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Abstract. With the proliferation of mobile devices, wireless networks
and sharing economy, spatial crowdsourcing (e.g., ride hailing, food deliv-
ery, citizen sensing services) is becoming popular recently. In spatial
crowdsourcing (SC), workers need to physically move to specific loca-
tions to conduct the assigned tasks which incurs travel cost. In this paper,
we propose a novel SC problem, namely extra budget-aware online task
assignment (EBOTA), where tasks have extra budget to subsidize the
extra travel cost of workers. EBOTA concerns the strategy of assign-
ing each task to proper worker such that the total satisfaction of com-
pleted tasks can be maximized. To address the EBOTA problem, we
first propose an efficient algorithm called Deadline-exact algorithm which
always computes the optimal assignment for the newly appearing object.
Because of Deadline-exact’s high time complexity which may limit its
feasibility in real world, we propose another two practical algorithms,
i.e., Threshold-based algorithm and Priority-based algorithm. Finally, we
verify the effectiveness and efficiency of the proposed methods through
extensive experiments on real dataset.

Keywords: Spatial crowdsourcing · Online task assignment · Extra
budget

1 Introduction

With the popularization of GPS-equipped smart devices and the development of
high-speed wireless networks (e.g. 5G), spatial crowdsourcing has drawn increas-
ing attention in recent years. Typical spatial crowdsourcing services include ride
hailing(e.g. Uber and Didi), food delivery(e.g. Ele.me and GrubHub) and citizen
sensing services(e.g. OpenStreetMap).

As there are massive tasks and workers in spatial crowdsourcing platforms,
one of the main problems is how to assign these tasks to workers properly. Exist-
ing works focus on assigning tasks to workers according to different goals, such
as maximizing the total number of completed tasks [1,22], maximizing expected
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Fig. 1. Tasks without vs with extra budget

total payoff [20,23], minimizing maximum delay [5]. An implicit assumption
shared by these works is that a worker is only willing to perform tasks within his
spatial vicinity because the worker needs to move to the location of these tasks,
which may lead some remote tasks cannot be assigned. For example, Fig. 1(a)
shows the locations of 5 tasks and 6 workers. Each circle centered by a task
indicates that task can only be assigned to workers within the circle. If all of
tasks only have such fixed range constraint, only 3 pairs can be matched, i.e.,
(t1, w2), (t3, w1) and (t4, w3), while t2 and t5 cannot be assigned to any workers.

Unfortunately, most of existing studies only consider that task requesters
have such fixed range constraint or budget [6,11,17], which cannot solve this
problem. The most closest work is incentive mechanism [2,19,21,25], which for-
mulates the pricing strategy to attract workers to participate. However, not every
task requester is willing to accept raising price, and some remote tasks still may
be not assigned if the newly attracted workers are far from them.

To overcome this challenge, we propose Extra-Budget Aware Online Task
Assignment (EBOTA) problem. In our problem: (1) different tasks have different
extra budget to subsidize and attract remote workers, and the SC platform
will conduct task assignment not only based on the fixed but also the extra
budget of tasks. A task requester can raising his extra budget to increase the
accomplishment probability of the task. In the above example, if t2 and t5 have
extra budget to subsidize workers (i.e., b2 = b5 = 1), the platform will increase
their range constraint, i.e., the dash circles as shown in Fig. 1b, which makes
w4 and w5 can serve them, respectively. (2) online dynamic task assignment
is considered. Since in some real-time spatial crowdsourcing services, tasks and
workers arrive dynamically and their temporal and spatial information are only
known when they are arrived. Task assignment needs to be performed before the
tasks and workers leave to maximize the total satisfaction.

In general, we make the following contributions in this paper:
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– We formally define the Extra-Budget Aware Online Task Assignment
(EBOTA) problem. As far as we know, we are the first one to propose this
problem.

– We propose three effective algorithms to solve the problem, i.e., Deadline-
exact algorithm, Threshold-based algorithm, and Priority-based algorithm.

