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Preface

The 16th International Conference on Provable and Practical Security (ProvSec 2022)
was held in an online and offline hybrid manner during November 11–12, 2022. The
conference was hosted by Nanjing University of Aeronautics and Astronautics and
co-organized by the Collaborative Innovation Center of Novel Software Technology
and Industrialization. ProvSec is an international conference on provable security in
cryptography and practical security for information systems. ProvSec is designed to
be a forum for theoreticians, system and application designers, protocol developers,
and practitioners to discuss and express their views on the current trends, challenges,
and state-of-the-art solutions related to various issues in provable and practical
security. Topics of interests include, but are not limited to, provable security for
asymmetric cryptography, provable security for symmetric cryptography, provable
security for physical attacks, privacy and anonymity technologies, secure cryptographic
protocols and applications, security notions, approaches, and paradigms, leakage-
resilient cryptography, lattice-based cryptography and post-quantum cryptography,
blockchain and cryptocurrency, IoT security, cloud security, and access control.

The conference received 52 submissions. Each submission was reviewed by at least
three Program Committee members or external reviewers. The Program Committee
members accepted 15 full papers and four short papers to be included in the conference
program. The Program Committee members also selected two best papers. These are
“AGeneric Construction of CCA-secure Attribute-based Encryption with Equality Test”
by Kyoichi Asano, Keita Emura, Atsushi Takayasu, and YoheiWatanabe and “FolketID:
A Decentralized Blockchain-based NemID Alternative against DDoS Attacks” by
Wei-Yang Chiu, Weizhi Meng, Wenjuan Li, and Liming Fang.

We thank the Program Committee members and the external reviewers for their
hard work in reviewing the submissions. We thank the Organizing Committee and all
volunteers for their time and effort dedicated to arranging the conference.

September 2022 Chunpeng Ge
Fuchun Guo
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A Generic Construction of CCA-Secure
Attribute-Based Encryption

with Equality Test

Kyoichi Asano1,2(B) , Keita Emura2 , Atsushi Takayasu3 ,
and Yohei Watanabe1,2

1 The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo
182-8585, Japan

k.asano@uec.ac.jp
2 National Institute of Information and Communications Technology, 4-2-1,

Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
3 The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract. Attribute-based encryption with equality test (ABEET) is
an extension of the ordinary attribute-based encryption (ABE), where
trapdoors enable us to check whether two ciphertexts are encryptions
of the same message. Thus far, several CCA-secure ABEET schemes
have been proposed for monotone span programs satisfying selective
security under q-type assumptions. In this paper, we propose a generic
construction of CCA-secure ABEET from delegatable ABE. Specifically,
our construction is an attribute-based extension of Lee et al.’s generic
construction of identity-based encryption with equality test from hier-
archical identity-based encryption. Even as far as we know, there are
various delegatable ABE schemes. Therefore, we obtain various ABEET
schemes with new properties that have not been achieved before such
as various predicates, adaptive security, standard assumptions, compact
ciphertexts/secret keys, and lattice-based constructions.

Keywords: Attribute-based encryption · Equality test ·
Chosen-ciphertext security · Generic construction

1 Introduction

1.1 Background

The notion of public key encryption with equality test (PKEET) was introduced
by Yang et al. [32]. PKEET is similar to public key encryption with keyword
search [1,12] in a multi-user setting. PKEET has multiple public/secret key pairs
(pk1, sk1), . . . , (pkN , skN ). Let cti and ctj denote encryptions of plaintexts Mi

and Mj by pki and pkj , respectively. As the case of the standard public key
encryption, the secret keys ski and skj can decrypt cti and ctj , and recover Mi

and Mj , respectively. Moreover, PKEET has a trapdoor td to perform the equality
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Ge and F. Guo (Eds.): ProvSec 2022, LNCS 13600, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-20917-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20917-8_1&domain=pdf
http://orcid.org/0000-0001-5877-260X
http://orcid.org/0000-0002-8969-3581
http://orcid.org/0000-0002-9310-6976
http://orcid.org/0000-0003-4028-8603
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test. Let tdi and tdj denote trapdoors created by the secret keys ski and skj ,
respectively. Briefly speaking, even if the i-th user obtains the j-th trapdoor
tdj , they cannot decrypt the j-th ciphertext ctj . In contrast, any users who
have trapdoors tdi and tdj can check whether cti and ctj are encryptions of the
same plaintexts. There are several applications of PKEET; for example, Yang et
al. [32] considered outsourced databases with partitioning encrypted data where
a database administrator can collect and categorize confidential data without
help of message owners. Thus far, several PKEET schemes have been proposed
with stronger security models, efficiency improvements, additional properties,
and under various assumptions.

As a natural extension of PKEET, attribute-based encryption with equal-
ity test (ABEET) has been studied. Here, we briefly explain ABEET with a
predicate P : X × Y → {0, 1}. ABEET has a single master public/secret key
pair (mpk,msk). Let cti and ctj denote encryptions of plaintexts Mi and Mj

for ciphertext-attributes xi and xj , respectively. As the case of the standard
attribute-based encryption (ABE), the secret key skyi

for key attribute yi (resp.
skyj

for yj) can decrypt cti (resp. ctj) if P(xi, yi) = 1 (resp. P(xj , yj) = 1) holds.
Let tdyi

and tdyj
denote trapdoors created by the secret keys skyi

and skyj
,

respectively. Even if the user with the key-attribute yi obtains the trapdoor tdyj

of the key-attribute yj , they cannot decrypt the ciphertext ctxj
of the ciphertext-

attribute xj when P(xj , yi) = 0. In contrast, any users who have trapdoors tdyi

and tdyj
can check whether ctxi

and ctxj
are encryptions of the same plaintexts

if P(xi, yi) = P(xj , yj) = 1 holds.
The simplest case of ABEET is arguably identity-based encryption with equal-

ity test (IBEET) that has an equality predicate PIBE : V × V → {0, 1}, i.e.,
PIBE(v, v′) = 1 ⇔ v = v′. Thus far, several IBEET schemes have been pro-
posed such as [23]. ABEET schemes for more complex monotone span programs
have also been proposed [18,19,25,28] as ABE for the same predicate has been
actively studied. However, ABEET research has a major drawback in the sense
that progress in ABEET research is far behind that of ABE research. Although
all the ABEET schemes [18,19,25,28] satisfy only selective security under q-
type assumptions for monotone span programs, there are adaptively secure
ABE schemes for monotone span programs under standard assumptions [9–
11,16,17,24,29] and adaptively secure ABE schemes for more complex non-
monotone span programs [4,20]. There are also several ABE schemes for other
complex predicates such as (non-)deterministic finite automata [4,9,20,21] and
circuits [13]. Although all the ABEET schemes [18,19,25,28] are pairing-based,
there are lattice-based ABE schemes under the post-quantum learning with errors
assumption such as [13]. Therefore, it is an important open problem to improve
ABEET based on techniques of the state-of-the-art ABE schemes.

1.2 Our Contribution

To resolve the above mentioned open problem, we propose a generic construction
of CCA-secure ABEET schemes from CPA-secure delegatable ABE schemes and
cryptographic hash functions. To construct an ABEET scheme for a predicate
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Table 1. Comparison among known CCA-secure ABEET schemes for complex pred-
icates. MSP, NSP, DFA, CP, KP, ROM, and BDHE stand for monotone span pro-
gram, non-monotone span program, deterministic finite automata, ciphertext-policy,
key-policy, random oracle, and bilinear Diffie-Hellman exponent, respectively. The col-
umn “Compact Parameter” indicates that the content consists of the constant number
of group elements.

Known scheme Predicate Security Policy Universe Model Complexity
assumption

Compact
parameter

CHH+18 [18] MSP selective CP small ROM q-parallel
BDHE

none

CHH+19 [19] MSP selective CP small ROM q-parallel
BDHE

none

WCH+20 [28] MSP selective CP small Std. q-parallel
BDHE

none

LSX+21 [25] MSP selective CP large Std. q-1 |mpk|
Our Scheme
(Base Schemes)

Predicate Security Policy Universe Model Complexity
Assumption

Compact
Parameter

Scheme 1
[16,17,29]

MSP adaptive KP small Std. k-Lin none

Scheme 2 [3,9,26] MSP adaptive KP large Std. k-Lin none

Scheme 3 [3,26] MSP semi-adaptive KP large Std. k-Lin |ct|
Scheme 4 [4,11] NSP adaptive KP large Std. q-ratio |mpk|
Scheme 5 [4,11] NSP adaptive KP large Std. q-ratio |ct|
Scheme 6 [4,11] NSP adaptive KP large Std. q-ratio |sk|
Scheme 7
[16,17,29]

MSP adaptive CP small Std. k-Lin none

Scheme 8 [3,9,26] MSP adaptive CP large Std. k-Lin none

Scheme 9 [3,26] NSP semi-adaptive CP large Std. k-Lin |ct|
Scheme 10 [4,11] NSP adaptive CP large Std. q-ratio |mpk|
Scheme 11 [4,11] NSP adaptive CP large Std. q-ratio |ct|
Scheme 12 [4,11] NSP adaptive CP large Std. q-ratio |sk|
Scheme 13 [4,9] DFA adaptive KP large Std. q-ratio |mpk|
Scheme 14 [4,9] DFA adaptive CP large Std. q-ratio |mpk|

P : X × Y → {0, 1}, our construction uses a delegatable ABE scheme with a
hierarchical structure of the depth three, where only the first level supports the
predicate P : X × Y → {0, 1} and the other two levels support only the equality
predicate PIBE : V × V → {0, 1}. Since delegatable ABE has not been studied
as much as (non-delegatable) ABE, our generic construction does not immedi-
ately provide ABEET schemes that have the same performance as all state-of-
the-art ABE schemes. Nevertheless, there are several delegatable ABE schemes
that enable us to obtain various more attractive ABEET schemes than known
schemes [18,19,25,28]. At first, we can easily obtain selectively secure lattice-
based ABEET schemes for circuits from Boneh et al.’s delegatable ABE scheme
for circuits [13]. Next, we obtain several pairing-based ABEET schemes through
the predicate encoding and pair encoding frameworks introduced by Wee [29]
and Attrapadung [9], respectively. These frameworks are unifying methods to
design ABE for a large class of predicates, where the pair encoding can handle
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more complex predicates than the predicate encoding. Furthermore, Ambrona
et al.’s transformation [7] enables us to modify a predicate encoding scheme and
a pair encoding scheme for a predicate P as a delegatable one.1 Therefore, we
can construct ABEET schemes for complex predicates captured by the predi-
cate encoding and pair encoding frameworks. As a result, we obtain new and
impressive ABEET schemes for various predicates at once.

Table 1 illustrates a comparison between CCA-secure ABEET schemes for
some complex predicate including monotone span programs. All the schemes are
constructed over prime-order bilinear groups. Since there are a huge number of
ABE schemes through the pair encoding framework, all ABEET schemes obtained
by our generic construction may not be covered in Table 1. However, 14 schemes
listed in Table 1 should be sufficient for clarifying the impact of our generic
construction. We briefly summarize how to obtain base ABE schemes as follows:

– Schemes 1 and 7: Instantiating predicate encoding scheme [29] with [16,17].
– Schemes 2 and 8: Instantiating pair encoding scheme [9] with [3,26].
– Scheme 3: Instantiating a pair encoding scheme [3] with [3,26].
– Scheme 9: Instantiating a pair encoding scheme [26] with [3,26].
– Schemes 4–6 and 10–12: Instantiating pair encoding schemes [11] with [4].
– Schemes 13 and 14: Instantiating pair encoding schemes [9] with [4].

Then, we explain various advantages of our results compared with known ABEET
schemes for monotone span programs [18,19,25,28].

– Although all known ABEET schemes capture monotone span programs,
Schemes 4–6 and 9–12 capture non-monotone span programs and Schemes
13 and 14 capture deterministic finite automata.

– Although all known ABEET schemes satisfy only selective security, Schemes
1, 2, 4–8, and 10–14 satisfy adaptive security and Schemes 3 and 9 satisfy
semi-adaptive security.

– Although all known ABEET schemes except [25] support only small universe,
Schemes 2–6 and 8–14 support large universe.

– Although security of all known ABEET schemes are based on q-type assump-
tions, security of Schemes 1–3 and 7–9 are based on the standard k-linear
assumption.

– Although all known ABEET schemes do not have compact ciphertexts and
secret keys, Schemes 3, 5, 9, and 11 have compact ciphertexts and Schemes
6 and 12 have compact secret keys.

Therefore, we successfully obtain several improved ABEET schemes from our
generic construction. Moreover, although we only list proposed ABEET schemes
for complex predicates in Table 1, our generic construction also provides vari-
ous ABEET schemes for less expressive but important predicates captured by
the pair encoding and the predicate encoding such as (non-zero) inner product
encryption, (negated) spatial encryption, doubly spatial encryption, and arith-
metic span programs.
1 To be precise, Ambrona et al. provided a delegatable transformation only for predi-

cate encoding. However, we can modify a pair encoding scheme as a delegatable one
in a similar way.
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1.3 Technical Overview

We explain an overview of our construction. At first, we exploit the common
essence of known ABEET constructions and briefly summarize the fact that any
IND-CPA secure ABE scheme for a predicate P : X × Y → {0, 1} becomes
CPA-secure ABEET scheme for the same predicate by combining with cryp-
tographic hash functions. For this purpose, we run two ABE schemes for the
same predicate in parallel. Let ABE.mpk0 and ABE.mpk1 denote master public
keys of the two ABE schemes and let H denote a cryptographic hash function.
Then, we set mpk = (ABE.mpk0,ABE.mpk1,H) as the master public key of an
ABEET scheme. We encrypt a plaintext M for a ciphertext attribute x ∈ X as
ctx = (ABE.ctx,0,ABE.ctx,1), where ABE.ctx,0 and ABE.ctx,1 are encryptions of
M and H(M) for the same x computed by ABE.mpk0 and ABE.mpk1, respectively.
We set a secret key of a key attribute y ∈ Y as sky = (ABE.sky,0,ABE.sky,1),
where ABE.sky,0 and ABE.sky,1 are secret keys for the same y computed by
(ABE.mpk0,ABE.msk0) and (ABE.mpk1,ABE.msk1), respectively. The secret key
sky can decrypt the ciphertext ctx if P(x, y) = 1 by simply decrypting the ABE
ciphertext ABE.ctx,0 with the ABE secret key ABE.sky,0 and recover M. We set
a trapdoor for y ∈ Y as tdy = ABE.sky,1. Given two ciphertexts (ctx, ctx′) for
(x, x′) ∈ X 2 and two trapdoors (tdy, tdy′) such that P(x, y) = P(x′, y′) = 1, we
can check whether the two ciphertexts are encryptions of the same plaintexts
by checking whether the decryption results of the ABE ciphertexts ABE.ctx,1

and ABE.ctx′,1 by the trapdoors ABE.sky,1 and ABE.sky′,1, respectively, have
the same values.

Next, we observe that the above ABEET scheme satisfies CPA security. Briefly
speaking, ABEET has to be secure against two types of adversaries called Type-I
and Type-II . Let x∗ denote the target ciphertext attribute. The Type-I adversary
can receive trapdoors tdy such that P(x∗, y) = 1, while the Type-II adversary
cannot receive such trapdoors. Although the Type-I adversary trivially breaks
indistinguishability by definition, we can prove one-wayness against the Type-I
adversary. Thus, the challenge ciphertext ct∗x∗ is an encryption of M∗ that is
sampled uniformly at random from the plaintext space. The IND-CPA security
of the underlying ABE scheme ensures that the first element ABE.ct∗x∗,0 of the
challenge ciphertext ct∗x∗ does not reveal the information of M∗ at all. Since the
Type-I adversary has the trapdoor tdy = ABE.sky,1 such that P(x∗, y) = 1, it can
recover H(M∗); however, the one-wayness of the hash function H ensures that M∗

cannot be recovered. In contrast, we have to prove indistinguishability against
the Type-II adversary. Thus, the challenge ciphertext ct∗x∗ is an encryption of
M∗

coin, where the tuple (M∗
0,M

∗
1) is declared by the adversary and coin ←$ {0, 1} is

flipped by the challenger. In this case, the IND-CPA security of the underlying
ABE scheme ensures that both ABE.ct∗x∗,0 and ABE.ct∗x∗,1 do not reveal the
information of M∗

coin and H(M∗
coin) at all, respectively. We note that the above

construction does not provide CCA security even if the underlying ABE scheme
satisfies IND-CCA security. Indeed, when the Type-II adversary receives the
challenge ciphertext ct∗x∗ = (ABE.ct∗x∗,0,ABE.ct∗x∗,1), it can guess the value of
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coin by making a decryption query on (ABE.ctx∗,0,ABE.ct∗x∗,1), where ABE.ctx∗,0

is the encryption of M∗
0 or M∗

1 computed by the adversary itself.
Based on the discussion so far, what we have to achieve is CCA security. For

this purpose, we follow the generic construction of CCA-secure IBEET from IND-
CPA secure hierarchical IBE with the depth three proposed by Lee et al. [23]. Lee
et al. used the CHK transformation [15] to update the above scheme for achiev-
ing CCA security in the identity-based setting. Similarly, we use the Yamada et
al.’s transformation [31], which is the attribute-based variant of the CHK trans-
formation, to update the above CPA-secure construction for achieving CCA
security in the attribute-based setting. We use a IND-CPA-secure delegatable
ABE scheme with the depth three as a building block. Specifically, to construct
ABEET for a predicate P : X × Y → {0, 1}, we use a delegatable ABE scheme
for a predicate (X × {0, 1} × V) × (Y × {0, 1} × V) → {0, 1}, where a secret
key ABE.sky,b′,v′ can decrypt a ciphertext ABE.ctx,b,v correctly if it holds that
P(x, y) = 1 ∧ b = b′ ∧ v = v′. Here, we use the second hierarchical level
b, b′ ∈ {0, 1} to specify which of the ABE schemes in the above CPA-secure
construction and the third level v, v′ ∈ V to specify verification keys of the
one-time signature scheme. As a result, we set a master public key, ciphertexts
for x ∈ X , secret keys and trapdoors for y ∈ Y of ABEET as mpk = ABE.mpk,
ctx = (verk,ABE.ctx,0,verk,ABE.ctx,1,verk, σ), sky = ABE.sky, and tdy = ABE.sky,1,
respectively, where verk is a verification key of the one-time signature scheme
and σ is a signature for the message [ABE.ctx,0,verk‖ABE.ctx,1,verk]. Intuitively,
the construction achieves CCA security by combining with security of the above
CPA-secure construction and Yamada et al.’s technique [31].

1.4 Roadmap

In Sect. 2, we introduce notations and give some definitions. We show our generic
construction of ABEET and discuss its correctness in Sect. 3. We discuss security
of our construction in Sect. 4.

2 Preliminaries

Notation. Throughout the paper, λ denotes a security parameter. For an i-bit
binary string s1 ∈ {0, 1}i and a j-bit binary string s2 ∈ {0, 1}j , let [s1‖s2] ∈
{0, 1}i+j denote an (i + j)-bit concatenation of s1 and s2. For a finite set S,
s ←$ S denotes a sampling of an element s from S uniformly at random and
let |S| denotes a cardinality of S. Probablistic polynomial time is abbreviated
as PPT.

2.1 Delegatable Attribute-Based Encryption

We define delegatable ABE (or simply called ABE hereafter). To make readers
easier to understand, we here consider a special case of ABE, which is sufficient
to describe our construction. The definition we use here differs from the general
definition of ABE in the following ways:
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– The hierarchical level is three, not an arbitrary number.
– The second and third levels support only the equality predicate as in identity-

based encryption, where the second level and third level take elements of {0, 1}
and an identity space V, respectively.

– The Enc algorithm always takes a level-3 attribute.

Let P : X × Y → {0, 1} denotes a predicate, where X and Y are attribute
spaces for ciphertexts and secret keys, respectively. In our definition of ABE for a
predicate P, ciphertexts ABE.ctx,b,v and secret keys ABE.sky,b′,v′ are associated
with (x, b, v) ∈ X × {0, 1} × V and (y, b′, v′) ∈ Y × {0, 1} × V, respectively.
A secret key ABE.sky,b′,v′ can decrypt a ciphertext ABE.ctx,b,v if it holds that
P(x, y) = 1 ∧ b = b′ ∧ v = v′.

Syntax. An ABE scheme ΠABE for a predicate P consists of the five algorithms
(ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec, ABE.Delegate) as follows:

ABE.Setup(1λ) → (ABE.mpk,ABE.msk): On input the security parameter 1λ, it
outputs a master public key ABE.mpk and a master secret key ABE.msk. We
assume that ABE.mpk contains a description of a plaintext space M that is
determined only by the security parameter λ.

ABE.Enc(ABE.mpk, (x, b, v),M) → ABE.ctx,b,v: On input a master public key
ABE.mpk, (x, b, v) ∈ X × {0, 1} × V, and a plaintext M ∈ M, it outputs a
ciphertext ABE.ctx,b,v.

ABE.KeyGen(ABE.mpk,ABE.msk, Y ) → ABE.skY : On input a master public key
ABE.mpk, a master secret key ABE.msk, and Y , it outputs a secret key
ABE.skY , where Y is the element of Y, Y × {0, 1} or Y × {0, 1} × V.

ABE.Dec(ABE.mpk,ABE.ctx,b,v,ABE.sky,b′,v′) → M or ⊥: On input a master pub-
lic key ABE.mpk, a ciphertext ABE.ctx,b,v, and a secret key ABE.sky,b′,v′ , it
outputs the decryption result M if P(x, y) = 1 ∧ (b, v) = (b′, v′). Otherwise,
output ⊥.

ABE.Delegate(ABE.mpk,ABE.skY , Y ′) → ABE.skY ′ : On input a master public
key ABE.mpk, a secret key ABE.skY and Y ′, it outputs a secret key ABE.skY ′ ,
where Y is the element of Y or Y × {0, 1}, Y ′ is the element of {Y } × {0, 1}
or {Y } × {0, 1} × V if Y ∈ Y, and Y ′ is the element of {Y } × {0, 1} × V if
Y ∈ Y × {0, 1}.

Correctness. For all λ ∈ N, all (ABE.mpk,ABE.msk) ← ABE.Setup(1λ),
all M ∈ M, all (x, y) ∈ X × Y such that P(x, y) = 1, and all (b, v) ∈
{0, 1} × V, it is required that M′ = M holds with overwhelming prob-
ability, where ABE.ctx,b,v ← ABE.Enc(ABE.mpk, (x, b, v),M), ABE.sky,b,v ←
ABE.KeyGen(ABE.mpk,ABE.msk, (y, b, v)), and M′ ← ABE.Dec(ABE.mpk,
ABE.ctx,b,v,ABE.sky,b,v). In addition, there is a correctness for ABE.Delegate,
where outputs of ABE.KeyGen(ABE.mpk,ABE.msk, Y ′) and ABE.Delegate
(ABE.mpk,ABE.KeyGen(ABE.mpk,ABE.msk, Y ), Y ′) follow the same distribu-
tion.

Security. We consider adaptive IND-CPA security defined below. Note that the
following definition is specific to the above syntax but implied by the general
adaptive IND-CPA definition.
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Definition 1 (Adaptive IND-CPA Security). The adaptive IND-CPA
security of an ABE scheme ΠABE is defined by a game between an adversary
A and a challenger C as follows:

Init: C runs (ABE.mpk,ABE.msk) ← ABE.Setup(1λ) and gives ABE.mpk to A.
Phase 1: A is allowed to make the following key extraction queries to C:

Key extraction query: A is allowed to make the query on Y . Upon
the query, C runs ABE.skY ← ABE.KeyGen(ABE.mpk,ABE.msk, Y ) and
returns ABE.skY to A, where Y is the element of Y, Y × {0, 1} or Y ×
{0, 1} × V.

Challenge query: A is allowed to make the query only once. Upon A’s query
on ((x∗, b∗, v∗),M0

∗,M1
∗) ∈ X × {0, 1} × V × M2, where M0

∗ and M1
∗ have

the same length and (x∗, b∗, v∗) should not satisfy the following conditions for
all the attributes Y queried on key extraction queries in Phase 1:
– If Y = y ∈ Y, P(x∗, y) = 1 holds.
– If Y = (y, b) ∈ Y × {0, 1}, P(x∗, y) = 1 ∧ b∗ = b holds.
– If Y = (y, b, v) ∈ Y × {0, 1} × V, P(x∗, y) = 1 ∧ (b∗, v∗) = (b, v) holds.

Then, C flips a coin coin ←$ {0, 1} and runs ABE.ct∗x∗,b∗,v∗ ←
ABE.Enc(ABE.mpk, (x∗, b∗, v∗),M∗

coin). Then, C returns ABE.ct∗x∗,b∗,v∗ to A.
Phase 2: A is allowed to make key extraction queries as in Phase 1 with the

following exceptions:
Key extraction query: Upon A’s query on Y , Y should not satisfy the

conditions with x∗ as we mentioned in the challenge query.
Guess: At the end of the game, A returns coin′ ∈ {0, 1} as a guess of coin.

The adversary A wins in the above game if coin = coin′ and the advantage is
defined to

AdvIND-CPA
ΠABE,A (λ) :=

∣
∣
∣
∣
Pr[coin′ = coin] − 1

2

∣
∣
∣
∣
.

If AdvIND-CPA
ΠABE,A (λ) is negligible in the security parameter λ for all PPT adversaries

A, an ABE scheme ΠABE is said to satisfy adaptive IND-CPA security.

Remark 1. The Definition 1 states the adaptive IND-CPA security in the sense
that A declares the target (x∗, b∗, v∗) at the challenge query. The selective IND-
CPA security can be defined in the same way except that A declares the target
(x∗, b∗, v∗) before the init phase. Similarly, the semi-adaptive IND-CPA security
can be defined in the same way except that A declares the target (x∗, b∗, v∗) just
after the init phase.

2.2 Attribute-Based Encryption with Equality Test

Syntax. An ABEET scheme Π for a predicate P : X × Y → {0, 1} consists of
the following six algorithms (Setup, Enc, KeyGen, Dec, Trapdoor, Test) as follows:
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Setup(1λ) → (mpk,msk): On input the security parameter 1λ, it outputs a master
public key mpk and a master secret key msk. We assume that mpk contains
a description of a plaintext space M that is determined only by the security
parameter λ.

Enc(mpk, x,M) → ctx: On input a master public key mpk, x ∈ X , and a plaintext
M ∈ M, it outputs a ciphertext ctx.

KeyGen(mpk,msk, y) → sky: On input a master public key mpk, a master secret
key msk, and y ∈ Y, it outputs a secret key sky.

Dec(mpk, ctx, sky) → M or ⊥: On input a master public key mpk, a ciphertext
ctx, and a secret key sky, it outputs the decryption result M if P(x, y) = 1.
Otherwise, output ⊥.

Trapdoor(mpk, sky) → tdy: On input a master public key mpk and a secret key
sky, it outputs the trapdoor tdy for y ∈ Y.

Test(ctx, tdy, ctx′ , tdy′) → 1 or 0: On input two ciphertexts ctx, ctx′ and two trap-
doors tdy, tdy′ , it outputs 1 or 0.

Correctness. We require an ABEET scheme to satisfy the following three condi-
tions. Briefly speaking, the first condition ensures that the Dec algorithm works
correctly. In contrast, the second (resp. third) conditions ensure that the Test
algorithm outputs 1 (resp. 0) if ctx and ctx′ are encryptions of the same plain-
text (resp. distinct plaintexts), respectively. We consider PPT adversaries for
the third condition. The three conditions are formally defined as follows:

(1) For all λ ∈ N, all (mpk,msk) ← Setup(1λ), all M ∈ M, all x ∈ X and all y ∈
Y, such that P(x, y) = 1, it is required that M′ = M holds with overwhelming
probability, where ctx ← Enc(mpk, x,M), sky ← KeyGen(mpk,msk, y), and
M′ ← Dec(mpk, ctx, sky).

(2) For all λ ∈ N, all (mpk,msk) ← Setup(1λ), all M ∈ M, all x0, x1 ∈
X and all y0, y1 ∈ Y, such that ∧i∈{0,1}P(xi, yi) = 1, it is required
that 1 ← Test(ctx0 , tdy0 , ctx1 , tdy1) holds with overwhelming probability,
where skyi

← KeyGen(mpk,msk, yi), ctxi
← Enc(mpk, xi,M), and tdyi

←
Trapdoor(mpk, skyi

) for i = 0, 1.
(3) For all λ ∈ N, all (mpk,msk) ← Setup(1λ), all PPT adversaries A, all x0, x1 ∈

X and all y0, y1 ∈ Y, such that ∧i∈{0,1}P(xi, yi) = 1, it is required that

M0 	= M1 ∧ 1 ← Test(ctx0 , tdy0 , ctx1 , tdy1)

holds with negligible probability, where (M0,M1) ← A(mpk,msk), skyi
←

KeyGen(mpk,msk, yi), ctxi
← Enc(mpk, xi,Mi), and tdyi

← Trapdoor(mpk,
skyi

) for i = 0, 1.

Remark 2. In most ABEET papers, PPT adversaries do not appear in the
definition of the third condition. In these works, the authors defined the
third condition in the same way as the second condition except that 0 ←
Test(ctx0 , tdy0 , ctx1 , tdy1) holds with overwhelming probability, where ctx0 ←
Enc(mpk, x0,M0) and ctx1 ← Enc(mpk, x1,M1) such that M0 	= M1. Then, the
authors proved the third condition based on the collision resistance of hash
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functions. However, the collision resistance itself is insufficient for proving the
condition because unbounded adversaries may be able to find collisions. To this
end, we modify the definition along with PPT adversaries and formally prove
the condition based on the collision resistance of hash functions.

Security. For the security of ABEET, we consider two different types of adver-
saries. One has a trapdoor for the target attribute or not.

– Type-I adversary: This type of adversaries has trapdoors tdy such that
P(x∗, y) = 1. Therefore, the adversaries can perform the equality test with
the challenge ciphertext ct∗x∗ . Hence, we consider one-wayness.

– Type-II adversary: This type of adversaries has no trapdoors tdy such that
P(x∗, y) = 1. Therefore, the adversaries cannot perform the equality test with
the challenge ciphertext ct∗x∗ . Hence, we consider indistinguishability.

Definition 2 (Adaptive OW-CCA2 Security against Type-I Adver-
saries). The adaptive OW-CCA2 security against Type-I adversaries of an
ABEET scheme Π is defined by a game between an adversary A and a chal-
lenger C as follows:

Init: C runs (mpk,msk) ← Setup(1λ) and gives mpk to A.
Phase 1: A is allowed to make the following three types of queries to C:

Key extraction query: A is allowed to make the query on y ∈ Y to C.
Upon the query, C runs sky ← KeyGen(mpk,msk, y) and returns sky to A.

Decryption query: A is allowed to make the query on (ctx, y) to
C. Upon the query, C runs sky ← KeyGen(mpk,msk, y) and M ←
Dec(mpk, ctx, sky), and returns M to A.

Trapdoor query: A is allowed to make the query on y ∈ Y to C. Upon the
query, C runs sky ← KeyGen(mpk,msk, y) and tdy ← Trapdoor(mpk, sky),
and returns tdy to C.

Challenge query: A is allowed to make the query only once. Upon A’s query on
x∗ ∈ X , x∗ should not satisfy the condition P(x∗, y) = 1 for all the attributes
y ∈ Y queried on key extraction queries in Phase 1. Then, C chooses M∗ ←$

M and runs ct∗x∗ ← Enc(mpk, x∗,M∗). Finally, C returns ct∗x∗ to A.
Phase 2: A is allowed to make key extraction queries, decryption queries and

trapdoor queries as in Phase 1 with the following exceptions:
Key extraction query: Upon A’s query on y ∈ Y, y should not satisfy the

condition P(x∗, y) = 1.
Decryption query: Upon A’s query on (ctx, y), ctx = ct∗x∗ does not hold.

Guess: At the end of the game, A returns M′ ∈ M as a guess of M∗.

The adversary A wins in the above game if M∗ = M′ and the advantage is
defined to

AdvOW-CCA2
Π,A (λ) :=

∣
∣
∣
∣
Pr[M∗ = M′] − 1

|M|
∣
∣
∣
∣
.

If AdvOW-CCA2
Π,A (λ) is negligible in the security parameter λ for all PPT adver-

saries A, an ABEET scheme Π is said to satisfy adaptive OW-CCA2 security
against Type-I adversaries.
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Definition 3 (Adaptive IND-CCA2 Security against Type-II Adver-
saries). The adaptive IND-CCA2 security against Type-II adversaries of an
ABEET scheme Π is defined by a game between an adversary A and a challenger
C as follows:

Init: C runs (mpk,msk) ← Setup(1λ) and gives mpk to A.
Phase 1: A is allowed to make the following three types of queries to C:

Key extraction query: A is allowed to make the query on y ∈ Y to C.
Upon the query, C runs sky ← KeyGen(mpk,msk, y) and returns sky to A.

Decryption query: A is allowed to make the query on (ctx, y) to
C. Upon the query, C runs sky ← KeyGen(mpk,msk, y) and M ←
Dec(mpk, ctx, sky), and returns M to A.

Trapdoor query: A is allowed to make the query on y ∈ Y to C. Upon the
query, C runs sky ← KeyGen(mpk,msk, y) and tdy ← Trapdoor(mpk, sky),
and returns tdy to C.

Challenge query: A is allowed to make the query only once. Upon A’s query
on (x∗,M∗

0,M
∗
1) ∈ X × M2, |M∗

0| = |M∗
1| holds and x∗ should not satisfy the

condition P(x∗, y) = 1 for all the attributes y ∈ Y queried on key extraction
queries and trapdoor queries in Phase 1. Then, C flips a coin coin ←$ {0, 1}
and runs ct∗x∗ ← Enc(mpk, x∗,M∗

coin). Finally, C returns ct∗x∗ to A.
Phase 2: A is allowed to make key extraction queries, decryption queries and

trapdoor queries as in Phase 1 with the following exceptions:
Key extraction query: Upon A’s query on y ∈ Y, y should not satisfy the

condition P(x∗, y) = 1.
Decryption query: Upon A’s query on (ctx, y), ctx = ct∗x∗ does not hold.
Trapdoor query: Upon A’s query on y ∈ Y, y should not satisfy the con-

dition P(x∗, y) = 1.
Guess: At the end of the game, A outputs coin′ ∈ {0, 1} as a guess of coin.

The adversary A wins in the above game if coin = coin′ and the advantage is
defined to

AdvIND-CCA2
Π,A (λ) :=

∣
∣
∣
∣
Pr[coin = coin′] − 1

2

∣
∣
∣
∣
.

If AdvIND-CCA2
Π,A (λ) is negligible in the security parameter λ for all PPT adver-

saries A, an ABEET scheme Π is said to satisfy adaptive IND-CCA2 security
against Type-II adversaries.

Remark 3. As the case of ABE, we define selective security and semi-adaptive
security for ABEET by following Remark 1.

3 Proposed Generic Construction

In this section, we provide a generic construction of ABEET by following the
discussion in Sect. 1.3. In Sect. 3.1, we show the construction. In Sect. 3.2, we
discuss the correctness.
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3.1 Our Construction

In this section, we construct an ABEET scheme Π for a predicate P from an
ABE scheme Π, an OTS scheme Γ and a hash function H. Here, we assume that
plaintext spaces M of ABE and ABEET are the same. Moreover, M is the same
as the domain of the hash function H and the range of R is a subset of M.

Setup(1λ) → (mpk,msk): Run
– (ABE.mpk,ABE.msk) ← ABE.Setup(1λ),

and output mpk := (ABE.mpk, Γ,H) and msk := ABE.msk.
Enc(mpk, x,M) → ctx: Parse mpk = (ABE.mpk, Γ,H). Run

– (verk, sigk) ← Sig.Setup(1λ),
– ABE.ctx,0,verk ← ABE.Enc(ABE.mpk, (x, 0, verk),M),
– ABE.ctx,1,verk ← ABE.Enc(ABE.mpk, (x, 1, verk),H(M)),
– σ ← Sig.Sign(sigk, [ABE.ctx,0,verk‖ABE.ctx,1,verk]).

Output ctx = (verk,ABE.ctx,0,verk,ABE.ctx,1,verk, σ).
KeyGen(mpk,msk, y) → sky: Parse mpk = (ABE.mpk, Γ,H) and msk = ABE.msk.

Run
– ABE.sky ← ABE.KeyGen(ABE.mpk,ABE.msk, y).

Output sky := ABE.sky.
Dec(mpk, ctx, sky) → M or ⊥: Parse mpk = (ABE.mpk, Γ,H), ctx = (verk,

ABE.ctx,0,verk,ABE.ctx,1,verk, σ), and sky = ABE.sky. If it holds that
– 0 ← Sig.Vrfy(verk, [ABE.ctx,0,verk‖ABE.ctx,1,verk], σ) ∨ P(x, y) = 0,

output ⊥. Otherwise, run
– ABE.sky,0,verk ← ABE.Delegate(ABE.mpk,ABE.sky, (y, 0, verk)),
– ABE.sky,1,verk ← ABE.Delegate(ABE.mpk,ABE.sky, (y, 1, verk)),
– M ← ABE.Dec(ABE.mpk,ABE.ctx,0,verk,ABE.sky,0,verk),
– h ← ABE.Dec(ABE.mpk,ABE.ctx,1,verk,ABE.sky,1,verk).

Output M if H(M) = h holds and ⊥ otherwise.
Trapdoor(mpk, sky) → tdy: Parse mpk = (ABE.mpk, Γ,H) and sky = ABE.sky.

Run
– ABE.sky,1 ← ABE.Delegate(ABE.mpk,ABE.sky, (y, 1)).

Output tdy := ABE.sky,1.
Test(ctx, tdy, ctx′ , tdy′) → 1 or 0: Parse ctx = (verk,ABE.ctx,0,verk,ABE.

ctx,1,verk, σ), ctx′ = (verk′,ABE.ctx′,0,verk′ ,ABE.ctx′,1,verk′ , σ′), tdy = ABE.sky,1,
and tdy′ = ABE.sky′,1. If it holds that

– 0 ← Sig.Vrfy(verk, [ABE.ctx,0,verk‖ABE.ctx,1,verk], σ) ∨ 0 ←
Sig.Vrfy(verk′, [ABE.ctx′,0,verk′‖ABE.ctx′,1,verk′ ], σ′),

output 0. Otherwise, run
– ABE.sky,1,verk ← ABE.Delegate(mpk,ABE.sky,1, (y, 1, verk)),
– ABE.sky′,1,verk′ ← ABE.Delegate(mpk,ABE.sky′,1, (y′, 1, verk′)),
– h ← ABE.Dec(mpk,ABE.ctx,1,verk,ABE.sky,1,verk),
– h′ ← ABE.Dec(mpk,ABE.ctx′,1,verk′ ,ABE.sky′,1,verk′).

Output 1 if h = h′ and 0 otherwise.
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3.2 Correctness

The scheme satisfies correctness. Due to the page limitation, we defer the full
proof to the full version of this paper [8].

Theorem 1. Our ABEET scheme Π satisfies correctness if the underlying ABE
scheme ΠABE and OTS scheme Γ satisfy correctness, and the hash function H
satisfies collision resistance.

Proof Sketch. If the ABE scheme ΠABE and OTS scheme Γ satisfy correctness,
then the Sig.Vrfy algorithm outputs 1 when running the Dec algorithm, and the
ABE.Dec algorithm outputs M and h satisfying H(M) = h. Thus, the condi-
tion (1) holds. Similarly, if the ABE scheme ΠABE and OTS scheme Γ satisfy
correctness, then the Sig.Vrfy algorithm outputs 1, and the ABE.Dec algorithm
outputs h and h′ satisfying h = h′ when running the Test algorithm. Thus,
the condition (2) holds. Also, if the ABE scheme ΠABE satisfies correctness, it
is sufficient to show that PPT adversary A cannot find different M0 and M1

satisfying H(M0) = H(M1). If the hash function H satisfies collision resistance,
A cannot find such M0 and M1, thus the condition (3) holds. Therefore, the
proposed ABEET scheme is correct.

4 Security

In this section, we discuss security of our generic construction given in Sect. 3.1.
Due to space limit, we defer the full proof to the full version of this paper [8].

4.1 OW-CCA2 Security Against Type-I Adversaries

Theorem 2 (OW-CCA2 Security against Type-I Adversaries). If the
underlying ABE scheme ΠABE satisfies adaptive (resp. semi-adaptive, selective)
CPA security, OTS scheme Γ satisfies strong unforgeability, and H satisfies one-
wayness, then our proposed ABEET scheme Π satisfies adaptive (resp. semi-
adaptive, selective) OW-CCA2 security against Type-I adversaries.

Proof Sketch. We prove the theorem via game sequence Game0, Game1,
and Game2. Game0 is the same as the original game defined in
Definition 2. In Game1, if A makes decryption query (y, ctx) =
(y, (verk,ABE.ctx,0,verk,ABE.ctx,1,verk, σ)) such that

verk = verk∗ ∧ Sig.Vrfy(verk, [ABE.ctx,0,verk‖ABE.ctx,1,verk], σ) → 1
∧ (ABE.ctx,0,verk,ABE.ctx,1,verk, σ) 	= (ABE.ct∗x∗,0,verk∗ ,ABE.ct∗x∗,1,verk∗ , σ∗)

where (verk∗,ABE.ct∗x∗,0,verk∗ ,ABE.ct∗x∗,1,verk∗ , σ∗) is the challenge ciphertext,
then C aborts the game and outputs M ←$ M. In Game2, let ABE.ct∗x∗,0,verk∗

be a ciphertext of M ←$ M instead of M∗. We can show that Game0 and
Game1 are computationally indistinguishable if the OTS scheme Γ satisfies
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strong unforgeability, as in the extension of the CHK transformation [15] to
ABE by Yamada et al [31]. Then, if the ABE scheme ΠABE satisfies adaptive
CPA security, we can show that Game1 and Game2 are computationally indis-
tinguishable.

Due to the change of Game2, A can only obtain ciphertext ABE.ct∗x∗,1,verk∗

of H(M∗) as the information of M∗. A who has the trapdoor tdy such that
P(x∗, y) = 1 can calculate H(M∗). However, if the hash function H satisfies one-
wayness, A cannot calculate M∗ from H(M∗), thus the proposed ABEET scheme
satisfies one-wayness. Therefore, we can prove Theorem 2.

4.2 IND-CCA2 Security Against Type-II Adversaries

Theorem 3 (IND-CCA2 Security against Type-II Adversaries). If the
underlying ABE scheme ΠABE satisfies adaptive (resp. semi-adaptive, selective)
CPA security and OTS scheme Γ satisfies strong unforgeability, then our pro-
posed ABEET scheme Π satisfies adaptive (resp. semi-adaptive, selective) IND-
CCA2 security against Type-II adversaries.

Proof Sketch. We prove the theorem via game sequence Game0, Game1, and
Game2, which is essentially the same as in the proof of Theorem 2. Due to the
change of Game2, A can only obtain the ciphertext ABE.ct∗x∗,1,verk∗ of H(M∗

coin∗)
as the information of coin∗. However, unlike in Theorem 2, A does not have a
trapdoor tdy satisfying P(x∗, y) = 1, so H(M∗

coin∗) cannot be obtained trivially.
If the ABE scheme Π satisfies adaptive IND-CPA security, then A cannot iden-
tify coin∗ from ABE.ct∗x∗,1,verk∗ , thus the proposed ABEET scheme satisfies the
indistinguishability. Therefore, we can prove Theorem 3.

5 Conclusion

In this paper, we proposed a generic construction of CCA-secure ABEET from
IND-CPA secure delegatable ABE with the hierarchical depth three. The con-
struction is an attribute-based extension of Lee et al.’s generic construction
of CCA-secure IBEET from IND-CPA-secure hierarchical IBE with the depth
three [22]. To achieve CCA security, we used Yamada et al.’s technique [31].
Based on the predicate encoding and pair encoding frameworks [9,29] and known
lattice-based delegatable ABE schemes [2,13,30], we obtain various ABEET
schemes with new properties that have not been achieved so far. However, since
there are no generic methods for non-delegatable ABE to satisfy the delegatabil-
ity, there are several open questions. Although we obtained ABEET schemes for
(non-)monotone span programs (Schemes 1–12) from ABE schemes for the same
predicates in the standard model, there are more efficient schemes in the random
oracle model [27]. Although we obtained the first ABEET schemes for determin-
istic finite automata (Schemes 13 and 14) under the q-ratio assumption, there
are ABE schemes for the same predicate under the standard k-linear assump-
tion [6,20,21] and ABE schemes for non-deterministic finite automata under
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the LWE assumptions [5]. Although we obtained selectively secure lattice-based
ABEET schemes for circuits, there are semi-adaptively secure lattice-based ABE
scheme for circuits [14]. Therefore, it is an interesting open problem to construct
CCA-secure ABEET schemes with these properties.
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Abstract. Public-key Authenticated Encryption with Keyword Search
(PAEKS) is a cryptographic primitive that can resist inside keyword
guessing attack (KGA). However, most of the previously proposed
PAEKS frameworks suffered from certificate management problem and
key escrow problem. Inspired by the ideas of certificate-based cryptog-
raphy, we propose a secure-channel free certificateless searchable pub-
lic key authenticated encryption with keyword search (SCF-CLPAEKS)
scheme which sloves the key escrow problem in identity-based cryptosys-
tems and the cumbersome certificate problem in conventional public key
cryptosystems. Our scheme achieves security against keyword guessing
attacks are performed by both inside and outside adversaries. More-
over, our scheme satisfies ciphertext indistinguishability (CI), trapdoor
indistinguishability (TI), and designated testability simultaneously. The
comparisons indicate that our SCF-CLPAEKS scheme enjoys a better
performance compared with related schemes.

Keywords: Public key authenticated encryption · Certificateless ·
Secure-channel free · Ciphertext indistinguishability · Trapdoor
indistinguishability

1 Introduction

With the rapid development of cloud computing technology, a large amount of
data has been stored in the cloud. Once the data owner loses control of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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data, security and privacy issues arise in cloud storage services. Our data secu-
rity cannot be guaranteed. Encrypting data is an effective way to prevent data
leakage. However, it can complicate the search process. For plaintext informa-
tion, traditional keyword search techniques can be used to find the desired data.
However, this does not apply to encrypted data. To solve this problem, the con-
cept of Searchable Encryption (SE) [22] has been proposed. It enables users to
perform effective searches on encrypted data without revealing any information.
It has various applications such as encrypted database, secure email routing, etc.
Depending on how the key is used, searchable encryption is divided into symmet-
ric searchable encryption (SSE) and public-key encryption with keyword search
(PEKS) [20]. In this paper we focus on PEKS.

The workflow of PEKS is shown in Fig. 1. The sender (data owner) uploads
the encrypted file data and relevant keyword ciphertexts to the cloud server,
while the receiver (user) generates a trapdoor with his/her private key and sends
it to the cloud server. The cloud server matches the trapdoor information sent
by the user and returns the encrypted files containing the queried keyword(s) to
the user.
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Fig. 1. The workflow of PEKS

Although many schemes tried to solve the issue of searching over cipher-
texts, most existing searchable encryption schemes could not resist against inside
keyword guessing attack (IKGA). Roughly speaking, a malicious adversary can
encrypt the guessed keyword. It can calculate whether the trapdoor matches
the ciphertext of the guessed keyword. The attack is feasible due to the small
space of real-life keywords. To solve the issue, Huang and Li’s work [11] provided
ciphertext retrieval for cloud storage while defending against the inside server
attacks. The approach is called public-key authenticated encryption with keyword
search (PAEKS). The data sender in PAEKS authenticates the keyword while
encrypting. The scheme solves the drawback that in traditional PEKS any user
can generate encrypted keywords and the semi-trusted server has access to the
test results. Recently, there are a lot of works following Huang et al.’s work
[5,10,13,16,17,19]. However, most of the existing literature on PAEKS cannot
avoid the problems of certificate management and key escrow. Based on this,
we propose secure-channel free certificateless searchable public key authenticated
encryption with keyword search (SCF-CLPAEKS).
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1.1 Related Works

To resist inside keyword guessing attack (IKGA), Huang and Li [11] first intro-
duced Public-key Authenticated Encryption with Keyword Search (PAEKS) in
2017 (referred as HL-PAEKS). In HL-PAEKS, the data owner encrypted a key-
word using its public key and secret key, while the receiver used its secret key and
public key to generate the corresponding trapdoor. The data sender in PAEKS
authenticates the keyword while encrypting. Moreover, Huang et al.’s scheme
can achieve ciphertext indistinguishability (CI) which ensures that no informa-
tion about the underlying keyword is revealed to the cloud server. Later, Qin et
al. [18] proposed trapdoor indistinguishability (TI) as a novel security concept in
2020. The trapdoor indistinguishability ensures that given two trapdoors with
unknown keywords, an inside adversary cannot obtain any useful information
about the keywords. At the same time, Qin et al. [18] also extended the notion of
ciphertext indistinguishability and proposed the notion of multi-ciphertext indis-
tinguishability (MCI). An attacker can roughly determine whether two tuples
ciphertexts are derived from the same keyword when given two tuples cipher-
texts. Multi-trapdoor indistinguishability (MTI) was proposed by Pan et al.
[17] in 2021, but Cheng et al. [4] proved the insecurity of their scheme. Very
recently, Qin et al. [19] present a new CI-security model for PAEKS in a multi-
user context, and they showed that CI-security against fully cipher-keyword
(CKC) attacks implies multiple cipher-keyword indistinguishability. In recent
years, there have been many works on PAEKS. Most of them assume secure
channel between the receiver and the server, which is usually costly. Wang et
al. [24] constructed an efficient and secure channel free public key encryption
with keyword search scheme without random oracle. Recently, many schemes
[6,15,23] have been proposed to extend the scheme based on secure channel free
public key encryption. However, most schemes encounter certificate management
or key escrow problems.

To slove this problem, Al-Riyami et al. [1] introduced certificateless public
key cryptography (CLPKC). In their proposed scheme, each user’s public and
private keys have two parts, KGC generated one part value and the second part
generated by user-selected value. Subsequently, other improved certificateless
public key searchable encryption schemes were proposed [10,27,28]. He et al.
[10] present a provably secure IKGA-resistant certificateless public key authen-
ticated encryption with keyword search technique. Lu et al. [14] constructed a
concrete certificate-based searchable encryption (CBSE) scheme. Wu et al. [26]
proposed a certificateless searchable public-key authenticated encryption with
a designated tester for the cloud-assisted medical Internet of Things. In addi-
tion, Hassan et al. [9] proposed an efficient certificateless public key encryption
scheme with authorized equality test for healthcare environments. Later, Han
et al. [8] proposed a certificateless scheme that the cloud server did not act as
executors of search operations, and achieved verifiability of data files. Shiraly
et al. [21] constructed an efficient pairing-free scheme and proved its security
in multiple-KGC security model. Wu et al. [25] proposed a channel free certifi-
cateless searchable public key authenticated encryption (dCLPAEKS) scheme.
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Chenam et al. [3] proposed a primitive called a designated cloud server-based
multi-user certificateless public key authenticated encryption with conjunctive
keyword search (dmCLPAECKS) scheme in 2022.

1.2 Our Contributions

The main contributions of this paper are described as follows:

– We propose a notion called secure channel free certificateless searchable public
key authenticated encryption with keyword search (SCF-CLPAEKS). Our
scheme avoids the problems of certificate management and key escrow.

– We present security models of SCF-CLPAEKS. Under the random oracle
model, it is proved that the scheme satisfies the ciphertext indistinguishabil-
ity (CI), trapdoor indistinguishability (TI), and designated testability simul-
taneously.

– Our scheme removes the secure channel assumption between the server and
the receiver which achieves security against keyword guessing attacks (KGA)
performed by outside adversaries. Without knowing the private key of the
designated cloud server, the attacker would not perform test algorithm even
if the data receiver’s trapdoor was retrieved.

– We compare our scheme with some other related schemes in terms of both
computation and communication efficiency. The comparison results describe
that our proposed scheme achieves the lower communication and computation
overhead.

2 Preliminary

In this section, we review some background knowledge which contributes to the
understanding of SCF-CLPAEKS construction and security analysis.

2.1 Bilinear Pairing

Let G and G1 be cyclic groups with the same prime order p. There is a bilinear
pairing ê : G × G → G1 that satisfies the following properties.

• Bilinearity: For any g1 ∈ G, g2 ∈ G and a, b ∈ Zp, ê(ga
1 , gb

2) = ê(g1, g2)ab.
• Non-degeneracy: For any generator g1 ∈ G, g2 ∈ G, ê(g1, g2) �= 1.
• Computability: For any g1 ∈ G, g2 ∈ G there exisits an efficient algorithm to

compute ê(g1, g2).

2.2 Hardness Assumption

Definition 1 (Computational Bilin-
ear Diffie-Hellman problem (CBDH)). For a symmetric bilinear pairing
ê : G × G → G1, given 〈g, ga, gb, gc〉, where a, b, c ∈ Z

∗
p, g ∈ G, it is hard to

compute the value ê(g, g)abc.
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Definition 2 Decisional Bilinear Diffie-Hellman problem (DBDH) [2,
12]). For each adversary, the algorithm can correctly distinguish ê(g, g)abc and
Z with negligible probability ε in the probability polynomial time, namely:

| Pr[A(g, ga, gb, gc, ê(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, Z) = 1] |� ε

3 Definitions and System Model

3.1 System Model

As shown in Fig. 2, the system consists of four roles: KGC, sender, receiver, and
server. The SCF-CLPAEKS scheme consists of the following algorithms:

'

Sender
Encrypt

file

Encrypt

Keyword
Upload

Receiver&

Partial key Partial key

KGC

Cloud Server

W

Fig. 2. The system model of CLPAEKS

– Setup(1λ): It takes security parameter 1λ as input, and generates a master
public/secret key pair (mpk,msk) and global public parameter PP .

– KeyGenv(PP ): It takes PP as input, and generates a public/secret key pair
(pkv, skv) of the server.

– PartialKeyGen(PP,msk, idi): It takes PP , identity idi as input, and KGC
generates a partial private key pski for user (sender/receiver).

– KeyGenusr(PP, idi, pski): It takes PP , identity idi, and the user’s par-
tial private key pski as input, it generates the user’s public/secret key pair
(pki, ski) of user (sender/receiver).

– SCF-CLPAEKS(PP, sks, pkr, pkv, ids, idr,w): It takes PP , the sender’s
secret key sks and identity ids, the receiver’s public key pkr and identity
idr, the server’s public key pkv and keyword w as input, it generates the
ciphertext Cw.
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– Trapdoor(PP, pks, skr, ids, idr,w′): It takes PP , the sender’s public key pks

and identity ids, the receiver’s secret key skr and identity idr, and search
keyword w as input, it generates the trapdoor Tw′ .

– Test(PP, skv, Cw, Tw′): It takes PP , the server’s secret key skv, the cipher-
text Cw, and trapdoor Tw′ as input, outputs 1 if w′ = w and 0 otherwise.

Correctness is defined as follows. Let Cw ← SCF-CLPAEKS(PP, sks, pkr,
pkv, ids, idr,w) and Tw′ ← Trapdoor(PP, pks, skr, ids, idr,w′). If w′ = w, then

Pr[Test(PP, skv, Cw, Tw′) = 1] = 1.

3.2 Security Model

In certificateless cryptography (CL-PKC) [1], two types of attackers are available
with different capabilities. Similarly, in our SCF-CLPAEKS scheme, we consider
two types of adversaries. A1 is a type 1 adversary who lacks access to the master
private key. However, A1 has the ability to request the public key and replace
the public key as well as extract partial private keys and secret values. A2 is a
type 2 adversary who is in possession of the master private key. A2 cannot issue
the replace public key query, although A2 can issue the same queries as A1.

Game 1: Ciphertext indistinguishability for A1.

– Setup. The challenger B generates PP , the KGC public/secret key
(mpk, msk) and the server’s public/secret key (pkv, skv). Finally, it gives
(PP, mpk, pkv, skv) to A1.

– Phase 1. A1 can adaptively query the following oracles for polynomially
many times.

• Extract-Partial-Private-Key Query: Given an identity idi, B returns
the partial private key pski to A1.

• Private-Key Query: Given an identity idi, B returns the secret key ski

if the public key of the user have not been replaced by A1.
• Public-Key Query: Given idi, B returns the public key pki.
• Replace-Public-Key Query: A1 can replace the public key with any

value it chooses.
• Ciphertext Oracle OC . Given a keyword w, ids of a sender

and idr of a receiver, the challenger B computes Cw ←
SCF-CLPAEKS(PP, sks, pkr, pkv, ids, idr,w) and returns Cw to A1.

• Trapdoor Oracle OT . Given a keyword w′, ids of a sender
and idr of a receiver, the challenger B computes Tw′ ←
Trapdoor(PP, pks, skr, ids, idr,w′) and returns Tw′ to A1 .

– Challenge Phase. A1 randomly selects two challenge keyword w∗
0,w

∗
1,

id∗
s of a sender and id∗

r of a receiver, which have not been queried
for phase 1. B chooses a random bit δ ∈ {0, 1}, computes C∗

wδ
←

SCF-CLPAEKS(PP, sks, pkr, pkv, id∗
s , id

∗
r ,w

∗
δ), and returns C∗

wδ
to A1.

– Phase 2. A1 can continue to query oracles in phase 1, with the restriction
that the adversary could neither query w∗

0 nor w∗
1.
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– Guess Phase. A1 outputs a guess bit δ′ ∈ {0, 1} and wins the game if δ′ = δ.
The advantage of A1 in the game is denoted as AdvCI

A1
(λ) = |Pr[δ = δ′] − 1

2 |.

Game 2: Ciphertext indistinguishability for A2.

– Setup. Same as in Game 1 expect B should give (PP,mpk,msk), pkv, skv to
the adversary A2.

– Phase 1. Same as in Game 1 expect A2 cannot adaptively query the Extract-
Partial-Private-Key Query oracle and Replace-Public-Key Query oracle for
polynomially many times.

– Challenge Phase. Same as in Game 1.
– Phase 2. The adversary A2 can continue to query oracles in phase 1, with

the restriction that the adversary could neither query w∗
0 nor w∗

1.
– Guess Phase. The adversary A2 outputs a guess bit δ′ ∈ {0, 1} and wins the

game if δ′ = δ. The advantage of A2 in the game is denoted as AdvCI
A2

(λ) =
|Pr[δ = δ′] − 1

2 |.

Game 3: Trapdoor indistinguishability for A1.

– Setup. Generate the system parameters and the server’s public and private
keys as in game 1, and give the system parameters and the server’s private
key to the adversary.

– Phase 1. The same as Game 1. Besides, (id∗
s , id

∗
r) have not been queried

for secret keys, and 〈w∗
0 , id

∗
s , id

∗
r〉, 〈w∗

1 , id
∗
s , id

∗
r〉 have not been submitted to

trapdoor oracle nor ciphertext oracle.
– Challenge Phase. A1 randomly selects w∗

0,w
∗
1 which have not been queried

for phase 1. B chooses a random bit δ ∈ {0, 1}, computes T ∗
wδ

, and returns
T ∗

wδ
to A1.

– Phase 2. A1 can continue to query oracles as in phase 1 with the restriction
that A1 could neither query w∗

0 nor w∗
1.

– Guess Phase. A1 outputs a guess bit δ′ ∈ {0, 1} and wins the game if δ′ = δ.
The advantage of A1 in the game is denoted as AdvTI

A1
(λ) = |Pr[δ = δ′] − 1

2 |.

Game 4: Trapdoor indistinguishability for A2.

– Setup. Same as Game 2.
– Phase 1. The same as Game 2. Besides, (id∗

s , id
∗
r) have not been queried

for secret keys, and 〈w∗
0 , id

∗
s , id

∗
r〉, 〈w∗

1 , id
∗
s , id

∗
r〉 have not been submitted to

Trapdoor Oracle nor Ciphertext Oracle.
– Challenge Phase. A2 randomly selects w∗

0,w
∗
1 which have not been queried

for phase 1. B chooses a random bit δ ∈ {0, 1}, computes T ∗
wδ

, and returns
T ∗

w′
δ

to A2.
– Phase 2. A2 can continue to query oracles as in phase 1, with the restriction

that A2 could neither query w∗
0 nor w∗

1.
– Guess Phase. A2 outputs a guess bit δ′ ∈ {0, 1} and wins the game if δ′ = δ.

The advantage of A2 in the game is denoted as AdvTI
A2

(λ) = |Pr[δ = δ′] − 1
2 |.
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Designated Testability. Game 5: In this game, we assume that A1 is an
outside adversary who has access to any user’s secret key. The goal of designated
testability is to prevent adversaries from searching the ciphertexts while ensuring
that only the designated server can.

– Setup. B generates the global public parameter PP , the KGC public/secret
key (mpk,msk) and the server’s public/secret key (pkv, skv). Finally, it gives
(PP,mpk,msk, pkv) to A1.

– Phase 1. A1 can adaptively query the following oracles for polynomially
many times.

• Private-Key Query: Given an identity idi, the challenger returns the
secret key ski to A1 if the public key of the user should not be replaced
by A1.

• Private-Key Query: Given an identity idi, the challenger returns the
secret key ski to A1 if the public key of the user should not be replaced
by A1.

• Public-Key Query: Given an identity idi, the challenger returns the
public key pki.

– Challenge Phase. A1. randomly selects w∗
0,w

∗
1, the id∗

s of a sender and id∗
r

of a receiver, which have not been queried for phase 1. B chooses a random
bit δ ∈ {0, 1}, computes C∗

wδ
and returns the C∗

wδ
to the adversary.

– Phase 2. A1 can continue to query oracles in phase 1, with the restriction
that A1 could neither query w∗

0 nor w∗
1.

– Guess Phase. A1 outputs a guess bit δ′ ∈ {0, 1} and wins the game if δ′ = δ.
The advantage of A1 in the game is denoted as AdvD

A1
(λ) = |Pr[δ = δ′] − 1

2 |.

4 Our Construction

In this section, we propose our SCF-CLPAEKS scheme that satisfies cipher-
text indistinguishability, trapdoor indistinguishability, and designated testability
simultaneously. The scheme is described as follows.

4.1 SCF-CLPAEKS

– Setup(1λ). Given a security parameter 1λ, this algorithm runs as follows:
1. Select two cyclic groups G and G1 with the same prime order p, a bilinear

pairing ê : G × G → G1, Choose three cryptographic hash functions
H : {0, 1}∗ → G, H1 : {0, 1}∗ × {0, 1}∗ → G, H2 : {0, 1}∗ × G1 → Z

∗
p.

2. Select a random number α ∈ Z
∗
p as the master key msk and set mpk =

gα, where g is an arbitrary generator of G. Finally, it outputs PP =
(G,G1, p, g, ê,H,H1,H2) and (mpk,msk).

– KeyGenv(PP ). The server chooses v ∈ Z
∗
p randomly, and outputs the

server’s public/secret key pair (pkv, skv) = (gv, v).
– PartialKeyGen(PP, idi). The partial private key of sender ids, the receiver

idr are generated by KGC, it computes partial private key pski = H(idi)α.
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– KeyGenusr(PP, idi, pski). Upon receiving partial private key pski, the user
selects xi ∈ Z

∗
p randomly, computes his or her public key pki = gxi and sets

the corresponding private key ski = (xi,H(idi)α).
– SCF-CLPAEKS(PP, sks, pkr, pkv, ids, idr, w). Select β ∈ Z

∗
p randomly and

computes C1 = pkβ
r , C2 = ê(pkv, gH2(w||ρ))β , where ρ = ê(H(ids)α,H(idr)) ·

ê(H1(ids, idr), pkr)xs , then outputs the ciphertext Cw = (C1, C2).
– Trapdoor (PP, pks, skr, ids, idr, w

′). This algorithm computes Tw′ =
gH2(w

′||ρ′)· 1
xr , where ρ′ = ê(H(ids),H(idr)α) · ê(H1(ids, idr), pks)xr . Then,

it returns the trapdoor Tw′ .
– Test(PP, skv, Cw, Tw′). This algorithm checks whether the equation holds. If

it does, output 1 else 0.
e(C1, Tw′)v = C2

4.2 Correctness

ρ = ê(H(ids)α,H(idr)) · ê(H1(ids, idr), gxr )xs

= ê(H(ids),H(idr)α) · ê(H1(ids, idr), gxs)xr = ρ′

e(C1, Tw′)v) = e(gβxr , gH2(w
′||ρ′)· 1

xr )v

= e(gv, gH2(w
′||ρ′))β = e(pkv, gH2(w||ρ))β = C2

Because ρ = ρ′, we have the equation e(C1, Tw′)v = C2 holds if w = w′.

5 Security Proof

In this section, we describe the security proof of SCF-CLPAEKS scheme. The
proofs are described as follows.

Lemma 1. For any polynomial-time adversary A1 in Game 1, AdvCI
A1

(λ) is
negligible.

Proof. Assume A1 (a semi-trusted server) breaks the CI-security of our scheme
with a non-negligible advantage, we use it to construct PPT algorithm B to solve
the DBDH problem. Given an instance of DBDH problem (g, ga, gb, gc, Z) ∈ G.
Algorithm B simulates the challenger of game.

– Setup. B selects v ∈ Z
∗
p and set the server’s public/secret key pair

(pkv, skv)=(gc, c). B outputs PP = (G,G1, p, g, ê,H,H1,H2,mpk = gα) and
skv = c to A1.

– Phase 1. At any polynomially time, A1 can query the following Oracle.
• H-Query Given the identity id, B selects a random number from G and

returns it to A1 as the H(id) value of id.
• H1-Query. Given a pair of identities (ids, idr), B randomly chooses an

element from G as H1(ids, idr) value, and outputs it to A1. The rest
Oracle quaries are the same as Game 1.
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• H2-Query. To respond to H2 queries, B maintains a list of tuples
〈wi, ui, b〉, called H2-list. For any H2 query 〈wi, ui〉 ∈ {0, 1}∗ × G1, B
first checks whether the query (wi, ui) already exists on the H2-list in a
tuple (wi, ui, b). If so, B responds with H2(wi || ui) = b. Otherwise, it
adds the tuple (wi, ui, b) to the H2-list.

• Extract-Partial-Private-Key Query: If id = id∗
s or id = id∗

r , B out-
puts ω and aborts.

• Private-Key Query: Taking id as input, if id �= id∗
s or id �= id∗

r , B
chooses a random number γid as the secret value and returns the secret
key (guid , γid) to A1 and adds 〈id, skid〉 into Lsk.

• Public-Key Query: B maintains a list Lpk. Given an identity id, B,
computes the public key pkid = gγid , and then returns it to A1 and adds
〈id, pkid〉 into Lpk.

• Replace-Public-Key Query: A1 can replace the public key with any
value he chooses.

• Cipherext Oracle OC . Given w. B selects β′ ∈ Z
∗
p, and computes

C ′
1 = gxrβ′

, C ′
2 = ê(gv, gH2(w||ρ′))β′

, where ρ′ = ê(H(ids)α,H(idr)) ·
ê(H1(ids, idr), gxr )xs , then returns C ′

w = (C ′
1, C

′
2).

• Trapdoor Oracle OT . Given w′. B computes Tw′ = gH2(w
′||ρ′)

1
xr , where

ρ′ = ê(H(ids),H(idr)α) · ê(H1(ids, idr), pks)xr . Then returns Tw′ .
– Challenge. A1 outputs (w∗

0,w
∗
1), id∗

s of a sender and id∗
r of a receiver with

the restriction that w∗
0,w

∗
1 have never been queried in phase 1. B chooses a

random bit δ ∈ {0, 1}, and computes C∗
1 = gxra, C∗

2 = Z, then returns it to
A1.

– Phase 2. A1 can continue to query Oracle, with the restriction that A1 could
neither query w∗

0 nor w∗
1.

– Guess: Eventually, A1 outputs the guess δ′ and wins the game if δ′ = δ.

if Z = e(g, g)abc, explain that A1 cannot distinguish between Z and e(g, g)abc. If
B guesses that the challenge identities are incorrect, B aborts. Denote by abt the
event that B aborts. Assume that E denotes the occurrence of Z = e(g, g)abc.
The probability that event abt does not occur is 1/qH · (qH − 1). We have that

AdvDBDH
B (λ) = |Pr[δ′=δ|abt] · Pr[abt] + Pr[δ′=δ|¬abt] · Pr[¬abt] − 1

2
|

= |1
2
(1 − Pr[¬abt]) + (Pr[δ′=δ|¬abt∩E] · Pr[E]

+ Pr[δ′=δ|¬abt∩E] · Pr[E]) · Pr[¬abt] − 1
2
|

=
1
2
(1 − Pr[¬abt]) + Pr[¬abt] · (

1
2
(AdvCI

A1
(λ) +

1
2
)) − 1

2
|

=
1

2qH · (qH − 1)
· AdvCI

A1
(λ)

(1)

If AdvCI
A1

(λ) is not negligible, then AdvDBDH
B (λ) is not negligible.
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Lemma 2. For any polynomial-time adversary A2 in Game 2, AdvCI
A2

(λ) is
negligible.

Proof. Proof 2 is similar to proof 1, except that adversary A2 is a semi-trusted
KGC. Setup phase B gives (PP,mpk,msk = α), and the server public key
pkv = c to adversary A2. In phase 1, the adversary cannot issue partial private
key and replace public key. As the same as Game 1. If AdvCI

A2
(λ) is not negligible,

then AdvDBDH
B (λ) is not negligible.

Lemma 3. For any polynomial-time adversary A1 in Game 3, AdvTI
A1

(λ) is neg-
ligible.

Proof. Assume A1(a semi-trusted server) breaks the trapdoor indistinguishabil-
ity of our scheme with a non-negligible advantage, we then use it to construct
algorithm B to solve the DBDH assumption.

– Setup. B selects a random number v ∈ Z
∗
p and sets the server’s public/secret

key pair (pkv, skv)=(gv, v). B outputs PP = (G,G1, p, g, ê,H,H1,H2,mpk =
ga) and skv = v to A1.

– Phase 1. The same as Game 1. Besides, (id∗
s , id

∗
r) have not been queried

for secret keys, and 〈w∗
0 , id

∗
s , id

∗
r〉, 〈w∗

1 , id
∗
s , id

∗
r〉 have not been submitted to

trapdoor oracle nor ciphertext oracle.
• H-Query. To respond to H queries, B maintains a list of tuples 〈idi, g

uid〉,
called H-list. Suppose that A1 makes at most qH queries. Correspond to
ids, B chooses b ∈ Z

∗
p, outputs H(id) = gb; Correspond to idr, B chooses

c ∈ Z
∗
p, outputs H(id) = gc.

• H1-Query. Given (ids, idr), B selects a random number from G and
returns it to A1 as the H1(ids, idr) value of (ids, idr).

• H2-Query. Given a keyword w and an element u, B randomly chooses
an element from G as the output of H2(w || u).

• Extract-Partial-Private-Key Query: If id = id∗
s or id = id∗

r , B
outputs a random bit ω and aborts. Otherwise, it recovers the tuple
〈idi,H(idi), uid)〉 from List H, and returns the partial private key pskid =
guid to A1.

• Privaye-Key Query: Taking id as input, if id �= id∗
s or id �= id∗

r , B
chooses a random number γid as the secret value and returns the secret
key (guid , γid) to A1.

• Public-Key Query: Given an identity id, B computes pkid = gγid , and
then returns it to A1 and adds 〈id, pkid〉 into Lpk.

• Replace-Public-Key Query: A1 can replace the public key with any
value he chooses.

• Cipherext Oracle OC . Given a keyword w. B selects β′ ∈ Z
∗
P , and com-

putes C ′
1 = gxrβ′

, C ′
2 = ê(gv, gH2(w||ρ′))β′

, where ρ′ = ê(H(ids)α,H(idr))·
ê(H1(ids, idr), gxr )xs , then returns C ′

w = (C ′
1, C

′
2) to A1.

