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Abstract. In this paper, we address the problem of outlying aspect min-
ing, which aims to identify a set of features (subspace(s) a.k.a aspect(s))
where a given data object stands out from the rest of the data. To detect
the most outlying aspect of a given data object, outlying aspect mining
algorithms need to compare and rank subspaces with different dimension-
ality. Thus, they require a fast and dimensionally unbias scoring measure.
Existing measures use density or distance to compute the outlyingness
of the query in each subspace. Density and distance are dimensionally
bias, i.e. density decreases as the dimension of subspace increases. To
make them comparable (dimensionally unbias), Z-score normalization
is used in the previous works. However, to compute Z-score normaliza-
tion, we need to compute the outlyingness of each data point in each
subspace, which adds significant computational overhead on top of the
already expensive density or distance computation.

Recently developed measure called sGrid is a simple and efficient
density estimator which allows a fast systemic search. While it is effi-
cient compared to other distance and density-based measures, it is also
a dimensionally bias measure and it requires to use Z-score normaliza-
tion to make it dimensionality unbiased, which makes it computationally
expensive. In this paper, we propose a simpler version of sGrid called
sGrid++ that is not only efficient and effective but also dimensionality
unbiased. It does not require Z-score normalization. We demonstrate the
effectiveness and efficiency of the proposed scoring measure in outlying
aspect mining using synthetic and real-world datasets.

Keywords: Outlying aspect mining · Dimensionality-unbiased score ·
Outlier explanation · Histogram · Density estimation

1 Introduction

Anomaly detection (AD) is one of the crucial tasks of data mining, besides
clustering and classification, which detects anomalous data points in a data set
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Fig. 1. University students performance on SSC %, HSC %, Degree %, MBA % and
Employment test %. The red square point represents candidate A. (Color figure online)

automatically. Anomalies (also refers to as outliers) are data points that are
significantly different from the other points in the data set. AD has applications
in various domains such as fraud detection, medical or public health, intrusion
detection, and machine fault detection [2,13]. While there are wide range of
algorithms proposed in the literature to detect anomalies/outliers, they cannot
explain why those outliers are flagged.

Lately, as an attempt to provide such explanation, researchers are interested
in Outlying Aspect Mining (OAM) [3,9–12,14,15], where the task is to identify
on what aspects (subset of features) a given anomaly/outlier exhibits the most
outlying characteristics. In other words, OAM is the task of identifying feature
subset(s), where a given query is significantly inconsistent with the rest of the
data.

OAM has many real-world applications. For example, when evaluating job
applications, recruitment team wants to know strengths/weaknesses of each can-
didate, i.e., they want to know in what aspect a candidate is outstanding among
the applicants. Let’s have a look at the example of 215 candidates data1 with
their scores in percentage (%) in their secondary school (SSC), higher secondary
(HSC), undergraduate degree, MBA and Employment test. As shown in Fig. 1(c),

1 Data set is available at https://www.kaggle.com/benroshan/factors-affecting-
campus-placement.

https://www.kaggle.com/benroshan/factors-affecting-campus-placement
https://www.kaggle.com/benroshan/factors-affecting-campus-placement
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Candidate A scored very high percentage in the Employment test while having
quite low percentage in SSC.

Another example, assume that you are a football coach or commentator and
you want to highlight the strengths and/or weaknesses of a player in the most
recent game. Moreover, when the doctor wants to know in which aspect a given
patient’s condition is not normal [10].

OAM algorithm requires two techniques – (i) scoring measure and (ii) sub-
space search technique, to detect outlying aspect of a given query. Distance or
density-based scoring measures are widely used in the OAM algorithms. The
main drawback of these types of measures in OAM is that such measures are
computationally expensive and dimensionality biased. Vinh et al. [14] proposed
to use Z-score normalization to make density-based scoring measures dimension-
ality unbiased so that they can be compared to rank subspaces with different
dimensionality. It requires computing outlier scores of each data point in each
subspace. It adds significant computational overhead making OAM algorithms
making them infeasible to run in large and/or high-dimensional datasets.

To summarise, most OAM scoring measures do not work well in practical
application due to the following main reasons:

– High time complexity: Existing scoring measure uses distance or density,
and the known weakness of these measures is, that they are computationally
expensive.

