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Abstract Nanoparticles (NPs) have a remarkable impact on plants. Plants respond 
to NPs in many ways, including stimulation and inhibition. The responses could 
be clearly observed via the changes in plants’ morphological, physiological, and 
productive indicators. This chapter focuses on the morphological changes in plants 
and seedlings’ growth and the fresh and dry weight of plants and seedlings. In addi-
tion, the chapter concentrates on the number and lengths of roots, shoots, and leaves. 
Different modifications that occur due to NPs’ influence on flowers, pods, and grain 
are also covered. The chapter further discusses the interaction mechanism of NPs 
with seed germination, plant development, and reproduction by interacting with 
plant cells’ surfaces. The biochemical interaction series that could stimulate the 
plants internally are also discussed. Furthermore, the chapter provides details on the 
negative and positive effects of NPs on various plant parts, including root, stem, 
leaf, flower, and fruit. The impacts of different nanomaterials (NMs) include carbon, 
titanium dioxide, silver, zinc oxide, copper oxide, silica, cerium dioxide, aluminum 
oxide, selenium, gold, fullerene, and iron, on plants are demonstrated in this chapter. 
The material’s particle size, concentration as well as plant species are also taken into 
account. All the previously mentioned effects demand more research to realize the 
mechanisms that occur in plants as a result of treatment with various NPs. 
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12.1 Introduction 

Humans have intelligently utilized plant organs for a variety of uses, including food 
and medicine (fruits, seeds, roots, stems, and leaves), clothes (flowers), furniture 
(trunks), and paper (trunks). In addition, plant leaves absorb carbon dioxide and 
produce renewable oxygen (Ali et al. 2021). These plant organs are affected by 
numerous factors such as temperature, light, nutrients, and water (Patil et al. 2021, 
Shafiq et al. 2021). 

The study of the shape, size and placement of plant organs such as seeds, roots, 
stems, leaves, flowers, and fruits is known as plant morphology (Hossain et al. 2020). 
Recent researchers have demonstrated the significant impact of nanotechnology on 
plant morphology, including particle size, shape, and material concentration (Singh 
et al. 2015). These variables might influence not only plant morphology but also 
seedling germination and phytotoxicity. As a result, nanotechnology can alter the 
present synthetic framework used in modern agriculture systems (Arora 2018, Kerry 
et al. 2017; Prasad et al.  2017; Shang et al. 2019; Usman et al 2020). 

This chapter describes the influence of NPs on plant morphology. It covers the 
mechanism of seed interaction with NPs, explains the recent experimental results of 
the effect of NPs on seed germination and root growth, and discusses how NPs of 
different elements and their oxides affect the morphology of stem, leaves, flowers, 
and fruit. 

12.2 Mechanism of NPs Interaction in Seed 

The plant growth inhibitory or stimulatory effects are produced by interacting 
between the surface charges of NMs/NPs and the surface charges of plant cells. 
However, that interaction with metal NPs differs depending on the features of NPs, 
such as the metal nature, concentrations of NPs, phase growth, and plant species 
(Pérez-de-Luque 2017). 

NPs can induce seed germination and develop many parts of a plant (Juárez-
Maldonado et al. 2019). Seed germination is the foundation-initiated stage for 
plants’ growth, development, and productivity (Hossain et al. 2020). NPs-treated 
seeds achieve high germination by improving seed absorption and water retention 
(Juárez-Maldonado et al. 2019) (Fig. 12.1). 

The bio-stimulation effect is demonstrated in two stages. The first stage is imple-
mented via the interaction of surface charges of a physicochemical nature. Following 
this stage and as a second stage, a series of biochemical stimuli are triggered via the 
entry of NPs and NMs into the plant cells due to alteration of the cellular membrane 
(Ali et al. 2021). Figure 12.2 shows the most probable effect of nanoparticles on 
plant parts.
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12.3 Effect of NPs on Seed Germination and Root Growth 

