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Preface 

Nanotechnology has the potential to revolutionize agricultural and food produc-
tion processes. It is imperative to harness the advantages of nanotechnology to 
enhance plant nutrient availability, improve soil fertility and minimize nutrient losses, 
develop efficient nanomaterial-packaging contaminants and utilization as a biochem-
ical delivery system in plants. Nanomaterials, owing to their high surface to volume 
area ratio, are more efficient than most traditional materials. Their nature allows 
the slow release and promotes efficient nutrient uptake by the crops. Consequently, 
a reduced number of active chemicals are incorporated in agricultural soils and 
are absorbed by the plants, thus curtailing the negative impact on the environ-
ment. Nanobiotechnology is a promising tool to manipulate plants for the benefit of 
humankind in terms of sustainable agriculture and food security. Realized agricul-
tural benefits so far are enhanced seed germination, increased plant growth and higher 
crop yield as well as increased secondary metabolites accumulation for an improved 
defense system against stress factors including climate change. With increased bene-
ficial prospects and reduced adverse environmental effects, nanomaterials are viewed 
as instrumental in curbing world hunger. 

To fully understand the behavior of nanoparticles in the plant, it is essential to 
study the mechanism of absorbance and translocation of nanoparticles and their inter-
action with the plant cellular biochemical compounds and organelles. The movement 
and accumulation of nanoparticles within the plant are determined by the mode of 
entry and uptake process as well as biochemical and physical barriers before entering 
the cytoplasm. Therefore, the current challenge is a systematic understanding of the 
absorption, translocation, bioaccumulation, barriers and pathways of nanomaterials 
within the plants. Research concerned with the relationship between nanomaterials 
and plants has risen dramatically in recent years which have contributed to the current 
perspectives of nanomaterials influence on cellular processes including photosyn-
thesis, photorespiration and pigment synthesis and accumulation. Other research 
focused on understanding the impact of nanomaterials on cellular macromolecules 
including carbohydrates, lipids, nucleic acids, proteins, hormones and antioxidant 
defense activities. Collectively these processes and biochemical compounds have 
implications on crop yield. Nonetheless, research is considered in its infancy and
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vi Preface

more work is needed to fully comprehend the nature, mode of action and utilization 
of this incredible material in agriculture. The interaction between nanoparticles and 
plants depends on several aspects such as nanoparticle shape, size, surface character-
istics, crystal chemistry and dose. Additionally, it depends on plant genotype, plant 
age, soil or medium associated plant growth and the application method. Numerous 
nanoparticles have growth regulating properties causing substantial increases in 
biomass and even improvement in nutritional quality, whereas, others have toxic 
effects on plants resulting in morphological, physiochemical and anatomical alter-
ations. This book examines recent progress of the above-mentioned aspects with 
emphasis on the interaction between nanoparticles and plants on the cellular level. 
The book starts with an introductory chapter providing an overview of the impact 
of nanotechnology on plant cell biology and outline the presented topics within the 
context of the book theme. This is followed by 18 chapters grouped into 3 parts: Part 
I Cellular mechanisms, Part II Cellular macromolecules and Part III Agricultural 
implications. 

Chapters are contributed by 63 globally recognized scientists from 14 countries 
and subjected to a rigorous review process to ensure quality presentation and scientific 
precision. Chapters begin with an introduction providing background and rationale 
followed by a detailed discussion of the topic accompanied by 71 high-quality color 
figures and 32 tables. Each chapter concludes with recommendations for future study 
directions and a detailed list of appropriate sources to encourage further reading. The 
book is an excellent reference source for plant scientists engaged in research related 
to cultivation and breeding, biotechnology and nanotechnology. It is suitable for both 
advanced undergraduate and postgraduate students specialized in biotechnology and 
agriculture. We extend our appreciation and gratitude to the contributing authors for 
their assiduous efforts and diligence and to Springer for the opportunity to publish 
this work. 

Al-Ahsa, Saudi Arabia 
Homs, Syria 
Helsinki, Finland 

Jameel M. Al-Khayri 
Lina M. Alnaddaf 

S. Mohan Jain
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Chapter 1 
Introduction: Impact of Nanotechnology 
on Plant Cell Biology 

Lina M. Alnaddaf, Jameel M. Al-Khayri, and S. Mohan Jain 

Abstract This book focuses on the recent progress of nanotechnology, emphasizing 
the interaction between nanoparticles (NPs) and plants at the cellular level. Further-
more, it covers understanding of pathways of nanomaterials (NMs) entry into plant 
cells, their influence on cellular organelle processes, and their influence on total crop 
yield. It includes 17 chapters, grouped in three sections: (1) Cellular mechanisms, 
(2) Cellular macromolecules, and (3) Implications of NMs. These chapters provide 
details on plant response to NMs applications including morphological, physico-
chemical, and anatomical changes and their effect on plant growth and productivity. 
The mechanisms of absorbance and translocation of NPs and their interaction with 
the plant cellular biochemical compounds and organelles are also covered. This book 
describes the current perspective of NMs’ influence on cellular processes including 
photosynthesis and pigment synthesis and accumulation. Also highlights the current 
understanding of the impact of NMs on cellular macromolecules, these processes 
and biochemical compounds have implications for crop yield. 

Keywords Adsorption · Cellular macromolecules · Cellular mechanisms · Cell 
biology · Plant nanotechnology
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1.1 Introduction 

Nanotechnology contributes novel tools to impact and enhance crop production and 
provide an alternative approach for crop improvement. Nanomaterials (NMs) interact 
with various cellular macromolecules leading to both negative and positive effects, 
especially the enhancement of plant growth and resistance to different stresses. NMs 
optimize plant water and nutrient conditions, improving production quality and quan-
tity. On the other hand, NPs are toxic to plant growth and human health via the food 
chain (Minkina et al. 2020). 

The NPs gather in cell walls, tissues, and sub-cellular organelles such as chloro-
plasts and vacuoles, resulting in decreasing biological activity such as photosynthesis 
and metabolism in plant cells, reducing the germination rate and decreasing the length 
of root and shoot. They promote oxidative stress, antioxidant, nutritional imbalance 
for edible crops and quality of productivity. NPs in plant tissues have an impact on 
physiological processes (as promote or inhibit) and on the safety of macromolecules 
and cell organelles (Fedorenko et al. 2020). 

There are essential factors related to the NPs and their interaction with plant tissues 
such as the plant species involved, which have physiological and anatomical differ-
ences, chemical characteristics of the plant’s cellular surface, also environmental 
conditions surrounding it (Minkina et al. 2020). 

1.2 Cellular Mechanisms 

This section describes the interaction of NPs in different parts of plants (roots, shoots 
and leaves) at the cell organelles level (Fig. 1.1).

1.2.1 Adsorption 

The first step is to absorb NPs via the roots and distribute it to plant tissues through 
modifications such as crystalline dissolution, biomodification and bioaccumulation. 
Plant roots and plant growth tissues are therefore the primary hosts for receiving NPs 
(Rao and Shekhawat 2016). 

A variety of factors influence the absorption of NMs, including nanomaterial 
features, plant physiology, application method and environmental conditions. 

NMs can interact with microorganisms and soil compounds that can positively or 
negatively modify absorption efficiency according to the type of NMs. Furthermore, 
multiple tissues (epidermis, endodermis) and barriers (Casparian strip, cuticle) need 
to be crossed before reaching vascular tissues, according to the entry point (roots or 
leaves) (Rajput et al. 2018).
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Fig. 1.1 The impact of nanotechnology on plant cellular mechanisms (Constructed by L.M. 
Alnaddaf)

1.2.2 Penetration 

The pathway of NMs to penetrate and uptake inside the cell can be via many ways, 
such as pore formation: Some NMs may disturb the plasma membrane, causing pore 
formation to pass via the cell; ion channels: These channels are about 1 nm in size, 
making it highly unlikely that NMs will penetrate them effectively without significant 
modifications; carrier proteins: NMs may bind to cell membrane proteins which act 
as carriers for entry into the cell; endocytosis: The NMs are embedded in the cell as 
a vesicle which may move in various compartments of the cell; and plasmodesmata 
(Schwab et al. 2016). 

1.2.3 Cell Wall 

NPs mainly modify the chemical composition and physical parameters of the cell 
wall affecting its structure. This modification is related to some factors such as the 
rate of pectins, structural proteins and phenolic compounds, cellulose, and hemicel-
lulose. Also, pH, cell-wall existing enzymes, and acid cell wall properties regulate 
its porosity (Milewska-Hendel et al. 2017).
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There are some characteristics NPs possessed that allow them to pass through 
cell walls such as size, shape, dimensions, The surface charge of NPs, composi-
tion, concentrations, the amount of fertilizer used, plant species, and conditions of 
the environment. The interaction between NPs and plants, whether stimulating or 
inhibiting, varies according to the previous characteristics (Milewska-Hendel et al. 
2021). 

1.2.4 Translocation 

NMs move via plant tissue in the apoplast and the symplast. Also, the importance of 
the way NMs move inside plants gives indications about where they reach, end and 
accumulate (Milewska-Hendel et al. 2021). 

This book presents several examples of translocation and accumulation of NPs 
in plant tissues, whether applied as soaked grains, fertilizers and foliar applications. 
For instance, NMs of carbon-coated iron are transferred to the aerial parts in pea and 
wheat faster than in sunflower and tomato (Perez-de-Luque 2017). 

Also, this process is related to the size of the material and the zeta potential when 
carbon dots as a model is used in the translocation via the leaves in corn (Zea mays 
L.) and cotton (Gossypium hirsutum L.). Moreover, FeONPs penetrate the roots in 
(Cucurbita pepo L.) and accumulate in the roots’ cells without transferring to leaves 
or flowers due to NPs magnetic properties (Tombuloglu et al. 2020). 

1.2.5 Photosynthetic 

A nanotechnology is a feasible tool for optimizing photosynthesis. It is related to 
primary metabolism and is responsible for generating plant biomass. Also induces 
plant growth and development (Sáez et al. 2017). 

The effectiveness of NPs on photosynthetic (enhancing or impeding) and the func-
tionalities of photosynthetic elements vary according to different plant species. This 
effect appears via an effect on regulatory proteins of the thylakoids, photosynthetic 
pigment (chlorophyll a and b), the activity of ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (RuBisCo), carbon dioxide aggregation, adequate grana development 
and structural stability of mesophyll cells as well as chloroplasts (Kataria et al. 2019). 

The enhancing or impeding influences of NPs on photosynthesis and plant growth 
are varied depending on nonmetallic NPs or metallic NPs. The stimulated reactions 
of nonmetallic NPs of photosynthesis are generated by biocompatible and reducing 
the oxidation processes. Also, NPs can be exploited for harvesting more electrons, 
which in turn, enhancement of plant photosynthesis and increases biomass and crop 
productivity (Swift et al. 2019). 

Conversely, metallic NPs had impeding photosynthesis, which harmfully affects 
the different photosynthetic mechanisms. Impeding effects can be summed up for
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NPs on the photosynthetic as toxicity via production of ROS and reduction each of 
the following: the net photosynthesis, chlorophyll content, photosystem II activities, 
the number of thylakoids per grana, the transpiration rate, leaf stomatal conductance, 
intercellular carbon dioxide concentration rate as well as inhibiting the expression 
of genes each of photosystem structure and chlorophyll biosynthesis (Poddar et al. 
2020). These effects appeared via an application of different types of NPs, such as 
walled carbon nanotubes (SWCNTs), iron oxide, silver NPs, TiO2 NPs, CuO NPs, 
ZnO NPs, carbon dots, Al2O3 NPs, Si NPs, Se NPs, Superparamagnetic iron oxide 
nanoparticles (SPION) for a variety of plant species (Kataria et al. 2019). 

Carbon-based NMs interact with accessory pigments in the chloroplasts and 
chlorophyll-a, and chlorophyll-b and promote the ability of plants to harvest light 
energy. Whereas, NPs used as artificial antennae permit chloroplasts to absorb wave-
lengths that aren’t essential for photosynthesis. This enhances the ability of plants to 
interact with light and optimize its capture, which increases the productivity of crops 
and enables the plants to adapt to different environments, where there is extremely 
solar radiation or limited resource of light (Aguirre-Becerra et al. 2020). 

1.2.6 Pigments 

NPs interact with plant pigments (Chlorophyll and derivatives, Carotenoids, Antho-
cyanins, and Betalains). Once it penetrates the plant chloroplast then the attach-
ment occurs between NMs and pigments plant, which acts as cell protection agents, 
light-harvesting complexes, transfers absorbed light energy to chlorophyll molecules, 
dissipates excess energy to the environment and as antioxidant molecules when stress 
occurs (Nguyen et al. 2021). 

Comprehension of the interaction mechanisms of NMs with plant pigments is 
critical to know its possible side effects on the biochemistry, metabolism, and phys-
iology of plant organisms when NMs are absorbed. The plant produces more than 
200,000 different chemical compound types including colored (pigment) compounds 
(Tripathi et al. 2020). 

Engineered NMs interact differently with plant pigments depending on pigment 
type and their physical-chemical properties resulting in two various basic responses: 
the first is the pigment content (increase/decrease) by (promoting/inhibiting) the 
pigment synthesis. The second change is the pigment activities, especially energy 
dissipation processes and light absorption. Most of the literature indicated that plants 
respond to different types of NPs by reducing chlorophyll content followed by 
increasing the accessory pigment’s contents. Thus, any functional or structural modi-
fications in plant pigments, especially photosynthetic ones, affect the photosynthetic 
performance and biomass productivity (Nguyen et al. 2021). 

NPs interact with plants to know about the implications of NMs on the plant 
morphological, physiological, production responses, and biological phenomena, 
to promote absorption of light wavelengths and optimize its capture and enhance 
photosynthesis (Santiago et al. 2020).
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There are many factors that affect the content of the pigment in plant cells. For 
instance, biotic and abiotic stress induce the generation of reactive oxygen species 
(ROS) which increase the expression of genes involved in the pigment biosynthesis 
pathway, the synthesis route of NMs (green or chemically synthesized) and the usage 
dose (Tripathi et al. 2020). 

1.2.7 Secondary Metabolites 

NMs play an essential vital Role in plant cell and tissue culture. NPs have stimulated 
the biosynthesized secondary metabolites and gene expression for it (Wang et al. 
2021). 

NPs promote secondary metabolites (for instance, flavonoids, phenolic acids, 
glucosinolates, terpenoids, and alkaloid compounds). These play an antioxidant 
activity to enhance plant growth under biotic and abiotic stresses. As well as it 
decreases drought-induced damage such as Z. mays L., improves the quality of fruits 
under drought stress for P. granatum and increases yield. Also, the pharmacolog-
ical properties of several medicinal plants are imputed to secondary metabolism 
compounds. Therefore, any change in bioactive compounds by NPs could affect 
their pharmacological properties and market importance (Ma et al. 2020). 

Once the cells absorb the NMs, the metal-base of the NMs is turned into reactive 
metal ions, which react with functional groups present in a cell leading to a change in 
their biochemical activity. These interactions are various depending on plant species 
and tissues, size, solubility, concentration, shape, thermodynamic properties, compo-
sition, and surface coating. The main indicators resulting in NMs toxicity in the plant 
are the reduction of photosynthetic processes and the generation of ROS (Zahedi et al. 
2021). 

1.2.8 Phytotoxicity 

The phytotoxicity caused by NPs is usually triggered by the release of free radicals 
such as hydrogen peroxide and hydroxyl radical. The excessive production of ROS 
interacts with various biological molecules and causes different cellular damage. It 
can also increase the level of oxidative stress, the fragmentation of peptide chains 
and alter the electric charge. Furthermore, it increases the susceptibility of various 
proteins to proteolysis, DNA and cell membrane damage, the toxicity of carbon-based 
NMs, the toxicity of metal and metal oxide NMs and anatomical and morphological 
changes (Kolenčík et al. 2021). 

Exposure to NPs lead to adverse effects on several biochemical and physiological 
processes in different plant species which affects the growth stages of plants. Also, 
accumulated NMs in different plant parts can affect human health. In the contrast,
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some studies have indicated that not all plants treated with NMs demonstrated toxic 
effects (Tombuloglu et al. 2020). 

1.2.9 Gene Expression 

In plants, numerous alterations resulting treated with NMs observed in genetic (DNA 
mutations) and epigenetic (DNA methylation pattern, histone modifications, and 
RNA interference). They were reflected in many aspects of the plant growth and 
development, such as cell divisions, chromosome behavior, mitotic aberrations, DNA 
alterations, and gene regulation related to forming the cell wall, roots, leaves, stress, 
and water channels (Khan et al. 2019). 

SWCNT inhibited histone H3K9 acetylation in Maize seed’s response to drought 
stress. Applying carbon nanotubes (CNT) in Solanum lycopersicum L. leads to the 
downregulation of genes related to roots and leaves. In contrast, increasing the upreg-
ulation of genes is related to water channels and stress (LeAqp2). In addition, Multi-
walled carbon nanotube (MWCNT) had an impact on the upregulation of marker 
genes NNtPIP1, NtLRX1, and CycB, related to the formation of cell divisions and 
the cell wall (Khan 2020). 

1.3 Cellular Macromolecules 

Carbohydrates, nucleic acid, hormones, proteins, enzymes, and lipids are the main 
components of plants. These compounds contributed to NPs synthesizing as a safe 
and eco-friendly method. Also, they are closely associated with stress tolerance, 
growth and development of plants via increasing or decreasing their percentage 
when applying several NPs to plants (Khan et al. 2021). 

1.3.1 Carbohydrates and Lipids 

The chapter on the interaction of NPs with plant macromolecules: carbohydrates 
and lipids summarizes recent advances in the different effects of NPs to promote 
or inhibit plant growth, such as seed germination, plant root, and above-ground 
growth and improve various stress tolerance, which is closely associated with plant 
carbohydrates and lipids (Shang et al. 2019). 

This stimulating or inhibiting is occurring using various types of NPs, for example, 
silver, selenium, zinc oxide, copper oxide, magnesium oxide, and silicon dioxide 
in different stages of growth and development of a plant. In addition, this chapter
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Fig. 1.2 The impact of nanotechnology on cellular macromolecules (Constructed by L.M. 
Alnaddaf) 

discusses the different effects of NPs added as a spray or fertilizer on morpholog-
ical, biochemical, and productivity indicators of various plants (Khan et al. 2021) 
(Fig. 1.2). 

1.3.2 Nucleic Acid 

All genetic information for every living entity exists in nucleic acids (DNA and RNA) 
(Tan et al. 2009). This book presents a chapter to introduce the NPs interaction with 
nucleic acids. This interaction relates to type of NPs and concentrations. 

In addition, it can use as delivery system DNA and RNA by binding interactions 
such as carbon nanotubes and bioclay (Hossain et al. 2016). Also, explains in more 
details the different effects either positive (activate the genes related to stresses) or 
negative (chromatin condensation and cells shrinkage, damaged DNA, fragmentation 
of chromosome arms and suppressing transcriptional genes) (Chen et al. 2018).
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1.3.3 Hormones 

There are five types of hormones that exist naturally in plants: auxin, cytokinin, 
gibberellins, abscisic acid and ethylene (Gaspar et al. 1996). NPs enhance the various 
physiological activities of hormones in plants (Weyers and Paterson, 2001). These 
activities relate to growth (elongation of roots or shoots), maturation, plant tissue 
culture and biotic or abiotic stress responses in a plant (Yang et al. 2017). While, 
other side effects are linked to senescence or phytotoxicity (El-Shetehy et al. 2020). 

1.3.4 Proteins 

Proteins are necessary for all living cells and have several functions such as regulation, 
cell signaling, catalysis, support, membrane fusion, intra- and intercellular movement 
of nutrients and other molecules, and structural protection. When NMs penetrate into 
plant cells, it reacts with carboxyl and sulfhydryl groups and alters protein activity 
(Anjum et al. 2015). 

The NMs reaction depends on the physical and chemical conditions of the cell 
environment, which is affected by reactive molecules, and temperatures.Also, its 
sizes and concentrations affect the folding process of a newly synthesized protein 
(Hossain et al. 2016). 

The plant responds to NMs treatment via several indicators such as an increase 
or decrease in proteins, accumulation or synthesis of new types of proteins that are 
involved in primary metabolism and production of enzymes that help the metabolic 
adaptation of the plant. In addition, Increasing proteins -are related to photosynthesis, 
metabolism, cellular organization, and hormone metabolism (Fig. 1.2) (Hasan et al.  
2017). 

1.3.5 Enzymatic and Non-Enzymatic Antioxidant 

The influence of NMs on enzymatic antioxidant defense activities in plants differs 
according to the nature and concentration of NPs. 

There is a regulatory suitable balance between ROS and antioxidants (enzymatic 
and non-enzymatic) in natural conditions. However, the plant responds with an 
increased amount of ROS concentration in conjunction with antioxidants when NPs 
stress occurs in the plant (Shang et al. 2019). 

Antioxidants break down the ROS and scavenge it due to their peculiar structures 
and detoxify cells, such as oxygen free radicals and lipid peroxidation radicals. 

In various researches, the impact of NPs on plant growth was different between 
promoting and inhibiting (Fig. 1.2) (Khalil et al. 2020).
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1.4 Preparation and Features of NM 

This book presents the methods to synthesize NM, such as physical, chemical and 
biological manufacture. Each method has a different feature that is related to its appli-
cation (Alnaddaf et al. 2021). In addition, emphasizes the advantages of biosynthesis 
of monometallic NPs and includes some examples of silver, gold, copper, palladium 
and oxide NPs. Also, explains the factors that affect the NMs traits and behavior 
which make them able to penetrate plant cells (Shekhawat et al. 2021). 

1.4.1 Nanocellulose 

Cellulose is a natural polymer derived from agricultural waste and by-products used 
for the synthesis of various kinds of NMs. This chapter converses the synthesis 
of nanocellulose. Then, explains in more detail the source, structure, and types of 
nanocellulose. Also, it highlights the preparation, characterization, and properties 
of nanocellulose. In addition, it discusses the application of nanocellulose in many 
sectors (Zhang et al. 2022). 

1.4.2 2D-Nanosheets 

A chapter presents the 2D-nanosheets based hybrid NMs interaction with the plants. 
In addition, explains the different methods of synthesis of 2D-nanosheets. Then, 
emphasizes the interaction of 2D-nanosheets with plants. Moreover, it also highlights 
to penetration of 2D-nanosheets the seed coats, translocation in the plants and effects 
on plant growth and development (Lee et al. 2021). 

1.5 Implications of Nanomaterials on Crop 

The plant has different responses to treatment with NPs, whether morphology 
physiology and productivity (Hossain et al. 2020) (Fig. 1.3).

This book highlights the mechanism of NPs interaction in seed and various effects 
on seed germination and root growth, shoots, leaves, flowers and fruits. In addition, 
this book includes examples of many types of NPs. Also, their role to improve crop 
productivity by mentioning features of NPs in crop quality and quantity improvement 
(Rivero-Montejo et al. 2021).
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Fig. 1.3 The impact of AgNPs on wheat seedling morphology during 35 days. A: treatment with 
AgNPs, B: control, D: day (Constructed by L.M. Alnaddaf)

1.5.1 Nutritional Value 

The future goals of nanotechnology include high bioactive compound content of 
secondary metabolites in foods which advantages in improving the nutritional value 
of industrial crops and stress tolerance (Neme et al. 2021). Plants consider an essen-
tial component of the human diet via the supply to our body of vitamins, proteins, 
minerals, fiber, carbohydrates, lipids, and water (Rivero-Montejo et al. 2021). 

The use of NMs has improved the nutritional value of fruits and vegetables without 
requiring increased consumption by affecting the biochemical and physiological 
properties of plants (Gomez et al. 2021).
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1.5.2 Abiotic Stresses 

The soil salinity, water’s decrease, and heavy metal increase are the most dangerous 
to a plant’s life cycle which knows as abiotic stresses (Gong et al. 2020). 

Stresses adversely affect the plant growth and development via changes in the 
structural and chemical composition of the plant which lead decreasing in quality 
and quantity of production. Plants have developed various mechanisms to tolerate 
these challenges via transferring the stress signals within cells and between cells 
and tissues, sorting suitable chemical compounds for survival and reproduction, and 
continuing their growth and development (Rivero-Montejo et al. 2021). 

Many reports indicated that when plants are treated with NPs their responses to 
stresses will be various via influence on biological and metabolism pathways. Also, 
their role to improve crop tolerance to abiotic stress for instance drought, salinity, 
and heavy metal stresses (Zohra et al. 2021). 

1.5.3 Tissue Culture 

A chapter is included to discuss the role of NMs in plant cell and tissue culture. It 
explains the impact of NMs on in vitro responses. Different NPs in tissue culture 
media could improve the callus induction, biomass and morphogenetic potential in 
explants (Barbasz et al. 2016). 

NPs play a vital role in various biochemicals, physiological and anatomical routes 
of tissue culture. NPs improve regeneration, organogenesis, decontamination and 
secondary metabolite production to protect plant cells and tissues from biotic and 
abiotic stress. NPs have affected nutrient and protein levels and modulate the expres-
sion of certain genes encoded in certain proteins. In addition, it highlights the mech-
anism affecting callus, and quantitative and qualitative features of calli (Dallavalle 
et al. 2015). 

In addition, it presents an overview of some important applications of NMs in plant 
tissue cultures such as somaclonal variation, organogenesis, somatic embryogenesis, 
disinfection, genetic fidelity, and regeneration (Devasia et al. 2020). 

1.6 Conclusions and Prospects 

This book provides an update on research and development in plant nanotechnology. 
It covers comprehensively various methods to synthesize NM and its characterization 
and applications. Moreover, explains the interaction of the NPs with plant cellular 
mechanisms and macromolecules. The initial phase is interacting NPs with the plant 
surface lead to adsorption it from the root and penetrate cell wall to move in plants. 
The second phase begins from the series of different effects at various levels, such as
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the molecular, biochemical, physiological, morphological and productivity, which it 
reflects stimulating or inhibiting on the growth and development of the plant. 

In addition, the book highlights the implications of NPs in different stages of 
plant growth and their effect on decreasing or increasing the quality and quantity of 
production as well as application in tolerating various stresses. Moreover, the book 
presents the role of NPs in tissue culture and their impacts on the callus physiology, 
biomass of explants and secondary metabolites according to the type of NPs and 
their concentrations. 

Hence, future research needs to understand the mechanical complexity of inter-
actions NPs with the plant (uptake, translocate, and accumulation) in different parts 
of a plant. Also discussed in details their effect of different NPs on growth stages in 
various plant species at the cellular levels. 
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Chapter 2 
Effect of Nanomaterials on Water 
and Solutes Translocation in Plants 
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Mayada S. Fadel, Ahmed E. M. Elkhawas, Ezzat R. Marzouk, 
Mohamed A. M. Bassouny, and Amira A. Ibrahim 

Abstract Two decades ago, the discovery of plants’ ability to generate engineered 
nanoparticles (NPs) sparked interest in the subject. Over the past decade, various 
aspects of the plant-engineered nanomaterials interaction have been acknowledged. 
The interaction between plants and engineered NPs is one of the fundamental
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factors that will shape the future of nanotechnology. This chapter summarizes recent 
advances in this area. Afterward entering the soil, many NPs will interact with plants 
and possibly alter their physiology and food safety. Phytotoxicity is a broadly exam-
ined characteristic of the interactions between plants and NPs. It shows that the accu-
mulation of engineered NPs in plants regulates various physiological, biological and 
biochemical effects on plants. The physiological obstacles to the plant uptake of engi-
neered NPs are discussed. The concept of the rhizosphere and phyllosphere-induced 
transformation of plants is also explored. The current state of analytical techniques 
for assessing the uptake of engineered NPs in plants is also addressed. Therefore, the 
current chapter discusses nanomaterials uptake and transport mechanisms, nanoma-
terials transformation in rhizosphere and plants, exploring nanomaterials in plants 
using advanced methods, effects of nano particles on physiological, biochemicals 
and biological processes and NPs phytotoxicity. 

Keywords Nanomaterials · Plants · Phytotoxicity ·Water and solutes translocation 

2.1 Introduction 

The advantages of the recent emergence of engineered nanomaterials (ENMs) are 
well defined (Abbas et al. 2020). Although ENMs have been produced for decades, 
wide-scale marketable production has only begun recently. Nanomaterials (NMs) 
are materials representing at least mono-dimension sized, approximately between 
one to hundred nanometers (Buzea et al. 2007). It has been described that ENMs 
were tripled in almost the last decade to reach 1000 consumer products per day 
(Surendhiran et al. 2020). Although ENMs have demonstrated important aspects in 
the industry section, it poses a significant improving tool for the manufacture of food 
and performs a critical role in distinguishing innovative agriculture (Fraceto et al. 
2016; Liu and Lal 2015; Mittal et al. 2020; Rai et al. 2018; Sabir et al. 2014; Xin et al. 
2020). Frankly speaking, recent knowledge on the effect of NMs on water and solutes 
translocation in plants remains extremely limited and is not systematic (Avellan et al. 
2021; Buriak et al. 2022; Rico et al. 2011; Schwab et al. 2016; Zuverza-Mena et al. 
2016). Therefore, ENMs uptake and translocation by plants across water and solutes 
is a very recent research field (Fiol et al. 2021). Current reports showed that not 
all ENMs were taken up and translocated to shoot parts by the plant where several 
factors influence the uptake and translocation processes (Rastogi et al. 2017; Saleh 
et al. 2021b; Teske and Detweiler 2015) and no trend could be generalized at present 
(Asare et al. 2012; Becaro et al. 2017; Dumont et al. 2022; Dykman and Shchyogolev 
2018; Letchumanan et al. 2021; Mirzajani et al. 2013; Nhan et al. 2015; Rafique et al. 
2014; Sadak 2019; Venkatachalam et al. 2017; Wang et al. 2016; Yin et al. 2012).

A. A. Ibrahim 
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Taken up of ENMs through the plant system, it starts translocations and accumu-
late in different shoot system and consequently the possibility of their reprocess in 
the environment via different biochemical reactions is increased (Torrent et al. 2020). 
The unfavorable high concentrations of ENMs in the plant tissues will negatively 
affect the crop quality, seed germination, photosynthesis, transpiration rates and 
eventually the crop yield (Hossain et al. 2016). However, a defense system utilizing 
an enzymatic and/or nonenzymatic approach is a natural aspect for plants to stay 
alive under ENMs stress conditions (Hossain et al. 2016; Rico et al. 2015). Once the 
NMs have entered the plant, there are two ways in which they can move through the 
tissue; (1) the apoplast and (2) the symplast (Lv et al. 2019; Miralles et al. 2012). 
However, in the case of spray treatments, NMs must overcome the obstacle presented 
by the epidermis and follow the hydrophilic or lipophilic pathway. The hydrophilic 
pathway is reached across polar aqueous pores in the epidermis and/or stomata while 
the lipophilic pathway requires dispersion across cuticular waxes (Attia and Elhawat 
2021; Liu et al. 2022; Sathiyabama and Manikandan 2021). 

In the last decade, scientists have started to demonstrate the interaction of plant 
and ENM, their translocation and bio-accumulation and variation as procedures 
disturbing the ecological consequence of ENMs. Their uptake and bioaccumula-
tion in various plant parts are preferred owing to exposure concentration levels in the 
range of μg-mg kg−1 (Bouguerra et al. 2019). The concentration amounts of ENMs, 
in both soil and plant, were analytically detected to be very low with lower soil 
mobility (Darlington et al. 2009). Taking into account the detail which in real condi-
tions, the soil pores developed as a result of several biological factors including root 
exudates, fungous hyphae and bacteria cells (Zhao et al. 2012b); this little mobility 
of ENMs demonstrates that: (1) ENMs could be very close to the plant rhizosphere 
(Gardea-Torresdey et al. 2014; McNear Jr 2013) and (2) the slow revers dependent 
kinetic reactions are the main process of maintaining plant-ENM accumulation lower 
in soil (Schwab et al. 2016). 

In general, the approach NMs move in plants is very significant as it can provide 
insight into which parts of the plant they can access as well as potential accumulation 
points. Though translocation is not necessarily restricted to a specific cell sort and 
lateral movement of NMs between the phloem and xylem is possible (Banerjee et al. 
2019; Murali et al. 2021). In contrast, exposure to NPs through foliar exposure is 
different from root exposure. The main difference is under foliar exposure, the plant 
cuticle is protected against the loss of substrate tissue. The uptake of polar and 
non-polar solutes by the cuticle is achieved through two routes, which are the polar 
aqueous pores and the diffusion and permeation pathways (He et al. 2022). 

Due to unclear physiological and mechanistic factors, research on the uptake and 
transport of ENPs in plants is quite limited (Gong et al. 2019). Understanding the 
uptake, translocation and phytotoxicity of ENPs in plants is of critical importance. 
Analytical measurements of ENPs in real environmental conditions are difficult to 
achieve at their extremely low concentrations. Therefore, the development of special-
ized analytical techniques is required to provide quantitative analysis and in situ 
detection of ENPs (Majumdar et al. 2021). Therefore, the current chapter aims to
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review information about the interactions between ENPs and plants and the factors 
affecting their transport and translocation to various parts of the plant. 

2.2 Nanomaterials Uptake and Transport Mechanisms 

Nanotechnology is a catch-all phrase for materials and gadgets that operate at the 
nanoscale. In the metric method of measurement, nano equals a billionth and thus a 
nanometer is one-billionth of a meter. References to NMs, nanodevices and nanopow-
ders simply mean the material or action can be determined in nanometers. To under-
stand the size, a human being’s red blood cell is around 2000 nm long, practically out 
of the nanoscale range (Sharma et al. 2019). Despite the view that nanotechnology 
is a far-fetched idea with no near-term applications. Nanotechnology has now been 
recognized as a beachhead in various fields. Most nanotechnologies applications 
currently depend on nanosized particles. For instance, it produces nanoscale oxides 
for a wide variety of applications (Fig. 2.1). The investigation community is vigor-
ously pursuing hundreds of applications in NMs and nanobiotechnology (Saleh et al. 
2021a). Most near-term applications of nanotechnology are in the shape of NMs. 
These contain materials such as lighter and stronger nanocomposites, antibacterial 
NPs and nanostructured catalysts (Usman et al. 2020). 

It is a material that can be used in small amounts to promote plant growth and also 
attain more efficient and sustainable practices in agriculture (Ramírez-Rodríguez

Fig. 2.1 Agriculture and nanotechnology: Situation, issues and future prospects. Source Usman 
et al. (2020) 
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et al. 2020). These NMs are microscopic particles with at least one dimension within 
the 1–100 nmsize range (Khan and Upadhyaya 2019). It is used successfully in many 
agro-production fields (Omara et al. 2019; Salem et al. 2021a, b). It is commendable to 
point out that the nutrient use efficiency seemed to be lower than 50% for macronu-
trients in intensive agriculture and this probably results in unsustainable financial 
and environmental costs. However, this promising technology can improve nutrient 
uptake by plants and consequently enhance crop productivity while amending very 
low concentrations of nutrient inputs. Moreover, nano-fertilizers can further improve 
plant development (Salem et al. 2021a; Sharma et al. 2019). In contrast, the possibility 
of NMs accumulating and contaminating the environment must be considered in light 
of their possible damaging impacts on surviving systems, involving plants (Giorgetti 
2019). In this concern, some NMs recorded harmful effects on plants (Wan et al. 
2019) causing potent oxidative stress to plant leaves and leaf vein chlorosis (Xiao 
et al. 2019). 

Applying some NMs enhances water and nutrient use efficiencies by cucumber 
under water shortage and salinity stress (Alsaeedi et al. 2019). Similar results were 
observed when using another nanomaterial as they provoked the greatest oxidative 
stress reactions (Yusefi-Tanha et al. 2020) and improved the resistance of rapeseed 
plants to salinity stress (Hezaveh et al. 2019). Several investigations addressing the 
interaction between NMs and plants have significantly expanded during the past few 
years. 

2.2.1 Uptake and Transport 

Numerous factors linked to the nature of the NMs, as well as the plant physiology 
and the interaction of the NMs with the environment, have an impact on the plant 
uptake of NMs (Fig. 2.2).

The properties of the nanomaterial will have a significant impact on how it behaves 
and if the plant can absorb it. There have been studies about the largest dimensions 
that plants permit for NMs to travel and concentrate inside the cells, often with a 
size exclusion limit of 40–50 nm. Size appears to be one of the primary barriers to 
penetration into plant tissues (Taylor et al. 2014). Another element affecting uptake 
is the type of NMs and its chemical makeup (Rico et al. 2011), while morphology 
has also been shown in some instances to be a determinant (Raliya et al. 2016). 
The qualities of the nanomaterial’s absorption and accumulation by the plant can be 
significantly altered and changed by functionalizing and coating the nanomaterial’s 
surface (Judy et al. 2012). 

Physiological differences between plant species can lead to changes in NM uptake 
(Zhu et al. 2012). These studies demonstrated how plants subjected to magnetic 
carbon-coated, titanium dioxide or gold NMs displayed a variety of absorption 
and accumulation patterns. The crop species studied belonged to various botanical 
groups. How a plant will internalize the NMs, however, depends on the applica-
tion methods. While leaves are designed for gas replacement and have a cuticle that
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Fig. 2.2 Factors affecting uptake and transport of nanomaterials (NMs) in plants. (A) NMs char-
acteristics affect how they are up taken and translocated in the plant, as well as the treatment 
method, (B) In the soil, NMs can interact with microorganisms and compounds, which might assist 
or impede their absorption. Various tissues (epidermis, endodermis) and barriers (Casparian strip, 
cuticle) must be crossed before attaining the vascular tissues, depending on the entry point (roots 
or leaves), (C) NMs can follow the apoplastic and/or the simplistic pathways for moving up and 
down the plant and radial movement for changing from one pathway to the other and (D) Various 
processes have been proposed for the internalization of NMs inside the cells, such as endocytosis, 
pore formation, mediated by carrier proteins and through plasmodesmata. Source Pérez-de-Luque 
(2017)

inhibits substances from penetrating, roots specialize in the absorption of nutrients 
and water (Schwab et al. 2016). However, when nanomaterials interact with other 
environmental factors, it can change their characteristics and their susceptibility to 
being digested by plants. For instance, humic acids and other organic matter in the 
soil might promote stability and, as a result, nanomaterial bioavailability, whereas salt 
ions may cause precipitation and have the opposite effect. Additionally, the presence 
of other creatures such as bacteria and fungi, affects how plants absorb nanomaterials,



2 Effect of Nanomaterials on Water and Solutes … 25

especially if those microorganisms procedure symbiotic relationships with plants, as 
is the case with mycorrhizal fungi (Perez-de-Luque 2017; Wang et al. 2016). 

2.2.2 Movement Inside Plants 

After entering the plant, nanomaterials can migrate through tissues in one of two 
ways; either through, 1) the apoplast or 2) the symplast (Fig. 2.3). In dissimi-
larity to symplastic transport, which includes the movement of water and other 
substances within the cytoplasm of adjacent cells through particular structures known 
as plasmodesmata and sieve plates, apoplastic transport happens outside the plasma 
membrane through the extracellular spaces, cell walls of adjacent cells and xylem 
vessels (Sun et al. 2014). The apoplastic pathway is crucial for radial movement 
inside plant tissues and enables nanomaterials to reach the vascular tissues and the 
central cylinder of the root, which will then allow them to migrate up the aerial part 
of the plant (Zhao et al. 2012a). 

Nanomaterials can travel toward the aerial section through the xylem after they are 
within the central cylinder by following the transpiration stream (Sun et al. 2014). The 
Casparian strip, a barrier to the apoplastic pathway, must be crossed in a symplastic 
manner via endodermal cells to access the xylem through the root. The Casparian 
strip can stall and accumulate some nanomaterials (Lv et al. 2015). Utilizing the sieve

Fig. 2.3 Schematic chart signifying uptake, translocation and main phytotoxicity of silver nanopar-
ticles (AgNPs) in the plant. Normally, AgNPs are taken up by underground tissues (primary roots 
and lateral roots), then translocated to airborne parts (stem, leaf and flower), where they can decrease 
biomass, pollen viability and leaf area or inhibit seed germination. At the cellular level, AgNPs enter 
several organelles, leading to the production of excess reactive oxygen species (ROS), thus affecting 
cytotoxicity and genotoxicity, for example, membrane damage, chlorophyll degradation, vacuole 
shrinkage, DNA damage and chromosomal abnormalities. Source Yan and Chen (2019) 
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tube components in the phloem and permitting delivery to non-photosynthetic tissues 
and organs, another significant symplastic transport is also conceivable (Raliya et al. 
2016). Nanomaterials must pass the cuticle’s barrier in the event of foliar applications 
by taking either the lipophilic or the hydrophilic route. The hydrophilic pathway is 
performed through polar aqueous pores present in the cuticle or stomata, whereas the 
lipophilic pathway requires diffusion through cuticular waxes. The stomatal channel 
appears to be the most likely route for nanomaterial penetration because the diam-
eter of cuticular pores has been assessed to be around 2 nm, with a size exclusion 
maximum of over 10 nm (Zhu et al.  2012). It’s crucial to understand how nano-
materials migrate within plants since it can indicate where they might end up and 
accumulate as well as which areas of the plant they can access. If a sort of nano-
material, for instance, is transported frequently through the xylem rather than the 
phloem, it will likely go primarily from the roots to the shoots and leaves rather than 
downwards, so it should be administered to the roots to get a great distribution in the 
plant. On the other hand, foliar spraying must be utilized for application if the nano-
materials exhibit good phloem translocation. Another crucial factor is that nanoma-
terials traveling along the phloem will probably collect in plant organs functioning as 
sinks (fruits and grains). So, when attempting to prevent additional human or animal 
consumption of nanomaterials, that is another crucial factor to take into account. 
However, translocation is not always limited to a particular cell type, and nanomate-
rials may migrate laterally between the xylem and phloem (Perez-de-Luque 2017). 
Translocation and accumulation in plant tissues will be significantly influenced by 
the properties and makeup of the nanomaterials as well as the type of plant involved. 
For instance, for a similar type of nanoparticle, variances in translocation and accu-
mulation have been reported in numerous plant species, but minute variations in 
comparable NPs result in various outcomes within a similar plant (Almuhammady 
et al. 2021; Zhu et al. 2012). According to Cifuentes et al. (2010), wheat and pea have 
quicker translocation to the aerial portions than sunflower and tomato. However, pea 
has a higher accumulation of carbon-coated iron NPs in the roots than sunflower and 
wheat. Zhu et al. (2012) discovered that the roots of ryegrass and radish accumulated 
greater quantities of gold nanomaterials than those of rice and pumpkin. They also 
discovered that positively charged gold nanomaterials were also absorbed by roots 
more quickly than negatively charged ones. While the latter was more effectively 
transported to the aerial parts. This behavior was attributed to the presence of a nega-
tive charge in plant cell walls, which encouraged the buildup of positively charged 
NPs in tissues and impeded their transport across the plant (Perez-de-Luque 2017). 
Similar to how it occurs in mammals, nanomaterials typically accumulate in specific 
tissues and organs (Varna et al. 2012). Specifically, flowers, young leaves fruits and 
grains are expected to acquire nanomaterials migrating through the vascular system 
because they act as strong sinks for sap and nutrients (Koo et al. 2015; Lin et al. 2009; 
Servin et al. 2013). We can take use of that when determining the function of the 
nanomaterial we want to evaluate. Knowing the nanomaterials’ fate is also essential 
if we don’t want them to remain in the body after treatment and be consumed by 
humans or other animals. Some nanomaterials may be kept in tissues that won’t be 
used after harvesting or may be altered or destroyed by the plant over time (Lv et al.
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2015). In the latter instance, it might be salvaged and repurposed for additional use 
(Liu et al. 2017). 

2.2.3 Interaction of NMs with Plant Cells 

Nanomaterials need to be ingested by the plant cell and pass through the plasma 
membrane to go along the symplastic route. Even though such mechanisms are well 
understood in animal cells and less well-known in plants, nanomaterials can achieve 
this in different ways (Schwab et al. 2016); Ion channels have been postulated as 
potential paths for NMs entry into the cell. (a) Pore creation: Certain NMs can 
disturb the plasma membrane causing the formation of pores for crossing into the 
cell and extending the cytoplasm without being contained in an organelle (Schwab 
et al. 2016). However, since these channels are only a few nanometers wide, it 
is extremely improbable that nanomaterials could successfully cross them without 
substantial alterations. (b) Carriers: Proteins in the environment, such as those in the 
cell membrane, can bind to NMs, making them potential carriers for internalization 
and uptake within the cell. Aquaporins have been recommended as transporters for 
NMs inside the cell, although they are unlikely to act as channels for NMs penetra-
tion due to their small pore sizes, which range from 2.8 to 3.4. This is unless the 
pore sizes could be manipulated and expanded (Schwab et al. 2016), (c) Endocytosis: 
By invading the plasma membrane, the NPs enter the cell and create a vesicle that 
can move to other cell compartments (Etxeberria et al. 2006) and d) Plasmodesmata: 
These specialized transport mechanisms between cells are another route for nanoma-
terials to enter a cell. Of course, this requires that the NPs be present in the symplast 
already, but this method is crucial for translocation across the phloem in plants (Zhai 
et al. 2014). 

2.2.4 Foliar Exposure and Uptake of NPs 

On the other hand, exposure to NPs through foliar exposure is different from root 
exposure. The main difference is that under foliar exposure. The plant cuticle is 
protected against the loss of substrate tissue. The uptake of polar and nonpolar solutes 
by the cuticle is achieved through two routes, which are the polar aqueous pores 
and the diffusion and permeation pathways. Although the sizes of polar solutes are 
generally smaller than those of nonpolar ones, they can still penetrate through the 
cuticle (Huang and Keller 2021). The cuticle of NPs must be treated correctly to avoid 
them from getting damaged. Also, it is worth noting that the first barrier of leaves 
versus NPs can be easily bypassed in certain circumstances. Through the cuticular 
pathway, hydrophilic substances can be uptake through the stomatal pathway. The 
size omission boundary of stomatal apertures for NPs penetration is even not known. 
This pathway is the merely known route for the foliar uptake of NPs. It has been



28 K. F. M. Salem et al.

estimated that its comparable pore radius is greater than 20 nm (Huang and Keller 
2021). 

Numerous studies have shown that the NPs uptake pathway is supported by 
the observed accumulation of NPs in leaf stomata (Anjum et al. 2019; Huang and 
Keller 2021; Majumdar et al. 2021; Shekhawat et al. 2021). Some of these include 
studies involving the different plant species that exhibited this feature. The uptake 
of 43 nm NPs was detected by confocal laser scanning microscopy (CLSM) through 
the stomatal pathway. They also observed the fluorescence in the leaf apoplast after 
it entered the substomatal cavity (Chavez Soria et al. 2019). The results of these 
experiments show that the pore radius of the pathway is not as accurate as previously 
believed. Further studies reveal that the stomatal aperture opening is promoted by 
the nano-zerovalent iron (nZVI) (Al-Amri et al. 2020; Kim et al. 2019). 

The investigation was conducted to study the exfoliant properties of various 
vegetables, including spinach, collard greens and kale, utilizing single-particle induc-
tively coupled plasma-mass spectrometry (Maswada et al. 2020). The results showed 
that the NPs exhibited a great degree of water resistance and could be rinsed with 
water. After reaching the leaf apoplast, NPs could travel long-distance through the 
vascular system. The long-distance transport of fluid materials in plants happens 
through the vascular system, which consists of the phloem and xylem conductive 
tissues. These systems regulate the flow of materials from the top to the bottom of 
plants (Abobatta 2018). The phloem system is the single pathway for introducing NPs 
to the plant root. Although many studies have shown the importance of the phloem 
system for the foliar uptake of NPs, the exact pathway is not known. They discovered 
that the tiny NPs might penetrate the leaves after the stomatectomy pathway utilizing 
transmission electron microscopy (TEM). The metal elements were then identified in 
the roots and shoots (Ahmed et al. 2021). The concentration of Ce was identified by 
ICP-OES in the tissues of the plants handled with CeO2 NPs. It was also detected in 
the roots of the tested plants. They suggested that the presence of water can accelerate 
the dissolution of Cu(OH)2 NPs by causing leaf exudates to form weak acids (Arif 
et al. 2018). No evidence was found to support the conclusion that the metal particles 
identified by TEM in the shoots and roots were from dissolved NPs. Some studies 
study highlights the importance of using elemental analysis to follow the movement 
of NPs in plants (Ma et al. 2019; Shende et al. 2015). Some studies presented that 
the xylem and phloem-based transportation of CeO2 NPs can be used to reduce CuO 
NPs from Cu(II) to Cu(III). They also observed that CeO2 NPs can be transported 
from shoots to roots across the xylem. Although they can transport up to the xylem, 
NPs can also transport their products downward through the phloem. This suggests 
that their products may be transported to the rhizosphere and the phyllosphere (Ma 
et al. 2019). 

