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Abstract. Hop-constrained s-t simple path (HC-s-t path) enumeration
is a fundamental problem in graph analysis. Existing solutions for this
problem focus on unlabelled graphs and assume queries are issued with-
out any label constraints. However, in many real-world applications,
graphs are edge-labelled and the queries involve label constraints on the
path connecting two vertices. Therefore, we study the problem of labelled
hop-constrained s-t path (LHC-s-t path) enumeration in this paper. We
aim to efficiently enumerate the HC-s-t paths using only edges with pro-
vided labels. To achieve this goal, we first demonstrate the existence of
unnecessary computation specific to the label constraints in the state-
of-the-art HC-s-t path enumeration algorithm. We then devise a novel
online index to identify the fruitless exploration during the enumeration.
Based on the proposed index, we design an efficient LHC-s-t path enumer-
ation algorithm in which unnecessary computation is effectively pruned.
Extensive experiments are conducted on real-world graphs with billions
of edges. Experiment results show that our proposed algorithms signifi-
cantly outperform the baseline methods by over one order of magnitude.
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1 Introduction

Graphs have been widely used to represent relationships of entities in many areas
including social networks, web graphs, and biological networks [6,11,12,24].
With the proliferation of graph applications, research efforts have been devoted
to many fundamental problems in analyzing graph [18,21–23]. Among them, the
problem of hop-constrained s-t simple path (HC-s-t path) enumeration receives
considerable attention and has been well-studied in the literature [3,5,15–17,19].
Given an unweighted directed graph G, a source vertex s, a target vertex t, and
a hop constraint k, HC-s-t path enumeration computes all the simple paths (i.e.,
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paths without repeated vertices) from s to t such that the number of hops in
each path is not larger than k.

Remarkably, all of the existing algorithms for HC-s-t path enumeration focus
on unlabelled graphs and assume queries are issued without any label con-
straints. However, in many real-world applications, graphs are edge-labelled
graphs [1,4,8,14,26], i.e., edges are associated with labels to denote different
types of relationships between vertices, and the HC-s-t path enumeration for
labelled graphs often involves label constraints on the path connecting two ver-
tices. As a result, we study the problem of labelled hop-constrained s-t path
(LHC-s-t path) enumeration in this paper. Specifically, given a labelled directed
graph G, a source vertex s, a destination vertex t, a hop constraint k and a
subset L of the set of all edge labels L of G, we aim to efficiently enumerate the
HC-s-t paths using only edges with labels in L.

Applications. LHC-s-t path enumeration can be used in many applications, for
example:

• Fraud detection in E-commerce transaction networks. A cycle in a E-
commerce transaction network is a strong indication of a fraudulent activity
[25]. A recent study from Alibaba group presents that the HC-s-t path enumer-
ation is used to report all newly formed cycles to detect fraudulent activities
[16]. In real world scenarios, transactions are usually associated with labels
demonstrating their types, such as “bank transfer” or “credit card”, and users
may be interested in querying specific types of transactions (e.g. limiting the
edge label to “credit card” in credit card fraud detection). This gives rise to
the need for LHC-s-t path enumeration.

• Pathway queries in biological networks. Pathway queries are a fundamental
tool in biological networks analytics [7,10]. [10] shows that HC-s-t path enu-
meration is one of the most important pathway queries that can figure out the
chains of interactions between two substances. Since there are many different
types of interactions between two substances, the pathway queries are often
issued with certain constraints on the types of interactions along the path,
suggesting the utility of label constraints.

• Path ranking in knowledge graphs. Path ranking algorithms enumerate the
paths from one entity to another in a knowledge graph and use these paths
as features to train a model for missing fact prediction [2,9,13]. As real-
world knowledge graphs (e.g., RDF graphs) are usually associated with rich
labels, LHC-s-t path enumeration is used to enumerate paths with meaningful
labels defined by users to more precisely predict the missing relations between
entities.

