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Abstract. The importance of social communities around open-source
software projects has been recognized. Despite that a lot of relevant
research focusing on this topic, understanding the structures and dynam-
ics of communities around open-source software projects remains a
tedious and challenging task. As a result, an easily accessible and use-
ful application that enables project developers to gain awareness of the
status and development of the project communities is desirable. In this
paper, we present MyCommunity, a web-based online application sys-
tem to automatically extract communication-based community struc-
tures from social coding platforms such as GitHub. Based on the detected
community structures, the system analyzes and visualizes the commu-
nity evolution history of a project with a set of semantic-rich events, and
quantify the strength of community evolution with respect to different
events with a series of indexes. Built-in support to quantitative analysis
and machine learning tasks based on the quantitative evolutionary events
are provided. We demonstrate the usefulness of the system by present-
ing its ability in predicting project success or failure with the community
evolution features. The results suggest the system achieves a prediction
accuracy of 88.5% with commonly available machine learning models.

Keywords: Web-based application · Open source community
analysis · Community evolution

1 Introduction

Open source software (OSS) developers form implicit collaborative social net-
works [2], i.e., developer social networks (DSNs) [10], when working together on
social coding platforms like GitHub. In [10], the authors discover that community
evolution events originally proposed for general social networks (GSNs) [13,15],
including community split, shrink, merge, expand, extinct, and emerge, are also
feasible in understanding community evolution in DSNs. They also discover that
events of community evolution in DSNs correspond to the developing stages and
important events in OSS projects. As a result, keeping aware of the structure and
dynamics of DSNs around OSS projects is important for OSS maintainers due
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Turning point indicated by community split and merge, the level of 
developers’ ac�vi�es start declining since then.

All indexes are close to zero due to  the community 
around the project is no longer ac�ve, which is a 
clear indicator that the project is abandoned.

Cri�cal point when shrink becomes 
greater than expand, and the trend of 
losing community members is obvious.

Sharp raise in community split, merge, expand and emerge. 
The project enters an ac�ve and fast developing period.

Legend:

Fig. 1. Quantified community evolution events over time for GitHub project
google/material-design-lite, with a moving average over 20 data points. It can be seen
that the proposed approach can provide useful information about the dynamics of
communities around the project, as well as the project’s status. Better viewed in color.

to the strong correlation between the health of social communities and project
viability [1,3,8–10].

In summary, this paper makes the following contributions. And our applica-
tion can easily extend to commits and PRs.

1. We present a web-based online application called MyCommunity for commu-
nity evolution analysis for OSS projects that implements a complete workflow
from data collection, community detection, evolution analysis, and visualiza-
tion, with high usability and integrity.

2. We extend existing approaches for community evolution event detection and
provide quantitative analysis to the strength of community evolution with
respect to the events.

3. We demonstrate the usefulness of the analysis results, and the functions of
the proposed application in supporting intelligent analysis for OSS projects
by predicting project success and failure with the quantified community evo-
lution events and machine learning techniques.

2 Related Work

Existing studies show that community evolution in developer social networks
and general social networks can be described by a set of semantic-rich events
[10,13,15]. Community detection algorithms such as the Clauset-Newman-Moore
(CNM) algorithm [14], clique percolation method (CPM) [15], etc, are proposed
to discover communities inside social networks. Despite that community evolu-
tion can potentially provide valuable insights about the current and future status
of OSS projects [10,12], performing community evolution analysis requires a lot
of tedious work.

With respect to web-based systems, there are many applications and services
developed to understand OSS projects. INFOX [17] is a web-based application to
automatically identify non-merged features in forks and generate an overview of
fork status of the project. OSR [11] is a visualization application to identify OSS
developers’ practices and generate biographies for them. However, applications
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that focus on understanding community evolution in OSS projects are rare. In
this paper, we present the MyCommunity application to fill the niche and bridge
the gap between community evolution research [10,13,15] and web-based services
for OSS projects.

3 System Architecture

This section shows MyCommunity’s architecture (see Fig. 2) which consists of
three components. Each part is described as follows.

Fig. 2. Overview of system architec-
ture.

Fig. 3. Overview of database.

3.1 MyCommunity GitHub Plug-in

The third-party application has two mechanisms to obtain repository data on
GitHub. The MyCommunity GitHub Plug-in, which establishes the connection
between GitHub and the MyCommunity backend, is responsible for provid-
ing data and creating webhooks from GitHub. In addition, the MyCommunity
GitHub plug-in gets all the data since the repository was built, and will pro-
vide a crawler function to help the application get the communication of this
repository before setting up the webhook.

Users can connect our applications to different social coding platforms and
databases by selecting different MyCommunity Plug-ins (see Fig. 4).