– We conduct extensive experiments to prove the effectiveness and efficiency of
our algorithms.

The rest of this paper is organized as follows. Section 2 formally defines the
EBOTA problem. The optimal algorithm is proposed in Sect. 3 and online algo-
rithms are proposed in Sect. 4. Extensive experiments on real dataset are pre-
sented in Sect. 5. Section 6 reviews some related work. Finally, Sect. 7 concludes
this work.

2 Problem Definitions

Definition 1. (Task) A task, denoted by t = <lt, at, dt, rt, bt>, appears on the
platform with location lt in the 2D space at time at and its required deadline is
dt. rt is the radius of t centered in lt which is the fixed range constraint of t, and
bt is its provided extra budget.

The fixed range constraint rt is the default range for all tasks given by the SC
platform. The extra budget is used for subsiding the extra travel cost of workers,
so bt is proportion to the extra range constraint. In this paper, we assume the
proportion is at the ratio of 1. For simplicity, we directly take bt as the extra
range constraint in the rest of the paper. Therefore, a task can only be conducted
by the workers within the range rt + bt.

Definition 2. (Worker) A worker, denoted by w = <lw, aw, dw, uw>, is released
on the platform at time aw and at location lw in the 2D space, and its service
deadline is dw. His service score is uw which is graded by the task requester after
completing the task.

Definition 3. (Travel cost) The travel cost, denoted by cost(t, w), is determined
by the travel distance from lw to lt.

Travel distance, which can be measured by any types of distance such as
Euclidean distance or road network distance. In this paper, we use Euclidean
distance as the travel distance and take it as the travel cost directly for simplicity.

Definition 4. (Extra travel cost) Extra travel cost, denoted by et, is the actual
travel cost exceeding the fixed range constraint provided by the task requester,
i.e., et = cost(t, w) − rt.

Since each task has an extra budget bt, the extra travel cost et should be
no more than it, i.e., et ≤ bt. In this paper, as the travel cost is measured by
the Euclidean distance, we have et = cost(t, w) − rt = EDist(t, w) − rt. After



Extra Budget-Aware Online Task Assignment in Spatial Crowdsourcing 537

the worker completing the task, the task requester will score him according to
the satisfaction with his service. Since the extra travel cost of the task needs
to be paid by the task requester, the satisfaction function considers not only
the service score of workers, but also the extra travel cost of the task. With
the increase of extra travel cost, the satisfaction becomes smaller. Therefore, we
define the satisfaction based on the worker service score uw and the extra travel
cost et as below:

Definition 5. (Satisfaction) Satisfaction is the satisfaction of the task requester
who releases the task t to his matched worker w. It is denoted by:

S(t, w) =

⎧
⎨

⎩

uw, bt = 0,

uw × (1 − et
bt

), bt > 0.
(1)

In addition, we can add other factors to the satisfaction according to other needs.

Definition 6. (Extra-Budget Aware Online Task Assignment (EBOTA) prob-
lem) Given a set of tasks T and a set workers W , each task or worker arrives
sequentially. EBOTA calculates a feasible matching result M whose total satis-
faction is maximized, i.e., Maxsum(M) =

∑
t∈T,w∈W S(t, w), and is subjected

to the following constraints:

1. Extra budget constraint, i.e., et ≤ bt.
2. Deadline constraint, i.e., at < dw and aw < dt.
3. Range constraint, i.e., cost(t, w) ≤ rt + bt.

3 The Optimal Algorithm

In this section, we introduce the optimal solution for the EBOTA problem, where
the platform has acquired the entire spatial and temporal information of workers
and tasks before matching. Therefore, the optimal solution can not be applied
to the online scenario. We take the optimal solution as one of the compared
algorithms to show the efficiency of our proposed algorithms.

