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Abstract. With Bitcoin being universally recognised as the most pop-
ular cryptocurrency, more Bitcoin transactions are expected to be pop-
ulated to the Bitcoin blockchain system. As a result, many transactions
can encounter different confirmation delays. One of the most demanding
requirements for users is to estimate the confirmation time of a newly
submitted transaction. In this paper, we argue that it is more practical
to predict the confirmation time as falling into a time interval rather
than falling onto a specific timestamp. After dividing the future into a
set of time intervals (i.e. classes), the prediction of a transaction’s con-
firmation can be considered as a classification problem. Consequently, a
number of mainstream classification methods, including neural networks
and ensemble learning models, are evaluated. For comparison, we also
design a baseline classifier that considers only the transaction feerate.
Experiments on real-world blockchain data demonstrate that ensemble
learning models can obtain higher accuracy, while neural network models
perform better on the f1-score, especially when more classes are used.

Keywords: Transaction confirmation time · Bitcoin · Blockchain ·
Ensemble learning · Neural network

1 Introduction

Bitcoin, invented by Satoshi Nakamoto in 2008 [23], has become one of the most
popular cryptocurrencies, with its market capitalization reaching 1100 billion in
August 20211. Meanwhile, many worldwide businesses, like Paypal, Microsoft,
Overstock, etc., have embraced Bitcoin as one method of payment. As a result,
more Bitcoin transactions are anticipated to be propagated into the Bitcoin
blockchain system. However, the bulk of new transactions cannot be included
together in the next block due to the limited capacity of a block. Transactions
submitted to the Bitcoin system, therefore, incur confirmation delays. Concerned
1 https://www.coindesk.com/price/bitcoin.
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by this, it becomes vital to help a user to understand how long it may take for
a transaction to be confirmed in the Bitcoin blockchain.

Most previous attempts on estimating the confirmation time for a transac-
tion focus on predicting a specific timestamp or predicting the number of blocks
a transaction needs to wait for before it is confirmed [3,7,10,12,13,18,32,33].
However, it is usually more practical to predict the confirmation time as falling
into which time interval in future (e.g., within 1 h, between 1 h and 4 fours, and
more than 4 h). Users also find such prediction informative and helpful. When
estimating a specific timestamp, the first drawback to consider is the confirma-
tion time variance, particularly for transactions that will be confirmed in the
next block. Their confirmation times are affected by the remaining waiting time
before the next block is generated. Even transactions with the highest fees need
to consume such periods before get confirmed. This means, due to later submis-
sion, a transaction with a higher fee may take longer confirmation time than one
with a lower fee in the same block. The second factor is that the mining time of
a new block is unpredictable (ten minutes is in average [1]), so a relatively long
time interval may correspond to different number of blocks in reality, resulting
in another type of estimation variation. When utilizing the block interval as the
confirmation time, the primary issue is the unbalanced distribution of transac-
tions throughout each confirmation time (block interval), which may cause the
estimation to be heavily dependent on a single transaction, particularly when
transactions are scarce for a given block interval. For example, for the transac-
tions confirmed in the block range 621001–621500, the maximum confirmation
time is 162 blocks. 85% of transactions are confirmed within 5 blocks, with
the remaining 15% scattered among the remaining 157 blocks. Consequently, a
transaction falling in one of the remaining 157 blocks could have a considerable
impact on the estimation result for that particular block. Furthermore, when the
estimated confirmation time (in terms of both a time interval and a block inter-
val) surpasses a certain level, users usually choose to pay a higher transaction
fee in order to accelerate transaction confirmation. In conclusion, we argue that
as long as the confirmation time falls within an acceptable range, a confirma-
tion time range offered to system users is more practical. In this scenario, the
prediction task can be considered as a classification problem.