Motivation and Challenges. To address this important problem, the most
straightforward way is to directly process a LHC-s-t path query using the state-
of-the-art HC-s-t path enumeration algorithm in the literature [19] (i.e. referred
to as BaseEnum) and then remove the invalid results that violate the label con-
straints. However, although BaseEnum works well on general HC-s-t path queries,
it is inefficient and unscalable to solve the problem of LHC-s-t path enumeration
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especially on large-scale graphs. The reasons are as follows: (1) since BaseEnum
is designed for general HC-s-t path queries, it does not consider the possible
pruning opportunities to reduce unnecessary computation specific to the label
constraints, while pruning such unnecessary computation has crucial effects on
the enumeration performance as proved in our experiments; (2) as the results of
BaseEnum may violate the label constraints, each HC-s-t path found by BaseEnum
needs to be verified individually to ensure that the labels of edges in the path
are within the given set of labels, which leads to a high verification cost.

Motivated by this, we aim to develop an efficient algorithm tailored for the
problem of LHC-s-t path enumeration in large graphs. The algorithm should not
only have the ability of pruning unnecessary computation specific to the label
constraints during the enumeration, but also avoid the costly verification of the
results at the end of the enumeration.

Contributions. The main contributions of our paper are summarized as follows:

(A) The first work to study the LHC-s-t path enumeration. To the best of our
knowledge, this is the first work to study the problem of LHC-s-t path enumera-
tion in large graphs, which has many real-world applications.

(B) An efficient and scalable algorithm for LHC-s-t path enumeration. By
revisiting the missing pruning opportunities in the state-of-the-art HC-s-t path
enumeration algorithm, we first propose an online label-based index based on
which the fruitless exploration can be effectively identified. After that, we pro-
pose an efficient LHC-s-t path enumeration algorithm in which the identified
unnecessary computation is effectively pruned, which can significantly improve
the enumeration performance by reducing the search space.

(C) Extensive performance studies on real-world datasets. We conduct exten-
sive performance studies on real-world graphs with various graph properties.
The experiment results demonstrate that our proposed algorithm is efficient and
scalable regarding processing HC-s-t path enumeration queries in large graphs.

2 Preliminary

Let G = (V,E,L, λ) denote a labelled directed graph, where V (G) is the set
of vertices, E(G) is a set of directed edges, L(G) is the set of edge labels, and
λ is the function that assigns each edge e ∈ E(G) a label λ(e) ∈ L(G). We
use n and m to denote the number of vertices and edges, respectively. For a
vertex v ∈ V (G), we use G.nbr−(v)/G.nbr+(v) to denote the in-neighbors/out-
neighbors of v in G. We omit G in the notations when the context is self-evident.
Given a graph G, the reverse graph of G, denoted by Gr = (V,Er), is the graph
generated by reversing the direction of all edges in G.

A path from vertex u to vertex v, denoted by p(u, v), is a sequence of vertices
{u = v0, v1, . . . , vh = v} such that (vi−1, vi) ∈ E(G) for every 1 ≤ i < h. Given
two paths pA and pB , pA is a partial path of pB if pA makes up part of PB,
denoted by pA ⊆ pB . A simple path is a loop-free path where there are no
repetitions of vertices and edges. By |p| and p[i], we denote the length of path
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p and the ith vertex of p, respectively. We call the intermediate path of a query
during its enumeration as its prefix. Given two vertices u and v, the shortest
distance from u to v, denoted by distG(u, v), is the length (i.e., the number of
hops in this paper) of the shortest path from u to v on G, we omit G in the
notations when the context is self-evident. Given a pre-defined hop constraint k,
we say a path p is a hop-constrained path if |p| ≤ k. We call a traversal on G as
a forward search and on Gr as a backward search. The results of a LHC-s-t path
query q are denoted as P (q).

Fig. 1. Labelled graph G

Problem Statement. Given a labelled directed graph G and a LHC-s-t path
query q(s, t, k, L), we aim to efficiently enumerate the LHC-s-t path P (q) from
s to t on G using only edges with labels in L such that the number of hops in
each path is not larger than k.

Example 1. Consider a labelled directed graph G shown in Fig. 1. Given a
LHC-s-t path query q(v0, v9, 4, {a, b}), one LHC-s-t path can be found, namely
p = (v0, v5, v7, v9), which is demonstrated by the dashed arrows in Fig. 1.

