
High-Performance Transaction Processing
for Web Applications Using

Column-Level Locking

Xiaodong Zhang and Jing Zhou(B)

Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
{xdzhang97,zhoujing2021}@sjtu.edu.cn

Abstract. Column-level concurrency control allows higher concurrency
but also brings additional coordination overhead. Therefore, many rela-
tional database systems usually coordinate transactions at the row level.
However, our observation based on real-world web applications suggests
that row-level coordination can sometimes be too coarse. It can cause
web applications to suffer reduced throughput due to false conflicts. To
address this issue, we introduce an application-side column-level lock
management system called CLL in this paper. It allows applications
to choose the concurrency control granularity adaptively. With CLL,
accesses to highly contended data items can now be executed in parallel
without false conflicts caused by row-level coordination. Our evaluation
shows that, in both synthetic and real-world workloads, CLL can help to
improve performance significantly and achieve at most 64%/33% higher
throughput, respectively.

Keywords: Web applications · Concurrency control ·
Object–Relational Mapping

1 Introduction

Web applications usually rely on the concurrency control of database manage-
ment systems (DBMSs) to coordinate concurrent transactions. There is a trade-
off between the degree of concurrency achieved and the coordination overhead.
More precise coordination allows higher concurrency at the cost of increased
management overhead (e.g., storage and computation) and complicated system
architecture [9]. Nowadays, popular DBMSs provide row-level or even coarser-
grained coordination [1,2,7,11] to avoid unnecessary overhead.

However, row-level coordination sometimes is not optimal. Take Broadleaf1,
a popular open-source e-commerce web framework, as an example. In Fig. 1,
with row-level coordination, two transactions will conflict with each other when
accessing the same row. This conflict is unnecessary since they require different
columns. A recent study [12] has confirmed that some applications implement
1 https://github.com/BroadleafCommerce/BroadleafCommerce.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Chbeir et al. (Eds.): WISE 2022, LNCS 13724, pp. 186–193, 2022.
https://doi.org/10.1007/978-3-031-20891-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20891-1_14&domain=pdf
https://github.com/BroadleafCommerce/BroadleafCommerce
https://doi.org/10.1007/978-3-031-20891-1_14

High-Performance Transaction Processing for Web Applications 187

Id Descrip�on Discount … Inventory Type Quan�ty

1 product1 10% … check_quan�ty 999

… … … … … …

SKU Checkout
Update
Product

Fig. 1. In Broadleaf, transaction Checkout and Update Product access different
columns of SKU.

SELECT tax FROM warehouse ...
SELECT tax, oId FROM district ...
UPDATE district SET oId=oId+1 ...

SELECT name, addr FROM warehouse ...
UPDATE warehouse SET ytd=20 ...
SELECT name, addr FROM district ...
UPDATE district SET ytd=20 ...

id name addr ytd tax …

1 w1 a1 10 1.0 …

… … … … … …

wId-id name addr ytd tax oId …

1-1 d1 a1-1 10 1.0 12 …

… … … … … … …

warehouse

district

Fig. 2. New Order and Payment transactions in TPC-C may block each other because
of false conflicts. Colors distinguish columns accessed by different transactions. (Color
figure online)

their own application-level coordination, bypassing the DBMSs to avoid such
false conflicts. Nevertheless, in the absence of systematic design, these ad hoc
coordinations are usually error-prone and can not improve performance effi-
ciently.

Therefore, we designed CLL, an application-side column-level lock manage-
ment system. It allows web applications to choose the appropriate coordination
granularity for better performance while preserving correctness, i.e., transaction
serializability. For SQL statements suffering from false conflicts, applications can
coordinate at the finer-grained column level to improve transaction processing
parallelism. As for other SQL statements, applications can still use database
systems’ existing mechanisms without adding any overhead.

In building CLL, two techniques are essential. First, to accurately identify
the locks to be acquired, we use Optimistic/Pessimistic Lock Location Predic-
tion (O/PLLP) [13] to prefetch data needed by scan SQL statements. Second, to
mitigate the effect of database exclusive row locks when coordinating at the col-
umn level, we use deferred writes to defer the write operations until the commit
phase. Our evaluation shows that CLL can bring up to 64%/33% throughput
improvements respectively in TPC-C [3] and Broadleaf workloads.

2 Background

2.1 False Conflicts Caused by Row-Level Coordination

Existing DBMSs usually coordinate transactions at multiple granularities [5]
for flexible concurrency control. For example, MySQL and PostgreSQL support

188 X. Zhang and J. Zhou

Fig. 3. The architecture of CLL

both page and row-level locks. However, among them, the finest granularity is
usually the row level, which may make transactions suffer from false conflicts.