Existing efforts on transaction confirmation estimation suffer from the fol-
lowing four types of drawbacks: (1) Estimation is not tailored for an individual
transaction. The works in [12,13,33] estimate the confirmation time for a group
of transactions as opposed to a single transaction. Among them, [12,13] esti-
mate the average confirmation time of high-feerate class transactions and low-
feerate transactions. Zhao et al. [33] estimate the average confirmation time of all
unconfirmed transactions. (2) Models proposed in [7,16] only predict whether a
transaction can be confirmed in the next block, addressing the issue as a binary
classification problem. They might not be sufficient in practice because they are
unable to provide more confirmation information. (3) Some assumptions are not
realistic. The confirmation process is modeled as a steady-state queueing sys-
tem [15], with the assumption that system transactions arrive at a slower rate
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than they are confirmed, and each time a fixed number of transactions can be
confirmed [3,10,12,13,18,33]. In fact, there can be different number of transac-
tions in a block, and the submission rate of transactions establishes a periodic
pattern for each day and each week2, and the rate of submission can exceed
the rate of confirmation. (4) There is insufficient utilisation of information on
transactions, blocks, and mempool, which can provide further information on
the current blockchain system. For example, information in the block sequence
can disclose the size and generation rate of future blocks.

In this paper, we compare the prediction performance of three different classi-
fication techniques. The first are neural network models, which have been demon-
strated to be promising in a range of classification tasks [2,6,11,19,29,31]. It
classifies based on neuron layers to discover intrinsic patterns among features.
The second are ensemble learning models, which are another type of powerful
classification techniques [25]. It makes predictions by combining the results of
multiple classifiers. The final is a feerate-ranking baseline classifier that classifies
transactions simply based on feerate.

To summarize, we have made the following contributions: (1) summarize and
extract features related to transaction confirmation; (2) propose a strategy for
discretizing confirmation time; (3) compare the performance of neural network
models, ensemble learning models, and a baseline classifier in predicting trans-
action confirmation time; and (4) demonstrate the importance of incorporating
additional features, such as block and mempool features.

The rest of this paper is organized as follows: Sect. 2 reviews the related work
on transaction confirmation time estimation. In Sect. 3, we define the problem
studied in this paper. In Sect. 4, we outline the selected confirmation features,
confirmation time discretization strategy, and the studied classification models.
Section 5 presents the classification performance of different models, and Sect. 6
concludes this paper.

2 Related Work

In the Bitcoin blockchain, a transaction will be broadcast across all system nodes
once it is submitted to the blockchain system. If a transaction meets the require-
ments for validity [1], the miner nodes will add it to the mempool. Transactions
in the mempool compete to be included in each miner node’s candidate block.
Then, each miner node will compete to link its own candidate block to the
blockchain, a process known as “mining”. Once a new block is successfully linked
to the blockchain, its transactions are confirmed and its miner is rewarded. These
transactions will then be removed from the miners’ mempool [21]. In the Bitcoin
blockchain, some works have been done on estimating transaction confirmation
time. In some studies [7,16], the estimation issue has been modeled as a binary
classification problem, predicting whether a transaction could be confirmed in
the following block. Then, a number of traditional machine learning algorithms,
including Support Vector Machine, Random Forest, AdaBoost, etc., are tested.
2 Blockchain.com, https://www.blockchain.com/charts/transactions-per-second.

https://www.blockchain.com/charts/transactions-per-second
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Some studies [3,10,12,13,18,33] choose to base their predictions on analysing the
distribution of the transaction submission and transaction confirmation. Among
them, the authors of [12,13] approach this estimation problem by modeling it as
a bulk service queueing system M/GB/1, with transaction arrival following the
Poisson distribution and batches of transactions (B) being confirmed at a rate
with a specified distribution. Balsamo et al. [3] describe it as another type of
bulk service queueing systems, M/MB/1, with transaction arrival following the
Poisson distribution and the confirmation of batches following an exponential
distribution. Zhao et al. [33] introduce a possible zero-transaction service to the
traditional bulk queueing system, which adds the case of a zero-transaction block
in the model. It assumes that transaction arrival follows a Poisson distribution
and the batch confirmation follows a stochastic density function. Except for the
queueing system solutions, researchers in [10,18] model the confirmation pro-
cess as a Cramér-Lundberg process with a fixed rate of transaction arrival and
an exponential distribution for the confirmation of a fixed number of transac-
tions. Existing works provide insights on estimating the confirmation time based
on different source of information. However, these solutions are constrained by
either the model’s preliminary assumptions or insufficient consideration of the
balance between output precision and user expectations. To address these issues,
we discretize the original transaction confirmation time into several intervals and
do estimations based on these intervals.

