
(Public) Verifiability for Composable
Protocols Without Adaptivity

or Zero-Knowledge

Carsten Baum1 , Bernardo David2(B), and Rafael Dowsley3

1 Aarhus University, Aarhus, Denmark
cbaum@cs.au.dk

2 IT University Copenhagen, Copenhagen, Denmark
beda@itu.dk

3 Monash University, Melbourne, Australia

rafael.dowsley@monash.edu

Abstract. The Universal Composability (UC) framework (FOCS ’01)
is the current standard for proving security of cryptographic protocols
under composition. It allows to reason about complex protocol structures
in a bottom-up fashion: any building block that is UC-secure can be com-
posed arbitrarily with any other UC-secure construction while retaining
their security guarantees. Unfortunately, some protocol properties such
as the verifiability of outputs require excessively strong tools to achieve
in UC. In particular, “obviously secure” constructions cannot directly be
shown to be UC-secure, and verifiability of building blocks does not easily
carry over to verifiability of the composed construction. In this work, we
study Non-Interactive (Public) Verifiability of UC protocols, i.e. under
which conditions a verifier can ascertain that a party obtained a specific
output from the protocol. The verifier may have been part of the pro-
tocol execution or not, as in the case of public verifiability. We consider
a setting used in a number of applications where it is ok to reveal the
input of the party whose output gets verified and analyze under which
conditions such verifiability can generically be achieved using “cheap”
cryptographic primitives. That is, we avoid having to rely on adaptively
secure primitives or heavy computational tools such as NIZKs. As Non-
Interactive Public Verifiability is crucial when composing protocols with
a public ledger, our approach can be beneficial when designing these with
provably composable security and efficiency in mind.

1 Introduction

Universal Composability (UC) [14] is currently the most popular framework for
designing and proving security of cryptographic protocols under arbitrary com-

Funded by the European Research Council (ERC) under the European Unions’ Horizon
2020 program under grant agreement No 669255 (MPCPRO).
Supported by the Concordium Foundation and by the Independent Research Fund
Denmark grants number 9040-00399B (TrA2C), number 9131-00075B (PUMA) and
number 0165-00079B (Foundations of Privacy Preserving and Accountable Decentral-
ized Protocols).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Ge and F. Guo (Eds.): ProvSec 2022, LNCS 13600, pp. 249–272, 2022.
https://doi.org/10.1007/978-3-031-20917-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20917-8_17&domain=pdf
http://orcid.org/0000-0001-7905-0198
http://orcid.org/0000-0002-7588-2410
https://doi.org/10.1007/978-3-031-20917-8_17


250 C. Baum et al.

position. It allows one to prove that a protocol remains secure even in complex
scenarios consisting of multiple nested protocol executions. The benefit of UC
is that, as a formal framework, it allows to discuss the different aspects of an
interactive protocol with mathematical precision. But in practice, one often sees
that protocol security is argued on a very high level only. This is partially due
to the complexity of fully expressing (and then proving) a protocol in UC, but
also because achieving provable (UC) security sometimes requires additional,
seemingly unnecessary protocol steps or assumptions.

One such case is that of (public) verifiability, which is the focus of this work.
A verifiable protocol allows each protocol participant Pi to check if another
party Pj in the end of the protocol obtained a certain claimed output (or that
it aborted). A publicly verifiable protocol has this property even for external
verifiers that did not take part in the protocol itself. Public verifiability is par-
ticularly important in the setting of decentralized systems and public ledgers
(e.g. blockchains [24,27,28,32,35]), where new parties can join an ongoing pro-
tocol execution on-the-fly after verifying that their view of the protocol is valid.
It also plays a central role in a recent line of research [2,5,11,33] on secure multi-
party computation (MPC) protocols that rely on a public ledger to achieve fair-
ness (i.e. ensuring either all parties obtain the protocol output or nobody does,
including the adversary) by penalizing cheating parties, circumventing funda-
mental impossibility results [25]. Protocol verifiability also finds applications in
MPC protocols that have identifiable abort such as [8,9,30], where all parties in
the protocol either agree on the output or agree on the set of cheaters. Further-
more, public verifiability is an intrinsic property of randomness beacons [22,23]
and a central component of provably secure Proof-of-Stake blockchain proto-
cols [5,24,33]. However, most of these works achieve (public) verifiability by
relying on heavy tools such as non-interactive zero knowledge proof systems and
strong assumptions such as adaptive security of the underlying protocols.

1.1 The Problems of Achieving (Public) Verifiability in UC

Consider a UC functionality F which has one round of inputs by the parties
P = {P1, . . . ,Pn}, computes outputs based on the inputs and in the end sends
these outputs to each Pi. In this work, we are interested in adding verifiability
to F to obtain an extended functionality FV. This functionality FV performs the
same operations as F , but it additionally allows verifiers to confirm that certain
inputs were provided by a party Pi to FV to perform these operations and that
certain outputs of these operations were given to Pi from FV. Moreover, we want
to obtain a protocol ΠV realizing FV from an existing protocol Π that realized
F . More concretely, we are interested in compiling a UC-secure protocol Π into
a UC-secure counterpart ΠV that has (public) verifiability.

The (intuitive) first step is to construct ΠV where each party commits to
its inputs and randomness. The parties then run Π using the committed input
and randomness, exchanging exchange authenticated messages. This approach
assumes that we are okay with revealing the inputs after Π is completed in
case cheating is suspected, which we will discuss in more detail. Intuitively, this



(Public) Verifiability for Composable Protocols Without Adaptivity 251

yields a simple verification procedure: each party can use the committed inputs
and randomness of all other parties to re-execute Π in its head and compare the
resulting messages to the authenticated protocol transcript. Any external verifier
could do the same based on the commitments and an authenticated transcript of
Π. Unfortunately, using this simple approach leads to adaptivity problems when
trying to prove ΠV secure: in the security proof, the simulation must have been
performed without knowing the actual inputs to the functionality. But after-
wards, these inputs become known to the verifier so the simulator must be able
to explain the whole transcript of Π in terms of the previously unknown inputs,
requiring adaptive security of Π to begin with. Similar issues have been observed
before (e.g. [30]). This means that any such ΠV would be quite inefficient, since
adaptive protocols Π are often significantly less efficient than their counterparts
with static security.

Consider, as an example, a 2PC protocol Π2PC with active security based on
Garbled Circuits (GCs) such as [18,34]. Protocol Π2PC is executed by a sender
P1 and a receiver P2 (where only P2 obtains output) as follows: (1) P1 generates
multiple GCs together with input keys for each circuit. P1 commits to the GCs
and their input keys. It inputs the input keys belonging to P2 into an Oblivious
Transfer (OT) functionality FOT ; (2) P2 uses FOT to obtain its input keys; (3)
P1 decommits the GCs and its own input keys; (4) P2 evaluates the GCs. Both
parties run a consistency check showing that most GCs were correctly generated
and that their input keys are consistent. The security proof of Π2PC (for static
security) usually consists of simulators for a corrupted sender (S1) and receiver
(S2). S1 sends random inputs to FOT , extracts the inputs of P1 and then checks
that the GCs were generated correctly by the malicious P1. For S2 the standard
strategy is to first extract the input x2 of the malicious P2 using FOT , then to
obtain the output y from the functionality F2PC , to choose a random input x̃1

and finally to simulate GCs such that they output y for the input keys of x̃1, x2.
In order to make Π2PC verifiable (with respect to revealing inputs and outputs),
let FV

2PC release the real input x1 of P1 after the computation finished. But in
S2 we generated the GCs such that for the dummy input x̃1 it outputs y, so the
garbling may not even be a correct garbling of the given circuit. There might
not exist randomness to explain the output of S2 consistently with x1, unless
Π2PC was an adaptively secure protocol.

