
Offworker: An Offloading Framework for
Parallel Web Applications

An-Chi Liu and Yi-Ping You(B)

Department of Computer Science, National Yang Ming Chiao Tung University,
Hsinchu, Taiwan

acliu@cs.nycu.edu.tw, ypyou@nycu.edu.tw

Abstract. More and more applications are shifting from traditional
desktop applications to web applications due to the prevalence of mobile
devices and recent advances in wireless communication technologies. The
Web Workers API has been proposed to allow for offloading computation-
intensive tasks from applications’ main browser thread, which is respon-
sible for managing user interfaces and interacting with users, to other
worker threads (or web workers) and thereby improving user experi-
ence. Prior studies have further offloaded computation-intensive tasks to
remote servers by dispatching web workers to the servers and demon-
strated their effectiveness in improving the performance of web applica-
tions. However, the approaches proposed by these prior studies expose
potential vulnerabilities of servers due to their design and implementa-
tion and do not consider multiple web workers executing in a concurrent
or parallel manner. In this paper, we propose an offloading framework
(called Offworker) that transparently enables concurrent web workers to
be offloaded to edge or cloud servers and provides a more secure exe-
cution environment for web workers. We also design a benchmark suite
(called Rodinia-JS), which is a JavaScript version of the Rodinia paral-
lel benchmark suite, to evaluate the proposed framework. Experiments
demonstrated that Offworker effectively improved the performance of
parallel applications (with up to 4.8x of speedup) when web workers
were offloaded from a mobile device to a server. Offworker introduced
only a geometric mean overhead of 12.1% against the native execution
for computation-intensive applications. We believe Offworker offers a
promising and secure solution for computation offloading of parallel web
applications.

Keywords: Offloading · JavaScript · Parallelism · Web workers

1 Introduction

More and more desktop applications (e.g., Google Earth1, Stellarium2, and
Autodesk3) are moving to the mobile market in the form of web applications.
1 https://earth.google.com/web/.
2 https://stellarium-web.org/.
3 https://www.autodesk.com/solutions/cloud-based-online-cad-software.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Chbeir et al. (Eds.): WISE 2022, LNCS 13724, pp. 170–185, 2022.
https://doi.org/10.1007/978-3-031-20891-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20891-1_13&domain=pdf
http://orcid.org/0000-0002-4455-3147
https://earth.google.com/web/
https://stellarium-web.org/
https://www.autodesk.com/solutions/cloud-based-online-cad-software
https://doi.org/10.1007/978-3-031-20891-1_13

Offworker: An Offloading Framework for Parallel Web Applications 171

Web applications for machine learning, gaming, and extended reality are getting
more attractive since mobile devices as an input/output interface for end users
become ubiquitous. However, these applications usually require high computa-
tion power and involve mass interactive activities, and sometimes demand a good
internet connection for fast data download. These requirements can be problems
for mobile devices, even for premium mobile devices, since heavy computation
can drain their battery quickly, not to mention for mid-range or low-cost devices,
which are usually not equipped with powerful processing units.

The Web Worker API4 has been introduced to enable parallel JavaScript
programming on the web. Many prior studies have shown that offloading
computation-intensive tasks in web applications from mobile devices to edge
or cloud servers can greatly enhance device performance without requiring the
devices to have advanced compute capabilities or high connection bandwidth [3,6,
8]. This was done by offloading the computation-intensive tasks to worker threads
(or web workers for short), which are spawned to run concurrently with the main
thread in JavaScript, and dispatching the web workers to remote servers. Never-
theless, these studies only addressed the benefits of offloading serial web work-
ers, and almost none of them have examined the viability of offloading concur-
rent or parallel web workers. This is probably attributed to the fact that the Web
Workers API has been primarily used for offloading tasks from the main browser
thread so as to prevent the main browser thread from being blocked by the tasks,
thereby providing a better user experience. However, with the advance of multi-
core mobile devices, we believe parallel web applications are gaining more atten-
tion and popularity, and offloading parallel web workers to edge or cloud servers
is a demanding task. To our best knowledge, Puffin Web Browser5 (or Puffin for
short), a commercial web browser developed by CloudMosa, is the only work that
enables parallel web workers to run remotely. Essentially, Puffin is basically a
“thin-client” browser that renders webpages, including JavaScript code that oper-
ates using web workers, in the cloud. However, this type of offloading scheme is
inherently incapable of supporting numerous interactions with user interface com-
ponents because each user action request must be transferred to the cloud for pro-
cessing and then back to the client, resulting in long response times.