2.2.4.1 Phyllosphere Factors Affecting Foliar Uptake 

The phyllosphere is home to many pathogenic microorganisms. They can produce 
compounds that are known as polymeric substances or chemicals that can trigger the
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dissolution of NPs. The phyllosphere influence on the growth and foliar uptake of 
non-living organisms (NPs) by plants has not been examined. Likewise, the organ 
growth stages for plants vary depending on various life levels and the cuticle’s unde-
veloped state may allow NPs to enter leaves (Ma et al. 2019). Some diseases, such 
as leaf mold, can destroy the protecting structures of leaves for example the cuticle 
and the mesophyll. This impairs the ability of plants to protect themselves against 
NPs. After entering the leaf apoplast, NPs can experience long-distance transport 
across the vascular system. The phloem system allows these organisms to trans-
port downward (Majumdar et al. 2019). The long-distance transportation of fluids 
in plants happens through the vascular system, which is composed of the xylem and 
the phloem conductive tissues. The xylem system flow direction is inverted, while 
the phloem flow direction is straight (Husen 2020). The phloem system is the sole 
pathway for NPs to foliar uptake from a plant. Although numerous studies have 
identified the various routes that NPs can take to reach the root, none of these studies 
have supplied direct indications supporting the phloem translocation pathway (Ye 
et al. 2018). They discovered that the small NPs could reach the roots using the TEM 
pathway. They concluded that the metal elements were present in the shoots and 
roots. They hypothesized that the presence of water could accelerate the dissolution 
of Cu(OH)2 NPs by causing their exudates to form weak acids (Kolenčík et al. 2021). 

2.2.4.2 Possibility of Capturing Atmospheric NPs in Plant Leaves 

According to studies, plants aid in the elimination of airborne contaminants such as 
particulate matter (PM), PM1, PM2.5 and PM10 from the air. They contribute to the 
improvement of air quality by trapping these harmful particles (Tombuloglu et al. 
2020; Vera-Reyes et al. 2018). Although laboratory experiments have shown that 
plants can effectively filter and capture airborne NPs, there is no known study on the 
nature of these organisms’ capture capabilities. The effects of atmospheric NPs on 
air pollution are studied. This is an imperative stage in the assessment of the various 
properties of plants as atmospheric NPs (Majumdar et al. 2021; Ye et al.  2018). 

2.3 Nanomaterials Transformation in Rhizosphere 
and Plants 

2.3.1 Aspects Impacting Root Uptake of NPs 

There are conflicting studies about the impacts of exposure to NPs on the plant’s 
roots. The main reason for this is that the plant uptake is impacted by a variety of 
aspects, such as particle size, morphology and growth stage (Abd-Elsalam et al. 2020; 
Das et al. 2018). Particle size is one of the most crucial aspects of NPs’ absorption 
by plant roots (Almuhammady et al. 2021). It is understood that plants have a large
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particle size (Tamez et al. 2019). Even though tobacco NPs were clumped together 
on the roots, Arabidopsis thaliana roots did not absorb the 18 nm Au NPs. Also, the 
existence of SiO2 NPs in the roots of the plant prevented them from being taken up 
by the roots (Yan and Chen 2019). The experiment revealed that nitrogenous NPs 
with diameters less than 36 nm were transported throughout the plant tissue. These 
NPs did not accumulate in the roots and did not translocate to the shoot (Khan 2020). 
It is difficult to assess the SEL for uptake by roots of NPs due to various factors. One 
of these is the size of NPs in the rhizosphere varies from that of their initial size (Arif 
et al. 2018). 

Another feature that influences the uptake and transport of NPs in plants is their 
surface charge. In plants, the mucilage layer of the plant root cap is made up of nega-
tively charged NPs. Negatively charged Au NPs were able to remove the mucilage 
from the root (Malejko et al. 2021). The stored Au concentrations in the roots 
tracked the order in which the NPs were deposited. The converse order was got 
in the shoots, which indicated that the negatively charged NPs were preferentially 
transported through the vascular system (Kumar et al. 2018a). 

In some suitcases, the surface charges of NPs have been reduced because of the 
formation of nano-coronas by the coating of negatively charged root exudate (Sun 
et al. 2019). More complex scenarios involve the potential aggregation or dissolution 
of NPs due to the exudates. These scenarios can also affect their bioavailability and 
root uptake. Various plant species and plants have various growth stages and their 
oozes affect the surface charge and size of NPs (Majumdar et al. 2019). 

The physiological parameters that affect the uptake of NPs in the soil have not 
been the subject of many investigations. The interactions among plant species and 
microorganisms can affect the uptake of NPs (Khan 2020; Zhang et al. 2020). In an 
instance, a superior percentage of Ce translocation was detected in dicotyledons than 
in monocotyledons. In addition, the root uptake of gold NPs was also dependent on 
the species (Kumar et al. 2018a). 

Kumar et al. (2018b) found that tobacco roots ingested 10 to 50 nm NPs from wheat 
using XRF and LA-ICP-MS. Managing agricultural risk requires an understanding of 
the NPs uptake by plants that varies by species. Adding mycorrhizal fungi encourages 
the uptake of nutrients and water. It may also affect how well NPs are absorbed into 
the body. Additionally, exposure to 15 nm Ag NPs may result in the production of 
secondary metabolites that may influence plant absorption (Noori et al. 2020). Due 
to the destruction of their physiological barriers, many root disfluencies, including 
root rot and rhizopus disease, might result in the uptake of NPs by the roots (Yan 
and Chen 2019).
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2.3.2 Integrated Root Uptake and Translocation Pathways 
of NPs 

NPs are initially adsorbed onto the surface when they go to the plant roots. The 
plant surface has a negative charge, which can trigger the secretion of mucilage or 
chemicals (Fig. 2.4). This characteristic leads to the accumulation of NPs on the root 
surface. The root surface cuticle is like the leaf surface cuticle. However, unlike the 
leaf surface cuticle, the root surface does not have a central cuticle. This indicates 
that the epidermis of the root hairs may be exposed to NPs. In higher plants, there 
are two primary channels for nutrient intake and transport. The first is the apoplastic 
pathway, which entails diffusing into the region between the plasma membrane and 
the cell membrane after piercing a cell wall. For instance, ryegrass roots frequently 
contain 20 nmZnO NPs. However, in other plants, such as Arabidopsis thaliana, 20– 
80 nm Ag NPs are also commonly found (Sun et al. 2019). NPs can cause the cell 
wall to collapse or even alter its size of it. They can also enter the intercellular spaces 
through physical wounding or disease. The pathway to the endodermis is apoplastic. 
The only way to prevent NPs from reaching the endodermis is by blocking the 
Casparian strip. Under specific circumstances, NPs may pass through the apoplast 
and enter a circulatory system without forming the Casparian strip. This pathway 
can be observed in the graph below. One important apoplastic channel used by plants 
to enter the circulatory system is the lateral root junction. To determine whether this 
mechanism is present in other plants, research is required (Noori et al. 2020).

The symplastic route is a pathway that allows NPs to enter a cell. Two barriers 
prevent them from moving through the pathway. One is the cell membrane barrier and 
the other is the cytoplasm barrier (Ye et al. 2018). Although ion channels can work for 
various ions, they are not selective and are generally not bigger than 1 nm wide. The 
hypothesis of a cellular internalization pathway involving the use of ion channels has 
many challenges due to plant physiology (Abobatta 2018). The endocytosis pathway 
of plant cells is poorly understood. It has been suggested that this process involves 
the use of endocytosis pathways. Sycamore cells in culture ingest 40 nm and 20 nm 
polystyrene nanospheres in the fluid phase (Etxeberria et al. 2006; Ye et al.  2018). 
Additional research demonstrated that the surface characteristics of NPs are critical 
for the endocytic absorption of plant cells (Abd-Elsalam et al. 2020; Das et al. 2018; 
Kusiak et al. 2022). The investigators also confirmed that the molecular structure of 
the NPs plays a role in the endocytic uptake of these particles. 

The cell walls of plants separate and contain different cells. The transboundary 
movement of a cell can be initiated by passing through the cell walls through a 
network of plasmodesmata (Tan et al. 2018). Numerous findings have confirmed 
that plasmodesmata (PD) facilitate the passage of non-targeted prion traffic, which 
in turn facilitates the transfer of biological macromolecules from cell to cell (Hu 
et al. 2020; Ye et al.  2018). According to various research, plants treated with Ag+ 

or Au+ had black dots of Ag0 or Au0 visible in the root cells. This suggests that the 
black dot was not taken up or assimilated by TEM (Noori et al. 2020). There haven’t 
been any firsthand observations of other NPs inside PD up until this point. These
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Fig. 2.4 Nanoparticles pathway. Source Thounaojam et al. (2021)

NPs may be able to transport proteins across the channel due to the unique chemical 
characteristics of Ag or Au (Yan and Chen 2019). To better recognize the many 
mechanisms engaged in plant root uptake and translocation, several physiological 
and technological difficulties still need to be overcome (Sun et al. 2019). 

2.4 Explore Nanomaterials in Plants Using Advanced 
Methods 

Analytical approaches frequently fall short of giving a complete picture of the translo-
cation, modification and uptake of NPs because of the complexity of the plant envi-
ronment and the size of the NPs in plants. Banerjee et al. (2019) present a comprehen-
sive analysis of analytical techniques that can provide objective information about 
the NPs in plants.
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2.4.1 Analysis in Quantitative Form 

Currently, inductively coupled plasma-mass spectrometry (ICP-MS) techniques are 
used to analyze the metal element content of rare-earth-based NPs to offer quantitative 
information. However, this method’s lateral resolution is not as precise as X-ray 
microanalysis’s (Shende et al. 2015). Single particle ICP-MS can yield strengths of 
specific NPs of various sizes in plants with the aid of enzyme digestion. This method 
can also induce the dissolution of the residual NPs (Liu et al 2020). Other techniques 
that can be used to classify and measure NPs include capillary electrophoresis, field-
flow fractionation (FFF) and separation techniques (Ma et al. 2019). FFF-ICP-MS 
may identify the presence of NPs in soil and water samples even though it is only used 
to study colloids and NPs. For the most part, these techniques require the digestion 
and enzymolysis of biological tissues to successfully detect NPs (Ma et al. 2019). 

2.4.2 Analysis of Speciation and Location 

The most used method for determining the distribution of NPs in plants is TEM. 
A high-resolution TEM and area electron diffraction combination can be used to 
measure the NPs’ crystal-line structure. The fluorescence-labeled NPs in plant tissues 
have been identified using FM or confocal laser scanning microscopy. Find out 
whether the cells have been internalized, it can also be directly observed. High-
resolution secondary ion microprobes are used in the secondary ion mass spectrom-
etry method to map the elements in the periodic table. Algae exposed to Ag NP were 
identified by Ma et al. (2019) using nano-scale secondary ion mass spectrometry 
(NanoSIMS). 

2.4.3 Analytical Methods Based on Stable Isotopes 

Fractionation of isotopes is a process that occurs in the chemical and physical trans-
formation of metal elements. This allows researchers to investigate the fate and source 
of NPs by using special isotope tracers (Das et al. 2018). Unfortunately, it might be 
difficult for analytical scientists to pinpoint how particles and ions affect the bioavail-
ability of NPs. A new method known as multi-isotope labeling can help solve this 
issue (Chavez Soria et al. 2019). Various investigations have been released to detect 
the factors that contribute to the waterborne uptake and flexibility of aqueous zinc 
oxide (68ZnO) and Zinc oxide NPs (68ZnO NPs). For instance, a significant factor 
affecting the NPs bioavailability was the solubility of the zinc element (Brenes 2021; 
Malejko et al. 2021; Pang and Gong 2019; Salem et al. 2021b). 

A study revealed that the rapid dissolution of zinc oxides (ZnO) by the end of its 
lifecycle was the most probable explanation for the absence of cations and particles
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in soil and water samples. Nano SIMS’s superior isotopic resolution has allowed it 
to map out the samples. But it hasn’t been applied to research NPs in living things 
(Dev et al. 2018). Double stable isotope labeling of NPs can be utilized to evaluate 
foliar and root exposure of plants in addition to soil samples (Usman et al. 2020). 
Due to the complexity of the study involved, it is highly recommended that analytical 
techniques be combined with multiple studies to obtain the most accurate results (Ali 
et al. 2021). 

2.4.4 Physiological, Biochemical and Biological Processes 
Affected by NPs 

Entitled as ENMs, these particles are atomic or molecular aggregates that have small 
sizes and different physical properties. Because of their diminutive size, cells may 
readily absorb them (Al-Amri et al. 2020; Alloosh et al.  2021; Alnaddaf et al. 2021). 
Over the years, various industrial sectors have been using ENMs in their various 
operations. Their release into the environment has been considered hazardous (Verma 
et al. 2018). The influences of ENMs on plants have been the subject of numerous 
investigations. They include evaluations of their potential negative influences on 
human health and the ecosystem. (Mohammadi et al. 2020). AgNPs are known to 
be the greatest widely used nanomaterial. Their antibacterial qualities have been 
extensively utilized in numerous fields, including healthcare, textiles and cosmetics 
(Ahmed et al. 2021). 

Silver NPs are also commonly used as plant growth stimulators and fungicides. 
They are believed to have complex effects on the cellular membranes and the 
biochemical processes of plants (Fiol et al. 2021). AgNPs’ effects on different plant 
species are known to vary depending on their various characteristics. For instance, 
the stability and appearance of the NPs can be impacted by a plant’s size, shape 
and surface area (Zhang et al. 2020). Exposing plants to AgNPs can be performed 
in a sterile environment to avoid the possible effects of these particles. Numerous 
investigations have been successfully carried out in the field of in vitro cultures to 
investigate how different plant species are affected by AgNP-enacted structures (Ali 
et al. 2021). 

Despite their effects on the plant, NMs can also contribute to the development and 
productivity of plants. They are also known to cause various traits to be formed in 
the plant. Various enzymes in the plant are known to convert the harmful compounds 
known as reactive oxygen species (ROS) into useful compounds. These enzymes are 
also known to contribute to the reduction of oxidative stress and act as biological 
markers of stress (Dev et al.  2018). Due to the reduced photosynthetic rate caused by 
stress, the content of chlorophyll, which is a major component of photosynthesis, can 
decline. This impairs the plant’s ability to generate energy. This is one of the reasons 
why seed germination is a crucial step in plant development (Li et al. 2019). The 
germination stage is the most sensitive phase of plant development. It can trigger
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various physiological and biochemical changes in the plant (Rodríguez-González 
et al. 2019). 

Various metrics, including root elongation, are used to evaluate the toxicity of 
AgNPs, shoot development and germination time. Experiments involving different 
ENMs have been carried out to examine the impact of these particles on different 
plant species (Ahmed et al. 2021). One of the experiments revealed that the use 
of zinc oxide NPs at concentrations of 50–1600 mg/L significantly affected the 
germination of onion (Allium cepa L.). However, the impacts of these particles on 
the improvement of the plant were not significant. The use of AgNPs did not affect 
seed germination. However, it inhibited the growth of the plant. The same results 
were recorded in different plant species (Banerjee et al. 2019). 

2.5 NPs Phytotoxicity 

In plants, the phytotoxicity caused by NPs is usually triggered by the release of 
free radicals like hydroxyl radical and hydrogen peroxide. Aerobic metabolism is 
responsible for the production of ROS, which acts as signaling molecules. When 
excess ROS levels are observed, they can cause various adverse effects, such as 
cell death and protein oxidation (Yadav et al. 2020). Previous studies suggest that 
Plants may experience oxidative stress due to metal and metal-based NPs (Kranjc 
and Drobne 2019; Rodríguez-González et al. 2019). In ryegrass, particle-dependent 
production and lipid peroxidation on the cell surface resulted in phytotoxicity. Simi-
larly, a decline in viable cells and an increase in ROS production caused by AgNPs 
were inversely linked to the treatment period. In addition, the production of the insol-
uble brown product by the treatment of NPs was demonstrated by the presence of 
H2O2 in the plant roots after being subjected to La2O3 and CeO2 NPs (Yadav et al. 
2020). 

The treatment with CeO2 NPs resulted in the buildup of H2O2 at a concentration 
of 35 M, which was greater than the control. However, the experimental results were 
inconclusive that the treatment caused any oxidative stress or induced ion leakage 
in the plant (Pang and Gong 2019). The excessive production of ROS can interact 
with various biological molecules and cause various cellular damages. It can also 
increase the level of oxidative stress and damage various proteins and DNA. 

One of the most damaging processes in the body is the peroxidation of lipids. 
Malondialdehyde, which is a final product of peroxidation, can cause cell membrane 
damage. It’s been noticed that exposure to various abiotic stresses can increase the 
level of lipid peroxidation. Over-generation of ROS can also cause the fragmentation 
of peptide chains, alter the electric charge and make other proteins more vulnerable 
to proteolysis (Arif et al. 2018; Moghadam et al. 2019). Ag NPs can also cause 
the formation of thiyl radicals by taking advantage of the cysteine residue. This 
method allows the NPs to cross-link a disulfide bridge between one thiyl radical 
and another (Ma et al. 2019; Shende et al. 2015). Twenty-eight proteins have been 
identified as being engaged in various biochemical and physiological processes after
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rice (Oryza sativa L.) was exposed to Ag NPs. Tombuloglu et al. (2020) assessed 
how Ag NPs affected the proteome level. They discovered that 16 common proteins 
in the plant were significantly affected by the degradation of the photosystem and 
protein degradation. The damage caused by exposure to DNA molecules can affect the 
encoded proteins in the DNA. In plants, exposure to various environmental stresses 
can increase the level of DNA degradation. CeO2 NPs effects on the DNA of G. max 
were also studied. 

The damage caused by exposure to DNA can affect the encoded proteins in the 
cell. CeO2 NPs with high concentrations can also cause adverse outcomes for the 
DNA of certain plant species. For instance, López-Moreno et al. (2010) discovered 
that the concentration of CeO2 NPs in the plant adversely affected the DNA of G. 
max. For instance, the Allium cepa root exhibited negative effects due to the concen-
tration of bismuth oxide NPs. Other research looked into the genotoxic potential 
of TiO2 NPs (Ma et al. 2019). According to a study done on the Allium cepa root, 
prolonged exposure to high concentrations of TiO2 NPs can have genotoxic effects. 
The plant chromosome and micronuclei were also damaged. Another study revealed 
that contact with Ag NPs increased ROS production and increased the activity of 
various antioxidant enzymes (Kolenčík et al. 2021). Since phenolic is produced in 
plants for their protection from pathogens, they may not be considered detrimental. 
However, the production of ROS is important for the phytotoxicity mechanism (Jahan 
et al. 2018). Size, form and solubility are a few variables that may have an impact 
on how much ROS a plant produces. In a study, scientists investigated the toxicity of 
three various CeO2 NPs relative to various sorts of plants. The results revealed that the 
high concentration of CeO2 caused by 7 nm can damage the plant membrane (Li et al. 
2019). Although the concentration of 25 nm CeO2 did not vary significantly among 
the control group and its bulk counterpart, the impacts of shape and size on the plant 
development were studied. In addition, studies on different plant species revealed 
that exposure to high concentrations of CeO2 NPs affected the plant’s growth stages 
(Li et al. 2019). Studies suggest that CeO2 NPs can be bio-transformed to CePO4 

and Ce(CH3COO3) by altering their composition. The release of Ce3 + ions from the 
surface of the plant can also play a crucial role in the toxicity of the chemicals. Liu 
et al. (2020) revealed that the biotransformation of CeO2 NPs occurs on the plant 
root surface instead of in tissues. It also mentioned that phosphate release plays a 
significant part in the biotransformation of the compounds. A study showed that the 
phytotoxicity of CeO2 NPs caused by the presence of phosphates was determined by 
measuring the number of chemicals in sand culture. In a study, researchers discovered 
that the concentration of the compounds absorbed by the plant caused its growth to be 
affected (Shende et al. 2015). Other studies also excluded the toxicity of meta-based 
NPs from their studies. According to a study on the impacts of CuO NPs on the 
development of the Arabidopsis thaliana, the release of Cu2+ ions from these parti-
cles can partially exacerbate toxicity (Ma et al. 2019; Shende et al. 2015). Although 
the seeds of A. thaliana were not affected by the toxicity of Ag NPs, the presence 
of Ag+ ions affected the plant root elongation. The effects of Ag NPs on the antiox-
idant system and the water quality of the plant were also studied (Sun et al. 2019). 
Ag NPs can also cause phytotoxicity by disrupting the plant structure by infiltrating
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the root surface and reducing the plant chlorophyll content. ZnO NPs can perform 
photocatalytic reactions, whereby promote the production of ROS (Sun et al. 2019). 
The phytotoxicity of metal-oxide NPs can be affected by the characteristics of the 
compounds themselves. For now, the various factors affecting the toxicity of these 
chemicals must be studied to improve our understanding (Noori et al. 2020). 

2.5.1 Phytotoxic of Silica NPs 

World demand for SiO2 NPs has increased significantly due to the rise in the use 
of these materials in various industries. In 2014, the global production of SiO2 NPs 
reached a maximum of over 1,400,000 tons (Majumdar et al. 2019). Aside from 
being used in cosmetic products, SiO2 NPs are also utilized for biomedical and 
biotechnological purposes. Some of these include drug delivery and enzyme immo-
bilization (Ma et al. 2019). Due to the wide use of SiO2 NPs, their toxic effects 
have been studied. It has already been known that inhaling silica particles can lead 
to the development of pulmonary fibrosis and silicosis. SiO2 NPs are known to 
have favorable effects on the development and growth of plants. They are also 
commonly used as fertilizer (Arif et al. 2018; Salem et al. 2021a). Despite their 
toxicity, numerous research has revealed this. SiO2 NPs can still provide positive 
impacts on the growth of plants. For instance, in rice, where high concentrations of 
Si are required for plant development, the use of SiO2 NPs with a high concentration 
can induce seed germination and stimulate root growth. Studies on two different 
plant species revealed that growing under high-salinity conditions can improve the 
development and germination of plants (Abobatta 2018; Majumdar et al. 2021). 

Because of their major penetrability, SiO2 NPs are thought to affect the growth of 
plants. They can reduce the oxidative damage caused using enzymes like superoxide 
dismutase and catalase (Chandrika et al. 2018). Jahan et al. (2018) discovered that 
seed pretreatment with high concentrations of SiO2 NPs can improve the physiology 
of a plant. They also noted that these chemicals can stimulate the production of 
bioactive molecules. Si NPs’ phytotoxic effects have only really been studied at very 
high doses. In 2019, researchers discovered that the growth of Arabidopsis plants was 
decreased and chlorosis was observed when treated with highly charged Si NPs. The 
negative effects of these chemicals were mainly caused by their effects on pH and 
the adsorption of macro and micronutrients onto the surface of Si NPs (Pullagurala 
et al. 2018). 

The scientists found that the size of Si NPs produced their impacts on plant roots. 
Si NPs were not charged and exhibited no phytotoxic properties. The genotoxic and 
phytotoxic effects of Si NPs were also detected in A. cepa seedlings after being 
exposed to varying doses of the chemicals (Tan 2018). Further analysis revealed that 
the effects of Si NPs on the root meristems were genotoxic. Although they have 
beneficial effects on plants, they are usually not toxic (Singh et al. 2018).
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2.5.2 Phytotoxicity and Genotoxicity of TiO2 NPs 

Owing to their distinct physical characteristics, TiO2 NPs are mainly used as the 
main component of cosmetic products. They are also used in the production of 
various industrial products such as paints, medical drugs and self-cleaning prod-
ucts (Kolenčík et al. 2021). Also, TiO2 NPs are considered one of the most toxic 
chemicals in the environment. Their impact on numerous organisms is still being 
studied. Generally, they can be observed depending on the concentration, size and 
plant species tested (Jahan et al. 2018). The production of ROS determines how 
plants react to TiO2 NPs and the activation of antioxidant defenses. For instance, 
when applied at concentrations of up to 4.0%, a mixture of TiO2 NPs and anatase 
can stimulate root elongation and seed germination (Ma et al. 2019). According to the 
study findings that the application of large concentrations of TiO2 NPs delayed the 
germination of certain plant species and reduced root length. Further studies revealed 
that the influence of TiO2 NPs on the vascular system of Vibrio narbonensis plants 
was caused by their oxidative stress. The results of these experiments indicated that 
the activation of the plant antioxidant response did not stop the injury caused by 
the chemicals (Liu et al 2020). The effects of varying concentrations of TiO2 NPs 
on the seeds of V. faba were negative. The effect was increasingly unfavorable as 
the TiO2 NPs size increased. Also, the concentration of bulk TiO2 had the biggest 
negative effect on the plant (Ma et al. 2019). Ultrastructure studies revealed that the 
inner portions of root cells were affected by the effects of TiO2 NPs.  The location of  
specific antioxidant enzymes and components implicated in the response to oxidative 
stress was also connected to the effects of TiO2 NPs on the cellular structure of plants 
(Liu et al 2020). 

Genotoxicity investigations have been performed on various plant species. In 
addition, the effects of bulk TiO2 and TiO2 NPs on human lymphocytes were also 
investigated. The results of these experiments revealed that the concentration of 
bulk TiO2 and TiO2 NPs affected chromosome abnormalities (Shende et al. 2015). 
Biochemical analysis of the plant membrane damage caused by TiO2 NPs and bulk 
TiO2 revealed a close correlation between the results of genotoxicity and the amount 
of TiO2 exposure that the plant receives. The evaluation of TiO2 NPs toxicity is 
complicated by the different forms of TiO2 and their photocatalytic capabilities (Liu 
et al. 2020). 

An investigation contrasting the effects of anatase and anatase-rutile mixture on 
different plant species revealed that the former had negative influences on the growth 
and biomass of the plants. The combination of these chemicals also induced stimu-
latory impacts on the development of the plant (Liu et al. 2020). The results of the 
cytotoxic and genotoxic studies supported the different effects of the two forms of 
TiO2 NPs which are commonly used in treating plants. The effects of the mixture 
were greater in terms of delaying the cell cycle and causing it to arrest in the G1 

phase in certain plant species, such as basil. Exposure to varying concentrations of 
TiO2 with a large concentration of 21 nm led to higher toxic effects and reduced 
plant development. Although the impacts of TiO2 NPs on numerous plant species
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and concentrations can be studied individually, the complexity of the study requires 
the use of a few simple and controlled experiments (Ma et al. 2019; Shende et al. 
2015). 

2.6 Conclusions and Prospects 

One of the core issues with nanotechnology is how plants and synthetic ENPs interact. 
Numerous investigations on the interactions between plants and NPs have been 
carried out over the previous ten years. The physiological obstacles to NP absorption 
are discussed and their implications for plant absorption are investigated. The goal of 
this chapter is to present a thorough study of the knowledge that is currently available 
concerning the translocation, absorption and transformation of NPs in plants. Also, 
it directs future investigation. The complexity of the interaction between plants and 
NPs is evidenced by the various characteristics of these two groups. For instance, 
the size, shape and structure of NPs are known to affect plant interaction with them. 
However, many of them have growth-regulating properties that can improve a plant’s 
biomass and nutritional quality. Studies have demonstrated that NPs can translocate 
through various routes, such as ascending and descending phloem. However, these 
routes require further investigation to determine the mechanism involved in their cell 
wall invasion. Although many studies have been conducted in hydroponic setups, it is 
not possible to replicate the conditions of real ecosystems. Therefore, it is important 
to design experiments that are based on field-made setups. 

The investigations on the absorption, modification and transport of metal-based 
NPs in the soil-plant system are compiled in this chapter. The size, form, and growth 
stage of the plant have a major impact on the pathways for the uptake of these organ-
isms. The distribution and transformation of NPs, as well as the surface chemistry, are 
significantly influenced by the production of root exudates and rhizospheric or phyl-
losphere microorganisms. The acceptance and acculturation of the NPs by plants may 
also be impacted by these mechanisms. We still don’t fully understand the methods 
by which these organisms can penetrate and infiltrate the soil-plant system despite 
the numerous surveys on the uptake and transformation of ENPs. Despite the rise 
in studies on the consumption and transformation of NPs growing, the complexity 
of their interactions with the plant remains a challenge to overcome. Therefore, it 
is important to establish a prioritized list of all the potential applications of these 
organisms. Further studies on the various characteristics of these organisms are also 
recommended. 

For instance, the mechanism of plant uptake and translocation of ENPs is still 
not clear. The locations of these objects in the plant where they can transform or 
accumulate are not known. The effects of varying environmental matrices and the 
toxicity of the transformation products of ENPs are also studied. Due to the wide 
exposure of plants to ENPs, their toxicity has been neglected. Additional research is 
also required to examine their possible impacts on the ecosystem and the human food 
chain. Stable isotopes, multi-informative approaches, and high spatial resolution are
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required to enable fundamental research on NP absorption and transport in plants. 
Furthermore, interactions between plants and NPs are frequently noticed. However, 
until now, studies on the uptake of natural nano-cells have been neglected. The lack 
of sufficient data on the environmental impacts of these products and the interactions 
between plants and NPs are some of the factors that require immediate attention. 
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Chapter 3 
Response of Plant Photosynthesis 
to Nanomaterials 

Sashi Sonkar, Prakash Kumar Sarangi, Brijesh Pandey, Anand Prakash, 
and Akhilesh Kumar Singh 

Abstract An enhancement in crop productivity is one of the crucial requirements in 
order to circumvent the increasing food demands globally. Crop productivity may be 
improved via plant nanobiotechnology that involve the integration of plant biotech-
nology with nanotechnology. The plant nanobiotechnology exploits the nanoparticles 
(NPs) for boosting the agricultural plant productivity via increasing growth, devel-
opment as well as active photosynthesis rate of agricultural plants/crops. The photo-
synthetic performance is exceedingly susceptible biological activity under abiotic 
stresses. The photosynthetic process under abiotic stresses results in excessive forma-
tion of reactive oxygen species (ROS), which overwhelms the plants native ROS 
scavenging mechanism. However, the engineered NPs have been found to protect 
and boost the plants photosynthetic effectiveness by diminishing oxidative stress. 
However, the impact of NPs on photosynthetic effectiveness is found to varied 
between plants as well as even within species. They either improve plant photo-
synthetic effectiveness by enhancing the light-harvesting complexes or block routes 
through obstructing the electron transport chain. For instance, NPs like single-walled 
carbon nanotubes (SWCNTs) were found to boost photosynthesis by threefold. In 
contrast, NPs such as iron oxide as well as silver NPs were reported to impede 
photosynthesis. Overall, the study of the beneficial impacts of NPs on plant systems
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including photosynthesis is yet inadequate. This chapter provides an overview on the 
current status regarding the influence of NPs on photosynthesis in plants. 

Keywords Light-harvesting complexes · Nanobiotechnology · Nanoparticles ·
Photosynthesis · Reactive oxygen species 

3.1 Introduction 

Nanoparticles (NPs) were among the most extensively investigated particles of the 
twenty-first century, fostering a new area of study known as “plant nanobiotech-
nology (Al-Khayri et al. 2021). NPs are particles that refer to small size natural 
or manufactured materials having dimensions ranging between 1 and 100 nm with 
extremely higher surface to volume area ratio (Mukhopadhyay 2014; Pandey et al. 
2018; Porwal et al. 2020; Rani et al. 2020; Singh and Porwal 2020; Singh et al. 2018a; 
Singh et al. 2020; Porwal et al.  2021; Sonkar et al. 2021a). These NPs can modify their 
physicochemical characteristics over their parent bulk material (Rastogi et al. 2017). 
Because of their unique qualities and innovative features, NPs are widely utilized 
in the development of mankind as well as energy sectors (Nel et al. 2006). NPs 
may be manufactured from a range of bulk materials, and their activities are deter-
mined by their particle shape or/and size as well as chemical components (Brunner 
et al. 2006). Further, the rate of ingress of NPs into plant cells is determined by 
their surface features and size. The large size NPs are unable to penetrate the cell or 
impact cell metabolic processes, whereas smaller NPs enter easily (Kashyap et al. 
2015; Sonkar et al. 2021b). However, some huge NPs were observed to create large 
pores to pass via plant cell walls (Rastogi et al. 2017). There are three sorts of NPs 
based on their derivation: engineered, accidental, and natural. Natural NPs are those 
that have occurred from the dawn of geological history and yet are still ubiquitous 
in the environment (mineral compositions, lunar dust, volcanic dust, and so on) 
(Monica and Cremonini 2009). Incidental NPs are anthropogenic particles produced 
by man-made industrial operations such as coal incineration, welding gases, as well 
as diesel exhaust. Engineered NPs are classified into four categories (Kataria et al. 
2019; Singh et al. 2018b): 

(a) Composites are NPs that have been blended with other NPs or with bigger 
bulky materials and come in a variety of shapes such as prisms, rods, tubes, and 
spheres. 

(b) Dendrimers are nano-sized polymers that are made up of branching units that 
may be customized to conduct certain chemical activities. 

(c) Metal-based materials include quantum dots, nano-aluminum, nano-zinc, nano-
silver, nano-gold, and nano-scale metal oxides such as aluminium oxide, zinc 
oxide, and titanium dioxide. 

(d) Multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes 
(SWCNTs), and fullerene are examples of carbon-based materials.
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Overall, the development, as well as exploitation of NPs having greater volume to 
surface area ratio, are presently the key interest of nanotechnology towards boosting 
the competency of better penetration, interaction as well as reproducibility. This 
innovative approach is now enabled worldwide scientists to solve/resolve various 
global issues including food shortage together with agricultural hindrance/obstacles. 
This is supported by the fact that in the current scenario, plant nanobiotechnology is 
found to depict great potential in the agricultural field (Wu and Li 2022). For instance, 
it can enhance stress resistance of plant system through nanozymes mediated hunting 
of reactive oxygen species (ROS). The nanozymes are those NPs that can imitate 
antioxidant enzyme activities. It has been observed that cerium oxide NPs treated 
plants become more resistant/tolerant against salinity (Rossi et al. 2016; Wu et al.  
2018; Liu et al. 2021), drought (Djanaguiraman et al. 2018), heat (Wu et al. 2017) 
as well as cold (Wu et al. 2017). Likewise, NPs like SWCNT enhanced threefold 
greater photosynthetic performance in the chloroplasts. This is owing to not only 
the speedy transportation of electrons but also the improved activity of signalling 
molecules like nitric oxide in plants. The nano-mesoporous silica compounds were 
also found to enhance the photosynthetic performance (Poddar et al. 2020). 

Farming is the foremost occupational backbone of the utmost of developing 
nations. Further, there is need to enhance agricultural yield by 60% from the 2005– 
2007 level to nourish a population of about 9 billion by 2050 (Lee 2011; van Ittersum 
et al. 2016; Porwal et al. 2021). Such rapid growth of population will give rise to 
severe issues pertaining to water, food as well as energy resources (Marchiol 2018). 
Consequently, instant sustainable intensification is required towards the enhancement 
of environmentally friendly agricultural yield in present cultivable land. The speedy 
rise in worldwide population results in excessive utilization of the limited natural 
sources like land, water as well as soil has been excessively exploited. This requires 
eco-friendly-based agricultural development having economic viability. Hence, apart 
from efforts in breeding programs, farm management as well as cultivation practices, 
there is a further need for the introduction of innovative approaches like nano-assisted 
agriculture for overall agricultural improvement (Singh et al. 2015; Prasad et al. 
2014). The nano-assisted agriculture/farming has potential towards overcoming the 
forecasted food scarcity. The evolving area of nano-assisted farming has potential for 
increasing the plant resistance towards the abiotic stresses apart from improving plant 
breeding as well as farming (White and Gardea-Torresdey 2018; Pulizzi 2019). There-
fore, apart from overcoming food scarcity, plant nanobiotechnology also depicts its 
considerable potential/impacts in sustainable farming. 

Plants are vital for ecosystem functioning as primary producers because they trans-
form energy from the sun into organic materials that may be utilized by later trophic 
levels of the food chain (McKee and Filser 2016). Plants represent a possible channel 
for the transportation of NPs (Rico et al. 2011). Further, it can accrue in consumers at 
various trophic levels along the food chain (Zhu et al. 2008). The rate of NP absorp-
tion and its impact on metabolic function as well as growth differ amongst plant 
species. Additionally, the quantity of NPs influences plant functions such as photo-
synthesis, growth, and germination. NPs either increase photosynthetic activities in 
plants and bacteria by enhancing the light-harvesting complexes or block routes by
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obstructing the electron transport chain (Kataria et al. 2019). Furthermore, NPs play 
a significant role in plant defense against a variety of abiotic challenges (Khan et al. 
2017) by activating antioxidative enzymes that scavenge ROS (Wei and Wang 2013). 
Under abiotic stresses, photosynthesis is an exceedingly susceptible biological entity, 
where NPs have been demonstrated to protect the process and boost photosynthetic 
efficiency by lowering oxidative stress (Siddiqui et al. 2014). Figure 3.1 revealed the 
potential advantageous interactions of NPs with photosynthetic apparatus in plant 
system under ultraviolet B (UV-B) radiations as abiotic stress. Nevertheless, the 
reactions of various plant species to NPs varied (Qi et al. 2013; Giraldo et al. 2014; 
Barhoumi et al. 2015; da Costa and Sharma 2016; Wang et al. 2016, 2018; Wu  
et al. 2017; Li et al.  2018; Yanık and Vardar 2018; Ali et al. 2019; Dias et al. 2019; 
Soleymanzadeh et al. 2020; Swift et al. 2020; Elshoky et al. 2021; Faizan et al. 
2021a, b; Rai-Kalal and Jajoo 2021; Rajput et al. 2021). NPs in the cultural medium 
produce oxidative stress, reduce biomass accumulation, photosynthesis, chlorophyll 
concentration, shoot length, root length as well as germination including nutrition 
to agricultural plants. NPs also alter gene expression involved in energy pathways, 
electron transport chain, cell organization, biosynthesis as well as abiotic and biotic 
stress responses. The impact of NPs on photosynthesis varied between plants and 
even within species (Kataria et al. 2019). This chapter throws light on the current 
status concerning the impact of NPs on plant photosynthesis.

3.2 Interaction of NPs with the Plant Systems 

The factors responsible for NPs absorption in plant cells involve plant growth condi-
tions, plant type as well as age. Furthermore, the physicochemical properties of the 
NPs (such as chemical composition, size, dimension, and stability in solution) were 
responsible for NP uptake, translocation, and accrual in the plant system (Snehal and 
Lohani 2018). In general, NPs enter the plant root through the lateral root connections 
and go to the xylem via the cortex and the pericycle. The plant system’s interaction 
with NPs is mostly based on chemical reactions that result in lipid peroxidation, 
oxidative damage, ion transport activity, and the formation of ROS. When NPs reach 
plant cells, they react with carboxyl and sulfhydryl groups, altering protein activity 
(Kurepa et al. 2009). The transporter or pumps found in the cytoplasmic membrane 
of the roots primarily controlled nutrient and mineral absorption in plants. In certain 
circumstances, NPs bind to carrier proteins before passing via ions channels, aqua-
porins, or endocytosis (Snehal and Lohani 2018). Metals such as silicon in its silicic 
acid state are mostly taken by plants by diffusion (apoplastic transport). Nonethe-
less, specialized aquaporin (NIP2) is required for symplastic transport. Xylem is in 
care of an upwards flow of silicic acid to the aerial tissue system, which includes 
the shoot and leaves (Deshmukh et al. 2013; Snehal and Lohani 2018). Further, the 
uptake or absorption of NPs or their aggregates by plant cells is determined by their 
size, which should be smaller than the pore diameter (5–20 nm) so that they may 
readily reach the cell membrane after passing through the cell wall (Kumar et al.
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Fig. 3.1 Promising beneficial interactions amongst NPs and plant photosynthetic apparatus under 
UV-B radiations (Figure constructed by Akhilesh Kumar Singh)

2016). After forming complexes inside membrane transporters or root exudates, the 
NPs were transferred into the plants. The absorption of NPs by plants has also been 
documented, either by the stomata or the base of the trichome in leaves (Snehal and 
Lohani 2018). Following NP penetration into the cell membrane, additional trans-
port occurs via either apoplastic or symplastic routes. NP mobilization following 
absorption within the plant cell might also be aided by plasmodesmata from one cell 
to another (Rico et al. 2011; Sanzari et al. 2019). 

3.3 Role of NPs in Plant Photosynthesis 

Photosynthesis is essentially the only mechanism of energy input in the living world. 
It is an anabolic process of manufacturing food inside the chlorophyll-containing cells 
from water as well as carbon dioxide with the assistance of solar light as a source of 
energy. Recent research is concerned about the participation of NPs and their impact 
on photosynthetic activity. Some of the favorable impacts of NPs on photosynthesis
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as well as plant growth have been documented for a variety of plant species (Zarate-
Cruz et al. 2016; Cao et al. 2018). To study the rate of energy transformation in 
plants, the precise interaction of NPs with the molecular as well as ultrastructural 
components of the plant photosynthetic system must be developed (Tripathi et al. 
2017). Hence, the association of NPs with plants and their influences on biological 
alterations of the photosynthetic system including plant physiological processes, 
draw attention for assessment and research. 

Photosynthesis is more dependent on the structural arrangement of the involved 
cellular organelle, which is involved in regulating gaseous concentrations inside the 
cellular system and managing carbon dioxide transit to carboxylation sites (Mediav-
illa et al. 2001). Factors that influence photosynthetic activity include the regulatory 
proteins of the thylakoids, presence of photosynthetic pigment (chlorophyll a and 
b), activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), carbon 
dioxide aggregation, adequate grana development, structural stability of mesophyll 
cells as well as chloroplasts (Sáez et al. 2017). Accordingly, the favorable effects on 
photosynthesis efficiency with the modification of the aspects liable for photosyn-
thetic yield offer an alternative approach for crop development (Foyer et al. 2017). 
In addition, solar energy is fundamentally turned into chemical energy via photo-
synthesis, generating several aspects of the photosynthetic process. NPs can have an 
influence on photosynthesis in both beneficial as well as harmful ways (Fig. 3.2). It 
modulates the light-harvesting complex of crops by boosting the reaction, inhibiting 
the electron transport system as well as altering the function of phosphoenolpyruvate 
carboxylase, carbonic anhydrase, and RuBisCo thus stopping the metabolic reaction 
(Kataria et al. 2019). Furthermore, researchers are actively striving to increase agri-
cultural productivity through enhancing plant photosynthetic activity with implanted 
SWCNTs in chloroplasts. SWCNTs improve the biological detection of signaling 
chemicals such as nitric oxide and increase the rate of electron transport (Giraldo et al. 
2014). Because NPs alter the functionality of photosynthetic components, extensive 
investigation is necessary to assess the effects of NPs on the final products of photo-
synthesis. The use of a silicon compound conjugate with photosystem II resulted in 
a steady photosynthetic reaction for oxygen evolution, which increased the activity 
of photosynthetic pigments and enzymes. The conjugate might potentially be used 
in artificial photosynthesis as photo-sensors (Siddiqui et al. 2015).

3.4 NPs and Their Diverse Impact on Plant Photosynthetic 
Systems 

Nonmetallic NPs are biocompatible and less oxidizing. Consequently, they have 
little or no harmful effects on plant photosynthesis. Metallic NPs, on the other hand, 
tend to impede photosynthesis by generating ROS, which damages the different 
photosynthetic machineries (Poddar et al. 2020). The stimulated reactions generated 
by NPs varied amongst plant species as depicted in Table 3.1.
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Fig. 3.2 Various positive and negative impacts of NPs on a plant’s photosynthetic system (Figure 
constructed by Sashi Sonkar)

Qi et al. (2013) investigated the impact of TiO2 NPs on the photosynthetic rate of 
tomatoes under exposure to mild heat stress. The photosynthetic and transpiration, 
as well as water conductance, get improved with the treatment of TiO2 NPs. TiO2 

NPs not only boosted the regulation of photosystem II energy dissipation but also 
decreased the non-regulated photosystem II energy dissipation under mild heat stress. 
These findings suggest that TiO2 NPs promote photosynthesis in leaf tissue under 
mild heat stress. Giraldo et al. (2014) reported that SWCNTs passively transport 
and irreversibly localize within the lipid envelope of extracted spinach chloroplasts, 
increasing maximum electron transport rates as well as promoting photosynthetic 
activity over three times higher than the control. Through a mechanism compatible 
with increased photoabsorption, the SWCNT and chloroplast assemblies also permit 
higher rates of leaf electron transfer in vivo. Delivering SWCNT-nanoceria [cerium 
oxide (CeO2) NPs] or poly(acrylic acid)-nanoceria (PNC) complexes considerably 
reduces ROS concentrations inside removed chloroplasts. The toxicity of super-
paramagnetic iron oxide nanoparticles (SPION) in Lemna gibba L. plants subjected 
for 7 days to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2) or Co0.5Zn0.5Fe2O4 

(SPION-3) at 0, 12.5, 25, 50, 100, 200, or 400 μg mL−1 was examined. At less 
than 400 μg mL−1 of SPION, toxicity was shown by a larger production of ROS, 
impairment of photosystem II activities, and reduction in chlorophyll content as 
well as suppression of growth rate. The exposure of SPION suspensions to L. gibba 
induced many changes to the entire plant cellular system, which might be attributed 
to both NP and metal ion absorption in the soluble fraction. The findings show 
that the SPION has a complicated toxic mode of action on the entire plant system, 
affecting its viability (Barhoumi et al. 2015). On the other hand, da Costa and Sharma
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Table 3.1 Beneficial and detrimental effects of NPs on plant photosynthetic systems 

Type of plant 
species 

Type of NPs treatment Response References 

Arabidopsis 
(Arabidopsis 
thaliana (L.) 
Heynh.) 

Ag NPs Severely limit chlorophyll 
production and plant 
development, as well as 
induce oxidative damage 

Li et al. (2018) 

Arabidopsis 
(Arabidopsis 
thaliana (L.) 
Heynh.) 

CeO2 NPs Increase photosynthesis by 
allowing for faster RuBisCo 
carboxylation 

Wu et al. (2017) 

Arabidopsis 
(Arabidopsis 
thaliana (L.) 
Heynh.) 

ZnO NPs Inhibit the expression of 
photosystem structural genes 
and chlorophyll biosynthesis 
genes, resulting in the 
inhibition of chlorophyll 
biosynthesis and a decrease 
in photosynthesis 
effectiveness in the plants 

Wang et al. 
(2016) 

Barley 
(Hordeum sativum 
L.) 

ZnO NPs Diminish photosynthetic 
activity and impair the 
structural organization of the 
photosynthetic machinery 

Rajput et al. 
(2021) 

Mung bean 
(Vigna radiata (L.) 
Wilczek) 

Carbon dots (CDs) Promotes photosynthesis and 
plant growth. Increase 
electron transfer in 
photosystem, RuBisCo 
activity, and chlorophyll 
concentration 

Wang et al. 
(2018) 

Pea 
(Pisum sativum L.) 

ZnO-Si NPs and ZnO 
NPs 

Reduce the deleterious 
effects of salt stress on the 
membrane integrity, stomata 
closure, pigment content, and 
photochemistry of 
photosystems I and 
photosystems II 

Elshoky et al. 
(2021) 

Rice 
(Oryza sativa L.) 

CuO NPs Decreases the concentration 
of photosynthetic pigment, 
the maximum quantum yield 
of photosystem II 
photochemistry, stomatal 
conductance, transpiration 
rate, and photosynthetic rate 

da Costa and 
Sharma (2016) 

Rice 
(Oryza sativa L.) 

ZnO NPs Improves mineral nutrient 
content, antioxidant enzyme 
activity, protein content, 
photosynthesis, and biomass 

Faizan et al. 
(2021b)

(continued)
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Table 3.1 (continued)

Type of plant
species

Type of NPs treatment Response References

Spinach 
(Spinacia oleraceae 
L.) 

Single-walled carbon 
nanotubes (SWCNTs) 

Improves the antioxidant 
system, photoabsorption, and 
electron transport in 
chloroplasts 

Giraldo et al. 
(2014) 

Strawberry 
(Fragaria × 
ananassa Duch. cv. 
‘Gaviota’) 

Se NPs Improves antioxidant 
apparatus, salicylic acid, 
photosynthesis, and ion 
hemostasis under salt stress 

Soleymanzadeh 
et al. (2020) 

Swollen duckweed 
(Lemna gibba L.) 

Superparamagnetic 
iron oxide 
nanoparticles (SPION) 

Effecting viability and shut 
down of whole 
photosynthesis process to a 
huge extent. Higher 
production of ROS, 
impairment of photosystem 
II activities, and reduction in 
chlorophyll content as well 
as suppression of growth rate 

Barhoumi et al. 
(2015) 

Tomato 
(Lycopersicon 
esculentum Mill.) 

