comprising workflows, operating procedures, and cultural values
required to approach and complete tasks in a consistent way. Finally, the Workflow
Designer/Manager will include all the steps that should be automatically or manually
executed based on the defined workflows.

Workflow Execution engine is the engine that implemented on the defined work-
flows, executes the data exchange steps and realizes the command execution requests to
components.

Workflow combination engine will take the already existing workflow procedures
connected to cyber-incidents and will automatically combined them with expert input
from the MeliCERTes platform to enable proactiveness.

Threat Sharing and Response Tasks management and Tracking is a visual
environment, which a part of this provides information on the tools related to
threat sharing and response tools that have been automatically applied or should be
manually/semi-automatically applied based on the risk levels.

Data exchange framework is a framework facilitating the data exchange among
the orchestrator and intercorrelated components through APIs.

Command execution requests framework (based either on existing solutions of
components or definition based on the OpenAPI specifications) is a framework facili-
tating the execution requests from the orchestrator to the components through APIs as
well as the sharing of information for automatically applied/executed processes.
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2.2 Technologies

SOAR tools combine Security, Orchestration and Automation capabilities (SOA), with
Security Incident Response Platform (SIRP), and Threat Intelligence Platform (TIP) to
seamlessly manage all the data received and created workflows in real time. A scenario
workflow, referred to as a Failed ssh login Scenario, is presented in this section.

Shuffle
Within this section, SHUFFLE documentation is presented, to imprint potential SOAR
capabilities that Orchestrator could perform in IRIS information sharing and awareness
platform, as well as to perform a “language” for users’ common understanding.

SHUFFLE is developing workflows for a variety of use case categories. SHUFLE
has clustered these use cases into 8 groups, which namely are a) Communication, b) Case
Management, c) SIEM, d) Assets, e) IAM, f) Intelligence, g) Network, h) Eradication
cyber incident detection, prevention, remediation, case management, communication
etc., more information on Table 1 below. The below use case categorization has been
depicted from GitHub repository.4 Based on the case scenarios, specific SOC tools are
involved.

SHUFFLE open source tools have a wide range of capabilities, including integration
and communication with a plethora of tools, including (e.g. Hashdd, Elastic Search,
the Hive, MISP, Keycloak IAM, etc.), managing cyber-security issues, related to threat
and vulnerability management, authority management, security incident response and
security operations automation.

APIS Integration
The SHUFFLE platform makes third-party API integration straightforward by utilizing
trigger-based communication techniques such as Webhook, which can be quickly acti-
vated by a POST request from the backend. Using this way, the synchronization of the
workflow and the incoming input can be defined from the REST-API, and the necessary
automated process can be simply configured in SHUFFLE.

2.3 Failed SSH Login Scenario

The example of a failed remote authentication login was chosen to demonstrate a small
portion of SHUFFLE’s capabilities and to familiarize the user with the platform’s con-
sensus and visual output. So, to establish an input data pipeline for the SHUFFLE pro-
cedure, Wazuh, an open-source platform for thread identification, security monitoring,
and incident response, was used. As a result, a Wazuh manager was set up and agent in
virtual machines and integrate SHUFFLE to monitor for failed ssh authentication. The
Wazuh manager checks the security logs produced by the manager itself and the agent
that controls and when it detects a password failure it sends a HTTP-POST request to
the SHUFFLE Webhook.

This request is essentially a JSONmessage containing information about the authen-
tication attempt and the configuration rules from Wazuh. By sending this message we
trigger the SHUFFLE Webhook and kickstart the flow of our use case.

4 https://github.com/Shuffle/python-apps.

https://github.com/Shuffle/python-apps
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Table 1. SHUFFLE use case categories correlated with capabilities and tools

Use case category Use case capabilities Tools

Communication • Write text to someone
• Read chats
• List chats
• Send actionable buttons
• Send a file
• Search through chat
• Send a chat (comms) for every new
email found (comms) every 5 min.
Look for any IoC in it (SHUFFLE
tools) and analyze it with Threat
Intel

Chat:
• Discord
• Slack
• MS Teams
• SMS
Email:
• Gmail
• Outlook
• AWS SES

Case management • Open ticket
• Update ticket
• Comment ticket (if not an update)
• List Tickets
• Merge ticket
• Search for ticket(s)
• Upload file(s)
• Download file(s)
• Add artifact/Indicator like IP and
domain (security specific)

• Syncronize tickets with another
ticketing system (cases) every 5
min. When a new ticket comes,
send a message to messaging app
(communication)

• GitHub Notifications
• TheHive
• Service Now
• Jira
• Secureworks
• HappyFox
• PagerDuty
• Zoho
• ConnectWise

SIEM • Search
• Send event TO SIEM
• Get Search results
• Create Saved Search
• Create Alert from Search (sends
webhook/something else)

• List Incidents
• Get Incident
• Update incident
• Add comment

• Splunk
• QRadar
• Elasticsearch (ELK)
• MDATP
• Azure Sentinel
• Logz.io
• Security Onion

(continued)
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Table 1. (continued)

Use case category Use case capabilities Tools

Assets • Find hostname
• Find Software by name
• Find IP
• Find hostname’s owner
• Search for CVE
• List vulnerabilities by severity
• List vulnerabilities by host
• Get vulnerability
• Edit vulnerability
• Generate report

VMS systems:
• Nessus
• TenableVMS
• Tenable Container Security
• Snyk
• Gitguardian
Asset Management
• McAfee CHS

IAM • Access Management
• Active Directory
• Single Sign-on

• Microsoft Identity and Access
• Sailpoint IdentityQ
• CISCO Identity Services Engine
• Keycloak IAM
• AWS IAM

Intelligence • Search for IP
• Search for Domain
• Search for URL
• Search for hash (md5, sha256…)
• Add IP/domain/url/hash to have
been seen (sighted MISP)

• Search for CVE
• Search for Threat actor
• Get incidents

• MISP
• Passivetotal
• Recorded Future
• Secureworks
• Shoden
• Virustotal
• IBM xforce
• IPInfo

Network • Block IP
• Block domain
• Block URL
• Sinkhole IP
• Sinkhole domain
• Unblock (all of the above)
• Search for status with IP/domain

• AWS WAF
• Cisco
• Check point
• Palo Alto
• Fortinet
• AWS VPC FW

Eradication • Ticketing system (list/create/edit
alert)

• Search
• Find hostname
• Ban hash/ip/url/domain
• Isolate host
• Execute script on host
• Create rulE

• VMware Carbon Black
• GoSecure
• Cylances
• InfoCyte
• Waxuh
• Windows Defender
• Windows Defender ATP
• CrowdStrike Falcon
• Velociraptor
• Qualys EDR
• Trend MicroXDR
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Fig. 2. Orchestrator’s Workflow Designer visual environment relying on SHUFFLE design
environment

In Fig. 2 the pointing arrow shows the direction of input data in SHUFFLE and all
the blocks have access to that information.

In this example we have also used TheHive that is an incident response platform to
create an alert regarding the failed connection by filtering some fields of the original
message. At the end of the flow we post in a Discord channel some results like the IP
and port used in the login attempt to notify the user.

The results of the executionworkflow are indicated to the figure above (Fig. 3). These
outcomes can be viewed in either the related tools or in this visual environment. As a
result of the scenario, users reported that the Orchestrator processes flowed smoothly
and that it was user-friendly.

2.4 Stakeholders Communication Through Orchestrator

The Advanced Threat Intelligence Orchestrator will be accessible to stakeholders via a
user management interface. Begin by deciding whether to use a predefined or custom
workflow. End users are thus able to seek and execute an already existed workflow or
create a sequence of steps implementing tools based on use case categories (see Table 1),
based on the triggering information received (e.g. alerts and events etc.). Orchestrator
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Fig. 3. Orchestrator’s Sharing andResponseTrackManagement andTracking visual environment
relying on SHUFFLE design environment.

will be able to interface with the MeliCERTes platform and seek expert knowledge for
response, improving default workflows and recommended response actions. The com-
bination of multiple data sources gathered from other tools and MeliCERTes platform
will improve the ability to compute efficient proactive response steps. As a result of
the foregoing, security operations teams will benefit from automating iterative response
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processes, saving time for higher priority sorting tasks, and providing a standardized,
easy-to-follow response.

3 Conclusions

In a nutshell, the numerous threats of security operational centers business face on a
daily basis are draining resources and slowing incident response time, whether it is
called alert fatigue or information overload. Here it comes SOAR platforms to give the
solution by relieving SOC analysts of remedial and low-priority tasks, allowing them to
focus on improving the overall effectiveness of SOC in responding to incidents. IRIS
will take a step forward in this direction by implementing Orchestrator, which will assist
stakeholders in lowering smart city risks while automatically managing, prioritizing,
and sharing information related to cyber security incidents.
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Abstract. Federated learning allows multiple parties to jointly train
and update machine learning models without shared data to a central
server, which is particularly suitable for intrusion detection in IoT envi-
ronments. However, data on each node in the IoT scenario are usually
not independently and identically distributed (IID), which poses an addi-
tional challenge to the convergence and speed of federated learning. To
address this problem, there have been proposals to have nodes share a
portion of their data centrally, which can still raise privacy concerns. In
this paper we propose a strategy to improve the training of non-IID data
by allowing mutually trusted nodes to self-aggregate into clusters of trust
that will participate in federated learning as peers. We experiment with
an up-to-date IoT dataset, Aposemat IoT-23 (IoT-23 for short) and show
that using this strategy is considerably more accurate federated learning,
comparably accurate to proposals that envisage central sharing a portion
of node data, and comparable to centralised machine learning accuracy.

Keywords: Federated Learning · Intrusion Detection · Internet of
Things

1 Introduction

In recent years, the proliferation of smart devices and network technology has
triggered a new era where the Internet of Things (IoT) is being more widely
used in people’s lives, including logistics, industrial processes, public safety, home
automation, environmental monitoring and healthcare [2]. At the same time, the
number of cyber-attacks against IoT is also increasing, such as distributed denial
of service attacks, botnets, and other intrusions [10]. The intrusion detection
systems (ID) [3] that monitor networks and detect malicious activity become
more and more critical as cyber-attacks are increasing and devices are highly
vulnerable to malicious activities. The IDS plays a vital role in the network
defence process, with the aim of alerting security administrators to malicious
behaviour.

One approach to implementing IDS in the IoT is based on anomaly detection.
Models are built from the characteristics of normal samples to detect outliers
and identify suspicious behaviour on devices. Machine learning algorithms have
proven to be very effective in building models that distinguish between normal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 326–337, 2022.
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and malicious traffic [8]. In this paper, our research implements anomaly-based
intrusion detection in an IoT environment through a multi-layer perceptron.

However, traditional machine learning training requires data to be stored in
a central node to train the model. Applying traditional machine learning algo-
rithms to implement an IDS means that the training data generated by IoT
devices at the edge of the network is aggregated to a central server for computa-
tion, to train a model that can detect malicious attacks, and the trained model
is then transferred to the user device for task inference. While such an approach
can detect intrusions with high accuracy, there are a number of problems. First,
latency becomes an important issue since large amounts of data are generated
by end devices and transferred to a data centre. Due to the distance between the
geographical location of the IoT devices and the intrusion detection system, this
can lead to longer processing times that do not meet the timeliness required for
anomaly reporting. Second, privacy and security are at risk whenever the original
data leaves its host. Data leakage can occur during data storage, data transfer
and data sharing, which can cause serious problems for owners and providers.
In fact, data from some devices cannot be shared at all, for privacy reasons,
and cannot be used for the training of machine learning models [13]. Another
approach to train models in a distributed environment is to use local data to
train and update models on each device, isolated from other devices. However,
insufficient data samples and local data bias can lead to poorer models. One solu-
tion for dealing with such distributed data training is federated learning, which
enables the collaborative training of high-quality shared models by aggregating
and averaging local computational updates uploaded by IoT devices [16].

Unlike traditional machine learning, data for federated learning is distributed
on edge devices rather than on centralised data servers. Data samples are trained
locally and parameters (such as weights and biases of deep neural networks) are
are updated after aggregation between these local nodes with some frequency to
produce a global model that is shared by all nodes. The main advantage of this
approach is that the training of the global model does not require direct access to
the data, so that federated learning can learn satisfactory global models without
compromising the privacy of user data.

A common assumption for federated learning is that the data is independent
and identically distributed(IID), and it has been shown that when trained with
IID data, the accuracy of FedAvg [9] can be well approximated to centralised
models. However, in practice, it is unrealistic to assume that the local data on
each edge device is always IID. In particular, in an IoT environment, the distri-
butions of data across devices are often non-IID due to different user preferences,
devices and network environments. When the data distribution is non-IID, the
FedAvg model converges erratically and the loss of the model may even diverge
with training [17]. In [1] the authors present experiments that show much lower
experimental performance on non-IID data than on IID data in an IoT intrusion
detection scenario. This is caused by divergence between the stochastic gradient
descent (SGD) performed locally by different nodes, which aims to minimise the
loss value of local samples on each device, and the global model, which aims
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to minimise the overall loss on all devices. As we continue to train the model
with heterogeneous local data on different devices and fit it to the global model,
the differences between the weights of these local models will accumulate and
eventually degrade the performance of learning [12], resulting in more commu-
nication rounds needed for training convergence. And given that the individual
nodes in a federated learning scenario are usually devices with limited computa-
tional power and communication bandwidth, it is crucial to reduce the number
of communication rounds in federated learning in order to improve the conver-
gence speed of the global model. One approach to address this issue is that of
[17] which proposes that each node places a portion of their data into a globally
shared central repository; this results in performance that sometimes approaches
that of centralised machine learning, coming however at a privacy cost.

In this paper, we propose an alternative strategy to address the above limi-
tations and improve the performance of federated learning-based IoT intrusion
detection in non-IID data. Our approach is to add clusters of servers between
the aggregation server and local nodes. Namely, we consider the aggregation of
mutually trusted nodes, into a single cluster of trust, who acts as a single peer
for federated learning. Therefore, each cluster is trained as the client in federated
learning. The goal of the proposed scheme is to achieve detection accuracy as
close to that of a centralised IDS, while maximising data privacy and security
and reducing communication overhead. Our contributions include:

– We perform a structural comparison of the performance of general federated
learning (FedAvg) on different IoT IDS scenarios for the Aposemat IoT-23
dataset.

– We implement a strategy that uses clusters of trust instead of the original
nodes as clients for federated learning training to improve IoT IDS perfor-
mance on non-IID data.

– We compare the performance between clusters of trust of different sizes and
with different threat coverage, with the globally shared data approach explor-
ing the trade-offs for the Aposemat IoT-23 dataset.

2 Background

2.1 Internet of Things

The Internet of Things (IoT), is a new technological paradigm envisioned as a
global network of machines and devices capable of interacting with each other [6].
As the Internet of Things grows and the number of potential devices that can
be connected to it runs into the hundreds of billions, the potential security
threats are escalating [14]. While the IoT increases productivity for companies
and improves the quality of life for people, the IoT will also increase the poten-
tial attack surface for hackers and other cyber criminals. a study in [6] shows
that 70% of the most commonly used IoT devices have serious vulnerabilities.
IoT devices are vulnerable due to a lack of transmission encryption, insecure
web interfaces, inadequate software protection and insufficient authorisation. In
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recent years, positive progress has been observed in academic research address-
ing privacy and security issues in IoT systems. The technologies and security
approaches currently proposed are largely based on traditional network secu-
rity methods. However, applying security mechanisms in IoT systems is more
challenging than traditional networks due to the heterogeneity of devices and
protocols and the size or number of nodes in the system. In [11] the authors
extensively explain the challenges of applying IoT security mitigation due to
physical coupling, heterogeneity, resource constraints, privacy, large scale, trust
management, and inadequate security readiness.

2.2 Federated Learning

Federated learning [5] is a machine learning solution to decentralise training
data, which aims to learn high-quality centralised machine learning models by
training distributed data stored in a large number of endpoints. The approach’s
distributed data architecture reduces the strain on centralised data storage and
solves the problem of data silos. In addition, it protects privacy as the central
server does not access user data.

The algorithm that implements federated learning is FedAvg [9]. FedAvg
coordinates training through a central server that hosts a shared global model.
Federated learning trains the shared global model by iteratively aggregating
model updates from multiple client devices, which may have slow and unstable
network connections. Initially, client devices are first signed in using a remote
server. The remote servers then take turns to synchronise federated learning.
Each round of FedAvg has four steps. First, the server sends a global model
to all parties. Second, the parties perform stochastic gradient descent (SGD) to
update their local models. Third, the server randomly selects a subset of available
client devices to participate in the training. The parameters of the local model
are sent to the central server. Finally, the server averages the weights of the
models to produce a global model for the next round of training.

2.3 Intrusion Detection

An intrusion detection system(IDS) is a device or software application that
detects the activities of an intruder performing operations on an information
system. These actions, known as intrusions, are designed to gain unauthorised
access to a computer system [15]. A typical IDS consists of sensors, an analy-
sis engine and a reporting system. The sensors are deployed at different network
locations or on hosts. Their task is to collect network or host data, such as traffic
statistics, packet headers, service requests, operating system calls and file sys-
tem changes. The sensors send the collected data to the analysis engine, which
is responsible for investigating the data and detecting ongoing intrusions. When
the analysis engine detects an intrusion, the reporting system alerts the network
administrator or collects intrusion activities by the security event management
system.
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Depending on the detection mechanism used in the system, intrusion detec-
tion techniques are usually classified as anomaly-based and signature-based. In
the signature-based approach, the IDS detects threats by comparing system or
network behaviour with signatures stored in the IDS internal database. When
any system or network activity matches the stored threat pattern/signature,
the IDS will trigger an alert. Signature-based IDSs are very precise and effec-
tive in detecting known attacks, and their mechanisms are easy to understand.
However, this approach is not effective in detecting unknown attacks such as
zero-day attacks or variations of known attacks where the matching pattern is
still unknown [7]. Anomaly-based IDS evaluates the system’s activity in real time
and triggers an alert if the current behaviour deviates from normal behaviour by
more than a threshold. This approach can be effective in detecting new attacks,
especially those related to resource misuse. However, any behaviour that does
not match normal behaviour is considered an intrusion and previously unknown
legitimate activity may also be classified as malicious. As a result, this method
usually has a high false alarm rate [4]. To assess whether a system or network
activity is normal or not, researchers often use machine learning to create a
trustworthy model of the activity and then compare the new behaviour with
this model [10].

3 A Data Sharing Strategy for IoT IDS Based
on Federated Learning

In the IoT intrusion detection problem, different nodes are often heterogeneous
and exposed to different network attacks, making it even more important to
consider the problem of training on non-IID data. To address the above limi-
tations, we propose a strategy based on clusters of trust to reduce the weight
divergence to improve the performance of federated learning-based IoT IDS on
non-IID data. Figures 1 and 2 visualise the structure of FedAvg and Clusters of
Trust respectively.

Fig. 1. Structure of the FedAvg.
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Fig. 2. Structure of clusters of trust.

Unlike the FedAvg algorithm, our proposed algorithm shown in Algorithm 1,
adds cluster servers between the aggregation server and local nodes. In cluster
servers, we aggregate mutually trusting nodes into a single aggregated cluster
node. Each cluster is trained as a separate client in federated learning. We use
this algorithm and the IoT-23 dataset presented in the next section to improve
the performance of federated learning-based IoT IDS on a distribution of non-IID
data, natural for the IoT setting.

Algorithm 1. Federated Averaging Algorithm based on Clusters of Trust
Input: Mini-batch size (B), Participants (k),
Participants per epoch (m), Total epochs (E).
Output: Global model WGM

Cluster Service Execution:
Integrating mutually trusted nodes into clusters C {C1, C2, . . . , Ci}

Aggregation Service Execution:
Initialise WGM :
for each epoch =1,2,3 . . . E do

St ← (random set of m clients from C)
for each participant k in St do

wGMkt+1 ← Update
(
k, wGMkt

)

wt+1 ← ∑k
1

mk
m

wGMkt+1 (Averaging Aggregation)

Client Update:
β ← mini-batches creates through splitting local datasets DL

for each epoch =1,2,3 . . . E do
for local mini-batch b ∈ β do

wGM ← w − η�l(w, b)
(�l is the gradient of l on b and η is the learning rate
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4 Evaluation Methodology

In this section we describe the dataset used in our experiments, our experimental
scenarios, the pre-processing stages performed on the data and the metrics used
for evaluation.

4.1 Data Description

In this paper, we use the Aposemat IoT-23 dataset, a new dataset of IoT net-
work traffic captured by Stratosphere Laboratorycite IoT-23, first released in
January 2020. It aims to provide researchers with a large-scale, labelled dataset
of IoT traffic for the development of machine learning algorithms. IoT-23 con-
tains 23 sub-datasets consisting of network data collected by the capturers in 23
scenarios, including network traffic data (pcap format) and labels for malicious
behaviour. The 23 scenarios include 20 malicious scenarios and 3 benign sce-
narios. In each malicious scenario, the experimenter executes a specific malware
sample that uses multiple protocols and performs different actions to generate
malicious traffic. The benign scenarios were created by capturing network traffic
data from uninfected real IoT devices.

4.2 Experimental Setup

To analyse the performance of our proposed strategy, we implemented the IoT
IDS in different scenarios and approaches.

Baseline Scenarios. We apply the IoT IDS in basic scenarios as the comparison
of our proposed strategy. The scenarios implemented include:

1. We clustered the sub-data sets of IoT-23 into an aggregated dataset, in order
to implement IDS by centralised machine learning.

2. Since each sub-dataset is generated in a highly non-homogeneous distribution,
each sub-dataset contains a different type and amount of malicious traffic. We
trained the original IoT-23 data using the FedAvg algorithm, by maintaining
23 nodes each one containing data captured in a single scenario. This measures
the performance of federated learning on non-IID datasets.