Figure 2 gives a detailed example in TPC-C. Although New Order and Pay-
ment transactions access different columns of warehouse and district tables, they
may still block each other because of row-level conflicts. They are the two most
frequent transactions in TPC-C. Therefore the false conflicts between them will
hurt performance significantly.

2.2 Object–Relational Mapping

Object-Relational Mapping (ORM) [8] is widely used as middleware between web
applications and backend storage systems. ORMs usually fetch full rows (i.e., a
SELECT * FROM . . . statement) from databases for simplicity [15]. Therefore
DBMSs may be unaware of the needed columns, and implementing column-level
locks inside database systems helps little in reducing false conflicts. This fact
motivates us to design and build the column-level lock management system on
the application side. Then developers can choose the granularity of concurrency
control flexibly based on the applications’ business logic characteristics.

3 Design and Implementation

3.1 System Overview

Figure 3 shows the architecture of CLL. SQL statements accessing highly con-
tended data, such as ones in warehouse and district tables of TPC-C, are more
likely to suffer from false conflicts. Therefore developers can utilize CLL for finer-
grained coordination. As for other data, developers can directly access them
through ORMs without adding unnecessary coordination overhead. CLL pro-
vides basic interfaces for CRUD, which are similar to ORMs’. With CLL, devel-
opers can specify columns to be locked for concurrency control. The lock meta-
data is stored in the memory of the server. To handle SQL statements scanning

High-Performance Transaction Processing for Web Applications 189

multiple rows, CLL uses the Optimistic/Pessimistic Lock Location Prediction
(O/PLLP) to prefetch the primary keys of the result set for locking.

3.2 Application-Maintained Data Structures

For each column in a table, CLL keeps a hashmap to store lock metadata. The
key of a hashmap is the row’s primary key, and the corresponding value is a
read-write lock. SQL statements accessing highly contended data can acquire
column-level locks to avoid false conflicts. These locks will be removed after
being released by the last holder without causing a lot of storage overhead.

3.3 Identifying the Data for Locking

Handling SQL Statements Using Primary Key Equality in Conditions.
Acquiring locks for SQL statements using the primary key equality in conditions
is easy. According to the table and columns accessed, CLL first tries to find the
primary key in the corresponding hashmap. If the key exists, the current state-
ment can directly try to acquire the lock. The key absent means that no trans-
action is accessing the same column of the same row. Then CLL will atomically
create the lock and get it granted for the statement.

Handling SQL Statements Using Other Conditions. We handle state-
ments using other conditions in different ways. For statements with an index
(non-primary key) equality in conditions, we use Optimistic Lock Location Pre-
diction (OLLP) to identify the primary key of rows and get locks. OLLP will
issue a non-blocking read-only query to retrieve the primary key set of required
rows first. With index equality in conditions, such reconnaissance queries will
not bring much overhead. Then we try to get column-level locks according to the
primary keys of rows in the read/write set. After the locks are granted, we need
to execute the statement again and validate whether the read/write set is the
same as the reconnaissance query. If validation fails, we must retry the above
procedure or abort the whole transaction.

For statements that may perform the sequential or index range scan, we apply
Pessimistic Lock Location Prediction (PLLP), which acquires column locks for
all rows through wildcard. The reasons are twofold. On the one hand, these
statements involving many rows will bring significant overhead to column-level
lock management. On the other hand, their read/write sets are likely changed
after the reconnaissance query. Using OLLP may cause a lot of failed validation.

3.4 Lock Coordination

For SQL statements using column-level locks, we must prevent them from acquir-
ing database row-level locks. Therefore we use weak isolation levels (Read Com-
mitted or Repeatable Read) for transactions. We can acquire row-level locks
explicitly (e.g., such as for share/update) when the finer-grained coordination is

190 X. Zhang and J. Zhou

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 6 8

(a) Effect of Columns

T
hr

ou
gh

pu
t (

re
q/

s)

#Columns

Baseline CLL

 0

 100

 200

 300

 400

 500

0.5 0.6 0.7 0.8 0.9 1.0

(b) Effect of Contention
Exponent

Fig. 4. The evaluation result with microbenchmark

unnecessary. However, in some databases, write SQL statements acquire exclu-
sive row-level locks by default. To reduce the impact of these database locks, we
defer write operations until the commit phase. So exclusive row-level locks will
be held for little time and hardly cause write-write false conflicts.

3.5 Correctness and Consistency

CLL can be integrated with applications while preserving correctness and consis-
tency. SQL statements using CLL are also wrapped in database transactions, so
the atomicity and durability are guaranteed. Each statement will acquire locks
from either database or CLL and release them until committed to guarantee the
serializable isolation. When the application server crashes, we assume all ongo-
ing transactions have failed. Therefore, the loss of column-level locks caused by
a crash does not matter. After a restart, the system is still in a consistent state.