• Trapdoor Oracle OT . Given keyword w′. B computes Tw′ =

gH2(w
′||ρ′)

1
xr , where ρ′ = ê(H(ids),H(idr)α)·ê(H1(ids, idr), pks)xr . Then,

it returns the trapdoor Tw′ to A1.
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– Challenge. A1 outputs two keywords (w∗
0,w

∗
1), id∗

s of a sender and id∗
r of a

receiver. with the restriction that w∗
0,w

∗
1 have never been queried in phase

1. B chooses δ ∈ {0, 1}, and computes Tw∗
δ

= gH2(w
∗
δ ||ρ∗)

1
xr , where ρ∗ =

Z · ê(H1(id∗
s , id

∗
r), pks)xr . Then, it returns Tw∗

δ
to A1.

– Phase 2. A1 can continue to query oracle, with the restriction that A1 could
neither query w∗

0 nor w∗
1.

– Guess: Eventually, A1 outputs the guess δ′ and wins the game if δ′ = δ.

The proof of Lemma 3 is similar to that of Lemma 1. The difference is that the
simulator generates a challenge trapdoor in the challenge stage. We omitted the
details of calculating the probabilities and have that

AdvDBDH
B (λ) =

1
2qH · (qH − 1)

· AdvTI
A1

(λ) (2)

If AdvTI
A1

(λ) is not negligible, then AdvDBDH
B (λ) is not negligible.

Lemma 4. For any polynomial-time adversary A2, AdvTI
A2

(λ) is negligible.

Proof. Proof 4 is similar to proof 2, except that adversary A2 is a semi-trusted
KGC. Setup phase B gives (PP,mpk,msk = α), and the server public key
pkv = c to adversary A2. In phase 1, A2 cannot issue partial private key and
replace public key. B submitted is the challenge trapdoor in Challenge phase.
As the same as Game 3. If AdvTI

A2
(λ) is not negligible, then AdvDBDH

B (λ) is not
negligible.

Lemma 5. For any polynomial-time adversary A1, AdvD
A1

(λ) is negligible.

Proof. Assume that A1 breaks the designated testability of our scheme with a
non-negligible advantage, we then use it to construct PPT algorithm B to solve
the DBDH problem.

– Setup. B outputs PP = (G,G1, p, g, ê,H,H1,H2,mpk = gc), pkv = gv and
msk = c to A1.

– Phase 1. At any polynomially time, the adversary A1 can query the following
oracles.

• H-Query. To respond to H queries, B maintains a list of tuples 〈idi, g
uid〉,

called H-list. Suppose that A1 makes at most qH queries. Correspond to
ids, B chooses a ∈ Z

∗
p, outputs H(id) = ga; Correspond idr, B chooses

b ∈ Z
∗
p, outputs H(id) = gb; Otherwise, B chooses a random number

uid ∈ Z
∗
p, outputs H(id) = guid .

• H1-Query. Given (ids, idr), B selects a random number from G and
returns it to A1 as the H1(ids, idr) value of (ids, idr).

• H2-Query. Given w and an element u, B randomly chooses an element
from G as the output of H2(w || u).

• Private-Key Query: Taking id as input, if id �= id∗
s or id �= id∗

r , B
chooses a random number γid as the secret value and returns the secret
key (guid , γid) to A1.



32 P. Yang et al.

• Public-Key Query: When A2 asks for the partial private key of the id,
if id = id∗

s, it selects x ∈ Z
∗
p and outputs pkid = gx, and if id = id∗

r ,
it selects y ∈ Z

∗
p and outputs pkid = gy. Otherwise, B selects a random

number ω and returns the private key pkid = gα.
– Challenge. A1 outputs two keywords (w∗

0,w
∗
1), with the restriction that

w∗
0,w

∗
1 have never been queried in phase 1. B chooses δ ∈ {0, 1} and

β ∈ Z
∗
p, and computes C∗

1 = gxrβ , C∗
2 = ê(gv, gH2(w

∗
δ ||ρ∗))β , where ρ∗ =

Z · ê(H1(id∗
s , id

∗
r), pkr)xs . Then returns it to A1.

– Phase 2. A1 can query oracle, with the restriction that the adversary could
neither query w∗

0 nor w∗
1 as phase 1.

– Guess: A1 outputs the guess δ′ and wins the game if δ′ = δ.

Similarly, AdvDBDH
B (λ) is not negligible.

6 Performance Analysis

We compare our SCF-CLPAEKS framework with the previous frameworks
(including HL-PAEKS [11], Qin-IPAEKS [19], SCF-PEKS [7], dCLPAEKS [26],
CL-PEKS [28]). The properties of all compared frameworks are listed in Table 1.
The comparison shows that our framework has better properties. Although our
scheme is functionally similar to scheme [26], our scheme has more advantages
in terms of computational complexity and storage cost.

Table 1. Framework comparison

Scheme KGA1 CI2 TI3 CERT4 SCF5

HL-PAEKS [11] Yes Yes No No No

Qin-IPAEKS [19] Yes Yes No No No

SCF-PEKS [7] Yes No No No Yes

CL-PEKS [28] Yes Yes Yes Yes No

dCLPAEKS [26] Yes Yes Yes Yes Yes

Our scheme Yes Yes Yes Yes Yes

1. Resist the keyword guessing attack 2. Cipher-
text indistinguishability 3. Trapdoor indistinguishability
4. Certificateless 5. Secure channel free

Next, we make a comparison with some recently proposed schemes in terms
of computation and communication costs. Table 2 gives a comparison of the effi-
ciency with schemes (dCLPAEKS [26], CL-PEKS [28]) in the encryption phase,
the trapdoor phase, and the testing phase respectively. |G1| and |G2| are the bit
length of an element in G1 and G2, respectively. The time cost of an algorithm
is evaluated by the sum of all involved time-consuming operations. We have pre-
processed all of the following compared scenarios. For example, ρ in our scheme
is computed in the setup phase, and no additional bilinear pairing computation
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is required in the following encryption and trapdoor phases. The computational
cost is reduced. For example, to encrypt a keyword w, the keyword encryption
algorithm in our SCF-CLPAEKS scheme needs to calculate 2 module exponen-
tiation operations in the group, 2 general hash operations, 1 bilinear pairing
operation. Thus, the time cost of the keyword encryption algorithm is 2e+h+p.
In addition, the communication cost of a keyword ciphertext/trapdoor is mea-
sured by the total number of the involved group elements and hash values. For
example, a keyword ciphertext in our scheme contains 1 group element in G1 and
1 group element in G2. Thus, the bit-length of a keyword ciphertext is |G1|+|G2|
bits.

As shown in Table 2, Compared with the other two schemes dCLPAEKS [26],
CL-PEKS [28], our scheme has great advantages. Regarding the efficiency of
the encryption algorithm, our scheme is similar with the scheme [26] and more
efficient than the scheme [28]. In the trapdoor algorithm, our scheme is also
more efficient than the scheme [26,28]. Moreover, our scheme is more functional
in assigning public and private key pairs to all three roles of the sender, receiver,
and server, eliminating the assumption of a secure channel between the server
and users, and having authentication capabilitie, while the scheme [28] does not
have. For the communication cost, our scheme is the most space-saving in terms
of ciphertext storage and trapdoor storage.

Table 2. Efficiency comparison.

Scheme Computation complexity Storage cost

Encryption Trapdoor Test Ciphertext Trapdoor

dCLPAEKS [26] 2e + 2h + p 2e + h 2e + 2p 2|G1| + |G2| 2|G1|
CL-PEKS [28] 2e + 2h + 2p 3e + h e + 2p 2|G1| + 2|G2| 3|G1|
Our Scheme 2e + h + p e + h p |G1| + |G2| |G1|
e: the modal exponential operation in group; h: the general hash operation;
p: the bilinear pairing operation; |G1|: the size of an element in group G1;
|G2|: the size of an element in group G2;

7 Conclusion and Future Work

In this paper, we proposed the notion of SCF-CLPAEKS and formalized its secu-
rity definitions. Subsequently, we designed a concrete SCF-CLPAEKS scheme
with authentication function, which satisfies the security against inside keyword
guessing attacks. Moreover, our scheme removes the secure channel assumption
between the server and the users which achieves security against outside keyword
guessing attacks. Besides, our scheme avoids the problems of certificate manage-
ment and key escrow. In addition, our scheme satisfies ciphertext indistinguisha-
bility, trapdoor indistinguishability and designated testability under the DBDH
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assumption in the random oracle model. Finally, the comparison shows that our
scheme enjoys a better performance compared with the related schemes.
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Abstract. Functional encryption (FE for short) can be used to cal-
culate a function output of a message when given the corresponding
function key, without revealing other information about the message.
However, the original FE does not guarantee the unforgeability of either
ciphertexts or function keys. In 2016, Badrinarayanan et al. provide a
new primitive called verifiable functional encryption (VFE for short),
and give a generic transformation from FE to VFE using non-interactive
witness-indistinguishable proof (NIWI proof). In their construction, each
VFE ciphertext (resp. function key) consists of 4 FE ciphertexts (resp.
function keys) generated from independent FE public keys (resp. secret
keys) and a NIWI proof on the correctness.

In this paper, we show that there is redundancy in their construction.
Concretely, we give a new construction for VFE which uses only 3 FE
ciphertexts and function keys, and prove the verifiability and security of
the construction. Since the NIWI proof is also simpler in our scheme, our
construction may lead to an about 25% decrease in both ciphertext/key
size and encryption/decryption cost.

Keywords: Functional encryption · Verifiability · Cryptographic
primitive · Provable security

1 Introduction

Functional encryption (FE) was first introduced by Boneh et al. in 2011 [11], which
can calculate the function output f(m) given the encrypted message Enc(m), and
leaks nothing else about the message m. Functional encryption is a mighty cryp-
tographic primitive which can be considered as a generalization of other cryp-
tographic primitives, such as identity-based encryption [10,28], attribute-based
encryption [16,18,25], predicate encryption [17,20] and inner product encryption
[1–3], and can be used to construct indistinguishability obfuscation [4].

Functional encryption is also an important method for computing on
encrypted data, especially for cloud computing [21,22,24]. Using functional
encryption, the cloud server can take ciphertexts as input, and outputs the
required computation result as plaintext. This is different from homomorphic
encryption [12,13], where the result is output as a ciphertext that requires addi-
tional decryption procedure, which limits its application.
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However, the security definition of FE does not guarantee unforgeability.
This means that in functional encryption, we require all participants to be semi-
honest (honest but curious), rather than totally dishonest. This requirement
highly restricts the application scenarios for functional encryption, as we cannot
always assume that the participants in cloud computing is non-adversarial.

In Asiacrypt 2016, Badrinarayanan et al. [5] proposed a new primitive called
verifiable functional encryption (VFE). In a VFE scheme, both ciphertexts and
function keys can be verified. The verifiability of VFE requires that: for each
ciphertext ct which passes the verification, there exists a message m, such that for
all function key skf which passes the verification, the decryption result is f(m).
Verifiability ensures that no dishonest encryption and/or key generation can lead
to wrong decryption results, so even adversial participants cannot break the FE
scheme. The authors also give a generic construction for VFE (below we call it the
BGJS16 construction), using the following three cryptographic primitives:

– Non-interactive witniss indistinguishable proof (NIWI proof): If two witnesses
w1, w2 both satisfy the relation R on instance y, then no polynomial time
adversary can distinguish between a proof generated by w1 and a proof gen-
erated by w2. Although NIWI proof is lesser efficient than non-interactive
zero-knowledge proof, NIWI proof does not require a common reference string,
hence can be constructed without a trusted setup.

– Perfect binding and computationally hiding commitment: No polynomial time
adversary can recover the committed message without the randomness used
in the commitment. Also, different messages always commit into different
commitments.

– (Non-verifiable) functional encryption with perfect correctness: A functional
encryption scheme, with the restriction that the decryption always outputs
the correct result f(m). Otherwise, an adversary may intentionally construct
an incorrect decryption to break the verifiability of the scheme.

The BGJS16 construction can also be considered as a generic transformation
from FE to VFE. Since many other primitives, such as identity-based encryp-
tion (IBE), attribute-based encryption (ABE), predicate encryption (PE) and
inner product encryption (IPE) can all be viewed as a special case of functional
encryption, the same method can also be used to construct verifiable IBE, ABE,
PE or IPE. In fact, there are already some works on verifiable IPE such as [26].
VFE can also be used to construct other primitives, such as verifiable random
functions [6].

Overview of the BGJS16 Construction. Constructing a provable secure verifiable
FE scheme is difficult, since reducing the security in a black-box manner means
that the challenger cannot know the master secret key or randomness used in the
game, while generating a NIWI proof for the correctness of ciphertexts/function
keys requires all these information as witness. In their paper, the authors used
a clever but complicated method to bypass those troubles.

The BGJS16 construction uses 4 independent FE master public/secret key
pairs to generate 4 FE ciphertexts (say ct1, ..., ct4) and 4 FE function keys (say
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k1, ..., k4), and non-interactive witness indistinguishable proof (NIWI proof) to
prove the correctness of the generation. To successfully construct the hybrid
argument in the security reduction which reduces the hardness of VFE to FE,
they also defined a type of alternative ciphertext/function key. In an alterna-
tive ciphertext (resp. function key), it is not required that all ciphertext (resp.
function key) elements are correctly generated, but only 2 out of 4 (resp. 3 out
of 4) elements are correctly generated for the same message (resp. function). If
an alternative ciphertext is decrypted with an alternative function key, at least
1 ciphertext element/function key element pair is correctly generated by the
pigeonhole principle. We suppose that cti is a correct encryption of message m
and ki is a correct function key for function f .

In addition, the master public key includes a commitment of 4 FE cipher-
texts ct∗1, ..., ct

∗
4, and the alternative ciphertext elements must be the same with

them, which means that ct1 = ct∗1, ..., ct4 = ct∗4. In the alternative function
key, it is required that the all 4 decryption results of the committed ciphertexts
using the function key are the same, which means that FE.Dec(ct∗1, k1) = ... =
FE.Dec(ct∗4, k4). So if we decrypt an alternative ciphertext using an alternative
function key, the all 4 decryption results equal to a decryption result with a cor-
rectly generated ciphertext/function key pair FE.Dec(cti, ki) = f(m), hence the
verifiability is satisfied. Also, they use an additional commitment to exclude the
case where an alternative ciphertext is decrypted with a normal function key. If a
normal ciphertext is decrypted with an alternative function key, then at least three
of the decryption result is correct and the same, hence can be extracted by voting.

Our Construction. We point out that there is redundancy in the BGJS16 con-
struction, which can let us to reduce the number of ciphertext/function key
elements from 4 to 3. If we use 3 different ciphertext/function key elements,
we can still use the pigeonhole principle to ensure a correctly generated cipher-
text/function key pair exists as long as 2 ciphertext elements and 2 function key
elements out of 3 are correctly generated. However, when reducing the number
of elements from 4 to 3, we can no longer ensure that the 2 ciphertext elements
encrypt the same message.

So in our construction, we use two different types of alternative cipher-
texts/function keys in the security proof instead of one, and type 1 cipher-
texts/function keys are similar as in BGJS16 construction. In a type 2 cipher-
text, two elements in the ciphertext are correctly encrypted, but not necessar-
ily encrypt the same message, which means that cti1 = FE.Enc(pki1 ,m0) and
cti2 = FE.Enc(pki2 ,m1). We see that type 2 ciphertext cannot satisfy the veri-
fiability property along with type 1 function keys, as the decryption result may
either be f(m0) or f(m1) instead of the function output of a fixed message f(m).
Thus we define type 2 function keys as: two fixed elements of the function key
(say: 1, 3) are honestly generated instead of any two of them. We assume that
i ∈ {i1, i2} ∩ {1, 3} and cti is an encryption of mb, then the verifiability is sat-
isfied since all decryption result is the function output f(mb). Like in BGJS16,
we add a commitment to exclude the case where type 2 ciphertext is decrypted
using type 1 function key.
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Related Works. There are also some other works related to the verifiability of
functional encryption. In [27], the authors presented a VFE scheme without using
NIWI, which trusted setup is done by hardware as in [15], but the verifiability of
their scheme relies on hardware security, hence is much weaker. In [8], a different
model of verifiability has been presented, where Setup, KeyGen and Enc are all
honest, but Dec may be dishonest. We do not consider this type of model in this
paper.

Organization. In Sect. 2, we give same basic notations, also formally define veri-
fiable functional encryption and its verifiability. In Sect. 3, we give our construc-
tion and prove its verifiability. In Sect. 4, we give the security proof. Finally in
Sect. 5, we draw the conclusion.

2 Preliminaries

The abbreviation p.p.t means probabilistic polynomial time. negl(λ) < λ−c for
any constant c > 0 with sufficiently large λ. x ← X means that x is uniformly
chosen from X. [n] denotes the set {1, 2, ..., n}. ≈c means that the two experi-
ments are computationally indistinguishable.

2.1 One Message WI Proofs

In this paper, we use the same one message witness indistinguishable proofs
NIWI as in [5].

Definition 1. Let RL be an NP relation, where L := {x|∃w, (x,w) ∈ RL}. A
pair of PPT algorithms (P : R → {0, 1}∗,V : L×{0, 1}∗ → {0, 1}) is a NIWI for
RL if it satisfies:

– 1. Completeness: for every (x,w) ∈ RL, Pr[V(x, π) = 1 : π ← P(x,w)] = 1.
– 2. (Perfect) Soundness: Proof system is said to be perfectly sound if there for

every x �∈ L and π ∈ 0, 1∗: Pr[V(x, π) = 1] = 0.
– 3. Witness indistinguishability: for any sequence I = {(x,w1, w2) : w1, w2 ∈

RL(x)}: {π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I .

The most widely used NIWI proof in [19] is based on the decisional linear
(DLIN) assumption. There are other constructions of NIWI [7,9,14] which are
based on different assumptions. In all these constructions, the proof size is (at
least) linear in the circuit size of relation RL.

2.2 Perfect Binding Commitment

Definition 2. A commitment scheme Com is a PPT algorithm that takes as
input a string x and randomness r and outputs c ← Com(x; r). A perfectly bind-
ing and computationally hiding commitment scheme must satisfy the following
properties:
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– Perfectly Binding: Two different strings cannot have the same commitment.
More formally, ∀x1 �= x2, r1, r2, Com(x1; r1) �= Com(x2; r2).

– Computational Hiding: For all strings x0 and x1 (of the same length), for
all non-uniform PPT adversaries A, we have that: |Pr[A(Com(x0)) = 1] −
Pr[A(Com(x1)) = 1]| ≤ negl(λ).

As it was pointed out in [5], a standard non-interactive perfectly binding and
computationally hiding commitment scheme can be based on one way permuta-
tions, which size is quite small (only approximate to the length of randomness
r), see [23].

2.3 Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and
Yλ is a finite set. Let F = {Fλ}λ∈N denote an ensemble where each Fλ

is a finite collection of functions, and each function f ∈ Fλ takes as input
a string x ∈ Xλ and outputs f(x) ∈ Yλ. A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) consists of the following polynomial time algo-
rithms:

– Setup(1λ). The setup algorithm takes as input the security parameter λ and
outputs a master public key-secret key pair (MPK,MSK).

– Enc(MPK, x) → CT. The encryption algorithm takes as input a message x ∈
Xλ and the master public key MPK. It outputs a ciphertext CT.

– KeyGen(MPK,MSK, f) → SKf . The key generation algorithm takes as input
a function f ∈ Fλ, the master public key MPK and the master secret key
MSK. It outputs a function secret key SKf .

– Dec(f,SKf ,CT) → y or ⊥. The decryption algorithm takes as input a function
f , the corresponding function secret key SKf and a ciphertext CT. It either
outputs a string y ∈ Yλ or ⊥.

We say that FE has perfect correctness, if the decryption is always correct,
that is, for any message x and function f , MPK,MSK ← Setup(1λ), CT ←
Enc(MPK, x), SKf ← KeyGen(MPK,MSK, f), Dec(f,SKf ,CT) = f(x) happens
with probability 1.

We define the selective indistinguishable-based security (Sel-IND security) for
FE, using the following Sel-IND interactive game.

– Initialization: The adversary chooses two message (m0,m1) of the same size
(each in Xλ) and hands them to the challenger.

– Setup Phase: The challenger runs (MPK,MSK) ← FE.Setup(1λ) and then
hands over the master public key MPK to the adversary.

– Key Query Phase 1: The adversary makes function secret key queries by
submitting functions f ∈ Fλ under the constraint that f(m0) = f(m1). The
challenger responds by giving the adversary the corresponding function secret
key SKf ← FE.KeyGen(MPK,MSK, f).
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– Challenge Phase: The challenger selects a random bit b ∈ {0, 1} and sends
a ciphertext CT ← FE.Enc(MPK,mb) to the adversary.

– Key Query Phase 2: The adversary may submit additional key queries
f ∈ Fλ as long as they do not violate the constraint f(m0) = f(m1).

– Guess: The adversary submits a guess b′ and wins if b′ = b. The adversary’s
advantage in this game is defined to be 2|Pr[b = b′] − 1/2|.
We say that a functional encryption scheme is Sel-IND secure, if all polyno-

mial time adversaries have at most a negligible advantage in the Sel-IND security
game.

2.4 Verifiable Functional Encryption

In this section we recall the definition of (public-key) verifiable functional encryp-
tion scheme given in [5]. A verifiable functional encryption scheme is simi-
lar to a regular functional encryption scheme with two additional algorithms
(VerifyCT,VerifyK). Let X ,Y,F be defined similarly as in (non-verifiable) func-
tional encryption. Formally, VFE = (Setup,Enc,KeyGen,Dec,VerifyCT,VerifyK)
consists of the following polynomial time algorithms:

– Setup(1λ). The setup algorithm takes as input the security parameter λ and
outputs a master public key-secret key pair (MPK,MSK).

– Enc(MPK, x) → CT. The encryption algorithm takes as input a message x ∈
Xλ and the master public key MPK. It outputs a ciphertext CT.

– KeyGen(MPK,MSK, f) → SKf . The key generation algorithm takes as input
a function f ∈ Fλ, the master public key MPK and the master secret key
MSK. It outputs a function secret key SKf .

– Dec(MPK, f,SKf ,CT) → y or ⊥. The decryption algorithm takes as input the
master public key MPK, a function f , the corresponding function secret key
SKf and a ciphertext CT. It either outputs a string y ∈ Yλ or ⊥. Informally
speaking, MPK is given to the decryption algorithm for verification purpose.

– VerifyCT(MPK,CT) → 1/0. Takes as input the master public key MPK and a
ciphertext CT. It outputs 0 or 1. Intuitively, it outputs 1 if CT was correctly
generated using the master public key MPK for some message x.

– VerifyK(MPK, f,SKf ) → 1/0. Takes as input the master public key MPK, a
function f and a function secret key SKf . It outputs either 0 or 1. Intuitively,
it outputs 1 if SKf was correctly generated as a function secret key for f .

The correctness and security notions of VFE are the same as standard FE.
In addition, verifiability is defined for VFE as follows:

Definition 3. A verifiable functional encryption scheme VFE for F is verifiable
if, for all MPK ∈ {0, 1}∗, for all CT ∈ {0, 1}∗, there exists x ∈ X such that for
all f ∈ F and SK ∈ {0, 1}∗, if

VerifyCT(MPK,CT) = 1 and VerifyK(MPK, f,SK) = 1

then
Pr[Dec(MPK, f,SK,CT) = f(x)] = 1.
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3 Our Construction

Notation: Without loss of generality, let us assume that every plaintext mes-
sage is of length λ where λ denotes the security parameter of the scheme. Let
(Prove,Verify) be a non-interactive witness-indistinguishable (NIWI) proof sys-
tem for NP, FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) be a Sel-IND secure
public key functional encryption scheme, Com be a perfectly binding and com-
putationally hiding commitment scheme. Without loss of generality, let us say
Com commits to a string bit-by-bit and uses randomness of length λ to commit
to a single bit. We denote the length of ciphertexts in FE by c-len = c-len(λ).
Let len = 3·c-len.

Our VFE scheme VFE = (VFE.Setup,VFE.Enc,VFE.KeyGen,VFE.Dec,VFE.
VerifyCT,VFE.VerifyK) is as follows:

– Setup VFE.Setup(1λ):
The setup algorithm does the following:

• 1. For all i ∈ [3], compute (MPKi,MSKi) ← FE.Setup(1λ; si) using ran-
domness si.

• 2. Set Z = Com(0len;u), Z1 = Com(1;u1), Z2 = Com(1;u2) where u, u1, u2

represent the randomness used in the commitment.
The master public key is MPK = ({MPKi}i∈[3],Z,Z1,Z2).
The master secret key is MSK = ({MSKi}i∈[3], {si}i∈[3], u, u1, u2).

– Encryption VFE.Enc(MPK,m) :
To encrypt a message m, the encryption algorithm does the following:

• 1. For all i ∈ [3], compute CTi = FE.Enc(MPKi,m; ri).
• 2. Compute a proof π ← Prove(y, w) for the statement that y ∈ L using

witness w where:
y = ({CTi}i∈[3],MPKii∈[3],Z,Z1,Z2),
w = (m, 0|m|, {ri}i∈[3], 0, 0, 0|u|, 0|u1|, 0|u2|).

L is defined corresponding to the relation R defined below.
Relation R:
Instance: y = ({CTi}i∈[3], {MPKi}i∈[3],Z,Z1,Z2)
Witness: w = (m,m′, {ri}i∈[3], i1, i2, u, u1, u2)
R(y, w) = 1 if and only if either of the following conditions hold:

• 1. All 3 constituent ciphertexts encrypt the same message. That is,
∀i ∈ [3],CTi = FE.Enc(MPKi,m; ri)

(OR)
• 2. 2 constituent ciphertexts (corresponding to indices i1, i2) encrypt the

message m,m′, Z is a commitment to all the constituent ciphertexts and
Z1 is a commitment to 0, and either m = m′ or Z2 is a commitment to 0:
That is,
(a) CTi1 = FE.Enc(MPKi1 ,m; ri1), CTi2 = FE.Enc(MPKi2 ,m

′; ri2).
(b) Z = Com({CTi}i∈[3];u).
(c) Z1 = Com(0;u1).
(d) Either a© m = m′ or b© Z2 = Com(0;u2).
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The output of the algorithm is the ciphertext CT = ({CTi}i∈[3], π).
π is computed for statement 1 of relation R.

– Key Generation VFE.KeyGen(MPK,MSK, f):
To generate the function secret key Kf for a function f , the key generation
algorithm does the following:

• 1. ∀i ∈ [3], compute Kf
i = FE.KeyGen(MSKi, f ; ri).

• 2. Compute a proof γ ← Prove(y, w) for the statement that y ∈ L1 using
witness w where:
y = ({Kf

i }i∈[3], {MPKi}i∈[3],Z,Z1,Z2),
w = (f, {MSKi}i∈[3], {si}i∈[3], {ri}i∈[3], 0, 0, 0|u|, u1, u2).

L1 is defined corresponding to the relation R1 defined below.
Relation R1:
Instance: y = ({Kf

i }i∈[3], {MPKi}i∈[3],Z,Z1,Z2)
Witness: w = (f, {MSKi}i∈[3], {si}i∈[3], {ri}i∈[3], i1, i2, u, u1, u2)
R1(y, w) = 1 if and only if either of the following conditions hold:

• 1. Z1 is a commitment to 1, all 3 constituent function secret keys are secret
keys for the same function and are constructed using honestly generated
public key-secret key pairs.
(a) ∀i ∈ [3], Kf

i = FE.KeyGen(MSKi, f ; ri).
(b) ∀i ∈ [3], (MPKi,MSKi) ← FE.Setup(1λ; si).
(c) Z1 = Com(1;u1).
(OR)

• 2. 2 of the constituent function secret keys (corresponding to indices i1, i2)
are keys for the same function and are constructed using honestly gener-
ated public key-secret key pairs, Z is a commitment to a set of ciphertexts
CT such that each constituent ciphertext in CT when decrypted with the
corresponding function secret key gives the same output, and either Z2 is
a commitment to 1 or (i1, i2) = (1, 3). That is,
(a) ∀i ∈ {i1, i2}, Kf

i = FE.KeyGen(MSKi, f ; ri).
(b) ∀i ∈ {i1, i2}, (MPKi,MSKi) ← FE.Setup(1λ; si).
(c) Z = Com({CTi}i∈[3];u).
(d) ∃x ∈ Xλ such that ∀i ∈ [3], FE.Dec(CTi,K

f
i ) = x.

(e) Either a© Z2 = Com(1;u2) or b© (i1, i2) = (1, 3).
The output of the algorithm is the function secret key Kf = ({Kf

i }i∈[3], γ).
γ is computed for statement 1 of relation R1.

– Decryption VFE.Dec(MPK, f,Kf ,CT):
This algorithm decrypts the ciphertext CT = ({CTi}i∈[3], π) using function
secret key Kf = ({Kf

i }i∈[3], γ) in the following way:
• 1. Let y = ({CTi}i∈[3], {MPKi}i∈[3],Z,Z1,Z2) be the statement corre-

sponding to proof π. If Verify(y, π) = 0, then stop and output ⊥. Else,
continue to the next step.

• 2. Let y1 = ({Kf
i }i∈[3], {MPKi}i∈[3],Z,Z1,Z2) be the statement corre-

sponding to proof γ. If Verify(y1, γ) = 0, then stop and output ⊥. Else,
continue to the next step.
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• 3. For i ∈ [3], compute mi = FE.Dec(CTi,K
f
i ). If at least 2 of the mis are

equal (let us say that value is m), output m. Else, output ⊥.
– VerifyCT VFE.VerifyCT(MPK,CT):

Given a ciphertext CT = ({CTi}i∈[3], π), this algorithm checks whether the
ciphertext was generated correctly using master public key MPK. Let y =
({CTi}i∈[3], {MPKi}i∈[3],Z,Z1,Z2) be the statement corresponding to proof
π. If Verify(y, π) = 1, it outputs 1. Else, it outputs 0.

– VerifyK VFE.VerifyK(MPK, f,K):
Given a function f and a function secret key K = ({Ki}i∈[3], γ), this algo-
rithm checks whether the key was generated correctly for function f using
the master secret key corresponding to master public key MPK. Let y =
({Ki}i∈[3], {MPKi}i∈[3],Z,Z1,Z2) be the statement corresponding to proof γ.
If Verify(y, γ) = 1, it outputs 1. Else, it outputs 0.

Correctness follows directly from the correctness of the underlying FE scheme,
correctness of the commitment scheme and the completeness of the NIWI proof
system.

Comparison Between Our Construction and the BGJS16 Construction. We
briefly summarize the differences between our construction and the BGJS16
construction (which are shown in red above):

• We uses 3 FE ciphertexts/function keys in each VFE ciphertext/function key
instead of 4.

• In statement 2 of R and R1, we require that 2 out of 3 elements are correctly
generated. Moreover, in the relation R, we add another message m′ into the
witness, and let the two ciphertext elements encrypt m and m′, instead of
the same element m.

• We add a new commitment Z2 into the master public key, instances of R and
R1, and its corresponding randomness u2 into the master secret key, witnesses
of R and R1.

• We add a new condition 2(d) into statement 2 of relation R and 2(e) into
statement 2 of relation R1, which are both OR-statements. Below, we write
statement 2 with the first branch in 2(d) of relation R or 2(e) of relation R1

as statement 2 a©, otherwise as statement 2 b©.

Discussion on the Proof Size. In most NIWI proof for NP language such as [19],
the proof size and verification cost is linear to the circuit size of the relation to
be proved. We can see that the main cost is proving the correctness of cipher-
texts/keys. Since we reduce the number of elements from 4 to 3, the size of this
part is reduced by 25%. We also add some additional cost in 2(d) of relation R
and 2(e) of relation R1, mainly on opening the commitments Z2. However, Z2

only commits one bit, so the additional cost is much smaller compared with the
correctness proof part, we can approximately assume that the size and cost of
the NIWI proof is also reduced by 25%.
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3.1 Verifiability

Consider any master public key MPK and any ciphertext CT = ({CTi}i∈[3], π)
such that VFE.VerifyCT(MPK,CT) = 1. Now, there are two cases possible for
the proof π.

– 1. Statement 1 of relation R is correct:
Therefore, there exists m ∈ Xλ such that ∀i ∈ [3], CTi = FE.Enc(MPKi,m; ri)
where ri is a random string. Consider any function f and function secret key
K = ({Ki}i∈[3], γ) such that VFE.VerifyK(MPK, f,K) = 1. There are two cases
possible for the proof γ.

• (a) Statement 1 of relation R1 is correct:
Therefore, ∀i ∈ [3],Ki is a function secret key for the same function -
f . That is, ∀i ∈ [3], Ki = FE.KeyGen(MSKi, f ; r′

i) where r′
i is a random

string. Thus, for all i ∈ [3], FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec
(MPK, f,K,CT) = f(m).

• (b) Statement 2 of relation R1 is correct:
Therefore, there exists 2 indices i1, i2 such that Ki1 ,Ki2 are func-
tion secret keys for the same function - f . That is, ∀i ∈ {i1, i2},
Ki = FE.KeyGen(MSKi, f ; r′

i) where r′
i is a random string. Thus, for all

i ∈ {i1, i2}, FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec(MPK, f,K,CT) =
f(m).

– 2. Statement 2 of relation R is correct:
Therefore, Z1 = Com(0;u1) and Z = Com({CTi}i∈[4];u) for some
random strings u, u1. Also, there exists 2 indices i1, i2 and two mes-
sages m,m′ ∈ Xλ such that for CTi1 = FE.Enc(MPKi1 ,m; ri1) and
CTi2 = FE.Enc(MPKi2 ,m

′; ri2) where ri1 , ri2 are random strings. Con-
sider any function f and function secret key K = ({Ki}i∈[3], γ) such that
VFE.VerifyK(MPK, f,K) = 1. There are two cases possible for the proof γ.

• (a) Statement 1 of relation R1 is correct:
Then, it must be the case that Z1 = Com(1;u′

1) for some random string
u′
1. However, we already know that Z1 = Com(0;u1) and Com is a per-

fectly binding commitment scheme. Thus, this scenario is impossible.
That is, both VFE.VerifyCT(MPK,CT) and VFE.VerifyK(MPK, f,K) can-
not be equal to 1.

• (b) Statement 2 of relation R1 is correct:
Therefore, there exists 2 indices i′1, i

′
2 such that Ki′

1
,Ki′

2
are function

secret keys for the same function - f . That is, ∀i ∈ {i′1, i′2}, Ki =
FE.KeyGen(MSKi, f ; r′

i) where r′
i is a random string. Thus, by pigeon-

hole principle, there exists i∗ ∈ {i′1, i′2} such that i∗ ∈ {i1, i2} as well.
Also, Z = Com({CTi}i∈[3];u) and ∀i ∈ [3], FE.Dec(CTi,Ki) is the same.
We discuss the following two cases:

• a© m = m′. Thus for the index i∗, FE.Dec(CTi∗ ,Ki∗) =
f(m). Then ∀i ∈ [3],FE.Dec(CTi,Ki) = f(m). Therefore,
VFE.Dec(MPK, f,K,CT) = f(m).
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• b© Z2 = Com(0;u2). Then there must be (i′1, i
′
2) = (1, 3), otherwise

there exists u′
2 such that Z2 = Com(1, u′

2), which disobeys the per-
fectly binding condition of Com. If i1 ∈ {1, 3}, FE.Dec(CTi1 ,Ki1) =
f(m). Then ∀i ∈ [3],FE.Dec(CTi,Ki) = f(m). Therefore, VFE.Dec
(MPK, f,K,CT) = f(m). Otherwise, there must be i2 ∈ {1, 3}, and
FE.Dec(CTi2 ,Ki2) = f(m′). Then ∀i ∈ [3],FE.Dec(CTi,Ki) = f(m′).
Therefore, VFE.Dec(MPK, f,K,CT) = f(m′).

4 Security Proof

We now prove that the proposed scheme VFE is Sel-IND secure. We will prove
this via a series of hybrid experiments H1, ...,H18 where H1 corresponds to the
real world experiment with challenge bit b = 0 and H18 corresponds to the real
world experiment with challenge bit b = 1. The hybrids are summarized below.

Fig. 1. Here, (m0, m0, m0) indicates the messages that are encrypted to form the chal-
lenge ciphertext {CT∗

i }i∈[3]. Similarly for the column {Kf
i }i∈[3]. The column π∗ (and

γ) denote the statement proved by the proof in relation R (and R1). The text in red
indicates the difference from the previous hybrid. The text in blue denotes the indices
used in the proofs π∗ and γ. That is, the text in blue in the column ({CT∗

i }i∈[3])

denotes the indices used in the proof π∗ and the text in blue in the column ({Kf
i }i∈[3])

denotes the indices used in the proof γ for every function secret key Kf corresponding
to function f .
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We briefly describe the hybrids below.
Hybrid H1: This is the real experiment with challenge bit b = 0. The mas-

ter public key is MPK = ({MPKi}i∈[3],Z,Z1,Z2) such that Z = Com(0len;u),
Z1 = Com(1;u1) and Z2 = Com(1;u2) for random strings u, u1, u2. The chal-
lenge ciphertext is CT∗ = ({CT∗

i }i∈[3], π
∗), where for all i ∈ [4], CT∗

i =
FE.Enc(MPKi,m0; ri) for some random string ri. π∗ is computed for statement
1 of relation R.

Hybrid H2: This hybrid is identical to the previous hybrid except that Z is
computed differently. Z = Com({CT∗

i }i∈[3];u).
Hybrid H3: This hybrid is identical to the previous hybrid except

that for every function secret key Kf , the proof γ is now computed for
statement 2 a© of relation R1 using indices {1, 2} as the set of 2 indices
{i1, i2} in the witness. That is, the witness is w = (f,MSK1,MSK2, 0|MSK3|,
s1, s2, 0|s3|, r1, r2, 0|r3|, 1, 2, u, 0|u1|, u2).

Hybrid H4: This hybrid is identical to the previous hybrid except that Z1 is
computed differently. Z1 = Com(0;u1).

Hybrid H5: This hybrid is identical to the previous hybrid except that the
proof π∗ in the challenge ciphertext is now computed for statement 2 a© of relation
R using indices {1, 2} as the 2 indices {i1, i2} in the witness. That is, the witness
is w = (m0,m0, r1, r2, 0|r3|, 1, 2, u, u1, 0|u2|).

Hybrid H6: This hybrid is identical to the previous hybrid except that
we change the third component CT∗

3 of the challenge ciphertext to be an
encryption of the challenge message m1 (as opposed to m0). That is, CT∗

3 =
FE.Enc(MPK3,m1; r3) for some random string r3. Note that the proof π∗ is
unchanged and is still proven for statement 2 a© of relation R.

Hybrid H7: This hybrid is identical to the previous hybrid except
that for every function secret key Kf , the proof γ is now computed for
statement 2 b© of relation R1 using indices {1, 3} as the set of 2 indices
{i1, i2} in the witness. That is, the witness is w = (f,MSK1, 0|MSK2|,MSK3,
s1, 0|s2|, s3, r1, 0|r2|, r3, 1, 3, u, 0|u1|, 0|u2|).

Hybrid H8: This hybrid is identical to the previous hybrid except that Z2 is
computed differently. Z2 = Com(0;u2).

Hybrid H9: This hybrid is identical to the previous hybrid except that the
proof π∗ in the challenge ciphertext is now computed for statement 2 b© of relation
R using message m1 and indices {1, 3} as the 2 indices {i1, i2} in the witness.
That is, the witness is w = (m0,m1, r1, 0|r2|, r3, 1, 3, u, u1, u2).

Hybrid H10: This hybrid is identical to the previous hybrid except that
we change the second component CT∗

2 of the challenge ciphertext to be an
encryption of the challenge message m1 (as opposed to m0). That is, CT∗

2 =
FE.Enc(MPK2,m1; r2) for some random string r2. Note that the proof π∗ is
unchanged and is still proven for statement 2 b© of relation R.

Hybrid H11: This hybrid is identical to the previous hybrid except that
the proof π∗ in the challenge ciphertext is now computed for statement 2 a© of
relation R using indices {2, 3} as the 2 indices {i1, i2} in the witness. That is,
the witness is w = (m1,m1, 0|r1|, r2, r3, 2, 3, u, u1, 0|u2|).
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Hybrid H12: This hybrid is identical to the previous hybrid except that Z2

is computed differently. Z2 = Com(1;u2).
Hybrid H13: This hybrid is identical to the previous hybrid except

that for every function secret key Kf , the proof γ is now computed for
statement 2 a© of relation R1 using indices {2, 3} as the set of 2 indices
{i1, i2} in the witness. That is, the witness is w = (f, 0|MSK1|,MSK2,MSK3,
0|s1|, s2, s3, 0|r1|, r2, r3, 2, 3, u, 0|u1|, u2).

Hybrid H14: This hybrid is identical to the previous hybrid except that
we change the first component CT∗

1 of the challenge ciphertext to be an
encryption of the challenge message m1 (as opposed to m0). That is, CT∗

1 =
FE.Enc(MPK1,m1; r1) for some random string r1. Note that the proof π∗ is
unchanged and is still proven for statement 2 a© of relation R.

Hybrid H15: This hybrid is identical to the previous hybrid except that the
proof π∗ in the challenge ciphertext is now computed for statement 1 of relation
R. The witness is w = (m1, 0|m1|, {ri}i∈[3], 0, 0, 0|u|, 0|u1|, 0|u2|).

Hybrid H16: This hybrid is identical to the previous hybrid except that Z1

is computed differently. Z1 = Com(1;u1).
Hybrid H17: This hybrid is identical to the previous hybrid except that for

every function secret key Kf , the proof γ is now computed for statement 1 of rela-
tion R1. The witness is w = (f, {MSKi}i∈[3], {si}i∈[3], {ri}i∈[3], 0, 0, 0|u|, u1, u2).

Hybrid H18: This hybrid is identical to the previous hybrid except that Z
is computed differently. Z = Com(0len;u). This hybrid is identical to the real
experiment with challenge bit b = 1.

The proof of indistinguishability between hybrids can be divided into three
types, which rely on (1) the (computationally) hiding of Com; (2) the witness
indistinguishability of NIWI proof; (3) the Sel-IND security of FE. We only prove
one in each type, the others hold similarly.

Lemma 1. Assuming that Com is a (computationally) hiding commitment
scheme, the outputs of experiments H1 and H2 are computationally indistin-
guishable.

Proof. The only difference between the two hybrids is the manner in which the
commitment Z is computed. Let us consider the following adversary ACom that
interacts with a challenger C to break the hiding of the commitment scheme. Also,
internally, it acts as the challenger in the security game with an adversary A
that tries to distinguish between H1 and H2. ACom executes the hybrid H1 except
that it does not generate the commitment Z on its own. Instead, after receiving
the challenge messages (m0,m1) from A, it computes CT∗ = ({CT∗

i }i∈[3], π
∗) as

an encryption of message m0 by following the honest encryption algorithm as
in H1 and H2. Then, it sends two strings, namely (0len) and ({CT∗

i }i∈[3]) to the
outside challenger C. In return, ACom receives a commitment Z corresponding to
either the first or the second string. It then gives this to A. Now, whatever bit
b A guesses, ACom forwards the same guess to the outside challenger C. Clearly,
ACom is a polynomial time algorithm and breaks the hiding property of Com
unless H1 and H2 are computationally indistinguishable. �
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Lemma 2. Assuming that (Prove,Verify) is a non-interactive witness indistin-
guishable (NIWI) proof system, the outputs of experiments H2 and H3 are com-
putationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
proof γ is computed for each function secret key query f . In H2, γ is computed for
statement 1 of relation R1 using the “real” witness w = (f, {MSKi}i∈[3], {si}i∈[3],

{ri}i∈[3], 0, 0, 0|u|, u1, u2). In H3, γ is computed for statement 2 a© of relation R1

using the “trapdoor” witness w = (f,MSK1,MSK2, 0|MSK3|, s1, s2, 0|s3|, r1, r2,
0|r3|, 1, 2, u, 0|u1|, u2). Thus, by a standard hybrid argument, the indistinguisha-
bility of the two hybrids follows from the witness indistinguishability property
of the NIWI proof system. �
Lemma 3. Assuming that FE is a Sel-IND secure functional encryption scheme,
the outputs of experiments H5 and H6 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
challenge ciphertext is created. More specifically, in H5, the third component of
the challenge ciphertext CT∗

3 is computed as an encryption of message m0, while
in H6, CT∗

3 is computed as an encryption of message m1. Note that the proof π∗

remains same in both the hybrids.
Let’s consider the following adversary AFE that interacts with a challenger

C to break the security of the underlying FE scheme. Also, internally, it acts as
the challenger in the security game with an adversary A that tries to distinguish
between H5 and H6. AFE executes the hybrid H5 except that it does not generate
the parameters (MPK3,MSK3) itself. It sets (MPK3) to be the public key given
by the challenger C. After receiving the challenge messages (m0,m1) from A,
it forwards the pair (m0,m1) to the challenger C and receives a ciphertext CT
which is either an encryption of m0 or m1 using public key MPK3. AFE sets
CT∗

3 = CT and computes CT∗ = ({CT∗
i }i∈[3], π

∗) as the challenge ciphertext as
in H5. Note that proof π∗ is proved for statement 2 a© of relation R. It then sets
the public parameter Z = Com({CT∗

i }i∈[3];u) and sends the master public key
MPK and the challenge ciphertext CT∗ to A.

Now, whatever bit b A guesses, AFE forwards the same guess to the outside
challenger C. Clearly, AFE is a polynomial time algorithm and breaks the security
of the functional encryption scheme FE unless H5 and H6 are computationally
indistinguishable. �

5 Conclusion

In this paper, we present a more efficient construction for verifiable functional
encryption, which reduces all costs for about 25% compared with the literature.
More concretely, we improve the generic construction for verifiable functional
encryption in Asiacrypt 2016, by reducing the number of FE ciphertexts (resp.
FE function keys) in the VFE ciphertext (resp. function key) from 4 to 3, while
only adding a (much smaller) bit commitment into the scheme. We also prove
the verifiability and security of our construction using a similar method.
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Abstract. Deniable public-key encryption (DPKE) is a cryptographic
primitive that allows the sender of an encrypted message to later claim
that they sent a different message. DPKE’s threat model assumes pow-
erful adversaries who can coerce users to reveal plaintexts; it is thus
reasonable to consider other advanced capabilities, such as being able to
subvert algorithms in a so-called Algorithm Substitution Attack (ASA).
ASAs have been considered against a number of primitives including
digital signatures, symmetric encryption and pseudo-random generators.
However, public-key encryption has presented a less fruitful target, as the
sender’s only secrets are plaintexts and ASA techniques generally do not
provide sufficient bandwidth to leak these.

In this article, we give a formal model of ASAs against DPKE, and
argue that subversion attacks against DPKE schemes present an attrac-
tive opportunity for an adversary. Our results strengthen the security
model for DPKE and highlight the necessity of considering subversion in
the design of practical schemes.

Keywords: Cryptography · Deniable encryption · Algorithm
Substitution Attacks

1 Introduction

Deniable public-key encryption (DPKE) is a primitive that allows a sender to
successfully lie about which plaintext message was originally encrypted. In par-
ticular, suppose that Alice encrypts a plaintext m under some public key, using
randomness r, to give ciphertext c which she sends to Bob. At some point in the
future – perhaps Bob falls under suspicion – Alice is coerced to reveal the mes-
sage she encrypted, together with the randomness she used. DPKE allows Alice
to claim that she sent m∗, by providing r∗ such that enc(m∗, r∗) = enc(m, r).
Beyond its immediate use case, deniable encryption finds applications in elec-
tronic voting, where deniability allows voters to cast their ballots without coer-
cion and prevents vote-buying, as well as in secure multiparty computation.
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The adversarial model for deniable encryption assumes strong adversaries
that can coerce individuals to reveal messages they encrypted; it is thus rea-
sonable to consider other advanced capabilities, such as the ability to subvert
algorithms. Powerful adversaries can insert unreliability into cryptography via
external (‘real-world’) infrastructure: whether by influencing standards bodies to
adopt ‘backdoored’ parameters, inserting exploitable errors into software imple-
mentations, or compromising supply chains to interfere with hardware. The
Snowden revelations showed that this is indeed the case; see the survey by
Schneier et al. [13] which provides a broad overview of cryptographic subver-
sion, with case studies of known subversion attempts.

Prior work considering subversion has usually had the aim of exfiltrating
secret keys (in the context of symmetric encryption and digital signatures).
Berndt and Liśkiewicz [5] show that a generic ASA against an encryption scheme
can only embed a limited number of bits per ciphertext. More concretely, they
show that no universal and consistent1 ASA is able to embed more than log(κ)
bits of information into a single ciphertext in the random oracle model [5, The-
orem 1.4], where κ is the key length of the encryption scheme. In the setting
of symmetric key encryption, this is sufficient to successfully leak the secret key
over multiple ciphertexts [2,4]. However, for asymmetric primitives, subverting
ciphertexts to leak the encryption key makes little sense as it is public; leaking
plaintext messages is not possible due to the limited bandwidth. Thus for generic
ASAs against PKE, the best possible adversarial goal is to exfiltrate sufficient
information to compromise confidentiality – knowledge of one bit of the underly-
ing plaintext is sufficient for an adversary to break confidentiality in the sense of
IND-CPA or IND$2. But as Bellare et al. [4] argue, this is not an attractive goal
for a mass surveillance adversary, who would rather recover plaintext messages.

Contributions. In this article we sketch out an argument to show that ASAs
against DPKE schemes present an attractive opportunity for an adversary. We
refer the reader to the extended version [3] for full details and an expanded argu-
ment. In this article, we begin by recalling notions of ASAs, including adversar-
ial goals (undetectability and information exfiltration), and give an example of
a generic ASA technique (rejection sampling). We then recall DPKE notions,
including the formal definition, before applying ASA definitions to DPKE. This
allows us to present our main contribution, namely a description of how an ASA
against DPKE could be successfully realised to undermine deniability. In brief:
an adversary who can subvert a DPKE scheme can transmit a commitment to
the underlying plaintext using a subliminal channel. Later, the adversary can
check the commitment against the message that the sender claims was sent.

1 Here universal means that the ASA applies generically to any encryption scheme,
and consistent essentially means that the ASA outputs genuine ciphertexts.

2 Chen et al. [9] overcome these limitations by using non-generic techniques against
KEM-DEM constructions to leak underlying plaintexts representing (session) keys.
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Our work is the first to consider subverting deniable encryption3, and we
establish formal models of the adversarial goals as well as security notions for
such an attack. In the extended version, we also consider how to mitigate ASAs
against deniable encryption.

2 Notions of Subversion Attacks

We consider subversions of cryptographic schemes implementing encrypted com-
munication between two parties. Abstractly, we consider a scheme Π = (Π.gen,
{Π.S(i)}0≤i<n, Π.R) consisting of three components: a key generation algorithm,
together with a collection of n ∈ N>0 sender algorithms and a receiver algo-
rithm Π.R representing decryption. We let Π.S(0) represent encryption and write
Π.S := Π.S(0). Our abstract treatment allows us to capture both PKE schemes
and symmetric encryption (setting kS = kR). We give a generic syntax to the
scheme Π as follows: Key generation Π.gen outputs a key pair (kS, kR) ∈ KS×KR.
Each sender algorithm Π.S(i), for 0 ≤ i < n, has associated randomness space
R(i) together with input and output spaces X (i), Y(i) (respectively) and takes
as input a sender key kS ∈ KS x ∈ X (i), outputting y ∈ Y(i); we write
X := X (0), Y := Y(0). We note that X � X ′; in particular, ⊥ ∈ X ′ \ X .
The receiver algorithm takes as input a receiver key kR ∈ KR and y ∈ Y, out-
putting x ∈ X ′; the special symbol ⊥ is used to indicate failure. Lastly, we
foreground the randomness used during encryption in our notation by writing
y ← Π.S(kS, x; r) for some randomness space R where we split the input space
accordingly X ∼= X̃ × R; dropping the last input is equivalent to r ←$ R. This
allows us to discuss particular values of r that arise during encryption.

Undetectable Subversion. In a nutshell, a subversion is undetectable if dis-
tinguishers with black-box access to either the original scheme or to its subverted
variant cannot tell the two apart. A subversion should exhibit a dedicated func-
tionality for the subverting party, but simultaneously be undetectable for all
others. This apparent contradiction is resolved by parameterising the subverted
algorithm with a secret subversion key, knowledge of which enables the extra
functionality. We denote the subversion key space with IS.

Formally: a subversion of the sender algorithm Π.S of a cryptographic scheme
consists of a finite index space IS and a family S = {Si}i∈IS of algorithms such
that for all i ∈ IS the algorithm Π.Si can syntactically replace the algorithm Π.S.
As a security property we also require that the observable behaviour of Π.S
and Π.Si be effectively identical (for uniformly chosen i ∈ IS). This is formalised
via the games UDS0, UDS1 in Fig. 1(left). For any adversary A we define the
advantage Advuds

Π (A) :=
∣
∣Pr[UDS1(A)] − Pr[UDS0(A)]

∣
∣ and say that family S

3 Gunn et al. [11] consider circumventing cryptographic deniability, which is similar
in spirit. However, their scenario is quite different: firstly, they consider deniable
communication protocols (such as Signal). Secondly, they do not consider subversion
attacks – instead, their scenario is logically equivalent to compromising the receiver.
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undetectably subverts algorithm Π.S if Advuds
PKE(A) is negligibly small for all

realistic A.

Subliminal Information Exfiltration. Abstractly, the aim of an adversary
is to exfiltrate some subliminal information. In the context of prior work consid-
ering symmetric encryption, this information typically represents the secret key.
We formalise this goal as the MR game in Fig. 1(centre), which assumes a passive
attack in which the adversary eavesdrops on communication, observing the trans-
mitted ciphertexts. We allow the adversary some influence over sender inputs,
with the aim of closely modelling real-world settings. This influence on the sender
inputs x is restricted by assuming a stateful ‘message sampler’ algorithm MS that
produces the inputs to Π.S used throughout the game4. For any message sam-
pler MS and adversary A we define the advantage Advmr

Π,MS(A) := Pr[MR(A)].
We say that subversion family S is key recovering for passive attackers if for all
practical MS there exists a realistic adversary A such that Advmr

Π,MS(A) reaches
a considerable value (e.g., 0.1)5.

Fig. 1. Left: Game UDS modelling sender subversion undetectability for a scheme Π.
Centre: Game MR modelling key recoverability for passive adversaries. Right: rejec-
tion sampling subversion Π.Si of encryption algorithm Π.S and corresponding message
recovering adversary A.

Generic Method: Rejection Sampling. As an example, we describe a generic
method to embed a subliminal message μ with |μ| = �μ into ciphertexts of an
encryption scheme Π.S. Essentially, when computing a ciphertext, the subverted
algorithm uses rejection sampling to choose randomness that results in a cipher-
text encoding the subliminal message. The subverted encryption algorithm Π.Si

of a scheme Π is given in Fig. 1(right) together with the corresponding message
4 See the extended version [3] for a complete discussion of the message sampler.
5 Our informal notions (‘realistic’ and ‘practical’) are easily reformulated in terms

of probabilistic polynomial-time (PPT) algorithms. However, given that asymptotic
notions don’t reflect practice particularly well, we prefer to use the informal terms.
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recovery adversary A. Subversion Π.Si is parameterised by a large index space I,
a constant �μ and a PRF Fi. For the PRF we require that it be a family of func-
tions Fi : Y → {0, 1}�µ (that is: a pseudo-random mapping from the ciphertext
space to the set strings of length �μ).

We note that the subverted encryption algorithm Π.Si will resample random-
ness 2�µ times on average. This means that longer messages result in exponen-
tially slower running times of the algorithm; in practice, this means that the
attack is limited to short messages (a few bits at most).

3 Deniable Public Key Encryption

DPKE allows a sender to lie about the messages that were encrypted. In par-
ticular, suppose that a user encrypts message m to obtain c which is sent to
the recipient. DPKE allows the sender to choose a different message m∗ and
reveal fake randomness r∗ which explains c as the encryption of m∗. Notice
that this necessarily implies that the scheme cannot be perfectly correct as
dec(enc(m∗, r∗)) = m. This counter-intuitive observation is resolved by notic-
ing that for a given message m, there are ‘sparse trigger’ values ri such that
encrypting m with an ri results in an incorrect ciphertext. Deniable public-key
encryption schemes rely on the fact that finding such ri should be easy with
some trapdoor knowledge, and hard otherwise.

In this article we focus on non-interactive sender deniable public-key encryp-
tion, as introduced by Canetti et al. [6], who showed that a sender-deniable
scheme can be used to construct receiver deniable (and thus bi-deniable) schemes.
To date, no practical deniable scheme has been proposed. Either deniability is
not practically achievable (a typical example is Canetti et al.’s scheme [6] whose
ciphertexts grow inversely proportional to the deniability probability), or else
the construction requires strong assumptions such as iO or functional encryp-
tion [7,10,12]. Recent work by Agrawal et al. [1] is promising in this regard, as
their construction provides compact ciphertexts and is based on the security of
Learning with Errors. Nevertheless, they require a running time that is inversely
proportional to detection probability.

DPKE Definition. A DPKE scheme DE = (DE.gen,DE.enc,DE.dec,DE.Fake)
consists of a tuple of algorithms together with key spaces KS, KR, randomness
space R, a message space M and a ciphertext space C.

– The key-generation algorithm DE.gen returns a pair (pk, sk) ∈ KS × KR con-
sisting of a public key and a private key.

– The encryption algorithm DE.enc takes a public key pk, randomness r ∈ R
and a message m ∈ M to produce a ciphertext c ∈ C.

– The decryption algorithm DE.dec takes a private key sk and a ciphertext
c ∈ C, and outputs either a message m ∈ M or the rejection symbol ⊥ /∈ M.

– The faking algorithm DE.Fake takes public key pk, a pair of message and ran-
domness m, r and fake message m∗, and outputs faking randomness r∗ ∈ R.
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A scheme DE is correct and secure if the key generation, encryption and
decryption algorithms considered as a PKE scheme (DE.gen,DE.enc,DE.dec)
satisfy the standard notions of correctness and IND-CPA security properties of
public-key encryption. We formalise the deniability of the scheme via the game
INDEXP, the details of which are given in the extended paper and described
briefly here. Essentially, the INDEXP game is an indistinguishability game in
which a distinguisher must choose between two cases: INDEXP0 represents the
adversary’s view of an honest encryption of m∗; INDEXP1 represents the adver-
sary’s view when the sender lies about the underlying plaintext. The correspond-
ing advantage is, for any distinguisher A, given by

AdvindexpDE (A) :=
∣
∣Pr[INDEXP0(A)] − Pr[INDEXP1(A)]

∣
∣ .

Formal Definition of Subverted DPKE. We note that a DPKE scheme
satisfies the generic syntax introduced above in Sect. 2, with key generation algo-
rithm Π.gen = DE.gen, sender algorithms (Π.S0, Π.S1) = (DE.enc,DE.Fake) and
receiver algorithm Π.R = DE.dec. We may thus apply the generic notions of
subversion and undetectability introduced in Sect. 2. In the extended version,
we furthermore consider the game subINDEXP modelling the adversary’s ability
to compromise the deniability property of a subverted scheme.

4 Subverting DPKE

Now that we have introduced the notions of ASAs and DPKE, we are ready to
discuss ASAs against DPKE. As we set out in the introduction, the idea is for the
subverted DPKE scheme to commit to the actual message encrypted; this under-
mines the ability of the sender to later claim that they sent a different message.
The most obvious approach is to subvert the scheme so that the randomness
commits to the message. This way, when Alice is coerced by the adversary to
reveal her message and randomness, the adversary is able to test whether this is
the case. This is a feasible attack route and applies generically to any deniable
encryption scheme. When Alice claims that she sent m∗, by providing r∗ such
that enc(m∗, r∗) = enc(m, r), she would need r∗ to commit to the message. This
should be hard, as long as the commitment is provided by a cryptographically
secure digital signature or even a MAC (with the authentication key hidden from
Alice). This generic ASA applies to all DPKE schemes, as the security definition
for DPKE requires Alice to produce explanatory randomness when coerced.

A second technique is to use subversion techniques (such as the rejection
sampling approach given as an example in Sect. 2) to embed a subliminal channel
in ciphertexts, such that the channel transmits a commitment to the message.
The generic rejection sampling technique is unable to provide enough bandwidth
to transmit sufficiently long signatures to prevent Alice forging the commitment,
however non-generic techniques may be possible depending on the particular
scheme and instantiation. Furthermore, we note that it is a feature of most
proposed deniable encryption schemes that a large amount of randomness is
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consumed in the course of encryption, and that this randomness is sampled in
chunks. This means that if the algorithms are considered in a non-black box
fashion, then rejection sampling could potentially be used against each chunk of
randomness resulting in a sufficiently large subliminal channel.

Lastly, there is another subversion approach that at first glance seems appeal-
ing, but which turns out to be unworkable; namely, to target the faking algo-
rithm. A subverted faking algorithm DE.Fakei(pk, m, r, m∗) could output sub-
verted r∗ which alerts the adversary to the fact that m∗, r∗ are fake; for exam-
ple, if r∗ commits to the real message m. However, this fake randomness r∗ still
needs to be convincing from the point of view of the deniability of the scheme –
the scheme’s security properties should be maintained by the subversion, other-
wise a detector playing the UDS game will be able to tell that the algorithm is
subverted. In particular, r∗ should satisfy DE.enc(pk, m∗, r∗) = c. However, for
a DPKE scheme there is no reason why this should hold for an arbitrary value
of r∗. This approach does not seem to be workable without adding considerable
structure to the subverted scheme that means it would be easily detected6.

5 Conclusions

Deniable communication is a subtle concept and it is unclear what it should mean
‘in the real world’. Intuitively, the notion is clear: deniability should allow Alice
to plausibly evade incrimination when communicating. However, the adversarial
model and evaluation of real world protocols claiming deniability is not agreed
upon (should Alice be able to claim that she did not participant in a particular
communication?). Celi and Symeonidis [8] give an overview of the current state
of play and a discussion of open problems. Deniable encryption is one particular
primitive whose definition is widely agreed upon in the literature and for which
the applications are clear (including in e-voting, multi-party computation and
to protect against coercion). The threat model for deniable encryption usually
considers an adversary who is willing to coerce users; in this work we extend the
model to consider adversaries who also undermine deniability by using subversion
attacks. This seems a reasonable additional assumption to make of an adversary
who is willing to engage in coercion. We hope that our work helps to elucidate
some of the issues involved in designing deniable schemes and refine the threat
model for deniable encryption.

6 As an interesting aside, the approach for iO deniability schemes is to hide an encoding
of the faked ciphertext within randomness; the encryption algorithm first checks
whether the randomness encodes a ciphertext c and if so outputs c; if not, it proceeds
to encrypt the message. The security follows from the fact that iO obfuscates the
inner working of the algorithm so that it appears as a black box. This results in
large, structured randomness inputs which would seem to facilitate subversion.
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Abstract. In this paper we formalise public-key Updatable Encryption
(PKUE), a primitive so far studied formally only in the symmetric set-
ting. Defining UE in the public-key setting enables us to establish a new
notion of security we call epoch confidentiality (EC) which considers the
ability of an adversary to distinguish the public keys used in periods
known as epochs and in turn reflects the leakage of the time in which
a ciphertext was created. We propose a public-key UE construction and
prove that it satisfies our new notion of security alongside a notion of
ciphertext confidentiality such that efficiency is not affected by moving
to the public-key setting.

1 Introduction

In recent years there has been an increase in the outsourcing of encrypted data
to a potentially untrusted host. To protect the underlying data and mitigate the
security risks of key compromise over a long time, several cryptographic schemes
have been proposed that employ a technique called key-rotation which enables
an entity to move existing ciphertexts from the old to the new key [13]. Triv-
ially, a scheme can update a ciphertext by decrypting and then re-encrypting the
underlying plaintext with the updated key. However, when the encrypted data
has been outsourced, this is an impractical method. Either the owner must down-
load, re-encrypt and update all ciphertexts themselves, which is computationally
inefficient, or they outsource the update by sending the encryption keys to the
untrusted host to perform re-encryption, which no longer ensures security [4].

The authors of [4] introduced the updatable encryption (UE) primitive to pro-
vide a more elegant, non-trivial solution to the above. Instead of re-encrypting
a ciphertext from an old to a new key, the data owner instead generates a token
that enables the host to convert the ciphertext to encryption under the new
key (provided it is trusted to delete old tokens and ciphertexts after an update)
without the need to decrypt.Traditionally, UE schemes have been designed in the
symmetric-key setting [4–6,9,10,14] to convert ciphertexts in a periodic man-
ner marked by set time-intervals known as epochs and using encryption keys
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valid only for their associated epoch. The advantage of equipping an encryp-
tion scheme with an update functionality is met with the challenge of modelling
security, due to the corruption capabilities of an adversary. As a consequence,
the main focus of UE research has been on defining new notions of security and
strengthening past notions. The complexities in ensuring security could poten-
tially dominate important factors such as the efficiency, practicality and cost of
implementation. For several reasons and with careful consideration, we will for-
malise a public-key ciphertext-independent UE scheme with probabilistic updates.
As a consequence, we formalise and prove replayable chosen-ciphertext security
of our construction, which has previously been shown to be the gold-standard
level of security for probabilistic UE schemes [11]. We defer the reader to the
extended version of this paper for an in-depth overview of the current literature,
which comprehensively discusses the trade-offs between such factors and their
consequences.

Contributions and Motivation. Our first major contribution in this paper is
to explicitly define updatable encryption as a public-key primitive (PKUE) in
Sect. 2. Notably, several symmetric UE works [9,11,13] have adopted public-key
techniques, however, lifting UE to the public-key setting enables us to extend
the already rigorously defined security of symmetric UE to capture notions of
security only relevant in the context of public-key primitives and building blocks.
We note that one can view UE as a special case of the public-key primitive known
as proxy re-encryption (PRE) [2,7,12] and we are motivated to explore UE in the
public-key setting for the same applications in which PRE schemes are utilised.
However, we emphasise that UE and PRE are fundamentally different primitives
in the sense of security guarantees.

Moreover, we identify a gap in previously proposed security modelling which
sees us introduce a new notion of security called epoch confidentiality in Sect. 3.
Epoch confidentiality can only be modelled in the public-key setting which fur-
ther illustrates our motivation for formalising public-key UE: guaranteeing secu-
rity notions specific to public-key building blocks. In more words, we simultane-
ously achieve confidentiality of both epochs and ciphertexts (UP-IND-EC-RCCA
security) by asking an adversary to distinguish the underlying message and pub-
lic key used in encryption that results in the given challenge ciphertext. Our
definition of epoch confidentiality is inspired by and can be viewed as achiev-
ing key privacy [1] in public-key updatable encryption. Key privacy is especially
important in UE schemes as the epoch keys have more function than keys in
standard PKE schemes. Specifically, epoch keys are required in update token
generation and they directly relate to the corresponding epoch in which they are
used.

We argue that the notion of epoch confidentiality must be satisfied in any
UE scheme in which the data owner cares about the leakage of the age of their
encrypted information – e.g., from dating app profiles to individual medical
records outsourced for storage. Whilst the leakage of ciphertext age has pre-
viously been discussed in [5,8], not only are their proposed schemes designed
for different types of UE schemes, the ciphertext-dependent and deterministic
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ciphertext-independent update setting respectively, one critical oversight in both
works is to consider the direct relationship the epoch keys have to ciphertext
updates. For instance, epoch keys are used to derive the update token, and the
inferable information from these is not captured in the ciphertext confidentiality
model of both [3,5]. By contrast, our security model not only asks the adver-
sary to distinguish the underlying message in a UE scheme but also requires the
adversary to distinguish the epoch public key used to encrypt the ciphertext.
Thus, the notion of epoch confidentiality fully captures the leakage of an epoch
in a probabilistic ciphertext-independent update setting by modelling both epoch
key indistinguishability and ciphertext confidentiality.

In the full version of the paper we present a concrete public-key UE scheme
and prove it satisfies epoch confidentiality. Our PKUE scheme is an adaptation of
an existing symmetric UE construction [11] explicitly using updatable public-key
building blocks. In doing so, we can lift the security of the scheme from CPA-
security to RCCA-security, thus demonstrating the existence of a public-key UE
primitive satisfying (UP-IND-EC-RCCA) security. We conclude our work in the
extended version by detailing the security analysis and discussing the efficiency
of our construction.

2 Public-Key Updatable Encryption

Notation. An updatable encryption scheme is defined by epochs of time ei

from the range of time i = {0, . . . ,max}. We denote the current epoch e or
use subscript notation ei for i ∈ N if we define multiple epochs at once and
in security games the challenge epoch is represented by ẽ. To signify epoch
keys the notation ke, ke+1 and kold, knew is used interchangeably in this work,
depending on whether we require explicit epoch notation or we only need to
define consecutive epoch keys (similarly for update tokens Δ).

Traditional symmetric UE is for an owner outsourcing encrypted data over a
long period. Time in a UE scheme is formally divided into equal periods known
as epochs in which epochs are associated with distinct keys. A ciphertext is
updated (re-encrypted) by a potentially untrusted host to the next epoch to
provide stronger security by rotating the key used for encryption. Crucially, this
update is performed by the host using an update token derived by the date owner,
which is formed from the current and preceding epoch keys, such that the host is
incapable of learning anything about the encrypted information. Following the
discussion in the Introduction, we are motivated to formalise a public-key UE
scheme which will be provided below. The key idea is to lift the definition of
UE to the public-key setting by generating an epoch key consisting of a public
key and a secret key component, and the update token is derived from the past
epoch secret key and the current (full) epoch key.

Definition 1 (Updatable Encryption). A public-key updatable encryption
(UE) scheme for message space MSP consists of a set of polynomial-time algo-
rithms (UE.Setup, UE.KG, UE.TG, UE.Enc, UE.Dec, UE.Upd), defined as follows:



Epoch Confidentiality in Updatable Encryption 63

– UE.Setup(1λ) $→ pp : The owner runs the probabilistic algorithm UE.setup
on input security parameter λ, outputting public parameters pp. Whilst not
made explicit, assume throughout that the security parameter (1λ) is input
into the algorithms of the scheme.

– UE.KG(pp, e) $→ ke : The owner runs the probabilistic key-generation algo-
rithm UE.KG for epoch e on input the public parameters. The output is an
epoch key ke := (pke, ske) composed of public key (pke) and secret-key (ske)
elements.

– UE.TG(ske, ke+1) → Δe+1 : The owner generates the update token by running
the deterministic algorithm UE.TG on input the secret key ske of epoch key
ke and epoch key ke+1 for the proceeding epoch.

– UE.Enc(pke,m) $→ Ce : The owner runs the probabilistic algorithm UE.Enc on
input a message m ∈ MSP and public key pke of some epoch e, outputting
a ciphertext Ce.

– UE.Dec(ske, C) → {m′,⊥} : The owner runs the deterministic algorithm
UE.Dec on input a ciphertext C and secret key ske for some epoch e, returning
either the message m or abort ⊥.

– UE.Upd(Δe+1, Ce)
$→ Ce+1 : The host runs the probabilistic algorithm

UE.Upd. This is run on input ciphertext Ce for epoch e, and update token
Δe+1 for the next epoch (e+1), and returns as output the updated ciphertext
Ce+1.

Informally, the correctness property ensures that fresh encryptions and updated
ciphertexts should decrypt to the underlying plaintext, given the appropriate
epoch key [5,11,13].

Correctness. Given security parameter λ, an updatable encryption scheme (UE)
formalised in Definition 1 is correct if, for any message m ∈ MSP and for any
j ∈ {1, . . . , e}, i ∈ {0, . . . , e} with e > i, there exists a negligible function negl
such that the following holds,

Pr

⎡
⎢⎢⎢⎢⎢⎣

pp
$← UE.Setup(1λ); kej

$← UE.KG(pp, ej);

Δej
← UE.TG(skej−1 , kej

);Cei

$← UE.Enc(pkei
,m);

{Cej
← UE.Upd(Δej

, Cej−1) : j ∈ {i + 1, · · · ,max}} :
UE.Dec(ske, Ce) = m

⎤
⎥⎥⎥⎥⎥⎦

≥ 1 − negl(λ).

