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Abstract. The continuously expanding digital possibilities, increasing
number of social media platforms, and growing interest of companies
in online marketing increase the importance of Aspect-Based Sentiment
Analysis (ABSA). ABSA focuses on predicting the sentiment of an aspect
in a text. In an ideal scenario, we would have labeled data for every exist-
ing domain, but acquiring annotated training data is costly. Transfer
learning resolves this issue by building models that can be employed in
different domains. The proposed work extends the state-of-the-art LCR-
Rot-hop++ model for ABSA with the methodology of Domain Adver-
sarial Training (DAT) in order to create a deep learning adaptable cross-
domain structure, called the DAT-LCR-Rot-hop++. The major advan-
tage of the DAT-LCR-Rot-hop++ is the fact that it does not require
any labeled target domain data. The results are obtained for six differ-
ent domain combinations with testing accuracies ranging from 37% up
until 77%, showing both the limitations and benefits of this approach.
Once DAT is able to find the similarities between domains, it produces
good results, but if the domains are too distant, it is not capable of
generating domain-invariant features.

Keywords: Aspect-Based Sentiment Classification · Transfer
learning · Adversarial Training

1 Introduction

Ever since the introduction of the first social media platform, Six Degrees in
1997 [10], people have communicated via digital platforms. By last year, over 3.7
billion people, which accounts for 48% of the world population, have exchanged
information on social media [29]. Due to the continuously growing society of
Web users, more companies are becoming aware of the essential role that social
media plays in brand image. The increase in users has expanded the amount of
opinionated messages, which are valuable if correctly analysed.

Aspect-Based Sentiment Analysis (ABSA) classifies a person’s feeling
towards specific aspects [30]. ABSA is concerned with target extraction (TE),
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aspect detection (AD), and target sentiment classification (SC) [26]. This paper
concentrates on the last task, SC, classifying the user’s sentiment with respect to
the aspects, and is called Aspect-Based Sentiment Classification (ABSC) [2]. As
an example, we provide the sentence “the atmosphere and service were terrible,
but the food was good”. In this case, the “atmosphere”, “service”, and “food”
are all target words and “terrible” and “good” are the expressions that give con-
text to these target words to be able to label the targets as positive, neutral, or
negative. As one can notice, the context around the target words is essential to
capture the explicit aspect sentiments.

There are multiple practical applications of ABSC. By evaluating and decid-
ing which features need improvement, a company can apply specific enhance-
ments to their products, efficiently improving their customer services. At the
same time, social media platforms such as Facebook and Twitter can implement
ABSC on tweets and messages, and sell this valuable information to the market-
ing department of multinationals. In addition, financial firms can apply ABSC
to forecast the feelings of financial individuals towards the economic market and
thereby predict future stock movements. This would have been extremely bene-
ficial for Melvin Capital before the whole GameStop phenomena at Reddit and
might have prevented enormous losses [3]. Last, knowing the opinion of previous
customers can help potential clients make better-informed buying decisions.

An issue that has gained much attention recently is the limited availability of
labeled data. Generating new labeled data for specific domains is expensive, time-
consuming, and requires manual labour. In order to decrease the dependence on
labeled data, transfer learning, also called cross-domain learning, is a valuable
solution [20]. This approach concentrates on training a model on a related source
domain and then predicting for a different target domain. Several state-of-the-
art cross-domain models rely on Domain-Adversarial Neural Networks (DANN)
introduced in [8]. These neural networks are applied on diverse tasks, ranging
from textual entailment analysis [14] to image classification [39]. However, little
research is available on ABSA using Domain-Adversarial Training (DAT). To
our knowledge, there is limited research on training domain-invariant features
for Aspect-Based Sentiment Classification (ABSC) using DANN. Prior methods
for sentiment classification apply a Support Vector Machine (SVM) [21] in order
to predict the sentiments, but due to its shortcomings, this system was replaced
by knowledge-based models [28] and deep learning algorithms [15]. Whereas the
deep learning methods are flexible, knowledge-based models require more manual
labour, but achieve better results [18]. Since a combination of both approaches
benefits from the advantages of both solutions, several researchers merge the
methods into a hybrid model [31,34].