3 Problem Definition

The confirmation of a transaction is a complex procedure affected by multi-
ple factors, including the transaction itself, unconfirmed transactions in the
mempool, mining policy, and system resources. Given a newly submitted trans-
action t̂x, the studied problem is to predict its confirmation time interval
y ∈ {y1, · · · , yn}, where {y1, · · · , yn} are a set of non-overlapping confirma-
tion time intervals, and they together constitute the future. The goal is to find a
function F that can predict in which time interval a submitted transaction will
be confirmed, based on various sources of information. We mainly consider three
types of features listed below:

y = F(FeaInfo (t̂x), BlockInfo, MemInfo)

– FeaInfo (t̂x) describes the transaction itself, including transaction feerate,
transaction weight, transaction inputs, submission time, etc.

– BlockInfo refers to the characteristics of mined blocks. It maintains the
information of prior blocks, such as historical transactions feerate, block size,
block generation speed, etc., implicitly reflecting the volume and speed of
future mining information.

– MemInfo provides information on unconfirmed transactions in the mem-
pool, revealing the competition among the unconfirmed transactions in the
mempool.
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4 Methodology

This section starts with a summary of the transaction confirmation features. The
technique of discretization is then utilised to discretize the confirmation time.
Finally, neural network models, ensemble learning models, and a feerate-ranking
baseline classifier are described for this prediction problem.

4.1 Feature Selection

Based on the confirmation process in the Bitcoin blockchain, we summarize three
factors that contribute to transaction confirmation:

– Transaction features describe the unique details of a submitted transac-
tion.

• transaction weight measures transaction size owing to the Segwit
upgrade3.

• transaction feerate is the transaction fee per size unit (each unit is approx-
imately equivalent to a quarter of a transaction weight unit). Typically,
transactions with a higher feerate are considered confirmed earlier than
those with a lower feerate.

• number of inputs and number of outputs are related to the validation
cost. Miners need to check the legitimacy of the assets stated in each
transaction input.

• transaction first-seen time is the first time that a transaction is noticed by
the blockchain. The first-seen time is used since it is difficult to determine
the exact submission time of a transaction.

• mempool position indicates the unconfirmed transactions that are typi-
cally expected to be processed earlier than this one. It sums up the weight
of unconfirmed transactions with higher feerates.

– Block states reflect the characteristics of the mined blocks, including block
size, block generation speed, transaction confirmation distribution, etc.:

• block weight and number of transactions represent the capacity of a block
in terms of transaction weight and transaction number included in this
block.

• difficulty refers to the mining difficulty, which is related to the computa-
tional cost of a miner node.

• block interval is the interval between this block and the previous one,
indicating the rate at which blocks are generated.

• average feerate is the average feerate of transactions included in this block.
It is calculated by dividing the total transaction fee by one-fourth of the
total transaction weight. By introducing this feature, we aim to capture
the feerate trend in continuous blocks.

3 Segwit transactions relocate the unlocking script (witness) from within the trans-
action to an external data structure, resulting a smaller size in terms of its raw
data.
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• transaction confirmation distribution is the distribution, in terms of trans-
action weight, of transactions in this block at each feerate interval.

– Mempool states indicate the competition among the unconfirmed transac-
tions. It is modeled in terms of the weight of these unconfirmed transactions
at each feerate interval, due to the limited capacity of a block and the prece-
dence of transactions with greater feerates.