Before defining a novel security notion for PKUE, we highlight that the extended
version of the paper contains the comprehensive details of lists and oracles
required for security modelling in an experiment capturing post-compromise
security and ciphertext unlinkability. To be exact, the latter notion of ciphertext
unlinkability formalises replayable chosen-ciphertext security (UP-IND-RCCA)
which assumes an adversary queries updates of arbitrary ciphertexts, however,
they are incapable of distinguishing updated ciphertexts from the original cipher-
text, despite access to prior ciphertexts and update tokens. Notably, modelling



64 J. Knapp and E. A. Quaglia

RCCA-security is viewed as the benchmark notion of ciphertext-independent UE
security given update attacks in an untrusted environment, in line with the recent
work of [11].

3 Epoch Confidentiality

In this section, we introduce the notion of an epoch confidential public-key UE
primitive. We capture both epoch and ciphertext confidentiality in the UP-IND-
EC-RCCA security notion, (Definition 2). We are motivated by the fact that
ciphertext-independent UE literature has not yet captured epoch confidentiality,
which we argue next is an important security property a UE scheme must satisfy.
Namely, in the UE literature the number of key updates on a file indicates the age
of the encrypted file (ciphertext). The authors of [3,5] independently highlighted
ciphertext-age leakage to be problematic in real-world scenarios. For instance,
[3] considers the setting of dating apps where the number of updates in a UE
scheme would reveal how long the person has been a customer which is sensitive
information. Indeed, numerous schemes proposed in the literature, such as [9],
create a ciphertext expansion as time progresses which results in ciphertext
length variance. The authors of [3] demonstrated how ciphertext length can be
used to trivially infer ciphertext-age in a UE scheme.

A tentative solution given by [3] is to require the length of fresh and updated
ciphertexts to be equal, a notion known as compactness. However, not only is
compactness a strong property to ensure, it does not guarantee there will be
no leakage of ciphertext age. Despite the satisfaction of traditional notions of
security for UE schemes and ciphertext compactness, ciphertext patterns can
indicate if the ciphertext is generated by fresh encryption or ciphertext update.
Indeed, in [3] a simple example is given in which the last bit of the respective
ciphertexts differ, and an adversary can determine whether the ciphertext was
derived from an update of a pre-existing ciphertext or fresh encryption simply by
comparing the last bits of the ciphertexts, thus leaking age information. In [3,5]
the above issues are handled by modelling the computational indistinguishability
between fresh ciphertexts and re-encrypted ones to prevent leakage of ciphertext-
age. However, without further security modelling an adversary can still infer an
epoch and consequently the age of a ciphertext by distinguishing the public
component of the epoch key used in encryption, token generation and ciphertext
updates.

In more words, our contribution in defining epoch confidentiality not only
captures age leakage as in [3,5] but goes one step further by modelling the
indistinguishability of epoch public keys. By definition, the epoch key is designed
such that the update token can be derived from the current and proceeding
epoch keys. Without specific conditions in security modelling, the corruption of
epoch keys and update tokens in challenge-equal epochs enables an adversary
to infer information about a version of the challenge ciphertext. In addition to
requiring the computational indistinguishability of ciphertexts from encryption
and update, we necessitate the computational indistinguishability of the epoch
public keys to provide epoch confidentiality in a given UE scheme.
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Security Modelling. To achieve epoch confidentiality for a public-key updat-
able encryption scheme as in Definition 1, an adversary should be unable to dis-
tinguish the public-key component of the epoch key under which a ciphertext has
been generated. Thus, possession of distinct public keys and a challenge cipher-
text should not give an adversary an advantage in determining which public key
and therefore which epoch the ciphertext was encrypted under. This approach
to modelling security is inspired by and similar in manner to key privacy [1],
which is used to define anonymity in public-key encryption schemes (see the
Appendices in the extended version of the paper).

To formalise Definition 2, we use the the security experiment given in Fig. 1
(ExpUP-IND-EC-CCA,b

UE,A (λ)). The intuition is to model an indistinguishability game
between the challenger and an adversary A. Initially, the adversary is given two
challenge public keys (pke0 , pke1) and A proceeds to query the oracles detailed
in the full version of this paper.

The extended version of the paper contains the details of the lists maintained
by the challenger and oracles. We highlight an important list to epoch confiden-
tiality, K̃ which captures the epochs in which adversary A receives challenge
public keys and this list must be checked before responding to all oracle queries,
to prevent trivial wins.

In more words, the game in Fig. 1 starts by initialising the global state GS.
Next, the key-generation algorithm is run twice in order to generate epoch keys
ke0 = (pke0 , ske0) and ke1 = (pke1 , ske1) for distinct epochs of time e0, e1. The
public keys (pke0 , pke1) are then given to the adversary. The adversary can query
oracles O = {ODec,OUpd,ONext,OCorrupt-Token,OCorrupt-Key} to output valid chal-
lenge messages (m0,m1) ∈ MSP required to be of the same length, alongside
some state information s. Subsequently, the challenger encrypts mb using public
key pkeb

, for a pre-determined bit b ∈ {0, 1}, sending the challenge ciphertext
C to the adversary. Using this challenge ciphertext alongside the state informa-
tion s and further access to previously detailed oracles, A guesses the bit b′ and
succeeds in the game if their guess corresponds to the bit b chosen before the
experiment began. More formally,

Definition 2 (UP-IND-EC-RCCA-Security).

A public-key updatable encryption scheme (UE), formalised in Definition 1, sat-
isfies UP-IND-EC-RCCA security if for any PPT adversary A there exists a neg-
ligible function negl such that

Pr[ExpUP-IND-EC-RCCA
UE,A (λ) = 1] ≤ 1/2 + negl(λ).

Preventing Trivial Wins and Ciphertext Updates. The winning condition
states that the intersection of lists K and C∗ must be empty which is crucial in
preventing the adversary from trivially winning in the security game and if these
conditions are not met, then A’s guess is discarded and the output is ⊥. In more
words, the challenge epoch of the experiment cannot belong to the set of epochs
in which an update token has been learned or inferred, nor can there exist a
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ExpUP-IND-EC-RCCA,b
UE,A (λ)

Initialise global state

GS
$← Init(1λ); GS = (pp, k0, Δ0,S, 0)

ke0
$← UE.KG(pp, e0), ke1

$← UE.KG(pp, e1) such that ke0 �= ke1, (e0, e1) K∈�
ke0 := (pke0 , ske0), ke1 := (pke1 , ske1)
Challenger sends (pke0 , pke1) to A;
K̃ ← {(e0, e1)} ∩ K̃
(m0, m1, s)

$← AO(pp, pke0 , pke1)
Some state information s
if |m0| �= |m1| ∨ {m0, m1 ∨PSM∈�} (m0 = m1) then

return ⊥
else

C
$← UE.Enc(pkeb , mb)

M∗ ← M∗ ∪ (m0, m1); C ← C ∪ {e};ẽ ← {e}
b′ $← AO(pp, C, s)
if (b′ = b) ∧ (K ∩ C∗ = ∅) then

return 1
else

return ⊥

Fig. 1. The security game for a UE scheme satisfying UP-IND-EC-RCCA-security, where
set S = {L̃,M∗, T ,K, K̃, C, C∗} is initially empty, s defines some state information
output by the adversary and O = {ODec,ONext,OUpd,OCorrupt-Token,OCorrupt-Key} is the set
of oracles an adversary A calls.

single epoch where the adversary knows both the epoch key (public and secret
key components) and the (updated) challenge-ciphertext [13]. To see this, if the
adversary A corrupts token Δe+1 in an epoch after which A has obtained the
challenge ciphertext C̃ during epoch e, either by inference or via an update,
then the adversary is capable of updating the ciphertext into the next epoch
(e + 1) [11].

Conclusions. Our first contribution in this work was re-imagining updatable
encryption as a public-key primitive and modelling a public-key equivalent of a
prior security notion, which we deem as a necessary security requirement of all
probabilistic UE schemes. Our second major contribution was to introduce a new
concept of security called epoch confidentiality. In the full version of this work
we modified an existing, symmetric UE construction to the public-key setting
with no impact on the cost/efficiency of the public-key version of the UE scheme
and we use this concrete scheme to show the feasibility of a UE construction
satisfying epoch confidentiality.
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Abstract. As a new revocation mechanism for identity-based encryp-
tion (IBE), server-aided revocable IBE (SR-IBE), firstly proposed by Qin
et al. in 2015, achieves remarkable advantages over previous identity revo-
cation techniques. In this primitive, almost all of workloads on the users
(i.e., receivers) side can be delegated to an untrusted server which does
not possess any secret information, and the users can compute short-term
decryption keys alone at any time period without having to communicate
with either the private key generator (PKG) or server. In 2016, Nguyen
et al. creatively presented the first lattice-based SR-IBE by adopting a
“double encryption” mechanism to enable smooth interactions between
the sender and the server, as well as between the server and the receiver,
while ensuring the confidentiality of encrypted messages.

In this paper, inspired by recent work on a new treatment of the iden-
tity space and the time period space, we simplify the first construction of
lattice-based SR-IBE provided by Nguyen et al., and remove some items
from the public parameters and the master secret key. In particular, our
scheme is more efficient by reducing the workloads of PKG, the server,
the sender and the receivers, simultaneously. At the heart of our new
design is a tool called “leveled ciphertexts” that enables constant cipher-
texts and simplified encryptions, not linear in the length of user identities
and without a burdensome double encryption technique, which serves as
a more effective solution to the challenge in turning the pairing-based
instantiation of SR-IBE into the world of lattice-based cryptography, and
based on the hardness of learning with errors (LWE) problem, we prove
that our new scheme is selectively secure in the standard model.

Keywords: Identity-based encryption · Lattices · Identity
revocation · Server-aided · Leveled ciphertexts

1 Introduction

Identity-based encryption (IBE), as an advanced form of traditional public-key
encryption, was firstly introduced by Shamir [20] in 1984. IBE can eliminate the
dependency on public-key infrastructure and allow to utilize an arbitrary string
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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(e.g., email address) as public key of each system user. To address the challenge
of identity revocation (e.g., the user misbehaves, or his key is lost or stolen) in
the IBE setting, in 2001, Boneh and Franklin [5] firstly suggested a naive solution
that the private key generator (PKG) periodically issues a new private key for
each non-revoked user in each time period. Unfortunately, this solution is too
impractical in a large-scale IBE system, and the PKG’s workload grows linearly
in the number of users N , moreover, each non-revoked user has to maintain a
secret channel with PKG to periodically renew his private key.

The first scalable IBE with identity revocation or simply revocable IBE (RIBE)
was set forth by Boldyreva et al. [4] in 2008, in which the binary tree (BT) based
revocation method is adopted and the PKG’s workload is only logarithmic in
N . In particular, the time key update can be exactly executed for all the non-
revoked users over a public channel. Nevertheless, when considering a practical
application of RIBE, there is a serious problem in [4] that non-revoked users have
to communicate with PKG regularly to download the update keys, further, to
compute new short-term decryption keys. Obviously, this key updating process
is bandwidth-consuming and non-ideal for users only with limited resources.

In 2016, Nguyen et al. [16] creatively presented a lattice-based SR-IBE scheme
by combining an RIBE scheme [7] and a two-level hierarchical IBE (HIBE) [1] as
two basic building blocks, additionally, by adopting a secure “double encryption”
mechanism to enable smooth interactions between a sender and the server, as
well as between the server and a receiver, while ensuring the confidentiality of
encrypted messages. Nevertheless, a significant shortcoming of the first lattice-
based SR-IBE [16] is a rather low efficiency: the encryptions process for a sender
is sophisticated with the burdensome double encryption operations, and the bit-
size of some item (i.e., c0, a ciphertext component carrying the message m) in
the final ciphertext ctid,t has been expanded by k ≈ 4 log n times where n is the
security parameter, when compared with the underlying lattice-based RIBE [7].
Simultaneously, PKG has to maintain a much more onerous state information of
a perfect BT (i.e., each node of BT has to store 2k random vectors over Zn

q , not
such two vectors as in [7]), in addition, for the user token and time update key
generations, a preimage sampling algorithm, the main time-consuming procedure
for lattice-based cryptography, needs to be repeated k times respectively (only
one execution in the underlying RIBE [7]). Thus, k short sampling vectors for each
node in path(id), the path from a leaf node (a user id is assigned to it) to the root
node of BT, are stored by the server for each user id, and k short sampling vectors
for each node in KUNodes(BT,RL, t), an algorithm which returns a covering set
of nodes Y ⊆ BT satisfying path(id)∩Y = ∅ if and only if id has not been revoked,
need to be downloaded by the server for each time period t. In conclusion, the first
lattice-based SR-IBE [16] effectively alleviates the decryption burden of a receiver
while without sacrificing security, yet at the same time, the scheme of Nguyen
et al. [16] also involves more items in the system parameters, particularly, the
PKG and the sender should spend more computing resources to complete their
corresponding works, further, a requirement for the large storage of the server
also often means more cost (e.g., the server-aided fees) to the receivers.
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In this paper, inspired by recent work of Wang et al. [24] on a new treatment
of the identity space and the time period space, we manage to simplify the first
construction of lattice-based SR-IBE provided by Nguyen et al. [16] and present
a new lattice-based SR-IBE scheme.

Related Works. The first scalable RIBE scheme was proposed by Boldyreva
et al. [4] in 2008, which is creatively constructed by combining a fuzzy IBE and
a complete subset (CS) methodology. Subsequently, an adaptively secure RIBE
and an RIBE with DKER, both based on pairings, were proposed by Libert and
Vergnaud [12] and Seo and Emura [19], respectively.

To resist quantum attacks, the first lattice-based RIBE without DKER, the
first lattice-based RIBE with bounded (and unbounded) DKER and an adaptively
secure RIBE in the quantum random oracle model were successfully constructed
by Chen et al. [7], Takayasu et al. [23], Katsumata et al. [10], and Takayasu [22],
respectively. In order to reduce the workloads and overcome the main decryption
challenges for non-revoked receivers which are with limited resources, Qin et al.
[17] introduced SR-IBE and presented a pairing-based instantiation. Later on, Hu
et al. [9] showed a non-black-box construction of SR-IBE from the computational
diffie-hellman assumption. Recently, the generic constructions of RIBE with CS
(and subset difference) technique, server-aided revocable HIBE and RIBE with
server-aided ciphertext evolution were respectively proposed by Ma and Lin [14],
Lee [11], Liu and Sun [13], Sun et al. [21] and Zhang et al. [25].

Our Contributions and Techniques. In this paper, we present a new con-
struction of lattice-based SR-IBE. We inherit and extend the security and effi-
ciency advantages of Qin et al.’s model and Nguyen et al.’s SR-IBE scheme:
almost all of workloads on the receivers side are delegated to an untrusted server,
which does not possess secret information and only performs correct operations
and returns correct results, meanwhile, each receiver can compute a short-term
decryption key alone at each time period without having to communicate with
either the trusted PKG or untrusted server. Furthermore, the ciphertext compo-
nent carrying m in the final ciphertext enjoys constant size the same as that in
the underlying RIBE [7], thus, achieving a better ciphertext extension. In partic-
ular, the encryptions process is simpler for the sender and without a burdensome
double encryption mechanism. As for the first lattice-based SR-IBE [16] and pre-
vious lattice-based RIBE [7,10,22,23,25], our construction only works for one-bit
message, but a multi-bit version can be easily achieved by adopting a standard
transformation technique [1,8]. With a new treatment of the identity space and
the time period space, some by-products are also obtained: our scheme has fewer
items in the public parameters, BT and almost all of keys. In particular, our new
scheme is provable secure under the classic learning with errors (LWE) hardness
assumption. As in [16], each user’s long-term private key is a trapdoor matrix,
thus having a relatively large bit-size. A detailed comparison between the SR-IBE
[16] and ours is shown in Table 1.

As a high level, the main design method of our new lattice-based SR-IBE is
similar to the pairing-based instantiation of Qin et al. [17] and the lattice-based
instantiation of Nguyen et al. [16] in the sense that we also adopt a lattice-based
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Table 1. Comparison of lattice-based SR-IBE schemes.

Scheme |pp| |token| |ukt| |tkid,t| |skid| |dkid,t| |ctid,t| DKER

[16] (7nm + nk + 2n)Δ0 2mkΔ1 2mk + Δ2 4mkΔ0 4m2Δ0 3mΔ0 (6m + k)Δ0 Yes

Ours (4nm + 2n)Δ0 2mΔ1 mΔ2 3mΔ0 4m2Δ0 3mΔ0 (6m + 1)Δ0 Yes
Note: n is a security parameter, N = 2n is the maximum numbers of users, k = �log q�,
Δ0 = log q, Δ1 = (n + 1) · Δ0, and Δ2 = Δ0 · O(r log N

r
) where r is the number of

revoked users; | · | denotes the bit-size, pp is the public parameter, token is a token, ukt
is a time update key, tkid,t is a short-term transform key, skid is a long-term private
key, dkid,t is a short-term decryption key and ctid,t is a ciphertext.

RIBE [7] and a two-level HIBE [1] as the basic building blocks. However, looking
into the details of our new lattice-based SR-IBE, it is also not straightforward to
pack these building blocks together. As it was discussed in [16], Qin et al. [17]
addressed this problem by using a master-secret key splitting technique which
currently seems not available in the lattice setting. In their lattice-based con-
struction, Nguyen et al. [16] utilized a double encryption mechanism to resolve
it, which is burdensome by involving the sophisticated encryptions operations.
Instead, we adopt a new tool called “leveled ciphertexts”, recently employed by
Katsumata et al. [10] in the context of lattice-based RHIBE with DKER, which
works as follows: each receiver is firstly issued an HIBE trapdoor (i.e., a short
matrix) as long-term private key by PKG, namely, a short trapdoor matrix RA

id

which can be used to sample a short vector eid,t as a short-term decryption key
dkid,t = eid,t for each time period independently from the previous periods. The
sender encrypts a message m ∈ {0, 1} under HIBE and RIBE to obtain the lev-
eled ciphertexts of the form ctid,t = (c0, c0, c1), where c0 is an element of Zq

and is only the ciphertext component carrying m, and c0 and c1 are the level-0
and level-1 ciphertexts, respectively. In particular, the level-0 component c0 is
responsible for achieving the identity revocation mechanism, and (c0, c0) can be
successfully decrypted with a new output ĉ0 by the server. The level-1 compo-
nent c1 will help the receiver to decrypt the new ciphertext component ĉ0 to
recover the original message m.

Organization. The organization of the paper is as follows. In Sect. 2, we review
the definition of SR-IBE and some background knowledge on lattices. A simplified
lattice-based SR-IBE in the standard model is described and analyzed in Sects. 3.
In the final Sect. 4, we conclude our whole paper.

2 Definition and Security Model

Table 2 refers to the notations used in this paper.

2.1 Server-Aided Revocable Identity-Based Encryption

We review the definition and security model of SR-IBE, introduced by Qin et al.
[17]. An SR-IBE is an extension of RIBE that supports identity revocation, and
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Table 2. Notations of this paper.

Notation Definition

a,A Vectors, matrices
$←− Sampling uniformly at random

‖ · ‖, ‖ · ‖∞ Euclidean norm �2, infinity norm �∞
�e�, �e� The smallest integer not less than e, the integer closet to e

mod q (−(q − 1)/2, (q − 1)/2]

O, ˜O, ω Standard asymptotic notations
log e Logarithm of e with base 2
ppt Probabilistic polynomial-time

additionally, it delegates almost all of workloads on receivers side to an untrusted
server which is normally assumed to perform correct operations and return the
correct results. A trusted center firstly issues a master secret key (msk) and the
public parameters (pp). The PKG then issues a long-term private key skid and a
corresponding token toid for each user (i.e., receivers) with an identity id and a
time update key ukt for each time period t by using msk, meanwhile, skid is sent
to user id via a secret channel, yet toid and ukt are only sent to the server via a
public channel. The PKG will maintain a revocation list (RL) to record all state
information st on the revoked users. The server with toid and ukt can transform a
ciphertext ctid,t for a non-revoked user id with period t into a partially decrypted
cipertext ct′id,t. Finally, the non-revoked user id recovers a message m from ct′id,t
by utilizing a short-term decryption key dkid,t which is derived from his long-
term private key skid and current time period t. The system model of SR-IBE is
shown in Fig. 1.

Fig. 1. System model of SR-IBE.
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Definition 1. An SR-IBE scheme involves 4 distinct entities: PKG, server,
sender and receiver, associated with an identity space I, a time period space
T , a message space M, and consists of 10 polynomial-time ( pt) algorithms:

– Setup(1n, N): This is the setup algorithm run by the PKG. On input a system
security parameter n and the maximal number of users N , it outputs a master
secret key msk, the public parameters pp, a user revocation list RL (initially
∅) and a state st. Note: msk is kept in secret by the PKG, and pp is made
public and as an implicit input of all other algorithms.

– PriKG(msk, id): This is the key generation algorithm run by the PKG. On
input a user identity id and the master secret key msk, it outputs a long-term
private key skid. Note: skid is sent to the receiver via a secret channel.

– Token(msk, id, st): This is the token generation algorithm run by the PKG.
On input a receiver’s identity id, the master secret key msk and a state st, it
outputs a token toid and an updated state st. Note: toid is sent to the server
via a public channel.

– UpdKG(RL, t,msk, st): This is the key update algorithm run by the PKG. On
input current revocation list RL, a time period t, the master secret key msk
and a state st, it outputs a time update key ukt. Note: ukt is sent to the server
via a public channel.

– TranKG(toid, ukt): This is the transform key generation algorithm run by the
server. On input a token toid, an update key ukt (or ⊥), it outputs a short-term
transformation key tkid,t (or ⊥ indicating that the receiver has been revoked).

– DecKG(skid, t): This is the decryption key generation algorithm run by the
receiver id. On input a long-term private key skid and current time t, it outputs
a short-term decryption key dkid,t.

– Encrypt(id, t,m): This is the encryption algorithm run by the sender. On input
a receiver’s identity id, the encryption time period t and a message m. It
outputs a ciphertext ctid,t.

– Transform(ctid,t, tkid,t): This is the transformation algorithm run by the server.
On input a ciphertext ctid,t and current transform key tkid,t, it outputs a
partially decrypted ciphertext ct′id,t. Note: ct′id,t is sent to the receiver via a
public channel.

– Decrypt(dkid,t, ct′id,t): This is the decryption algorithm run by the receiver. On
input a partially decrypted ciphertext ct′id,t and a short-term decryption key
dkid,t, it outputs a message m ∈ M, or a symbol ⊥.

– Revoke(id, t,RL, st): This is the revocation algorithm run by the PKG. On input
current revocation list RL, an identity id, a revoked time period t and a state
st, it outputs an updated RL = RL ∪ {(id, t)}.
The correctness of an SR-IBE is described as follows: for all pp, msk, RL and

st generated by Setup(1n, N), skid generated by PriKG(msk, id) for id ∈ I, toid
generated by Token(msk, id, st) for id ∈ I, ukt generated by UpdKG(RL, t,msk, st)
for t ∈ T , ctid′,t′ generated by Encrypt(id′, t′,m) for id′ ∈ I, t′ ∈ T and m ∈ M,
then it is required that:

– If (id, t) /∈ RL, then TranKG(toid, ukt) = tkid,t.
– If (id = id′) ∧ (t = t′), then Decrypt(dkid,t,Transform(ctid′,t′ , tkid,t)) = m.
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An SR-IBE scheme is an extension of RIBE and should satisfy indistinguisha-
bility under the chosen-plaintext attack (IND-CPA) security to guarantee message
hiding security. Qin et al. [17] firstly defined semantic security against adaptive-
revocable-identity-time and chosen-plaintext attacks for SR-IBE. Here, as in [16],
we consider selective-revocable-identity-time security (a weaker notion initially
was suggested in RIBE by Boldyreva et al. [4], subsequently by Chen et al. [7],
Nguyen et al. [16], Katsumata et al. [10] and Zhang et al. [25], in which an adver-
sary A sends a challenge identity and time period pair (id∗, t∗) to the challenger
C before the execution of Setup(1n, N). A slight difference is that we formalize
the security with a game capturing a stronger privacy property called “indistin-
guishable from random” as defined in [1].

In the IND-CPA security model of SR-IBE, an attacker A can request the long-
term private key, token, time update key, identity revocation, and short-term
decryption key queries. One of the most restrictions is that if A has requested
a long-term private key for the challenge identity id∗, then id∗ must be revoked
before (or at) the time update key query of the challenge time period t∗. Finally,
A’s goal is to determine that the challenge ciphertxet is completely random, or
correctly encrypted on the challenge message m∗ corresponding to (id∗, t∗).

Definition 2. The IND-CPA security of SR-IBE is described as follows:

– Intial: The adversary A declares a challenge identity and time pair (id∗, t∗).
– Setup: The challenger C runs Setup(1n, N) to obtain (msk, pp,RL, st). Note:

RL is initially ∅, C keeps msk in secret by himself and provides pp to A.
– Query phase 1: The query-answer between A and C is described in Table 3:

Table 3. The query-answer between A and C.

PriKG(·) Token(·) UpdKG(·) DecKG(·) Revoke(·)
A id id RL, t id, t RL, id, t

C skid toid ukt dkid,t RL = RL ∪ {(id, t)}
Note: the oracles share st and these queries are with some restric-
tions defined later.

– Challenge: A submits a challenge m∗ ∈ M. C firstly samples a bit b
$←−

{0, 1}. If b = 0, C returns a challenge ciphertext ct∗id∗,t∗ by running

Encrypt(id∗, t∗,m∗), otherwise, a random ct∗id∗,t∗
$←− U .

– Query phase 2: A continues to make additional queries as before with the same
restrictions.

– Guess: A outputs a bit b∗ ∈ {0, 1}, and wins if b∗ = b.
In the above game, the following restrictions should be satisfied:

– UpdKG(·) and Revoke(·) must be queried in a non-decreasing order of time.
– Revoke(·) cannot be queried at time t if UpdKG(·) has been queried at t.
– Revoke(·) must be queried on id∗ at t ≤ t∗ if PriKG(·) has been queried on id∗.
– DecKG(·) cannot be queried at t if UpdKG(·) has not been queried at t.
– DecKG(·) cannot be queried on (id∗, t∗) if id∗ is non-revoked at t∗.
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The advantage of A is defined as AdvIND-CPA
SR-IBE,A(n) = |Pr[b∗ = b]− 1/2|, and an

SR-IBE scheme is IND-CPA secure if AdvIND-CPA
SR-IBE,A(n) is negligible in the security

parameter n.

2.2 Lattices

In this subsection, we recall the knowledge on integer lattices.

Definition 3. Given n, m, q ≥ 2, a random A ∈ Z
n×m
q , and u ∈ Z

n
q , the m-

dimensional q-ary orthogonal lattice Λ⊥
q (A) (and its shift Λu

q (A)) is defined as:
Λ⊥

q (A) = {e ∈ Z
m | Ae = 0 mod q} and Λu

q (A) = {e ∈ Z
m | Ae = u mod q}.

The discrete Gaussian over Λ with center c ∈ Z
m and a parameter s > 0 is

denoted as DΛ,s,c, and we omit the subscript and denote it as DΛ,s if c = 0.

Lemma 1 ([8]). For q ≥ 2, m ≥ 2nlog q�, assume that the columns of A ∈
Z

n×m
q generate Z

n
q , let s ≥ ω(

√
logm), then the followings hold:

1. For e $←− DZm,s, the distribution of u = Ae mod q is statistically close to
uniform over Z

n
q .

2. For e $←− DZm,s, then Pr[‖e‖∞ ≤ s · logm�] holds with a larger probability.

A ppt trapdoor generation algorithm returning a statistically close to uniform
A together with a low Gram-Schmidt norm basis for Λ⊥

q (A) plays a key role in
lattice-based cryptography. This algorithm was firstly introduced by Ajtai [2],
and two improvements were investigated in [3,15].

Lemma 2 ([2,3,15]). Let n ≥ 1, q ≥ 2, m = 2nlog q�, there is a ppt algorithm
TrapGen(q, n,m) that returns A ∈ Z

n×m
q statistically close to an uniform matrix

in Z
n×m
q and a trapdoor RA for Λ⊥

q (A).

Gentry et al. [8] showed an algorithm to sample shorter vectors (or matrices)
from a discrete Gaussian distribution, and an improvement was given in [15].
Meanwhile, to delegate a trapdoor for a super-lattice was given in [6].

Lemma 3 ([8,15]). Let n ≥ 1, q ≥ 2, m = 2nlog q�, given A ∈ Z
n×m
q , a

trapdoor RA for Λ⊥
q (A), a parameter s = ω(

√
n log q log n), and a vector u ∈

Z
n
q , there is a ppt algorithm SamplePre(A,RA,u, s) returning a shorter vector

e ∈ Λu
q (A) sampled from a distribution statistically close to DΛu

q (A),s.

Lemma 4 ([6]). Let q ≥ 2, m = 2nlog q�, given A ∈ Z
n×m
q who can gen-

erate Z
n
q , a basis RA ∈ Z

m×m for Λ⊥
q (A), a random A′ ∈ Z

n×m′
q , there is

a deterministic algorithm ExtBasis(RA,A∗ = A|A′) returning a basis RA∗ ∈
Z
(m+m′)×(m+m′) for Λ⊥

q (A
∗), especially, RA, RA∗ are with equal Gram-Schmidt

norm. Note: this result holds for any given permutation of all columns of A∗.
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Lemma 5 ([6]). Let n ≥ 1, q ≥ 2, m = 2nlog q�, s ≥ ‖˜RA‖ ·ω(
√
log n), RA ∈

Z
m×m is a basis for Λ⊥

q (A), there is a ppt algorithm RandBasis(RA, s) returning
a new basis R′

A ∈ Z
m×m and ‖R′

A‖ ≤ s · √
m. In particular, for two basis

matrices R(1)
A and R(2)

A for Λ⊥
q (A), and s ≥ max{‖ ˜R(1)

A ‖, ‖ ˜R(2)
A ‖} · ω(

√
log n),

RandBasis(R(1)
A , s) is statistically close to RandBasis(R(2)

A , s).

Lemma 6 ([1]). Let q > 2, m > n, A ∈ Z
n×m
q , A′ ∈ Z

n×m′
q , and s > ‖˜RA‖ ·

ω(
√

log(m + m′)), given a trapdoor RA for Λ⊥
q (A) and u ∈ Z

n
q , there is a ppt

algorithm SampleLeft(A|A′,RA,u, s) returning a shorter e ∈ Z
m+m′

sampled
from a distribution statistically close to DΛu

q (A|A′),s.

Lemma 7 ([1]). Let q > 2, m > n, A, B ∈ Z
n×m
q , s > ‖˜RB‖ · O(

√
m) ·

ω(
√
logm), given a trapdoor RB, a low-norm R ∈ {−1, 1}m×m, and u ∈ Z

n
q ,

there is a ppt algorithm SampleRight(A,B,R,RB,u, s) returning a shorter e ∈
Z
2m distributed statistically close to DΛu

q (F),s, where F = [A|AR+B].

The learning with errors (LWE) problem was firstly introduced by Regev [18].

Definition 4. The LWE problem is defined as follows: given a random s $←− Z
n
q ,

a distribution χ over Z, let As,χ be the distribution (A,A�s + e) where A $←−
Z

n×m
q , e $←− χm, and to make distinguish between As,χ and U $←− Z

n×m
q ×Z

m
q .

Let β ≥ √
n·ω(log n), for a prime power q, given a β-bounded χ, the LWE problem

is at least as hard as the shortest independent vectors problem SIVP
˜O(nq/β).

An injective encoding function H : Zn
q → Z

n×n
q is adopted for our lattice-

based SR-IBE scheme. An explicit design called encoding with full-rank differ-
ences (FRD) was proposed by Agrawal et al. [1].

Definition 5. Let n > 1, prime q ≥ 2, an injective encoding function H : Zn
q →

Z
n×n
q is called FRD if:

1. For ∀e1, e2 ∈ Z
n
q , e1 �= e2, H(e1) − H(e2) ∈ Z

n×n
q is full-rank.

2. H can be computed in a polynomial time, i.e., O(n log q).

Lemma 8 ([1]). Let n ≥ 1, prime q > 2, m > (n+1) log q+ω(log n), A,B $←−
Z

n×m
q , and R $←− {−1, 1}m×m mod q. Then, for all w ∈ Z

m
q , (A,AR,R�w)

is statistically close to (A,B,R�w).

3 Our Lattice-Based SR-IBE Scheme

Our lattice-based SR-IBE scheme in the standard model is a combination of a
two-level lattice-based HIBE scheme [1] and a lattice-based RIBE scheme [7] via
a new design tool - leveled ciphertexts. In addition, we also adopt the classical
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BT revocation mechanism to alleviate the PKG’s workload (a user id is viewed
as a leaf node of BT and each node in BT has an identifier which is a fixed and
unique string, i.e., id = (1, id1, id2, · · · , idlog N ), where N is the maximal number
of system users. Additionally, due to the limited space, the detailed description of
KUNodes(BT,RL,t) algorithm is omitted in this paper and any interested readers
please refer to [4,7,14,16,17,19,22,25]).

Additionally, as a preparation, we need to explain our treatment of identity
space I ⊆ Z

n
q − {0n} and time period space T ⊆ Z

n
q − {0n}, which was recently

introduced by Wang et al. [24]. Because an identity id = (1, id1, · · · , idn) ∈ I,
we define I = {1}×Z

n−1
q . In addition, we define a new space ˜I = {−1}×Z

n−1
q ,

which satisfies I ∩ ˜I = ∅ and |I| = |˜I| = qn−1. Thus, there is a one-to-one
correspondence between a real identity id ∈ I and a virtual identity ˜id ∈ ˜I.
The time period space is treated as discrete and its size is polynomial in n, i.e.,
T = {0, 1, · · · , tmax − 1}, and is encoded into the set {2} × Z

n−1
q .

3.1 Description of the Scheme

As in Qin et al. [17] and Nguyen et al. [16], our lattice-based SR-IBE scheme con-
sists of 10 pt algorithms: Setup, PriKG, Token, UpdKG, TranKG, DecKG, Encrypt,
Transform, Decrypt and Revoke. The algorithms are described as follows:

– Setup(1n, N): On input a security parameter n and the maximal number of
users N = 2n, set a prime modulus q = ˜O(n3), a dimension m = 2nlog q�,
a Gaussian parameter s = ˜O(

√
m) and a norm bound β = ˜O(

√
n) for the

distribution χ. The PKG specifies the following steps:
1. Let the identity space I = {1}×Z

n−1
q , time period space T = {2}×Z

n−1
q ,

and message space M = {0, 1}.
2. Run TrapGen(q, n,m) to get A ∈ Z

n×m
q with a trapdoor RA.

3. Set an FRD function H : Zn
q → Z

n×n
q as described in Definition 5.

4. Sample A0,A1,B
$←− Z

n×m
q , and u $←− Z

n
q .

5. Set the sate st = BT that BT is with at least N leaf nodes, and the initial
revocation list RL = ∅.

6. Set pp = (A,A0,A1,B,u,H), and the master secret key msk = RA.
7. Output (pp,msk,RL, st), where msk is kept in secret by the PKG, and pp

is made public and as an implicit input of all other algorithms.
– PriKG(msk, id): On input a user identity id ∈ I and the master secret key

msk. The PKG specifies the following steps:
1. Define A

˜id = [A|A0 + H(˜id)B] ∈ Z
n×2m
q .

2. Run RandBasis(ExtBasis(RA,A
˜id), s) to generate a trapdoor RA

˜

id

for
Λ⊥

q (A˜id).
3. Output skid = RA

˜

id

. Note: skid is sent to the receiver via a secret channel.
– Token(msk, id, st): On input a user identity id ∈ I, the master secret key msk

and a state st. The PKG specifies the following steps:
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1. Set id to an unassigned leaf node of BT, and for each θ ∈ path(id), if u1,θ,

u2,θ are undefined, then sample u1,θ
$←− Z

n
q , set u2,θ = u − u1,θ, and

store (u1,θ,u2,θ) in node θ.
2. Define Aid = [A|A0 + H(id)B] ∈ Z

n×2m
q .

3. Run SampleLeft(Aid,RA,u1,θ, s) to generate eid,θ ∈ Z
2m satisfying that

Aid · eid,θ = u1,θ mod q.
4. Output an updated st, and toid = (θ, eid,θ)θ∈path(id). Note: toid is sent to

the server via a public channel.
– UpdKG(RL, t,msk, st): On input a period t ∈ T , the master secret key msk, a

revocation list RL and a state st. The PKG specifies the following steps:
1. Let At = [A|A1+H(t)B], for each θ ∈ KUNodes(BT,RL, t), retrieve u2,θ.
2. Run SampleLeft(At,RA,u2,θ, s) to generate et,θ ∈ Z

2m satisfying that
At · et,θ = u2,θ = u − u1,θ mod q.

3. Output ukt = (θ, et,θ)θ∈KUNodes(BT,RL,t). Note: ukt is sent to the server via
a public channel.

– TranKG(toid, ukt, t): On input a token toid = (θ, eid,θ)θ∈path(id) and an update
key ukt = (θ, et,θ)θ∈KUNodes(BT,RL,t). The server specifies the following steps:
1. If path(id) ∩ KUNodes(BT,RL, t) = ∅, return ⊥ and abort.
2. Otherwise, pick θ ∈ (path(id) ∩ KUNodes(BT,RL, t)) (only one θ exists).

3. Parse eid,θ =
[

e0id,θ

e1id,θ

]

, et,θ =
[

e0t,θ
e1t,θ

]

, where ei
id,θ, e

i
t,θ ∈ Z

m, for i = 0, 1.

4. Return tkid,t = eid,t =

⎡

⎣

e0id,θ + e0t,θ
e1id,θ

e1t,θ

⎤

⎦ ∈ Z
3m.

– DecKG(skid, t): On input a long-term private key skid = RA
˜

id

and a time
period t. The receiver specifies the following steps:
1. Define A

˜id,t = [A
˜id|A1 + H(t)B] ∈ Z

n×3m
q ,

run SampleLeft(A
˜id,t,RA

˜

id

,u, s) to generate e
˜id,t ∈ Z

3m satisfying that
A

˜id,t · e
˜id,t = u mod q.

2. Return dkid,t = e
˜id,t.

– Encrypt(id, t,m): On input a user identity id ∈ I, a time period t ∈ T and a
message m ∈ {0, 1}. The sender specifies the following steps:
1. Define Aid,t = [A|A0+H(id)B|A1+H(t)B], A

˜id,t = [A|A0+H(˜id)B|A1+
H(t)B] ∈ Z

n×3m
q .

2. Sample s0, s1
$←− Z

n
q , e0

$←− χ, e0, e1
$←− χm, R00,R01,R10,R11

$←−
{1,−1}m×m.

3. Set c0 = AT
id,t · s0 +

⎡

⎣

e0
RT

00e0
RT

01e0

⎤

⎦ mod q, c1 = AT
˜id,t · s1 +

⎡

⎣

e1
RT

10e1
RT

11e1

⎤

⎦ mod q.

4. Compute c0 = uT · (s0 + s1) + e0 + m� q
2� mod q ∈ Zq.

5. Output ctid,t = (c0, c0, c1) ∈ Zq × (Z3m
q )2.

– Transform(ctid,t, tkid′,t′): On input an original ciphertext ctid,t = (c0, c0, c1)
and a transform key tkid′,t′ = eid′,t′ . The server specifies the following steps:
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1. If (id �= id′) ∨ (t �= t′), return ⊥ and abort.
2. Otherwise, compute ĉ0 = c0 − eTid,t · c0 mod q.

3. Output ct′id,t = (ĉ0, c1) ∈ Zq ×Z
3m
q . Note: ct′id,t is sent to the receiver via

a public channel.
– Decrypt(ct′id,t, dkid′,t′): On input a partially decrypted ciphertext ct′id,t =

(ĉ0, c1), a decryption key dkid′,t′ = e
˜id′,t′ . The receiver specifies the follow-

ing steps:
1. If (id �= id′) ∨ (t �= t′), return ⊥ and abort.
2. Otherwise, compute w0 = ĉ0 − eT

˜id,t
· c1 mod q.

3. Output � 2
q w0� ∈ {0, 1}.

– Revoke(id, t,RL, st): On input current revocation list RL, a user identity id, a
time period t and a state st = BT. The PKG specifies the following steps:
1. Add (id, t) to RL for all nodes associated with id.
2. Output an updated RL = RL ∪ {(id, t)}.

3.2 Analysis

In this subsection, we analysis the efficiency, correctness and security of our new
lattice-based SR-IBE in the standard model.

Efficiency: The efficiency aspect of our scheme with N = 2n is as follows:

– The bit-size of public parameters pp is (4nm + 2n) log q = ˜O(n2).
– The bit-size of master secret key msk is m2 log q = ˜O(n2).
– The bit-size of long-term private key skid is 4m2 log q = ˜O(n2).
– The bit-size of token toid is 2m(logN + 1) log q = ˜O(n2).
– The bit-size of time update key ukt is 2m log q ·O(r log N

r ) = O(r log N
r )· ˜O(n)

where r is the number of revoked users.
– The bit-size of short-term transform key tkid,t is 3m log q = ˜O(n).
– The bit-size of ciphertext ctid,t is (1 + 6m) log q = ˜O(n).
– The bit-size of short-term decryption key dkid,t is 3m log q = ˜O(n).

By the above analysis, though as in the first lattice-based SR-IBE [16], our new
SR-IBE enjoys the same asymptotic efficiency for all items, three random matrices
over Z

n×m
q and one random matrix over Z

n×	log q

q have been removed from pp,

and only one trapdoor matrix (two in [16]) over Zm×m in msk. Further, only one
short vector over Z

2m (k ≈ 4 log n vectors in [16]) for each node θ ∈ path(id) in
toid or θ ∈ KUNodes(BT,RL, t) in ukt. Similarly, the size of tkid,t is reduced by
more than k times (4mk log q in [16]). In particular, the component carrying m
in our final ciphertext enjoys the same size as in the underlying RIBE [7], which
is k times less than [16], and the whole encryptions process is simple and without
the burdensome double encryption operations.

Correctness: If our new lattice-based SR-IBE in the standard model is operated
correctly as specified, and a receiver id is not revoked at time period t ∈ T , then
tkid,t = eid,t satisfies Aid,t ·eid,t = Aid ·eid,θ+At ·et,θ = u mod q, and dkid,t = e

˜id,t
satisfies A

˜id,t · e
˜id,t = u mod q.
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– During the transformation algorithm, given a ciphertext ctid,t = (c0, c0, c1),
the server tries to derive a partially decrypted ciphertext ct′id,t = (ĉ0, c1) by
using tkid,t = eid,t:

ĉ0 = c0 − eT
id,tc0 = uT(s0 + s1) + e0 +m� q

2
� − (Aid,teid,t)

Ts0
︸ ︷︷ ︸

=u
T
s0

−eT
id,t

⎡

⎣

e0

RT
00e0

RT
01e0

⎤

⎦

= uTs1 + e0 +m� q

2
� − eT

id,t

⎡

⎣

e0

RT
00e0

RT
01e0

⎤

⎦

– During the decryption algorithm, given a partially decrypted ciphertext
ct′id,t = (ĉ0, c1), the receiver id tries to derive the message m by using
dkid,t = e

˜id,t:

w0 = ĉ0 − eT
˜

id,t
c01 = uTs1 + e0 + m� q

2
� − eT

id,t

⎡

⎣

e0

RT
00e0

RT
01e0

⎤

⎦ − (A
˜

id,t
e

˜

id,t
)
Ts1

︸ ︷︷ ︸

=u
T

s1

−eT
˜

id,t

⎡

⎣

e1

RT
10e1

RT
11e1

⎤

⎦

= m� q

2
� + e0 − eT

id,t

⎡

⎣

e0

RT
00e0

RT
01e0

⎤

⎦ − eT
˜

id,t

⎡

⎣

e1

RT
10e1

RT
11e1

⎤

⎦

︸ ︷︷ ︸

error

According to our parameters settings, it can be checked that error is bounded
by q/5 (i.e., ‖error‖∞ < q/5), thus, we have the conclusion � 2

q w0� = m with an
overwhelming probability.

Security: For the IND-CPA security of our scheme, we show the following theorem.

Theorem 1. Our new lattice-based SR-IBE scheme in the standard model is
IND-CPA secure if the LWE assumption holds.

Proof. We define a list of games where the first one is identical to the original
IND-CPA game as in Definition 2 and show that a ppt adversary A has advantage
zero in the last game. We show that A cannot distinguish between these games,
and thus, A has negligible advantage in winning the original IND-CPA game. Let
id∗ be a challenge identity and t∗ be a challenge time period, we consider two
types of adversaries:

– Type-0: An inside adversary A0 (e.g., a revoked user) who queries a long-term
private key on the challenge identity id∗. Thus, id∗ must be revoked at t ≤ t∗.

– Type-1: An outside adversary A1 (e.g., the server) who only queries a long-
term private key on id �= id∗. In this case, A1 may request a short-term
decryption key on (id∗, t) where t �= t∗.
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We select a bit ty
$←− {0, 1} as a guess for the different types of A, thus, we

have a probability 1/2 to simulate the game correctly. For Type-0 adversary A0

or Type-1 adversary A1, we simulate the games as follows:

Game 0. It is the original IND-CPA game defined in Definition 2.
Game 1. We slightly change the way that C generates (A0,A1,B) in pp.

C runs TrapGen(q, n,m) to obtain B with a trapdoor RB, samples
R∗

00,R
∗
01

$←− {1,−1}m×m at the setup phase, and defines A0 = AR∗
00 −

H(id∗)B mod q, A1 = AR∗
01 − H(t∗)B mod q. For the remainders, they

are unchanged and identical to those in Game 0. Next, we show that
Game 0 and 1 are indistinguishable. In Game 1, R∗

00 and R∗
01 are adopted

only in the constructions of A0, A1, R∗T
00 e0, and R∗T

01 e0. According to
Lemma 8, (A,AR∗

00,R
∗T
00 e0) and (A,AR∗

01,R
∗T
01 e0) are statistically close to

(A,B0,R∗T
00 e0) and (A,B1,R∗T

01 e0), respectively, where B0,B1
$←− Z

n×m
q .

In A’s view, AR∗
00 and AR∗

01 are statistically close to uniform, and thus,
A0 and A1 are close to uniform. Hence, A0 and A1 in Game 1 and 0 are
indistinguishable.

Game 2: We change the way that C selects (u1,θ,u2,θ) for each node in BT. C
generates short vectors for a token query for path(id∗) and a time update
key query for RL and t∗ as follows:
– If ty = 0, we simulate the game for adversary A0 of Type-0. u1,θ and u2,θ

for each node in BT are generated as follows:
– For θ ∈ path(id∗), sample eid∗,θ

$←− DZ2m,s, set u1,θ =
Aid∗eid∗,θ mod q and u2,θ = u − u1,θ.

– For θ /∈ path(id∗), sample et∗,θ
$←− DZ2m,s, set u2,θ = At∗et∗,θ mod q

and u1,θ = u − u2,θ.
Because identity id∗ must be revoked before (or at) the time update key
query for time period t∗, we have path(id∗) ∩ KUNodes(BT,RL, t∗) = ∅.
In addition, let A

˜id∗ = [A|AR∗
00 + (H(˜id∗) − H(id∗))B], and due to the

main property of FRD, H(˜id∗) − H(id∗) is full-rank and RB is also a
trapdoor for Λ⊥

q ((H(˜id∗) − H(id∗))B), thus, C can respond the long-
term decryption key query for id∗ by running the first two steps of
SampleRight(A, (H(˜id∗)− H(id∗))B,R∗

00,RB) to return a short trapdoor
RA

˜

id∗ for Λ⊥
q (A˜id∗). In particular, C should respond a token query for

identity id∗ with (θ, eid∗,θ)θ∈path(id∗), and a time update key query for
time period t∗ with (θ, et∗,θ)θ∈KUNodes(BT,RL,t∗).

– If ty = 1, we simulate the game for A1 of Type-1, firstly sample et∗,θ
$←−

DZ2m,s, and set u2,θ = At∗et∗,θ mod q and u1,θ = u−u2,θ. Because id∗ is
never queried, C should respond a time update key query for time period
t∗ with (θ, et∗,θ)θ∈KUNodes(BT,RL,t∗), and a short-term decryption key by
running SampleLeft(A

˜id,t,RA
˜

id

,u, s) to return a short vector e
˜id,t.

For the remainders, they are unchanged. Because Aid∗ and At∗ can be viewed
as two random matrices over Z

n×2m
q , and according to Lemma 1, u1,θ (or
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u2,θ) is statistically close to uniform. Hence, A cannot distinguish the above
two types simulated by C, and thus, we have a probability 1/2 to simulate
the game correctly. Once a correct game is simulated, Game 1 and 2 are
indistinguishable.

Game 3: We redesign A. C samples A $←− Z
n×m
q . Let Aid = [A|AR∗

00 +
(H(id) − H(id∗))B] ∈ Z

n×2m
q and At = [A|AR∗

01 + (H(t) − H(t∗))B] ∈
Z

n×2m
q . Due to a main property of FRD, H(id) − H(id∗) and H(t) − H(t∗)

are full-rank, and RB is a trapdoor for Λ⊥
q ((H(id) − H(id∗))B) (and

Λ⊥
q ((H(t) − H(t∗))B)). C responds a token query for any id �= id∗ by

running SampleRight(A, (H(id) − H(id∗))B,R∗
00,RB,u1,θ, s) that returns

eid,θ, and a time update key query for any id and t �= t∗ by run-
ning SampleRight(A, (H(t) − H(t∗))B,R∗

01,RB,u2,θ, s) that returns et,θ.
Let A

˜id = [A|AR∗
00 + (H(˜id) − H(id∗))B], C responds a long-term pri-

vate key query for identity id �= id∗ by running the first two steps of
SampleRight(A, (H(id) − H(id∗))B,R∗

00,RB,u1,θ, s) that returns a short
trapdoor RA

˜

id

for Λ⊥
q (A˜id). Additionally, the parameter s = ˜O(

√
m) is suffi-

ciently large, and according to Lemmas 5 and 7, (eid,θ,R˜id) and et,θ are sta-
tistically close to those in Game 2. For the remainders, they are unchanged.
Because A is statistically close to that in Game 2, A’s advantage in Game 3
is at most negligibly different from that in Game 2.

Game 4: We redesign the partial challenge ciphertext (c∗
0, c∗

0, c∗
1) and the remain-

ders are unchanged. C samples c∗
0

$←− Zq, c∗
0, c∗

1
$←− Z

3m
q . Because these

items are random, the advantage of A in returning a correct message m is
zero.

Next, we give a reduction from the LWE problem to show that Game 3 and
4 are computationally indistinguishable for a ppt adversary.

A reduction from LWE: Assume that there is a ppt adversary A distinguishing
Game 3 and 4 with non-negligible advantage, then we adopt A to design an
algorithm B solving the LWE problem defined in Definition 4.

Given an LWE instance, a fresh pair (ai, bi) ∈ Z
n
q ×Zq for i = 1, 2, · · · ,m+1,

from a sampling oracle, which is truly random R$ or noisy pseudo-random Rs for
a secret vector s ∈ Z

n
q , the target of B is to distinguish between the two oracles

by utilizing A. Due to the limited space, we omit the rest proofs of Theorem 1,
if any necessary, please contact the corresponding author for the full version.

4 Conclusion

In this paper, we propose a new lattice-based SR-IBE and simplify the construc-
tion of the first lattice-based SR-IBE introduced by Nguyen et al.. A tool called
“leveled ciphertexts” is adopted to enable constant ciphertext and the simplified
encryptions, that is, not linear in the length of a user identity and without bur-
densome double encryption mechanism, which serves as a more effective solution
to the challenge in turning pairing-based instantiation of SR-IBE into lattices.
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Abstract. In ProvSec 2018, Yasuda proposed a multivariate public key
cryptosystem using the pq-method, whose security is based on the con-
strained MQ problem. Afterward, in SCIS 2020, he improved the cryp-
tosystem by adding noise elements and simultaneously considered the
cryptanalysis using the NTRU method. This improved cryptosystem is
the first one combining lattice and multivariate public-key cryptosystem.
In this paper, we propose three variants of Yasuda’s cryptosystem. The
main improvement is that we invite the linear structures instead of the
multivariate quadratic polynomials. In particular, we simplify the pro-
cedure in key generation mechanism by using a linear mapping mask
which produces resistance against the key-recovery attack. Furthermore,
we propose a ring version that is quite efficient compared to the standard
versions. Finally, we adopt the ring-LWE method instead of the original
NTRU method to give a more promising cryptanalysis.

Keywords: Post-Quantum Cryptography · Lattice · Public key
cryptography

1 Introduction

Nowadays, the security of modern public-key cryptographic schemes, such as
RSA, ECC, DSA, ElGamal, and Diffie-Hellman key exchange, are based on num-
ber theoretic hard problems such as integer factorization problem (IFP), discrete
logarithm problem (DLP) and their elliptic curve variants in certain groups, etc.
With elaborately chosen parameters and implementations, the above crypto-
graphic schemes are temporarily secure against current computing resources.
However, it is known that overwhelming computing power is available by a
quantum computer compared to classic computers. By coordinating with Shor’s
quantum algorithm [19], most of the above crypto algorithms are vulnerable
to being broken in polynomial time by a sufficiently powerful quantum com-
puter in the near future. Since the above cryptosystems are widely deployed
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in real-world applications (e.g., IoT, HTTPS, online banking, cryptocurrency,
software, etc.), developing secure and practical next-generation cryptographic
algorithms is urgent. The well-known “post-quantum cryptography” (PQC) is
highly expected to withstand outstanding quantum attacks. Actually, some
international standards organizations such as NIST, ISO, and IETF already
started the PQC standardization projects several years ago. They mainly focus
on three primitives: Public-Key Encryption algorithms (PKE), the Key Encap-
sulation Mechanism (KEM), and the digital signature schemes. Among the sev-
eral categories, lattice-based cryptography is considered a promising contender
for its robust security strength, comparative light communication cost, desir-
able efficiency, and excellent adaptation capabilities [1]. Indeed, three over four
PKE/KEM/signature algorithms are lattice-based candidates in PQC standard-
ization announced by NIST in 2022 [2]. Further, four PKE/KEM algorithms are
selected for the fourth-round candidate finalists.

The Multivariate Public-Key Cryptography (MPKC) is also one important
component in PQC, where there is one multivariate scheme among three digital
signature candidates in the third-round finalists [2]. The security of MPKC is
based on the hardness of solving Multivariate Quadratic polynomials (MQ) prob-
lems. On the one side, the MPKC signature scheme is efficient due to conducting
in a small number field. On the other side, MPKC is generally not adaptable
for PKE due to its larger key length compared to other categories. For instance,
some encryption schemes such as Simple Matrix Scheme [22], EFC [21], and
HFERP [13] have been proposed these years. All these cryptosystems are suf-
fering from a common and critical shortcoming: a large number of variables are
required for a relatively secure level but incur a higher cost for encryption and
decryption. One method to overcome this shortcoming is constructing trapdoor
one-way functions given by injective polynomial maps. However, it is observed
that one can turn a polynomial map injective easily by adding a restriction on
its definition range. Namely, by using a constrained polynomial map, it is easy to
construct an injective trapdoor one-way function. As a result, this function can
be used to construct secure MPKC encryption schemes whose security is based
on the hardness of solving the constrained multivariate polynomial problem.

It is known that the key sizes or the ciphertext sizes of MPKC or lattice-
based cryptography are usually larger than twice the sizes conducted in most
classical public key crypto schemes in cases of AES-128 bit security. However,
due to the security of the latter being based on some number of theoretical
problems, the computation cost takes more than the former securely based on
the algebraic problems. In ProvSec2018, Yasuda proposed a multivariate PKE
using the so-called pq-method [27]. The security of pq-method is based on the
difficulty of solving the constrained MQ problem which is a hard problem in
MPKC. Substantially, the constrained MQ problem can be seen as a quadratic
version of the Inhomogeneous Short Integer Solution (ISIS) problem in lattice
theory as well. For this reason, the cryptosystem using pq-method is considered
the first PKE combining lattice and MPKC. In order to reduce the size of the
public key, Yasuda further improved the pq-method by inviting an error term in



90 Y. Wang et al.

the encryption phase [28]. This idea is from the classical Learning with Error
(LWE) problem in lattice theory which has been widely used in lattice-based
cryptography [17]. The improved version of pq-method is named by pqe-method.

1.1 Motivations and Contributions

Motivations. The combination of an MPKC and lattice-based cryptography is
a novel idea that may derive some benefits from the aspects of both computa-
tional cost and security: on the one side, the linear algebraic structure in lattice
may provide a desirable efficiency and comparative communication cost, while
cryptanalysis is challenging to handle due to a lack of thoroughgoing grasp of
lattice (reduction) algorithms; on the other side, MPKC holds robust security
but requires more variables resulting in relatively lower efficiency. Particularly,
solving quadratic polynomials in MPKC obviously takes more effort than dealing
with linear polynomials in lattice. This circumstance occurs in both mentioned
above pq-method and the pqe-method, where we consider proposed methods that
enjoy the lattice’s fast computation and low cost and further strengthen their
security from MPKC.

Contributions. We list the following contributions in this paper. Here, n is the
number of variables, and p, q are moduli in the schemes.

– First, we improve the pq-method and the pqe-method by using linear struc-
tures instead of the quadratic polynomials, which we call linear-pq method
and linear-pqe method, respectively. Due to different cryptanalysis, it is diffi-
cult to directly compare the keysize and ciphertext size between the improved
crypto schemes and the original ones. Nevertheless, we can see the results by
comparing the inside parameters used in each scheme. We summarize the
parameter size and the polynomial multiplication cost in the following table.

original pq method linear-pq method original pqe method linear-pqe method

q O(n4p6) O(n2p4) O(n4p6) O(n2p5)
computational cost O(n4) O(n2 log n) O(n4) O(n2 log n)

– Moreover, applying a linear mapping mask at the end of key generation can
strengthen the security against the key-recovery attack using the property of
MPKC.

– Additionally, we propose a ring version of the linear-pqe method. As a result,
the key size and computational cost are substantially reduced by a factor of
1/n, which makes it the most efficient with the smallest key size among the
three proposals.

– The security parameters are evaluated by the ring-LWE method rather than
the original NTRU method.
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1.2 Organization

Section 2 recalls the notations and background, including some hard problems in
lattice theory and multivariate polynomial theory. In particular, the predecessor
of our proposals is introduced in this section. Then, we introduce our proposed
public key encryption algorithms in Sect. 3. In Sect. 4, we estimate the security
parameters with respect to AES-128 bit security using the 2016 estimate which
is commonly used in cryptanalysis for lattice-based cryptosystems. We also eval-
uate the size of keys and ciphertext, and show the practical performance of each
proposal. Finally, we conclude our work in Sect. 5.

2 Preliminaries

In this section, we prepare some mathematical notations used in the paper. Then
we recall the computational problems associated with lattices and multivariate
polynomials. At last, we review the pq-method [27] and the pqe-method [28]
proposed by Yasuda, respectively.

Notations. Let m, n and l be positive integers (∈ Z>0). The set [m] means
{1, . . . , m}. Denote by Zl the residue ring modulo l, i.e. the elements in Zl are
from 0 to l−1. For an element a ∈ Zl, we define a list function of a by liftl(a) ∈ Il

where Il := (−l/2, l/2] ∩ Z. Simultaneously, we denote a finite field Fq with q a
prime number. We represent n independent variables of xi∈[n] by a row vector
of x = (x1, . . . , xn). The set of polynomials with variables in x and coefficients
in Fq is denoted by Fq[x]. Then, we prepare a sequence of m (upper triangular)
matrices A1, . . . , Am ∈ F

n×n
q , m row vectors b1, . . . ,bm ∈ F

n
q , and m constants

c1, . . . , cm ∈ Fq. By using the above notations, we define a quadratic polynomial
system in Fq[x]m as F(x) := {fi(x) := xAixT +bixT +ci :=

∑
j,k∈[n] aijkxjxk +

∑
j∈[n] bijxj +ci ( mod q)}i∈[m]. For the sake of convenience, we write its vector

form by F(x) = (f1(x), . . . , fm(x)) ∈ Fq[x]m in this paper. Moreover, we define
NextPrime(x) the first prime number no smaller than x ∈ R.

2.1 Lattice

Lattice. A lattice L is generated by a basis B which is a set of linearly inde-
pendent vectors b1, . . . ,bn in R

m: L(b1, . . . ,bn) = {∑n
i=1 xibi, xi ∈ Z}. Note

that in this paper we use integer lattices for convenience and we write the basis
in a matrix form as B = (b1, . . . ,bn) ∈ Z

m×n. The integer n is the rank of the
lattice, which equals to the dimension of the vector space spanned by L, i.e.
n = dim(span(L)). It is called full-rank lattice when m = n.

The Euclidean norm of a lattice vector v ∈ R
m, also known as l2-norm, is

‖v‖ :=
√
v · v. There are at least two non-zero vectors with the same minimal

Euclidean norm but contrary sign in a lattice L with basis B = (b1,b2, . . . ,bn):
this norm is called the 1-st successive minimum λ1(L) of L(B). A shortest vector
of L is of norm λ1(L).
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The Shortest Vector Problem. Given a basis B = (b1, . . . ,bn) of a lattice
L, the Shortest Vector Problem asks to find a non-zero shortest vector in L. SVP
is NP-hard for randomized reductions.

Unique Shortest Vector Problem. The Unique SVP Problem (uSVP) is for
a given lattice L which satisfies λ1(L) � λ2(L), to find the shortest nonzero
vector in L. It is called γ Unique SVP problem if the gap of λ2(L)/λ1(L) = γ is
known.

Inhomogeneous Short Integer Solution Problem. Given an integer q, a
matrix A ∈ Z

n×m
q and a vector v ∈ Z

n
q , Inhomogeneous Short Integer Solution

Problem is to compute a short vector y ∈ B s.t. Ay ≡ v ( mod q), where B is
a set of short vectors with some Euclidean norm bound.

Learning with Errors (LWE) Problem [17]. There are four parameters in
the LWE problem: the number of samples m ∈ Z, the length n ∈ Z of secret
vector, modulo q ∈ Z and the standard deviation σ ∈ R>0 for the discrete
Gaussian distribution DZn,σ. Sample a matrix A ∈ Z

m×n
q and a secret vector s ∈

Z
n
q uniformly at random, and randomly sample a relatively small perturbation

vector e ∈ Z
m
q from Gaussian distribution DZn,σ, i.e. e $←− DZn,σ. The LWE

distribution Ψ is constructed by pairs (A,b ≡ As + e (mod q)) ∈ (Zm×n
q ,Zm

q )
sampled as above. The search learning with errors problem (LWE problem) is
for a given pair (A,b) sampled from LWE distribution Ψ , to compute the pair
(s, e). The decision version of LWE problem asks to distinguish if the given pair
(A,b) is sampled from LWE or uniform distribution. The proof of equivalent
hardness between these two versions is given in the original LWE paper [17].

Ring Learning With Errors (Ring-LWE) Problem [14]. Let m ≥ 1 be a
power of 2 and q ≥ 2 be an integer. Let Rq = Zq[x]/Φm(x), where Φ(x) is an irre-
ducible polynomial with degree n. Let χ be a β-bounded distribution. For secret
polynomial s $←− Rq and error polynomial e $←− χ, choosing a ∈ Rq uniformly at
random, output (a,b = a · s + e) ∈ (Rq, Rq). The search version of ring learning

with errors problem (Ring-LWE problem) is: for s $←− Rq, given poly(n) number
of samples of (a,b = a · s + e) ∈ (Rq, Rq), find s (and e simultaneously).

2.2 Multivariate Public Key Cryptography (MPKC)

In this subsection, we introduce the MP/MQ problems and their constrained
variants used as security bases in MPKC.

Multivariate Polynomial Problem. Given a polynomial system of F(x) ∈
Fq[x]m with n variables and m polynomials, the multivariate polynomial problem
(MP problem) is to find a solution of x0 = (x01, . . . , x0n) ∈ F

n
q such that F(x0) =

0. The hardness of MP problem is proven to be NP-complete [11].

Constrained Multivariate Polynomial Problem [27]. Given a bound
parameter L ∈ Z>0 and a polynomial system of F(x) ∈ Fq[x]m with n
variables and m polynomials, the constrained multivariate polynomial problem
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(constrained-MP problem) asks to find a solution of x0 = (x01, . . . , x0n) ∈ In
L

such that F(x0) = 0.
When only quadratic polynomials are used in the MP problem (or the con-

strained MP problem), the problem is called the MQ problem (or the con-
strained MQ problem, respectively). Namely, the more specific MQ problem
and constrained-MQ problem being used in multivariate public key cryptogra-
phy are the versions invoking quadratic polynomials in the MP problem and
Constrained-MP problem, respectively.

Common Construction of Quadratic MPKC Based on MQ Problem.
Let n,m be two integers and q be a prime number. In a quadratic MPKC,
the secret keys include an invertible quadratic map F : F

n
q [x] → F

m
q [x] and

two affine maps of S : F
n
q [x] → F

n
q [x] and T : F

m
q [x] → F

m
q [x]; the public

key is bipolar structure with a composition P = S ◦ F ◦ T : F
n
q [x] → F

m
q [x].

A plaintext m ∈ F
n
q is encrypted by c = P (m); and c can be decrypted by

m = T−1(F−1(S−1(c)). The security of MPKC is based on the assumption
that P is hard to invert without the secret keys. Matsumoto and Imai initially
proposed the crypto scheme based on MP problem in EUROCRYPT’88 [15].
However, it was broken by Patarin in CRYPTO’95 [16].

2.3 MPKC Using pq-method and pqe-method

First, we recap the cryptosystem using the pq-method proposed by Yasuda
in [27]. Refer to the original paper for more details of the regime constructing
the multivariate polynomial trapdoor function system G(x).

• Key Generation:
Let p be an odd prime number, n be a positive integer, and lψ be a positive
odd integer.
1) Randomly sample a multivariate quadratic polynomial system Φ(x) ∈

Z[x]n. Here Φ(x) mod p is (almost) injective, and its inverse can be
computed efficiently.

2) Make a quadratic multivariate polynomial system Ψ(x) ∈ Z[x]n with
coefficients sampled from Ilψ uniformly at random. (Note that Ilψ =
(−lψ/2, lψ/2] ∩ Z)

3) Choose a prime number q satisfying q > 4MψMφ, where

Mψ ≥ max
i∈[n]

{
|ψi(d)|

∣
∣
∣d ∈ In

p

}
,

Mφ ≥ max
i∈[n]

{
|φi(d)|

∣
∣
∣d ∈ In

p

}
.

(1)

4) Select a series of integers r1, . . . , rn in the range of (Mφ, q) satisfying
2Mφ < min

k∈[2Mψ]
|liftq(rik)|i∈[n]. Go back to Step 3 if it failed to sample

such r1, . . . , rn. Here we denote by Λi = {liftq(rik)|k = 0,±1, . . . ,±Mψ}.
5) Compute ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ Z[x]n, and G(x) =

(g1(x), . . . , gn(x)) = (Φ(x) + ΨR(x)) mod q ∈ Fq[x]n.
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6) Randomly sample an affine transformation T on F
n
q ; randomly sample a

permutation matrix S of size n.
7) Compute F = T ◦ G ◦ S : Zn → F

n
q .

Secret key: Φ(x) mod p, {ri}i∈[n], T and S;
Public key: p and F (x).

• Encryption:
Given a plaintext m ∈ In

p , compute the ciphertext c = F (m) ∈ F
n
q .

• Decryption:
1) Compute c′ = (c′

1, . . . , c
′
n) = T−1(c).

2) Find a (unique) λi ∈ Λi such that |liftq(c′
i − λi)| < Mφ for all i ∈ [n]. Set

c̃i = liftq(c′
i − λi) ∈ Z.

3) Calculate the solution b̃ ∈ In
p of the equations Φ(x) ≡ (c̃1, . . . , c̃n)

mod p.
4) Compute m′ = S−1(b̃) which matches with the plaintext m.

In SCIS 2020 [28], Yasuda further improved the pq-method by adding a noise
polynomial into the encryption process called pqe-method. Given a matrix A =
(aij) ∈ Z

n×n, we set

MA = max
i∈[n]

{
n∑

j=1

|aij |}. (2)

We show the pqe-method in the following algorithm.

• Key Generation:
Let p be an odd prime number and n be a positive integer. lψ, lA, lB be
positive odd integers of size close to p.
1) Randomly sample a multivariate quadratic polynomial system Φ(x) ∈

Z[x]n. Here Φ(x) mod p is (almost) injective and its inverse can be
computed efficiently.

2) Make a multivariate polynomial system Ψ(x) ∈ Z[x]n with coefficients
sampled from Ilψ uniformly at random.

3) Randomly sample matrices A ∈ In×n
lA

and B ∈ In×n
lB

.
4) Compute Mφ,Mψ by (1) and MA,MB by (2). Then compute

M̃φ = Mφ + MA · lA−1
2

M̃ψ = Mψ + MB · lB−1
2 .

5) Choose a prime number q satisfying q > 4M̃ψM̃φ.
6) Select a series of integers r1, . . . , rn in the range of (M̃φ, q) satisfy-

ing 2M̃φ < min
k∈[2˜Mψ]

|liftq(rik)|i∈[n]. Here we set Λi = {liftq(rik)|k =

0,±1, . . . ,±M̃ψ}. Return to Step 5 and choose a larger q, if it failed
to sample such r1, . . . , rn.
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7) Compute BR(x) = (rjbij) and C = (pA + BR) mod q ∈ Fq[x]n×n. Set
T = C−1 if C is non-singular, go back to Step 3.

8) Set ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ Z[x]n and G(x) =
(g1(x), . . . , gn(x)) = (Φ(x) + ΨR(x)) mod q ∈ Fq[x]n.

9) Randomly sample a permutation matrix S of size n and compute F =
T ◦ G ◦ S : Zn → F

n
q .

Secret key: Φ(x) mod p, {ri}i∈[n], T and S;
Public key: p and F (x).

• Encryption:
The following process encrypts a plaintext m ∈ In

p .
1) Randomly sample a perturbation vector e ∈ In

p .
2) Compute the ciphertext c = F (m) + e ∈ F

n
q .

• Decryption:
1) Compute c′ = (c′

1, . . . , c
′
n) = T−1(c).

2) Find a (unique) λi ∈ Λi such that |liftq(c′
i − λi)| < M̃φ for all i ∈ [n]. Set

c̃i = liftq(c′
i − λi) ∈ Z.

3) Calculate the solution b̃ ∈ In
p of the equations Φ(x) ≡ (c̃1, . . . , c̃n)

mod p.
4) Compute m′ = S−1(b̃) which matches with the plaintext m.

By invoking a perturbation in encryption, it can shrink the secret param-
eter n and reduce the key length accordingly. Overall, the performance of the
cryptosystem based on pqe-method is improved compared to pq-method.

The security of both pq-method and pqe-method can be reduced to the con-
strained MQ problem, while pqe-method can also be reduced to a lattice problem
NTRU [12]. The performance can be further improved by using a linear structure
instead of a quadratic system. In that case, it mainly executes as a lattice-based
PKC with linear polynomial multiplication and further strengthens its security
by applying some properties from MPKC.

3 Our Proposals

In this section, we propose three variants based on the pq-method and pqe-
method. Note that the original algorithms are both using quadratic polynomi-
als, while our improved cryptosystems adopt linear polynomial systems. For a
positive integer p and a matrix L ∈ Z

n×m
p , we define ‖L‖p := max

a∈In
p

{|a · L|∞}.

Linear Mapping Mask. The elements of affine isomorphisms T and S are
sampled from Fq randomly at uniform in the bipolar structure of pq-method.
As a result, the security will not be reduced if we set the S as an identity map
in computing the public key P [29]. Thus, we remain only one map of T where
itself is secret. We call T a linear mapping mask to preserve the secret keys from
a potential key-recovery attack. In addition, eliminating S may (slightly) reduce
the cost of key generation and decryption algorithms.
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3.1 A Simplified Linear Version of pq-method

Firstly, we propose a variant of the pq-based public-key cryptosystem. For the
sake of convenience, we call it linear-pq algorithm.