3. We reshuffled the data amongst the 23 nodes as follows. We obtained 23
sub-datasets of the same size by random sampling from the aggregated IoT-
23 dataset, which eliminated statistical heterogeneity between the individual
sub-datasets. This results in an IID distribution of the data. We trained the
FedAvg algorithm on this dataset to measure federated learning performance
on the IID dataset.

Globally Shared a Portion of Data. Addressing the decline in performance
of federated learning on non-IID, we include the data sharing strategy proposed
by [17] in our scenarios. A globally shared dataset G is first sampled from the
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overall aggregated dataset. Each client’s local model is trained on both the shared
data of G and each client’s private data (the original 23 captures of IoT-23 each
one to one of the 23 nodes). The framework then aggregates the local models
from the clients and trains a global model using FedAvg. Experiments have
previously shown that this strategy can improve accuracy by 30% for non-IID
image classification tasks with 5% globally shared data [17]. In this paper, we add
5% and 10% global data to each subset of IoT-23 to measure the improvement
of this strategy on IoT IDS for non-IID data and we show an improvement of
17.5% and 32.1% respectively.

Clusters of Trust - Data Sharing within Clusters. The intuition behind
this method is it is natural to assume that in some IoT settings different nodes
“trust” each other more or belong to the same “privacy class”, e.g., fire detec-
tor sensors in a particular corridor. Our idea is that if we can sacrifice privacy
just between these small clusters of nodes we might be able to reduce statistical
heterogeneity between nodes by combining clusters; in this case the federated
learning model will have better accuracy when the data is closer to IID. We have
implements the Clusters of Trust method containing 2, 4, 7, 10 nodes respec-
tively. For each size of clusters we compare two limit cases where the clusters have
maximum label coverage and minimum label coverage for threats. We achieve
this by either assuming a cluster is composed of nodes with very different types
of threats (and choosing among nodes to form our clusters appropriately) or we
chose to form clusters where the nodes have very similar threats.

4.3 Evaluation Metrics

In order to assess the performance of the model, the following indicators were
used.

– Loss curve: the curve of losses during training, used to observe the convergence
of the model.

– Accuracy: the ratio of correctly classified data instances relative to the total
number of data instances.

– Recall: the ratio of the true positives to the union of true positives and false
negatives. For IDS, the high recall rate reflected that the model alerts have
a strong sensitivity.

– Precision: the ratio of the true positives to the union of true positives and
false positives. For IDS, The high accuracy indicates that the model is not
prone to false alarm.

– F1 score: F1 = 2∗P∗R
P+R . For IDS, we need a model that is sensitive to malicious

attacks and has a low false alarm rate. We can find a balance between model
accuracy and recall by measuring the F1 score.
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5 Experimentation Result

5.1 Federated Learning in IoT Intrusion Detection Baseline
Scenarios

We tested the performance of the IDS on baseline scenarios for comparison. The
results of the training are shown in Fig. 3 and Table 1. The red line indicates
the loss curve for centralised machine learning; the blue line indicates the loss
curve for federared learning trained with IID data; and the green line indicates
the loss curve for federared learning trained with non-IID data.

Fig. 3. Loss on baseline scenarios.
(Color figure online)

Table 1. Performance metrics.

Recall Precision F1 score

Centralised 92.3% 91.0% 91.7%

Federated 86.3% 90.7% 88.4%

We can see that centralised machine learning and federated learning on IID
dataset perform more accurately and converge faster. In contrast, the loss curves
show the erratic loss convergence and lower model accuracy of the federated
learning model on non-IID dataset during gradient descent. This is due to the
fact that each subset of the IoT-23 data (except for the 3 conscientious datasets)
is a dataset of traffic generated by different malware, each containing different
types of attacks. And different attacks have different behavioural patterns, which
causes different subsets of data to be non-IID. In contrast, in federated learn-
ing, the SGD algorithm performed locally at each node aims to minimise the
loss value of local samples on that device, i.e., the local model tends to differ-
entiate between the types of attacks contained in that dataset. As we continue
to fit models on different devices to the global model, the differences between
the weights of these local models will accumulate and eventually degrade the
performance of global learning.

5.2 Clusters of Trust vs Globally Shared Data

For the global shared data method, the results show that the accuracy of the
federated learning model is 55.7%, 73.2% and 87.8% when the percentage size
of the global dataset is 0%, 5% and 10%, respectively. Figure 4 reflects the loss
convergence curves of the 2 two models; with light blue and legend ‘C’ we plot
the loss convergence of the centralised solution.
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We can see that as the size of the global dataset increases, federated learn-
ing converges faster, which means fewer rounds of communication are required,
which is a significant improvement for IoT environments where communication
bandwidth is constrained. For the IoT dataset, about 15% accuracy improve-
ment can be achieved with just 5% of the globally shared data, while about 15%
accuracy improvement can be achieved with 10% of the globally shared data,
achieving similar accuracy to the centralised machine learning training.

For the clusters of trust method, the results are shown in Fig. 5 and Table 2.
Figure 5 shows accuracy when clusters have minimum threat coverage tagged
with ‘A’ and shown in blue and accuracy when clusters have maximum threat
coverage tagged with ‘B’ and shown in orange. Table 2 shows the accuracy in
each case of clustering (based on the size of nodes in a cluster, i.e., the size of
clustering); For each clustering size the first line of the table shows the limit
case of having similar kinds of threats in the cluster while the second line shows
wider threat coverage per cluster.

The results of our Clusters of Trust experiments show that the accuracy of
the model increases as the cluster contains more nodes and its label coverage
increases. When the cluster contains 4 nodes and has maximum label coverage,
the accuracy of the model exceeds 70%. And when the cluster contains 10 nodes
even with minimum label coverage, the accuracy of the model exceeds 90%,
which is very close to the performance of centralised machine learning.

Fig. 4. Loss on non-IID data with
global dataset.

Fig. 5. Accuracy histograms for differ-
ent size clusters.

In terms of accuracy, we can see that for the clusters of trust strategy, the
accuracy of the model exceeds the accuracy of the strategy with 5% and 10%
of globally shared data added when the cluster size is 7 and 10 respectively. In
terms of cost, adding 5% and 10% of the globally shared dataset equates to an
average of 110% and 220% more data per node, which increases the communica-
tion costs, as well as requirements of devices’ memory and computation power.
For clusters of trust strategy, additional cluster servers are required, but there
is no need to worry about the lack of memory or computing power of the edge
devices. Furthermore, the globally shared dataset is obtained by sampling from
the original dataset, which makes the model sacrifice privacy. In contrast, in the
cluster of trust approach, nodes only send their own data to the trust cluster
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Table 2. Accuracy for different clusters.

Size of cluster Coverage of malicious label Accuracy

1 19.7% 55.7%

2 26.0% 59.7%

31.0% 65.0%

4 36.7% 68.3%

48.3% 72.7%

7 53.3% 75.3%

67.7% 78.5%

10 83.3% 90.5%

100% 91.9%

23 100% 92.5%

server for training, which is more in line with the limited communication band-
width and computing power of edge devices in the IoT environment. Moreover,
as the clusters are divided according to the trust relationship of the nodes, there
is no risk of privacy leakage.

6 Conclusions

Federated learning will play a key role in IoT intrusion detection. However, due
to the heterogeneity of devices and the diversity of attacks in IoT scenarios, edge
devices that are in different networks are often subject to different attacks. As a
result, edge devices generate non-IID data, and then the quality of model training
is degraded. To make federated learning mainstream, however, improving model
training on non-IID data is key to making progress in this area. In this work, we
first show that for neural networks trained on non-IID data, the accuracy and
convergence rate of federated learning is greatly reduced, with an accuracy of
down to 55%. We validate a strategy to improve the training of non-IID data by
allowing mutually trusted nodes to aggregate into a cluster that is updated as a
new federated learning client. Experiments on the Aposemat IoT-23 dataset show
that federated learning-based IDS models using this strategy are considerably
more accurate and can ideally achieve performance comparable to centralised
machine learning when there is good coverage of threats in each cluster of trust.
In terms of communication and computational costs and privacy, the clusters
of trust strategy is more suitable for IoT intrusion detection scenarios than the
global data sharing strategy.

Given these promising results, we aim to experiment further in the direction
of smart composition of clusters of trust for federated learning, and with partial
aggregation of data within those clusters of trust. This would enable clustering
among nodes that do not have a high level of trust that would allow them
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not to share their complete traffic data within the cluster, but would enable
to share just a portion of it; privacy-wise, this later option offers advantages
over sharing a portion of data globally. In addition, we plan to measure the
efficiency and scalability of the strategy, for example, the communication costs
and computational costs of the model.

References

1. Evaluating federated learning for intrusion detection in internet of things: review
and challenges. Comput. Netw. 203, 108661 (2022). https://doi.org/10.1016/j.
comnet.2021.108661

2. Borgia, E.: The internet of things vision: key features, applications and open issues.
Comput. Commun. 54, 1–31 (2014)

3. Chawla, S., Thamilarasu, G.: Security as a service: real-time intrusion detection in
internet of things. In: Proceedings of the Fifth Cybersecurity Symposium, pp. 1–4
(2018)

4. Debar, H.: An introduction to intrusion-detection systems. In: Proceedings Connect
(2000)
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1 Introduction

1.1 Internet of Things, Status and Applications

The Internet of Things (IoT) can be nowadays defined as a system of inter-connected
or inter-related devices as well as other machines with the ability to transfer and com-
municate data over the internet or other networks, usually in an autonomous nature.
In this, ‘things’ can be various network components that communicate with each other
and transfer data over their related networks. Such formed ecosystems of devices are
usually formed by web-enabled capabilities using embedded systems, sensors and com-
munication devices to acquire data and exchange them within their environment. IoT
today shows a significant penetration and introduction in our day to day lives, including
mobile phones, smart appliances, smart security systems, smart home hubs, smart assis-
tants, health care, industrial applications, activewear, and many more. In this dimension,
IoT supports smarter working and living, gaining complete control over our lives while
supporting automation and wellbeing behind the scenes [1–4]. This is supported by a
large business and industry umbrella on related technologies with a market of 212b$
worldwide. The number of connected IoT devices is today growing by 9% to 12.3 bil-
lion globally, with a trend to rise to more than 27 billion IoT nodes (connections) [5]
and potential to generate 4–11 t$ of economic value by 2025 [6].

Such a vast penetration of IoT devices and networks in our day-to-day lives creates
a significant attack vector that can dramatically risk peoples’ personal data, privacy,
data ownership, safety and security, directly (personal lives) or indirectly (via critical
infrastructures etc.). Good examples include the Mirai IoT botnet (October 2016) that
caused significant DDOS (Distributed Denial of Service) service interruptions while it
supported the creation of different variations (Torii, Hajime or BrickerBot) in turn infect-
ing and affecting other services. With the above in mind, the IoT leap brings together
a lot of challenges relating to confidentiality, access control, device and user privacy,
devices’ trustworthiness and compliance. However, there are initiatives at the European
level that strongly support cyber security challenges aligned to the above. The Cyberse-
curity Act framework is the regulation 2019/881 of the European Parliament and of the
Council of April 17, 2019, on the European Union Agency for Cybersecurity (ENISA)
on information and communications technology (ICT) cybersecurity certification with
an objective to guarantee a minimum-security level for ICT/IoT components towards an
EU cybersecurity framework. On top, a key element in Europe to address privacy threats
is the GDPR, a European regulation on data protection and privacy for all individuals
within the EU in force since March 2018. The Network and Information Security (NIS)
focuses on the cooperation and exchange of security information among the Member
States. Finally, the Cybersecurity Act (CSA), along with GDPR and NIS directive, con-
form to the three main pillars of the EU perspective on cybersecurity. On top, European
Union research programmes (Horizon 2020, Horizon Europe etc.) have strongly sup-
ported the acceleration of technological progress and systematically addressed resulting
scientific and technological challenges to achieve the EU objectives.

ERATOSTHENESwill devise a novel distributed, automated, auditable, yet privacy-
respectful, Trust and Identity Management Framework intended to dynamically and
holistically manage the lifecycle of IoT devices, strengthening trust, identities, and
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resilience in the entire IoT ecosystem, supporting the enforcement of the NIS direc-
tive, GDPR and Cybersecurity Act. Other changes relating to language Rectify the order
of the currency figure to scientific writing and to be consistent in ordering.

1.2 Risk Impediments to IoT Evolution

Risk identification inmodern IoT systems requires a deep and constant effort inmanaging
and controlling risks that are typically found in an internet system, specific risks of IoT
devices as well as general safety considerations to ensure that the application of the
device follows the safety requirements intended. Such considerations include scalability,
connectivity, end-to-end security aswell as authentication and trust, identitymanagement
and attack-resistant security applications [7].

Table 1. IoT devices Threats [7].

The top ten vulnerabilities as identified by the IoT security: challenges, solutions
and future prospects document by DELL EMC include the following [7]:

– Web interfaces that include insecure components
– Transport encryption lack or other limitations
– Unsatisfactory and inappropriate authorization mechanisms
– Uncontrolled/unmanaged and maybe insecure firmware
– Concerns regarding privacy content
– Cloud and mobile interfaces with insecure components
– Limited physical security
– Nework services with linited security capabilities

1.3 The ERATOSTHENES Project

ERATOSTHENES, inspired byEratosthenes of Cyrene (c. 276—194 bc) (Greek scholar,
geographer, and astronomer, Founder of scientific chronography) and related to the crit-
ical challenges in IoT lifecycle management, is a Research and Innovation Action (RIA)
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project, funded by the European Commission under the topic SU-DS02–2020 (Intel-
ligent security and privacy management), subtopic (d) Distributed trust management
and digital identity solutions. The project is coordinated by INLECOM INNOVATION
(Athens, Greece), and its consortium consists of 14 partners from 8 countries. With a
total budget of around 6Me, the project formally started its activities on October 1,
2021, and is finishing in March 2025.

The project provides compelling innovation on recent challenges of IoT security such
as: i) Lack of security visibility gaps of IoT devices and large heterogeneity as extremely
challenging to establish a trustworthy environment among objects and persons, ii) lack
of a common trust enforcement mechanisms and relevant standards, iii) infrequent IoT
devices’ firmware and security updates, iv) lack of a transparent identity and privacy
frameworks to allow users’ full control of identity and data at IoT device level, v) lack
of security training and security protocols’ adoption for persons and devices and vi)
limited effectiveness of information sharing to CERTs/CSIRTs (Computer Emergency
Response Teams/Computer Security Incident Response Team).

ERATOSTHENES devises a novel distributed, automated, auditable, yet privacy-
respectful Trust and IdentityManagement Framework intended to dynamically andholis-
tically manage the lifecycle of IoT devices, strengthening trust, identities, and resilience
in the entire IoT ecosystem, supporting the enforcement of the NIS directive, GDPR
and Cybersecurity Act. ERASTOSTHENES leverages breakthrough solutions: (a) the
first-ever enclosure of cybersecurity features in IoT devices through deployment of Trust
Agents and continuous trust evaluationwithin the network in a contextual and social app-
roach; (b) decentralised identity management mechanisms to conciliate requirements of
self-sovereignty and privacy preservation in a distributed/transparent trust model along
with disposable identities; (c) self-encryption/decryption at device-level with a whole
system automated recovery process (incl. Software, crypto-key material, identities) after
an attack based on amulti-layer recoverymodel; (d) threat-analysismodels based on fed-
erated learning and edge execution to continuously monitor devices and detect attacks;
(e) collaborative IoT threat intelligence sharing across ledgers to adapt detection/defense
mechanism to the evolving security conditions and assist the IoT lifecycle; (f) integration
of Physical Unclonable Functions in trust framework and distributed ledgers. Finally,
ERATOSTHENES supports the enforcement of the NIS directive with a security infor-
mation sharing mechanism based on inter-ledger technologies to support the exchange
of trust and security information among stakeholders, enhancing collaboration, vulner-
abilities’ disclosure, and secure management of software updates. The overall vision
of ERATOSTHENES is to provide core cybersecurity features to be adopted by manu-
facturers as baseline certification elements in the production of devices and throughout
their entire lifecycle. The solution will be validated in 3 industrial cases: Automotive,
Health and Industry 4.0. The ERATOSTHENES holistic solution concept is presented
in the following chapters, starting from the industrial requirements and challenges over
digital identity and trust that steam behind its technical solution.

2 Industrial Requirements over Digital Identity and Trust

In this chapter, we present an overview of the cybersecurity challenges of IoT that have
been considered when designing the ERATOSTHENES solution as well as its system
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architecture and technical specifications. This has been performed as a form of gap
analysis of existing systems and industrial devices/networks.

In the mind of the increasing number of connected IoT devices emerges actions to
prevent cybersecurity attacks. However, protecting the users from those attacks requires
the analysis and realisation of their needs to provide solutions that will protect their
devices efficiently. ERATOSTHENES believes that User needs should primarily drive
IoT cybersecurity research. Hence, the project solves critical societal obstacles in IoT,
considering “Security of Things” as core to the IoT’s future success. Despite the tangible
benefits of IoT, the consortium has identified high-risk impediments to IoT evolution
[8]:

• Lack of security visibility.
• Lack of effective information sharing and communication.
• Heterogeneity of IoT devices.
• Lack of a common trust enforcement mechanism and relevant standards.
• Quantified “trust” that it can be understood by the artificial agents.
• Firmware and security updates are infrequent and difficult or even impossible.
• Lack of a transparent identity and privacy framework.
• Lack of security training and security protocols’ adoption.

The main target of the project is to provide a secure environment for IoT devices.
However, such a task emerges special treatment, as there are many open issues and gaps
that are already identified. Following, we present these gaps through different categories
using as reference the works and reports [9–12]. After an exhaustive gap analysis, only
the gaps relating to IoT trust and identity challenges are included below [8].

2.1 Industrial Orientation of ERATOSTHENES

The project develops a holistic solution over several modern cybersecurity challenges in
an approach to covermost related industrial requirements and validating the solution into
three (3) pilot applications (use cases): 1) Automotive (car on-board units), 2) Health
(personal, smart health devices) and 3) Industry 4.0 (disposable IDs and embedded
devices). Particular requirements of the automotive sector include identity management
for the interaction of the Connected Vehicles and remote software updates. Methods that
can ensure secure and distributed asset/devices identification, distributed trust manage-
ment in vehicle On-board Unit (OBU) and Road Side Unit (RSU) as well as trust policies
and recovery ability of trust agents and cyberthreat information sharing toCERTS/CSRTs
interface to inform for cyberattacks and threats (IDS events). Moreover, monitoring the
device behaviour for suspicious and anomalous indicators in the V2V/V2I communi-
cations through trust agents and network-based IDS to identify possible attackers or
malfunctioning devices is necessary. The smart health devices’ use case requirements
include effective and user-friendly identity management combining external authentica-
tion services and fine-grained, context-aware trust management for the open platform.
The aforementioned is used to assess the trustworthiness of both data consumers and
data providers, based on the contexts, faster design, deployment and self-adaptation of
the identity and trust management policies and functional components and to prove the
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Table 2. Identified gaps [8]

Gap Description

Support of heterogeneous devices The support of heterogeneous devices is a big
challenge, and, in many cases, there is limited
support for heterogeneous devices, or a gateway is
necessary

Ecosystem formation There is low platform expandability. Only
open-source platforms can be expanded with new
technologies

Manipulation of data Data are stored on the platform unencrypted, and
very little information is provided to the security
measures

Secure authentication, identification of
management of IoT devices

Security mechanisms should be integrated into
platforms

Unreliable and incomplete data Data protection mechanisms through intrusion
detection, prevention and recovery should be
developed

Security and Privacy IoT platforms must ensure data privacy, integrity,
and transmission according to information
sensibility

Connectivity If different network technologies and
communications protocols are used, secure high
network availability

Usability and customisation of the
solutions

Address these different market sub-segments and
simplify their usage by the large public

satisfaction to standards and regulations for security and privacy both in general and in
the healthcare domain. In parallel, the industry 4.0 use case requirements include aspects
for generating secure and distributed IDs for smart connected devices, research, imple-
mentation and testing of cryptographic methods and algorithms for smart contracts, ID
key generation and key sharing, distributed service architectures for asset management
and facilitating disposable IDs and actions to demonstrate distributed architecture and
applications for heterogeneous Industrial IoT (IIoT) environment with hardware testbed
[8].

3 ERATOSTHENES IoT Lifecycle Approach for Trust and Identity
Management

ERATOSTHENES includes several highly innovative objectives that serve as high-level
components in its system architecture and design assets. They have several internal
components that are synthesising its overall system specifications and architecture,
including:
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• Trust Framework and a Reference Architecture to ensure end-to-end trust and identity
management in distributed IoT networks, suited for resource-restricted environments,
critical and industrial applications

• A lightweight, distributed, and dynamic Trust Manager enhances trust in large-scale
distributed networks of heterogeneous IoT devices covering each layer and cross-layer
of the network.

• A decentralised, scalable, efficient, and privacy-preserving IoT identity management
conciliates self-sovereignty and privacy preservation requirements in a distributed,
interoperable and transparent trust model, including self-encryption/decryption
schemes and IoT identity recovery.

• Lifecycle management and the overall governance layer of the trust network on novel
Distributed Ledger Technologies and a hybrid consensus protocol. Implement Smart
Contracts for enforcing access policies and sharing trustworthinesswithin the network,
guaranteeing their transparency, integrity, authenticity, and authority. Design of Inter-
ledger Cyber-Threat Information Sharing and automated Recovery Solutions based
on a multi-layer approach

• Integration and Validation of the approach through real-world pilots to assess its
effectiveness and organise hands-on training through realistic cybersecurity exercises.