Given a set of tasks T = {t1, t2, ...} and a set of workers W = {w1, w2, ...},
we construct a bipartite graph G = (V,E) with V as the set of vertices, and E
as the set of edges. The set V contains |T | + |W | vertices including task vertices
and worker vertices. The set E contains all possible edges from task vertices to
worker verteices, i.e., if all three constraints in Definition 6 are satisfied between
task t and worker w, there is an edge (t, w) from t to w, and its weight is S(t, w)
defined in Definition 5. Then, we can use an existing flow algorithm (e.g., Kuhn-
Munkres (KM) algorithm [12]) to obtain the optimal result. The total amount
of pairs is min(|T |, |W |) and only the weight of which greater than 0 are the
final matched pairs. The whole procedure of Optimal algorithm is illustrated in
Algorithm 1.

Take Fig. 1(b) for example, we first construct a bipartite graph for all possible
workers and tasks based constraints in Definition 6. Table 1 presents the arrival
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Algorithm 1 Optimal algorithm
Input: T , W , S(., .)
Output: the matched pair set M

1: M ← ∅
2: for each task node ti ∈ T do
3: for each worker node wj ∈ W do
4: if (ti, wj) satisfies all constraints then
5: add an edge between ti and wj , weight(ti, wj) ← S(ti, wj)
6: else
7: add an edge between ti and wj , weight(ti, wj) ← 0

8: M ← KM(T, W )
9: return M

Table 1. Arrival order

Arrival order t3 w2 t1 t4 w1 t2 w3 w6 t5 w5 w4

Arrival time 8:01 8:02 8:03 8:05 8:06 8:08 8:10 8:11 8:12 8:14 8:15

Leaving time 8:08 8:09 8:10 8:12 8:13 8:15 8:17 8:18 8:19 8:21 8:22

Fig. 2. The key steps of solving optimal algorithm

and leaving time of tasks and workers, and we assume the service score of each
worker is 10, i.e., uw = 10. Since only three workers, i.e., w1, w2 and w3, are
online during t1’s active time period. However, w1 and w3 are out of the range of
t1, while w2 is in the range, so there is only one edge connected, i.e., (t1, w2). The
weight of (t1, w2) is the satisfaction between this pair, i.e., S(t1, w2) = u2 = 10
(as b1 = 0). From Table 1, we can see all six workers are online during t2’s active
time period. With the help of extra budget b2 = 1, the range constraint of t2 is
increased from rt = 2 to rt + b2 = 3, which makes w2, w3, w4 and w6 are in the
range. Therefore, four edges are connected, i.e., (t2, w2), (t2, w3), (t2, w4) and
(t2, w6). Since cost(t2, w2) < rt, i.e., et = 0, we have S(t2, w2) = u2 = 10. While
cost(t2, w3) > rt, we have S(t2, w3) = u5 × (1 − cost(t2,w3)−rt

b3
) = 9. Similarly, we

can compute S(t2, w4) = 8 and S(t2, w6) = u2 = 1. By the same way, the edges
for t3, t4 and t5 can be can be constructed as shown in Fig. 2(a).

After the whole bipartite graph have been built, the KM algorithm is run to
get the assignment. The allocation result is shown by the red line in Fig. 2(b), i.e.,
{(t1, w2), (t2, w4), (t3, w1), (t4, w3), (t5, w5)}. Therefore, the total satisfaction is
S = S(t1, w2)+S(t2, w4)+S(t3, w1)+S(t4, w3)+S(t5, w2) = 10+8+10+10+3 =
41.
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Complexity Analysis. The time and space complexity of the Optimal algo-
rithm are O(max(|T |3, |W |3)) and O(|T ||W |) respectively.

4 Online Algorithms

4.1 Greedy Algorithm

Greedy is a straightforward solution for EBOTA. It always chooses a pair with
the highest satisfaction when a new object arrives, so the result of Greedy is
local optimal. The performance of Greedy is susceptible to the order of tasks’
and workers’ appearance.