3.2 MyCommunity Backend

The backend of MyCommunity has four components: read/write data from a
database, information extraction, community detection, and visualization gen-
eration (see Fig. 2). In particular, we made an image of our application based on
image tiangolo/uwsgi-nginx-flask:python3.9 1, which can run Flask web applica-
tions in a single container with uWSGI and Nginx.

Data IO module uses a relational database to store data (see Fig. 3). The
connection in the metadata table box represents the foreign key relationship.

1 https://github.com/tiangolo/uwsgi-nginx-flask-docker.

https://github.com/tiangolo/uwsgi-nginx-flask-docker
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Table 1. Rules to determine the evolution events of a community c detected in one
time step, e.g., community i in time t (adopted from [10,16]).

Event Community evolution event detection

extinct Community c has no matching community in the next step. This event marks a massive

exodus of developers from the community

emerge Community c has no matching community in the prior step. This mode marks the rise of

community discussion and may also represent new issues to be discussed

split Community c has at least two communities matched to it in the next step. Members of the

community have dispersed interests and are no longer working towards a common goal

shrink Community c has only one community matched in the next step, and the size of the

matching community is less than the size of c†. This event represents a shrinking community

size and users are attracted to other communities

merge Community c has at least two matching communities in the previous time step. This mode

represents the integration of multiple communities, perhaps users have a common interest or

solve a shared bug

expand Community c only matches with one community in the previous step, and the size of the

prior community is less than the size of c. This event represents an increase in the size of the

community and new members are drawn into the community

†We modify the rule in [10] to match c with communities detected in the next step when determining

community shrink. With this modification, there are even numbers of evolution events potentially associ-

ated with a community when matching communities in the previous and next time steps, respectively—

community extinct, split, and shrink associated with communities in the next step, and community emerge,

merge, and expand by matching communities in the previous step.

We use the user’s login name and project name to uniquely identify a project,
and use issue id to uniquely identify an issue of the same project. Informa-
tion extraction module, prepare data for subsequent community detection, can
extract information from metadata and write results to the database using the
Data IO module. In visualization generation module, the results of the calcula-
tion will be formatted in the form required for the presentation of the chart.

The algorithm in the application is described as follows.

Community Detection: Community detection uses the extension of the
Clauset-Newman-Moore (CNM) algorithm [4,14], which can be used on weighted
graphs using the strength of connections between the nodes indicated by edge
weights. Input is all communication content in a time slice of a project for
detection.

We apply an overlapping sliding window with a length of a month that slides
temporally forward one week at a time. Then we obtain a series of segments S =
〈s1, s2, . . . , sT 〉. We then use a weighted, undirected graph Gt = 〈Vt, Et, Ut,Wt〉
to model the structure of a developer social network (DSN) in the segment
st ∈ S, where Vt includes all the participants of conversations in st, and Et

is the set of edges representing the relationship between users in Vt. For each
edge eij ∈ Et, there is a edge weight wij ∈ Wt that quantifies the strength of
interactions between user vi and vj . And we assign a weight ui ∈ Ut to quantify
the importance of user vi.

Finally, we execute the community detection algorithm and get a set of non-
overlapping communities Ct = {ct,1, ct,2, · · · , ct,n} (ct,i ⊆ Vt) in graph Gt of the
t-th snapshot.
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Community Evolution Analysis: Uk
i represents the weight of the node k if

it belongs to community i. And in Eq. 2, Si,j calculates the similarity between
community i and community j.

Uk
i =

{
0, k /∈ ci

uk
i , k ∈ ci

(1)

Si,j =

∑p
k=0 max(Uk

i , U
k
j )

min(
∑q

l=0 max(U l
i , U

l
j),

∑r
m=0 max(Um

i , Um
j ))

(2)

where p is the set of the common nodes of community i and j, q and r are the
node sets of the two communities before and after.

We filter out irrelevant communities by comparing Si,j with threshold

ε=0.3 [10,16]. We obtained the predecessor community set Ct
priori

=
{

ct,1priori
,

ct,2priori
. . . . . . ct,npriori

}
and the successor community set Ct

nexti =
{

ct,1nexti , c
t,2
nexti

. . . . . . ct,nnexti

}
of each community through the calculation of community tracer.

We adopt the six events used in [10,13,16] to determine the evolution of each
community c by matching the communities detected in time steps before and
after c is detected following the rules defined in Table 1. An evolutionary event
vector is taken at time t-th denoted as Vt, is obtained by:

Vt = 0.001 ∗
[

n∑
i=0

(
P t
i ∗ W t

nexti

)
+

m∑
j=0

(
P t+1
j ∗ W t+1

priorj

)]
(3)

where P t
i is the event label of i-th community in t-th snapshot, W t

priori
and

W t
nexti represent its weight relative to its prior and post communities. Finally,

the values and scales for each event are displayed inline and in pie charts, as
shown in Fig. 5. We standardize all values to keep them in range [0, 1].