In Fig. 1, a high-level overview of the draft architecture is presented. The solution
addresses the lack of trust in large-scale networks of various IoT devices and vendors
in complex and real-world scenarios. Following this, a decentralised and contextual
Trust and Identity Management Framework for resource-restricted IoT environments
well-suited for industrial applications are being developed based on a Self-sovereign
approach. An Identity Manager (IdM), Trust Manager and Broker (TMB), as the main
components of the architecture, rely on the distributed network itself or on network
coordinators (gateways) through an automated deployment of Trust Agents. As shown
in the figure below, a Trust Agent is to be deployed and executed on the actual device and
forms a containerised or virtualised service (SµV), depending on the device’s processing
capabilities. The device network enrolment follows a context-based reputation approach.
Its initial trust value score will be adapted to ensure dynamic/automated device deploy-
ment in the distributed network. The TMB produces updated trust scores based on the
real-time evaluation of device behaviours during established interactions in addition to
feedback and recommendations gathered from other devices, based on three core trust
computation algorithms and trust evaluation models (network experience, reputation,
and contextual attributes). Their trust scores and the access policy and identity manage-
ment for authentication purposes will be securely stored and publicly shared through
an inter-ledger implementation within the IoT network, guaranteeing their transparency,
integrity, authenticity, and authorisation.

The solution is based on a next-generation distributed inter-ledger approach focusing
on self-aspects and collective threat intelligence in distributed networks of heterogeneous
IoT devices. For these, authoritative consensus algorithms are usually deployed that rely
on a centralised infrastructure to validate data; however, the validation speed is quite
faster than the conventional algorithms.
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Thus, we envision applying a novel hybrid consensusmodel founded on the Proof-of-
Importance algorithm. Proof-of-Importance (PoI) algorithms work by judging the “im-
portance” of a party in the operation of the overall DLT “network”. If a party hasmultiple
transactions in the network and provides a consistent “influx” of network utilisation, the
party is considered pivotal in the network’s evaluation. By using a self-sovereign identity
approach for the decentralised IdM, the authentication of the different IoT devices will
be performed in a distributed manner, and thanks to the functionality associated with this
approach, transmission channels will be encrypted and therefore secure based on decen-
tralised identifiers (DID) and Verifiable Credentials (VC). Lastly, the overall framework
to support secure lifecycle management (as the core project objective) will be accompa-
nied by a systemmanager, which will host a series of required added-value services such
as: i) Automated recovery after an attack based on a multi-layer approach ii) the afore-
mentioned DLT implementation on a network level, and iii) Blockchain-based (inde-
pendent from the DLT implementation supporting the trust and identity management)
cyberthreat information management.

Fig. 1. ERATOSTHENES high level (draft) architecture
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Figure 2 includes the layer of management of identities of IoT devices as a key
component of theERATOSTHENES technology stack. ERATOSTHENESwill establish
means, both in terms of infrastructure, protocols, and components, for device identity
management with security and privacy (e.g., minimal disclosure, disposable identifiers)
guarantees. The identitymanagementwill be supported byPhysicalUnclonable Function
(PUF) based authentication, which provides extra security for device identification and
cryptographic fingerprinting. Additionally, the identity framework will be supported by
DLTs, specifically enabling interactions in multiple domains through inter-DLTs.

ERATOSTHENES will also focus on providing a trust framework for IoT environ-
ments. This will involve infrastructural components but also mechanisms for the devices
themselves. In particular, Trusted Execution Environments (TEE) will be used as one
of the anchors of trust for devices. Additionally, domains will have trust and reputa-
tion services, where the entities involved in the domain will be continuously evaluated.
Regarding this, monitoring interactions will be necessary, raising the need for Intrusion
Detection Systems in all domains. Finally, operations will be supported by DLTs, which
will enable the auditability of processes by acting as verifiable data registries. Moreover,
(inter-)DLTs will support the sharing of trust and cyber threat information, improving
the security of the entire ERATOSTHENES ecosystem.

Lastly, one of the most important elements when dealing with IoT environments
is managing the lifecycle of devices. ERATOSTHENES will provide mechanisms for
performing all the key steps throughout device’s lifetimes: bootstrapping, enrolment
in domains, backup and recovery of data and identity information, decommissioning,
etc. Entities within domains (e.g., backup services, etc.) and encompassing multiple
domains (eg., software repositories, manufacturer servers, certification services, etc.)
will be used to support the device’s lifecycle management, including standard protocols
like Manufacturer Usage Descriptions (MUDs) [13].

Fig. 2. ERATOSTHENES main system components [13]
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4 Upcoming Work and Next Steps

ERATOSTHENES is currently during the stage of requirements finalisation and draft
architecture finalisation as the driving steps for the technical efforts that will follow.
During this stage, the requirements are being exhaustively studied. The precise system
architecture and final system specifications are being defined starting from deployment
investigations at the three pilot sites (use cases). Following the ERATOSTHENES work
plan, the first results of all the described components will be available by the end of
2022, first delivering the technical solution (proof of concept). Following this, the first
deployment to thefirst pilot (automotive)will start as an iterativemechanismof validating
the developed solution in industrial settings and providing feedback to the technical
components for their second and updated version.
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Abstract. Cybersecurity incidents have been growing both in number
and associated impact, as a result from society’s increased dependency in
information and communication technologies - accelerated by the recent
pandemic. In particular, IoT. technologies, which enable significant flexi-
bility and cost-efficiency, but are also associated to more relaxed security
mechanisms, have been quickly adopted across all sectors of the soci-
ety, including critical infrastructures (e.g. smart grids) and services (e.g.
eHealth). Gaps such as high dependence on 3rd party IT suppliers and
device manufacturers increase the importance of trustworthy and secure
solutions for future digital services.

This paper presents ARCADIAN-IoT, a framework aimed at holisti-
cally enabling trust, security, privacy and recovery in IoT systems, and
enabling a Chain of Trust between the different IoT entities (persons,
objects and services). It builds on features such as federated AI for effec-
tive and privacy-preserving cybersecurity, distributed ledger technologies
for decentralized management of trust, or transparent, user-controllable
and decentralized privacy.

Keywords: ARCADIAN-IoT · Cybersecurity · Trust · IoT

1 Introduction

The increased penetration of Internet of Things (IoT) technologies, devices and
services has, along with other technologies such as cellular networks or AI, a
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profound impact in society. Thus, the potential threats associated with IoT
and the need to reduce risks are important cybersecurity topics. IoT-related
cyber-attacks spiraled in 2021, showing the pandemic has aggravated IoT-based
vulnerabilities (e.g. with prolonged multi-device usage in household settings).
Recent projections estimate 75.44 billion connected devices will be deployed by
2025, supporting sectors such as education, transport, energy, health and secu-
rity, which emphasizes how threats and risks associated with IoT devices and
systems can have huge consequences on both cyber and physical domains. As
the number of IoT devices and the data shared between them grows, so does the
number of attacks and vulnerabilities associated with them. A report by Gartner
estimates over 25% of cyber-attacks against businesses will be IoT-based by 2025
[1]. Attacks like Mirai [2] highlight that weak security measures in the develop-
ment, adoption and usage of IoT devices can have a tremendous impact - for
instance, attackers can orchestrate a large set of devices to launch Distributed
Denial of Service (DDoS).

IoT devices and applications have an increased risk of becoming victims of
cyber-attacks due to a lack of security measures in the IoT ecosystem, expos-
ing IoT devices to malicious attacks that leave them vulnerable. This results
e.g. from the lack of computational capacity for efficient built-in security mech-
anisms, limited budget for properly testing and improving firmware security,
lack of regular updates due to limited budgets and technical limitations of IoT
devices, or discontinued updates, restricting vulnerability patching (e.g. result-
ing in lack of encryption integrated in end-to-end communications between IoT
devices).

Other technological advances (e.g. 5G or AI) will tend to further intensify
cybersecurity issues, in particular in SMEs, where skills for managing the secu-
rity of business-critical IoT systems are limited. The increased dependency on
third party IT suppliers (e.g., cloud providers), and IoT device manufactur-
ers puts in evidence the need for trustworthy and secure solutions for future
(and current) digital services powered by IoT systems. New attack surfaces are
introduced by the evolving IoT ecosystem, caused by the interdependent and
interconnected IoT systems, which results in added complexity and challenging
security maintenance. IoT devices mostly work in an unattended environment,
where an intruder may physically access these devices easily, and are wirelessly
connected, where an intruder may access private information from a communi-
cation channel through eavesdropping.

The dependency on the aforementioned technologies, the growing complexity
of cyberattacks, and the rise in incidents (e.g. ransomware, loss of data, disrup-
tion to public or critical services) exposes the need for designing and implement-
ing effective cybersecurity mechanisms spanning threat prevention, detection
and mitigation. In order to ensure that the transformation brought by IoT will
benefit all citizens in a way that warrants security and privacy, the definition
and development of innovative and advanced security and privacy management
mechanisms and technologies that can seamlessly be integrated across different
sectors and use cases are required.
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This paper presents ARCADIAN-IoT, a framework for enabling decentral-
ized management of trust, identity, privacy and security in IoT systems consid-
ering persons, objects and services. ARCADIAN-IoT intends to enable security
and trust in the management of object’s and persons identification, establish a
Chain of Trust through distributed and autonomous models for trust, security
and privacy, and provide self and coordinated recovery and healing upon threat
detection.

The paper is organized as follows: Sect. 2 describes related work on cybersecu-
rity for IoT; the ARCADIAN-IoT framework, its planes and main functionalities
are described in Sect. 3; Sect. 4 presents three distinct use cases which demon-
strate the framework intended benefits; finally, Sect. 5 concludes the paper and
lists future work.

2 Related Work

Cybersecurity in IoT systems has been extensively studied during last decades
and several surveys on the achievements, challenges, and open issues in this area
have been produced [6,11,12]. As highlighted by Lu et al. [12], IoT systems are
susceptible to various security attacks at different levels, and for this reason,
most of the measures deal with cyber attacks and protection with layer-level
perspectives: “sensing,” “network,” “middleware,” and “application” layers.

Protection of end-nodes/sensors is generally obtained at the sensing layer
by providing lightweight tools directly embedded (built-in) into the end-devices
for encryption, access control, and node authentication [4,17]. Tiburski et al.
defined a security architecture that integrates trust mechanisms with embedded
virtualization providing security from hardware to applications [15]. Instead, a
lightweight and hybrid system merging Physically Unclonable Functions (PUFs),
Arbiter, and Read-Only PUFs was proposed by Sankaran et al. [13].

Cybersecurity at the network layer aims to monitor and protect IoT com-
munications by means of firewalls and Network Intrusion Detection/Prevention
Systems (NIDS/NIPSs) [19]. Although lightweight NIDSs can quickly process
the huge amount of traffic in IoT networks (e.g., the solution proposed by Jan et
al. [9]), the hybrid systems that rely on both pattern matching and deep learn-
ing models are more suitable for detecting the more recent and advanced cyber
attacks targeting IoT [10,14].

The middleware layer, which is often affected by security and privacy issues,
offers an important perspective for cyber protection [7,8]. For example, Da Cruz
et al. suggest a reference model for designing IoT middleware platforms based
on modules that reflect main IoT requirements: (i) interoperability, (ii) persis-
tence and analytics, (iii) context, (iv) resource and event, (v) security, and (vi)
graphical user interface [7].

Finally, cybersecurity at the application layer explores those threats, and
corresponding mitigation mechanisms, that relate to the system functionalities
and services for the final users [16]. Given the significant amount of use cases
and applications in IoT, the state of the art shows a proliferation of domain-
specific cybersecurity solutions. An example of a cybersecurity tool for healthcare
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ecosystem is the architecture proposed by Abie [3]; on the other side Bringhenti
et al. provided a personalized cybersecurity approach for smart homes [5], and
Vijayakumaran et al. built an architecture for smart industry [18].

3 ARCADIAN-IoT Framework

3.1 Overview

The concept of ARCADIAN-IoT represents an integrated approach to manage
identity, trust, privacy, security and recovery of IoT devices, persons and services.
It relies on specialised components laid out on vertical and horizontal planes
(described in Sects. 3.2 and 3.3) to address those aspects. The vertical planes
cover identity, trust and recovery management. The horizontal planes are in
charge of managing privacy and security across the framework.

Figure 1 depicts ARCADIAN-IoT Concept, its horizontal and vertical planes,
as well as the components that support the framework. The different entities
(i.e., persons, IoT devices and apps/services) covered by ARCADIAN-IoT enable
a way to interact with IoT systems and its operations (e.g., data collection,
data processing, or data transmission) in a safe, secure and privacy-preserving
manner.

Fig. 1. ARCADIAN-IoT conceptual representation.

The main objective of ARCADIAN-IoT is to enable a holistic framework with
components leveraging Federated AI, Distributed Ledger Technologies (DLT),
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functional encryption, eSIM technologies, Cyber Threat Intelligence (CTI), and
several other approaches for autonomous trust, security and privacy management
for IoT systems. There are six specific objectives to achieve with the development
of ARCADIAN-IoT framework:

1. Enable security and trust in the management of objects’ identification.
2. Enable distributed security and trust in management of persons’ identifica-

tion.
3. Provide distributed and autonomous models for trust, security and privacy -

enabling a Chain of Trust.
4. Provide hardened encryption with recovery ability.
5. Self and coordinated healing with reduced human intervention.
6. Enable proactive information sharing for trustable CTI and IoT Security

Observatory.

3.2 Horizontal Planes

The Privacy Plane aims to provide functionalities for the privacy-preserving
management of confidential or sensitive data involving persons’ entities, and
includes the (i) Self-aware Data Privacy and (ii) Federated AI components. The
Self-aware Data Privacy component will enhance the way data privacy is man-
aged by allowing the user to define privacy policies for data, and by crowd-
sourcing policies specified on similar data. The Federated AI component will
provide dependable and privacy preserving federated learning (FL) capabilities
to the machine learning (ML)-based components.

The Security Plane contains all the cyber security features required for the
monitoring, prevention, management, and recovery; it comprises the (i) Net-
work Flow Monitoring, (ii) Behaviour Monitoring, (iii) CTI, (iv) Network Self-
protection, (v) IoT Device Self-protection, and (vi) Network Self-healing com-
ponents. The Network Flow Monitoring will enhance existing NIDSs to get
advanced detection along the entire infrastructure of the IoT network, while
the Behavior Monitoring component aims at detecting anomalous behaviours
occurring on IoT devices. The CTI system focuses on IoT threats and it will
enhance the open source MISP1 platform with IoT-specific functionalities for
automated gathering, producing, elaborating, and sharing cyber threat data. A
set of protection policies and rules aiming to safeguard the network infrastruc-
ture, IoT devices, and services are enforced (i) at network level by the Network
Self-protection component and (ii) locally on IoT devices by the IoT Device Self-
protection component. Finally, the Network Self-healing component is designed
to mitigate the potential impact of a cyber attacks when there is no protec-
tion rule for that specific attack, thus with the potential to penetrate the IoT
infrastructure.

1 https://www.misp-project.org/.

https://www.misp-project.org/
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The Common Plane includes the two components that provide functionalities
that will reinforce other components in both Horizontal and Vertical Planes, i.e.,
(i) the Hardened Encryption and (ii) Permissioned Blockchain. The Hardened
Encryption component aims at providing encryption mechanisms that are more
flexible, decentralized, and hardened by an hardware-based Root of Trust (RoT)
which can be provided by: (i) the eSIM component, (ii) the crypto chip embedded
in the IoT device, or (iii) an independent/external crypto chip module integrated
as add-on module by the vendor into existing IoT device. Finally, the framework
will provide a Permissioned Blockchain to (i) anchor the trust for decentralized
identifiers, (ii) publish and share information in a trusted and immutable fashion
with different actors in the IoT ecosystem, and (iii) support the deletion of
personal data by the users.

3.3 Vertical Planes

The Identity Plane supports (i) a multi-factor Authentication component that
calls upon other components to realise the required authentication as needed for
the different use cases, (ii) a Decentralized Identifier component, (iii) an eSIM
- Hardware-based Identity and Authentication component, and (iv) a Biomet-
rics authentication component. The Decentralized Identifier (DID) component
follows the W3C DID Core Specification2 to support the Self-Sovereign Iden-
tity approach with support for both public and privacy preserving DIDs and
supports the Verifiable Credentials in the Trust Plane through cryptographic
keys associated with a DID. Proving ownership of a DID itself by cryptographic
means also authenticates the user, thing or system as holder of the private key,
which can serve to authenticate constrained devices that may not be able to sup-
port the whole SSI stack with Verifiable Credentials. The Decentralized Identifier
component will make use of the blockchain in the horizontal plane for anchor-
ing the trust in public DIDs that are published in Content Addressable Storage
(CAS) off-chain. The eSIM component in the context of identity, will act as a
Secure Element (SE) capable of storing identity and authentication credentials
at devices hardware level, and use them in network-based authentication with
a novel method to authenticate an eSIM-equipped device in a third-party ser-
vice by leveraging cellular authentication, whose credentials and processes are
securely stored at hardware level in the device eUICC. The Biometrics authen-
tication component adds a third factor to identify persons, and will support
AI/ML facial matching algorithms to match live video feed against a set of pho-
tos for particular persons and in challenging operational conditions (e.g. distance,
angle between camera and individual, lighting conditions).

The Trust Plane supports (i) Verifiable Credentials component, (ii) Network-
based Authorization component, (iii) Reputation System component and (iv)
Remote Attestation component. The Verifiable Credentials component follows

2 https://www.w3.org/TR/did-core/.

https://www.w3.org/TR/did-core/
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the W3C Verifiable Credential Specification3 and enables trusted identification
of users and things through these entities being issued with claims inside a
Verifiable Credential (VC) and later being able to present it with secure cryp-
tographic proofs, supported by Decentralized Identifiers in the identity plane.
The Network-based Authorization component leverages network-based policy
enforcement tools, to enable novel processes of dynamic authorization through-
out ARCADIAN-IoT ecosystems with respect to the entities’ current trustwor-
thiness (provided by the Reputation System). The latter component dynami-
cally determines the current reputation score of persons, devices and services,
where the score is continually updated based on data received from other entities
regarding its interactions and represents its current trust level. To enable 3rd
party actors that need access to this information in a trusted and distributed
manner, the reputation score will be anchored on the blockchain while the actual
score is stored off-chain in distributed storage. The Remote Attestation compo-
nent supports support hardware-based attestation with the ability to leverage
Root-of-Trust using a secure element (e.g. eSIM or crypto chip) and aligns with
the standardisation effort of the IETF Remote Attestation Procedures (RATS)4

working group, with respect to standardized formats for describing claims and
associated evidence, and procedures to deliver these claims.

The Recovery Plane supports (i) Self-recovery component and (ii) Credentials
Recovery component. The Self-recovery component provides a storage server
solution, that enable devices to securely store and retrieve backups making use
of the ARCADIAN-IoT framework’s Authentication and Hardened Encryption
components. It supports data to be encrypted in a selective way, by applying a
policy that defines which stakeholders, relying on their public keys, can decrypt
the data either partially or completely. The Credential Recovery component
provides for the scenario where a user’s device or IoT device’s data was somehow
corrupted or wiped and the user or device respectively requests a recovery of
credentials and data.

4 Reference Use Cases

ARCADIAN-IoT research is supported by reference use cases from three
domains, where concrete IoT solutions allow to better understand requirements,
and validate the framework and its components. The selected domains are con-
siderably different to ensure a broad view over the needs of IoT security, trust
and privacy management, towards the intended holistic approach of the frame-
work. In the next subsections, are briefly presented the IoT solutions of the three
domains, making visible the needs that motivate the project. In Sect. 4.4 is pro-
vided a summary of the IoT security, trust and privacy management challenges
that are common to the presented solutions.

3 https://www.w3.org/TR/vc-data-model/.
4 https://www.ietf.org/mailman/listinfo/rats.

https://www.w3.org/TR/vc-data-model/
https://www.ietf.org/mailman/listinfo/rats
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4.1 Domain A: Emergency and Vigilance Using Drones

Ensuring security and safety of citizens in urban environments is a complex
subject that depends on the availability of considerable resources and, in many
cases, the use and manipulation of sensitive data (e.g., when using street vigilance
cameras). ARCADIAN-IoT domain A focuses on the use of IoT devices, in this
case, drones, in novel citizen centered urban vigilance services.

Fig. 2. Drone guardian angel solution

The solution (see Fig. 2) consists of a mobile app where citizens can request
a Drone Guardian Angel (DGA) service, e.g., to escort them in their way home.
The user needs to supply personal data in the registration phase, like name,
address and photos, and, when requesting the service, needs to provide its initial
and final location, to ensure that the service is available in both places.

When receiving a service request with a person’s data, a drone parked nearby
goes to the requested location and identifies the user (e.g., by face recognition).
After the identification the service starts and the drone follows the person, aware
of the surroundings to detect any threat. If something abnormal is detected
(e.g., an attempt of robbery), the drone calls for rescue services according to the
incident type (e.g. police in case of robbery, and/or medical emergency in case
injuries exist). While the rescue team(s) is/are on its/their way, some details are
sent, collected by the drone camera, microphone or other appropriate sensors
(e.g., GPS), to optimize the response to the incident.

DGA solution depends on the use of persons sensitive data, like location
and photos. Compromised devices can endanger the users safety and their data
security. The service itself depends on the trustworthiness of the data gathered
and provided by IoT devices. Also, the IoT network, if vulnerable, may endanger
the users security and safety (especially in emergency moments). These and other
trust, security, and privacy management challenges are summarized in 4.4.

4.2 Domain B: Grid Infrastructure Monitoring

Grid infrastructures are the base for power utilities like electricity, gas or oil.
These are critical services for most of the daily urban activities. Monitoring
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these infrastructures has high importance for providing reliable services and for
efficient energy management practices.

Fig. 3. Grid monitoring services solution

ARCADIAN-IoT domain B features an IoT solution for monitoring grid
infrastructures (see Fig. 3). Typically, a grid infrastructure manager needs to
be aware of factors that influence the system behaviour, like component degra-
dation, and of aspects that allow to optimize and predict the service performance
(e.g. temperature). In this sense, the Grid Monitoring Services (GMS) consist
of a solution that collects and aggregates data from a set of sensors using an
IoT device that acts as gateway for communication. This IoT device makes the
grid data available, through a middleware, to be consumed by grid managers
in a monitoring service (e.g., web). GMS also allows a grid manager to change
the sensors procedures (e.g., change the reading cycle frequency). Finally, the
solution is prepared for external audits, where data from devices/sensors needs
to be securely provided to authorized external persons.