• Key Generation:
Let p be a small odd prime number and n be a positive integer.
1) Randomly sample a linear polynomial system F (x) = (f1(x), . . . ,

fn(x)) ∈ Fp[x]n where x = (x1, . . . , xn).
2) Set M = ‖F‖p, and choose integer series of r1, . . . , rn larger than 2M .
3) Randomly sample another polynomial system H(x) = (h1(x), . . . , hn(x))

∈ Fp[x]n where the number of variables is 2n, i.e. x = (x1, . . . , x2n).
4) Set L = ‖H‖p, r = max

i∈[n]
{ri} and q = NextPrime(2rL + 2M).

5) Randomly sample an affine transformation T on F
n
q such that its inverse

can be computed efficiently.
6) Set

G = [F | 0] +

⎡

⎢
⎣

r1
. . .

rn

⎤

⎥
⎦ H.

and P = T ◦ G : F2n
q → F

n
q .

Secret key: F , H, {ri}i∈[n], T ;
Public key: p, q, P .

• Encryption:
Given a plaintext m ∈ I2n

p , compute the ciphertext c = P (m) ∈ F
n
q .

• Decryption:
1) Compute c′ = T−1(c).
2) For all i ∈ [n], find a (unique) set of {αi} (−M ≤ αi ≤ M) and

{βi} (−L ≤ βi ≤ L), such that c′
i = αi + riβi.

3) Calculate the solution x0 = (x01, . . . , x0n) of equations (f1, . . . , fn) =
(α1. . . . , αn).

4) Substitute x0 = (x01, . . . , x0n) into c′ = G(x) which remains variables of
i ∈ {n+1, . . . , 2n}, and calculate a solution x1 = (x0,n+1, . . . , x0,2n) such
that c′

i = ri−nβi. m′ = (x01, . . . , x0n, x0,n+1, . . . , x0,2n) coincides with the
plaintext m.

Correctness. For the sake of convenience, we denote by [rj ] (j ∈ [n]) the
matrix constructed with elements in {rj} at Step 6 of Key Generation. In
addition, we further medially separate G = [G1 | G2], H = [H1 | H2] and
m = [m1 | m2], respectively. Now, we substitute c = P (m) ∈ F

n
q into

c′ = T−1(c). q = NextPrime(2rL + 2M) is set large enough to make sure
that the elements in G will not change after the substitution, thus we can get



Lattice-Based Public Key Cryptosystems Invoking Linear Mapping Mask 97

c′ = G(m) = [G1 | G2](m) = [F (m1) | 0] + [rj ][H1(m1) | H2(m2)]. Since
rj > 2M and M = ‖F‖p, there exists only one vector of α = (αi) corresponding
to F (m1) = α. Namely, at Step 3 of Decryption, x0 = (x01, . . . , x0n) coin-
cides with m1. Then, we substitute x0 into c′ which remains c′

i = [rj ]H2(x1)
(i ∈ {n + 1, . . . , 2n}) to be recovered. Therefore, x1 = (x0,n+1, . . . , x0,2n) corre-
sponds to m2 by solving the linear functions. Finally, the message is correctly
recovered by m′ = (x0 | x1) = m.

Discussion. Now we explain the merits derived from linear-pq cryptosystem.
In general, it is difficult to directly compare the improved proposal with the
original one due to different security parameter evaluations. Despite this reality,
we can estimate the size of q = O(n2p4) in the linear-pq cryptosystem, which
is attributed to the design of constructing a public key with two polynomial
systems where the coefficients’ sizes are significantly different. This is intuitively
much smaller than q = O(n4p6) in the pq-method.

Moreover, in the decryption of pq-method, we need to solve a quadratic poly-
nomial system of n equations in n variables with integer coefficients. Accordingly,
it requires O(n4) operations in key generation of the original pq-method by the
state-of-the-art pq-TM method. Meanwhile, in the linear-pq method, the public
key is designed by two linear polynomial systems. The computational cost in the
key generation phase is O(n2 log n) using the best-known Number-Theoretical
Transform (NTT) algorithm for polynomial multiplications.

At the last step of key generation, the remaining T is a linear mapping mask
to preserve the secret keys from a potential key-recovery attack. In addition,
eliminating S may (slightly) reduce the cost of key generation and decryption
algorithms.

The linear-pq method is modified obediently from the original pq-method.
They are deterministic schemes, so they do not hold the security property of
indistinguishability under a chosen-plaintext attack (IND-CPA). Namely, the
adversary can distinguish the ciphertext cb easily by re-encrypting the chosen
plaintexts m0 and m1. Thus, the linear-pq method satisfies indistinguishability
under onewayness attack (OW-CPA) under the hardness assumption of solving
ISIS problems. (The ISIS reduction is explained in Sect. 4.1).

3.2 A Linear Polynomial Version of pqe-method

Secondly, we also propose a linear version for pqe-method, where the methodol-
ogy is similar to the linear-pq algorithm. We call it linear-pqe method.

• Key Generation:
Let p be an odd prime number and n be a positive integer.
1) Sample matrices L1,X , L1,Y , Lr,X , Lr,Y ∈ F

n×n
p randomly.

2) Choose positive integers M1,X ,M1,Y ,Mr,X ,Mr,Y satisfying ‖La,b‖p ≤
Ma,b (a ∈ {1, r}, b ∈ {X,Y }). Set M1 = M1,X + pM1,Y and Mr =
Mr,X + Mr,Y .

3) Choose a prime number q satisfying q > 4M1Mr.
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4) Select a series of integers 0 < r1, . . . , rn < q and k ∈ [2Mr] satisfying
2M1 < min

k∈[2Mr]
|liftq(rik)|i∈[n]. Return to Step 3 and choose a larger q, if

it failed to sample such r1, . . . , rn.
5) Compute

LX = L1,X +

⎡

⎢
⎣

r1
. . .

rn

⎤

⎥
⎦ Lr,X ∈ Z

n×n

and

LY = pL1,Y +

⎡

⎢
⎣

r1
. . .

rn

⎤

⎥
⎦ Lr,Y ∈ Z

n×n.

Set T = L−1
Y mod q if LY mod q ∈ F

n×n
q is non-singular, or go back

to Step 1.
6) Compute LF = T ◦ LX ∈ F

n×n
q and LS = L−1

1,X mod p.
Secret key: LS , {ri}i∈[n] and LY ;
Public key: p, q and LF .

• Encryption:
The following process encrypts a plaintext m ∈ In

p .
1) Randomly sample a perturbation vector e ∈ In

p .
2) Compute the ciphertext c = LF (m) + e ∈ F

n
q .

• Decryption:
1) Compute b = (b1, . . . , bn) = LY · c.
2) Find a (unique) ki such that |liftq(bi − riki)| ≤ M1 and |ki| ≤ Mr for all

i ∈ [n]. Set b̂i = liftq(bi − riki) ∈ Z.
3) Calculate u = b̂ mod p ∈ F

n
p and compute m′ = liftp(Ls · u) which

matches with the plaintext m.

Correctness. First we take off the linear mapping mask by b = LY · c =
LY ◦ LF (m) + LY (e) = LY ◦ L−1

Y ◦ LX(m) + LY (e) = LX(m) + LY (e) =
L1,X(m) + [ri]Lr,X(m) + pL1,Y (e) + [ri]Lr,Y (e). Then, the computation at Step
2 in Decryption extracts items of b̂ = L1,X(m) + pL1,Y (e) where the bounds
of parameters ensure the items unchanged during the execution. Next, u = b̂
mod p ∈ F

n
p = L1,X(m) eliminates the item of pL1,Y (e). Consequently, message

is correctly recovered by m′ = liftp(Ls · u) = liftp(L−1
1,X ◦ L1,X(m)) = m.

Discussion. Note that the boundary setting for q at Step 3 is because of 2M1 ×
2Mr from step 4. At step 4, to make sure the decryption succeed by 100%,
it requires 2M1 < |liftq(ri(ka − kb))| for −Mr ≤ ka, kb ≤ Mr, then we get
2M1 < min

k∈[2Mr]
|liftq(rik)|i∈[n] by setting k = ka − kb ∈ [2Mr].

The advantages of linear-pqe algorithm comparing to pqe-method are analo-
gous to that of the linear-pq method in Sect. 3.1. Due to the key construction in
a linear polynomial system, a smaller modulus q = O(n2p5) is available versus
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q = O(n4p6) of the original pqe-method. Following the idea of pqe-method, we
construct the linear mapping mask T in this scheme by computing the inverse
of the secret key �LY . It makes the computation lighter without sampling from
F

n
q and tests its reversibility.

Furthermore, conducting the linear polynomial multiplications costs
O(n2 log n) operations which is more efficient than the O(n4) required in pqe-
method. Besides, eliminating the matrix S may (slightly) speed up the compo-
sition of public key LF in linear-pqe method.

3.3 A Ring Version of Linear-pqe Algorithm

Finally, we propose a ring version of linear-pqe algorithm, whose key size is
O(1/n) shorter than the other two algorithms. Thus, it derives a much better
performance. We call it ring-pqe method.

We define a polynomial ring R := Z[x]/(xn − 1). For a positive integer p and
a polynomial L ∈ R, we define ‖L‖p := max

a∈In
p

{|a ·L|∞}. In this subsection, we let

In
p represent a set of polynomials of n − 1 degree and coefficients lie in Ip.

• Key Generation:
Let p be an odd prime number and n be a positive integer.
1) Sample matrices L1,X , L1,Y , Lr,X , Lr,Y ∈ R/pR randomly.
2) Choose positive integers M1,X ,M1,Y ,Mr,X ,Mr,Y satisfying ‖La,b‖p ≤

Ma,b (a ∈ {1, r}, b ∈ {X,Y }). Set M1 = M1,X + pM1,Y and Mr =
Mr,X + Mr,Y .

3) Choose a prime number q satisfying q > 4M1Mr.
4) Select an integer r in (0, q) which satisfies 2M1 < min

k∈[2Mr]
|liftq(rk)|i∈[n].

Return to Step 3 and choose a larger q, if it fails to sample such r.
5) Compute LX = L1,X + rLr,X and LY = pL1,Y + rLr,Y Set T = L−1

Y

mod q if LY mod q ∈ R/qR is non-singular, or go back to Step 1.
6) Compute LF = T · LX ∈ R/qR and LS = L−1

1,X mod p.
Secret key: LS , r and LY ;
Public key: p, q and LF .

• Encryption:
The following process encrypts a plaintext m ∈ In

p .
1) Randomly sample a perturbation vector e ∈ In

p .
2) Compute the ciphertext c = LF (m) + e ∈ R/qR.

• Decryption:
1) Compute b(x) =

∑n−1
i=0 bix

i = LY · c.
2) Find a (unique) ki such that |liftq(bi − rki)| ≤ M1 and |ki| ≤ Mr for all

i ∈ [n]. Set b̂i = liftq(bi − rki) ∈ Z.
3) Calculate u = b̂ mod p ∈ F

n
p and compute m′ = liftp(LS · u) which

matches with the plaintext m.
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Correctness. We omit the proof here since it is similar to what for the above
linear-pqe method.

Discussion. The ring structure results in an overwhelming reduction on both
the public key size and the secret key size, by the multiplicative factor 1/n. Thus
the ring-pqe crypto scheme outperforms the linear-pqe method. Furthermore, as
the same as linear-pqe method, we design the linear mapping mask T in ring-pqe
by computing from part of the secret key �LY inside.

4 Cryptanalysis and Performance

In this section, we first evaluate proper security parameters for linear-pq cryp-
tosystem, linear-pqe cryptosystem, and ring-pqe cryptosystem, respectively. We
consider the security levels of AES-128 in the NIST PQC standardization
project [1] that the brute force attack on AES key search requires at least
2143 classical computing gates. Then we show the key and ciphertext sizes with
respect to the above parameters for each scheme. Finally, we show the experi-
mental results of the three cryptosystems.

4.1 Evaluating Security Parameters and Key Size

To evaluate a proper parameter set of (n, p, q), we consider that the security of
proposed cryptosystems is based on relevant lattice problems. Namely, we can
see the encryption procedure of linear-pq c = P (m) = m · P ∈ F

n
q as an ISIS

instance since the norm of m ∈ I2n
p is much smaller than that of the vector in the

kernel space of L(P ) in Z
2n computed by the Gaussian heuristic. Simultaneously,

we can regard the encryption in linear-pqe and ring-pqe as dealing with the
LWE instance and the Ring-LWE instance, respectively. As discussed in the
above proposals, a key recovery attack is not feasible owing to the subtle linear
mapping mask. Hence, we apply the message recovery attacks using the lattice
method against each problem. Simultaneously, we also consider the exhaustive
search for the message recovery attack.

Message Recovery Attack. Typically the LWE problem and the Ring-LWE
problem can be reduced to the SVP or uSVP using Bai-Galbraith’s embedding
technique [7]. Indeed, the cryptanalysis for linear-pq, linear-pqe and ring-pqe
schemes are equivalent to evaluating the hardness of SVP in (2n+1)-dimensional
lattices with volume of q(n+1). Refer to [23] for a detailed application and analysis
of Bai-Galbraith’s embedding technique.

Moreover, the lattice algorithms are also used in cryptanalysis. One of the
best-known lattice algorithms is BKZ algorithm [18] and its variants [6,9,25,26],
which processes the given basis until being almost β-reduced. In other words,
the projected lengths of each basis vector are the shortest ones in the relative
β-dimensional sub-lattice. BKZ costs exponentially in the blocksize β. In 2001,
Ajtai et al. proposed a sieving algorithm to solve SVP [3]. It requires a running
time of 20.52n+o(n) in dimension n and requires exponential storage of 20.2n+o(n)
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Table 1. Parameter choice for AES-128 bit security.

Schemes n p q

linear-pq 980 3 61473439 (26 bits)
linear-pqe 1022 3 133693951 (27 bits)
ring-pqe 1022 3 133693951 (27 bits)

as well. For a β-dimensional sub-lattice the cost of sieving algorithm can be
estimated in 20.292β+o(β) operations. If we take sieving as a subroutine in the
β-dimensional sub-lattices inside of an n-dimensional lattice, the total BKZ-β
cost can be estimated by 8n · 20.292β+12.31 operations [4]. We recall the following
two definitions to evaluate the performance of lattice algorithms.

(a) The root Hermite factor [10] is defined as:

δ = rHF(b1, . . . ,bn) = (‖b1‖/Vol(L)1/n)1/n.

The rHF of a BKZ-β reduced basis B of d-dimensional lattice L(B) can be
evaluated by

δ = (((πβ)1/ββ)/(2πe))
1

2(β−1) . (3)

This is proposed and practically verified by Chen in [8].

(b) In order to estimate the hardness of LWE samples (A,b ≡ As + e
(mod q)) ∈ Z

m×n
q ×Z

m
q , the 2016 estimate [5] states that if the Gaussian heuristic

and the GSA hold for BKZ-β reduced basis and
√

β/d · ‖(e|1)‖ ≈
√

βσ ≤ δ2β−d · Vol(L(A,q))1/d, (4)

then error e can be found by the BKZ-β reduction algorithm. It has been widely
used in the cryptanalysis [24] for lattice-based cryptoschemes: given the dimen-
sion d, the modular q and the standard deviation σ of ei’s distribution, the 2016
estimate can output the optimal blocksize β in the attack by using Eqs. (3) (4).

Exhaustive Search
For a ciphertext c, the complexity of finding the solution of P (m) = c in linear-
pq and LF (m) + e = c in the ring-pq by the exhaustive search is the same of
O(p2n). In the case of using Grover’s quantum search algorithm, the complexity
is O(pn).

Parameter Suggestion and Key Sizes. Due to NIST’s call for proposal in the
PQC standardization project [1], any attack on AES-128 bit security requires at
least 143 bits of classical gate operations. We evaluate the relevant parameters
for AES-128 bit security in Table 1. There is no significant difference but just
within one bit for the parameter sizes among different schemes.

Furthermore, we show the key sizes and ciphertext sizes in each proposed
cryptosystem in Table 2. It shows that the ciphertext sizes are close to each
other, while the key sizes of ring-pq are evidently 1/n of the other two schemes.
This results in a comparatively high efficiency shown in the next section.
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Table 2. The sizes of public key (pk), secret key (sk), and ciphertext (ct) for each
scheme of AES-128 bit security.

Schemes pk(kB) sk(kB) ct(kB)

linear-pq 6242.6 3844.8 3.1
linear-pqe 3525.1 3789.7 3.5
ring-pqe 3.5 3.7 3.5

4.2 Implementation

Table 3. The performance of each scheme with the unit of a millisecond (ms).

Schemes KeyGen(ms) Enc(ms) Dec(ms)

linear-pq 21624.4 113.7 48596.6
linear-pqe 54408.5 64.1 161.9
ring-pqe 37.2 0.6 20.2

We implemented the three proposed crypto schemes in C++ language. In our
implementation, we invite the number theory library (NTL) [20]. In particu-
lar, the number-theoretical transform (NTT) technique is conducted in NTL,
which can speed up the polynomial multiplications over finite fields. Then we
run 1,000 experiments on a computer with Intel Core i9 @ 3.6 GHz CPU, g++
version 7.4.0. We evaluate the average running time for each one in Table 3 with
one decimal precision. It shows that the ring-pqe algorithm is overwhelmingly
efficient compared to the other two schemes.

5 Conclusion

In this paper, we proposed three PKE algorithms based on linear-pq, linear-
pqe, and ring-pqe methods, respectively. Compared to the original algorithms by
Yasuda, our proposals use a much smaller modulus q and cost less by conducting
linear polynomial multiplications. Besides, our schemes are secure against the
key-recovery attack by invoking a linear mapping mask at the end of key genera-
tions. Furthermore, we evaluated the proper parameters for AES-128 bit security
level and assessed the key size produced in our cryptosystems. In particular, the
linear-pqe cryptosystem outperforms the other two algorithms regarding key size
and practical efficiency.
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Abstract. Multi-key fully homomorphic encryption (MKFHE) schemes
support arbitrary computations on data encrypted by different keys.
Especially, in the fully dynamic setting, any ciphertexts can be com-
puted at any time while maintaining the compactness. In this case,
no information about the parties and the computation function need
be known before the evaluation. However, all existing constructions are
based on the learning with errors (LWE) problem or learning with round-
ing (LWR) problem, and thus only allow to encrypt a single bit. On the
other hand, FHEW-like cryptosystems are computation-efficient in the
sense that they can evaluate arbitrary Boolean circuits on encrypted data
followed by the boostrapping procedure. To this end, in this paper, we
propose a batched fully dynamic multi-key FHE scheme based on FHEW-
like cryptosystems. Specifically, instead of a single bit, our construction
encrypts a ring element, and thus has low amortized cost. In addition,
as a core building block of construction, we put forward a new multi-
key ring-LWE accumulator with homomorphic discrete Fourier transform
(DFT) for the boostrapping procedure, which might be of independent
interest. The theoretical analysis indicates that the amortized computa-
tion cost of generating evaluation key and storage cost achieve optimal.

Keywords: Multi-key fully homomorphic encryption · FHEW ·
Bootstrapping · Batching

1 Introduction

Traditional fully homomorphic encryption (FHE), first proposed by Gentry [18],
allows arbitrary secure computations over encrypted data without compromising
data privacy. Generally, the best-performing FHE schemes include BFV [4,17],
BGV [5], CKKS [13], FHEW [16] and TFHE [14], which are based on learning
with errors (LWE) [28] or its ring variant (RLWE) [22]. However, they are all
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limited by performing homomorphic operations on ciphertexts under the same
key, which are not applicable to multi-user scenarios.

To perform computations on data encrypted under multiple unrelated keys,
López-Alt et al. [21] introduced a new notion of multi-key fully homomorphic
encryption (MKFHE), and also proposed a concrete construction based on a
non-standard assumption. After that, Clear et al. [15] and Mukherjee et al. [26]
constructed multi-key FHE schemes based on the standard LWE assumption.
However, they focused on the single-hop setting, where all the involved parties
and the function to be computed are known before the homomorphic computa-
tion.

Motivated by notion of “on-the fly” [21], in which the computations need to
be performed non-interactively, arbitrarily and dynamically on data belonging
to arbitrary parties, Peikert et al. [27] proposed a multi-hop MKFHE scheme.
Brakerski et al. [6] presented a fully dynamic MKFHE scheme. The slight differ-
ence between multi-hop setting and fully dynamic setting is that the bound of
the number of parties does not need to be known ahead of the computation time
in fully dynamic setting. Chen et al. [11] put forward the first batched MKFHE
in the multi-hop setting. Huang et al. [20] provided a LWR-based MKFHE in
the fully dynamic setting to reduce Gaussian sampling consumption from LWE
assumption.

Bootstrapping procedure [18] is a main component of FHE schemes that
refreshes the ciphertexts by homomorphically computing the decryption func-
tion on the encrypted secret key under the fixed noise. In particular, FHEW-like
cryptosystems, including FHEW [16] and TFHE [14], provide the fast boostrap-
ping by using homomorphic accumulators. Chen et al. [8] presented an efficient
MKFHE from TFHE, although it only supports single-bit plaintext. From above,
one can observe that MKFHE from FHEW-like cryptosystems still lacks research
on batch processing.

In this paper, we further investigate the problem of how to construct a
batched MKFHE scheme in the fully dynamic setting to improve the efficiency.

1.1 Motivations

FHEW Vs. TFHE. Micciancio et al. [24] compared FHEW [16] with TFHE
[14] in detail in terms of security assumption, secret distribution, storage over-
head of bootstrapping keys, and computational overhead. Both FHEW and
TFHE belong to FHEW-like cryptosystems that can evaluate arbitrary Boolean
circuits on encrypted data followed by the bootstrapping procedure. In more
detail, FHEW cryptosystem is based on the standard (R)LWE assumptions,
while TFHE cryptosystem relies on stronger (R)LWE assumption over torus.
Morever, FHEW has better performance for Gaussian secrets, while TFHE is
faster for binary and ternary secrets1. Furthermore, FHEW has much larger
bootstrapping key size than TFHE. Due to the technical similarity of FHEW

1 The Homomorphic Encryption standardization document [7] supports the use of
Gaussian and ternary secrets.
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and TFHE, our construction mainly derives from FHEW based on standard
security assumption. In the meantime, we will point out the detailed differences
between the constructions from FHEW and TFHE.

Batching. Ring-based homomorphic encryption schemes have remarkable per-
formance by packing several messages into one ciphertext and operating on them
in parallel. Since the first batched FHE proposed by Smart and Vercautren [29],
there are FHE schemes from BGV packing type, BFV packing type and CKKS
packing type extended to the multi-key setting [9,11]. In terms of FHEW-like
cryptosystems, Micciancio et al. [25] provided an amortized FHEW bootstrap-
ping with ring packing, which has lowest amortized computational cost so far
to our knowledge. Motivated by Micciancio et al.’s work [25], we try to design a
batched MKFHE scheme to reduce the amortized computational cost.

Fully Dynamic. In the dream of the “on-the-fly” multiparty computation
(MPC), the untrusted cloud can perform arbitrary computations on any cipher-
texts at any time [21]. The parties do not know who is involved in the com-
putation and what computation is involved until it needs to be decrypted. The
desirable fully dynamic setting was first constructed by Brakerski et al. [6], but
based on complicated Gentry’s boostrapping technique. There are still short of
fully dynamic MKFHE schemes so far. Therefore, we try to construct a more
efficient MKFHE scheme in the fully dynamic setting.

1.2 Our Contributions

In this paper, we study the problem of constructing more efficient MKFHE
scheme in the fully dynamic setting, and conduct the following contributions:

– We design a multi-key RLWE accumulator with homomorphic DFT for the
boostrapping procedure in the multi-key setting, as the core building block
of our MKFHE construction. The proposed accumulator only needs Õ(k2N)2

polynomial multiplications, and might have the potential to be useful in the
construction of other primitives.

– Based on the above accumulator and FHEW-like cryptosystems, we put forth
a batced fully dynamic MKFHE scheme. Our construction naturally inher-
its the merits of the FHEW-like cryptosystems, and thus has low amortized
computational cost. That is, the amortized storage costs and computational
overhead depend only on the number of the parties involved in the evalua-
tions and the logarithm of N , where N denotes the dimension of the RLWE
problem.

– We provide a comprehensive theoretical analysis by comparing the proposed
MKFHE construction with other related works, so as to demonstrate its mer-
its. Particularly, we show our scheme supports fully dynamic, which means
that homomorphic computation is not limited by the type of operation, the
number of people involved in the evaluation and the time.

2 k denots the number of the parties involved in the evaluation.
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1.3 Roadmap

In Sect. 2, we describe some necessary preliminaries. Section 3 constructs neces-
sary building blocks of our construction. In Sect. 4, we propose a batched fully
dynamic MKFHE scheme and prove its properties. In Sect. 5, we make a theo-
retical analysis. In Sect. 6, we conclude this paper.

2 Preliminaries

Throughout this paper,we denote by λ denote the security parameter. For a
positive integer k, we write [k] denote the set {0, 1, · · · , k − 1}. Let vectors be
in bold, e.g., a, and matrices be in upper-case bold like A. The i-th coefficient
of the polynomial a is denoted as a[i]. The i-th entry of the vector a is denoted
as a[i]. Sampling x from a distribution D uniformly at random is written as
x ← D. Finally, ‖ · ‖1 denotes l1 norm and ‖ · ‖∞ denotes l∞ norm.

2.1 Fully Dynamic Multi-key FHE

We recall the definition of muti-key homomorphic encryption at first and state
the definition of fully dynamic MKFHE followed.

Definition 1 ([9]). A multi-key homomorphic encryption scheme MKHE =
(MKHE.Setup, MKHE.KeyGen, MKHE.Enc, MKHE.Dec, MKHE.NAND) is a 5-
tuple of efficient randomized algorithms as follows:

– MKHE.Setup(1λ): On input a security parameter λ, output a public parameter
pp.

– MKHE.KeyGen(pp): Output a pair of secret an public keys (ski, pki)(i ∈ [k])
for each party, where k is the number of parties.

– MKHE.Enc(pp, pki,m): Given a bit m ∈ {0, 1}, output a ciphertext cti of party
i.

– MKHE.Dec(pp, {ski}i∈[k], ct): Given a ciphertext ct under a sequence of secret
keys {ski}i∈[k] of relevant parties, output a bit m ∈ {0, 1}:

– MKHE.Eval({pki}i∈[k], C, ct1, ct2): Given two ciphertexts ct1, ct2 along with
a sequence of public keys {pki}i∈[k] of relevant parties, and a Boolean cir-
cuit C, output a ciphertext ct

′ such that Pr[MKHE.Dec(pp, {ski}i∈[k], ct
′) �=

C(m1,m2)] = negl(λ), where m1 and m2 are the plaintexts of ct1 and ct2,
respectively.

Definition 2 ([6]). Let k be any polynomial in λ, pp ← MKHE.Setup(1λ) and
(ski, pki) ← MKHE.KeyGen(pp) for i ∈ [k]. Let ct1, ct2 be ciphertexts such that
mj ← MKHE.Dec(pp, Sj , ctj) for j = 1, 2, where Sj ∈ {ski}i∈[k]. A multi-key
homomorphic encryption is fully dynamic MKFHE if the following holds:

Pr[MKHE.Dec(pp, {ski}i∈[k],MKHE.Eval({pki}i∈[k], C,ct1, ct2))
�= C(m1,m2)] = negl(λ).

The scheme is compact if there exists a polynomial poly(·, ·) such that the size
of the output ciphertext is less than poly(λ, k).
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2.2 Ring-LWE Encryption

The RLWE problem first proposed by Lyubashevsky [22,23] is a ring variant of
the LWE problem [28]. Let R = Z[X]/(XN + 1) be the 2Nth cyclotomic ring,
where N is power of two. We write Rq for the residue ring of R modulo an
integer q. The basic RLWE symmetric encryption is as follows:

– RLWE.Setup(1λ): On input the security parameter λ, generate a RLWE
dimension N , a ciphertext modulus q and a B-bounded discrete distribution
χ in Rq for B � q. Return a public parameter ppRLWE = (N, q,B, χ).

– RLWE.KeyGen(ppRLWE): Sample a RLWE secret key s ← χ uniformly at
random.

– RLWE.Enc(m, s): On input a message m ∈ R, sample a ← Rq and e ← χ.
Return a ciphertext (b, a) = (as+ e+ qm/t mod q, a) ∈ R2

q. We represent the
ciphertext (b, a) as RLWEs(m).

– RLWE.Dec((b, a), s)): On input the ciphertext (b, a) = RLWEs(m) and the
secret key s, the decryption is computing �t(b − as)/q� mod t = m ∈ Zt,
where �·� is a function that rounds each coordinate to the closest multiple of
q/t. Return the message m.

The error of a ciphertext (a, b) is err(a, b) = (b − as − qm/t) mod q.

2.3 Homomorphic Accumulator

Based on the suggestion of [1], Ducas et al. [16] proposed notion of the homomor-
phic accumulator to efficiently refresh a (R)LWE ciphertext. The homomorphic
accumulator is defined as

Definition 3 ([1]). A homomorphic accumulator scheme ACC=(Encryption, Ini-
tialization, Increment, SampleExtract) is a 4-tuple of efficient algorithms as fol-
lows:

– Encryption: Generate some key material related to secret keys s.
– Initialization: On input a constant v, simply set accumulator to a noiseless

encryption of v.
– Increment: Update the key material to the accumulator sequentially.
– SampleExtract: Extract a new ciphertext of msb(v) under the secret key s from

the accumulator.

Lemma 1 ([1]). On input a ciphertext of message m to the homomorphic accu-
mulator ACC, if the accumulator ACC is correct, then the output ciphertext is
the encryption of m with fixed noise.

2.4 A Masking Scheme for RLWE

A masking scheme is the main component of the MKFHE scheme. Clear et al.
[15] proposed its abstract conception, and Mukherjee et al. [26] introduced a
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specific construction for GSW. Intuitively, masking scheme allows to encrypt
a ring element to generate a uni-encryption. Then it allows to encrypts the
randomness as the auxiliary value. Finally, we can multiply the uni-encryption
to a multi-key RLWE ciphertext to expand the ciphertext. In the following, we
introduce the second method of the masking scheme in [8] for RLWE, which has
better storage cost and smaller noise growth.

Let q = 2� be a suitably large ciphertex modulus, g=(20, 21, · · · , 2�−1) be
the gadget vector. Any ring element c ∈ Rq can be represented as c =

∑
j 2

jcj

for j = [�], where each coefficient of polynomial cj is binary. We write function
g−1(c) = (c0, · · · , c�) such that g−1(c) · g = c. Note the ciphertext modulus q is
1 and the gadget vector g = (2−1, · · · , 2−�) in TFHE.

First, all parties need to complete the following parameter settings.

– MS.Setup(1λ): On input the security parameter λ, run RLWE.Setup(1λ) to get
parameters (N, q,B, χ). Choose a common random vector a ∈ R�

q uniformly
at random. Output the public parameter ppMS = (N, q,B, χ,a).

– MS.KeyGen(ppMS): Sample a secret z ← χ uniformly at random and an error
e ← χ�. Set the public key b = az + e mod q ∈ R�

q. Output (b, z) ∈ R�+1
q .

– MS.UniEnc(μ, z): On input a message μ ∈ R, and the secret z, output the
ciphertext and auxiliary information (d,F ) ∈ R�

q × R�×2
q as follows:

• Sample a random polynomial r ← χ uniformly at random and an error
e′ ← χ�, set d = a · r + μ · g + e′ mod q ∈ R�

q.
• Sample random polynomials f1 ← R�

q and errors e′′ ← χ�. Output the
auxiliary ciphertext F = [f0|f1] ∈ R2�

q , where f0 = f1·z+r·g+e′′ mod q.
Suppose there are k parties, multiplication between the uni-encryption
(di,F i) encrypted by ith party and a multi-key RLWE ciphertext as follows:

– MS.Prod(c̄, (di,F i), {bj}j∈{1,··· ,k}): Given a multi-key RLWE ciphertext c̄ =
(c0, c1, · · · , ck) ∈ Rk+1

q and the public keys {bj}j∈{1,··· ,k} of k parties associ-
ated to c̄ (set b0 = −a), we first compute the following inner products for 0 ≤
j ≤ k: uj =

〈
g−1 (cj) ,di

〉
, vj =

〈
g−1 (cj) , bj

〉
, wj,0=

〈
g−1 (vj) ,f i,0

〉
, wj,1 =

〈
g−1 (vj) ,f i,1

〉
. Next, output the multi-key RLWE ciphertext c̄′ = (c′

0, · · · ,
c′
k) ∈ Rk+1

q , where c′
0 = u0 +

∑k
j=0 wj,0 mod q, c′

i = ui +
∑k

j=0 wj,1 mod q
and c′

j = uj for j ∈ [k] \ {i}.

Lemma 2 ([8]). The output multi-key ciphertext c̄′ of the above masking scheme
satisfies that 〈c̄,z〉 ≈ μi〈c,z〉 for z = (1,−z1, · · · ,−zk), where μi is the plain-
text of the i-th parity. The computation complexity is O(k log q) polynomial
multiplications. Furthermore, the noise of the output ciphertext is bounded by
(k + 1)BN�(2B + 1).

2.5 The Ciphertext Extension

The goal of the ciphertext extension algorithm is to convert a low dimensional
ciphertext to a larger dimensional ciphertext under a new larger dimensional
secret key. For any (k′ + 1)-dimensional RLWE ciphertext under concatenated
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the secret key (1,−s1′ , · · · ,−sk′), we can simply extend to larger dimension
(k + 1)3 under a new secret key (1,−s1, · · · ,−sk) in the following way. Let the
RLWE ciphertext c′ = (b, a1′ , · · · , ak′) ∈ Rk′+1

q be an encryption corresponding
to a set of parties’ index S′ = (j1′ , · · · , jk′). For j ∈ [k], if j = jl for l ∈ [k′], we set
aj = ajl

; otherwise, we set aj = 0. Therefore, we can output a new ciphertext c =
(b, a1, · · · , ak) ∈ Rk+1

q satisfying c′ · (1,−s1′ , · · · ,−sk′) = c · (1,−s1, · · · ,−sk).

3 Building Blocks

3.1 Multi-key-switching on Ring-LWE Ciphertexts

Let χ be a B-bounded Gaussian error distribution. The multi-key RLWE cipher-
text under z = (1,−z1, · · · ,−zk) ∈ Rk+1 can be converted to a new secret key
s = (1,−s1, · · · ,−sk) ∈ Rk+1 by the following method.

– RLWE.KSGen(zi, si): Given RLWE secret keys zi, si ∈ R of the ith party,
sample random vectors ri ← R�

q and errors ei ← χ�. Compute KSi = (−risi+
zig + ei mod q, ri) ∈ R2�

q for each party. Output the key-switching key KSi.
– RLWE.MKSwitch(c̄, {KSi}i∈{1,··· ,k}): Given a multi-key RLWE ciphertext c̄ =
(b, a1, · · · , ak) ∈ Rk+1

q and the key-switching keys {KSi}i∈{1,··· ,k}, compute
c̄′ = (b − ∑k

i=1 g
−1(ai) · KSi mod q,g−1(a1) · r1, · · · ,g−1(ak) · rk) ∈ Rk+1

q .
Output the new RLWE ciphertext c̄′.

Correctness. The output ciphertext c̄′ satisfies the following equation as
desired:

〈c̄′, s〉 = b −
k∑

i=1

g−1(ai) · KSi −
k∑

i=1

g−1(ai)risi

= b −
k∑

i=1

aizi −
k∑

i=1

g−1(ai)ei ≈ 〈c̄,z〉.

The noise of the output ciphertext c̄′ is bounded by
∑k

i=1 ‖g−1(ai)ei‖∞ ≤
k‖g−1(ai)‖∞‖ei‖∞. Since the coefficient of the polynomial of g−1(ai) is binary,
then ‖g−1(ai)‖∞ ≤ log q. Therefore, the noise of the output ciphertext c̄′ is less
than k log qBN .

Security. The ith key switching key KSi from KSKeyGen(z, s) is generated
by adding zig to the RLWE samples under the secret −si. Therefore, KSi are
computationally indistinguishable from the uniform distribution over R2�

q under
the RLWE assumption and additional circular security assumption.

3 k is always larger than k′.
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3.2 Multi-key RLWE Accumulators

Ring-LWE accumulators ACC is an important implement in FHEW-like cryp-
tosystems’ bootstrapping procedure [14,16]. We extend it to multi-key setting
in the following.

Let ω2N be the 2Nth principal root of unity of ring R, a, s ∈ R. Motivated
by homomorphic discrete Fourier transform (DFT) in [25], as mod XN + 1 can
be translated to N dot products DFT−1( 1

N DFT (a) · DFT (s)), where âi =
DFT (a)i =

∑N−1
j=0 a[j]ωij

2N and its inverse a[j] = DFT−1(â)j =
∑N−1

i=0 âiω
−ij
2N .

To homomorphically compute as mod XN +1, we exploit the following method.

– Encryption: On input the multi-secret-key s = (1,−s1, · · · ,−sk) ∈ Rk+1 and
a key z ∈ R, each secret value −si ∈ R need to be DFT to a sequence
of (ŝi,0, ŝi,1, · · · ŝi,N−1) ∈ Z

N
q for i ∈ {1, · · · , k}. Let ŝi,j be expressed as

ŝi,j =
∑log q

τ=0 2τ ŝi,j,τ with ŝi,j,τ ∈ {0, 1}. The secret encryption function is

E(ŝi,j) = {(di,j,τ ,F i,j,τ ) ← MK.UniEnc(ŝi,j,τ , z)}.

for i ∈ {1, · · · , k}, j ∈ [N ] and τ ∈ [log q].
– Initialization: On input a contant v ∈ Zq, usually set to q/8 in FHEW and 1/8

in TFHE, simply set ACCj to a trivial multi-key RLWE sample ACCj :=
(v, 0, · · · , 0) ∈ Rk+1

q .
– Increment: On input the multi-key RLWE ciphertext c̄ = (b, a1, · · · , ak) ∈

Rk+1
q , secret encryption {(di,j,τ ,F i,j,τ )}i∈{1,··· ,k},j∈[N ],τ∈[log q], the compo-

nent of the ciphertext ai also need to be DFT to a sequence of (âi,0, âi,1, · · · ,
âi,N−1) ∈ Z

N
q for i ∈ {1, · · · , k}. Note that in TFHE, the ai needs to be ampli-

fied by 2N times before DFT, since TFHE works over torus T = R mod 1.
The update operation is computed by sequentially updating

ACCj ← ACCj +MK.Prod(X âi,j2
τ

ACCj , (di,j,τ ,F i,j,τ ), {bi}i∈{1,··· ,k}).

– SampleExtract: On input all accumulators and the component b of the cipher-
text c̄, we compute the DFT inversion of the accumulators on the exponential,
and obtain a sequence of multi-key RLWE ciphertext ACCj for j ∈ N . Let
ACCj = (c′

j,0, · · · , c′
j,k) ∈ Rk+1

q .
• In FHEW, firstly ACCj ← Xb[j] · ACCj . Let c′

j,i be the vector represen-
tation of c′

j,i for all i ∈ {1, · · · , k}. Compute ACCj = tT (cj,0, · · · , cj,k)4,
where t = (−1,−1, · · · ,−1) ∈ Z

N . Set the first entry of c′
j,0 to b′

j,0 ,
the polynomial representation of c′

j,i to a′
j,i for i ∈ {1, · · · , k}. Com-

pute c̄′
j = (v, 0, · · · , 0)+ (b′

j,0, a
′
j,1, · · · , a′

j,k). Output N multi-key RLWE
ciphertext {c̄′

j}j∈[N ].
• In TFHE, compute ACCj ← X�2Nb[j]�ACCj(1+X + · · ·+XN )X

N
2 . Set

the consterm of c′
j,0 to b′

j,0, a′
j,i = c′

j,i for i ∈ {1, · · · , k}. Compute c̄′
j =

(v, 0, · · · , 0)+(b′
j,0, a

′
j,1, · · · , a′

j,k). Output N multi-key RLWE ciphertext
{c̄′

j}j∈[N ].

4 T represents a transposition.
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Correctness. The homomorphic multi-key RLWE accumulator is correct by
the following steps:

– Increment: Since (di,j,τ ,F i,j,τ ) is the uni-encryption of ŝi,j,τ , the message of
accumulator ACCj is v

∑k
i=1

∑�−1
τ=0 X âi,j2

τ ŝi,j,τ = vX
∑k

i=1 âi,j ŝi,j for j ∈ [N ]
according to Lemma 2.

– SampleExtract: In FHEW, if the jth coefficient of message m of multi-key
ciphertext c̄ is 1, then tT · vX

q
t m[j]+e = 1. Otherwise, if m[j] = 0, then

tT · vY
q
t m[j]+e = −1. We can get that tT · vX

q
t m[j]+e = 2m[j]− 1. Therefore,

tT · vX
q
t m[j]+e + v = 2vm[j]. The message of output multi-key ciphertext is

2m[j]v.
In TFHE, after the inverse DFT on exponential, the message of accumulator
ACCj is vX

∑k
i=1 −2Nai,jsi,j . Therefore,

X�2Nb[j]�ACCj(1 + X + · · · + XN )X
N
2

= vX2N(b[j]−∑k
i=1 ai,jsi,j)(1 + X + · · · + XN )X

N
2 .

(1)

If the jth coefficient of message m of multi-key ciphertext c̄ is 1/2, then the
constant of (1) is v. Otherwise, if m[j] = 0, the the constant of (1) is −v.
Therefore, the message of output multi-key ciphertext is 4m[j]v.

Noise Estimation. According to Lemma 2, each calling subroutine MK.Prod
will increase the noise with maximum (k + 1)BN�(2B + 1) since the message
ŝi,j,τ of uni-encryption is binary. We recursively evaluate the MK.Prod k · log q
for each accumulator. Therefore the output of accumulator has an error bounded
by (k2 + k)BN�2(2B + 1).

4 Batched Fully Dynamic MKFHE from FHEW-like
Cryptosystems

In this section, we describe a batched fully dynamic MKFHE scheme based on
RLWE problem. The bootstrapping technique of our scheme follows the FHEW-
like cryptosystmes, including FHEW [16] and TFHE [14].

4.1 The Basic Scheme

This scheme MKFHE is parameterized by a message modulus t = 4, a dimension
N which is power-of-two, and a ciphertext modulus q such that q|2N .

– MKFHE. Setup(1λ): Run MS.Setup(1λ) to generate the parameter
pp=(N, q,B, χ,a). Return the public parameters pp.

– MKFHE.KeyGen(pp): Each party independently generates its keys as follows.
• Sample a RLWE secret key s ← RLWE.Keygen(pp) for general encryption.

Compute ŝj = DFT (−s)j for j ∈ [N ].
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• Let � = log q. Run (b, z) ← MS.KeyGen(pp) for uni-encryption. Run
(dj,τ ,F j,τ ) ← MS.UniEnc(ŝj,τ , z) for τ ∈ [log q], where ŝj,τ satisfies that
ŝj =

∑�
τ=0 ŝj,τ · 2τ . Set public key as PK = b, and the bootstrapping key

as BK = {dj,τ ,F j,τ}j∈[N ],τ∈[�].
• Run KS ← RLWE.KSGen(z, s). Set key-switching key as KS.

Return the secret key s. Publish the triple (PK, BK, KS).
– MKFHE.Enc(m, s): On input the message m ∈ Rt, of which the coefficients

are binary. Run c ←RLWE.Enc(m, s). Return the RLWE ciphertext c ∈ R2
q.

The dimension of a ciphertext increases after homomorphic computations
or ciphertext extension (see Sect. 2.5), a multi-key ring-LWE ciphertext c̄ =
(b, a1, a2, · · · , ak) ∈ Rk+1

q corresponding to the concatenated secret key s =
(1,−s1,−s2, · · · , sk) can be obtained.

– MKFHE.Dec(c̄, {si}i∈{1,··· ,k}): On input a ciphertext c̄, concatenate the secret
key s = (1,−s1, · · · , sk), return the message m = �2(b − ∑k

i=1 aisi)/q�
mod2.

– MKFHE.NAND(c̄1, c̄2): On input two mutlti-key ciphertext c̄0 and c̄1 which
are associated with k parties. Compute c̄′ = (

∑N−1
j=0

5q
8 Xj , 0, · · · , 0) − c̄1 −

c̄2 mod q. Return the ciphertext c̄′.

Correctness. Let the multi-key RLWE ciphertexts c̄ι = (bι, aι,1, · · · , aι,k) sat-
isfy that 〈c̄ι, s〉 = q

4mι + eι for ι = 1, 2. Then,

〈c̄, s〉 =
N−1∑

j=0

5q
8

Xj − (b1 −
k∑

i=1

a1,isi) − (b2 −
k∑

i=1

a2,isi)

=
N−1∑

j=0

[±q

8
− e1[j] − e2[j] +

q

2
(1 − m1[j]m2[j])]Xj .

Therefore, the message of the output ciphertext c̄′ is m′ =
∑N−1

j=0 (m1[j] �
m2[j])Xj as desired. Observe that the noise of the output ciphertext c̄′ is
∑N−1

j=0 (± q
8−e1[j]−e2[j])Xj . Therefore, the noise is bounded by N · q

8 ·2B = q
4NB.

Security. The encryption security of our scheme depends on RLWE assump-
tion [22]. Therefore, our scheme is semantic secure under RLWE assumption. In
addition, each party publishes the uni-encryption of ŝj,τ encrypted by z, similar
to FHEW [16] and all other bootstrappable FHE schemes such as [10,12,19], we
also need additional circular security.

4.2 Bootstrapping Procedure

Given a multi-key ring-LWE ciphertext RLWEs(m) = (b, a1, · · · , ak) ∈ Rk+1
q ,

the bootstrapping procedure constructs an encryption of m under the same key
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s but with a fixed amount of noise. As in [8], we will use uni-encrytption as an
intermediate encryption scheme to perform the hybrid product. The difference
is that our work relies on the multi-key ring-LWE accumulator for batching and
multi-setting, while Chen et al’s work just supports a single-bit bootstrapping.
See Algorithm 1 for the pseudo-code.

Algorithm 1. Bootstrapping procedure(c̄,BK,KS,PK, v)
Input: A multi-key RLWE ciphertext RLWEs (m) = (b, a1, · · · , ak), bootstrap-

ping keys {BKi}i∈{1,··· ,k} where BKi = {di,j,τ ,F i,j,τ}j∈[N ],τ∈[�] under secret
zi, key-switching keys {KSi}i∈{1,··· ,k} where KSi = RLWE−si(zi), public keys
{PKi}i∈{1,··· ,k}, a constant v

Output: N multi-key RLWE ciphertexts RLWEs (m[j]) where s = (1, −s1, · · · , −sk)
1: âi = DFT (ai)
2: for j = 0 to N − 1 do
3: Initialize the trivial multi-key RLWE sample as ACCj = (v, 0, · · · , 0) ∈ Rk+1

q

4: for i = 1 to k do
5: for τ = 0 to � − 1 do
6: ACCj ← ACCj +MS.Prod(X âi,j2

τ

ACCj , (di,j,τ ,F i,j,τ ),PK)
7: end for
8: end for
9: end for

10: {c̄′
j}j∈[N ] ←SampleExtract(b, {ACCj}j∈[N ])

11: return {c̄′
j}j∈[N ]

4.3 Analysis

Lemma 3. Let k be the number of the parities involved in the evaluation.
Assume that the noise sampled from Gaussian error distribution χ is bounded
by B. The noise of the output ciphertext of the batched MKFHE is bounded by
Õ(Nk2B2).

Proof. The noise grows according to the following steps:

– Ciphertext extension. In Sect. 2.4, we simply extend it to FHEW which
works in Rq, while TFHE works in torus T = R mod 1. As shown
in [8], the noise of the output ciphertext after MK.Prod algorithm is
ri

∑k
j=0〈g−1(cj),ej〉+ 〈∑k

j=0 zjg−1(cj),e′
i〉+ 〈∑k

j=0 g
−1(vj),e′′

i 〉. Therefore,
its noise is bounded by (k + 1)BN�(2B + 1).

– Accumulation. For each accumulator ACCj , we recursively compute the
MK.Prod algorithm k� times. Furthermore, the plaintext ŝi,j,τ of uni-
encryption is binary. So the noise of accumulator is bounded by (k2 +
k)BN�2(2B + 1).

– Multi-key Switching. As showen in Sect. 3.1, the noise of the output cipher-
text after RLWE.MKSwitch algorithm is

∑k
i=1〈g−1(ai),ei〉. Therefore, its

noise is bounded by k�BN .
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In summary, the noise of the output ciphertext of our batched MKFHE scheme
is bounded by (k2 + k)BN�2(2B + 1) + k�BN = Õ(Nk2B2).

Lemma 4. Let k be any polynomial in λ, pp ← MKFHE.Setup(1λ) and
(ski, pki) ← MKFHE.KeyGen(pp) for i ∈ {1, · · · , k}. Let c̄1, c̄2 be the multi-
key RLWE ciphertexts under the secret keys S1, S2, respectively. Formally,
mj ← MKFHE.Dec (pp, Sι, cι) for ι = 1, 2, where Sj ∈ {ski}i∈{1,··· ,k}. Then
the following holds:

MKHE.Dec(pp, {ski}i∈[k],MKHE.NAND({pki}i∈[k], c̄1, c̄2)) = m1 � m2. (2)

Proof. By the correctness of the MKFHE.NAND, the multi-key ciphertext c̄′

from MKHE.NAND({pki}i∈[k], c̄1, c̄2) is an encryption of m1 � m2 under secret
S1 ∪ S2. Since S1 ∪ S2 ∈ {ski}i∈{1,··· ,k}, we can convert the ciphertext c̄′ to
a larger dimensional ciphertext under secret key {ski}i∈{1,··· ,k} (see Sect. 2.5).
Next we need to ensure successful decryption.

To ensure correct decryption, the noise of the ciphertext c̄′ must less than q/4.
By Lemma 3, the upper limit of noise (k2 + k)BN�2(2B + 1) + k�BN < q/4.
Note that the constant B is often very small. In practice, B is usually set to
1, where the secret distribution is ternary distribution. Therefore, we can get
that 6k2N�2 < q/4, namely, k < 1

�

√
q

24N . Since N, � are polynomials in λ, we
can guarantee that decryption is successful by choosing a sufficiently large q.
Therefore, the equality (2) holds as desired.

5 Theoretical Analysis

We compare our batched fully dynamic MKFHE with other FHEW-like
MKFHE, batched MKFHE and full dynamic MKFHE schemes in Table 1 and 2.

Table 1 shows the main properties comparisons. One can observe that our
scheme is the only MKFHE scheme that support batching, bootstrapping and
fully dynamics. Moreover, our construction naturally inherites characteristics of
the comprehensible FHEW-like cryptosystems, in which we can evaluate Boolean
circuits on encrypted data. Although Brakerski et al.’s scheme [6] is also fully
dynamic, their work relied on Gentry’s bootstrapping technique and Barrington’s
theorem [3], which are complex and impractical.

Table 2 shows the complexity comparisons. The MKFHE schemes of Peikert
et al. [27] and Huang et al. [20] are of GSW-type, and its computation complexity
depends on matrix multiplication. The matrix multiplication has complexity of
O(N2.37) for N dimension matrices [30]. Brakerski et al.’s scheme [6] performed
matrix-vector multiplication and vector-vector addition, which can all be per-
formed in poly(k,N). Moreover, [11] required expanding the ciphertext into a
matrix according to the number of parties. One can observe that the amortized
cost of our scheme depend only on the the number of the parites involved in the
evaluations and the logarithm of N . Furthermore, our scheme has better amor-
tized computation complexity in evaluation key generation, which just Õ(k).
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The sizes of evaluation key and ciphertext grow linearly with the number of the
parties, so does Chen et al.’s work [9].

In summary, we first proposed a batched fully dynamic MKFHE that sup-
ports bootstrapping. Furthermore, our work has the optimal amortized compu-
tation complexity in evaluation key generation and lowest storage cost.

Table 1. Main properties comparisons.

Scheme Assumption Type Batch Bootstrap FHE Cryptosystem

Peikert et al. [27] LWE Multi-hop × × GSW
Brakerski et al. [6] LWE Fully dynamic × √

GSW
Chen et al. [11] RLWE Multi-hop

√ × BGV
Chen et al. [8] LWE Not given1 × √

TFHE
Chen et al. [9] RLWE Not given

√ √
BFV/CKKS

Huang et al. [20] LWR2 Fully dynamic × √
GSW

This work RLWE Fully dynamic
√ √

FHEW-like
1 The authors did not explain and prove.
2 LWR denotes learning with rounding problem introduced by Banerjee et al. [2].

Table 2. Complexity comparisons. k denotes the number of parties involved in the
evaluation, N is the dimension of the RLWE (or LWE) assumption. PK denotes the
public keys, EvaKey denotes the evaluation (or bootstrapping) keys.

Scheme Space Time
Type Complexity Amortized Type Complexity Amortized

Peikert
et al. [27]

PK
Cipher

Õ(kN4)
Õ(k2N4)

Õ(kN4)
Õ(k2N4)

Hom Mult Õ(k2.37N2.37) Õ(k2.37N2.37)

Brakerski
et al. [6]

PK
Cipher

Õ(kN3)
Õ(kN)

Õ(kN3)
Õ(kN)

Hom NAND poly(k, N) poly(k, N)

Chen
et al. [11]

EvaKey
Cipher

Õ(k3N)
Õ(kN)

Õ(k3)
Õ(k)

EvaKey Gen
Hom Mult

Õ(k3N)Õ(k3N) Õ(k3)Õ(k3)

Chen
et al. [8]

EvaKey
Cipher

Õ(kN)
Õ(kN)

Õ(kN)
Õ(kN)

EvaKey Gen
Hom NAND

Õ(kN)Õ(k2N2) Õ(kN)Õ(k2N2)

Chen
et al. [9]

EvaKey
Cipher

Õ(kN)
Õ(kN)

Õ(kN)
Õ(k)

EvaKey Gen
Hom Mult

Õ(kN3)Õ(k2N) Õ(kN2)Õ(k2)

Huang
et al. [20]

PK
Cipher

Õ(kN3)
Õ(kN)

Õ(kN3)
Õ(kN)

Hom Mult Õ(k2.37N2.37) Õ(k2.37N2.37)

This
work

EvaKey
Cipher

Õ(kN)
Õ(kN)

Õ(k)
Õ(k)

EvaKey Gen
Hom NAND

Õ(kN)Õ(k2N) Õ(k)Õ(k2)
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6 Conclusion

In this paper, motivated by the packing work of FHEW-like cryptosystems, we
propose a batched multi-key FHE in fully dynamic setting. Our construction has
lower amortized storage and computational overhead in evaluation key genera-
tion, when compared with other fully dynamic or multi-hop MKFHE. Morever,
to obtain an efficient bootstrapping in the multi-key setting, we design a multi-
key RLWE accumulator with homomorphic DFT. The accumulator only needs
Õ(k2N) polynomial multiplications. We also provide a comprehensive theoretical
analysis to demonstrate its merits.

Acknowledgement. This work was supported by the National Nature Science Foun-
dation of China under Grant 62172434.
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Abstract. Range proofs introduced by Brickell et al. at CRYPTO 1988,
allow a prover to convince a verifier that the committed value belongs to
an interval without revealing anything else. It has become an essential
building block in various modern cryptographic protocols such as dis-
tributed ledgers, anonymous transactions, e-cash, e-voting, auction pro-
tocols, privacy-preserving certificate transparency, and many more. In
this paper, we provide a zero-knowledge range argument system showing
that a committed value is in a public or hidden range by constructing
a zero-knowledge argument system to prove inequalities between signed
fractional numbers as well as non-negative integers in the standard lat-
tice settings. The complexity of our range arguments is only logarithmic
in the size of the range. Negative numbers and fractional numbers play
an important role in our everyday life, especially in financial loss, medi-
cal data, bank account balances, GPA and tax records, etc. It would be
desirable to handle them in a privacy-preserving manner. Prior to this
work, all the lattice-based zero-knowledge range argument systems only
address a range of non-negative integers, whereas our range arguments
can handle signed fractional numbers and fill an interesting research gap
in the literature.

1 Introduction

Range proofs allow a prover to convince a verifier that committed value belongs
to an interval without revealing anything else. It is an important primitive
in the arsenal of privacy-preserving cryptographic protocols. For example, in
Blockchain-based distributed ledger, requires that the transaction amount should
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be hidden to ease privacy disclosure and other problems. But, using the range
proof protocol, one can still verify the legitimacy of a transaction. Efficient range
proofs have recently become central components in distributed ledgers, the prime
example being the recent integration of Bulletproof [5] in the cryptocurrency
Monero. Range proofs also play an essential role in anonymous credentials, where
users can prove that their identity or private information belongs to a certain
range without revealing any other details. Furthermore, for e-voting [10,22], e-
cash [11,28], confidential transaction [38], e-auctions [31] and procurement, there
are many works describing direct applications of range proofs, explicitly zero-
knowledge range proofs [32,35].

Currently known range proofs proceed via two distinct approaches. The first
one proceeds by breaking integers into bits or small digits [3,6,9,21,23], which
allows communicating a sub-logarithmic (in the range size) number of group
elements in the best known constructions [6,21,23]. The second approach [4,8,22,
30] appeals to integer commitments and groups of hidden order. This approach
is usually preferred for very large ranges (which often arise in applications like
anonymous credentials [14], where range elements are comprised of thousands
of bits) where it tends to be more efficient and it does not require the maximal
range length to be known when the commitment key is chosen.

There are many efficient constructions of range proof have been proposed
in various cryptographic context [7,29,34,39]. However, there is only one paper
[34] considering signed fractional numbers, which is constructed in code-based
settings. Negative numbers do often appear in our daily life in the forms of
financial loss, bad reputation, medical data, etc., and it would be desirable to be
able to handle them in a privacy-preserving manner. Moreover, these data values
could be stored as fractional numbers, e.g., bank account balances, GPAs and
tax records, and hence, a protocol addressing them directly in such forms would
potentially be interesting. However, code-based privacy-preserving cryptographic
constructions are still rather underdeveloped. On the other hand, lattice-based
cryptography already facilitating the quantum-safe constructions for e-voting [2],
e-cash [11,28], confidential transaction [38] and many others [13–18,37]. Hence,
lattice-based zero-knowledge range arguments for signed fractional numbers are
expected to facilitate ongoing research to construct quantum-safe e-voting, e-
cash, confidential transactions, and many more.

Our Contributions and Overview of Techniques: In lattice-based cryptog-
raphy, zero-knowledge range arguments for committed numbers are only explored
for non-negative integers [7,12,29,39] and there has been no treatment for signed
fractional numbers. In this paper, we aim to fill this gap in the literature by pre-
senting the first zero-knowledge range arguments for committed signed fractional
numbers based on standard lattices. It is worth mentioning that the proposed
protocol has the same communication complexity, logarithmic in range size as
in [29]. In summary, our contributions are two folds, each of which potentially
yields various other applications:
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– First, we build a zero-knowledge arguments of knowledge (ZKAoK) for prov-
ing inequalities between signed fractional numbers as well as non-negative
integers in the standard lattice settings.

– Second, using this core argument system, we construct an efficient ZKAoK
showing that a committed value is in a public or hidden range.

In order to build a zero-knowledge range argument for committed signed
fractional numbers as well as non-negative integers, we depart from the lattice-
based KTX commitment scheme [25]. From a very high level, we first build a
zero-knowledge argument system for proving that a committed signed fractional
number X satisfies inequalities X ≤ Y or X < Y , where Y is another signed frac-
tional number that could be publicly given or committed. Then, based on these
core argument systems, we obtain a range argument system for the statements
“X ∈ [μ, ν]”, “X ∈ (μ, ν]”, “X ∈ [μ, ν)”, “X ∈ (μ, ν)”, where X is committed
under the KTX commitment, and a, b can be publicly given or committed.

In more detail, we consider fractional numbers represented in fixed-point
binary format. For � > 0 and f ≥ 0, signed fractional numbers X is represented
as x� · · · x0.x−1 · · · x−f , where x� is the sign bit, x�−1, · · · , x0 are the integer bits,
and x−1, · · · , x−f are the fractional bits. To handle the inequalities among signed
fractional numbers in lattice settings, we have utilized the strategy developed by
Nguyen et al. [34] for the code-based settings. At first, to build a lattice-based
zero-knowledge argument system for showing that two committed signed frac-
tional numbers X,Y , satisfy the inequality X ≤ Y , we show via zero-knowledge
that there exists Z ≥ 0 such that X + Z = Y . To handle strict inequalities
X < Y between two committed signed fractional numbers X,Y , specifically, we
show the existence of Z ≥ 0 such that X +Z +1 = Y , which we achieve by doing
some additional improvement in the protocol for X ≤ Y . If Y is public, then the
inequalities such as X ≤ Y , or X < Y can be handled using a simplified version
of the above protocols, where the bits representing Y are not required to be kept
secret. To prove X < Y for public Y , we can build a zero-knowledge argument
system for X ≤ Y ′, where Y ′ = Y − 2−f . By combining these zero-knowledge
argument systems, we build zero-knowledge range arguments for showing that a
committed value is in a public or hidden range.

2 Preliminaries

We denote the set of real numbers, rational numbers and integers by R, Q and
Z respectively. We denote column-vectors by lower-case bold letters (e.g. b),
and row-vectors are represented via transposition (e.g. bt). Matrix is denoted
by upper-case bold letters and treated interchangeably as an ordered set of its
column vectors. Let I and 0 denote the identity and the zero matrices respec-
tively, where the dimension will clear from the context. A negligible function is
generically denoted by negl(n). We say that a probability is overwhelming if it
is 1 − negl(n). The statistical distance between two distributions X and Y over
a countable domain Ω is defined as 1

2

∑
w∈Ω |Pr[X = w] − Pr[Y = w]|. We say
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that a distribution over Ω is ε-far if its statistical distance from the uniform
distribution is at most ε. We assume that all vectors are column vectors. The
concatenation of matrices A ∈ Z

k×i,B ∈ Z
k×j is denoted by [A|B] ∈ Z

k×(i+j).
The concatenation of two column vectors b1 ∈ Z

m,b2 ∈ Z
n is denoted by

(b1‖b2) ∈ Z
m+n. For a, b ∈ Z and c ∈ Q, we let [a, b] denote the set of all inte-

gers between a and b (inclusive), and let c · [a, b] denote the set {c · x|x ∈ [a, b]}.
For b ∈ {0, 1}, we denote the bit 1 − b ∈ {0, 1} by b̄. For a positive integer i,

we let [i] be the set {1, · · · , i}. For a finite set S, x
$←− S means that x is chosen

uniformly at random from S. All logarithms are of base 2. The addition in Z2 is
denoted by ⊕.

2.1 Lattices

A lattice Λ is a discrete additive subgroup of Rm. Specially, a lattice Λ in R
m

with a basis B =
[
b1 · · · bn

] ∈ R
m×n, where each bi is written in column

form, is defined as Λ := {∑n
i=1 bixi|xi ∈ Z ∀i ∈ [n]} ⊆ R

m. We call n the rank
of Λ and if n = m we say that Λ is a full rank lattice. In this paper, we
mainly consider full rank lattices containing qZm, called q-ary lattices, which
are defined as follows. Given a matrix A ∈ Z

n×m
q and u ∈ Z

n
q Λq(A) =

{
z ∈ Z

m : ∃ s ∈ Z
n
q s.t. z = A�smod q

}
; Λ⊥

q (A) = {z ∈ Z
m : Az = 0mod q} .

We define Λu
q (A) = {z ∈ Z

m : Az = umod q} = Λ⊥
q (A) + x for x ∈ Λu

q (A).

Vector and Matrix Norms: For a vector u ∈ Z
m, let ‖u‖2 =

√∑
i |ui|2

denote its �2 norm, and ‖u‖∞ = maxi |ui| denote its infinity-norm (�∞). For a
matrix R ∈ Z

k×m, let ‖R‖ be the �2 length of the longest column of R. ‖R‖2
is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖, and ‖R‖∞ is the
infinity-norm of R defined as ‖R‖∞ = maxi

∑
j |rij |.

Definition 1 (SIS∞
n,m,q,β [1,19]). Given uniformly random matrix A ∈ Z

n×m
q ,

find a non-zero vector x ∈ Z
m such that ‖x‖∞ ≤ β and A · x = 0 mod q.

If m,β = poly(n), and q > β · Õ(
√

n), then the SIS∞
n,m,q,β problem is at

least as hard as worst-case lattice problem SIVPγ for some γ = β · Õ(
√

nm). For
details, see [19,33].

2.2 The KTX Commitment Scheme

In this section, we present the lattice-based commitment schemes, proposed by
Kawachi, Tanaka and Xagawa (KTX) [25]. It has two flavours, one is fixed-length
commitment scheme, another one is the string commitment scheme. We use the
fixed-length commitment scheme to commit to secret bits, and use the string
commitment scheme to design the stern-like protocols.
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The KTX Commitment Scheme. Let n be the security parameter. Let
q = O(

√
L · n) be the prime modulus, and m = n(�log2 q + 3) be an integer.

Also, let L ≤ poly(n) be the length of the committed vector.
The commitment keys of the commitment scheme is (a0,a1, · · · ,aL−1,

b1, · · · ,bm), where a0, · · · ,aL−1
$←− Z

n×1
q and b1, · · · ,bm

$←− Z
n×1
q .

To commit to (x0, · · · , xL−1) ∈ {0, 1}L, the commit algorithm first samples

r1, · · · , rm
$←− {0, 1}, then it outputs a commitment c =

∑L−1
i=0 ai·xi+

∑m
j=1 bj ·rj

mod q ∈ Z
n
q .

To Open the commitment, it reveals (x0, · · · , xL−1) ∈ {0, 1}m, and
r1, · · · , rm ∈ {0, 1}.

Computationally Binding: If one can compute two valid openings (x
′
0, · · · , x

′
L−1,

r′
1, · · · , r′

m) and (x
′′
0 , · · · , x

′′
L−1, r

′′
1 , · · · , r′′

m) for the same commitment c such
that (x

′
0, · · · , x

′
L−1) �= (x

′′
0 , · · · , x

′′
L−1), then one can solve the SIS∞

n,m+L,q,1 prob-
lem associated with the uniformly random matrix [a0|a1| · · · |aL−1|b1| · · · |bm] ∈
Z

n×(m+L)
q . Thus, the scheme is computationally binding, assuming the hardness

of SIVP
˜O(

√
L·n).

Statistically Hiding: By the left over hash lemma [20], the distribution of a com-
mitment c is statistically close to uniform over Zn

q . This implies that the scheme
is statistically hiding.

For L = 1, the scheme becomes a bit commitment scheme, using a small
modulus q = Õ(n), rely on a weak SIVP assumption with γ = Õ(n).

Kawachi et al. [25] extended the above fixed-length commitment scheme to
a string commitment scheme COM : {0, 1}∗ × {0, 1}m ← Z

n
q . This scheme is

also statistically hiding for the given setting of parameters, and computationally
binding assuming that SIVP

˜O(n) is hard.

2.3 Zero-Knowledge Argument System and Stern-Like Protocols

In this paper, we build statistical zero-knowledge argument systems, namely,
interactive protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers.

Let the set of statements-witnesses R = {(y, w)} ∈ {0, 1}∗ ×{0, 1}∗ be an NP
relation. A two-party protocol 〈P,V〉 is called an interactive argument system
for the relation R with soundness error e if the following two conditions hold:

– Completeness. If (y, w) ∈ R then Pr[〈P(y, w),V(y)〉 = 1] = 1.
– Soundness. If (y, w) /∈ R then ∀PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if for any V̂(y), there
exists a PPT simulator S(y) producing a simulated transcript that is statistically
close to the one of the real interaction between P(y, w) and V̂(y). A related
notion is argument of knowledge, which requires the witness-extended emulation
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property. For protocols consisting of 3 moves (i.e., commit-challenge-response),
witness-extended emulation is implied by special soundness, where the latter
assumes that there exists a PPT extractor which takes as input a set of valid
transcripts with respect to all possible values of the ‘challenge’ to the same
‘commitment’, and outputs w′ such that (y, w′) ∈ R.

The statistical zero-knowledge arguments of knowledge (sZKAoK) presented
in this paper are Stern-type protocols [36]. Specifically, they are Σ-protocols in
a more generalized sense [24]. In particular, instead of two valid transcripts, they
need three valid transcripts for extraction. Using the KTX commitment scheme
[25], we obtain statistical zero-knowledge argument of knowledge (ZKAoK)
systems with perfect completeness, constant soundness error 2/3. To make
the soundness error negligibly small in n, the protocol needs to be repeated
κ = ω(log n) times.

2.4 Extending-Then-Permuting Techniques

We recall the extending-then-permuting techniques for proving in Stern’s frame-
work [36] the knowledge of a single bit x and a product of 2 secret bits x1 · x2,
presented in [26,27], respectively.

For any bit b ∈ {0, 1}, define b̄ = b + 1 mod 2, and ext2(b) = (b̄, b) ∈ {0, 1}2.
For any bit c ∈ {0, 1}, define P 2

c be the permutation that transforms the integer
vector v = (v0, v1) ∈ Z

2 into P 2
c (v) = (vc, vc̄) ∈ Z

2. In details, for c = 0, P 2
c

keeps the arrangement of v as it is; otherwise swaps them if c = 1. We have,

v = ext2(b) ⇐⇒ P 2
c (v) = ext2(b + c mod 2). (1)

As shown in [27], the equivalence (1) helps proving knowledge of a secret bit x
that may appear in several correlated linear equations. To this end, one extends
x to ext2(x), and permutes the latter using P 2

c , where c is a uniformly random
bit. Seeing the permuted vector ext2(x + c mod 2) convinces the verifier that
the original vector ext2(x) is well-formed − which in turn implies knowledge of
some bit x − while c acts as a “one-time pad” that completely hides x.

To prove that a bit is the product x1 · x2 of two secret bits, Libert et al. [26]
introduced the following technique. For any 2 bits b1, b2, define an extension of
the bit product b1 · b2 as ext4(b1, b2) = (b̄1 · b̄2, b̄1 · b2, b1 · b̄2, b1 · b2) ∈ {0, 1}4.

For any two bits c1, c2 ∈ {0, 1}, define P 4
c1,c2 be the permutation that trans-

forms the integer vector v = (v0,0, v0,1, v1,0, v1,1) ∈ Z
4 into the integer vector

P 4
c1,c2(v) = (vc1,c2 , vc1,c̄2 , vc̄1,c2 , vc̄1,c̄2) ∈ Z

4. We have,

v = ext4(b1, b2) ⇐⇒ P 4
c1,c2(v) = ext4(b1 + c1 mod 2, b2 + c2 mod 2). (2)

As a result, to prove the well-formedness of x1 ·x2, one can extend it to the vector
ext4(x1, x2), permute the latter using P 4

c1,c2 , where c1, c2 are uniformly random
bits, and send the permuted vector to the verifier who should be convinced that
the original vector, i.e., ext4(x1, x2) is well-formed, while learning nothing else
about x1 and x2, due to the randomness of c1 and c2.
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2.5 A Treatment of Signed Fractional Numbers

In this section, we recall some results related to signed fractional numbers, pre-
sented in [34]. We consider signed fractional numbers represented in fixed-point
binary format. For � > 0 and f ≥ 0, signed fractional numbers X is represented
as x� · · · x0.x−1 · · · x−f , where x� is the sign bit, x�−1, · · · , x0 are the integer bits,
and x−1, · · · , x−f are the fractional bits. We define the set Q〈� • f〉 as follows:

Q〈� • f〉 =2−f · [−2�+f , 2�+f − 1]

=
{

− 2� · x� +
�−1∑

i=−f

2i · xi|(x�, · · · , x0, x−1, · · · , x−f ) ∈ {0, 1}1+�+f
}

.