In this paper, we propose a framework (called Offworker6) that enables off-
loading parallel web workers to edge or cloud servers so as to enhance the exe-
cution of web applications on mobile devices, particularly on mid-range or low-
cost devices. The Offworker framework comprises two main components: (1) a
front-end library (FL), which exposes Web Workers APIs and forwards requests
to remote servers, and (2) a back-end manager (BM) for launching web workers on
the remote servers. Offworker is designed to improve web worker applications in
four aspects: (1) faster execution, (2) improved user experience, (3) secure execu-
tion environment, and (4) transparent programmability. As an offloading frame-
work, Offworker aims to improve the execution performance of web worker appli-

4 https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API.
5 https://www.puffin.com/web-browser.
6 https://github.com/nycu-sslab/offworker.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://www.puffin.com/web-browser
https://github.com/nycu-sslab/offworker

172 A.-C. Liu and Y.-P. You

cations by offloading heavy computation, which may involve multiple web work-
ers running in parallel, or communication to edge or cloud servers. Offworker also
delivers a better user experience than other offloading framework (e.g., Puffin) for
applications that frequently interact with users since it offloads only web workers,
which are typically computationally intensive, rather than the whole rendering
process of webpages. Moreover, with Offworker, a separate V8 isolate, which is an
isolated JavaScript environment using the V8 JavaScript engine7, is created on
the remote site for each offloaded web worker, and each offloaded web worker run
within the V8 isolate; therefore, Offworker provides a more secure environment
for web workers. Furthermore, Offworker is partly designed and implemented as a
library that conforms to the Web Workers APIs, so ordinary web worker appli-
cations can directly take advantage of Offworker without modifying any code,
thereby providing a transparent offloading mechanism.

2 Related Work

There have been many prior studies focusing on offloading computation-intensive
tasks in web applications from mobile devices to servers. The Web Workers API
has been considered the most common interface for web application developers
to implement a complex computation task without interfering the user interface.
Therefore, there have been several studies (with the same objective as this study)
that aimed to offload web workers to servers in order to improve the execution
performance of web applications [4–8]. Most of these studies proposed a roughly
same architecture as proposed in this study, which includes a front-end library,
which accepts computation requests on the client, and a back-end manager,
which enables web workers to execute on the server.

Hwang and Ham proposed a framework, called WWF [5], that allows web
workers (with some modifications to the original application) to be offloaded to
servers and whose BM was implemented based on the Node.js library8, but how
web workers operates on the server was not clearly stated. Zbierski and Makosiej
proposed a similar framework like WWF but without requiring modifications to
the application. They also proposed an offloading decision model according to
CPU and memory usages and network conditions [8]. However, the implementa-
tion details of the proposed framework and decision model were not elaborated
in details. Gong et al. proposed a framework, called WWOF [3], which is also
similar to WWF, but web workers are executed on servers using the VM module
of Node.js. Jeong et al. introduced a different offloading scenario that allows a
running web worker to migrate from a mobile device to a server—though with
a larger offloading overhead [6]. They implemented a snapshot mechanism that
enables web worker migration, using the subprocess module of Node.js to execute
web workers on the server.

Although the aforementioned studies have demonstrated their success in off-
loading web workers to servers, the libraries they use for executing web work-
7 https://v8.dev/.
8 https://nodejs.org/.

https://v8.dev/
https://nodejs.org/

Offworker: An Offloading Framework for Parallel Web Applications 173

ers on servers, such as the VM and the subprocess modules of Node.js, may
expose vulnerability to the servers. In contrast, Offworker adopts the isolated-vm
library9, which guarantees an offloaded web worker to execute within a sandbox,
thereby providing a more secure offloading environment. More details about the
potential security issues and how Offworker addresses these issues are discussed
in Sect. 3.2. In addition, these prior studies considered only applications without
concurrent web workers, whereas in this study we address the issues in offloading
concurrent web workers and evaluate the proposed approach with a set of parallel
web applications.

3 Design and Implementation of Offworker

The Offworker framework comprises two main components: (1) the FL and (2)
the BM. The FL, which is included in web applications, exposes web worker-
related APIs to the applications and passes web worker requests—such as the
creation of web workers and communication between web workers—to the BM.
The BM, which is designed as a service daemon running on an edge or cloud
server, is responsible for fulfilling web worker requests so that web workers can
run on the server and communicate with one another properly. Figure 1 illus-
trates the workflows of the native execution and offloading execution of a web
worker application, respectively, and also the conceptual architecture of the Off-
worker framework. We briefly introduce the two workflows and then focus on how
a web work task is offloaded to the server using Offworker. It is worth mentioning
that parallelism for web applications is commonly implemented using the proxy
pattern10, in which parallel worker threads are created by a proxy thread, which
is created by the main thread and interacts with the worker threads. This proxy
pattern avoids the main browser thread (which is typically the main application
thread) from constantly synchronizing with other worker threads (i.e., web work-
ers) and allows the main browser thread to focus on rendering and handling user
interactions. In this study, we presume that parallelism is expressed in parallel
web applications using the proxy pattern.