GMS solution collects data from a set of devices that inform about grid
performance and related factors. The trustworthiness of the data is critical.
If corrupted, the system or the manager are prone to have wrong decisions,
putting at risk energetic needs of businesses and citizens. It is also confiden-
tial data, that can harm the service provider in case of unauthorized access.
Furthermore, GMS provides means to interact with the sensor network, action
that may compromise the infrastructure performance. The monitoring tool can
also be targeted in network attacks, e.g., DDoS, making the service unavailable
and delaying/hampering potentially relevant decisions. In Sect. 4.4, these and
other trust, security, and privacy management challenges relevant for GMS are
summarized.

4.3 Domain C: Medical IoT for Remote Monitoring of Patients

Monitoring patients at their homes, when possible, is important for the sus-
tainability of health systems, and for the comfort of the monitored persons. IoT
systems, namely body sensor networks, provide solutions that make this possible.

ARCADIAN-IoT Medical IoT (MIoT) solution (see Fig. 4) focuses on this
opportunity, making possible to reduce the number of medical appointments
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from patients that need to be accompanied. MIoT is able of monitoring patients
health considering a treatment protocol (readings frequency, medication, and
other medical recommendations). It collects, stores, and presents the evolution of
the patient vital signs, captured with medical sensors, and timely provides alerts
for medical decision support. To complement these parameters, the patient can
enter perceived health status in a mobile app, adding symptoms that can describe
the his/her condition. The solution relies in a MIoT kit, provided to the patient
at the hospital, that comprises a set of medical sensors and a smartphone that
is used as gateway for the sensing devices’ communication to the Cloud, and as
interface for the patient to enter his/her perceived condition. The solution also
includes a middleware for storing the patients’ data, to provide it to medical
monitoring tools, and for generating health alerts; and a monitoring tool for
the medical staff to check the patient’s condition and to change the monitoring
protocol when needed.

Fig. 4. Medical IoT solution

ARCADIAN-IoT MIoT solution aims to improve the conditions of follow-
up of patients at home, in an active treatment process. However, by collecting
patient’s data and storing it in a centralized Cloud, the system deals with sen-
sitive information security and privacy risks. Also, the trustworthiness of the
data is critical for the medical staff to make right treatment decisions. Fake or
manipulated diagnostic information can put the patients’ well-being, or even
their lives, at risk. Furthermore, MIoT provides means to update the patient
monitoring protocol, which needs to be secured to avoid unauthorized control
over the devices’ behaviour. The mobile app and the monitoring tool for the
medical staff can also be targeted in attacks that can make the services unavail-
able and delay/hamper potentially relevant medical decisions. These challenges
and others relevant to this domain are consolidated in the next subsection.

4.4 Common Trust, Security and Privacy Management Challenges

The IoT solutions aforementioned share trust, security and privacy management
challenges, namely the following:

– Enable security and trust in the management of devices’ and persons’ identi-
fication, ensuring protection to, e.g., impersonation attacks that could endan-
ger persons safety and data security.
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– Define trust evaluation models and processes for devices, persons and services,
that can trigger and support protection measures, and also keep the user in
control his data privacy (who accesses what and when).

– Protect the users’ and devices’ sensitive data with hardened encryption mech-
anisms that have recovery ability in case of need.

– Detect anomalous behaviour on IoT devices, IoT network and related ser-
vices, which can indicate the presence of known or zero-day vulnerabilities or
threats.

– In case of an incident with a device, have self-protection, self-recovery and
self-healing mechanisms that allow to protect and to recover functionalities
and data to pre-defined trust levels with reduced human intervention.

– Have a CTI approach for IoT threat information generation, sharing, analysis,
storage, and consumption, able of spreading and using threat knowledge in a
efficient way.

ARCADIAN-IoT research aims to provide answers to these challenges. The
hypothesis are formulated jointly with the IoT technology providers to ensure
viability, and integrated for validation in their IoT solutions. The process
includes as well the analysis of the legal, ethical, regulatory and social dimensions
associated with the technology.

5 Conclusions

This paper presented ARCADIAN-IoT, a framework aimed at holistically man-
aging identity, trust, privacy security and recovery capabilities in a holistic app-
roach. Its concept and objectives have been described, along with its plane-
based structure and corresponding functionalities. The future work includes the
research and development of its components, and later on their integration and
demonstration by supporting the described use cases.
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Abstract. Smart-campuses are an emerging ecosystem that permit to
enhance the performance and efficiency of academic facilities. Besides,
they are also adopted as research, development, and testing platforms
for the integration of novel management and governance mechanisms in
complex ICT infrastructures. In this line, they are considered as small
smart-city-like scenarios which can be used as a playground prior to
large-scale deployments. This work presents the GAIA 5G smart-campus,
located in the Espinardo campus of the University of Murcia (Spain). In
the first place, its technological architecture is presented, detailing the
multi-access platform that provides 5G, Internet of Things (IoT), and
vehicular communications connectivity. Also, the virtualized computa-
tion environment is described. Thanks to these two pillars, GAIA 5G has
the potential to host diverse use cases in multiple verticals, such as 5G
connectivity, Network Function Virtualization (NFV) management and
orchestration, or cybersecurity, which are also described. As discussed
along the paper, GAIA 5G is an operative smart-campus infrastructure
ready to support state-of-the-art research and accommodate novel 5G-
and-beyond (B5G) test cases.

Keywords: Smart-campus · 5G · MEC · SDN · NFV · IoT · B5G

1 Introduction

The convergence of multiple radio access technologies in a single scenario is
fueling the development of smart environments. This is true specially in urban
settings, thanks to the omnipresence of broadband solutions such as Wi-Fi or cel-
lular networks, e.g., 4G/5G, together with the incipient expansion of the Internet
of Things (IoT)-based solutions, e.g., LoRaWAN, Sigfox, or Narrow Band IoT
(NBIoT). Given the different features provided by these technologies, the range
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of enabled applications is huge, including user-centric, vehicular, sensorization
services, etc. [2].

Smart-campus spaces are gaining relevance as they provide similar character-
istics to those offered by smart-cities but at a lower scale, which is notably inter-
esting for research and development purposes [17]. Thus, different academic insti-
tutions are investing important resources and efforts for turning their traditional
facilities into a rich smart-campus environment to promote multidisciplinary
research among their academics as well as the arrival of visiting researchers [3].

In this line, as depicted in Fig. 1, the University of Murcia (Spain) is devel-
oping its own smart-campus infrastructure encompassing different state-of-the-
art radio access, virtualization, and computation technologies. As comprehen-
sively detailed in next sections, the GAIA 5G smart-campus provides a private
functional 5G infrastructure, which is the pivotal element of its communica-
tion architecture. Besides, attached to its core network other radio technologies
are also available with different purposes: Wi-Fi for improved indoor coverage,
LoRaWAN and NBIoT for IoT applications, and 802.11p-based radio access
for vehicular services. From a computational and virtualization perspective,
the infrastructure is currently equipped with a Cloud platform which hosts the
core network components, as well as Software Defined Networking (SDN), Net-
work Function Virtualization (NFV) and Multi-Access Edge Computing (MEC)
deployments. Still under development, since its origins, GAIA 5G has enabled
previous research advances [11,13,14] and it is currently being employed in differ-
ent European projects such as 5G-MOBIX [16], 5GASP [4], or INSPIRE-5Gplus
[10], among others.

Fig. 1. University of Murcia’s GAIA 5G architecture.

The main objective of this work is to present the GAIA 5G smart-campus
architecture to the community. Therefore, its principal characteristics will be
dissected along the paper and three different illustrative use cases will be also
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described. Concretely, the aim of these demonstrators is to evidence the function-
ality of the infrastructure in different planes, namely, 5G connectivity, NFV man-
agement, and cybersecurity. Therefore, the contribution of this work is twofold:
(i) A detailed overview of the University of Murcia’s smart-campus GAIA 5G is
given, and (ii) the description of recent functional demonstrators implemented
over the GAIA 5G infrastructure are presented.

The rest of the document is organized as follows. Section 2 discusses about
other functional smart-campus infrastructures in order to place in context the
GAIA 5G one. Section 3 describes the GAIA 5G smart-campus architecture.
Three illustrative use cases and their preliminary results are presented in Sect. 4.
Finally, the paper is closed in Sect. 5, remarking the most important facts as well
as future research lines.

2 Background

The idea of increasing the level of intelligence and automation of university
campuses has been explored in the literature during the last years from multiple
points of view. From a sustainability perspective, authors in [8] included IoT and
data science mechanisms for monitoring and managing university energy-related
activities to help efficient decision making in all levels. The presented proposal
was focused on enabling good sustainability indicators through the establishment
of monitoring systems that permit regular data collection with certain levels of
quality, to ease the decision-making processes of involved stakeholders. From a
Cloud computing point of view, in [6] a smart-campus service platform based on
Cloud computing aiming at promoting the development of smart-campuses was
presented. Apart from the infrastructure considerations, this work also focused
on teaching-related issues such as course and equipment management and iden-
tity authentication access. From an AI perspective, work in [7] explored the
creation of an open AI platform to achieve multi-application integrated manage-
ment. The architecture of this platform can integrate all the services deployed in
the smart-campus and enhance its management capabilities with dynamic and
sustainable development. From a network infrastructure angle, Njah et al. [9]
presented a fully-programmable SDN architecture with a multi-flow optimiza-
tion model to manage the massive number of heterogeneous traffic flows that
are typically generated in smart-campuses scenarios. The proposed solution is
ready to be implemented in all kind of scenarios and can be integrated also
with a large IoT environment. Regarding multi-access infrastructures, work in
[5] presented a smart-campus framework based on a 5G test network, sensor
technologies, augmented reality, and AI. The framework functioning is oriented
towards three main use cases: university key operations, campus services, and
campus surroundings. Besides, this research showed that a local micro operator
would be an essential action to fulfill the smart-campus requirements. Finally,
work in [1] presented a comprehensive review of the research efforts during the
last decade and current challenges related to smart-campuses. The survey work
pointed out that the main challenges in this field are the interoperability among
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heterogeneous entities, infrastructure sustainability, and the open data access
policies.

In this way, the objective of this work is to present the GAIA 5G smart-
campus as a research and development playground. The environment found in
smart-campuses is very similar to the one found in smart-cities, but in a reduced
scale with less people and buildings. However, it has to offer the same set of char-
acteristics and services. In this way, the introduction of the GAIA 5G research
and development smart-campus will pave the way to the design and shaping of
new services and applications that could be later directly transferred to smart-
cities scenarios.

3 GAIA 5G: A Smart-Campus Architecture

The GAIA 5G smart-campus is an initiative funded by the Spanish Ministry
of Science and Innovation through the European Regional Development Fund
(ERDF) with the aim of providing the Murcia Region with the necessary tech-
nological infrastructure to reach excellence in areas such as logistics and agri-
culture, in which the Region is already a reference. The University of Murcia
is in charge of the deployment and management of the infrastructure and at
the same time relies on it to materialize its smart-campus vision. To this end,
a multi radio access technology focused on empowering broadband-, IoT-, and
vehicular-oriented vertical services is being deployed.

3.1 Technical Description

The already functional GAIA 5G backbone network presents a twofold purpose.
On the one hand, the network devices provide a production-ready environment
in which a more traditional and well-tested network management approach is
used; on the other hand, the backbone devices need to be compliant with state-
of-the-art networking technologies, e.g., SDN or NFV, and also be capable of
providing advanced network management strategies such as network slicing or
dynamic resource allocation, among others. To this end, the employed switches,
namely, Delta AG7648 white boxes, run PicOs which is able to manage the
Broadcom’s data plane as a regular switch but also provide cross-flow ports that
can be attached to different OpenVSwitch instances. Therefore, in the future a
pure OpenFlow approach can be deployed making use of the same devices.

However, OpenFlow is not the unique solution to manage SDN-based infras-
tructures and it is regarded as ossified in terms of development of new protocols.
Thus, to provide with beyond state-of-the-art protocol match-action capabilities
at line-rate, the backbone infrastructure is also provisioned with P4-compliant
devices (EdgeCore Wedge 100bf-32X and APS-BF2556X-1T) that permit com-
plete programmability of both the control and data planes, removing the con-
straints imposed by white boxes with vendor-managed data-planes. Finally, from
a capacity point of view, the backbone is provisioned with 40 Gbps trunks
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between buildings and 10 Gbps service ports, which can be upgraded up to
100 Gbps ports after properly configuring the P4 devices.

Considering the available radio access technologies, firstly it is worth men-
tioning that GAIA 5G offers 5G Stand Alone (SA) access empowered by a com-
mercial fully functional solution from Amarisoft. Concretely, the 5G infrastruc-
ture presents two macro cells (see Fig. 1) enabled by their respective Remote
Radio Heads (RHHs), which are connected via Common Public Radio Interface
(CPRI) fiber links to a gNB powered by the Amarisoft software. These RRH
provide 20 MHz each with a 2x2 MIMO configuration and 20 W of Radio Fre-
quence (RF) power. Besides, GAIA 5G also presents a 5G laboratory, located at
the Computer Science faculty that provides small-scale testing via different Soft-
ware Defined Radio (SDR) devices (various BladeRF x40, Ettus USRP B210,
N310) and also an Amarisoft Callbox, with 3 2x2 full duplex SDR elements and
an Amarisoft Simbox, capable of simulating up to 64 User Equipments (UEs).
This laboratory is connected to the rest of the GAIA 5G backbone via two 10
Gbps dedicated links. This lab testbench is further equipped with assorted RF
equipment like spectrum analyzers, signal generators, etc. Other specialized 5G
tools like the Keysight Nemo for network performance validation, the Anritsu’s
MS2090A for New Radio (NR) layer 1 validation, and diverse 5G SA capa-
ble modems are available as well as different embedded solutions to deploy and
demonstrate multiple IoT scenarios. Besides the professional Amarisoft software,
the experimental Free5GC 5G core, which is a full 5G core instance developed
as an open source implementation based on microservices, is also deployed and
running for researching purposes.

In order to provide long-range IoT connectivity inside the campus, GAIA
5G also provides LoRaWAN access. This infrastructure relies on three Kerlink
iStation gateways distributed along the campus (see Fig. 1). These gateways,
working in the 868 MHz band, are connected to a self deployed LoRaWAN net-
work server based on the Chirpstack implementation. The data received by the
gateways are also forwarded to The Things Network (TTN) servers aiming at
enabling an open access to this widespread IoT network. Besides, NB-IoT can
also be integrated into the architecture by external providers as to compare dif-
ferent Low Power Wide Area Network (LPWAN) solutions [15]. This unique
mix of radio access technologies has enabled the development of solutions like
the on-device smart selection of access network [12].

Besides the coverage offered by 5G and IoT radio technologies, a vehicular-
specific communication solution has been deployed to evaluate different alterna-
tives in this crucial vertical sector. Concretely, a 802.11p-based infrastructure has
been installed at the south area of the campus (see Fig. 1). The adopted 802.11p
solution is based on the OpenWRT system, which enables the deployment of
both On-Board Unit (OBU) and Road-Side Unit (RSU) software on a variety
of hardware platforms such as Raspberry Pi or similar boards, or even more
powerful x86-64 devices. As can be seen, with the different available radio access
deployments, diverse Intelligent Transportation Systems (ITS) solutions can be
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evaluated, such as the 802.11p-based ITS-G5 scheme or the cellular-powered
C-V2X alternative.

Finally, regarding the computation infrastructure, GAIA 5G is currently
equipped with a Cloud platform which hosts core network components, as well
as SDN, NFV and MEC deployments. Two Virtual Infrastructure Managers
(VIMs) based on OpenStack are currently operative; OpenStack’s Rocky ver-
sion, a full-fledged deployment offering 160 vCPUs and 512 GB RAM split in
two Compute nodes; and Openstack’s Queens version, a lightweight deployment
providing 12 vCPUs with 48 GB RAM and some Raspberry Pi nodes with 4
vCPUs and 8 GB RAM. Additionally, the laboratory offers an Hyper-Converged
infrastructure with a 4-node cluster with 128 vCPUs and 4 TB RAM and two
Edge clusters with 24 vCPUs and 512 GB RAM each, which extends the VIM
capabilities and offers MEC provisioning. All these nodes are interconnected
using the aforementioned P4 and SDN-enabled programmable devices. To man-
age and orchestrate the dynamic deployment of VNFs in this infrastructure,
Open Source MANO (OSM) is the chosen orchestrator. Besides, a Kubernetes
cluster is deployed and tested to complete the computation infrastructure and
offer a different VIM alternative.

4 Use Cases

4.1 5G Connectivity

One of the principal challenges when a new radio-communication infrastructure
is deployed is to ensure its connectivity and reachability along the covered area.
During the design phase, a series of location were considered in order to place
the two 5G base stations described in the previous section. Finally, the two
points indicated in Fig. 2 were selected given the joint coverage provided along
the campus. Given the importance of having a good 5G coverage for supporting
current and present test cases, the first functional demonstrator within the GAIA
5G infrastructure was oriented to validate the 5G deployment.

In this use case, a High Definition (HD) video delivery service was enabled
for the local fire brigade. Concretely, a fire truck, a drone, and a firefighter were
provisioned with 5G connectivity for allowing the production and reception of
several video-flows in real-time. Both, the truck’s On-Board Unit (OBU) and the
drone made use of a USB 5G modem connected to their Linux-based processing
platforms, while the firefighter employed a commercial 5G smart-phone. Besides,
a multimedia dashboard where all the video-streams were cast was developed and
placed at an Edge node (Fig. 3). The aim of this joint initiative together with
the city of Murcia’s fire brigade, is to increase the effectiveness and safety of
risky operations by making these video-flows accessible to the deployed units
(including individuals and vehicles) as well as the emergency control center.
This successful preliminary evaluation of the infrastructure 5G connectivity is
currently being further developed with the implementation of network slicing
mechanisms to ensure the Quality of Service (QoS) offered to this kind of critical
applications.
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Fig. 2. 5G coverage in the campus calculated as NR RSRQ dBm.

Fig. 3. 5G-enabled video-flows dashboard.
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4.2 NFV Management

Regarding Network Function Virtualization (NFV), it is worth mentioning that
virtualization technologies and their use as network function enablers resulted in
an explosion of alternatives to deal with new and on-demand deployments. These
so-called Virtual Network Functions (VNFs) are considered the present and
future of new architectures such as 5G. Nonetheless, they can not be regarded as
totally independent functions, as their synchronization and coordination (sub-
sumed under the term of NFV Orchestration) is crucial for their proper operation
and handling. Furthermore, preparing the underlying infrastructure to be used
along with NFV is a fundamental, but also complex and transversal, process
that requires a significant effort.

In this line, the H2020 project 5GASP, in which GAIA 5G is involved through
a collaboration between the University of Murcia and Odin Solutions (a private
company), aims to ease the VNF development and on-boarding processes by
offering a “ready-to-use” infrastructure. Its objective is to shorten the idea-
to-market process by creating an automated, self-service, European testbed for
Small-Medium Enterprises (SMEs) to foster the development and testing of inno-
vative NFVs (NetApps (Network Applications) in 5GASP jergon) using the 5G
and NFV-based reference architecture.

The smart-campus architecture presented in this work is one of the physi-
cal settings that are being integrated in the 5GASP ecosystem. It provides the
experimenters with the underlying infrastructure and tools required to test and
validate their NetApps in a real-world 5G network (see Fig. 4). In this case, as
mentioned previously, GAIA 5G uses OSM as NFV orchestrator and two Open-
Stack substrates that serve as VIMs for the facility. Besides, the Murcia testbed
offers to 5GASP multiple types of User Equipment (UE) in the form of 5G SA

NFVO

Gaia5G facility

Q3 2022

NetApps

VNF CNF

5GCN 5GRAN

Monitoring
Q2 2022

Vehicular
Network

Network Slicing Management
Q3 2022

Fig. 4. University of Murcia’s 5GASP framework.
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smartphones and modems, and vehicular On-Board Units (OBUs) to host the
user applications of the NetApps deployed in the framework.

4.3 Cybersecurity

5G is changing the way we interact with services, leaving aside static and rigid
configurations and services. 5G networks, interconnect an heterogeneous set of
devices and technologies and offer services tailored to the needs of the connec-
tion and the constraints of those technologies and devices. This wide diversity
becomes a major challenge when it comes to ensuring cybersecurity, as the pos-
sible attack surface becomes complex and difficult to manage. This challenge is
even greater with the onset of the pandemic, where the flexibility and scalability
that characterizes 5G becomes a must. Millions of companies standardize tele-
working while users change their habits and are connected to the network 24 h
a day. This causes the network congestion to reach unprecedented levels and,
together with the increase in the attack surface, cybercrime is finding a perfect
place to take place.

In this regard, the University of Murcia-participated INSPIRE-5Gplus
project leverages Zero touch network & Service Management (ZSM) architec-
ture (defined by ETSI) to deliver automated E2E policy-based security man-
agement driven by a closed-loop of 5G and B5G networks. Figure 5 showcases
the INSPIRE-5Gplus high-level architecture, that presents a two-tier hierarchi-
cal architecture. On the one hand, it provides Security Management Domains
(SMDs) that are horizontally positioned, with self-management capabilities that
allow the orchestration of dynamic reactions to security events or security pre-
dictions that occur at intra-domain level (inside of the SMD). On the other hand,
these SMDs are coordinated, directed and validated through an E2E Security
Management Domain (E2E SMD) that orchestrates proactive and reactive E2E
security policies by involving multiple SMDs (inter-domain).