The proposed methodology of this paper is based on the hybrid HAABSA++
model proposed in [32], a state-of-the-art ABSC approach that produces excel-
lent results for the commonly used SemEval 2015 [23] and 2016 [24] data sets,
attaining a classification accuracy of 81.7% and 87.0%, respectively. Nevertheless,
our study focuses on the development of a neural network that can classify texts
on multiple different domains. For this reason, the knowledge-based ontology
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part of the HAABSA++ approach is eliminated, leaving the LCR-Rot-hop++
model based on [42]. This model is expanded by applying the structure of DAT
as proposed by [8]. More specifically, the neural network is trained concurrently
on labeled instances of a source domain and unlabeled instances from a tar-
get domain. We call the newly established system Domain Adversarial Training
LCR-Rot-hop++, abbreviated as DAT-LCR-Rot-hop++. All source code and
data can be retrieved from https://github.com/jorisknoester/DAT-LCR-Rot-
hop-PLUS-PLUS.

The main contribution of this research on the current literature is the capabil-
ity of predicting aspect-based sentiment classifications on target aspects with-
out requiring annotated target data by employing DANN. Following the gen-
eral DANN approach, this paper uses both labeled source and unlabeled target
domain aspects to obtain domain indiscriminative representations. To the best
of our knowledge, there is limited research on extending an advanced neural
network as LCR-Rot-hop++ for ABSC with DANN in a cross-domain setting.

The rest of this paper is structured as follows. First, Sect. 2 gives the rele-
vant literature concerned with ABSC, the different components of the LCR-Rot-
hop++ model, and the ideas behind transfer learning. Second, Sect. 3 provides
a short description of the data together with a couple of descriptive statistics.
Third, Sect. 4 concentrates on the methodology of this research for which the
results are reported in Sect. 5. Last, Sect. 6 provides our conclusion and sugges-
tions for future work.

2 Related Work

ABSC is concerned with classifying a person’s sentiment towards specific aspects
in a sentence. One of the first works on sentiment analysis is presented in [22]
and sentiment analysis has been a hot topic ever since. While the traditional
methods were mainly developed based on knowledge-based systems providing
higher prediction scores for domain-specific documents [18], the more recent
ones tend to rely more on deep learning solutions. Despite being considered
alternative solutions, in [36] it is observed that the two approaches are in fact
complementary. Consecutively, a hybrid method which incorporates both the
domain ontology and a deep learning neural network is introduced in [27]. After
several additional improvements, this has resulted in the HAABSA++ method
[32].

HAABSA++ method has two steps so that if the ontology is unable to pro-
vide reliable results, the LCR-Rot-hop++ neural network is used as a backup.
As the topic of our work is transfer learning, we focus only on the neural net-
work. LCR-Rot-hop++ is actually a bi-directional Long Short-Term Memory
(Bi-LSTM) model accompanied by an attention. This attention layer is able to
put focus on specific parts of a sentence, thereby limiting the influence of the less
important words. On top of this attention layer, a hierarchical attention layer
is employed, enabling the model to process the text on sentence-level, bringing
together the local sentence representations. The last component of the LCR-Rot-
hop++ model is its rotary system that increases the interaction between targets
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and contexts by sharing information in order to capture the most indicative
sentiment words.