In our running example, when t3 arrives, there are no workers (see Table 1).
When w2 arrives, there is only a task t3 online and w2 is in the range of it (see
Fig. 1b). Therefore, t3 is assigned to w2. When t1 and t4 arrive, there are no
workers until w1 arrives, but it is not in their range. Similarly, there is no worker
in t2’s range. When w3 arrives, as the current task set is T = {t1, t2, t4} and it
is in the range of t2 and t4, so w3 can be assigned to t2 or t4. Since S(t2, w3) = 9
< S(t4, w3) = 10, (t4, w3) is selected by the Greedy. Using the same way, we can
get the other matched pairs (t2, w6), (t5, w5). Therefore, the total satisfaction of
Greedy is S = 10 + 10 + 1 + 3 = 24.

Complexity Analysis. For each new arrival object, the time and space com-
plexity of the Greedy algorithm are O(max(|T |, |W |)) and O(max(|T |, |W |)).

4.2 Deadline-Exact Algorithm

Since Greedy is local optimal, we propose Deadline-exact algorithm to try to
obtain the global optimal matching. The main idea is to determine the assign-
ment between tasks and workers only at their deadline. When a task or worker
reaches its deadline, we try to get the global optimal assignment for it.

Algorithm 2 presents the detailed steps of Deadline-exact algorithm. In line 1,
the result set M , the unassigned tasks set T ′ and the unassigned workers set W ′

are set empty. In line 2, when an object o reaches its deadline d, the algorithm
finds the assignment for it. In lines 3–7, the algorithm finds each unassigned
object o′ who arrives before time d. If the object o′ is a task, the algorithm adds
it to T ′. If the object o′ is a worker, the algorithm adds it to W ′. In line 8, the
KM algorithm is run based on current T ′ and W ′ to match tasks and workers. If
o is a task and matched in M ′, we assign it to the worker who is matched with
it in M ′ as shown in lines 9–14. If o is a worker and matched in M ′, we assign
it to the task who is matched with it in M ′ as shown in lines 15–20. In line 21,
the algorithm returns the final matched pair set M .

Back to our running example, t3 is the first one to reach the deadline (i.e.,
8:08, see Table 1). Currently, the unassigned task and worker sets are T ′ =
{t1, t2, t3, t4} and W ′ = {w1, w2}, respectively. After running KM algorithm,
t3 is assigned to w1. By the same way, t1 is assigned to w2, t4 is assigned to
w3, t2 is assigned to w4 and t5 is assigned to w5. The total satisfaction is S =
10 + 10 + 10 + 8 + 3 = 41.
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Algorithm 2 Deadline-exact algorithm
Input: T , W , S(., .)
Output: the matched pair set M

1: M ← ∅, the unassigned tasks set T ′ ← ∅, the unassigned workers set W ′ ← ∅
2: for each object o reaches its the deadline d do
3: for each object o′ arrives before time d do
4: if o′ is a task then
5: add o′ into T ′

6: else
7: add o′ into W ′

8: M ′ ← KM(T ′, W ′)
9: if o is a task then

10: if o is matched in M ′ then
11: w ← the worker assigned to o in M ′

12: M ← M ∪ (o, w)
13: remove w from W ′

14: remove o from T ′

15: if o is a worker then
16: if o is matched in M ′ then
17: t ← the task assigned to o in M ′

18: M ← M ∪ (t, o)
19: remove t from T ′

20: remove o from W ′

21: return M

Complexity Analysis. For each new arrival object, the time and space com-
plexity of the Deadline-exact algorithm are O(max(|T |3, |W |3)) and O(|T ||W |).

4.3 Threshold-Based Algorithm

Deadline-exact algorithm takes high time complexity. Random-threshold greedy
(Greedy-RT) [16] can alleviate the impact of the order of Greedy algorithm and
improve the efficiency of Deadline-exact algorithm. Inspired by this algorithm,
we devise Threshold-based algorithm. Threshold-based algorithm first produces
a random threshold τ , then the pair whose satisfaction is lower than τ is denied.