The INSPIRE5G-PLUS closed-loop is a combination of the stages of
OODA (Orient-Observe-Decide-Act) and MAPE-K (Monitor-Analyse-Plan-
Execute Knowledge) models with integration of cognition capabilities leveraging
AI/ML techniques. Conceptually there are two interconnected loops, the outer
loop which is managed including the E2E SMD orchestration and policy dis-
tribution to the different SMDs and the inner loop which is present on each
SMD to maintain its self-management capabilities. Each loop is formed by Gov-
ernance, Action, Observation, Orientation and Decision which heavily relies on
the knowledge that is generated and needs to be trustable. This ZSM approach
as identified and defined by ETSI, relies on the use of integration fabrics. These
fabrics provide communication and security capabilities between and within the
SMDs as well as other service management features such as registration, discov-
ery that needs to be performed inter/intra-domain.Isolation features are not only
provided within computers but also on the network itself. To this aim, network
slicing is also provided across multiple self-managed SMDs.

To validate the implementation of the framework in a real 5G environment,
a part of INSPIRE-5GPlus framework has been deployed in GAIA 5G smart
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Fig. 5. INSPIRE-5Gplus framework.

campus. Current experiments are specially focused on providing dynamic E2E
5G security involving different SMDs such as 5G Core, transport and RAN by
orchestrating dynamically 5G, SDN and NFV resources.

5 Conclusion

Smart-campuses are acquiring great relevance as they permit increasing the
automation, monitoring, and control of the complex university infrastructures.
Besides, from a research perspective, they are understood as small-scale smart-
city environments where bounded and controlled tests may be conducted before
their final deployment in larger scenarios. In this work, the University of Murcia’s
smart-campus infrastructure, so-called GAIA 5G, has been presented. Firstly,
the available multi radio access scheme, encompassing 5G, IoT, and vehicu-
lar communication technologies, has been described. This range of connectivity
alternatives permits the implementation of a plethora of services and vertical
use cases. Besides, GAIA 5G presents a rich and powerful computation infras-
tructure that allows the exploitation of state-of-the-art virtualization schemes
considering the different domains within the architecture: Fog, Edge, and Cloud.
Finally, a series of demonstrators have been discussed with the aim of evidenc-
ing the potential of the infrastructure. Although it is in an advanced deployment
status, GAIA 5G will continue evolving to integrate novel B5G technologies and
enable the development and evaluation of new application and services.
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Abstract. In this paper, we propose a novel approach in smart farm-
ing with the deployment of centrally controlled IoT-scaring devices in
meadows with the goal to reduce the killing of roe deer fawn during
haymaking. These deaths are due to fawns not actively avoiding threats
in their first two weeks of life, employing a defensive strategy of hiding
scentless and motionless in order to avoid predation instead. Currently,
they are searched and removed from areas to be mowed by hand. Our
approach allows for a reduction of the labour required in advance of a
scheduled mowing. During field tests, the effectiveness of the devices has
been shown in northern Germany.

Keywords: Smart farming · LoRaWAN · Wildlife protection · IoT ·
Fawn mortality

1 Introduction

1.1 Motivation

In case of danger, a roe deer fawn (as shown in Fig. 1) presses itself firmly on
the ground and remains motionless. The flight instinct only sets in after the
second week of life. In nature this is a good strategy against predation, but this
behaviour is useless against a mowing machine. The German Wildlife Founda-
tion (Deutsche Wildtier Stiftung) estimates that 92,000 fawns are threatened
with mowing death every year on the 2.3 million hectares of grassland in Ger-
many. Besides the obvious ethical reasons to avoid the mowing death of newborn
animals, there are also economic and legal reasons.

The grass cuttings harvested from mowing are often processed into silage.
If the cuttings are contaminated with carcass parts, it can become a breeding
ground for the bacterium Clostridium Botulinum [4]. In the anaerobic condi-
tions of silage, this bacterium secretes Botulinum toxin, a neurotoxin that causes
botulism [2]. This toxin is considered one of the most potent poisons known to
occur in nature and can kill cattle fed this silage within a few days [4].
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A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 375–384, 2022.
https://doi.org/10.1007/978-3-031-20936-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20936-9_30&domain=pdf
http://orcid.org/0000-0002-8873-5030
http://orcid.org/0000-0001-8809-343X
https://doi.org/10.1007/978-3-031-20936-9_30


376 T. Leune et al.

Fig. 1. Roe deer fawn hiding in meadow (Author: Jan Bo Kristensen) and Kitzretter
field effector deployed on meadow

Likewise, various German courts have ruled that landowners are liable to
prosecution if the mowing death of wild animals is considered possible and no
appropriate measures are taken to prevent animals from setting or to scare them
away. [1] In Germany, Sect. 17 (1) of the German Animal Protection Act is
particularly relevant here: Whoever kills a vertebrate animal without reasonable
cause is liable to a custodial sentence not exceeding three years or to a monetary
penalty.

Unfortunately, the main deer birthing season in May and June coincides with
the first grassland cutting, so farmers have to take measures to save the fawns
before mowing. However, these measures are very labour- and time-intensive and
thus a challenge, especially on large areas.

The solution proposed in this work is designed to reduce the labour required
for the saving of fawns while also decreasing mowing deaths. It is proposed to
deploy multiple centrally controllable IoT deer-scaring devices. These are to be
placed in and around meadows used for haymaking in advance of the mowing
season.

The scaring devices are then supposed to be activated the night before a
scheduled mowing. Once activated, varying localized audio-visual disturbances
are emitted intermittently, running throughout the entire night. This is sup-
posed to decrease the attractivity of the effected meadow, thus giving the doe
an incentive to call her fawn and move it to a neighbouring safe hiding area.

1.2 Structure

This paper is structured as follows: In Sect. 2, the approach for protection of
wildlife before and during haymaking currently employed by farmers and hunters
laboriously are discussed. Additionally, the current state of research on sensory
perception of roe deer is explored with regard to the design of scaring cues.
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Section 3 describes the implementation of the proposed solution, starting with
a high level overview of the entire application and detailing the aspects of all
components of the IoT-scaring device.

The effectiveness of the proposed devices and network is discussed in Sect. 4,
wherein the results of field tests conducted in northern Germany are evaluated.
Finally, in Sect. 5 the results and insights gained for further work are discussed.

2 Related Work

This section describes methods currently employed to reduce fawn mortality
in preparation for haymaking with specific focus on the perceptual sensitivity
concerning scaring cues of roe deer.

2.1 Available Methods for Detection and Rescue of Fawns

In order to avoid killing breeding and setting animals during haymaking, various
approaches are proposed by the Deutsche Wildtier Stiftung :

A principle measure is to start mowing as late as possible, completely avoid-
ing the breeding and setting seasons and prevent the mowing death of many
animals. During mowing season, choosing daylight hours for mowing can avoid
unnecessary animal deaths, as at night the necessary headlights disorientate wild
animals [4]. Another measure is the mowing a parcel from the inside out to leave
a protected escape route for the animals . Additionally, disc mowers lead to more
animals being killed than bar mowers because of their strong suction effect.

Measures to be taken before mowing include searching the meadow with the
help of dogs or drones (UAV, equipped with thermal imaging) shortly before
mowing and taking them to safety or mark nests and fawns so that they are
spared. Also, if a mowing is scheduled, measures can be taken to deter game
beforehand. Traditionally, simple scarecrows constructed from wooden poles
with large plastic bags attached to the top have been used. Electronic acous-
tic and visual game scaring devices have also become available in recent years.
While both these scaring devices work, they need tight scheduling of deployment
because of the roe deer’s habituation to the devices, lessening the effect [7].

The deployment itself is labour intensive since many scaring devices must
be placed to cover large patches of land. Also, when the weather conditions are
suitable for haymaking, many farmers in a given area will want to mow simulta-
neously. Another problem is that all this work will be in vain if the mowing can
not be performed on the scheduled day. In that case, the scaring devices have
to be removed from the meadows to avoid habituation and redeployed once the
new mowing date arrives, or the labour intensive searching of the meadow with
dogs or drones has to be repeated.

2.2 Auditory and Visual Sensitivity of Roe Deer

When designing a stationary device to scare away (roe) deer, the sensory percep-
tion of roe deer must be studied to determine which colours and sound frequen-
cies deers can perceive and thus which stimuli can be employed to drive them
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away. Since roe deer are not a frequent topic in established scientific publications
[5], the literature research was oriented towards related species such as the fallow
deer (Dama dama) and the white-tailed deer (Odocoileus virginianus).

Vision. In game animal’s eyes, more rods (sensitive to brightness) are present
than cones (sensitive to colours). In cloven-hoofed game, the ratio is 9 to 1 [8],
giving up to 100 times better vision in dark environments compared to humans.

Unlike humans, cloven-hoofed game usually have only two types of cones
(dichromacy), one for short-wave light from ultraviolet to blue and one for green
to yellow. Green tones can be perceived and distinguished very well, whereas red
and brown tones are difficult to differentiate.

Blue stands out in a natural green environment. The most sensitive range is
around 500 nm, 497 nm in white-tailed deer and dam deer [6]. The most sensitive
short-wave range in both species is 450–460 nm in the mid- and long-wave range
530–550 nm [6]. Wild animals often feel disturbed by visual changes in their
territory alone and avoid them. However, the habituation effect occurs quickly
if no other negative effects emanate from a change [9]. With regard to this,
randomised scare cues seem to be the means of choice.

Hearing. Deer have large auricles that they can turn independently up to 180◦.
It has been shown that white-tailed deer hear frequencies from about 0.25 kHz to
30 kHz, with the greatest sensitivity in the range between 4 kHz and 8 kHz [3].
The situation is similar for conspecifics. Furthermore, deer tend to focus their
attention on low frequencies rather than ultrasound. The longer the wavelength,
the lower the intensity needed to reach the sound threshold, the more suitable
the signal [10].

3 Implementation

In summary, roe deer fawn mortality during haymaking should be reducable if
there exists a way to generate randomized audio-visual cues perceptible by roe
deer in and around meadows, which can be activated just in time prior to the
mowing to avoid habituation effects and all this with a low workload for setup
and retrieval.

Given these design parameters, we propose a centralized networked solution
based on smart scaring devices to be placed in the field, communicating wirelessly
with a central server application which is itself controlled by users through a
web-application.

3.1 Network Overview

The approach of the Kitzretter (eng: fawn guard) system to reduce the mortal-
ity of fawns during haymaking, designed at the University of Applied Sciences
Emden/Leer in cooperation with the Aurich hunters’ association, is the use of
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IoT devices that can be individually controlled and configured by a central server
based on the radio technology LoRaWAN1.

Field Devices are deployed in advance independent of the mowing schedule.
They communicate wirelessly using LoRaWAN with the infrastructure of The
Things Community Stack (TTN). The TTN forwards requests to a web appli-
cation (see Fig. 2) and routes replies back to the devices. This enables a user to
do monitoring and control and allows the scheduling of scaring effects just prior
to the mowing, avoiding any habituation effect on the animals.

Fig. 2. Architecture and components of the proposed Kitzretter network: meadows
(parcel 1 ..n) with IoT-scaring Field Devices (FE), and public or private LoRaWAN-
Gateways.

3.2 Wireless Communication

A plethora of wireless communication technologies usable for IoT devices exist,
such as GSM, Sigfox or LoRaWAN.

Using cellular radio as data connection for the devices was rejected for multi-
ple reasons. First and most importantly, many rural areas in Germany, which are
the primary environment for the devices, have notoriously bad cellular network
coverage, so a reliable connection cannot be assured. Additionally, mobile oper-
ators are in the process of shutting down GSM (2G, 3G) networks in favour of
more modern technologies (LTE, 4G, 5G). While LTE provides higher data rates,
the maximum range of a cell is limited and coverage in rural Germany is rather
sparse. Also, providing each device (about one to two per hectare are required)
with a cellular subscription would increase the operating cost substantially.

1 compare https://lora-alliance.org/.

https://lora-alliance.org/
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The commercially available network architecture provided by Sigfox provides
long range transmission capabilities, but was rejected since Sigfox does not pro-
vide built-in authentication nor encryption. Also, no free network plan is avail-
able, putting it at a cost disadvantage.

The corporation The Things Industries provides The Things Stack Commu-
nity Edition, a free, community based deployment of a LoRaWAN network free
of charge which has been selected for the Kitzretter devices’ communication.

The low bandwidth provided by LoRaWAN due to it’s diminutive data rate
and fair-use airtime restrictions when using the community network plan are not
a limitation for the proposed approach since only very little data communication
is required as described in Sect. 3.4. If a rural location does not provide a local
LoRaWAN Gateway, a private or mobile gateway with a cellular connection can
be deployed within reach of the meadows, equipped with a larger cellular antenna
if necessary as illustrated in Fig. 2.

3.3 Web Application

The user frontend for control of the scaring activities provides registering of
devices and users, monitoring of the devices status and scheduling of scaring
activities for clusters of devices, all accessible through the user preferred web
browser. The backend communicates with The Things Community Network
(TTN) using the web-hook API: Whenever the TTN receives a data packet
from a field device, the application receives a HTTP POST request containing
the contents of the packet.

Replys generated by the backend are then returned to TTN and delivered
to the field devices using TTN’s uplink to the local LoRaWAN Gateways. The
web application used to control a Kitzretter network is written in the Rust
programming language. It is self-contained and can easily be deployed to Linux
based server of choice, either in house or rented from a public cloud.

3.4 Design of Field Effectors

The battery-operated devices to be placed in meadows are called field effec-
tors (FE, see Fig. 1). Each FE is tagged with an unique QR-code which can be
recorded during deployment using a geotagging camera (e.g. any smartphone
with GPS receiver) to record it’s position.

Hardware. The FE consist of a scaring module called Effectorboard and a
logic and communication module called Loraboard as illustrated in Fig 3. The
Loraboard is a custom circuit board equipped with a NXP 32-bit Cortex M0
micro-controller unit (MCU) and an integrated LoRaWAN-module RFM95W,
with the antenna line connecting to an U.FL coaxial connector.

For power supply, the board is equipped with mounting clips for two standard
18650 LiPo-battery cells and a charge control circuit providing an USB 2.0 Micro-
B connector as charging port.



IoT Device for Reduction of Roe Deer Fawn Mortality During Haymaking 381

Fig. 3. Components of the proposed Kitzretter field effector (FE)

In consideration of the auditory and visual sensitivity of roe deer as discussed
in Sect. 2.2, the Effectorboard mounted on top of the Loraboard, is equipped with
four high powered LEDs (350mA each) in the colours amber, green, white and
blue for visual effects and an amplifier stage driving an external piezo transducer
for the emission of audio signals with a sound pressure level of up to 95 dB (square
wave, 1 KHz, 0.5 m distance).

The components are bolted to a 3D-printed holder and mounted inside a
transparent acrylic pipe with a length of 10 cm and a diameter of 70 mm, sealed
rubber rings and 3D-printed screw-on caps. The upper cap carries an external
whip antenna while the lower cap contains the piezo transducer firing downward
on a conic omnidirectional sound diffuser (compare Fig. 3).

Firmware. The firmware is designed for low power usage during deployment
over several weeks. To achieve this, activity is limited to short phases while most
of the time, the field effectors are in sleep mode. In following, a short description
of the devices behaviour is given.

On power-up, the devices try to connect to a local LoRaWAN Gateway
immediately. On connection, the server sends the current time for clock syn-
chronization, followed by any scheduled scaring activities. The current state of
the initialization is indicated with coloured LEDs.

Once the initialization phase is over, the LEDs blink three times before going
dark, indicating switch-over to standby mode. In standby mode, the CPU and
radio are powered down to conserve energy. The internal RTC (realtime-clock),
driven by an external oscillator for higher precision, is used to wake up the MCU
periodically to send an ’alive’ beacon and to be able to receive newly scheduled
scaring activities.

This continues until the time of a scheduled scaring activity is reached or
power runs out. During a scaring activity, one of several preprogrammed scaring
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sequences are played back. The available effects are visual and auditory, using the
very bright LEDs mounted on the Effector board and the emission of waveforms
generated numerically with Direct Digital Synthesis (DDS). This allows for both
square wave beeps 100 Hz to 15 kHz or playback as well as digital samples, such
as barking dogs or the warning call of the Eurasian jay (Garrulus glandarius)2.

The Firmware is based on a port of the open-source LMIC-driver3, originally
designed for use with Arduino compatible 8-Bit micro-controller boards, to the
ARM-based LPC11xx-platform used by this project.

4 Evaluation

In May and June 2019, successful initial tests were carried out with prototypes of
the system created as part of student work in the rural municipality of Großefehn
in the district of Aurich, Germany, proving the technical viability of the proposed
solution. In the springtime of 2020 and 2021, further field evaluations focussing
on network, timing and network coverage were conducted with up to 16 of the
revised version of the Kitzretter field effectors (FE) as described in Sect. 3.

4.1 Scaring Effectiveness

For a field test, FE are deployed all over the target area, leaving a distance of
about 40 m to 80 m between them (compare Fig. 4a and b). The deployment is
done a week or two in advance of the planned scaring in order to be sure the
Effectors scare of the deer and not the deployment activities.

Some of the target areas had LoRaWAN network coverage from gateways
several kilometres away, but for reliable synchronous scaring it was necessary to
install a local gateway on a barn of the neighbouring farm. In places where no
public gateway was within range, a trailer mounted battery powered gateway
with an antenna height of 3.5 m was set up.

Scaring activity typically last for several hours of intermittent playback of
scaring effects running for a minute or two, followed by 15 to 30 min of silence.
Scaring activities can be scheduled remotely at arbitrary times via the web
application, and are typically scheduled from dusk the day before a planned
mowing until the next dawn in order to maximize the disturbance.

In order to determine the scaring effectiveness, an unmanned aerial vehicle
(UAV) with a thermal imaging camera is used to seek out fawns in the meadows
prior to and after a test cycle, with the absence of fawns after a scaring cycle
considered a successful trial (compare Fig. 4c and d).

Five evaluation trials were conducted in different locations between April and
June of 2021. Observation of the trials was performed by members and associates
of the Aurich hunting association. The results are promising:

2 A bird common across Eurasia with a harsh, rasping screech that it uses upon
sighting of predators.

3 https://github.com/mcci-catena/arduino-lmic.

https://github.com/mcci-catena/arduino-lmic
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(a) Großefehn, Nordsiet (b) Großefehn, Schafweg

(c) Aerial image of fawn (d) Thermal image of fawn

Fig. 4. Kitzretter setup in trial areas

In two of the five trial areas, no roe deer and fawns were detected by the
drones prior to the scaring activity, probably due to very wet weather in the
area and subsequent low growth of vegetation. Four fawns were detected in the
third location and further two in the forth. In the fifth trial area, no fawns but
two does were present. In all five trial areas, neither adult roe deer nor fawns
were present in the morning after scaring activity. This indicates that the doe
has led the fawns out of the meadow. Accordingly, no intervention or action by
humans was necessary to search for or remove the animals before the upcoming
mowing.

5 Conclusion

In this work, the Kitzretter network, a smart networked digital scaring device,
is presented and shown to have the ability to reduce roe deer fawn mortality
during haymaking.

As is evident from this report, it can be difficult to conduct trials in the
field since multiple factors may interfere with test arrangements and animal
behaviour cannot be planned. Since every scaring activity in locations with roe
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deer present resulted in the deer leaving, it appears that some effectiveness of
the Kitzretter devices has been confirmed.

A secondary goal of Kitzretter is to reduce the labour required for the rescue
of fawns. This is achieved twofold: first, since the deployment is independent
from the actual mowing date, a meadow can be prepared in advance, avoiding
scheduling conflicts for those conducting the deployment. Second, since the scar-
ing activities decrease the attractivity as a hiding place, the roe does call their
fawns from the meadows themselves, such that the step of locating and picking
up or marking the fawns is no longer necessary.

In conclusion, the system using LoraWAN in rural environments for synchro-
nised scaring has been shown to work during our trials. In the 2022 haymaking
season it is planed to conduct more trials with a greater number of FE in multi-
ple locations across Germany to validate our approach with a larger amount of
data points and to find the optimal parameters, such as minimum devices per
hectare and selection of most efficient audio-visual scaring cues.
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Abstract. The increase in computing power and integration of special-
ized hardware for Artificial Intelligence (AI) acceleration like Tensor Pro-
cessing Units (TPU) enable complex machine learning at edge devices
in the Internet of Things (IoT). However, wireless portable systems are
limited in computing power and battery lifetime. To increase the bat-
tery lifetime of edge devices and accelerate inference of IoT systems,
many developments focus on combining or outsourcing AI algorithms to
a cloud via wireless links e.g. wireless LAN IEEE 802.11ac or mobile
network 4G/5G. Due to limitations of restricted wireless transmissions
in rural areas mainly below 50 MBit/s, resulting longer transfer times
can significantly affect inference latency and energy consumption from
the perspective of the IoT edge device and deteriorate the response time
of the application. In this work, we provide a prototype setup for image
processing via Convolutional Neural Networks (CNN) and investigate
inference latency and energy consumption of an IoT edge device with a
varying wireless link. The complexity of selected pre-trained CNN mod-
els is between 300 MFLOPs to 19.6 GFLOPs where FLOPs are Floating
Point Operations. The first experiments address the latency and energy
consumption by processing CNN models on the IoT device with and
without TPU as edge AI accelerator. Following experiments address the
latency and energy consumption on the IoT device in cloud processing
mode with and without Graphics Processing Unit (GPU) as cloud AI
accelerator. The edge device sends input data and receives the results
via wireless link from 1 MBit/s to 50 MBit/s. For CNN models with
≤564 MFLOPs edge processing with AI acceleration performs better
than cloud processing regarding latency and energy efficiency. Even for
complex CNN models with 7.6 GFLOPs edge processing can be useful at
limited wireless link data rates up to 14 MBit/s. Edge processing with-
out AI acceleration is only an option for low complexity (≤300 MFLOPs)
and low expected wireless link data rates.