12.3.1 Carbon-Based NPs 

Utilizing carbon-based nanomaterials (CNTs) raised water uptake for the seed via 
passing it from the seed coat and then reaching to shoots and leaves (Omar et al. 2019) 
which favorably affects the germination percentage and plant growth via capitalizing 
on the efficiency of water uptake moreover increasing some substantial nutrients 
uptake (Singh et al. 2015). This stimulatory effect can be explained by producing 
microspores by the CNTs (Ali et al. 2021; Sanborn et al. 2018). This mechanism has 
been applied to enhance seed germination and root growth, and final plant growth 
for several crops, such as hybrid Bt cotton, Phaseolus mungo L., Brassica juncea L., 
tomato (Lycopersicum esculentum Mill), and rice (Oryza sativa L.) which increased 
the biomass of rice plants and the germination rate of seeds by 90% within 20 days, 
compared with 71% in the control sample (Ali et al. 2021). 

The results of the research show the role of CNTs as a promoter of rice seedling 
growth, activation effects on root elongation, and seed germination in zucchini 
species (Aslani et al. 2014). In addition10-40 mg/L CNTs significantly increased 
seed germination, vegetative biomass, and tomato plant growth (Remedios et al. 
2012). Also, the influence of MWCNT (50 μg/ml) on tomato roots was observed in 
fresh and dry mass and gene expression variety (Predoi et al. 2020). 

In addition, MWCNTs increased the germination of previously treated seedlings, 
as confirmed by transmission electron microscopy (TEM) and Raman spectroscopy 
(Singh et al. 2015). 

As well as the treatments by single-walled carbon nanohorns (SWCNHs) 
increased seed germination in some crop species: maize, tobacco, switchgrass, rice, 
tomato cell cultures, Barley, Wheat, and soybean (Ali et al. 2021). On the contrary, 
no effect was found for treatment by SWCNTs (84 h) for roots of cucumber seedlings 
(Aslani et al. 2014). 

12.3.2 Titanium Dioxide NPs 

The impact on the morphology of plants is varied on the type of NPs and the method 
of application (Hossain et al. 2020). However, the essential key to promoting the 
seed germination rate is the permeation of NMs into the seed (Aslani et al. 2014). 
The best effects were at 2500 mg/L when applying the concentrations from 2500 to 
40,000 mg/L to senescent seeds. 

Titanium dioxide NPs have promoted seed germination through their more 
capacity to the carriage of water to the internal tissues and increased the metabolism 
of the seed reserves as indicated for the NPs of Ag and graphene (Juárez-Maldonado 
et al. 2019).
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At 250–4000 mg/L, TiO2 nanoparticles substantially increase the germination 
rate and germination index of naturally aged spinach seeds. TiO2 NPs increases the 
seedling’s dry weight and seedling vigor index considerably. (Predoi et al. 2020). In 
addition, titanium dioxide NPs facilitate water absorption and consequently quicken 
seed germination (Ali et al. 2021). 

Treated seeds with TiO2 NPs provided plants with three times higher photosyn-
thetic rates, 73% more dry weight, a 45% increase in chlorophyll compared to the 
control over the germination period of 30 days (Aslani et al. 2014). 

When spinach roots are exposed to TiO2 NPs, increased plant growth has been 
observed by improving nitrogen metabolism that promotes the adsorption of nitrate 
and photosynthetic rate (Predoi et al. 2020). There was a correlation between the 
growth rate of spinach and the size of the materials, so the smaller NMs produce 
better germination (Siddiqui et al. 2020). Foliar application with 20 g/L TiO2 NPs 
increased root and stem length, ear mass biomass, flowering, and seed number of 
wheat (Predoi et al. 2020). 

Application of TiO2 NPs for seedlings plants canola stimulated the growth of 
radicle and plumule, root, and seed germination. However, it inhibited root elonga-
tion in cucumber (Khana et al. 2019). Titanium dioxide NPs at 60 mg/L (bulk and 
nanosized) encouraged seed germination percentages of the sage plants. This concen-
tration could gain the lowest mean germination time. However, higher concentrations 
did not do that. Therefore, the vigor index of sage was raised by using TiO2 NPs to 
seeds compared to the control and bulk TiO2 treatments (Aslani et al. 2014). 