This seems counter-intuitive: beyond the technical reason to allow (UC) simu-
lation of verifiability, we see no explanation why only adaptively secure protocols
should be verifiable when following the aforementioned compilation steps.

1.2 Our Contributions

In this work, we show how to compile a large class of statically UC-secure pro-
tocols into publicly verifiable versions that allow a party to non-interactively
prove that it obtained a certain output by revealing its input. We focus on a
setting where at least one party is assumed to be honest, and where the com-
piled protocol was already maliciously secure to begin with. While revealing an
input is a caveat, this flavor of (public) verifiability is sufficient for a number of



252 C. Baum et al.

applications (e.g. [5,7,23]) and allows us to circumvent the need for expensive
generic zero knowledge proofs and adaptive security (as needed in [30,33]). We
introduce a compiler relying only on commitments and “joint authentication”
functionalities that can be realized with cheap public-key primitives.

Our approach is compatible with protocols realizing non-reactive function-
alities such as OT, Commitments or Secure Function Evaluation. We describe
a standard wrapper for any such functionality to equip it with the interfaces
necessary for non-interactive verification, allowing external verifiers to register
and to perform verification. This wrapper is designed to amalgamate the reac-
tive nature of UC with non-interactivity and might be of independent interest.
Extending the results to reactive functionalities is an interesting open problem.

When is Revealing Inputs for Verification Justifiable? Although our
focus on revealing inputs might seem very restrictive, there is a quite substantial
set of protocols where it can be applied. As a starting point, our techniques can
be used to instantiate preprocessing for UC-secure MPC with Identifiable Abort
without adaptive assumptions [9,30]. Our approach also applies when one wants
to publicly and randomly sample from a distribution and identify cheaters who
disturbed the process. For example, our results have already been used as an
essential tool in follow-up work constructing UC randomness beacons [23]. A
third application is to bootstrap MPC without output verifiability to MPC with
output verifiability without revealing of inputs. Here, each physical party Pi in
the protocol ΠMPC runs two virtual parties PC

i ,PV
i . It will give PC

i the actual
input x (while PV

i has no input), and both parties obtain the same output y
from ΠMPC . Now, in order to convince a verifier that Pi had y as output, it
can “sacrifice” PV

i and reveal its randomness for verification. Observe that this
requires ΠMPC to be secure against a dishonest majority of parties. A fourth
application lies in achieving cheater identification in the output phase of MPC
protocols, which is a prequisite for obtaining MPC with monetary fairness such
as [2,5,11,33]. For example, using our techniques, it is possible to construct
the publicly verifiable building blocks of the output phase of Insured MPC [5]
and related applications [7] since the inputs of the output phase with cheater
identification are supposed to be revealed anyway. In [5] the authors had to
individually redefine each functionality with respect to verifiability and reprove
the security of each protocol involved. Using our techniques, we show in the full
version [6] that this tedious task can be avoided and that the same result can be
obtained by inspecting the primitives used in their protocol and verifying that
the protocols fulfill the requirements of our compiler.

Shortcomings of Other Approaches. In case adaptive security is required,
it is well-known that adaptively secure protocols usually have larger computa-
tion or communication overheads (or stronger assumptions) than their statically
secure counterparts. For example, Yao’s Garbling Scheme and optimizations
thereof are highly efficient with static security (e.g. [38]) but achieve similar
performance with adaptive security only for NC1-circuits [31] (unless one relies
on Random Oracles [10]). When implementing Π2PC , one would also additionally



(Public) Verifiability for Composable Protocols Without Adaptivity 253

have to realize an adaptively UC-secure FOT , which is also cheaper with static
instead of adaptive security. This is also true when OT-extension is used [20,21].

Previous works such as [33] obtain public verifiability, even without revealing
inputs and without adaptive protocols, by using generic UC-NIZKs. They follow
the GMW paradigm [29] where each party would prove in every protocol step of
Π that it created all messages correctly, given all previous messages as well as
commitments to inputs and randomness. To the best of our knowledge, no work
that uses UC-NIZKs to achieve verifiability estimated concrete parameters for
their constructions. This is because the UC-NIZKs, in addition to proving the
protocol steps, also have to use the code of the cryptographic primitives in a
white-box way. That also means that UC-NIZKs cannot be applied if the com-
piled protocol Π uses Random Oracles, which are popular in efficient protocols.

Another solution for verifiability, which also does not require an adaptive
protocol and that works in the case that Π is an MPC protocol, is to i) let Π
commit to the output of yi of each Pi by running a commit algorithm for a
non-interactive commitment scheme inside Π; ii) output all these commitments
to all parties, which sign them and broadcast the signed commitments to each
other; and iii) reveal outputs and commitment openings to the respective par-
ties. Obviously, this does not generalize to arbitrary protocols Π, whereas our
approach does. Additionally, in this approach one needs to evaluate the commit-
ment algorithm white-box in MPC. Evaluating cryptographic primitives inside
MPC can be costly, in particular if the MPC protocol is defined over a ring
where the commitment algorithm has a large circuit. This also rules out cheap
Random Oracle-based commitments.

Efficiency. The only overheads in relation to the original protocol required
by our compiler are a simple commitment (e.g. based on a random oracle)
on the input/randomness of each party and the subsequent joint authentica-
tion of this commitment as well as of subsequent messages. If messages are
exchanged over public channels, this joint authentication be done by requir-
ing each party to compute multisignatures on the messages exchanged in each
round and then combining these signatures into a single multisignature, saving
on space. If messages are exchanged over private channels, there is an extra
overhead of computing 2 modular exponentiations and transmitting a string of
security parameter size per message, which is needed for our private joint authen-
tication scheme. The verification procedure requires the verifier to re-execute the
protocol on the jointly authenticated transcript of the protocol using a party’s
opened input/randomness. While this seems expensive, notice that executing
the protocol’s next message function is strictly cheaper than verifying a NIZK
showing that every message in the transcript is correctly computed according
to this function, which is required by previous schemes and that would also add
the overhead of having each party compute such a NIZK for every message they
send.



254 C. Baum et al.

1.3 Our Techniques

We construct a compiler that generically achieves public verifiability for protocols
with one round of input followed by multiple computation and output rounds
as formalized in Sect. 2. For this, we start with an observation similar to [30],
namely that by fixing the inputs, randomness and messages in a protocol Π
we can get guarantees about the outputs. This is because fixing the inputs,
randomness and received messages essentially fixes the view of a party, as the
messages generated and sent by a party are deterministic given all of these
other values. Our compiler creates a protocol ΠV that fixes parties’ input and
randomness pairs by having parties commit to these pairs and authenticate the
messages exchanged between parties in such a way that an external party can
verify such committed/authenticated items after the fact. This idea of fixing
messages for the purpose of public verifiability is not new, and other works that
focus on it such as [3,33] have taken a similar route. However, fixing all messages
exchanged in the original protocol Π is costly and might be overkill for some
protocols. We explore this concept in the notion of transcript non-malleability
as defined in Sect. 3. There, we formalize the intuition that we might not need
that all exchanged messages are fixed in some protocols: e.g. an adversary that is
allowed to replace messages exchanged between dishonest parties possibly does
not have enough leverage to forge a consistent transcript for a different output.

Proving Security in UC: It might seem obvious that ΠV, i.e. a version of Π
with all of its inputs and messages fixed, is publicly verifiable and implements FV.
Unfortunately, as we outlined above, a construction of a simulator SV in the proof
of security needs to assume that Π is adaptively secure. In Sect. 3.1 we address
this by using input-aware simulators (or über simulators) SU. These are special
simulators which can be parameterized with the inputs for the simulated honest
parties, generating transcripts consistent with these inputs but indistinguishable
from the transcripts of S. We then embed an über simulator of a protocol Π
into the publicly verifiable functionality FV. This delegates the simulation of Π
to the internal über simulator of FV – whereas in our naive approach, SV had to
simulate Π itself. Since we let FV only release the transcripts that SU generates,
this does not leak any additional information to the adversary. Moreover, SU

now also extracts the inputs of the dishonest parties.