For both the native and offloading execution of the web applications in Fig. 1,
the workflow starts with the initial HTTP requests from a client who intends
to launch a web application, and then the web server responds to the client
with the web application, which contains HTML pages with CSS formatting
and JavaScript codes. Using the Web Workers API, computation-intensive tasks
(sometimes referred to as kernels) of the web application can be offloaded onto
a separate web worker or several web workers that are launched by a proxy web
worker. During the native execution of a kernel, all web workers are created
and run natively on the client side (i.e., the browser), and the web workers may
request resources from the web server during their execution. In contrast, when
the FL is included in the application, Offworker is activated, and the kernel,
including the proxy web worker and its associated parallel web workers, can be
9 https://github.com/laverdet/isolated-vm.

10 https://emscripten.org/docs/porting/pthreads.html#proxying.

https://github.com/laverdet/isolated-vm
https://emscripten.org/docs/porting/pthreads.html#proxying

174 A.-C. Liu and Y.-P. You

Web server

Execution on client

JavaScript

HTML+CSS

Kernel

Web application

Back-end
manager

Execution on edge/server

The Offworker framework

4 Fallback 7 Offloading finish
Execution on client

HTML+CSS

Kernel

Web application

JavaScript

Resource respones 6

Offworker 3
activation

1 Initial HTTP requests1

Client

Native execution Offloading execution

Proxy worker
Worker
Offloaded proxy worker (V8 isolate)
Offloaded worker (V8 isolate)

R
es

ou
rc

e
re

qu
es

ts
3R

es
ou

rc
e

re
sp

on
se

s
4

Offloading
control API

Front-end library

5 Resource requests

2 HTTP responses
(Web application)

2

Offloading

4

Fig. 1. The workflows of the native execution and offloading execution (using Off-
worker) of a web worker application, respectively.

offloaded to the server depending on the developer’s decision. The proxy web
worker is created either natively, in which case the kernel is executed with the
same workflow as the native execution, or on the server, in which case the request
for creating the proxy web worker is sent to the BM. In the latter case, the BM
creates the proxy web worker and its associated parallel web workers as separate
V8 isolates on the server, and these workers can directly communicate with the
web server. Lastly, the BM sends back the results to the client when all web
workers finished.

3.1 The Front-End Library

The FL is an implementation of the Web Worker API and allows a web
worker to be created and run remotely. The FL overrides the Worker class,
in which the constructor, communication-related methods or properties (e.g.,
postMessage() and onmessage), and other class members are implemented
in a way that they work with the BM. More specifically, once developers have
included the front-end Offworker library and created a proxy web worker object
with the Worker class, the constructor of Worker uses the WebSocket API11
to create connections between the FL and the BM so as to pass the request for
worker creation and the worker creation argument (the script that the worker
will execute) to the BM and allow for communication between the main browser
thread and the proxy web worker. How the communication is processed is dis-
cussed in detail in Sect. 3.2.

3.2 The Back-End Manager

The BM is a server-side daemon process that receives and handles requests from
the FL and is responsible for creating web workers on the server and manag-
ing communication among the main browser thread and the web workers being
11 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API.

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Offworker: An Offloading Framework for Parallel Web Applications 175

offloaded to the server. In essence, the BM enables the functionality to run
web workers on the server and can be implemented by adopting a server-side
JavaScript library that allows web workers to run on the server. The simplest
and most intuitive way to run web workers on the server is by using the worker
threads module in the Node.js library, which is almost the counterpart of the Web
Workers API in Node.js. However, such an implementation of the BM exposes
vulnerability of the server since worker threads (i.e., web workers created on the
server using the worker threads module) are able to invoke system calls to access
privileged system information and resources by using the Node.js APIs. More-
over, the BM will be unable to fully manage worker threads—for example, to
control resources used by worker threads in order to prevent resource starvation
attacks—, unless modifying the Node.js library. These effects also occur when
using other modules, such as the child process or VM modules, in the Node.js
library as the basis for implementing the BM.