TiO2 Increased photosynthesis 
through managing energy 
dissipation, which resulted in 
leaf cooling by increasing 
stomatal opening 

Qi et al. (2013) 

Tomato 
(Lycopersicon 
esculentum Mill.) 

ZnO NPs Increase photosynthetic 
features, chlorophyll content, 
leaf area, biomass, root 
length, and shoot length of 
tomato. Reduces the 
deleterious effects of salt 
stress on plant development 
and increases protein content 
as well as antioxidative 
enzyme activity such as 
catalase, superoxide 
dismutase, and peroxidase 
under salt stress 

Faizan et al. 
(2021a) 

Wheat 
(Triticum aestivum 
L.) 

CDs Enhances photosynthesis and 
boosts crop output, resulting 
in an 18% upsurge in grain 
production 

Swift et al.  
(2020)

(continued)
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Table 3.1 (continued)

Type of plant
species

Type of NPs treatment Response References

Wheat 
(Triticum aestivum 
L.) 

Si NPs Improves leaf gas exchange 
characteristics and 
chlorophyll a and b 
concentrations while 
decreasing oxidative stress in 
leaves as evidenced by 
increased peroxidase and 
superoxide dismutase 
abilities and reduced 
electrolyte leakage in the leaf 

Ali et al. (2019) 

Wheat 
(Triticum aestivum 
L.) 

TiO2 NPs Reduction in both the 
light-independent and 
light-dependent phases of 
photosynthesis, as well as a 
decrease in chlorophyll 
content, the maximum and 
effective efficiency of 
photosystem II, starch 
content, intercellular CO2 
concentration, stomatal 
conductance, transpiration 
rate, and net photosynthetic 
rate 

Dias et al. 
(2019) 

Wheat 
(Triticum aestivum 
L.) 

ZnO NPs Increase seed water intake, 
which resulted in increased 
α-amylase activity. The 
concentration of 
photosynthetic pigments 
(total chlorophyll, 
chlorophyll b, and  
chlorophyll a content) was 
dramatically increased 

Rai-Kalal and 
Jajoo (2021) 

Wheat 
(Triticum aestivum 
L. cv Demir 2000) 

Al2O3 NPs Triggers oxidative stress in 
plants and damages 
photosynthetic pigment 
systems. Reduces catalase 
activity while increasing 
proline content, lipid 
peroxidation, superoxide 
dismutase activity, and 
hydrogen peroxide content 

Yanık and 
Vardar (2018)
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(2016) evaluated the effects of copper (II) oxide NPs (CuO NPs) on the biochem-
ical and physiological behavior of rice plants. At high concentrations of CuO NPs, 
the biomass, root and shoot length, and germination rate were decreased, whereas 
Cu absorption in the shoots and roots improved. The increment of CuO NP was 
documented in the cells, particularly in the chloroplasts, and was associated with a 
decrease in the number of thylakoids per grana. The concentration of photosynthetic 
pigment, the maximum quantum yield of photosystem II photochemistry, stomatal 
conductance, transpiration rate, and photosynthetic rate, all decreased with no photo-
system II photochemical quenching at 1000 mg L−1 of CuO NPs. Increased proline 
as well as malondialdehyde levels, indicated osmotic and oxidative stress. Super-
oxide dismutase as well as ascorbate peroxidase expression levels, were similarly 
enhanced. Their findings indicated the detrimental impact of Cu buildup in roots and 
shoots, which resulted in the loss of photosynthesis. Zinc oxide NPs (ZnO NPs) were 
shown to be toxic to a variety of plant species. Likewise, Wang et al. (2016) inves-
tigated the impact of ZnO NPs on Arabidopsis plant photosynthesis and biomass 
accumulation. Treatment with 300 and 200 mg L−1 ZnO NPs lowers growth by 
80 as well as 20%, correspondingly over untreated system. Chlorophyll a and b 
content was reduced by more than 50%, although carotenoid content was mostly 
unaltered in Arabidopsis plants treated with 300 mg L−1 ZnO NPs. Furthermore, in 
300 mg L−1 ZnO NPs-supplemented plants show the transpiration rate, net photosyn-
thesis, leaf stomatal conductance, and intercellular carbon dioxide concentration rate 
were all lowered by more than 50%. The expression levels of chlorophyll synthesis 
genes including magnesium-chelatase subunit D (CHLD), Mg-protoporphyrin IX 
methyltransferase (CHLM), copper response defect 1 (CRD1), chlorophyll synthase 
(CHLG), and chlorophyll a oxygenase (CAO), as well as photosystem structure gene 
such as photosystem I subunit K (PSAN), photosystem I subunit K (PSAK), photo-
system I subunit E-2 (PSAE2), and photosystem I subunit D-2 (PSAD2) were reduced 
about five-folds in 300 mg L−1 ZnO NPs treated plants, according to quantitative anal-
ysis using reverse transcription-polymerase chain reaction. On the contrary, enhanced 
expression of numerous carotenoid synthesis genes, including zetacarotene desat-
urase (ZDS), phytoene desaturase (PDS), phytoene synthase (PSY), and geranyl 
geranyl pyrophosphate synthase 6 (GGPS6), was found in plants treated with ZnO 
NPs. These findings suggest that the toxicological effects of ZnO NPs observed in 
Arabidopsis were most likely caused by the inhibitory activities of the expression of 
photosystem structural genes as well as chlorophyll biosynthesis genes, resulting in 
the inhibition of chlorophyll biosynthesis with a decrease in photosynthesis effec-
tiveness in the plants. Wu et al. (2017) revealed that nanoceria increase photosyn-
thesis and ROS scavenging in Arabidopsis thaliana (L.) Heynh. when exposed to 
high levels of light (2000 mol m−2 s−1 for 1.5 h), heat (35 °C for 2.5 h), and dark 
chilling (4 °C for 5 days). Non-endocytic mechanisms transfer PNC into chloroplasts. 
PNC with a low  Ce3+/Ce4+ ratio (35%) lowers leaf ROS levels by 52%, including 
hydroxyl radicals, superoxide anion, and hydrogen peroxide. When plants with PNC 
were subjected to abiotic stress, they showed an increase in RuBisCo carboxyla-
tion (61%), carbon absorption (67%), and quantum yield (19%) of PS II over plants 
without NPs. However, PNC with a high Ce3+/Ce4+ ratio (60.8%) increase leaf ROS
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levels and do not protect photosynthesis from oxidative damage during abiotic stress. 
Li et al. (2018) explores the interactions of silver NPs (Ag NPs) and diclofop-methyl 
(DM) on the antioxidant system, photosynthesis, and physiological morphology of 
Arabidopsis thaliana (L.) Heynh. Treatment with Ag NPs (0.5 mg L−1), on the 
other hand, was shown to severely limit chlorophyll production and plant devel-
opment, as well as induce more severe oxidative damage in plants than the effects 
reported in a hydroponic solution containing both Ag NPs and DM. Meanwhile, 
relative transcript levels of photosynthesis-related genes (pgrl1B, pgrl1A, rbcL, and 
psbA) in the combined group were found to be somewhat higher than transcript 
levels in the Ag NPs group, to sustain ATP production at normal levels to heal light 
damage. Wang et al. (2018) investigate the effects of carbon dots (CDs) on photo-
synthesis and plant growth of mung bean. A dose–response impact was observed 
on biomass stem elongation, root elongation, and mung bean sprout growth. CDs at 
optimum levels also improve the seed moisture levels and root vitality which may 
have aided plant development and growth. Furthermore, mung bean sprouts treated 
with CDs had a rise in carbohydrates content (21.9%) as compared to the control 
condition. They postulated that the rise in carbohydrates was due to the involvement 
of CDs in photosynthesis. Further research demonstrated that CDs could improve 
photosystem activity by increasing the transfer of electrons. Other important photo-
synthetic parameters, including RuBisCo activity and chlorophyll concentration, are 
similarly affected by CDs treatment. These results hold a lot of potential for agricul-
tural productivity and biological study. Yanık and Vardar (2018) evaluated the impact 
of aluminium oxide NPs (Al2O3 NPs) on wheat (Triticum aestivum L. cv Demir 2000) 
in which wheat roots were treated to varying concentrations of Al2O3 NPs (5, 25, and 
50 mg mL−1) for 96 h. The impacts of Al2O3 NPs were investigated using a variety 
of metrics, including anthocyanin content, photosynthetic pigment, total proline, 
lipid peroxidation, catalase, and superoxide dismutase activity, and H2O2 concentra-
tion. In comparison to the control, Al2O3 NPs induced a dose-dependent reduction 
in catalase activity while increasing proline content, lipid peroxidation, superoxide 
dismutase activity, and H2O2 content. Furthermore, at the dosage of 50 mg mL−1, 
anthocyanin, carotenoids, chlorophyll a, and total chlorophyll content decreased. 
Finally, after 96 h, Al2O3 NPs triggered oxidative stress in wheat. Similarly, Ali 
et al. (2019) studied the effects of silicon NPs (Si NPs) on wheat (Triticum aestivum 
L.) growth under heavy metal stress of cadmium as well as cadmium (Cd) accumula-
tion in grains. The results revealed that Si NPs considerably enhanced, compared to 
the control, the dry biomass grains (27–74%), spike (25–69%), roots (11–49%), and 
shoots (10–51%) in soil-applied and by 31–96%, 34–87%, 14–59%, and 24–69% in 
foliar spray Si NPs, correspondingly. Si NPs improved leaf gas exchange characteris-
tics and chlorophyll a and b concentrations while decreasing oxidative stress in leaves 
as evidenced by increased peroxidase and superoxide dismutase abilities and reduced 
electrolyte leakage in leaf under Si NPs treatments over control. As compared with the 
control, the soil-applied Si NPs reduced the Cd concentrations in grains roots, shoots, 
and by 22–83%, 10–59%, and 11–53%, respectively, whereas the foliar spray of Si 
NPs reduced the Cd contents in grains, roots, and shoots by 20–82%, 19–64%, and
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16–58%, correspondingly. Si concentrations in shoots as well as roots, rose consid-
erably after foliar and soil Si NP treatment over control. Their findings revealed that 
Si NPs might increase wheat output but also lower Cd contents in grains. Dias et al. 
(2019) examine the impact of titanium dioxide NPs (TiO2 NPs) on photosynthesis 
in wheat (Triticum aestivum L.). The results exhibited a reduction in both the light-
independent and light-dependent phases of photosynthesis, as well as a decrease 
in chlorophyll a content, the maximum and effective efficiency of photosystem II, 
starch content, intercellular CO2 concentration, stomatal conductance, transpiration 
rate, and net photosynthetic rate. However, no changes in RuBisCo activity, non-
photochemical, and photochemical quenching levels, or total soluble sugar content 
were reported. Their findings support the hypothesis that induced degradation in 
chlorophyll a concentration hampered electron transport through photosystem II and 
that stomatal constraint hampered CO2 uptake. The decrease in starch concentration 
appears to be a result of its breakdown as a method to keep total soluble sugar levels 
stable. As a result, it was claimed that photosynthetic-related endpoints are sensitive 
and relevant biomarkers for determining TiO2 NP cytotoxicity. Soleymanzadeh et al. 
(2020) explored the impact of selenium NPs (Se NPs) (10 and 100 μM) on phenyl-
propanoids, antioxidant system, ion homeostasis, and photosynthetic efficiency in 
strawberry (Fragaria × ananassa Duch. cv. ‘Gaviota’) subjected to salinity stress. 
Salinity caused a decrease in Ca and K contents and a rise in Na concentration, which 
were alleviated by the administration of Se NPs. Furthermore, the Se NPs application 
at 10 μM reduced the NaCl-induced lesion to PS II performance, which contributed 
to an enhancement in water-splitting complex function under salt stress. Exposure to 
Se NPs at a concentration of 100 μM caused mild stress, as measured by rises in lipid 
peroxidation rate and hydrogen peroxide. Under salinity conditions, the Se NPs 10 M 
treatment boosted the amount of phenylpropanoid derivatives (caffeic acid, catechin, 
and salicylic acid) and catalase activity while decreasing the content of oxidants. 
Consequently, using Se NPs at the appropriate concentration can be an efficient way 
to treat indications of salt stress by improving antioxidant apparatus, salicylic acid 
(a critical signaling defense hormone), photosynthesis, and ion hemostasis. Swift 
et al. (2020) investigate the uptake of carbon dots in Triticum aestivum L. ‘Apogee’ 
(dwarf bread wheat) enhances photosynthesis and boosts crop output, resulting in 
an 18% upsurge in grain production. The glucose-functionalization improves NPs 
absorption, photo-protection, and pigment synthesis, resulting in higher yields. This 
demonstrates the potential of a functional nanomaterial for enhancing photosyn-
thesis as a means of increasing agricultural output. Elshoky et al. (2021) evaluate 
the effects of zinc oxide NPs (ZnO NPs) coated with a silicon shell (ZnO-Si NPs) 
and bare (ZnO NPs) on the growth of Pisum sativum L. under salt and physiological 
stress conditions. The experimental results showed that foliar spray with ZnO-Si 
NPs and 200 mg L−1 ZnO NPs did not affect the functions of both photosystems, 
membrane integrity, and stomata structure under physiological conditions, whereas 
400 mg L−1 ZnO-Si NPs had a positive effect on the photochemistry of photosystem 
I and effective quantum yield of photosystem II. On the alternative, minimal phyto-
toxic effects were seen following spraying with 400 mg L−1 ZnO NPs, which was 
associated with an increase in non-photochemical quenching and promotion of the
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cyclic electron flow around the photosystem I. The findings also revealed that both 
types of NPs (except 400 mg L−1 ZnO NPs) reduce the deleterious effects of 100 mM 
NaCl on the membrane integrity, stomata closure, pigment content, and photochem-
istry of photosystems I and II. The protective effect was greater after spraying with 
ZnO-Si NPs than after spraying with ZnO NPs, which might be attributed to the 
existence of a Si covering shell. Faizan et al. (2021a) examines the impact of zinc 
oxide NPs (ZnO NPs) in the modulation of salt tolerance in tomato (Lycopersicon 
esculentum Mill.). Their findings revealed that foliar spraying ZnO NPs at different 
concentrations, namely 10, 50, and 100 mg L−1 in the presence or absence of NaCl 
(150 mM), significantly increased photosynthetic attributes, chlorophyll content, 
leaf area, biomass, root length, and shoot length of tomato. Furthermore, the use 
of ZnO NPs reduces the deleterious effects of salt stress on plant development and 
increases protein content as well as antioxidative enzyme activity such as catalase, 
superoxide dismutase, and peroxidase under salt stress. Finally, ZnO NPs have a 
vital function in the reduction of NaCl toxicity in tomato plants. As a result, ZnO 
NPs can be employed to improve tomato development and alleviate the negative 
effects of salt stress. Faizan et al. (2021b) investigates the effects of 50 mg L−1 zinc 
oxide NPs (ZnO NPs) on plant growth, photosynthetic activity, elemental status, and 
antioxidant activity in rice (Oryza sativa L.) under cadmium stress. However, under 
cadmium toxicity, rice plants fed with ZnO NPs showed significantly enhanced root 
dry weight (12.24%), shoot dry weight (23.07%), root fresh weight (30%), and shoot 
length (34%). Furthermore, the ZnO NPs treatment has beneficial impacts on photo-
synthesis. ZnO NPs also significantly reduced cadmium-induced increases in malon-
dialdehyde and hydrogen peroxide contents. Biochemical and physiological analysis 
revealed that ZnO NPs increased the enzymatic activities of superoxide dismutase 
(59%), and catalase (52%) as well as proline (17%), all of which metabolize ROS; 
these increases corresponded to changes in malondialdehyde and hydrogen peroxide 
accretion after ZnO NPs implementation. Eventually, the application of ZnO NPs to 
rice leaves improves mineral nutrient content, antioxidant enzyme activity, protein 
content, photosynthesis, biomass, and reduces cadmium levels. This is mostly owing 
to the decreased oxidative damage using ZnO NPs. Rai-Kalal and Jajoo (2021) indi-
cate that seed priming with zinc oxide NPs (ZnO NPs) has a substantial favorable 
influence on seed vigor index and germination performance in wheat cultivar H-I 
1544 when compared to hydroprimed and unprimed (control) seeds. Furthermore, 
nanopriming increased seed water intake, which resulted in increased α-amylase 
activity. The concentration of photosynthetic pigments (total chlorophyll, chlorophyll 
b, and chlorophyll a content) in nanoprimed plants was dramatically increased. A 
significant drop in the activity of superoxide dismutase, catalase, peroxidase, and the 
degree of lipid peroxidation was detected, which might be attributable to lower ROS 
levels in nanoprimed plants compared to controls. Rajput et al. (2021) evaluate the 
toxicity of zinc oxide NPs (ZnO NPs) on spring barley anatomical and physiological 
indicators. ZnO NPs hindered development by changing chlorophyll fluorescence 
emissions and producing trichome and stomatal morphological deformations, modi-
fications to cellular structures, particularly abnormalities in the chloroplasts, and 
disruptions to the thylakoid and grana organizations. The number of chloroplasts per
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cell in barley leaf cells treated with ZnO NPs was lower as compared to control. Zn 
content buildup in plant tissues caused by ZnO NPs was demonstrated to diminish 
photosynthetic activity and impair the structural organization of the photosynthetic 
machinery. 

3.5 Conclusion and Prospects 

There is a requirement for considerable enhancement in crop productivity to meet 
food scarcity. The nano-aided farming/agriculture has potential to circumvent food 
scarcity. NPs offer potential strategies towards the enhancement of plant photosyn-
thesis, which in turn can increase crop productivity. This is supported by the fact that 
NPs can be exploited for transformation of near-infrared as well as UV into visible 
light. This is expected to cause enhanced harvesting of more electrons for plant 
photosynthesis, particularly in light inadequate conditions and, thereby enhancing 
photosynthetic performance. However, it is yet to be completely exploited. Metallic 
NPs often reduce the rate of photosynthesis by causing oxidative stress inside the 
chloroplast. A non-metallic nanoparticle increases photosynthesis by increasing the 
rate of electron transport inside the chloroplast and provides a defense system against 
oxidative stress. Considering this, there is need to carefully design/engineer NPs 
that may lead to a generation of more effective NPs with positive impacts on plant 
photosynthetic performance. In addition, more research is required to investigate the 
process of operation of NPs, their interactions with biological molecules, and their 
influence on regulating the expression in plant species. In addition, there are new 
concerns that arise to address the biological consequences of NPs to fill the significant 
gaps in research of NPs phytotoxicity and many unsolved problems. Based on these 
considerations, it is critical to establish both the deleterious and beneficial effects of 
NPs on photosynthetic activities in plant species. Plant resistance to abiotic stress is 
improved by NPs, although the processes underlying this response are still not fully 
known. More research at the molecular level is required to comprehend the role and 
importance of NPs at the subcellular level. 
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Chapter 4 
Impact of Nanomaterials on Chlorophyll 
Content in Plants 

Luis Páramo, Humberto Aguirre Becerra, José Emilio Ramírez Piña, 
José Antonio Cervantes Chávez, Ana A. Feregrino-Pérez, 
and Karen Esquivel 

Abstract Nanomaterials (NMs) and nanostructured materials (NSMs) possess 
specific physicochemical characteristics suitable for different applications in 
medicine, pharmaceuticals, biotechnology, energy, cosmetics, electronics, environ-
mental remediation, and agricultural processes. Due to their size and surface reac-
tivity, these compounds can interact and move through cells and intracellular struc-
tures, interfering with the metabolic pathways of plants. Depending on the type 
of NM or NSM, dose, and exposure time, the effect on plants can be positive, 
presenting beneficial changes in plant growth and development or harmful, toxic, or 
even lethal. The changes in different vegetal species produced by NMs or NSMs also 
depend on their nature, concentration, crystallinity, surface area, morphology, and 
type of application (through the irrigation system or foliar). The response using this 
kind of materials on plants can be related to changes in the photosynthesis process, 
photochemical reactions, quantum yield, and photosynthetic pigments. This chapter 
recapitulates recent results and studies showing that NMs and NSMs can improve
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photosynthetic efficiency, suggesting that photosynthesis can be nanoengineered for 
harnessing more solar energy to achieve sustainable horticulture. 

Keywords Chlorophyll · Nanomaterials · Nanostructured materials · Plant tissue ·
Sustainable agriculture · Toxicology 

4.1 Introduction 

The conventional method to enhance food production in agriculture includes chem-
icals like pesticides, herbicides, and fertilizers. Most pesticides and herbicides are 
used to combat biotic stress with major side adverse effects on crop quality and soil 
health; in the same line, the delivery of large amounts of fertilizers leads to deterio-
ration in the soil quality and infiltration into water reservoirs causing water pollution 
(Aktar et al. 2009; Chand Mali et al. 2020; Manjunatha et al. 2018, 2016). On the 
other hand, nanotechnology studies materials in the range of 1–100 nm related to 
their properties, manipulation, and production techniques. Nanomaterials have been 
employed in various applications, including communication, military, food, biotech-
nology, electrical, chemical, sports, and, most recently, horticulture (Di Sia 2017; 
Feregrino-Perez et al. 2018; Satalkar et al. 2016). However, the use of nanotechnology 
in horticulture continues to raise concerns about potential human and environmental 
consequences. Due to the dimensions of NMs, these materials might bioaccumulate 
and alter the biochemical systems of human and vegetal processes (Kaphle et al. 2018; 
Purohit et al. 2017). Nevertheless, the appropriate use of this technology enables the 
conversion of the traditional agricultural practices into precision agriculture, serving 
as a tool to diminish the adverse effects of the excesses that the green revolution has 
left to date and at the same time to enhance plant growth and development (Alvarado 
et al. 2019). 

NMs protect the photosynthetic system and increase photosynthesis, hence 
increasing plant biomass. Photosynthesis is a biochemical process that occurs in 
all green plants. It uses photosynthetic pigments, photosystems, electron transport 
networks, and CO2 reduction routes to transform light into a chemical form of energy 
that may be used (Casella et al. 2018). This mechanism has both light and dark reac-
tions which occur in the chloroplast. Salinity, drought, extremes of temperature, a 
lack of water, floods, high and low light intensity, UV radiation, and other nanopar-
ticles are all stresses that this organelle is vulnerable to (Zia-ur-Rehman et al. 2018). 
The impact of NMs on photosynthesis is a subject of debate, as some investigations 
have reported a decrease in growth, chlorophyll content, rates of photosynthesis, 
leaf stomatal conductance, intercellular CO2 concentration, and transpiration rates, 
and inhibition on the expression of genes involved in chlorophyll synthesis and 
photosystem structure (Wang et al. 2016a; Yan et al. 2020). 

Moreover, According to various studies, large quantities of NPs can cause reactive 
nitrogen species (nitric oxide) and reactive oxygen species (ROS), such as H2O2, to be  
produced reduced nicotinamide adenine dinucleotide phosphate oxidases NADPH
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(Tripathi et al. 2017). Accumulation of H2O2 is highly toxic for the cell as high 
levels of this molecule inactivates the photosynthetic mechanism and disturbance of 
the electron transport system and cellular respiration (Charles and Halliwell 1980; 
Pandey et al. 2017). However, other studies have proposed several mechanisms of 
how NMs and NSMs can enhance photosynthesis by increasing the stomatal conduc-
tance, the transpiration rate, LHCII (Light-Harvesting Complex II) b gene expression 
on the thylakoids, photosynthetic assimilation, carboxylation of Rubisco, production 
of proline and carbonic anhydrase activity, and improving the water splitting and elec-
tron transport system (Gao et al. 2006; Pradhan et al. 2013; Siddiqui et al. 2015; Ze  
et al. 2011). This chapter presents a general review of the interaction of NMs and 
NSMs with plant tissue, cells, and photosynthesis, considering the beneficial effects 
these compounds have been implemented to improve crop yield. 

4.2 Nanomaterials and Nanostructured Nanomaterials 
(NMs) 

Due to quantum mechanics and surface area properties, NMs have unique physico-
chemical characteristics that differ from their bulk counterparts. Their new behavior 
can be applied in different technology areas like sensors, medicine, energy harvest, 
agriculture, and others (Chavali and Nikolova 2019; Dasgupta et al. 2017; Yang et al. 
2019). Their structures are so diverse and have multiple morphologies of a single 
material that can be synthesized through various methods for obtaining forms with 
desired geometry, size, crystallinity, tuning, and adjusting their properties to meet 
the demands depending on the desired application (Sudha et al. 2018). 

By definition, nanoscale material dimensions do not exceed 100 nm. However, 
multiple classifications can be found to categorize these materials depending on their 
shape, chemical nature, or size, just to name a few (Sudha et al. 2018). Nanomaterials 
can be classified into four-dimensional groups, 0D, 1D, 2D, and 3D, within the 
classification by dimensions. Their categorization depends on how many of their 
spatial dimensions exceed the established range of 1–100 nm (Saleh 2020). 

The most straightforward category 0D encompasses those materials whose 3 
(depth, length, and height) dimensions are at the nanoscale. In this category, it is 
possible to find structures such as nanoparticles, quantum dots, nanospheres, or clus-
ters, being the smallest structures, as seen in Fig. 4.1. When one of its dimensions 
exceeds the barrier of 100 nm, we have designed such as nanotubes, nanorods, and 
nanowires found in the 1D category; for 2D materials, we can see structures such as 
thin films, coatings, and nanosheets. Finally, the materials found in category 3D cover 
structures such as nanocomposites, polycrystals, or MEMs are the most prominent 
structures (Buzea and Pacheco 2017; Karak 2019; Saleh 2020).

Nanomaterials can also be divided into many classes based on their chemical 
properties, like carbon nanostructures, organic nanomaterials, metal oxides, quantum 
dots, semiconductors, and metallic nanomaterials (Patel et al. 2021; Saleh 2020).
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Fig. 4.1 Dimensional classification of nanomaterials (Figure constructed by L. Páramo with 
BioRender)

4.2.1 Metallic NMs 

The most common materials for creating metallic nanostructures are gold, silver, and 
platinum, which find various applications in the medical area (Carvalho et al. 2019). 
They can also be made of metallic structures such as aluminum (Al), cadmium (Cd), 
cobalt (Co), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn) (Anu Mary Ealia and 
Saravanakumar 2017), some of these metallic nanomaterials are applied in catalysis, 
disinfection, energy storage, and harvest, medicine and more (Schröfel et al. 2014).
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Metallic NPs like silver is antimicrobial agents to inhibit or prevent bacterial or 
fungal diseases in crops (Shah et al. 2021; Vanti et al.  2019) or even sensors for 
identifying plant disease (Alafeef et al. 2020). 

4.2.2 Metal Oxides NMs 

Metal oxides are one of the most produced nanostructures worldwide. They are 
formed by the chemical union of metal and oxygen, such as TiO2, ZnO, and iron 
oxides (FeO, Fe3O4) (Findik 2021). Some of these materials have semiconductor 
properties, making them suitable materials for photocatalytic reactions such as tita-
nium dioxide and zinc oxide that are used for photocatalytic water remediation (Saleh 
2019), these materials also can eliminate pathogens which promise to be an area of 
application both in medicine and in the protection of crops against bacteria or fungi 
that cause diseases (Ziental et al. 2020). 

Semiconductor metal oxide like TiO2 use light for promoting their valence electron 
through the conduction band; by this procedure, an electron–hole pair is formed, the 
hole at the valence band acts as an oxidating agent contributing to the formation 
of •OH radical from the water molecule as seen in Fig. 4.2. The electron at the 
conduction band functions as a reducing agent where oxygen radicals can be formed. 
These radicals contribute to the degradation of organic molecules such as pollutants 
(Chen et al. 2020; Guo et al. 2019). Surface modification by adding other elements 
or materials can tune the wavelength needed for activating the semiconductors at 
a wavelength with less energy, making them more affordable and practical (Reddy 
et al. 2020).

Semiconductors find many agriculture applications, such as fertilizer and growth-
promoting agents (Bala et al. 2019; Singh et al. 2019). Semiconductors and other 
types of NPs can elevate the content of reactive oxygen in plants (Baskar et al. 2018; 
Javed et al. 2018), which serve as signaling molecules for secondary metabolism and 
other signaling molecules activation (Marslin et al. 2017). Although an excessive 
production of ROS could lead to oxidative stress, leading to plant damage, the degree 
of stress produced by the NPs will depend on their physicochemical characteristics 
and plant age, species, and type of tissue (Rivero-Montejo et al. 2021). 

4.2.3 Carbon-Based NMs 

This classification can find multiple phases and structures containing organic carbon 
bonds. This classification is rich in structures with multiple nanomaterials with 
different structural and chemical properties (Nasir et al. 2018). In Fig. 4.3, the  main  
structures found in that classification are shown; Fullerenes are ball-shaped structures 
commonly used as structures for delivering molecules (Kazemzadeh and Mozafari 
2019). Graphene is one of the most famous structures among carbon allotropes. It
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Fig. 4.2 Photocatalytic mechanism of TiO2 NPs (Figure constructed by L. Páramo with BioRender)

consists of a hexagonal mesh of one atom thick. Because of its structural qualities, 
this material is well suited to enhance the mechanical properties of materials (Zhong 
et al. 2017). Another famous structure belonging to this group are carbon nanotubes, 
which have potential application for creating materials with improved mechanical 
properties and energy harvesting like solar cells (Batmunkh et al. 2015). Many other 
structures can be found, such as nanohorns, graphite, and nanodiamonds (Villarreal 
et al. 2017). 

Fig. 4.3 Most used allotropic structures of carbon (Figure constructed by L. Páramo with 
BioRender)
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4.3 Nanomaterials in Agriculture 

The use of nanotechnology in the agronomical field can lead to multiple advantages 
like plant growth improvement, which can be achieved by adding NMs into the media 
to obtain improved plant features like shoot length, leaf area, root length (Elemike 
et al. 2019). 

The use of nanotechnology in the agronomical field can lead to multiple advan-
tages like plant growth improvement, which can be achieved by adding NMs into 
the media to obtain improved plant features like shoot length, leaf area, root length 
(Elemike et al. 2019). The main applications of nanomaterials are shown in Fig. 4.4, 
showing their uses as materials for improving quality and productivity, nanofertil-
izers, protection against pathogenic agents or pests, elicitors of plant metabolism, 
and protecting agents against environmental stresses (Shang et al. 2019; Neme et al.  
2021). Aspects such as the improvement in plant growth and an improvement in 
crop quality can be achieved using nanofertilizers. Their small size allows delivering 
micronutrients across plant tissues so that the loss of fertilizer is reduced and the 
positioning of these materials in multiple tissues and organelles is promoted, getting 
involved in metabolic processes that can favor plant growth (Mittal et al. 2020). On 
the other hand, protection against biotic and abiotic stresses is achieved by activating 
genes involved in the defense against stressors due to the interaction and presence 
of NPs (Khanal et al. 2019). Another highly investigated aspect in the interaction of 
nanomaterials with plants is the production of secondary metabolites, molecules with 
various properties and uses such as antioxidants or dyes, the application of nanoma-
terials has shown in many cases an increase in the production of these compounds 
through the induction of oxidative stress, which can be used to generate products 
with a high content of this type of molecules (Marslin et al. 2017). 

Nanomaterials show incredible potential to be used as alternatives to modern-
day agriculture issues like harmful pesticides, plant sensing, nutrient uptake 
improvements, stress protection, and many others (Kalita et al. 2021).

Fig. 4.4 Primary applications of nanotechnology in agriculture (Figure constructed by L. Páramo 
with BioRender) 
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Fig. 4.5 Physicochemical characteristics alter nanomaterials toxicology in plants (Figure 
constructed by L. Páramo with BioRender) 

Nevertheless, care must be taken into understanding plant-NMs interaction. 
Research in this area finds that NMs with varied physicochemical features can have 
detrimental effects. Their interactions mechanisms differ from plant species and can 
affect neighboring organisms that share their ecosystem, like bacteria, fungi, and 
other plants (Raffi and Husen 2019). Care must be taken into translocation, which 
is the ability of NMs to travel through organs and distribute in different areas. Their 
translocation into higher organs can be significant in movement through the food 
chain (Tripathi et al. 2017). 

Toxicology and interaction mechanisms are very complex since these phenomena 
depend on the physicochemical characteristics of the nanoparticle. Between the most 
important features affecting NMs-plant interactions, we find the size, crystal phase, 
agglomeration, morphology, time, and dose of exposure, among others, as shown in 
Fig. 4.5 (Zia-ur-Rehman et al. 2018). 

NMs in agriculture can bring some clever alternatives for improving crop quality 
and durability. New formulations combined with a secure and conscious under-
standing of NMs’ fate and effect on the environment can provide safe and economical 
products for crop development upgrade. 

4.4 Interaction of NMs and NSMs with Plant Tissue 
and Cells 

Plants constantly interact with biotic and abiotic factors during the whole day, either 
at daylight or night. Regarding the stimulus, plants usually orchestrate a specific and 
highly regulated response. The triggers are perceived by different plant tissues such 
as leaves, stems, roots, and even at the cellular level if we consider the stomata or the 
cuticle present in the leaves or stems. The nanoparticles (NPs) and the nanostructured
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materials (NMs) are considered abiotic elements present in the environment with 
different origins and interact with the plant’s tissues. Naturally, plants have other 
cellular structures and tissues, all capable of interacting with NPs and NMs. Once the 
plant has absorbed these compounds, they usually are stored or interfere with some 
cellular mechanisms. Considering the plant at the anatomical level, these materials 
can interact with pollen grains, leaf cuticle, stomata, the vascular system consisting 
of xylem and phloem, and root hairs. To get into the plant’s cells, the NPs and NMs 
use several mechanisms like clathrin-mediated endocytosis (Chichiriccò and Poma 
2015; Tripathi et al. 2017). Once inside the plant, these materials are disseminated 
through the xylem and phloem, reaching several plants’ tissues considered a systemic 
transport (Tripathi et al. 2017). 

For the NPs to interact with the cells in the plant and with deeper tissues, the 
translocation of these materials must be carried out, which is related to several factors, 
like the zeta potential, which is the intensity of the electric field of a double layer 
of charges, which in this case would be the charges that are outside the plant cell 
and the charges of the molecules with which contact is being established. Those NPs 
positively charged (20–30 Mv) are internalized through the plant’s cell and more 
accessible by the chloroplast than NPs whose net charge is neutral (Hu et al. 2020). 
If the size of the NPs decreases, the zeta value that needs to be translocated is higher. 
Related to the size and charge, using carbon dots as a model, CeO2(NC) and SiO2 

changes in the translocation through the leaves were observed in cotton (Gossypium 
hirsutum L.) and corn (Zea mays L.). By confocal microscopy was observed that NPs 
around 16, 8, and 2–6 nm could cross the stomata in epidermal cells by no endocytic 
pathway. These particles can travel the lipid layer. Most NPs with a 16 and 8 nm 
hydrodynamic size does not pass the guard cells’ layer on the leaves. In contrast, 
small NPs around de 6–8 nm positively charged and 2–6 nm negatively charged are 
transported to the extracellular space easier. The translocation process is related to 
the zeta potential and the size of the material to be transported inside the plant tissues 
(Hu et al. 2020). 

In addition, it is essential to consider is the chemical characteristics of the plant 
cellular surface. The cell wall and the membranes have many organic and inorganic 
molecules that produce pH changes, modify the ionic interactions and show different 
oxidative potential in the extracellular milieu. Altogether, these traits resulted in a 
dynamic charge equilibrium in the extracellular milieu due to the charges presented 
in the cell wall and the membrane whose net charge is negative and the anchored 
proteins. Several NPs are positively charged, then the interaction with the plant 
cells is straightforward. It is worth mentioning that these interactions also depend 
on environmental conditions, such as the value of the pH of the soil. On the other 
hand, there are NPs with a negative net charge. Usually, these materials are covered 
with positively charged molecules to improve their capacity to interact with the plant 
(Juárez-Maldonado et al. 2019). 

Once the NPs or CNEs interact with the plant, these are systematically distributed 
through the xylem and phloem. In corn plants and Arabidopsis thaliana L., the 
vascular system transports the Cu2O, acetate-Cu, and Cu2(OH)PO4 NPs from the
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roots to the leaves and even can reach the flowers (Wang et al. 2016b). The clathrin-
endocytosis of gold NPs was investigated in tobacco cell cultures. The formation of 
vesicles was observed by transmission electron microscopy (TEM), which travels 
until the late endosomal. Interestingly, the traffic was drastically diminished in the 
treatment with IKA, an inhibitor of clathrin synthesis. 

Nevertheless, the NPs were internalized by other routes (Onelli et al. 2008). The 
independent clathrin mechanism was also observed in cell cultures of Vitus vinifera 
L., using NPs of poly(lactic-co-glycolic) acid even when the culture is treated with 
the IKA inhibitor wortmannin and salicylic acid (Palocci et al. 2017). A similar 
phenomenon was observed using multiwalled carbon nanotubes transported by endo-
somes and chloroplasts in Catharanthus roseus L. Interestingly; these endosomes 
travel to Goldi to other organelles like mitochondrion, chloroplast, and nuclei (Serag 
et al. 2011). 

Another essential factor to consider related with the NPs and their interaction 
with plant tissues is the plant species involved, since there are physiological and 
anatomical differences, to mention some: the mesophile cells on corn leaves, being 
the extracellular area reduced, then the possibility to establish contact between the 
NP and the cells is minor, whereas, in cotton (Gossypium hirsutum L.), the amount 
of stomata is higher, then facilitating the entrance of NPs where the permeability is 
notably increased (Hu et al. 2020). 

Similar behavior was observed in Zea mays L. and soja (Glycine max L.), where the 
NPs, after internalized, agglomerate and move between organelles. Similar behavior 
was observed with multiwalled carbon nanotubes, which are smaller and positively 
charged due to the presence of amino groups (Serag et al. 2011; Zhai et al. 2015). 
Inside the cell, the NMS also can adhere either in the plant tissue or specifically in 
the cells. The degree of adhesion depends on the chemical compounds present in 
the plant species. In Arabidopsis thaliana L. seeds, TiO2 and TiO2-Cu2+ particles 
adhere on the surface, causing no germination or nutrient absorption effects. Also, the 
accumulation of gold or copper resented in Ag NPs, or TiO2-Cu2+ was observed after 
the seed germination (Garcidueñas-Piña et al. 2016). On the other hand, in tobacco 
roots, the absorption of silver was increased after the exposition to Ag NPs or AgNO3, 
which was accumulated in the root tissue and lesser amount on leaves (Cvjetko et al. 
2018). The accumulation of NPs produced with CuO in lettuce (Lactuca sativa L.), 
and cabbage (Brassica oleracea L.) was detected in leaves and roots (Xiong et al. 
2017). 

Magnetic NPs 12.5 nm in size produced with FeO can penetrate the roots in Cucur-
bita pepo L. but do not translocate to leaves or flowers since they remain accumulated 
on the roots’ cells. Interestingly, its accumulation due to its magnetic properties was 
detected in the plasmodesmata and stomata, disturbing the cell-to-cell communi-
cation transport of nutrients (Tombuloglu et al. 2019). When chelating agents like 
EDTA were added, iron in the roots increased at a 250 mg/kg concentration. Whereas 
the supply of magnetic NPs without any other molecule, only 10.37 mg/kg of iron 
was detected, suggesting that the presence of cargo molecules is essential to directly 
modify the absorption and accumulation of iron NPs (Tombuloglu et al. 2019).
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NMs, on the other hand, have been demonstrated to hinder plant growth and 
development. NPs of TiO2 and TiO2-Cu2+, reduces the plant growth (Garcidueñas-
Piña et al. 2016). In Lactuca sativa L., the biomass was reduced by 250 mg/mL. In 
contrast, the biomass was increased at 1 mg/mL (Xiong et al. 2017). When beans 
plants (Vigna vulgaris L.) were exposed to ZnO and TiO2, the seed germination rate 
was higher at a concentration of 20 to 100 µg/mL. Also, the size of the sprouts was 
increased when the concentration of NPs was higher. Interestingly, the size of the 
roots was raised at a concentration of 20 µg/mL, which decreased by the increased 
application of material, showing an apparent dose–response effect (Jahan et al. 2018). 

In contrast, in the case of turnip, the treatment with Ag NPs at 1 mg/L negatively 
affects the growth of sprouts. Also, the rate of germination was reduced to 31%. In 
contrast, the root’s size at a low dose (1 mg/L) 1 cm increment was observed; contrary, 
if the Ag NPs increased to 5 mg/L, the growth of the roots was drastically reduced 
(Thiruvengadam et al. 2015). Interestingly, adding other molecules together with 
NPs o CNEs like Fe-NPs shows a different effect. The addition of Fe-NPs reduces 
the plant’s biomass, but EDTA reverted the adverse impact and increased biomass 
production (Tombuloglu et al. 2019). At a concentration of 1000 mg/mL of NiO, 
the seed hardly germinates, whereas with other NPs, the size of the plant diminishes 
when the concentration is increased from 100 to 1,000 mg/mL of CuO, reducing the 
size of the root. Also, a reduced growth was observed due to the treatment with ZnO. 
This effect was attributed to oxidative damage that affects the size of the root. In the 
case of Solanum melongena L., the treatment with NPs of NiO at concentrations of 
1000 mg/mL a delay in germination was scored, whereas with NPs ZnO and CuO, 
the size of the plants was reduced related to the amount of material applied, from 
100 to 1,000 mg/mL. Similarly, the size of the root of Solanum melogena L. was also 
reduced after the treatment NPs of CuO (Baskar et al. 2018). 

However, nanostructured biosilica can adhere to two cell types present in rice 
leaves (Oryza sativa L.), which differ in the kind of constructs produced after expo-
sure. The long silicified cells are silica plates and the buliform fan cells (Sato et al. 
2017). Interestingly, this biosilica is formed from absorbed silicates from soil which, 
after its accumulation, cover the leaves with a weak layer around 1 µm depth. This 
phenomenon provides hardness to the leaves. Then it could be implemented in plants 
protection to avoid viral infections, herbivory, or support against mechanical stress 
(Sato et al. 2017). In tobacco, many vacuoles were observed in the cells of the roots 
at 100 µM concentration of NPs covered with citrate. Also, elongated vacuoles were 
observed in the nucleus, with adverse effects capable of destroying the whole-cell 
starting from the nuclei (Cvjetko et al. 2018). 

Once the NMs are inside the cells induce oxidative stress in the plant, this is highly 
related to the genetic expression of protective antioxidants mechanisms (Baskar 
et al. 2018). In Arabidopsis thaliana L., the number of anthocyanins increases at 
2.5 mg/mL of nanostructured AgTiO2. This molecule relieves oxidative stress. Then 
it is increment because the plant is struggling with this kind of stress (Garcidueñas-
Piña et al. 2016). In eggplant (Solanum melongena L.), the NPs of NiO, CuO, and 
ZnO showed a negative effect on the chlorophyll synthesis, also the production of 
anthocyanins, phenolic compounds, and flavonoids was reduced, as a consequence, a
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high amount of ROS such as H2O2,OH− and O2 were scored (Baskar et al. 2018). Due 
to uncontrolled ROS generation, lipid peroxidation was observed; also, the amount of 
malondialdehyde (MDA) was higher, which is a lipid oxidation biomarker. In corn, 
Ag NPs covered with citrate in root tissue increases the presence of MDA. Also, the 
antioxidant enzyme superoxide dismutase (SOD) was detected in the leaves but not 
in the roots, suggesting a differential gene expression (Cvjetko et al. 2018). 

Similarly, lipid peroxidation was scored, a concomitant reduction in the synthesis 
reduction of chlorophyll anthocyanins. Contrary the ROS production was increased. 
In response to this oxidative stress, the synthesis of carotenoids, phenolic compounds, 
and glucosinolates was increased (Thiruvengadam et al. 2015). The treatment of 
Vigna angularis L. with NPs of ZnO and TiO2 under a hydroponic treatment triggers 
the activity of glutathione reductase, superoxide dismutase, and ascorbate peroxidase 
(Jahan et al. 2018). 

Plants’ responses to oxidative stress are influenced not just by changes in molecule 
concentrations and antioxidant enzyme activity but also by the amount of chloro-
phyll present, which is associated with the damage in chloroplasts. In Solanum melo-
gena L., the treatment with CuO-NPs reduces the amount of chlorophyll when the 
concentration of NPs increases. The chlorophyll was decreased to 3.5 mg/g after 
1000 mg/mL CuO (Baskar et al. 2018). In Vigna angularis L., the number of chloro-
plasts was reduced due to ZnO and TiO2 related to oxidative stress (Jahan et al. 
2018). Even in some studies was demonstrated that NPs produce oxidative stress. 

In some cases, they mitigate it and are beneficial, like Fe NPs in wheat (Triticum 
vulgare L.) at 0.1 M they induced oxidative stress. However, at 0.025 M NPs concen-
tration, a beneficial effect was observed (Korotkova et al. 2017). Since some NPs 
agglomerate, the ions are slowly released, showing lesser cytotoxicity allowing the 
plant to orchestrate a proper response to that specific stimulus. Nevertheless, if 
the high concentration of NPs exceeds the antioxidant capacity supplied, a cyto-
toxic effect is observed (Korotkova et al. 2017). This duality was also studied in 
Arabidopsis thaliana L. treated with 1 mg/mL of Ag-TiO2. The amount of chloro-
phyll was increased to 1.5 mg/g, contrary to 2.5 mg/mL of Ag-TiO2, reduced to 
0.7 mg/g (Garcidueñas-Piña et al. 2016). 

4.5 NMs and NSMs and Photosynthesis 

From the essential photophysics of light absorption and excitation energy transfer 
through the gas exchange in leaf and canopy, decades of research have yielded a 
complete understanding of photosynthesis. Furthermore, recent developments in 
computer power have been crucial for better understanding photosynthetic processes 
and predicting the results of various redesigns of this biological system (Ort et al. 
2015). As a result, photosynthesis is a biological process in which the sun’s energy is 
caught and stored through a series of actions that turn the pure energy of light into the 
free energy required to sustain life. Furthermore, ideal conditions for photosynthesis
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are necessary, including a vast supply of water and nutrients to the plants and optimal 
temperature and light conditions (Adams et al. 2020; Shweta et al. 2016). 

In this way, it has been established that plants do not reach their maximal photosyn-
thetic efficiency. This determinant is not close to its biological limits. It, therefore, has 
become a key motivator for researchers that have proved several tools and technolo-
gies, such as nuclear transformation, plastid transformation, mitochondrial transfor-
mation, multigene engineering, protein design, synthetic genomics, phenotyping in 
the field, nanotechnology, development of sensors for light intensity, quality, temper-
ature, CO2 concentration, air humidity, and relative humidity (Ort et al. 2015; Swift  
et al. 2019). Plants’ ability to collect and utilize solar energy for the photochemistry 
involved in this biological process is frequently limited. As a result, employing nano-
materials as synthetic probes to improve how plants use light is a hot issue for new 
research. The premise is simple: plants’ capacity using sunlight or artificial light can 
be optimized with nanomaterials and nanostructures (Swift et al. 2019). Enhancing 
the capacity of plants to interact with and optimize the capture of light can increase 
the productivity of crops and enable the tailoring of plants for different environments 
where there is an exceeding of solar radiation or light might be a limited resource. 
Since nanomaterials’ synthesis and surface modification have overcome previous 
drawbacks, this technology has been raised as potential probes to enhance photosyn-
thesis and, therefore, crop production through the increase in biomass (Swift et al. 
2019). 

Under prevalent ambient conditions, the amount of light is not optimal for photo-
synthesis. The intensity of sunlight is substantially higher than that required for 
photosynthetic saturation, resulting in dissipation and loss of the surplus absorbed 
energy as heat or fluorescence (Melis 2009). The highest observed photosynthetic 
efficiencies are 30% lower than theoretical efficiency due to photosynthesis’s light 
saturation. The photosynthesis light saturation curve describes net photosynthesis 
as oxygen evolution as a function of light intensity, defining a non-linear curve as 
insolation increases, with a maximum value where the curve flats, known as Pmax. 
In C3 leaves, photosynthesis is saturated by approximately 25% of the maximum 
sunlight (Melis 2009). 

Furthermore, light intercepted above this amount will lower photosynthetic effi-
ciency in proportion to the excess light absorbed. Therefore, brighter sunlight does 
not translate into greater productivity by the cells (Ort et al. 2011). For example, in 
a day with a profile of daily solar photosynthetically active radiation at sea level, 
where more than 2000 mmol photons m2s−1 are reached at 12 h, more than 80% of 
absorbed solar irradiance would be wasted in the photosynthetic apparatus, saturating 
at about 7 a.m. and remain saturated until 5 p.m. (Melis 2009). This phenomenon 
has been considered in the photosynthesis model. In this way, earlier computational 
models incorporated only light as an environmental variable. However, novel models 
include CO2 concentration, temperature, air humidity, leaf physiology, leaf nitrogen 
content, and leaf canopies characterized by vertical gradients in leaf photosynthetic 
properties. Considering that the saturation of the photosynthetic apparatus applies to 
cells and chloroplasts directly facing the sun in the outer part of the canopy while
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leaves inside the canopy might be exposed to low amounts of light (Hikosaka et al. 
2016; Melis 2009; Ort et al. 2011). 