Getting Über Simulators (Almost) for Free: Following our example with
Π2PC from Sect. 1.1, S1 for a corrupted sender uses a random input to FOT and
otherwise follows Π2PC . Towards constructing SU

1 , observe that as FOT by its
own UC-security hides the input of P2, running S1 inside FV

2PC using real inputs
of P2 is indistinguishable and we can use such a modified S1 as SU

1 . Conversely,
we can also construct SU

2 , which runs Π2PC based on the input x1 that it obtains.
By the UC-security of Π2PC , the distribution of SU

2 will be indistinguishable from
S2. As can be seen from this example, an efficient über simulator must not be
artificial or strong, but could be quite simply obtained from either the existing
protocol or existing S. Its requirement also differs from requiring adaptivity of
Π2PC : SU

2 still only requires Π2PC to be statically secure. In fact, this strategy



(Public) Verifiability for Composable Protocols Without Adaptivity 255

for constructing an über simulator works for any protocols that simulate their
online phase in the security proof using “artificial” fixed inputs and otherwise run
the protocol honestly while they are able to extract inputs (e.g. MPC protocols
such as [26,36]). Hence, we can directly make a large class of protocols verifiable.
This is discussed further in the full version [6].

How to Realize Transcript Non-malleability. Besides fixing inputs and
randomness, in order to construct compilers from Π to ΠV we need to fix the
transcript of Π. For this, we have parties in ΠV use what we call “joint authen-
tication” (defined in Sect. 4). Joint Authentication works for both public and
private messages. In the public case, joint authentication is achieved by having
all parties sign a message sent by one of them. In the private case, we essen-
tially allow parties to authenticate commitments to private messages that are
only opened to the rightful receivers. Later on, any party who received that pri-
vate message (i.e. the opening of the commitment to the message) can publicly
prove that it obtained a certain message that was jointly authenticated by all
parties involved in ΠV. More importantly, joint authentication does not perform
any communication itself but provides authentication tokens that can be veri-
fied in a non-interactive manner. In our example with Π2PC , this means that
both P1,P2 initially commit to their inputs and randomness and then sign all
exchanged messages (checking that each message is signed by its sender).

Putting Things Together. We use the techniques described above to compile
any protocol Π that fits one of our transcript non-malleability definitions and
UC-realizes a functionality F in the F1, . . . ,Fn-hybrid model into a protocol ΠV

that UC-realizes a publicly verifiable FV in the FV
1 , . . . ,FV

n-hybrid model (i.e.
assuming that the setup functionalities can also be made publicly verifiable).
Moreover, if a global functionality is used as setup, it must allow all parties to
make the same queries and obtain the same answers, so that the verification
procedure can be performed. Our compilation technique has two main compo-
nents: 1. commit to and authenticate each party’s input and randomness pairs
of Π (fixing input and randomness pairs); 2. execute Π and use public/secret
joint authentication to jointly authenticate each exchanged protocol message
(fixing the transcript). These steps achieve two goals: allowing parties to pub-
licly and non-interactively show that they have a certain input/randomness pair
and transcript, making Π transcript non-malleable, since the adversary cannot
lie about its input, randomness or view of the transcript. In order to realize the
public verifiability interface of FV, we have a party open its input and random-
ness pair as well as its view of the transcript, which could not have been forged,
allowing the verifier to execute an honest party’s steps as in Π to verify that a
given output is obtained. When proving security of this compiler, we delegate
the simulation of the original steps of Π to an über simulator SU for Π embed-
ded in FV. This guarantees that the transcript of S’s simulated execution of ΠV

is consistent with honest parties’ inputs if they activate public verification and
reveal their input. To compile our example GC protocol, we now combine all
of the aforementioned steps and additionally assume that FOT as well as the
commitment-functionality are already verifiable. By the compiler theorem, the



256 C. Baum et al.

resulting protocol is verifiable according to our definition. In the full version [6]
we give a detailed example by easily achieving verifiability in [5].

1.4 Related Work

Despite being very general, UC has seen many extensions such as e.g. UC with
joint state [19] or Global UC [16], aiming at capturing protocols that use global
ideal setups. Verifiability for several kinds of protocols has been approached
from different perspectives, such as cheater identification [8,30], verifiability of
MPC [4,37], incoercible secure computation [1], secure computation on public
ledgers [2,11,33], and improved definitions for widely used primitives [12,13].
Another solution to solve the adaptivity requirement was presented in [9], but
their approach only works for functionalities without input. A different notion
of verifiability was put forward in publicly verificable covert 2PC protocols such
as [3] and its follow-up works, where parties can show that the other party
has cheated. Here, both the 2PC protocol and therefore also the verifiability
guarantee only hold against covert adversaries, while we focus on the malicious
setting. To the best of our knowledge, no previous work has considered a generic
definition of non-interactive public verifiability for malicious adversaries in the
UC framework nor a black-box compiler for achieving such a notion without
requiring adaptive security of the underlying protocol or ZK proof systems.

2 Preliminaries

We denote the security parameter by κ. The set {1, . . . , n} is denoted by [n]
while we write [n]i to mean [n] \ {i}. We denote by negl(x) the set of negligible
functions in x and abbreviate probabilistic polynomial time as PPT. We write
{0, 1}poly(κ) to denote a set of bit-strings of polynomial length in κ.

Secure Protocols. A protocol Π run by n parties (which we denote as P =
{P1, . . . ,Pn}) consists of the algorithms nmes, out and additional parameters:
the number of parties n, the setup resources F1, . . . ,Fr, the number of output
rounds G, the number of rounds Hτ to obtain each output τ ∈ [G] as well as the
communication and output model. We assume that external system parameters
s ∈ {0, 1}poly(κ) are fixed for the protocol. Each party Pi uses their input xi ∈ X
as well as randomness ri ∈ {0, 1}poly(κ) for the actual protocol. Formally, Π is
described in Fig. 1 with algorithms nmes and out defined as follows:

nmes is a deterministic polynomial-time (DPT) algorithm which on input the
party number i, protocol input xi ∈ X , randomness ri ∈ {0, 1}poly(κ), aux-
iliary input s ∈ {0, 1}poly(κ), output round τ ∈ [G], round number ρ ∈ [Hτ ]
and previous messages M·,i from parties and N·,i from resources outputs
{m(τ,ρ)

i,j }j∈[n]i , {mres(τ,ρ)
i,q }q∈[r].



(Public) Verifiability for Composable Protocols Without Adaptivity 257

out is a DPT algorithm which on input the party number i, the protocol input
xi ∈ X , randomness ri ∈ {0, 1}poly(κ), auxiliary input s ∈ {0, 1}poly(κ), output
round τ ∈ [G], a set of messages M·,i from parties and N·,i from resources
outputs y

(τ)
i which is either an output value or ⊥. The values xi, ri might

not be necessary in every protocol, so out might run without these.

Algorithm nmes generates two different types of messages: 1. m-messages,
which are used for communication among parties; 2. mres-messages, which are
exchanged between a party and a functionality. Therefore, each mres-message
consists of an interface (Inputi,Compute(τ),Output(τ)i ) with whom the party
wants to communicate as well as the actual payload. Each message that is an
output of nmes may either be an actual string or a symbol ⊥, meaning that no
message is sent to a party/functionality in this round. We write mi,j whenever we
mean that a message was sent from party Pi to Pj . Similarly, we write mresi,q

when the message was sent from Pi to Fq and mresq,i when sent from Fq to
Pi. We denote messages received by party Pi from another party as M·,i and
those sent by Pi to another party as Mi,·. We write N·,i for all messages that Pi

received from resources while Ni,· denotes messages which Pi sent to resources.