3 The Baseline Solution

In this section, we introduce the state-of-the-art algorithm, PathEnum [19], for
HC-s-t path enumeration query and present a straightforward baseline solution
BaseEnum for LHC-s-t path query processing based on PathEnum. Given a HC-
s-t path query q from s to t with hop constraint k, the main idea of PathEnum
is to prune any vertex v visited during the enumeration if the shortest distance
dist(v, t) from v to t exceeds the remaining hop budget.

Based on PathEnum, the baseline solution for LHC-s-t path query processing
is as follows: since the results computed by PathEnum contain all the results
for LHC-s-t path enumeration, it is immediate that all LHC-s-t paths for q can
be correctly enumerated by filtering the HC-s-t paths that violate the label con-
straints. Algorithm 1 illustrates the baseline solution BaseEnum for LHC-s-t path
query processing.
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Algorithm 1: BaseEnum(G, q)
1 Find distGr (q.t, v) for each v ∈ V (G) by a BFS;
2 Search(G, P, (q.s), q);
3 P ← Verify(P, q);
4 foreach p ∈ P do
5 Output p;

6 Procedure Search(G, P, p, q)
7 v′ ← p[|p|]; if v′ = q.t then P.add(p);
8 if |p| = q.k or v′ = q.t then return;
9 foreach v′′ ∈ nbr+(v′) s.t. |p| + distGr (q.t, v′′) < k do

10 if v′′ �∈ p then Search(G, P, p
⋃{v′′}, q);

11 Procedure Verify(P, q)
12 P ′ ← ∅;
13 foreach p ∈ P do
14 foreach i ∈ 0..|p| − 1 do
15 if λ((p[i], p[i + 1])) �∈ q.L then
16 continue;

17 P ′.add(p);

18 return P ′;

Given a graph G and a LHC-s-t path query q, BaseEnum first computes the
distance between t and all vertices in G by running a BFS (line 1). Then the
enumeration for LHC-s-t paths is conducted (line 2). The paths obtained by the
search are then verified to ensure that only paths with valid labels are output
(lines 3–5). Procedure Search enumerates the paths with a hop constraint of k
recursively (lines 6–10). Specifically, if a path p ends with vertex q.t is found, p
is a candidate result, which is immediately added to P (line 8). If p’s length has
reached q.k or p ends with vertex q.t, the search terminates (line 9). Otherwise,
for the out-neighbor v′′ of v′ which meets the hop constraint and has not been
explored in p, BaseEnum adds v′′ in p and continues the search (line 9–10). In
procedure Verify, the paths found by Search are examined in a row, such that
any path that contains invalid labels are filtered and the rest are returned as the
final results for q (lines 11–18).

Remark. As a bidirectional search could improve the enumeration performance,
PathEnum conducts a forward search from s on G and a backward search from
t on Gr concurrently, and concatenates the paths explored during the bidirec-
tional search to obtain the final results by a hash join. Since the optimization is
orthogonal to the label constraints in our problem and can be easily adapted to
our approach, we follow the single direction search when introducing BaseEnum
and our approach in Sect. 4. In Sect. 7, both of these methods are evaluated in
our experiments.
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Fig. 2. Main observation of our approach

4 Our Approach

4.1 Overview

Given a LHC-s-t path query, BaseEnum prunes the unnecessary computation dur-
ing enumeration by examining the vertices’ reachability based on the existence
of edges, which misses the possible pruning opportunities specific to the label
constraints. In fact, there still exists a huge amount of fruitless exploration
attributed to the label constraints, which can be identified and avoided to signifi-
cantly reduce the search space. Consider the enumeration procedure of BaseEnum
regarding q(v0, v9, 4, {a, b}) in Fig. 1. Initially, the search by BaseEnum starts
from v0. Because |(v0)| + dist(v1, v9) = 4 ≤ q.k, the search following v1 is deter-
mined to be promising and hence v1 is explored, resulting in the search prefix
(v0, v1) shown in Fig. 2 by the dashed box. After this, because it is found by look-
ing up the index that for each v ∈ {v2, v3, v4}, |(v0, v1)|+dist(v, v9) = 4 ≤ q.k, all
three out-neighbors of v1 are considered to be promising and therefore explored,
resulting in the enumerated prefixes {(v0, v1, v2), (v0, v1, v3), (v0, v1, v4)}. Subse-
quently, v6 and v9 are explored in a row. However, when verifying the correctness
of the three found paths {(v0, v1, v2, v6, v9), (v0, v1, v3, v6, v9), (v0, v1, v4, v6, v9)},
it is noticed that all these results are invalid because λ((v6, v9)) = c and thus
the label constraint q.L = {a, b} fails on edge (v6, v9) in all of these paths. As a
result, all the computation in this example is fruitless and therefore unnecessary,
which is represented by the shaded area in Fig. 2.