4.2 Confirmation Time Discretization

First of all, we choose to discretize the future time according to block intervals,
rather than time intervals. This is mainly due to the unpredictability of a block’s
mining time, which records the confirmation time of many transactions confirmed
together within a single block. For example, Fig. 1 illustrates the time range of
all confirmed transactions with a 2-block confirmation interval. We can find that
the duration of the 2-block interval could range from a few seconds to several
hundred seconds, causing the time interval to potentially overlap with other
block intervals. In addition, the index of block interval can handle submission
time fluctuation. Due to later submission, a transaction with a higher feerate
may take longer confirmation time than one with a lower feerate in the same
block.

Fig. 1. The frequency of each confirma-
tion time (seconds) with 2-block interval

Fig. 2. The ratio of confirmation time
(blocks) distribution in the blockchain

We design two guidelines to discrete the future time into a set of classes. The
first is to make the number of transactions balanced for each class. The Bitcoin
blockchain system exhibits the long-tail effect of transaction confirmation time,
as shown in Fig. 2. Few transactions are confirmed after 10 blocks, with the
majority of transactions being confirmed within 10 blocks. The second is that
transactions with the same confirmation block interval are better to be grouped
in the same class.

Specifically, the discretization is done in the following steps: (1) Initiate the
remaining intervals using the required intervals k and the smallest confirmation
time by a 1-block interval. (2) Determine the split ratio to classify the unclassified
confirmation time range. It is calculated by dividing the remaining proportions
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by the remaining intervals. (3) Create a new discretized confirmation interval by
adding the ratios beginning with the shortest confirmation time until their sum
reaches the split ratio from step 2. (4) Replace the shortest confirmation time
with the next confirmation time and reduce the remaining intervals by one. (5)
Repeat steps 2–4 until k-1 intervals are obtained, at which point the remaining
confirmation time range corresponds to the last discretization interval.

4.3 Classification Methods

Baseline Classifier (Baseline). The baseline classifier assumes that a trans-
action with a higher feerate will be confirmed earlier than one with a lower
feerate. Specifically, it operates by first sorting historical confirmed transactions
by feerate and then classifying them based on the fraction of the related class.
For example, according to Table 1, transactions in Class 1 (1-block confirmation
time) account for 62%, indicating that 62% of transactions are confirmed in the
next block after submission. The baseline classifier will then assume that 62%
of transactions with the highest fees are confirmed in the next block. Therefore,
the criteria for classification will be based on the lowest feerate, 22.24, generated
by the top 62% of transactions. Thus, a new transaction with a feerate higher
than 22.24 will be classified as Class 1.

Table 1. Prediction results of Baseline under 4 classes

Classes Discretization Baseline

Range block Ratio (corresponding feerates)

Class 1 1 62% ≥22.24

Class 2 2 13% [17.59, 22.24)

Class 3 3–7 13% [7.09, 17.59)

Class 4 ≥8 11% <7.09

Neural Network Models (NN). Deep neural networks (DNNs) have emerged
as a major force in the machine learning community, with applications in many
areas [19,31], such as speech recognition, image classification, medical diagnosis,
etc. DNNs are known for their capacity to discover complicated structures and
acquire high-level concepts in data. Additionally, DNN makes it easier to incor-
porate additional information owing to its structure flexibility. Consequently, we
adopt three major types of deep neural networks: the first is a fully connected
network, Multi-Layer Perceptron (MLP), which predicts only based on transac-
tion features, and the other models are neural networks with Long Short-Term
Memory (LSTM) [11] and attention mechanisms [2,6,29]. LSTM and attention
mechanisms are applied to capture inherent patterns in blocks and mempool, and
both have showed remarkable performance in the processing of time series data



162 L. Zhang et al.

[8,22,26]. LSTM aggregates information on a token-by-token basis in sequen-
tial order, whereas attention mechanisms attempt to capture the relationships
between different positions of a single sequence to generate a representation for
the sequence. In this work, we employ three popular attention mechanisms: addi-
tive attention (Adv) [2], self attention (Self) [29] and weighted attention (Wht)
[6].