Transfer learning [20] is a machine learning technique that focuses on stor-
ing information from one data set and applying this knowledge on another.
Because obtaining annotated data is costly and time-consuming, new models
must be developed to provide reliable results for multiple domains. The variety
of methods of transfer learning is continuously expanding. One of the proposed
solutions focuses on freezing the first layers of an LSTM neural network [4]. This
approach is based on the fact that the source domain contains valuable univer-
sal information and higher layer neurons tend to specialize more towards the
target domain, while the lower hidden layers generate more common word fea-
tures [37]. A state-of-the-art method, BertMasker [38] uses the idea of masking
[6] for their BERT Base network. BertMasker is able to mask domain-related
words. This transforms the remaining sentence text to be domain-invariant, but
at the same time still maintains its most sentiment-explicit words. Another solu-
tion scientists developed is a domain adapting network by creating counterfac-
tual features [13]. These counterfactual depictions reduce the inductive bias of
the source domain. The designed positive (negative) counterfactuals bridge the
dimensional gap between the positive (negative) classified instances of the source
and target domain. Different from the previous works, in this research we apply
the methodology of Generative Adversarial Networks (GAN). This last solution
is introduced in [9] and has shown superior performance in a broad range of
scientific areas, such as image classification [5], event detection [12], and textual
cross-domain sentiment classification [41]. Applying the logic of GAN, DANN
is introduced in [7]. A DANN model is able to perform machine learning tasks
on unlabeled target domain data, while trained on a labeled source domain
with a relatively similar distribution, both in terms of polarity distribution and
batch size [7]. The advantage that one does not need annotated target data
makes DANN very valuable for future cross-domain deep learning problems and
is therefore an important contribution to the existing machine learning tech-
niques.

3 Data

In this paper, two different data sets are used. These are the Semantic Evaluation
(SemEval) 2014 [25], and the Amazon/LibraryThing (ALT) 2019 [17]. SemEval
2014 includes information about the restaurant and laptop domain, and ALT
contains the data for the book domain. The reviews of the data sets are divided
into single sentences, consisting of one or more aspects and sentimental context
words, which are used to classify the polarities (positive, neutral, or negative).
The partitioning of the data into a training and test set is done as follows.
The aspects are divided into 80% training and 20% testing. The training set
consists of 80% pure training and 20% validation to compute the optimal values
for the hyperparameters. The results of the split into training and test data are
presented in Table 1.
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Table 1. The distribution of the aspect sentiment polarities of the three domains.

Restaurant Laptop Book

Train Test Train Test Train Test

Positive 60.1% 65.1% 42.7% 52.4% 25.8% 32.3%

Neutral 17.7% 17.5% 19.8% 26.2% 63.1% 57.1%

Negative 22.2% 17.4% 37.5% 21.4% 11.1% 10.6%

Total 3600 1122 2250 701 2700 804

In terms of data pre-processing, the same approach is applied as introduced
in [35] and [42]. The implicitly opinionated review sentences contain a sentiment,
but the aspect term is missing. This makes it impossible to perform ABSC using
the LCR-Rot-hop++ model. In addition to this, it could occur that an aspect has
conflicting sentiments. This happens when there is both negative and positive
context towards an aspect. Both the conflicting sentiment and the implicitly
opinionated sentences are removed from the datasets.

DAT-LCR-Rot-hop++ requires aspects from two domains to go through the
model. These domains are defined as the source domain and the target domain.
Only the source domain instances have a sentiment label attached to them. As a
result, during training, the aspects of the source domain consist of two labels, the
domain class, d, and, the sentiment category, y, while the instances of the target
domain only contain a domain class. For testing, the polarity labels of the target
domain aspects are determined in order to evaluate the performance of DAT-
LCR-Rot-hop++. Our proposed model is concurrently trained on one source and
one target domain to obtain domain-invariant features. Results are presented
for six different domain combinations, being restaurant-laptop, restaurant-book,
laptop-restaurant, laptop-book, book-restaurant, and book-laptop. As an exam-
ple, the restaurant-laptop model means that the restaurant data set is the source
domain and the laptop data set is the target domain. When training is finished,
the test instances of the target domain with sentiment labels are fed into the
model for evaluation. The performance of DAT-LCR-Rot-hop++ is analysed
according to its predicting sentiment accuracy of the target test aspects.

4 Framework

A GAN model [9] generally consists of two additional elements on top of the
neural feature extractor, which is the LCR-Rot-hop++ model in this paper.
The feature extractor transforms an input sentence to a vector representation
that is ought to capture the important characteristics of the sentence. The other
two extra elements are the generator and discriminator. A visual representation
of our neural network is shown in Fig. 1.