According to this example, it is clear that there exists a huge amount of
unnecessary computation specific to label constraints in LHC-s-t path enumera-
tion, while pruning them in advance can considerably reduce the search space
and avoid the expensive final verification, which consequently improves the enu-
meration performance. To achieve this goal, we first define a label-based index,
which is constructed online to effectively identify the fruitless exploration. Based
on the devised index, we propose an efficient LHC-s-t path enumeration algorithm
which can maximally prune the unnecessary computation, and thus improve the
whole performance.
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4.2 Label-Based Index

As discussed in Sect. 4.1, given a LHC-s-t path query q, pruning the exploration
that violates the label constraints can significantly reduce the search space. How-
ever, it is infeasible to prune such exploration by dynamically checking each
explored edge during the enumeration to ensure that its label is in q.L. Con-
sider the same example in Fig. 2, where the prefix (v0, v1) explores v2, v3 and
v4 by extending the edges (v1, v2), (v1, v3) and (v1, v4). Because λ((v1, v2)) = a,
λ((v1, v3)) = a and λ((v1, v4)) = b, all these three edges have valid labels con-
tained by q.L, which means the search on them should continue normally. How-
ever, it has been demonstrated in Sect. 4.1 that the enumeration following them
is fruitless. According to this contradiction, it is obvious that the fruitless com-
putation attributed to the label constraints cannot be trivially identified and
pruned by dynamically checking the labels of explored edges. As a result, the
following question arises: is it possible to design an approach such that the fruit-
less exploration regarding LHC-s-t path enumeration can be effectively identified
and pruned? In this section, we aim to answer this questions and introduce our
approach to prune the unpromising search in LHC-s-t path enumeration.

Reconsider the example of running q(v0, v9, 4, {a, b}) on G by BaseEnum
shown in Fig. 2, we observe that the enumeration following (v0, v1) is fruitless
because v1 is not reachable to v9 due to the label constraint, which only allows
edges labelled a and b to be explored during the search. Based on this obser-
vation, if the reachability regarding the query constraints on both labels and
hops can be efficiently retrieved, the pruning can be effectively done during the
enumeration. Following the idea, we define:

Definition 1 (Label-constrained Distance D). Given a graph G, two ver-
tices v0, v1 and a set of labels L, the label-constrained distance from v0 to v1
with labels L, denoted by DG(v0, v1, L), is the length of the shortest path from
v0 to v1 on G using only the labels in L. G is omitted in the notation when the
context is self-evident.

Based on the definition of label-constrained distance, we then prove the fol-
lowing lemmas on which our index is based:

Lemma 1. Given a graph G, a LHC-s-t path query q and a vertex v ∈ V (G), if
there exists a LHC-s-t path p from s to t with |p| ≤ k and constrained label set L,
then for any p[i] = v where 0 ≤ i < |p|, DG(s, v, L) ≤ i and DGr

(t, v, L) ≤ k − i.

Proof. Based on the definition of LHC-s-t path, if 0 ≤ i < |p|, then v[i] must be
reachable from v[0] (i.e. s) and reachable to v[|p|] (i.e. t) within i and |p| − i
hops, respectively, using only the labels in q.L. Moreover, given that |p| ≤ k and
v[i] must be reachable to v[|p|] (i.e. t) within k − i hops using only the labels in
q.L, v[i] should also be reachable to t within k − i hops regarding q.L. �

According to Lemma 1, we further define the following lemmas to demon-
strate how the vertices can be pruned during the search to reduce unnecessary
computation:
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Algorithm 2: ConstructIndex(G, q)
1 Sv ← {q.s}; end ← False;
2 D ← ∅; D(q.s, q.s, q.L) = 0;
3 while |Sv| �= 0 and !end do
4 v ← Sv[0]; Sv.remove(v);
5 foreach v′ ∈ nbr+G(v) s.t. λ((q.s, v′)) ∈ q.L do
6 if (q.s, v′, q.L) �∈ D then
7 if q.k < D(q.s, v, q.L) + 1 then
8 end = True; break;

9 D(q.s, v′, q.L) = D(q.s, v, q.L) + 1;
10 Sv.add(v

′);
11 return D;

Lemma 2. Given a graph G, a vertex v ∈ V (G) and a LHC-s-t path query q, if
DG(q.s, v, q.L) + DGr

(q.t, v, q.L) > q.k, then � ∃p ∈ P (q) s.t. v ∈ p.