For each element X ∈ Q〈� • f〉, sbin�,f (X) represents the binary vec-
tor (x�, · · · , x0, x−1, · · · , x−f ) ∈ {0, 1}1+�+f . We write A = sbin−1

�,f (a) if a =
sbin�,f (A). So, we have Q〈� • f〉 = {sbin−1

�,f (a)|a ∈ {0, 1}1+�+f}. As discussed
in [34], handling signed fractional numbers, mainly inequalities over Q〈� • f〉
are not trivial, due to the signed bit, and the problems of overflows. To over-
come these issues, we treat elements of Q〈� • f〉 as elements of Q〈(� + 2) • f〉.
If X ∈ Q〈� • f〉 with sbin�,f (X) = (x�, · · · , x0, x−1, · · · , x−f ), then we have
X = −2� · x� +

∑�−1
i=−f 2i · xi = (−2�+2 + 2�+1 + 2�) · x� +

∑�−1
i=−f 2i · xi, and thus

sbin�+2,f (X) = (x�, x�, x�, x�−1, · · · , x0, x−1, · · · , x−f ) ∈ {0, 1}3+�+f , an element
of Q〈(� + 2) • f〉.
Definition 2 (Signed Fractional additions in Binary [34]). Let X,Z ∈
Q〈(� + 2) • f〉. The sum sbin�+2,f (X) ��+2,f sbin�+2,f (Z) is a vector y =
(y�+2, · · · , y0, y−1, · · · , y−f ) associated with a vector c = (c�+2, · · · , c0, c−1, · · · ,
c−f+1) such that

c−f+1 = x−f · z−f

ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1,∀i ∈ [−f + 2, � + 2]
y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci,∀i ∈ [−f + 1, � + 2].

The following lemma implies that, given X,Y ∈ Q〈�•f〉, if we compute their
sum over Q〈(� + 2) • f〉, then we can avoid overflows. Hence, this will help us to
capture the inequality X ≤ Y via addition.

Lemma 1 (Lemma 3, [34]). Let X,Y ∈ Q〈� • f〉 ⊂ Q〈(� + 2) • f〉. Then
X ≤ Y if and only if Z = Y − X ∈ 2−f · [0, 21+�+f − 1] ⊂ Q〈(� +
2) • f〉 and sbin�+2,f (X) ��+2,f sbin�+2,f (Z) does not cause an overflow. As
a corollary, sbin�+2,f (X) ��+2,f sbin�+2,f (Z) = sbin�+2,f (Y ); sbin�+2,f (Z) =
(0, 0, z�, · · · , z−f ).

The following Theorem 1 is about the necessary and sufficient conditions for
X ≤ Y , with X,Y ∈ Q〈� • f〉, such that these conditions can be correctly and
efficiently proved in zero-knowledge.
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Theorem 1 (Theorem 2, [34]). Let X,Y ∈ Q〈� • f〉, and sbin�,f (X) = (x�,
x�−1, · · · , x0, x−1, · · · , x−f ), sbin�,f (Y ) = (y�, y�−1, · · · , y0, y−1, · · · , y−f ). Then,
X ≤ Y if and only if there exist bits z�, z�−1, · · · , z0, z−1, · · · , z−f , c�+1,
c�, c�−1, · · · , c0, c−1, · · · , c−f+1 satisfying

c−f+1 = x−f · z−f

ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1,∀i ∈ [−f + 2, � + 1]
y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci,∀i ∈ [−f + 1, �]
y� = x� ⊕ c�+1.

For strict inequality X < Y , we have the following Theorem 2.

Theorem 2 (Theorem 3, [34]). Let X,Y ∈ Q〈� • f〉, and sbin�,f (X) = (x�,
x�−1, · · · , x0, x−1, · · · , x−f ), sbin�,f (Y ) = (y�, y�−1, · · · , y0, y−1, · · · , y−f ). Then,
X < Y if and only if there exist bits z�, z�−1, · · · , z0, z−1, · · · , z−f , c�+1, c�,
c�−1, · · · , c0, c−1, · · · , c−f+1 satisfying

c−f+1 = x−f · z−f ⊕ y−f ⊕ 1
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1,∀i ∈ [−f + 2, � + 1]

y−f = x−f ⊕ z−f ⊕ 1
yi = xi ⊕ zi ⊕ ci,∀i ∈ [−f + 1, �]
y� = x� ⊕ c�+1.

3 Range Arguments for Signed Fractional Numbers

In this section, we build our zero-knowledge argument system for the statement
that signed fractional numbers, committed via the lattice-based commitment
scheme belong to a hidden or given range. At first, we present our protocol for
proving in zero-knowledge that two committed signed fractional numbers X,Y
satisfies the inequality X ≤ Y . Next, we discuss how to derive in zero-knowledge
other variants of inequalities, such as for X ≤ Y , where Y is given; the strict
inequality X < Y , where X,Y both are committed, or Y is given. Finally, we
discuss how to derive various variants of range arguments, based on the results
of Sect. 2.5 and 3.1.

3.1 Proving Inequalities Between Committed Signed Fractional
Numbers

Let � > 0, f ≥ 0 be integers, and let L = (1 + � + f) > 0. Let a prime q =
O(

√
L · n) and m = n(�log q + 3). Consider the KTX commitment scheme with

parameters n, q,m,L and commitment key (a0,a1, · · · ,aL−1,b1, · · · ,bm), where
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a0, · · · ,aL−1,b1, · · · ,bm
$←− Z

n×1
q . Let X,Y ∈ Q〈� • f〉, whose binary represen-

tations are as x = sbin�,f (X) = (x�, · · · , x0, x−1, · · · , x−f ), y = sbin�,f (Y ) =
(y�, · · · , y0, y−1, · · · , y−f ). Let x,y be committed as

cx =

L−1∑

i=0

ai · x�−i +

m∑

j=1

bj · rx,j mod q ∈ Z
n
q

cy =

L−1∑

i=0

ai · y�−i +
m∑

j=1

bj · ry,j mod q ∈ Z
n
q ,where rx,j , ry,j

$←− {0, 1}∀j ∈ [m].

(3)
Our goal is to design an argument system allowing the prover to convince

the verifier in zero-knowledge that the vectors x,y committed in cx, cy satisfy
sbin−1

�,f (x) ≤ sbin−1
�,f (y), i.e., they represent numbers X,Y ∈ Q〈� • f〉 such that

X ≤ Y . Formally, we will build a ZKAOK for the relation R
(0)
ineq defined as:

R
(0)
ineq =

{
(((a0, · · · ,aL−1,b1, · · · ,bm), cx, cy),x,y, rx,1, · · · , rx,m, ry,1, · · · ,

ry,m) : sbin−1
�,f (x) ≤ sbin−1

�,f (y)
∧

cx =
∑L−1

i=0 ai · x�−i +
∑m

j=1 bj · rx,j

mod q
∧
cy =

∑L−1
i=0 ai · y�−i +

∑m
j=1 bj · ry,j mod q

}
.

To prove in zero knowledge that the inequality sbin−1
�,f (x) ≤ sbin−1

�,f (y) holds,
we will use the results of Sect. 2.5. Using Theorem 1, we can equivalently prove
the existence of bits z�, · · · , z0, z−1, · · · , z−f , c�+1, · · · , c0, c−1, · · · , c−f+1 satis-
fying the following 2(� + f) + 3 = 2L + 1 equations modulo 2:

c−f+1 ⊕ x−f · z−f = 0
ci ⊕ xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1 = 0,∀i ∈ [−f + 2, � + 1]

y−f ⊕ x−f ⊕ z−f = 0
yi ⊕ xi ⊕ zi ⊕ ci = 0,∀i ∈ [−f + 1, �]

y� ⊕ x� ⊕ c�+1 = 0.

(4)

To incorporate with above, we modify the relation R
(0)
ineq into R

(1)
ineq as follows:

R
(1)
ineq =

{
(((a0, · · · ,aL−1,b1, · · · ,bm), cx, cy),x,y, z�, · · · , z0, · · · , z−f , c�+1,

· · · , c−f+1, rx,1, · · · , rx,m, ry,1, · · · , ry,m) : sbin−1
�,f (x) ≤ sbin−1

�,f (y)
∧

cx =
∑L−1

i=0 ai · x�−i +
∑m

j=1 bj · rx,j mod q
∧
cy =

∑L−1
i=0 ai · y�−i +

∑m
j=1 bj · ry,j

mod q
}
.

i.e., R
(1)
ineq =

{
(((a0, · · · ,aL−1,b1, · · · ,bm), cx, cy),x,y, z�, · · · , z0, z−1, · · · ,

z−f , c�+1, · · · , c0, · · · , c−f+1, rx,1, · · · , rx,m, ry,1, · · · , ry,m) :
(3) and (4)satisfy

}
.

To handle Eqs. (3), (4) in zero-knowledge, we use the extending-then-
permuting techniques of Sect. 2.4. We proceed as follows:

1. Extend xi �→ xi = ext2(xi), yi �→ yi = ext2(yi), zi �→ zi =
ext2(zi), and ci+1 �→ ci+1 = ext2(ci+1) respectively for each i ∈ [−f, �].
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2. Extend rx,i �→ rx,i = ext2(rx,i), ry,i �→ ry,i = ext2(ry,i) for each i ∈ [m].
3. Extend xi−1 · zi−1 �→ ti−1 = ext4(xi−1, zi−1) for all i ∈ [−f + 1, � + 1]

and yi−1 · ci−1 �→ gi−1 = ext4(yi−1, ci−1) for all i ∈ [−f + 2, � + 1].

Let us construct Ai = [0n|ai] ∈ Z
n×2
q ∀i ∈ {0, · · · , L − 1} and Bj = [0n|bj ] ∈

Z
n×2
q ∀j ∈ [m]. Then Eqs. (3) can be rewritten as follows:

cx =
L−1∑

i=0

Ai · x�−i +
m∑

j=1

Bj · rx,j mod q ∈ Z
n
q

cy =
L−1∑

i=0

Ai · y�−i +
m∑

j=1

Bj · ry,j mod q ∈ Z
n
q .

(5)

Letting M0 = [A0| · · · |AL−1|B1| · · · |Bm] ∈ Z
n×2(L+m)
q , and wx = (x�‖ · · · ‖

x−f‖rx,1‖ · · · ‖rx,m) ∈ {0, 1}2(L+m), wy = (y�‖ · · · ‖y−f‖ry,1‖ · · · ‖ry,m) ∈
{0, 1}2(L+m) respectively, the above Eqs. (5) can be written as follows:

cx = M0 · wx mod q ∈ Z
n
q , and cy = M0 · wy mod q ∈ Z

n
q . (6)

Letting M1 =
[

M0 0n×2(L+M)

0n×2(L+M) M0

]

∈ Z
2n×4(L+m)
q , w1 = (wx‖wy) ∈

{0, 1}4(L+m), and c1 = (cx‖cy) ∈ Z
2n
q , the above Eqs. (6) can be unified into

one equations as follows:

M1 · w1 =c1 mod q. (7)

Let us construct two matrices H2 = [0|1] ∈ Z
1×2
2 and H4 = [0|0|0|1] ∈ Z

1×4
2 .

Then Eqs. (4) can be rewritten as follows:

H2 · c−f+1 ⊕ H4 · t−f = 0
H2 · ci ⊕ H4 · ti−1 ⊕ H4 · gi−1 ⊕ H2 · ci−1 = 0,∀i ∈ [−f + 2, � + 1]

H2 · y−f ⊕ H2 · x−f ⊕ H2 · z−f = 0
H2 · yi ⊕ H2 · xi ⊕ H2 · zi ⊕ H2 · ci = 0,∀i ∈ [−f + 1, �]

H2 · y� ⊕ H2 · x� ⊕ H2 · c�+1 = 0.

(8)

Let M2 ∈ Z
(2L+1)×16L
2 be a public matrix, built from H2,H4, and w2 =

(x�‖ · · · ‖x−f‖y�‖ · · · ‖y−f‖z�‖ · · · ‖z−f‖c�+1‖ · · · ‖c−f+1‖t�‖ · · · ‖t−f‖g�+1‖ · · · ‖
g−f+1) ∈ {0, 1}16L. Then the above Eqs. (8) can be unified into one equations
as follows:

M2 · w2 =02L+1 mod 2. (9)

Let us construct a vector w = (w1‖w2) ∈ {0, 1}20L+4m, which has of the
form (x�‖ · · · ‖x−f‖rx,1‖ · · · ‖rx,m‖y�‖ · · · ‖y−f‖ry,1‖ · · · ‖ry,m‖x�‖ · · · ‖x−f‖y�‖
· · · ‖y−f‖z�‖ · · · ‖z−f‖c�+1‖ · · · ‖c−f+1‖t�‖ · · · ‖t−f‖g�+1‖ · · · ‖g−f+1).



Zero-Knowledge Range Arguments 131

Encoding Vector ENC(·). In the following protocol, we will work with a
binary vector of length 20L + 4m that has a very specific constraint deter-
mined by 4L + 2m bits. For any vector b = (b1, · · · , bL, bL+1, · · · , b2L, b2L+1,
· · · , b3L, b3L+1, · · · , b4L, · · · , b4L+m, b4L+m+1, · · · , b4L+2m) ∈ {0, 1}4L+2m, we
denote by ENC(b) ∈ {0, 1}20L+4m the vector encoding b as follows:

ENC(b) =
(
ext2(b1)‖ · · · ‖ext2(bL)‖ext2(b4L+1)‖ · · · ‖ext2(b4L+m)‖ext2(bL+1)‖

· · · ‖ext2(b2L)‖ext2(b4L+m+1)‖ · · · ‖ext2(b4L+2m)‖ext2(b1)‖ · · · ‖ext2(bL)‖ · · · ‖ext2
(b2L)‖ext2(b2L+1)‖ · · · ‖ext2(b3L)‖ · · · ‖ext2(b4L)‖ext4(b1, b2L+1)‖· · ·‖ext4(bL, b3L)
‖ext4(bL+1, b3L+1)‖ · · · ‖ext4(b2L, b4L)

)
, where ext2, ext4 are as in Sect. 2.4.

Permutations Γ . To prove in zero-knowledge of a vector that has of the
form ENC(·), we will need a specific type of permutation. We associate
each c = (c1, · · · , cL, cL+1, · · · , c2L, · · · , c3L, c3L+1, · · · , c4L, c4L+1, · · · , c4L+m,
c4L+m+1, · · · , c4L+2m) ∈ {0, 1}4L+2m with a permutation Γc. On applying Γc

on ENC(b), it transforms its block as ext2(bi) �→ P 2
c (ext2(bi)), ext4(bj , bk) �→

P 4
c (ext2(bj , bk)), where P 2

c , P 4
c are as in Sect. 2.4. Based on the observations

in Eqs. (1), (2), it can be checked that the following holds. For all b, c ∈
{0, 1}4L+2m, and ENC(b) ∈ {0, 1}20L+4m,

v = ENC(b) ⇐⇒ Γc(v) = ENC(b + c mod 2). (10)

Let us assume s = (x�‖ · · · ‖x−f‖y�‖ · · · ‖y−f‖z�‖ · · · ‖z−f‖c�+1‖ · · · ‖c−f+1‖
rx,1‖ · · · ‖rx,m‖ry,1‖ · · · ‖ry,m) ∈ {0, 1}4L+2m, and construct a vector w =
(w1‖w2) ∈ {0, 1}20L+4m, which has of the form (x�‖ · · · ‖x−f‖rx,1‖ · · · ‖
rx,m‖y�‖ · · · ‖y−f‖ry,1‖ · · · ‖ry,m‖x�‖ · · · ‖x−f‖y�‖ · · · ‖y−f‖z�‖ · · · ‖z−f‖c�+1‖
· · · ‖c−f+1‖t�‖ · · · ‖t−f‖g�+1‖ · · · ‖g−f+1). Then, by the above definitions, we
have w = ENC(s).

The transformation we have done so far allow us to reduce the original state-
ment to proving knowledge of a vector s ∈ {0, 1}4L+2m, such that the component
vectors w1,w2 of w = ENC(s) satisfy the equations M1 · w1 = c1 mod q and
M2 · w2 = 02L+1 mod 2. The derived statements can be handled in Stern’s
framework, based on the following main ideas.

1. To prove that w = ENC(s), we will use the equivalence (10). To this end, we
sample a uniformly random c ∈ {0, 1}4L+2m and prove instead that Γc(w) =
ENC(s+c mod 2). Seeing this, the verifier is convinced in ZK that w indeed
satisfies the required constraints, thanks to the randomness of c.

2. To prove that M1 · w1 = c1 mod q and M2 · w2 = 02L+1 mod 2 hold, we
sample r1

$←− Z
4(L+m)
q , r2

$←− Z
16L
2 , and demonstrate that M1 · (w1 + r1) =

c1 + M1 · r1 mod q; M2 · (w2 + r2) = 02L+1 + M2 · r2 mod 2.

The interactive protocol Our interactive protocol goes as follows:

1. The public input consists of matrices M1,M2 and vectors c1,02L+1, which
are constructed from the original public input, as discussed above.

2. The prover’s witness consists of the original secret vector s ∈ {0, 1}4L+2m and
vector w = (w1‖w2) = ENC(s) ∈ {0, 1}20L+4m derived from s, as described
above.
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1. Commitment : P samples c
$←− {0, 1}4L+2m, r1

$←− Z
4(L+m)
q , r2

$←− Z
16L
2 , and

computes r = (r1‖r2), z = w � r.
Then P samples randomness ρ1, ρ2, ρ3 for COM, and sends CMT =
(C1, C2, C3) to V, where

C1 =COM(c,M1 · r1 mod q,M2 · r2 mod 2; ρ1)

C2 =COM(Γc(r); ρ2)

C3 =COM(Γc(z); ρ3).

2. Challenge : V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response : P sends RSP computed according to Ch, as follows:
– Ch = 1: RSP = (c∗, β, ρ2, ρ3), where c∗ = s+ c mod 2 and β = Γc(r).
– Ch = 2: RSP = (b,x, ρ1, ρ3), where b = c and x = z.
– Ch = 3: RSP = (e,y, ρ1, ρ2), where e = c and y = r.

4. Verification : Receiving RSP , V proceeds as follows:
– Ch = 1: Let α = ENC(c∗). Check that C2 = COM(β; ρ2), C3 = COM(α �

β; ρ3).
– Ch = 2: Parse x = (x1‖x2), where x1 ∈ Z

4(L+m)
q , x2 ∈ Z

16L
2 , and check

that C1 = COM(b,M1 ·x1 −c1 mod q,M2 ·x2 −02L+1 mod 2; ρ1), C3 =
COM(Γb(x); ρ3).

– Ch = 3: Parse y = (y1‖y2), where y1 ∈ Z
4(L+m)
q , y2 ∈ Z

16L
2 , and

check that C1 = COM(e,M1 · y1 mod q,M2 · y2 mod 2; ρ1), C2 =
COM(Γe(y); ρ2).

In each case, V outputs 1 if and only if all the conditions hold.

Fig. 1. The interactive protocol

The prover P and the verifier V interact as described in Fig. 1. The protocol
uses the KTX string commitment scheme COM, which is statistically hiding
and computationally binding. For simplicity of presentation, for vectors w =
(w1‖w2) ∈ Z

20L+4m and r = (r1‖r2) ∈ Z
20L+4m, we denote by w � r the

operation that computes z1 = w1+r1 mod q, z2 = w2+r2 mod 2, and outputs
(20L+4m)-dimensional vector z = (z1‖z2). We note that, for all c ∈ {0, 1}4L+2m,
if α = Γc(w) and β = Γc(r), then we have Γc(w � r) = α � β.

In the following theorem, we prove that the protocol described in Fig. 1 has
perfect completeness, it is a statistical zero-knowledge argument of knowledge.

Theorem 3. Suppose that COM is a statistically hiding and computationally
binding string commitment. Then, the protocol described in Fig. 1 is a statistical
ZKAOK for the considered relation, with perfect completeness, soundness error
2/3 and communication cost O(� + f).

Proof. The proof is deferred to the full version due to space constrained. ��
For other cases of inequalities such as X ≤ Y , where Y is public, the above

protocol will be easily applied. Moreover, it will simplify the above protocol and
reduces their complexity as the number of secret bits to deal with is smaller than
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in the above protocol. To build zero-knowledge argument of strict inequality such
as X < Y , where X,Y both are committed, we can simply apply the results of
2 in the above protocol. For public Y , we can interpret X < Y as X ≤ Y ′ for
public Y ′ = Y − 2−f , and we can easily build zero-knowledge argument system
by applying above protocol.

3.2 Range Arguments for Signed Fractional Numbers

We now discuss how to use the argument system presented in Sect. 3.1 to derive
various variants of range arguments for signed fractional numbers.

1. Public ranges with non-strict inequalities. We consider the problem of
proving in zero-knowledge that a committed signed fractional number X ∈
Q〈� • f〉 satisfies X ∈ [μ, ν], i.e., μ ≤ X ≤ ν, for publicly known signed
fractional numbers μ, ν. This type of range arguments is the easiest one,
and we can build it based on the interactive protocol of proving inequalities
of Fig. 1. Consider the lattice-based commitment scheme of Sect. 2.2 with
parameters n, q,m,L as in Sect. 3.1. Let X ∈ Q〈� • f〉, and x = sbin�,f (X) =
(x�, · · · , x0, x−1, · · · , x−f ). Let x be committed as

cx =

L−1
∑

i=0

ai · x�−i +

m
∑

j=1

bj · rx,j mod q ∈ Z
n
q ,where rx,j

$←− {0, 1}∀j ∈ [m]. (11)

Let binary representation of μ, ν be μ = sbin�,f (μ) = (μ�, · · · , μ0, · · · , μ−f ),
ν = sbin�,f (ν) = (ν�, · · · , ν0, · · · , ν−f ). Our goal is to design an argument
system allowing the prover to convince the verifier in zero-knowledge that
the vector x committed in cx satisfy sbin−1

�,f (μ) ≤ sbin−1
�,f (x) ≤ sbin−1

�,f (ν), i.e.,
μ ≤ X ≤ ν. We observe that X satisfies μ ≤ X ≤ ν if and only if sbin−1

�,f (μ) ≤
sbin−1

�,f (x) and sbin−1
�,f (x) ≤ sbin−1

�,f (ν). We thus reduce the task of proving X ∈
[μ, ν] to proving two inequality relations among signed-fractional numbers,
which can be achieved (by running two instances) using the techniques of
Sect. 3.1. In fact, inequalities μ ≤ X and X ≤ ν can be handled using the
simplified version of the protocol in Sect. 3.1, where the bits representing μ, ν
are not required to be kept secret.

2. Public ranges with strict inequalities. For the strict inequality μ < X <
ν, where μ, ν are public, and X is a committed signed fractional number,
we can interpret the strict inequality μ < X as non-strict inequality μ′ ≤ X
for public μ′ = μ + 2−f . Similarly, we can interpret the strict inequality
X < ν as non-strict inequality X ≤ ν′ for public ν′ = ν − 2−f . Then, we can
proceed for the argument system of Public ranges with non-strict inequalities,
as described above.

3. Hidden ranges with non-strict inequalities. For the non-strict inequality
μ ≤ X ≤ ν, where μ, ν are hidden, we require to prove that μ ≤ X ≤ ν, where
μ,X, ν are all committed signed fractional numbers. So, we need to prove that
X satisfies μ ≤ X and X ≤ ν. Such a range argument can be achieved by
running two instances of the interactive protocol in Sect. 3.1.
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4. Hidden ranges with strict inequalities. For the strict inequality μ <
X < ν, where μ, ν are hidden, we require to prove that μ < X < ν, where
μ,X, ν are all committed signed fractional numbers. Here, a zero-knowledge
argument of strict inequality is required. Such a protocol can be obtained by
results of Theorem 2 and the techniques used in Sect. 3.1.

In all cases considered above, the size of range arguments remains O(� + f),
i.e., it is logarithmic in the size of range.

4 Conclusion

In this paper, we build zero-knowledge argument systems for proving inequal-
ities between signed fractional numbers as well as non-negative integers in the
standard lattice settings. Using this core argument system, we construct effi-
cient zero-knowledge range argument systems showing that a committed value
is in a public or hidden range. Our work left an open problem in building a
zero-knowledge range argument for multi-dimensional arrays.
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Abstract. Memory corruption is a root cause of software attacks. Exist-
ing defense mechanisms (e.g., DEP, ASLR, CFI, CPI/CPS, and DFI)
either offer limited security guarantees or incur high performance over-
head. In this paper, we designed and developed a fast out-of-band (OOB)
integrity monitor dubbed FastDIM to protect both applications and ker-
nels against memory corruption attacks with less overhead. With Fast-
DIM, a program in question is statically hardened by a compiler module.
After that, the integrity of sensitive program data such as control-flow
transfers (e.g., code pointers) and security relevant non-control data (e.g.,
encryption keys) are automatically protected by a monitor at run time.
The key differences between FastDIM and related work are in the follow-
ing aspects: 1) FastDIM offers an OOB monitor that protects the pro-
grams independently rather than letting the protected programs verify
themselves using inlined reference monitor (IRM); 2) FastDIM extends
the concept of shadow stacks originally proposed in CFI to protect not
only return addresses but also other sensitive data such as function point-
ers, vtable pointers, and user-annotated sensitive non-control data. Thus,
the protection of FastDIM is beyond control-flow data; 3) FastDIM pro-
vides a fast communication mechanism between programs and the moni-
tor, so that the integrity checks are performed efficiently without context
switch; and 4) for a better scalability and compatibility, FastDIM does
not rely on LTO and Cross-DSO to support applications with dynami-
cally linked libraries. We implemented a Kernel version and a TrustZone
version of FastDIM to protect both user programs and Linux/Android
kernels. The evaluation results show that the average overhead of Fast-
DIM is 4.4% on SPEC CPU2017 C/C++ benchmarks and around 3%
on AnTuTu benchmarks.

Keywords: Memory corruption · Control-flow integrity · Data-flow
integrity · Software hardening · Integrity Monitor
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Memory corruption is one of the most intractable vulnerabilities for programs
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kind of vulnerabilities, in-memory data can be altered illegally by an attacker,
leading to various attacks such as arbitrary code execution, privilege escalation,
and information leak. Memory corruption attacks can be broadly classified into
two categories: control-oriented and data-oriented. Control-oriented attacks tar-
get control-related data such as return addresses, function pointers, and virtual
function tables. An attacker who tampers with those data may hijack the con-
trol flow of the program and execute unintended code. By contrast, data-oriented
attacks target non-control-related data including syscall arguments, branch con-
ditions, and user credentials, which are exploited to escalate privileges or bypass
security checks.

Early control-oriented attacks focused on code injection, while recent attacks
leveraged Return-Oriented Programming (ROP) [11] and Just-In-Time (JIT)
[19] techniques to launch code-reuse attacks. In response, numerous defenses
for control-flow hijacking attacks have been proposed and become increasingly
practical and efficient; they include data-execution prevention (DEP), memory
randomization (such as ASLR, DSR [3], randomized NOP insertion , and TASR
[4]), Control-Flow Integrity (CFI) [1] and its variants surveyed in [2], and code
pointer protections (such as CCFI [12] and CPS/CPI [10]).

In this paper, we propose FastDIM, an unified out-of-band data integrity
monitoring solution to protect both control-flow data and critical non-control
data. To the best of our knowledge, this is the first work on enforcing the integrity
of code/data pointers on both applications and OS kernels by using ARM Trust-
Zone technology. Unlike traditional CFI or DFI methods, our approach does not
depends on static analysis of control-flow graphs (CFGs) or data-flow graphs
(DFGs) which cannot be computed accurately in practice [5]. Instead, the secu-
rity code is automatically inserted into target programs to track load/store oper-
ations of sensitive memory addresses such as return addresses, function pointers,
vtable pointers, and user-annotated non-control data. During runtime, an out-
of-band monitor running in Secure World (or as a standalone kernel module if
ARM TrustZone is not supported) is responsible to check the integrity of the
value used by the application using its shadow copies maintained by the monitor.
If any mismatch is found, memory corruption is then detected. In such a way,
FastDIM can mitigate memory corruption attacks including use-after-free flaws,
which is hardly addressed by other approaches. Note that early CFI techniques
also adopt a similar idea that uses shadow stack to protect function returns, but
it was omitted later for performance issues as it incurred too much overhead.
In this work, we present a new architecture to speed up shadow copying and
verification.

FastDIM has two major components: a compiler-based software hardening
tool and an out-of-band integrity monitor. A new technique was developed to
avoid link time optimization (LTO) which requires changing the system linker
(e.g., using LLVM’s gold linker). With this technique, our hardening tool offers
modular instrumentation and supports dynamically-linked libraries, which sig-
nificantly increases the compatibility and scalability to support complex applica-
tions as well as OS kernels. A shared-memory-based mechanism was developed
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to support fast communication between applications and the monitor. To fur-
ther reduce overhead, several optimizations such as loop-invariant code motion
and caching were applied . For pressure testing, FastDIM was evaluated on
RIPE benchmarks and SEPC CPU2017 benchmarks. The results showed that
all attacks in RIPE were successfully detected, and FastDIM incurred a geo-
metric mean of 2.1% and a max of 27% overhead on SEPC CPU2017 C/C++
benchmarks. For real-platform testing, we instrumented a COTS Android Kitkat
(kernel v3.14) running on a i.MAX.6 development board. The hardened kernel is
2.5% larger than the original one, and increases the Binder (i.e., Android’s IPC)
latency by 1.4% on average. AnTuTu benchmarks show a marginal 3% over-
all system slowdown. Source code of both the LLVM compiler and the monitor
module are available in github.

In summary, we make the following contributions:

– We designed an unified out-of-band data integrity monitor to mitigate both
control-flow and data-oriented attacks; previous work focused on either
control- or data-oriented attacks.

– We developed a shared-memory based communication mechanism through
which an out-of-band security monitor runs concurrently with target pro-
grams. This significantly reduces the monitoring overhead, at the expense of
adding a small amount of security risk.

– We developed a new technique that supports compiler instrumentation with-
out LTO to achieve better scalability and compatibility.

– We implemented and evaluated two prototypes of FastDIM (a standalone
kernel module and a ARM TrustZone version) to protect both applications
and operating system kernels on real-world platforms.

The rest of this paper is organized as follows. In Sect. 2, we describe the
background about control-flow and data-flow attacks with several motivating
examples. In Sect. 3, we present the design of FastDIM and its security guaran-
tees. In Sect. 4, we present the evaluation of FastDIM. In Sect. 5 we review the
related work, followed by conclusions in Sect. 6.

2 Background

Security researchers have focused on developing countermeasures against
memory-corruption attacks for decades. We next briefly discuss two principled
solutions: CFI and DFI, and their limitations, which serve as the motivation for
this work.

2.1 Control-Flow Integrity

Control-Flow Integrity (CFI) is considered a principled security solution [2]
towards control-oriented attacks. Google and Microsoft has integrated CFI into
Clang and Visual Studio , respectively. CFI defines a set of legitimate targets for
every control-flow transfer in a program and ensures that the transfer at runtime
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Fig. 1. An example that illustrates how non-control data can affect control flows.

cannot deviate from that set. The set is derived statically from a Control-Flow
Graph (CFG) of the program. Thus, the security guarantee of CFI depends on
the precision of the CFG. However, it is difficult to computing a precise CFG
statically.

In addition, a CFG is stateless, which does not capture dynamic contexts.
As a result, control flows may be affected by non-control data. Figure 1 presents
an example (used in [2,7]). The value of the handler function pointer (at lines
10 and 12) depends on a branch condition (at line 9), which cannot be deter-
mined at compile time. Although this specific problem can be addressed by
path-sensitive analysis [7], in general the set for a control-flow transfer has to be
over-approximated; otherwise the program would not work correctly under the
CFI protection.

2.2 Data-Flow Integrity

Compared to control-oriented attacks, non-control data are far more abundant
than control-flow data. By corrupting some critical non-control data such as
decision-making variables and cryptographic keys, attackers can escalate privi-
leges, read and exfiltrate sensitive information, or corrupt a program’s internal
logic. In Fig. 1, variable authenticated is sensitive. By exploiting the vulnerable
function at line 6, an attacker may corrupt its value and bypass the authentica-
tion check at line 16. Since data-oriented attacks do not violate stateless CFGs,
they are invisible to the state-of-the-art control-flow defenses.

2.3 ARM TrustZone

The isolated execution allows a piece of code to run in a complete isolation from
other codes. The execution isolation provides secrecy and integrity of both code
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Fig. 2. An example that illustrates how use-after-free vulnerabilities can evade CFI.

and data at run-time. The isolated execution is one of the desired security prop-
erties. Putting the security critical components and other software components
to run in the same domain brings the potential risks that once an adversary
escalates privileges, the adversary may disable the security critical components.
ARM’s TrustZone technology is a system-wide security solution that provides
two execution domains: Normal World and Secure World. Through an isolated
memory space and proper configured secure peripherals, TrustZone can securely
isolate the Secure World from the Normal World. Thus, security sensitive com-
ponents can run inside the Secure World with all access control policies protected
by underlying hardware.

While TrustZone separates the execution domains, the between-world com-
munication is still needed for security operations. The world switching from
the Normal World to the Secure World is done usually by executing a dedi-
cated instruction, the Secure Monitor Call (SMC) instruction, or a subset of
the hardware exception mechanisms. When an SMC instruction is issued from
the normal world, an ARM processor core running in the normal world will
save its context into memory, flush the Memory Management Unit (MMU) and
switch the execution world by changing its state. After the core enters the secure
world, the core will restore its context in the secure world and start the security
operations. One challenging issue to utilize this feature is that the SMC-based
method will introduce excessive overhead and may greatly reduce the system
execution performance, In order to improve the performance, FastDIM uses On-
Chip RAM (OCRAM) as a shared memory between worlds. The OCRAM is
mapped statically in the memory address space and can be accessed directly via
the Advanced eXtensible Interface (AXI) bus. Unlike using regular RAM, the
MMU is not needed to be consulted to access OCRAM. Using the OCRAM,
run-time overhead can be greatly reduced by excluding the use of the MMU.
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3 Design

FastDIM is a unified framework that enforces the integrity of sensitive in-memory
data to mitigate memory corruption attacks.

3.1 Protection Targets

In this work, we only consider the following potential memory corruption targets
including both control-flow data and non-control data.

– Return addresses: When a function gets called, the return address which
is arguably the most infamous target of control-flow attacks will be stored on
the stack. By corrupting the return address, an attacker can execute arbitrary
code (e.g., injected code or ROP gadgets) once the function returns. Although
stack canaries, ASLR, and safestack [10] have been used in practice to protect
return addresses, recent work [8] shows that they can be bypassed by advanced
attacks. Hence, we still include return addresses in our protection.

– Function pointers: Another type of control-flow transfers is function
pointer, which stores the address of a function. Function pointers are widely
stored on stack, heap, and other data segments. If a function pointer is com-
promised, an attacker can alter the control flow to an arbitrary location, when
the program makes an indirect call through that function pointer.

– Vtables pointers: In C++, a class that defines a virtual function or derives
from a class with virtual functions has a virtual function table (vtable) at
runtime. For implementing dynamic dispatch, a vtable of a class is a look-up
table comprised of a set of code pointers for every virtual function in the class.
Although vtables themselves are housed in read-only memory, the pointer
pointing to the base of vtable (a.k.a., vptr) is stored in writable memory
regions. By overwriting the vptr, an attacker can hijack the control flow of
the victim C++ programs.

– User-annotated non-control data: As illustrated in Fig. 1, non-control
data can be security critical. For example, tampering with the parameters
of system calls such as setuid(), execute() may lead to privilege escala-
tion or unintended program execution; Overwriting the in-memory data read
from the configuration files may result in bypassing the default access control
of certain server applications. If decision-making data are compromised, an
attacker can redirect the control flow of a program to unintended branches
and thus bypass security checks.

3.2 System Overview

The protection of FastDIM is achieved through offline compiler instrumentation
and runtime out-of-band (OOB) monitoring. As shown in Fig. 3, unprotected
applications/kernels are automatically instrumented by our compiler plugin to
add security checks wrapped in a support library. These hardened programs are
capable of reporting the operations of protected targets to a monitor running in



Fast Out-of-Band Data Integrity Monitor 145

Fig. 3. An overview of FastDIM’s system architecture.

Secure World. Based on the type of each operation, the monitor is responsible
to perform necessary actions. In response, the monitor will terminate the corre-
sponding program and reports a violation to users through the proc filesystem.
In this design, the true value of each protected memory object along with its life
cycle is tracked by the monitor dynamically, rather than being determined by
a static set inferred from the CFG/DFG. Hence, it can significantly reduce the
false errors caused by the inaccurate CFG/DFG.

3.3 Compiler-Time Instrumentation

The input of FastDIM’s instrumentation tool is the source code of a program,
and the output is the enhanced program with security code inserted. Particulary,
the instrumentation will perform static analyze to identify all targets that need
protection and their operations, and insert necessary instructions in the program
to report operations associated with those targets to the monitor. The detail is
discussed as follows.

Locating Targets. At this stage, we need to understand where to insert the
code to report the target memory data. Different targets has different ways. The
location of a return address object can be computed through a fixed offset from
the frame pointer on the stack.

Instrumentation for Assignment. After identifying all targets, FastDIM will
instrument the program with reporting capability. A few instructions will be
inserted right after each assignment operation, writing a message to the shared
memory so that the monitor can make a shadow copy of assigned values.

Instrumentation for Dereference. When targets are used or dereferenced
somewhere in the program, the program is instrumented to notify the monitor
to validate whether the data are altered illegally. Regarding non-return sensitive
data such as function pointers, vptrs, and annotated memory objects, FastDIM
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Fig. 4. Multiple ring buffers in shared memory and look-up tables in the monitor.

tracks all the load instructions, since those sensitive data have to be loaded into
a register from memory before the use. The reporting instruction is inserted right
before the load instruction. When a block of memory is copied from source to
destination, the integrity of the source needs verification before making a new
shadow copy for the assignment of the destination. For return addresses, the
reporting instructions are inserted before the ret instructions for select functions
that are not optimized. Note that no instrumentation is needed when sensitive
data already in registers are used, as the data has already been checked before
it is loaded into the registers.

Instrumentation for Fork and Destory. In order to prevent use-after-free
attacks as illustrated in Fig. 2, FastDIM tracks the lifetime of each target. When
a function returns, all the saved shadow copies associated with that function
will be destroyed; for that, FastDIM insert a few instructions before the ret
instruction to notify the monitor. Similarly, when a block of memory is freed
on the heap, a notification message is sent to the monitor. After receiving the
notification, the monitor will remove all the related shadow copies.

3.4 Runtime Integrity Monitoring

We have two monitor versions implemented in a kernel driver and in the secure
world enabled by ARM TrustZone technology, respectively. Two versions have
the same design principles with only differences in the implementation. For sim-
plicity, the description of this section focuses on the kernel monitor module.

As shown in Fig. 4, a memory buffer (i.e., shared memory) is managed by the
monitor, where multiple ring buffers are created to facilitate passing data from
the user space to the kernel space. The shared memory is organized as a matrix
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of blocks and each column of the matrix stands for a ring buffer. Each element
in the ring buffer contains a data structure as follows:

Entityring :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tid, address, value,OP_STORE, sig
tid, address, value,OP_LOAD, sig
tid, address,_, OP_PUSH, sig
tid, address,_, OP_POP, sig
tid,_, parent′stid,OP_FORK, sig
tid, address, size,OP_FREE, sig

An individual ring buffer is assigned to a set of processes with the same hash of
their task identifier (i.e., tid). When reporting an operation of sensitive data, a
program process will push one of the above entities in the corresponding ring.
With this design, the monitor allows multiple processes running on different
CPU cores to write different ring buffers concurrently. To avoid the potential
race conditions, a locking mechanism between user space and kernel space is
implemented. Each entity in the ring buffer is signed by the program who write
the shared memory.

There are two types of RAM caches managed by the monitor: a shadow
lookup table and a shadow stack for non-return data and return addresses,
respectively. Both are implemented in hash tables for O(1) search, while the
detail is slightly different. Due to page limit, we only present the shadow lookup
table here.

Non-return target data are stored in a dual-lookup table. As shown in the left
part of Fig. 5, a hash bucket stores the task ID, the memory location of the sen-
sitive data (referred to as data address), the value of the data, and a timestamp.
When a new message is written into the shared memory by a user-space program,
the kernel monitor will first determine whether the write operation is authenti-
cated by verifying the message signature. After authentication, the monitor will
compute the hash key based on the task ID and data address embedded in the
message. With the key computed, the monitor will operate on a corresponding
hash bucket based on the type of messages.

In order to speed up the duplication or removal of a batch of shadow copies
associated to individual tasks when a task is forked or exits, we create an auxil-
iary task hash table shown in the right part of Fig. 5. In such a hash table, the
key is calculated using the task ID only, and the hash bucket contains a list of
references of shadow copies that have the same task ID. As a result, the removal
of dead entries or the duplication of parent entries becomes an O(1) operation.

3.5 Security Analysis

One fundamental question is how the shared memory is protected against
attacks. This is discussed from the consideration of malicious programs and
benign but vulnerable programs separately. A malicious program attempts to
corrupt the messages written by benign programs, so that the protection of
benign programs will cease the effectiveness.For example, a malicious program
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Fig. 5. Workflow of shadow lookup tables.

may write the shared memory with forged task ID and arbitrary content. In
defense, FastDIM ensures that every message written to the shared memory
is signed by the secret only known to the program. With the signature, what
a malicious program can do is to simply replay existing messages, which only
affect the efficiency of the shared memory (similar to deny of service) but not
compromise the correctness of integrity checks. In order to further reduce the
opportunities of DoS attacks, our future work will incorporate the access control
of the protected programs, e.g., white list and limitation of writing rate.

For benign but vulnerable programs, FastDIM provides several methods to
prevent an attacker from using a buffer overflow to modify the shared memory
illegally. The first countermeasure provided by FastDIM is that the shared mem-
ory is randomly mapped to the address space of the program. Hence, an attacker
is not easy to guess the base of the shared memory. Furthermore, the digital sig-
nature can provide enough protection against the direct access through buffer
overflow. However, we do not assume that an attacker can arbitrarily read/write
all readable/writable memories like debugger tools at the execution of the pro-
gram.

In addition, our approach may have a risk of delayed checking by the monitor,
but this is intended to reduce the runtime overhead of integrity checks. The
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protected programs only write a single message to the shared memory before or
after each operation of sensitive data without blocking to wait the results from
the monitor. Hence, the processing performed by the monitor will not negatively
affect the effectiveness of the protected programs. At the cost, there are delays
between the operations of sensitive data and the checking results. The situation
may become worse when too many programs are writing the shared memory at
the same time, while the monitor is not fast enough to consume those messages
in time. However, according to experiment results on various benchmarks, the
delay typically has a few instruction cycles. It can be further improved if we
dedicate a CPU core or a hardware accelerator to run the monitor. In such a
small time window, an attacker hardly launch an attack successfully.

4 Evaluation

To evaluate our prototype of FastDIM, we designed and performed experiments
aiming to answer the following questions:

1. Correctness (Q1). Are intended functionalities of programs negatively
affected by our protection mechanism?

2. Effectiveness (Q2). Can our prototype accurately detect memory-
corruption attacks targeting function pointers, return addresses, vtable
pointers, and other non-control data annotated by users?

3. Efficiency (Q3). How much performance overhead does FastDIM impose on
programs?

4.1 Evaluation of FastDIM

FastDIM can be used to protect user-space programs thanks to its integerity
monitor implemented inside an OS kernel. To evaluate it, we collected sev-
eral benchmarks including RIPE benchmarks, SPEC CPU2017 C/C++ bench-
marks, and several real-world applications including the Apache webserver and
the TORQUE resource manager for HPC systems. These bencmarks were com-
piled by FastDIM’s compiler tool (based on Clang/LLVM 3.9) and tested under
the protection of FastDIM’s integrity monitor module. RIPE and TORQUE
programs contain vulnerable targets including return addresses, stack function
pointers, heap function pointers, .bss function pointers, .data function point-
ers, and attack samples. They are evaluated aiming to answer the effectiveness
question. The Apache server was used to test the efficiency of our prototype.
SPEC CPU2017 has reference inputs and verification code that can be used to
test whether its benchmarks generate correct output; so we use them for both
efficiency and correctness evaluation.

SPEC CPU2017 (Q1 and Q3). Table 1 lists the overhead results for SPEC
CPU 2017 benchmarks (the first 9 programs in the table are SPECrate Inte-
ger benchmarks and the last 6 programs are SPECrate 2017 Floating Point
benchmarks). All programs were compiled by stock Clang/LLVM 3.9 and were



150 J. Huang et al.

Table 1. Performance overhead of SEPC CPU2017 benchmarks

Programs KLoc Original (sec) FastDIM
(Code-
Pointer-only)

FastDIM (all)

500.perlbench_r 362 488± 5 +21.9% +26.8%

502.gcc_r 1304 315± 3 +8.9% +14.5%

505.mcf_r 3 395± 6 +0.1% +1.8%

520.omnetpp_r 134 489± 4 +21.3% +32.6%

523.xalancbmk_r 520 375± 3 +15.3% +29.6%

525.x264_r 96 350± 1 +6.2% +10.5%

531.deepsjeng_r 10 323± 3 +0.7% +0.3%

541.leela_r 21 491± 1 +0.9% +8.3%

557.xz_r 33 391± 17 +3.3% +3.6%

508.namd_r 8 282± 5 +1.4% +1.2%

510.parest_r 427 421± 3 +3.1% +19.9%

511.povray_r 170 540± 4 +27.4% +27.3%

519.lbm_r 1 274± 3 +0.1% +1.4%

538.imagick_r 259 556± 1 +0.5% +0.2%

544.nab_r 24 457± 0 +0.4% +0.4%

Geo.Mean 57 400 +2.1% +4.4%

measured on an Ubuntu 14.04.5 machine (x86_64) with Xeon(R) CPU E5-1620
and 16GB RAM. The second column (“KLoc”) of the table shows the num-
ber of thousand lines of code for each benchmark. As a baseline, we compiled
the unmodified benchmarks using Clang/LLVM 3.9, with some modification to
their CMake files to make benchmarks compilable with LLVM 3.9. The third col-
umn (“Original”) shows the averaged time in seconds to complete the reference
workload over three runs. To enable the protection of FastDIM, we modified
the CMake files by setting a path to our LLVM pass (in LVM_MODULE_PATH)
and library (in link_directories), as well as adjusting CFLAGS, CXXFLAGS, and
LDFLAGS. The fourth column of the table shows the overhead of FastDIM when
protecting only function pointers and vptrs, while the fifth column shows the
overhead of FastDIM when protecting all targets.

The results show that FastDIM incurs a geometric mean of 2.1% overhead
for the protection of function pointers only, and 4.4% overhead for all tar-
gets across the 15 SPEC CPU2017 benchmarks with max 32.6% overhead on
520.omnetpp_r. Note that FastDIM (all) is sometimes slightly faster than Fast-
DIM (Code-Pointer-only), that is due to the fluctuation.

RIPE Benchmark (Q2). We evaluated FastDIM using RIPE benchmark
which is a synthesized C programs that includes many ways of attacks by over-
flowing buffer allocated on the stack, heap, in .bss and .data segments. By
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default, the RIPE benchmark is compiled for 32-bit machine (with -m32). We
tested it on a x84_32 Ubuntu 16.04 VM. In total, there are 3840 combination
of attacks, where 83 succeeded, 767 failed, and 2990 are not possible. With the
protection of FastDIM, all the succeeded attacks are detected.

We annotated the CGI-BIN configuration string (CONFIG config;) in the
main.h file as sensitive data, i.e., __attribute__((annotate("sensitive"))).
After applying FastDIM on this program, non-control data attacks were success-
fully prevented.

Apache HTTP Server (Q3). We also evaluated our prototype on the Apache
HTTP Server 2.4.27. As a baseline, Apache was compiled by using the original
Clang/LLVM 3.9 and was tested by using the built-in ApachBench (ab) tool.
On a x84 Ubuntu 14.04.5 VM (4 cores and 4G RAM), we started the compiled
Apache server via the following command line:

apachectl -f /local-path/conf/httpd.conf

On the host machine (Xeon(R) CPU E5-1620 and 16GB RAM), the following
command line was used to run the benchmark:

ab -n 5000 -c 1000 http://**.**.**.**:80/

This command sends 5000 HTTP GET requests, processing up to 1000 requests
concurrently, to the Apache server running on the VM. The average time to
process each request took about 128 milliseconds and the total transfer rate was
about 1798 Kbytes per second. We then compiled the Apache server again under
FastDIM (FP) and FastDIM (All) and performed the same commands. Table 2
shows the geometric mean of the results for 10 times.

Table 2. Performance results of Apache HTTP server

Total Transfer Avg Conn Longest Conn
Time Rate Time Time
(sec) (Kpbs) (ms) (ms)

Original 0.84 1798.43 66.69 808.69
FastDIM (FP) 0.95 1497.15 82.77 908.45
FastDIM (All) 0.97 1488.97 92.96 936.86

On average, FastDIM and TEE-FastDIM incurred 12–24% overhead and 12–
39% overhead on Apache HTTP server.

4.2 Performance Evaluation of TEE-FastDIM

To evaluate FastDIM’s ability to protect OS kernels, we compiledd
Linux/Android kernel 3.14.38 shipped with the i.MAX.6 development board.
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We applied the patches from LLVMLinux project and our own ones to make it
compatible with the LLVM toolchain 3.9. On top of the kernel, a stock Android
Lollipop (v5) was running. the Android binder testsuite and AnTuTu bench-
marks were used for efficiency evaluation.

Keystore Vulnerability (Q2). Android contains a secure storage service called
Keystore that is responsible for the storage of cryptographic keys and other sen-
sitive credentials. Earlier years, researchers found a stack-based buffer overflow
vulnerability that all versions of Android before 4.3 are open to attacks [9].
A stack buffer is created by the KeyStore::getKeyForName function located
in system/security/keystore/keystore.cpp. In this function, the filename
array is allocated on the stack and the input parameter keyName is copied into
this array by calling a function. However, that function does not verify the size
of the input parameter keyName. If the parameter is too larger that a buffer
overflow will occur, overwritting the return address. The evaluation showed that
TEE-FastDIM was able to detect the modification of the return address caused
by this vulnerability.

Android OS (Q1 and Q3). Our instrumentation tool embeds security code
into the target programs to enforce the security, thus increasing the resultant
executable binary size. We compared the uncompressed Android/Linux kernel
image size. These images have been verified to be compatible with both Android
and Linux and runnable on the i.MAX6 platform. Overall, the security hardened
kernel is 2.5% larger than the original one.

The binder mechanism is a part of Android kernel, and serves as the major
Inter Process Communication (IPC) mechanism for Android. On average, Fast-
DIM increased the binder latency by 1.4%.

Lastly, AnTuTu is a well-known benchmark tool for mobile platforms, and is
widely used to evaluate the overall system performance across different hardware
platforms. On average, FastDIM does not affect the overall system performance
as measured by AnTuTu. The overhead of the security hardened kernel protected
by FastDIM is around 3%.

5 Related Work

Control-Flow Attacks and Defenses. A significant body of work has adapted
the original definition of CFI coupled with shadow stacks and developed sophis-
ticated implementations that validate the target of a control transfers. Com-
pact Control Flow Integrity and Randomization (CCFIR) [20] optimizes the
performance of validating a transfer target by randomizing the layout of allow-
able transfer targets at each jump. Opaque CFI (O-CFI) [13] ensures that an
attacker who can inspect the rewritten code cannot learn additional information
about the targets of control jumps that are admitted as valid by the rewritten
code. BinCFI [21] implements CFI without access to the program source, but
only access to a stripped binary. Modular CFI [18] implements CFI for programs
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constructed from separate compilation units. Recent All of the above approaches
enforce security defend by the results of a inaccurate static analysis.

Non-control Attacks and Defenses. Many countermeasures have been pro-
posed to prevent data-oriented data attacks. Data-flow integrity ensures that
the flow of data in a vulnerable program stays within a data-flow graph [6]. The
data-flow graph is generated by static analysis, which makes the defense coarse-
grained. Another type of defense mechanisms focused on enforcing memory-
safety on systems. Softbound [14] has brought memory safety to un-safe C
language by using bound checking with fat-pointer. CETS [15] enhanced this
method by preventing memory errors. CCured [16] introduced a safe type system
that statically detects the occurrence of memory error and dynamically enforces
bound checking on them. However, the high performance overhead limits the
adoption of these approaches. The work [17] proposed a defense mechanism that
uses dynamic taint analysis to label all critical data to track the propagation
of tainted data, and therefore can detect overflow attacks by identifying the
integrity of tainted data. However, programs protected by this technique is too
expensive to be adopted widely.

6 Conclusion

This paper describes an Out-Of-Band (OOB) integrity monitor named FastDIM
to protect systems against both control-related and data-oriented memory cor-
ruption attacks. The key idea is to extend the idea of shadow stacks to protect
not only code pointers but also user-annotated sensitive non-control data, and
keep the integrity checks by an OOB monitor (verifier) rather than the programs
themselves. A set of techniques are proposed to provide a fast shared-memory-
based mechanism through which the monitor can enforce the integrity for both
user applications and OS kernels. We implemented a prototype of our approach
either as a loadable Linux kernel module or a integrated TEE running in Secure
World. Evaluation results showed that our approach was correct, effective, and
efficient. We believe that our approach makes a step toward a deterministic
secure defense that are fully immune to memory corruption attacks.
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Abstract. With the rapid development of unmanned aerial vehicle (UAV) tech-
nology in multiple fields, there are more and more scenarios needed to complete
tasks through UAV communication and collaboration, and naturally, the need
for cross-domain authentication and confidential communication has been pro-
posed. Nowadays, sensor technology and Internet of Things technology continue
to develop, and UAV technology has become more and more mature, and it has
become a popular industry. Due to the high-speed mobility of UAV and the varia-
tion of network environment, it is difficult for the traditional cross-domain authen-
tication based on CA certificate to meet the needs. Because on the one hand, CA
online support is difficult to guarantee, on the other hand, certificate verification
will also increase the delay. Therefore, how to achieve rapid certification in the
process of cooperation in different domains has become a temporary research hot
topic and difficulty. Based on the newly emerged unified multi-domain identity
authentication (UMIA) technology and the lightweight cryptographic algorithm,
this paper proposes a new idea of constructing a UAV management system.

Keywords: Cross-domain authentication · UAV network · Lightweight
cryptographic algorithm

1 Introduction

With the development of unmanned aerial vehicle (UAV) technology and related artifi-
cial intelligence and other technologies, UAVs can cooperate to complete specific tasks.
Therefore, the mission field of UAVs is expanding, and the previous traditional, single
communication mode has been gradually eliminated. UAVs of different companies and
organizations often need to complete tasks together through task networking. For exam-
ple, in the civil field, especially in disaster rescue, due to the tight time and heavy task,
all civil UAVs of different brands and different models in a certain area can be uniformly
deployed together to complete the rescue work together. Many tasks of rescue work,
which naturally need to carry out multiple different groups, which requires a variety
of UAVs can automatically identify each other in the air and group according to the
requirements, so cross-domain authentication is inevitable. In the military field, espe-
cially during wars, UAVs from different companies, different models, and even different
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countries often need to cooperate with each other to carry out large-scale investigations
or strikes on targets in the same area. At this point, authentication (especially cross-
domain authentication) and confidential communication between UAVs are particularly
important.

UAVs usually have the following characteristics: (1). High-speed movement perfor-
mance. The high-speed motion of the UAV naturally determines that the authentication
in the UAV network must have a low latency. (2). Uncertainty of the network. Due to
the high-speed mobility of the UAV, the network is changing and the links are unstable.
Therefore, authentication in the UAV network cannot assume fixed base station support
and stable communication. (3). Low operational performance. UAVs are powered by
batteries and try not to use chips with high power consumption, so it is difficult for most
UAVs to have good computing performance. Therefore, the authentication scheme of
UAV generally requires the use of lightweight cryptography algorithm to minimize the
high power consumption caused by complex operations, and complex operations can
increase the latency. (4). Uncertainty of the UAV nodes. UAVs are often in the open
air network, may be other UAVs into formation, may also appear UAVs are controlled,
formingmalicious UAVnode, and evenUAVs failure (or captured in thewar, shot down),
may need to supplement UAVs as a new node, these factors will lead to the change of
the UAV node. Therefore, the UAV also needs to consider the authentication problem in
the process of node dynamic change. The key to solving the above problems is to build a
UAV management system, so that the UAV in the system, whether from different secu-
rity domains, can authenticate each other and communicate confidential. Certification
within the same domain is easier to achieve, but cross-domain authentication is much
more difficult.

The traditional way to solve the certification problem, is the international long pro-
posed PKI technology, that is, the establishment of public key infrastructure, through
the PKI/CA certificate to achieve certification [1, 2]. However, cross-domain authen-
tication requires collaborative services by multiple CA agencies, or by multiple CA
agencies (which include applications for public key certificates, issuance, management,
help verification certificates, management certificate cancellation list, etc.) to meet the
certificates issued by different CA can be certified to each other. This not only requires
online network and bandwidth resources, but also requires high construction and main-
tenance costs of CA, which greatly limits the application and promotion of PKI. In
particular, the high-speed mobility, network instability, and node degeneration of the
UAV network itself make it difficult to rely on a fixed CA to provide certificate service,
and it is even more inappropriate to use the UAV node as the CA in the air, because once
the node has problems, the whole UAV network cannot achieve authentication.

Another way of authentication is the identity-based Cryptography System (IBC),
proposed by the cryptographer Shamir in 1984 [3–5]. This is a special password algo-
rithm, which “binds” the user’s identity to the private key of the key generation center
(KGC) to form the user’s private key, which does not need the user public key, or the
user’s identity can be equivalent as the public key, which does not need the public
key certificate. However, the IBC algorithm requires large computing resources and
slow computing speed, which is a “heavyweight” cryptographic algorithm, which is not
applicable to most small and medium-sized UAVs with low computing power. And it is
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difficult to identify different domains (and thus different KGC’s that distribute private
keys) to authenticate with each other. This series of limitations of IBC make it equally
difficult to apply to UAV cross-domain certification.

Besides, there are no-certificate certification methods based on the lightweight
national standard SM2 algorithm, such as CPK [6], FC-CPK [7], CLA [8] and so on.
Although the lightweight algorithms meet the requirements, and the authentication in
a single domain also has its unique advantages, but it still does not solve the cross-
domain authentication. Therefore, the cross-domain authentication in the UAV network
has become a hot and difficult point.

With the development of blockchain technology, people in recent years have pro-
posed the authentication method of combining blockchain and CA, which builds
blockchain nodes as infrastructure and forms a larger infrastructure together with PKI
[9–12]. Supported by this infrastructure, public key certificates are incorporated into the
blockchain to ensure their authenticity. The UAV network confirms the validity of the
public key certificate by accessing its “nearest” (i. e., the fastest accessible node in the
air) blockchain nodes. This can indeed in the UAV can access any block chain node to
achieve cross-domain authentication, but on the one hand, the cost is very high, on the
other hand, once the UAVs do not block chain node support (such as disaster relief fly
into the block chain node was destroyed area, wartime into the enemy area, etc.), the
scheme still cannot achieve cross-domain authentication.

Recently, a new cross-domain authentication (patent) technology, namely, based on
Unified Multi-domain Identity Authentication (UMIA) technology [13, 14]. Then, we
propose a new UAV management system construction method. This method does not
rely on huge infrastructure such as PKI and blockchain, which can greatly reduce the
cost; only lightweight national standard password algorithms such as SM2/3/4 can meet
the lightweight requirements of UAV certification; but requires unified management
at the national level, formulate several relevant standards of unified identification and
certification protocol, and give a few unified parameters. In terms of management, this
method does not interfere with the self-management of each domain, that is, except
for the domain identification, as long as the domain identification meets the length
requirements of the standard, the others are managed by each domain itself, which does
not hinder the management autonomy of each domain. In terms of certification, UAVs
can be authenticated directly through near-range communication (including in-domain
certification and cross-domain certification, even without ground support). Due to the
certificate is not used, there is no need to verify the certificate, so it can not only improve
the authentication efficiency, but also reduce the authentication delay, especially if it
can easily achieve cross-domain authentication. At the same time, the method is also
compatible with the certificate system, which is very suitable for multi-domain UAV
management.

2 UMIA Technology

2.1 Domain Management Structure in UMIA

UMIA technology consists of three parts: IMPK (Identity Map to Public Key, identifier
mapping public key) technology, IBPK (Identity Bound Public Key, identifier binding
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public key) technology, and unified authentication protocol. IMPK refers to the identity
that uniquely corresponds to a fixed public key through a specific rule; IBPK refers to the
binding relationship between the public key and the identity, and the identity that also
uniquely corresponds to a specific public key after binding [15]. However, unlike IMPK,
IBPK can unbind and then rebind, and the identity corresponds to another specific public
key through the binding relationship.

UMIA involves a root domain andmultiple subdomains, but each subdomain is more
independent, including its own personnel, equipment, equipment, etc. All nodes (such
as domain gateway, edge gateway) and terminals in the domain key management center
(DKMC), key management center (RKMC) in each domain, and the nodes and end-
points in the root domain. And the UMIA is suitable for two-layer domain management
structures which can be shown as follows:

Fig. 1. Two-layer domain management structure

In Fig. 1, the top layer is the root domain, KMC * is RKMC, domain 1 to domain
n is a subdomain, also called a domain, and KMC1 to KMC n is DKMC. Usually, we
call all domains, namely the root domain, together with domain 1 to domain n, as a
global domain. In particular, although RKMC is different from DKMC, the root domain
is also equal to other domains after the domain public and private keys are distributed.
The identification and public keys of all nodes and terminals within the root domain are
also managed by the root domain itself. Since both nodes and terminals are considered
equal to DKMC, we do not distinguish between nodes and terminals below, which is
uniformly called “endpoints”.

2.2 IMPK Technology

The IMPK is used in the UMIA for the management of the domain public keys. Each
domain has its own domain public and private key pair, Domain i (noted as Di) public
and private keys are recorded as pki, ski, where pki are public parameter of the Di. The
public and private key pairs of the root domain are recorded as pk∗, sk∗.
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The root domain is only responsible for defining a unified identity structure and the
identity of each domain, while developing a unified authentication (encryption) protocol.
The internal identity (in-domain identification) and public keys of all endpoints of each
domain are managed by the domain itself. The identity of each domain is uniformly
assigned by the root domain, and the length of the identity in the domain is also uniformly
defined by the root domain.

The root domain manages the domain public and private keys of each domain
(including the root domain itself) through the IMPK technology. Specifically:

A set of public key bases (Base consisting of PK factors, abbreviated as BPK).
Let the public key base contain r public keys, noted as BPK = {bpk1, · · · , bpkr}.
Corresponding to the BPK is a set of private key bases (abbreviated as BSK), noted
as BSK = {bsk1, · · · , bskr}, where bpki and bski are consist a key pair, namely bpki =
bskiG and G is the basis point of an addition group of elliptic curves over a finite field.
Private key base is the core sensitive parameter of the security system, which is randomly
generated by RKMC in a secure password device, and is stored and used securely,
prohibiting any external access. Public key base is the system public parameters, stored
at each node and endpoint, and can be regarded as the basic parameters of the system as
the elliptic curve parameters used.

Let IDDi as the identity of the Di.ϕ as a fixed mapping function, The k factors in
the public key base can be calculated in a fixed way by h(IDDi ). Specifically, take the
fixed l bits (e. g., l have 256, 160, or 128 bits, etc.) from h(IDDi ), and divide l into k
segments (l is an integer multiple of k). Let each segment length be m, then l = mk.
The low t bit of each segment is used to determine which factors are selected from the
public key base, and the m-t bits are used as the coefficient, the k coefficients are nodeed
as λ1, λ2, · · · , λk . Then, we have

pki = ϕ
(
h
(
IDDi

)) =
k∑

j=1

λjbpk
i
j

Under a given public key base, the domain public key is uniquely determined and any
node with a public key base is computable. The domain private key ski corresponding to
the domain public key pki must be securely injected securely into the DKMC’s password
device to generate the public and private keys for all the nodes and endpoints that the
domain governs. Generally, to accommodate the limited terminal storage space, it is
recommended r ≤ 16, so that the public key base does not exceed 1KB.

2.3 IBPK Technology

For all endpoints within its jurisdiction, DKMC coordinates or generates public and
private key pairs, i. e. the private keys of the endpoint can be generated and distributed
by DKMC, or by the endpoint and DKMC [16]. When collaborative generation, the
endpoint private key has only the endpoint. When the endpoint is the main user, it
meets the security requirements of the electronic signature method. In the following, we
describe the process by which the KMC of domain Di generates identifying private keys
with the endpoint U under its jurisdiction:
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Step 1: Let the identity of node U as IDU , the U generates the private key factor uskU by
itself, and let upkU = uskUG. Then, U sends IDU and upkU together to the subordinate
DKMC;
Step 2: The DKMC pseudorandom hskU was generated, and calculate that hpkU =
hskUG, apkU = upkU + hpkU and iskU = vU*ski, where,apkU is called the accompa-
nying public key of a U, vU = hSM 3(IDU ||apkU ||∗ETU ), *stands for options,ETU is the
validity period of the apkU . If the validity period is not set, then vU = hSM 3(IDU ||apkU ).
DKMC then calculates dskU = iskU + hskU , then sends encryption dskU ,apkU (if any)
and ETU (if any) to U, and also sends it along with (if any) to U.
Step 3: When U recive dskU ,apkU and ETU , it calculates its own private key:skU =
dskU + uskU . Then, U need to verify that whether its private key is correct, namely,
The values of pkU = skUG and apkU + vUpki are calculated separately to determine
whether they are equal: If equal, the public-private key pair is correct, if not, indicates
that the dskU and apkU distribution went wrong, and we need to ask for a redistribution.

When the endpoint does not need to generate part of the private key by itself (such as
the distribution device or equipment that preset the private key), that is, when the private
keys of the endpoint are all generated by DKMC, we can omit the Step 1 and let upkU
= 0 in the Step 2 directly. Then, for node U, we have that the private key skU = dskU ,
and adjugate public key apkU = hpkU .

2.4 Universal Unified Certification Agreement

Let A and B be any two endpoints (available within the same domain or in a different
domain), and the unified two-way authentication protocol is as follows:

A → B : typeA, IDB,MA, IDA, apkA, ∗ETA, SA;
B → A : typeB, IDA,MB, IDB, apkB, ∗ETB, SB,

where, A → B : X stand for the message X that from A to B, typeA is the protocol type
specified by A (can specify the protocol is key negotiation, data encryption, authentica-
tion, authentication code type, etc.),MA is the data fromA to B that needs to be certified,
SA is an authentication code, namely a digital signature value or an HMAC value with
shared secrets, and the authentication type is specified by typeA.

When signing, SA = SigSM 2(skA, h(IDB||MA)), namely the signature content con-
tains the identification IDB of B and data ofMA.Sigψ(skA, h(M )) Stand for that A signs
the hash value of the message M using the signature algorithm ψ and its own private
key skA. When the ψ is a default algorithm, we have Sig(skA, h(M )).

WhenA and B are in the same domain, since both A and B know the public key of the
domain, the complete public key can be calculated directly by using the accompanying
public key of the other party, and then the signature can be verified again. When A and B
are not in the same domain, they should first use the public key of the other party domain
to calculate the public key base, and then calculate the complete public key according
to the other party’s accompanying public key, and then verify the signature. The reason
why A and B can do cross-domain authentication is that the whole domain has the same
public key base. So that although A and B are not in the same domain, they can calculate
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the domain public key of the other domain from the public key base, so as to calculate
the public key of the other party.

By the definition of typeU , we have that the unified authentication protocol includes
key negotiation, data encryption, and certificate-based authentication. In fact, when
typeU as key negotiation, MA is negotiated data, and when typeU as cryphred, MA

is ciphertext. When typeU as the certificate certification, pass the public key certifi-
cate without passing apkU . Turn to the certificate-based certification module for the
certificate-based certification, which is compatible with the certificate system.

3 Construction of a New UAV Management System Based
on UMIA Technology

3.1 UAV Management Organizational Architecture Based on UMIA

Since UMIA technology can achieve cross-domain authentication without using certifi-
cates, it will bring great convenience to apply it to UAVmanagement [17]. Therefore, we
give the following suggestions to build the UAV organization and management system
based on the UMIA in Fig. 2.

Fig. 2. The two-layer organizational architecture of UAV management

That is, in the organization and management, two layers of design, set up special
management agencies at the national level, and according to the needs of the region
and manufacturers, registered with the national management department to establish the
independent management agencies. Its topology is shown in Fig. 3, where, the special-
ized agency of national UAV management should build a national UAV management
cloud platform and RKMC. At the same time, according to the actual needs, the UAV
registration and management domain and corresponding institutions are set up by dif-
ferent regions and manufacturers, and each domain has its own domain KMC, which
can independently manage the UAV under its jurisdiction.

The national UAV management agency shall formulate the national UAV manage-
ment policies and standards, define the unified UAV identification norms, and distribute
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Fig. 3. UAV management architecture topology

a unique domain identification for each registration management domain.At the same
time, the national UAVmanagement agencies should also be drone regulation, including
the function of drones, performance detection, for unregistered drones banned fly, etc.,
to ensure that each drove in a certain area or manufacturer’s domain platform registration
and obtain public and private key, and each drone operator should also be registered and
obtain public and private key.

As the root domain, the national UAV management cloud platform is the working
platform and technical support of the national UAVmanagement agency. It not only pro-
vides domain registration services for the regional cloud platform and the manufacturer
cloud platform, but more importantly, it also generates and publishes the public key base
to provide domain public and private key distribution services for each domain.

Regions or manufacturers can apply to become an independent UAV management
domain according to their own needs [18]. After obtaining the permission from the
national UAV management agency, it can establish its own domain cloud platform to
manage itsUAVandprovide various services such asUAVregistration, keymanagement,
certification and so on.

Certainly, regional orUAVmanufacturers need to apply to the national UAVmanage-
ment authority for the establishment of a management domain, and, after examination
and approval, to obtain the unique domain identification and domain public and private
keys. Then we can establish its own domain KMC and management cloud platform,
implement the UAV registration management within the jurisdiction, including the reg-
istration ofUAV, identification allocation, public (private) key generation, validity period
management, public (private key) update, etc.

3.2 UAV Management Technology System Based on UMIA

To implement themanagement of UAV, the corresponding technical management system
must be established. To this end, we give the following UAV management technology
architecture (Table 1):
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Fig. 4. UAVs management technology system

We give the Abbr. Table as follows:

Table 1. Abbr. of Fig. 4

SDE Secure Detection Environment SDS Secure Detection Specification

SCE Secure Computing Environment DSS Data Secure Standard

STE Secure Transmission Environment UIS Unified Identifier Specification

VA Vulnerability Analysis AE Analysis Equipment

TE Testing Equipment

4 Conclusion

The unified management and certification of UAVs across the country is not only nec-
essary for daily management, but also can quickly organize a large number of UAVs
into use in emergency situations. Based on the new UMIA technology, this paper gives
a national macro architecture of unified UAV certification management for the refer-
ence of relevant departments, and also hopes for interested peers to participate in further
research. Based on the architecture built by UMIA technology, this paper can realize



Construction of a New UAV Management System 165

the nationwide unified UAV authentication, data encryption and security supervision.
In peacetime, between UAVs, between UAVs and ground stations, between UAVs and
platforms, and between ground stations and platforms can be certified and confidential
communication based on UMIA technology, and can be subject to the supervision of
the regulatory authorities on any occasion. In emergency use, UAVs in each domain can
directly realize intra-domain and cross-domain authentication through UMIA technol-
ogy, and can accept unified deployment without temporary security configuration. Of
course, there is still much work to be done to achieve this system. In management, there
are many standards and norms that need to be studied and established. Technically, the
session key negotiation protocol, the group session key establishment protocol, etc., are
all topics for further research. In the equipment, a large number of safety equipment and
testing and supervision equipment, also need to do more detailed design and develop-
ment. In the future, UAV hardware will be improved, and UAVs embracing big data will
become a development trend.Wewill conduct more in-depth research on the invisibility,
intelligence and systemization of UAVs.
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Abstract. Generally speaking, machine learning is to train an ML
model (original model) on a dataset to perform a certain function. But
sometimes, in order to protect the data privacy of a specified user,
machine unlearning requires the original model owner to delete the speci-
fied user’s data in its training dataset and retrain a new model (unlearned
model). However, the research of CCS’21 shows that the adversary can
judge whether a data sample is deleted by comparing the prediction vec-
tors of the original and unlearned models, thus being attacked by mem-
bership inference. To mitigate this privacy leak, CCS’21 proposes that
models that only output predicted labels (i.e., , cannot obtain model pos-
terior probabilities) can effectively defend against existing attacks. How-
ever, our research shows that even machine unlearning models that only
output labels have certain privacy risks. This paper proposes an infer-
ence attack that does not rely on posterior probability against machine
unlearning, named FP2-MIA. Specifically, the adversary queries the orig-
inal and unlearned models for candidate data samples respectively, and
adds perturbations to them to change the predicted labels of the two
models, and then the adversary uses the magnitude of the perturbations
to distinguish whether they are deleted data samples. We conduct exper-
iments on four datasets, MNIST, CIFAR10, CIFAR100 and STL10. The
results show that member inference can be effectively inferred even when
only the predicted labels are output, in which the AUC (Area Under
Curve) index on the MNIST dataset is as high as 0.96.
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1 Introduction

1.1 Background

The right to be forgotten refers to the right of the data owner to ask the data
user to delete his personal data, and the user must delete the personal data in
a timely manner in this case. A lot of legislation has recently been enacted in
support of the right to be forgotten, notably the European Union’s General Data
Protection Regulation (GDPR) [1]. Users expect the model to be able to forget
certain sensitive data and its complete lineage. Therefore, some MLaaS providers
(such as Google and Amazon) must comply with the law by removing certain
URLs from their websites and taking necessary actions for the machine learning
models they provide. MLaaS providers remove the impact of their private data
on machine learning models at the user’s request, a process known as machine
unlearning.