– Dimensionality unbiasedness: In OAM, subspaces with different dimen-
sionalities are compared to find the best subspace. Thus, we need a measure
that is dimensionally unbiased to rank those subspaces. Existing density or
distance-based measures are dimensionally biased.

This paper makes the following contributions:

– Propose a new scoring measure for outlying aspect mining algorithm based
on sGrid density estimator. We extend the sGrid density estimator and make
it dimensionally unbiased measure, thus it does not require any additional
normalization. We called the proposed measure sGrid++.

– Compare sGrid++ against three existing OAM scoring measures using syn-
thetic and real-world datasets.

– Through our empirical evaluation, we demonstrate that sGrid++ is a dimen-
sionality unbiased measure. In addition to that, it is faster than existing
scoring measures.

The rest of the paper is organized as follows. Section 2 provides a summary
of previous work on outlying aspect mining. The proposed scoring measure is
presented in Sect. 3. Empirical evaluation results are provided in Sect. 4. Finally,
conclusions are provided in Sect. 5.

2 Related Work

Let O = {o1, o2, · · · , oN} be a collection of N data objects in M -
dimensional real domain. Each object o is represented as M -dimensional vector
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〈o.1, o.2, · · · , o.M〉. The feature set F = {F1, F2, · · · , FM} denotes the full fea-
ture space and SF = {S1, S2, · · · , Sn} is the set of all possible subspaces (i.e.,
|SF | = 2M ). The problem of OAM is to identify Si ∈ SF in which a given query
object oi ∈ O is significantly different from the rest of the data.

2.1 Problem Formulation

Definition 1 (Problem definition). Given a set of N instances O (‖O‖ =
N) in M dimensional space, a query q ∈ O, a subspace S is called outlying
aspect of q iff,

– outlyingness of q in subspace S is higher than other subspaces; and
– there is no other subspace with same or higher outlyingness.

The main aim of outlying aspect mining is to identify a minimal outlying
aspect of a given query.

2.2 Outlying Aspect Mining Techniques

Duan et al. (2015) [3] employs depth-first search [8] with kernel density estima-
tion (KDE) based outlying measure, called OAMiner. For a given query q and
data set O, OAMiner computes outlyingness as follows:

fS(q) =
1

N(2π)
m
2

∏

i∈S

h.i

∑

x∈O
e
− ∑

i∈S

(q.i−x.i)2

2h.i2

where, fS(q) is a kernel density estimation of q in subspace S (|S| = m), h.i is
the kernel bandwidth in dimension i.

OAMiner first ranks a data point based on the density of each data point
in each subspace. After ranking the data point in each subspace, it sorts the
subspace in ascending order based on the score. Lastly, it returns the top-ranked
subspace(s) as an outlying aspect of a given query q.

Vinh et al. (2016) [14] discussed the issue of using density rank as an outlying
measure in OAM and provided some examples of where it can be counterproduc-
tive. They suggested to use Z-score normalized density to compare subspaces
of different dimensionalities. Z-score computes the outlyingness of query q in
subspace S as:

Z(fS(q)) � fS(q) − μfS

σfS

where μfS and σfS are the mean and standard deviation of densities of all data
instances in subspace S, respectively.

They formulate the concept of dimensionality unbiasedness and proposed
to use Z-score normalization to convert any dimensionality-biased measure to
unbiased one. Authors have combined the Beam search with the density Z-score
measure to identify outlying aspects of a given query.
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Wells and Ting (2019) [15] proposed sGrid density estimator, which is a
smoothed variant of the traditional grid-based estimator (a.k.a histogram). They
also used Z-score normalization to make the score dimensionality unbiased.
Because sGrid density can be computed faster than KDE, it allows Beam search
OAM to run orders of magnitude faster.

Samariya et al. (2020) [9] proposed a Simple Isolation score using Nearest
Neighbor Ensemble (SiNNE in short) measure. SiNNE constructs t ensemble
of models (M1,M2, · · · ,Mt). Each model Mi is constructed from randomly
chosen sub-samples (Di ⊂ O, |Di| = ψ < N). Each model has ψ hyperspheres,
where radius of hypersphere is the euclidean distance between a (a ∈ Di) to its
nearest neighbor in Di.

The outlying score of q in model Mi, I(q‖Mi) = 0 if q falls in any of the
balls and 1 otherwise. The final outlying score of q using t models is:

SiNNE(q) =
1
t

t∑

i=1

I(q‖Mi)

2.3 Desired Properties of Outlying Scoring Measure

In this section, we provide some desired properties for an ideal outlying aspect
mining scoring measure. In Table 1, we summarize the desired properties of
existing scoring measures.