The DAT method introduced in [7] is able to adapt to target domains with-
out any labeled target data. This is done by generating deep features that are
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Fig. 1. A visualisation of the LCR-Rot-hop++ model. (Color figure online)

discriminative for the main learning classifying task by using the labeled senti-
ments of the source domain. This method ensures that these representations are
invariant to shifts between the source and target domain in order to be domain
in-discriminative by using the domain class of both the source and target domain.
The proposed DANN solution is revisited in [8], which provides a more detailed
and elaborate description of the mathematics behind the system.

The change to the GAN network in order to conform to a DANN model
means replacing the generator with a Gradient Reversal Layer (GRL). GRL
aims to make the task of the domain discriminator as hard as possible, which is
the direct connection to GAN. In DAT-LCR-Rot-hop++, the loss of the domain
discriminator is passed through GRL, which reverses the gradient before back-
propagation into the feature extractor. This causes the hidden layers of LCR-
Rot-hop++ to react by constructing features which will not be recognised as
a certain domain by the domain discriminator. This process continues until at
some point, the word vectors are completely domain-invariant, which causes the
domain discriminator to be unable of distinguishing the source and target domain
in the shared feature representations. The rest of this section is structured as
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follows. Section 4.1 describes the structure of our proposed model and Sect. 4.2
presents the training procedure for our model.

4.1 Structure

The main difference to the original LCR-Rot-hop++ model is the removal of
the MLP output layer and its replacement by a domain adversarial component.
After the context and target representations are concatenated into r, produced
by the feature extractor, this vector is passed into two standard feed-forward
MLPs, which are the class discriminator and the domain discriminator. First, the
domain discriminator aims to correctly classify the domain of r. The predicted
domain is given by s. Classifying the domain is a binary problem with s = 0
for source and s = 1 for target domain labels. Next, the class discriminator uses
a softmax function to compute the probabilities of the sentiment of the aspect,
resulting in a 1×3 output vector, p. The polarity that has the largest probability
will be chosen as the final sentiment. The sigmoid function is used for the domain
prediction because it shows good performance for examining binary cases and
is applied by multiple researches in domain discriminators [11,40]. The DAT
component is visualised by the dark purple solid arrows in Fig. 1.

The objective is reducing the error term of both the domain discriminator,
denoted as Ld(θf , θd), and the class discriminator (sentiment discriminator),
denoted as Lc(θf , θc). Here, θ represents the parameters of the feature extractor
(LCR-Rot-hop++ without original MLP), the domain discriminator, and the
class discriminator, defined by the underscores f , d, and c, respectively. Hence,
the objection function to optimise is:

min
θ

Lc,d(θf , θc, θd) = Ld(θf , θd) + Lc(θf , θc). (1)

However, as previously described, the GRL tries to fool the domain discrimi-
nator. After the domain is predicted and its parameters, θd, are updated, the loss
is back-propagated into the feature extractor to change the weights accordingly.
But this loss first passes through the GRL, which reverses the gradient by multi-
plying it with −λ in order to hinder the performance of the domain discriminator.
The reversing of the gradient forces the hidden layers of the LCR-Rot-hop++
to respond by adjusting their weights in the exact opposite way as desired by
the domain discriminator, hereby making the task of the domain classifier more
difficult. As a result, the features become more domain indiscriminative. This
process leads to the following adjusted loss function:

min
θ

L
′
c,d(θf , θc, θd) = −λLd(θf , θd) + Lc(θf , θc), (2)

Ld(θf , θd) = −
N∑

i=1

di ∗ log(si) + πd ∗ ||θd||2, (3)

Lc(θf , θc) = −
n∑

i=1

yi ∗ log(pi) + πc ∗ (||θf ||2 + ||θc||2). (4)



28 J. Knoester et al.

Here di refers to the actual domain class and yi represents the real polarity. si

is the predicted domain and pi is the predicted sentiment. π represents the L2-
regularisation term for the class and domain discriminator with underscore c and
d, respectively. Last, n equals the source domain sample size and N is the total
sample size of the source and target domain data combined. As described, both
the source and target aspects are fed into the domain discriminator and only
the source instances are passed into the class discriminator. As one can notice,
this function is now minimised when the loss of the domain discriminator is
maximised. This min-max situation resolves to:

θ̂d = argmaxθd
L

′
c,d(θ̂f , θ̂c, θd) (5)

(θ̂f , θ̂c) = argminθf ,θc
L

′
c,d(θf , θc, θ̂d) (6)

At this saddle point, the parameters of the domain discriminator, θd (Eq. 3),
minimise the domain classification error. Secondly, θc and θf are computed to
optimise Eq. 2 by minimising the sentiment prediction loss and maximising the
domain classification error. The hyperparameter λ regulates the balance and
trade-off between both goals.