Each Pi has input xi ∈ X as well as common public input s ∈ {0, 1}poly(κ).

Inputi: Party Pi samples ri
$← {0, 1}poly(κ) uniformly at random. Let M·,i, N·,i ← ∅.

Compute(τ): Let τ ∈ [G]. Then each party Pi for ρ ∈ [Hτ ] does the following:

1. Locally compute

(
{m(τ,ρ)

i,j }j∈[n]i , {mres(τ,ρ)
i,q }q∈[r]

)
← nmes(i, xi, ri, s, τ, ρ, M·,i, N·,i).

2. For each j ∈ [n]i send m
(τ,ρ)
i,j to Pj . For each q ∈ [r] send mres

(τ,ρ)
i,q to Fq.

3. For each j ∈ [n]i get m
(τ,ρ)
j,i from each Pj and mres

(τ,ρ)
q,i from each Fq for q ∈ [r].

4. Set M·,i ← M·,i ∪ {m(τ,ρ)
j,i }j∈[n]i and N·,i ← N·,i ∪ {mres(τ,ρ)

q,i }q∈[r].

Output
(τ)
i : Party Pi computes and outputs y

(τ)
i ← out(i, xi, ri, s, τ, M·,i, N·,i).

Fig. 1. The generic protocol Π.

Communication and Output Model: We do not restrict how messages are
exchanged, except that their length is polynomial in κ. If messages are sent
through point-to-point secure channels, then we call this private communication.
If parties instead send the same message to all other parties, then we consider this
as broadcast communication. Parties may arbitrarily mix private and broadcast
communication. We do not restrict the output y

(τ)
i which each party obtains in

the end of the computation, meaning that all the y
(τ)
i might be different.



258 C. Baum et al.

Universal Composition of Secure Protocols. In this work we use the
(Global) Universal Composability or (G)UC model [14,16] for analyzing security.
We focus on dishonest-majority protocols as e.g. honest-majority protocols can
have all parties vote on the result (if broadcast is available). Protocols are run
by interactive Turing Machines (iTMs) which we call parties. We assume that
each party Pi in Π runs in PPT in the implicit security parameter κ. The PPT
adversary A will be able to corrupt k out of the n parties, denoted as I ⊂ P.
We opt for the static corruption model where the parties are corrupted from the
beginning, as this is what most efficient protocols currently are developed for.
Parties can exchange messages with each other and also with PPT resources, also
called ideal functionalities. To simplify notation we assume that the messages
between parties are sent over secure channels.

We start with protocols that are already UC-secure, but not verifiable. For
this, we assume that the ideal functionality F of a protocol Π follows the pattern
described in Fig. 2: following Fig. 1 we consider protocols with one input and G
output rounds. This is general enough to e.g. model commitment schemes. At
the same time, our setting is not strong enough to permit reactive computations
which inherently make the notation a lot more complex.

Functionality F has common public input s ∈ {0, 1}poly(κ) and interacts with a set P
of n parties and an ideal adversary S. Upon initialization, S is allowed to corrupt a
set I ⊂ P of k parties where k < n. Each of F ’s interfaces falls into one of 3 different
categories for providing inputs as well as running the G evaluation and output steps.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties store
xi ∈ X locally and send (Input, sid, i) to all parties. Every further message to this
interface is discarded and once set, xi may not be altered anymore.

Compute(τ): On input (Compute, sid, τ) by a set of parties Jτ ⊆ P as well as S
perform a computation based on s as well as the current state of the functionality.
The computation is to be specified in concrete implementations of this functionality.
The last two steps of this interface are fixed and as follows:
1. Set some values y

(τ)
1 , · · · , y

(τ)
n . Only this interface is allowed to alter these.

2. Send (Compute, sid, τ) to every party in Jτ .
Every further call to Compute(τ) is ignored. Every call to this interface before all
Inputi are finished is ignored, as well as when Compute(τ−1) has not finished yet.

Output
(τ)
i : On input (Output, sid, τ) by Pi where τ ∈ [G] and if y

(τ)
i was set send

(Output, sid, τ, y
(τ)
i ) to Pi.

Fig. 2. The generic functionality F .

It is not necessary that all of the interfaces which F provides are used for an
application. For example in the case of coin tossing, no party Pi ever has to call
Inputi. While Inputi,Output(τ)i are fixed in their semantics, the application
may freely vary how Compute(τ) may act upon the inputs or generate outputs.



(Public) Verifiability for Composable Protocols Without Adaptivity 259

The only constraint is that for each of the τ ∈ [G] rounds, Compute(τ) sets
output values (y(τ)1 , . . . , y

(τ)
n ).

As usual, we define security with respect to a PPT iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P.
Furthermore, the adversary A will corrupt parties I ⊂ P in the name of Z and
gain full control over I. To define security, let Π ◦ A be the distribution of the
output of Z when interacting with A in a real protocol instance Π. Furthermore,
let S denote an ideal world adversary and F ◦S be the distribution of the output
of Z when interacting with parties which run with F instead of Π and where S
takes care of adversarial behavior.

Definition 1 (Secure Protocol). We say that Π securely implements F if
for every PPT iTM A that maliciously corrupts at most k parties there exists a
PPT iTM S (with black-box access to A) such that no PPT environment Z can
distinguish Π ◦ A from F ◦ S with non-negligible probability in κ.

In our (public and secret) Join Authentication protocols we use the stan-
dard functionalities for digital signatures FSig [15] and for key registration func-
tionality FReg [17]. Moreover, to simplify our compiler description, we use an
authenticated bulletin board functionality FBB described in the full version [6].

2.1 Verifiable Functionalities

We extend the functionality F from Sect. 2 to provide a notion of non-interactive
verification using a functionality wrapper FV described in Fig. 3. For this, we
assume that there are additional parties Vi which can partake in the verification.
These, as well as regular protocol parties, can register at runtime to be verifiers
of the computation using a special interface Register Verifier. Once they are
registered, these verifiers are allowed to check the validity of outputs for parties
that have initiated verification at any point. We keep track of this using the set
of verifiers V (which is initially empty) inside the functionality. For values whose
output has been provided using the interface Output(τ)i (that we inherit from
the definition of F of Sect. 2) we allow the parties P to use an interface called
Activate Verification to enable everyone in V to check their outputs via the
interface Verifyi. The modifications to Inputi and the new interface NMFSU

are related to the über simulators discussed in Appendix 3.2.
Notice that, in our constructions, a verifier Vi ∈ V can perform verification

with help from data obtained in two different ways: 1. receiving verification
data from another verifier Vj ∈ V or a party Pi ∈ P; 2. reading verification
data from publicly available resource such as FBB. In case Vi obtains verification
data from another party in V ∪ P, that party might be corrupted, allowing the
ideal adversary S to interfere (i.e. providing corrupted verification data or not
answering at all). When Vi obtains verification data from a setup resource that
is untamperable by the adversary, S has no influence on the verification process.
To model these cases, FV might implement only Register Verifier (public)
or only Register Verifier (private), respectively. We do not require FV to



260 C. Baum et al.

The functionality wrapper FV[F ] adds the interfaces below to a generic functionality
F defined as in Figure 2, still allowing direct access to F . FV is parameterized by an

rotalumisrebü SU executed internally (as discussed in Appendix 3.2) and maintains
binary variables verification-active, verify-1, . . . , verify-n that are initially 0 and used
to keep track of the verifiable outputs. Apart from the set of parties P and ideal
adversary S defined in F , FV interacts with verifiers Vi ∈ V.