12.3.3 Silver NPs 

Silver NPs had positive or negative effects on vascular plants, such as seed germina-
tion, root growth, and plant biomass. These effects were related to the concentration 
and the shape of NPs (Aslani et al. 2014). Furthermore, these effects may be attributed 
to chemical precursors. Therefore, plant extractions are involved in the biosynthesis 
method which is widely used to synthesize NPs. Figure 12.1 illustrates the schematic 
presentation for biosynthesized Ag NPs using leave extraction. The approach demon-
strated well-controlled particle concentration and size (21–42 nm), as well as particle 
dispersion. They are spherical in shape and uniformly distributed (Bamsaoud et al. 
2021). This method may aid in reducing the negative effects of NPs.

Many researchers have observed the effects of silver NPs on plants growth. For 
example, silver NPs show harmful effects on seed germinations, root, and shoot 
growth on species of Chinese cabbage (Brassica campestris), rice (Oryza sativa 
L.), and Mung bean (Vigna radiata L. Wilczek) at concentrations of 3000 g/mL, 
4500 g/mL and 6000 g/mL, respectively (Yan and Chen 2019). On the other hand, 
silver NPs positively affected seed germination and the root growth of zucchini plants 
in hydroponic solution. At the same time, it observed a decrease in plant biomass 
and transpiration in the presence of Ag NPs (Aslani et al. 2014).
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Fig. 12.1 Schematic presentation for biosynthesis, characterization, and plant application of 
synthesized silver nanoparticles using leaf extract 

Fig. 12.2 The most probable effect of nanoparticles on plant parts
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It has been certified that Ag NPs with sizes of up to 29 nm had harmful effects 
on the germination of cucumber seeds and lettuce. Still, no toxic effect has been 
observed on the germination of barley and ryegrass exposed to Ag NPS (Yan and 
Chen 2019). The number of studies about the effect of Ag NPS in two varieties of 
wheat and barley noted an increase in germination ratio stem length and reduced 
length root compared to the control (Al-Hadede et al. 2020). 

Treatment with 75 ppm Ag NPs application on wheat plants resulted in a negative 
response for fresh root weight and root length. At the same time, a positive response 
was observed to cowpea (50 ppm) and brassica plants (Yan and Chen 2019). Silver 
NPs promoted growth and increased root nodulation. Low concentrations of Ag NPs 
(10–20 g/mL) improved seedling development and seed germination in fenugreek 
plants (Predoi et al. 2020). 

12.3.4 Zinc Oxide NPs 

Plants required low concentrations of ZnO NPs for the normal developmental process. 
On the other hand, higher levels of Zn in plants can cause toxic effects such as 
inhibition of cell elongation and division, the reduction of growth and plant biomass, 
curling and rolling of young leaves, chlorotic and necrotic leaf tips, wilting, and root 
growth inhibition (Predoi et al. 2020). For example application of ZnO NPs resulted in 
a dose-dependent inhibition of seed germination in cabbage. During seed germination 
in wheat, lower concentrations of ZnO NPs were more beneficial. However, the lower 
concentration does not inhibit seedling growth and cell division in onions (Khana 
et al. 2019). 

Similarly, the germination of cucumber seeds increased 10% by ZnO-NPs 
compared to the control (Velasco et al. 2020). In addition, lower concentrations 
of ZnO NPs improve seed germination in soybean, wheat, tomato, and onion. Also, 
ZnO NPs with (50 nm) particle size positively affected the rooting of rapeseed in 
contrast with the impact of Zn+2 ions (Khana et al. 2019). 

Using ZnO NMs on different plants increased root length (4.2%), shoot length 
(15.1%). In addition, ZnO NPs application on the coffee plants had a positive effect 
by increasing the fresh weight of roots (37%) (Predoi et al. 2020). 

The biogenic ZnO-NPs influenced the shoot and root length of maize seedlings at 
14 DAS. The treatment which effectively increased root length was 25 mg/L (T25). 
In contrast, the 200 mg/L (T200) concentration of ZnO-NPs exerted an inhibiting 
effect (Buono et al. 2021). 