Melis (2009) discovered that the carbon processes are responsible for the rate 
restrictions in photosynthesis (slow rate of catalysis by Rubisco). The thylakoid 
membrane’s Cytochrome b6–f complex acts as a bottleneck for electron transport 
and the relatively slow turnover rate of the Mn-containing H2O-oxidation complex. 
Hence, chloroplast and cellular metabolism for biomass generation entail energy 
loss, lowering the solar energy conversion efficiency. From the 100% of the incident 
sunlight energy, 30% is stored as chemical energy in the photosystems. Only 8% to 
10% is converted into biomass. 

Long et al. (2006) proposed six possible mechanisms that might increase the solar 
radiation conversion efficiency that may be achieved by providing the material that 
could be introduced into plant breeding programs: (1) Rubisco with decreased oxyge-
nase activity, but without decreased catalytic rate, (2) Efficient C4 photosynthesis 
engineered into C3 crops, (3) Improved canopy architecture, (4) Increased rate of 
recovery from photoprotection of photosynthesis, (5) Introduction of higher catalytic 
rate foreign forms of Rubisco, and (6) Increased capacity for regeneration of RuBP 
via overexpression of SbPase. 

Other essential plant mechanisms that affect plant photosynthesis are related to 
some organs or specialized cells involved in the gas exchange with the environ-
ment. The size of some NPs or NMs makes them possible to allocate through the 
plants’ structural components and vascular systems. Moreover, the length of cellular 
organelles or elements in the membranes is equivalent to the size of some NPs. 
This characteristic allows specific permeability that induces genomic and metabolic 
changes, widely studied as adverse biological effects. Nevertheless, depending on 
the material and dose, the exposure might cause beneficial effects on general plant 
performance, growth, and photosynthesis (Aguirre-Becerra et al. 2021; Shang et al. 
2014; Vecchio et al. 2012). For instance, plants have specialized guard cells called 
stomata, which are present in the upper and lower surface of the epidermis of leaves. 
They act as turgor-operated valves that limit water loss and CO2 intake, a helpful 
adaptation for photosynthesis and other stressful circumstances. They are relatively 
small and considerably variated in size between species (Camargo and Marenco 
2011; Naeem et al. 2019). 

The dimensions of the outer limits of their cell walls may vary according to 
the stomatal aperture, from under 10 to almost 80 µm in length and from a few 
micrometers to about 50 µm in width (Camargo and Marenco 2011; Willmer and 
Fricker 1996). Similarly, bordered pits and cavities in the lignified cell walls of 
xylem conduits are essential in higher plant water transport systems and help to 
prevent embolism and vascular infections from spreading into the xylem. They have a 
maximum pit membrane porosity of 5–420 nm in most angiosperm species, although 
it should be stressed that these values are usually <100 nm (Choat et al. 2006, 2008; 
Shane et al. 2000). 

Moreover, at a cellular level, pores of the primary cell wall are pathways for 
penetration of molecules into the cell, consisting of a polysaccharide-proteic structure 
with a size ranging from 3.5 to 20 nm (Carpita et al. 1979; Chichiriccò and Poma
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2015; Fleischer et al. 1999). In the same way, the transport of molecules from cell 
to cell is possible through plasmodesmata, cytoplasmic channels with 20–50 nm in 
diameter, which usually let the pass of particles, around 3 nm (Chichiriccò and Poma 
2015; Dietz and Herth 2011). 

The import of proteins into chloroplasts is a need for photosynthesis. Where 
protein translocation of the outer and inner chloroplast membranes, which are respon-
sible for the import of about 95% of all chloroplast proteins from the cytoplasm, 
makes this process possible (Shi and Theg 2010; Shi et al. 2013), and they are consid-
ered to have a pore size greater than 2.56 nm (Ganesan et al. 2018; Huang et al. 2010). 
In this way, the deep knowledge of photosynthesis, at a biochemical level and with the 
implementation of computational modeling, and the plenum understanding of plant 
physiology, makes nanotechnology a feasible tool for achieving the exposed mecha-
nisms for optimizing this biological process, and therefore, increase crop yield; some 
examples are disclosed and discussed in the following paragraphs. 

Cao et al. (2017) investigated the effects of cerium oxide nanoparticles (CeO2 NPs) 
with two different surface characteristics (uncoated and polyvinylpyrrolidone (PVP)-
coated) on soybean photosynthesis at four different doses (0, 10, 100, and 500 mg/kg 
dry soil. They discovered that the physiological effects of NPs are dependent on 
their concentration and surface coating qualities, with bare CeO2 NPs showing a 
54% increase in photosynthesis rate and PVP-CeO2 NPs showing a 36% increase 
in photosynthesis rate at the concentration of 100 mg/kg. Moreover, the maximum 
rate of Rubisco carboxylase activity increased by 32% and 27% for bare and PVP-
coated CeO2 NPs, respectively, at the same concentration. In addition, PVP-CeO2 

NPs significantly increased the total dry weight (24% and 45%), total dry root (89% 
and 95%), and dry shoot biomass (15% and 28%) at 10 and 100 mg/kg, respectively. 

However, at 500 mg/kg, the net photosynthetic rate was lowered by roughly 36% 
for both nanoparticles. Rubisco activity was suppressed, and CO2 diffusion pathways 
were hampered at concentrations more than 500 mg/kg; Furthermore, the overall 
chlorophyll concentration of the treatments did not differ much. This experiment 
shows that soybean plants exhibited significantly higher Pmax when treated with 
CeO2 NPs at 100 mg/kg, a convenient characteristic at high light intensities. 

Another example is the experiment of Faizan et al. (2018) where the effect on 
growth and photosynthetic efficiency of tomato plants was evaluated; with an exper-
imental design consisting on plants with a 20-d stage of development which roots 
were dipped into 0, 2, 4, 8, or 16 mg/L of zinc oxide NPs (ZnO NPs) for 15, 30, 
and 45 min and then grown under natural environmental conditions, resulting in 
an increase in the chlorophyll content in all treatments under different durations of 
exposure, where the concentration of 8 mg/L (ZnO NPs) dipped for 30 min before 
transplantation showed a maximum value of this variable over all the other treatments 
and durations; furthermore, this treatment presented the highest values of net photo-
synthetic rate (50.7%), stomatal conductance (34.4%), intracellular CO2 conductance 
(27.9%), transpiration rate (32.0%), protein content (45.0%), shoot length (35.8%), 
root length (28.6%), shoot fresh matter and dried matter (21.9 and 27.6%, respec-
tively), and leaf area (27.9%), and a considerable increase in antioxidant capacity of 
CAT (69.7%), POX (65.0%), and SOD (80%) in comparison with their control plants,
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concluding that the exposition with this nanoparticle generates a promising response 
in tomato plants as the growth and photosynthetic efficiency were increased. 

In the same line, Li et al. (2015) evaluated the effect of a wide range (0, 500, 
2500, 4000 mg/L) of nano-TiO2 in plants of oilseed rape (Brassica napus L). 
They found that chlorophyll content was significantly higher and followed a nano-
TiO2 concentration-dependent pattern, with the highest chlorophyll content in plants 
treated with 4000 mg/L nano-TiO2, resulting in increased root length, plant height, 
and fresh biomass. Furthermore, photosynthetic parameters like net photosynthetic 
rate, stomatal conductance, internal CO2 concentration, and transpiration rate all 
increased significantly over the next few weeks, with maximum performance at the 
end of the experiment with seedling treated with 4000 mg/L nano-TiO2 concentra-
tion except for intercellular CO2 concentration. There were no significant chloro-
plast ultrastructural changes, and transmission electron microscopic (TEM) images 
revealed intact and typical grana and stroma thylakoid membranes in the chloroplast, 
indicating that nano-TiO2 did not induce the stressful environment within the chloro-
plast, implying that nano-TiO2 has growth-promoting effects on oilseed rape plants 
without phytotoxic effects. 

In the case of Yoon et al. (2019), The phytotoxic effects of nanoscale zerova-
lent iron (nZVI) on photosynthesis and related metabolic adaptability of soil-grown 
Arabidopsis thaliana L. oilseed rape plants were examined, increasing plant biomass 
(38%) and accumulation of carbohydrates: glucose (44%), sucrose (27%) and starch 
(52%) due to the enhanced photosynthesis, which was confirmed by the increase in 
the CO2 assimilation rate (26%), stomatal conductance (40%), and transpiration rate 
(47.61%). 

In the research of Li et al. (2020), Fe and Fe3O4 (magnetite), both naturally 
occurring nanosized crystals and minerals, were foliar sprayed to 4-week-old maize 
(Zea mays L.) plants for ten days, with results showing that Fe NPs boosted maize leaf 
net photosynthetic rate and chlorophyll content by 19.9% and 19.3%, respectively. 
Furthermore, Fe3O4 NPs for 27.5% and 26.1%, respectively, leading to a significant 
increment in plant biomass by Fe and Fe3O4 NPs by 31.8% and 34.6%, respectively, 
concluding that the trade-off of energy-consuming pathways might be an alternative 
explanation for the enhanced photosynthesis and that the use of this nanoparticle 
has the promising potential to be used in nano-enabled agriculture to promote plant 
growth. 

An interaction of carbon-based nanomaterials with chlorophyll-a, chlorophyll-b, 
and accessory pigments in the chloroplasts has been proved to modify the ability of 
plants to harvest light energy. Therefore, this technology works as artificial antennae 
allowing chloroplasts to take advantage of wavelengths that are not considered to 
be essential for photosynthesis, such as green and near infra-red, considering that 
red, blue, far-red, and UV-A are the wavelengths that most plants use for this process 
(Aguirre-Becerra et al. 2020; Cossins 2014; Giraldo et al. 2014; Siddiqui et al. 2015). 

González-García et al. (2019) evaluated the effect of CNTs and graphene applied 
via foliar or drench in tomato resulting in an increase of 87% in root biomass, 72% 
in chlorophyll-a, and 39% in chlorophyll-b. Moreover, Younes et al. (2019) studied 
the effect of graphene nanosheets on pepper (Capsicum annuum L.) and eggplant
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(Solanum melongena L.) in two years of cultivation, finding an increase of 80% 
and 81% in fruit yield, 144% in chlorophyll-a, 132% in chlorophyll-b, and 143% in 
carotenoids for eggplant. And an increase of 121% and 119% in fruit yield, 126% in 
chlorophyll-a, 134% in chlorophyll-b, and 42% in carotenoids for pepper, for years 
1 and 2, respectively. 

Carbon dots (CDs) are a new member of fluorescent carbon material with a diam-
eter below 10 nm. They are becoming a promising alternative for their application 
in living organisms due to their composition and biocompatibility (Tuerhong et al. 
2017). Wang et al. (2018) described their effect on mung bean sprouts (Vigna radiata), 
reporting an increase in the electron transportation rate of the photosystem 1 (PSI) 
of leaves (8.8%), chlorophyll content (14.8%), and general photosystem activity 
(10.4%). Li et al. (2018) fabricated a series of CDs of ~5 nm with different oxygen 
contents that were employed as a model material to explore the impact of these 
molecules on rice, finding that CDs can penetrate all parts of the plant, including the 
cell nucleus, loosening the DNA structure, and inducing the thionine (Os06g32600) 
gene expression; moreover, CDs promoted an increase of seed germination, root 
elongation, seedling length, RuBisCO activity, and carbohydrate generation. The 
plant can degrade cDs to form plant hormone analogous that promote growth and 
CO2 that is converted into carbohydrates through the Calvin cycle of photosynthesis. 

The RuBisCO activity was significantly increased by 42%, indicating that CDs 
can improve the transformation efficiency of photosynthetic products. Furthermore, 
Park and Ahn (2016) evaluated the effect of multiwalled CNTs (up to 2000 mg/L final 
concentration) in carrots (Daucus carota L.). In the seedling process, a significant 
increase in the total chlorophyll content of the leaf tissue was found by 25–30%, but 
the seedling growth decreased 10% in the same species. 

Siddiqui et al. (2019) evaluated the effect of foliar spray of graphene oxide, 
reporting a significant increase in total chlorophyll (27%) and carotenoids (18%). 
In contrast, Zhang et al. (2016) evaluated different doses of graphene in roots and 
shoots of wheat (Triticum aestivum L.) plants, reporting an inhibition of long-term 
biomass production as the chlorophyll content and PSII (photosystem II) activity 
were reduced. Moreover, Vochita et al. (2019) studied the effects of graphene oxide 
in seedlings of the same species, reporting a decrease of 22.48% in chlorophyll-a. 

4.6 Conclusion and Prospects 

The agriculture sector is the backbone for feeding humans globally. Feeding the 
continuously growing human population is a significant challenge to researchers 
in the modern era. Therefore, developing new innovative technologies to enhance 
production in modern agriculture are cost-effective and eco-friendly for sustain-
able development globally. The unique properties of NMs and NSMs make them a 
viable choice for the design and development of sustainable horticulture; however, 
in this field, the use of nanomaterials is relatively new and needs further explo-
ration (Feregrino-Perez et al. 2018). Because these compounds can potentially affect
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the biochemical mechanisms of human and vegetal processes, the field of nanotox-
icology was formed to investigate the toxicological and environmental effects, 
physicochemical and hazardous properties, biological mechanisms, and conditions 
of nanoparticles used in horticulture and the entire food chain (Alvarado et al. 2019; 
Feregrino-Perez et al. 2018; Kaphle et al. 2018; Li et al.  2015). 

Photosynthesis is essential in every green plant since it is related to the primary 
metabolism and, therefore, is responsible for generating the plant biomass, inducing 
its growth and development. Several NMs and NSMs have been proved to improve the 
diverse mechanisms of this biochemical process, from an enhancement in the capture 
of sunlight by the photosynthetic pigments and photosystems, a more efficient elec-
tron transport chain and CO2 reduction pathways, increment in the stomatal conduc-
tance, photosynthetic assimilation, carboxylation of Rubisco, production of proline 
and carbonic anhydrase activity, water splitting, among others. More research must 
be performed to assure that NMs and NSMs are safe to produce food. Several vari-
ables must be considered, such as the type of nanomaterial, dose, bioaccumulation, 
and possible risks to human health and the environment. 
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Chapter 5 
Interactions of Nanomaterials with Plant 
Pigments 
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Abstract The applications of engineered nanomaterials continue to expand into 
agri-food production, particularly in relation to nano-enabled agriculture formula-
tions and/or colloidal particles. The widespread use of nanomaterials has generated 
concerns given the impact these nanostructures could be having on biomolecules,
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cellular homeostasis, and internal compounds. Understanding the interaction mech-
anisms between engineered nanomaterials and plant pigments is essential for unbi-
ased assessments of their internalization, trafficking, behavior, and fate into cellular 
structures through a molecular lens. This chapter describes the mechanisms that 
drive these interactions on the cellular uptake and trafficking of nanomaterials. 
Furthermore, we discuss different examples of how plant photosynthetic and non-
photosynthetic pigments can helpful to understand the behavior of nanomaterials in 
distinct plant tissues. Finally, we demonstrate some experimental (in vitro) and theo-
retical (in silico) methods aimed at monitoring and understanding existing molecular 
interactions of nanomaterials with plant pigments. 

Keywords Engineered nanomaterials · Molecular interaction · Pigments · Plant 
systems · Homeostasis · Nanotoxicity · Environmental chemistry 

5.1 Introduction 

The growth of the nanotechnology sector has raised concerns about its environ-
mental impacts. The release of nanomaterials (NMs) into the environment may 
induce potential adverse effects on natural ecosystems. In particular, terrestrial plants, 
which are the primary producers of the global food chain, are severely affected by 
NMs, raising concerns about this theme. Nanotechnology has shown great potential 
for addressing productivity problems in the agri-food sector (White and Gardea-
Torresdey 2018; Bartolucci et al. 2022; Kandhol et al. 2022). Consequently, nano-
enabled plant protection products can play an important role in the future of agricul-
ture (Grillo et al. 2021; Pontes et al. 2021). Understanding the interaction mechanisms 
of NMs with plant pigments is crucial for unraveling their potential side effects on the 
metabolism, biochemistry, and physiology of these organisms when NMs are inter-
nalized. Negative cellular feedback related to nanostructured materials interactions 
with pigments can trigger complex allosteric adjustment responses or impair their 
metabolic pathway when extrapolating the homeostatic normal range (Santiago et al. 
2020). The adjustment of cellular responses is related to their homeostatic ability. 
Thus, any structural or functional changes in plant pigments, particularly photo-
synthetic ones, impact the photosynthetic performance and biomass productivity 
(Tighe-Niera et al. 2018). Such nanomaterial–pigment interactions may represent a 
novel opportunity to increase crop production. 

Plant organisms can produce more than 200,000 different types of chemical 
compounds (Fiehn 2002; Čepulytė and Buda 2022). Colored compounds are a special 
class, called “pigments,” and include flavonoids/anthocyanins, betalains, carotenoids,
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and chlorophylls (Mulder-Krieger and Verpoorte 1994). The interaction of nanoar-
chitectured materials with plant pigments has been studied in the last decades, with 
important advances in several areas such as industry, fiber dying, medicine, phar-
macology, food, and others (Shaid-ul-Islam and Mohamad 2013; Venil et al. 2020; 
Yu et al. 2021). Although, nanoparticle–pigment interaction has been explored and 
exploited extensively, few reports have systematically presented the mechanisms 
involved such as the factors affecting this interaction and their effects on plant fitness. 
Nanoparticles (NPs) have been implemented in agricultural systems as nanofertil-
izers and nanopesticides for crop growth regulation and disease control, respectively 
(White and Gardea-Torresdey 2018; Grillo et al. 2021; Lima et al. 2022). Conse-
quently, due to their uptake and internalization, their interaction with biological 
molecules onto cellular media is expected. 

Natural organic pigments are colored compounds produced by some organisms 
with a wide range of biological finality, i.e., communication, protection, reproduction, 
and others. In plants, pigments play a key role in light absorption for chemical energy 
production due to their physical properties of light absorption, trapping, and transport 
in the visible region of the electromagnetic spectrum. Depending on their chemical 
structure, pigments are responsible for a great variety of colors and fragrances of 
flowers, fruits, seeds, and foliage (Mulder-Krieger and Verpoorte 1994). 

Molecular dynamics involved in the interaction of plant pigments with NPs have 
been successfully studied by biophysical, biochemical, biomolecular, and electro-
chemical behavior (Barazzouk et al. 2012; Mezacasa et al. 2020; Pontes et al. 2020; 
Bhogaita and Devaprakasam 2021). In general, these interactions were evaluated 
to understand: (i) the environmental implications of NMs, (ii) the physiological 
responses and biological phenomena, and (iii) to improve artificial photosynthesis 
and solar cells. 

In this chapter, we discuss available data concerning engineered nanomaterials 
(ENMs) and their interaction with plant pigments in their biological properties. 
Contradictory results have been reported about the effects of NMs on different plant 
pigments. Detection techniques, possible in vivo implications, and side effects are 
discussed and an analysis of future research needs is also included. 

5.2 Nanomaterial’s Cellular Uptake and Intracellular 
Transport 

Engineered nanomaterials are emerging as delivery vehicles for biomolecules in 
plants, especially for plant genetic transformation (Zhao et al. 2018), biostimulants 
(Juárez-Maldonado et al. 2019), fertilizers (Kopittke et al. 2019), and pesticides 
(Pontes et al. 2021). However, the incorporation and target of NMs in plants are 
challenging due to the presence of plant cell walls, differences in membrane chemical 
compositions compared to mammals’ cells, and low endocytic rate (Miralles et al. 
2012; Husen and Siddiqi 2014).
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The first barrier that ENMs must overcome to entry the cell is the cell wall. 
Regardless of the organ of the plant (in leaf epidermis, for example, there is also a 
cuticle, a layer that covers the outer periclinal walls and is composed mainly of lipid 
substances). 

Plant cell walls are mainly composed of cellulose, hemicelluloses and pectins, 
and a large number of proteins are involved in the cell dynamics through diverse 
functions such as environmental sensing, growth, signaling and defense (Fry 2004; 
Hijazi et al. 2014). For a long time, the cell wall was taken as a non-dynamic and 
functional limited structure, however, this view has changed drastically. 

Some authors argue that the movement of molecules through the wall is limited 
by the pore size. The pore size is defined as the space between the cell wall compo-
nents and the wall matrix (Salmén 2004; Rondeau-Mouro et al. 2008; Kurczynska 
et al. 2021). The cell wall pore size of several species has been documented e.g. 
Chenopodium album Linn. (Chenopodiaceae) in which the pore sizes vary from 3.3 
to 6.2 nm, depending on experimental conditions (Fleischer et al. 1999). In Achlya 
bisexualis Coker & Couch (Saprolegniaceae) the pores in the wall were determined to 
be 2–3 nm (Money 1990). In Hordeum vulgare Linn. (Poaceae) roots the pore size of 
rhizodermal cell walls was 3.2–3.8 nm (Milewska-Hendel et al. 2017). This hypoth-
esis seems unsupported and unlikely since much larger sized NPs were noticed within 
plant tissues, even when they contacted the outer wall. Glycine max Linn. merrill 
(Fabaceae) and Medicago sativa Linn. (Fabaceae) plants absorbed citric acid-coated 
magnetite Fe3O4NPs about 18 nm diameter. These particles accumulated in roots. 
Little or no translocation to the aerial parts was observed (Iannone et al. 2021). Oryza 
sativa Linn. (Poaceae) absorbed silver nanoparticles (AgNPs), with diameter varying 
from 20 to 150 nm (Thuesombat et al. 2014). Treatment of Cucurbita pepo Linn. 
(Cucurbitaceae) with superparamagnetic iron oxide NPs, about 12.5 nm in size, also 
showed that these particles pass the cell wall (Tombuloglu et al. 2019a, b). Moreover, 
it was shown that zinc oxide NP (ZnO-NP) of 8 nm in diameter may enter cytoplasm 
of root cells of Brassica sp. Linn. (Brassicaceae) species (Molnár et al. 2020). None 
of the works mentioned above explores the main question related to the passage of 
molecules through the cell wall: what mechanism allows NPs to cross the cell wall 
barrier? 

Although the mechanisms of NMs passage through the cell wall are not yet 
completely understood, it is almost unanimous in the literature that the change in the 
chemical composition of the cell wall is involved in this process (Kurczynska et al. 
2021). Such change, related to response to biotic and abiotic factors, are increas-
ingly investigated as an adaptation mechanism to altering environmental conditions 
(Milewska-Hendel et al. 2017). Chemical composition of the cell wall influences its 
structure, including porosity. This parameter in turn determines the pore size of walls 
and controls the apoplastic exchange of macromolecules (Kurczynska et al. 2021). 
Recent studies also elucidated the cell wall as a dynamic structure during secretion 
passage on secretory structures (Miguel et al. 2006, 2017) and silver NPs passage 
(Paiva Pinheiro et al. 2021). 

Until recently, the most accepted mechanism for the passage of NMs through cell 
walls involved the rupture due to NPs accumulation on the cell wall surface. Most
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parts of these studies were conducted in the bacteria, fungi, and microalgae cell wall 
(Concha-Guerrero et al. 2014; Athie-García et al. 2018; Wang et al. 2019). 

A detailed mechanism was proposed for the passage of AgNPs through the cell 
wall of Lactuca sativa var. crispa Linn. (Asteraceae) and occurs in three steps: AgNPs 
contacts the outer cell wall, presenting two states of oxidation, silver ion (Ag+ and 
Ag0); the interaction of oxygen with the Ag+ leads the rupture of hydrogen bonds on 
cellulose microfibrils; hydrogen bonds break spaces large enough to AgNPs freely 
passage through the outer cell wall (Paiva Pinheiro et al. 2021). This work was the 
first to convincingly elucidate the mechanism of passage of AgNPs through the cell 
wall using L. sativa as a model. However, the surface chemistry of ENMs is also 
very important as it may influence NPs reactivity, penetration and movement within 
the plant and therefore plant responses to the same type of NPs may be completely 
different (Zhu et al. 2012; Wang et al. 2014; Li et al.  2016; Milewska-Hendel et al. 
2019). 

As discussed, it is likely that other plants exhibit peculiarities in the passage of 
metallic NPs through the cell wall, however, this mechanism seems quite attrac-
tive since it explains the process based on the behavior of cellulose microfibrils, 
common to all cell walls of higher plants. After crossing the entire cell wall barrier, 
before entering the cytoplasm, the nanostructured materials must pass through the 
cell membrane. 

ENMs cellular uptake has been mainly studied in animal cells (see Zhao et al. 2011; 
Foroozandeh and Aziz 2018). Different endocytic pathways seem to be responsible 
for the internalization of these materials, however, these results cannot be used as 
models to plant cells, due to the presence of the cell wall, which became an additional 
barrier outside the plasma membrane (Palocci et al. 2017). 

Plant uptake of ENMs is hardly predictable. It depends on multiple factors 
including the NP itself (size, chemical composition, net charge and surface function-
alization); the application routes; and the interactions with environmental compo-
nents (soil texture, water availability, microbiota) (Sanzari et al. 2019). In addi-
tion, anatomical and ultrastructural variations of each species must also be consid-
ered. Different plant cell membranes, e.g., plasmalemma and plasma membrane, are 
known for selective absorptivity and permit small nonpolar ions diffusion through 
the membrane (Ghorbanpour and Wani 2019). Larger and polar molecules such as 
water, ions, and other foreign particles (including ENMs) cannot easily diffuse across 
the phospholipid bilayer. Although this process is not simple, many ENMs are able 
to break through this barrier and enter the cell. 

Several mechanisms have been proposed for ENMs uptake in plant cells, e.g., by 
endocytosis, binding to carrier proteins, through aquaporins, ion channels, creating 
new pores, or by binding to organic chemicals in the environmental media (Rico et al. 
2011). The most investigated mechanism for cellular uptake of ENMs in plant cells is 
endocytosis. The internalization of ENMs depends on the interaction established with 
the plasma membrane and the type of endocytosis is associated with physicochemical 
characteristics of NMs (size, chemical composition, charge, surface functionaliza-
tion, surface reactivity and surface adsorption) (Jiang et al. 2011). Endocytosis can 
be classified as phagocytosis, which involves the internalization of particles larger
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than 1 μm and pinocytosis involves the internalization of particles smaller than 
500 nm (Costa Verdera et al. 2017). Pinocytosis can further be classified as clathrin-
mediated endocytosis (CME), caveolin-mediated endocytosis (CAV), macropinocy-
tosis, clathrin-independent endocytosis (CIE) and caveolin-independent endocytosis 
(CIEV) (Yameen et al. 2014). CME was identified as the dominant endocytic process 
in plant cells and appears to operate analogously to animal cells (Surpin and Raikhel 
2004). CME involves the formation of vesicles from the polymerization of the protein 
clathrin that acts as a transporter of several compounds to the cell across the plasma 
membrane and released into the cytoplasm (Costa Verdera et al. 2017). Studies show 
that the size limit of particles entering cells via CME has been reported to be around 
200 nm (Rejman et al. 2004; McMahon and Boucrot 2011). 

Caveolin-mediated endocytosis is another mechanism that transports NPs across 
the plasma membrane to the cell. These caveolae are membrane invaginations, 
enriched with cholesterol and sphingolipids (Lajoie and Nabi 2007). Several reports 
suggest that caveolae sizes limit the uptake of NPs larger than individual caveolae 
sizes (approximately 50–100 nm) (Wang et al. 2012; Akinc and Battaglia 2013). 

Macropinocytosis involves the transport of large amounts of extracellular mate-
rial through vesicles known as macropinosomes. Macropinosomes provide an effec-
tive pathway for endocytosis of macromolecules, as their structure is substantially 
larger with a diameter of 0.5–10 μm (Falcone et al. 2006). Clathrin and caveolin-
independent endocytosis do not use the classic routes of internalization, but they 
are responsible for the transport of large amounts of extracellular material. A CIE 
and CAIE do not require the presence of coat proteins for the formation of vesicles 
and internalization of extracellular material (Sandvig et al. 2008). Most of studies 
on plant endocytosis were performed in suspension cells, which do not recapitulate 
tissue structure and have been reported to possess half-plasmodesmata that expose 
the cell membrane to the extracellular environment (Bayer et al. 2004). For these 
reasons, information about this topic must be taken with care. When crossing the 
cell membrane, NPs are transported to the cell target by several mechanisms. 

Once in the cytoplasm, cell to cell movements of ENMs are facilitated by plas-
modesmata, membrane-lined cytoplasmic bridges with a flexible diameter that ensure 
membrane and cytoplasmic continuity among cells throughout plant tissues. Trans-
port of ENMs with variable sizes through plasmodesmata has been described in 
Oryza sativa (Lin et al. 2009), and poplar plant species (Zhao et al. 2017). Through 
the symplastic and apoplastic pathways, small particles can reach the xylem and 
phloem vessels and translocate in the whole plant to different tissues and organs. 
Remarkably, organs like flowers, fruits and seeds normally have a strong capability 
to import fluids from the phloem (sink activity) and tend to accumulate NMs. 

In the cell, the address of these NMs is directly related to their characteristics 
such as size, charge, and pH. According to the characteristic of the ENMs they are 
endocytosed by different pathways (Jiang et al. 2011). After entering the cell, the 
ENMs acquire lipoprotein coverage (Sahay et al. 2010) and follow the classic route 
that begins with the fusion of ENMs with early endosome, then it becomes a late 
endosome and finally the transfer of the material to the lysosomes (Lab and Jesus 
2014). Until reaching lysosomes, NMs go through several maturation processes and
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decrease their pH and this traffic is regulated by RAB proteins (Family G-proteins) 
(Yameen et al. 2014). 

ENMs can follow an alternative route, a fact related to their characteristics and 
hence the importance of characterizing these ENMs. The most usual alternative to 
scape endosomal degradation is related to the alteration of the NPs surface charge, the 
surface functionalization of NPs with an amine (Ogris et al. 2001). The fate of NPs 
in the cell can be in a specific way with surface functionalization or in a non-specific 
way for different organelles such as the nucleus, Golgi apparatus, mitochondria 
and endoplasmic reticulum (Yameen et al. 2014). An accurate analysis regarding 
ENMs plant interactions concern not only the degree of toxicity of ENMs on living 
organisms, but also detailed studies of their uptake and movement within the plant 
body on different levels of organization: organs, tissues and cells (Kurczynska et al. 
2021). These ENMs are transported via apoplast to the endodermis and via symplast 
to the vascular system (Pariona et al. 2017). Xylem is the most significant carrier in 
the dissemination and transfer of ENMs (Aslani et al. 2014) and studies show the 
rapid absorption of NPs through conductive vessels. 

A study with different crop plants showed that after 24 h of exposure of the root to 
bioferrofluid (magnetic carbon-coated NPs), the NPs were able to leak into vascular 
tissues and reach the aerial parts of the plants (Cifuentes et al. 2010). In another 
study, it was observed that iron NPs (IO-NPs) were absorbed by the roots of maize 
seedlings and through the vascular system reached the shoot and accumulated in 
the leaves (Pariona et al. 2017). A similar result was observed by Tombuloglu et al. 
(2019a) in barley plants. 

Furthermore, the translocation of NPs can occur in the reverse way, from phloem to 
xylem. González-Melendi et al. (2008) showed that the translocation of NPs applied 
in the aerial part of plants went to the roots and there is evidence that cell–cell 
transport occurs (Corredor et al. 2009) which may involve the traffic path through 
the plasmodesmata (Cifuentes et al. 2010). A similar result was observed by Wang 
et al. (2012) in which copper NPs (CuONPs) were found in the xylem of maize 
seedlings, indicating xylem-mediated transfer of NPs from root to shoot. In addition, 
reverse movement through the phloem. 

Although osmotic pressure favors the uptake and translocation of NPs, the NPs 
can accumulate in the root and not be translocated throughout the plant (Iannone 
et al. 2016). As mentioned earlier, absorption, endocytosis and translocation will 
depend on the characteristics of the ENMs and the type of plant species used in the 
study. Figure 5.1 shown a schematic representation of uptake and traffic of ENMs 
on plant cells.
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Fig. 5.1 Schematic representation of ENMs uptake and traffic on plant cells. ENMs contact plants 
in different ways. The nanostructured material can come into contact through the leaf (a) or root  
(b). Regardless of the contact route, the first barrier that must be overcome for the internalization 
of NMs in the cell wall (c). Then, to enter the symplast pathway, it is necessary to pass through the 
cell membrane (d). Subsequently, ENMs can be delivered to different organelles, either by vesicles 
or free in the cytoplasm (e). Sometimes the particles continue their apoplast movement until they 
reach the endoderm and pericycle, are forced into the symplast pathway reaching the xylem and 
phloem cells (f). If this happens, long term transport through vascular tissue (g) may be possible. 
The sequence of events, from the interaction between NMs and cell walls to long term transport, 
is a particular result of the interaction of each particle and plant, in addition to the concentration 
and route of exposure. Therefore, these results are unpredictable most of the time. A and B– ENMs 
contact to cell wall; C—Accumulation and passage through the cell wall; D—Passage through the 
cell membrane; E—Transport, traffic and targeting; F—Apoplast transport and G—Long distance 
transport. (Figure constructed by the authors)
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5.3 How Do Nanomaterials Interacts with Photosynthetic 
Pigments? 

For photoautotrophic organisms, physiological and/or ecological functions, such as 
energy absorption, antioxidant activity, protective or reproductive processes, and 
some others, are related to a large range of molecules categorized as pigments. 
The most important contribution of natural pigments is related to Earth’s biosphere 
maintenance due to their role in the water-splitting activity responsible for oxygen 
photodissociation. 

Photosynthesis (from Greek photo → light and synthesis → putting together) is 
one of the most important processes on Earth and spawns a research field that is intrin-
sically interdisciplinary. From ancient environments (ca. 2.8–2.4 billion years ago), 
when the first oxygenic cyanobacteria began to utilize the photosynthetic process 
until the evolution of land-based plants, the driving selective forces acted to oxidize 
the water molecule and fix carbon in high amounts (Melkozernov 2014; Stirbet et al 
2014). As a consequence of their organic evolution, some molecules with phenotype 
chromophore properties were promoted by natural selection, i.e., compounds with 
high absorption at the visible portion of the electromagnetic spectrum. 

In oxygenic photosynthesis of higher plants, electrons are extracted from water by 
solar energy (photons) absorption followed by their incorporation into CO2 to synthe-
size organic compounds, such as sugars, as storable chemical energy (NADPH+ and 
ATP). 

Chloroplasts (Fig. 5.2) are bioenergetic plant cell organelles of diameter 5– 
10 μm. These structures are responsible for photosynthesis, with each plant cell, 
mainly leaves, containing about 10–100 chloroplasts (Cooper 2013). Chloroplasts 
comprise two membranes: an outer membrane that delimits the organelle and an 
inner membrane related to inner functions. Between the outer and inner membrane, 
a space of 10–20 nm defines its intermembrane space. In the inner organelle portion 
is the chloroplast stroma, a soluble matrix of dense fluid and an internal membrane 
system of layered thylakoids, called “grana” (Cooper 2013).

Pigments are the part of the macromolecular structures that absorbs light in the 
visible region of the spectrum (Walsby 1974). A large range of pigments can be found 
in different photosynthetic organisms such as chlorophylls (Chl) a–f , carotenoids 
(Car), bacteriochlorophylls (B-Chl) a–g, and bilins (phycoerythrin, phycocyanin, 
and allophycocyanin). 

In summary, Chl-a molecules are primarily responsible for photochemical reac-
tions. ENMs can interact differently with these and other plant pigments according 
to their physical–chemical properties and pigment type, resulting in two basic 
responses: changes in the pigment content (increase/decrease) by induction of the 
pigment synthesis or its inhibition and/or degradation and changes in the pigment 
activities, especially light absorption and energy dissipation processes such as the 
behavior of fluorescence emission, electron transport, and others related to non-
photochemical quenching. In general, when plants are exposed to NPs, the most
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Fig. 5.2 Schematic representation of chloroplast structure. Chloroplasts are semiautonomous 
organelles in plants, algae, and cyanobacteria cells. Light energy is transduced into chemical energy 
at the thylakoid membrane, and the fixation of CO2 takes place in the stroma side. (Figure constructed 
by the authors)

significant effect described in the literature is the reduction of chlorophyll content 
followed by an increment in the amount of accessory pigments (Table 5.1).

5.3.1 Chlorophyll and Derivatives 

Chlorophyll (Chl) pigment is a green-colored, lipid-soluble porphyrin derivative 
with magnesium (Mg) as the central atom; it is found in all photoautotrophic organ-
isms (Mulder-Krieger and Verpoorte 1994; Cooper 2013; Kuczynska et al. 2015). 
The chlorophylls are located into chloroplast organelles and play a crucial role in 
photosynthetic light reactions. A wide range of chlorophyll forms (a–f ) can be 
found in different photosynthetic organisms, depending on their functional groups 
(methyl, ethyl, formyl, vinyl). Chlorophyll-a and chlorophyll-b molecules (Fig. 5.3) 
are primarily responsible for photochemical reactions in higher plants.

In the last decades, it has become increasingly interesting to understand the inter-
action of ENMs and photosynthetic pigments for environmental impact monitoring 
purposes or for the development of novel materials for artificial photosynthesis. For 
instance, changes in pigment activities have been described as variations on the 
excited-state of chlorophyll-a interacting with gold NPs (AuNPs) (Barazzouk et al. 
2012; Falco et al. 2011; Torres et al.  2018; Mezacasa et al. 2020). 

Under excitation energy (blue and red light around 680 nm and 760 nm, respec-
tively), the chlorophyll molecule may oscillate between different energy states, with 
electronic transitions from highest occupied molecular orbital (HOMO) to lowest 
unoccupied molecular orbital (LUMO) (Müh and Renger 2014), dissipating part
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Fig. 5.3 Chlorophyll a and b structures with a magnesium as the central atom. (Figure constructed 
by the authors)

of the primary absorbed energy to the electron transport chain (photochemical 
process) and another part via the non-photochemical or quenching process (heat 
and fluorescence) (Roháček 2002; Ashraf and Harris 2013). 

Nanoparticles can interfere with the regular behavior of chlorophyll, reducing 
its fluorescence dissipation. This occurs either via a static process, i.e., interaction 
with the fluorophore molecule (chlorophyll) to form a non-fluorescent complex or 
via dynamic processes, i.e., when the NPs acting as a quencher, reducing the fluo-
rescence intensity by fluorophore deactivation; this suppression is directly related 
to particle size and is dose-dependent (Acquavella et al. 1995; Sharma et al. 2019; 
Damera et al. 2020). On the other hand, up-converting and down-converting NPs 
were able to transform infrared light into visible light or ultraviolet light into visible 
light, respectively (Yanykin et al. 2022). These NPs can be exploited to improve 
photosynthesis. 

In general, AuNPs suppress the electron transfer process from excited chloro-
phyll molecules. Additionally, the photodegradation behavior of Chl-a can be slowed 
during its interaction with AuNPs (Barazzouk et al. 2012) and this information 
provides important insight for the development of efficient hybrid artificial photo-
synthesis. Interaction between chlorophyll and silver NPs (AgNPs) was investigated 
by Falco et al. (2015) and Queiroz et al. (2016), who showed that AgNPs can disrupt 
photosynthetic electron transport via excited electron transfer from the chlorophyll 
molecules to the AgNPs surface (Fig. 5.4). Additionally, this behavior was dependent 
on NPs size and concentration.

Recently, the temperature-dependent interaction behavior of chlorophyll with zinc 
oxide, copper oxide, titanium dioxide, and iron oxide NPs was studied (Sharma et al. 
2019, 2020). These studies also observed that electrons can be relocated from the 
excited chlorophyll to the conduction band of the surface of the NP. However, the 
authors suggest that with the temperature increase, hydrogen bonding and van der 
Waals forces are the prominent driving forces during this interaction, and this process 
is spontaneous and exothermic. 

Under in vivo cellular media, chlorophyll molecules are susceptible to losses of 
their Mg atom (magnesium dechalatase) due to low pH or heat conditions. This 
reaction is called “pheophytinization” and results in pheophytin formation when two
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Fig. 5.4 Schematic representation of excited electron transfer from chlorophyll molecule to 
nanoparticle surface. hv: is the energy of a photon, and e−: is the excited electron. (Figure constructed 
by the authors)

hydrogen ions replace the Mg ion found in the center of the porphyrin ring (Sato 
et al. 2018). Pheophytin plays a key role in Photosystem II (PSII) electron transport. 
Structurally, D1 and D2 proteins contain special chlorophyll P680, chlorophyll-a, 
and pheophytin in the reaction center of PSII (Santiago et al. 2020; Pontes et al. 
2020). Chlorophyllase enzyme may be binding with the phytyl group of pheophytin, 
resulting in pheophorbide formation. Equation 1 summarizes the formation of chloro-
phyll derivatives [Eq. 1]. Size dependence was studied using in vitro and theoret-
ical experiments to understand the interaction of AuNPs and pheophytin (Mezacasa 
et al. 2020). The interaction mechanisms reported for pheophytin and pheophorbide 
molecules are also similar to chlorophyll via photoinduced electron transfer from 
pheophytin or pheophorbide molecules to AuNPs surface (Mezacasa et al. 2020; 
Kotkowiak and Dudkowiak 2015). 

Chlorophyll → 
−Mg+2 

Acid/heat 
→ Pheophytin  → −phytol 

Chlorophyllase  

→ Pheophorbide (5.1) 

The impact of the nanomaterial’s interaction on plant photosynthetic pigments, 
particularly with chlorophyll and its derivates, may alter the cellular homeostasis, 
metabolism, physiology, and the plant life cycle. Consequently, this either positively 
or negatively modifies plant productivity.
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5.3.2 Carotenoids 

Carotenoids (Car) are a class of natural pigments with important roles in biological 
systems. In photosynthesis, Car act as accessory light-harvesting pigments and can 
efficiently transfer absorbed light energy to chlorophyll molecules (Zulfiqar et al. 
2021). Additionally, another important role of the Car at the thylakoid membranes 
during photochemistry is photoprotection by dissipating excess energy to the envi-
ronment (Collini 2019). In general, carotenoids can be divided into two major groups 
based on their chemical structure: cyclic hydrocarbons (carotenes) and hydrocarbons 
containing oxygen (xanthophylls) (Jan and Abbas 2018). 

The interaction of NPs with carotenoids may be affected by several factors 
related to the nature of the nanoparticle, the type of carotenoid molecule, and 
the interaction of the NMs with the cellular environment (Santiago et al. 2020; 
Miguel et al. 2021). For instance, Heisel et al. (2019) report an increase in nega-
tive effects of cadmium contamination in Carex vulpina Linn. (Cyperaceae) plants 
exposed to ZnO NPs. These authors observed a strong decrease in the neoxanthin 
and lutein content, suggesting damages to light-harvesting complexes, also, increased 
β-carotene content suggests stress behavior. 

Once the NPs penetrate the plant chloroplast and interact with carotenoids, 
complexation of the nanomaterial and pigment may occur. For instance, the strong 
complexation of carotenoids containing terminal carboxyl groups (-COOH) with the 
TiO2 surface leads to electron transfer from the adsorbed carotenoid molecule to 
the surface trapping site (Wang et al. 2005). Carboxyl groups enhance the binding 
of carotenoids onto the surface of TiO2 NPs. This strong attachment can effectively 
facilitate electron transport from excited carotenoids by injecting electrons from their 
excited states into the conduction band of TiO2 NPs (Wang et al. 2005). Addition-
ally, photosensitization of the TiO2 NPs with β-Carotene, 8'-apo-β-carotene-8'-al, 
and canthaxanthin leads to the formation of superoxide anion (O2

−) and singlet 
oxygen (1O2) on red light irradiation (Konovalova et al. 2004) as schematized in 
Fig. 5.5.

On the other hand, according to nanoparticle size, AuNPs may act as light-
harvesting NPs and demonstrate the enhanced biosynthesis of carotenoids — 42.7% 
higher than without light-harvesting gold NPs (Li et al. 2020). In vivo studies have 
shown that the characteristics and nature of the NMs, in addition to the environmental 
factors, will greatly influence the synthesis and accumulation of carotenoids in plant 
tissues (Zou et al. 2016; Manjudar et al. 2016; Pontes et al, 2020). According to Pan 
et al. (2004), carotenoids with pheophytin molecules in contact with metal oxide 
NPs may form a self-assembled system, leading to an efficient reductive quenching 
of the pheophytin moiety. This result suggests that a similar mechanism can operate 
also in natural photosynthetic systems. Additionally, the impact of NMs’ interaction 
on carotenoids pigments may alter the plant physiological responses (Boonlao et al. 
2022). At the reaction center, carotenoids can play the role of electron donor when a 
suitable electron acceptor is available. They can also effectively quench chlorophyll
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Fig. 5.5 Generation of superoxide anion and singlet oxygen in irradiated TiO2 nanoparticles during 
its interaction with carotenoids. hv: is the energy of a photon. (Figure constructed by the authors)

triplet states and the formed triplet states of carotenoids can harmlessly dissipate the 
excess energy to the environment. 

Despite many studies conducted experimentally with several plant model organ-
isms on nanomaterial exposure, the disparity in results between physiological and 
molecular in vivo studies is remarkable (Santiago et al. 2020; Costa-Ruiz et al. 2021). 
Even if nano-enabled agriculture or artificial solar cells technologies show us success 
stories in the areas cited above, these new areas still have major challenges and limi-
tations that must be overcome to achieve the desired outcome, particularly in terms 
of the interaction between NMs and non-chlorophyll pigments.
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5.4 Anthocyanins 

Anthocyanins are a class of natural red pigments present in leaves, petals, stamens, 
tuberous roots, and particularly in vacuoles of red-colored epidermis cells (Fang, 
2014). Anthocyanins act as a cell protection agent and are considered antioxidant 
molecules (Gould et al. 2002). Biotic and abiotic stress, such as herbivory, high 
temperatures, and ultraviolet radiation, can trigger changes in anthocyanin content 
(Hatier and Gould, 2009), and can induce the generation of reactive oxygen species 
(ROS) in the plant cells. Consequently, increases the expression of MYB, basic 
helix-loop-helix (bHLH), and WD40 genes involved in the anthocyanin biosynthesis 
pathway (Tahara, 2007). 

The interaction between NMs and anthocyanins may occur on isolated compounds 
(in vitro assays) and/or at a cellular/biochemical level as described by Ravanfar 
et al. (2016) who has researched solid lipid NPs as carriers for anthocyanins. A 
recent study by Amin et al. (2017) demonstrated that anthocyanins loaded onto 
polyethylene glycol (PEG) nanocapsules can decrease oxidative stress on the p38/c-
Jun N-terminal kinases (JNK) pathway of SH-SY5Y cells. In general, the extraction 
methods for anthocyanin usually require complex enzymatic procedures of extrac-
tion and higher costs, and are time-consuming. On the other hand, nanobiocatalysis 
using nanomaterial functionalized with α-amylase demonstrated a higher efficiency 
for anthocyanin extraction (Yi et al. 2021). For instance, after NP internalization 
in biological systems, the nanomaterial directly interacts with reactive molecules 
(Miguel et al. 2021). In Arabidopsis leaves, TiO2 NPs can induce cell membrane 
damage and anthocyanin capping the surface of TiO2NPs, forming a pigment-layer, 
which is responsible for the blue color of internalized NPs (Kupera et al. 2020). 

Another factor that has an impact on nanoparticle–anthocyanin interaction is 
the synthesis route of the nanomaterial and the anthocyanin synthesis pathway 
(Fig. 5.6). According to Ramezani et al. (2019), nanosilver synthesized via the 
green route using Stevia rebaudiana Bertoni (Asteraceae) extracts increased the 
synthesis of anthocyanin when compared with chemically synthesized nanosilver. 
On the other hand, Tripathi et al. (2020) revealed a dose-dependent decrease in antho-
cyanin content in Withania coagulans Stocks. (Solanaceae) in response to biogenic 
nanosilver. Hassanvand et al. (2021) reported increased gene expression of flavonoid 
biosynthesis pathway via phenylalanine ammonia-lyase (PAL) and chalcone synthase 
(CHS) genes. In this study, Hassanvand and co-workers, using Viola tricolor Linn. 
(Violaceae) plants exposed to AgNPs, also observed an increase in the content of 
anthocyanin. This finding corroborates with the increase observed in the activity 
of phenylalanine ammonia-lyase and flavonol synthase enzymes in Brassica rapa 
Linn. (Brassicaceae) plants exposed to CuO NPs (Chung et al. 2019). Additionally, 
Chrysanthemum grandiflorum Ramat. (Asteraceae) inflorescence colors are affected 
by silver NPs due to alterations to gene expression; hence, changes in anthocyanin 
amount are responsible for the phenotypic response (Tymoszuk and Kulus 2020).