Keywords: IoT systems · Artificial Intelligence (AI) · Machine
learning · Energy consumption · Inference latency
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1 Introduction

Internet of Things (IoT) systems are highly scalable distributed systems [1]. Data
acquisition, distribution and processing requirements on latency and efficiency
are continuously increasing for portable IoT devices. Due to higher comput-
ing power of microcontrollers, deep learning methods like Convolutional Neu-
ral Networks (CNN) that are executed directly on the individual IoT device
become more relevant in distributed systems [2]. One challenge is, that despite
the increased computing power, IoT devices are still limited in computing per-
formance and battery lifetime. To increase the performance current work focuses
on combining IoT devices with powerful servers or outsourcing the CNN models
completely [3]. While many publications consider the inference time and accu-
racy in deep learning IoT systems, the energy consumption and the resulting
battery lifetime are often neglected [3–5]. However, in IoT systems the connec-
tion between IoT devices and a high-performing processor (e.g. a cloud server)
is often implemented via a wireless link like wireless LAN IEEE 802.11ac or
mobile network 4G/5G. Due to limitations of wireless transmissions in rural areas
mainly below 50 MBit/s, resulting longer transfer times and system limitations,
the wireless link in combination with the CNN models complexity significantly
affects the inference latency and energy consumption in the IoT device [6,7].

The contributions of work from Gaddam et al. and Lane et al. showed that
large latency causes malfunctions in applications with strict time constrains
and also reduces battery run times [8,9]. Energy efficiency in neural networks
is influenced by the number of multiply and accumulate operations (MAC) of
the CNN models which were investigated by Rodrigues et al. for a regression
model for the prediction of the energy consumption of the jetson nano tx2 [10].
They achieved a relative test accuracy between 76% to 84% for a linear energy
estimation model by mere summation of MACs depending on respective CNN
models [11]. The measurements by Liu et al. show that the MAC related float-
ing point operations (FLOPs) increase the latency linearly [2]. In research of
distributed federated learning systems Yang et al. investigate an algorithm to
solve the problem of resource allocation in communication during the learning
process of multiple heterogeneous agents [7]. Numerical results show up to 60%
reduction of energy consumption compared to conventional federated learning
methods. In addition Wang et al. discovered the effect of multi user interaction
while super-vector-machine based federated learning and could accomplish an
optimized model which was able to reduce the users energy consumption up to
20% depending on the simulation model [6].

However, previous works mainly focus on modeling energy consumption of
learning processes or the energy consumption on the IoT device itself. Our work
investigates and compares the latency performance of an IoT device with respect
to the energy consumption including a wireless link, the processing hardware and
the complexity of selected pre-trained CNN models. Our contributions are:

– Prototypical IoT test setup (Hard- and Software) for latency and energy
measurements of neural networks in a lightweight heterogeneous system.
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– Validated system to measure and compare the latency and energy consump-
tion of applied CNN models in edge and cloud processing modes with and
without AI acceleration.

– Investigation of latency and energy consumption of CNN models on IoT
devices in edge and cloud processing modes with wireless link.

– The scripts and measurements for download on our project repository1.

The paper is structured as follows. Section 2 briefly describes our System
Setup & Methodology to measure and compare energy consumption and latency
of an IoT device in edge and cloud processing mode. In Sect. 3, we present
and compare results of measurements between edge and cloud processing and
summarize the findings. We conclude the paper and present directions for future
work in Sect. 4.

2 System Setup and Methodology

2.1 Hardware

To avoid external influences during measurement like Internet traffic, the system
is set up on local hardware. The hardware setup shown in Fig. 1 includes a typical
IoT device comprising a Raspberry PI 4 with a CPU Advanced RISC Machines
Cortex-A72 (ARM), 8 GB RAM and an edge AI accelerator Tensor Processing
Unit (TPU) google Coral. As a typical server setup, we choose a CPU Intel i7-
11800H (i7), 16 GB DDR4 RAM and a cloud AI accelerator Graphics Processing
Unit (GPU) Nvidia RTX 3070 Mobile and 8 GB GDDR6 RAM.

Router
TP-Link Archer AX 50

Raspberry PI 4
IoT device

Acer AN515-57-729U
Cloud

Powermeter 
JT-TC66C

Wireless Link Wired Link

Ethernet
Realtek Killer E2600

W-LAN
Integrated Chip

CPU ARM
Cortex-A72 
8 GB RAM

AI Accelerator TPU
Coral

CPU i7 
11800H 

16 GB RAM

AI Accelerator GPU
RTX 3070 Mobile

8 GB GRAM

Fig. 1. Overview of the hardware setup.

The wireless link from the IoT device to the cloud is established via the
router TP-Link Archer AX 50. The transmission standard is IEEE 802.11ac
with 5 GHz band on channel 36 with a channel bandwidth of 40 MHz and a

1 https://www.th-luebeck.de/en/cosa/projekt/pasbadia#cnn-results.

https://www.th-luebeck.de/en/cosa/projekt/pasbadia#cnn-results
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maximum transmission rate of 200 MBit/s. The connection between the wireless
router and the server is a direct short cable Ethernet link. A powermeter JT-
TC66C measures the energy consumption of the IoT device. The JT-TC66C has
a voltage resolution of 0.1 mV at ±0.5% accuracy and a current resolution of
0.01 mA at ±0.1%. The sample rate 2 Hz [12].

2.2 Convolutional Neural Network Models and Classification
Patterns

For a fair comparison, we have selected pre-trained standard CNN model graphs
from the keras library which are convertible to the TPU according to [13]. The
CNN models are pre-trained to the imagenet and have a complexity between
300 MFLOPs and 19.6 GFLOPs (multiply-adds) (Table 1) [14–17].

Table 1. Complexity in FLOPs of selected pre-trained standard CNN model graphs.

Consecutive Parameters

Number Networks FLOPs (multiply-adds)

1 mobilenetv2 ≈ N = 300 M [15]

2 nasnetmobile ≈ N = 564 M [15]

3 resnet50 ≈ N = 3.8 G [16]

4 resnet101 ≈ N = 7.6 G [17]

5 vgg16 ≈ N = 15.3 G [16]

6 vgg19 ≈ N = 19.6 G [16]

Figure 2 visualizes how models are adapted and prepared for the hardware
before the measurements. The cloud processing on the i7 and GPU is executed
with frozen CNN models and full precision float32 values. For the edge processing
on the ARM, a uint8-bit fixed post-training quantization is applied to the frozen
CNN models for fairness. Post-training quantization converts CNN models to
reduce model size while improving the CPU ARM latency without compromis-
ing model accuracy [18,19]. The TPU classifications are executed with further
converted uint8-bit fixed edge-tpu CNN models for compatibility [20,21]. For
classification, we select a subset from the imagenet resized to 224 × 224 × 3 byte
per image. The resulting average size of an image is about 150 kByte.

2.3 Measurements

The measurements are split into four experiments. The first experiments address
the latency and energy consumption of the IoT device by processing CNN models
at the edge with (EwA) and without (EwoA) edge AI acceleration.

Following experiments address the latency and energy consumption of the IoT
device by processing CNN models in the cloud with (CwA) and without (CwoA)
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pre-trained frozen 
keras model
32-bit float

tf-lite cpu arm 
model

8-bit fixed

post-training quantization

tf-lite tpu 
model

8-bit fixed

CPU ARM
Cortex-A72

AI Accelerator TPU 
Coral

edge-tpu
converter

deploydeploy

CPU i7
11800H

AI Accelerator GPU
RTX 3070

deploydeploy

Fig. 2. Quantization and deployment of CNN models [20].

cloud AI acceleration including the data transfer via wireless link. To emulate
different quality of the wireless link, data rates are configured via software. The
measurements are compared to assess the impact of the data rate and complexity
of the processed CNN models to the IoT devices latency and energy consumption.
The selected hardware of the experimental is listed in Table 2.

Table 2. Hardware for edge and cloud processing experiments.

Processing Modes IoT Device Link Server

(with/without CPU Accel. CPU Accel.

AI acceleration) ARM TPU WLAN i7 GPU

Edge w.o. Accel. (EwoA) Pre+CNN+Post – – – –

Edge w. Accel. (EwA) Pre+Post CNN – – –

Cloud w.o. Accel. (CwoA) Pre+Post – Trans Pre+CNN+Post –

Cloud w. Accel. (CwA) Pre+Post – Trans Pre+Post CNN

Edge Processing. The latency and energy measurements for edge processing
include the CNN models inference (CNN) and the pre- and post-processing
steps (loading of image data and extraction of classification) as shown in Fig. 3.

In EwoA mode the CPU ARM runs pre- and post-processing as well as
inference of the CNN. In EwA the CPU ARM runs pre- and post-processing
only. The inference of CNN is executed on the AI accelerator TPU.

Cloud Processing. The cloud processing measurements include the CNN mod-
els inference (CNN) and the pre- and postprocessing steps loading, decoding,
encoding and transmission of the image data via WLAN from the IoT device to
the cloud as illustrated in Fig. 4.

In accordance with typical transmission rates in mobile networks, we ana-
lyze the latency and energy consumption with alternating data rates between
1 MBit/s and 50 MBit/s [22].
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Fig. 3. Flow Diagram of measurements for edge processing with and without acceler-
ation: Inference latency and energy consumption of the IoT device.

In cloud processing without AI acceleration (CwoA), the edge device CPU
ARM and server CPU i7 perform the pre- and post-processing and the CNN is
executed on the server CPU i7. In cloud processing with AI acceleration (CwA)
the CNN is executed on the server GPU.
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Fig. 4. Flow diagram of measurements for cloud processing with and without acceler-
ation: Inference latency and energy consumption of the IoT device.

Method. In the experiment environments EwoA, CwoA and CwA the measure-
ments are repeated with n = 100 images. Due to the fast inference times of the
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TPU by executing CNN models with ≤564 MFLOPs, the experiment EwA is
repeated with n = 500 images for more precise measurements. The mean latency
tX per image classification, comprising the pre-, post-processing and inference
time of the CNN, is calculated with

tX =
1
n

n∑

i=1

tei − tsi (1)

which is the mean time difference between the classifications start tsi and end
tei time. Afterwords, the energy consumption EX per image classification is
estimated with (2), where P idle is the constant measured power in idle mode:

EX ≈ tx
(ten − ts1)

∫ ten

ts1

(P (t) − P idle)dt (2)

3 Results

We performed the measurements in the following order: First, we compare
latency and energy consumption in the edge processing mode with and without
AI acceleration. We expect that the acceleration decreases the inference latency
and we presume a reduced energy consumption. Secondly, we compare cloud
processing with different data rates of WLAN. We expect that with higher com-
plexity of the neural network characterized by FLOPs, cloud processing gains
an advantage over edge computing in terms of latency and energy consumption.

3.1 Edge Processing

The measurements show that the latency of edge processing with AI acceleration
is in the range between 5.6 ms at 300 MFLOPs and 445 ms at 19.6 GFLOPs
and significantly smaller than the case of processing without acceleration which
is between 84.5 ms and 2590 ms. The energy consumption is proportional to the
latency in the system and is in the range between 14.4 mJ at 300 MFLOPs and
1190 mJ at 19.6 GFLOPs with acceleration and between 91.5 mJ and 2980 mJ
without acceleration, respectively.

The advantage in acceleration is higher the fewer FLOPs the CNN model
includes and reduces from 15 times at 300 MFLOPs to 5.8 times at 19.6 GFLOPs
with a minimum of 4.8 times at 15.3 GFLOPs. The ratio of latency without
acceleration vs with acceleration decreases from 6.35 at 300 MFLOPs to 2.5 at
19.6 GFLOPs where the minimum ratio 2.1 is obtained as 15.3 GFLOPs. We
assume, that the anomaly between 15.3 GFLOPs and 19.6 GFLOPs depends
on the CNN graph structure which provides a slight advantage of the TPU
processing against the CPU ARM processing.

With AI acceleration the benefit for energy consumption is less than for the
latency because the TPU increases the power consumption by ≈ 2 W compared
to ARM only.
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Fig. 5. Advantage of AI acceleration for latency rt = tEwoA

tEwA
and energy consumption

rE = EEwoA

EEwA
in edge processing mode with respect to the FLOPs N .

3.2 Cloud Processing

In cloud processing mode, the measurement of the latency tX and energy con-
sumption EX of the IoT device is performed in the same way. Additionally,
latency for image classification includes the transfer time from the edge device
to the cloud server plus en- and decoding. Before performing measurements, we
first characterize the influence of the network configuration.

The influence of the networks idle latency on the CNN inference latency is
measured by sending 1 byte to the server and receiving a 2 byte answer. The
latency is the round trip time on the application layer for messages. The value
is about 3 ms at 50 MBit/s and 7 ms at 1 MBit/s per message. The additional
round trip time is acceptable compared to the margin between CwoA and CwA
characteristics in later measurements as we expect total latency values in the
range of hundreds of milliseconds.

Fig. 6. The right side of the solid line shows the advantage of AI acceleration in cloud
processing mode with respect to the FLOPs N and data rate D. (Color figure online)

In cloud processing with and without AI acceleration, we expect an improve-
ment in latency and energy consumption with AI acceleration at higher WLAN
data rates and more complex CNN. We choose 3D plots with a color code to
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visualize the results as rotated 3D plots were hard to interpret. The measure-
ments in Fig. 6 compare the latency tCwoA, tCwA and energy characteristics
ECowA, ECwA of the IoT device between CwoA and CwA. The solid line indi-
cates at which data rate CwA is more efficient. At very slow data rates of the
WLAN, there is no improvement regardless of neural network complexity. The
transmission delay is the main portion of the latency and energy consumption
of about 1.3 s and 350 mJ. At faster data rates, starting with 2 MBit/s, accel-
eration improves efficiency with more complex CNNs. In terms of latency CwA
with 56 ms is 2.75 times faster compared to CwoA with 160 ms and 1.75 times
more efficient (43 mJ vs. 79 mJ) at 19.6 GFLOPs.

3.3 Edge Versus Cloud Processing

To evaluate the performance of latency and energy consumption of the IoT device
depending on transmission rate, processing mode and CNN models complexity,
the relative ratio of the measured values from Sect. 3.1 or Sect. 3.2 is calculated
as a function of the data rate D and the FLOPs N with (3) and (4), where t
represents the latency measurement value and E represents the energy value.

rt(D) =
tcloud(D)
tedge

(3)

rE(D) =
Ecloud(D)
Eedge

(4)

Cross validation results for EwoA and EwA versus CwoA and CwA are shown
in Fig. 7 and Fig. 8 with respect to latency and energy consumption, respectively.
The brighter region points (yellow) to the superiority of edge processing mode,
but the darker region (red) emphasizes the preference for cloud processing mode
separated by the solid black line.

At low data rates D = 1 MBit/s and N = 300 MFLOPs the ARM (EwoA)
ratio measurements rt and rE show, that the edge processing is at least 15 times
faster in latency and three times more efficient in terms of energy consumption
than the cloud processing modes CwoA and CwA. With a rising data rate D, the
advantage reduces significantly. At a data rate D above 28 MBit/s, the latency
tEwoA and at data rates D above 14 MBit/s the energy consumption EEwoA

is higher at the edge compared to the cloud processing location. If N is larger
than 7.6 GFLOPs the EwoA latency performance is worst compared to cloud
processing, in terms of energy consumption cloud processing gets more efficient
at N = 3.8 GFLOPs.

With acceleration by a TPU (EwA) the ratio measurements rt and rE show
that the edge processing is up to 230 times faster and 23 times more efficient
at slow data rates D < 1 MBit/s than in cloud processing (CwoA and CwA).
With increasing data rate D, the advantage reduces but edge processing EwA
remains faster and more efficient at N ≤ 564 MFLOPs than cloud processing.
Furthermore, the latency tEwA up to N = 7.6 GFLOPs and D = 14 MBit/s and
the energy consumption EEwA up to N = 3.8 GFLOPs and D = 4 MBit/s is
better on edge processing with acceleration (EwA).
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Fig. 7. The left side of the solid line shows the advantage in latency t in edge processing
mode versus cloud processing mode. (Color figure online)

Fig. 8. The left side of the solid line shows the advantage in energy consumption E in
edge processing mode versus cloud processing mode. (Color figure online)

4 Conclusion and Future Work

In this work, a test system was developed for the examination of latency and
energy consumption of CNNs for IoT systems with edge and cloud processing
with and without AI acceleration. The investigation results allow for decisions
based on the data rate of a wireless link and the complexity in FLOPs of CNN
models. The results show that processing CNN models on IoT devices through
optimized hardware such as a TPU has latency and power advantages for low
complexity CNNs. However, these benefits decrease with increasing complexity
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and decreasing data rate. When processing the CNN models in the cloud via
low data rate wireless links the wireless link dominates the latency and energy
consumption. At higher data rates starting with 2 MBit/s cloud processing with
acceleration is more efficient than without acceleration when processing complex
CNN models with more FLOPs.

For CNN models with less than 564 MFLOPs, edge processing with AI accel-
erator performs better than the cloud processing solutions. Even for more com-
plex networks with 7.6 GFLOPs edge processing is useful at limited network
speeds up to 14 MBit/s. Edge processing without AI accelerator performs bet-
ter than the cloud processing solutions at low data rates and a small number of
FLOPs namely below 300 MFLOPs.

In future, we will start the development of a productive IoT system in a dis-
tributed AI medical application based on smartphones with the achieved knowl-
edge. In future work, we will also consider an estimation model of the energy
consumption on the wireless link in order to decide at runtime which processing
is more appropriate for each situation.
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References

1. Figueredo, K., Seed, D., Subotic, V.: Preparing for highly scalable and replicable
IoT systems. IEEE Internet of Things Mag. 3, 94–98 (2020)

2. Liu, D., Kong, H., Luo, X., Liu, W., Subramaniam, R.: Bringing AI to Edge: from
deep learning’s perspective. Neurocomputing (2021)

3. Cheng, C.-Y.: et al.: Design of a feeding system for cage aquaculture based on
IoT and AI technology. In: 2021 International Symposium on Intelligent Signal
Processing and Communication Systems (ISPACS). IEEE (2021)

4. Chin, T.-W., Ding, R., Zhang, C., Marculescu, D.: Towards efficient model com-
pression via learned global ranking. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE (2020)

5. Ahmad, R.W., Gani, A., Hamid, S.H.A., Xia, F., Shiraz, M.: A review on mobile
application energy profiling: taxonomy, state-of-the-art, and open research issues.
J. Netw. Comput. Appl. 58, 42–59 (2015)

6. Wang, S., Chen, M., Saad, W., Yin, C.: Federated learning for energy-efficient task
computing in wireless networks. In: ICC 2020–2020 IEEE International Conference
on Communications (ICC). IEEE (2020)

7. Yang, Z., Chen, M., Saad, W., Hong, C.S., Shikh-Bahaei, M.: Energy efficient
federated learning over wireless communication networks. IEEE Trans. Wireless
Commun. 20, 1935–1949 (2021)

8. Gaddam, A., Wilkin, T., Angelova, M., Gaddam, J.: Detecting sensor faults,
anomalies and outliers in the Internet of Things: a survey on the challenges and
solutions. Electronics 9, 511 (2020)



396 S. Hauschild and H. Hellbrück

9. Lane, N.D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Kawsar, F.: An early
resource characterization of deep learning on wearables, smartphones and Internet-
of-Things devices. In: Proceedings of the 2015 International Workshop on Internet
of Things towards Applications. ACM (2015)

10. Rodrigues, C., Graham, R., Mikel, L.: SyNERGY: An energy measurement and
prediction framework for convolutional neural networks on Jetson TX1. In: Pro-
ceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications. PDPTA (2018)

11. Rodrigues, C.F., Riley, G., Lujan, M.: Energy predictive models for convolutional
neural networks on mobile platforms (2020)

12. Joy-IT, JT-TC66C. Datasheet (2021). https://joy-it.net/de/products/JT-TC66C.
Accessed 05 Apr 2022

13. keras, Keras applications - available models. Website (2022). https://keras.io/api/
applications/. Accessed 17 Mar 2022

14. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-
scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE (2009)

15. Tan, M., Le, Q.V., MixConv: mixed depthwise convolutional kernels BMVC. arXiv
preprint arXiv:1907.09595 (2019)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE (2016)

17. Cao, K., Gao, J., Choi, K.-N., Duan, L.: Learning a hierarchical global attention
for image classification. Future Internet 12, 178 (2020)

18. Jiang, H., Li, Q., Li, Y.: Post training quantization after neural network. In: 2022
14th International Conference on Computer Research and Development (ICCRD).
IEEE (2022)

19. Ignatov, A., Malivenko, G., et al.: Fast and accurate quantized camera scene detec-
tion on smartphones, mobile AI 2021 challenge: Report. In: 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE
(2021)

20. Google, Tensorflow models on the edge TPU (2020). https://coral.ai/docs/
edgetpu/models-intro/. Accessed 27 Jan 2022

21. Natarov, R., et al.: Artefacts in EEG signals epileptic seizure prediction using
edge devices. In: 2020 9th Mediterranean Conference on Embedded Computing
(MECO). IEEE (2020)

22. Cisco Systems, Cisco annual internet report. Statistic (2018). www.cisco.com/
c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-
paper-c11-741490.pdf. Accessed 05 Apr 2022

https://joy-it.net/de/products/JT-TC66C
https://keras.io/api/applications/
https://keras.io/api/applications/
http://arxiv.org/abs/1907.09595
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf


Industry-Academia Cooperation: Applied
IoT Research for SMEs in South-East

Sweden

Arslan Musaddiq1, Neda Maleki1, Francis Palma1, Tobias Olsson1,
Daniel Toll1, David Mozart1, Mustafa Omareen1, Johan Leitet1,

John Jeansson2, and Fredrik Ahlgren1(B)

1 Applied IoT Lab, Department of Computer Science and Media Technology,
Linnaeus University, Växjö, Sweden

fredrik.ahlgren@lnu.se
2 Department of Organisation and Entrepreneurship,

Linnaeus University, Växjö, Sweden

Abstract. This paper presents the activities of the Applied IoT Lab
at the Department of Computer Science and Media Technology, Lin-
naeus University (LNU), Kalmar, Sweden. The lab is actively engaged
in IoT-based educational programs, including a series of workshops and
pilot cases. The lab is funded by the European Union and two Swedish
counties – Kalmar and Kronoberg. The workshops and pilot cases are
part of the research project named IoT Lab for Small and Medium-sized
Enterprises (SMEs). One of the lab’s main objectives is to strengthen
and support local companies with IoT. The project IoT Lab for SMEs
also aims to spread knowledge and inspire the local community about
the possibilities of using IoT technologies by organizing open lab days,
in-depth lectures, and seminars. This paper introduces Applied IoT Lab
at LNU, its educational programs, and industry-academic cooperation,
including workshops and a number of ongoing pilot cases.