4 Evaluation

We evaluate CLL to answer the following questions: 1) In what workloads is CLL
more effective? 2) How much benefit can CLL bring by avoiding false conflicts?
3) Will CLL decrease performance in workload without false conflicts?

4.1 Experimental Setup

Configuration. We build the application server based on the Spring framework
with Hibernate-5.4.32 as ORM. CLL can work with DBMSs that supports weak
isolation level and explicit locks, such as PostgreSQL and MySQL. We apply
MySQL-8.0.252 for evaluation. The database and web server are deployed in
independent physical machines. Both have 2 × 12 2.20 GHz cores (Intel Xeon
Processor E5-2650 v4), 128 GiB DDR4 memory, and a 1 Gbit/s NIC.

Comparison. We compare CLL with the baseline that relies on DBMSs’ row-
level concurrency control. They both use a weak isolation level (Read Com-
mitted). The baseline acquires row-level locks explicitly for correctness. CLL
replaces them with column-level locks when accessing highly contended data.
2 For Broadleaf, we use MySQL-5.7.35 as suggested.

High-Performance Transaction Processing for Web Applications 191

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50 100 150 200 250

(a) New Order

T
hr

ou
gh

pu
t (

re
q/

s)

#Clients

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

(b) Payment
#Clients

CLL Baseline

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

(b) Overall Throughput
#Clients

Fig. 5. The evaluation result with standard TPC-C

4.2 Microbenchmarks

The benefit of CLL is related to the contention and the number of no-overlapping
column subsets accessed by transactions. To show their effect and answer the
first question, we designed the following microbenchmark. A table is initialized
with 100,000 rows, each of which has eight columns. Concurrent transactions
read or update different columns of a row chosen from a Zipfian distribution.

The result is shown in Fig. 4. When the contention is low and most trans-
actions access the same columns, CLL performs similar to the baseline. As the
contention and the columns used increase, transactions using row-level coordi-
nation are more likely to suffer from false conflicts. Thus CLL can bring more
performance benefits and achieve at most 5.4× higher throughput.

4.3 Macrobenchmarks

To answer the second question, we first compare CLL with baseline in TPC-
C workload with one warehouse. Among the five transactions, the New Order
(45%) and Payment(43%) can benefit from CLL. The result is shown in Fig. 5.
As the number of clients increases (contention becomes higher), the Payment
throughput of the baseline approaches zero, making CLL significantly better.
The reason is that TPC-C specifies the upper limit of transaction response time.
Under high contention, in the baseline, most Payment transactions are timed
out due to false conflicts. Similarly, with CLL, the throughput of New Order
transactions can be improved by at most 28% (112 clients). As for the overall
throughput, CLL can achieve at most 64% (64 clients) higher than the baseline.

To answer the third question, we evaluate CLL with TPC-C New Order
transaction only, in which row-level locks cause no false conflicts. As shown in
Fig. 6, CLL brings a little overhead and has at most 8.9% lower throughput.
Therefore, to avoid unnecessary overhead, we should not use column-level locks
in workloads with little or without false conflicts.

4.4 Performance Improvement in Real-World Applications

Broadleaf is a framework used for e-commerce applications. As we mentioned,
Checkout and Update Product may suffer from false conflicts caused by row-level

192 X. Zhang and J. Zhou

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 10 20 30 40 50 60 70

La
te

nc
y

(m
s)

Throughput (req/s)

CLL
Baseline

Fig. 6. The evaluation result with
TPC-C New Order only (#clients from
1 to 64)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

re
q/

s)

#Clients

CLL
Baseline

Fig. 7. The evaluation result with
Broadleaf

coordination. We integrated CLL into Broadleaf with little engineering effort to
address this issue. To simulate the high contention, we keep one seller updating
the hottest product and many customers buying it concurrently. The result in
Fig. 7 shows that CLL can improve the throughput up to 33%.

5 Related Work

Some DBMSs already provide column-level coordination. PostgreSQL [2] sup-
ports For Key Share and For No Key Update hints. Nevertheless, such column-level
coordination can only be used for the primary key. Google F1 [10] fully supports
column-level locks. However, it creates a separate lock column for each column
to store timestamp, which may bring significant storage overhead. Furthermore,
F1 is built for Google AdWords business, and it is not open-source. Our CLL can
fully support column-level locks. It creates lock only when the data is accessed,
thus causing little memory overhead. Finally, its design does not rely on specific
databases or ORMs so that it can be deployed with most applications.

Some works focus on the optimization of concurrency control. Graefe et al. [4]
proposed ghost records (logically deleted records) to avoid false conflicts caused
by gap locks. Grechanik et al. [6] combine static analysis and run-time monitoring
to detect and prevent database deadlocks in applications efficiently. To handle
contended workloads, Wang et al. [14] designed interleaving constrained con-
currency control (IC3), which allows parallel execution for transactions under
contention while preserving serializability. These works optimize concurrency
control in other ways rather than improving concurrency control granularity.