Nano-enabled agrochemicals have shown prominence in the modern agri-food 
sector; hence it has become important to understand the metabolic interaction at the
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Fig. 5.6 Impact of engineered nanomaterials on the anthocyanin biosynthesis pathway. PAL: 
phenylalanine ammonia lyase; C4H: cinnamate 4-hydroxylase; CHS: chalcone synthase; CHI: chal-
cone isomerase; F3H/F3’H/F3'5’H: flavanone-hydroxylases; DFR: dihy- droflavonol 4-reductase; 
and ANS: anthocyanidin synthase. (Figure constructed by the authors)

interface between NMs and plant pigments. With regard to secondary metabolism in 
plants, special attention has been given to flavonoids such as anthocyanins, especially 
changes in these pigment levels, which provide a reliable tool to evaluate the plant 
response to engineered NMs. Soybean plants under hydric stress and nanosized 
copper particles show an increase in anthocyanin production due to ROS response 
(Nguyen et al. 2021). These results suggest that CuONPs may alleviate hydric stress 
in soybean plants. In Solanum melongena Linn. (Solanaceae) plants exposed to metal 
oxide NPs, the anthocyanin amount increases with NPs uptake by plants (Baskar 
et al. 2018). Nanosilver exposure increased the anthocyanin content in Brassica 
rapa Linn. (Brassicaceae) (Thiruvengadam et al. 2015) and gold NPs also increased 
the anthocyanin content in Arabidopsis plants (Nair and Chung 2014). This behavior 
occurs probably due to the ROS generation induced by NPs exposure (Santiago et al. 
2020). 

Photosynthetic groups of C3 and C4 plants respond differently to environmental 
fluctuations. For instance, under the high availability of CO2, plants tend to increase 
their anthocyanin content as an antioxidant molecule. In co-exposure of CO2 with 
AS2O3 NPs on the C3 plant Hordeum vulgare Linn. (Poaceae), Selim and co-workers 
(2021) demonstrated an accumulation of anthocyanin in C3 plants in contrast with 
C4 plants Zea mays Linn. (Poaceae) that show low content of its pigment. In Pb-
contaminated soils, silicon NPs regulate the anthocyanin amount in Coriandrum 
sativum Linn. (Apiaceae) plants in soils with elevated Pb levels (Fatemi et al.
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2021). Also, exposure of Trachyspermum ammi Linn. (Apiaceae) plants to iron NPs 
improves the anthocyanin content under salinity stress (Abdoli et al. 2020). Another 
synergic behavior against salinity stress was observed by Gohari et al. (2021). Using 
carbon quantum dots in Vitis vinifera Linn. (Vitaceae) plants, these authors observed a 
decrease in anthocyanin content, probably due to changes in its biosynthesis pathway. 
Finally, the application of anthocyanin for dye-sensitized solar cells (DSSCs) has 
shown promising potential. For instance, DSSCs made from blackberry-based antho-
cyanin-capped TiO2 NPs to give the largest photovoltaic output and this photovoltaic 
output compares well with silicon-based solar cells due to its high efficiency (Cramer 
et al. 2011). 

5.5 Betalains 

The betalains is another important and interesting group of water-soluble nitrogenous 
plant pigments and have been studied by photoelectrochemical assays (Zhang et al. 
2008; Gandia-Herrero and Garcia-Carmona 2013). Particularly important is their 
interaction with engineered semiconductor NMs to design novel dye-sensitized solar 
cells, due to their eco-friendly and low cost of production. Betalains are divided into 
two classes: yellow betaxanthins and red–violet betacyanins (Zhang et al. 2008). 
Additionally, betalain pigments show higher pH-dependent redox properties. 

According to Wendel et al. (2017), betalains show limited sunlight energy conver-
sion efficiency for applications in environmentally friendly dye-sensitized solar cells 
(DSSCs). This insufficient electron injection quantum yield is the major reason for 
these phenomena. On the other hand, some studies reveal that the interaction of ENMs 
improves their sunlight energy conversion efficiency. For instance, a DSSC prepared 
with betalains adsorbed onto Ag and TiO2 nanostructure surfaces yielded a better 
plasmonic-enhanced DSSC, giving a short-circuit current density (Jsc), fill factor 
(FF), and power conversion efficiency (PCE). In general, these modified DSSCs 
increase efficiency by 50% over the reference DSSC (Isah et al. 2016). 

The role and relevance of betalains’ light emission in flowers and fruits in attracting 
pollinators and/or seed dispersers is a matter of current ecological and biophysical 
debate (Gracía-Plazaola et al. 2015; Mori et al.  2018; Guerrero-Rubio et al. 2019). 
For instance, nanosilver has a phytostimulatory effect on flowering (Salachna et al. 
2019). However, knowledge of the interaction of NMs with flower pigments and 
their pollinators is needed to better understand their ecological impact (Hooven et al. 
2019). 

In general, under natural environments, for seeds to grow and develop into new 
plants, they must be dispersed. The possible influence of ENMs on the fluorescence 
of betalains in seed dispersal may have biological relevance and needs to be inves-
tigated in further studies. For instance, quinoa grains contain a significant amount 
of betaxanthins and their levels can affect the vigor of the seeds (Escribano et al. 
2017; Guerrero-Rubio et al. 2019). Thus, the discussion about the effects of NMs on
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fluorescence and colors of seeds opens up to include a possible biological effect of 
nanostructures on these signals and, consequently, on seed dispersal behavior. 

Consequently, the interaction mechanisms of nano-based materials with betalains 
can and will play an important role in the future of artificial photosynthesis, thus 
requiring a better understanding of their ecological safety (Fig. 5.7). 

Fig. 5.7 Generic structures of betacyanins and betaxanthins, their biosynthetic precursor betalamic 
acid and several examples of naturally occurring betalains. Potential positive applications and 
negative side effects of the interaction of nanomaterials with betalains. (Figure constructed by 
the authors)
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5.6 Optical and Spectroscopic Behavior 
of Nanomaterials-Pigment Interaction 

Electromagnetic radiation is usually divided into γ-rays, x-rays (Roentgen waves), 
ultraviolet light, visible light, infrared, microwaves, and radio waves. All of these 
forms propagate as transverse electromagnetic waves with the same speed (speed of 
light, c = 2.99792458 × 108 ms−1) in a vacuum (Solè et al., 2005). The differences 
observed in the electromagnetic spectrum are related to wavelength and frequency 
(Skoog et al. 1996; Solé et al. 2005). Monochromatic electromagnetic radiation 
is commonly labeled by interrelated magnitudes: frequency (ν), wavelength (λ), 
wavenumber (v̄), and energy of the photon (E), correlated as follows: 

E = 
h 

v 

where h is Planck’s constant (6.62 × 10−34 J.s). 
In terms of wavelength and wavenumber. 

E = 
h 

λ 
= hcῡ 

where h is Planck’s constant (6.62 × 10−34 J.s). 
The wavenumber as well as the frequency is directly proportional to the energy. 

Electromagnetic radiation is made up of packets of energy called “photons” or 
“quanta.” During interactions between radiation and matter, molecules in the lowest 
energy state (ground state) can have this condition changed commonly by absorption, 
transmission, and/or reflection of part of the absorbed radiation (Lehmann 2016). 

The optical or spectroscopic properties of plant pigments during their interac-
tion with ENMs depend on the arrangement between the nanostructure and the 
pigment molecule. A wide range of analytical methods is used to study the nanopar-
ticle–pigment interaction behavior, particularly with optical interactions. These tech-
niques require low cost and easy management, and fewer time-consuming processes 
(Lehmann 2016; Santos et al. 2021, 2022; Souza et al. 2022). 

Absorption and emission behavior have been reported when plant pigment inter-
acts with NPs because these pigments act as chromophores. For instance, AuNPs with 
sizes of 5 nm, 10 nm, and 20 nm induce a fluorescence quenching behavior in chloro-
phyll pigments (Falco et al. 2011). These effects were also related to the decrease in 
NPs size. These phenomena are correlated to photo-induced electron transfer from 
excited pigment molecules to the nanoparticle’s surface. Similar results are observed 
with AgNPs by Queiroz et al. (2016). In this way, plasmonically generated changes 
in the absorption and emission behavior of pigments are reported due to the unique 
optical properties of metal NPs. These properties can be tuned by modifications of the 
size, shape, and chemical composition of the metal NPs. In another study, Brecht and 
co-authors (Brecht et al. 2012) used single-molecule spectroscopy to investigate the
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plasmonic interaction effects of nanometer-sized hexagonal arrays of Au- and Ag-
triangles on the fluorescence properties of chlorophyll pigments onto Photosystem 
I (PSI), a key component of the photosynthetic apparatus. These studies suggest the 
potential photochemical and photophysical impact of some NMS on light-harnessing 
photosynthetic events. 

Vibrational spectroscopic methods are also useful to unravel the vibrational modes 
and/or functional groups of complex chemical species (Farber et al. 2019; Beć 
et al. 2020). Especially, Fourier transform infrared spectroscopy (FTIR) utilizes the 
interaction of matter with electromagnetic radiation at the spectral region of 4000– 
400 cm−1 (2500–25,000 nm). Infrared spectroscopy enables excitation of vibrational 
or vibrational/rotational transitions of molecules involving transitions from rotational 
and/or vibrational levels in the same ground electronic state (Avran and Meteescu 
1972; Stuart et al. 1996) and can be used to study the fundamental vibrations of 
pigments during their interaction with NMs (Pontes et al. 2019, 2020). In this respect, 
vibrational spectroscopy is a powerful and accessible optical technique for environ-
mental monitoring; it is a highly accurate, simple method and requires no sample 
pre-treatment for measurements (Santos et al. 2022). Additionally, recent studies 
have shown the possibility of developing a fast and accurate discrimination method 
for changes on molecular vibrational modes of functional groups by its association 
with machine learning (ML) algorithms (Larios et al. 2020; Oliveira et al. 2021). 

5.7 Electrochemical Behavior of Nanomaterials-Pigment 
Interaction 

The use of solar cells offers great advantages because they take advantage of sunlight, 
which is an inexhaustible resource and available all over the planet. In addition, they 
are easy to maintain and install and can be installed in places with difficult access. 
Currently, commercialized solar cells are predominantly based on monocrystalline 
or polycrystalline silicon crystals that are produced under optimized temperature and 
pressure conditions using Czochralski’s methodology. 

Through the photovoltaic effect, solar cells convert sunlight into electrical energy. 
Dye-sensitized solar cells (DSSCs) are a promising replacement for traditional silicon 
solar cells (Fig. 5.8). DSSCs are photoelectrochemical cells belonging to the group 
of hybrid solar cells as they are formed by organic and inorganic materials. A DSSC 
has a counter electrode and a photoelectrode, which are often deposited on a glass 
substrate containing a transparent conductive oxide, such as indium-doped tin oxide 
or fluorine-doped tin oxide. A mesoporous semiconductor layer, usually TiO2, is  
deposited on the conductive surface. In the photoanode, dye molecules for sensiti-
zation are attached to TiO2, and photoexcitation occurs when the dye absorbs light; 
the dye is oxidized and electrons are injected into the TiO2 conduction band. An 
electrolyte with a redox couple (I−/I3−) is responsible for restoring the original state 
of the dye. The circuit ends with the migration of electrons through an external
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Fig. 5.8 Working principles of DSSC a third generation of solar cell. This type of solar cell was 
inspired by the photosynthesis process to trap the solar energy that is called as a photon and convert it 
into electrical energy. FTO: fluorine doped tin oxide electrode; and e−: electron (Figure constructed 
by the authors) 

charge. DSSCs are attractive and promising because they are mechanically resistant, 
made of relatively low-cost material, and are very easy to process compared with the 
silicon solar cells that are currently marketed. They can also have their application 
expanded because they are lighter and can be produced on flexible substrates (Shalini 
et al. 2015; Orona-Navar et al. 2021). 

As sensitizers for third-generation photovoltaic cells, metal complexes, synthetic 
or natural dyes are used (Zanan et al. 2016; Orona-Navar et al. 2020). Sensitizers 
based on metallic and organic dyes, such as ruthenium, achieve good photoconversion 
efficiency (~11%). However, they have disadvantages related to high toxicity, limited 
presence in nature, exhaustive processes of synthesis and purification, and high cost 
(Orona-Navar et al. 2020). An interesting alternative for replacing sensitizers based 
on synthetic dyes and metal complexes are natural pigments such as chlorophylls, 
carotenoids, anthocyanins, betalains, tannin flavonoids, and phycocyanin (Ranjitha 
et al. 2020). 

These pigments can be obtained from leaves, fruits, and flowers; recently, 
pigments from microalgae, fungi, and bacteria have also been studied. The main 
advantages of applying natural dyes as solar cell sensitizers are their low production 
costs, simple extraction methods, large-scale production, easy handling, and low to 
minimal toxicity (Orona-Navar et al. 2020). 

Among natural pigments, Chls are naturally suitable for efficient light harvesting. 
However, their application in photovoltaic cells has a strong limitation: high
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photodegradation. This is unfortunate because Chls are nature’s best photorecep-
tors. Thus, if the photostability of Chls could be improved, their technological appli-
cation, especially in photovoltaic cells, would be promising because the long-term 
stability of the molecules is an indispensable prerequisite for this purpose (Baraz-
zouk et al. 2012). Therefore, combinations of different natural pigments have shown 
positive results in DSSC sensitization when compared with the use of individual 
natural pigments. An example of this is the combination of Chls and carotenoids, 
where Chls fulfill the light-gathering function and carotenoids act as photoprotec-
tors, promoting an improvement in photostability. Furthermore, mixed pigments have 
also been shown to increase photoconversion efficiency compared with single natural 
pigments as in the case of the association of Chls and anthocyanins that provide the 
effect of capturing light in a wider range of the electromagnetic spectrum (Park 
et al. 2014). However, the photostability of Chls is increased by carotenoids to some 
extent. Studies show that carotenoids do not protect Chls in vitro as effectively as 
they photoprotect Chls in vivo. Thus, it is highly imperative to look for an agent that 
provides efficient in vitro photoprotection of Chls to industrially and biotechnolog-
ically enable the use of Chls and other biomolecules as sensitizers for photovoltaic 
cells (Orona-Navar et al. 2020). 

Gold NPs (AuNPs) are described as photoprotective of Chl-a, meaning that the 
photodegradation of Chl-a is delayed in the presence of AuNPs. For instance, Baraz-
zouk et al. (2012) have shown that AuNPs cause an increase of up to an order of 
magnitude in the half-life of Chl-a. AuNPs can efficiently bind to the nitrogen sites of 
Chl, resulting in enhanced protection of these pigments (Mezacasa et al. 2020) and, 
thus, inhibiting the reaction of reactive oxygen species with Chl-a, known to cause its 
degradation under light. Therefore, under in vitro conditions, AuNPs are much better 
Chl-a photoprotective agents than ß-carotene or quinones (Barazzouk et al. 2012). In 
addition to the photoprotective capacity of Chls, some NPs when incorporated into 
the photoanode tend to increase the dye’s ability to capture photons from sunlight. 
Among these materials are metallic NPs, such as silver (AgNPs) or AuNPs, among 
other metals, which, when incorporated into the TiO2 structure of the photoanode, 
improve photon absorption. NPs of noble materials added to a photoanode exhibit 
surface plasmonic resonance within the device, which is the effect of electron oscil-
lation in a structure stimulated by incident light. The solar cell can have embedded 
Au or Ag NPs to induce the effect, which causes greater absorption and scattering of 
light and, ultimately, the potential improvement in solar cell performance (Bhogaita 
and Devaprakasam 2021). 

Gold NPs have received special attention due to their electronic and optical prop-
erties based on the existence of surface plasmonic resonance. Electrochemical inves-
tigations demonstrate that AuNPs on a nanotemplate structure act as an electrical 
relay (Barazzouk and Hotchandani 2004). Gold NPs are widely used to produce 
functional electrical coatings; these NMs contribute to improving the redox activity 
in electrochemical and photochemical applications by easily interacting with organic 
molecules as in the case of dyes based on biomolecules (Mezacasa et al. 2020). 
Furthermore, AuNPs can provide better performance in photovoltaic cells due to
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their potential to accept and transport the photogenerated electrons in Chl-a to the 
collector electrode (Barazzouk and Hotchandani 2004). 

5.8 Computer Aided Simulation for Understanding 
Nanomaterials-Pigment Interaction 

The computational method must be chosen according to your goals, i.e., getting 
the properties of atomic and molecular bindings, such as intra- and intermolecular 
energies or conformational positions adopted by NP-pigments, for example. It is 
certainly important to approach your system before any modeling is begun because 
computational methods are frequently limited to the number of atoms and/or level 
of complexity of the studied system. Actually, the available processing power is 
frequently limited, but not the method specifically. This is commonly known as 
“computational cost,” i.e., the number of required processors to calculate the target 
variables. From this point of view, a simple exercise of imagination can realize the 
challenge associated with NPs systems modeling for many atoms. 

To optimize the simulation study, the choice of ideal method is important because it 
has resolution dependence; for instance, calculations can be achieved just to evaluate 
the disposition and conformation of a pigment on the nanomaterial surface by clas-
sical methods or details for atom–atom interactions, including chemical reactions, 
can be computed from quantum approaches. Nevertheless, it is common to merge 
the classical and quantum methods in a Quantum Mechanics/Molecular Mechanics 
(QM/MM) model or to perform two different simulation methods separately. For 
instance, the best conformation adopted for a target macromolecule (NPs or proteins) 
with the ligand (pigments) is initially computed by a classical method followed by a 
quantum calculus to reach some electronic property locally. 

There are some important computational methods available to study the interac-
tions of NMs with molecules as detailed by A.S. Barnard for inorganic NPs (Barnard 
2010). The in silico methods can be separated basically into two categories: empir-
ical and physics methods (Raunio et al. 2015) as shown in Fig. 5.9. Two impor-
tant empirical methods are the nano-QSAR and Docking. These methods frequently 
have an intrinsic theoretical background with quantum and/or molecular mechanics 
incorporated into them (Santiago et al. 2020).

Nano-QSAR is based on a quantitative structure–activity relationship and is 
applied to predict biological responses, especially toxicity, based upon the physic-
ochemical properties of NMs available in a set of databases (Puzyn et al. 2009). 
However, to study the interactions at the molecular level, the docking method is 
a good beginning. In this case, many strategies have been developed to calculate 
the best poses for the ligand–target as well as to get its score functions, including 
genetic algorithmic, fragment-based methods, point complementarity, and distance 
geometry, among others (Taylor et al. 2002). Molecular docking is widely applied 
to study protein–ligand systems, but some programs and web platforms have been
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Fig. 5.9 Some computational methods available to study the interactions of pigments and any plant 
source molecule with macromolecules such as nanoparticles (Figure constructed by the authors)

developed to predict the interactions with the NP surface. An example is the docking 
calculation performed for the AgNP-xylanase protein (Mishra et al. 2021) using  the  
PatchDock server (Schneidman-Duhovny et al. 2005), a geometry-based molecular 
docking algorithm program that is a good approach for molecular shape complemen-
tarity. Similarly, Fig. 5.10 shows the interaction between the same AgNP of 4.5 nm 
diameter with ß-carotene. 

From a predicted conformation adopted by the pigments on the surface of the 
NMs in the docking calculations, more details for specific interactions in time can 
be achieved by molecular dynamics. This method is based on the resolution of clas-
sical equations of motion; Newton’s laws of motion implemented into a numerical

Fig. 5.10 Three conformations were predicted by molecular docking for the AgNP-carotene 
pigment interaction using PatchDock server for a 4.5 nm diameter sphere (Schneidman-Duhovny 
et al. 2005). (Figure constructed by the authors) 
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algorithm, e.g., the Verlet or its variations. Initially, some velocities are attributed to 
each atom according to the Boltzmann distribution. Then, with a set data of force 
field parameters for all molecules, the potential interactions are calculated to get the 
force, which is then used to obtain the acceleration, velocities, and new position coor-
dinates according to a determined time step of integration, commonly one or two 
picoseconds. These calculations are computed repeatedly to generate a correlated 
trajectory (Boldon et al. 2015), an advantage in comparison to traditional molecular 
mechanics or Monte Carlo simulations. 

Sometimes, obtaining electronic data for an NP–pigment interaction is desired, 
such as changes in the response of the radiation interactions and/or electron/energy 
transfer. For this purpose, an electronic calculation is mandatory. Several methods 
are available in a set of well-established programs, which are wave function-, semi-
empirical-, density functional theory-based, or some derivation thereof (Barnard 
2010). These methods are very powerful to investigate interactions at the atom– 
atom level; however, they are frequently limited to the size of the system due to the 
high computational cost. Therefore, the quantum approach is applied to a part of 
the overall system. To illustrate an application of this method, Fig. 5.11 shows an 
interaction of chlorophyll and pheophytin with gold-NPs performed by our research 
group (Mezacasa et al. 2020). In this case, to understand the photophysical behavior 
of these photosynthetic pigments in the presence of Au-NPs, the density functional 
theory (DFT) was applied. The energies of adsorption were computed as well as 
the Mulliken charge distribution. The alterations in the absorption and fluorescence 
profiles of chlorophylls in the presence of the nanomaterial could be associated 
with the presence of the element magnesium in the structure. The method allows an 
explanation for the electronic transitions via HOMO–LUMO transfer charges to be 
suggested.

5.9 Conclusion and Prospects 

Current research on the interaction of NMs and plant pigments has opened a new 
way to view the environmental impact of these materials, and the development of 
novel technological products. However, ENMs, depending on their dose and physico-
chemical properties. may represent a potential risk for plant development and envi-
ronmental health. The nanomaterial–pigment interaction may change the operation 
of physiological processes such as the chemical energy production of photosynthesis 
or flower pollination that involves color-guided pollinators. In this scenario, inves-
tigations regarding the interactive effects of NPs on non-foliar plant tissues are still 
required. Finally, the study of novel nano-enabled materials is essential to assess 
their potentialities, interaction with the environment, and their effects on other plant 
organisms; hence, further research on plant pigments is necessary.
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Fig. 5.11 Mulliken charges mapped onto the total electron density of the A porphyrin and B 
porphyrin-Mg on gold nanoparticle surfaces. (Figure constructed by the authors)
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nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Sci Rep 7(1):1–13. https:// 
doi.org/10.1038/s41598-017-02965-w

https://doi.org/10.1111/j.1582-4934.2007.00083.x
https://doi.org/10.1039/D0AY01238F
https://doi.org/10.1063/PT.3.3333
https://doi.org/10.1016/j.jhazmat.2016.04.043
https://doi.org/10.1016/j.jhazmat.2016.04.043
https://doi.org/10.1021/acssuschemeng.0c00315
https://doi.org/10.1021/acssuschemeng.0c00315
https://doi.org/10.3389/fnano.2021.809329
https://doi.org/10.1002/smll.200801556
https://doi.org/10.1016/j.scitotenv.2016.06.087
https://doi.org/10.1038/nrm3151
https://doi.org/10.1007/978-1-4939-1148-6_13
https://doi.org/10.1016/j.jphotochem.2019.112252
https://doi.org/10.1055/s-2006-924174
https://doi.org/10.1590/0102-33062016abb0420
https://doi.org/10.1590/0102-33062016abb0420
https://doi.org/10.3390/ijms20071650
https://doi.org/10.1038/s41598-017-02965-w
https://doi.org/10.1038/s41598-017-02965-w


5 Interactions of Nanomaterials with Plant Pigments 127

Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nano-
materials in vascular plants. Environ Sci Technol 46(17):9224–9239. https://doi.org/10.1021/es2 
02995d 

Mishra S, Wang W, de Oliveira IP, Atapattu AJ, Xia SW, Grillo R, Lescano CH, Yang X (2021) 
Interaction mechanism of plant-based nanoarchitectured materials with digestive enzymes of 
termites as target for pest control: Evidence from molecular docking simulation and in vitro 
studies. J Hazard Mater 403:123840. https://doi.org/10.1016/j.jhazmat.2020.123840 

Molnár Á, Papp M, Zoltán Kovács D, Bélteky P, Oláh D, Feigl G, Szőllősi R, Rázga Z, Ördög A, 
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Chapter 6 
Impact of Nanomaterials on Plant 
Secondary Metabolism 
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Dibyendu Mondal, and Gregory Franklin 

Abstract Plants encounter various nanomaterials (NMs) as pesticides and fertil-
izers. It is also possible that nanomaterials reach plants as waste from consumer prod-
ucts and industry. The effects of such NMs on plants have been widely studied, and 
both positive and negative effects of NMs on plant growth and development have been 
reported. Recent metabolomics studies suggest that nanoparticles affect the concen-
tration of secondary metabolites in plants by modulating reactive nitrogen/oxygen 
species, gene expression, and signaling pathways. Secondary metabolites are plant 
compounds that accumulate in plants through their secondary metabolism. To date, 
more than 200,000 defined structures of secondary metabolites have been identi-
fied, among which many of them possess antibacterial, antifungal, antiviral, anti-
inflammatory, hepatoprotective, antidepressant, antioxidant, neuroprotective, and 
anticancer properties. The application of elicitors is a simple strategy to increase the 
production of secondary metabolites in plant cell and tissues. The ability of nano-
materials to induce plant secondary metabolism has recently been exploited in the 
elicitation of pharmaceutically important compounds from various plant species. The 
ability of different NMs to induce the accumulation of different classes of compounds 
in the same plant species has also been accomplished. The molecular mechanisms 
behind the effects of NMs on plant secondary metabolism revealed the putative 
genes involved in NM-mediated elicitation of various plant compounds in several 
reports. This chapter reviews the current understanding of the effects of nanoparticles 
on plant secondary metabolism and the elicitation of pharmacologically important 
compounds from plant species.
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6.1 Introduction 

In this era of nanotechnology, nanomaterials (NMs) are finding applications 
in various fields, including science, industry, medicine, and agriculture. Several 
consumer products, medicines, fertilizers, pesticides, cosmetics, food packings, 
paints and electronics containing NMs are already on the market. 

Plants are exposed to NMs through various pathways. NMs can move to plants 
as NM-containing wastes that are released into the environment by industries and 
consumer products in water and soil. The predicted concentration of some nanopar-
ticles (NPs) in soil is: silver (Ag): 0.91–1.8 ng/kg; titanium oxide (TiO2): 0.09– 
0.24 μg/kg; zinc oxide (ZnO): 0.01–0.03 μg/kg (Sun et al. 2014). On the other 
hand, recent advances in agriculture use formulations containing NMs such as fertil-
izers, fungicides and pesticides. The concentration-dependent response to NPs varies 
greatly among different plant species, which has been reported, for example, for NPs 
from ZnO: 40–1200 ppm, (Mosquera-Sánchez et al. 2020; Sadak and Bakry 2020) 
cerium oxide (CeO2): 125–500 ppm, (Rico et al. 2014) copper oxide (CuO): 200– 
400 ppm, (Wang et al. 2019) and gold (Au): 5 ppm (Kang et al. 2016) to show the 
effect of nanofertilizers and pesticides. Effective concentrations for plant protection 
applications range from 2 to 2000 ppm for Ag NPs alone across plant species and 
pathogens (Elmer and White 2018). Thus, while the application of nanotechnology 
is expected to revolutionize agriculture, NMs that enter the environment directly 
as agrochemicals or indirectly as industrial or household wastes are proving to be 
pollutants with unknown consequences for plants. 

Previous studies on various model plant species and crops have shown that NMs 
affect plant growth and development both positively and negatively depending on 
their concentration. However, it is known that the biologically relevant concentra-
tion of NMs strongly depends on their metallic core, physicochemical properties, 
substrate and plant species. NMs are known to interfere with metabolic processes 
and lead to the formation of reactive oxygen species (ROS)/reactive nitrogen species 
(RNS), damage the structure and function of cell membranes, and reduce enzyme 
activities and DNA synthesis. Recent literature also suggests that plant secondary 
metabolism is also affected by NMs. 

Secondary metabolism is crucial for plants as they play an indispensable role in 
plant survival: as protection against herbivores and pathogenic microbes, as signals 
for symbiotic interactions of plants with beneficial microorganisms, as allelopathic 
agents in natural habitats for protection against competitors, as physical and chemical 
barriers against abiotic stressors such as UV radiation, and as endogenous regulators 
of plant growth regulators. 

The small molecular products that are biosynthesized in plants through their 
secondary metabolic pathways are called plant secondary metabolites. These
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compounds are generally classified as terpenes, steroids, phenols, flavonoids and 
alkaloids and are derived from primary metabolites or as an intermediate in the 
primary metabolic pathway (Chandran et al. 2020; Pang et al. 2021). Plant secondary 
metabolites play an important role in plant defense mechanisms against biotic and 
abiotic stresses (Khare et al. 2020; Mahajan et al. 2020). In particular, phenyl-
propanoids are involved in the regulation of oxidative stress, free ion chelation, 
cell wall lignification, and plant defense (Agati et al. 2012). In addition, secondary 
metabolites are also known to be involved in pest defense (Barlow et al. 2017; 
Stevenson 2020), signal transduction in plant–microbe symbiosis (Adedeji and 
Babalola 2020) and plant innate immunity (Piasecka et al. 2015). 

Apart from their beneficial effects in plants, many secondary metabolites are 
economically important as medicines, flavors and fragrances, dyes and pigments, 
pesticides and food additives. Useful remedies from herbal medicine are due to the 
presence of various secondary metabolites (Chandran et al. 2020). For example, 
a recent study showed that 12 pure compounds from Clerodendranthus spicatus 
(Thunb.) C. Y. Wu ex H. W. Li, an herb widely used in traditional Chinese medicine 
for the treatment of kidney inflammation, gout, and dysuria, promoted the excretion of 
uric acid (Chen et al. 2020). More than 500 secondary metabolites have been reported 
from 46 species of the genus Lycopodium, and these secondary metabolites have been 
shown to have several medically important bioactivities, including neuroprotective, 
anti-inflammatory, anti-cancer, antiviral, and antimicrobial activities (Wang et al. 
2021). 

The quantity of secondary metabolites produced by natural biosynthesis in plants 
is limited to meet the growing demand of the pharmaceutical industry. Thus, develop-
ment of alternative biotechnological approaches is necessary to boost production of 
secondary metabolites (Thakur et al. 2019). Elicitation is one of the most commonly 
used techniques to enhance the biosynthesis of secondary metabolites (Thakur et al. 
2019; Yazdanian et al. 2021). 

In recent years, NMs have emerged as novel triggers for inducing biosynthesis 
of bioactive compounds in plants (Shakya et al. 2019; Rivero-Montejo et al. 2021). 
Ag NP treatment increased artemisinin content by 3.9-fold in 20-day-old hairy root 
cultures of Artemisia annua L. (Zhang et al. 2013). Hydroponically grown Bacopa 
monnieri L. treated with copper-based NPs (Cu) improved antioxidant capacity 
and showed hormetic increase in the content of saponins, alkaloids, flavonoids 
and phenols (Lala 2020). Celastrol, a therapeutically important phytochemical, was 
increased in adventitious and hairy root cultures of Celastrus paniculatus Willd. 
after treatment with Ag NP (Moola et al. 2021). The elicitation of various classes of 
bioactive secondary metabolites in Hypericum perforatum L. cell suspension cultures 
treated with various metal (Ag, Au, Cu, Pd) and metal oxide (CeO2, CuO, TiO2, ZnO)  
NPs has been recently reported (Kruszka et al. 2022). 

In this chapter, we discuss the effects of NMs on secondary metabolism in plants, 
focusing on signaling events and key medicinal agents that are enhanced by NPs.
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6.2 Plant’s Response to Nanomaterials 

Exposure to NMs has been found to induce changes in various physiological, morpho-
logical and developmental processes of plants. In general, plant metabolism can be 
divided into primary (associated with energy and biosynthesis of building blocks) and 
secondary (more specialized molecules) metabolism (Erb and Kliebenstein 2020). 
Primary metabolites consist of the products of photosynthesis, glycolysis, the tricar-
boxylic acid cycle (TCA cycle), biosynthesis of amino acids, lipids, and some natural 
polymers. Cu NPs minimized the negative effects of drought stress on photosyn-
thetic pigments and promoted plant growth, development and grain yield in Zea 
mays L. (Van Nguyen et al. 2021). Foliar application of silica (SiO2) and ZnO 
NPs in Cucumis sativus L. significantly increased chlorophyll content and various 
amino acids and modulated carbon metabolic processes in leaves (Li et al. 2021a). In 
contrast to primary metabolism, secondary metabolism yields structurally diverse and 
specialized metabolites, such as phenylpropanoids (polyphenols, flavonoids, antho-
cyanins, xanthones, stilbenes), terpenes, polyketides, prenylated phloroglucinols, 
alkaloids, and organosulfur compounds (glucosinolates, thioesters). These metabo-
lites play a role as phytoalexins, phytoanticides and phytoncides (defense systems 
against many biotic stresses), antioxidants (control ROS), chelators (scavenging free 
metal ions), UV protectants, growth regulators, and factors against abiotic stresses 
(Feng et al. 2021b; Nobahar et al. 2021). Various NPs including iron (Fe), cerium 
(Ce), and SiO2, altered secondary metabolite content in lettuce and pepper seedlings 
(Kalisz et al. 2021). 

6.2.1 Impact of NPs on Precursors of Secondary Metabolism 

The effects of different types of NMs on precursors of secondary metabolites have 
been analyzed in detail in algal, monocotyledonous, and dicotyledonous plant models 
(Table 6.1). Many studies have captured the effects of NMs on the pentose phos-
phate pathway, glycolysis, and the TCA cycle, and have linked carbohydrates and 
organic acids to these processes. The upregulation of these metabolic pathways and 
compounds is related to defense mechanisms and their additional roles as chelators 
and osmoprotectors (Li et al. 2019; Nobahar et al. 2021). Moreover, Ag (Chavez Soria 
et al. 2017), CuO (Zhao et al. 2017a), Cu(OH)2 (Zhao et al. 2018a), CdO (Večeřová 
et al. 2016), CeO2 (Salehi et al. 2018), graphene-based (Hu and Zhou 2015; Ouyang 
et al. 2015; Chen et al. 2021), WS2 (Yuan et al. 2018) and fullerols (Zhao et al. 
2019) affected the fatty acids and lipid compositions of various plant species such 
as Arabidopsis thaliana (L.) Heynh., C. sativus, Z. mays, Hordeum vulgare L. and 
Phaseolus vulgaris L.

Amino acid metabolism is an important bridge between primary and secondary 
metabolites. Many amino acids are important precursors in the biosynthesis of alka-
loids (e.g., arginine, lysine, ornithine, phenylalanine, proline, tryptophan, tyrosine),
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Table 6.1 Alteration of plant primary metabolites due to NP treatment/exposure 

Plant species Treatment 
(NPs, variants, size, 
concentration) 

Omic 
approach 

Changes in metabolism Reference 

Arabidopsis 
thaliana (L.) 
Heynh 

Citrate-Ag 1–10 nm, 
PVP-Ag 1–10 nm, 
Ag+ (AgNO3), 1 mg/L 

M ↑N-acylethanolamines, 
↑ phytosphingosine 
(d20:3, d20:2), 
↓ purine nucleoside 
(PVP-Ag), ↓fatty 
acids, ↓ lyso-PG, ↓ 
lyso-PE, ↓ lyso-PC 

Chavez 
Soria et al. 
(2017) 

Ag 10 nm, 
Ag+ (AgNO3), 
12.5 mg/L 

M ↑TCA cycle, 
↑ carbohydrates, 
↑ threonine, ↓ amino 
acids (Val, Ser and 
Asp, melatonin) 

Ke et al. 
(2018) 

PVP-AgNPs 32 nm, 
30 mg/L 

T Trp metabolism, 
2-oxocarboxylic acid 
metabolism, 
α-linolenic acid, Gly, 
Ser and Thr 
metabolism 

Zhang 
et al. 
(2019a) 

CuO > 50 nm, 10 mg/L M ↑ amino acids 
(N-acetylornithine, 
Phe) 

Chavez 
Soria et al. 
(2019) 

ZnO 20 nm, 
0.16, 0.8, 4, 20, 100 mg/L 

T pyruvate 
decarboxylase-2, 
glutathione transferase, 
fructan exohydrolase, 

Landa 
et al. 
(2015) 

Cucumis sativus L C60 Fullerols 
1, 2, 5 mg/plant 

M ↓ fatty acids (linolenic 
acid) 

Zhao et al. 
(2019) 

P ↑chloroplast proteins 
(PSII, CAB, Mg-PPIX, 
Cyt b6f), ↑ glycolysis 
proteins, ↑ antioxidant 
proteins (ferritin, 
cystatins, tocopherol 
cyclase), ↓ TCA-cycle 
proteins, ↓ GST, 

Ag 20 nm, 4, 40 mg, 
Ag+ (AgNO3), 0.04, 
0.4 mg 

M ↑ TCA-cycle, 
↑carbohydrates and 
polyols, ↑aminoacids, 
↓ N-metabolism, 

Zhang 
et al. 
(2018)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

CuO 40 nm, 200, 400, 
800 mg/kg 

M amino acids (↑ Gly, ↑ 
Pro, ↓Asp, ↓Cit, ↓Met, 
↓Pip, ↓ox-Pro, ↓Orn), 
carbohydrates (↑ 
xylose, ↑ fructose), 
organic acids 
(↑ glutaric, ↑ lactic 
acid, ↓citric, ↓xylonic 
acid), fatty acids (↑ 
caprylic, ↑ linolenic, ↑ 
pelargonic acid, 
↓capric acid), polyols 
(↓myo-inosytol) 

Zhao et al. 
(2017a) 

CuO 40 nm, 10, 20 mg/L M ↑amino acids, ↓ 
organic acids 

Zhao et al. 
(2016a) 

Cu2+ (CuSO4), 
0.21, 2.1, 10 mg 

M ↑ aromatic amino 
acids, ↓ TCA-cycle, 

Zhao et al. 
(2018b) 

Cucumis sativus L Cu(OH)2, 50–1000 nm, 
2.5, 25 mg 

M ↑ polyols, ↑ saturated 
fatty acids, 
↓ carbohydrates 
(pentose), 
↓ unsaturated fatty 
acids, 

Zhao et al. 
(2018a) 

Zea mays L ↑ glycolysis, ↑ 
TCA-cycle, ↑ 
carbohydrates, ↑ 
saturated fatty acids, ↑ 
amino acids and ↑ 
N-metabolism, 
↓unsaturated fatty 
acids 

Oryza sativa L TiO2 20 nm, 
100, 250, 500 mg/L 

M ↑ glycolysis, ↑ pentose 
phosphate metabolism, 
↑ TCA-cycle, ↓ 
glyoxylate and 
↓dicarboxylate 
metabolism 

Wu et al. 
(2017) 

ZnO 30 nm, 
0–100 mg/L 

M Ala, Asp, Glu 
metabolism, taurine 
and hypotaurine 
metabolism 

Li et al. 
(2021b)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

GO 0.5–5 μm × 2.0 nm, 
0.01–1.0 mg/L 

M ↓ galactose 
metabolism, 
↓ glyoxylate and ↓ 
dicarboxylate 
metabolism, ↓ 
TCA-cycle, ↓ amino 
acids metabolism (Iso, 
Leu, Val, Gly, Ser, Thr) 

Li et al. 
(2018a) 

P ↓ galactose 
metabolism, ↓pentose 
phosphate pathway, ↓ 
starch and sucrose 
metabolism, ↓ sulfur 
metabolism, ↓ 
glycolysis, ↓ amino 
sugar and ↓ nucleotide 

Hordeum vulgare 
L 

CdO 7–60 nm, 2.03 × 
105 particles/cm3 

M ↑ biosynthesis of 
aromatic amino acids, 
↑ fatty acids, 
↓ carbohydrates, ↓ 
TCA-cycle, 

Večeřová 
et al. 
(2016) 

Spinacia oleracea 
L 

CeO2 10–30 nm, 0.3, 
3 mg  

M ↑ amino acids, ↓ 
carbohydrates, 
↓ organic acids 

Zhang 
et al. 
(2019b) 

Phaseolus vulgaris 
L 

CeO2 10–30 nm, 
250, 500, 1000, 
2000 mg/L 

M ↓ lipids, ↓ polyols, ↓ 
carotenoids, 

Salehi 
et al. 
(2018)P ↑ glutamine 

synthetase, ↑ 
lipoxygenase, ↑ 
lipid-transfer protein, ↓ 
alpha-galactosidase, ↓ 
inositol 
monophosphatase 

Lactuca sativa L Cu(OH)2 50 nm, 8.75, 
12.9, 17.5 mg/pot 

M ↑ amino acids, ↓ 
TCA-cycle 

Zhao et al. 
(2016b) 

Solanum 
lycopersicum L 

MWCT 
50 mg/L 

M ↓ cysteine and 
methionine and carbon 
metabolism 

McGehee 
et al. 
(2017)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

Chlorella vulgaris 
Beijerinck 

GOQDs 10–40 nm, 
0.1–10 mg/L 

T Exposure: ↑ nitrogen 
metabolism, ↑ Arg and 
Pro metabolism, 
↑ porphyrin and 
chlorophyll 
metabolism, Recovery: 
↑ carbon fixation, ↑ 
glyoxylate and 
↑ dicarboxylate 
metabolism, ↑ 
propanoate 
metabolism, ↑ Val, Leu 
and Ile degradation, 
↓ photosynthesis, 

Kang et al. 
(2019) 

M Exposure: ↑galactose 
metabolism, ↑ Lys 
biosynthesis, 
↓aminoacyl-tRNA 
biosynthesis, Phe 
metabolism, Gly, Ser 
and Thr metabolism, ↓ 
Tyr metabolism, ↓ Ala, 
Asp, Glu metabolism 
Recovery: ↑ galactose 
metabolism, ↑ Gly, Ser 
and Thr metabolism, ↑ 
Phe metabolism, ↑ 
starch and sucrose 
metabolism, Recovery: 
↓ methane metabolism 

GO 0.8 − 1.0 nm, 
GOQD 4.8 − 5.2 nm, 
0.01–10.0 mg/L 

M Amino acids (↑ Ala, ↑ 
Iso, ↑ Val, ↑ Glu, ↓ 
Asp, ↓ Ser, ↓ Thr), ↑ 
fatty acids, 

Ouyang 
et al. 
(2015) 

Metal-WS2 (nanosheets), 
0.1, 1, 10 mg/L 

M ↑ Ala, Asp and Glu 
metabolism, ↑ Arg and 
Pro metabolism, ↑ 
GSH metabolism, ↑ 
Gly, Ser and Thr 
metabolism, ↓ 
glycerolipid 
metabolism, ↓ starch 
and sucrose 
metabolism 

Yuan et al. 
(2018)

(continued)
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Table 6.1 (continued)

Plant species Treatment
(NPs, variants, size,
concentration)

Omic
approach

Changes in metabolism Reference

Triticum aestivum 
L 

G, GO, 0.4–2.0 μm × 
0.8 nm, 
200 mg/L 

M ↑carbohydrate, ↑ 
amino acid, ↑ fatty 
acid, ↓ glycolysis, ↓ 
BCCA 

Hu and 
Zhou 
(2015) 

GO, rGO 1 - 5 μm × 
0.8–1.2 nm, GOQD 
10–50 nm × 2.1–2.5 nm, 

M ↑ soluble sugar Li et al. 
(2018b) 

Withania 
somnifera (L.) 
Dunal 

Zn:AgO, 20–50 nm, 
MWNT, 
20 mg/L 

M ↑ Calvin cycle, ↑ 
carbohydrate 
metabolism 

Singh 
et al. 
(2019) 

Medicago sativa L G 20–70 nm, 1–2% T ↑ biosynthesis of 
amino acids, ↑ linoleic 
acid metabolism 

Chen et al. 
(2021) 

Abbreviations: G-graphene, GO-graphene oxide, GOQD-graphene oxide quantum dots, MWNT-
multiwalled carbon nanotubes, M-metabolomics, P-proteomics, T-transcriptomics, direction: ↑ up-
regulation/increasing, ↓ down-regulation/decreasing

glucosinolates (e.g. methionine, leucine, isoleucine, phenylalanine, tryptophan), and 
phenylpropanoids (e.g., phenylalanine and tyrosine) (Barros and Dixon 2020; Jan  
et al. 2021). Ag, CuO, Cu(OH)2 NPs and Ag+, Cu2+ ions stimulated accumulation of 
aromatic amino acids in C. sativus tissues, Z. mays (Zhao et al. 2016a, 2018b, 2018a; 
Zhang et al. 2018), A. thaliana (Chavez Soria et al. 2019) and Triticum aestivum L. 
(Feng et al. 2021a). The biosynthesis of other amino acids was up regulated by, ZnO 
(Li et al. 2021b), C60 fullerols (Zhao et al. 2019) and graphene NPs (Chen et al. 2021; 
Hu and Zhou 2015). 

6.2.2 Impact of NPs on Secondary Metabolism 

A number of studies reported the effects of NPs on plant secondary metabolism 
(Table 6.2). Accumulation of shikimate and phenylpropanoid pathway products was 
observed in cucumber and maize after foliar application of Cu(OH)2 (Zhao et al. 
2018a) in wheat exposed to Ag (Feng et al. 2021a), in pepper exposed to SiO2 or 
Fe2O3 (Kalisz et al. 2021) and in A.thaliana exposed to CuO (Chavez Soria et al. 
2019) NPs. On the other hand, the amount of phenylpropanoids in lettuce, spinach, 
cucumber, and barley were decreased by Cu(OH)2 (Zhao et al. 2016b, 2017b), CeO2 

(Zhang et al. 2019b), soil application of CuO (Huang et al. 2019), and CdO (Večeřová 
et al. 2016). Relatively low doses of CeO2 NPs induced metabolic reprogramming 
by affecting flavonoids and phenolic compounds in roots and leaves of P. vulgaris 
(Salehi et al. 2020).
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Table 6.2 Alteration of plant secondary metabolites due to NPs treatment/exposure 

Plant species Treatment 
NPs, variants, size, 
concentration) 

Omic 
approach 

Changes and direction Reference 

Arabidopsis 
thaliana (L.) 
Heynh 

Ag 10 nm, 
Ag+ (AgNO3), 
12.5 mg/L 

M ↓ shikimate-phenylpropanoid 
(gallic acid, benzoic, 
scopoletin) 

Ke et al. 
(2018) 

Ag 10, 40, 100 nm, 
Ag+ (AgNO3), 
0.5, 1, 5 mg/L 

M ↑ indole phytoalexins 
(camalexins derivatives) 

Kruszka 
et al. 
(2020) 

PVP-AgNPs 
32 nm, 30 mg/L 

T glucosinolate biosynthesis 
tropane, piperidine and 
pyridine alkaloid biosynthesis 

Zhang 
et al. 
(2019a) 

CuO > 50 nm, 
10 mg/L 

M ↑ phenylpropanoids 
(p-coumaroylagmatine, 
scopoletin), ↓ isothiocyanates 

Chavez 
Soria et al. 
(2019) 

Cucumis sativus 
L. 

C60 Fullerols 
1, 2, 5 mg/plant 

M ↑ shikimate-phenylpropanoids 
(quinic acid, 3-hydroxyflavon, 
4-vinylphenol, 
1,2,4-benzenetriol, methyl 
trans-cinnamate), 

Zhao et al. 
(2019) 

Ag 20 nm, 4, 
40 mg, 

M ↑ shikimate-phenylpropanoids Zhang 
et al. 
(2018)Ag+ (AgNO3), 

0.04, 0.4 mg 
↑ shikimate-phenylpropanoids 

CuO 40 nm, 400, 
800 mg/kg 

M ↑ benzoates (gallic acid, 
benzoic acid), ↓ 
phenylpropanoids (o-, 
p-coumaric, caffeic, ferulic, 
chlorogenic acid), vanillic 
acid, dehydroascorbic acid, 
gluthatione, curcumin, 
α-tocopherol 

Huang 
et al. 
(2019) 

CuO 40 nm, 200, 
400, 800 mg/kg 

M ↑ benzoic acid Zhao et al. 
(2017a) 

CuO 40 nm, 10, 
20 mg/L 

M ↑ shikimate-phenylpropanoids Zhao et al. 
(2016a) 

Cu2+ (CuSO4), 
0.21, 2.1, 10 mg 

M ↑ phenylpropanoids, ↑ 
anthocyanins, ↓ flavonoids, ↓ 
ascorbate 

Zhao et al. 
(2018b) 

Cucumis sativus 
L. 