Dimensionality Unbiasedness. As we are comparing subspaces with different
dimensionality, a scoring measure needs to be unbiased w.r.t. dimensionality. An
example of a dimensionally bias scoring measure is the density measure, which
decreases as dimension increases. As a result, density is biased towards higher-
dimensional subspaces.

Efficiency. To find an outlying aspect of a given query, OAM algorithms are
expected to search through a large number of subspaces. Thus, it is essential to
have an efficient scoring measure to evaluate subspace efficiently. The efficiency
of the scoring measure can be analyzed in terms of time complexity.

Effectiveness. To find the most outlying aspects of a given query, the OAM
algorithm ranks each subspace based on its score. Thus, the scoring measure
should be effective for getting better outlying aspects. The effectiveness of the
scoring measure can be analyzed in terms of the quality of discovered subspaces.

3 sGrid++: The New Proposed Measure

Wells and Ting (2019) [15] introduced a simple and effective alternative of kernel
density estimator called sGrid, which allows systematic search method to run
faster in outlying aspect mining domain. sGrid is smoothed variant of the grid
(a.k.a histogram) based density estimator. sGrid computes the density of multi-
dimensional subspace as a multi-dimensional grid. The grid’s width is set based
on the bin width in one dimension.
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Table 1. Summary of desired properties for scoring measures. Time complexity of
estimating one query in a subspace is presented. (N = data size; m = dimensionality of
subspace; ψ = sub-sample size; t = number of set; w = block size for bit set operation).

Scoring measure Unbiasedness Time complexity

Density ✘ ✘(O(Nm))

Density rank ✔ ✘(O(N2m))

Density Z-score ✔ ✘(O(N2m))

sGrid ✘ ✔(O(Nm/w))

sGrid Z-score ✔ ✔(O(N2m/w))

SiNNE ✔ ✔(O(tψ2 + tψ))

sGrid computes the outlying score of a given data point based on a grid in
which the point falls and its neighboring grids. sGrid measure is two orders of
magnitude faster than kernel density estimation [15]. However, sGrid is dimen-
sionally biased, i.e., sGrid density tends to decreases as dimensions increases.
Thus, the authors used Z-score normalization on top of sGrid, which makes
sGrid computationally expensive. In addition to that, Samariya et al. [9] shows
that Z-normalization is biased towards subspace having high variance. More-
over, Z-score normalization adds additional computation overhead on a measure.
Thus, sGrid with Z-score normalization is not effective and due to dimensionality
biasedness, it can not be used directly.

Motivated by these limitations, we proposed sGrid++, a simple yet effective
variant of sGrid which is dimensionally unbiased in its raw form thus it does not
require any additional normalization.

The proposed method consists of two stages. In the first stage (training
stage), g number of grids are generated. The second stage is the evaluation
stage, which evaluates the outlyingness of a given data point q in each subspace.
Let O be a M dimensional data set in �M , and S ⊂ SF be a subspace of m,
where m = |S| dimensions and m ≤ M .

For each dimension, the proposed measure first creates equal-width univariate
bins. We used the Freedman-Diaconis rule [4] to set the bin width and number of
bins in each dimension automatically for a given data set, which means sGrid++
creates b equal width bins overvalue range.

Definition 2 (Histogram). A histogram is a set of b equal width bins, H =
{B1, B2, · · · , Bb}.

Once a histogram is created, the proposed measure calculates the mass of
each histogram.

Definition 3. A mass is defined as the number of data points that falls into the
region.

Definition 4. A mass of a data instance o ∈ �M with respect to Bi is estimated
as follows.
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¯mass
(
Bi(o)

)
=

{
mass,

0,

where mass is themass of binBi in which o falls into
otherwise

sGrid++ computes density as follows.

sGrid++(q) =
¯mass(GS(q))
v(GS(q))

(1)

where GS(q) is a mass of grid (cell) in which q falls into and v(GS(q)) is a volume
of grid GS(q).