Biological synthesis of ZnO NPs has been prepared using brown seaweed 
Turbinaria ornata. (Turner) J. Agardh extracts to promote rice seed quality and crop 
yield. ZnO NPs at (10 mg/L) showed that they have been prompt in the seed germi-
nation (100%), root length (185 mm) root width (0.5 mm) compared to control 
(Itroutwar et al. 2019).
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12.3.5 Copper Oxide NPs 

Cu NPs up to 1000 mg/L have detrimental impacts on the seedling growth of mung 
bean (Vigna radiata L. Wilczek) and wheat, and may reduce the biomass of zucchini 
by 90% relative to the control compared to the higher concentration (Omar et al. 
2019). Also using higher concentrations of Cu NPs reduce shoot and root growth 
of soybean, decrease germination rate and biomass in Oryza sativa L. and it could 
inhibit seed germination in cucumber (Predoi et al. 2020). On the other hand, it was 
indicated that soil amendments with metallic Cu NPs up to 600 mg/kg significantly 
increased lettuce seedling growth up to 91% without toxic effects (Omar et al. 2019). 

The Sesbania virgata (Cav.) Pers seeds were subjected to different concentrations 
of CuO NPs. The results showed that CuO NPs induced a considerable change in seed 
temperature and a reduction in root length. This was signalized metabolic damage 
and changes in energy dissipation and plant growth (Santos et al. 2021). 

12.3.6 Iron Oxide NPs 

The research results showed that nα-Fe2O3 was effective on seed germination 
(89.17%) due to the role of iron in germination and increasing biomass of Oenothera 
biennis L. (Asadi-Kavan et al. 2020). Furthermore, nano zero-valent iron utilized 
promoted the elongation of the root system in A. thaliana (Khana et al. 2019). Predoi 
et al. (2020) indicated that the foliar and root usage of Fe2O3 NPs increase root 
elongation. 

12.3.7 Silica NPs 

Lower amounts of nano SiO2 (in the concentration of 8 g/L) increased the germination 
of seeds in tomatoes by 22.16%, mean germination time, seed germination index, 
seed vigor index, fresh seedling weight, and dry weight. In addition, with a significant 
impact on root growth through the main length of roots, seedlings lateral root number, 
and diameter of root collar (Predoi et al. 2020). Similarly, rice seed germination was 
induced with Si NPs, while quantum dots arrested the germination (Aslani et al. 
2014). 

Increases in seed germination caused by Si NPs in maize are related to enhanced 
nutritional availability to seeds (Singh et al. 2015). For example, in Changbai larch 
(Larix olgensis Henry) seedlings, Si NPs improved seed germination traits, including 
percent germination and germination rate, length, fresh and dry mass of root and 
shoot (Siddiqui et al. 2020). Also, in tall wheatgrass (Thinopyrum intermedium L.), 
using Si NPs for Pre-chilling seeds breaks inertia, promotes seed germination, and
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increases vigor index, mean germination time, and dry weight seedling roots and 
shoots (Al-Hadede et al. 2020). 

Additionally, using Si-NPs in seed priming and seed soaking increased seedling 
biomass and vigor index along with seedling root and shoot length of Helianthus 
annuus L. (Omar et al. 2019). Germination and growth of soybean (Glycine max L.) 
were improved by increasing nitrate reductase activity and enhancing seeds’ ability 
to absorb and utilize water and nutrients (Siddiqui et al. 2020). The positive effects 
on seed germination, length, and dry weight of root and shoot in rice (Oryza sativa 
L.) seedlings were observed when Si-NPs were used (Elshayb et al. 2021). 

12.3.8 Cerium Dioxide NPs 

The results of the effect of CeO2 on seeds of tomato (Lycopersicon esculentum 
Mill.), cucumber (Cucumis sativus L.), and corn (Zea mays L.) found that CeO2 NPs 
(2000 mg/L) meaningfully decreased corn germination (about 30%). The germina-
tion of tomato and cucumber was reduced by 30 and 20%, respectively (Ali et al. 
2021). On the other hand, adding cerium dioxide, NPs can raise plant biomass and 
prompt anthocyanin production, yet showed little impact on root lengthening (Khana 
et al. 2019). 

12.3.9 Aluminum Oxide NPs 

Al2O3 NPs at concentrations up to 4000 mg/L had no significant toxic effects on 
seed germination, root elongation of Arabidopsis thaliana L. (Remedios et al. 2012). 
Al2O3 NPs (The aqueous suspension) improved the root growth of radish. On the 
contrary, the root growth decreased in cucumber (Hossain et al. 2020). 