Keywords: IoT · SME · Pilot cases

1 Introduction

Internet of Things (IoT) is one of the prospective technologies that is predicted
to affect a large number of business models. IoT unifies the physical and digital
worlds and allows controlling the things around us while keeping us updated on
the state of the environment [1]. The main idea of IoT is to provide communica-
tion between various devices, apparatuses, and other hardware without human
intervention. Besides, it presents easy access to various information through
enhanced connections within a worldwide network scale. Considering the afore-
mentioned potential benefits, Linnaeus University (LNU) in Sweden has founded
a state-of-the-art Applied IoT Lab [2]. The objectives of this laboratory are to
facilitate applied IoT research, disseminate IoT knowledge among society, and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. González-Vidal et al. (Eds.): GIoTS 2022, LNCS 13533, pp. 397–410, 2022.
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solve real-world problems by creating a close relationship between higher educa-
tion and small and medium-sized enterprises (SMEs).

In this era, wireless communication has been considered one of the important
aspects of economic growth [3]. Considering the importance of wireless communi-
cation, numerous countries are investing time, effort, and money into the growth
of the future information and communication technology (ICT) industry. Many
countries around the globe established research centers to contribute to the bet-
terment of the world through ICT [4]. Apart from this, it is also important to
spread the IoT knowledge into society by creating a close relationship between
higher education institutions and industry. Sweden, as one of the dominating
ICT countries with the largest ICT sector in the Nordic region, creates numer-
ous business opportunities by converging with more diverse industrial fields [1].
Sweden is actively participating in promoting convergence of industry to intro-
duce a new era like the IoT [5].

IoT is a broad area and generally refers to things that can be connected
to the Internet to make our lives easier in many ways. Examples include smart
locks, smart scales, smart home appliances such as coffee machines, and so on [6].
Apart from daily-life personal use items, companies and industries leveraging on
IoT to automate or simplify the processes to save cost/time and reduce waste [7].
In the long run, at the industrial scale, IoT has the potential to lower consumer
goods prices and improve the overall economy of the countries. Similarly, the
technological change led by IoT supports sustainability by minimizing energy
consumption, reducing waste, and bringing automation to optimize the use of
natural resources [8]. According to a World Economic Forum report, around 85%
of IoT deployments are addressing the sustainability goals [9].

At present, there is a wide array of activities in Sweden relating to sus-
tainable development at the national, regional, and local levels of government.
Besides, there are myriad different environments and sustainable development
initiatives in various contexts within Sweden. The importance of sustainabil-
ity is not beyond question [10]. Sustainability improves the quality of our lives,
protects our ecosystem, and preserves natural resources for future generations.
Going green and sustainable is not only beneficial for the companies, but it also
maximizes the benefits from an environmental focus in the long-term [11].

According to the European Commission, the approach to distinguish small
and medium-sized enterprises (SMEs) from large businesses is based on quanti-
tative and qualitative indicators, which mostly refer to the number of employees
and characteristics of management, respectively [12]. Thus, there is no unique,
universally accepted definition for SMEs. In the project and local context, the
definition of an SME is a company with a number of employees less than 250
people, and that accounts for more than 90% of companies in the region. In
order for IoT to secure the future of SMEs, promising and best practices need
to be made visible, the level of knowledge increased, and experiments carried
out. SMEs need to be aware of the benefits of IoT and adopt such solutions with
priority to achieve sustainable growth of their businesses [13].

The Applied IoT Lab at LNU has also established a close collaboration with
both Kalmar Energy (https://kalmarenergi.se) and Wexnet (https://wexnet.se),

https://kalmarenergi.se
https://wexnet.se
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Table 1. Regions, Municipalities, and Number of People [14].

Region Municipalities Population Region Municipalities Population

Kalmar Län Kalmar 69,467 Kronoberg Alvesta 20,134

Västervik 36,679 Lessebo 8,733

Vimmerby 15,647 Ljungby 28,521

Hultsfred 14,224 Markaryd 10,320

Oskarshamn 27,102 Tingsryd 12,393

Högsby 5,921 Uppvidinge 9,588

Mönster̊as 13,430 Växjö 94,129

Borgholm 10,839 älmhult 17,651

Nybro 20,318

Emmaboda 9,445

Tors̊as 7,125

Mörbylänga 15,249

Total 245,446 Total 201,469

which are local companies providing IoT-infrastructure in Kalmar and Växjö
with an extensive experience from the infrastructure perspective. During the
project, companies in the Kalmar and Kronoberg region will be given the oppor-
tunity to deepen their knowledge linked to IoT: What can you do with IoT? How
do you do it? To achieve these goals, the Applied IoT Lab has initiated a number
of pilot cases and workshops at LNU. In this paper, we introduce regional inno-
vation at the Applied IoT Lab, its educational programs, workshops, and pilot
cases. The objective of this paper is to provide characteristics of the IoT lab in
terms of educational activities and industrial cooperation.

The rest of the paper is organized as follows. Section 2 introduces the Applied
IoT Lab; Sect. 3 focuses on highlighting education and industrial-academic coop-
eration activities in detail, while Sect. 4 provides lessons learned, and Sect. 5
concludes the paper.

2 The Applied IoT Lab

The Applied IoT Lab started as an outcome of a series of IoT workshop activities
that was organised at LNU together with the local energy company Kalmar
Energi in 2018. LNU has two campuses in Kalmar (Kalmar county) and Växjö
(Kronoberg county). Hence, in this paper, we introduce a number of pilot cases
initiated by the Applied IoT Lab in these counties with a goal of sustainability.
For the reader’s perspective, the list of municipalities and their population sizes
in the two counties are shown in Table 1 [14].

The activity ‘pilot cases’ is a part of the research project IoT lab for SMEs,
funded by the European Union and two Swedish counties, Kalmar and Kro-
noberg. In order to strengthen small companies that today are not using IoT,
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they are in need of support for testing and evaluating their ideas. One challenge
is that there is an overwhelming amount of different design choices in both the
architecture and hardware within IoT. For a company that has not yet started
working with IoT, there is a need for support early in the process. There is also a
broad number of applications that can be applied to current business processes,
which makes it a challenge for a company to see the added value.

The Applied IoT Lab located in Kalmar is equipped with state-of-the-art
IoT devices and hardware. The lab has a number of Pycom (https://pycom.
io) development boards, including Fipy, Lopy4, Gpy, and Wipy 3.0, along with
expansion boards such as Pysense, Pyscan, etc. The lab is also equipped with
various other microcontrollers including all types of Raspberry Pi and Arduinos.
In addition, the lab contains number of sensors, from basic temperature sensors
to more complex industrial sensors. Other hardware includes different kinds of
components such as motors, cameras, RAK boards, LoRaWAN gateways, solar
panels, and so on. Wireless communication technologies, such as WiFi, Bluetooth
Low Energy (BLE), Zigbee, Long-Term Evolution (LTE), Long Range (LoRa),
and SigFox are currently employed by IoT lab for different applications based
on the range, coverage, bandwidth, power consumption, and cost criteria.

3 Education and Industry-Academic Cooperation

The importance of industry-academic cooperation and its impact on regional
innovation has been widely acknowledged across the world. Considering the
international competition and advancing technological landscape, the European
Union have been continuously encouraging industry-academic cooperation to
improve regional and international innovation, as well as wealth creation [14].
The Swedish government, including local municipalities, also supports collabo-
ration between academia and industry [15].

IoT has emerged as one of the strongest wireless networking paradigms in
the twenty-first century, attracting a wide range of research interests. As the
area of IoT is broad and cross-disciplinary, the focus of Applied IoT Lab, from
the research and implementation perspective, is on the end-user application and
actual use of IoT. The use of IoT in the industrial sector is growing as new
services and software are created and implemented around the world [6]. Con-
sidering the impact of this ongoing transition, LNU, together with Applied IoT
Lab, actively promotes industry-academic cooperation through a number of IoT-
based pilot cases. The Applied IoT Lab is carrying out detailed research-oriented
tasks and graduate-led creative initiatives for industrial-academic cooperation,
mainly in the form of applied projects and workshops.

There is a track record of many different applied projects as an outcome
of university courses at the engineering programs in software engineering and
computer engineering, also from a yearly distance summer course in applied
IoT that is open for applicants from all over the world [16]. In the last two
years, several IoT-related projects have been done in close collaboration with
the industry, such as digital bee-hives and crowd avoidance in transport [17,18].

https://pycom.io
https://pycom.io
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3.1 Workshops

The project IoT lab for SMEs organises various skill-enhancing activities to
increase IoT competence among SMEs. These activities include lectures, open
lab days, and workshops. Such programs are normally divided into two parts.
During the first half of the day, in-depth theoretical knowledge is presented, and
for the rest of the day, companies are given the opportunity to test their ideas
to develop a simple IoT-enabled solution. The in-depth lecture and seminars
could be on the topic of IoT hardware and software, product commercialization,
ecosystems, sustainability, and business models.

The lab also organizes open lab days to test or develop ideas for educational
purposes. The companies in the Linnaeus region in Kalmar, Sweden, together
with LNU students and researchers, test their ideas. IoT lab also organizes more
formal, detailed workshops with companies where LNU researchers and faculty
members work with the companies side by side. The workshops are held phys-
ically in place or virtually, depending on the company’s invocation, and the
sessions are divided into three parts:

– Short introduction to the project and IoT.
– Hands-on activities, where participants learn to connect sensors, program

cutting edge hardware, send and visualise sensor data.
– Debugging, troubleshooting, and open discussion.

Some SMEs are interested in IoT basics, while others prefer to work with
and read data from the application-specific hardware. In basic workshops, par-
ticipants learn how to connect a (temperature) sensor to a micro-controller and
send the data using LoRaWAN. In cases where LoRaWAN coverage is unavail-
able, participants use WiFi mostly during virtual workshops.

When planning workshops, the company’s business type is taken into con-
sideration. Some companies are only interested in how data can be extracted
from their existing systems and sent to the cloud. Other companies with a non-
concrete idea, however, participate for inspiration.

3.2 Pilot Cases

The lab established an innovation ecosystem in the Linnaeus region in Sweden by
providing technical guidance, consultation, and recommendation for the develop-
ment of SMEs through IoT. A limited number of SMEs were adopted/admitted
as pilot cases within the project.

As a pilot case, an SME is subjected to two main processes. The first has
an IoT-technology development focus, where IoT lab researchers and engineers
work together with SMEs in order to identify and connect their IoT initiative
with relevant hardware and software. The second process has an IoT-business
model development focus, where researchers from the School of Business and
Economics at Linnaeus University come alongside each pilot case in order to
facilitate a discussion on how to create and capture the potential business value
of their IoT initiative. This process has two parts. The first part takes place
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Fig. 1. (a) Traditional beehive with Raspberry Pi connected sensors; and (b) An RS-
485 enabled scale sending data using LoRaWAN to The Things Network and Datacake.

as soon as an SME is accepted as a pilot case. Its objective is to discuss why
the company pursues an IoT initiative and how they perceive potential benefits,
competitiveness, and innovation processes. SMEs are also asked to assess their
digital transformation readiness during this first part. The second part takes
place when SMEs reach the end of their pilot case journey within the IoT lab.
The objective is to have a discussion regarding SME’s management experience as
they navigated impacts, outcomes, and challenges in order to achieve a successful
IoT initiative. Discussions are made in light of, and related to, business model
frameworks. When SMEs end their time as pilot cases and wish to commercialize
the IoT lab recommended solution, they are free to invest and fund any further
development.

In the following, we provide an overview of all the pilot cases initiated by the
Applied IoT Lab.

Beelab: Beelab Technology Sweden AB (www.beelab.se) develops and manu-
factures products and services for digitally connected beehives. The objective
of Beelab Technology is to introduce eco-friendly communication technology to
monitor the bees population and honey production. A sustainable digital bee-
keeping solution is expected to offer better beehives observation and monitoring.

The company is currently utilizing a Raspberry Pi acting as a gateway to
connect sensors to the beehives. Such a system depends on a continuous source
of power along with a number of cables. The sensors of interest include weight,
temperature, air pressure, and humidity sensors. The company aims to pro-
vide battery-powered wireless-communication-based connected hives solutions
throughout Sweden. The company also aims to use cutting-edge sensors which
can provide additional added value for beekeepers, researchers, and authorities.
The Applied IoT Lab developed an energy-efficient wireless connected hives solu-
tion using Fipy (pycom.io/product/fipy/) development board which provides five
communication modules, i.e., WiFi, BLE, LoRa, SigFox, and dual LTE (CAT-

www.beelab.se
https://pycom.io/product/fipy/
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M1 and NB-IoT). For a long-range battery-operated wireless infrastructure, we
propose to utilize LTE CAT-M1 or NB-IoT.

LTE CAT-M1 and NB-IoT use a simplified version of the fourth generation
(4G) mobile communication standard, which reduces hardware complexity and
cost when the technology is used on a larger scale. LTE CAT-M1 offers better
coverage than 4G in, for example, indoor environments and remote locations.
LTE CAT-M1 also provides enabling over-the-air (OTA) updates so that IoT
devices can continue to update securely for many years. The Fipy boards can be
connected to the Pycom expansion board to program the devices. A traditional
beehive with Raspberry Pi-based connected sensors is shown in Fig. 1a.

The Fipy acts as a gateway, and a number of sensors with different serial
protocols are connected to it, which can go into the power-saving mode or con-
nect less frequently to the network. The data is transmitted each interval via
Telia sim card1. The devices use constrained application protocol (CoAP). The
developed product has been transferred to Beelab technology company and the
researchers for the continuity of research and development in this field.

Svenska V̊ag: Svenska V̊ag AB (www.svenskavag.com) is one of the main man-
ufacturers and suppliers of weighing machines in Sweden. The company works
with everything in weighing, from loose components such as load cells, weighing
platforms, and weighing instruments, to advanced weighing systems for manual
or automatic weighing/dosing.

The company wants to connect the weighing machine to the Internet for the
customers who want to see the weight value without being physically present at
the weighing instrument. Figure 1b shows an RS-485 enabled scale sending data
using LoRaWAN to The Things Network (https://www.thethingsnetwork.org/)
and Datacake (https://datacake.co/).

Sometimes customers need weighing at stations and places that are remote.
They can be in hard-to-reach environments or places with no access to the Inter-
net. Examples can be with customers who have one/several silos/containers out-
door for storage of materials. They sometimes need to check and update them-
selves on how much content is left in the container. In a simple way, monitoring
the weight, e.g., via a smartphone, is an option.

The Applied IoT Lab is working to develop a long-range communication mech-
anism using LPWAN RS485 bridge (https://www.rakwireless.com/). The cur-
rent setup consists of multiple types of load cells where all the cells use one
common communication channel, i.e., Modbus RS485-based protocol. The pro-
posed solution uses Modbus LoRaWAN bridge and the approach of using RS485
instead of TCP/IP is to remove the access point dependency.

QTF: QTF Sweden AB (www.qtf.se) works to ensure that all plumbing systems
have system fluid that allows the systems to work energy efficiently, without
malfunctions, and without rusting. The company works to identify the status of
system fluid, for example, oxygen, pH, pressure, and conductivity level of fluid.
The company monitors the fluid system at the facilities, which might be located
30–50 km away from the head office in Kalmar city. To save time and travel costs,

1 https://www.telia.se/.

www.svenskavag.com
https://www.thethingsnetwork.org/
https://datacake.co/
https://www.rakwireless.com/
www.qtf.se
https://www.telia.se/


404 A. Musaddiq et al.

Fig. 2. (a) The tube used for filtering heating system liquid; and (b) AquaTeq nozzle
for sewage cleaning.

the company aims to have a mechanism that monitors the fluid systems and
transmits the information wirelessly, i.e., geographically independent of where
the facility is located.

The company is currently measuring three properties: deviation in the mag-
netic field in a circulation pump, CO2 levels from a top dehumidifier, and liquid
pressure in a filter tube. The deviation in the magnetic field is in the electrical
control panel. The monitoring of these values is done in three different stages.
The first stage is monitoring the deviation in the magnetic field for approxi-
mately two weeks, i.e., if the circulation pump is spinning or not. The second
stage is to monitor the CO2 levels from the top dehumidifier. The third and
final stage is to monitor the liquid pressure in the filter tube. It is critical to
shut down the system during the first stage if the circulation pump stops. This
is done by sending a signal to the PLC. Figure 2a shows the filter tube used by
QTF for filtering heating system fluid.

The lab proposes using a Pycom Fipy and a sensor fit for each stage. In the
first stage, i.e., when monitoring deviations in the magnetic field, the data is sent
from the Fipy to the PLC using Modbus TCP/IP. Data will be transmitted to a
remote server using NB-IoT in the remaining two stages. The proposed solution
introduces flexibility in terms of mobility.

AquaTeq Sweden AB: When maintaining sewage and stormwater systems, it
is a great advantage to know the conditions in and around the nozzle or equip-
ment that unplugs it using high-pressure water. AquaTeq Sweden AB (https://
aquateq.com/) started in 1986 to develop the cleaning nozzles better and faster
than its competitors. However, monitoring the operating condition where the
target is a 100 mm diameter and up to 150 m long pipe located approximately

https://aquateq.com/
https://aquateq.com/
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Fig. 3. PM & Vänner CPWplus-75 scale.

10m underground is challenging. Figure 2b shows a nozzle that AquaTeq uses
for sewage cleaning.

The Applied IoT Lab proposes to initiate the project with an experiment to
evaluate LoRa 433 MHz and NB-IoT. In cases where one or both technologies
prove to be reliable, AquaTeq may consider integrating sensors into their noz-
zles. A wireless solution can enable AquaTeq to (1) Reduce water consumption:
each flushing nozzle consumes a certain number of liters per minute; (2) Reduce
operating time: operators are not immediately aware of potential obstacles such
as tree roots, and continuously feeding the hose, resulting in a waste of time; and
(3) Reduce diesel consumption: to get water under pressure requires a certain
speed on the engine as in turn drives the purge pump, an average cleaning truck
consumes between 25–50 l of diesel per hour.

PM & Vänner: PM & Vänner (https://pmrestauranger.se/en/) is a hotel and
restaurant group in Växjö, Sweden. In a restaurant environment, food waste is
one of the major problems. Environmental impact and sustainability are also
related to food waste issues. Reducing food waste in various ways is a priority
issue where restaurants need to work broadly and where measuring food waste
has proven to be an important factor. Knowing the amount of food that is wasted
would be a basis for discussion and motivation for taking appropriate action. The
food wastage problems can be solved with the help of current technology, such
as IoT.

The Applied IoT Lab is helping PM & Vänner with environmental sustain-
ability by reducing food wastage. The lab proposes two different prototypes: one
is based on a load cell driver, load cell amplifier, Raspberry Pi touch interface,
and a web service such as Node-RED (https://nodered.org). The load cells are
connected to an OpenScale breakout board, which is an easy-to-use board for
measuring weight from load cells. The second approach leverages the company’s
existing scale (CPWplus-75) and reads the weighing measurements through the

https://pmrestauranger.se/en/
https://nodered.org
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Fig. 4. (a) Distance Sensor (LDDS75) at Kalmar Dämme; and (b) Wireless Micro-
weather Station and Wireless Wind Station at Kalmar Dämme.

RS232 interface. For data visualization, the lab proposes the use of a low-code
IoT platform such as Datacake. Figure 3 shows the PWplus-75 scale connected
to an IoT device.

Flowbic: Kalmar Dämme has a total water area of about 18 hectares [19].
Through a unique collaboration between the Swedish Civil Aviation Admin-
istration and Kalmar Municipality, a large part of nitrogen and phosphorus,
which would otherwise be added to the Western Lake (a bay of the Baltic Sea),
can be removed in the landscaped wetland park Kalmar Dämme. It is nature’s
own purification plant, where a whole series of natural processes take place that
reduces the nitrogen and phosphorus levels [20].

Therefore, at Kalmar Dämme, there is a need for different measurements, e.g.,
water properties (level, conductivity, O2, and pressure) and weather conditions
(pressure, CO2, wind speed, and wind direction). Today, manual collection and
compilation of data is time-consuming and results in long intervals between data
points. Flowbic is a private web agency that provides digital services. The com-
pany aims to automate and facilitate the data measurements and compilation
to save time and resources and shorten the intervals between the measurements
by providing more data between intervals. For data collection, the IoT lab and
Flowbic installed several sensors at Kalmar Dämme.

These sensors include an LDDS75 distance sensor model, a DL-CTD10 pres-
sure, liquid level, temperature, and electrical conductivity sensor model, a DL-
LP8P temperature, humidity, CO2, and barometric pressure sensor model, a DL-
OPTOD optical dissolved oxygen and temperature sensor model, a DL-PM par-
ticulate matter, temperature, humidity, and barometric pressure sensor model, a
wireless micro-weather station with World Meteorological Organization (WMO)
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Fig. 5. (a) Honestbox unmanned store; and (b) Linnaeus University visiting Stens
Chark to discuss how to apply potential IoT solutions.

precision micro-climate measurement, and a WMO conforming wireless wind
station. All of these sensors are connected to the Helium network in the region.
Figures 4a and 4b show the installation of LDDS75 distance sensor and wireless
micro-weather and wind station, respectively, at Kalmar Dämme.