Register Verifier (private): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 send (Register, sid, Vi) to S. If S answers with

(Register, sid, Vi, ok), set V ← V ∪ Vi and return (Registered, sid) to Vi.

– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Register Verifier (public): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 set V ← V ∪ Vi and return (Registered, sid) to Vi.

– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Activate Verification: Upon receiving (Activate-Verification, sid, open-i,
open-input-i) from each Pi and if Compute(1), . . . ,Compute(G) succeeded:
1. Let Y ← {j ∈ [n] | open-j = 1 ∧ verify-j = 0}. If Y = ∅ then return.

2. Set verification-active ← 1 (if it is not set already) and deactivate the interfaces
Compute(τ) for all τ ∈ [G].

3. If open-input-i = 1, then set zi = xi; otherwise zi = ⊥.

4. Send (Activating-Verification, sid, Y, {zj , y
(τ)
j }j∈Y,τ∈[G]) to S. If Pi is hon-

est, append its randomness Ri (obtained from SU) to this message.

5. Upon receiving (Activating-Verification, sid, ok) from S set verify-j ← 1 for

each j ∈ Y . Then return (Verification-Activated, sid, Y, {zj , y
(τ)
j }j∈Y,τ∈[G])

to all parties in P.

Verifyj: Upon receiving (Verify, sid, j, a, b(1), . . . , b(G)) from Vi where Vi ∈ V and
Pj ∈ P do the following:

– if verify-j = 1 then compute the set B ← {τ ∈ [G] | b(τ) 
= y
(τ)
j }. If a = zj , then

set f ← 1; otherwise f ← 0. Return (Verify, sid, j, f, B) to Vi.

– If verify-j = 0 then send (Cannot-Verify, sid, j) to Vi.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties, for-
ward (Input, sid, xi) to F and also forward responses from F to Pi. Finally, after
receiving (Input, sid, xi) from all Pi, i ∈ I (i.e. all honest parties), initialize SU pa-
rameterizing it with F ’s randomness tape and with xi for all honest Pi.

NMFSU : Upon input (NextMsgP, sid, j, τ, ρ, {mi,j}i∈I) where j ∈ I or
(NextMsgF, sid, q, τ, ρ, mresi,q) where i ∈ I and q ∈ [r] by S, send the respective
message to SU. Forward all messages between SU and F , so that SU mediates inter-
action between F and S, also delivering extracted adversarial inputs to F . Finally,
after SU outputs a response (NextMsgP, sid, j, τ, ρ + 1, {mj,i}i∈I) or (NextMsgF,
sid, q, τ, ρ + 1, mresq,i), forward it to S.

Fig. 3. The Functionality wrapper FV[F ]. The modifications to interface Inputi and
the new interface NMFSU are discussed in Appendix 3.2.



(Public) Verifiability for Composable Protocols Without Adaptivity 261

implement both of these interfaces simultaneously, and thus define the properties
of FV according to which of them is present:

– A functionality which implements the interface Register Verifier (public)
is said to have Public Verifier Registration. We say that it has Private Verifier
Registration if it implements Register Verifier (private)

– A functionality which implements the interfaces Activate Verification and
Verifyj and which has Verifier Registration is called Non-Interactively Verifi-
able (NIV ). If it has Public Verifier Registration then it is Publicly Verifiable,
if it has Private Verifier Registration it is Privately Verifiable

3 Verifiable Protocols

We now present our definitions of non-interactively verifiable protocols. For this,
we will first sketch a classification for the robustness of a protocol to attacks on its
“inherent” verifiability. Then, we define properties that are necessary to achieve
simulation-based security for our approach to verifiability.

Our approach to verification (as outlined in Sect. 1.3) is to leverage properties
for verifiability that are already built into a protocol Π. As the verifier can
only rely on the protocol transcript, consider how such a transcript comes into
existence: we first run an instance of Π with an adversary A. Afterwards, the
adversary may change parts of the protocol transcript in order to trigger faulty
behavior in the outputs of parties. If the adversary cannot trigger erroneous
behavior this way, then this means that we can establish correctness of an output
of such a protocol by using the messages of its transcript, some opened inputs
and randomness as well as some additional properties of Π = (nmes, out).

Transcript Validity: If our verification relies on the transcript of Π, then a
transcript is incorrect if messages that a party Pi claims to have sent were not
received by receiving party Pj , if messages to and from a NIV functionality FV

were not actually sent or received by Pi or if, in case a party Pi reveals its inputs
xi and randomness ri, the messages Pi claims to have sent are inconsistent with
xi, ri when considering nmes and the remaining transcript. We formalize this as
Transcript Validity in the full version [6].

Transcript Non-Malleability: Tampering of an adversary with the transcript
can be ok unless it leads to two self-consistent protocol transcripts with outputs
ŷ
(τ)
i �= y

(τ)
i for some Pi such that both ŷ

(τ)
i , y

(τ)
i �= ⊥. To prevent this, transcript

validity is a necessary, but not a sufficient condition. For example, if no messages
or inputs or randomness of any party are fixed, then A could easily generate two
correctly distributed transcripts for different outputs that fulfill this definition
using the standard UC simulator of Π. We now describe a security game that
constrains A beyond transcript validity:

1. A runs the protocol with a challenger C, which simulates honest parties whose
inputs and randomness A does not know, generating a transcript τ .



262 C. Baum et al.

2. The adversary will obtain some additional potentially secret information of
the honest parties from C, upon which it outputs two valid protocol transcripts
Π0,Π1.

3. A wins if Π0,Π1 coincide in certain parts with τ , while the outputs of some
party Pi are different and not ⊥.

We want to cover a diverse range of protocols which might come with different
guarantees. We consider scenarios regarding: (1) whether the dishonest parties
can change their inputs and randomness after the execution (parameter ν); (2)
what is the set of parties RIR that will reveal their input and randomness later;
and (3) which protocol messages the adversary can replace when he attempts to
break the verifiability by presenting a fake transcript (parameter μ).

The parameters ν,RIR have the following impact: if ν = ncir then the dis-
honest parties are not committed to the input and randomness in the beginning
of the execution. Anything that is revealed from parties in I ∩ RIR might be
altered by the adversary. If instead ν = cir then all parties are committed to
the input and randomness in the beginning of the execution and the adversary
cannot alter xi, ri revealed for verification by honest or dishonest parties from
RIR. For μ we give the adversary the following choices:

μ = ncmes: A can replace all messages by all parties.
μ = chsmes: A can replace messages from corrupted senders.
μ = chmes: A can replace messages exchanged between corrupted parties.
μ = cmes: A cannot replace any message.

The full definition of Transcript Non-Malleability is given in the full version [6].

3.1 Simulating Verifiable Protocols: Input-Aware Simulation

Most simulators S for UC secure protocols Π work by executing an internal
copy of the adversary A towards which they simulate interactions with simulated
honest parties and ideal functionalities in the hybrid model where Π is defined. In
general, S receives no external advice and generates random inputs for simulated
honest parties and simulated ideal functionality responses with the aid of a
random input tape, from which it samples all necessary values. However, a crucial
point for our approach is being able to parameterize the operation of simulators
for protocols being compiled, as well as giving them external input on how queries
to simulated functionalities should be answered.

We need simulators with such properties in order to obtain publicly verifiable
versions of existing protocols without requiring them to be adaptively secure as
explained in Sect. 1.1. Basically, in the publicly verifiable version of a protocol,
we wish to embed a special simulator into the publicly verifiable functionality
that it realizes. This allows to “delegate” the simulation of the compiled proto-
col, while the simulator for the publicly verifiable version handles the machinery
needed to obtain public verifiability. This simplifies the security analysis of pub-
licly verifiable versions of existing UC-secure protocols, since only the added
machinery for public verifiability must be analysed.