Cu(OH)2, 
50–1000 nm, 2.5, 
25 mg 

M ↑ shikimate-phenylpropanoids Zhao et al. 
(2018a) 

Zea mays L. ↑ shikimate-phenylpropanoids

(continued)
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Table 6.2 (continued)

Plant species Treatment
NPs, variants, size,
concentration)

Omic
approach

Changes and direction Reference

Oryza sativa L. TiO2 20 nm, 
100, 250, 
500 mg/L 

M ↑ shikimate metabolism Wu et al. 
(2017) 

ZnO 30 nm, 
0–100 mg/L 

M phenylpropanoid biosynthesis Li et al. 
(2021b) 

GO 0.5 – 5 μm × 
2.0 nm, 
0.01–1.0 mg/L 

P ↓ phenylpropanoids 
metabolism 

Li et al. 
(2018a) 

Hordeum 
vulgare L. 

CdO 7–60 nm, 
2.03 × 105 
particles/cm3 

M ↓ phenolic compounds Večeřová 
et al. 
(2016) 

Hpericum 
perforatum L. 

Ag 15 nm, Au 
14 nm, Cu 25 nm, 
Pd 15 nm 
25 mg/L 

M ↑ xanthones, benzophenones, 
benzoates, anthraquinones 
↓ flavonoids, hydroxycynamic 
acid derivatives 

Kruszka 
et al. 
(2022) 

CeO2 10 nm, CuO 
25–55 nm, TiO2 
5–15 nm, ZnO 
30–40 nm 
25 mg/L 

↑ flavonoids, xanthones 

Spinacia 
oleracea L. 

CeO2 10–30 nm M ↓ phenolics Zhang 
et al. 
(2019b) 

Cu(OH)2 50 nm, 
1.8, 18 mg/L, 
Cu2+ (CuSO4), 
0.15, 1.5 mg/L 

M ↓shikimate-phenylpropanoids 
(ferulic acid), ↓ antioxidants 
(ascorbic acid, threonic acid, 
tocopherol) 

Zhao et al. 
(2017b) 

Phaseolus 
vulgaris L. 

CeO2 10–30 nm, 
0, 250, 500, 1000, 
2000 mg/L 

M ↑shikimate-phenylpropanoids 
(cinnamyl acetate, salicin, 
lignin), ↑ flavonoids and 
isoflavonoids, ↑↓terpenes, ↑↓ 
alkaloids 

Salehi et al. 
(2018) 

Lactuca sativa 
L. 

Cu(OH)2 50 nm, 
8.75, 12.9, 
17.5 mg/pot 

M ↓ shikimate-phenylpropanoids 
(caffeic acid, chlorogenic acid, 
3,4-dihydroxycinnamic acid), 

Zhao et al. 
(2016b) 

Lactuca sativa 
L. 

CeO2 4 nm,  Fe2O3 
6 nm,  and SiO2 
10 nm, 
1.5% suspension 

M ↓ 3,4-diOH-benzaldehyde, ↓ 
ferulic acid, ↓ p-coumaric 
acid, ↓ salicylic acid, 
↓vanillin, ↑ gallic acid, ↑ 
vanillic acid 

Kalisz 
et al. 
(2021) 

Capsicum 
annuum L. 

M ↑ chlorogenic acid, ↑ 
neochlorogenic acid, ↑ ferulic 
acid, ↑protocatechuic acid

(continued)
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Table 6.2 (continued)

Plant species Treatment
NPs, variants, size,
concentration)

Omic
approach

Changes and direction Reference

Solanum 
lycopersicum L. 

MWCT 
50 mg/L 

M ↑ anthocyanins, ↑ carotenoids, 
↑ diterpenoids↓ isoquinoline 
alkaloid biosynthesis, 
↓flavone and flavanol 
biosynthesis 

McGehee 
et al. 
(2017) 

Triticum 
aestivum L. 

G, GO, 400–2000 
× 0.8 nm, 
200 mg/L 

M ↑shikimate Hu and 
Zhou 
(2015) 

Ag T ↑ phenylpropanoid 
biosynthesis 

Feng et al. 
(2021a) 

Withania 
somnifera (L.) 
Dunal 

Zn:AgO, 
20–50 nm, 
MWNT, 
20 mg/L 

M ↑ anthocyanins, ↑ terpenoid 
(withanolide) biosynthesis 

Singh et al. 
(2019) 

Medicago sativa 
L. 

G 20–70 nm, 1–2% T ↑ isoflavonoid biosynthesis, ↑ 
phenylpropanoid biosynthesis 

Chen et al. 
(2021) 

Abbreviations: G-graphene, GO-graphene oxide,MWNT- multiwalled carbon nanotubes, 
M-metabolomics, P-proteomics, T-transcriptomics, ↑ up-regulation/increasing, ↓ down-
regulation/decreasing 

The concentration of benzoic acid and gallic acid was increased, while the content 
of hydroxycinnamic acid derivatives was reduced in C. sativus when exposed to CuO 
NPs (Huang et al. 2019). In Solanum lycopersicum L., more anthocyanins and fewer 
flavonoids were formed after treatment with MWCT (McGehee et al. 2017). 

Metal and metal oxide NPs have got impact on the biosynthesis of phenyl-
propanoids in the Hypericum perforatum L. cells (Kruszka et al. 2022). Metal 
nanoparticles (Ag, Au, Cu and Pd) increased accumulation of xanthones, prenylated 
xanthones and beznophenones and reduced levels of flavonoids and hydroxycinnamic 
acid derivatives in cells. In contrast to this, the level of flavonoids was increased in 
biomass by the CuO nanoparticles treatment. 

NMs have altered the metabolism of alkaloids, a group of compounds that 
possesses high biological value as defense metabolites (Erb and Kliebenstein 2020). 
Salehi et al. (2018) reported that the concentration of (s)-corytuberine, laudano-
sine, and precursors of naphthylisoquinoline alkaloids decreased, while the content 
of demecolcine, β-caconine, and tropionone increased in P. vulgaris after foliar 
application of CeO2 NPs. Accumulation of taxane and tropane alkaloids was 
reported after Ag NPs treatment (Shakeran et al. 2015; Jamshidi and Ghanati 
2017) and hyoscyamine and scopolamine after exposure to ZnO NPs (Asl et al. 
2019). Metabolome and transcriptome analyses have shown that the biosynthesis of 
isoquinoline alkaloids was downregulated by MWCT in S. lycopersicum (McGehee
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et al. 2017) and GOQD (graphene oxide quantum dots) in Chlorella vulgaris 
Beijerinck (Kang et al. 2019). 

Camalexin is a major indole phytoalexin produced by A. thaliana in response to 
biotic and abiotic stresses. Application of Ag NPs induced the accumulation of this 
compound (Kruszka et al. 2020). Transcriptomic analysis showed that metabolism of 
tryptophan (camalexin precursor) is upregulated by exposure of A. thaliana to PVP-
Ag NPs (Zhang et al. 2019a). The same research shows that exposure upregulates the 
biosynthesis of glucosinolates—precursors of isothiocyanates (biologically active 
form). 

6.3 Molecular Mechanisms of Nanomaterials-Induced 
Secondary Metabolic Changes 

Secondary metabolite profiles in plants are dynamic and can change under biotic 
(pathogen and insect attack) and abiotic (UV radiation, drought, temperature, salinity 
and heavy metals.) stress conditions. In particular, the interaction between NMs and 
plants leads to overproduction of ROS, oxidative stress, membrane structure impair-
ment, alteration of antioxidant activities, altered secondary metabolism, hormone 
pathways, and signal transduction (Fu et al. 2014; Hossain et al. 2015). For example, 
secondary metabolic changes were associated with increased levels of ROS, pheny-
lalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) in A. thaliana exposed 
to 250 and 1000 mg/L CeO2 and indium oxide (In2O3) NPs, respectively (Ma et al. 
2016). Moreover, they also alter the expression of genes related to cell division, 
cell organization, electron transport, and biotic and abiotic stress pathways (Landa 
et al. 2012; Van Aken 2015). The molecular mechanisms associated with changes of 
secondary metabolites triggered by NMs are summarized in Fig. 6.1.

6.3.1 Reactive Oxygen Species 

ROS is the most rapid response of plants to all stresses and plays a dual role in both 
triggering the defense system and enhancing cell damage or disruption of signal 
transduction (Dat et al. 2000). NMs are known to induce ROS in plants (Marslin 
et al. 2017; Ranjan et al. 2021). The induction of ROS has been observed in both 
apoplast and chloroplast, preceded by intracellular calcium and MAPK signaling 
mechanisms (Marslin et al. 2017). Moreover, the molecular aspects of NPs-induced 
ROS on cell wall-related processes and secondary metabolism have been studied 
in detail for all stimulatory and inhibitory effects in plants (Berni et al. 2019). It 
was found that the effect of NPs on the plant system is concentration dependent. 
Higher concentrations were found to be toxic while lower concentrations resulted in 
beneficial effects (Jalil and Ansari 2019).
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Fig. 6.1 Schematic diagram showing various cellular responses in response to NMs. NMs cause 
oxidative stress through overproduction of ROS, activation of the antioxidant defense system, 
lipid peroxidation, membrane damage, calcium bursts, activation of MAPK signaling pathways, 
and altered secondary metabolism in plants. Upward pointing arrows indicate increased abun-
dance and downward pointing arrows indicate decreased abundance in the plant cell. Abbrevia-
tions: SOD, superoxide dismutase; APX, ascorbate peroxidase; GST, glutathione transferase; GR, 
glutathione reductase; DHAR, dehydroascorbate reductase; PAL, phenylalanine ammonia lyase; 
PPO, polyphenol oxidase. (Figure constructed by G. Franklin and P. Shakya)

The ROS mechanism triggered by NPs to induce oxidative stress has been studied 
in different plant systems. In A. thaliana, the accumulation of ROS was induced 
by exogenous application of 100–5000 mg/L Ag NPs. These Ag NPs activate Ca2+ 

and ROS signals by inducing a transient increase in Ca2+ and direct oxidation of 
the major plant antioxidant, L-ascorbic acid (Sosan et al. 2016). In Allium cepa 
L. treatment with 0–80 mg/L Ag NPs led to the formation of ROS, resulting in 
DNA structural damage and eventual cell death (Panda et al. 2011). Treatment 
with Ag NPs altered proteins involved in redox regulation and sulfur metabolism in 
Eruca sativa Mill. roots (Vannini et al. 2013). Moreover, the formation of ROS was
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observed in Spirodela polyrhiza L. by inhibiting ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (Rubisco) activity and photoprotective capacity of PSII in the pres-
ence of Ag NPs (Jiang et al. 2017). Another study demonstrated the role of NiO NPs 
in H. vulgare by reporting that the overproduction of ROS led to oxidative stress and 
increased lipid peroxidation. However, simultaneous treatment of SiO2 NP with NiO 
resulted in an antioxidant response with decreased lipid peroxidation, highlighting 
the protective role of nano-SiO2 (Soares et al. 2018). Another study shows that the 
phytotoxic potential of cobalt oxide (Co3O4) NPs reduces seed germination, root 
growth, DNA and mitochondrial damage, oxidative stress and cell death in eggplant, 
while it increases ROS, membrane potential and nitric oxide (NO) (Faisal et al. 2016). 
Besides generating ROS, Ag and Ag+ NPs coated with polyvinylpyrrolidone (PVP) 
promote gene expression of stress-related genes in A. thaliana (Kaveh et al. 2013). 

6.3.2 Calcium Ion Signaling 

During various stresses, Ca2+ ions act as second messengers and provide Ca2+ ion 
channels for plant adaptation to adverse conditions (Tuteja and Mahajan 2007). 
The interaction of fullerene C60 nanocrystals (nano-C60) suspended in water with 
Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been shown to modulate 
Ca2+ signal transduction function (Miao et al. 2014). In addition, Ag NPs bind to 
calcium receptors, Ca2+ ion channels, and calcium-sodium ATP pumps, thereby regu-
lating cell metabolism. Ag NPs in Oryza sativa L. have been found to be involved in 
Ca2+ ion regulation and signaling, protein degradation, cell wall synthesis, transcrip-
tion, oxidative stress tolerance, cell division, and apoptosis (Mirzajani et al. 2014). 
Proteomic studies also revealed the abundance of superoxide dismutase (SOD), L-
ascorbate peroxidase (APX) and glutathione transferase (GST) in detoxification or 
oxidative reaction pathway (Mirzajani et al. 2014). Reports showed the role of NO 
in increasing cytosolic Ca2+ ions using Nicotiana plumbaginifolia L. cells and it also 
stimulates the activity of protein kinases during physiological processes (Lamotte 
et al. 2006). 

6.3.3 Phytohormone Signaling 

Plant metabolism is highly influenced by hormone regulation during plant growth, 
which mediates numerous responses to plant stresses (Santner et al. 2009). Several 
reports have shown the significant influence of NPs on plant hormones. For example, 
Fe2O3 NP uptake had a significant effect on IAA and ABA content in roots of 
transgenic and non-transgenic rice (Gui et al. 2015). Similarly, CeO2 NPs have a 
differential effect on indole-3-acetic acid (IAA), abscisic acid (ABA) and gibberellic 
acid (GA) in leaves and roots of transgenic and conventional Bt cotton compared to 
the control group (Nhan et al. 2015). Thin-walled carbon nanotubes (CNTs) treatment
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reduced the growth of O. sativa seedlings by decreasing the content of endogenous 
plant hormones such as IAA, GA, IPA, JA, BR and ABA (Hao et al. 2016). In A. 
thaliana, the response to ZnO NPs is associated with a decrease in growth, cytokinins 
and auxins in apices. Moreover, a higher dose led to an increase in the levels of ABA 
and SA, while it suppressed the levels of JA (Vankova et al. 2017). Similarly, Ag 
NPs were found to inhibit ethylene perception (ET) by hindering ET biosynthesis in 
A. thaliana (Syu et al. 2014). 

6.3.4 Nitric Oxide (NO) Signaling 

NO is a universal signaling molecule that plays an important role in nanomaterial-
triggered changes in plant secondary metabolism. For example, NO burst leads to the 
accumulation of saponins and artemisinin during fungal attack (Zhang et al. 2012). 
In Pisum sativum L., NO showed protection against Ag NP induced phytotoxicity 
through increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) 
activity and reduced glutathione reductase (GR) and dehydroascorbate reductase 
(DHAR) activities (Tripathi et al. 2017). On the other hand, CdO NPs showed a 
significant effect on primary metabolism of barley plants with an increase in total 
amino acids in roots and leaves and a decrease in saccharides in roots, but had no 
effect on secondary metabolites (Večeřová et al. 2016). 

6.4 Applications of Nanomaterial-Induced Secondary 
Metabolic Changes 

6.4.1 NPs as Biostimulants 

Plant biostimulation is a process that leads to changes in plant metabolism in order to 
use available environmental resources more efficiently, increase tolerance to environ-
mental stresses, and increase yield (Juárez-Maldonado et al. 2019). NPs are used as 
novel biostimulants to promote plant growth under stress conditions. Stimulation of 
secondary metabolites such as alkaloids, terpenoids, phenolic compounds, glucosi-
nolates and flavonoids reduces the deleterious effects of environmental stress in plants 
(Rajput et al. 2021). For example, increased melatonin synthesis by application of 
ZnO NPs helped in controlling drought-induced damage in Z. mays (Sun et al. 2020). 
Melatonin is a secondary metabolite and is known to improve stress tolerance in plants 
by stimulating antioxidant activities (Marioni et al. 2008; Debnath et al. 2020). The 
quality, visual attractiveness and nutritional properties of Punica granatum L. sap 
have been found to be affected by the reduction of bioactive compounds such as 
anthocyanins and punicalagin under drought stress (Mena et al. 2013). Spraying
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leaves with selenium NPs increased phenolic content and improved the quality of 
drought-affected fruits of P. granatum (Zahedi et al. 2021). 

6.4.2 NPs as Elicitors of Phytopharmaceuticals 

Controlled elicitation is a strategy to increase the production of important secondary 
metabolites. As described in the previous sections, plants recognize different types 
of NMs and induce their secondary metabolism, which opens a new opportunity 
to improve the production of pharmaceutically important compounds in medicinal 
plants (Marslin et al. 2017; Shakya et al. 2019; Kruszka et al. 2020; Rivero-Montejo 
et al. 2021). Elicitation of several classes of secondary metabolites such as glucosino-
lates, terpenes and alkaloids have been reported to be obtained using NPs. The chem-
ical structure of some pharmaceutically important secondary metabolites elicited 
using NMs is shown in Fig. 6.2.

6.4.2.1 Flavonoids 

Flavonoids are natural bioactive compounds found predominantly in various parts of 
plants and have been attributed to various pharmacological and therapeutic properties 
(Panche et al. 2016). In Momordica charantia L., an increase in flavonoid concen-
tration induced by 5 mg/L Ag NPs was observed (Chung et al. 2018c). Stimulation 
of Thymus daenensis Celak. plant cells with SWNT increased the total flavonoid 
content (Samadi et al. 2021). Quercetin is an important and abundant flavonoid 
from plants with rich pharmaceutical properties such as antitumor, anti-infective, 
anti-inflammatory and antioxidant activities (Qi et al. 2020). Increased quercetin 
content was observed in shoots and roots of Nigella arvensis L. treated with 50 mg/L 
NiO NPs (Modarresi et al. 2020). The level of several flavonoid aglycones like 
apigenin, kaempferol and quercetin was increased upon treatment with the Ag, Au, 
Cu and Pd NPs treatment, whereas flavonoid glucosides like quercetin 3-O-hexoside 
or quercetin 3-O-malonylhexoside was elicited by CuO NPs treatment in H. perfo-
ratum L. cell suspension cultures, (Kruszka et al. 2022). Anthocyanins are another 
subgroup of flavonoids and play an important role in the nutraceutical, pharmaceu-
tical and food industries. After the application of ZnO NPs in the shooting culture 
of Lilium ledebourii (Baker) Boiss., an increase in anthocyanin concentration was 
observed, and the effect of polyphenol induction was dose-dependent (Chamani et al. 
2015). Similarly, stimulation with SiO2 NPs increased the concentration of the anti-
cancer flavonoids xanthomicrol, isocaempferide, and cirsimaritin in the hairy roots of 
Dracocephalum kotschyi Boiss. (Nourozi et al. 2019b). Treatment of D. kotschyi cell 
suspension cultures with Fe3O4 magnetite NPs increased the content of rosmarinic 
acid, naringin, carvacrol, rutin, quercetin, apigenin and thymol (Taghizadeh et al. 
2021).
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Fig. 6.2 Some of the pharmaceutically important secondary metabolites elicited from medicinal 
plants using NMs; (1) naringenin, (2) apigenin (R1 = H, R2 = OH, R3 = H, R4 = OH, R5 = H, 
R6 = H), (3) cirsimaritin (R1 = H, R2 = OMe, R3 = OMe, R4 = OH, R5 = H, R6 = H), (4) 
xanthomicrol (R1 = OMe, R2 = OMe, R3 = OMe, R4 = OH, R5 = H, R6 = H), (5) kaempferol 
(R1 = H, R2 = OH, R3 = H, R4 = OH, R5 = OH, R6 = H), (6) isokaempferide (R1 = H, R2 

= OH, R3 = H, R4 = OH, R5 = OMe, R6 = H), (7) quercetin (R1 = H, R2 = OH, R3 = H, R4 

= OH, R5 = OH, R6 = OH), (8) catechin, (9) chlorogenic acid, (10) cichoric acid, (11) atropin, 
(12) hyoscyamine, (13) scopolamine, (14) artemisinin, (15) carnosic acid, (16) tanshinone, (17) 
γ-mangostin, (18) garcinone B, (19) emodin, (20) fusaroskyrin. (Figure constructed by D. Kruszka)
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6.4.2.2 Phenolic Acids 

Phenolic acids are an important group of plant secondary metabolites with a 
wide range of bioactivities, including anticancer, anti-inflammatory, neuroprotective, 
antioxidant, and antimicrobial activities (Kiokias et al. 2020). The phenolic acids, 
such as chlorogenic acid, coumaric acid, gallic acid, and tannic acid, were accumu-
lated after the callus of Prunella vulgaris L. was exposed to Ag, Au, and Ag/Au 
NPs (Fazal et al. 2016). Moreover, Ag NPs induced the biosynthesis of phenolic 
acids more strongly than AgNO3 in the hairy root culture of Cucumis anguria L. 
(Chung et al. 2018b). Ag and Cu NPs stimulated the secretion of hydroxycinnamic 
acid and hydroxybenzoic acid derivatives from H. perforatum cells into media of 
cell suspension cultures (Kruszka et al. 2022). 

6.4.2.3 Glucosinolates 

Glucosinolates are a group of Sulphur-containing hydrophilic secondary metabolites 
found primarily in members of the Brassicaceae and related families (Poveda et al. 
2020; Wu et al.  2021). Glucosinolates exhibit some pharmacological bioactivities 
such as anti-inflammatory, antimicrobial, cholinesterase inhibitory, antioxidant and 
anticancer properties (Maina et al. 2020). Ag NPs induced biosynthesis of glucosino-
lates, a group of compounds responsible for response to pathogen attack, in addition 
to phenolic compounds in seedlings of Brassica rapa L. (Thiruvengadam et al. 2015). 
Treatment of hairy roots of Chinese cabbage with CuO NPs increased the accumu-
lation of glucosinolates (Chung et al. 2018c). Moreover, the extracts of hairy roots 
released showed higher antimicrobial activity compared to the control. 

6.4.2.4 Terpenoids 

Terpenes and terpenoids are biogenic volatile organic compounds of plant secondary 
metabolites with high biological activity against various human diseases (Kim et al. 
2020). The production of monoterpenes (linalool and linalyl acetate) in shoot cultures 
of Mentha longifolia L. grown under the influence of Co (0.8 mg/L) and Cu (0.5 mg/L) 
NPs (Talankova-Sereda et al. 2016). They reported that the higher production of 
essential oils corresponded with the growth index (Talankova-Sereda et al. 2016). 
Artemisinin, one of the important pharmaceutical compounds used as antimalarials, 
was induced by 2.5 and 5 mg/L Co NPs in A. annua cell culture (Ghasemi et al. 2015). 
Similar results were obtained after stimulation of A. annua hairy root culture by Ag-
SiO2 core–shell nanostructures (Zhang et al. 2013). A stimulatory effect of 8–21 nm 
Ag NPs on the increased production of diosgenin was observed in Trigonella foenum-
graecum L. seedlings (Jasim et al. 2017). ZnO NPs (0.1–10 mg/L) increased the 
biosynthesis of rebaudioside-A and stevioside in shoot cultures of Stevia rebaudiana 
(Bert.), in addition to the induction of oxidative stress (Javed et al. 2017). Similarly, 
chitosan nanofibers and cellulose nanofibers increased the production of betulinic
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acid and betulin in cell suspension cultures of Betula pendula Roth (Vahide et al. 
2021). 

6.4.2.5 Alkaloids 

Alkaloids are a large group of plant secondary metabolites with nitrogen atom(s) 
in their structure that exhibit a wide range of medicinally important bioactivities 
(Eguchi et al. 2019). Ag NPs induced the biosynthesis of atropine alkaloid in hair 
root culture of Datura metel L. and the highest level of atropine was detected after 
48 h of treatment (Shakeran et al. 2015). This NP -based elicitor was better than 
AgNO3 and two other biotic elicitors (Staphylococcus aureus F. J. Rosenbach and 
Bacillus cereus Frankland & Frankland). Hyoscyamine and scopolamine levels were 
significantly increased 24 h after application of 450–1800 mg/L Fe2O3 NPs in the 
hairy root culture of Hyoscyamus reticulatus L. (Moharrami et al. 2017). SiO2 NPs 
triggered the production of tropane alkaloids (hyoscyamine and scopolamine) in hair 
root cultures of two Hyoscyamus species namely, H. reticulatus and H. pusillus L. 
(Hedayati et al. 2020). Cell suspension cultures of Corylus avellane produced more 
taxol and baccatin III after treatment with 5 mg/L Ag NPs (Jamshidi and Ghanati 
2017). Available examples of the elicitation of pharmaceutically important secondary 
metabolites using NPs are summarized in Table 6.3.

6.4.2.6 Xanthones 

Xanthones are bioactive secondary metabolites that possess antibacterial, antifungal 
activities, and could inhibit acetylcholinesterase, butyrylcholinesterase and tyrosi-
nase (Badiali et al. 2018; Tusevski et al.  2018). Xanthones also possess neuroprotec-
tive activities (Xu et al. 2016; Velingkar et al. 2017). Ag, Au, Cu, Pd and CuO NPs 
stimulated accumulation of prenylated derivatives of xanthones (γ-mangostin, garci-
none B and hyperxanthone C), whereas glycosylated xanthones (eg.: mangiferin, 
homomangiferin, neomangiferin) content was increased after Au, Cu and Pd NPs 
treatment in cell suspension system of H. perforatum L. (Kruszka et al. 2022). 

6.4.2.7 Anthraquinones 

Antidepressant activities of H. perforatum L. extracts are attributed to naphthodi-
anthrones/ anthraquinones such as hypericin or pseudohypericin (Velingkar et al. 
2017). Hypericin content was increased by TiO2-perlite nanocomposite treatment 
in H. perforatum L. shoot cultures (Ebadollahi et al. 2019). Emodin and emodin 
anthrone contents were respectively increased by Pd and CeO2 NPs treatment in H. 
perforatum L. cell suspension cultures (Kruszka et al. 2022). In the above study, a 
98.6-fold increase of fusaroskyrin after Ag NP treatment was also reported.
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6.5 Conclusion and Prospects 

Plant secondary metabolites play an important role in plant’s fitness and adapta-
tion. Therefore, alteration of secondary metabolism by NPs could affect crop quality 
and agricultural productivity. The pharmacological properties of several medicinal 
plants are attributed to the crude extracts or decoctions and not to the individual 
compounds. Therefore, any alteration in the secondary metabolism of medicinal 
plants would affect their pharmacological potential and market value. Among the 
numerous compounds accumulated in plants, many of them possess antibacterial, 
antifungal, antiviral, anti-inflammatory, hepatoprotective, antidepressant, antioxi-
dant, neuroprotective and anticancer properties. A better understanding of the effects 
of NPs on plant secondary metabolism would allow us to develop strategies to help 
plants cope with the increasing presence of NPs in the environment and to develop 
new molecular pharmaceutical tools (Fig. 6.3). 

Fig. 6.3 The potential effects of secondary metabolic changes caused by NMs on other associated 
plant parameters. NMs can enter plants in both intentional and unintentional ways. Although changes 
in secondary metabolism could affect plants’ ability to protect themselves against pathogens, herbi-
vores, and adverse environmental conditions, as well as their ability to communicate with beneficial 
microbes, more research is needed to understand the exact consequences (Figure constructed by G. 
Franklin)
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Chapter 7 
Toxic Effects of Nanomaterials on Plant 
Cellular Mechanisms 

Ana A. Feregrino-Pérez, Susana Meraz Dávila, Claudia Elena Pérez García, 
Alejandro Escobar Ortiz, Daniel Mendoza Jiménez, 
José Emilio Piña Ramírez, José Antonio Cervantes Chávez, 
and Karen Esquivel 

Abstract Several nanomaterials (NMs) with great potential have been introduced 
to revolutionize the agricultural industry and are characterized by several advan-
tages and disadvantages. The toxic mechanisms of NMs to the plants depend on 
their physicochemical characteristics, such as nature, morphology, crystallinity, the 
surface area of the types involved, concentration, being a definitive property to make 
NMs toxic or non-toxic. General mechanisms of NMs plant toxicity to the plant cells 
are growth inhibition, seed germination, root elongation, biomass reduction, leaf 
numbers alteration, and fresh plant weight changes. NMs exposure to plants results 
in various side effects, including reactive oxygen species (ROS) generation, lipid
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peroxidation, disruption of redox homeostasis, DNA, and membrane damage. There-
fore, the NMs can induce oxidative stress, interfere with plant growth, and induce 
genotoxicity. Despite numerous benefits of NMs for agriculture, exploring the risks 
of nanotoxicity due to the incorporation of NMs into food for human consumption 
has become imperative as engineered and incidental nanomaterials can cause future 
health problems. This chapter presents the results and progress made towards the toxi-
city of diverse nanomaterials to plant cellular mechanisms and future research direc-
tions to explain the roles of the NMs properties to ensure safe use in the agriculture 
sector, being this sector one of the main foods sources for human. 

Keywords Abiotic stress · Cellular mechanisms · Nanomaterials · Nanomaterial’s 
uptake routes · Nanotoxicology · Plants · Toxicology 

7.1 Introduction 

The relationship between plants and nanomaterials (NMs) could be interpreted as 
an accidental relationship due to their exposure to diverse compounds and materials 
in the nanoscale. Nevertheless, the use of the word “nano” goes beyond the size. It 
relates the morphology, crystallinity, reactivity, surface area, concentration, and all 
the chemical and physical characteristics that made the NMs unique compared to 
their bulk counterparts (Dev et al. 2018). 

Nanomaterials represent greatly the Nanotechnology and are helpful to construct 
new materials with different sizes 1–100 nm at least in one spatial dimension 
(Mageswari et al. 2016; Murr  2017). The applications of these materials have 
been in all possible areas throughout the past decade in medicine, pharmaceu-
tics, cosmetology, environment remediation, electronics, aerospace sciences, auto-
motive industry, materials engineering, textiles, food sciences, biotechnology, and 
agriculture. In the agri-food sector, NMs have been utilized as nano-fertilizers, nano-
pesticides, nano-additives, and nano-elicitors. All of them improve yield and generate 
better functional food efficiently and rapidly (Mathur and Roy 2020). 

Although the use of NMs has increased, their toxicity remains unknown in many 
cases. Despite their known toxic potential on fish, algae, bacteria, vertebrates, and 
invertebrates, much research is still lacking in this area. Jamil et al. (2018). Also, 
the use of NMs in the agri-food sector gives the uncertainty and the possibility of 
toxicity due to the materials uptake by the plants’ fruits and eventually reach the 
human being (see Fig. 7.1).

7.1.1 NMs Classification 

As mentioned earlier, the uptake of the NMs in plants will also depend on their 
chemistry classification NMs of mineral origin can be classified into two groups
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Fig. 7.1 NMs uptake pathway along the food chain (Created by K. Esquivel with BioRender)

according to their chemical composition: inorganic NMs do not contain carbon, and 
organic NMs are those that contain hydrocarbons. Inorganic NMs are based on metal 
oxides/hydroxides, metals, and transition metal chalcogenides (TMC-NM). Organic 
NMs include compact polymers such as nanospheres, nanocapsules, micelles, lipo-
somes, dendrimers, hybrid NMs, and carbon-based nanomaterials such as fullerenes, 
graphene, and carbon nanotubes. Moreover, carbon-based nanomaterials are consid-
ered a separate class of nanomaterials (Kumar et al. 2019), as shown in Fig. 7.2. 
Furthermore, NMs can be classified according to the number of their dimensions. 
0D includes materials with dimensions at a nanoscale level such as nanoparticles 
(NPs), 1D are NMs having at least one dimension at macroscale levels such as 
nanofibers and nanowires, 2D are materials with two dimensions at macroscale level 
such as nanosheets and thin films. Finally, 3D are bulk materials. Kumar and Sinha 
Ray (2018), Paramo et al. (2020).

7.1.1.1 Metal-Based Nanomaterials (Metallic and Oxides NMs) 

Usually, the plants are not as a few years ago encountered by metallic or metallic 
oxides NMs during their evolution, so there are no defensive mechanisms against 
these NMs. Therefore, the toxicity of metallic and metallic oxides NMs has emerged 
as a worldwide concern (Jamil et al. 2018). Some of the most toxicity studied NMs 
for agriculture applications and classified as metal-based are gold (Au), silver (Ag), 
iron (Fe), zinc (Zn), copper (Cu), magnesium (Mn), nickel (Ni), silicon (Si); and 
for the metallic oxide, NMs are TiO2, SiO2, ZnO, Fe3O4, CeO2, CuO, Al2O3, FeO 
(Al-Amri et al. 2020; Jahan et al. 2018; Mathur and Roy 2020; Picó et al. 2017).
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Fig. 7.2 Nanomaterial’s classification (Created by K. Esquivel with BioRender)

As mentioned, NMs are recommended as an additive due to their efficiency in 
their use as a nutrient, for plant growth, in seed germination, and their use for soil 
remediation, mainly for nutrient-deficient soils. However, there is still concern about 
the transfer of NMs to edible parts of the plant such as leaves, seeds, and fruits; 
since it is the one that can have access to animals and humans through the food 
chain, further research is required before its application on a larger scale (Al-Amri 
et al. 2020). Despite the rapid progress in the study of plant interaction with NMs, 
the determination of phytotoxicity of metallic NMs is complex due to the potential 
dissolution and uptake of metallic ions from metal oxide NMs. The determination of 
relevant components of the plant to NMs uptake is challenging due to the different 
mobility of the NMs. Moreover, the ability of specific plants to absorb NMs is 
currently unpredictable and unknown (Ullah et al. 2020). 

7.1.1.2 Carbon-Based Nanomaterials (MWCNT and SWCNT) 

Carbon-based NMs are widely used as conductive materials that mediate biological 
contamination removal, optical devices, medicine production, and drug delivery. In 
this type of NMs, it is possible to find fullerenes C70, fullerols (C60(OH)20), graphene, 
nanohorns, single wall and multi-wall carbon nanotubes (SWCNTs, MWCNTs) (Dev
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et al. 2018; Mageswari et al. 2016; Murr  2017; Samadi et al. 2021). In the agricul-
ture sector, some investigations demonstrated that carbon-based NMs minimized 
the oxidative stress in plants related to the morphology, solubility, functionality, 
concentration, and type of plant applied to (Samadi et al. 2021). 

Overall, in some cases, carbon-based NMs increase plant health by decreasing 
the hydrogen peroxide (H2O2) level and protein and lipid oxidation. However, no 
comprehensive review deals with the carbon-based NMs properties and their role 
in physiological and biochemical processes and pharmacological active compound 
accumulation in plants (Samadi et al. 2021). 

7.2 Uptake Routes of NMs in Plants 

The difference in the adsorption behavior of NMs and bulk materials lies, apart 
from the size, with the chemical interactions between the charged ions of the bulk 
materials and the soil since these charged ions form stronger electrostatic interactions 
than uncharged NMs. On the other hand, the size of the NMs also plays a vital role 
in the time it will remain in the soil, as NMs will have longer residence times, unlike 
bulk materials, which decreases the leaching of nutrients to the soil, increasing their 
availability for plant uptake (López-Moreno et al. 2018). The application of the NMs 
over the plants can be made by irrigation, leaves spray, and direct injection when 
the plants are in the soil. For the hydroponic treatments, the NMs are suspended in 
the nutritional solution, and those uptakes along the plants’ roots can be translocated 
along the stem, leaves, and even fruits (Paramo et al. 2020). So far, the most accepted 
model by which NMs act with plants is cell penetration. This has been seen at the 
in vitro level. However, the exact mechanism of uptake has not been understood. It 
has been reported that the endocytosis pathway plays an essential role for the uptake 
of NMs (Núñez and de la Rosa-Álvarez 2018). 

In vivo studies where NMs have been incorporated have been associated with 
moisture and nutrient uptake and depend on the plant development stage. In the 
embryonic root, the absorption of NMs occurs, and these are incorporated into the 
plant. In the aerial parts of the plant, the adsorption of NMs occurs, according to 
reports, by two main routes, the first by cuticular pathways and the second by stom-
atal pathways, diffusion of lipophilic chemicals and transport of polar or ionic solutes 
(Núñez and de la Rosa-Álvarez 2018). Nevertheless, all the information gained in 
the past decades about this topic remains with the same observations, the final mech-
anisms of toxicity and plant uptake of the NMs will depend on the type, physics, 
and chemical NMs characteristics along with the type of plant and type of NMs 
application over the proper plant or crop (Gwinn 2019). 

The anatomical structure of the plant surface favors the deposit of different NMs. 
In shoots with epicuticular structures, the lotus effect occurs, which consists in the 
decrease of wettability, and this allows the deposit of different NMs. Due to the 
different openings of the different structures that make up the plant, NMs could enter 
some structures: cuticle, mucilage, exudates, cell wall, cell membrane, and proteins
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Fig. 7.3 Uptake routes of the NMs in plants (Created by K. Esquivel with BioRender) 

(transporters, aquaporins, and ion channels). The latter allows NMs to enter the cell 
(Fig. 7.3). 

Uptake of metal NPs occur through specific ion transporters (Dev et al. 2018). 
NMs attach to specific cell membrane receptors and invaginate through a group of 
vesicle-forming proteins called clathrin or adaptin. This type of mechanism occurs 
in tiny NPs as a clathrin-coated vesicle has a size in the range of 70–120 n (Dev et al. 
2018). 

7.3 Nanomaterials and Their Toxic Effect on Plants 

Nanotechnology has been used in different fields; however, knowledge on its mech-
anism and toxic effects has not yet been well understood. The toxicity of nano-
material, mainly in plants, is affected by different factors such as size, solubility, 
shape, surface charge, concentration, composition, and thermodynamic properties. 
Although in recent years, the interest in the application of nanomaterials in agricul-
ture has been mainly devoted to improving yields and germination of seeds, crop 
production, detection of pesticide residues, and disease control. 

However, the negative impact and toxicity in different plant species have not been 
discussed in depth (Anjum et al. 2019; Elnashaie et al. 2018; Jeevanandam et al. 
2018; Lin and Xing 2007; Roco 2011).
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One of the recent multidisciplinary fields is nano ecotoxicology, dedicated to 
natural and synthetic materials with sizes on the nanoscale and their potentially 
dangerous effects on the environment and health in living systems (Cattaneo et al. 
2009; Boros and Ostafe 2020). Synthetic nanomaterials have been intentionally 
generated for specific applications which are considered potentially toxic since 
there has not been proper control of these; In addition, only some countries have 
been concerned with establishing some standards for the application of nanomate-
rials, such as the United States, Canada, and China. However, a thorough and deep 
study must be conducted since the most used particles in the case of pesticide and 
nutrient control are Ag, ZnO, Fe2O3, TiO2, NiO, Co, and Si, which are not adequately 
regulated (Sardoiwala et al. 2018). 

To avoid the unnecessary usage of plants, in vitro techniques have been used 
mainly for medicinal purposes, food additives, cosmetics since plants contain active 
ingredients facilitating rapid production and high quality in the plant, being able to 
extract metabolites without exploiting populations of wild plants (Verma et al. 2016). 
In vitro growth has excellent functionality for the evaluation of different parameters 
regarding the effects of nanoparticles such as the content of the nanoparticle, reactive 
oxygen species (ROS), cell death, cytotoxicity, enzymatic activity, therefore, to detect 
the effect of nanomaterials in different parts of the plant; however, the study of the 
potential impact of these nanomaterials on specific ecological processes has not yet 
been expanded. 

Through in vitro culture technique, distinct nanomaterials have been used, such as 
metal oxide NPs; principally ZnO and TiO2, carbon nanotubes (MWCNT), semicon-
ductors, and polymeric nanoparticles (Hu et al. 2009; Panda et al. 2011; Bagherzadeh 
and Ehsanpour 2016; Verma et al. 2019; García-Sánchez et al. 2021) where metallic 
NPs have more significant toxicity on the plants since they trigger the formation 
of ROS. However, the use of nanoparticles has been evaluated as having lower 
cytotoxicity than ionic or colloidal species. 

Although the importance in the ecological impact has not been observed in a 
response of a specific genetic relationship to nanomaterials, changes have been seen 
in the plant transcriptome (Van Aken 2015), due to metallic NPs such as ZnO, 
affecting genes related to oxidative stress as well as the inhibition of genes for the 
development and growth of roots and the response to pathogens (García-Sánchez 
et al. 2021; Pagano et al. 2016; Remédios et al. 2012) being of great importance the 
transmission of NPs from the first to the second generation through the seeds. 

The application of nanotechnology in the agricultural sector has been proposed 
through an improvement in biological activity, where it has been used mostly in the 
seed, to improve its germination; however, inactivity times of certain species have 
already been perceived (Das et al. 2019; do Espirito Santo Pereira 2021; Lin and 
Xing 2007). 

It is known that the toxicity of the nanoparticle is due to its size since the surface 
area is more significant concerning the unit of mass-radius, which allows the nanopar-
ticle to react with its surroundings. Furthermore, the nanometric sizes of these parti-
cles can facilitate the entrance into the cell and have high chemical and biological 
reactivity. The rapid advancement in nanotechnology and the plants that are part of
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ecosystems has led us to study the interaction of NMs with seeds, plants, and crop 
soil. As several authors have described, whether a nanoparticle becomes toxic or 
creates oxidative stress has to do with its shape, size, and amount present (Al-Amri 
et al. 2020). Etesami et al. (2021) proposed that the safe amount used in agriculture 
research must be environmentally safe. 

7.3.1 Toxicity of Metal and Metal Oxide NMs 

Metallic NMs used in plant growth and development studies are of two types (1) 
metal oxides, which can influence plant growth and development; showing opposing 
effects, both beneficial and detrimental on the shoot and root growth, seed germi-
nation, biomass production, physiological and biochemical activities and (2) pure 
metals (Kumar et al. 2019). Plants interact with NPs through roots, and the uptake 
and translocation capacity of metal oxide NMs change concerning their concentra-
tion, bioavailability, solubility, and exposure time. The exact mechanism that causes 
plant defense against toxicity induced using metal oxides has not yet been addressed 
(Kumar et al. 2019). 

NMs of metal compounds and metal oxides alter plants’ morpho-anatomical, 
genetic, and physiological material when exposed to high concentrations, between 
100 to 1000 mg/L, as they cause high ROS production. On the other hand, there 
are plant species that do not show physiological changes in the presence of this 
type of NMs. In contrast, cowpeas (Vigna unguiculata L.) show significant vari-
ations in the activity of antioxidant enzymes and an increase in heat shock regu-
latory proteins (Verma et al. 2018). Ag NPs can induce DNA damage in plants, 
causing the formation of chromatin bridges, stickiness, disturbed metaphase, and 
multiple chromosomal breaks (Debnath et al. 2018). In mustard (Brassica nigra L.), 
Ag NPs reduced seed germination rate, lipase activity, and sugar content in germi-
nation seeds. Ag NPs at 800 mg/L suppressed HO-1 (Heme oxygenase) expression, 
contrary at lower concentration (200–400 mg/L) a protective effect was observed, 
since increased transcription of hemeoxygenase-1 gene was scored, and it showed 
overproduction of HO-1. This resulted in increased mustard resistance to Hg toxi-
city (Maroufpoor et al. 2019). Recently, it has been identified that HO-1 plays an 
essential part in several physiological processes: dormancy break, seed germination, 
growth and developmental regulation, stomatal closure, and adaptation response to 
environmental stress (Amooaghaie et al. 2015). 

Differential response to Ag NPs depends on plant species since, in the case of 
Triticum aestivum L. (wheat), a low amount of Ag (1–10 mg/L) decreased the fresh 
biomass production due to the root and shoot length reduction. The highest concen-
tration, 10 mg/L, changed the expression of several genes mainly involved in cell 
defense mechanisms such as HCF136 protein and cytochrome b5 (Vannini et al. 
2014). The exposure to 10 mg/L Ag NPs negatively affected the seedling growth 
and induced morphological modifications in root tip cells. Transmission electron 
microscopy (TEM) analysis suggests that the studied effects were due primarily to
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the release of Ag ions from Ag NPs. 2D-DE (two-dimensional DNA electrophoresis) 
profiling of roots and shoots treated revealed an altered expression of several proteins 
mainly involved in primary metabolism and cell defense (Maroufpoor et al. 2019; 
Vannini et al. 2014). 

Regarding crucial agroeconomic cultivation, tomato (Lycopersicon esculentum 
L.) was treated with different concentrations of Ag NPs: 50, 100, 1000, 2500, 
5000 mg/L, clearly decreasing the development of the roots, the activity of super-
oxide dismutase was higher, and the amount of chlorophyll was reduced (Kapinder 
et al. 2021). In addition, stressors on plants can affect their antioxidant activities, 
such as heavy metals so NMs may affect these physiological measures in similar or 
different ways (Song et al. 2013). The tomato treatments of 100 and 1000 mg/L Ag 
NPs solutions bore no fruit, although several flowers bloomed (Song et al. 2013). 
On the other hand, in Spinacia oleracea L., the treatment with TiO2 stimulated 
photochemical reaction, and subsequent studies proposed a mechanism based on the 
penetration of the TiO2 into the chloroplast. Followed by binding to the photosystem 
II and the beginning of the primary reaction, the charge separation, the amount of 
the chlorophylls a, chlorophylls b, and carotenoid molecules were reduced by higher 
concentrations of Fe3O4 (10–50 μL/L) in Zea mays L. In contrast, the chlorophylls 
a/b ratio and the photosynthesis process were decreased by low or high concentra-
tions of Fe3O4 (Chichiriccò and Poma 2015). More effects related to metal-based 
NMs are presented in Table 7.1.

Most of the studies on the phytotoxicity of metal NPs have been carried out using 
Ag NPs. However, more studies are needed to understand how the migration of NPs 
occurs and all the changes that can occur at the cellular level. There are still few 
studies to try to understand the mechanism of NPs in the regulation of metabolites. 

7.3.2 Toxicity of Carbon-Based NMs 

Investigations have shown that treatments with multi-walled carbon nanotubes 
(MWCNTs) in leaf cell cultures of Arabidopsis thaliana L. and Oryza sativa L. 
decrease superoxide dismutase (SOD) activity, which is associated with a decrease 
in chlorophyll synthesis and at the same time an increase in the production of reactive 
oxygen species (ROS) and an increase in the apoptotic process. On the other hand, 
single-walled carbon nanotubes (SWCNTs) are known to penetrate the membrane 
of spinach chloroplasts, increasing electron flow and their photosynthetic activity 
(Jahan et al. 2018). Plant-enclosed nanotubes have been proposed to be used as nitric 
oxides (NOx) detectors because SWCNTs were shown to be sensitive to NOx. When 
Allium cepa L. was exposed to fullerol (C60 (OH)24), it resulted in cell necrosis and 
generation of ROS, leading to the loss of membrane integrity (Chichiriccò and Poma 
2015; Kumar et al. 2019). More examples are listed in Table 7.2. Phytotoxicity by 
nanoparticles of carbon compounds occurs mainly by blocking cell pores, leading to 
cellular changes by the migration of nanoparticles into the cell.
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7.4 Altered Enzyme Activity 

It is well known that plants have two pathways to carry out antioxidant defense 
mechanisms: (1) the enzymatic and (2) the non-enzymatic. The first one includes 
the enzymes catalase (CAT), superoxide dismutase (SOD), glutathione reductase 
(GR), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and dehydroascor-
bate reductase (DHAR). The non-enzymatic mechanism is the glutathione, ascorbate, 
thiols, and phenolic compounds (Kumar et al. 2019; Rajput et al. 2021). Interestingly, 
metallic oxide-NMs are reported to activate the antioxidant machinery in plants 
recorded enhanced activities of superoxide dismutase (SOD), catalase (CAT), and 
peroxidase (POX) in wheat plants that are treated with Fe3O4. The  TiO2 induced cata-
lase and glutathione reductase (GR) activities in water thyme (Hydrilla verticillata 
L.). 

Enzymes are natural biocatalysts of a protein origin. The action of several enzymes 
carries out all biochemical reactions of cellular metabolism. Some studies have 
demonstrated that the presence of nanoparticles adversely affects the enzymes in 
plants. For example, it was demonstrated an apparent reduction in the activities of 
dehydrogenase and oxide-reductase in plants after the exposition to TiO2, Al2O3 

(Kapinder et al. 2021). Nevertheless, treatment with La2O3 or CuO has been demon-
strated in zucchini (Cucurbita pepo L.) and tomato (Solanum lycopersicum L.) to  
inhibit root and shoot elongation and biomass, as well as induce ROS conducting to 
programmed cell death (Cota-Ruiz et al. 2020). 

Nowadays, the NMs are considered a great source of stress factors for plants since 
there is a possibility to change the structure and the constitution of the cell wall and 
membrane of the plants (Juárez-Maldonado et al. 2021). Several studies have shown 
that the carbon and metallic NMs can produce stress in the plant, generating an excess 
of ROS. These ROS can affect proteins, lipids, carbohydrates, DNA and is well known 
to induce oxidative damage and alteration in ion transport across the cell membrane 
(Dev et al. 2018). These NMs can access the plant cells throughout the root system, 
composed of the xylem, phloem, and cortex (Sardoiwala et al. 2018). Considering 
the size of the NM, they can easily penetrate across the restriction barriers of plant 
surfaces and develop their cytotoxic effects (Sardoiwala et al. 2018). In some specific 
cases, the size of the NMs is too large to get access by the root system. Then these 
NMs use natural plant openings like flower stigma, hydathodes, and stomata (Dev 
et al. 2018). 