Machine unlearning generates two version models before and after, one is the
original model, and the other the a unlearned model formed by eliminating the
influence of the specified user data on the old model on the basis of the old model.
The reason for the success of existing membership inference attacks against
machine unlearning [10] is the inherent overfitting property of ML models, that
is, the ML model has more confidence in the data samples it has seen, and this
confidence is reflected in the posterior probability of the model. superior. Existing
attacks believe that the deletion of the target sample will produce differences
between the two models, so the adversary judges whether x is a deleted sample by
comparing the output posterior probabilities of the two models for the candidate
samples. However, a major disadvantage of existing attacks is that they can be
easily mitigated if the model only outputs the predicted outcome, i.e., the final
model decision, rather than the confidence score. We call this defense method
Label-Only Defense. This is more common in real life because most users only
care about the last prediction result.

1.2 Motivation and Contribution

However, existing attacker can be easily mitigated if the ML model only out-
puts the predicted labels, i.e. the final model decision, rather than the posterior
probability. This setting is called Label-Only Exposure, and this is more com-
mon in real life because most users only care about the last prediction result.
This motivates us to care about a membership inference attack based on pre-
dicted labels against machine unlearning, and to our knowledge, such attacks
have not been studied so far. We show that a target machine unlearning model
that only exposes labels is still vulnerable to membership inference attacks. Our
intuition is that it is harder to change the predicted labels of a target model
for member samples than for non-member samples. Specifically, the adversary
queries the original model and the unlearned model for candidate data samples
respectively, and adds perturbations to them to change the predicted labels of



A Membership Inference Attack in Machine Unlearning 169

the two models, and then the adversary uses the amplitude of the perturbations
to distinguish whether they are deleted data samples.

In general, our contributions can be summarized as the following:

1. We propose a new label-only membership inference attack, the first black-box
membership inference attack against machine unlearning in the setting where
the model only outputs predicted labels.

2. We conduct experiments on a range of settings and datasets. The evaluation
shows that our attack performs well, especially the attack AUC on the MNIST
dataset reaches 0.96.

2 Related Work

2.1 Membership Inference Attack

Member inference attack [14,19,20] is a privacy attack against machine learning
models, which leaves the user’s information unprotected and causes damage
to the user. Membership inference attack is a privacy attack against machine
learning models, which exposes users’ data. Formally, given a data sample x
and a trained model M, the adversary A can calculate the membership state
according to the additional knowledge Ω:

A(M, x,Ω) → {0, 1} (1)

where 1 means that x belongs to the training set of M, otherwise not.

2.2 Machine Unlearning

The concept of Machine Unlearning was first proposed by Cao et al. [21]. If users
want to protect their private data, the institutions or organizations that have
used this data before must forget this data to regain security. The process of
letting machine learning systems forget is called machin unlearning. The easiest
way to implement machine unlearning is to remove the target sample x from the
model training set and retrain the model, which is called Scratch. Specifically,
we denote the original model trained on dataset Do as Mo, and the data to
be deleted as x, then the unlearned model is retrained on dataset Du = Do/x.
Retraining from scratch is relatively easy to implement. However, the size of
the original dataset is too large, which can result in computational overhead of
retraining too large. In order to solve the problem that the unlearned dataset Du

is too large and the overhead is too large, Bourtoule et al. [14] proposed a new
method, namely SISA. The main idea of SISA is to divide the target training set
Do into several parts, train sub-models on each sub-training set, and then use
the idea of ensemble learning to aggregate the sub-models into the final target
model. When doing machine unlearning, only retrain the sub-dataset that x is
on. Since it can be divided into several sub-datasets, the cost of retraining is
greatly reduced.
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2.3 Label-Only Defense

Unlike defense methods such as differential privacy and reducing overfitting, we
move in a different direction, i.e., continue to reduce the additional knowledge
available to the adversary. Most of the membership reasoning relies on the pos-
terior probability returned by the target model, so one of the defense methods
is to make this posterior probability unavailable to the adversary. In this case,
the model only returns the class label to which the query sample x belongs.
Formally, the labels output by the model are c = arg maxc(y = c|x).

3 Methodology

In this section, we introduce our proposed membership inference attack.

3.1 Threat Model

We consider an adversary, given a target sample x, an original model Mo and its
unlearned model Mu, the adversary’s purpose is to infer whether x is unlearned
from Mo. In layman’s terms, the adversary’s goal is to infer whether the target
sample x is in Do but not in Du.
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Fig. 1. Attack Model Training. Positive dataset Dpos
s is used to train shadow model

Ms
o , and Ms,i
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o to obtain xpos,i
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Assumptions. We assume that the adversary does not know the internal struc-
ture of the model, but has black-box access to the target original model and the
unlearned model, while assuming that the model only outputs predicted labels,
which is more realistic than outputting posterior probabilities. To evaluate the
accuracy of our attack, we will consider an adversary that tries to distinguish
whether a data sample x is deleted by the original model. The adversary has a set
of data points that they suspect are dropped when training a unlearned model
and a local shadow dataset that can be used to train the shadow model. Although
the adversary does not know the specific structure of the target model, he can
use the same MLaaS service as the target model to train the shadow model.

Attack Intuition. There have been many studies [5–7,22] showing that mem-
bership leakage is directly or indirectly related to model overfitting, and our
intuition also follows a general rule for the nature of overfitting. In other words,
an ML model is more confident in its performance on the training set data, which
can be directly reflected in the fact that the true class of the training set data
has a higher posterior probability, while the other classes have a lower probabil-
ity. Li et al. proved that members are farther from the decision boundary than
non-members [10], that is, given an ML model and a set of data samples, adding
random perturbations to them to change the predicted labels of the model, then
the perturbations of the samples in the training set The magnitude is larger
than the perturbation magnitude of the non-training set samples. We assume
that these perturbations provide the approximate distance of the data points
to the decision boundary. Our intuition is that if samples are removed from the
original model training set, then x is a training set sample of the original model
and not a training set member of the unlearned model. Similarly, the adver-
sary adds random perturbations to the target samples x to change the predicted
labels in the original model and the unlearned model, respectively, denote the
new samples after adding perturbations as xo

adv and xu
adv, respectively, and then

the adversary trains a generic binary classification with x, xo
adv and xu

adv which
is used to judge whether it is a deleted target sample.

3.2 Attack Model Training

Since we cannot get the ground truth labels about members and non-members,
the adversary needs to train a series of shadow models that mimic the behavior
of Mo and Mu to obtain this information. We assume that the adversary has a
local shadow dataset with the same distribution as Do, called Ds. To train the
attack model, the adversary will be split into two disjoint datasets, denoted as
positive shadow dataset Dpos

s and negative shadow dataset Dneg
s respectively.

Dpos
s is used to train the shadow original model Ms

o , a series of data points
are randomly selected in Dpos

s to constitute Rpos = {xpos,1, xpos,2, . . . , xpos,k},
and the i-th unlearned shadow model Ms,i

u is trained on Dpos
s /xpos,i. Similarly,

a series of data points in Dneg
s are randomly selected to constitute Rneg =

{xneg,1, xneg,2, . . . , xneg,k}. The attacker adds perturbation to the sample xpos,i,
obtains the sample xpos,i

adv,o to make Ms
o change the decision result, and obtains

xpos,i
adv,u to make Ms,i

u change the decision label.
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Also for the sample point xneg,i, the adversary obtains xneg,i
adv,o and xneg,i

adv,u.
Finally, the adversary takes xpos,i, xpos,i

adv,o and xpos,i
adv,u as the positive example of

the training set of the attack model and xneg,i, xneg,i
adv,o and xneg,i

adv,u as the negative
example of the training set of the attack model. We show our attack model
training process in Fig. 1.

4 Evaluation

In this section, we present an experimental evaluation of the attacks described
above.

4.1 Experimental Setup

Test Bench. Experiments are performed using PyTorch on a workstation run-
ning Ubuntu Server 18.04 LTS, equipped with a 2.50 GHz CPU 8255C, 45G
RAM, and NVIDIA RTX 3080 GPU card.

Datasets. We consider four benchmark datasets of different size and complexity,
namely MNIST [2], CIFAR-10 [3], CIFAR-100 [3], STL10 [4], to conduct our
experiments. Since the image sizes in STL10 are different from other datasets,
we resize them to 32 × 32 pixels.

(a) Shadow Model (b) Target Model

Fig. 2. The visualization of member and non-member boundaries for shadow model
(a) and target model (b). We mapped 200 member samples and 200 nonmember sam-
ples which were randomly sampled into the transformed space and embed the three
distances into the 2D space using t-distributed stochastic neighbor embedding.

Model Architecture. For the MNIST dataset, we use LeNet [13] proposed by
LeCun et al. Then, for other datasets, we use widely used convolutional neural
networks. In our work, we use 4 convolutional layers and 4 pooling layers to
build the target model, and finally use 2 hidden layers. We train for 100 epochs
and we optimize using SGD at each epoch with a learning rate equal to 0.5.
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Metrics. To better evaluate our attack performance, we choose AUC (area
under the ROC curve) as our evaluation metric. AUC is insensitive to whether
the sampling of positive and negative samples is uniform, and is also independent
of the threshold, giving a better overview of the attacker’s performance. The
AUC value of 0.5 is a random guess, and the closer the AUC value is to 1, the
better the attack performance. AUC is widely used to evaluate the performance
of various binary classification models [8,9,11].

4.2 Result

Fig. 3. ROC curves for the four datasets. The x-axis is the false positive rate FPR,
and the y-axis is the true positive rate TPR.

Distribution of Distance. First, we investigate the distribution of three dis-
tances from a visual perspective. Therefore, we map the target data samples into
the transformed space and embed the three distances into the 2D space using t-
Distributed Stochastic Neighbor Embedding (t-SNE) [16]. We randomly sampled
400 samples (MNIST) in the target model and the shadow model, including 200
members and 200 non-members, respectively. The results are shown in Fig. 2.
We can observe that the data distribution of the shadow model is similar to the
target model due to the transferability between the target model and the shadow
model. This shows that the shadow model can simulate the target model well,
which is one of the factors for the success of our attack.

Attack AUC Performance. Figure 3 shows the performance of our attack
on complex neural networks and standard image datasets. Our shadow model
has the same structure as the target model, where LeNet network is used for
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MNIST and our CNN network is used for CIFAR10, CIFAR100 and STL10.
Our attack performance is excellent, the best case can achieve an AUC of 0.95
on the MNIST dataset, and even the worst case has an AUC of 0.81 on the
CIFAR100 dataset. The reason why MNIST outperforms other datasets is the
highest degree of overfitting, which is consistent with the results of previous
studies [15,18].

5 Conclusion

In this paper, we study the impact of Label-only Defense on privacy leakage
in machine unlearning scenarios. Our research shows that even if the model
only outputs predictions, the privacy leakage phenomenon of machine unlearning
cannot be changed. We propose a membership inference a ttack that can infer
whether an example is unlearned by the target model. Experiments on four real
datasets show that we can attack successfully in a variety of situations. However,
our attack is computationally expensive because finding adversarial examples of
the target sample is an enumeration process which requires a lot of computation.
In addition, our solution is not effective for the latest proposed more advanced
unlearning algorithms [12,17]. We consider the recently proposed unlearning
algorithm into our future work.
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Abstract. Federated learning is widely used in various fields, it usu-
ally consists of sample alignment phase and training phase, where sam-
ple alignment is the first phase. For example, in horizontal federated
learning, if the databases of parties contain some identical samples, then
parties could use sample alignment to remove these duplicate samples
before training, and in vertical federated learning, parties are required
to use sample alignment to put the samples of the same user on the
same row of both databases before training. Meanwhile, the current sam-
ple alignment schemes in federated learning are almost ID-based, and
they assume the two participants have the same ID. Consider that these
schemes cannot deal with the sample alignment problem for samples with
different IDs, we present a sample alignment scheme that allows two
participants with different IDs to align their samples. Our sample align-
ment scheme is based on Oblivious Programmable PRF (OPPRF), which
doesn’t have much public key operation. After aligning the samples utiliz-
ing our scheme, the two participants could accomplish a variety of secure
two-party machine learning tasks. In this paper, we design the privacy-
preserving logistic regression training scheme using additive homomor-
phic encryption, thus achieving the whole federated logistic regression
process.

We implement our sample alignment scheme to verify the efficiency,
and the experiments show that our sample alignment scheme only
requires 216 s when the set sizes of sender and receiver are 224 and 220.
Besides, we conduct experiments to verify the feasibility of our logistic
regression training scheme.

Keywords: Privacy-preserving · Sample alignment · Logistic
regression · Federated learning

1 Introduction

With the development of big data, people pay more attention to the privacy and
security of data, which brings new challenges to traditional data processing in
machine learning. In the field of machine learning, training a model requires a
large amount of data. However, different types of data are distributed in different
institutions, and the amount of data also depends on the size of the institutions.
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The data owned by these institutions may be independent or overlapped. Tradi-
tional machine learning contains many algorithms, such as logistic regression [1],
statistical analysis [2], gradient descent [3], linear regression [4], data mining [5],
etc. It usually uses a centralized method to train models, which requires the
training to be concentrated on the same server. With the improvement of laws
and regulations related to personal information and data security, such as the
General Data Protection Regulations (GDPR) [6] implemented by the Euro-
pean Union and the Cyber Security Law of the People’s Republic of China,
users’ private data has been better protected. Accordingly, it’s becoming more
difficult to collect data from different institutions to train models. Data exists
in the form of data islands, and it is impossible to exchange data between differ-
ent institutions, which greatly reduces the circulation and availability of data.
Consequently, federated learning (FL) [7–9] comes into being.

Federated learning can effectively protect the local private data and break
down the data barriers between different institutions. Federated learning has
been deployed in an increasing number of applications such as mobile platforms,
healthcare, and industrial engineering [10,11]. It can help those institutions to
train a model collaboratively without revealing their own data. As a distributed
machine learning framework, Federated learning is similar to the combination of
secure multi-party computation (MPC) [12,13] and distributed machine learn-
ing [14,15]. In the process of federated learning, different data owners have com-
plete autonomy over their local data. Data can only be used locally, and the
data owners will not exchange information in plaintext form. All data owners
train and update the model to complete the learning purpose jointly, and the
parameters of the obtained model are distributed among all the participants.

According to the distribution of data, federated learning can be divided into
horizontal federated learning, vertical federated learning and federated transfer
learning. Horizontal federated learning is suitable for situations, where the user
features of participants’ datasets overlap a lot and the user samples overlap little.
For example, in the datasets of two medical examination centers, both datasets
contain the features such as height, weight, blood pressure, and heart rate, but
user samples rarely overlap, horizontal federated learning increases the number
of user samples. Vertical federated learning is suitable for datasets with little
overlap in user features but a lot of overlap in user samples, such as bank and
e-commerce, which provide customers with different services so that they have
different aspects of features, but the customers they serve have a large overlap,
vertical federated learning increases the feature dimension of the training data.
Federated transfer learning is applied to the datasets that both the user samples
and user features rarely overlap, such as the datasets of banks and supermarkets
in different regions. Our work mainly considers the scenario of vertical federated
learning, which requires sample alignment. Horizontal federated learning rarely
needs sample alignment since the samples usually overlap little.

Motivation. In vertical federated learning, it requires sample alignment before
training, while there are many sample alignment solutions, they still cannot
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meet the requirement of the real-life scenario, consider the setting where two
participants have different IDs, and want to cooperatively train a model. For
example, these online social platforms, such as Facebook and Weibo, usually
push information that users may be interested in based on the information they
have clicked on, some of them require an e-mail or a phone number to create
a new account, but some platforms require a phone number to receive message
verification code, hence users must use phone numbers to register on them.
Now, if Facebook and Weibo need to train a model for pushing information to
users, but people register on Facebook using e-mail, and use the phone number
to register on Weibo. Then before training, they need to align their samples.
But the current sample alignment schemes cannot solve the sample alignment
problem for such setting.

Our Contributions. Under the framework of vertical federated learning, aimed
at the above setting, we provide a sample alignment solution, the main idea is
to let a third party, who has a huge amount of data, to help two participants to
align their samples. Later, we construct the privacy-preserving logistic regression
training scheme using additive homomorphic encryption, hence achieving the
whole federated logistic regression process. To sum up, our contributions are as
follows.

1. We first consider the setting, where two parties don’t have the same ID in
federated learning, and design a sample alignment scheme for such setting
based on Oblivious Programmable PRF (OPPRF).

2. We construct the secure logistic regression training scheme using additive
homomorphic encryption, thus accomplishing the whole federated logistic
regression process.

3. We implement the sample alignment scheme, and the experiments show that
our sample alignment scheme is efficient. We also conduct experiments of our
logistic regression scheme over vertically distributed datasets.

Organizations We discuss related works in Sect. 2, and discuss the prelimi-
naries in Sect. 3, Sect. 4 shows the problem statement, we describe our scheme
in Sect. 5, Sect. 6 gives the security analysis and Sect. 7 shows the experiment
evaluation. Finally, we conclude the paper in Sect. 8.

2 Related Works

Federated learning can be regarded as privacy-preserving distributed machine
learning. Much research has been devoted to this area, there are various privacy-
preserving methods in federated learning, such as homomorphic encryption [16],
secret sharing [17], Yao’s garbled circuits [18], differential privacy [19] and pri-
vate set intersection [20]. Among them, private set intersection is mostly used
to protect the sample information in the sample alignment phase, and the rest
methods are almost used to protect the private information in the training phase.
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Secret sharing distributes a secret among a group of participants, none of them
knows the secret, and each participant cannot recover the secret alone, but they
can work together to recover the secret. Homomorphic encryption allows the user
to add or multiply two ciphertexts without decryption, then the decrypted value
is the same as adding or multiplying the corresponding plaintext. Homomorphic
encryption is divided into partial homomorphic encryption and fully homomor-
phic encryption (FHE). Partial homomorphic encryption only supports additive
homomorphism or multiplicative homomorphism, such as ElGamal cryptosys-
tem [21], Goldwasser-Micai cryptosystem [22], Paillier cryptosystem [23], etc.
Fully Homomorphic encryption can support both additive and multiplicative
homomorphism, such as the BGV scheme [24], the BFV scheme [25,26], etc.
Yao’s garbled circuits were first proposed to solve the millionaire problem, then
it was used to construct the general secure two-party protocol. Differential pri-
vacy can be used to prevent differential attack, which makes it impossible to
distinguish whether a special sample is in the database by adding some noise to
the result, moreover, the noise has little effect on the statistical result. Our work
is based on additive homomorphic encryption scheme.

Cheng et al. [27] implemented a lossless federated learning framework over
vertically partitioned data called SecureBoost, which uses additive homomor-
phic encryption to protect the private information in the training process, and
their results show their framework is as accurate as other non-privacy-preserving
approaches. Hardy et al. [28] also proposed a privacy-preserving federated learn-
ing on vertically partitioned data, they first used entity resolution to find the
common users, then adopted additive homomorphic encryption to achieve the
secure training phase with the help of the third party, they implemented the
federated logistic regression, and the results show that their federated logistic
regression can scale to millions of rows in the order of hours. Nikolaenko et al. [29]
presented a privacy-preserving ridge regression system based on homomorphic
encryption and Yao’s garbled circuit, they pointed out that the combination of
homomorphic encryption and Yao’s garbled circuit has better performance than
either method alone, concretely, they used homomorphic encryption to handle
the linear part of the computation and Yao garbled circuits for the non-linear
part. Sanil et al. [30] designed a secure linear regression in vertical federated
learning setting, they used secret sharing to protect the data, and the regression
coefficients are shared among the data owners. Geyer et al. [31] considered the
setting, where a trusted party helps multiple clients to train the model, they
pointed out that the client is vulnerable to differential attacks when it makes
contributions during the training, then they used differential privacy to solve this
problem, and finally hid the client’s whole datasets and achieved the trade-off
between privacy and accuracy.

In the sample alignment phase, the current alignment schemes require the
samples in the datasets with the same ID. Most works use private set intersec-
tion to achieve the sample alignment. PSI can help the participants to get the
intersection of their sets, and not reveal their elements beyond the intersection.
The federated learning framework Fate [32] uses the PSI protocol based on RSA
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encryption and hash to align the samples, Liu et al. [33] applied asymmetrical
PSI protocol based on Pohlig-hellman to achieve the sample alignment in the
asymmetrical vertical federated learning setting. Besides, there are various PSI
protocols can be used to align the samples, such as the PSI protocol based on
Oblivious Transfer (OT), Diffie-Hellman (DH), Circuit and FHE. The OT-based
PSI [34–37] is the fastest one when the set size is large, but it has more communi-
cation overhead. On the contrary, the DH-based PSI [38–40] is suitable for small
sets, it has the lower communication overhead, but more computation overhead.
The Circuit-based PSI [41,42] occupies a larger memory as the set size increases,
but it can be easily merged into the following secure computation protocols and
compute arbitrary functions of the intersection. Huang et al. [41] proved that the
performance of PSI protocol based on garbled circuits is competitive with the
best-known custom PSI protocols. Chen et al. [43] proposed an FHE-based PSI,
which can be used to get the intersection of two unequal sets and achieve a low
communication overhead, they tested the running time when the item length is
32 bits, as the item length increases, the encryption would have a large negative
impact on performance.

These related works [27,28,30,33] in the vertical federated learning setting
either did not take into account the sample alignment or didn’t consider that the
sample alignment problem when the IDs of the same user in different databases
may be different. Moreover, the current PSI protocols cannot directly be applied
to solve the above sample alignment problem. Thus, we use OPPRF [44] to con-
struct the sample alignment scheme, which can help two databases with different
IDs to align the samples. We also construct the training scheme using additive
homomorphic encryption, hence accomplishing the whole federated learning pro-
cess.

3 Preliminaries

3.1 Oblivious, Programmable PRF

Oblivious, Programmable PRF (OPPRF) was first introduced to construct
multi-party PSI protocol by Kolesnikov et al. [44] in 2017, it is a combination of
Oblivious PRF (OPRF) and Programmable PRF (PPRF), thus we first review
OPRF and PPRF.

Oblivious PRF. OPRF is a two-party secure computation protocol, in which
sender and receiver jointly compute the pseudo-random function F , where sender
inputs k, receiver inputs {q1, · · · , qm} and obtains {F (k, q1), · · · , F (k, qm)}. In
the end, sender knows nothing about the inputs of receiver and receiver knows
nothing about k.

Programmable PRF. Different from PRF, PPRF means that the output
of PRF is programmed according to a point set, it consists of the following
algorithms:
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1. KeyGen (1κ,P) → (k, hint): Inputs a security parameter κ and a point set
P = {(xi, yi), i ∈ n}, where all the values xi are distinct and xi, yi ∈ {0, 1}κ.
Outputs a PRF key k and public, auxiliary information hint.

2. F (k, hint,x) → y: Computes the PRF on input x, gives output y ∈ {0, 1}κ.

Definition 1 (Correctness). A programmable PRF satisfies correctness if for
all (x, y) ∈ P,

Pr
[
KeyGen (1κ,P) → (k, hint) : F(k, hint, x) = y

]
= 1

As for security, given the following experiments:

ExpA(P, Q, κ) :
1. for each xi ∈ X, choose random yi ← {0, 1}κ

2. (k, hint) ← Key Gen (1κ, {(xi, yi) | xi ∈ X})
3. return A(hint,{F (k, hint, q) | q ∈ Q})

Definition 2 (Security). A Programmable PRF is (n,m)-secure if, for distinct
point sets P1, P2, and query set Q, |P1| = |P2| = n, |Q| = m, and all polynomial-
time adversaries A, such that,

∣
∣Pr

[
ExpA (P1,Q, κ)

] − Pr
[
ExpA (P2,Q, κ)

]∣∣ ≤ negl(κ)

In other words, if the values yi are uniformly random, then for any two sets P1,
P2, it is difficult to tell which point set is programmed, that is, when given the
hint and m outputs of the PRF, the output of programming P1 is computation-
ally indistinguishable from the output of programming P2.

Oblivious Programmable PRF. Different from OPRF, OPPRF allows the
sender to program the output of the PRF, and it also gives the “hint” to
the receiver. Namely, sender inputs P = {(x1, y1), · · · , (xn, yn)} and receiver
inputs {q1, · · · , qm}, finally, receiver obtains hint and {F (k, hint, q1), · · · ,
F (k, hint, qm)}.

Kolesnikov et al. uses three different ways to instantiate the OPPRF protocol
in [44], such as Polynomial, Bloom Filters and Table, their experiments show that
the table-based construction is the fastest one, therefore, in this paper, we use
the table-based OPPRF.

In table-based OPPRF, the input of sender is a point set P = {(xi, yi), i ∈ n},
the input of receiver is a query q, then the table-based OPPRF consists of the
following five steps:

Step 1: Sender and receiver invoke an Oblivious PRF, in which sender inputs
k, receiver inputs q and receives F (k, q).
Step 2: For xi, i ∈ n, sender computes {F (k, x1), F (k, x2), .., F (k, xn)}. Then
sender samples a nonce v, until all {H(F (k, xi)||v)} are different.
Step 3: For i ∈ [n], sender first computes hi = H(F (k, xi)||v), next sets Thi

=
F (k, xi) ⊕ yi.
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Step 4: Sender fills random values into locations except for {hi, i ∈ [n]}, then
sends the table T and hint v to receiver.
Step 5: Receiver computes h = H(F (k, x)||v), and outputs Th ⊕ F (k, q).

It is shown in [44] that the table-based OPPRF satisfies the correctness and
security. For correctness, it’s clear that for xi ∈ P, Th ⊕ F (k, xi) = F (k, xi) ⊕
yi ⊕F (k, xi). For security, it can be observed that the table T itself is uniformly
distributed when the yi values are uniformly distributed.

3.2 Simple Hashing

Simple hashing consists of a two-dimension hash table Tb×m and k hash functions
h1, h2, ..., hk. Each location Ti, i ∈ [b] can be seen as a bin, then the table includes
b bins B1, B2, .., Bb, each bin can hold more than one element, namely m. To
insert an item x, it computes h1(x), h2(x), ..., hk(x) using k hash functions, then
maps it into k bins Bh1(x), Bh2(x), ..., Bhk

(x). When given b bins, k hash function
and n items, the bin size can be computed using ball-to-bin analysis. Pinkas et
al. [34] point out that the probability of “n balls are mapped at random to b
bins, and the most occupied bin has at least l balls” is as Eq. 1.

Pr(∃bin with ≥ l balls) ≤ b(
en

bl
)l (1)

3.3 Cuckoo Hashing

Cuckoo hashingwas first proposed byPagh et al. [45], whichwas used to resolve the
hash collision. Later, Kirsch et al. [46] proposed a variant of Cuckoo hashing with a
stash. In their Cuckoo hashing scheme, it involves k hash functions h1, h2, .., hk, a
stash S and b bins B1, B2, .., Bb. For n items x1, x2, ..., xn, each item xi is stored in
one of the bins {Bh1(xi), Bh2(xi), .., Bhk(xi)} or the stash. Each bin stores no more
than one element, and the stash can hold many elements. To insert an item x, it first
checkswhetherall thebins{Bhi(x), i ∈ [k]}areoccupied, ifnot, thenxwillbeplaced
in one of these empty bins Bhi(x), otherwise select a random {Bhi(x), i ∈ [k]} and
remove the current old item to place this new item, then the old item is recursively
inserted in the same way. After a fixed number of iterations, if there is still no bins
to place the old item, then it is placed into stash S.

3.4 Paillier Encryption

In this paper, we adopt the Paillier encryption, which is a well-known partial
homomorphic encryption scheme, it usually consists of key generation algorithm
keyGen, encryption algorithm Enc and decryption algorithm Dec. We detail
the three algorithms as follows.

1. keyGen(λ) → (pk, sk)
2. Enc(m, pk) → (c)
3. Dec(c, sk) → (m)
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Paillier encryption has the additive homomorphism property, let [[u]] denote
the ciphertext of plaintext u, ⊕ denote homomorphic addition, � denote multi-
plying a ciphertext by a plaintext, then for any plaintexts u and v, it supports
the following two operations:

[[u]] ⊕ [[v]] = [[u + v]], u � [[v]] = [[u · v]]

3.5 Gradient Descent

Gradient descent is widely applied to optimize neural networks, it aims to min-
imize the loss function by updating the parameters. In this paper, we use the
gradient descent algorithm to train a logistic regression model and adopt Taylor
series expansion to obtain the approximations of the logistic loss function. For
example, using second-order Taylor series expansion, the approximation to the
logistic loss function is written as

L(θθθ) =
1
n

n∑

i=1

log2 − 1
2
yiθθθ

Txi +
1
8
(θθθTxi)2

and the gradient is written as:

∂L(θθθ)
∂θθθ

=
1
n

n∑

i=1

(
1
4
θθθTxi − 1

2
yi)xi

then the parameters can be updated using θθθ ← θθθ−η ∂L(θθθ)
∂θθθ , η is the learning rate.

4 Problem Statement

4.1 Setting

People have different identifiers on different occasions. For example, students
have student numbers, employees have employee numbers. For another example,
some apps require an e-mail to register, some require a phone number, and
some require the ID card number. Moreover, people may have multiple e-mail
accounts and use different email accounts to sign in different apps. If these apps
want to cooperatively train a model, the first step is to align their samples, but
these current sample alignment schemes are not suitable for this setting. Figure 1
shows the setting where the databases of party A and B hold the samples with
different IDs, and C holds both IDs.

Party A holds the ID Tel and party B holds the ID E-mail, they have partial
features respectively, and party A has the label. Party A and B want to securely
train a logistic regression model, then they need to align their samples, while
the database of party C has both ID Tel and ID E-mail, party A and B need
party C as the coordinator to help them align the samples. After the sample
alignment, party A and B could train the model together.
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Fig. 1. Samples with different IDs.

4.2 Threat Model

In the above setting, we consider that A, B and C are honest-but-curious. They
follow the protocol execution, but try to get as much information as possible.
Specially, in the sample alignment phase, C honestly helps A and B to align their
samples, meanwhile, C is inquisitive about the sample information of A and B,
A and B is also curious about the sample information of C. A and B want to
know the sample information about each other during their interaction. In the
training phase, A and B wonder to know the information of training datasets
about each other. C honestly helps A and B decrypt the messages, but attempts
to learn more information about these messages.

4.3 Design Goal

According to the above analysis of the threat model, we aim to protect the private
information in the sample alignment and the training phase, thus achieving the
secure federated learning, our design goals are as follows.

Protect the Privacy of Sample. Parties need to exchange the sample infor-
mation to align the samples, the disclosure of samples may cause a great loss to
the parties, thus the parties cannot exchange the sample information in plaintext
form, we need to hide the sample information while aligning the samples.

Protect the Privacy of Training Dataset. Due to the definition of federated
learning, parties can’t directly exchange raw data, which may reveal sensitive
information. Instead, parties exchange the intermediate results to obtain the
gradient, thus updating the model, but the adversary may infer the gradient
from the intermediate results, there are various gradient based attacks [47–49],
the adversary can derive the original training dataset from the gradient, thus
the intermediate results cannot be exchanged directly, and the gradient during
the training should be protected.
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Fig. 2. Architecture of our vertical federated learning for samples with different IDs.

5 The Protocol Description

Our whole protocol consists of sample alignment phase and training phase.
Figure 2 depicts the architecture of our vertical federated learning for samples
with different IDs. Our protocol is described in the following.

5.1 Sample Alignment Phase

Before training, C will help A and B to align their samples, we describe the
protocol in Fig. 3 and 4. The sizes of set E and P are balanced, namely, they are
of the same order of magnitude.

E = {e1, e2, · · · , em1}
P = {p1, p2, · · · , pm2} EP = {(e′

1, p
′
1), (e′

2, p
′
2), · · · , (e′

n, p′
n)}

ei, pi, e
′
i, p

′
i ∈ {0, 1}σ σ κ

λ
Sa Sb

Fig. 3. The sample alignment protocol.
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j ∈ [n] rj {yj = p′
j ⊕ rj , j ∈ [n]}

{xj = e′
j ⊕ rj , j ∈ [n]}

h1, h2, h3 : {0, 1}σ → {0, 1}λ+log2(n)

b β E
b Ba[1], Ba[2]..., Ba[b] Ba[i]

i
P b Bb[1], Bb[2]..., Bb[b] Bb[i]

i

n {e′
1, e

′
2, · · · , e′

n} b
Bc1 [1], Bc1 [2]..., Bc1 [b] Bc1 [i]

i n {p′
1, p

′
2, · · · , p′

n}
b Bc2 [1], Bc2 [2]..., Bc2 [b] Bc2 [i]

i
i

i Ba[i]
i {(e′

l, yl)|e′
l ∈

Bc1 [i]} y′
i i

Ba[i] ⊕ y′
i

i
i Bb[i]

i {(p′
l, xl)|p′

l ∈
Bc2 [i]} x′

i i
Bb[i] ⊕ x′

i

KB = {(Bb[j] ⊕ x′
j), j ∈ m2} KB

KA = {(Ba[j] ⊕ y′
j), j ∈ m1} KA[j] ∈ KA

KA[j] ∈ KB Ba[j] Sa

KA[j] K′
A K′

A

KB [k] ∈ KB KB [k] ∈ K′
A KB [k] = K′

A[j]
Bb[k] j Sb Sb

Fig. 4. The sample alignment protocol (continued).

In the sample alignment protocol, we use OPPRF to align the samples of A
and B with the help of C. In the end, if the e-mail ei and telephone number pi

belong to the same person, then ei and pi will be the same row of Sa and Sb

respectively, which is also the aim of step 7. Besides, we set the bit-length of the
hash value to λ + log2(n), which ensures the probability that a non-intersection
item is falsely put into the intersection is 2−λ.

We also give an instantiation of our sample alignment scheme in Fig. 6. It
can be divided into three parts: Hashing, OPPRF, and Alignment. Firstly, A, B
and C hash the elements into 2 bins, the first bin of A contains e1, the second
contains e3. Similarly, so do the bins of B and C. Then, A and C, B and C
perform OPPRF for each corresponding pair of bins, A and B input the element
in that bin, C inputs the relevant key-value pairs in that bin. Finally, A and B
exchange the blinded set to align the samples. It can be seen that A and B get
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one intersection element, namely A holds e3, and B holds p3, and they are both
in the first row.

5.2 Training Phase

In most real-life applications that focus on timeliness, federated learning with
coordinator is more valuable. In this paper, we use a coordinator to help the
parties train the model, the coordinator can be the party C in the sample align-
ment phase or other trusted third party. Besides, we use the Paillier encryption
scheme to protect the private information in the training process.

Suppose that A and B have permuted their datasets after running the sample
alignment phase, and their datasets have both n samples, the secure logistic
regression training process is shown in Fig. 5.

A = ( A,1, A,2, · · · , A,n) A,i

dA B = (( B,1, y1), ( B,2, y2), · · · , ( B,n, yn))
B,i dB yi

dA θθθA dB

θθθB η
L(θθθ) = 1

n

∑n
i=1 log2 − 1

2
yiθθθ

T
i + 1

8
(θθθT

i)2

i = A,i| B,i θθθT = θθθT
A|θθθT

B

θθθA θθθB

(pk, sk)
pk

i = 1, 2, · · · , n
uA,i = 1

4
θθθT

A A,i pk
[[uA,i]]

uB,i = 1
4
θθθT

B B,i − 1
2
yi pk

[[uB,i]]
[[ui]] = [[uA,i]] ⊕ [[uB,i]] [[ui]] � xA,i

[[ui]] � xB,i

[[ ∂L(θθθ)
∂θθθA

]] = 1
n

� [⊕n
i=1([[ui]]� A,i)] RA

[[WA]] = [[ ∂L(θθθ)
∂θθθA

]] � RA

[[ ∂L(θθθ)
∂θθθB

]] = 1
n

� [⊕n
i=1([[ui]]� B,i)] RB

[[WB ]] = [[ ∂L(θθθ)
∂θθθB

]] � RB

sk WA WB

∂L(θθθ)
∂θθθA

= WA · 1
RA

θθθA =

θθθA − η ∂L(θθθ)
∂θθθA

∂L(θθθ)
∂θθθB

= WB · 1
RB

θθθB =

θθθB − η ∂L(θθθ)
∂θθθB L(θθθ)

Fig. 5. The training protocol.
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6 Security Analysis

We consider the semi-honest security of our scheme and give the security proof
below.

Definition 3. f = (fA, fB , fC) is a polynomial function, and protocol Π com-
putes f . A, B and C compute f(E,P,EP,XA,XB) using Π. E, P and EP are
respectively the ID set of A, B and C, XA and XB are the permuted datasets
after sample alignment. We think protocol Π is secure in the semi-honest model
if there exist probabilistic polynomial-time simulators SimA, SimB, and SimC ,
such that,

SimA(E,XA, f(E,P,EP,XA,XB))
c≡ viewΠ

A(E,P,EP,XA,XB)

SimB(P,XB , f(E,P,EP,XA,XB))
c≡ viewΠ

B(E,P,EP,XA,XB)

SimC(EP, f(E,P,EP,XA,XB))
c≡ viewΠ

C(E,P,EP,XA,XB)

where viewΠ
A, view

Π
B, and viewΠ

C denote the information, that adversaries can
derive from A, B and C.

c≡ denotes computational indistinguishability.

Theorem 1. The sample alignment protocol in Sect. 5.1 is secure in the semi-
honest model.

Proof. A and B run table-based OPPRF with C and get the OPPRF output
respectively, since the xi and yi values are uniformly distributed, they cannot
distinguish whether the output is a programmed output or a random value,
which is guaranteed by OPPRF. B sends KB to A, those values in KB are all
blinded by different random values, A sends the blinded version of intersection
K ′

A to B. Those values pass between A and B are all randomly distributed. The
view of A is viewΠ

A = (E,Sa, y′
i,KA,KB), we construct a simulator SimA to

simulate the corrupted A, and sketch the simulation of SimA. SimA obtains
ŷ′

i and computes K̂A using each element and the corresponding ŷ′
i. Then SimA

gets K̂B and computes Ŝa using K̂B and K̂A, finally, SimA outputs SimA(E) =
(E, Ŝa, ŷ′

i, K̂A, K̂B).
A cannot distinguish y′

i from ŷ′
i due to the security of OPPRF. As all the

items in KA, K̂A, KB , K̂B are all blinded by random values, thus the distri-
butions of KB and K̂B , KA and K̂A are all indistinguishable. Thus, for A,
the distribution of (E, Ŝa, ŷ′

i, K̂A, K̂B) and (E,Sa, y′
i,KA,KB) is indistinguish-

able, which means the view generated by the simulator is indistinguishable from
the view in the real execution, that is, SimA(E)

c≡ viewΠ
A. Similarly, for B,

SimB(P ) = (P, Ŝb, x̂′
i, K̂

′
A), SimB(P )

c≡ viewΠ
B .

For C, the view of C is viewΠ
C = (EP, xi, yi), we construct a simulator

SimC to simulate the corrupted C. SimC computes x̂i and ŷi, and outputs
SimC(EP ) = (EP, x̂i, ŷi). Since xi, x̂i, yi, ŷi are all blinded by random elements,
thus A cannot distinguish xi from x̂i, yi from ŷi, SimC(EP )

c≡ viewΠ
C holds.
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Theorem 2. The training protocol in Sect. 5.2 is secure in the semi-honest
model.

Proof. If the Paillier encryption is semantically secure, we can construct SimA,
SimB and SimC to simulate the view of A, B and C in the real execution of the
training phase, we discuss them respectively.

View of A and B. A and B do not know sk, all the messages pass between A and
B are encrypted. The message sent to C are all blinded by random values. The
view of A is viewΠ

A = (XA, θθθA, [[ui]], [[
∂L(θθθ)
∂θθθA

]], [[WA]], ∂L(θθθ)
∂θθθA

,WA). Suppose that A is

corrupted, we sketch the simulation of SimA. SimA computes ˆ[[ui]] and ˆ[[∂L(θθθ)
∂θθθA

]],

then randomly chooses R̂A and computes ˆ[[WA]] by multiplying ˆ[[∂L(θθθ)
∂θθθA

]] by R̂A,

later, SimA computes ˆ∂L(θθθ)
∂θθθA

= ŴA · 1
R̂A

and updates θ̂θθA. Finally, SimA outputs

SimA(XA) = (XA, θ̂θθA, ˆ[[ui]],
ˆ[[∂L(θθθ)

∂θθθA
]], ˆ[[WA]], ˆ∂L(θθθ)

∂θθθA
, ŴA).

Without sk, A cannot distinguish [[ui]], [[
∂L(θθθ)
∂θθθA

]], [[WA]] from ˆ[[ui]],
ˆ[[∂L(θθθ)

∂θθθA
]], ˆ[[WA]]

due to the semantic security of Paillier encryption. Since RA and R̂A are ran-
domly chosen in the same way, thus A cannot distinguish ∂L(θθθ)

∂θθθA
,WA from

ˆ∂L(θθθ)
∂θθθA

, ŴA. From the view of A, the distribution of (XA, θθθA, [[ui]], [[
∂L(θθθ)
∂θθθA

]],

[[WA]], ∂L(θθθ)
∂θθθA

,WA) and (XA, θ̂θθA, ˆ[[ui]],
ˆ[[∂L(θθθ)

∂θθθA
]], ˆ[[WA]], ˆ∂L(θθθ)

∂θθθA
, ŴA) is indistinguish-

able, thus SimA(XA)
c≡ viewΠ

A holds. Similarly, SimB(XB) = (XB , θ̂θθB , ˆ[[ui]],
ˆ[[∂L(θθθ)

∂θθθB
]], ˆ[[WB ]], ˆ[[∂L(θθθ)

∂θθθB
]], ˆ[[WB ]]), SimB(XB)

c≡ viewΠ
B .

View of C. All the message sent by A and B are blinded by random elements.
The view of C is viewΠ

C = ([[WA]], [[WB ]],WA,WB). Suppose that C is corrupted,
we sketch the simulation of SimC . SimC obtains ˆ[[WA]], ˆ[[WB ]] and decrypts
them to get ŴA and ŴB , finally outputs SimC = ( ˆ[[WA]], ˆ[[WB ]], ŴA, ŴB).

Since the above values are all blinded by random values, the distribution of
( ˆ[[WA]], ˆ[[WB ]], ŴA, ŴB) and ([[WA]], [[WB ]],WA,WB) is indistinguishable, thus,
SimC

c≡ viewΠ
C holds.

7 Experiment Evaluation

7.1 Hash Parameters Analysis

In our scheme, we use hash-to-bin to improve efficiency. A and B act as OPPRF
receivers, they use Cuckoo hashing to hash each element into bins. C acts as
OPPRF sender, and uses Simple hashing to hash each element into bins. The
hashing parameters of Cuckoo hashing and Simple hashing are chosen as follows.

Simple Hashing Parameters. The Simple hashing involves four parameters:
the number of elements of party C n, the number of hash functions k, the number
of bins b, and the bin size β. We let k = 3, now we have to determine b and β.



190 Y. Li et al.

Our approach is to determine β first, then we use Eq. 1 to get b. The concrete
process of determining β is as follows:

After hashing each element into bins, for each bin, the OPPRF sender and
the OPPRF receiver will run a table-based OPPRF. By the second step of table-
based OPPRF, sender needs to sample a nonce v to make all {H(Fk(xi)||v), i ∈
[N ]} distinct, N is the number of elements stored in that bin. Kolesnikov et
al. [44] point out that for a random v, the probability of “all H(Fk(xi)||v), i ∈ [N ]
are distinct” is as Eq. 2, m denotes the output length of H(·), and the expected
number of sampling a proper v is 1/Prunique. Sampling v requires computing
τN hash functions, where τ is the number of choosing v.

Prunique =
N−1∏

i=1

(1 − i

2m
) (2)

The table size is 2m and the bin size β = 2m, then we can analyze m to get
the bin size β. When m is too small, the bin size is small, then each bin stores
fewer elements, therefore it needs more bins to store elements, we observed that
as the number of bins increases, sender needs to send more tables, then the
communication cost is increasing. When m is too large, it requires fewer bins to
store elements, each bin can store more elements, then the Prunique is little, the
expected number of sampling v will be more, which will increase the computation
cost. Therefore, we need to choose a proper m to get a compromise between
communication cost and computation cost. When n ∈ {224, 225, 226, 227}, we
run a number of experiments to get the proper m. In all set sizes, we observed
that the sample alignment scheme is the fastest one when m = 6, and can
achieve the balance between communication cost and computation cost, then we
set m = 6, thus obtaining the bin size β = 2m, then we evaluate Eq. 1 with set
size n, bin size β and number of the hash functions k to get the number of the
bins b = ζn when the hashing failure probability is 2−30 and 2−40. The concrete
parameters are depicted in Table 1.

Table 1. The concrete ζ with different set sizes for hashing failure probability 2−30

and 2−40.

Hashing failure 2−30 2−40

n 224 225 226 227 224 225 226 227

ζ 0.23 0.23 0.23 0.24 0.25 0.26 0.26 0.26

What’s more, when hashing n = 224 elements into 0.25n bins, we observed
that more than half of the bins store no more than 12 elements, thus the expected
number of sampling v is only 3.

Cuckoo Hashing Parameter. In the above analysis, we have fixed the bin size
β and the number of bins b. Party A and B hold m1, m2 elements respectively.
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Now, we analyze the Cuckoo hashing parameters. In our scheme, consider that
the stash will cause an extra expensive cost, hence we avoid using stash. Pinkas
et al. [34] point out that Cuckoo hashing with no stash performs badly when the
number of hash functions k = 2, however, if k is too large, for Simple hashing, it
will need more bins or a larger bin to store elements. Hence, we fix the number
of hash functions to 3. What’s more, Pinkas et al. [34] analyze the minimum
number of bins bmin = εminm1, such that the hashing process succeeds with no
stash except for negligible probability, and reach the conclusion that the hashing
failure probability is below 2−30 when εmin = 1.20, and the hashing failure
probability is below 2−40 when εmin = 1.27. Moreover, in our experiments, we
let m1 = m2, and m1,m2 ∈ {219, 220}, which satisfies the actual small business
user scale. Besides, we have determined the number of bins ζn according to
the analysis of Simple hashing, ζ ∈ [0.23, 0.26], n ∈ [224, 227]. It’s oblivious that
(ζn)/m1 > εmin = 1.27, thus when hashing m1 elements into ζn bins without
stash, the hashing failure probability is negligible.

Fig. 6. An instantiation of the sample alignment scheme.

7.2 Experiment Result

To verify the efficiency of our scheme, we run experiments on a Server with 2
20-core Intel Xeon CPU 5218R @2.1GHz and 256 GB of RAM, the operating sys-
tem is Ubuntu 20.04. In the training phase, we use the library that implements
the paillier homomorphic encryption [50], it supports the arithmetic operations
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with floating point numbers. In the sample alignment phase, the length of each
element σ is 128 bits, the statistical security parameter λ is 40 and the com-
putational security parameter κ is 128. We test the running time of our sample
alignment scheme with set sizes n ∈ {224, 225, 226, 227} of C(Sender) and set
sizes m1,m2 ∈ {219, 220} of A and B(Receiver). The total process consists of
offline phase and online phase, the offline phase consists of the operation that
is independent with the input, such as the base OT used in OPRF. The results
are shown as Fig. 7, which are the average of 5 trials.

Fig. 7. The total running time of our
sample alignment scheme

Fig. 8. The running time of one epoch.

As Fig. 7 shows, when the set sizes of sender and receiver are respectively
224 and 220, the running time of the receiver is only 216 s. The execution of
OPPRF bin by bin accounts for the vast majority of the running time, and the
bin number ζn is determined by Simple hashing, therefore the running time of
m1 = 219 is almost the same as m1 = 220 when n is fixed. As the size of the
dataset increases, the total running time increases linearly. Moreover, our scheme
is scalable, it enables the alignment of larger set sizes.

We also implement the logistic regression scheme using the diabetes dataset
in sklearn, which contains about 768 examples, each example has 8 feature val-
ues, the dataset is split vertically into two halves, and each party holds half of
the feature values, in addition, one of the parties holds label. We conduct exper-
iments to test the running time when the size of the training dataset is in the
range of 100 to 700. The running time of one epoch is shown as Fig. 8. Although
training a model using hundreds of data requires hundreds of seconds, once a
model has been trained, it can be used to make multiple predictions, therefore,
we think timeliness is not a primary concern in the training phase.

8 Conclusions

In this paper, we consider how to align the samples when the databases of
two participants don’t have the same ID in federated learning. Aimed at vertical
federated learning, we construct a sample alignment scheme using OPPRF, when
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the set size of sender and receiver is 224 and 220, the running time is 216 s.
Besides, we design the secure logistic regression training scheme using additive
homomorphic encryption and conduct experiments to verify its feasibility.
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Abstract. Selfish mining is notorious for receiving additional rewards
disproportionate to the attacker’s mining power in Proof-of-Work (PoW)
consensus-based blockchain, e.g., Bitcoin. Unfair reward distribution may
cause partial honest miners to quit blockchain mining, which will seri-
ously weaken the security of the PoW blockchain since the security is
guaranteed by strong mining power. Various efforts have been proposed
to alleviate this problem, but are generally expensive to implement, e.g.,
upgrading the blockchain backbone protocol. In this work, we propose
a method, named Reinforcement-Mining, to protect honest miners’ min-
ing rewards to mitigate the harm of selfish mining. The key insight of
Reinforcement-Mining is to employ a deep reinforcement learning frame-
work to choose the optimal policy for honest miners to protect their
rewards when the blockchain suffers from a selfish mining attack. Experi-
ments on mining reward and chain quality property are conducted respec-
tively. The analysis of experiment results demonstrates that our approach
moderates the unfair reward distribution of selfish mining and improves
the chain quality property of the blockchain. The proposed method may
be still far from practical application, however, it provides a new per-
spective for defense against selfish mining.

Keywords: Blockchain · Selfish mining · Mining reward

1 Introduction

The selfish mining attack, proposed in [4], is an adversarial mining strategy
that enables the attacker, so-called the selfish miner, to get additional reward
by leveraging the blockchain incentive mechanism. Unlike honest miners who
always follow the public chain, the selfish miner does not broadcast newly mined
blocks immediately, but withholds it to maintain a private chain in its local view.
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When receiving a new block from an honest miner, the selfish miner strategically
releases a number of blocks in the private chain. According to the longest public
chain rule in Bitcoin, the released blocks invalidate the new block of the hon-
est miner, thus wasting the mining power of the honest network. To incentivize
block mining, miners receive a block reward, i.e., an amount of cryptocurrency,
for every block they mine and successfully append to the longest public chain.
Ideally, the received block reward of a miner is proportional to the fraction of its
mining power to the entire network. However, some honest mienrs waste power
without receiving block rewards since some honest blocks are invalid due to self-
ish mining. Stated differently, the rewards belonging to those honest miners are
lost, while the selfish miner gets this part of the rewards. This unfair reward
distribution deviates from the incentive mechanism of Bitcoin and may induce
other participants to be selfish. Moreover, the unfair reward distribution may
cause honest miners to drop out of mining or transfer mining power to other
blockchain networks. The decline in mining power will severely weaken the secu-
rity of the Bitcoin network since it is secured by requiring lots of mining power
to participate in the PoW consensus. Poor security also opens up opportunities
for other attacks, e.g., double-spend attacks. Hence, efforts must be made to
mitigate the impact of selfish mining attacks.

Several schemes are proposed to alleviate the selfish mining attack. These
schemes mainly focus on two points: (1) Upgrading the backbone protocol to
eliminate the attack motivation [10,19,22]. (2) Employing detection methods to
detect the potential attack [3,17,20]. The former measure can effectively curb
the selfish mining attack, but the implementation cost is large. The latter can
only report the presence of attacks, and additional measures are required to
protect the rewards of honest nodes.

In this work, we propose the Reinforcement-Mining, a solution for using
deep reinforcement learning (DRL) to counteract the selfish mining attack.
Reinforcement-Mining is designed to protect honest miners rewards without
modifying the Bitcoin protocol, reducing the damage of selfish mining. Con-
cretely, a selfish miner is embedded in the environment construction to simulate
a selfish mining attack on the Bitcoin blockchain. We then initialize a deep Q-
network (DQN) to interact with the environment. During the interaction, the
DQN chooses an action in the light of the current environment state and submits
it to the environment, then collects the feedback information of the environment.
The above state, action, and feedback will be organized as training data, also
known as experience, which is used to train the DQN. The trained DQN will be
applied to resist selfish mining, i.e., choosing the optimal mining action for non-
malicious miners to reduce their losses when faced with a selfish mining attack.
We summarize the contributions of this work below.

• We present Reinforcement-Mining as a solution for shielding Bitcoin miners
against the selfish mining attack. Reinforcement-Mining mainly involves the
environment construction and DQN training. In particular, we construct a
Bitcoin selfish mining environment and define the representation of the envi-
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ronment state. Based on the constructed environment, a DQN is instantiated
and trained to choose the optimal mining action for the miner.

• We apply Reinforcement-Mining to an instantiated environment to evaluate
its performance, mainly concerning reward distribution and the chain quality
property. Reward analysis demonstrates that Reinforcement-Mining can alle-
viate the issue of unfair reward distribution. Especially, it reduces the reward
share of the selfish miner and protects the rewards of other miners. More-
over, that the application of Reinforcement-Mining improves the chain qual-
ity property of the blockchain. Particularly, Reinforcement-Mining improves
the chain quality property by about 0.02 even if the selfish miner owns a big
power, e.g., α = 0.4.

Roadmap of this Paper. The rest of the paper is organized as follows. Section 2
gives the background on the selfish mining attack. In Sect. 3, we present the
details of Reinforcement-Mining, including the necessary assumptions, environ-
ment construction, and training of the deep Q-network. In Sect. 4, the experi-
ment results and discussion of the proposed method are given. Some prior works
on blockchain security related to our work are presented in Sect. 5. Finally, we
conclude this work in Sect. 6.

2 Selfish Mining

The selfish mining attack [4,5] departs from the Bitcoin backbone protocol,
allowing the attacker to collect additional block reward during mining process.
Loosely speaking, instead of broadcasting the newly mined block immediately,
the selfish miner withholds it to build a private chain. The private chain gives
the selfish miner an advantage of mining the next block before other miners.
The selfish miner tirelessly and secretly mines on the private chain to extend
its length. Once an honest miner finds a new block, the selfish miner leverages
blocks on the private chain to carry out the attack to invalidate the honest
miner’s block.

We briefly illustrate the process of this attack with a simple example. Suppose
the selfish miner withholds a block with height bh on his private chain, see (1)
in Fig. 1, he can take the lead to mine block bh+1 on it, while others are mining
the block with height bh since they do not aware of the existence of withheld
block bh. Then, we list the possible cases:

• Case 1: If the selfish miner finds the block bh+1 before others, he withholds
it and continues to mine the next block to extend the private chain.

• Case 2: If an honest miner finds the block with height bh, denoted as b′
h, before

the selfish miner finds block bh+1. The selfish miner publishes his private chain
to fork the blockchain, see (2) in Fig. 1. Next, two subcases will occur:

• Subcase 1: One miner (either the selfish miner or others) finds the block
bh+1 on bh, see (3) in Fig. 1. Then, the two blocks (bh and bh+1) become
valid and their miners are rewarded. However, the honest miner who finds
the block b′

h suffers a loss.
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. . .

(1) The selfish miner withholds the block     
to build a private chain.

. . .

(2) The selfish miner broadcasts the block     .

. . .

(3) The selfish miner mines the next block first.

. . .

(4) One honest miner mines the next block first.

Fig. 1. A simple example for the selfish mining attack. The shaded block represents
the unpublished block in the private chain.

• Subcase 2: An honest miner finds the next block on b′
h, denoted as b′

h+1,
see (4) in Fig. 1. Note that the selfish miner does not mine on the b′

h since
he endeavors to make his block bh valid. The blocks b′

h and b′
h+1 are valid

and their miners are rewarded. Hence, the selfish miner fails to attack the
blockchain and loses the reward of block bh.

3 Reinforcement-Mining

The key insight of Reinforcement-Mining is that honest nodes use deep rein-
forcement learning to choose the optimal action against the selfish miner during
mining process, as illustrated in Fig. 2. Overall, we construct an environment
to model the Bitcoin blockchain subject to the selfish mining attack. Then, the
agent (a honest miner that wants to seek reward protection) interacts with the
environment. Specifically, he observes an environment state and transmits it to
an activated deep Q-network (DQN), which gives a suggested action. The envi-
ronment performs the action, then transfers to a new state and returns a reward
as feedback. During continuous interaction, the agent collects and organizes the
interaction data as experience for DQN training. Below we describe the details
of our method.

3.1 Assumptions

We first explain some concepts and assumptions to better describe the details
of Reinforcement-Mining.
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DQN
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Reward

Observation
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Env State:
Global State
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Parameters for Env:
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SM1 Strategy

Parameters for Env:
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Parameters for DQN:
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Parameters for DQN:
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Network Structure
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Fig. 2. The workflow for Reinforcement-Mining. “Env” represents the environment with
built-in the selfish miner and honest miners. “Mining power” includes the adversarial
power (α) and agent’s power (β), then the total power for all other honest miners is
1−α− β. “Backbone protocol” indicates the Bitcoin core protocol. “Rule” denotes the
Bitcoin longest chain rule, unsurprisingly.

1. Miners. In Bitcoin, nodes that participate in the consensus process to main-
tain the blockchain are usually called miners, in our study, they consist of a
selfish miner and a group of honest miners. Honest miners follow the Bitcoin
core protocol, which can be modeled by the Bitcoin ideal world functionality
[16]. The selfish miner, however, behaves maliciously and follows the selfish
mining strategy presented in [4], abbreviated as SM1.

2. Hash Power. Hash power denotes the ability of a miner to perform hash
calculations. Stated differently, it represents the probability of a miner finding
a new block in the Proof-of-Work (PoW) consensus mechanism. As in prior
works [4,5], we normalize the hash power of the whole network to 1. Then,
we set the hash power of the selfish miner to α ∈ [0, 0.49], and the power of
all honest miners to be 1 − α.

3. Round. In each round, all Miners compete to mine a new block according to
its hash power. Whenever a new block is found and appended to the chain,
we call this round the end, and the next round of mining begins.

4. Rewards. The miner who successfully appends a block on the longest public
chain (also called the main chain) receives a block reward, i.e., 6.25 coins
on July 12 2022. For simplicity, we normalize the block reward to 1 for ease
of description and analysis. In particular, we calculate a miner’s reward by
cumulating its block reward in one experimental episode. In fact, the above
reward is generally called the absolute reward. While in the selfish mining
setting, we focus on the relative reward, that is, the miner’s share of the total
network reward.
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3.2 Environment Construction

The environment is a necessary component in the reinforcement learning frame-
work and a prerequisite for the agent to learn the optimal policy. In the context
of blockchain, the environment should adequately characterize the state of the
blockchain, especially reflecting the true state of the blockchain under a selfish
mining attack. Next, we describe the construction of the environment used in
the experiments in this paper.

State Representation. The SM1 strategy focuses on the mining, publishing
and appending of blocks and does not care about the packaging, confirma-
tion of transactions, so when defining the state, we only need to focus on the
state of blocks on the blockchain. We define the state as a 4-dimensional vec-
tor: (la, lh, pending, fork), la denotes the length of the selfish miner’s chain, lh
denotes the length of other miners, and pending represents blocks mined by the
agent but not yet consensus. The element fork ∈ {normal, forking, catch up}
represents the forking state of the blockchain, normal means no fork on the
blockchain, forking means a fork with two equal length branches, and catch up
means that the selfish miner withholds some blocks on its chain. Another con-
cern is that the state observed by the agent from the environment may not be
consistent with the actual blockchain state, since blocks withheld by the selfish
miner are not visible to the agent. In order to solve this problem, we divide the
environment state into global state and observed state, where global state rep-
resents the complete blockchain state and observed state denotes the observed
state by the agent.

The Agent’s Actions. We list the actions that the agent can choose when
interacting with the environment. For the agent, although it is not allowed to
withhold blocks, it can freely control the mining and appending of blocks. Based
on this point of view, we define the action space as:

• mine: The agent mines the new block on the top of the blockchain. This
action is always available.

• followa: The agent follows the first branch of a fork. This action is allowed
when the blockchain is forking.

• followb: The agent follows another branch of the fork. This action is also
allowed when the blockchain is forking.

3.3 Deep Q-Network Training

In this work, we utilize a deep Q-network (DQN) [9] to choose an optimal action
for the agent during the interaction. Our goal is to train a suitable DQN to help
the agent fight against the selfish miner in blockchain mining. We first instantiate
a fully connected neural network, and then let the network interact with the
given environment. The training of the network is achieved during continuous
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interaction. Concretely, whenever the network receives a state, it chooses an
action to submit to the environment, which feeds back a corresponding reward
along with a new blockchain state.

We store those interaction data (the observed state, a chosen action, the
reward, and the updated state) into a buffer as experience for the network train-
ing. The network randomly fetches a batch of experience for training when the
buffer is full. Particularly, we apply the back propagation algorithm to update
the network parameters.

4 Experiment Results

To verify the feasibility of Reinforcement-Mining, we conduct experiments and
analyze the results. The experiments are programed by Python programming
language(version 3.6.8). In particular, we use Pytorch (version 1.10.2) [13] to
implement the deep Q-network that chooses the optimal action for the agent.
We collect data and final results from code execution for the analysis, which is
presented below.

(a) when α = 0.3 (b) when α = 0.4

Fig. 3. Reinforcement-Mining can increase the mining node’s relative reward when a
selfish miner exists.

Relative Reward. In the context of selfish mining, the most important metric
is the distribution of rewards between parties. Figure 3 presents the comparison
of the miner’s relative reward when adopting Reinforcement-Mining and honest
mining. It can be seen that in the presence of selfish mining, Reinforcement-
Mining can increase the relative reward of the honest miner. For instance, when
the selfish miner’s power α = 0.3 (α = 0.4), by adopting Reinforcement-Mining,
the relative reward of the honest miner can be increased by about 4.75% (4.3%),
on average. This indicates that Reinforcement-Mining evaluates the expected
reward for each candidate action when making action chosen. The actions with
higher risk will be evaded when an attack occurs to reduce reward losses. How-
ever, the increment of mienr’s reward is limited since the premise that no mali-
cious actions can be made. In addition, from the data, it can be seen that the
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effect of Reinforcement-Mining on reward boosting is inversely proportional to
the power of the selfish miner.

We also evaluate the impact of Reinforcement-Mining on the relative reward
of the selfish miner. The relative reward of the selfish miner is reduced by apply-
ing Reinforcement-Mining during the mining process, as illustrated in Fig. 4. For
example, a honest miner (with power 0.25) adopts Reinforcement-Mining against
the selfish mining, the selfish miner (power α = 0.3) loses the relative reward of
0.02 (see Fig. 4a). One possible reason is that the optimal action chosen for hon-
est miner by the deep Q-network adds the failures of the selfish mining attack,
especially when the blockchain is forking.

(a) when the power of honest node is 0.25 (b) when the power of honest node is 0.35

Fig. 4. The relative reward of selfish miner can be reduced by Reinforcement-Mining.

(a) when α = 0.3 (b) when α = 0.4

Fig. 5. Reinforcement-Mining improves the chain quality property in Bitcoin selfish
mining context.

Chain Quality Property. The chain quality property Qcq (usually with param-
eters μ ∈ R and l ∈ N) denotes that, for any l consecutive blocks in the blockchain
maintained by any honest miner, the ratio of honest blocks is at least μ [1,7,8,15].

One symptom of the selfish mining attack is that it leads to a decrease in the
chain quality property Qcq of the blockchain. We further perform experiments to
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evaluate the impact of Reinforcement-Mining on chain quality, and the results are
illustrated in Fig. 5. Comparing Fig. 5a and 5b, the stronger the mining power of
selfish miner, the lower the chain quality, unsurprisingly. Reinforcement-Mining,
however, can always improve the chain quality property, even if the selfish miner
has a strong power. For instance, by applying Reinforcement-Mining, the chain
quality is improved by about 0.02 on average when α = 0.4. This proves that,
from another aspect, Reinforcement-Mining reduces the number of blocks mined
by the attacker on the main chain. In other words, it plays a positive role in
improving the security of the blockchain.

5 Related Work

The selfish mining attack [4] was first proposed to broken the Proof-of-Work con-
sensus protocol. Since then, a large number of attack schemes and models have
been sought to refine ecological mining security [5,14,18]. Liu et al. [12] analyzed
the mining strategy in the case of multiple attackers. Gao et al. [6] discussed the
situation in which the attacker dynamically adjusts its mining power, and pro-
posed a new attack strategy, named Bribery Selfish Mining, combined with the
bribery attack [2]. Given to enforcement of mining security, all sorts of schemes
or techniques have been proposed to detect and against the selfish mining attack.
Ethan Heilman [10] presented Freshness Preferred to against selfish mining with
unforgeable timestamps. Solat et al. [19] further considered the situation where
an adversary withholds a block for longer than a preset time interval and pro-
posed ZeroBlock, which is rejected by all honest nodes. A strategy based deep
reinforcement learning called SquirRL is recently proposed to identify blockchain
attack strategies under multiple selfish miners [11]. Zhang [21] presented insight-
ful mining to counteract selfish mining, infiltrating an undercover miner into the
selfish pool, whereby the insightful pool could acquire the number of its hidden
blocks.

6 Conclusion

The selfish mining attack undermines the fairness of the Bitcoin blockchain
ecosystem, especially for the distribution of mining rewards. To solve this, we
propose a method, named Reinforcement-Mining, that utilizes deep reinforce-
ment learning to protect the mining rewards of honest miners from selfish min-
ing. We conduct an environment that models the Bitcoin blockchain, specifically
embedding a selfish miner into the environment. In the environment construc-
tion, we specify the state representation to denote the blockchain state and the
action space supplied for the honest miner, i.e., the agent. Then, we train a Deep
Q-Network to interact with the environment and choose the optimal action for
the agent. Experiment results and analysis demonstrate Reinforcement-Mining
can protect the rewards of honest miners in the presence of selfish mining. Addi-
tionally, this method can improve the chain quality property of the blockchain
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which is decreased due to selfish mining. This work, however, has a certain limi-
tation, namely, the improvement of rewards and chain quality is limited. This is
because the optional actions of honest miners are constrained, i.e. no action can
violate Bitcoin’s protocol. In future work, we will refine and extend the proposed
method to improve its performance.
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Abstract. Electronic Identity (eID) is a solution toward solving the
identity problem when deploying e-Government. Such solution should
not only be secure, but also have to be robust enough under adversarial
conditions. In Denmark, NemID is a digital eID used to log into public
websites, for online banking and many digital services. However, it suffers
from some security threats such as Distributed Denial of Service (DDoS)
attack. In 2013, a tremendous DDoS attack over NemID caused chaos in
Danish society, people found themselves out-of-reach to many services.
Focused on this threat, we develop FolketID, a blockchain-based NemID
alternative against DDoS attacks. The DDoS mitigation is achieved by
not only utilizing its powerful data distribution ability, but also exploit-
ing the economy system in blockchain. It particularly takes use of the
transaction fees to effectively prevent DDoS attacks. In the evaluation,
our experimental results demonstrate the viability and effectiveness of
FolketID in defeating DDoS attacks.

Keywords: Blockchain technology · DDoS attack · e-Government ·
Identity management · NemID

1 Introduction

Currently, many organizations are deploying and investing their IT infrastruc-
ture, either self-built or outsourced. Such trend is also applied to governments,
with the purpose of enhancing the reachability of government services. Thus the
term e-Government is coined. It has been figured out that e-Government had
changed the way of people interacting with the government – it is about building
a partnership between governments and citizens [1]. Electronic identity (eID) is
an essential solution to solve the identity problem for e-Government. It is a type
of digital media, hardware, or proof to display a user’s identity when accessing
different types of services online [2].
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Many governments have their own solutions toward the nationally recognized
eID [3]. Different eID systems usually have different functionalities, from as sim-
ple as personal identification and service authentication to digital signature and
single-sign-on service [4,5]. For instance, Denmark has one capable eID system,
named as NemID (or EasyID). NemID has been well-integrated into Danish soci-
ety, allowing to access most online governmental services in Denmark. NemID is
also serving as a secure national single-sign-on service for many private sectors,
especially financial services and banks [6].

Motivation. Such system shows the well-integration and cooperation between
the government and the private sectors. Though NemID brings an easy-to-use
interface for both users and service providers, the robustness of the system has
been threatened in practical usage. On 11 April of 2013, NemID suffered from
a DDoS attack [11]. The service went down, which caused huge chaos in Danish
society. People found themselves unable to access online governmental services
and was locked out from accessing their online banking service. Although the
company, Nets, who is responsible for developing and maintaining NemID, took
instant responses and several countermeasures, which was finally able to make
the system up and running within few hours. The incident has woken up some
private sectors that integrating their online services with NemID should have an
alternative emergency access method when NemID is not reachable [9]. People
has started questioning the reliability and the availability of NemID.

According to the Deloitte’s report [8], Danish public data systems such as
NemID are highly centralized, which have several advantages and disadvantages.
The government finds it reachable for collecting data, and citizens find it con-
venient to use. However, it makes these systems tied up together and difficult
to withstand a single point of failure issue. The recently released MitID [10] in
Denmark also suffers the same issue due to a similar architecture.

Contributions. To enhance NemID against DDoS attacks, upgrading the IT
infrastructure can be a feasible and effective way in a short-term, but it would not
solve the issue fundamentally. This is because DDoS attacks have become more
complex and higher in traffic volume. In this case, decentralizing the service into
different nodes can be a feasible solution, making more rooms on the limited
IT infrastructure, and at the same time, ensuring the services would not be
brought down due to the issue of single point of failure. Motivated by the recent
development of blockchain technology, in this work, we design FolketID (The
Folk’s ID), a blockchain-based NemID alternative against DDoS attacks. Our
contributions can be summarized as below.

– Our proposed FolketID can provide similar services as NemID and replace its
underlying storage system. It can defeat DDoS attacks by creating an ecology
of usage allowance in blockchain.

– In the evaluation, we test the system performance under flooding attacks,
including flooding login requests and flooding data requests, in addition to
a malicious service point. The experimental results demonstrate the viability
and the effectiveness of FolketID.
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It is worth noting that in our FolketID, the local session management and
the access control management are similar to the NemID system, which are not
the focus in our design and discussion scope.

Paper Organization. In Sect. 2, we briefly introduce the background on
NemID, and present related work on decentralized services and DDoS attacks.
Section 3 details the design of our proposed FolketID system. Section 4 evaluates
the system performance under DDoS attacks and malicious eID service point.
Finally, we discuss the open challenges and limitations in Sect. 5, and conclude
our work in Sect. 6.