In view of this, we propose to create web workers on the server by using
the isolated-vm library, which allows code to run within an isolated environment
that conforms to a V8 isolate. In other words, a V8 isolate is created for each
offloaded web worker and used to run the corresponding task in a web worker.
Furthermore, since a V8 isolate is an isolated instance of the V8 JavaScript
engine, which runs only core JavaScript (i.e., ECMAScript12) code but not client-
or server-side JavaScript code, an offloaded worker is guaranteed to execute
within a sandbox with configurable resource limitations and unable to access any
resources on the server or even call web APIs, thereby solving the aforementioned
potential security issues.

Nevertheless, the fact that each offloaded worker runs as a V8 isolate also
raises another two issues: creating V8 isolates within an existing V8 isolate is
not feasible, and communication between V8 isolates is not possible without
a proper runtime system. Therefore, the BM must serve as a proxy for iso-
late creation and further implement a communication mechanism that manages
possible communication among different isolates. The BM involves three main
components: (1) an isolate creator, which creates web workers as V8 isolates
on the server, (2) a message handler, which enables the message passing mecha-
nism between the client and the server and between V8 isolates, and (3) a shared
memory manager, which allows memory to be shared between V8 isolates. The
BM also implements some web APIs for V8 isolates to facilitate functionality
of web applications. We elaborate in detail how the three components work by
demonstrating how web workers are offloaded and created onto the server and
how communication between the client and server and communication between
web workers function in the following paragraphs.

Creation of Web Workers on the Server. As stated at the beginning of
Sect. 3, the hypothesis underlying this study is that web applications express
parallelism using the proxy pattern. Hence, each kernel is always activated by
creating a proxy web worker, which further creates parallel web workers. Figure 2
12 https://tc39.es/ecma262.

https://tc39.es/ecma262

176 A.-C. Liu and Y.-P. You

Web application
Front-end library

Worker()

Client Edge or cloud server

Isolate creator

Back-end manager
...
pxy=new Worker('proxy.js');
...

worker1.js
...

V8 isolate (worker1)

V8 isolate (proxy)
proxy.js
...
w1=new Worker('worker1.js');
w2=new Worker('worker2.js');
...

Fig. 2. The workflows of creating web workers (V8 isolates) on the server using Off-
worker. (Color figure online)

illustrates how a kernel is offloaded to the server by showing the workflows of how
V8 isolates, which act as web workers on the server, are created. There are two
types of workflows: (1) the client’s web application creates a proxy web worker,
as shown in red text and red dotted arrows in the figure, and (2) the proxy web
worker (or any other worker) creates another web worker, as shown in blue text
and blue dotted arrows. In the former case, when the client’s web application
calls “new Worker()” to create a proxy web worker, the FL passes the request
of the proxy worker creation to the BM, and then the isolate creator in the BM
creates a V8 isolate to execute the proxy worker. In the latter case, when a web
worker calls “new Worker()” to create another web worker, the isolate creator,
which is registered as an event handler for the “new Worker()” event in V8
isolates, creates another V8 isolate to execute the newly created worker.

Communication Management. Apart from creating V8 isolates (i.e., web
workers on the server), the other primary task of the BM is to enable com-
munication, which involves a V8 isolate on one end. For parallelism using the
proxy pattern, there are only two scenarios of communication to consider: (1)
the communication between the client’s web application and a proxy V8 isolate
and (2) the communication between V8 isolates. Since the communication can be
done by using the message passing (via postMessage() and onmessage) or
shared-memory (via SharedArrayBuffer) mechanisms, the BM must guar-
antee that both the two communication mechanisms work correctly when web
workers are offloaded to the server. We discuss how these two communication
mechanisms are managed by the BM, respectively.

Figure 3 shows how communication using message passing is performed in
Offworker. The BM implements a message handler, which is essentially an event
handler, for all communication requests made in both of the aforementioned
scenarios. In the first scenario, it is illustrated in red text and red dotted arrows
how the client’s web application sends a message to a proxy V8 isolate—the
FL passes the sending request to the BM, which then directs the message to
the proxy V8 isolate—, while in blue text and blue dotted arrows how it goes
in reverse. The client–server communication (between the FL and the BM) is

Offworker: An Offloading Framework for Parallel Web Applications 177

Web application

Message handler

Back-end manager

Front-end library

postMessage()

onmessage

...
pxy.postMessage(data);
pxy.onmessage=...
...

V8 isolate (proxy)
proxy.js
self.onmessage=function(e) {
 ...
w1.postMessage(data1);
w1.onmessage=...