Several NMs like TiO2, Fe3O4, ZnO, Al2O3, and CrO3 and carbon-based NMs 
like carbon nanotubes have been tested for their effect produced in plants. Both 
Arabidopsis thaliana L. and wheat (Triticum aestivum L.) affect cell morphology, 
mitochondrial function, apoptosis process, and plasma membrane permeability. In 
general, nanoparticles changed the cell morphology and damaged membrane (Liu 
et al. 2021; Majeed et al. 2020; Sardoiwala et al. 2018). 

Once the NMs are inside de cell, the metal-base of the NMs is converted into reac-
tive metal ions, which react with functional groups present in proteins altering their 
biochemical activity (Dev et al. 2018). The large surface area of these NMs absorbs
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the different molecules such as nutrients and ions found in the milieu, resulting in 
indirect toxicity symptoms like chlorosis, wilting, abortion of fruit, sterile flowers, 
and drying of fruit (Jahan et al. 2018). Sometimes the production of ROS increases. 
This produces oxidative damage resulting in lipid peroxidation, DNA damage, and 
cell death. Another essential change due to the presence of NMs is the modification 
in the number of hormones such as cytokinin and auxins. On the other hand, it has 
been observed that CuO (10, 50, and 300 mg/L) produced adverse effects on a cotton 
field, causing significant decreasing changes in the concentrations of indole-3-acetic 
acid (IAA) and abscisic acid (ABA) (Hao et al. 2016; Jordan et al. 2018). 

The jasmonic acid (JA) is an indicator of plant stress and can lead to the expression 
of several stress-related genes such as Dgl, LeAos3 (Hatami et al. 2019; Jordan et al. 
2018). These changes upregulated the genes responsible for increasing the shikimic 
acid pathway, related to the production of secondary metabolites like alkaloids, 
aromatic metabolites, tannins, flavonoids, and lignin (Jordan et al. 2018). Recently, 
in rice (Oryza sativa L.), a reduction in the synthesis of phytohormones like abscisic 
acid (ABA), brassinolide (BR), and JA due to treatment with MWNTs (Multi-walled 
nanotubes), Fe-CNTs, and FeCO-CNTs (Jordan et al. 2018). In Zea mays L., metallic 
NMs block the transpiration and decline in hydraulic conductivities; in Cucurbita, 
pepo L. also reduces the transpiration. In green peas at a concentration from 0– 
500 mg/Kg of Zn nanoparticles (NPs) reduce the amount of chlorophyll until 85%, 
revealing that 200 mg/Kg causes toxicity effects. The first symptom was the absence 
of chlorophyll (leaves were changing from green to yellow), then loss of turgidity, 
and finally abscission of the leaves (Mukherjee et al. 2014). 

7.5 Altered Gene Expression 

The genotoxicity of NMs, referred to as any interaction with the gene expression, 
has been studied in a few plants Arabidopsis thaliana L., Sesamum indicum L., 
Spinacia oleracea L., Triticum aestivum L., Solanum lycopersicum L., Cucurbita 
pepo L., Allium cepa L., Glycine max L., Nicotiana tabacum L., Oryza sativa L., 
and Hyoscyamus niger L. 

Some NMs like CeO2 and Ag NPs produced genotoxicity in soybean and onion. 
The study demonstrated that they were detected in seeds, seedlings, and plants. In 
adult plants, they were present in the vascular system and leaves, suggesting uptake 
and translocation of the nanomaterial, respectively. Also, ZnO NPs (1, 10, and 50 
μgm/L) damaged both root epidermal and cortical cells and significantly reduced 
Lolium perenne L. (ryegrass) growth. Besides, 10 mg/L or lower rates of these NPs 
did not influence root length (Khan et al. 2019a, b; Khan 2020). Acclimation to 
stress conditions and flexibility of the plant phenotype is related to the presence of 
genes that respond to stress conditions and genes that aid plant survival (Jordan et al. 
2018). Like eukaryotes, the plant genome is shaped by interactions between histone 
proteins that regulate chromatin structure and DNA. In tests conducted, it could be 
observed that genetic changes due to DNA mutations, changes in DNA methylation



186 A. A. Feregrino-Pérez et al.

pattern, histone modifications, and RNA interference play a key role in regulating 
plant genes (Khan et al. 2019a, b; Khan 2020; Khanna et al. 2015). 

Studies have shown that epigenetic alterations in plants are responsible for control-
ling several aspects of their life cycle, including growth and development, fruiting 
time, and flowering. On the other hand, NMs cause epigenetic changes in DNA 
methylation and histone modification, including carbon-based NMs. Global acetyla-
tion and deacetylation are involved in plant responses to environmental stresses. The 
study of Yan et al. (2013) analyzed dynamic changes in histone acetylation during 
maize seedlings following SWCNT treatment. Maize seeds were germinated and 
treated with SWCNTs (20 mg/L). Chromatin immune staining in situ detection for 
root cells prepared at various time points using an antibody to acetylated H3 at lysine 9 
(H3K9ac) was performed. Immunostaining using only secondary antibodies showed 
no specific labeling of nuclei. The results exposed that SWCNTs inhibited histone 
H3K9 acetylation. The expression levels of acetylated H3 at lysine 9 in cells were 
gradually increased as the extension of seed imbibition, and SWCNTs suppressed 
such an increase in global acetylation of H3K9 (Yan et al. 2013). 

The hypermethylation occurred in the presence of MWNTs, which could guide the 
plants to respond to stress, as hypermethylation can also occur in plants responding 
to drought stress (Pagano et al. 2016). The up-regulation of abiotic stress-responsive 
genes following exposure to carbon-based NMs is related to the plant species. 
In tomatoes, this phenomenon has been studied in response to MWNT exposure. 
Fullerene soot (FS) showed a similar influence on Arabidopsis thaliana L. since 
defense genes involved in abiotic and biotic stress were up-regulated (Jordan et al. 
2018). Additionally, up-regulation of the genes involved in defense and wounding 
responses elicited by foreign body or injury indicate mechanical damage of roots 
upon exposure to FS. 

The roots of Allium cepa L., Glycine max L., and Nicotiana tabacum L. were 
exposed to NMs composed of Ag, ZnO, CeO2, and TiO2. It is known that these NMs 
altered the root meristem of several plant species when these materials were applied 
on. Correspondingly, the assays were random amplified polymorphic DNA and tests 
with comet and DNA laddering techniques (Chichiriccò and Poma 2015). The inhibi-
tion of the growth of the roots of treated plants was related to molecular phenomena of 
cell division and DNA damage. Also, DNA alterations were observed in Zea mays L.  
treated with TiO2 reported by (Chichiriccò and Poma 2015). Solanum lycopersicum 
L. was exposed to carbon nanotubes (CNT), which resulted in the downregulation of 
genes associated with root and leaves and upregulation of genes associated with stress 
and water channels (LeAqp2). In a new study, the exposure of MWCNT resulted in 
upregulation of marker genes NNtPIP1, NtLRX1, and CycB, which are involved in 
the formation of the cell wall and cell divisions (Khodakovskaya et al. 2012; Kumar 
et al. 2019).
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7.6 Proteins Damage 

One of the alterations that have given a wide field of study is oxidative stress, which 
causes plants to produce reactive oxygen species (ROS) that can damage cell compo-
nents and impair their functions. Plants continually encounter conditions that produce 
ROS, which is removed by a plant antioxidant system involving enzymes, proteins, 
and other metabolites that maintain cellular homeostasis (Kohan-Baghkheirati and 
Geisler-Lee 2015; Stadtman and Levine 2000). 

The interaction between NP and is mediated by various mechanisms that can 
be chemical or physical. ROS production, cell membrane ion transport disruption, 
lipid peroxidation, or oxidative damage all correspond to chemical interactions. The 
preceding given that the NM to enter the plant cells act as metal ions, reacting with 
the sulfhydryl and carboxyl groups, altering the activity of the proteins. In general, 
oxidative stress and ROS production cause modification in proteins called protein 
oxidation (protein oxidation) (Stadtman and Levine 2000). 

Oxidation in proteins is generally measured with the levels of protein carbonyl 
increase because an increase or decrease in proteins is the first response of the plant 
to oxidative stress. However, this does not always occur. Plants can also accumu-
late or synthesize types of proteins such as heat shock proteins (HSPs) (Zhao et al. 
2016, 2012), Zinc-finger proteins (Takatsuji 1999), mitogen-activated protein kinase 
(MAPK) (Cristina et al. 2010), among others. Nevertheless, they are still one of 
the main targets of ROS. The phytotoxicity of NMs has been widely evaluated at 
the morphological, physiological, and biochemical levels. However, few studies have 
given importance to the modification at the proteomic level, even though proteins are 
essential in all living cells as they have several functions such as cell signaling, regu-
lation, catalysis, intra- and intercellular movement of nutrients and other molecules, 
membrane fusion, support, and structural protection (Anjum et al. 2015). Their func-
tion will depend on their structure, acquired after ribosomal synthesis of their amino 
acid chain. In addition, the conformation of a protein will depend on the physical and 
chemical conditions of the protein environment, which is easily affected by extreme 
temperatures, reactive molecules, metal ions, and the presence of foreign agents 
such as NMs that disrupt the folding process of a newly synthesized protein giving 
incorrect folds (Hasan et al. 2017). 

Vannini et al. (2014) observed the molecular response of exposing wheat seeds 
with commercial 10 mm Ag NPs coated with PVP (Polyvinyl pyrrolidone) using a 
concentration of 10 mg/L for all experiments. No effect on seed germination speed 
was observed, and proteomic analysis confirmed that roots are the main targets of 
toxic effects; roots and shoots were analyzed. Several proteins involved in primary 
metabolism were detected, confirming that metabolic adaptation of the plant is 
essential when exposed to external agents. 

In the roots, the presence of three α-amylases and a fructose bisphosphate aldolase 
was observed, confirming that there was a lower accumulation of amyloplasts in root 
cells exposed to Ag NPs. In Ag NPs-treated shoots, increased aconitate hydratases 
were observed, indicating that enzymes were produced that help regulate oxidative
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stress caused by the NPs. The negative impact of NPs on shoots is also confirmed by 
the downregulation of HCF136 protein, which is essential for biogenesis (Vannini 
et al. 2014). 

Tripathi et al. (2017a, b, c) observed the effect of Ag NPs, at concentrations of 
1000 and 3000 μM on Aloe vera and Pisum sativum L. plant, to follow the effect of 
protein oxidation follows the production of antioxidative enzymes using the method 
of Giannopolitis and Reis (1977). They conclude that enzyme production was low, 
so it had an inadequate response to the presence of Ag NPs, which resulted in a 
decrease in plant size due to the stress produced by the NPs (Tripathi et al. 2017a, b, 
c; Singh et al. 2017). 

Salama (2012), made a study of how the main characteristics change among the 
carbohydrate and protein content of economically important plants such as common 
bean (Phaseolus vulgaris L.) and maize (Zea mays L.), using five concentrations 
of silver nanoparticles (20, 40, 60, 60, 80 and 100 mg/L). It was observed that low 
concentrations (20 to 60 mg/L) of Ag NPs had a stimulating effect on crop growth 
and increased the concentration of proteins and carbohydrates but increasing the 
concentration of Ag NPs reduced these compounds (Salama 2012). 

Tang et al. (2016), performed a microarray analysis of toxicogenomic effects of 
CuO in Arabidopsis thaliana L. The experiment was carried out using two concen-
trations of 10 and 20 mg/L of CuO. At the same time, the experiment was done 
using Cu2+ ions, for these ions were used concentrations of 0.8 and 1. 35 mg/L. The 
toxicogenomic assay was done, and this showed that out of 1035 genes, 603 were 
up or downregulated. The 47 positively altered genes were analyzed using real-time 
PCR and agreed with the microarray analysis. It was observed that the upregulation 
of genes involved in response to stress response when NPs were used (Tang et al. 
2016). 

Mirzajani et al. (2014), carried out a study with Ag NPs to understand the popu-
lation and subpopulation of proteins and track environmental stresses. They exposed 
Oryza Sativa L. to a colloidal solution of spherical Ag NPs. The proteomic analysis 
revealed that 28 Ag NPs-sensitive proteins were identified (decrease and increase 
in excess). The proteins identified in both root and plant are related to oxidative 
stress tolerance. Direct DNA/RNA/protein damage at the cellular level, cell division, 
transcription and protein degradation, and apoptosis, showing the interaction of NPs 
with cell metabolic processes such as synthesis/degradation and apoptosis (Mirzajani 
et al. 2013, 2014). 

Vannini et al. (2014), observed that the part that suffered the most damage when 
Ag NPs were present were the roots  ́ plants. Differentially expressed proteins were 
found in roots and shoots, which may be related to differences in the amount of 
Ag accumulated in these two organs. The accumulation of the enzymes, three α-
amylases, and one fructose bisphosphate aldolase agree with the observation that 
there was a lower amount of amyloplasts in root cells exposed to Ag NPs, in shoots 
increased levels of aconitate hydratases. The alteration of stress levels by Ag NPs 
can translate into a decrease in plant size (Vannini et al. 2014). 

Rico et al. (2014), observed the growth of wheat plants in soils previously treated 
with cerium oxide NPs (CeO2) at concentrations of 0, 125, 250, and 500 mg/Kg
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and showed the effect on growth, yield, and nutritional value of wheat (Tricum 
aestivum L.). Modifications were observed in the roots but not in the leaves, husk, 
and grains, which speaks of poor transport of Ce to the rest of the plant. As a finding, 
they identified that CeO2 interfered with increasing amino acid (AA) content in 
wheat grains. There is no other study on this effect with nanomaterials, so it makes 
its interpretation challenging. However, the studies proved that AA metabolism or 
protein content was modified in wheat and rice, while several NPs modified protein 
levels (Rico et al. 2013a, b; Rico et al.  2014). 

Yasmeen et al. (2017), show a proteomic study to see how it affected Cu and Fe 
NPs in wheat plants. 25 mg/L of Cu and Fe NPs were used, and free-gel proteomic 
analysis was done, finding total changes in abundance of 58, 121, and 25 proteins 
in wheat seeds of three species Galaxy-13, Pakistan-13, and NARC-11. Then an 
increase of 25 mg/L of Cu NPs was done, increasing SOD activity, suggesting that 
Cu NPs improve stress tolerance of wheat (Hossain et al. 2020; Yasmeen et al. 2018; 
Yasmeen et al. 2017). 

Rani et al. (2016) evaluated the use of Ag NPs synthesized chemically and biolog-
ically (S–Ag NPs and B-Ag NPs) on water hyacinth (Eichhornia crassipes L.). 
NPs were placed in concentrations of 1, 10, and 100 mg/L in the water where the 
plants were placed, and their growth was observed for five days, a decrease in the 
plant’s growth treated with S–Ag NPs. The biochemical analysis shows an increase 
in carbohydrates and proteins in the plants treated with B-Ag NPs and a decrease 
in the production of chlorophyll and phenol. In contrast, those treated with S–Ag 
NPs showed no change in the number of proteins and carbohydrates but a significant 
increase in the amount of phenol and chlorophyll. An increase in antioxidant enzyme 
activity was observed in S–Ag NPs-treated plants, and no such change was seen in 
B-Ag NPs (Rani et al. 2016). 

Zhao et al. (2012), studied the effect of adding CeO2 NPs in the soil where maize 
plants were grown; concentrations of 400 and 800 mg/Kg of CeO2 NPs were used. 
It was analyzed parameters related to oxidative stress such as H2O2, CAT, ascorbate 
peroxidase activity (APX), lipid peroxidation, and heat shock protein 70 (HSP70). 
The analyses concluded a stress response in the plant by producing HSP70 and H2O2, 
but there was no loss of membrane integrity, thus demonstrating that maize plants 
have a protective response to CeO2 particles (Zhao et al. 2012, 2013). 

Hossain et al. (2016), compared the phytotoxicity of Al2O3, ZnO, and Ag NPs on 
soybean seedlings at the proteome level. They observed that Ag NPs, ZnO produced 
significant root stiffness, plant growth, and root cell viability changes. Also, a consid-
erable oxidative stress gel-free proteomic analysis showed 104 changed proteins 
associated with metabolism, hormone metabolism, and cellular organization. Plants 
treated with Al2O3 maintained average growth and were favored with abundant 
proteins involved in oxidation–reduction, growth-related hormonal pathways and 
could be a key to optimal soybean growth under stress in the presence of Al2O3 

(Hossain et al. 2016, 2020). 
The effect of using Cu NPs at concentrations of 1, 5, 10, and 50 mg/L on 

Pakistan-13 and NARC-11 species of wheat using proteomic technique increasing 
metabolism-related proteins in Pakistan-13 species and NARC-11 species, increases



190 A. A. Feregrino-Pérez et al.

in photosynthesis-related proteins were observed. In contrast, glycolysis and the 
tricarboxylic acid cycle proteins increased with exposure to NPs in both species. 
The plant was benefited in growth when 10 mg/L Cu NPs were used (Yasmeen et al. 
2017). 

Mustafa et al. (2016) studied the effect of Ag NPs size on soybean seeds, using 
three sizes of NPs 10, 15, and 50–80 nm at a concentration of 5 mg/L. Morphological 
analysis revealed that Ag NPs with a size of 15 nm promoted soybean growth under 
flooded conditions. An increase of 228 proteins was observed under flooding condi-
tions with and without pin the presence of small Ag NPs. A decrease in the number 
of proteins related to protein synthesis was observed compared to the control group. 
In contrast, the number of proteins related to amino acid synthesis and ribosomal 
proteins was increased in the presence of 15 nm Ag NPs, so it was concluded that 
the size of the nanoparticle might affect soybean growth by producing proteins when 
under stress (Hashimoto et al. 2020; Hossain et al. 2016; Mustafa et al. 2016). 

Hashimoto et al. (2020), performed a gel-free proteomic study to analyze the 
interaction of Ag NPs with nicotinic acid and potassium nitrate (KNO3) (5 mg/L  
Ag NPs, 8 μM nicotinic acid, and 0.1 mM HNO3) with soybean hypocotyl (Glycine 
max L.). Out of 6340 identified proteins, 351 presented significant changes, 247 
increased, and 104 decreased. These proteins were related to protein degradation 
and synthesis. Cell death was higher in soybean roots. Soybean seedlings exposed 
to Ag NPs, nicotinic acid, and KNO3 improved under flooding (subjected to stress), 
suggesting that the mixture positively affects soybean seedlings by regulating protein 
quality control and improving growth under flooding (Hashimoto et al. 2020). 

7.7 DNA Damage 

There are two known mechanisms involved in DNA damage produced by nanoparti-
cles. By direct physical contact, specifically, this interaction is carried out between the 
nitrogenous bases or breaking chromosomes. These actions impair basic processes 
of DNA replication by forming stable molecular adducts or by changing the regular 
gene expression pattern (Singh et al. 2017). 

The indirect damage produced in the DNA is related to the interaction of the 
whole proteins associated with the normal DNA function or by disturbing cellular 
mechanisms involved to maintain the cellular homeostasis. A clear example is an 
interference with proteins involved in the DNA replication-cell division process, the 
synthesis of ROS, and the endogenous ROS detoxification systems (Mehrian and De 
Lima 2016). This genotoxic capacity of nanoparticles depends on several factors, 
such as the size of the nanoparticle and its concentration. It is worth considering 
that the DNA damage is not uniform in the whole plant, considering their size and 
different cell compartments (Heikal et al. 2020; Kokina et al. 2015). The genotoxic 
effect of metallic and metallic oxides NMs has been investigated. The effect of 
ZnO of different sizes was studied in Allium cepa L. (onion), Nicotiana tabacum L. 
(tobacco), and Vicia faba L. (bean) at a concentration of 0.4 gr/L. This nanomaterial
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shows an increment in DNA damage due to genome fragmentations micronuclei. 
Then is possible to conduct cell cycle arrest and even cell death (Ghosh et al. 2016). 

Also, the nanoparticles produced by green synthesis using water extracts of the 
plant Eichhornia crassipess L. (water hyacinth) can induce several abnormalities in 
Allium cepa L. On this plant was observed a process called citomixis. Also, nuclei 
morphological changes were developed, and micronuclei formation was observed. 
Finally, an interesting effect was detected since the standard chromatin structure was 
missing; considering the importance of this epigenetic regulation, more research 
must be conducted on this topic (Heikal et al. 2020). The effect of ZnO produced 
either by chemical synthesis or green synthesis using latex from Calotropis gigantea 
L. was analyzed about the genotoxic effect on the plant Lathyrus sativus L. Similar 
damage was observed using both nanoparticles, analyzed by the comet test to observe 
DNA damage (Panda et al. 2017). The DNA damage produced by nanoparticles is 
also related to the oxidative stress produced by these materials. In an experiment 
conducted in celery (Coriandrum sativum L.) using Cu NPs at a concentration of 
200 mg/L to 800 mg/L of Cu NPs, a high increase in the H2O2 was measured 
either in leaves or roots. This oxidative burst can induce DNA mutations like dele-
tions (AlQuraidi et al. 2019). On the other hand, experiments conducted on eggplant 
(Solanum melongena L.) show the degree of DNA damage concerning the progres-
sion of the cell cycle using nanoparticles of cobalt oxide (Co3O4), a high increase 
in ROS production was detected even at low concentration of this nanomaterial 
(0.25–1 mg/ml). 

DNA fragmentation was observed, and a similar effect was obtained when TiO2 

or ZnO nanoparticles were used (Faisal et al. 2016, 2013). In the bryophyte plant 
Psyscpcomitrella patens, a treatment with manganese oxide nanoparticles (20 μg/ml) 
induces the synthesis of superoxide anion and H2O2. Also, the genotoxicity as DNA 
fragmentation was observed at a concentration as low as 10 μg/ml. The degree of 
DNA hypomethylation in these experiments was also analyzed, and it is essential to 
consider the impact of the methylation pattern with DNA epigenetic effects (Ghosh 
et al. 2019). In tomato (Solanum lycopersicum L.), the DNA stability is reduced 
by Ag NPs; this is related to the increase in the oxidative stress produced by the 
nanomaterial. A reduction in the endogenous antioxidant system was also detected 
(Çeki̇Ç et al. 2017). Besides the induction of DNA fragmentation, mutations due to 
oxidative stress also chromosome anomalies are detected in plants under treatment 
of metallic nanoparticles. The mitotic rate was drastically diminished in lentils (Lens 
culinaris Medik.) treated with TiO2. An increase in the chromosome abnormalities 
like sticky chromosomes at metaphase, fragmentation during anaphase, a lagged 
telophase, and micronuclei formation was evidenced due to this material (Khan 
et al. 2019a, b). The size of the particle is an essential feature to consider about the 
genotoxic property of the nanomaterials since a more dramatic genotoxic effect was 
observed in nanoparticles smaller than 10 nm, compared with bigger particles (Ghosh 
et al. 2016; Kokina et al. 2015). The small size is related to their solubility, reactivity, 
and interaction with several cellular compounds, either in animals or plants cells. 
Usually, the nanoparticles around 10–15 nm in size are stuck on the cell membrane. 
Then it is more feasible than the small size particles damage the DNA damage, due
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to this small size can reach the gene DNA compartment (Kokina et al. 2015). The 
effect of copper nanoparticles was studied in cucumber (Cucumis sativus L.) using 
10–30 nm particles. The cucumber DNA was analyzed by random DNA amplification 
of polymorphic DNA; the analysis of this material revealed mutations on the genome 
(Mosa et al. 2018). 

7.8 Plant Responses Towards NMs Toxicity 

The seeds germination and its mechanism are of great importance where it is mainly 
categorized by the absorption of water, the lag phase, and the exit of the root. It has 
been observed that nanoparticles enter the seed during water absorption, although 
they can also be absorbed on the surface of the seed coat (Campaña and Arias 2020; 
Das et al. 2019). 

Its transportation occurs through empty spaces present in parenchymal tissues, and 
its movement is across the cotyledons. The facile absorption in the seed can have both 
positive and negative influences. It is known that the nanoparticles uptake by the plant 
is through an active transport mechanism over the xylem where the nanoparticles are 
taken from the soil by the root of the plants. This transport is dependent on the size, 
the chemical interactions with molecules of the cell membranes, and the reactivity 
of the nanoparticles in the cytoplasm. That will produce different metabolic or struc-
tural biochemical pathways of the plant, which will be noticed in seed germination, 
seedling sprouting, radicle and plumule length, weight, enzymatic activities, antiox-
idants, and essential physiological processes such as photosynthesis and respiration 
(Campaña and Arias 2020; Das et al. 2019; Lin and Xing 2007). 

ROS production is the by-product of normal metabolic pathways that occur in 
cell organelles. However, under stress conditions, excess oxidation can be caused 
throughout electrons transference generating oxidative stress causing direct damage 
to the cell membrane permeability, proteins, and DNA, ultimately generating cell 
death (Anjum et al. 2015, 2019; Bagherzadeh Homaee and Ehsanpour 2016; Cabiscol 
et al. 2000; Faisal et al.  2013; Farooq et al. 2019; Jeevanandam et al. 2018; Mirzajani 
et al. 2013; Poborilova et al. 2013; Stadtman and Levine 2000; Tan et al. 2009; Tang 
et al. 2016; Zhao et al. 2016; Zulfiqar and Ashraf 2021). Generation of ROS or free 
radicals is one of the mechanisms that nanoparticles cause, forming more significant 
oxidative stress, lipidic peroxidation, and therefore inflammation of the cell. 

The oxidative stress can damage proteins and membranes, organelles, and DNA 
cells, generating necrosis of cellular structure, damage of the DNA membrane, growth 
retardation, lethality, autoimmunity, and the loss of cellular functions in the plant. The 
cytotoxic effects of nanoparticles affect cell morphology, mitochondrial function, 
plasma membrane permeability, and apoptosis (Stampoulis et al. 2009; Tripathi et al. 
2017a, b, c). In the case of soils with bacterial communities, it has been reported that 
titanium oxide and zinc oxide nanoparticles have altered essential soil processes. 
However, a direct connection has not been found concerning particle size, but metal
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ions, metal oxides, and sulfates, which biochemically disturb bacteria (Zhao et al. 
2016). 

First, to establish a nanomaterial as a toxic one, some properties must be consid-
ered, such as solubility in a specific material solvent that can impact the bioavail-
ability, the pH interval or physical state, susceptibility to form aggregates or agglom-
erates. ROS generation makes them able to act as carriers of toxic substances. 
However, it has been observed that the coating of the nanoparticles can minimize toxi-
city and the functionalization of some materials such as carbon nanotubes or silver 
nanoparticles. With coatings of organic or inorganic compounds to cover the surface 
and avoid aggregation like citrate, polyvinylpyrrolidone (PVP), and cetyltrimethy-
lammonium bromide (CTAB) have restricted their cytotoxicity (Cvjetko et al. 2017, 
2018; Messa and Faez 2020). The germination is not favorable, and it is believed that 
there may be a risk impact of nanomaterials both in humans and other life forms due to 
this uncontrollable addition. In general, the negative impacts of these nanomaterials 
have been seen primarily on the production of crops and harmful consequences in 
the ecosystem because they harm the microbial system of the soil, the availability of 
nutrients for arthropods and annelids, the soil inhabitants (Das et al. 2019; Dasgupta 
et al. 2017; Sardoiwala et al. 2018). 

The challenge is the correct determination of the number of nanomaterials applied 
to avoid impacts on the environment; therefore, toxicological research and the 
behavior of nanomaterials in the agricultural sector should be mandatory (Agath-
okleous et al. 2019; Das et al. 2019; Jeevanandam et al. 2018; Yan and Chen 2019). 
The nanoparticles concentration in seeds has been correlated with the toxicity of 
plants. At a high amount, an impact on germination has been observed and on root 
growth. However, at low doses of nanoparticles, the impact is negligible. The toxi-
city of the nanoparticles also affects the characteristics of the seed coatings regarding 
their thickness and chemical composition. The most pronounced effect has been the 
reduction in the germination index concerning the concentration and sizes of the 
nanoparticles, since below 100 nm nanoparticles can cross biological membranes 
with ease, observing it mainly in nanoparticles of Silicon (Si), Silver (Ag), Gold (Au), 
iron (Fe), copper oxide (CuO), zinc oxide (ZnO), titanium dioxide (TiO2), single-
walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), 
C60 fullerenes, Quantum Dots (QD), and virus-based nanoparticles (VNPs). Expo-
sure to high concentrations of nanoparticles above the threshold has adverse effects 
on plants (Ruttkay-Nedecky et al. 2017). 

The development of some consequences by nanoparticles both in plants and soils 
depends mainly on the physicochemical properties of nanoparticles, the conditions 
of the crop, and the type of plant species. It has been observed that they can generate 
positive and negative effects. One of the most significant situations is that nanopar-
ticles can change their structure and ionization state, which form complexes with 
other molecules or nutrients and even accumulate in such a way that they can nega-
tively affect plants (López-Moreno et al. 2018). The effects of nanoparticles in some 
cellular processes have been observed in their accumulation in the cellular system 
since it is not capable of breaking them, which causes a rupture of the DNA in the 
plant system and, therefore, the modification in the genome. However, more research
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is needed concerning these issues. Cells are affected by the modulation of cellular 
functions through various action mechanisms of nanomaterials such as the gener-
ation of oxidative stress, inflammation in cell membranes and organelles, and the 
generated genotoxicity due to the exposure of nanomaterials in viable cells (Das 
et al. 2019). Statistical studies have suggested that the addition of nanomaterials in 
seeds produces effective responses with particles with sizes greater than or equal 
to 100 nm. However, other parameters must be inquired in the toxicology of these 
nanoparticles, such as particle size, aggregation, hetero-aggregation, shape, surface 
functionalization, crystallinity, metal concentration, and stabilizers (Agathokleous 
et al. 2019; Tripathi et al. 2017a; b, c). 

To analyze the toxicity, the main parameters observed in the plant are the growth 
potential, seed germination percentage, biomass accumulation, and the leaf’s surface 
area. The most common symptoms are the obstruction of the pores and barriers in the 
apoplastic current, reduction of photosynthetic processes, generation of ROS, and 
damage to DNA structures, in addition to many severe anatomical and morphological 
changes (Ghosh et al. 2010; Panda et al. 2011; Shen et al. 2010; Vannini et al. 2014; 
Vishwakarma et al. 2017). Some investigations have shown both positive and negative 
effects in the application of nanoparticles in plants to morphological, physiological, 
cellular, and molecular levels (Das et al. 2019; Hasan et al. 2017; Jacob et al. 2013; 
Ruttkay-Nedecky et al. 2017; Song et al. 2013). As mentioned, NMs of different 
compounds have been used in agriculture, finding different plant behaviors (see 
Table 7.3).

The mechanism for the uptake and translocation of nanoparticles in plants depends 
on the type of plant and how the nanoparticles are added. In the case of the addition of 
the nanoparticles by the root, they penetrate the cell wall and the plasma membranes 
of the epidermal layers in the roots. However, studies have been carried out where the 
application of the nanoparticles is foliar, this thorough immersion or spray applica-
tion, which is not more effective, has been observed that when the leaves are exposed 
to the nanoparticles, they accumulate in the stomata instead of the vascular beam and 
finally move to different parts of the plant through the phloem, the accumulation is 
higher than when the nanoparticles are added by the roots (Chhipa 2019; Miralles 
et al. 2012; Raliya et al. 2016; Tripathi et al. 2017a, b, c). 

One of the most critical matters of the toxicity of nanoparticles is that they can 
accumulate in different areas of the plant. Once the nanoparticles enter the tissues, the 
transport directs to seeds and fruits, generating total contamination where human life 
is involved (Yan and Chen 2019). The interaction among plants and nanoparticles is 
complicated and is influenced by different parameters such as plant species and 
tissues, the intrinsic properties of nanoparticles such as size, concentration, and 
surface coating. However, it has been concluded that not all plants treated with 
nanoparticles exhibit toxic effects (Chhipa 2019; Hashimoto et al. 2020; Hossain 
et al. 2016; Jeyasubramanian et al. 2016; Liu and Lal 2015; Mustafa et al. 2016; 
Pradhan and Mailapalli 2020; Pradhan et al. 2013; Wang et al. 2016).
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7.8.1 Conclusions and Prospects 

Due to the increasing demand for food production needed to feed humanity is imper-
ative the implementation of new technologies to meet our food production targets. 
Nanotechnology, particularly nanomaterials, is a feasible alternative to implement 
in the agricultural sector. Nevertheless, as a new and emerging technology, several 
concerns firstly must be addressed, e.g., their toxic potential after introduction to 
the trophic chain. Also, their beneficial effects must be considered as inputs in agri-
cultural production. Some of the NMs tested are metal-based metal oxide-based 
and carbon-based materials. It is undeniable that NMs exert their toxic effect due 
to the highly oxidative molecules production, which negatively impacts DNA or 
membranes, impairing basic cellular processes. However, plant cells can counteract 
oxidative stress by enzymatic or non-enzymatic mechanisms, mainly avoiding the 
mutagenic effects on DNA and proteins. Some NMs induced plants to develop more 
radicular biomass, which will impact the amount of nutrients uptake and water. This 
will be reflected on stronger stems that support the fruits better, and some NMs 
improve leaf area development. Therefore, the amount of chlorophyll is higher, but 
we always have to consider the plant species since specific responses have been 
demonstrated. Therefore, the positive and negative effects of NMs must be evalu-
ated to establish protocols to guarantee their safety and benefits to humankind and 
environment. 
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Strautiņš J, Gerbreders V (2015) The impact of CdS nanoparticles on ploidy and DNA damage 
of rucola (Eruca sativa Mill.) plants. J Nanomater 2015 

Kumar N, Sinha Ray S (2018) Synthesis and functionalization of nanomaterials. In: Processing of 
polymer-based nanocomposites. Springer, Berlin, pp 15–55 

Kumar V, Lakkaboyana SK, Sharma N, Abdelaal AS, Maitra SS, Pant D (2019) Engineered nanoma-
terials uptake, bioaccumulation and toxicity mechanisms in plants. In: Comprehensive analytical 
chemistry. Elsevier, pp 111–131 

Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium 
cepa. Sci Total Environ 407(19):5243–5246 

Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus 
and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499 

Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) 
Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. 
Biol Trace Elem Res 121(1):69–79 

Li C-C, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou D-M (2017) Effects of exposure 
pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. 
Nanotoxicology 11(5):699–709. https://doi.org/10.1080/17435390.2017.1344740 

Liang L, Tang H, Deng Z, Liu Y, Chen X, Wang H (2018) Ag nanoparticles inhibit the growth of 
the bryophyte, Physcomitrella patens. Ecotoxicol Environ Saf 164:739–748 

Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. 
Environ Pollut 150(2):243–250 

Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, 
translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132 

Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic 
productions. Sci Total Environ 514:131–139 

Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, Fang X, Lin J (2010) Study of the inhibitory effect 
of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4(10):5743–5748 

Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and 
iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or 
nanonutrients? Water Air Soil Pollut 227(1):1–14 

Liu Y, Xiao Z, Chen F, Yue L, Zou H, Lyu J, Wang Z (2021) Metallic oxide nanomaterials act as 
antioxidant nanozymes in higher plants: trends, meta-analysis, and prospect. Sci Total Environ 
780:146578 

López-Moreno ML, Cassé C, Correa-Torres SN (2018) Engineered NanoMaterials interactions with 
living plants: benefits, hazards and regulatory policies. Curr Opin Environ Sci Health 6:36–41 

Mageswari A, Srinivasan R, Subramanian P, Ramesh N, Gothandam KM (2016) Nanomaterials: 
classification, biological synthesis and characterization. In: Nanoscience in food and agriculture 
3. Springer, Berlin, pp 31–71 

Majeed N, Panigrahi KC, Sukla LB, John R, Panigrahy M (2020) Application of carbon 
nanomaterials in plant biotechnology. Mater Today Proc 30:340–345 

Maroufpoor N, Mousavi M, Hatami M, Rasoulnia A, Lajayer BA (2019) Chapter 5—Mecha-
nisms involved in stimulatory and toxicity effects of nanomaterials on seed germination and 
early seedling growth. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology. 
Academic, pp 153–181 

Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus 
L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23(2):1732–1741 

Martínez-Fernández D, Komárek M (2016) Comparative effects of nanoscale zero-valent iron 
(nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. 
Environ Exp Bot 131:128–136 

Mathur P, Roy S (2020) Nanosilica facilitates silica uptake, growth and stress tolerance in plants. 
Plant Physiol Biochem 157:114–127

https://doi.org/10.1080/17435390.2017.1344740


204 A. A. Feregrino-Pérez et al.

Mazumdar H (2014) Comparative assessment of the adverse effect of silver nanoparticles to Vigna 
radiata and Brassica campestris crop plants. Int J Eng Res Appl 4:118–124 

Mazumdar H, Ahmed G (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J 
ChemTech Res 3(3):1494–1500 

Mehrian SK, De Lima R (2016) Nanoparticles cyto and genotoxicity in plants: Mechanisms and 
abnormalities. Environ Nanotechnol Monit Manag 6:184–193 

Mehta C, Srivastava R, Arora S, Sharma A (2016) Impact assessment of silver nanoparticles on 
plant growth and soil bacterial diversity. 3 Biotech 6(2):1–10 

Messa LL, Faez R (2020) Spray-dried chitosan/nanocellulose microparticles: synergistic effects for 
the sustained release of NPK fertilizer. Cellulose 27(17):10077–10093 

Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered 
nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239 

Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver 
nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54 

Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) 
Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 
108:335–339 

Moreno-Olivas F, Gant VU, Johnson KL, Peralta-Videa JR, Gardea-Torresdey JL (2014) Random 
amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. J  
Zhejiang Univ Sci A 15(8):618–623 

Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E, Hani 
H (2018) Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide 
dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front Plant Sci 9:872 

Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) 
Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.  
Metallomics 6(1):132–138 

Murr LE (2017) Classifications and Structures of Nanomaterials. In: Murr LE (ed) Handbook of 
materials structures, properties, processing and performance. Springer International Publishing, 
Cham, pp 1–29 

Mustafa G, Sakata K, Komatsu S (2016) Proteomic analysis of soybean root exposed to varying 
sizes of silver nanoparticles under flooding stress. J Proteomics 148:113–125 

Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles 
exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113 

Núñez EV, de la Rosa-Álvarez G (2018) Environmental behavior of engineered nanomaterials in 
terrestrial ecosystems: uptake, transformation and trophic transfer. Curr Opin Environ Sci Health 
6:42–46 

Pagano L, Servin AD, De La Torre-Roche R, Mukherjee A, Majumdar S, Hawthorne J, Marmiroli 
M, Maestri E, Marra RE, Isch SM, Dhankher OP, White JC, Marmiroli N (2016) Molecular 
response of crop plants to engineered nanomaterials. Environ Sci Technol 50(13):7198–7207. 
https://doi.org/10.1021/acs.est.6b01816 

Pallavi MC, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles 
on plant growth and soil bacterial diversity. 3 Biotech 6(2):254. https://doi.org/10.1007/s13205-
016-0567-7 

Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In 
vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol in Vitro 
25(5):1097–1105 

Panda KK, Golari D, Venugopal A, Achary VMM, Phaomei G, Parinandi NL, Sahu HK, Panda BB 
(2017) Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA 
Damage in Lathyrus sativus L. Root Bioassay System. Antioxidants 6(2). https://doi.org/10.3390/ 
antiox6020035 

Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K (2020) Nanoparticles in 
agroindustry: applications, toxicity, challenges, and trends. Nanomaterials 10(9):1654

https://doi.org/10.1021/acs.est.6b01816
https://doi.org/10.1007/s13205-016-0567-7
https://doi.org/10.1007/s13205-016-0567-7
https://doi.org/10.3390/antiox6020035
https://doi.org/10.3390/antiox6020035


7 Toxic Effects of Nanomaterials on Plant Cellular Mechanisms 205

Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia 
faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public 
Health 9(5):1649–1662 

Pereira SP, Jesus F, Aguiar S, de Oliveira R, Fernandes M, Ranville J, Nogueira AJ (2018) Phytotox-
icity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects. 
Sci Total Environ 618:1389–1399 

Picó Y, Alfarham A, Barceló D (2017) Analysis of emerging contaminants and nanomaterials in 
plant materials following uptake from soils. TrAC Trends Anal Chem 94:173–189 

Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demon-
strated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11 

Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to 
silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332 

Pradhan S, Mailapalli DR (2020) Nanopesticides for pest control. In: Lichtfouse E (ed) Sustainable 
agriculture reviews 40. Springer International Publishing, Cham, pp 43–74 

Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photo-
chemical modulation of biosafe manganese nanoparticles on vigna radiata: a detailed molecular, 
biochemical, and biophysical study. Environ Sci Technol 47(22):13122–13131. https://doi.org/ 
10.1021/es402659t 

Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese 
nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and 
toxicity study both in vivo and in vitro. J Agric Food Chem 62(35):8777–8785 

Rajput VD, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina 
T, Sushkova S, Mandzhieva S (2021) Recent developments in enzymatic antioxidant defence 
mechanism in plants with special reference to abiotic stress. Biology 10(4):267 

Raju D, Mehta UJ, Beedu SR (2016) Biogenic green synthesis of monodispersed gum kondagogu 
(Cochlospermum gossypium) iron nanocomposite material and its application in germination and 
growth of mung bean (Vigna radiata) as a plant model. IET Nanobiotechnol 10(3):141–146 

Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in the 
mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 
64(16):3111–3118 

Raliya R, Biswas P, Tarafdar JC (2015a) TiO2 nanoparticle biosynthesis and its physiological effect 
on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26. https://doi.org/10.1016/j.btre.2014. 
10.009 

Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015b) Mechanistic evaluation of translo-
cation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato 
(Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594 

Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanopar-
ticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) 
Solms. Acta Physiol Plant 38(2):1–9 

Remédios C, Rosário F, Bastos V (2012) Environmental nanoparticles interactions with plants: 
morphological, physiological, and genotoxic aspects. J Bot 2012:1–8. https://doi.org/10.1155/ 
2012/751686 

Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang J-Y, Peralta-Videa JR, Gardea-Torresdey 
JL (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense 
system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642 

Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, 
Varela-Ramirez A, Peralta-Videa JR (2013b) Cerium oxide nanoparticles modify the antioxidative 
stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 
47(24):14110–14118 

Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL 
(2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat 
(Triticum aestivum L.). J Agric Food Chem 62(40):9669–9675

https://doi.org/10.1021/es402659t
https://doi.org/10.1021/es402659t
https://doi.org/10.1016/j.btre.2014.10.009
https://doi.org/10.1016/j.btre.2014.10.009
https://doi.org/10.1155/2012/751686
https://doi.org/10.1155/2012/751686


206 A. A. Feregrino-Pérez et al.

Roco MC (2011) The long view of nanotechnology development: the National Nanotechnology 
Initiative at 10 years. In: Nanotechnology research directions for societal needs in 2020. Springer, 
Berlin, pp 1–28 

Ruffini Castiglione M, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed 
germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. 
J Nanopart Res 13(6):2443–2449. https://doi.org/10.1007/s11051-010-0135-8 

Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T (2016) Iron oxide 
nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815 

Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential 
metals and their phytotoxicity. J Nanobiotechnol 15(1):33. https://doi.org/10.1186/s12951-017-
0268-3 

Saha N, Gupta SD (2017) Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia 
chirata on root tips and flower buds of Allium cepa. J Hazard Mater 330:18–28 

Salama HM (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus 
vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197 

Samadi S, Lajayer BA, Moghiseh E, Rodríguez-Couto S (2021) Effect of carbon nanomaterials 
on cell toxicity, biomass production, nutritional and active compound accumulation in plants. 
Environ Technol Innov 21:101323 

Sardoiwala MN, Kaundal B, Choudhury SR (2018) Toxic impact of nanomaterials on microbes, 
plants and animals. Environ Chem Lett 16(1):147–160 

Savi GD, Piacentini KC, de Souza SR, Costa ME, Santos CM, Scussel VM (2015) Efficacy of zinc 
compounds in controlling Fusarium head blight and deoxynivalenol formation in wheat (Triticum 
aestivum L.). Int J Food Microbiol 205:98–104 

Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, 
Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in 
cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. 
Environ Sci Technol 47(20):11592–11598 

Sharma P, Bhatt D, Zaidi M, Saradhi PP, Khanna P, Arora S (2012) Silver nanoparticle-mediated 
enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 
167(8):2225–2233 

Shen C, Zhang Q, Li J, Bi F, Yao N (2010) Induction of programmed cell death in Arabidopsis and 
rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609 

Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumula-
tion of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 
8(2):179–188 

Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum 
esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17 

Singh N, Nelson BC, Scanlan LD, Coskun E, Jaruga P, Doak SH (2017) Exposure to engineered 
nanomaterials: impact on DNA repair pathways. Int J Mol Sci 18(7):1515 

Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev 
AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant 
cells and affect the growth of Onobrychis arenaria seedlings. Acta Naturae AngloRzyqnaR
BepciR 3(1(8)):99–106 

Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanopar-
ticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon 
esculentum). Ecotoxicol Environ Saf 93:60–67 

Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899(1):191–208 
Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. 
Environ Sci Technol 43(24):9473–9479 

Sun J, Wang L, Li S, Yin L, Huang J, Chen C (2017) Toxicity of silver nanoparticles to Arabidopsis: 
Inhibition of root gravitropism by interfering with auxin pathway. Environ Toxicol Chem 
36(10):2773–2780

https://doi.org/10.1007/s11051-010-0135-8
https://doi.org/10.1186/s12951-017-0268-3
https://doi.org/10.1186/s12951-017-0268-3


7 Toxic Effects of Nanomaterials on Plant Cellular Mechanisms 207

Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles 
for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr 
Nanosci 8(6):902–908 

Syu Y, Hung J-H, Chen J-C, Chuang H (2014) Impacts of size and shape of silver nanoparticles on 
Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64 

Tabatabaee S, Iranbakhsh A, Shamili M, Ardebili ZO (2021) Copper nanoparticles mediated phys-
iological changes and transcriptional variations in microRNA159 (miR159) and mevalonate 
kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. J Environ Chem Eng 
9(5):106151 

Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant 
science. Plant Mol Biol 39(6):1073–1078 

Tan X, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension 
rice cells. Carbon 47(15):3479–3487 

Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stress-induced toxicity of CuO nanopar-
ticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614. 
https://doi.org/10.1016/j.envpol.2016.03.019 

Tripathi A, Liu S, Singh PK, Kumar N, Pandey AC, Tripathi DK, Chauhan DK, Sahi S (2017a) 
Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in 
Cucumis sativus L. Abiotic Stress Toler Plants Growth Regul Transcr Control Mult Signal Pathw 
11:255–264. https://doi.org/10.1016/j.plgene.2017a.07.005 

Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, 
Chauhan DK (2017b) An overview on manufactured nanoparticles in plants: Uptake, transloca-
tion, accumulation and phytotoxicity. Eff Nanomater Plants 110:2–12. https://doi.org/10.1016/j. 
plaphy.2016.07.030 

Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, 
Pandey AC (2017c) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity 
in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177 

Trujillo-Reyes J, Majumdar S, Botez C, Peralta-Videa J, Gardea-Torresdey J (2014) Exposure 
studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a 
potential physiological and nutritional hazard? J Hazard Mater 267:255–263 

Ullah H, Li X, Peng L, Cai Y, Mielke HW (2020) In vivo phytotoxicity, uptake, and translocation 
of PbS nanoparticles in maize (Zea mays L.) plants. Sci Total Environ 737:139558 

Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomate-
rials. Environ Biotechnol Energy Biotechnol 33:206–219. https://doi.org/10.1016/j.copbio.2015. 
03.005 

Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic 
and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant 
Physiol 171(13):1142–1148 

Verma SK, Das AK, Cingoz GS, Gurel E (2016) In vitro culture of Digitalis L. (Foxglove) and the 
production of cardenolides: an up-to-date review. Ind Crops Prod 94:20–51. https://doi.org/10. 
1016/j.indcrop.2016.08.031 

Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for 
plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435 

Verma SK, Das AK, Gantait S, Kumar V, Gurel E (2019) Applications of carbon nanomaterials 
in the plant system: a perspective view on the pros and cons. Sci Total Environ 667:485–499. 
https://doi.org/10.1016/j.scitotenv.2019.02.409 
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Cellular Macromolecules



Chapter 8 
Interaction of Nanoparticles with Plant 
Macromolecules: Carbohydrates 
and Lipids 

Lei Qiao and Chunlan Xu 

Abstract Nanotechnology is proposed to improve plant growth and meet the global 
demand for food as a result of a rapidly increasing world population. Nanoparti-
cles (NPs) are regarded as a feasible strategy for the implementation of sustainable 
agriculture due to their unique chemical and physical properties, including high 
reactivity, multi-biological activities, high surface area, and tunable particle size. 
Many NPs have received considerable attention due to their ability to enhance the 
growth and yield of various plants. NPs are able to stimulate plant development via 
positive effects on promoting plant seed germination, plant root or above-ground 
growth improving stress tolerance, which is closely associated with plant carbohy-
drates and lipids. Many studies have confirmed that NPs can promote the synthesis 
of carbohydrates and inhibit lipid peroxidation, thereby improving plant yield and 
stress resistance. Furthermore, biosynthetic NPs are an effective strategy to replace 
traditional NPs and agrochemicals. Compared to physical and chemical methods, 
plant macromolecules, especially carbohydrates, provide an environment-friendly, 
safe and efficient method for the synthesis of NPs. Biogenic NPs synthesized by plant 
carbohydrates also have been widely applied in agriculture to stimulate plant growth. 
This review summarizes the effects of the different NPs on plant carbohydrates and 
lipids and the green synthesis of NPs using plant carbohydrates. 
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8.1 Introduction 

Nanotechnology is a dynamic research and innovation field, which affects our daily 
life in many ways. Nanoparticles (NPs) are materials with the size of 1–100 nm and 
have unique biological, chemical and physical properties. NPs have many character-
istics that traditional large-size materials do not have, such as surface and interface 
effect, small-size effect, and quantum tunnel effect making them widely used in 
biomedicine, agriculture, and the environment (Xu et al. 2019; Khan et al. 2021). To 
achieve as much as possible to obtain the largest agricultural output from the existing 
resources, and to alleviate the pressure caused by the increasing shortage of global 
resources and the growing population, many NPs are continuously being used in agri-
culture (Shang et al. 2019). NPs are able to stimulate plant development via positive 
effects on promoting plant seed germination, plant root or above-ground growth 
improving stress tolerance, which is closely associated with plant carbohydrates and 
lipids (Zhao et al. 2020; Josef et al. 2021; Wang et al. 2020). Carbohydrates and 
lipids are the main components of plants. Studies have shown that NPs can promote 
the synthesis of carbohydrates and inhibit lipid peroxidation to increase plant yield 
(Siddiqui et al. 2015; Zhao et al. 2020). In addition, the green synthesis of NPs via 
environment-friendly plant macromolecules, such as carbohydrates, has a signifi-
cant potential to boost NPs production (Xu et al. 2021). In recent years, biogenic 
NPs synthesized by plant carbohydrates also have been widely applied in agricul-
ture to stimulate plant growth (Landry et al. 2019; Kah et al. 2019). The present 
chapter summarizes recent advances in the application of different NPs to promote 
the synthesis and accumulation of plant carbohydrates and inhibit lipid peroxidation 
(Fig. 8.1), and the use of plant carbohydrates for the green synthesis of NPs.