Block states sequence

Mempool states sequence

Sequence 
Model

Sequence 
Model

Fully Connected Layers

Final Predic�on

Transac�on features

So�max

Concatenate

Fig. 3. The general architecture of neural network models.

The general structure of neural network models is shown in Fig. 3. It com-
prises two models: a feature extraction module and a prediction module. The
function of the feature extraction module is to extract inherent patterns from
transaction features, block states, and mempool states. Specifically, sequence
processing models (only applicable in LSTM and attention models) are ini-
tially employed to derive patterns from historical block states and mempool
states. The last time-step features derived from both block and mempool state
sequence are then combined with transaction characteristics (only transaction
features are involved in MLP) for further prediction. In the prediction mod-
ule, fully-connected layers are stacked to handle the combined features from the
feature extraction module. Then a softmax function is applied to generate the
classification results.

Ensemble Learning Models (EL). Ensemble learning is known as the crowd
wisdom of machine learning techniques. It enhances the performance of predic-
tion by training multiple estimators and integrating their predictions. Figure 4
provides a general illustration of the structure. When each base classifier has fin-
ished producing a prediction result, output fusion is used to integrate all of the
base model outputs into a single output [25]. In this paper, we study the classi-
fication performance of four state-of-the-art ensemble approaches: XGBoost [5],
lightGBM [14], Random Forest (RF) [4] and Rotation Forest (RoF) [24], all of
which are well-known for their outstanding performance in handling classification
tasks. XGBoost is a cutting-edge gradient boosting framework of decision trees,
which gains popularity in the 2015 Kaggle classification challenge. Compared to
XGBoost, LightGBM employs histogram-based algorithms to reduce execution
time and memory consumption. RF, ensembling decision trees based on the bag-
ging technique, is popular owing to its generalized performance, high prediction
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Fig. 5. The framework of deep forest (each level
is composed of two random forests (grey) and two
extremely randomized trees (yellow)) (Color figure
online)

accuracy, and quick operation speed. Meanwhile, RoF has been demonstrated
to score much better on classification tests than other ensemble approaches such
as Bagging, AdaBoost, and Random Forest [24].

In addition, extensive studies have been made on the coupling of ensemble
learning models with DNN techniques, driven by the outperformance of the
neural networks and ensemble learning methods [17,20,30,36]. Among these
methods, deep forest (DF) [36] has been proven effective in handling a range
of classification tasks, including crop detection [34], medical diagnosis [27,28],
software defect prediction [35], etc. Figure 5 illustrates the general framework
of Deep forest (DF). It maintains the layer structure of DNN while replacing
the neurones in the fully connected layers with base estimators (some ensemble
learning models). In the work [9], the based estimators consist of two random
forest models and two extremely randomised trees classifiers. In addition, it
combines the output of the previous layer with the raw input feature as the new
input for the subsequent layer. Finally, DF makes its prediction based on the
prediction results of each base estimator in the final layer. In the training pro-
cess, DF adaptively controls its layer complexity by terminating training when
the required accuracy is achieved.

Further, among existing attempts with DF, The work [20] addresses the
problem of price prediction, which is analogous to confirmation time predic-
tion. Inspired by it, we adapt its framework as well as its penalty mechanism
(DF cost). The penalty mechanism operates as follows: if a sample of one class
i is misclassified as class j, the model will incur a misclassification cost cij . The
predicted class ŷ is acquired by optimizing the objective function as follows:

ŷ = argmin
ŷ∈{I1,I2,...In}

L(y, ŷ) (1)

L(y, ŷ) =
n∑

i=1

p(ŷ|y)cij (2)

ci,j = |oi − oj | (3)
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where Ij denotes misclassifying class i as class j, and p(ŷ|y) refers to the posterior
probability of predicting the class y as ŷ. Meanwhile, cij = cji and cii = 0. The
cost cij is determined by the distance from the class centre (the mean of samples
in each class), and the classification cost for the model is the overall cost of
misclassification for all samples.