The details of Threshold-based algorithm is shown in Algorithm 3. In line 1,
the result set M , the unassigned tasks set T ′ and the unassigned workers set W ′

are set empty. In lines 2–4, the algorithm randomly chooses a threshold according
to the maximum satisfaction Smax [16], which can be got from historical data. In
line 5, we iteratively process each new arrival object. If the object is a task (lines
6–13), the algorithm filters a worker subset W ∗ where each worker w satisfies all
constraints and the satisfaction of the pair (o, w) exceeds the threshold. If W ∗

is not empty, the algorithm chooses the worker who has the highest satisfaction
with o. If W ∗ is empty, the algorithm adds the object to the unassigned tasks
set. If the object is a worker (lines 14–21), the algorithm filters a task subset
T ∗ where each task t satisfies all constraints and satisfaction of the pair (o, t)
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Algorithm 3 Threshold-based algorithm
Input: T , W , S(., .)
Output: the matched pair set M

1: M ← ∅; the unassigned tasks set T ′ ← ∅; the unassigned workers set W ′ ← ∅
2: θ ← �ln(Smax + 1)�
3: k ← randomly choosing an integer from {0, 1, ..., θ − 1} with probability 1

θ

4: τ ← ek

5: for each new arrival object o do
6: if o is a task then
7: t ← o
8: W ∗ ← {w|S(t, w) ≥ τ, et < bt, at < dw, aw < dt, cost(t, w) ≤ rt + bt}
9: if W ∗ 
= ∅ then

10: w ← argmax
w∈W ∗

Smax

11: M ← M ∪ (o, w); remove w from W ′

12: else
13: T ′ ← T ′ ∪ o
14: else
15: w ← o
16: T ∗ ← {t|S(t, w) ≥ τ, et < bt, at < dw, aw < dt, cost(t, w) ≤ rt + bt}
17: if T ∗ 
= ∅ then
18: t ← argmax

t∈T ∗
Smax

19: M ← M ∪ (t, o); remove t from T ′

20: else
21: W ′ ← W ′ ∪ o
22: return M

exceeds the threshold. If T ∗ is not empty, the algorithm chooses the task who
has the highest satisfaction with o. If T ∗ is empty, the algorithm adds the object
to the unassigned workers set. The algorithm returns the final matched pair set
M in line 22.

In our running example, suppose Smax = 10, we have θ = �ln(10 + 1)� = 3
and k = {0, 1, 2}. If k = 0, the threshold is e0 = 1. When t3 arrives, no worker
is online until w2 arrives. Task t3 is assigned to w2 because S(t3, w2) > 1. The
algorithm continuously assigns t4 to w3, t2 to w6 and t5 to w5. Finally, we can
compute the total satisfaction is S = 10 + 10 + 1 + 3 = 24. Similarly, the total
satisfaction are 31 and 28 if thresholds are e1 and e2, respectively. Threshold-
based algorithm randomly chooses one threshold, so the expectation of the total
satisfaction is S = 24+31+28

3 = 28.

Complexity Analysis. For each new arrival object, the time and space com-
plexity of Threshold-based algorithm are both O(max(|T |, |W |)).
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Algorithm 4 Priority-based algorithm with historical threshold
Input: T , W , S(., .)
Output: the matched pair set M

1: M ← ∅, the unassigned tasks set T ′ ← ∅, the unassigned workers set W ′ ← ∅
2: τ ← τ∗

3: for each new arrival object o do
4: if o is a task then
5: W ∗ ← {w|S(o, w) ≥ τ, et < bt, at < dw, aw < dt, cost(t, w) ≤ rt + bt}
6: if W ∗ 
= ∅ then
7: w ← max

w∈W ∗ pw

8: M ← M ∪ (o, w); remove w from W ′

9: else
10: T ′ ← T ′ ∪ o
11: else
12: T ∗ ← {t|S(t, o) ≥ τ, et < bt, at < dw, aw < dt, cost(t, w) ≤ rt + bt}
13: if T ∗ 
= ∅ then
14: t ← max