(Public) Verifiability for Composable Protocols Without Adaptivity 263

Über Simulator SU: We now introduce the notion of an über simulator for a
UC-secure protocol Π realizing a functionality F . We denote über simulators as
SU, while we denote by S the original simulator used in the original UC proof.
Basically, an über simulator SU takes the inputs to be used by simulated honest
parties, as well as the randomness of the functionality, as an external param-
eter, and uses these in interactions with the adversary. It furthermore outputs
(through a special tape) the randomness used by these simulated parties. Instead
of interacting with an internal copy of the adversary, an über simulator inter-
acts with an external copy. Moreover, an über simulator allows for responses to
queries to simulated functionalities to be given externally. Otherwise, SU oper-
ates like a regular simulator, e.g. extracting corrupted partis’ inputs.

In the case of a probabilistic functionality F , the über simulator SU also
receives the randomness tape used by F . SU uses this tape to determine the
random values that will be sampled by F , simulating an execution compatible
with such values and with the inputs from honest parties (if they have any).

Most existing simulators for protocols realizing the vast majority of natural
UC functionalities can be trivially modified to obtain an über simulator which we
explain in the full version [6]. This is because they basically execute the protocol
as an honest party would, except that they use random inputs and leverage the
setup to equivocate the output in the simulated execution. Departing from such
a simulator, an über simulator can be constructed by allowing the simulated
honest party inputs to be obtained externally, rather than generated randomly.

Syntax of Über Simulator SU: Let SU be a PPT iTM with the same input
and output tapes as a regular simulator S plus additional ones as defined below:

– Input tapes: a tape for the input from the environment Z, a tape for mes-
sages from an ideal functionality F , a tape for inputs for the simulated honest
parties, a tape for messages from a copy of an adversary A (either connected
to A or to FV’s NMFSU interface) and a tape for messages from the global
ideal functionalities in the hybrid model where Π is defined. If F is proba-
bilistic, SU also receives F ’s random tape.

– Output tapes: tapes for output to Z, tapes for messages to F ,A, tapes for
messages for the global ideal functionalities in the hybrid model where Π is
defined as well as a special “control output tape” that outputs the randomness
used by simulated honest parties.

For any PPT iTM SU with the input and output tapes defined above, we
then say that SU is an über simulator if it has the properties of simulation-
and execution-consistency, which are described in Definitions 2 and 3 below.
Simulation consistency says that any regular ideal world execution of F with S
is indistinguishable from an execution of F with SU where SU operates as S does
(i.e. with direct access to a copy of the adversary A and the global setup) but is
parameterized by the dummy honest party inputs instead of choosing simulated
honest party inputs at random. Formally, simulation consistency is as follows:

Definition 2 (Simulation Consistency). Let Π be a protocol UC-realizing
functionality F using ideal functionalities F1, . . . ,Fr as setup and let S be the



264 C. Baum et al.

simulator of F ’s proof. We say that the PPT iTM SU is Simulation-consistent
for (Π,F ,S) if these distributions are indistinguishable for all PPT iTM Z:

1. F ◦ S: The distribution of outputs of Z in an ideal execution of F and S
executing an internal copy of adversary A and potentially a set of global func-
tionalities.

2. F ◦ SU: The distribution of outputs of Z in an ideal execution of F with SU,
where SU’s corresponding input/output tapes are connected directly to a copy
of A and to global setup functionalities (instead of FV’s NMFSU interface).
SU’s tapes for simulated honest party inputs are initialized with the same
inputs that are provided by the dummy honest parties to F and SU is given a
uniformly random tape.

Z gives inputs to all parties as in the standard UC simulation experiment but
only has access to the same input/output tapes of SU that it can access for S.

We remark that SU does not have two explicitly different modes of operations
depending on whether it is executed inside FV or in the experiment of Defini-
tion 2. In both scenarios, SU has the same input/output tapes and access to F ’s
interfaces, with the sole differences being its input/output tapes for a copy of the
adversary being either directly connected to the adversary in the experiment of
Definition 2 or to FV’s NMFSU interface and its input/output tapes for global
setup functionalities being connected to these functionalities in the experiment
of Definition 2 or to FV’s NMFSU interface. This observation is important when
arguing why SU does not give FV’s ideal adversary (i.e. FV’s simulator) any
undue advantage by, e.g., leaking information about honest parties’ inputs.

Execution consistency states that the randomness for simulated honest par-
ties output by an über simulator SU parameterized with the same inputs as the
real honest parties must be consistent with the randomness of a real protocol
execution. We use the following formal definition:

Definition 3 (Execution Consistency). Let Π be a UC-secure implemen-
tation of the functionality F in the F1, . . . ,Fr-hybrid model and let S be the
simulator of the proof. We say that the PPT iTM SU is Execution-consistent for
(Π,F ,S) if for all PPT iTM Z and PPT iTM A the following distributions are
indistinguishable:

1. The distribution of outputs of Z in a real execution of Π with adversary A and
honest parties P1, . . . ,Pk whose input and randomness pairs are (xh1 , Rh1),
. . . , (xhk

, Rhk
) in the F1, . . . ,Fr-hybrid model. The tuple of honest party ran-

domness (Rh1 , . . . , Rhk
) is output by SU after an execution with F where SU

interacts with a copy of A and SU’s tapes for simulated honest party inputs
are initialized with the same honest party inputs (xh1 , . . . , xhk

) as those given
to P1, . . . ,Pk .

2. The distribution of outputs of Z in a real execution of Π with adversary A and
honest parties P1, . . . ,Pk with inputs (xh1 , . . . , xhk

) in the F1, . . . ,Fr-hybrid
model where honest party randomness is sampled by Z.



(Public) Verifiability for Composable Protocols Without Adaptivity 265

Z gives inputs to all parties in both the ideal and real executions as in the stan-
dard UC simulation experiment, the difference being that in 1. honest party ran-
domness is provided by SU and in 2. it is sampled by Z.

For any PPT iTM SU with the input and output tapes defined above we then
say that SU is an über simulator if it is simulation- and execution-consistent. We
summarize this in the full version [6].

Über Simulators with Global Setup: In order to argue that SU does not leak
any information on honest parties’ inputs through FV’s NMFSU interface, we will
restrict the class of global functionalities that can be used as setup in compiled
protocols. Intuitively, we require that all global functionalities used by a protocol
with a global simulator provide all parties with access to the same interface and
answers queries from all parties with the same answer (e.g. in a global random
oracle). This is necessary both for practical and technical reasons: 1-(practical)
the verification procedure of our compiler needs the same access to global setup
as the party who activated verification and revealed its input/randomness; 2-
(technical) SU must not be able to distinguish whether it is operating within
FV or within the experiment of Definition 2. In order to achieve these goals, we
introduce the notion of Admissible Global Setup in Definition 4 and restrict our
compiler to work only on protocols with Admissible Global Setup.

Definition 4 (Admissible Global Setup). A global ideal functionality G is
admissible if:

– All parties Pi ∈ P have access to the same interfaces (i.e. all parties can send
the same queries to G).

– For all of G’s interfaces, for all possible queries Q, there exists a single
response R such that, upon receiving a query Qj from any party Pi ∈ P,
G returns R.

3.2 Functionalities FV with Embedded Über Simulator SU

We now outline how an über simulator SU (Definition in the full version [6]) for
the protocol Π will be used with a functionality FV. Note that SU is internally
executed by the functionality wrapper FV presented in Fig. 3, which can be
accessed by an ideal adversary (i.e. FV’s Simulator) interacting with FV through
interfaces Inputi and NMFSU . Moreover, FV allows SU to query admissible
global setup functionalities F1, . . . ,Fn (according to Definition 4) on behalf of
honest parties.