3.3 MyCommunity Frontend

Fig. 4. The configuration page where
users can: (a) list existing repositories;
(b) add new repositories from a specified
data source.

Fig. 5. Visualization of community
evolution events with interactive charts
provided by the frontend.

The frontend of our application consists of a series of HTML files returned
by the backend.
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There are three parts that users can operate MyCommunity directly: config-
uring settings, selecting a repository that you can view, and viewing the results
of the analysis for a specific project.

Users can configure the owner and project name of a repository to get a
convenient and unique identification (see Fig. 4). Then the application will crawl
all communication information by GitHub REST API as well as waiting for a
callback to be triggered. After the configuration process is completed, users can
view their repository in the list of repositories and click the table item they want
to check.

There are four charts on the exhibit page (see Fig. 5). We use echarts2 com-
bined with JavaScript files to generate charts. Event line charts are a higher
level of abstraction of the community evolution map, quantitatively reflecting
the evolutionary history of the community. We can look at the lines from two
dimensions: the event proportion and the overall trend. The overall trend chart
can be observed by the line chart below Fig. 5, while the event scale can be
seen in the pie chart above Fig. 5. We explain an example of a project which
is once active and has stopped developing, google/material-design-lite, in Fig. 1,
and show the overall trend of the project and the continuous decline of certain
indices (e.g. Continued decline in a split and merge means less active project
members and reflects the continued increase in the project’s risk of failure) may
indicate the future success or failure of the project.

4 Predict Project Success or Failure

To demonstrate the usefulness of the proposed system, and to help developers
to gain information about the future trend of their projects, we provide in our
system a function to predict the success or failure of a project based on the time
series of quantified community evolution events as shown in Fig. 6. As illustrated
in Fig. 1, the curve trend of the project community model has some practical
significance, representing certain specific events, and the occurrence of these
specific times ultimately affects the success or failure of the project. We built
and evaluated the model based on a dataset of 339 successful projects and 192
failed projects. We used the number of stars to measure popularity and selected
some of the most popular projects from GitHub. Next we label these projects as
success and failure. The failed projects are selected following the steps proposed
in [7], which are projects without receiving commits for a year and declared as
no longer maintained in the documents (or manually checked by authors).

First, we extract features from the sequential data for each of the community
evolution events using the tsfresh package [6]. To filter features, we use Fisher’s
exact test to determine whether the feature is strongly or weakly correlated
with the resulting label (based on Scalable Hypothesis tests) [5]. Additionally,
we store the filtered feature dict for later use on the test set. We use the number
n to denote the final count of features. For a project j, we generate a n + 1-
dimensional vector using tsfress: Mj =

〈
f j
1 , f j

2 , . . . , f j
i , . . . , f j

n, Lj

〉
, where f j

i

2 https://echarts.apache.org/zh/index.html.

https://echarts.apache.org/zh/index.html
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Fig. 6. An example of predicting results of the future success or failure of a project.

Table 2. Accuracy of different classification models

Model Accuracy Precision Recall F1

Decision Tree Classifier 0.840 ± 0.056 0.783 0.771 0.777

Random Forest Classifier 0.885 ± 0.041 0.849 0.823 0.836

SVM 0.828 ± 0.078 0.755 0.802 0.778

K-Neighbors Classifier 0.871 ± 0.035 0.815 0.849 0.832

represents the i-th feature and Lj represents the label of the jth project. The
label marks the success or failure of a given project.

Next, we use the 10-fold-cross-validation to compare and select a suitable
model. Cross-validation is a resampling procedure used to evaluate machine
learning models on a limited data sample. We compared the efficiency of several
models (see Table 2) and finally chose Random Forest Classifier.

Finally, we evaluate the model and give the project in the application a
success or failure prediction result. It can be seen that the results obtained by
the random forest classifier are most consistent with the true values. The overall
mean accuracy of our model is 88.5%. Precision, which is the fraction of relevant
instances among the retrieved instances, is 84.9%. While recall, which is the
fraction of relevant instances that were retrieved, is 82.3%. And F1 score, which
is the harmonic mean of precision and recall, is 83.6%.

5 Conclusion

We introduce the MyCommunity application which is a community metrics
application seamlessly integrated with GitHub to assist developers in monitor-
ing project communication status and notify them of the probability of project
success. MyCommunity’s main contribution is the ability to support the quan-
titative and automatic analysis of how the developers evolved in the project.

Our future work involves support for a more accurate predictive model and
more systematic evaluation. During the evaluation, we identified the need for
further improvements in our predictions such as obtaining a larger dataset.

Acknowledgement. This work is supported by the National Key R&D Program of
China under Grant No. 2018AAA0102302, the NSFC under Grant No. 62172203, and
the Collaborative Innovation Center of Novel Software Technology and Industrializa-
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