 ...
self.postMessage(result);

}

worker1.js
self.onmessage=function(e) {
 ...
self.postMessage(result1);

}

V8 isolate (worker1)

Client Edge or cloud server

Fig. 3. Communication between the client and server and communication among web
workers using message passing in Offworker. (Color figure online)

worker1.js
V8 isolate (worker1)

onmessage=function(e) {
 // Accessing sab
 ...
}

Shared memory
manager

Back-end manager V8 isolate (proxy)
proxy.js
...
sab=new SharedArrayBuffer();
worker1.postMessage(sab);
...

ExternalCopy

Fig. 4. Communication among web workers using shared memory in Offworker.

enabled by the WebSocket connection established when creating a proxy V8
isolate (as discussed in Sect. 3.1), and MessageChannel in JavaScript is used
to communicate between the BM and the proxy V8 isolate. Communication in
the second scenario, which can be seen in green/orange text and green/orange
dotted arrows, is similar to communication in the first scenario, but all of the
communication happens on the server.

Figure 4 depicts how communication using shared memory is processed in
Offworker. It is worth mentioning that for parallelism using the proxy pat-
tern, shared-memory communication typically occurs only between web workers
(either proxy or regular), so only the second scenario is considered in this case.
The BM deploys a shared-memory manager, which is registered as an event
handler for the “new SharedArrayBuffer()” event in V8 isolates. When a
new SharedArrayBuffer() request is made, the shared-memory manager
allocates an ExternalCopy object, which is implemented by the isolated-vm
library and treated as the standard shared memory that is accessible to any V8
isolate, so as to allow shared-memory communication among V8 isolates.

178 A.-C. Liu and Y.-P. You

4 Evaluations and Discussion

We implemented the proposed Offworker framework in JavaScript, based on
isolated-vm v4.2 and Node.js v14.16 (with V8 JavaScript engine v8.4), and eval-
uated the framework with web applications running on Google Chrome v91 (with
V8 JavaScript engine v9.1). And Node.js v14.16, and evaluated the framework
with web applications running on Google Chrome v91.

We evaluated the Offworker framework in different scenarios in order to
examine its effectiveness. Unless specified, web applications ran on a client mobile
device (Sony Xperia 10), which was located in Hsinchu, Taiwan and has a total
of eight CPU cores with four Cortex-A53 cores operating at up to 2.2 GHz, four
Cortex-A53 cores operating at up to 1.8 GHz, and 3 GB of RAM. The BM of
Offworker was deployed on three different servers: an edge server (ES) located
in Hsinchu, a near cloud server (NCS) in Hong Kong, and a far cloud server
(FCS) in the United States. The ES was equipped with an Intel quad-core i3-
10100 processor operating at 3.6 GHz and 32 GB of RAM; the NCS was hosted
in an Amazon EC2 t3.2xlarge instance, which was equipped with eight Intel
Xeon Platinum 8259CL vCPUs operating at 2.5 GHz and 32 GB of RAM; the
FCS, which was provided by CloudMosa, was equipped with eight Intel Xeon
E3-1241 v3 vCPUs and 32 GB of RAM. The ES also acted as a web server in
all experiments conducted in this work.

To our best knowledge, there is no JavaScript benchmark suite for parallel
web applications. We believe that this is attributed to parallelism being a rel-
atively new feature in JavaScript and many computation-intensive applications
have not yet moved to the web. In order to evaluate the effectiveness of Offworker,
especially in terms of its capability of running parallel web applications, we man-
ually ported the Rodinia benchmark suite (version 1) [2], a popular benchmark
suite for heterogeneous computing, from OpenMP programs into JavaScript pro-
grams, where the computation-intensive parts of the programs (i.e., kernels) were
expressed by using the Web Workers API with the proxy pattern, and workers
synchronize via a barrier at the end of a kernel. All Rodinia applications have
been successfully ported, except Leukocyte Tracking, Stream Cluster, and Simi-
larity Score due to their large code size (over 3,000 lines of code). We call this
new benchmark suite Rodinia-JS.

The Rodinia benchmark suite includes default datasets, but their size is too
large for client-side web applications, which fetch external data from the web
server rather than from the local file system, since data fetching is likely to
become a major task of the applications. We scaled down the datasets to meet
the following criteria: (1) the total running time of an application on the mobile
device takes less than seven seconds while the time spent in data fetching is less
than two seconds, which is more reasonable for web applications as more than
half of visits are abandoned if a mobile site takes over three seconds to load13,
and (2) the time spent in computation is greater than the overhead time incurred
by creating workers, which makes sense for parallelization to be beneficial.

13 https://developer.chrome.com/blog/search-ads-speed/.

https://developer.chrome.com/blog/search-ads-speed/

Offworker: An Offloading Framework for Parallel Web Applications 179

Fig. 5. Normalized execution times for the Rodinia-JS benchmark suite on the ES
when running natively on Chrome and using Offworker.