The internal SU executed by FV takes care of simulating the original pro-
tocol Π that realizes F being compiled into a publicly verifiable protocol ΠV

that realizes FV[F ], while the external SV interacting with FV will take care of
simulating the additional protocol steps and building blocks used in obtaining
public verifiability in ΠV. In order to do so, FV will parameterize SU with the
inputs of all honest parties Pi, which are received through interface Inputi, as
well as the randomness of F if the functionality is probabilistic. As the execution



266 C. Baum et al.

progresses, SV executes the compiled protocol ΠV with an internal copy A of the
adversary and extracts the messages of the original protocol Π from this execu-
tion, forwarding these messages to SU through the interface NMFSU . Moreover,
SV will provide answers to queries to setup functionalities from A as instructed
by SU also through interface NMFSU . All the while, queries from honest parties
simulated by SU to setup functionalities are directly forwarded back and forth by
FV. If verification is ever activated by an honest party Pi (and Pi ∈ RIR), FV not
only leaks that party’s input to SV but also leaks that party’s randomness Rhi

in
the simulated execution with SU (provided by SU). As we discuss in Sect. 5, this
will allow SV to simulate verification, since it now has both a valid transcript
of an execution of ΠV with A and a matching input and randomness pair that
matches that transcript (provided by FV with the help of SU).

We remark that this strategy does not give the simulator SV any extra power
in simulating an execution of the compiled protocol ΠV towards A other than the
power the simulator S for the original protocol Π already has. We will estab-
lish that the access to SU given by FV to SV does not allow it to obtain any
information about the inputs of honest parties. Notice that in an execution with
admissible global setup (according to Definition 4), the only difference between
SU’s execution within FV and SU’s execution in the experiment of Definition 2
is that, when it is executed within FV, its input/output tapes for a copy of the
adversary are connected to SU via the NMFSU interface. Hence, the only way SU

can detect that it is being executed within FV and leak any undue information
is via its interaction via the adversary input/output tapes. However, the defini-
tion in the full version [6] establishes that this interaction is indistinguishable
from that of the original simulator S for protocol Π. Since Π is UC-secure, an
execution of F with S does not leak any information about the simulated par-
ties’ inputs (i.e. inputs randomly picked by S), which would trivially allow Z to
distinguish an execution of F with S from a real world execution of Π with A.
Thus, by the definition of an über simulator in the full version [6] and the UC
security of Π, SU does not leak any information about honest party inputs to
SV via interface NMFSU when executed within FV.

4 Joint Authentication Functionalities

We now define authentication functionalities that serve as building blocks for our
compiler. These functionalities allow for a set of parties to jointly authenticate
messages but do not deliver these messages themselves. Later on, a verifier can
check that a given message has indeed been authenticated by a given set of
parties, meaning that they have received this message through a channel and
agree on it. More interestingly, we extend this functionality to allow for joint
authentication of private messages that are only known in encrypted form.

As opposed to classical point-to-point or broadcast authenticated channels,
our functionalities do not deliver messages to the receiving parties and conse-
quently do not ensure consensus. These functionalities come into play in our
compiler later as they allow for verifiers to check that all parties who executed a



(Public) Verifiability for Composable Protocols Without Adaptivity 267

protocol agree on the transcript (that might contain private messages) regardless
of how the messages in the transcript have been obtained. Having the parties
agree on which messages have been sent limits the adversary’s power to generate
an alternative transcript aiming at forging a proof that the protocol reached a
different outcome, i.e. our notion of transcript non-malleability.

Public Joint Authentication: First, consider the simple case of authenticating
public messages (known by all parties participating in the joint authentication
procedure). Here, the sender starts by providing a message and ssid pair to
the functionality and joint authentication is achieved after each of the other
parties sends the same pair to the functionality. This can be implemented by
a simple protocol where all parties sign each message received from each other
party in each round, sending the resulting signatures to all other parties. A
message is considered authenticated if it is signed by all parties. Notice that this
protocol does not ensure consensus and can easily fail if a single party does not
provide a valid signature on a single message, which an adversary corrupting any
party (or the network) can always cause (this is captured in the functionality).
Functionality FPJAuth is described in the full version [6].

Secret Joint Authentication: We further define a functionality FSJAuth

(described inthe full version [6]). This functionality works similarly to FPJAuth,
allowing parties to jointly authenticate messages received through private chan-
nels to which they have access. However, it also allows for bureaucrat parties
who observe the encrypted communication (but do not see plaintext messages)
over the private channel to jointly authenticate a committed version of these
plaintext messages. If a private message is revealed by its sender (or one of its
receivers), FSJAuth allows third parties (including the bureaucrats) to verify that
this message is indeed the one that was authenticated.

In order to capture the different actions of each party it interacts with, FSJAuth

is parameterized by the following (sets of) parties: a sender Psnd that can input
messages to be jointly authenticated; a set of parties P who receive input mes-
sages from Psnd and jointly authenticate them; a set of bureaucrats B who jointly
authenticate that Psnd has sent a certain (unknown to them) committed message
to P. FSJAuth, like FPJAuth, does not aid in sending messages, notifications about
sent messages nor joint authentication information to any party. The responsi-
bility for sending messages lies with Psnd, while Psnd or Pi ∈ P can notify other
parties that plaintext verification is possible.

We realize FSJAuth with a signature scheme and a certified encryption scheme
with plaintext verification, i.e. an encryption scheme with two properties: (1) all
parties’ public keys are registered in a PKI, making sure that encrypted mes-
sages can only be opened by the intended receiver; (2) Both encrypting and
decrypting parties can generate publicly verifiable proofs that a certain mes-
sage was contained in a given ciphertext. The private channel itself is realized
by encrypting messages under the encryption scheme, while joint authentication
is achieved by having all parties in P (including the sender) and bureaucrats
in B sign the resulting ciphertext. To prove that a certain message was indeed
contained in the ciphertext, the receiver(s) recovers the plaintext message and a



268 C. Baum et al.

proof of plaintext validity from the ciphertext and sends those to the verifier(s).
Finally, a verifier first checks that the message was indeed contained in a previ-
ously sent ciphertext and that this ciphertext has been signed by all parties in
P and B. This construction and a concrete realization are described in the full
version [6].

Authenticating Inputs and Randomness: To provide an authentication
of inputs and randomness we adapt the functionality FSJAuth, as the desired
capabilities are like a message authentication without a receiver. In the full
version [6] we present a functionality FIRAuth that implements this.

5 Compilation for Input-Revealing Protocols

We now sketch how to compile protocols from Sect. 2 into non-interactively verifi-
able counterparts. As we focus on protocols according to the definition in the full
version [6] there are 8 combinations of parameters (ν, μ) for (ν,RIR, μ)-transcript
non-malleable protocols to consider. Furthermore we might either have public
or private verifier registration, which in total yields 16 different definitions. To
avoid redundancy we now outline how to get the respective verifiability in each
setting. We simplify notation by just using a single verifier V.

Assume a (ν,RIR, μ)-transcript non-malleable protocol Π that UC realizes
the functionality F in the (global) F1, . . . ,Fr-hybrid model with über simulator
SU for (Π,F ,S). Then compilation works as follows:

1. We describe how to construct a protocol ΠV by modifying Π with access
to a signature functionality FSig, a key registration functionality FReg and
authentication functionalities FPJAuth,FSJAuth,FIRAuth. We will furthermore
require that we can replace the hybrid functionalities F1, . . . ,Fr used in Π
with verifiable counterparts FV

1 , . . . ,FV
r .