12.3.10 Selenium NPs 

Correlation of Se NPs with selenate in Nicotiana tabacum L. showed that Se NPs 
invigorated organogenesis and expanded the advancement of the root by up to 40% 
compared to the impact of aqueous selenate (Khana et al. 2019). 

12.3.11 Gold NPs 

Maize aged seeds’ exposure to photosynthesized gold NPs (5–15 mg/L) significantly 
improved their germination and physiology without any toxicity (Elemike et al.
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2019). In addition, enhanced seed germination in (Boswellia ovalifoliolata Balakr 
and A.N. Henry) (Singh et al. 2015), Arabidopsis thaliana L. (Remedios et al. 2012), 
lettuce and cucumber, Brassica juncea L. and Gloriosa superba L. (Predoi et al. 
2020). On the other hand, it resulted in cultures of barley with addition Au NPs 
decreased biomass, yellow leaves, and dark roots (Khana et al. 2019). 

12.4 Effect of NPs on Shoots 

In botany, the stem is the plant axis that carries buds and shoots with leaves and roots 
at its base. The stem’s primary duties are to sustain the leaves by transporting the 
leaves’ products to other plant sections, especially the roots, and conveying water 
and nutrients to the leaves. The stem is a component of a plant that is frequently 
exposed to NPs when NPs are used as soil fertilizers by which NPs enter through 
the root system (Ali et al. 2019; Abbas et al. 2021a, b). Seed treatments with NPs, 
such as priming and soaking, may also potentially produce morphological changes in 
the stem. (Bamsaoud and Bahwirth 2017; Mutlu et al. 2018; Choudhary et al. 2019; 
Galaktionova et al. 2020; Ramesh et al. 2021). On the other hand, NPs could enter 
the stem and roots through the leaves system when foliar spraying is used (Haytova 
2013; Deshpande et al. 2017; Ali et al. 2019). Therefore, the various effects of NMs 
on a plant stem need to be recognized since the stem, on the other hand, is believed 
to be capable of photosynthesis. 

Numerous reports in the literature confirm that nano-forms of applied materials 
positively affect plant stem morphology, mainly stem length, while just a few reports 
reveal negative consequences (Kasote et al. 2019; Rahman et al. 2020). The most 
frequent materials in their nano-form are metal and metal compounds. These NMs 
could affect the hypocotyl and plumule or/and stem diameter (Choudhary et al. 2019; 
Khan et al. 2020) and/or length as well as other physiological characteristics of the 
stem. In general, without referring to all the reported nanomaterial-based agriculture 
treatments, researchers found an increase in plant height, which most likely relates to 
a change in stem length (Behboudi 2018; Bhatia et al. 2014; Choudhary et al. 2019; 
Dhoke et al. 2013; Khan et al. 2021; Sharifi et al. 2016; Shinde 2020). However, the 
ambiguity of claiming that activating various enzymes by some NPs may cause an 
increase in the length of the plant stem necessitates additional research activity to 
prove or/and understand the precise reason. 

One of the reactions of plants to NPs materials, according to published studies, is 
an increase in the length of the stem. Dhoke et al. (2013) observed a substantial rise in 
the stem of mung (Vigna radiate L.) when ZnO, nano FeO, and nano-ZnCuFe-oxide 
particles were applied by foliar spray (Dhoke et al. 2013). Plants treated with Zn Fe 
Cu oxide NPs had a 15.71% increase in shoot length, whereas plants treated with 
FeO NPs had a 10.25% increase and ZnO NPs had a 6.47% increase in shoot length 
compared to control. When a foliar spray of Fe NPs was given to forage maize (Zea 
mays L.), a significant increase in plant height was observed (Saedpanah et al. 2016). 
Fe NPs enhance plant height by 23% compared to the control, while Zn increases
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plant height by 5%, respectively. In a different study, the height of forage maize (Zea 
mays L.) was increased by 37% and 24% compared to the control when nano-Fe and 
nano-Zn were applied individually (Sharifi et al. 2016).  Ali et al.  (2019) observed 
an increase in shoot length after foliar spraying wheat (Triticum aestivum L.) using 
Si NPs. Tovar et al. (2020) combined nutrients into iron NPs and applied them to 
Corn (Zea mays L.) seedlings. After 30 days, all samples were identical in terms of 
stem length compared to the control. The height of maize plants rises by around 20% 
when Zn NPs are employed as a soil fertilizer and foliar spray, compared to control 
(Abbas et al. 2021a, b). 