The original DANN paper [7] implements Stochastic Gradient Descent (SGD)
optimisation. However, the state-of-the-art image classifying model proposed in
[19] shows that utilising the faster momentum method [16] instead of SGD also
produce accurate results. In each iteration, the parameters of the neural network
will be updated according to this method:

vt ←− γ ∗ vt−1 + η ∗ ∇θk
L(θk) (7)

θk ←− θk − vt. (8)

Here, the hyperparameters are the learning rate, η, and momentum factor, γ.
In addition, the parameter θk represents the weights and biases for the domain
discriminator, the feature extractor, and the class discriminator, with k = d,
k = f , and k = c, respectively. Last, L represents the corresponding loss function.

4.2 Training Procedure

After constructing the feature representations by the feature extractor, both the
source and target domain aspects are passed into the domain discriminator. But,
only the source instances are fed into the class discriminator. In our research,
the aspects of the target domain also contain a sentiment polarity, but this
information is not used in the training and remains unknown to the model up
until the moment of testing. The performance of the DAT-LCR-Rot-hop++ is
evaluated based on this testing accuracy. The benefit of being able to employ
a model, which is trained only on the labels of a source domain, on a target
domain gives the DANN approach an advantage over other methods.

The weights and biases are improved using the combined loss function, given
by Eq. 2. This equation includes the −λ multiplication in order to create senti-
ment discriminative and domain indiscriminate features. The domain discrimina-
tor uses ascending gradient to maximise this loss function, whereas the feature
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extractor and the class discriminator use descending gradient to minimise it.
The exact training procedure is shown in Algorithm1. The stopping condition
is max(acct−1, acct−2)−acct−3 > ε, which specifies that if the maximum of the
accuracy of the previous epoch and the epoch before minus the loss of three
epochs ago is larger than ε continue with training. In other words, we continue
if there is still a significant improvement.

Algorithm 1. Training procedure of Domain-Adversarial Learning
ε = 0.50%
while stopping condition is not met do do

for each epoch do
for each iteration i do

– Sample approximately identical percentage batch of source domain, S(xi, yi, di),
and target, T (xi, yi, di), data. n denotes the source domain batch size and N is
the total batch size (source and domain combined).

– Feed input into feature extractor to obtain instance representations (r).
– Pass both S(xi, yi, di) and T (xi, yi, di) into domain discriminator and forecast

the actual domain di. The predicted domain is defined as si. Afterwards update
the parameters of the discriminator, θd, according to the loss function with
ascending gradient:

∇θd [−λ(− 1

N

N∑

i=1

di ∗ log(si) + πd ∗ ||θd||2)]

– Last, feed S(xi, yi, di) in class discriminator and predict the real label, yi. The
predicted sentiment is represented by pi. Finally, adjust the parameters of both
the feature extractor, θf , and sentiment classifier, θc, using the previously esti-
mated domain discriminator parameters, θ̂d, with descending gradient:

∇θf ,θc [−λ(− 1

N

N∑

i=1

di ∗ log(si) + πd ∗ ||θd||2])+

− 1

n

n∑

i=1

yi ∗ log(pi) + πf ∗ (||θf ||2 + ||θc||2)]

end for
end for

end while

The other hyperparameters besides λ in DAT-LCR-Rot-hop++ are the learn-
ing rates, ηk, the momentum terms, γk, the L2-regularisation terms, πk, and
the dropout rate. k = d for the domain discriminator and k = c for the fea-
ture extractor and class discriminator. First, η determines the rate at which
the momentum optimiser converges. In addition, γ determines the influence of
past gradient values on the current instance. Furthermore, π reduces overfitting.
Fourth, as previously described, λ is a parameter that balances the trade-off
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between the discriminative objectives of the class and domain discriminator.
Last, the dropout probability regulates the number of layer outputs to be ran-
domly dropped from the network in order to prevent overfitting.