2. In Appendix 3.2 we show how ΠV UC-realizes FV[F ] in the FV
1 , . . . ,FV

r -hybrid
by constructing a simulator SV.

Protocol Compilation - The Big Picture. In order to verify we let the
verifier V simulate each such party whose output shall be checked and which
participated in an instance of Π. This check is done locally, based on the inputs,
randomness and messages related to such a party (and/or other parties) which
V obtains for this process. In case of public verifier registration we assume that
a bulletin board is available which holds the protocol transcript, whereas in case
of private registration the verifier contacts one of the protocol parties to obtain
a transcript which it can then verify non-interactively. We want to stress that
the Bulletin Board which may contain the protocol transcript does not have to
be used to exchange messages during the actual protocol run.

In Π we assume that messages can either be exchanged secretly between two
parties or via a broadcast channel. Furthermore, parties may send messages to
hybrid functionalities or receive them from these. An adversary may be able
to replace certain parts of the protocol transcript. As long as we assume that



(Public) Verifiability for Composable Protocols Without Adaptivity 269

a protocol is (ν,RIR, μ)-transcript non-malleable and constrain his ability to
maul the protocol transcript to those parts permitted by the definition, the
overall construction achieves verifiability. We now explain, on a high level, the
modifications to Π for the different values of μ, ν:

μ = ncmes: The adversary can replace all messages by any party at his will, and
messages are just exchanged as in Π.

μ = chsmes: Before the protocol begins, each Pi generates a signing key with
FSig and registers its signing key with FReg. Whenever Pi sends a message
mi,j to Pj it uses FSig to authenticate mi,j with a signature σi,j . V will later
be able to verify exactly those messages that were sent by honest parties, as
A can fake messages and signatures sent by dishonest parties.

μ = chmes: Each message that is either sent or received by an honest party
must remain unaltered. Each party will do the same as for μ = chsmes, but
whenever Pi receives a message mj,i from Pj then it uses FSig to authenticate
mj,i with a signature σj,i. Now V can establish for each message of the protocol
if both sender and receiver signed the same message. A can only alter messages
that were both sent and received by dishonest parties.

μ = cmes: Here dishonest parties cannot replace their messages before verifica-
tion. To achieve this, we use FSJAuth,FPJAuth as defined in Sect. 4 which the
parties now use to register their private message exchange. These functional-
ities can then be used by V to validate the transcript.

ν = ncir: Based on each Pi setting up a key with FSig and registering it with
FReg let each party sign both its input xi and its randomness ri using FSig

before sending it in Activate Verification. V now only accepts such signed
values which it can verify via FSig. A can replace the pairs (xj , rj) of dishonest
parties Pj by generating different signatures.

ν = cir: The parties use FIRAuth to authenticate their inputs and randomness. V
uses FIRAuth to check validity of the revealed xi, ri which it obtained.

Hybrid Functionalities: Replace the hybrid functionalities F1, . . . ,Fr with
NIV counterparts, i.e. with functionalities FV

1 , . . . ,FV
r that have the same

interfaces as defined in Sect. 2.1. To achieve public verifiability each such FV
q

must also be publicly verifiable. If a global functionality is used as setup, it
must be admissible according to Definition 4, so that the verification pro-
cedure can re-execute the protocol. For any such FV

q , V can establish if a
message mresq,i was indeed sent to Pi or not. If FV

q does also reveal inputs,
it can also test if mresi,q as claimed to be sent by Pi was indeed received by
the functionality.

Public Verifiability Compiler. The basic idea is to turn any (ν,RIR, μ)-
transcript non-malleable protocol into a (cir,RIR, μ)-transcript non-malleable
protocol by forcing the adversary to commit to all the corrupted parties’ random-
ness and inputs, and then turn it into a (cir,RIR, cmes)-transcript non-malleable
protocol by forcing the adversary to commit to all messages. While this might
be overkill for some protocols, we focus on the worst case scenario of compiling



270 C. Baum et al.

(ncir,RIR, ncmes)-transcript non-malleable protocols, since it is the most chal-
lenging. After making a protocol (cir,RIR, cmes)-transcript non-malleable, the
protocol execution becomes deterministic and can be verified upon revealing of
the randomness, input and transcript of any party that activates the verification.
All the verifier has to do is to execute the protocol’s next message function on
these randomness and input taking received messages from the transcript. We
present a detailed description of this compiler and a formal theorem statement
together with its proof in the full version [6].

References

1. Alwen, J., Ostrovsky, R., Zhou, H.-S., Zikas, V.: Incoercible multi-party computa-
tion and universally composable receipt-free voting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 763–780. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 37

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014

3. Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public veri-
fiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 41

4. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 11

5. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 22

6. Baum, C., David, B., Dowsley, R.: (Public) verifiability for composable protocols
without adaptivity or zero-knowledge. Cryptology ePrint Archive, Paper 2020/207
(2020). https://eprint.iacr.org/2020/207

7. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving decentral-
ized cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021.
LNCS, vol. 12726, pp. 163–194. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78372-3 7

8. Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation with
identifiable abort. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
461–490. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 18

9. Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC
with identifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 562–592. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 20

10. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 10

https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://eprint.iacr.org/2020/207
https://doi.org/10.1007/978-3-030-78372-3_7
https://doi.org/10.1007/978-3-030-78372-3_7
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-642-34961-4_10


(Public) Verifiability for Composable Protocols Without Adaptivity 271

11. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

12. Camenisch, J., Dubovitskaya, M., Rial, A.: UC commitments for modular proto-
col design and applications to revocation and attribute tokens. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 208–239. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 8

13. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: UC-secure non-interactive
public-key encryption. In: IEEE CSF 2017 (2017)

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

15. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW 2004 (2004)

16. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

17. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual
authentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006). https://doi.org/
10.1007/11681878 20

18. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM
Press, November 2014

19. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 16

20. Canetti, R., Sarkar, P., Wang, X.: Blazing fast OT for three-round UC OT exten-
sion. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS,
vol. 12111, pp. 299–327. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45388-6 11

21. Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious trans-
fer and commitment with adaptive security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12493, pp. 277–308. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64840-4 10

22. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 27

23. Cascudo, I., David, B.: ALBATROSS: publicly AttestabLe BATched randomness
based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 11

24. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

25. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986

26. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-53015-3_8
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/11681878_20
https://doi.org/10.1007/11681878_20
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-030-45388-6_11
https://doi.org/10.1007/978-3-030-45388-6_11
https://doi.org/10.1007/978-3-030-64840-4_10
https://doi.org/10.1007/978-3-030-64840-4_10
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-642-32009-5_38


272 C. Baum et al.

27. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

28. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

30. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1 21

31. Jafargholi, Z., Oechsner, S.: Adaptive security of practical garbling schemes. In:
Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS,
vol. 12578, pp. 741–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-65277-7 33

32. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

33. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

34. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptol. 25(4), 680–722 (2012)

35. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
36. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-

cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

37. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation
from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 1

38. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-030-65277-7_33
https://doi.org/10.1007/978-3-030-65277-7_33
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-28166-7_1
https://doi.org/10.1007/978-3-662-46803-6_8

	(Public) Verifiability for Composable Protocols Without Adaptivity or Zero-Knowledge
	1 Introduction
	1.1 The Problems of Achieving (Public) Verifiability in UC
	1.2 Our Contributions
	1.3 Our Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Verifiable Functionalities

	3 Verifiable Protocols
	3.1 Simulating Verifiable Protocols: Input-Aware Simulation
	3.2 Functionalities FV with Embedded Über Simulator SU

	4 Joint Authentication Functionalities
	5 Compilation for Input-Revealing Protocols
	References