Proof. Based on Lemma 1, if DG(q.s, v, q.L) + DGr
(q.t, v, q.L) > q.k, then when

v exists in a LHC-s-t path p from s to t, the length |p| of p must be larger than
q.k, thus p obviously cannot be a valid result for q, which proves � ∃p ∈ P (q) s.t.
v ∈ p. �

According to Lemma 2, given a LHC-s-t path query q, it is clear that for any
vertex v ∈ V (G), if DG(q.s, v, q.L) + DGr

(q.t, v, q.L) > q.k, then vertex v can
never appear in a valid LHC-s-t path and thus does not need to be explored at
all during the enumeration, which can be removed from V (G) before the enumer-
ation begins. Moreover, the pruning can also take place during the enumeration,
as shown in the following lemma:

Lemma 3. Given a graph G, a prefix p′ and a LHC-s-t path query q, if |p′| +
DGr

(q.t, p′[|p′|], q.L) > q.k, then � ∃p ∈ P (q) s.t. p′ ⊆ p.

Proof. Based on Lemma 1, if |p′| + DGr
(q.t, p′[|p′|], q.L) > q.k, then p′ requires

at least q.k−|p′|+1 hops to explore q.t, which obviously exceeds the hop budget
left. As a result, � ∃p ∈ P (q) s.t. p′ ⊆ p. �

According to Lemma 3, given a LHC-s-t path query q and a prefix p′, if |p′| +
DGr

(q.t, p′[|p′|], q.L) > q.k, then p′ requires to proceed more hops to reach q.t
than its remaining hop budget. Hence the enumeration procedure following p′ is
fruitless and can be directly pruned.

Based on the observations, given a graph G and a LHC-s-t path query
q, in order to reduce unnecessary computation during the enumeration, we
want to build an index to support instant lookup on both DG(q.s, v, q.L) and
DGr

(q.t, v, q.L) for v ∈ V (G), which gives rise to our index construction algo-
rithm ConstructIndex.

Algorithm. Algorithm 2 illustrates the procedure of the index construction on
G, as the same procedure on Gr can be achieved similarly. Given a graph G and
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a LHC-s-t path query q, ConstructIndex performs a BFS exploration on G while
updating the label-constrained distance D from q.s to each visited vertex.

Specifically, ConstructIndex first creates a queue Sv to store the current set of
vertices whose out-neighbors need to be explored, which initially only contains
q.s. Boolean variable end is created to record if the index construction needs
to terminate, which happens when the allowed hop budget has been exhausted
(line 1). Then, D is initialized and the label-constrained distance between q.s
and itself is set to 0 (line 2). After this, ConstructIndex iteratively explores the
vertices while following the label constraints in G in a BFS order, updating the
label-constrained distance D for them, which terminates when no more vertices
can be explored or the distance has exceeded the hop constraint (lines 3–10).
At the start, the first vertex v in Sv is popped out and v’s out-neighbors v′

such that the label of edge (v, v′) is in q.L are visited (lines 4–5). When the
distance between q.s and v′ is not recorded, if the new distance to be assigned,
D(q.s, v, q.L)+1, is greater than q.k, then the assigned distance has exceeded the
hop constraint. Therefore, the procedure of ConstructIndex will terminate (lines
6–8). Otherwise, D(q.s, v′, q.L) is updated and v′ is added to Sv for further
exploration (lines 9–10). Finally, D is returned (line 11).