We also used the Hopscotch micro-benchmark suite [1] to further evaluate
the performance difference in manipulating shared memory between Offworker
and Chrome. 14 (out of 16) types of memory access patterns were ported to
JavaScript. Two types of patterns (r_rand_pchase and w_seq_memset) were
excluded due to no pointers and “memset” in JavaScript.

4.1 Overhead Analysis

Figure 5 displays the breakdown of normalized execution times for the Rodinia-
JS applications without kernel parallelization (i.e., only one web worker for com-
puting a kernel task) when running the applications natively on the headless
Chrome browser and using Offworker, respectively. Both the client and server ran
on the same machine (ES) so that we could better identify the performance over-
head due to the proposed Offworker framework. Each execution time is divided
into six parts in our measurements: (1) proxy creation, which fetches the script
of the proxy web worker and initializes the proxy worker, (2) data initialization,
which fetches input data and constructs data structures, (3) worker creation,
which fetches the script of the worker and initializes the worker, (4) computa-
tion, which is the main task of a kernel, (5) barrier synchronization, which is
necessary at the end of each kernel due to the fork-join model of OpenMP being
adopted, and (6) others, which do not belong to any of the aforementioned five
parts. Overall, Offworker introduced a (geometric) mean overhead of 12.1% for
computation-intensive applications (backprop, kmeans, nw, and srad) and 18.5%
for all applications in Rodinia-JS. bfs and hotspot had a larger percentage over-
head since they had a short application time on ES (only around 160 and 260
ms, respectively)—although they took around one and two seconds to execute
on the mobile device, respectively—, and they are I/O-intensive applications.

One of the main overhead sources lied in the creation of the proxy web
worker (geometric mean of 4.5%) and regular web workers initialization (6%),
which involves additional HTTP connections to fetch the script of web work-
ers, creating workers, and initializing workers. Offworker added an additional
overhead of around 20 ms for each worker creation (excluding worker initial-

180 A.-C. Liu and Y.-P. You

ization). Another main overhead source was from the barrier synchronization
(2.2%), which was implemented using the message passing mechanism, because
each message passing operation between web workers was around 0.7 ms slower
when using Offworker than running natively on Chrome. This slight overhead was
attributed to an implementation difference, where a worker’s script is executed
on the Node.js platform and non-core JavaScript API calls (including message
passing) are implemented in JavaScript in Offworker, whereas all the script is
executed by Chrome (which is implemented in C++) when running natively. This
implementation difference also leaded to some overheads in data initialization
(5.2%). For example, bfs and hotspot had a larger overhead in data initialization
(7.5% and 15.8%, respectively) since they both invoked the split function,
which splits a string into substrings, where a split function call was around 70
ms slower on Node.js than on Chrome. Each HTTP connection was also around
30 ms slower when using Offworker than on Chrome. The computation parts also
showed slight variations between the two platforms due to the implementation
difference. Offworker performed slightly better than Chrome with respect to the
computation part for nw, but worse than Chrome for backprop and kmeans. We
discuss these variations in details in Sect. 4.2.

4.2 Effectiveness in Running Parallel Applications

As mentioned in Sect. 1, a significant novelty of this study is to examine the
viability of offloading parallel web workers to servers; therefore, we evaluated
the effectiveness of Offworker in terms of running parallel web workers. We do
not discuss how Offworker could scale different Rodinia-JS applications since the
scalability of an application is highly dependent on its design. Instead, we focus
on the execution time differences of applications between running on Chrome
and Offworker, and therefore both the client and server were on the ES.

Figure 6 shows the execution time ratios of Offworker over Chrome for the
Rodinia-JS applications when different numbers of web workers were used. As
observed in Fig. 5, when using Offworker, all applications (with only one web
worker being created for each kernel) had longer execution time due to the
extra offloading manipulation. The inferiority of Offworker persisted for applica-
tions with more parallelism and went slightly up as the number of web workers
increased for most applications. The ratios for backprop stayed roughly the same
when increasing the number of web workers, whereas the ratios for kmeans grew
more significantly as the number of web workers increased. We further inves-
tigated the contributing components of the execution time differences between
Offworker and Chrome for each application in order to identify why Offworker
performed differently.