6 Conclusion

In this work, we propose CLL, an application-side column-level lock management
system to avoid false conflicts caused by row-level concurrency control. With
CLL, developers can choose finer-grained coordination granularity for highly con-
tended access to improve parallelism. The evaluation shows that it can improve
throughput significantly in both synthetic and real-world workloads.

Acknowledgement. We appreciate the anonymous reviewers for their constructive
feedback and suggestions.

High-Performance Transaction Processing for Web Applications 193

References

1. MySQL. https://www.mysql.com/. Accessed 18 Aug 2022
2. PostgreSQL. https://www.postgresql.org/. Accessed 18 Aug 2022
3. TPC-C Benchmark. https://www.tpc.org/tpcc/. Accessed 18 Aug 2022
4. Graefe, G.: Hierarchical locking in B-tree indexes. In: On Transactional Concur-

rency Control. SLDM, pp. 45–73. Springer, Cham (2019). https://doi.org/10.1007/
978-3-031-01873-2 3

5. Gray, J.N., Lorie, R.A., Putzolu, G.R.: Granularity of locks in a shared data base.
In: Proceedings of the 1st International Conference on Very Large Data Bases,
VLDB 1975, pp. 428–451. Association for Computing Machinery, New York, NY,
USA (1975). https://doi.org/10.1145/1282480.1282513

6. Grechanik, M., Hossain, B.M.M., Buy, U., Wang, H.: Preventing database dead-
locks in applications. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pp. 356–366. Association for Computing
Machinery, New York, NY, USA (2013)

7. Huang, D., et al.: TiDB: a raft-based HTAP database. Proc. VLDB Endow. 13(12),
3072–3084 (2020). https://doi.org/10.14778/3415478.3415535

8. O’Neil, E.J.: Object/relational mapping 2008: hibernate and the entity data model
(EDM). In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, pp. 1351–1356. Association for Computing
Machinery, New York, NY, USA (2008)

9. Ries, D.R., Stonebraker, M.: Effects of locking granularity in a database manage-
ment system. ACM Trans. Database Syst. 2(3), 233–246 (1977). https://doi.org/
10.1145/320557.320566

10. Shute, J., et al.: F1: a distributed SQL database that scales. Proc. VLDB Endow.
6(11), 1068–1079 (2013). https://doi.org/10.14778/2536222.2536232

11. Taft, R., et al.: CockroachDB: the resilient geo-distributed SQL database. In: Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2020, pp. 1493–1509. Association for Computing Machinery, New
York, NY, USA (2020). https://doi.org/10.1145/3318464.3386134

12. Tang, C., et al.: Ad hoc transactions in web applications: the good, the bad, and
the ugly. In: Proceedings of the 2022 International Conference on Management of
Data, SIGMOD 2022, pp. 4–18. Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3514221.3526120

13. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin: fast
distributed transactions for partitioned database systems. In: Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, pp. 1–12. Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2213836.2213838

14. Wang, Z., Mu, S., Cui, Y., Yi, H., Chen, H., Li, J.: Scaling multicore databases via
constrained parallel execution. In: Proceedings of the 2016 International Confer-
ence on Management of Data, SIGMOD 2016, pp. 1643–1658. Association for Com-
puting Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2882903.
2882934

15. Yang, J., Subramaniam, P., Lu, S., Yan, C., Cheung, A.: How not to structure
your database-backed web applications: a study of performance bugs in the wild.
In: Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, pp. 800–810. Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3180155.3180194

https://www.mysql.com/
https://www.postgresql.org/
https://www.tpc.org/tpcc/
https://doi.org/10.1007/978-3-031-01873-2_3
https://doi.org/10.1007/978-3-031-01873-2_3
https://doi.org/10.1145/1282480.1282513
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/320557.320566
https://doi.org/10.1145/320557.320566
https://doi.org/10.14778/2536222.2536232
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3514221.3526120
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2882903.2882934
https://doi.org/10.1145/2882903.2882934
https://doi.org/10.1145/3180155.3180194

	High-Performance Transaction Processing for Web Applications Using Column-Level Locking
	1 Introduction
	2 Background
	2.1 False Conflicts Caused by Row-Level Coordination
	2.2 Object–Relational Mapping

	3 Design and Implementation
	3.1 System Overview
	3.2 Application-Maintained Data Structures
	3.3 Identifying the Data for Locking
	3.4 Lock Coordination
	3.5 Correctness and Consistency

	4 Evaluation
	4.1 Experimental Setup
	4.2 Microbenchmarks
	4.3 Macrobenchmarks
	4.4 Performance Improvement in Real-World Applications

	5 Related Work
	6 Conclusion
	References