Fig. 3. Example of ConstructIndex

Example 2. Reconsider the graph G and the LHC-s-t path query q(v0, v9, 4,
{a, b}) in Fig. 1. We demonstrate the example of running Algorithm2 on (G, q)
in detail, where the vertices explored at each size of the label constraint distance
are shown in Fig. 3(a). The vertices q.s and q.t are marked in grey. Addition-
ally, Fig. 3(b) demonstrates the index constructed on D, which shows the label-
constrained distance between s (i.e. v0) and each v ∈ V (G) that is reachable
from s within the hop budget.

Initially, the search starts from v0 because Sv = {v0}. Then, the out-
neighbors of v0, namely {v1, v4, v5}, are visited as they follow the label constraint,
resulting in the new label-constraint distances D(v0, v1, q.L) = D(v0, v4, q.L) =
D(v0, v5, q.L) = 1, which are inserted into the index. After this, the vertices in Sv,
namely {v1, v4, v5}, are extended by their out-neighbors {v2, v3, v6, v7, v8} and
their label-constraint distances from v0 are also updated to 2. Finally, because the
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Algorithm 3: LabelledEnum(G, q)
1 D ← ConstructIndex(G/Gr, q);
2 ReduceGraph(G, q,D); P ← ∅;
3 Search(G, P, (q.s), q);
4 foreach p ∈ P do
5 Output p;

6 Procedure ReduceGraph(G, q,D)
7 foreach v ∈ V (G) do
8 if DG(q.s, v, q.L) + DGr (q.t, v, q.L) > q.k then
9 V (G).remove(v);

10 foreach e ∈ E(G) s.t. v ∈ e do
11 E(G).remove(e);

12 Procedure Search(G, P, p, q)
13 v′ ← p[|p|]; if v′ = q.t then P.add(p);
14 if |p| = q.k or v′ = q.t then return;
15 foreach v′′ ∈ nbr+(v′) s.t. |p| + DGr (q.t, v′) < k do
16 if v′′ �∈ p then Search(G, P, p

⋃{v′′}, q);

label of edge (v6, v9) is c which violates the label constraint, vertex v9 cannot be
extended from v6. Instead, v9 and v10 are extended from v7, and v11 is extended
from v8, leading to D(v0, v9, q.L) = D(v0, v10, q.L) = D(v0, v11, q.L) = 3.

Theorem 1. The time complexity of ConstructIndex is O(|V (G)| + |E(G)|).
Proof. The time complexity of ConstructIndex is O(|V (G)| + |E(G)|) because a
breadth-first search is performed during the construction procedure, which visits
each vertex and edge in G once. �

4.3 LHC-s-t path Enumeration

Given a graph G and a LHC-s-t path query q, after constructing the index on the
label-constrained distances from q.s/q.t to each v ∈ V (G) (the label-constrained
distance to vertices that are not visited in ConstructIndex are treated as ∞.), we
can identify the fruitless exploration during the enumeration based on Lemma2
and Lemma 3, and thus accelerate the LHC-s-t path query processing by prun-
ing them. According to Lemma 2, it is obvious that there exist many vertices in
V (G) that will never be a part of a valid LHC-s-t path due to the label and hop
constraints. As a result, to minimize the unnecessary computation, we remove
such vertices in V (G) and their corresponding edges in E(G) in advance, which
effectively reduces the graph size and search space before the enumeration proce-
dure begins. Additionally, based on Lemma3, it can be determined early that the
vertices explored during the enumeration will be fruitless. Therefore, we dynam-
ically verify the explored vertices to ensure that the search following them must
be promising. The detailed algorithm, LabelledEnum, is shown in Algorithm3.

Algorithm. For a LHC-s-t path query q, LabelledEnum first constructs the index
on both G and Gr, to compute DG(q.s, v) and DGr

(q.t, v) for all v ∈ V (G) (line
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Fig. 4. Example of ConstructIndex

1). After this, LabelledEnum reduces the search space by removing the vertices
and edges in G that will never be a part of a valid LHC-s-t path (line 2). P is
then initialized to store the LHC-s-t paths found during the enumeration, which
is conducted in a DFS manner with procedure search (line 3). For each path
p obtained during the search, p is output as a valid LHC-s-t path (lines 4–5).
In procedure ReduceGraph, each vertex v ∈ V (G) such that DG(q.s, v, q.L) +
DGr

(q.t, v, q.L) > q.k will be removed directly based on Lemma 2 (lines 7–9).
Any edge that contains such v is also removed (lines 10- 11). Procedure Search
enumerates the LHC-s-t paths with a hop constraint of k based on the index
recursively (lines 12–16). Specifically, if a path p with length q.k is found, p is
added into P (line 14). Otherwise, for the out-neighbor v′′ of v′ which meets both
the label and hop constraint according to Lemma3 and has not been explored
in p, LabelledEnum adds v′′ in p and continues the search (line 15–16).