Assuming that, data is normalized and in the range of [0, 1]. sGrid++ creates
equal width histogram in each dimension thus it creates bm grids (cells) of the
same volume because they are in same range ([0, 1]). So, volume of each cell in
subspace S is

v(GS(q)) = 1/bm (2)

Plugging Eq. 2 into Eq. 1, sGrid++ density of a query q is estimated as
follows.

sGrid++(q) = ¯mass(GS(q)) · bm (3)

Let G(i,j,k)(q) is a grid in which q falls into and has indices of (i, j, k) ∈
{(1, 1, 1), · · · , (b1, b2, b3)} in their respective dimensions in 3-dimensional space.
To estimate the final outlying score of query q, sGrid++ uses the mass of the
grid in which q falls into. The mass of grid in which q falls is computed by bit
set intersection operation G(i,j,k) = bi ∩ bj ∩ bk.

¯mass(GS(q)) =
⋂

i∈m

Bi(q) (4)

The final outlying score of query q in subspace S is computed as:

gridS(q) = ¯mass(GS(q)) · bm (5)

where GS(q) is grid in which q falls into subspace S. ¯mass(GS(·)) is the mass of
grid GS(·), which is computed as shown in Eq. 4.

A working example of the proposed measure in a two-dimensional space is
shown in Fig. 2. The gridS(x) is 3 while gridS(y) is 1. Thus, point y is considered
more outlying.
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Fig. 2. Example of the new proposed method. The red highlighted regions shows the
bins used to estimate outlyingness of two instances x and y. (Color figure online)

Proposition 1. If point q falls within grid GS which has higher mass then sub-
space S is not an outlying aspect of a query q.

Theorem 1. The proposed measure gridS(q) is dimensionally-unbiased as per
dimensionality unbiasedness definition [14, Definition 4 ].

Proof. Given a data set O of N data instances drawn from a uniform distribution
U([0, 1]M ).

As data is drawn from the uniform distribution, each grid has the same mass,

¯mass(·) =
N

g

where g is total number of grid (g = bM ).
If we substitute mass in Eq. 5, for query q, final outlying score is,

grid(q) =
N

g
· bM

=
N

g
· g = N

Thus, an average value of the sGrid++ scoring measure is,

E[grid(q)|q ∈ O] =
1
N

∑

q∈O
grid(q)

=
1
N

∑

q∈O
N

=
1
N

N · N = N, constant w.r.t |S|
The proposed measure is scalable to both huge datasets and high dimensions.

We will prove this by our empirical evaluation.
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Fig. 3. Dimensionality unbiasedness.

4 Experiments

A series of experiments were performed to answer the following questions:

– Dimensionality unbiasedness: Does the proposed measure dimensionally
unbiased?

– Effectiveness: How accurate is the proposed method?
– Efficiency: Does the proposed method scalable compared to its competitor

w.r.t. data set size and dimensionality?

We first provided the experimental setup details before detailing our findings.

4.1 Experimental Setup

Algorithm Implementation and Parameters. All measures were imple-
mented in Java using WEKA [5]. We implemented the proposed measure by
making the required changes in the Java implementation of sGrid provided by
the authors. We used sGrid and SiNNE Java implementations made available
by [15] and [9], respectively.

Z(KDE) is performed by using a Gaussian kernel with default bandwidth.
sGrid uses the default recommended parameter block size for a bit set operation
w as 64. In terms of SiNNE, the sub-sample size ψ = 8 and ensemble size t =
100. sGrid++ also uses parameter block size for bit set operation w = 64.

All experiments were conducted in a macOS machine with a 2.3 GHz 8-core
Intel Core i9 processor and 16 GB memory running on macOS Monterey 12.4.
We run all jobs for 24 h and killed all uncompleted jobs.

4.2 Desired Properties

Dimensionality Unbiasedness. We generated 19 synthetic datasets, each
data set contains 1000 data points from uniform distribution U([0, 1]M ), where
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Table 2. Comparison of the proposed measure and its three contenders on five syn-
thetic datasets. q-id represents query index, GT represents ground truth. The numbers
in a bracket are feature indices (i.e. subspaces).

q-id GT sGrid++ Z(KDE) Z(sGrid) SiNNE

Synth 10D 172 {8, 9} {8, 9} {8, 9} {8, 9} {8, 9}
245 {2, 3, 4, 5} {2, 3, 4, 5} {2, 3, 4, 5} {3, 4, 5} {2, 3, 4, 5}
577 {2, 3, 4, 5} {2, 3, 4, 5} {6, 7} {2, 3, 4, 5} {2, 3, 4, 5}