t∈T ∗ pt

15: M ← M ∪ (t, o); remove t from T ′

16: else
17: W ′ ← W ′ ∪ o
18: return M

4.4 Priority-Based Algorithm with Historical Threshold

Because the thresholds of Threshold-based algorithm are randomly selected, dif-
ferent thresholds have different impacts on the results, the performance of the
algorithm can not be guaranteed. However, the daily actions of people are simi-
lar [26], we can utilize the threshold θ∗ according to historical data which achieves
best result in history. In addition, when a new task/worker o arrives, the oldest
unmatched worker/task o′ better to be assigned to o first to avoid expiration.
Therefore, we bring in the wait time priority as follows:

wait =
ao − ao′

do′ − ao′
,

where ao is the arrival time of the new task/worker o, i.e., the current time
of the system, ao′ and do′ are the arrival time and deadline of worker/task o′,
respectively.

Besides, the pair with the high satisfaction is beneficial not only to the worker
but also to the task requester. Therefore, both satisfaction and wait time decide
the priority of the pair. The priority of the o′ is computed as follows:

po′ = α × S(o, o′)
Smax

+ (1 − α) × wait,

where α is a system parameter and can be got from historical data that yields
the best result.
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Based on the above point, we devise Priority-based algorithm with historical
threshold, as shown in Algorithm 4. In line 1, the result set M , the unassigned
tasks set T ′ and the unassigned workers set W ′ are set empty. In line 2, the
algorithm sets a threshold according to the historical threshold. In line 3, the
algorithm iteratively processes each new arrival object. In lines 4–10, if the object
is a task, the algorithm filters a worker subset W ∗ where each worker w satisfies
all constraints and the satisfaction of the pair (o, w) exceeds the threshold. If
W ∗ is not empty, the algorithm chooses the worker who has the highest priority
pw. If W ∗ is empty, the algorithm adds the object to the unassigned tasks set.
In lines 11–17, if the object is a worker, the algorithm filters a task subset
T ∗ where each task t satisfies all constraints and satisfaction of the pair (t, o)
exceeds the threshold. If T ∗ is not empty, the algorithm chooses the task who
has the highest priority pt. If T ∗ is empty, the algorithm adds the object to the
unassigned workers set. The algorithm returns the final matched pair set M in
line 18.

Assume that the best threshold is 2 and α is 0.3 based on historical data. We
use this threshold in our example. When t3 arrives, no online worker can serve it.
When w2 arrives, the task t3 is assigned to w2 because this pair has the highest
priority p3 = α × S(w2,t3)

Smax
+ (1 − α) × aw2−at3

dt3−at3
= 0.3 × 10

10 + (1 − 0.3) × 1
7 = 0.4.

Using the same method, we assign t4 to w3, t5 to w5 and t2 to w4. Thus, we
obtain the total satisfaction is S = 10 + 10 + 3 + 8 = 31.

Complexity Analysis. For each new arrival object, the time and space com-
plexity of Priority-based algorithm are both O(max(|T |, |W |)).

5 Experimental Study

5.1 Experiment Setup

We use the taxi data from Didi Chuxing, which contains order data in Chengdu
from November 1 to November 30, 2016. We randomly select the data of orders
from 9:00 am to 10:00 am on November 6th, 2016 which has 12753 tasks and
10892 workers. The order data has the information of pick-ups and drop-offs,
start and end of billing time. We use the pick-up location and the starting time
of billing as the location information and arrival time of the task respectively.
Since the worker becomes available again after the passenger gets off the car, the
drop off location is used as the location of the worker and the end billing time is
used as the arrival time of the worker. We use the dataset of November 5th, 2016
to get the optimal threshold τ = 5.5 and α = 0.2 that achieve the best result for
Priority-based algorithm. Table 2 depicts our experimental settings, where the
default values of parameters are in bold font.