Example 3. Reconsider the graph G and LHC-s-t path query q in Fig. 1. We
demonstrate the example of running LabelledEnum on G and q. After construct-
ing the index, the dashed vertices and edges in Fig. 4 are those removed in proce-
dure ReduceGraph due to the violation of label and hop constraints. The search
starts from prefix (v0) and explores v5 because |(v0)| + DGr

(v9, v5) = 2 < q.k.
Similarly, v7 and v9 are subsequently explored, resulting in the found LHC-s-
t path (v0, v5, v7, v9).

Theorem 2. Given a graph G and a LHC-s-t path query q, Algorithm3 enu-
merates all LHC-s-t paths for q in G correctly.

Proof. Based on the correctness of PathEnum, it is direct that q’s LHC-s-t paths
on G are enumerated correctly if no pruning is done on the label constraints.
Moreover, according to Lemma 2 and Lemma 3, a vertex is not pruned unless it
cannot be a part of a valid LHC-s-t path. As a result, Algorithm 3 enumerates
all LHC-s-t paths for q in G correctly. �

5 Evaluation

In this section, we evaluate the efficiency of the proposed algorithms. All the
experiments are performed on a machine with one 20-core Intel Xeon CPU E5-
2698 and 512 GB main memory running Red Hat Linux 7.3, 64 bit.
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Table 1. Statistics of the datasets

Dataset Name |V | |E| davg dmax

Epinsion EP 75K 508K 13.4 3,079

LiveJournal LJ 4M 69M 17.9 20,333

Twitter-2010 TW 42M 1.46B 70.5 2,997,487

Friendster FS 65M 1.81B 27.5 5,214

Datasets. We evaluate our algorithms on four real-world graphs, which are
shown in Table 1. Among them, Epinsion is a who-trust-whom online social net-
work of consumer review site Epinions.com. LiveJournal is a free online commu-
nity based social network. Twitter-2010 is a web graph crawled from Twitter.
Friendster is a social network retrieved from Friendster. Twitter-2010 is down-
loaded from LAW1 and the rest are downloaded from SNAP2. As all the datasets
come with no edge labels, we use the method in [20] to synthetize the edge labels,
while the number of labels |L(G)| is set to 8.

Algorithms. We compare the following algorithms:

– BaseEnum: Algorithm 1 where PathEnum runs in a single direction (Sect. 3).
– BaseEnum+: Algorithm 1 where PathEnum runs with an optimized bidirec-

tional search order (Sect. 3).
– LabelledEnum: Algorithm 3 (Sect. 4.3).
– LabelledEnum+: LabelledEnum with an optimized bidirectional search order

introduced by BaseEnum+ (Sect. 3).

Settings. All the algorithms are implemented in Rust 1.43. In the experiments,
the time cost is measured as the amount of wall-clock time elapsed during the
program’s execution.

Fig. 5. Processing time on all datasets

1 https://law.di.unimi.it/index.php.
2 https://snap.stanford.edu/data/.

https://law.di.unimi.it/index.php
https://snap.stanford.edu/data/
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(a) EP (b) LJ (c) TW (d) FS

Fig. 6. Processing time when varying k

Exp-1: Efficiency on Different Datasets. In this experiment, we evaluate the
processing time of four algorithms (i.e. BaseEnum, BaseEnum+, LabelledEnum,
LabelledEnum+) on all four graphs. We randomly generate 100 random LHC-s-
t path query q(s, t, k, L) on each graph where source vertex s could reach target
vertex t in k hops with the given label set L. We set k = 6 and |L| = 4 by
default. The results are reported in Fig. 5.