5 Experiments

5.1 Experiment Settings

Datasets. We collect transaction data from block range 621001–622500 via
Blockchain.com4. Each dataset consists of 225 continuous blocks picked from
every 250 blocks. The first 80% blocks in each dataset are utilised for train-
ing (about 400,000 transactions), while the remaining 20% are used for testing
(about 100,000 transactions). The information regarding testing can be found in
Table 2. In the experiments, only newly submitted transactions are selected for
both training and testing.

Table 2. Testing data

Interval Block information Interval Block information

1 621185–621229 4 621935–621979

2 621435–621479 5 622185–622229

3 621685–621729 6 622435–622479

Evaluation Metrics. To evaluate the performance of different models, we cal-
culate the overall accuracy:

accuracy (acc) =
TP+TN

TP+TN+FP+FN
(4)

We also utilise the macro-averaged f1-score, which is the arithmetic mean of all
the per-class f1-score, as an indicator of classification performance:

recall =
TP

TP+FN
(5)

precision =
TP

TP+FP
(6)

f1-score =
2recall × precision
recall + precision

(7)

where TP (true positive), FP (false positive), FN (false negative), and TN (true
negative) are observed classification results.
4 https://www.blockchain.com/api/blockchain api.

https://www.blockchain.com/api/blockchain_api
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Compared Methods

– NN stands for neural network models.
• MLP is a neural network model which only takes transaction features as

input.
• Lstm employs LSTM to extract patterns in block states and mempool

states.
• Adv, Wht and Self correspond to using different attention techniques to

extract features from block states and mempool states: additive attention
[2], weighted attention [6] and self attention [29].

– EL stands for ensemble learning models.
• RF, RoF, xgBoost and lightGBM are four state-of-the-art ensemble

learning models.
• DF and its variants

* DF refers to deep forest [9], with two random forest classifiers and
two extremely randomized tree classifiers in each layer.

* DF cost introduces penalty into DF for misclassification [20].
* DF xg and DF xgRF replace the base estimators in each layer of

DF with four xgBoost classifiers and two random forest classifiers
along with two xgBoost classifiers.

– Baseline stands for the baseline classifier.

Discretization. As shown in Table 3, we discretize the transaction confirmation
time range into four different class sizes: k = 2, k = 4, k = 6, and k = 8. For
k = 2, confirmation time is split into two categories: confirmed in 1 block interval
and confirmed in more than 1 block (≥2 blocks). In such case, the problem can
be considered as predicting whether a transaction will be confirmed in the next
block [7,16]. Considering that transactions confirmed beyond 50 blocks are very
rare at each confirmation time as shown in Fig. 2, and Class 8 in k = 8 in
Table 3 has included transactions confirmed beyond 59-block interval, we stop
discretizing the confirmation time into more classes.

Table 3. Confirmation time discretization (block intervals falling in each class)

Classes k = 2 k = 4 k = 6 k = 8

Range Ratio Range Ratio Range Ratio Range Ratio

Class 1 1 62.2% 1 62.2% 1 62.2% 1 62.2%

Class 2 ≥2 37.8% 2 13.2% 2 13.2% 2 13.2%

Class 3 3–7 13.2% 3–4 8.5% 3 5.2%

Class 4 ≥8 11.5% 5–8 5.5% 4–5 5.5%

Class 5 9–28 5.3% 6–9 4.0%

Class 6 ≥29 5.3% 10–18 3.4%

Class 7 19–58 3.4%

Class 8 ≥59 3.2%
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Model Configuration. In the neural networks, the sequence processing model
is configured with 8 hidden units and a sequence length of 3. Fully connected
layers are a three-layer fully-connected neural network with 64 and 8 hidden
units for the first two levels, and then the specified class size. The batch size
is set to 1000 if applicable and models are optimised using stochastic gradient
descent (SGD) with the Adam optimizer. In the ensemble learning models, RF,
RoF and extremely randomized tree classifiers are set with 100 trees.