Because the dropout rate does not differ between the methods proposed in
[32] and [33], this variable is kept at 0.3 in this research. The remaining hyper-
parameters (ηk, γk, πk, and λ) are determined by a Tree-structured Parzen Esti-
mator (TPE), which replaces the distribution of the initial observations with a
non-parametric distribution by applying a threshold that splits the observations
based on different densities [1].

As in the research performed in [32] and [33], the dimension of the word
embeddings, 1 × d, is equal to 1 × 768. For convenience, the number of nodes in
the Bi-LSTMs, bilinear, and hierarchical attention layer are the same as in [32].
These are 300, 600, and 600, respectively. The number of hidden layers and cells
in both the class and domain discriminator is optimised by TPE. The weights of
the layers are initialised randomly using a normal distribution with a zero mean.
The biases are set to zero at the start.

After the hyperparameters are initialised, DAT-LCR-Rot-hop++ is trained
on the training set. The sentiment accuracy of the validation set is used to
decide which combination of hyperparameters achieves the best performance.
We decided to let the program run 15 times for each source-target domain com-
bination with different settings for the structure and the hyperparameters. Each
run includes 50 epochs. The hyperparameter fine-tuning occurs twice. In the first
step, λ is excluded, because we want to show the effect of λ on the cross-domain
performance of the model. A higher λ should increase the domain-invariance
of the features. As a result, λ will first be set to a value of 1.0 [8] in order to
find the optimal values for the other parameters. After that the influence of λ
is analysed, all hyperparameters, including λ, are fine-tuned to define the best
possible configuration. This setting is applied for the final training optimisation
with a maximum of 200 epochs.

5 Evaluation

In Sect. 5.1, we first describe the influence of λ on the performance of DAT-
LCR-Rot-hop++. Then in Sect. 5.2, the results for the final optimisation are
shown.

5.1 Impact of λ

First, the optimal number of hidden layers and neurons together with the val-
ues for the hyperparameters are computed. DAT-LCR-Rot-hop++ is run for 7
incrementing values of λ with these settings, starting from 0.5 up until 1.1 with
a step of 0.1 for each domain combination (Fig. 2). The impact of the balance
hyperparameter λ is visualised by the six graphs that follow in this section. In
these graphs, the dark blue line represents the labeling accuracies of the test set
of the target domain, while the light orange line shows the base performance
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when the majority group of the test sample was selected. The model uses a
maximum of 50 epochs.

(a)  restaurant-laptop (b)  restaurant-book

(c)  laptop-restaurant (d)  laptop-book

(e) book-restaurant (f ) book-laptop

Fig. 2. Labeling accuracies for different values of λ, where the dark blue line is used for
the target domain classification by our model and the light orange line for the target
domain classification by the majority classifier. (Color figure online)

When analysing Fig. 2a and 2c, we observe that the classifying accuracy for
the restaurant-laptop and laptop-restaurant domain combination is significantly
higher than for the other four. Since the similarities between laptops and restau-
rants do not seem more prevalent than those between books and laptops, this
might come across as a surprising result. However, both the laptop and restau-
rant domain are taken from the SemEval 2014 dataset [25] while the book domain
is retrieved from the ALT 2019 [17]. First of all, these datasets share common
context and target text with words such as “service” and “quality”. Whereas
the ALT 2019 dataset contains these target words 6 and 0 times, respectively,
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the words occur 59 and 85 times in the laptop set and 420 and 85 times in
the restaurant domain, respectively. In addition, the (digital) language might
have changed throughout these 5 years. Last, the fraction of neutral aspects in
the book data test set is significantly higher than the neutral percentage in the
training sets of both the restaurant and laptop domain with a percentage of
63.1 as compared to 17.7, and 19.8, respectively. This causes emotional phrases,
for example “awesome”, to appear 5 times in the book domain as compared to
30 and 16 times in the laptop and restaurant domain, respectively. On these
grounds, it is expected that the predicting score of the book domain in combi-
nation with either laptop or restaurant will result in lower scores compared to
laptop-restaurant or restaurant-laptop.