As can be seen in Fig. 5, our proposed LHC-s-t path enumeration algorithms
LabelledEnum and LabelledEnum+ always outperform the other two algorithms
on all of the graphs. For example, on graph FS, LabelledEnum is 5.6× faster than
BaseEnum and 3.5× faster than BaseEnum+. Comparatively, LabelledEnum+

demonstrates a better performance, which is 12.9× faster than BaseEnum and
8.1× faster than BaseEnum+. This is because the pruning technique used in
our proposed algorithms can significantly reduce the search space and the fruit-
less exploration attributed to the label constraints is avoided. For LabelledEnum
and LabelledEnum+, LabelledEnum+ always outperforms LabelledEnum on all
datasets, this is because by using the bidirectional search, some computed paths
can be shared during the enumeration, which is consistent with the analysis in
[19].

Exp-2: Efficiency When Varying Hop Constraint k. In this experiment,
we evaluate the efficiency when varying hop constraint k from 3 to 7. For each
hop constraint k, we randomly generate 50 queries. The average processing time
for each query is shown in Fig. 6.

As shown in Fig. 6, as the hop constraint k increases, the processing time of all
algorithms increases as well. This is because as k increases, the number of LHC-
s-t paths also increases. Furthermore, LabelledEnum and LabelledEnum+ always
outperform the other two algorithms, and the performance gap increases as the
hop constraint k increases. For example on TW, when k = 4, LabelledEnum is
2.4× faster than BaseEnum and 2.1× faster than BaseEnum+; in contrast, when k
increases to 7, LabelledEnum becomes 5.6× faster then BaseEnum and 3.5× faster
than BaseEnum+. This is because when the search space grows larger due to the
increase of k, the fruitless exploration in the baseline algorithms increases accord-
ingly while these fruitless exploration can be significantly avoided due to index-
based pruning on the label constraints in LabelledEnum and LabelledEnum+.
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(a) EP (b) LJ (c) TW (d) FS

Fig. 7. Processing time when varying |L|

Exp-3: Efficiency When Varying Label Set Size |L|. In this experiment,
we evaluate the efficiency when varying the label set size |L| from 2 to 6. For
each label set size |L|, we randomly generate 50 queries. The average processing
time for each query is shown in Fig. 7.

As shown in Fig. 7, as the label set size |L| increases, the processing time of
our proposed algorithms increases while the time of the two baseline algorithms
remain the same. This is because as |L| increases, the size of fruitless computa-
tion that can be pruned becomes smaller. For example on TW, when |L| = 2,
LabelledEnum is 8.3× faster than BaseEnum and 6.3× faster than BaseEnum+;
in contrast, when |L| increases to 6, LabelledEnum becomes 1.8× faster then
BaseEnum and 1.4× faster than BaseEnum+. The time of the two baseline algo-
rithms remain the same because they always have to first enumerate all the paths
that follow the hop constraint.

6 Related Work

HC-s-t path enumeration is a fundamental problem in graph analysis and several
algorithms have been proposed [3,15–17,19] for this problem. We divided them
into two categories, which are pruning-based algorithms [3,15,17] and index-
based algorithms [19]. Pruning-based algorithms typically adopt a backtracking
strategy based on a depth-first search based framework. During the enumeration,
[17] and [3] dynamically compute the shortest path distance from v to t and
prunes v if it is unreachable to t, while [15] dynamically maintains a lower bound
of hops to the target vertex t for the vertices visited and prunes v if the current
remaining hop budget is smaller than the lower bound of hops required. For the
index-based algorithm, [19] finds that the pruning-based algorithms typically
suffer from severe performance issues caused by the costly pruning operations
during enumeration. Therefore, BaseEnum builds a light-weight index to reduce
the number of edges involved in the enumeration. Thanks to the index structure,
BaseEnum significantly outperform pruning-based algorithms as demonstrated in
[19]. Hence, we also adopt the index-based approach in this paper.
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7 Conclusion

In this paper, we study the problem of LHC-s-t path enumeration. To address this
problem, we observe that there exists a huge amount of unnecessary computation
due to the label constraints and the processing performance can be significantly
improved if these unnecessary computation can be effectively pruned. Following
this observation, we first propose a label-based index to identify the fruitless
exploration. Based on the constructed index, we design an efficient algorithm to
process the given query by pruning the fruitless computation related to both the
label and hop constraints. Experiment results on real-world datasets demonstrate
the efficiency of our proposed algorithms.
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