Regarding the method of treating seeds with NPs, Bamsaoud and Bahwirth (2017) 
observed an increase in the length of hypocotyls of Cucurbita pepo L. when seeds 
were treated with silver NPs prepared via neem extraction. The highest length of 
hypocotyls (increased by 12% to control) was noted for seeds treated with silver 
NPs prepared using Neem. Furthermore, when seeds were immersed in chemically 
produced silver NPs, the hypocotyls of wheat grains Triticum aestivum L. increased 
by 12%. (Bahwirth and Bamsaoud 2020). Maswada et al. (2018) performed exper-
iments on Sorghum seeds. The seed priming with nano-Fe2O3 was more effective 
than seed soaking in enhancing seedling growth, and the experiments showed that 
the seedling length increased by 33%. The experiments of Raj and Chandrashekara 
showed that the higher plant height of Cotton (Gossypium hirsutum L.) was around 
24% higher than the control gave. In their experiments, the seeds were treated with 
chelated nano ZnO followed by foliar application of 1000 ppm nano ZnO (Raj and 
Chandrashekara 2019). Joshi et al. (2021) primed tomato seeds (cv. Sagar) with 
Selenium NPs by mixing Se NPs solution with 400 tomato seeds. The experiment’s 
findings revealed a substantial increase in plant height (51.2%) for treated tomato 
seeds compared to control ones. Nematzadeh’s studies showed that silver NPs treat-
ment at 80 ppm concentration did not prevent germination at high salinity despite a 
progressive increase in salinity levels. The stem of Satureja hortensis L. increased by 
15% compared to the control (Nejatzadeh 2021). Due to the small size, NPs reach the 
branch through stomates or the base of trichomes in the leaves (Eichert et al. 2008; 
Uzu et al. 2010). Even though NMs caused a significant difference in stem traits, 
no research is available and directly studies the considerable reasons for improving 
plant stem. 

12.5 Effect of NPs on Leaves 

The leaves consist of stomata or cuticles that allow entering the NPs > 10 nm. 
Their transfer through the cellular membrane occurs by apoplastic (between 50 and 
200 nm) and symplastic (between 10 and 50 nm) routes into the vascular system 
of the plant (Ali et al. 2021). There are essential factors that affect the existence 
of NPs on the leaf’s surface, such as leaf morphology and its chemical composi-
tion, the presence of trichrome, and the existence of leaf exudates (Al-Hadede et al. 
2020). The fullerene transmission in the plants is similar to the route of nutrients
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and water through the xylem (Aslani et al. 2014). In addition, the fullerene existed 
as black aggregates form in seeds and roots compared to the stems and leaves for 
rice seeds (Sanborn et al. 2018). The spinach leaves grew better with titanium-oxide 
NPs through foliar spray (Hossain et al. 2020). The fresh weight of the leaves coffee 
plant is increased when applied ZnO NPs in percentages of 95% as compared to 
control (Predoi et al. 2020). The favorable effect of nano-FeO and nano-ZnCuFe 
oxide was observed on the growth of mung (Vigna radiate L.) seedling and leaf and 
pod dry weight on soybean yield (Asadi-Kavan et al. 2020). Likewise, the number of 
leaves increased in percentage by 21.42% compared to control plants when applying 
nano-Fe-EDTA. Magnetic Fe-NPs by Low concentrations increases significantly 
the chlorophyll contents in sub-apical leaves of soybeans under hydroponic condi-
tions. In contrast, the high amount of iron oxide (Fe3O4) as a magnetic nanomaterial 
harmed plant growth (Predoi et al. 2020). The nano-organic iron chelated fertilizers 
demonstrated high absorption, increase in photosynthesis, aided in the transfer of 
iron photosynthate, and expansion in the leaf surface area of peanut plants (Singh 
et al. 2015). 