Synth 20D 43 {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
86 {18, 19} {18, 19} {18, 19} {18, 19} {18, 19}
665 {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}

Synth 50D 121 {21, 22, 23} {21, 22, 23} {21, 22, 23} {21, 22, 23} {21, 22, 23}
248 {13, 14, 15} {13, 14, 15} {13, 14, 15} {13, 14, 15} {13, 14, 15}
427 {5, 6, 7, 8} {5, 6, 7, 8} {8, 9, 48} {48, 49} {5, 6, 7, 8}

Synth 75D 69 {6, 7, 8} {6, 7, 8} {6, 7, 8} {6, 7, 8} {6, 7, 8}
145 {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}
214 {9, 10} {9, 10} {9, 10} {9, 10} {9, 10}

Synth 100D 80 {17, 18} {17, 18} {17, 18} {17, 18} {17, 18}
105 {10, 11} {10, 11} {10, 11} {10, 11} {10, 11}
258 {43, 44} {43, 44} {43, 44} {43, 44} {43, 44}

M varied from 2 to 20. We computed the average score of all instances using
sGrid++, SiNNE, sGrid, and KDE. The result is presented in Fig. 3. The flat
line for the proposed measure and SiNNE shows that both measures are dimen-
sionally unbiased, whereas sGrid and KDE (without Z-score normalization) are
not. Note that, in [14], it is shown that using ranks and Z-score normalization,
makes any score dimensionally unbiased. Hence, we did not include them in our
experiment.

4.3 Mining Outlying Aspects on Synthetic Datasets

We evaluate the performance of sGrid++ and three contending scoring measures
on 5 synthetic datasets2, where number of instances (N) are 1,000 and number
of dimensions (M): 10 to 100.

Table 2 summarised the discovered subspaces of three queries3 by the con-
tending measures on five synthetic datasets. In terms of exact matches, sGrid++
and SiNNE are the best performing measures that detect the ground truth of
all 15 queries. Whereas Z(sGrid) and Z(KDE) produced exact matches for 14
queries.

2 The synthetic datasets are from Keller et al. (2012) [6]. Available at https://www.
ipd.kit.edu/∼muellere/HiCS/.

3 We reported three queries only due to page limitation.

https://www.ipd.kit.edu/~muellere/HiCS/
https://www.ipd.kit.edu/~muellere/HiCS/
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Table 3. Comparison of the proposed measure and its three contenders on student
performance data set. q-id represents query index. The numbers in the bracket are
feature indices (i.e. subspaces).

q-id sGrid++ Z(KDE) Z(sGrid) SiNNE

5 {1, 3, 4} {4} {1} {1, 3, 4}
52 {0, 3, 4} {0} {0} {0, 2, 4}
68 {0, 1} {1} {1} {0, 1, 2}
156 {0, 3, 4} {0, 4} {0, 4} {0, 3, 4}
197 {2, 3} {2} {2} {1, 2, 3}

4.4 Mining Outlying Aspects on Student Performance Data Set

While evaluating job applications, the recruiting team wants to know in which
aspects an applicant is different than other applicants. Considering this example
as a case study, we detect outlying aspects of all top k outlier/anomaly students4.
We used campus placement data set5 which has 15 features, and we removed
non-numerical features and all data points with a missing value.

For each query q, we apply the Beam search strategy with four different
scoring measures. Table 3 summarizes the outlying aspects found by four different
scoring measures on the student data set.

In absence of better quality measures for outlying aspects, we visually present
3 queries in Table 4. Visually, we can say that the sGrid++ and SiNNE detects
better subspaces than Z-score based scoring measures – Z(KDE) and Z(sGrid).

4.5 Mining Outlying Aspects on NBA2020 Data Set

Let’s assume that, you are an NBA coach, commentator, or agent and you may
want to know the strengths or weaknesses of a particular player, using the OAM
application one can detect and find that easily. We mine data from Foxsports6 to
prepare technical statistics on shooting, assists and defence stats of NBA 2020.

Table 5 summarizes the outlying aspects found by sGrid++ and three con-
tending measures on 3 NBA datasets – assists, defence and shooting. We visually
present the results of one query from each data set in Table 6. Visually we can
say that out of three sGrid++ detects better subspaces whereas Z-score based
measures Z(KDE) and Z(sGrid) are unable to detect best subspaces. SiNNE also
detects better subspace as sGrid++. However, SiNNE is slower than sGrid++.