Honestbox: The Honest Box Sweden AB (https://honestbox.se) develops hard-
ware and software for trading, primarily with a focus on unmanned environ-
ments. The company’s objective is to reinvent the future of retail by selling
products and goods at a store without the presence of staff on-site. Honestbox
unmanned store is shown in Fig. 5a. The store is open 24/7, and the customer can
open the store by authorizing electronically using the recommended mobile web
application. Once the cloud server from the web application receives a request,
it then forwards data to the service, where a free-of-charge phone call is made to
the system box to open the box. Alternatively, there is a control box that con-
stantly polls the cloud server via an HTTP request every three to four seconds
to decide whether the lock should be opened or not.

Currently, the company is utilizing a mechanism that makes a call within
about 4 s, but if the store is located at a location where the mobile coverage
is not good such as a sports hall. In such scenarios, the signal fails completely
or takes a long time, which gives a bad experience to the users. The company
Honestbox requires 100% faultless control boxes.

The proposed uses a Pycom Fipy to benefit from all its communication abil-
ities, i.e., WiFi, LoRa, and LTE. In addition, there are several platforms that
offer OTA update services for ESP32-based MCUs, such as Toit.io and Amazon
FreeRTOS.

Stens Chark, Åseda: Stens Chark (https://stenschark.se/) is a company in
Åseda that produces meat-based products, mainly sausages. Their objective is to
keep a local and small-scale production aimed for the more conscious consumers
that value buying from local farmers. They have a low digital readiness, and most
of their processes are done manually. The company reports the temperature and
humidity readings once a day to update the related authority every week.

https://honestbox.se
https://stenschark.se/
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Table 2. Summary of all pilot cases at Applied IoT Lab.

Pilot Cases Problem Objectives Proposed Solution Innovation

Type

Beelab Connected

beehives are

dependent on

power source

Battery driven

wirelessly

connected

beehives

Use LTE CAT-M1 or

NB-IoT-based FiPy gateway

Digitalizing

beekeeping

Svenska v̊ag Monitor the

weighing scales at

stations and

places that are

remote

Connect the

weighing machine

to the Internet

Use LPWAN RS485 bridge

with weighing machines

Digitalizing

weighing

stations

QTF Time consuming

and costly to

monitor fluid

systems at

faraway locations

Monitor the fluid

systems wirelessly

and remotely

Utilize WiFi and CAT M1 or

NB-IoT devices for

communication

Next-

generation

plumbing

system

AquaTeq Manage the

sewage and

stormwater

systems blockages

Know the

conditions in and

around the nozzle,

maintaining

sewage and

stormwater

systems

Install a sensor on the nozzle

such as pressure sensor, and

wirelessly transmit the sensor

data from sewage to the

operation vehicle or to a

cloud platform using LoRa

433MHz or NB-IoT

Underground

sensing and

communica-

tion

PM & Vänner Reduce the food

waste efficiently

Measure the

amount of food

waste

Use load cell driver, load cell

amplifier, Raspberry Pi touch

interface and a web service

such as Node-RED

Digitalizing

food waste

Flowbic Time-consuming

data collection

Automate and

Facilitate the data

collection

Install relevant sensors and

transmit data over LoRa

network

Nature

conservation

HonestBox Unreliable to relay

on one

communication

technology

Make 100%

faultless control

boxes

Use Pycom devices with three

alternatives communication

mechanisms: LTE, WiFi, and

LoRa for transmission and

OTA updates

Resilient

systems

Stens Chark Manually

reporting of

temperature and

humidity

Automate the

reporting

Use Pycom device to connect

sensors using LoRa gateway

and Datacake for

visualization

Digitalizing

food

processing

Fig. 5b shows the LNU representative at Stens Chark to discuss IoT solu-
tions. The company aims to automatically measure temperature and humidity
inside the factory to control the production of sausages better. The IoT lab pro-
vided one LoRa gateway registered to The Things Network, four LoRa-enabled
temperature and humidity sensors, and a configured visualisation platform Dat-
acake. Table 2 shows the summary of all the pilot cases.

4 Lessons Learned

The projects have demonstrated a vast number of different applications compris-
ing IoT that companies can leverage to either make their business more effective
or to find new business models. All projects are different in terms of technology
and the technological readiness level of the company involved. A company with a
low technology readiness can find great value in a simpler approach of just start-
ing to measure processes that have been done manually. In the case of QTF,
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deploying the proposed solution would “save the company a significant amount
of money.” On the other end, some companies already have an IoT solution in
place but need support in finding new and more effective solutions, using differ-
ent networks and more energy-efficient hardware. In addition, learning existing
systems in the companies and integrating the proposed IoT solutions without
any downtime can be challenging.

In general, IoT is a broad area that is also evolving at a high pace, and there
is a need for both exploration and lab resources to find new novel solutions.
Sometimes, the offered solution might not be pragmatic. It can also be noted
that smaller companies often do not have the resources and competence in order
to evaluate different options.

5 Conclusion

Since the establishment of the Applied IoT Lab, it has been actively working
to provide IoT-based educational programs to the Linnaeus University (LNU)
students and local communities. Along with fundamental research and educa-
tional programs, the lab has initiated a number of workshops and a series of
pilot cases to strengthen small and medium-sized enterprises (SMEs) in the Lin-
naeus region, Sweden. The activities at the Applied IoT Lab are supported by
the European Union and Kalmar and Kronoberg counties in Sweden. In this
paper, we highlighted the IoT lab background and its current educational and
industry-academic programs, including workshops and pilot cases. One of the
main emphases of the lab is to support local businesses and communities and
provide researchers and developers a platform to conduct research and develop-
ment for the next-generation IoT systems.

The Applied IoT Lab aims to continue its efforts to elevate the regional SME’s
operational capabilities using IoT, create an IoT-aware knowledge-based society,
and enhance the research capabilities of the Linnaeus region.

Acknowledgment. This work was supported by the European Regional Fund,
Kalmar Region, Kronoberg Region, and Linnaeus University.
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Abstract. Seeking a potential of low carbon-based energy use for additive manu-
facturing, we present a preliminary experimental test using open source IoT tools
on FDM (Fused Deposit Modelling) type of 3D printing. In our test we determine
and categorize the electricity consumption of processes of a commercial grade
FDM printer using a custom-built energy monitor. Our tests indicate that this
model of FDM type 3D printer consumes between 22%–33% more energy when
printing vertical volumes (Z-axis on 3D printing plate). Based on these tests we
present a potential for IoT based low carbon FDM 3D printing using open-source
data, hardware and software. With this the article’s contribution is two-fold. One
as a study on energy and environmental impact of additive manufacturing and
secondly as a potential and scope for IoT applications for facilitating low carbon
additive manufacturing.

Keywords: Additive manufacturing · Low carbon · 3D printing

1 Introduction

Additive manufacturing (AM), commonly known as 3D printing is a matter of growing
interest to industrial production due to its unique processes when compared to traditional
manufacturing. AM techniques have proven to be useful in various application settings
such as automotive, aerospace, electronics dentistry and medicine [1]. Other than cus-
tomizable prototyping, it offers potential for minimizing environmental impacts of the
created goods, because of the reduction in total carbon emissions of the manufacturing
process [2]. Furthermore, a large growth in the market size of 3D printing technologies
is expected to happen annually with just 3D printing materials being forecasted to reach
$23 billion by the year 2029 [1]. These aspects indicate a need for further assessing the
environmental impacts from AM.

In terms of energy research of AM, monitoring of energy consumption from 3D
printing equipment has been undertaken from a number of approaches. From calcu-
lating the ratio of the energy consumption between the specific components of a 3D
printer, to preliminary energy analysis based on device and setup specifications [3–6]
have been made. Furthermore, earlier research has examined the difference between
power consumption of different AM technologies. Yoon et al. [7] have compared the
energy requirements of various types of energy consumption for bulk forming from prior
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research and have provided energy consumption from different types of AM processes,
which we have collated in the table below (Table 1).

Table 1. A comparison of energy consumption of types of AM, based on Yoon et al. 2014

Process Specific energy consumption
(kWh kg−1)

SLS 14.5–66.02

FDM 23.08–346.4

SLA 20.7–41.38

3DP 14.7–17.4

DMLS 24.2

SLM 27–163.33

EBM 17–49.17

As seen in the table above it is indicative that FDMtypeofAMhas been shown to have
awide variation in the energy use. It is also indicated to be the highest consumer of energy
when compared with other types of AM. Relatedly [8] it has been shown that for EBM
(ElectronBeamMelting)AMprocess, the shape complexity of themanufactured product
has weak correlation with energy consumption, but to be specific as an energy study of
AM this again is for the EBMprocess and not with the FDM type of printing, which is the
focus of our study in this article. More recently Szemeti and Ramanujan [5] undertaking
FDM process study point out that there is a lack of detailed process information relating
to AM processes and with that provide an layer-wise energy consumption of the heaters
of the bed and extruder, material use, and other printing peripherals of large number of
shape parts as a benchmark for FDM type of printing. But in this study, it is not evident if
there is a variation in the energy consumption based on axes of printing. Thus, based on
such a background of prior research our experiment provides insight on the difference
in energy consumption in on the axes of FDM printing. For this our study undertook a
direct approach in which the specific energy consumption of a FDM type of 3D print
equipment was measured during the whole printing process.

Then having undertaken such a process the scope of our study further seeks potential
of AM in terms of carbon footprint from the electrical energy used while printing. CO2
footprint is an important aspect for the energy systems in today’s world. It refers to the
measurement of total amount of emissions of carbon dioxide and other greenhouse gases
such as nitrous oxide and methane caused by products throughout its life cycle [9]. Since
electricity accounts for 25%of the global greenhouse emissions [10] the carbon footprint
of energy usage should be a necessary consideration in the setting of environmentally
friendly products and services. Thus, based on our experiment we indicate potential for
using data of CO2 intensity from electricity used and integrating within AM processes.
We indicate that to be able to control printing and minimize the negative environmental
impact of 3D printed products, an integration between external data sources and the AM
equipment is neededwhich could be undertakenusingopen-source hardware.Weprovide
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a preliminary possibility for such a setup, indicating how Fused Deposition Modelling
(FDM) type AM system could be made to control its process using the carbon dioxide
intensity in the electricity grid system.

To convey this the paper is structured in sections and organized in the following
manner: first the methodology section covers tools and technologies used in our exper-
imental setup, including our data collection process. In the result section, the gathered
data and its analysis are presented. In the discussion section we present the data source
for accessing CO2 data from electricity production, potential ways to integrate it within
a similar FDM 3D printing setup and also limitations of such a proposal are presented.
After this we conclude with next steps for our research.

2 Methodology

2.1 Deploying the Experimental Setup

To undertake our experiment, we chose a Prusa i3 MK3s to serve as FDM equipment
for our experimental setup. Open Energy Monitor, an open-source energy monitoring
system with a clip-on current transducing sensor, was used as a tool for monitoring
live energy usage of the 3D printer [11, 12]. The device was built with the open-source
microcontroller ArduinoUno using the online guide, and calibrated accordingly, with the
use of a smart power socket. Data saving was handled via Putty, an open-source terminal
emulator, which collected the data from the PC serial port, connected to Arduino, and
saved it as a csv file for analysis (Fig. 1).

Fig. 1. The three printed models of cylindrical section pipe type, the full model and the ‘split’
model with the base and wall separated.

To measure the energy consumption of the above set up FDM printing equipment,
we printed six 3D models. All the prints are manufactured with 20% infill, printed with
PETG material in 230 °C, with heat bed temperature set to 90 °C. Firstly, two “full”
one-hour models were printed, a rectangular cuboid with a base and a cylindrical section
pipe with a base, for which the data was collected. Next, each of themodels was split into
two separate parts, one containing the “base” of the models, and the second containing
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the “walls” of the models. This was done to determine the energy consumption of 3D
printing along the X and Y axis, and to inspect whether printing more vertically focused
parts consumes additional energy, compared to flatter parts, due to higher involvement
of the z-axis motor of the printer. The split models are also printed individually. The
splitting of the models was chosen, instead of creation of new models, to create an exact
correlation between the parts in terms of size, thickness of the walls and infill percentage.
All the prints are manufactured with 20% infill, printed with PETG material in 230 °C,
with heat bed temperature set to 90 °C.

In the energy monitor setup, an Arduino script was written, which collected the data
about energy usage of the Prusa 3D printer. The simplified flow of the data collection
algorithm was made which started from establishing a serial connection, after which a
power consumption was measured, this measurement was collected and saved as data
every second.

3 Results

3.1 Energy Consumption Data

Six models were printed with Prusa i3 3D printer and the energy consumption of the
printer was measured along the entire duration of the prints. To analyze the energy
demand of the printer during different stages of the printing process, as mentioned
earlier the base model prints were divided into two separate models, for which energy
demand consumption data were also collected. The energy consumption data of the first
rectangular-cuboid model can be seen in Fig. 2 in the top row and the data of the two
models, that are part of the base model can be seen in the following second and third
rows. The energy consumption data of the cylinder-shaped model can be seen in Fig. 2
in the fourth row and the data of the two models, that are part of the base model can be
seen in following in the row five and six. The data points were collected each second,
and the average power consumption of creation of each of the models was calculated,
by dividing the sum of all data points, divided by number of them. The average power
consumption was calculated with the accuracy of 1 W.

Splitting of the base models into two separate prints gives an overview of the energy
demand changes, based on the involvement level of motors responsible for different
printing axes (X, Y, Z). The setup process is present at the beginning of each printing
cycle, which corresponds to heating up the nozzle and heat bed, and calibration of the
three axes motors, thus the left side of each of the graph is almost identical. Due to the
considerably shorter printing time of the cylinderwallsmodel, the setup process is clearly
visible and takes almost half of the graph area. The energy consumption of printing the
“base” parts tends to fluctuate between around 100–150 W with random energy use
spikes – as seen in the middle part of the base model graphs. The rectangle bottom
model averaged the power consumption of 130 W, while the cylinder bottom model
averaged 127 W. It can be observed that the energy demand tends to rise, when the
printing process focuses on manufacturing along the Z axis (the “walls” models), which
can be found on the right side of the base models graphs. That corresponds to around
150–200Wof constant energy utilization. The rectanglewallsmodel averaged the power
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Fig. 2. The six models and their energy use pattern from the FDM printer when printing the
models

consumption of 155 W, while the cylinder walls model averaged 172 W, both models
being considerably more energy demanding than their bottom models counterparts.

Patterns of different printing processes can be observed on all the graphs. With the
cylinder walls model being the one printed in the shortest amount of time, and thus the
graph being the widest due to fewer datapoints measured, it is easier to visualize these
patterns. The visualization can be seen in Fig. 3, where A, B, and C, mark the processes.
These are explained in Table 2.
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Fig. 3. The three processes of bed heating, motor calibration and printing as seen in the energy
use pattern of the 3D printer.

Table 2. The three processes as seen in the energy use pattern

A Heating up of the heat bed

B Calibration of axes motors and heating up of the nozzle

C Printing

4 Discussion

Our research indicated that vertical (Z axis) printing using Fused Deposition Modeling
(FDM) technology, consumes more energy than when printing horizontally (XY axis).
The exact energy difference may vary, depending on the material used and printing set-
tings, for instance the infill percentage and support layer generation. Several differentAM
technologies exist, each with various energy requirements, based on specific machines
used in the process. Due to this, our research approach may reveal distinct results for
each of the technologies. With some of the technologies requiring considerably heavier
loads of energy than FDM, for instance Direct Metal Laser Sintering (DMLS) or Elec-
tron Beam Melting (EBM). Undertaking such a process with as indicated above with
various other types of AM can generate an understanding for optimizing the production
process to decrease negative environmental impacts.

4.1 CO2 Emissions Data for Integration

Towards such apotential for enhancing environmental benefitswe further hypothesize the
integration of CO2 emission data with 3D printing, which could result in low carbonAM.
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For thiswe accessed liveCO2 emissions data froma known service calledElectricityMap
[13] and looked for ways to integrate this live CO2 data to work with FDM printer. This
provisions scope for getting integrate as an IoT based approach.

Data about carbon intensity of the energy consumed in (our region) was collected
using a Python script, and made to run on the open-source microcomputer RaspberryPi.
The script collected the data and was made to be saved as a.csv file for analysis. The
resolution of data provided by electricityMap is one hour, meaning that the values do not
change within the given hour. Furthermore, because of the occurring incidents of delays
in data provision, meaning that the data is not always available right at the beginning
of each hour, the algorithm collected the data every ten minutes and deleted duplicates
if such instance occurs. The simplified illustration of how the algorithm works can be
seen in Fig. 4. The data of carbon intensity is presented as gCO2eq/kwh, which indicates
emissions as grams of carbon dioxide equivalent per kilo-Watthour of energy consumed.

Fig. 4. A simplified illustration of carbon data collection algorithm.

Control of the Prusa printer via Python was established by sending the printer com-
mands to the RaspberryPi attached to the printer. Connection to the printer was handled
via OctoPrint, an open-source 3D printer controller application, which connected the
local PC or tablet to the RaspberryPi on the printer. All the parameters of the printer,
including temperatures, printing job operations and axis adjustments were controlled
through OctoPrint. Further control automatization is performed with a Python program,
run by Thonny, an integrated development environment for Python, which can run either
on local PC or a RaspberryPi.

Such a connection can be used to control the printer based on given variables, for
example the level of carbondioxide intensity in the (our region) energygrid. Possibility of
pausing and resuming the printing operation worked without issues. Although because
of the inability of the printer to change the heat bed temperature during the printing
operation, there is a needof sending the arbitrary commands, as described in theOctoprint
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manual to the printer, instead of the classic tool commands. Doing that, however, solved
the problem. Arbitrary commands send G-code directly to the printer via the serial
interface, a raspberryPi on the local network, ordering certain actions to take place, for
instance changing the temperature of the tools or pausing and resuming current print.

In this manner carbon dioxide intensity data was collected by using a free API
provided by electricityMap. The data provided insights about the energy consumed in
(our region),which included the carbon intensitymetric, referring to lifecycle greenhouse
gas emissions, estimated as grams of carbon dioxide equivalent per kilowatt-hour of
electricity (gCO2eq/kWh).

Data about carbon intensity of the energy consumed from (our region) energy grid
was collected for one week with hourly resolution. The datapoint visualization can be
seen in Fig. 5. From the data collected it is visible that the carbon intensity differs, based
on the time during the week. Thus, manufacturing processes requiring greater loads of
energy should be scheduled to low carbon intensity times, to minimize their negative
environmental impacts.

Fig. 5. The CO2 emissions pattern collected over one week period

Reflecting on the collected CO2 data and the data about the different parts of 3D
printing process energy requirements it can be observed, that manufacturing more verti-
cal parts, e.g., thewalls of themodels, should be performed on the lowest carbon intensity
times, while bases of the models could be printed during high carbon intensity times.
Including such a control system to the manufacturing setup of numerous 3D printers
could significantly lower the carbon footprint of created products and thus minimize its
negative environmental impacts.

Furthermore, optimizing the AM processes in terms of their negative environmental
impact may be an important aspect for businesses, that base their products on sustain-
ability principles. Examples of such cases may be large 3D printers, manufacturing
concrete houses in green areas, or creating sustainable textiles for clothing. Such opti-
mization may provide companies with leverage of calling themselves more sustainable,
and documenting that, by mapping the carbon footprint of created products.



Experiment to Scope Low Carbon Electricity 419

Other use cases may include large infrastructure projects, for instance electric vehi-
cles (EV) charging stations in private homes, which could shift the charging times of
EVs, for example for specific period during the night, based on the carbon intensity
levels in the energy grid. Fast charging stations on highways could also implement such
solutions, however that would require more complicated setup, in terms of a large power
bank that is charged at specific times, and acts as a power source for the station, so that
it may be always used and not interfere with user’s needs.

As in the nearest future more and more attention is being paid to the topic of CO2,
and industries need to take definitive action, to live up to the government’s regulations,
further use cases will arise.

4.2 Limitations

The data about the carbon intensity of the energy consumed in (our region) represents
the state of the energy from three hours before the collection time. This is due to the
nature of the API provided by ElectricityMap when undertaking the exercise. In the
current context this delay is one hour indicating the possibility of lesser delays in the
data delivery.With the experiment using the carbon output from electricitywewish to not
only indicate the potential if carbon data could go live, but our experiment’s applicability
gets further validated when typical FDM printing taking more than three hours for a full
print.

The two points in the weekly data about carbon intensity collected were missing,
corresponding to 166 datapoints being collected instead of 168. This is due to the loss
of connection to the API provider, however that does not impact the general goal of the
research.

For the FDM technology, the temperatures of the tools used are crucial, thus in future
research a special focus should be put into examining the right temperatures of pausing
the print and saving energy, so that it does not interferewith quality of the printedmodels.

5 Conclusion

Additive manufacturing was introduced as a topic of research and experimental setup.
The research focused on understanding the FDM process from the perspective of energy
consumption, introducing and developing the tools for its optimization, in terms of its
negative environmental impacts.Wedeveloped a set of tools, usingopen-source hardware
and software, for monitoring the energy consumption of a 3D printer, and collecting data
about carbon intensity of the energy consumed in DK1 energy grid. The main finding
of our research is that for the FDM process, manufacturing more vertically oriented
models requires more energy than for the more horizontally oriented ones. Our analysis
indicates that this is due to the fact of greater involvement of the Z-axis motor. Reflecting
on the data about the energy consumption of the FDM printer and collected data about
carbon intensity of energy consumed in DK1 gave an overview of how the AM process
can be scheduled and optimized, to reduce its negative environmental impacts.

Future research may include examining different AM technologies from the per-
spective of power consumption, collecting carbon intensity data for larger time periods
and optimizing other processes with the developed tools.
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