5.2 Result Analysis

Comparison on Classification Models. The accuracy and f1-score shown in
Table 4 are the average of the results obtained from the six datasets. As class size
increases, both the accuracy and f1-score performances of each model decrease.
xgBoost achieves the most competitive performance among all discretization
results, while Baseline performs the worst. The Baseline’s worst performance
exposes the complexity of the transaction confirmation mechanism, in contrast
to the simplicity of the transaction priority.

Table 4. An overall performance of models on 6 datasets

Methods k = 2 k = 4 k = 6 k = 8

acc f1-score acc f1-score acc f1-score acc f1-score

NN MLP 91.52% 86.70% 82.85% 57.02% 79.20% 43.53% 77.29% 33.79%

Adv 91.98% 87.61% 84.06% 60.43% 79.42% 45.65% 77.45% 36.27%

Wht 91.89% 87.33% 83.39% 58.15% 78.80% 44.89% 77.38% 37.37%

Self 91.99% 87.86% 82.45% 54.75% 78.82% 38.22% 76.49% 33.98%

Lstm 91.74% 86.42% 81.11% 51.29% 77.13% 33.63% 76.78% 32.68%

EL RF 96.03% 94.72% 86.31% 62.51% 82.07% 42.97% 80.29% 32.69%

RoF 92.76% 89.82% 81.78% 55.62% 77.62% 38.62% 75.87% 29.14%

xgBoost 96.23% 94.92% 86.70% 63.16% 82.84% 44.17% 81.15% 33.84%

lightGBM 96.10% 94.67% 86.38% 62.73% 82.29% 43.20% 80.44% 32.52%

DF 95.21% 94.49% 82.65% 63.14% 77.87% 45.03% 75.38% 34.02%

DF cost – – 82.64% 63.25% 77.69% 45.06% 73.88% 36.35%

Baseline 62.30% 56.61% 49.54% 29.10% 46.93% 19.87% 45.67% 14.70%

xgBoost, followed by lightGBM and RF, achieves the highest accuracy among
all models on all four classification tests. In particular, when k = 2, its accuracy
and f1-score are superior to those of other models. As the class size increases
(k ∈ {4, 6, 8}), however, its f1-score advantage over DF and DF cost diminishes.
In addition, based on the performance of RF, DF and DF cost, the strategy of
assembling RF within their framework surpasses RF in terms of f1-score but
fails to achieve superior prediction accuracy.

Despite the fact that neural network models perform poorly in terms of
accuracy and f1-score on smaller class size (k ∈ {2, 4}), Adv achieves a very
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competitive f1-score on larger class size (k ∈ {6, 8}). Moreover, among all neural
network models, Adv has the highest prediction accuracy. Moreover, the higher
performance of Adv in comparison to MLP demonstrates the importance of block
and mempool information.

Performance of DF Variants. This set of experiments aims to test the perfor-
mance of DF variants by replacing the base estimators in each layer. According
to Table 4, XgBoost fails to achieve comparable f1-score performance. However,
by assembling RF into DF, DF can achieve a better f1-score than RF. There-
fore, we attempt to incorporate xgBoost into DF. Specially, we substitute the
original four estimators in DF with two random forests and two xgBoost clas-
sifiers (DF xgRF) or four xgBoost classifiers (DF xg) in each layer. According
to results shown in Fig. 6(a) and Fig. 6(b), DF and its two variants outperform
xgBoost in terms of f1-score but still fall short in terms of accuracy. In addition,
we find that substituting estimators have no positive effect on the accuracy or
f1-score of the DF framework.

Fig. 6. Prediction performance of DF variants

6 Conclusion

In this study, we compare the performance of neural networks, ensemble learn-
ing models and a feerate-ranking baseline classifier on the prediction of transac-
tion confirmation time as a classification problem. In terms of prediction accu-
racy, xgBoost provides the best classification results, whereas the neural network
model applying additive attention delivers increasingly competitive f1-score per-
formance as class size increases. In addition, we demonstrate that block and
mempool information has a positive effect on improving neural networks pre-
diction performance. Our future work will focus on two areas: incorporating
block and mempool information into ensemble learning methods and boosting
the predictive accuracy of neural network models.
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