Furthermore, the accuracy of book as a target domain is worse than applying
book as a source domain. Because each domain has a disproportionate training
set, it causes the neurons of the model to start with predicting the sentiment that
occurs most often, especially in the early iterations. So, for both the restaurant
and laptop domain this results in predicting a positive sentiment, which leads
to a low score for the book target domain. On the other hand, using book as
a source domain does lead to acceptable performance. Not surprisingly, most
neutral aspects are correctly classified in the book-restaurant and book-laptop
combinations, with an average accuracy of 65% and 81%, respectively. Next,
DAT-LCR-Rot-hop++ focuses on the second largest polarity percentage, the
positive sentiments, which is the majority in both the restaurant and laptop
domain. The drawback of this is the bad score for the negative polarities with
an average accuracy of 3.2% and 0%, respectively.

When looking at Fig. 2a, we observe a scattered graph with an almost flat
regression line. Accordingly, the coefficient of the OLS slope is 0.61, which means
that increasing λ with 1.0 increases the testing accuracy by 61%. The same holds
for Fig. 2c, which has a slope of 2.04. One reason for this could be the previously
mentioned overlap between the restaurant and laptop domain, thereby decreas-
ing the difficulty of the cross-domain task and hence, making λ less important.
Besides this result, the restaurant-laptop combination does beat the base per-
formance line at 52% with an average of 65%. The same applies to the laptop-
restaurant for which the observation at λ = 0.9 appears to be an outlier. In con-
trast to the flat regression lines of the restaurant-laptop and laptop-restaurant,
restaurant-book depicts a clear positive linear trend with a slope of 9.73 in
Fig. 2b. The same applies to the graph in Fig. 2d, which has a slope of 6.91,
showing the effect of λ.

As previously stated, employing book as the target domain produces a poor
labeling accuracy. Especially, the positive outlier in Fig. 2b is an observation that
proves the effect of the disproportionate data sets. Only during this run, DAT-
LCR-Rot-hop++ was capable of predicting neutral sentiments correctly, which
results in a neutral accuracy of 26%. As compared to a maximum of 5% for the
other runs with book as a target domain. The competence to classify the neutral
aspects precisely immediately leads to a significantly better performance with
an accuracy of 45%, as compared to approximately 35%. The disproportionate
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sets cause DAT-LCR-Rot-hop++ to overfit on the training set and focus only
on the major two polarities, resulting in low scores for the restaurant-book and
laptop-book combination. Whereas there is a clear ascending performance for
the training set, reaching percentages up until 92%, the maximum accuracy of
the target domain is reached after approximately 100 epochs. The statistic then
moves around this number with some large outliers into both directions, but
never really improving. After some time, the accuracy starts to drop. The model
becomes too much specified towards the information of the training set.

Both book-restaurant and book-laptop in Fig. 2e and 2f, provide an ascending
line with a slope coefficient of 7.04 and 4.88, respectively. However, the data
points in Fig. 2e are scattered, causing a standard deviation of 10%. Therefore,
this positive relationship might be questioned in this case.

5.2 Final Optimisation

The final values of the hyperparameters for the final optimisation with 200 iter-
ations are defined in Table 2. Each domain combination is tested for the final
prediction using these parameter settings. The results are shown in Table 3.
As expected, the accuracies improve for each source and target domain model
as compared to the previous run with 50 epochs. The training label accuracy
increases from 84% up until 92% for the book-laptop domain. In addition, the
maximum testing accuracy of 80% for the restaurant-laptop is a 9 percentage
points improvement from the previous 71%. The ratios of correctly predicted
polarities follow the previously seen distribution.

Table 2. Values for hyperparameter optimisation.