Figure 7 illustrates the execution time differences in terms of their contribut-
ing components between Offworker and Chrome for the Rodinia-JS benchmark
suite when different numbers of web workers were used. A positive difference
represents that Chrome was better than Offworker. We observed that the time
differences for the proxy creation, data initialization, and other parts were less

Offworker: An Offloading Framework for Parallel Web Applications 181

Fig. 6. Execution time ratios of Offworker over Chrome for the Rodinia-JS benchmark
suite on the ES when different numbers of web workers were used.

than 50 ms and consistent for different numbers of web workers since these com-
ponents were irrelevant to parallelization. The time differences for the barrier
synchronization part were also almost identical when different numbers of web
workers were used since there are no more than 300 barriers required for each
Rodinia-JS application, and the overhead added by Offworker for each barrier
synchronization was insignificant. The time differences for the worker creation
part grew slightly with the number of web workers due to more worker initial-
ization costs when using Offworker. This effect was more obvious for backprop
and kmeans because they required more initialization work than others. How-
ever, different applications showed different trends in time differences for the
computation part. This abnormal phenomenon was believed to result from the
differences in handling arithmetic and shared-memory access operations between
Offworker (which is based on isolated-vm and Node.js) and Chrome.

Figure 8 displays execution time ratios of Offworker over Chrome for 14 mem-
ory access patterns in the Hopscotch micro-benchmark suite on a large (or small)
array when using different numbers of web workers. We observed that the execu-
tion times for each micro benchmark operating on a large shared-memory array
(of length 104–108) were similar between using Offworker and running natively
on Chrome; however, the execution time ratios of Offworker over Chrome were
up to five when operating on a small shared-memory array (of length 100–104).
As indicated in Fig. 7, the computation time differences between Offworker and
Chrome (CTDs for short) were larger for backprop since there were five memory
access patterns on six small and two large shared-memory arrays, and more time
was spent accessing these small arrays. The CTDs grew up greatly with the num-
ber of web workers for kmeans since r_seq_reduce on small arrays provided the
majority of shared-memory access patterns. The shared-memory access patterns
in bfs, nw, and srad also explained their trend of CTDs, respectively: r_seq_ind
and w_seq_fill on six small arrays, r_tile on two large arrays, and r_rand_ind
and w_seq_fill on four small arrays and seven large arrays provided the major-
ity of shared-memory access patterns for bfs, nw, and srad, respectively. Despite
these negative consequences, we believe isolated-vm still provides an adequate
solution for offloading JavaScript applications due to its secure nature.

182 A.-C. Liu and Y.-P. You

Fig. 7. Execution time differences between Offworker and Chrome for the Rodinia-JS
benchmark suite on the ES when different numbers of web workers were used. The
values follow a benchmark name indicate the execution times of the benchmark for 1–4
workers, respectively, when using Offworker.

4.3 Effectiveness in Different Server Capabilities

Figure 9 illustrates the execution times for the Rodinia-JS benchmark suite on
the client when using five different offloading decisions: (1) mobile, in which web
workers ran natively on the client, (2) ES-Offworker, in which web workers ran
on the ES using Offworker, (3) NCS-Offworker, in which web workers ran on
the NCS using Offworker, (4) FCS-Offworker, in which web workers ran on the
FCS using Offworker, and (5) FCS-Puffin, in which almost an entire application
(including web workers) ran on the FCS using Puffin, which is a commercial
browser developed by CloudMosa based on Chromium v79 and renders webpages
on the cloud.

ES-Offworker had the best performance (2.8–4.8x faster than Mobile) among
all offloading decisions, while NCS-Offworker came second (0.9–2.6x faster than
Mobile). These results were expected because both the ES and NCS had more
powerful computing capabilities than the client mobile device and were located
close to the client mobile device—the round-trip time (RTT) between the client
and the ES or NCS was sufficiently low to allow for offloading web workers to
the ES or NCS with benefit—, and because the ES was physically closer to the
client than the NCS.

Despite the fact that the FCS might not be a good candidate for offloading
operations, we conducted evaluations for FCS-Offworker in order to compare
Offworker with Puffin, while the FCS, which had similar hardware configura-
tions with the NCS, was the only platform that worked for both Offworker and

Offworker: An Offloading Framework for Parallel Web Applications 183

Fig. 8. Execution time ratios of Offworker over Chrome for 14 memory access patterns
on a large (or small) array when different numbers of web workers were used.

Fig. 9. Execution times for the Rodinia-JS benchmark suite on the client when using
different offloading decisions, mostly in terms of server capabilities.