2 Background and Related Work

2.1 NemID - The Danish eID

NemID, which is now in transition to a more secure and easy-to-use system of
MitID [10], is an eID system where each Danish citizen can obtain from govern-
mental offices and banks in Denmark. The binding between the NemID and the
CPR Number (the Danish social security number), is presumably done manually,
since such operation requires to have a personal appointment [7]. Different from
issuing a digital certificate that is bound with media token (e.g., chip card), the
operation requires users to provide their preferred username as login credential.
Temporary password will be issued in the first time, but users can change it later
after logging into the system successfully.

Users, who have applied for NemID successfully, will receive a code card that
contains a series of code pairs, consisting of a 4-digit challenge and a corre-
sponding 6-digit answer, as shown in Fig. 1(b). When using NemID to log into a
service, the system will challenge users with one of the 4-digit challenges listed
on the code card. Users have to search the correct answer and input to the sys-
tem, as shown in Fig. 1(a). If a code pair has been used successfully, it will never
be reused. If the NemID system notices any users are close to running out of
code pairs, it will notify the authority to send a new code card.

This is how NemID represents itself to most users. Meanwhile, some smart
methods of authentication are provided, such as using a NemID smartphone
client or a NemID CodeFile. From the users’ perspective, NemID works differ-
ently from other eID systems, which may require a chip card or any form of
token media. According to Digitaliseringsstyrelsen [22], NemID is based on pub-
lic key infrastructure. The only difference is that the users’ private keys are all
managed centralized [23], unlike other solutions in which private keys are on the
full responsibility of the users, which are stored on different media.

However, if the central server that manages the private keys is compromised,
the whole system can collapse instantly. A report from Deloitte [8] has already
pointed out that many public government information-services in Denmark are
under such risks, since many of them are highly centralized. This motivates our
work towards the design of a decentralized solution.
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Fig. 1. (a) NemID challenge (b) Code card

2.2 Related Work

Blockchain technology has been applied in many domains, such as data manage-
ment [12,15], intrusion detection [17] and smart city [13,14]. In the literature,
using blockchain to mitigate DDoS attacks is not new (e.g., blockchain-based
DDoS defence [18–20]), it is usually applied on network infrastructures rather
than services. Generally, blockchain is a decentralized datastore that utilizes a
consensus algorithm to ensure every participant following the agreed version of
the chain, which provides the characteristics of “immutable once-write available-
everywhere”. Smart contract further provides the ability to construct complex
data structures with permission control. Thus, the combination of these two has
become an important solution for network infrastructures to share strategies and
security policies [24].

For example, placing SDN strategy, such as flow information, onto the chain
for every SDN-enabled switch to follow. Assume putting it into a large telecom
operator that has many switches around nation – once the strategy has been
deployed, all switches can all dump the malicious data flow together, which can
effectively suppress unwanted traffic flows. Another case is to utilize blockchain
to prevent cyber-attacks in smart grid, by allowing all entities to have the data,
without the hassle and blockage during the communication [25].

However, what we have to notice is that these services rely more on “reading
data” more than “writing data”. For SDN, it is usually the controller that has
to do the rule writing, in which most of the network participants only retrieve
data. Blockchain is known for its reputation on writing bandwidth, hence we
may find that blockchain has kind of ability to defeat DDoS attacks, especially
on data retrieving. While performing a DDoS attack on blockchain network to
prevent others from data retrieving, the attacker can only flood every known
participant, which is impossible in many cases. If such applications require con-
stant data writing, blockchain might perform worse than other known solutions
when defending against DDoS attacks. However, it does not mean there are no
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way of preventing – for example, Javaid et al. [26] proposed that since a trans-
action requires one’s own fund in the Ethereum wallet, a DDoS attacker might
use up all the fund eventually. Thus, the gas-limit configuration can effectively
control transactions that require over it – hence, if a transaction is severely over-
sized than the normal packet, the network can reject it. More blockchain-based
solutions against DDoS attacks can refer to a survey [21].

3 Our Proposed FolketID

3.1 System Overview

To enhance the robustness of NemID against DDoS attacks, we aim to develop
a blockchain-based eID system called FolketID, which provides almost the same
functionalities as NemID: namely, Sign-On and Digital Signature. The main roles
are defined as follows.

– FolketID: This is the main entity of the whole system, which manages all
login sessions and maintains the bounding between entities and identifiers,
including a list of registered accounts.

– Service Providers: These are entities that help implement FolketID as the
login solution for end users.

– End Users: These are users who use FolketID to log into demanded govern-
mental services.

Each role holds its own keypair. Figure 2 shows the system overview of
FolketID, including data entities.

Fig. 2. System and entity overview of FolketID

Overall, there are three main entities, two sub-entities, and one special smart
contract.
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– eID Service Point: The data entity is a hash map that takes an entity’s
address as input, and the query result as output. If the query address is a
properly registered eID service point, it will return true; otherwise false.

– Service Provider Trust List: It shares the same design as above. If the
query address is a properly registered Service Provider, it will return true;
otherwise false.

– End User Trust List: It shares the same design as above. If the query
address is a properly registered End User, it will return true; otherwise false.

– Provider Linker: This is one sub-entity with the capability to authenticate
whether the corresponding identifier is relevant to the claimed entity. Hence,
the user should be prompt to input both the CVR (Danish equivalent of
VAT Number) and blockchain wallet address. If the bounding between the
identifier and the entity exists, it will return true; otherwise false.

– End User Linker: This is one sub-entity that shares a similar design and
application as the Provider Linker. Thus, the user should input both CPR
(Danish equivalent of Social Security Number) and blockchain wallet address.
If the bounding pair exists, it will return true; otherwise false.

– eID Service Point Voting Board: This is a special smart contract that
forces all eID service points into the involvement of critical decisions. When
adding or removing an existing eID service point, at least 3/4 of all the eID
service points must be acknowledged. Otherwise, the action will never be
taken. This is to prevent any tampered eID service points from having the
power to manipulate the whole system.

Parties that belong to the service provider group do not have extra data
entities, except for their own key pair. The followings are the secret information
that will be maintained by users.

– Username and Password: It contains an AES key to encrypt the IPFS loca-
tion [16] toward the user’s private key.

– PIN: A password that encrypts the user’s private key.
– The End User Roaming Profile: The main disadvantage of utilizing

blockchain technology is that all users must be able to keep a copy of their pri-
vate key on the device in which they would like to use to access the blockchain-
based services. It may become an issue when it comes to portability. To make
it similar to a traditional NemID login, we put the encrypted IPFS location-
information toward the private key onto the blockchain, while the encrypted
private key is floated on IPFS, as shown in Fig. 3.

Finally, the data entity can involve three parties such as end user, service
provider, and eID service point:

– AuthRequest Acknowledgement: This is the data entity that will be initi-
ated by end user first, along with the service provider’s wallet address being
proposed. The authRequest entity will return a UUID (Universal Unique
Identifier) as the identifier of such authRequest. Users need to provide this
UUID to the service provider. Then service providers will follow the UUID and
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Fig. 3. Data entity of user roaming profile

check whether the user’s wallet address is properly registered in FolketID. If
the user is properly registered, the service provider will provide session infor-
mation encrypted with the user’s public key, alongside with its signature. The
eID service point acknowledges the existence of authRequest, and checks the
address of both parties and the signature provided by the service provider. If
these data attributes are normal, the eID service point will formally acknowl-
edge it. Finally, the user will grab all the information, verify and accept the
session. During the transaction, if any anomalies are found, the authRequest
will be left incomplete and terminated early.

Data Encryption. As every verified participant can have a partial or full copy of
the chain, data encryption is required in FolketID if we would like to ensure that
a piece of data can be solely accessed by particular users. At this stage, similar to
NemID, our FolketID also uses asymmetric cryptography as our encryption and
decryption solution. However, we still have to build a mechanism that is close
to a Public Key Infrastructure (PKI); otherwise, we may lose the capability of
differentiating the outsider and the legitimate user, turning the system from
convergence to divergence.

To address the issue, our FolketID builds up a trust list, which acts like a
certification authority and validation authority in PKI. Only the FolketID service
point can maintain the data, while the others can only send a query to check
whether a user is properly registered. Originally, we plan to implement the trust
list as a normal dynamic array. However, it allows everyone to instantly have
an overview of all properly registered users in the system, which is not ideal.
Instead, we change the implementation from normal array to hash map. Hence
in order to have a full view of the hash map, the only way is to dump everything
out from the blockchain and piece them up bit by bit. This will greatly increase
the cost for attackers.
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3.2 Platform Selection

If we allow everyone to serve the network, which means the network may be
placed in a dangerous balance - DDoS attackers can slow down the network by
sending a tremendous amount of transactions, while at the same time, serving the
network to continuously gain quotas. In this case, we should adopt a blockchain
system in which only a set of limited members can mine or complete transactions.
There are some available options:

– Ethereum with Clique: Clique is a Proof-of-Authority consensus algorithm
that works similarly to Byzantine Fault Tolerance (BFT). In such network,
only assigned nodes can serve the network. Others, who would like to put a
transaction onto the network, must send the transactions to these assigned
nodes with transaction fees accordingly.

– Hyperledger Fabric: There are three major roles in the network: the Client
that sends transactions, the Peer that maintains and generates blocks, and
the Orderer that ensures the broadcast of information. Only the node that
has been assigned as Peer can serve the network [27].

However, Hyperledger Fabric does not come with a transaction-fee mecha-
nism like Ethereum does. Anodola et al. [28] figured out that it is possible for
several clients to flood the Orderer with transaction, which would compromise
the availability. As a result, our FolketID adopts Ethereum with Clique
in this work.

3.3 The DDoS Protection

Different from many existing studies, our main idea against DDoS attacks is
based on the transaction fee. As a blockchain network requires every participant
to guard its integrity, and relies on the computing resources of miners, who can
confirm and pack transactions into block. It is then reasonable for someone to
pay fees to the network, who would like to have the transaction completed. That
is, the more transactions made, the more fees have to pay. Hence, the wallet will
be emptied eventually if a user keeps transacting.

To maintain a quick and responsive system, we utilized Clique as the con-
sensus algorithm for the system. A system that runs Clique requires to have
a list of nodes (either pre-defined or later-added under authorization) that are
authorized to serve the network. These nodes are named “Sealers”. Only them
can validate transactions and complete them into blocks within the network. In
our system, servers that run the eID service points are selected as sealers, as
they are the one that can serve the network, eventually all crypto-coins will be
back to their wallet if they do not distribute any of them later. This allows us to
create an ecosystem that works the same as the current NemID implementation.

In NemID:

– User is given a code card that contains hundreds of code pairs.
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– If any authorization action is performed, one of the code pairs is invalidated,
no matter whether the authentication is a success or not.

– User needs to order a new card from NemID to continue using this system.

In ForketID:

– User is given a few amount of currency from eID service point.
– If any authorization action is performed, some of the currency is deducted.
– User needs to request for more currency from the eID service point.

However, there are two important differences that make ForketID more
robust than the current NemID:

– Request for Authorization requires users to deposit their allowance: Users
can still send authorization request to the current NemID system, even are
running out of code pairs. Servers still have to handle the request anyway,
though nothing can be performed. However, in our ForketID system, an empty
allowance makes users not able to go anywhere, because sending request for
authorization requires deposit of allowance before it can be sent. Attackers
cannot generate any transactions to the network, and servers do not need to
handle anything.

– Easier to detect DDoS attack: In the current NemID system, if one consumes
up their code pairs too fast, we can accurately state that the attacker is abus-
ing one’s identity. However, we cannot say that the user is performing a DDoS.
However, if one uses up their allowance too fast in ForketID, we can accurately
state that the attacker is not only abusing one’s identity, but also trying to
sabotage the system. In our system, the attack can be stopped through eID
authority by not giving further currency to the suspicious account. However,
in the NemID system, it is impossible to stop an attack by not giving user
the NemID code card.

It is worth nothing that we treat the currency (coins) in our ForketID network
only as a token of “Network usage allowance” rather than regarding it as “real
money” in the traditional sense of economy. That is, the money is not real
money we can spend in our daily life, but is a kind of usage quotas
that users can use the network service.

On the whole, such design eliminates leachers and attackers out naturally:
that is, it makes the currency in the wallet more like usage quotas of this network.
If users are using up their currency much faster than a normal user would reach,
eID service points can stop the user by refusing the request of giving the user
more currency. The attack will eventually die down as soon as the attacking
account ran out of money.

3.4 Critical Steps

After understanding how the whole system works, we introduce the main work-
flow of several critical steps as follows.
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Fig. 4. The workflow of eID service point registration

Fig. 5. Workflow of service provider registration

eID Service Point Registration. Fig. 4 describes the additional eID service point
registration after the very first eID service point has been registered. This is
because the first eID service point in the system will automatically become the
eID service point.

It is worth noting that FolketID aims to provide a bockchain-based DDoS
resistant scheme over NemID, we thus assume that the eID service points are
reachable by authorities. Hence, it is reasonable when a new eID service point is
added, most of the IT administrators will be notified. This can ensure that not
only all administrators are aware of such event, but also increasing the difficulty
for attackers when adding or removing an existing eID service point.
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Service Provider Registration. The registration requires the service provider to
prepare application documents, including the CVR and the provider’s wallet
address, and complete the registration at the local authority office. After ver-
ifying the provided documents, the local authority office will reach the service
point and perform the following two important actions (see Fig. 5):

– Adding Service Provider Trust List: It adds the service provider’s wal-
let address into the service provider’s trust list. Hence that, from now on,
everyone can validate the service provider on the list.

– Adding Provider Linker List: It adds the service provider’s wallet
address, and its CVR that is encrypted with the service provider’s public
key. As the wallet address is derived from public key, anyone that has the
wallet address can recover it. This ensures that no plaintext is on the chain,
and that the bounding pair can be validated if both the wallet address and
the CVR are on hand.

End User Registration. The registration is very similar to the registration steps
of a service provider. However, there is a big difference between them regarding
the system usage: that is, users expect the system can be available and work
whenever they want.

However, as we previously mentioned, many users may not be aware that they
should carry the private key with them. To make the user experience more fluent,
the user will be prompt to give a PIN code to the private key. We implement
the system with AES-128-CTR. This encrypted private key will be uploaded to
the IPFS. When IPFS returns the unique content address, users will be prompt
to setup a username and a password. This encrypted information will be placed
on the blockchain. For login process, users will pull the data down from the
blockchain, and decrypt the data with the username and password to obtain the
location of private key on IPFS. The encrypted private key will then be pulled
down and the user will be prompt with the PIN code, whenever a transaction
requires the private key.

User Session. When a user requires to login to a service provider and obtain
its desired services, it has to obtain the public key of the service provider from
its frontend. From the public key that is given, the user can then generate the
corresponding address of the public key. This needs to consult FolketID, aiming
to ensure that such service provider is properly registered.

If the user could not find the corresponding address registered in FolketID, it
can terminate the login session at once. If everything is correct, it will acknowl-
edge the service provider what public key the user is taking. The service provider
will then turn around and check whether such user is properly registered.

If everything is correct, the service provider will order an empty authRequest
form, with a set of UUID corresponding to the authRequest. This UUID will
then be sent back to the end user, which can be utilized in a later phase. Service
Provider will start generating session information at the same time. After the
session information is generated, the following three parties will be involved:
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– Service Provider: This party will firstly setup three records: the address of
end user that requests authRequest, the session information encrypted with
the user’s public key, and, as verification, the encrypted session data signed
with the user’s private key.

– eID Service Point: This party will check three entities: the address of the
involved end user, the address of involved service provider, and the signature
provided by the service provider. If both involved addresses are correctly
registered in FolketID, the eID service point will use its private key to sign the
encrypted user information session, as acknowledgment. Otherwise, the eID
service point will refuse to sign – hence authRequest will never be completed.

– End User: Finally, the end user will pull down two signatures, two addresses,
and the encrypted session information. It will check whether both the pro-
posed eID service point and the service provider are registered in FolketID. If
nothing goes wrong, it will decrypt the user session information, and provide
a copy of such encrypted information with service provider’s public key. This
allows the service providers to ensure that both sides receive the correct user
session information.

4 Evaluation and Results

This section introduces the environmental configurations, and tests our FolketID
under several malicious conditions.

4.1 System and Environmental Setup

To investigate the performance of our FolketID, we built up a test-bed using
a mobile workstation, with the settings including both hardware and software,
as shown in Table 1 and Table 2. In particular, in the evaluation, we configured
two eID service points, one service provider, and several end users. Table 3 sum-
marizes the settings for the blockchain network, including chain & network ID,
consensus algorithm and initial gas limit.

Table 1. Host computer setup

Hardware Software

Item Config. Item Version

CPU Intel Xeon E-2286M
@ 2.4GHz x 8

Hypervisor Oracle VirtualBox
6.1.32

Memory 128 GB ECC
DDR4-2666

Host OS Fedora 36

Storage 1TB NVMe SSD
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Table 2. Virtual machine settings

VM Resources Software

Item Config. Item Version

CPU Intel Xeon E-2286M
@ 2.4GHz x2

Hypervisor Oracle VirtualBox
6.1.32

Memory 4GB Guest OS Ubuntu 22.04 LTS

Storage 32GB Blockchain Platform Ethereum 1.10.16

Network Virtual Network 1G Contract Platform Solidity/EVM

Table 3. Private blockchain settings

Blockchain Configuration

Item Config. Item Version

Chain & Network ID 40000 Initial Difficulties 0× 100

Initial Gas Limit 0× 8000000 Consensus Algorithm Clique
(BFT-Like/PoA)

4.2 The DDoS Flooding Attack

In 2013, the DDoS attack was made by flooding incredible amount of traffic
toward NemID, especially login requests and information queries, which have
not been completed afterward. To evaluate the performance of FolketID against
DDoS attacks, we considered two types of attacks: the tremendous amount of
login requests, and the tremendous amount of information queries.

Flooding Login Requests. To simulate this attack, we started from a small
amount of login requests as our goal: that is, 10,000 login requests sent from a
set of user accounts. It is quickly found that the end user would not have enough
ETH to support further transactions. This is because when users are trying to
login, it requires to order both authRequset and UUID to continue, with an
estimated cost around 35,000 gas unit. For the current design, we generously
estimated that a user can perform 500 login trials in FolketID every month, and
each operation demands around 30,000 gas for end users. In the end, the login
flooding attempt from a single node stopped at around 400 trials, which was far
from the targeted 10,000 login trials.

Then we increased the number of malicious users to 10, but the transaction
counts were still far from 10,000 login trials. When more transactions needed
to be completed on the Ethereum network, the gas price gets increased. This
means that each transaction becomes more costly than before. We found that
the attempt ended up with around 4,200 trials, which were still far from 10,000
login trials. Based on the obtained result, we estimated that, in our condition,
there is a need for at least 25 different end-user accounts and used up all their
allowance in the wallet to reach 10,000 login trials.
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Fig. 6. AuthRequest ordering speed under different conditions

During the NemID DDoS case in 2013, only few persons would cause login
attempts greater than 10,000. In the comparison, our FolketID system requires
at least 25 different end-users to attack the system at the same time. Figure 6
shows the authRequest ordering speed under different conditions. In a normal
authRequest ordering speed, our system can complete the task in around 7.8
ms. When 10 users send 4000 transactions, our system can complete the task
in around 8.4 ms. Then when 25 users send 10000 transactions, our system can
complete the task in around 9.1 ms. That means normal users will probably
not even notice the time difference. The result indicates the effectiveness of our
FolketID system against flooding login requests.

Flooding Data Requests. We also performed the flooding data request attack,
by sending requests to provide data. However, it does not make sense in a
blockchain-based system, as data should be accessed from the local copy of the
chain. With more requests sent, it may flood the client to perform more local
I/O operation. The network performance remains unaffected.

4.3 Malicious eID Service Point

We further considered a malicious eID service point, which may launch a smart-
contract attack to create something that is similar or even copied and deployed
from the original source code. Thus the involved party could not tell which one
is genuine. The situation is critical for many blockchain-enabled systems: if the
participants can be fooled, the integrity of the system can be crumbled.

A malicious eID service point can recreate the system as long as it has the
source-code copy of smart contracts. In our proposed FolketID, we have several
countermeasures:

– Protecting the source code of main entities: People may still argue
that this achievement can be reached by decompiling the binary code of the
main entity. However, it can slow down the time for cyber-attackers to inter-
pret and recreate a similar system.
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– The Gas Limit Barrier: Gas is the unit of effort to complete a transaction
in Ethereum Blockchain. If an operation takes some amount of computa-
tional power of the network to complete, there will be a represented gas unit.
In short, if such operation requires frequent changes to the chain, or such
operation contains a large amount of data to pack, then the required gas
unit will raise accordingly. Gas Limit is a protection function in Ethereum,
in order to reject any transaction that requires an amount of gas that would
be higher than the gas limit.

As the contract creation of these main entities are very costly (i.e., 2,319,695
gas units for deploying the maximum entity, in which the cost is about 70–
110 times higher than an averaged normal transaction), it is impossible to
have one operation that requires such huge amount of gas. As long as the
main entity of the system is deployed, an updated configuration file will be
distributed to all participants in the network through software update, which
can deliberately limit the possibility of recreating the system. This means that
even existing a malicious eID service point attempts to re-create another sim-
ilar system, the other eID service point(s) with updated configuration file will
reject to complete the transactions.

– The Integrity of Client Software: A hash or signature of the client soft-
ware must be presented; otherwise, the software will refuse to run. This can
ensure that the hard-coded contract addresses in the program would not be
changed easily.

5 Discussion and Limitation

Our system is still developed at an early stage, and the DDoS attacks are the
main focus. There are still some open challenges that should be addressed in our
future work.

– Scalability: The scalability of blockchain networks is always the top con-
cern. Unfortunately, due to the resource limitations, our host machine with
hypervisor can only handle a maximum of 30 nodes running simultaneously.
Under this configuration, two nodes are working as the mining machines of
the whole network. The performance remains great, even with another 25
machines that send out a total of 10,000 transactions. This is an important
topic in the second stage of our work.

– Longevity: The Longevity of the system is another topic that we have not
discussed in this work. Currently, blockchain is an append-only data stor-
age. Hence that, the cost of maintaining the system will go higher, with the
transactions accumulated. Though both Ethereum and Hyperledger provide
options to archive ancient chain data, it does not mean that we can discard
the data - it still requires one ancient node to hold the whole chain. To address
such issue, we can create a new chain and migrate the active data to the new
chain. However, this action can be quite vulnerable, especially many breaches
can occur during the process. This is because such kind of node can alter
whatever data placed onto the new chain.
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– Protocol Security: For system implementation, we cannot closely look into
how the NemID system works due to the non-disclosure agreement. The most
we can do is to imitate the functionality that NemID has. However, NemID is
a centralized and web-based system, hence that communications are mostly
situated on TCP/IP and mutable storage. It has a tremendous advantage
over blockchain: that is, the ability to remove data. When we move to a
blockchain-based system – FolketID, we have to closely inspect what kind of
data should be on-chain and what should be not. As whatever data on chain
is unremovable, it may create a double-sided sword situation - the balance
between privacy, security, and data integrity. This is an open challenge and
one important topic in our future work.

6 Concluding Remarks

Electronic Identity is an undeniable trend as we are moving forward to a digital
era, where government should optimize their services’ reachability and usability.
Denmark, compared to many other European countries, has a comprehensive
eID system called NemID, which has been integrated with almost all citizens’
life. However, the NemID was brought down by a DDoS attack in 2013, causing
a nation-wide chaos. This is because of its highly centralized IT infrastructure
and insufficient reaction plan. In some way, it makes sense that Denmark has a
highly centralized IT infrastructure in its governmental network. It provides an
easy access for both the government agents and citizens to reach services in one
place, but this structure also makes it vulnerable to various attacks.

In this work, we developed FolketID, a blockchain-based NemID alternative
by situating the whole NemID service into a decentralized network. To defeat
DDoS attacks, we implemented a kind of control where the administrators can
assign miners; others who are not assigned cannot mine. We also introduced
the system’s ecology of usage allowance - if users are not willing to serve the
network, they will use up the allowance eventually. This creates a system similar
to NemID’s code card, and provides a method for system maintainers to notice
the issue quickly, especially someone consume their allowance too fast. In the
evaluation, we explore the performance of FolketID against DDoS attacks. The
experimental results indicated that our system is effective against DDoS attacks,
including flooding login requests and flooding data requests. The attackers were
instantly stopped, due to the lack of transaction fees to complete a login trial.
Also, our FolketID was found to be robust under malicious eID service points.

Acknowledgments. This work was partially supported by H2020 CyberSec4Europe
and H2020 DataVaults.
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Abstract. Secure collaboration between consortiums is imperative
for the distributed applications deployed on distinct permissioned
blockchains or consortium blockchains to provide superior services. The
collaboration can be realized by cross-chain transactions processed by
cross-chain protocol. The previous two-phase commit and two-phase
locking cross-chain protocol are unable to be applied in the scenario
where the consortium can be malicious. In this work, we propose the
ledger framework of the multiple consortium blockchain systems includ-
ing the global cross-chain ledger. The cross-chain ledger establishes the
order relationship between cross-chain sub-transactions defined in the
cross-chain protocol and adopts the hierarchical Byzantine fault-tolerant
consensus to tolerate malicious consortiums. We also give two instances
of the framework. Based on the cross-chain ledger, we propose the revoke
operation in the two-phase commit and two-phase locking cross-chain
protocol. We also make the protocol secure in the presence of malicious
consortiums and prove its security. Finally, we conduct comprehensive
experiments to characterize the performance of the two instances and
the cross-chain protocol. The experimental results reveal the efficiency
of our scheme even in the presence of malicious consortiums.

Keywords: Permissioned blockchain · Cross-chain transaction ·
Protocol

1 Introduction

Permissioned blockchain or consortium blockchain is the blockchain system
maintained by authorized nodes and characterized by high performance and
confidentiality [13]. It is the resilient system that provides data processing in the
presence of byzantine behaviors [9]. Permissioned blockchain turns out to be the
best fit for distributed applications to solve trust issues.

To further extend the application in permissioned blockchain, the collabora-
tion between consortiums is essential. Application is usually on their blockchain
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maintained by a consortium for the sake of performance and confidentiality.
The superior service [3] requires interoperability between applications. Consortia
that maintain distinct distributed applications need to collaborate by cross-chain
transactions [3] to provide interoperability.

The existing cross-chain solution has difficulty being directly applied in
multiple consortium blockchains systems where consortium can be malicious.
The solutions from permissionless blockchain [8,10] are usually designed for
asset transfer and are not general enough. Some previous work in permissioned
blockchain or sharding systems support cross-chain transactions but have diffi-
culty dealing with contention [3,9] or depend on specifics data model [2]. The
most promising solution is using the two-phase commit(2PC) and two-phase
locking(2PL) protocol [7,9], which can be applied in any data model. But the
protocol requires that each blockchain is maintained by a pre-determined fault-
tolerant cluster.

We find that the assumption that all consortiums are fault-tolerant is difficult
to hold in some applications of consortium blockchain. An example is the use
case of the supply chain [3]. It involves five consortiums: supplier, manufacturer,
buyer, carrier, and middleman. Each consortium internally uses blockchain to
handle the internal transaction but they also need to collaborate with other
consortiums by the cross-chain transaction. In such a scenario, a conflict of
interest exists between these consortiums. They are adversarial to each other
and we can not simply assume that they will always behave honestly.

Some additional mechanisms should be in combination with the original two-
phase commit and two-phase locking cross-chain protocol to enhance its security
in the presence of a malicious consortium. It faces the challenge that the solution
should be general enough so that it can be instantiated to satisfy the need of
distributed applications with different data models and consensus requirements.
And the security of the solution should be proven.

In this work, we propose a solution that uses the global cross-chain ledger
to enhance the security of the two-phase commit and two-phase locking cross-
chain protocol. We first introduce a ledger framework for multiple consor-
tium blockchain systems. We show that our framework is general and give
two instances of our framework. The first one is instantiated to the solution
of CAPER [3]. The second one uses the directed acyclic graph to improve per-
formance. Then, based on the ledger framework, we make the two-phase commit
and two-phase locking cross-chain protocol support revoke operation and can
work in the presence of malicious consortiums. Our contributions to this work
are listed as follows:

– We introduce the ledger framework of the multiple consortium blockchain
systems including the global cross-chain ledger. The cross-chain ledger can
establish order relationships of cross-chain sub-transactions and tolerate the
existence of malicious consortiums. We instantiate the framework with two
instances.
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– Based on the framework, we enhance the security of traditional two-phase
commit and two-phase locking cross-chain protocol. We prove that the pro-
tocol is secure even in the presence of malicious consortiums.

– We conduct comprehensive experiments to characterize the performance of
the two instances and the cross-chain protocol.

2 Background

2.1 Two-Phase Commit Cross-Chain Protocol

The two-phase commit and two-phase locking cross-chain protocol, which we
abbreviate as the two-phase commit cross-chain protocol in this work, is dis-
cussed in previous work and proved to be the correct and general cross-chain
protocol [2,7,9]. There exists a coordinator which is usually also a fault-tolerant
consortium in the system to coordinate the transaction processing. The whole
process can be generally summarized as follow: the coordinator first sends the
prepare message including the cross-chain transaction to all concerned consor-
tiums. Each concerned consortium reaches a consensus on whether to vote com-
mit for the transaction, acquire the locks, and send the result to the coordinator.
If the coordinator finds that all concerned consortiums vote commit for the trans-
action, it sends the commit message to the concerned consortium to finalize the
transaction. Otherwise, it sends the abort message to abort the transaction.

The original two-phase commit cross-chain protocol is no longer secure where
the participant may behave maliciously. For example, the coordinator in the
protocol can send conflicted cross-chain messages to different consortiums.

2.2 Consensus Protocol

In this section, we give brief introductions to the PBFT consensus and hashgraph
consensus used in our system.

PBFT is the traditional consensus algorithm used in many consortium
blockchain systems. Informally, to reach a consensus, the leader first broad-
casts the pre-prepare message. Upon receiving the pre-prepare message, the node
broadcasts prepare the message. Upon receiving a matching prepare messages
from more than two-thirds of the nodes, the node broadcast the commit mes-
sage. Upon receiving matching commit messages from more than two-thirds of
the nodes, the consensus is reached.

Hashgraph [5] is a directed acyclic graph based blockchain consensus. In
the hashgraph, each event (i.e. block) has two hash references. The references
point to the last event on the node’s chain and also point to the event from the
synchronized neighbor chain [5].

The hashgraph uses complex virtual voting to achieve consensus. We give an
intuitive introduction here. Event Y can be seen by the other event X if there is a
directed reference path from X to Y . When there are paths from X to Y passing
through more than two-thirds of members, it is defined that X can strongly see
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Y . The relationship of strongly seeing can be considered as virtual voting. Then
the event can be committed by going through the three-stage voting procedure
like the traditional BFT consensus.

3 Ledger Framework

In this section, we first introduce the model definition of our scheme. Then we
give the ledger framework of multiple consortium blockchain systems including
a global cross-chain ledger. Finally, we give two instances and discuss safety and
liveness.

3.1 System Model and Security Definition

In our system model, there exist multiple consortiums C = {C1, C2...Cn}. Each
consortium contain a set of nodes Ci = {ni

1, n
i
2...}. The consortiums are dis-

joint sets, meaning Ci ∩ Cj = ∅ where i �= j. Each consortium Ci maintains a
blockchain ledger Li independently and a global cross-chain ledger Lg. For sim-
plicity and without loss of generality, we assume each block consists of a single
transaction and do not distinguish the concept of block and transaction. And we
assume that the order of transactions in the ledger is captured by the sequence
number.

The node ni in Ci can directly read the state of ledger Li. However, to
obtain information about other ledgers, nodes need to communicate with other
consortiums that maintain the ledger. In our system, the nodes initiate cluster-
sending protocols that are defined in Byshard [9] to finish such a communication
process. Informally, the cluster-sending protocol rules that when consortium Ci

sends messages to consortium Cj , the nodes in consortium Ci reach consensus on
the message they send, and the nodes in consortium Cj receive f + 1 matching
message if there are f malicious nodes in consortium Ci.

In our model, we define two levels of behavior. The first level is the node
level. A node can be honest or malicious. The malicious node behaves arbitrarily
to prevent the agreement within its consortium while the honest node strictly
obeys its consensus protocol to reach the agreement within the consortium. We
assume that each consortium Ci has at most � |Ci|−1

3 � malicious nodes. That is,
let security assumption Ai for Ci become |Ci| ≥ 3fi + 1 where fi is the number
of byzantine nodes in Ci. Then ∀Ci ∈ C,Ai for Ci is satisfied.

The second level is the consortium level. In our model, we assume that the
consortiums have conflicts of interest during cooperation and do not trust each
other. The consortium may reach an agreement internally to cheat the other con-
sortiums by cluster-sending. Therefore we distinguish the behavior of malicious
consortium and honest consortium. The malicious consortium behaves arbitrar-
ily to prevent the agreement among the consortiums(e.g. whether to commit
the cross-chain transaction). The honest consortium strictly obeys the protocols
and rules defined in the system to reach an agreement among the consortiums.
We assume that there are at most � |C|−1

3 � malicious consortiums. That is, let
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security Ag become |C| ≥ 3|Cf | + 1 where Cf = {Ci|Ci ∈ C,Ci is malicious.}.
Then Ag is satisfied.

Note that the two levels of behavior are totally independent. It means that
even if all the nodes are honest, the consortium may still reach the agreement
to behave maliciously [3].

The nodes in the blockchain system reach an agreement on the decision
or sequence by the consensus algorithm. According to the definition of safety
and liveness in [1,9], we give the following security definition for a consensus
algorithm.

Definition 1 (Security of consensus algorithm.) The consensus algorithm is
secure if the properties of safety and liveness are satisfied.

– Safety. The honest nodes in the honest consortium running the consensus
algorithm agree on the transactions and their order in the ledgers.

– Liveness. The transaction proposed by the honest nodes in the honest con-
sortium running the consensus algorithm will eventually be ordered in ledgers.

The transactions in the model are of two types: internal or cross-chain. The
internal transaction only accesses the state of one ledger and can be directly
executed by the consortium it belongs to. The cross-chain transaction accesses
the state of multiple ledgers.

For simplicity and without loss of generality, We assume that the cross-chain
transaction is divided into several cross-chain sub-transactions executing the
operations defined in the cross-chain protocol(e.g. vote, commit, abort operation
in two-phase commit cross-chain protocol). And the cross-chain protocol is also
responsible to orchestrate and execute these cross-chain sub-transaction [9].

3.2 Description of the Framework

We expect the framework to support both internal transactions and cross-chain
transactions. The ledger in the framework should provide the following prop-
erties: (1)It should order the transactions that are initiated by a consortium
including the internal transactions and cross-chain sub-transactions. (2)It should
order all the cross-chain sub-transactions.

The second property is necessary so that the node can execute the cross-chain
sub-transaction one by one and deterministically know whether to commit or
abort the cross-chain transaction by predefined protocol. It is essential, especially
in the case where a malicious consortium may send wrong or conflicted sub-
transactions to confuse the other consortium.

In the framework, each consortium Ci is supposed to maintain its ledger
Li and the global cross-chain ledger Lg. Figure 1 shows the logical relationship
between ledgers in the framework. The white block represents the internal trans-
action. The grey block represents the cross-chain sub-transaction. All the internal
transactions and cross-chain sub-transactions proposed by consortium Ci are
sequenced in Li to establish an order relationship. Besides all the cross-chain
sub-transactions are also sequenced in Lg to establish an order relationship.
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Fig. 1. The logical ledgers in the framework. txi,j represents the jth transaction pro-
posed by consortium Ci. The white block represents the internal transaction while the
grey one is the cross-chain sub-transaction.

The nodes agree on the ledger state by the consensus algorithm. We consider
the consensus algorithm as the black box denoted as BFT to sequence the trans-
actions. We denote the consensus algorithm for Li as BFTi and the consensus
algorithm for Lg as BFTg. The BFTi is supposed to output the transaction
tx and its sequence number hi in Li. The BFTg is supposed to output the
transaction tx and its sequence number hg in Lg. The implementation of BFT
run by node r provides the local transactions set BFT.b̄r, the primitive pro-
cedure BFT.input(b) and notification BFT.output() [6]. The nodes adopt the
Algorithm 1 to process transactions.

Algorithm 1. Processing transaction
1: r←the node that initiates the algorithms
2: i←the index of the consortium that the node belongs to

3: upon received < REQ, tx > then
4: if should be sequenced in Li then
5: BFTi.input(< BFTi.b̄r, tx >)

6: if should be sequenced in Lg then
7: BFTg.input(< BFTg.b̄r, tx >)

8: upon BFTi.output() then
9: tx, hi ←newly committed transaction and its sequence number from BFTi.b̄r

10: Li ← update ledger with tx, hi

11: upon BFTg.output() then
12: tx, hg ←newly committed transaction and its sequence number from BFTi.b̄r
13: Lg ← update ledger with tx, hg

As shown in Algorithm 1, Upon the receipt of the transaction, the node
decides whether to sequence it on Li or Lg. The decision rules are defined by the
concrete collaboration protocol or cross-chain protocol. If the transaction should
be sequenced, the node passes the transaction to the input of BFT . Upon the
output of BFT , the node obtains the committed transaction and its sequence
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number. Then it appends the transaction according to its sequence number into
the ledger.

3.3 Instantiation

We give two instances of the framework. In these two instances, we assume
each consortium Ci uses PBFT as its internal consensus algorithm BFTi. The
different part between the instances is Lg and BFTg.

Instance 1. The direct implementation is to use an independent Lg maintains
by all consortiums to store cross-chain sub-transactions. The first one of the
instances comes from this direct implementation but merges the Lg into the
consortium’s own ledger, which actually is the solution of CAPER [3]. Under
such a ledger, it is possible to use BFTg to obtain both the sequence number of
transactions in Li and Lg and it ensures the data integration.

As shown in Fig. 2(a), the internal transaction is the white block and the
cross-chain sub-transaction is the grey one. Each consortium Ci maintains a
blockchain ledger Li that chains cross-chain sub-transactions and internal trans-
actions proposed by Ci. All the cross-chain sub-transactions proposed by differ-
ent consortiums also chain together to form the Lg.

The node initiates the PBFT to reach an agreement on the order of inter-
nal transactions. For cross-chain sub-transaction, the node assigns its sequence
number in Li and in Lg and then initiated the BFTg to reach agreement on the
order of cross-chain sub-transaction in Li and Lg simultaneously. The BFTg is
the hierarchical PBFT consensus in CAPER [3]. The detail of this hierarchical
consensus and the proof of its safety and liveness are introduced in CAPER [3].
Intuitively it is the PBFT algorithm on the consortium level which considers
each consortium as the node in the original algorithm.

Instance 2. We also give another instance that uses directed acyclic graph
based blockchain technology. It is based on the hashgraph consensus algorithm
[5]. In this instance, we instantiate the Lg as hashgraph and BFTg as hierarchical
hashgraph consensus algorithm.

As shown in Fig. 2(b), each consortium Ci maintain a blockchain ledger Li

chaining internal transactions and cross-chain sub-transactions proposed by Ci.
All the cross-chain sub-transactions form a hashgraph-style ledger. The node
initiates the PBFT to reach an agreement on the order of internal transactions.
The order of transactions in Lg is established by BFTg, which we present in
Algorithm 2.

Intuitively it is the hashgraph algorithm on the consortium level. Here in
Algorithm 1, we use the interface provided by the BFT model introduced before.

In Algorithm 1, the node frequently receives the sync message from other
consortiums by cluster-sending. Upon receiving sync messages, the node updates
BFTg.b̄r which is in the form of hashgraph. Then the leader node picks a new
transaction tx from input. It also find two reference HC1 and HC2 to reference
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Fig. 2. Two kinds of instances of ledger. txi,j represents the jth transaction proposed
by consortium Ci. The white block represents the internal transaction while the grey
one is the cross-chain sub-transaction. The arrow represents the order relationship
between transactions like the hash pointer.

its previous cross-chain sub-transaction and reference the tx in sync messages.
Then the node assigns the timestamp and randomly chooses a consortium. It
initiate the internal consensus BFTi within its consortium to reach agreement on
< tx′,HC1 ,HC2 , t, cfrom, cto >. Upon the agreement is reached, the node append
the tx′ into the BFTg.b̄r. It then determines the committed transactions in b̄r

by the reference relationship according to the hashgraph virtual voting. Then
the node sends the notification for the committed transaction. Finally, it syncs
with the Cto by cluster-sending.

We then proof the safety and liveness of the hashgraph based BFTg.

Theorem 1. The BFTg of instance 2 achieves safety and liveness when Ag is
satisfied.

Proof. The consortium Ci reaches agreement on the sync message by its inter-
nal consensus BFTi and then sends it by cluster-sending. If Ci is an honest
consortium that obeys the consensus protocol, it will always send the correct
sync message to other consortiums because of the safety and liveness of BFTi.
According to assumption Ag, the number of malicious consortiums that may
send incorrect sync messages is at most � |C|−1

3 �. By the safety and liveness of
the hashgraph algorithm, the BFTg of instance 2 achieves safety and liveness.

Instance 2 attempts to solve the problem of high network complexity faced by
instance 1. The network complexity of instance 1 is rather high, especially in our
scenario where cluster-sending protocol brings extra network communication. It
performs poorly to handle a large amount of cross-chain transactions as shown
in our later experiment. Therefore, we introduce directed acyclic graph based
blockchain technology to reduce network burden and allow multiple consortiums
to process cross-chain sub-transaction in parallel. We choose hashgraph because
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Algorithm 2. BFTg of Instance 2
1: r←the node that initiates the algorithms
2: i←the index of the consortium that the node belongs to

3: upon receiving < tx, HC1 , HC2 , t, Cfrom, Cto > from cluster-sending then
4: update b̄r with the tx
5: if isLeader then
6: tx′ ←new transaction from input()
7: HC1 ←reference to the last cross-chain sub-transaction
8: HC2 ←reference to the tx
9: t ← timestamp

10: Cfrom ← Ci

11: Cto ←random one from C
12: initiate internal consensus with < tx′, HC1 , HC2 , t, Cfrom, Cto >

13: upon achieving internal agreement on < tx, HC1 , HC2 , t, Cfrom, Cto > then
14: update BFTg.b̄r with the tx
15: determine the committed transactions in b̄r.
16: call output() to send notification
17: multicast < tx′, HC1 , HC2 , t, Cfrom, Cto > to Cto by cluster-sending

its parallel typologies [15] is suitable for multiple consortium blockchain systems
and it has prove [5] for its security.

4 Secure Cross-Chain Protocol

In this section, We first give the description of our secure cross-chain protocol
built on top of our ledger framework. We show that the protocol is derived from
the two-phase commit cross-chain protocol but it is more secure and supports
revocation. Then we prove its security and correctness.

4.1 Protocol Description

We adopt the cross-chain transaction model introduced in [9] to make our
protocol support any data model in the blockchain. The cross-chain trans-
action τ can be expressed like τ = (Conτ ,Modτ ) where Conτ is the set
of constraints. Modτ is set of modifications. Conτ (Li) is to denote the con-
straints of τ in ledger Li. Modτ (Li) is to denote the constraints of τ in
ledger Li. Then we have Conτ = Conτ (L1) ∪ Conτ (L2) ∪ ... ∪ Conτ (Ln) and
Modτ = Modτ (L1) ∪ Modτ (L2) ∪ ... ∪ Modτ (Ln). And it is obvious that
Conτ (Li) ∩ Conτ (Lj) = ∅ and Modτ (Li) ∩ Modτ (Lj) = ∅ where i! = j. There-
fore, the execution of a cross-chain transaction can be divided into several steps
that are independently done on corresponding ledgers to check constraints and
modify the state.
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Our protocol provides vote-step, commit-step, and abort-step like the tradi-
tional two-phase commit and two-phase locking protocol. We adopt the definition
of these steps in [9] with lock-based execution to give a general protocol. And
we also give the definition of revoke-step additionally provided by our protocol:

– Vote-step Vote-step verifies the constraints of transactions τ and yield com-
mit vote V otc,τ,L or abort vote V ota,τ,L. If the vote commits, the step makes
a local change like modifying local data and acquiring locks in ledger L. If
the vote aborts, nothing will happen to the ledger state.

– Commit-step Commit-step Comτ,S finalize τ when it is committed. The
operations in the step include modifying data and releasing locks obtained
during a preceding vote-step in ledger L.

– Abort-step Abort-step Abotx,S roll back τ when it is aborted. The operations
in the step include rolling back local change and releasing locks obtained
during a preceding vote-step in ledger L.

– Revoke-step revoke-step Revtx,S revoke the preceding commit vote and
replace it with a abort vote for τ . The operations in the step include rolling
back local change and releasing locks obtained during a preceding vote-step
in ledger L.

For the consortium Ci with Conτ (Li) �= ∅, the consortium has to do vote-
step for the transaction τ . It also may be required to do abort-step or commit-
step or revoke-step to release locks, modify data or roll back change. For the
consortium Ci where Modτ (Li) �= ∅, the consortium has to do commit-step for
the transaction τ .

As is shown in our model introduced in Sect. 3.1, without loss of generality,
these protocol steps can be executed through the cross-chain sub-transaction
which is denoted as tx(step). The consortium ledger Li keep track of the state
of specific state object like UTXO, and account balance, depending on the data
and state model that the consortium adopt. The cross-chain ledger Lg keeps
track of the state of the cross-chain transaction.

We next show how to process a cross-chain transaction τ . For cross-
chain transaction τ we define the consortium Ci as concerned consortium if
Conτ (Li) �= ∅ or Modτ (Li) �= ∅.

Initial Broadcast. The user sends the cross-chain transaction τ to all of the
concerned consortiums.

Process Vote. Upon Receiving the τ or seeing the other consortium Cj

sequenced tx(V otc,τ,Lj
) in cross-chain ledger Lg, nodes in consortium Ci with

Conτ (Li) �= ∅ sequence τ in Li. Then, the nodes in the consortium can have
the same consistent decision on whether to commit or abort the τ according to
the validation rules. If the decision is to commit, it sequence the tx(V otc,τ,Li

)
in cross-chain ledger Lg. Otherwise, it sequences tx(V ota,τ,Li

) in Lg. Note that
the τ sequenced in Li logically represent the tx(vote-step) and correspond to the
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Fig. 3. State machine for cross-chain transaction τ and state object.

tx(vote-step) sequenced in Lg. Therefore we use tx(vote-step) to represent the
τ sequenced in Li later in this work.

Generally, The validation rules for τ include checking whether the corre-
sponding signatures are valid, whether the constraints in Conτ (Li) are satisfied,
and whether the related ledger state objects are unlocked. The rules can be eas-
ily instantiated by the specific cross-chain scenarios where the constraint and
modifications in our cross-chain model are instantiated.

Figure 3 shows the state machine of cross-chain transaction τ and state
object. The initial state of the related state object in Li is unlocked. The initial
state of the cross-chain transaction in Lg is the waiting state. The tx(V otc,τ,Li

)
in Li will turn related state object into locked state While the tx(V ota,τ,Li

)
do nothing. For Lg, tx(V otc,τ,Li

) turn the state of τ from waiting state to the
partial-commit state or from partial-commit state to partial-commit state. If all
the concerned consortium vote commit for the τ and tx(V otc,τ,Li

) is the last
sub-transaction to vote commit, it will turn the state from the partial-commit
state to the all-commit state. Instead, tx(V ota,τ,Li

) turn the state of τ from
waiting state to the aborted state or from partial-commit state to aborted state.

Process Revoke. Nodes are allowed to propose tx(revoke-step) to revoke
the previous commit vote if some conditions are triggered. The condition can
be the timeout for τ or the coming of revoke request from the client. First,
tx(Revτ,Li

) is sequenced in the Lg by node in Ci. The revoke sub-transaction
is valid if the state of τ is partial-commit state and the consortium Ci has pro-
posed tx(V otc,τ,Li

) before. If the tx(Revτ,Li
) in Lg is valid, the consortium Ci

sequenced the tx(Revτ,Li
) in its own ledger Li to roll back previous change and

release locks.

Process Commit. Upon all the consortium with Conτ (L) �= ∅ voting commit
for the τ , which make the state of τ become all-commit state, the consortiums
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with Conτ (L) �= ∅ and the consortiums with Modτ (L) �= ∅ can finally commit
the τ . The consortium Ci will sequence the tx(Comτ,Li

) in Lg, which is valid if
the state of τ is all-commit state and Conτ (L) �= ∅ or Modτ (L) �= ∅. Then Ci

sequenced tx(Comτ,Li
) in its own ledger Li to finalize τ and release locks.

Process Abort. Upon one of the consortium with Conτ (L) �= ∅ voting abort or
revoking for the τ , which make the state of τ become abort state, the consortiums
with Conτ (L) �= ∅ require to abort the τ . The consortium Ci sequence the
tx(Aboτ,Li

) in Lg, which is valid if the state of τ is aborted state and Conτ (L) �=
∅. Then Ci sequenced tx(Aboτ,Li

) in its own ledger Li to roll back modifications
and release locks.

4.2 Security of the Cross-Chain Protocol.

We first introduce the security definition for the cross-chain protocol in [2] while
we do not require the assumption that all consortium is honest.

Definition 2 (Security of cross-chain protocol.) The cross-chain protocol is
secure if the properties of liveness, consistency, and validity are satisfied.

– Liveness. The cross-chain transaction that is proposed to at least one honest
node in the honest concerned consortium will eventually result in either being
committed or aborted by honest consortiums.

– Consistency. For the transactions that concurrently access the ledger state
of honest consortiums and have conflictions, at most one of them will be
committed.

– Validity. The transaction may only be committed if it is valid according to
the ledger state of honest consortiums.

We then prove that the protocol has the properties of liveness, consistency
and validity.

Theorem 2. The cross-chain protocol has the property of liveness.

Proof. When the cross-chain transaction τ is proposed to the honest node in the
honest concerned consortium Ci, the node initiates the vote process. Because
of the safety and liveness guaranteed by BFTi, τ is sequenced in Li and the
consistent decision to commit or abort the τ is made by the honest node in Ci.
Then either the tx(V otc,τ,Li

) or tx(V ota,τ,Li
) is sequenced in Lg because of the

safety and liveness guaranteed by BFTg. If tx(V ota,τ,Li
) is sequenced, the τ is

aborted. If tx(V otc,τ,Li
) is sequenced, then the other honest consortiums will

initiate the vote process. Similar to the process we just described, these honest
consortiums vote commit or abort and sequence the tx(vote-step) in Lg. If one
of these consortiums votes abort for τ , then the τ is aborted.

If the honest consortiums all vote commit, the malicious consortium Cj

corrupted by adversary can have following behaviors: (1) propose a valid
tx(V otc,τ,Lj

) or tx(V ota,τ,Lj
). (2) propose both tx(V otc,τ,Lj

) and tx(V ota,τ,Lj
).
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(3) propose valid tx(V otc,τ,Lj
) and then propose tx(Revτ,Lj

). (4) does not pro-
pose or delay proposing any valid concerned sub-transaction. In case 1, the τ
becomes committed or aborted. In case 2, these two conflicted sub-transactions
will be consistently sorted in Lg and the preceding one become valid. Therefore
the state of τ becomes committed or aborted finally. In case 3, tx(V otc,τ,Lj

) and
the tx(Revτ,Lj

) will be consistently sorted with the other sub-transactions con-
taining commit vote in Lg. If the tx(Revτ,Lj

) precede the last sub-transactions
containing commit vote, the tx(Revτ,Lj

) become valid and τ is aborted. Other-
wise, τ is committed. In case 4, the other honest consortiums can propose revoke
sub-transaction in the case of timeout and then the τ becomes aborted.

Therefore, τ eventually results in either being committed or aborted in Lg.
The honest nodes in the honest consortium can propose either tx(commit-step)
or tx(abort-step) according to the state of τ in Lg and eventually τ result in
either being committed or aborted for these honest nodes.

Theorem 3. The cross-chain protocol has the property of consistency.

Proof. Without loss of generality, assume that there are two conflicting trans-
actions τ1 and τ2 which both access the ledger state of honest consortium Ci

and have conflictions. τ1 is received by Ci first and then Ci sequence τ1, lock the
concerned state in Li and sequence tx(V otc,τ1,Li

) in Lg. The lock will not be
released until the protocol concludes. If τ2 is processed by Ci before the protocol
concludes, it will be aborted because of validation rules. When Ci committing
the τ1, the tx(Comτ,Li

) proposed by Ci not only release the lock, but also finalize
the state change. If τ2 is processed by Ci after τ1 is committed, it is also aborted
because the state it access if already change(e.g., The UTXO spent by τ2 is
already spent by τ1). Therefore it is impossible to both commit two conflicting
transactions that access the ledger state of honest consortiums.

Theorem 4. The cross-chain protocol has the property of Validity.

Proof. The transaction τ is committed if valid tx(Comτ,L) is proposed by con-
sortium proposed in Lg. The tx(Comτ,L) is valid only if all the concerned con-
sortiums vote commit for τ and sequence tx(V otc,τ,L) in Lg. When the honest
consortium Ci receives the τ from a client, it sequences it in the Li. Then accord-
ing to the ledger state of Li, the consortium Ci decides the validity of τ including
the satisfaction of the constraints in Conτ (Li), the unlocking of all the concerned
state objects, and so on. The honest node in Ci will have the consistent and cor-
rect decision on the validity of τ because of the safety and liveness of BFTi. Only
if the τ is valid, the honest nodes will decide to vote commit for it and sequence
the vote in Lg. The vote is unable to be forged by malicious nodes because BFTg

uses a cluster-sending process that requires the agreement of honest nodes. And
by the safety and liveness of BFTg, the vote will consistently be agreed by other
honest consortiums. Therefore, the invalid transaction is impossible to collect
the commit vote of Ci. The transaction may only be committed if it is valid
according to the ledger state of honest consortiums.
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The malicious consortiums can choose to do malicious behaviors like vot-
ing commit for conflicting transactions. However, these malicious behaviors are
auditable. The properties above imply that the malicious consortiums are unable
to prevent the agreement on the cross-chain transaction. The agreement can be
used to settle disputes during the collaboration between consortiums.

5 Experiment

In this section, we conduct two evaluation experiments to characterize the per-
formance of our scheme. The first one evaluates the two kinds of instances of our
ledger framework. The second one evaluates our cross-chain protocol.

5.1 Evaluation for Framework Instance

We use the ns-3 network simulator to evaluate the instances. We implement
the internal and hierarchical consensus protocols of the instances in ns-3. We
run experiments with 16 consortiums, each of which contains 4 nodes connected
by the switch. The bandwidth is set to be 100MBps and the network latency
between nodes is 10ms. We adjust the percentage of cross-chain sub-transaction
pcross and transaction arrival rate rtx and show the average throughput and
latency in the multiple consortium blockchain systems.

Figure 4 shows the result of throughput and an average latency of a transac-
tion. It can be observed that instance 1 performs better than instance 2 when the
pcross is low or when the rtx is small. The reason is that instance 2 requires the
generations of new cross-chain sub-transactions to reach cross-chain consensus
due to the characteristics of hashgraph consensus. Therefore the low pcross and
small rtx lead to low performance.

Fig. 4. Throughput and latency measurement.

Increasing the pcross and rtx, instance 2 outperform instance 1. Though the
PBFT-like algorithm can adopt the out-of-order processing of transaction [9] to
improve performance, the transactions still have to be processed one by one in the
final commit. The O(N2) network complexity makes the commitment of cross-
chain transactions slow, which also blocks the internal transactions. Therefore
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the performance of instance 1 degrades quickly. Besides, the high pcross and large
rtx can accelerate the agreement reached in hashgraph consensus in instance 2.
Therefore instance 2 performs better than instance 1 in such an environment.

5.2 Evaluation for Cross-Chain Protocol

In this evaluation, we evaluate and compare our cross-chain protocol and origi-
nal two-phase commit and two-phase locking cross-chain protocol(2PC protocol
for short). The evaluations adopt the experiments scheme and parameters in
ByShard [9] which comprehensively simulates the 2PC cross-chain protocol.

We run experiments with 16 consortiums. Each consortium is supposed to
process 500 transactions including internal transactions and cross-chain transac-
tions. We adopt the account-transfer model. Each cross-chain transaction affects
4 consortium ledgers and has constraints and modifications on 2 accounts for
each ledger. The accounts affected by the transaction are chosen randomly. We
make our protocol run on instance 1. We set the message delay between nodes
as 10ms. The consensus decision by PBFT is 30ms and the consensus decision
by hierarchical PBFT is 90ms. Each consortium can make 1000 decisions per
second. The timeout for cross-chain transactions in our protocol is set to be
190 ms after which the consortium will do a revoke-step to revoke the transac-
tion. We also adopt the wake-up strategy. When the transaction visits the locked
accounts, the transaction will be aborted and placed in the wake queue. After
the concerned account is unlocked, the node will wake up and re-propose the
transaction in the wake queue.

The parameters we adjust include the percentage of cross-chain transaction
pcross and the number of accounts an. Besides, to simulate the message delay
caused by network partition or the malicious consortium, we also adjust another
parameter dp, which represents the probability of a delay event. If the delay
event happened, one of the consortiums processing the cross-chain transaction
will delay 500 ms to do the vote-step in the cross-chain protocol.

Fig. 5. Total time measurement.

Figure 5 shows the result of the total time to finish all the transactions. It
can be observed that the high pcross degrades the performance because of the
relatively complex steps of the cross-chain protocols. When the dp is small, the
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Fig. 6. Cumulative latency and lock time measurement.

original 2PC protocol takes less time to finalize the transactions because it does
not need to do cross-chain consensus. However, with the increase of dp, our
protocol outperforms the original 2PC protocol because the consortium in our
protocol can choose to timely revoke the cross-transaction and release the lock
on accounts. Then the other transaction accessing the related accounts can be
committed in time.

Another interesting phenomenon is that the increase in the number of
accounts make our protocol perform better than the original 2PC protocol in
more situation. The reason may be that a large number of accounts lead to a large
number of combinations of accounts. After the consortium does the revoke step,
the released accounts are more likely to be combined with the other unlocked
accounts and then trigger the wake-up of the transaction that accesses these
unlocked accounts in the wait queue. Then these transactions can be committed
in time.

Figure 6 shows the result of the cumulative latency of all transactions and the
lock time of all accounts. Here we set the pcross is 50% and adjust the dp. It can
be observed that the increase in the number of accounts reduces the cumulative
latency and the lock time because the contention between transactions decreases.
The increase of dp causes a quick increase in the lock time of the original 2PC
protocol but does not influence much on the lock time of our protocol because
the consortium can timely revoke transactions and release the lock. For the
same reason, our protocol reaches lower cumulative latency than the original
2PC protocol if dp is high.

From the experiments shown above, we can conclude that our scheme can
have better performance than the original 2PC cross-chain protocol in the worse
environment where network congestion happened or messages may be delayed or
suppressed by the malicious consortium. The experiments support our previous
statement that the scheme can work in the presence of malicious consortiums.

6 Related Work

The cross-chain solution is well-studied by researchers to support cross-chain
transfer, sharding, and distributed applications in recent years.
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In permissionless blockchain, cross-chain solutions are applied in asset trans-
fer [10], sharding [2,11], side chain [14] and some cross-chain projects [12,16].
However, These technologies either are too complicated and costly for permis-
sioned blockchain [3] or only support asset-transfer scenarios.

Omniledger [11] and Chainspace [2] is the blockchain system achieving
full sharding, both support the cross-shard transaction. However, Omniledger
adopts the client-driven mechanism and Chainspace uses the complex trans-
action model. Their cross-chain solution is not applicable to other blockchain
systems.

AHL [7] and ByShard [9] introduce 2PC and 2PL cross-chain protocols to
ensure the atomicity and isolation of cross-chain transactions. These protocols
require pre-determined fault-tolerant clusters.

The solution of CAPER [3] introduces a directed acyclic graph permissioned
blockchain that supports both internal and cross-application transactions. How-
ever, CAPER cannot support complex cross-chain transactions because it lacks
the cross-chain protocol to ensure the atomicity and isolation of cross-chain
transactions.

Sharper [4] and Pyramid [1] use the cross-chain consensus to commit the
cross-chain transaction in a single consensus round. However, these works require
the coordinated nodes concurrently exist in multiple consortiums or require
blockchain-level lock [9].

7 Conclusion

In this work, we propose the cross-chain scheme for permissioned blockchain
where the consortium may be malicious. We introduce the ledger framework
containing a cross-chain ledger for multiple consortium blockchain systems and
give two instances. We also introduce the cross-chain protocol which is built on
top of our framework and derived from the two-phase commit and two-phase
locking cross-chain protocols. We prove the security of the protocol in the pres-
ence of malicious consortiums. The experiment characterizes the performance
of our scheme and shows that the scheme performs well even with malicious
consortiums.
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Abstract. The Universal Composability (UC) framework (FOCS ’01)
is the current standard for proving security of cryptographic protocols
under composition. It allows to reason about complex protocol structures
in a bottom-up fashion: any building block that is UC-secure can be com-
posed arbitrarily with any other UC-secure construction while retaining
their security guarantees. Unfortunately, some protocol properties such
as the verifiability of outputs require excessively strong tools to achieve
in UC. In particular, “obviously secure” constructions cannot directly be
shown to be UC-secure, and verifiability of building blocks does not easily
carry over to verifiability of the composed construction. In this work, we
study Non-Interactive (Public) Verifiability of UC protocols, i.e. under
which conditions a verifier can ascertain that a party obtained a specific
output from the protocol. The verifier may have been part of the pro-
tocol execution or not, as in the case of public verifiability. We consider
a setting used in a number of applications where it is ok to reveal the
input of the party whose output gets verified and analyze under which
conditions such verifiability can generically be achieved using “cheap”
cryptographic primitives. That is, we avoid having to rely on adaptively
secure primitives or heavy computational tools such as NIZKs. As Non-
Interactive Public Verifiability is crucial when composing protocols with
a public ledger, our approach can be beneficial when designing these with
provably composable security and efficiency in mind.

1 Introduction

Universal Composability (UC) [14] is currently the most popular framework for
designing and proving security of cryptographic protocols under arbitrary com-
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position. It allows one to prove that a protocol remains secure even in complex
scenarios consisting of multiple nested protocol executions. The benefit of UC
is that, as a formal framework, it allows to discuss the different aspects of an
interactive protocol with mathematical precision. But in practice, one often sees
that protocol security is argued on a very high level only. This is partially due
to the complexity of fully expressing (and then proving) a protocol in UC, but
also because achieving provable (UC) security sometimes requires additional,
seemingly unnecessary protocol steps or assumptions.

One such case is that of (public) verifiability, which is the focus of this work.
A verifiable protocol allows each protocol participant Pi to check if another
party Pj in the end of the protocol obtained a certain claimed output (or that
it aborted). A publicly verifiable protocol has this property even for external
verifiers that did not take part in the protocol itself. Public verifiability is par-
ticularly important in the setting of decentralized systems and public ledgers
(e.g. blockchains [24,27,28,32,35]), where new parties can join an ongoing pro-
tocol execution on-the-fly after verifying that their view of the protocol is valid.
It also plays a central role in a recent line of research [2,5,11,33] on secure multi-
party computation (MPC) protocols that rely on a public ledger to achieve fair-
ness (i.e. ensuring either all parties obtain the protocol output or nobody does,
including the adversary) by penalizing cheating parties, circumventing funda-
mental impossibility results [25]. Protocol verifiability also finds applications in
MPC protocols that have identifiable abort such as [8,9,30], where all parties in
the protocol either agree on the output or agree on the set of cheaters. Further-
more, public verifiability is an intrinsic property of randomness beacons [22,23]
and a central component of provably secure Proof-of-Stake blockchain proto-
cols [5,24,33]. However, most of these works achieve (public) verifiability by
relying on heavy tools such as non-interactive zero knowledge proof systems and
strong assumptions such as adaptive security of the underlying protocols.

1.1 The Problems of Achieving (Public) Verifiability in UC

Consider a UC functionality F which has one round of inputs by the parties
P = {P1, . . . ,Pn}, computes outputs based on the inputs and in the end sends
these outputs to each Pi. In this work, we are interested in adding verifiability
to F to obtain an extended functionality FV. This functionality FV performs the
same operations as F , but it additionally allows verifiers to confirm that certain
inputs were provided by a party Pi to FV to perform these operations and that
certain outputs of these operations were given to Pi from FV. Moreover, we want
to obtain a protocol ΠV realizing FV from an existing protocol Π that realized
F . More concretely, we are interested in compiling a UC-secure protocol Π into
a UC-secure counterpart ΠV that has (public) verifiability.

The (intuitive) first step is to construct ΠV where each party commits to
its inputs and randomness. The parties then run Π using the committed input
and randomness, exchanging exchange authenticated messages. This approach
assumes that we are okay with revealing the inputs after Π is completed in
case cheating is suspected, which we will discuss in more detail. Intuitively, this
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yields a simple verification procedure: each party can use the committed inputs
and randomness of all other parties to re-execute Π in its head and compare the
resulting messages to the authenticated protocol transcript. Any external verifier
could do the same based on the commitments and an authenticated transcript of
Π. Unfortunately, using this simple approach leads to adaptivity problems when
trying to prove ΠV secure: in the security proof, the simulation must have been
performed without knowing the actual inputs to the functionality. But after-
wards, these inputs become known to the verifier so the simulator must be able
to explain the whole transcript of Π in terms of the previously unknown inputs,
requiring adaptive security of Π to begin with. Similar issues have been observed
before (e.g. [30]). This means that any such ΠV would be quite inefficient, since
adaptive protocols Π are often significantly less efficient than their counterparts
with static security.

Consider, as an example, a 2PC protocol Π2PC with active security based on
Garbled Circuits (GCs) such as [18,34]. Protocol Π2PC is executed by a sender
P1 and a receiver P2 (where only P2 obtains output) as follows: (1) P1 generates
multiple GCs together with input keys for each circuit. P1 commits to the GCs
and their input keys. It inputs the input keys belonging to P2 into an Oblivious
Transfer (OT) functionality FOT ; (2) P2 uses FOT to obtain its input keys; (3)
P1 decommits the GCs and its own input keys; (4) P2 evaluates the GCs. Both
parties run a consistency check showing that most GCs were correctly generated
and that their input keys are consistent. The security proof of Π2PC (for static
security) usually consists of simulators for a corrupted sender (S1) and receiver
(S2). S1 sends random inputs to FOT , extracts the inputs of P1 and then checks
that the GCs were generated correctly by the malicious P1. For S2 the standard
strategy is to first extract the input x2 of the malicious P2 using FOT , then to
obtain the output y from the functionality F2PC , to choose a random input x̃1

and finally to simulate GCs such that they output y for the input keys of x̃1, x2.
In order to make Π2PC verifiable (with respect to revealing inputs and outputs),
let FV

2PC release the real input x1 of P1 after the computation finished. But in
S2 we generated the GCs such that for the dummy input x̃1 it outputs y, so the
garbling may not even be a correct garbling of the given circuit. There might
not exist randomness to explain the output of S2 consistently with x1, unless
Π2PC was an adaptively secure protocol.

This seems counter-intuitive: beyond the technical reason to allow (UC) simu-
lation of verifiability, we see no explanation why only adaptively secure protocols
should be verifiable when following the aforementioned compilation steps.

1.2 Our Contributions

In this work, we show how to compile a large class of statically UC-secure pro-
tocols into publicly verifiable versions that allow a party to non-interactively
prove that it obtained a certain output by revealing its input. We focus on a
setting where at least one party is assumed to be honest, and where the com-
piled protocol was already maliciously secure to begin with. While revealing an
input is a caveat, this flavor of (public) verifiability is sufficient for a number of
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applications (e.g. [5,7,23]) and allows us to circumvent the need for expensive
generic zero knowledge proofs and adaptive security (as needed in [30,33]). We
introduce a compiler relying only on commitments and “joint authentication”
functionalities that can be realized with cheap public-key primitives.

Our approach is compatible with protocols realizing non-reactive function-
alities such as OT, Commitments or Secure Function Evaluation. We describe
a standard wrapper for any such functionality to equip it with the interfaces
necessary for non-interactive verification, allowing external verifiers to register
and to perform verification. This wrapper is designed to amalgamate the reac-
tive nature of UC with non-interactivity and might be of independent interest.
Extending the results to reactive functionalities is an interesting open problem.

When is Revealing Inputs for Verification Justifiable? Although our
focus on revealing inputs might seem very restrictive, there is a quite substantial
set of protocols where it can be applied. As a starting point, our techniques can
be used to instantiate preprocessing for UC-secure MPC with Identifiable Abort
without adaptive assumptions [9,30]. Our approach also applies when one wants
to publicly and randomly sample from a distribution and identify cheaters who
disturbed the process. For example, our results have already been used as an
essential tool in follow-up work constructing UC randomness beacons [23]. A
third application is to bootstrap MPC without output verifiability to MPC with
output verifiability without revealing of inputs. Here, each physical party Pi in
the protocol ΠMPC runs two virtual parties PC

i ,PV
i . It will give PC

i the actual
input x (while PV

i has no input), and both parties obtain the same output y
from ΠMPC . Now, in order to convince a verifier that Pi had y as output, it
can “sacrifice” PV

i and reveal its randomness for verification. Observe that this
requires ΠMPC to be secure against a dishonest majority of parties. A fourth
application lies in achieving cheater identification in the output phase of MPC
protocols, which is a prequisite for obtaining MPC with monetary fairness such
as [2,5,11,33]. For example, using our techniques, it is possible to construct
the publicly verifiable building blocks of the output phase of Insured MPC [5]
and related applications [7] since the inputs of the output phase with cheater
identification are supposed to be revealed anyway. In [5] the authors had to
individually redefine each functionality with respect to verifiability and reprove
the security of each protocol involved. Using our techniques, we show in the full
version [6] that this tedious task can be avoided and that the same result can be
obtained by inspecting the primitives used in their protocol and verifying that
the protocols fulfill the requirements of our compiler.

Shortcomings of Other Approaches. In case adaptive security is required,
it is well-known that adaptively secure protocols usually have larger computa-
tion or communication overheads (or stronger assumptions) than their statically
secure counterparts. For example, Yao’s Garbling Scheme and optimizations
thereof are highly efficient with static security (e.g. [38]) but achieve similar
performance with adaptive security only for NC1-circuits [31] (unless one relies
on Random Oracles [10]). When implementing Π2PC , one would also additionally
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have to realize an adaptively UC-secure FOT , which is also cheaper with static
instead of adaptive security. This is also true when OT-extension is used [20,21].

Previous works such as [33] obtain public verifiability, even without revealing
inputs and without adaptive protocols, by using generic UC-NIZKs. They follow
the GMW paradigm [29] where each party would prove in every protocol step of
Π that it created all messages correctly, given all previous messages as well as
commitments to inputs and randomness. To the best of our knowledge, no work
that uses UC-NIZKs to achieve verifiability estimated concrete parameters for
their constructions. This is because the UC-NIZKs, in addition to proving the
protocol steps, also have to use the code of the cryptographic primitives in a
white-box way. That also means that UC-NIZKs cannot be applied if the com-
piled protocol Π uses Random Oracles, which are popular in efficient protocols.

Another solution for verifiability, which also does not require an adaptive
protocol and that works in the case that Π is an MPC protocol, is to i) let Π
commit to the output of yi of each Pi by running a commit algorithm for a
non-interactive commitment scheme inside Π; ii) output all these commitments
to all parties, which sign them and broadcast the signed commitments to each
other; and iii) reveal outputs and commitment openings to the respective par-
ties. Obviously, this does not generalize to arbitrary protocols Π, whereas our
approach does. Additionally, in this approach one needs to evaluate the commit-
ment algorithm white-box in MPC. Evaluating cryptographic primitives inside
MPC can be costly, in particular if the MPC protocol is defined over a ring
where the commitment algorithm has a large circuit. This also rules out cheap
Random Oracle-based commitments.