Hyperparam re-la re-bo la-re la-bo bo-re bo-la

lrd 0.01 0.03 0.03 0.01 0.01 0.03

lrc,f 0.005 0.005 0.03 0.01 0.005 0.03

momd 0.90 0.85 0.80 0.90 0.85 0.90

momc,f 0.90 0.90 0.85 0.85 0.85 0.85

l2 − term 0.001 0.001 0.001 0.001 0.001 0.0001

structure 2400-600 2400-0 2400-600 2400-600 2400-0 2400-600

λ 1.1 0.8 1.1 0.6 1.1 0.6
“re”, “la”, and “bo” represent restaurant, laptop, and book domain, respectively

The performance of the restaurant-laptop domain increased significantly,
which results in a total test accuracy of 77%. The relevance of not requiring
any labeled target data should not be underestimated when comparing it with
other research, because this ability reduces labeling costs significantly. Specif-
ically, the outcomes for the book-restaurant are promising. Both domains are
not closely related in terms of sentiment distribution, but the model achieves
an encouraging test accuracy of 72%, which is an improvement of 8% points
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Table 3. Test accuracies for DAT-LCR-Rot-hop++ model.

test train max base pos neu neg

rest-lapt 77% 87% 80% 52% 94% 38% 83%

rest-book 37% 88% 48% 57% 71% 9% 88%

lapt-rest 74% 83% 78% 65% 90% 9% 85%

lapt-book 42% 90% 52% 57% 86% 11% 72%

book-rest 72% 88% 76% 65% 78% 81% 40%

book-lapt 60% 92% 66% 52% 75% 79% 0%
“base” is the majority classifier in the target domain
test set, “pos”, “neu”, and “neg” are sentiment labels

as compared to the value after the previous runs. Interestingly, the fraction of
correctly labeled sentiments is more balanced, instead of one polarity that is
driving the results.

6 Conclusion

The prominent role of digital online media increases the relevance of ABSA, and
in particular ABSC. Since obtaining labeled target data is extremely costly, new
models should be developed that can be employed on a variety of domains, a
concept known as transfer learning. [8] introduces a method known as DANN,
which is a specification of GAN as defined by [9] for transfer learning. The major
benefit of this approach is the fact that it does not need any labeled target data
at all.

The state-of-the-art LCR-Rot-hop++ structure from [32] forms the basis
of our proposed DAT-LCR-Rot-hop++, which adds an adversarial component
based on DANN. It consists of a domain discriminator, a class discriminator, and
a GRL module. The GRL module reverses the loss of the domain discriminator
before back-propagation, which enforces the earlier layers to generate domain-
invariant features. At the same time, the class discriminator is trained on the
labels of the source domain. This results in label-discriminative features.

Increasing λ (domain invariance) improves, in general, the performance of
the target, especially for domains that are distant. Furthermore, the model is
not able to correctly predict the sentiments of the restaurant-book and laptop-
book models. The benchmark of predicting the majority class of the test set
is not reached for both domain combinations. This is the outcome of multiple
factors of which the most essential one is the disproportionate data set in terms
of polarity distribution of the three domains. The high percentage of neutral
aspects in the book domain causes the model to perform poorly. Nevertheless,
the produced models are better than a random classifier, which shows that even
in these extreme conditions our approach is able to detect useful signals.

On the other hand, the accuracy score for the restaurant-laptop, laptop-
restaurant, and book-restaurant all exceed 72%. So in half of the cases, DAT-
LCR-Rot-hop++ is able to properly classify polarities, but it depends on which
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combination of domains is used. Domains with similar polarity distributions
seem to benefit the most from the proposed approach.

In order to further improve our method, we propose two adaptions. The first
one covers the difficulty of predicting three kinds of classes. We would like to
investigate the performance of the model for only the binary case. Classifying
neutral aspects appears to be a harsh task for the neural network, looking at
the results, as this class is poorly represented in two out of our three domains.
Our second extension includes transforming the LCR-Rot-hop++ component.
In some cases, the model becomes overfitted on the training data, so a less
complicated feature extractor might help prevent this. One way to reduce the
complexity is to reduce the dimensionality of the internal network layers.
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