Performance Metrics. We use the following metrics to evaluate the effective-
ness and efficiency of the proposed methods:
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Table 2. Experiments settings

Factor Setting

Fixed range constraint r 600, 800, 1000, 1200, 1400

Extra range constraint b (400,600), (600,800), (800,1000), (1000,1200), (1200,1400)

Time period p 7:00–8:00, 8:00–9:00, 9:00–10:00, 10:00–11:00, 11:00–12:00

Service score u 10

– Running Time. The running time represents the total execution time of an
algorithm.

– Average Response Time of Tasks. The response time of a task refers to
the time it takes to be answered by the platform. If a task is not assigned to
any worker eventually, its response time will equal to its deadline.

– Total satisfaction. The total satisfaction is the sum of the satisfaction of all
the task requesters in the platform. Algorithms achieving higher satisfaction
are better.

– Average Satisfaction. The average satisfaction represents the satisfaction
of each task requester. For each task requester, the high satisfaction means
she satisfies this matching.

Compared Algorithms. We evaluate the performance of the representa-
tive algorithms, i.e., Optimal algorithm (OPT), Greedy algorithm (Greedy),
Deadline-exact algorithm (Exact), Threshold-based algorithm (Threshold) and
Priority-based algorithm with historical threshold (Priority). All the algorithms
are implemented in Java, run on a machine with Intel(R) Core (TM) i7-7700
CPU @ 3.60 GHz and 16 GB RAM.

5.2 Results on the Real Dataset

Effect of the Fixed Range Constraint. As shown in Fig. 3(a), the running
time of Exact is obviously higher than the others due to the high time complexity
of KM algorithm. As for average response time of tasks in Fig. 3(b), Greedy,
Threshold and Priority outperform Exact as they always try to assign a task or
a worker the moment it appears. Average response time of tasks of Exact is the
highest since it determines the allocation between the workers and tasks only at
their deadlines. In Fig. 3(c), we can observe that the total satisfaction increases
reasonably as the fixed range constraint increases. This is because more workers
will be located in the fixed range constraint of each task. Also, we can observe
that Exact, Threshold and Priority are more effective than Greedy and Exact
is only slightly worse than OPT. From Fig. 3(d), we can see that Priority is the
most effective, the reason is that Priority filters low satisfaction pairs.

Effect of the Extra Range Constraint. As depicted in Fig. 4(a), Exact
takes more time than other algorithms. From Fig. 4(b) we can see that Exact
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Fig. 3. Effect of the fixed range constraint on real dataset

Fig. 4. Effect of the extra range constraint on real dataset



546 L. Jin et al.

Fig. 5. Effect of different time periods in a day on real dataset

performs worse than others because the decision of assignment is often made at
the deadline of tasks or workers. In Fig. 4(c), the total satisfaction increases as
the extra range constraint increases which is reasonable as more workers will be
in the extra range constraint of tasks. Exact outperforms the other algorithms
because it can get global optimal result at the deadline of tasks or workers.
Similarly, priority performs better than other algorithms in Fig. 4(d).

Table 3. The number of tasks and workers at different time periods

Time period 7:00–8:00 8:00–9:00 9:00–10:00 10:00–11:00 11:00–12:00

Number of tasks |T | 5237 9199 11019 11670 12677

Number of workers |W | 3377 8145 9731 11052 12314

Effect of Different Time Periods. To show the effectiveness of algorithms
in different time periods of a day, we conduct a set of experiments on different
time periods. Table 3 shows the number of tasks and workers in different time
periods. As we can see in Fig. 5(a), the number of tasks and workers at 11:00–
12:00 is the largest and the running time is the longest. In Fig. 5(b), at 7:00–8:00,
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the number of tasks and workers is the smallest and average response time of
tasks is the longest because more tasks can not be answered before deadlines.
In Fig. 5(c), total satisfaction at 11:00–12:00 is the highest, the reason is that
the number of tasks and workers are the largest and more pairs can be matched.
From Fig. 5(d) we can see that average satisfaction at different time periods is
similar because the location distribution at different time is similar.