Efficiency. The only overheads in relation to the original protocol required
by our compiler are a simple commitment (e.g. based on a random oracle)
on the input/randomness of each party and the subsequent joint authentica-
tion of this commitment as well as of subsequent messages. If messages are
exchanged over public channels, this joint authentication be done by requir-
ing each party to compute multisignatures on the messages exchanged in each
round and then combining these signatures into a single multisignature, saving
on space. If messages are exchanged over private channels, there is an extra
overhead of computing 2 modular exponentiations and transmitting a string of
security parameter size per message, which is needed for our private joint authen-
tication scheme. The verification procedure requires the verifier to re-execute the
protocol on the jointly authenticated transcript of the protocol using a party’s
opened input/randomness. While this seems expensive, notice that executing
the protocol’s next message function is strictly cheaper than verifying a NIZK
showing that every message in the transcript is correctly computed according
to this function, which is required by previous schemes and that would also add
the overhead of having each party compute such a NIZK for every message they
send.
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1.3 Our Techniques

We construct a compiler that generically achieves public verifiability for protocols
with one round of input followed by multiple computation and output rounds
as formalized in Sect. 2. For this, we start with an observation similar to [30],
namely that by fixing the inputs, randomness and messages in a protocol Π
we can get guarantees about the outputs. This is because fixing the inputs,
randomness and received messages essentially fixes the view of a party, as the
messages generated and sent by a party are deterministic given all of these
other values. Our compiler creates a protocol ΠV that fixes parties’ input and
randomness pairs by having parties commit to these pairs and authenticate the
messages exchanged between parties in such a way that an external party can
verify such committed/authenticated items after the fact. This idea of fixing
messages for the purpose of public verifiability is not new, and other works that
focus on it such as [3,33] have taken a similar route. However, fixing all messages
exchanged in the original protocol Π is costly and might be overkill for some
protocols. We explore this concept in the notion of transcript non-malleability
as defined in Sect. 3. There, we formalize the intuition that we might not need
that all exchanged messages are fixed in some protocols: e.g. an adversary that is
allowed to replace messages exchanged between dishonest parties possibly does
not have enough leverage to forge a consistent transcript for a different output.

Proving Security in UC: It might seem obvious that ΠV, i.e. a version of Π
with all of its inputs and messages fixed, is publicly verifiable and implements FV.
Unfortunately, as we outlined above, a construction of a simulator SV in the proof
of security needs to assume that Π is adaptively secure. In Sect. 3.1 we address
this by using input-aware simulators (or über simulators) SU. These are special
simulators which can be parameterized with the inputs for the simulated honest
parties, generating transcripts consistent with these inputs but indistinguishable
from the transcripts of S. We then embed an über simulator of a protocol Π
into the publicly verifiable functionality FV. This delegates the simulation of Π
to the internal über simulator of FV – whereas in our naive approach, SV had to
simulate Π itself. Since we let FV only release the transcripts that SU generates,
this does not leak any additional information to the adversary. Moreover, SU

now also extracts the inputs of the dishonest parties.

Getting Über Simulators (Almost) for Free: Following our example with
Π2PC from Sect. 1.1, S1 for a corrupted sender uses a random input to FOT and
otherwise follows Π2PC . Towards constructing SU

1 , observe that as FOT by its
own UC-security hides the input of P2, running S1 inside FV

2PC using real inputs
of P2 is indistinguishable and we can use such a modified S1 as SU

1 . Conversely,
we can also construct SU

2 , which runs Π2PC based on the input x1 that it obtains.
By the UC-security of Π2PC , the distribution of SU

2 will be indistinguishable from
S2. As can be seen from this example, an efficient über simulator must not be
artificial or strong, but could be quite simply obtained from either the existing
protocol or existing S. Its requirement also differs from requiring adaptivity of
Π2PC : SU

2 still only requires Π2PC to be statically secure. In fact, this strategy
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for constructing an über simulator works for any protocols that simulate their
online phase in the security proof using “artificial” fixed inputs and otherwise run
the protocol honestly while they are able to extract inputs (e.g. MPC protocols
such as [26,36]). Hence, we can directly make a large class of protocols verifiable.
This is discussed further in the full version [6].

How to Realize Transcript Non-malleability. Besides fixing inputs and
randomness, in order to construct compilers from Π to ΠV we need to fix the
transcript of Π. For this, we have parties in ΠV use what we call “joint authen-
tication” (defined in Sect. 4). Joint Authentication works for both public and
private messages. In the public case, joint authentication is achieved by having
all parties sign a message sent by one of them. In the private case, we essen-
tially allow parties to authenticate commitments to private messages that are
only opened to the rightful receivers. Later on, any party who received that pri-
vate message (i.e. the opening of the commitment to the message) can publicly
prove that it obtained a certain message that was jointly authenticated by all
parties involved in ΠV. More importantly, joint authentication does not perform
any communication itself but provides authentication tokens that can be veri-
fied in a non-interactive manner. In our example with Π2PC , this means that
both P1,P2 initially commit to their inputs and randomness and then sign all
exchanged messages (checking that each message is signed by its sender).

Putting Things Together. We use the techniques described above to compile
any protocol Π that fits one of our transcript non-malleability definitions and
UC-realizes a functionality F in the F1, . . . ,Fn-hybrid model into a protocol ΠV

that UC-realizes a publicly verifiable FV in the FV
1 , . . . ,FV

n-hybrid model (i.e.
assuming that the setup functionalities can also be made publicly verifiable).
Moreover, if a global functionality is used as setup, it must allow all parties to
make the same queries and obtain the same answers, so that the verification
procedure can be performed. Our compilation technique has two main compo-
nents: 1. commit to and authenticate each party’s input and randomness pairs
of Π (fixing input and randomness pairs); 2. execute Π and use public/secret
joint authentication to jointly authenticate each exchanged protocol message
(fixing the transcript). These steps achieve two goals: allowing parties to pub-
licly and non-interactively show that they have a certain input/randomness pair
and transcript, making Π transcript non-malleable, since the adversary cannot
lie about its input, randomness or view of the transcript. In order to realize the
public verifiability interface of FV, we have a party open its input and random-
ness pair as well as its view of the transcript, which could not have been forged,
allowing the verifier to execute an honest party’s steps as in Π to verify that a
given output is obtained. When proving security of this compiler, we delegate
the simulation of the original steps of Π to an über simulator SU for Π embed-
ded in FV. This guarantees that the transcript of S’s simulated execution of ΠV

is consistent with honest parties’ inputs if they activate public verification and
reveal their input. To compile our example GC protocol, we now combine all
of the aforementioned steps and additionally assume that FOT as well as the
commitment-functionality are already verifiable. By the compiler theorem, the
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resulting protocol is verifiable according to our definition. In the full version [6]
we give a detailed example by easily achieving verifiability in [5].

1.4 Related Work

Despite being very general, UC has seen many extensions such as e.g. UC with
joint state [19] or Global UC [16], aiming at capturing protocols that use global
ideal setups. Verifiability for several kinds of protocols has been approached
from different perspectives, such as cheater identification [8,30], verifiability of
MPC [4,37], incoercible secure computation [1], secure computation on public
ledgers [2,11,33], and improved definitions for widely used primitives [12,13].
Another solution to solve the adaptivity requirement was presented in [9], but
their approach only works for functionalities without input. A different notion
of verifiability was put forward in publicly verificable covert 2PC protocols such
as [3] and its follow-up works, where parties can show that the other party
has cheated. Here, both the 2PC protocol and therefore also the verifiability
guarantee only hold against covert adversaries, while we focus on the malicious
setting. To the best of our knowledge, no previous work has considered a generic
definition of non-interactive public verifiability for malicious adversaries in the
UC framework nor a black-box compiler for achieving such a notion without
requiring adaptive security of the underlying protocol or ZK proof systems.

2 Preliminaries

We denote the security parameter by κ. The set {1, . . . , n} is denoted by [n]
while we write [n]i to mean [n] \ {i}. We denote by negl(x) the set of negligible
functions in x and abbreviate probabilistic polynomial time as PPT. We write
{0, 1}poly(κ) to denote a set of bit-strings of polynomial length in κ.

Secure Protocols. A protocol Π run by n parties (which we denote as P =
{P1, . . . ,Pn}) consists of the algorithms nmes, out and additional parameters:
the number of parties n, the setup resources F1, . . . ,Fr, the number of output
rounds G, the number of rounds Hτ to obtain each output τ ∈ [G] as well as the
communication and output model. We assume that external system parameters
s ∈ {0, 1}poly(κ) are fixed for the protocol. Each party Pi uses their input xi ∈ X
as well as randomness ri ∈ {0, 1}poly(κ) for the actual protocol. Formally, Π is
described in Fig. 1 with algorithms nmes and out defined as follows:

nmes is a deterministic polynomial-time (DPT) algorithm which on input the
party number i, protocol input xi ∈ X , randomness ri ∈ {0, 1}poly(κ), aux-
iliary input s ∈ {0, 1}poly(κ), output round τ ∈ [G], round number ρ ∈ [Hτ ]
and previous messages M·,i from parties and N·,i from resources outputs
{m(τ,ρ)

i,j }j∈[n]i , {mres(τ,ρ)
i,q }q∈[r].
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out is a DPT algorithm which on input the party number i, the protocol input
xi ∈ X , randomness ri ∈ {0, 1}poly(κ), auxiliary input s ∈ {0, 1}poly(κ), output
round τ ∈ [G], a set of messages M·,i from parties and N·,i from resources
outputs y

(τ)
i which is either an output value or ⊥. The values xi, ri might

not be necessary in every protocol, so out might run without these.

Algorithm nmes generates two different types of messages: 1. m-messages,
which are used for communication among parties; 2. mres-messages, which are
exchanged between a party and a functionality. Therefore, each mres-message
consists of an interface (Inputi,Compute(τ),Output(τ)i ) with whom the party
wants to communicate as well as the actual payload. Each message that is an
output of nmes may either be an actual string or a symbol ⊥, meaning that no
message is sent to a party/functionality in this round. We write mi,j whenever we
mean that a message was sent from party Pi to Pj . Similarly, we write mresi,q

when the message was sent from Pi to Fq and mresq,i when sent from Fq to
Pi. We denote messages received by party Pi from another party as M·,i and
those sent by Pi to another party as Mi,·. We write N·,i for all messages that Pi

received from resources while Ni,· denotes messages which Pi sent to resources.

Each Pi has input xi ∈ X as well as common public input s ∈ {0, 1}poly(κ).

Inputi: Party Pi samples ri
$← {0, 1}poly(κ) uniformly at random. Let M·,i, N·,i ← ∅.

Compute(τ): Let τ ∈ [G]. Then each party Pi for ρ ∈ [Hτ ] does the following:

1. Locally compute

(
{m(τ,ρ)

i,j }j∈[n]i , {mres(τ,ρ)
i,q }q∈[r]

)
← nmes(i, xi, ri, s, τ, ρ, M·,i, N·,i).

2. For each j ∈ [n]i send m
(τ,ρ)
i,j to Pj . For each q ∈ [r] send mres

(τ,ρ)
i,q to Fq.

3. For each j ∈ [n]i get m
(τ,ρ)
j,i from each Pj and mres

(τ,ρ)
q,i from each Fq for q ∈ [r].

4. Set M·,i ← M·,i ∪ {m(τ,ρ)
j,i }j∈[n]i and N·,i ← N·,i ∪ {mres(τ,ρ)

q,i }q∈[r].

Output
(τ)
i : Party Pi computes and outputs y

(τ)
i ← out(i, xi, ri, s, τ, M·,i, N·,i).

Fig. 1. The generic protocol Π.

Communication and Output Model: We do not restrict how messages are
exchanged, except that their length is polynomial in κ. If messages are sent
through point-to-point secure channels, then we call this private communication.
If parties instead send the same message to all other parties, then we consider this
as broadcast communication. Parties may arbitrarily mix private and broadcast
communication. We do not restrict the output y

(τ)
i which each party obtains in

the end of the computation, meaning that all the y
(τ)
i might be different.
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Universal Composition of Secure Protocols. In this work we use the
(Global) Universal Composability or (G)UC model [14,16] for analyzing security.
We focus on dishonest-majority protocols as e.g. honest-majority protocols can
have all parties vote on the result (if broadcast is available). Protocols are run
by interactive Turing Machines (iTMs) which we call parties. We assume that
each party Pi in Π runs in PPT in the implicit security parameter κ. The PPT
adversary A will be able to corrupt k out of the n parties, denoted as I ⊂ P.
We opt for the static corruption model where the parties are corrupted from the
beginning, as this is what most efficient protocols currently are developed for.
Parties can exchange messages with each other and also with PPT resources, also
called ideal functionalities. To simplify notation we assume that the messages
between parties are sent over secure channels.

We start with protocols that are already UC-secure, but not verifiable. For
this, we assume that the ideal functionality F of a protocol Π follows the pattern
described in Fig. 2: following Fig. 1 we consider protocols with one input and G
output rounds. This is general enough to e.g. model commitment schemes. At
the same time, our setting is not strong enough to permit reactive computations
which inherently make the notation a lot more complex.

Functionality F has common public input s ∈ {0, 1}poly(κ) and interacts with a set P
of n parties and an ideal adversary S. Upon initialization, S is allowed to corrupt a
set I ⊂ P of k parties where k < n. Each of F ’s interfaces falls into one of 3 different
categories for providing inputs as well as running the G evaluation and output steps.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties store
xi ∈ X locally and send (Input, sid, i) to all parties. Every further message to this
interface is discarded and once set, xi may not be altered anymore.

Compute(τ): On input (Compute, sid, τ) by a set of parties Jτ ⊆ P as well as S
perform a computation based on s as well as the current state of the functionality.
The computation is to be specified in concrete implementations of this functionality.
The last two steps of this interface are fixed and as follows:
1. Set some values y

(τ)
1 , · · · , y

(τ)
n . Only this interface is allowed to alter these.

2. Send (Compute, sid, τ) to every party in Jτ .
Every further call to Compute(τ) is ignored. Every call to this interface before all
Inputi are finished is ignored, as well as when Compute(τ−1) has not finished yet.

Output
(τ)
i : On input (Output, sid, τ) by Pi where τ ∈ [G] and if y

(τ)
i was set send

(Output, sid, τ, y
(τ)
i ) to Pi.

Fig. 2. The generic functionality F .

It is not necessary that all of the interfaces which F provides are used for an
application. For example in the case of coin tossing, no party Pi ever has to call
Inputi. While Inputi,Output(τ)i are fixed in their semantics, the application
may freely vary how Compute(τ) may act upon the inputs or generate outputs.
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The only constraint is that for each of the τ ∈ [G] rounds, Compute(τ) sets
output values (y(τ)1 , . . . , y

(τ)
n ).

As usual, we define security with respect to a PPT iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P.
Furthermore, the adversary A will corrupt parties I ⊂ P in the name of Z and
gain full control over I. To define security, let Π ◦ A be the distribution of the
output of Z when interacting with A in a real protocol instance Π. Furthermore,
let S denote an ideal world adversary and F ◦S be the distribution of the output
of Z when interacting with parties which run with F instead of Π and where S
takes care of adversarial behavior.

Definition 1 (Secure Protocol). We say that Π securely implements F if
for every PPT iTM A that maliciously corrupts at most k parties there exists a
PPT iTM S (with black-box access to A) such that no PPT environment Z can
distinguish Π ◦ A from F ◦ S with non-negligible probability in κ.

In our (public and secret) Join Authentication protocols we use the stan-
dard functionalities for digital signatures FSig [15] and for key registration func-
tionality FReg [17]. Moreover, to simplify our compiler description, we use an
authenticated bulletin board functionality FBB described in the full version [6].

2.1 Verifiable Functionalities

We extend the functionality F from Sect. 2 to provide a notion of non-interactive
verification using a functionality wrapper FV described in Fig. 3. For this, we
assume that there are additional parties Vi which can partake in the verification.
These, as well as regular protocol parties, can register at runtime to be verifiers
of the computation using a special interface Register Verifier. Once they are
registered, these verifiers are allowed to check the validity of outputs for parties
that have initiated verification at any point. We keep track of this using the set
of verifiers V (which is initially empty) inside the functionality. For values whose
output has been provided using the interface Output(τ)i (that we inherit from
the definition of F of Sect. 2) we allow the parties P to use an interface called
Activate Verification to enable everyone in V to check their outputs via the
interface Verifyi. The modifications to Inputi and the new interface NMFSU

are related to the über simulators discussed in Appendix 3.2.
Notice that, in our constructions, a verifier Vi ∈ V can perform verification

with help from data obtained in two different ways: 1. receiving verification
data from another verifier Vj ∈ V or a party Pi ∈ P; 2. reading verification
data from publicly available resource such as FBB. In case Vi obtains verification
data from another party in V ∪ P, that party might be corrupted, allowing the
ideal adversary S to interfere (i.e. providing corrupted verification data or not
answering at all). When Vi obtains verification data from a setup resource that
is untamperable by the adversary, S has no influence on the verification process.
To model these cases, FV might implement only Register Verifier (public)
or only Register Verifier (private), respectively. We do not require FV to
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The functionality wrapper FV[F ] adds the interfaces below to a generic functionality
F defined as in Figure 2, still allowing direct access to F . FV is parameterized by an

rotalumisrebü SU executed internally (as discussed in Appendix 3.2) and maintains
binary variables verification-active, verify-1, . . . , verify-n that are initially 0 and used
to keep track of the verifiable outputs. Apart from the set of parties P and ideal
adversary S defined in F , FV interacts with verifiers Vi ∈ V.

Register Verifier (private): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 send (Register, sid, Vi) to S. If S answers with

(Register, sid, Vi, ok), set V ← V ∪ Vi and return (Registered, sid) to Vi.

– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Register Verifier (public): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 set V ← V ∪ Vi and return (Registered, sid) to Vi.

– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Activate Verification: Upon receiving (Activate-Verification, sid, open-i,
open-input-i) from each Pi and if Compute(1), . . . ,Compute(G) succeeded:
1. Let Y ← {j ∈ [n] | open-j = 1 ∧ verify-j = 0}. If Y = ∅ then return.

2. Set verification-active ← 1 (if it is not set already) and deactivate the interfaces
Compute(τ) for all τ ∈ [G].

3. If open-input-i = 1, then set zi = xi; otherwise zi = ⊥.

4. Send (Activating-Verification, sid, Y, {zj , y
(τ)
j }j∈Y,τ∈[G]) to S. If Pi is hon-

est, append its randomness Ri (obtained from SU) to this message.

5. Upon receiving (Activating-Verification, sid, ok) from S set verify-j ← 1 for

each j ∈ Y . Then return (Verification-Activated, sid, Y, {zj , y
(τ)
j }j∈Y,τ∈[G])

to all parties in P.

Verifyj: Upon receiving (Verify, sid, j, a, b(1), . . . , b(G)) from Vi where Vi ∈ V and
Pj ∈ P do the following:

– if verify-j = 1 then compute the set B ← {τ ∈ [G] | b(τ) 
= y
(τ)
j }. If a = zj , then

set f ← 1; otherwise f ← 0. Return (Verify, sid, j, f, B) to Vi.

– If verify-j = 0 then send (Cannot-Verify, sid, j) to Vi.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties, for-
ward (Input, sid, xi) to F and also forward responses from F to Pi. Finally, after
receiving (Input, sid, xi) from all Pi, i ∈ I (i.e. all honest parties), initialize SU pa-
rameterizing it with F ’s randomness tape and with xi for all honest Pi.

NMFSU : Upon input (NextMsgP, sid, j, τ, ρ, {mi,j}i∈I) where j ∈ I or
(NextMsgF, sid, q, τ, ρ, mresi,q) where i ∈ I and q ∈ [r] by S, send the respective
message to SU. Forward all messages between SU and F , so that SU mediates inter-
action between F and S, also delivering extracted adversarial inputs to F . Finally,
after SU outputs a response (NextMsgP, sid, j, τ, ρ + 1, {mj,i}i∈I) or (NextMsgF,
sid, q, τ, ρ + 1, mresq,i), forward it to S.

Fig. 3. The Functionality wrapper FV[F ]. The modifications to interface Inputi and
the new interface NMFSU are discussed in Appendix 3.2.
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implement both of these interfaces simultaneously, and thus define the properties
of FV according to which of them is present:

– A functionality which implements the interface Register Verifier (public)
is said to have Public Verifier Registration. We say that it has Private Verifier
Registration if it implements Register Verifier (private)

– A functionality which implements the interfaces Activate Verification and
Verifyj and which has Verifier Registration is called Non-Interactively Verifi-
able (NIV ). If it has Public Verifier Registration then it is Publicly Verifiable,
if it has Private Verifier Registration it is Privately Verifiable

3 Verifiable Protocols

We now present our definitions of non-interactively verifiable protocols. For this,
we will first sketch a classification for the robustness of a protocol to attacks on its
“inherent” verifiability. Then, we define properties that are necessary to achieve
simulation-based security for our approach to verifiability.

Our approach to verification (as outlined in Sect. 1.3) is to leverage properties
for verifiability that are already built into a protocol Π. As the verifier can
only rely on the protocol transcript, consider how such a transcript comes into
existence: we first run an instance of Π with an adversary A. Afterwards, the
adversary may change parts of the protocol transcript in order to trigger faulty
behavior in the outputs of parties. If the adversary cannot trigger erroneous
behavior this way, then this means that we can establish correctness of an output
of such a protocol by using the messages of its transcript, some opened inputs
and randomness as well as some additional properties of Π = (nmes, out).

Transcript Validity: If our verification relies on the transcript of Π, then a
transcript is incorrect if messages that a party Pi claims to have sent were not
received by receiving party Pj , if messages to and from a NIV functionality FV

were not actually sent or received by Pi or if, in case a party Pi reveals its inputs
xi and randomness ri, the messages Pi claims to have sent are inconsistent with
xi, ri when considering nmes and the remaining transcript. We formalize this as
Transcript Validity in the full version [6].

Transcript Non-Malleability: Tampering of an adversary with the transcript
can be ok unless it leads to two self-consistent protocol transcripts with outputs
ŷ
(τ)
i �= y

(τ)
i for some Pi such that both ŷ

(τ)
i , y

(τ)
i �= ⊥. To prevent this, transcript

validity is a necessary, but not a sufficient condition. For example, if no messages
or inputs or randomness of any party are fixed, then A could easily generate two
correctly distributed transcripts for different outputs that fulfill this definition
using the standard UC simulator of Π. We now describe a security game that
constrains A beyond transcript validity:

1. A runs the protocol with a challenger C, which simulates honest parties whose
inputs and randomness A does not know, generating a transcript τ .
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2. The adversary will obtain some additional potentially secret information of
the honest parties from C, upon which it outputs two valid protocol transcripts
Π0,Π1.

3. A wins if Π0,Π1 coincide in certain parts with τ , while the outputs of some
party Pi are different and not ⊥.

We want to cover a diverse range of protocols which might come with different
guarantees. We consider scenarios regarding: (1) whether the dishonest parties
can change their inputs and randomness after the execution (parameter ν); (2)
what is the set of parties RIR that will reveal their input and randomness later;
and (3) which protocol messages the adversary can replace when he attempts to
break the verifiability by presenting a fake transcript (parameter μ).

The parameters ν,RIR have the following impact: if ν = ncir then the dis-
honest parties are not committed to the input and randomness in the beginning
of the execution. Anything that is revealed from parties in I ∩ RIR might be
altered by the adversary. If instead ν = cir then all parties are committed to
the input and randomness in the beginning of the execution and the adversary
cannot alter xi, ri revealed for verification by honest or dishonest parties from
RIR. For μ we give the adversary the following choices:

μ = ncmes: A can replace all messages by all parties.
μ = chsmes: A can replace messages from corrupted senders.
μ = chmes: A can replace messages exchanged between corrupted parties.
μ = cmes: A cannot replace any message.

The full definition of Transcript Non-Malleability is given in the full version [6].

3.1 Simulating Verifiable Protocols: Input-Aware Simulation

Most simulators S for UC secure protocols Π work by executing an internal
copy of the adversary A towards which they simulate interactions with simulated
honest parties and ideal functionalities in the hybrid model where Π is defined. In
general, S receives no external advice and generates random inputs for simulated
honest parties and simulated ideal functionality responses with the aid of a
random input tape, from which it samples all necessary values. However, a crucial
point for our approach is being able to parameterize the operation of simulators
for protocols being compiled, as well as giving them external input on how queries
to simulated functionalities should be answered.

We need simulators with such properties in order to obtain publicly verifiable
versions of existing protocols without requiring them to be adaptively secure as
explained in Sect. 1.1. Basically, in the publicly verifiable version of a protocol,
we wish to embed a special simulator into the publicly verifiable functionality
that it realizes. This allows to “delegate” the simulation of the compiled proto-
col, while the simulator for the publicly verifiable version handles the machinery
needed to obtain public verifiability. This simplifies the security analysis of pub-
licly verifiable versions of existing UC-secure protocols, since only the added
machinery for public verifiability must be analysed.
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Über Simulator SU: We now introduce the notion of an über simulator for a
UC-secure protocol Π realizing a functionality F . We denote über simulators as
SU, while we denote by S the original simulator used in the original UC proof.
Basically, an über simulator SU takes the inputs to be used by simulated honest
parties, as well as the randomness of the functionality, as an external param-
eter, and uses these in interactions with the adversary. It furthermore outputs
(through a special tape) the randomness used by these simulated parties. Instead
of interacting with an internal copy of the adversary, an über simulator inter-
acts with an external copy. Moreover, an über simulator allows for responses to
queries to simulated functionalities to be given externally. Otherwise, SU oper-
ates like a regular simulator, e.g. extracting corrupted partis’ inputs.

In the case of a probabilistic functionality F , the über simulator SU also
receives the randomness tape used by F . SU uses this tape to determine the
random values that will be sampled by F , simulating an execution compatible
with such values and with the inputs from honest parties (if they have any).

Most existing simulators for protocols realizing the vast majority of natural
UC functionalities can be trivially modified to obtain an über simulator which we
explain in the full version [6]. This is because they basically execute the protocol
as an honest party would, except that they use random inputs and leverage the
setup to equivocate the output in the simulated execution. Departing from such
a simulator, an über simulator can be constructed by allowing the simulated
honest party inputs to be obtained externally, rather than generated randomly.

Syntax of Über Simulator SU: Let SU be a PPT iTM with the same input
and output tapes as a regular simulator S plus additional ones as defined below:

– Input tapes: a tape for the input from the environment Z, a tape for mes-
sages from an ideal functionality F , a tape for inputs for the simulated honest
parties, a tape for messages from a copy of an adversary A (either connected
to A or to FV’s NMFSU interface) and a tape for messages from the global
ideal functionalities in the hybrid model where Π is defined. If F is proba-
bilistic, SU also receives F ’s random tape.

– Output tapes: tapes for output to Z, tapes for messages to F ,A, tapes for
messages for the global ideal functionalities in the hybrid model where Π is
defined as well as a special “control output tape” that outputs the randomness
used by simulated honest parties.

For any PPT iTM SU with the input and output tapes defined above, we
then say that SU is an über simulator if it has the properties of simulation-
and execution-consistency, which are described in Definitions 2 and 3 below.
Simulation consistency says that any regular ideal world execution of F with S
is indistinguishable from an execution of F with SU where SU operates as S does
(i.e. with direct access to a copy of the adversary A and the global setup) but is
parameterized by the dummy honest party inputs instead of choosing simulated
honest party inputs at random. Formally, simulation consistency is as follows:

Definition 2 (Simulation Consistency). Let Π be a protocol UC-realizing
functionality F using ideal functionalities F1, . . . ,Fr as setup and let S be the
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simulator of F ’s proof. We say that the PPT iTM SU is Simulation-consistent
for (Π,F ,S) if these distributions are indistinguishable for all PPT iTM Z:

1. F ◦ S: The distribution of outputs of Z in an ideal execution of F and S
executing an internal copy of adversary A and potentially a set of global func-
tionalities.

2. F ◦ SU: The distribution of outputs of Z in an ideal execution of F with SU,
where SU’s corresponding input/output tapes are connected directly to a copy
of A and to global setup functionalities (instead of FV’s NMFSU interface).
SU’s tapes for simulated honest party inputs are initialized with the same
inputs that are provided by the dummy honest parties to F and SU is given a
uniformly random tape.

Z gives inputs to all parties as in the standard UC simulation experiment but
only has access to the same input/output tapes of SU that it can access for S.

We remark that SU does not have two explicitly different modes of operations
depending on whether it is executed inside FV or in the experiment of Defini-
tion 2. In both scenarios, SU has the same input/output tapes and access to F ’s
interfaces, with the sole differences being its input/output tapes for a copy of the
adversary being either directly connected to the adversary in the experiment of
Definition 2 or to FV’s NMFSU interface and its input/output tapes for global
setup functionalities being connected to these functionalities in the experiment
of Definition 2 or to FV’s NMFSU interface. This observation is important when
arguing why SU does not give FV’s ideal adversary (i.e. FV’s simulator) any
undue advantage by, e.g., leaking information about honest parties’ inputs.

Execution consistency states that the randomness for simulated honest par-
ties output by an über simulator SU parameterized with the same inputs as the
real honest parties must be consistent with the randomness of a real protocol
execution. We use the following formal definition:

Definition 3 (Execution Consistency). Let Π be a UC-secure implemen-
tation of the functionality F in the F1, . . . ,Fr-hybrid model and let S be the
simulator of the proof. We say that the PPT iTM SU is Execution-consistent for
(Π,F ,S) if for all PPT iTM Z and PPT iTM A the following distributions are
indistinguishable:

1. The distribution of outputs of Z in a real execution of Π with adversary A and
honest parties P1, . . . ,Pk whose input and randomness pairs are (xh1 , Rh1),
. . . , (xhk

, Rhk
) in the F1, . . . ,Fr-hybrid model. The tuple of honest party ran-

domness (Rh1 , . . . , Rhk
) is output by SU after an execution with F where SU

interacts with a copy of A and SU’s tapes for simulated honest party inputs
are initialized with the same honest party inputs (xh1 , . . . , xhk

) as those given
to P1, . . . ,Pk .

2. The distribution of outputs of Z in a real execution of Π with adversary A and
honest parties P1, . . . ,Pk with inputs (xh1 , . . . , xhk

) in the F1, . . . ,Fr-hybrid
model where honest party randomness is sampled by Z.
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Z gives inputs to all parties in both the ideal and real executions as in the stan-
dard UC simulation experiment, the difference being that in 1. honest party ran-
domness is provided by SU and in 2. it is sampled by Z.

For any PPT iTM SU with the input and output tapes defined above we then
say that SU is an über simulator if it is simulation- and execution-consistent. We
summarize this in the full version [6].

Über Simulators with Global Setup: In order to argue that SU does not leak
any information on honest parties’ inputs through FV’s NMFSU interface, we will
restrict the class of global functionalities that can be used as setup in compiled
protocols. Intuitively, we require that all global functionalities used by a protocol
with a global simulator provide all parties with access to the same interface and
answers queries from all parties with the same answer (e.g. in a global random
oracle). This is necessary both for practical and technical reasons: 1-(practical)
the verification procedure of our compiler needs the same access to global setup
as the party who activated verification and revealed its input/randomness; 2-
(technical) SU must not be able to distinguish whether it is operating within
FV or within the experiment of Definition 2. In order to achieve these goals, we
introduce the notion of Admissible Global Setup in Definition 4 and restrict our
compiler to work only on protocols with Admissible Global Setup.

Definition 4 (Admissible Global Setup). A global ideal functionality G is
admissible if:

– All parties Pi ∈ P have access to the same interfaces (i.e. all parties can send
the same queries to G).

– For all of G’s interfaces, for all possible queries Q, there exists a single
response R such that, upon receiving a query Qj from any party Pi ∈ P,
G returns R.

3.2 Functionalities FV with Embedded Über Simulator SU

We now outline how an über simulator SU (Definition in the full version [6]) for
the protocol Π will be used with a functionality FV. Note that SU is internally
executed by the functionality wrapper FV presented in Fig. 3, which can be
accessed by an ideal adversary (i.e. FV’s Simulator) interacting with FV through
interfaces Inputi and NMFSU . Moreover, FV allows SU to query admissible
global setup functionalities F1, . . . ,Fn (according to Definition 4) on behalf of
honest parties.

The internal SU executed by FV takes care of simulating the original pro-
tocol Π that realizes F being compiled into a publicly verifiable protocol ΠV

that realizes FV[F ], while the external SV interacting with FV will take care of
simulating the additional protocol steps and building blocks used in obtaining
public verifiability in ΠV. In order to do so, FV will parameterize SU with the
inputs of all honest parties Pi, which are received through interface Inputi, as
well as the randomness of F if the functionality is probabilistic. As the execution
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progresses, SV executes the compiled protocol ΠV with an internal copy A of the
adversary and extracts the messages of the original protocol Π from this execu-
tion, forwarding these messages to SU through the interface NMFSU . Moreover,
SV will provide answers to queries to setup functionalities from A as instructed
by SU also through interface NMFSU . All the while, queries from honest parties
simulated by SU to setup functionalities are directly forwarded back and forth by
FV. If verification is ever activated by an honest party Pi (and Pi ∈ RIR), FV not
only leaks that party’s input to SV but also leaks that party’s randomness Rhi

in
the simulated execution with SU (provided by SU). As we discuss in Sect. 5, this
will allow SV to simulate verification, since it now has both a valid transcript
of an execution of ΠV with A and a matching input and randomness pair that
matches that transcript (provided by FV with the help of SU).

We remark that this strategy does not give the simulator SV any extra power
in simulating an execution of the compiled protocol ΠV towards A other than the
power the simulator S for the original protocol Π already has. We will estab-
lish that the access to SU given by FV to SV does not allow it to obtain any
information about the inputs of honest parties. Notice that in an execution with
admissible global setup (according to Definition 4), the only difference between
SU’s execution within FV and SU’s execution in the experiment of Definition 2
is that, when it is executed within FV, its input/output tapes for a copy of the
adversary are connected to SU via the NMFSU interface. Hence, the only way SU

can detect that it is being executed within FV and leak any undue information
is via its interaction via the adversary input/output tapes. However, the defini-
tion in the full version [6] establishes that this interaction is indistinguishable
from that of the original simulator S for protocol Π. Since Π is UC-secure, an
execution of F with S does not leak any information about the simulated par-
ties’ inputs (i.e. inputs randomly picked by S), which would trivially allow Z to
distinguish an execution of F with S from a real world execution of Π with A.
Thus, by the definition of an über simulator in the full version [6] and the UC
security of Π, SU does not leak any information about honest party inputs to
SV via interface NMFSU when executed within FV.

4 Joint Authentication Functionalities

We now define authentication functionalities that serve as building blocks for our
compiler. These functionalities allow for a set of parties to jointly authenticate
messages but do not deliver these messages themselves. Later on, a verifier can
check that a given message has indeed been authenticated by a given set of
parties, meaning that they have received this message through a channel and
agree on it. More interestingly, we extend this functionality to allow for joint
authentication of private messages that are only known in encrypted form.

As opposed to classical point-to-point or broadcast authenticated channels,
our functionalities do not deliver messages to the receiving parties and conse-
quently do not ensure consensus. These functionalities come into play in our
compiler later as they allow for verifiers to check that all parties who executed a
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protocol agree on the transcript (that might contain private messages) regardless
of how the messages in the transcript have been obtained. Having the parties
agree on which messages have been sent limits the adversary’s power to generate
an alternative transcript aiming at forging a proof that the protocol reached a
different outcome, i.e. our notion of transcript non-malleability.

Public Joint Authentication: First, consider the simple case of authenticating
public messages (known by all parties participating in the joint authentication
procedure). Here, the sender starts by providing a message and ssid pair to
the functionality and joint authentication is achieved after each of the other
parties sends the same pair to the functionality. This can be implemented by
a simple protocol where all parties sign each message received from each other
party in each round, sending the resulting signatures to all other parties. A
message is considered authenticated if it is signed by all parties. Notice that this
protocol does not ensure consensus and can easily fail if a single party does not
provide a valid signature on a single message, which an adversary corrupting any
party (or the network) can always cause (this is captured in the functionality).
Functionality FPJAuth is described in the full version [6].

Secret Joint Authentication: We further define a functionality FSJAuth

(described inthe full version [6]). This functionality works similarly to FPJAuth,
allowing parties to jointly authenticate messages received through private chan-
nels to which they have access. However, it also allows for bureaucrat parties
who observe the encrypted communication (but do not see plaintext messages)
over the private channel to jointly authenticate a committed version of these
plaintext messages. If a private message is revealed by its sender (or one of its
receivers), FSJAuth allows third parties (including the bureaucrats) to verify that
this message is indeed the one that was authenticated.

In order to capture the different actions of each party it interacts with, FSJAuth

is parameterized by the following (sets of) parties: a sender Psnd that can input
messages to be jointly authenticated; a set of parties P who receive input mes-
sages from Psnd and jointly authenticate them; a set of bureaucrats B who jointly
authenticate that Psnd has sent a certain (unknown to them) committed message
to P. FSJAuth, like FPJAuth, does not aid in sending messages, notifications about
sent messages nor joint authentication information to any party. The responsi-
bility for sending messages lies with Psnd, while Psnd or Pi ∈ P can notify other
parties that plaintext verification is possible.

We realize FSJAuth with a signature scheme and a certified encryption scheme
with plaintext verification, i.e. an encryption scheme with two properties: (1) all
parties’ public keys are registered in a PKI, making sure that encrypted mes-
sages can only be opened by the intended receiver; (2) Both encrypting and
decrypting parties can generate publicly verifiable proofs that a certain mes-
sage was contained in a given ciphertext. The private channel itself is realized
by encrypting messages under the encryption scheme, while joint authentication
is achieved by having all parties in P (including the sender) and bureaucrats
in B sign the resulting ciphertext. To prove that a certain message was indeed
contained in the ciphertext, the receiver(s) recovers the plaintext message and a
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proof of plaintext validity from the ciphertext and sends those to the verifier(s).
Finally, a verifier first checks that the message was indeed contained in a previ-
ously sent ciphertext and that this ciphertext has been signed by all parties in
P and B. This construction and a concrete realization are described in the full
version [6].

Authenticating Inputs and Randomness: To provide an authentication
of inputs and randomness we adapt the functionality FSJAuth, as the desired
capabilities are like a message authentication without a receiver. In the full
version [6] we present a functionality FIRAuth that implements this.

5 Compilation for Input-Revealing Protocols

We now sketch how to compile protocols from Sect. 2 into non-interactively verifi-
able counterparts. As we focus on protocols according to the definition in the full
version [6] there are 8 combinations of parameters (ν, μ) for (ν,RIR, μ)-transcript
non-malleable protocols to consider. Furthermore we might either have public
or private verifier registration, which in total yields 16 different definitions. To
avoid redundancy we now outline how to get the respective verifiability in each
setting. We simplify notation by just using a single verifier V.

Assume a (ν,RIR, μ)-transcript non-malleable protocol Π that UC realizes
the functionality F in the (global) F1, . . . ,Fr-hybrid model with über simulator
SU for (Π,F ,S). Then compilation works as follows:

1. We describe how to construct a protocol ΠV by modifying Π with access
to a signature functionality FSig, a key registration functionality FReg and
authentication functionalities FPJAuth,FSJAuth,FIRAuth. We will furthermore
require that we can replace the hybrid functionalities F1, . . . ,Fr used in Π
with verifiable counterparts FV

1 , . . . ,FV
r .

2. In Appendix 3.2 we show how ΠV UC-realizes FV[F ] in the FV
1 , . . . ,FV

r -hybrid
by constructing a simulator SV.

Protocol Compilation - The Big Picture. In order to verify we let the
verifier V simulate each such party whose output shall be checked and which
participated in an instance of Π. This check is done locally, based on the inputs,
randomness and messages related to such a party (and/or other parties) which
V obtains for this process. In case of public verifier registration we assume that
a bulletin board is available which holds the protocol transcript, whereas in case
of private registration the verifier contacts one of the protocol parties to obtain
a transcript which it can then verify non-interactively. We want to stress that
the Bulletin Board which may contain the protocol transcript does not have to
be used to exchange messages during the actual protocol run.

In Π we assume that messages can either be exchanged secretly between two
parties or via a broadcast channel. Furthermore, parties may send messages to
hybrid functionalities or receive them from these. An adversary may be able
to replace certain parts of the protocol transcript. As long as we assume that
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a protocol is (ν,RIR, μ)-transcript non-malleable and constrain his ability to
maul the protocol transcript to those parts permitted by the definition, the
overall construction achieves verifiability. We now explain, on a high level, the
modifications to Π for the different values of μ, ν:

μ = ncmes: The adversary can replace all messages by any party at his will, and
messages are just exchanged as in Π.

μ = chsmes: Before the protocol begins, each Pi generates a signing key with
FSig and registers its signing key with FReg. Whenever Pi sends a message
mi,j to Pj it uses FSig to authenticate mi,j with a signature σi,j . V will later
be able to verify exactly those messages that were sent by honest parties, as
A can fake messages and signatures sent by dishonest parties.

μ = chmes: Each message that is either sent or received by an honest party
must remain unaltered. Each party will do the same as for μ = chsmes, but
whenever Pi receives a message mj,i from Pj then it uses FSig to authenticate
mj,i with a signature σj,i. Now V can establish for each message of the protocol
if both sender and receiver signed the same message. A can only alter messages
that were both sent and received by dishonest parties.

μ = cmes: Here dishonest parties cannot replace their messages before verifica-
tion. To achieve this, we use FSJAuth,FPJAuth as defined in Sect. 4 which the
parties now use to register their private message exchange. These functional-
ities can then be used by V to validate the transcript.

ν = ncir: Based on each Pi setting up a key with FSig and registering it with
FReg let each party sign both its input xi and its randomness ri using FSig

before sending it in Activate Verification. V now only accepts such signed
values which it can verify via FSig. A can replace the pairs (xj , rj) of dishonest
parties Pj by generating different signatures.

ν = cir: The parties use FIRAuth to authenticate their inputs and randomness. V
uses FIRAuth to check validity of the revealed xi, ri which it obtained.

Hybrid Functionalities: Replace the hybrid functionalities F1, . . . ,Fr with
NIV counterparts, i.e. with functionalities FV

1 , . . . ,FV
r that have the same

interfaces as defined in Sect. 2.1. To achieve public verifiability each such FV
q

must also be publicly verifiable. If a global functionality is used as setup, it
must be admissible according to Definition 4, so that the verification pro-
cedure can re-execute the protocol. For any such FV

q , V can establish if a
message mresq,i was indeed sent to Pi or not. If FV

q does also reveal inputs,
it can also test if mresi,q as claimed to be sent by Pi was indeed received by
the functionality.

Public Verifiability Compiler. The basic idea is to turn any (ν,RIR, μ)-
transcript non-malleable protocol into a (cir,RIR, μ)-transcript non-malleable
protocol by forcing the adversary to commit to all the corrupted parties’ random-
ness and inputs, and then turn it into a (cir,RIR, cmes)-transcript non-malleable
protocol by forcing the adversary to commit to all messages. While this might
be overkill for some protocols, we focus on the worst case scenario of compiling
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(ncir,RIR, ncmes)-transcript non-malleable protocols, since it is the most chal-
lenging. After making a protocol (cir,RIR, cmes)-transcript non-malleable, the
protocol execution becomes deterministic and can be verified upon revealing of
the randomness, input and transcript of any party that activates the verification.
All the verifier has to do is to execute the protocol’s next message function on
these randomness and input taking received messages from the transcript. We
present a detailed description of this compiler and a formal theorem statement
together with its proof in the full version [6].
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Abstract. Non-malleable codes (NMC) are introduced as a relaxation
of error correcting codes to protect message against tampering attacks.
It is guaranteed that a message encoded with non-malleable codes, if
tampered by some classes of tampering functions, produces either com-
pletely unrelated message or the original message, when tampering has
no effect. Kiayias et al. [19] have proposed a NMC construction based on
leakage resilient authenticated encryption (AE) and 1-more extractable
hash function. They obtain a codeword of length |m| + 18n in common
reference string (CRS) model. In this paper, we propose a construc-
tion of computationally secure non-malleable code in 2-split-state model
from an authenticated encryption scheme with close to optimal codeword
length |m| + 2n. Specifically we use an AE based on triple M-DES and
CBC-MAC. The security of our NMC reduces to related-key and pseu-
dorandom permutation security of the underlying block cipher under
leakage, and also to the unforgeability of the CBC-MAC under leakage.

Keywords: Authenticated encryption · Block cipher · Leakage
resilient CBC-MAC · Non-malleable code · 2-split-state model

1 Introduction

In this era of digital revolution it is often required to store highly sensitive infor-
mation into various devices. Crypto devices that are used in embedded applica-
tions, store the secret key in conjunction with the cryptographic algorithm as a
part of hardware implementation. Physical attacks on crypto hardware modules
exploit the weaknesses of implementation mechanisms. One of the active classes
of physical attack is the tampering attack which can be performed by viruses,
malwares or adversaries with fault injection capabilities. Fault attack is an active
class of physical attack where an adversary injects some faults during runtime
of cryptographic algorithms [4]. The goal of an adversary is to extract a valid
key by analysing faulty and fault free outputs. A number of research methodol-
ogy have also been explored to protect cryptographic schemes from tampering
attacks [5,10,11,13,15].
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Non-malleable code, introduced by Dziembowski et al. [9], is used as one of
the important tools of tamper-resilient cryptography. Instead of storing secret
message in clear form, one may store the encoded version of secret message
using non-malleable code. During cryptographic computation, decoding is per-
formed to retrieve clear message. Any tampering on the encoded secret message,
changes the output in an independent way from the original one. Let k be the
secret message we store using non-malleable code as Encode(k). An adversary
uses tampering function f on the encoded message. Non-malleability property
guarantees that Decode(f(Encode(k))) is either k, when tampering has no effect,
or k

′
, which is computationally independent of k, in case of successful tamper-

ing. In the ideal case, non-malleability should be achieved for arbitrary classes
of tampering functions but this does not hold in general. One of the widely
used tampering function class is 2-split-state class where tampering occurs in
two parts of the memory ML and MR respectively. Codeword is divided into
two halves and stored in ML, MR. Two independent tampering functions f =
{f1(ML), f2(MR)} modify the left and right half of the memory in an arbitrary
and independent way.

NMC are broadly categorized into information-theoretic [14] and computa-
tional [20] constructions. In [16], information theoretic non-malleable codes with
codeword size O((|m| + n)7 log7(|m| + n)) is proposed, where m is the message
size and n denotes the security parameter. Subsequently, a better version with
respect to the codeword size is achieved in [17]. Liu et al. [12] show a construc-
tion of NMC in computational settings from public key primitives [8] and robust
NIZK [2]. Combining the idea of [16] and [20], NMC of size |m| + O(n7) is pro-
posed and later, it is further reduced to |m| + O(n2) [7,8,12,20]. NMC can also
be developed using symmetric-key primitives like block ciphers, authenticated
encryption schemes etc. Kiayias et al. [19] use one-time leakage-resilient AE along
with l-more extractable hash function to build an NMC with close to optimal
codeword length |m|+18n. However, they prove their scheme to be secure under
not so standard knowledge of exponent assumption (KEA) in the CRS model. In
practical scenario, it is difficult to manage such CRS based setup. Later, in [21]
authors propose a non-malleable code with optimal codeword length |m|+2n in
2-split-state model based on related-key secure block cipher with no CRS based
trusted setup.

Our Contribution. In this work, we propose a computationally secure non-
malleable code with close to optimal codeword size of 1.5|m|+2n in 2-split-state
model from an AE scheme, specifically using encrypt then MAC approach. We
do not need any trusted setup assumption like CRS in our construction. Our
instantiation is based on triple M-DES [1] and leakage resilient CBC-MAC [18].

In [19], the authors observe that an NMC of size |m|+O(n7) can be obtained
from AE using the results of [16] and [20]. Later, they propose an NMC of size
|m| + 18n from AE in the CRS model. Unfortunately, their construction uses
knowledge of exponent (KEA) assumption, which is not that standard [6]. In this
scenario our result gives a construction which uses an AE scheme and obtains
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Table 1. Comparison of multi-bit NMC in the 2-split-state model [19]. The message
length is denoted by |m| and n represents security parameter. In the table IT stands
for information-theoretic, Comp. stands for computational, AE stands for authenticated
encryption and LR stands for leakage-resilient.

Scheme Codeword length Model Assumption

[16] O((|m| + n)7 log7(|m| + n)) IT –

[17] O(max(|m|, n)) IT –

[16] + [20] |m| + O(n7) Comp. AE

[7]+ [8]+ [12]+ [20] |m| + O(n2) Comp., CRS LR PKE + robust NIZK

[19] |m| + 18n Comp., CRS one-time LR AE + KEA

[21] |m| + 2n Comp. PRP with leakage + Fixed related-key

This work O(|m| + 2n) Comp. Related-key + PRP with leakage

+ LR CBC-MAC unforgeability 1

1It is an encrypt then MAC AE scheme. Block cipher of the underlying AE should sat-
isfy related-key security, PRP security under leakage and MAC should be unforgeable
under leakage.

an NMC with close to optimal codeword length. As a proof of concept, we also
implement our NMC in software platform.

In Table 1, we compare our result with existing multi-bit non-malleable codes
in 2-split-state model by extending the comparison table from [19].

Comparison with [21]. The first computational NMC with optimal codeword
length is proposed in [21], where the authors use related-key secure block ciphers
in their construction. In this work, we show that it is also possible to construct
an NMC using a specific AE scheme with close to optimal codeword length.
Note that it is not clear whether one can achieve the same codeword length
using other AE schemes.

2 Preliminaries

Basic Notations. Let ML, MR be the left and right half of memory in 2-split-
state model where the actual codeword is stored. fL and fR are two functions
tampering on ML and MR respectively. K denotes the key-space. k $←− K implies
that the key k is sampled uniformly at random from K. M, C and n denote the
message set, codeword set and security parameter respectively. m ∈ M and
c ∈ C denote the particular message and codeword. m is further divided into
small chunks as m1, m2 etc. Two different messages are denoted by m1, m2.

2.1 Non-malleable Codes

A non-malleable code (NMC) is an encoding scheme which consists of two algo-
rithms (Encode,Decode), where:

– Encode : K × M → C: Encoding algorithm takes input a m ∈ M and key
k ∈ K, with |m| ≥ n and |k| ≥ n. It outputs codeword c = cL||cR, where
cL ∈ {0, 1}ML resides in ML and cR ∈ {0, 1}MR resides in MR.
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– Decode : {0, 1}ML × {0, 1}MR → M: Decoding algorithm takes codeword
c = cL||cR and outputs m ∈ M.

For correctness, we require that Decode(Encodek(m)) = m, ∀m ∈ M and ∀k ∈
K, happens with probability one.

Strong Non-malleability. Let F be a family of tampering functions. For each
f = (fL, fR) ∈ F and m ∈ M, we define the tampering experiment :

TamperfNMC =

⎧
⎪⎪⎨

⎪⎪⎩

c ← Encodek(m), c = {ML,MR}
{M′

L,M′
R} = {fL(ML), fR(MR)}

c
′
= {M′

L,M′
R},m′

= Decode(c
′
)

output : same∗, if c
′
= c; else m

′
.

⎫
⎪⎪⎬

⎪⎪⎭

,

where randomness comes from the encoding algorithm.
A coding scheme (Encode,Decode) is strongly non-malleable with respect to

tampering function family F if for each f = (fL, fR) ∈ F , an adversary cannot
distinguish the tampered decoding of two chosen messages m1 and m2, apart
from the case when the tampering has no effect. For a more formal definition we
refer the readers to [21].

Fig. 1. Memory Layout of 768 bit encoding in MR.

3 Code Construction

Message m is encoded as Encodek(m) = ML||MR. ML stores set of keys and
some states that enable decoding; We denote that by {k}, thus ML = {k}.
MR = {Ek(m), tag}, where E is a block cipher and tag is generated using leakage
resilient CBC-MAC [18]. The keys for the block cipher and the leakage resilient
CBC-MAC are stored in ML. Decode(cL||cR), extracts the keys from cL, checks
whether tag in cR is valid; If valid then decrypts Ek(m) to obtain the message m.
In our instantiation we use an encrypt then MAC scheme, which uses a M-3DES
block cipher and CBC-MAC with leakage. The codeword length of our NMC is
almost |m|+2n. Note that we also have to store intermediate states of size m/2
in order to enable decoding, thus the total codeword length is 1.5|m| + 2n.
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Fig. 2. DES and M-DES algorithm execution.

We prove our construction to be secure when the underlying block cipher
and CBC-MAC satisfies the following properties:

1. The block cipher is related-key secure with respect to any single related-key
function [21] that can deal with output-predictable functions.

2. When limited bits from the keyspace are leaked, quality of the output pro-
duced by the block cipher degrades gracefully in standard pseudo-random
permutation (PRP) security notion [21].

3. Tag generated by the CBC-MAC algorithm is unforgeable under leakage [18]

We refer the readers to [5,18,21] for formal definitions of the required security
properties.

Concrete Instantiation. We build the codeword using an encrypt then MAC
AE scheme. We instantiate the AE with triple M-DES [1], denoted as M-3DES
and leakage resilient CBC-MAC [18]. Figure 2 describes DES and M-DES exe-
cution. We use M-DES function three times to construct M-3DES.

Encoding. To encode a 768 bit message m (Fig. 1), we first divide it into small
chunks m1 to m8 of 96 bits. Each 96 bit message is encrypted using M-3DES
algorithm and it produces 80 bit message. The idea is that in the last round of
M-3DES we don’t run Sub-block 1 (see Fig. 3), and store 48 + 32 bits, 80-bits
in MR. For correct decoding we also need the left 48-bits of M-3DES from the
previous round; That is stored in ML as temp-state along with the other keys.
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Fig. 3. Encoding and Decoding of non-malleable codes in 2-split-state model.

In this way, encoded message of 640 bit (8× 80) is generated and the 128 bit
tag for that 640 bit message is generated using leakage resilient CBC-MAC. To
generate the tag, each 80 bit encoded message is expanded with our proposed
expansion permutation in Table 2 which produces 128 bit output. Let the output
of a single M-3DES be e1 and the expanded 128 bit output is denoted as e1281 .
Similarly, other expanded M-3DES outputs are e1282 , e1283 , e1284 , e1285 , e1286 , e1287 ,
e1288 . Leakage resilient CBC-MAC [18] takes these {e128i } with the key kMAC to
generate 128 bit secure tag which is appended with the 640 bit message. Figure 1
shows the memory layout of MR in 2-split-state model. MR stores e, which is
Ek(m) and tag (|Ek(m)| = 640 bit and |tag| = 128 bit) as depicted in Fig. 3.

Left part of the memory ML stores a set of keys {kDES ||kMAC ||temp-state},
where kDES is the key for M-3DES, kMAC is the key for leakage resilient CBC-
MAC and temp-state is intermediate state that is used to decode the code-
word, as explained earlier. Finally we get the codeword ML||MR, where ML =
{kDES ||kMAC ||temp-state} and MR = {Ek(m), tag}.

Decoding. Figure 3 shows the decoding procedure. First the decoding proce-
dure extracts kMAC from ML and uses that to verify whether the tag is a valid
MAC on Ek(m); If not, it returns ⊥. Otherwise, it extracts kDES from ML and
runs the decryption procedure to obtain m.

Expansion Permutation. Table 2 describes 80 bit to 128 bit expansion per-
mutation. It contains 16 rows and 8 columns in total. The value of each cell
comes from the bit position of 80 bit data generated by M-3DES. The working
principle of the proposed permutation is the following: Let 80 bit output of a
single M-3DES be stored into a register R1. The final 128 bit output of the
permutation is stored into the register R2. The 1st bit of R2 is generated by
AND-ing of 55th bit and 16th bit of R1, accordingly the entry of (1, 1) position
of the table is 55&&16. Similarly, the 2nd bit of R2 comes from 1st bit of R1 and
so on. In this way, we are generating all the bits of R2.

Correctness and Security. We prove our construction to be secure if the
underlying block cipher is related key secure and PRP secure, and if the CBC-
MAC is unforgeable under leakage. For full proof of correctness and security we
refer the readers to the full version of the paper.
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Table 2. 80 bit to 128 bit expansion permutation.

55 && 16 1 2 3 4 5 6 7 && 8

5 && 6 7 8 9 10 11 12 13 &&14

11 && 12 13 14 15 16 17 18 19 && 20

17 && 18 19 20 21 22 23 24 25 && 26

23 && 24 25 26 27 28 29 30 31 && 32

29 && 30 31 32 33 34 35 36 37 && 38

35 && 36 37 38 39 40 41 42 43 && 44

41 && 42 43 44 45 46 47 48 49 && 50

47 && 48 49 50 51 52 53 54 55 && 56

53 && 54 55 56 57 58 59 60 61 && 62

59 && 60 61 62 63 64 65 66 67 && 68

65 && 66 67 68 69 70 71 72 73 && 74

71 && 72 73 74 75 76 77 78 79 && 80

77 && 78 79 80 11 52 63 34 65 && 76

63 && 64 65 76 27 18 39 69 61 && 72

39 && 69 61 72 53 44 55 16 1 && 2

Performance. We have also implemented our non-malleable code in software
platform using C++ (g++ 9.4 compiler) in a computer with Intel Core i3 pro-
cessor. AES-128 [3] is used as the underlying block cipher in the leakage resilient
CBC-MAC. With our proof of concept implementation, to generate the code-
word, it takes 75 ms wall clock time.

4 Conclusion

We propose a concrete NMC with nearly optimal codeword length from an AE
scheme. In general it is not known how to construct an optimal computational
NMC from any AE scheme. Our result shows that even in that case, it is possible
to achieve better codeword length if we consider specific concrete instantiations.
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Abstract. In this paper, we follow the line of existing study on cryp-
tographic enforcement of Role-Based Access Control (RBAC). Inspired
by the study of the relation between the existing security definitions for
such system, we identify two different types of attacks which cannot be
captured by the existing ones. Therefore, we propose two new security
definitions towards the goal of appropriately modelling cryptographic
enforcement of Role-Based Access Control policies and study the rela-
tion between our new definitions and the existing ones. In addition, we
show that the cost of supporting dynamic policy update is inherently
expensive by presenting two lower bounds for such systems which guar-
antee correctness and secure access.

1 Introduction

A main concern in the existing studies of cryptographic access control is the gap
between the specification of the access control policies being enforced and the
implementation of the access control systems. In traditional monitor-based access
control mechanisms, the correct enforcement of access control policies holds by
design. But in cryptographic access control, the problem becomes more compli-
cated. The enforcement not only relies on security guarantees of the underlying
cryptographic primitives but also the appropriate key distribution/management.
Even though some advanced cryptographic primitives are seemingly well-suited
for cryptographic access control, their security guarantees cannot be directly
translated to security guarantees of the whole system. It is widely accepted that
there is often a gap between primitives and the applications motivating them.
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The gap obscured by uses of similar terms and jargon at both application and
primitive level. Once primitives are investigated, the step showing that they
imply security of the motivating application is unfortunately often omitted.

In order to bridge this gap, coming up with formal security definitions for
cryptographic access control systems is crucially important. However, the study
on formal security definitions is often neglected in the existing research on cryp-
tographic access control. There have been some initial works in this area that
focus on designing new primitives motivated by access control systems [2,7,13]
and on designing access control systems based on those primitives [6,9,12,14].

Throughout the literature, rigorous definitions that look at the security of
systems for access control have only been heuristically studied. Halevi et al.
proposed a simulation-based security definition for access control on distributed
file storage system in order to reason about the confinement problem [5]. Their
result is for a particular system rather than a general one. Ferrara et al. defined
a precise syntax for cryptographic role-based access control (cRBAC) systems
and proposed a formal security definition with respect to secure read access in
[4]. Later they extend their results in a setting which supports for write access [3]
so that the need for the trusted monitors to mediate every write access request
can be eliminated. Liu et al. studied security of cRBAC systems in the UC
framework [10]. They proposed a UC security definition for such systems and
also showed an impossibility result that such security cannot be achieved due to
the commitment problem.

Garrison III et al. studied the practical implications of cryptographic access
control systems that enforces RBAC policies [8]. They analysed the compu-
tational costs of two different constructions of cryptographic role-based access
control systems via simulations with the use of real-world datasets. Their results
indicate that supporting for dynamic access control policy enforcement may be
prohibitively expensive, even under the assumption that write access is enforced
with the minimum use of reference monitors.

New security definitions. The results presented in [10] show a gap between
the game-based and simulation-based security definitions for cRBAC systems,
which raises a question here:

Do the existing security definitions appropriately capture the secure enforce-
ment of access control policies?

Inspired by their results, we identify two different types of attacks which are
overlooked in the existing works and propose two new security definitions in
game-based setting: past confidentiality and local correctness. Our work can be
considered as a step towards the goal of providing an appropriate and formal
treatment for secure policy enforcement.

Lower bounds for secure cRBAC systems. Motivated by Garrison III
et al.’s work, we study lower bounds for secure cRBAC systems to find out
where the inefficiency stems from. We show that the costs are inherent in secure
cRBAC systems and also in those cryptographic access control systems that
greatly or solely rely on cryptographic techniques to enforce access control on
both read and write access. The main idea is, since the manager does not involve
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in any read and write operation to the file system, the local states of the users
and also the file system should reflect the access control policy being enforced.
Whenever the policy gets updated, the system might inevitably require re-keying
and re-encryption in order to guarantee secure access and system correctness.
We present two lower bounds for secure cRBAC systems. Our results can be
valuable in the design of such systems for practical purposes.

2 Security Definitions

In this section, we present our formal security definitions of correctness, past
confidentiality and local correctness for cRBAC systems.

2.1 Correctness

Correctness was first proposed by Ferrara et al. in [4], but it was omitted in their
later work [3] where a new system model was introduced to support for write
access. Therefore, we will need to reintroduce the definition of correctness.

Intuitively, a cryptographic access control system is said to be correct if
every user in the system can get access to the resources to which it is authorised
according to the symobilc state of the system.

Definition 1 (Correctness). A cRBAC system Π defined by a cRBAC
scheme for a fixed set of roles R is correct if for any probabilistic polynomial-
time adversary A, it holds that

Advcorr
Π,A(λ) := Pr

[
Expcorr

Π,A(λ) → true
]

is 0, where the experiment Expcorr
Π,A is defined as follows:

Expcorr
Π,A(λ)

T ← ∅; State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U ) ←$ Init(1λ, R)

(u∗, o∗) ←$ A(1λ : Ocorr)

if HasAccess(u∗, (o∗, read)) ∧ T [o∗] �= Read(stu∗ , o∗, fs) then

return true

else return false

The oracles Ocorr that the adversary has access to are specified in Fig. 1.

2.2 Past Confidentiality

In the extended cRBAC system model, the enforcement of access control on
write access is supported by employing a versioning file storage where users can
append contents only. The versioning file storage allows users to have (quasi-)
unrestricted read and write access to the file system, but it is also accompanied by
some subtle security issues, even though the file system itself does not implement
any access control mechanism. One of those security issues is unauthorised access
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Cmd(Cmd , arg)

State ← Cmd(State, arg)
(stM , fs, {msgu}u∈U ) ←$ Cmd(stM , fs, arg)
foreach u ∈ U :

stu ← Update(stu,msgu)
return fs

Write(u, o,m)

if ¬HasAccess(u, (o, write)) then
return ⊥

fs ←$ Write(stu, fs, o,m)
T [o] ← m; return fs

FS(query)

if query =“state” then

return fs

Fig. 1. Ocorr: Oracles for defining the experiment Expcorr
Π,A.

to the previous contents, which is a severe security concern in cryptographic
access control but not in the traditional mechanisms.

Unfortunately, such a security concern cannot be appropriately captured by
the game-based security definitions of read security from the existing work [3,4].
In fact, the constructions proposed in their work cannot provide such a security
guarantee. Interestingly, some recently proposed constructions of cryptographic
access control systems have the similar security concern [1,8,11], even though
they have been proven to securely enforce the corresponding access control poli-
cies within their individual frameworks.

We propose the following security definition called past confidentiality which
is improved over the one presented in [3].

Definition 2 (Past Confidentiality). A cRBAC system Π defined by a
cRBAC scheme for a fixed set of roles R is said to preserve past confiden-
tiality if for any probabilistic polynomial-time adversary A, it holds that

Advpc
Π,A(λ) :=

∣
∣ Pr[Exppc

Π,A(λ) → true] − 1
2

∣
∣

is negligible in λ, where the experiment Exppc
Π,A is defined as follows:

Exppc
Π,A(λ)

b ←$ {0, 1}; Cr ,Ch,L,Ud ← ∅
State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U ) ←$ Init(1λ, R)

b′ ←$ A(1λ : Opc)

return (b′ = b)
The oracles Opc that the adversary has access to are specified in Fig. 2.

Compared with the adversary in the game that defines read security of a
cRBAC system, the adversary above is obviously more powerful since it has the
ability to take over the users who can get read access to the challenged files under
some restrictions. The following theorem confirms the implication between the
two security definitions.

Theorem 1. Past confidentiality is strictly stronger than secure read access.
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Cmd(Cmd , arg)

(U ′, O′, P ′,UA′,PA′) ← Cmd(State, arg)
foreach (u, o) ∈ Cr × Ud :

if ∃r ∈ R: (u, r) ∈ UA′

∧ ((o, read), r) ∈ PA′ then
return ⊥

State ← (U ′, O′, P ′,UA′,PA′)
(stM , fs, {msgu}u∈U ) ←$ Cmd(stM , fs, arg)
foreach u ∈ U \ L :

if ∃o ∈ Ud : HasAccess(u, (o, read)) then
L ← L ∪ {u}

foreach u ∈ L:
if �o ∈ Ch : HasAccess(u, (o, read))

∨u /∈ U then

L ← L \ {u}
foreach o ∈ Ch:

if o /∈ O then

Ch ← Ch \ {o};Ud ← Ud \ {o}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)
return (fs, {msgu}u∈Cr )

CorruptU(u)

if u /∈ U ∨ u ∈ L then

return ⊥
Cr ← Cr ∪ {u}; return stu

Write(u, o,m)

If u ∈ Cr then return ⊥
if ¬HasAccess(u, (o, write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)
if o ∈ Ch then

Ud ← Ud \ {o}
return fs

Challenge(u, o,m0,m1)

if ¬HasAccess(u, (o, write)) then
return ⊥

if |m0| 	= |m1| then return ⊥
foreach u′ ∈ Cr :

if HasAccess(u′, (o, read)) then
return ⊥

fs ←$ Write(stu, fs, o,mb)
foreach u′ ∈ U :

if HasAccess(u′, (o, read)) then
L ← L ∪ {u′}

Ch ← Ch ∪ {o};Ud ← Ud ∪ {o}
return fs

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

fs ← fs‖info; return fs

Fig. 2. Opc: Oracles for defining the experiment Exppc
CRBAC,A.

2.3 Local Correctness

The local correctness captures the threat from “insiders” with respect to data
availability. The append-only versioning file system allows users to get (quasi-)
unrestricted write access to the files, but it also poses new security concern:
a user who has the write permission of a file might be able to invalidate the
file’s future versions which are written by authorised users. Local correctness
guarantees that such an attack is thwarted in such systems.

Definition 3 (Local Correctness). A cRBAC system Π defined by a cRBAC
scheme for a fixed set of roles R is said to preserve local correctness if for any
probabilistic polynomial-time adversary A, it holds that

Advl-corr
Π,A (λ) := Pr

[
Expl-corr

Π,A (λ) → true
]
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is negligible in λ, where Expl-corr
Π,A is defined as follows:

Expl-corr
Π,A (λ)

T ,Cr ← ∅;State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U ) ←$ Init(1λ, R)

(u∗, o∗) ←$ A(1λ : Ol-corr)

if T [o∗] �= adv ∧ T [o∗] �= Read(stu∗ , o∗, fs) then

return true

else return false

The oracles Ol-corr that the adversary has access to are specified in Fig. 3.

Cmd(Cmd , arg)

State ← Cmd(State, arg)
(stM , fs, {msgu}u∈U ) ←$ Cmd(stM , fs, arg)
foreach u ∈ Cr :

if u /∈ U then

Cr ← Cr \ {u}
if Cmd = “DelObject” then

Parse arg as o; T [o] ← ∅
if Cmd = “DelUser” then

Parse arg as u; Cr ← Cr \ {u}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)
return (fs, {stu}u∈Cr )

CorruptU(u)

if u /∈ U then return ⊥
Cr ← Cr ∪ {u}; return stu

Write(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o, write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)
T [o] ← m; return fs

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

Parse info as (o, c)
T [o] ← adv; fs ← fs‖info
return fs

Fig. 3. Ol-corr: Oracles for defining the experiment Expl-corr
Π,A .

We further show that the cRBAC construction proposed by Ferrara et al. in
[3] preserves this security property.

Theorem 2. If both the predicate encryption scheme and the digital signature
scheme are correct, the construction in [3] preserves local correctness.

3 Lower Bounds for Secure cRBAC Systems

In this section, we present two lower bounds for secure cRBAC systems. By
lower bounds, we mean the efficiency implications of secure cRBAC systems. To
some extent, our results explain the reason why cRBAC systems that support
dynamic policy updates may be prohibitively expensive: permission revocation
can be costly.
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Before we present our results, we introduce a technical term which is called
Permission Adjustment for an RBAC system. Informally, permission adjustment
is a sequence of administrative commands which changes the access rights of
some users with respect to a set of permissions.

Definition 4 (Permission Adjustment). Let S0 = (U,O, P,UA,PA) be the state
of an RBAC system over a set of roles R. Given a set of users Ũ ⊆ U and a set
of permissions P̃ ⊆ P , where both Ũ and P̃ are non-empty, a sequence of RBAC
administrative commands q = (q0, ..., qn) is called a permission adjustment
for S0 with respect to Ũ and P̃ :

(1) if ∀u ∈ Ũ , p ∈ P̃ : ¬HasAccess(u, p) holds for S0 and after a sequence of
transitions S0

q0−→S S1
q1−→S , . . . ,

qn−1−−−→S Sn
qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ :

HasAccess(u, p) holds for Sn+1 or
(2) if ∀u ∈ Ũ , p ∈ P̃ : HasAccess(u, p) holds for S0 and after a sequence of

transitions S0
q0−→S S1

q1−→S , . . . ,
qn−1−−−→S Sn

qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ :
¬HasAccess(u, p) holds for Sn+1.

We denote the set of all possible q in case (1) by Ũ ↑P̃ (S0) and the set of all
possible q in case (2) by Ũ↓P̃ (S0).

In addition, we introduce two key properties with respect to efficiency.

Definition 5 (File system preserving, informal). Let stG be the global state of a
cRBAC system, if after executing a sequence of RBAC administrative commands
q = (q0, ..., qn), the state of the file system remains unchanged, we call q file
system preserving for stG and it is reflected by the predicate FSP(q, stG) = 1.

Definition 6 (U-user local state preserving, informal). Let stG be the global
state of a cRBAC system, if after executing a sequence of RBAC administrative
commands q = (q0, ..., qn), the local states of the users in U remains unchanged,
we call q U-user local state preserving for stG and it is reflected by the
predicate LSP(q, stG,U) = 1.

Finally, we introduce the concept of non-trivial execution for a cRBAC sys-
tem. A non-trivial execution consists of a sequence of operations such that after
executing every operation in order, for each file in the system, there should exist
at least a user that has the read permission for it and also exist at least a user
that has the write permission for it.

Now we present our lower bounds for cRBAC systems which are both correct
and secure with respect to read (write, resp.) access.

Theorem 3. For any cRBAC system which is correct and secure with
respect to � ∈ {read, write} access, it holds that:

Pr

[
stG ←$ Init(1λ, R); stG

Q−→ st ′
G;∀q ∈ U↓P (φ(st ′

G)) :
FSP(q, st ′

G) ∧ LSP(q, st ′
G, Uc)

]

≤ ε,

where Q is any non-trivial execution for the system, st ′
G = (st ′

M , fs ′, {st ′
u}u∈U ′),

φ(st ′
G) = (U ′, O′, P ′,UA′,PA′), U ⊆ U ′, P ⊆ {(o,�)|o ∈ O′}, Uc = {u|∀(o,�) ∈

P : HasAccess(u, (o, {read, write} \ �))} and ε is a negligible function in λ.
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