Agronomic use efficiency for nano-SiO2 is higher for foliar application than 
soil application (Predoi et al. 2020). When seedlings were treated with SiO2 NPs, 
their photosynthetic rate increased. Carbonic anhydrase activity and photosynthetic 
pigment production both contributed to this rise. (Siddiqui et al. 2020). Using Si-NPs 
as fertilizer with different concentrations promoted plant height, leaf number, and 
root length of Solanum lycopersicum L. (Predoi et al. 2020). As well as advertised net 
assimilation rate (NAR), leaf area index (LAI), relative growth rate (RGR), and yield 
of soybean plants but did not affect height, leaves number, or stem diameters of plants 
(Siddiqui et al. 2020). It is suggested that the accumulation of Si in leaves is benefi-
cial in maintaining leaves upright and stretching leaf surfaces to capture maximum 
sunlight, thus optimizing photosynthesis (Predoi et al. 2020). When nano SiO2 was 
applied to Changbai larch (Larix olgensis Henry) seedlings, it further developed 
seedling development and chlorophyll biosynthesis (Singh et al. 2015). Adding low 
concentrations of CeO2 NP (125 and 250 mg/kg) prompted grain creation, though 
significant measures of Ce are collected in grains and leaves (Ali et al. 2021). 

Al2O3 NPs had no significant toxic effects on root elongation and some leaves of 
Arabidopsis thaliana at concentrations up to 4000 mg/L (Remedios et al. 2012). Using 
Au NPs resulted in a better crop yield through a favorable influence on the number of 
leaves, leaf area, plant height, and sugar and chlorophyll content (Singh et al. 2015). 
On the contrary, during in vitro cultures of Barley, Au NPs supplementation resulted 
in dark roots, yellow leaves, and decreased biomass (Khana et al. 2019).



330 M. A. Bahwirth et al.

12.6 Effect of NPs on Flowers 

The flower is a stem bearing leaves that are specialized for sexual reproduction. 
Many scientists have discussed the effect of NMs on flowers, particularly in terms 
of increasing their number or their opening speed. Table 12.1 shows the NMs that 
increased the number of flowers or their opening speed.

12.7 Effect of NPs on Fruits 

The researchers used many nanocomposites with different concentrations on different 
plant species to study their effect on production and increase the yield. Table 12.2 
shows the nanocomposites and their concentrations and the extent of the increase in 
the production of different plant species.

12.8 Conclusion and Prospects 

Nanotechnology has excellent potential for multidisciplinary studies in agriculture, 
including improving the agricultural industry. Despite the research that focuses on 
realizing the beneficial effects of NPs on plants, it is still incomplete. The effects of 
NPs differ from one plant to another and is dependent on the technique of production, 
application, size, shape, and concentrations, according to the data obtained. Also, 
biological nanocomposites have positive and negative effects that must be studied 
carefully. For example, soaking seeds into NPs improves germination, growth, and 
production characteristics. NMs can be exploited to overcome different stresses size, 
and concentrations of NPs did not show any adverse effects; on the contrary, they 
showed beneficial currents. 

On the other hand, it has been observed that more significant quantities of 
NPs/NMs are hazardous to plant development, which ultimately depends on particle 
size. Therefore, in future research, a checkpoint might be established to define the 
threshold concentration of particular NPs/NMs of a specific size, and the alterna-
tive combinations need to be checked. There is a broad scope for green nano-feeding 
crop plants considering the nanotoxicity effects of NMs/NPs reported. Consequently, 
green NMs/NPS may be utilized as a source of nutrients for crops and can play an 
essential part in greener nano feeding for environmental sustainability. 

As a future view, promoting the activation of multidisciplinary joint collabora-
tive efforts, combining complementary professional skills such as plant biologists, 
geneticists, chemists, biochemists, and engineers, may offer new possibilities in 
phytotechnology. For example, in agriculture, genes have been changed in many 
plants to improve genetic traits and resistance to diseases and pests. Also, involving
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the plant extracts in synthesizing NPs is the safest material for agriculture that remains 
an open framework with promising results. 
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