6 Related Work

6.1 Task Assignment in Spatial Crowdsourcing

Task assignment is one of the most important problems in spatial crowdsourc-
ing [3,14,18]. It is divided into offline task assignment and online task assignment
according to the arrival scenario of tasks and workers.

In the offline scenario [10,17], the spatial and temporal information of work-
ers and tasks is pre-known. Kazemi et al. [10] reduce the matching to the max-
imum flow problem [1], and use Ford-Fulkerson algorithm [9] to calculate the
exact solution. In the online scenario, workers and tasks dynamically appear on
the platform. The information of requests or workers is not pre-known. Some
methods are proposed to maximize the overall utility (i.e., the total number of
performed tasks or the total rewards of the assigned tasks) [4,7,14,16,20]. Ting
et al. [16] propose Greedy-RT algorithm. They first randomly sample a thresh-
old, and then match the pair whose weight is higher than the threshold. Tong et
al. [20] first propose that each task and worker may appear at anytime and any-
where in spatial crowdsourcing. They also extend the Greedy-RT algorithm [16]
to solve their problem. A threshold-based randomized framework is proposed to
solve the problem. Song et al. [15] first consider that a task requires multiple
workers to complete. Chen et al. [4] study the fair assignment of tasks to workers
in spatial crowdsourcing. Cheng et al. [7] propose a cross online matching which
enables a platform to borrow some unoccupied workers from other platforms.
Tong and Liu et al. [11,22] focus on maximizing the total number of completed
tasks. Tong et al. [22] set that workers can move to other locations in advance
and use the offline-guide-online technique [8] to increase the number of potential
matches. Liu et al. [11] first propose that a task requester releases a batch of
tasks, requiring workers to complete as many tasks as possible within his fixed
budget for rewarding workers. Some methods have been proposed to minimize
the waiting time [5,13]. Chen et al. [5] first consider reducing the total waiting
time of all tasks. Zhao et al. [13] first consider reducing the average waiting time
of users, so as to improve the user experience. However, these studies have not
focused on the tasks with extra budget. Wan et al. [24] consider tasks have extra
budget but their task assignment is in offline scenario. We design task assignment
algorithms assuming that the task has an extra budget in online scenario.

6.2 Incentive Mechanism in Spatial Crowdsourcing

The incentive mechanism problem determines the reward motivating workers
to perform the tasks. In reality, supply and demand often change in space and
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time [19]. The reward should be determined according to the dynamic supply and
demand. While the platform determines the reward, the workers decide whether
to accept it or not. In Uber, an effective solution is surge pricing. Banerjee et
al. [2] use Markov process to determine the reward to workers. Tong et al. [21]
define the Global Dynamic Pricing problem in spatial crowdsourcing which is
challenging due to unknown demand, limited supply and dependent supply.
These above works concentrate on online learning algorithms which determine
the reward to workers based on the estimated expectation of workers. There
are also many other incentive mechanisms focus on a different scenarios. For
example, the auction mechanism determines the reward based on workers’ sub-
mitted bids. Xiao et al. [25] consider that workers can make detours from their
original travel paths to perform tasks and bid for his/her detour cost. However,
these methods cannot be directly applied to our EBOTA, since they take the
specific pricing strategy into account but did not consider how to allocate tasks.
Moreover, the incentive mechanism determines the reward for workers to attract
workers before assignment and our problem focuses on task assignment without
pricing.

7 Conclusion

In this paper we propose a novel problem, i.e., Extra-Budget Aware Online
Task Assignment (EBOTA), to assign the tasks to workers in real time by
considering task requesters have extra budget. To solve the problem, we first
propose Deadline-Exact algorithm, which always finds a global assignment for
the task or worker at its deadline. However, because of the high time complex-
ity of Deadline-Exact, it is not practical in real applications. We next propose
Threshold-based algorithm which utilizes a random generated threshold to prune
the pairs with small satisfaction, and Priority-based algorithm with historical
threshold which learns near optimal threshold from historical data. Extensive
experimental results over real dataset verify the effectiveness and efficiency of
our approaches.
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