Puffin. Both FCS-Offworker and FCS-Puffin suffered from the problem of long
RTTs between the FCS and the web server (hosted on the ES) such that they did
not perform well for some applications, especially for I/O-intensive applications
(bfs and hotspot), which involve fetching massive resources from the web server.
Nevertheless, this negative effect may disappear or even be reversed if the FCS
is close to the web server due to lower RTTs. In general, Offworker performed
slightly worse than Puffin because Puffin was implemented based on Chromium,
which is an open-source browser that Chrome is built on, and Chrome per-
formed slightly better than Offworker, as discussed in Sect. 4.1. FCS-Offworker
performed poorly for hotspot because hotspot included massive HTTP connec-
tions, and the implementation for handling HTTP connections in Offworker was
not optimized and did not performed well.

While Puffin performed better than Offworker for the Rodinia-JS benchmark
suite, it has some weaknesses when used with applications that require exten-
sive user interaction. These weaknesses are attributed to the design of Puffin,
which offloads an entire web page to the server, and consequently the delay time
between firing a user action and receiving its corresponding rendering results
from the server can significantly decrease the user experience. This application
scenario with high user interaction will become common as more and more desk-

184 A.-C. Liu and Y.-P. You

top applications are converted into web applications (e.g., online image editors).
Compared with Puffin’s coarse-grained offloading approach, Offworker provides
a fine-grained offloading mechanism that allows users to offload tasks on demand,
thereby achieving wider applicability.

5 Conclusion

We have proposed a framework, called Offworker, for transparently offloading
parallel web workers to edge or cloud servers. To our best knowledge, this is
the first work that supports inter-worker communication (with message passing
or shared memory) for offloaded web workers. Furthermore, Offworker ensures
that each offloaded web worker runs within a sandbox (V8 isolate) so as to
provide a more secure execution environment for web workers and servers. We
have also presented a parallel JavaScript benchmark suite, called Rodinia-JS,
and evaluated Offworker with Rodinia-JS. The experimental results show that
Rodinia-JS applications with Offworker enabled ran up to five times faster than
they running natively on a mobile device, and Offworker had a small overhead
(mean of 12.1%) for computation-intensive Rodinia-JS applications. We believe
our proposed solution best serves the needs for parallel web applications. We con-
sider to support WebAssembly threads in JavaScript applications and propose
an offloading decision model in the future.

Acknowledgements. This study was partially supported by the Ministry of Science
and Technology of Taiwan under Grant No. MOST 110-2221-E-A49-030-MY3. We
would like to thank CloudMosa, Inc. for providing supports and hardware resources
for benchmarking.

References

1. Ahmed, A., Skadron, K.: Hopscotch: a micro-benchmark suite for memory per-
formance evaluation. In: Proceedings of the International Symposium on Memory
Systems, MEMSYS 2019, pp. 167–172 (2019)

2. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of the 2009 International Symposium on Workload Characterization, pp.
44–54 (2009)

3. Gong, X., Liu, W., Zhang, J., Xu, H., Zhao, W., Liu, C.: WWOF: an energy efficient
offloading framework for mobile webpage. In: Proceedings of the 13th International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Ser-
vices, pp. 160–169 (2016)

4. Hwang, I., Ham, J.: Cloud offloading method for web applications. In: Proceedings
of the 2nd International Conference on Mobile Cloud Computing, Services, and
Engineering, pp. 246–247 (2014)

5. Hwang, I., Ham, J.: WWF: web application workload balancing framework. In: Pro-
ceedings of the 28th International Conference on Advanced Information Networking
and Applications Workshops, pp. 150–153 (2014)

Offworker: An Offloading Framework for Parallel Web Applications 185

6. Jeong, H.J., Shin, C.H., Shin, K.Y., Lee, H.J., Moon, S.M.: Seamless offloading of
web app computations from mobile device to edge clouds via HTML5 web worker
migration. In: Proceedings of the ACM Symposium on Cloud Computing 2019, pp.
38–49 (2019)

7. Wang, Z., Deng, H., Hu, L., Zhu, X.: HTML5 web worker transparent offloading
method for web applications. In: Proceedings of the 18th International Conference
on Communication Technology, pp. 1319–1323 (2018)

8. Zbierski, M., Makosiej, P.: Bring the cloud to your mobile: transparent offloading of
HTML5 web workers. In: Proceedings of the 6th International Conference on Cloud
Computing Technology and Science, pp. 198–203 (2014)

	Offworker: An Offloading Framework for Parallel Web Applications
	1 Introduction
	2 Related Work
	3 Design and Implementation of Offworker
	3.1 The Front-End Library
	3.2 The Back-End Manager

	4 Evaluations and Discussion
	4.1 Overhead Analysis
	4.2 Effectiveness in Running Parallel Applications
	4.3 Effectiveness in Different Server Capabilities

	5 Conclusion
	References