4 We used a state-of-the-art anomaly detection algorithm called LOF [1] to identify
top k = 5 anomalies; and used them as queries.

5 Available at https://www.kaggle.com/benroshan/factors-affecting-campus-placement.
6 https://www.foxsports.com/nba/stats.

https://www.kaggle.com/benroshan/factors-affecting-campus-placement
https://www.foxsports.com/nba/stats
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Table 4. Visualization of discovered subspaces by sGrid++, Z(KDE), Z(sGrid) and
SiNNE in the student performance data set.

q-id sGrid++ Z(KDE) Z(sGrid) SiNNE

5
52

15
6

4.6 Scale-up Test

We conducted a scale-up test of these four measures w.r.t. (i) increasing data
sizes (N) and (ii) increasing dimensionality (M), using synthetic datasets. We
generated three equal-sized Gaussian’s with random mean μ = [-10, 10] and
variance σ = 1.0 in each dimension using Python Scikit-Learn [7] library. For each
data set, we randomly pick 10 data points as queries and presented the average
runtime. Note that, for a fair comparison we set the maximum dimensionality
of subspace (�) = 3.

Increasing Data Size. In this scale-up test, we examined the efficiency of
the contending scoring measures w.r.t. the number of data sizes (N). A wide
range of N values from 100 to 5 million is used and dimension M is fixed to 5.
Figure 4a shows the average runtime on 10 queries of the contending measures
w.r.t. increasing data set sizes. Note that the runtime and data set size is plotted
using a logarithmic scale. sGrid++ and SiNNE are the only measures to finish
scale-up test for each data set. However, SiNNE is order of magnitude slower than
sGrid++. Z(sGrid) is unable to finish for data set having 5 million data points
in 24hrs, whereas Z(Beam) is able to finish upto data set having 50 thousand
data points. Overall, sGrid++ is order of magnitude faster than SiNNE, two
orders of magnitude faster than Z(sGrid) and four orders of magnitude faster
than Z(KDE).
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Table 5. Comparison of sGrid++ and its three contenders on NBA 2020 technical
statistics. q-id represents query index. The numbers in the bracket are feature indices
(i.e. subspaces).

q-id sGrid++ Z(KDE) Z(sGrid) SiNNE

assists 19 {0,1} {3, 6} {0, 7, 8} {1, 6, 7}
35 {2, 7} {0, 8} {1, 2, 5} {0, 2, 3}
52 {4} {4} {4} {0, 3, 9}

defence 51 {2, 3, 4} {4} {4} {4, 5, 12}
131 {11} {4} {13} {5, 7, 11}
339 {0, 2, 5} {0, 1, 5} {2, 5} {2, 4, 6}

shooting 4 {11, 21} {6} {11, 21} {4, 6, 11}
34 {5, 18} {1} {1} {1, 6, 14}
96 {10, 18} {12} {12} {12, 17, 18}

Table 6. Visualization of discovered subspaces by sGrid++, Z(KDE), Z(sGrid) and
SiNNE in the NBA2020 data set.

q-id sGrid++ Z(KDE) Z(sGrid) SiNNE
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(a) Data size(N). (b) Dimensionality (M).

Fig. 4. Scale-up test.

Increasing Dimensionality. In this scale-up test, we examined the efficiency
of the contending measures w.r.t. the increasing number of dimensions. A wide
range of M values from 2 to 1000 and a data set size of 10,000 was used. Figure 4b
shows the average runtime on 10 queries of the contending measure w.r.t. increas-
ing data set dimensions. Except Z(KDE) all other measures are able to finish
scale-up test for each data set with in 24 h. sGrid++ is the fastest measure
compare to its contenders followed by SiNNE and Z(sGrid). sGrid++ is order
of magnitude faster than SiNNE and Z(sGrid).

5 Conclusion

In this paper, we discussed the issue of existing scoring measures, specifically
the existing density estimator sGrid. We proposed a simple yet effective solution
for making existing dimensionally biased measure to unbiased. sGrid++ creates
univariate histograms in each dimension of subspace. Afterwards, the mass of
the grid in which a given data point falls is used to compute the outlyingness of
the query in that subspace. Our extensive experiments shows that the proposed
scoring measure is dimensionally unbiased and is the fastest measure compared
to all its competitors.
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