8.2 Effects of Nanoparticles on Plant Carbohydrates 
and Lipids 

The positive role of NPs in the environment, especially in plant ecosystems, has 
been extensively studied. Many NPs have received considerable attention due to 
their ability to enhance the growth and yield of various plants (Mittal et al. 2020). 
The main purpose of this section is to collect information on the positive effects 
of different NPs in plant growth and increase production, especially to promote the 
synthesis of carbohydrates and inhibit lipid peroxidation (Table 8.1).

8.2.1 Silver Nanoparticles 

Silver nanoparticles (AgNPs) are widely used in coatings, medical fields, environ-
mental remediation, textiles, and other fields because of their strong antibacterial
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Fig. 8.1 The positive effects of nanoparticles (NPs) on seed germination, plant growth and yield. 
Graph by Lei Qiao

activity against different pathogenic microorganisms (Burdusel et al. 2018). In agri-
cultural production, AgNPs have received great attention due to their ability to 
enhance the growth and yield of various crops (Mehmood 2018). Mehmood et al. 
(2017) described the effect of AgNPs prepared from Berberis lycium Royle root 
bark extract on field pea (Pisum sativum L.) seed metabolism. The results demon-
strated that AgNPs-treated plants had higher carbohydrate contents, which led to 
better growth and yield of pea. In this study, the highest carbohydrate seed content of 
Pisum sativum L. after seed treatment and foliar spraying was recorded in response to 
the application of 60 ppm AgNPs. Sadak’s (2019) work proved the effect of AgNPs on 
the fenugreek plant (Trigonella foenum-graecum), and the results indicated that treat-
ment with AgNPs on the foliage of the fenugreek plant led to a significant increase in 
total carbohydrates compared to control plants and 40 mg/L AgNPs treatment made 
the carbohydrate content reach the maximum level. A study carried out by Latif et al. 
(2017) demonstrated that AgNPs (20 and 40 ppm) biosynthesized using Mangi-
fira indica and Ocimum basilicum had significant effects on the growth of wheat 
(Triticum aestivum) seedlings, as revealed by the increases in dry and fresh weights, 
carbohydrate content, and chlorophyll content. Salama’s (2012) research showed that 
after applying 60 ppm AgNPs, the carbohydrate content of Zea mays L. and Phase-
olus vulgaris L. plants increased by 57% and 62%, respectively, compared with the 
control. A study by Krishnaraj and co-workers (2012) reported the beneficial effects 
of the synthesized AgNPs on Bacopa monnieri (Linn.) Wettst seed germination, 
which induced the synthesis of protein and carbohydrate, and decreased the levels of 
total phenol content, catalase (CAT), and peroxidase compared to the AgNO3 treated 
plants. In addition, Gupta et al. (2018) found that the addition of of biosynthesized 
AgNPs into the medium enhanced rice (Oryza sativa L.) seedling growth (Fig. 8.2),
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Table 8.1 Positive effects of different NPs plant carbohydrates and lipids 

Nanoparticles Plant Responses References 

AgNPs Pisum sativum L Increased carbohydrate 
contents and enhanced 
growth and yield of pea 

Mehmood et al. 
(2017) 

AgNPs Trigonella 
foenum-graecum 

Improved the total 
carbohydrates 

Sadak (2019) 

AgNPs Triticum aestivum Increased the fresh and dry 
weight, chlorophyll and 
carbohydrate contents of 
seedlings 

Latif et al. (2017) 

AgNPs Phaseolus vulgaris L 
Zea mays L 

Improved the level of 
carbohydrates 

Salama’s (2012) 

AgNPs Bacopa monnieri Enhanced germination and 
growth of seedlings, 
induced the synthesis of 
carbohydrate and protein, 
and reduced the levels of 
total phenol content, 
catalase (CAT), and 
peroxidase activities 

Krishnaraj et al. 
(2012) 

AgNPs Oryza sativa L Improved the growth of 
rice seedlings, decreased 
hydrogen peroxide (H2O2), 
reactive oxygen species 
(ROS) and lipid 
peroxidation levels 

Gupta et al. (2018) 

AgNPs Daucus carota L Increased activities of 
antioxidant enzymes and 
reduced the level of ROS 
and malondialdehyde 
(MDA) 

Faiz et al. (2022) 

AgNPs B. campestris L Accelerated seed 
germination speed and 
seedling development and 
increased cabbage yield 

Zhou X et al. (2022) 

SeNPs Fragaria × ananassa 
Duch 

Alleviated the adverse 
effects of soil salinity on 
the growth and yield of 
strawberry plants, 
increased the levels of total 
soluble carbohydrates and 
free proline reducing 
soil-salinity stress-induced 
lipid peroxidation and 
H2O2 content 

Zahedi et al. (2019)

(continued)
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Table 8.1 (continued)

Nanoparticles Plant Responses References

SeNPs Capsicum annuum L Increased the levels of 
chlorophyll and soluble 
sugars 

Li et al. (2020) 

SeNPs Punica granatum L Reduced the lipid 
peroxidation and H2O2 
content induced by drought 
stress by enhancing the 
activity and content of 
antioxidant enzymes 

Zahedi et al. (2021) 

SeNPs Brassica napus L Reduced the oxidative 
stress and membrane lipid 
damage caused by 
Cadmium (Cd) 

Qi et al. (2021) 

SeNPs Vicia faba Enhanced seed 
germination, 
morphological and 
metabolic indicators, and 
suppressed pathogen 
Rhizoctonia solani 

Hashem et al. (2021) 

SeNPs Coriandrum sativum L Alleviated Cd toxicity 
through enriching 
chlorophyll content, total 
soluble sugars, leaf relative 
water content, improving 
gas exchange parameters 
and modulating the 
antioxidant system 

Sardar et al. (2022) 

SeNPs Gerbera jamesonii Promoted antioxidant 
defense system activity and 
endogenous hormone 
alterations 

Khai et al. (2022) 

ZnONPs Linum uitatissimum L Increased the growth and 
yield of flax, improved the 
levels of photosynthetic 
pigments, free amino acids 
and carbohydrates of flax 
plants 

Sadak et al. (2020) 

ZnONPs Cucumis sativus Increased the content of 
starch on cucumber fruit 

Zhao et al. (2014) 

ZnONPs Zea mays L Improved the activities of 
antioxidant enzymes, and 
reduced lipid peroxidation 
in the maize cell membrane 
system due to drought 

Sun et al. (2020a)

(continued)
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Table 8.1 (continued)

Nanoparticles Plant Responses References

ZnONPs Zea mays L Improved the plant growth, 
biomass, and 
photosynthetic machinery 
in maize under cobalt (Co) 
stress by reducing ROS and 
MDA 

Salam et al. (2022) 

CuONPs Lactuca sativa L Enhanced growth and 
promoted the dry weight, 
total phenol content and 
flavonoid content of lettuce 

Pelegrino et al. (2021) 

CuONPs Coriandrum sativum yielded more biomass in 
cilantro 

Zuverza-Mena et al. 
(2015) 

CuONPs Cucumis sativus Increased the accumulation 
of metabolites such as 
sugars, organic acids, 
amino acids and fatty acids 

Zhao et al. (2017) 

CuONPs Hordeum vulgare L Enhanced seed germination 
parameters, and seedling 
growth parameters (roots 
and shoots’ lengths, fresh 
biomasses and dry 
biomasses) 

Kadri et al. (2022) 

MgONPs Macrotyloma uniforum Increased the above-ground 
length, fresh biomass and 
the content of carbohydrate 
and protein 

Sharma et al. (2021a) 

SiO2NPs Zea mays L 
Phaseolus vulgaris L 
Hyssopus officinalis L. 
Nigella sativa L 

Increased seed 
germination, root and shoot 
lengths, fresh weights 
(except for Hyssopus 
officinalis L.) and dry 
weights, photosynthetic 
pigments, total protein, and 
total amino acid (except for 
Hyssopus officinalis L.) 

Sharifi-Rad et al. 
(2016) 

SiO2NPs Fragaria × ananassa 
Duch 

Treated with SiO2NPs 
retained more 
photosynthetic pigments 
and exhibited higher levels 
of key permeates, such as 
carbohydrates and proline, 
and improved the drought 
tolerance by increasing the 
activity of antioxidant 
enzymes and reducing the 
degree of lipid peroxidation 

Zahedi et al. (2020)

(continued)
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Table 8.1 (continued)

Nanoparticles Plant Responses References

SiO2NPs Cucurbita pepo L Reduced cellular oxidative 
damage by enhancing 
antioxidant enzyme activity 

Siddiqui et al. (2014) 

SiO2NPs Lavandula officinalis Enhanced the 
multiplication and growth 
of in vitro plantlets and 
modified its phytochemical 
compositions and essential 
oil bioactivities 

Khattab et al. (2022) 

MSNs Triticum aestivum 
Lupinus angustifolius 

Enhanced the germination 
of seeds and increased the 
content of plant biomass, 
total protein and 
chlorophyll 

Sun et al. (2016)

which may be related to the reduction of hydrogen peroxide (H2O2), reactive oxygen 
species (ROS) and lipid peroxidation levels and the increase in the activities of 
glutathione reductase (GR), ascorbate peroxidase (APX) and CAT. Additionally, the 
increased activities of antioxidant enzymes and reduced the levels of ROS and malon-
dialdehyde (MDA) by the application of AgNPs advocate stress ameliorative role 
against Cadmium (Cd) stress in carrot (Daucus carota L.) plant (Faiz et al. 2022). 
However, research on wheat (Triticum aestivum L.) found that AgNPs treatment 
increased the lipid peroxidation of wheat seedling tissues, indicating that exposure 
to AgNPs may have negative effects and toxicity problems on plants (Dimkpa et al. 
2013; Siddiqi and Husen 2021).

8.2.2 Selenium Nanoparticles 

Selenium (Se) is an essential micronutrient that promotes human and animal health, 
and it is also a beneficial element for plant growth (Hu et al. 2018). Early studies 
have demonstrated that low-dose sodium selenite spraying on foliage increased the 
Se content of grapes and winter wheat, and increased their growth and yield (Ducsay 
et al. 2006; Zhu et al. 2017). Se nanoparticles (SeNPs) have gained extensive interest 
due to their unique biological properties and have been recommended as a more 
effective, safer platform for Se delivery (Xu et al. 2018). Zahedi and colleagues 
(2019) assessed the potential effects of SeNPs in alleviating the adverse impact of 
soil salinity on strawberry (Fragaria × ananassa Duch.) plant growth and yield. 
The results showed that strawberry plants treated with SeNPs had higher contents 
of major osmolytes, such as free proline and total soluble carbohydrates, compared 
to the control group under stress conditions. Foliar spraying of SeNPs enhanced 
salinity tolerance in strawberries by decreasing soil-salinity stress-triggered H2O2
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Fig. 8.2 Germination and seedling growth of rice on medium containing various concentrations 
of AgNPs at 14 d of incubation (a), and shoot and root elongation at 14 d under the exposure of 
AgNPs (b). Source Gupta et al. (2018)

level and lipid peroxidation via increasing superoxide dismutase (SOD) and CAT 
activities. In addition, spraying SeNPs (20 mg/L) on pepper (Capsicum annuum L.) 
leaves can increase the levels of chlorophyll and soluble sugars, thereby activating 
the branched-chain fatty acid and phenylpropane pathways, as well as the expression 
of AT3-related genes and enzymes. SeNPs treatment remarkably increased the levels 
of proline pathway-associated compounds, which can reduce the levels of malon-
dialdehyde and hydroxyl free radicals in crops (Li et al. 2020). Studies have also 
shown that foliar application of SeNPs can reduce the lipid peroxidation and H2O2 

content induced by drought stress by improving the activity and content of antioxidant 
enzymes, thereby reducing the harmful effects of oxidative stress on pomegranate 
(Punica granatum L.) fruits and leaves (Zahedi et al. 2021). It is also reported that 
SeNPs can reduce the oxidative stress and membrane lipid damage caused by Cd 
by inhibiting the expression of NADPH oxidase and glycolate oxidase in Brassica 
napus L. (Qi et al. 2021). In addition, Sardar et al. (2022) found that SeNPs promoted
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the alleviation of Cd toxicity via enriching leaf relative water content, total soluble 
sugars and chlorophyll content, improving gas-exchange parameters and modulating 
the antioxidant system of coriander (Coriandrum sativum L.) plants in response to 
Cd stress. 

Due to the invasion of various pathogens including fungi and bacterial strains, 
food security and yield are seriously threatened (Bramhanwade et al. 2015). Among 
various nanoparticles, SeNPs have become powerful antibacterial agents and bio-
enhancers to reduce the catastrophic effects of plant pathogenic species. Hashem 
et al. (2021) demonstrated that biogenic SeNPs improved Vicia faba (Faba Bean) 
morphological and metabolic determinants, yield and seed germination. Moreover, 
SeNPs have promising antifungal activity against Rhizoctonia solani, which can 
markedly enhance morphological and metabolic determinants as well as growth and 
yield compared to the infected controls. In summary, SeNPs have important potential 
applications in reducing biotic and abiotic stresses of plants (Zohra et al. 2021). 

8.2.3 Zinc Oxide Nanoparticles 

Zinc (Zn) is an important micronutrient necessary for adequate plant growth. It is a 
vital element for the production of chlorophyll, protein synthesis and carbohydrate 
metabolism, and is the key to biomass production (Anita 2021). Many reports have 
demonstrated that zinc-oxide nanoparticles (ZnONPs) may improve plant produc-
tivity and growth. Therefore, research related to the application of ZnONPs is of 
great significance to sustainable agriculture (Rizwan et al. 2017). ZnONPs can be 
used as nano-fertilizers to reduce the amount of fertilizer used without affecting crop 
yields and maximize crop productivity (Palacio-Márquez et al. 2021). Sadak et al. 
(2020) found that ZnONPs have beneficial effects on the growth and yield of flax 
(Linum uitatissimum L.) plants, which are manifested in improving the levels of 
carbohydrates, free amino acids and photosynthetic pigments of flax plants. Zhao 
and co-workers (2014) showed that ZnONPs (800 mg/kg of soil) could alter the 
carbohydrate quality of cucumbers (Cucumis sativus). The results indicated that 
ZnONPs might not influence the content of reducing and non-reducing sugars, but 
increased the content of starch on cucumber fruit. Sun et al. (2020a) found that 
ZnONPs (100 mg/L) significantly improved the activities of SOD, CAT and APX, 
and reduced lipid peroxidation in the maize (Zea mays L.) cell membrane system 
due to drought. In addition, ZnONPs enhance the biosynthesis of starch and sucrose 
in maize under drought stress by elevating the levels of UDP-glucose pyrophospho-
rylase (17.8%), glucose phosphate isomerase (391.5%) and cytoplasmic invertase 
(126%) (Sun et al. 2020b). Recently, Salam et al. (2022) demonstrated that ZnONPs 
improved the plant growth, biomass, and photosynthetic machinery in maize (Zea 
mays L.) under cobalt (Co) stress by reducing ROS and MDA. However, the accu-
mulation of a high dosage of NPs in plants can affect their growth. Studies have 
confirmed that a high dosage of ZnONPs causes oxidative stress in wheat (Triticum 
aestivum) by increasing the level of lipid peroxidation and oxidizing glutathione in
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roots (Dimkpa et al. 2012). Salehi et al. (2022) found that aerially applied ZnONPs 
negatively affect fully developed bean plants (Phaseolus vulgaris L.). ZnONPs could 
induce tapetum abnormality, abnormal deposition of carbohydrates, and eventually 
apoptosis. 

8.2.4 Copper Oxide Nanoparticles 

Copper (Cu) is an essential micronutrient for plants, directly involved in the synthesis 
of oxidoreductase and the metabolism of protein and carbohydrates (Wang et al. 
2019). Due to the antibacterial properties of copper oxide nanoparticles (CuONPs), 
they are being used commercially for wood preservation, agricultural fungicides and 
antifouling coatings (Yuan et al. 2016). The application of CuONPs in agriculture is 
relatively new, but interest in its use as plant protection products and nano-fertilizers 
is increasing (Verma et al. 2018). CuONPs can be used as nutrients for plants but can 
have phytotoxicity depending on its application concentration, particle size, adminis-
tration method and exposure time (Liu et al. 2016). There are facts that at low concen-
trations CuONPs have beneficial effects on plants. Pelegrino et al. (2021) found that 
spraying spherical CuONPs on lettuce (Lactuca sativa L.) leaves had a positive effect 
on its growth and promoted the dry weight, total phenol content and flavonoid content 
of lettuce. The CuONPs synthesized by green tea at concentrations between 0.2 and 
20 µg/mL are non-phytotoxic and might enhance lettuce radicle growth (Pelegrino 
et al. 2020). Zuverza-Mena and co-workers (2015) found that compared with the 
control, application of CuONPs improved the biomass yield of cilantro (Coriandrum 
sativum). Zhao et al. (2017) found that compared with the control, administration of 
CuONPs significantly increased the accumulation of metabolites (e.g., sugars, fatty 
acids, amino acids and organic acids) in cucumbers (Cucumis sativus). Recently, 
Kadri et al.  (2022) reported that enhancement of Hordeum vulgare L. seed germi-
nation parameters, and seedling growth parameters (shoots and roots’ lengths, dry 
biomass and fresh biomass) by decreasing the concentration of CuONPs. However, at 
present, most researches have focused on the toxicity of CuONPs to crops. Exposure 
to CuONPs can cause membrane lipid damage, increased ROS and proline accu-
mulation, and decreased seed germination in rice (Oryza sativa L.) seedlings (Shaw 
et al. 2013). Nair et al. (2015) reported that CuONPs reduced the shoot elongation, 
carotenoids and chlorophyll content of Indian mustard. Therefore, in order to take 
advantage of the benefits of CuONPs on plant growth and development as well as 
disease control of various crops, further research especially optimal dosage is needed. 

8.2.5 Magnesium Oxide Nanoparticles 

Magnesium (Mg) is the fourth most important element after potassium (K), phos-
phorus (P), and nitrogen (N) among the important elements for plant development.
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It participates in many physiological and biochemical reactions during plant growth 
and development (Cakmak 2013). Mg is essential for the formation of plant carbo-
hydrates and protein. 75% of the Mg in plant leaves is used for the synthesis of plant 
protein, 20% is involved in the synthesis of chlorophyll, and is used as an enzyme 
cofactor to participate in the carbon fixation and metabolism process of photosyn-
thesis (Cakmak et al. 2008). Mg deficiency can inhibit the synthesis of chlorophyll, 
cause different morphological and physiological changes in plants, and regulate its 
secondary metabolic pathways (Guo et al. 2016). Magnesium oxide nanoparticles 
(MgONPs) are easily absorbed by the soil, improve fertilizer utilization, and can 
be used as an element supplement to increase the Mg content in the soil. When 
Macrotyloma uniforum was treated with MgONPs, the above-ground length, chloro-
phyll content and fresh biomass increased significantly, and the accumulation of 
carbohydrates and proteins increased by 4–20% and 18–127% (Sharma et al. 2021a). 
However, some studies have found that exposure to MgONPs negatively regulates 
plant growth. Sharma et al. (2021b) found that treatment with MgONPs resulted 
in reductions in total chlorophyll, biomass and carbohydrate content of mungbean 
(Vigna radiata L.) by 24–75%, 40% and 41%, respectively. These studies indicated 
that responses to MgONPs are largely dependent on the type of plants. 

8.2.6 Silicon Dioxide Nanoparticles 

Silicon (Si), the second most abundant element on Earth’s crust, is abundantly found 
in the soils. Si can facilitate plants to cope with abiotic and biotic stresses (de Moraes 
et al. 2021). Sharifi-Rad co-workers (2016) studied the effects of silicon dioxide 
nanoparticles (SiO2NPs) on two field crops (Phaseolus vulgaris L. and Zea mays 
L.) and two medicinal plants (Nigella sativa L. and Hyssopus officinalis L.) on the 
morphological and biochemical characteristics. The results showed that 400 mg/L 
SiO2NPs remarkably improved shoot and root lengths, dry weight and fresh weight 
(except for Hyssopus officinalis L.), photosynthetic pigments, seed germination, 
total amino acid (except for Hyssopus officinalis L.) and total protein, but total 
carbohydrates appeared to reduce. Zahedi et al. (2020) found that spraying a solu-
tion containing SiO2NPs improved the growth of strawberry (Fragaria × ananassa 
Duch.) plants under normal and drought stress conditions. Compared to the control 
group, the plants treated with SiO2NPs retained more photosynthetic pigments and 
exhibited higher levels of key permeates, such as carbohydrates and proline. In addi-
tion, exogenous spraying of SiO2NPs improves the drought tolerance by elevating 
the activities of antioxidant enzymes and reducing the degree of lipid peroxidation. 
Siddiqui et al. (2014) reported that SiO2NPs can significantly reduce cellular oxida-
tive damage by enhancing antioxidant enzyme activity, reducing MDA and H2O2 

levels, and alleviating the decrease in pumpkin (Cucurbita pepo L.) seed germination 
rate, vitality, and growth caused by salt stress. Recently, Khattab et al. (2022) found 
that SiO2NPs enhanced the growth and multiplication of Lavandula officinalis in vitro 
plantlets and modified its essential oil bioactivities and phytochemical compositions.
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Mesoporous silica nanoparticles (MSNs), as a kind of SiO2NPs, are widely used in 
various fields of agriculture because of their large specific surface area, uniform 
particle size, high stability, easy to modify internal and external surfaces and good 
biocompatibility (Popat et al. 2012; Abdelrahman et al. 2021). Sun and co-workers 
(2016) found that the photosynthesis efficiency of wheat (Triticum aestivum) and 
lupin (Lupinus angustifolius) plants exposed to MSNs was significantly improved, 
the germination of seeds was enhanced, and the plant biomass, total protein and 
chlorophyll content increased. 

8.3 Green Synthesis of Nanoparticles Using Plant 
Carbohydrates 

NPs have been prepared by various approaches, including biological, chemical and 
physical methods. Compared to chemical and physical methods, biological enti-
ties, especially plants, provide an environment-friendly, safe and efficient method 
for the synthesis of NPs (Nayantara et al. 2018). Recently, plant extracts (phenolic 
acids, bioactive alkaloids, polyphenols, terpenoids, sugars and proteins) have been 
demonstrated to serve as reducing, stabilizing, and/or complexing agents for the green 
synthesis of NPs (Ettadili et al. 2022). Carbohydrates with different functional groups 
(e.g., amino, carboxylate, ester, hydroxyl and sulfate) can bind with metal precur-
sors via non-covalent or van der Waals interaction, leading to the decreased levels 
of metals and stabilization of metal NPs (Majhi et al. 2021). As the main carbohy-
drate, polysaccharides contain various functional groups, including hydroxyl groups 
capable of reducing precursor salts and hemiacetal reducing ends (Fig. 8.3). The 
carbonyl groups oxidized from polysaccharide hydroxyl groups play a vital role in 
the reduction process of inorganic salts. The reducing ends of polysaccharides have 
been applied to introduce amino functional groups that can compound and stabilize 
NPs (Park et al. 2011).

The synthesis of NPs from carbohydrates has attracted more and more atten-
tion because of its non-toxic, safe, stable, good biocompatibility, environmental 
friendliness and strong availability of carbohydrates (Boddohi et al. 2010). The use 
of natural polysaccharides as reducing agents and stabilizers for NPs synthesis is 
a simple green synthesis technology, which does not require any other chemical 
reducing agents (Mohammadlou et al. 2016). Kumar et al. (2019) used  Arabidopsis 
thaliana as a model plant for the biosynthesis of AgNPs in vitro and systemati-
cally revealed the biochemical components required for the production of AgNPs. 
The results showed that carbohydrates, polyphenols and glycoproteins are the basic 
factors for stimulating the synthesis of AgNPs. Yugay et al. (2020) isolated polysac-
charides (alginate, fucoidan, and laminaran) from the seaweed Fucus evanescens and 
Saccharina cichorioides, and found that all polysaccharides can be used as reducing 
agents to convert silver nitrate into AgNPs, and their catalytic activities may vary 
as follows: laminaran > fucoidan > mayalginate. Tippayawat et al. (2016) used aloe
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Fig. 8.3 Green synthesis of nanoparticles using plant carbohydrates. Graph by Lei Qiao

plant extracts rich in pectin, lignin and hemicellulose to synthesize spherical AgNPs, 
in which the aloe vera extract functions as both capping and reducing agents. Zhou 
et al. (2021) synthesized stable and individual spherical SeNPs with a mean diameter 
of ~ 79 nm using the Citrus limon L.-extracted polysaccharides as the decorator and 
stabilizers and SeNPs exhibited good dispersion and high stability in water for at 
least 3 months. Jonn et al. (2017) reported an environmentally friendly synthesis of 
platinum nanoparticles (PtNPs) using water hyacinth (Eichhornia crassipes) plant 
extracts as effective reducing agents and stabilizers. Fourier transform infrared spec-
troscopy (FTIR) showed that the extracts hydroxyl, nitrogen and carbohydrate groups 
are responsible for the reduction and capping of PtNPs. Patil and co-workers (2016) 
developed cerium oxide (CeO2) NPs with a mean particle size of < 40 nm using 
a pectin extracted from the peel of red pomelo (Citrus maxima). In general, the 
synthesis of nanoparticles using carbohydrates has more advantages than traditional 
approaches in terms of cost, eco-friendly and biocompatibility. 

8.4 Conclusion and Prospects 

NPs have become a research hotspot in the field of agriculture due to their special 
physical and chemical properties. This article mainly reviews the application of NPs 
in sustainable agriculture, such as promoting plant growth and improving stress 
resistance, from the perspective of plant macromolecules (carbohydrates and lipids).
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In addition, the use of plant macromolecules to biosynthesize nanoparticles is cost-
effective, environmentally friendly and can improve the performance of NPs. Many 
researchers have confirmed that biosynthetic NPs are an effective strategy to replace 
traditional nanoparticles and agrochemicals. Therefore, the biosynthesis of NPs can 
inevitably become an emerging trend in the sustainable development of agriculture. 
Natural products, such as plant carbohydrates, can serve as promising candidate 
materials for the green synthesis of NPs, which are abundantly available in nature. 
While developing nanotechnology in the future, the safety of NPs, especially their 
toxicity, should be considered, and their safe use range and use environment should 
be studied to improve their utilization and stability, and promote the application of 
NPs in sustainable agriculture. 
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Chapter 9 
Interaction of Nanomaterials with Plant 
Macromolecules: Nucleic Acid, Proteins 
and Hormones 

Roseanne Mascarenhas, Tanvi Mathur, Jaya Maheshwari, 
and Praveen Nagella 

Abstract Nanotechnology has the ability to change a wide range of industrial and 
agricultural operations. To harness these possibilities, it is essential to construct nano-
materials that have minimum impact on the human body, plant systems as well as 
the environment. Using different materials can up- or down-regulate diverse genes 
of plants, create stimulating or stressful conditions and even cause production of 
metabolites that affect plant-associated microbes. The same nanoparticle can promote 
one plant species’ growth and be toxic to another. A small change in the concen-
trations could cause either flourishment or senescence. It is crucial to understand 
how nanomaterials interact with nucleic acids, the most fundamental plant macro-
molecule, as well as with the proteins and hormones made by biochemical processes. 
This chapter explores the basics of nanotechnology, with a brief classification and 
notes on some of the most recently used nanomaterials in agriculture such as metals 
and their oxides, quantum dots, graphene, arabinoxylan and chitosan nanoparticles, 
single and multi-walled carbon nanotubes. Interactions with these above-mentioned 
macromolecules are explored, along with futuristic applications in plants that are 
currently being tested, like nanocarriers and nanovalves. Through this work, it is 
hoped that the field will further be extended through proper understanding of the 
environmental implications of nanomaterials, and that green technology will become 
the norm.
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9.1 Introduction 

Materials with at least one dimension less than 100 nm are referred to as nano-
materials. The study of different nanoparticles (NPs) with sizes ranging from 1 to 
100 nm, at least in one dimension, is therefore referred to as nanotechnology (Yang 
et al. 2020). Nanotechnology is the practice of producing micro and macro mate-
rials and goods with atomic precision. The US National Science and Technology 
Council’s (NSTC 2000) shortest and most frequently cited definition of nanotech-
nology is as follows: “The essence of nanotechnology is the ability to work at the 
molecular level, atom by atom, to create large structures with fundamentally new 
molecular organization. The aim is to exploit these properties by gaining control of 
structures and devices at atomic, molecular, and supramolecular levels and to learn 
to efficiently manufacture and use these devices.” 

According to the official definition of the United States National Science 
Foundation (Roco et al. 1999), investigations involving materials and 
systems with the following crucial characteristics fall within the category of 
nanoscience/nanotechnology: 

(a) At least one dimension between 1 and 100 nm counts as a dimension. 
(b) The design process’s methodologies show that the physical and chemical 

characteristics of molecule-sized objects can be fundamentally controlled. 
(c) The ability to be joined to create larger constructions or a building block property 

(Ghorbanpour et al. 2017). 

The importance of nanotechnology has become greater for a variety of specific 
reasons, including:

(a) The quantum mechanical (wavelike) characteristics of electrons inside matter 
are affected by variations on the nanoscale. It is possible to modify the macro-
scopic and microscopic characteristics of materials, such as charge capacity, 
magnetism, and melting temperature, by designing them at the nanoscale. 

(b) The regular arrangement of matter at the nanoscale is a crucial characteristic of 
biological beings. We can now insert manufactured tiny objects within living 
cells thanks to advancements in nanoscience and nanotechnology. Using molec-
ular self-assembly, it is also possible to analyze the micro- and macrostructure 
of materials. This is unquestionably a useful tool for material science. 

(c) Due to their extremely high surface-to-volume ratio, nanoscale components are 
perfect for application in energy storage, composite materials, reacting systems 
and drug delivery. 

(d) The density of macroscopic systems composed of nanostructures can be substan-
tially higher than that of systems composed of microstructures. They might also 
function as superior electrical conductors. This could lead to the development of
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Fig. 9.1 Some of the major nanoparticles (Elements in this image have been created with the help 
of pixabay. https://pixabay.com/) 

smaller, quicker electronic device concepts, circuits, more complex features, and 
significantly less power consumption concurrently by regulating the complexity 
and interactions of nanostructures (Ghorbanpour et al. 2017).

A wide variety of NPs, including metal NPs, quantum dots, mesoporous silica NPs, 
clay nanosheets, DNA nanostructures, and carbon nanomaterials including graphene, 
carbon nanotubes and carbon dots (Fig. 9.1), have been employed in plant biotech-
nology (Sanzari et al. 2019). The objective of this chapter is to explore the properties 
of nanomaterials; the differences in their synthesis and functionalization leading to 
altered interaction with plant life. It focuses on the effect on plant growth and on 
macromolecules like nucleic acids, proteins and hormones, elucidating the chemical 
interaction between key residues. This chapter will finally demonstrate how nanoma-
terials can be designed for highly sensitive functions within a living plant system to 
regulate the release of growth hormones. Through this it is hoped that future research 
will engineer a symbiosis between eco-friendly nanomaterials and plants designed 
to accommodate them as part of their biology. 

9.2 Classification of Nanomaterials 

The two primary categories of NPs are organic and inorganic. Micelles, dendrimers, 
liposomes, hybrid, and compact polymeric NPs are included in the first group. 
Fullerenes, quantum dots, silica, and metal NPs are included in the second group.

https://pixabay.com/
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Based on their dimensions, NPs can be zero-dimensional (all dimensions are at 
the nanoscale), one-dimensional (this includes nanotubes, nanorods, and nanowires), 
two-dimensional (plate-like shapes, includes graphene, nanofilms, nanolayers, and 
nano-coatings), or three-dimensional (of any shape; this class can contain bulk 
powders, dispersions of NPs, bundles of nanowires, and nanotubes as well as multi-
nanolayers) depending on how they interact with the material (Ray 2018). NPs are 
classified into three types based on their origin: natural, accidental, and artificial NPs 
(Kole et al. 2016). 

Natural—Naturally-occurring NPs have been present ever since the creation of 
Earth. They are present in a variety of materials, including mineral composites, photo-
chemical reactions, forest fires, simple erosion, lunar dust, terrestrial dust storms, and 
volcanic dust. 

Incidental—The majority of incidental NPs are produced by industrial processes 
that humans have created, such as exhaust from cars and trucks, coal combustion, 
welding gases, and industrial exhausts. 

Artificial—Carbon-based (CB NPs), metal-based (MB NPs), magnetic (MB 
NPs), dendrimers, and composite NPs are the five different types of designed 
NPs. Examples of carbon-based NPs (NPs) include fullerene (C70), fullerol 
[C60(OH)20], single-walled carbon nanotubes (SWCNTs), multiwalled carbon 
nanotubes (MWCNTs), and single-walled carbon nanohorns (SWCNHs), whereas 
metal-based NPs are made of nanomaterials based on gold (Au), silver (Ag), copper 
(Cu), and iron (Fe). 

Anthropogenic nanomaterials have 2 classes: carbon base and the metal base 
(Peralta-Videa et al. 2011). There are several morphologies, including spheres, cubes, 
rods, wires, plates, prisms, core–shell structures, and intricate 3D architectures, 
which change shape or agglomerate in response to external stimuli, modifying their 
chemical or physical properties (Keller et al. 2010). There are three main classes of 
nanobiosensors: metal/metalloid, quantum dots, and array-based (Li et al. 2020). 

Some significant kinds of NPs are based on physical and chemical properties, 
including: 

Carbon-based—(fullerenes, carbon nanotubes, graphene, carbon dots). These 
materials are particularly intriguing because of their electrical conductivity, high 
strength, structure, electron affinity, and flexibility. 

Metal—They are entirely composed of the predecessors to metals. These have 
distinctive optoelectrical capabilities as a result of their well-known localized surface 
plasmon resonance (LSPR) features. 

Ceramics—Due to their usage in processes like photocatalysis, photodegradation 
of dyes, imaging, and catalysis, these inorganic nonmetallic solids are attracting a 
lot of study interest. 

Semiconductor—Semiconductor materials have broad band gaps and character-
istics that fall between those of metals and non-metals. Their properties are signifi-
cantly altered as a result of band gap tuning. As a result, they play a crucial role in 
electrical, photocatalytic, and photo- optical systems.
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Polymers: For the synthesis of polymeric NPs for a variety of uses, including 
surface coating, sensor technology, catalysis, and nanomedicine, scientists have 
devised a number of approaches. 

Lipids—These NPs are used as drug carriers in numerous biomedical applications 
because they include lipid moieties (the mRNA Covid-19 vaccines are using lipid 
nanotechnology). Another extremely promising method for delivering nucleic acids 
in gene therapy is lipid NPs (Ray 2018). 

9.3 Major Types of Nanoparticles 

9.3.1 Metal Oxide NPs 

Metal oxide NPs release bivalent ions which could be the basis for interaction and 
upregulation of genes (Fig. 9.1). Amorphous, spherical, dispersed silica NPs form 
colloidal SiNPs. They exhibit aggregation in solution as indicated by their high 
polydispersity index (PDI) of 5.11. Zeta (ζ) potential is 11.2 mV and their size is 
24 nm, indicating that they are stable with a negative surface charge at physiological 
pH as a result of the ionization of the hydroxy groups (–OH). The functionalized 
SiNPs containing amino acids and carbohydrates is revealed by X-ray diffraction 
(XRD) to have an amorphous structure like that of pure SiNPs. Through electro-
static interactions or hydrogen bonds, the functional groups are incorporated into 
the silica’s pore volume. Using covalent chemistry, physical adsorption, or elec-
trostatic interactions, surface modification is possible. For surface modification by 
replacing previously attached functional groups, non-covalent attachment is quick 
and inexpensive (Kumar et al. 2021). The effects of ZnO, CuO and CdS quantum 
dots are similar, possibly due to faster dissolution or innate physico-chemical char-
acteristics (Pagano et al. 2018). CuO nanomaterials in the crystal phase were created 
by Mazaheri-Tirani and co-workers, which were monoclinic, spherical and black in 
colour, with a diameter of 50 nm, and surface area over 100 m2 g−1. They have a true 
density of 6.4 g cm−3, and an aerodynamic particle size of less than 30 nm. These 
could be delivered through hydroponics (Mazaheri-Tirani et al. 2021). In a study by 
Zhao et al. the size of 30 nm Fe3O4 particles created had the properties of being 
magnetic, catalytic, antimicrobial and adsorbent (Zhao et al. 2019). Other physical 
characteristics of NPs used in that study are described in Table 9.1. 

Table 9.1 Physical 
characteristics of metal oxide 
NPs 

NPs Size (nm) Hydrodynamic 
diameter (nm) 

Zeta potential (mV) 

Fe3O4 30 1230 ± 56 11.6 ± 0.64 
TiO2 5–10 592 ± 7 −21.4 ± 0.64 
SiO2 20 876 ± 41 19.5 ± 0.37
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Notably, multiple investigations showed that charged NPs can be directed to 
specific tissues within plants for delivery and formation of aggregates there. MgONPs 
in the extraction solution have a negative charge. These interactions could therefore 
be a vitally improved mechanism for accelerating absorption. Magnesium is a crucial 
mineral, and MgONPs may one day be employed to treat magnesium deficiencies 
in plants used in agriculture. MgONPs might ameliorate the stress of magnesium 
deficiency on the control plant cell membrane, as seen by the anomalous decrease in 
the MDA concentration (Cai et al. 2018). 

9.3.1.1 Quantum Dots 

Quantum dots (QDs) are stable colloidal nanocrystals with a semiconductor core of 
cadmium sulfide, selenide or telluride, and an outer shell that prevents oxidation and 
leaching of the heavy metal. Its optical properties improve photoluminescence and 
quantum yield (Mo et al. 2017). Disposed QDs from electronic devices accumulate 
in landfills at ng/kg to μg/kg levels, causing Cd2+ toxicity (Majumdar et al. 2019a, 
b). 

9.3.1.2 Graphene 

With a single-layer thickness of 0.8–1 nm, graphene is “the king of novel mate-
rials” because it is the lightest, strongest, and most thermally and electrically 
conductive novel artificial nanomaterial. A single-layer honeycomb lattice of cross-
linked benzene rings makes up the two-dimensional structure. Multi-layer graphene, 
graphene oxide (GO), and reduced GO are some other forms. For greater solubility 
and biocompatibility, a gradient of hydrophilicity to hydrophobicity exists from the 
edge to the centre of the graphene sheet (Yang et al. 2020). 

9.3.1.3 Arabinoxylan 

The wheat industry produces 25% bran as a byproduct, which is a rich source of 
the hemicellulosic water-soluble polysaccharide arabinoxylan (AX). It is highly 
branched and made of two pentose sugar units: β−(1−4)-xylan backbone branched 
with a very short chain α−(1−2) and α− (1−3) linked arabinose. This gives it a 
self-assembling property through multivalent topology, hydrophobic interactions, 
Van der Waal’s forces and hydrogen bonding. The many hydroxyl (–OH) groups 
along its backbone can undergo esterification and etherification, forming local inter-
action sites for self-assembly. This can transfer unstable nucleic acids and other 
small or large-molecule, bioactive chemicals to plants (Berlanga-Reyes et al. 2009). 
These NPs can be employed in green technology for non-immunogenic formulation 
excipients and as effective transfection agents, particularly for CRISPR-Cas9 DNA
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Fig. 9.2 Arabinoxylan NPs- production and use (Elements in this image have been created with 
the help of Pixabay. https://pixabay.com/) 

constructs, because they are nontoxic and biodegradable. Bran can thus be a product 
with added value. 

Van der Waals interactions are facilitated by local inclusion of charges along 
the backbone enabling spontaneous and thermodynamically driven self-assembly. 
Succinic anhydride and dimethylformamide (DMF) were used to make anionic 
carboxylic acid terminated AX, which replaces –OH groups. For cationic AX, 
glycidyl trimethylammonium chloride (GTMAC) and sodium hydroxide were used 
to transfer quaternary nitrogen (Sarker et al. 2020) (Fig. 9.2). 

9.3.1.4 Single Walled Carbon Nanotubes (SWNT) 

Nucleic acid delivery and biosensing are two applications for single walled carbon 
nanotubes (SWNT). Agapanthus praecox (F. M. Leight) embryogenic calli’s cryop-
reservation is improved by SWNTs’ reduction of oxidative stress (Ren et al. 2020). 
Their toxicity is concentration dependent in protoplasts of Arabidopsis thaliana 
Willdenow and rice. Chemical functionalization of SWNTs also affects toxicity (Shen 
et al. 2010). 

9.3.1.5 Chitosan 

Chitosan produces diverse disease resistance in plants. It is an elicitor molecule 
for many host–pathogen interaction studies, with biodegradability, non-toxicity, and 
antibacterial properties. Chitosan nanoparticles (CNP) are created by cross linking

https://pixabay.com/
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tripolyphosphate with the ammonium groups in CNP (Qi et al. 2004) in inter-
and intramolecular interactions. CNP is a versatile anti-pathogenic or phytosanitary 
chemical for more extensive sustainable organic cultivation. 

9.3.2 Nanocarriers and Nanovalves 

Both organic and inorganic nano compounds made out of silica, metals and their 
oxides, carbon structures, micelles from polymers, and dendrimers, are used for 
the delivery of agrochemicals. Their low cargo capacity along with uncontrollable 
release and lack of biodegradability prevents their widespread use in agriculture. 
Hybrids called metal–organic frameworks (MOFs) are more recently being used for 
catalysis, optics, sensing and detection, as they are easy to synthesize and accessorize 
through functional groups. They have diverse composition and flexible structure, 
with adjustable pore size, chemical or colloid stability and improved cargo capacity. 
They are more biocompatible and biodegradable. Amongst them, supramolecular 
macro cycles are stimuli-responsive. These have application in the delivery of plant 
hormones only under a particular condition such as stress (Yang et al. 2021). 

9.4 Role of Nucleic Acids, Proteins and Hormones in Plants 

Large molecules known as nucleic acids carry all of the genetic information and 
a tonne of tiny details. Every living entity that consumes and transforms energy, 
including bacteria, viruses, fungi, plants, and mammals, has nucleic acids. Deoxyri-
bonucleic acid, or DNA, and ribonucleic acid (RNA) are the two different forms 
of nucleic acids. Nucleic acids are composed of strands of nucleotides, which are 
composed of a phosphoric acid, a sugar with five carbon atoms, and a nitrogenous 
base. A gene is made up of certain nitrogenous base clusters along a DNA strand. A 
gene is a structure that carries hereditary information to the following generation and 
contains the genetic information or product codes. However, genes are not restricted 
to reproductive cells. Because DNA also includes the protein-coding information for 
the organism’s proteins, every cell in an organism possesses DNA (and thus genes). 

Additionally, proteins give cells structure and control biological activity. Most 
biological processes are carried out by proteins in cells. Thus, proteins can be viewed 
as biomolecular machines with unique structural and functional properties that are 
frequently challenging to imitate in a laboratory setting. Different enzymatic, struc-
tural, and functional roles are performed by plant proteins (photosynthesis, biosyn-
thesis, transport, immunity). They act as storage containers in addition to meeting the 
nutritional and growth needs of developing seedlings. Proteins play these roles based 
on their make-up and distinctive structural forms, such as folding, which can range 
from compact and well-ordered to unfolded and essentially disordered. RuBisCo,
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albumins, globulins, prolamins, glutelins, and gliadins, are a few examples of the 
most crucial proteins found in plants (Rasheed et al. 2020). 

For growth and development, plants require the external elements of nutrients, 
water, sunlight and oxygen. Several inherent elements also control their growth 
and development. These are referred to as “Phytohormones,” or plant hormones. 
They are crucial in processes like vernalization, phototropism, seed germination and 
dormancy. Chemical substances known as plant hormones are found in extremely 
small amounts in plants. They are adenine (Cytokinins), indole (Auxins), terpenes 
(Gibberellins), carotenoids (Abscisic Acid), and gas derivatives (Ethylene). Almost 
every portion of the plant produces these hormones, which are then sent to various 
areas of the plant. They might work together or separately, playing either comple-
mentary or antagonistic roles. Given their importance, exogenous applications of 
synthetic plant hormones are used to regulate crop yield. Hormones are classi-
fied based on whether they promote or inhibit plant growth. Auxins are located 
in the growing apices of roots and stems before migrating to other areas to perform 
their functions. Indole-3-acetic acid (IAA) and indole butyric acid (IBA) are natu-
rally occurring; 2,4-D (2,4-Dichlorophenoxyacetic acid) and Naphthalene acetic acid 
(NAA) are synthetic. Their functions include stem and root cell elongation, apical 
dominance and parthenocarpy to prevent early senescence, and for beginning the 
rooting process during grafting. It also promotes flowering, for example, in pineapple. 
The auxin 2,4-D is a common herbicide used to eradicate unwanted dicot weeds 
without harming monocot plants. 

There are over 100 known gibberellins (GA1, GA2, GA3, etc.) possessing an 
acidic character. They promote bolting in rosette plants like cabbage and beets, 
cause stem elongation and dwarfism reversal, parthenocarpy and postpone senes-
cence. They cause starch mobilization within the endosperm through the production 
of hydrolytic enzymes like lipase and amylase, and they awaken dormant seeds. The 
process of cytokinesis depends on cytokinins. They are made in early fruits, shoot 
buds, and root apices, among other places. The migration of cytokinins is polar and 
basipetal. They encourage shoot growth, development of leaf chloroplasts, combat 
apical dominance, promote nutrient mobilization and prevent leaf withering. Natural 
cytokinins include zeatin (coconut milk and corn kernels) and isopentenyladenine. 
Synthetic ones are thidiazuron, kinetin, benzyladenine, and diphenylurea. Abscisic 
acid is a hormone that inhibits growth. GAs are counteracted by ABAs. It controls 
dormancy and abscission while inhibiting plant metabolism. Because it raises plants’ 
stress tolerance, it is also known as “stress hormone”. Ethylene is both an inhibitor 
and a growth promoter. It is a gas created in tissues going through senescence and in 
ripening fruits. It breaks seed and bud dormancy, controls leaf epinasty, hastens fruit 
ripening, and stimulates the rapid elongation of petioles and internodes. It is one of 
the most commonly utilized hormones in agriculture (Gaspar et al. 1996).
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9.5 Importance of Interaction Between Nanomaterials 
and Macromolecules 

Nanoparticulate structures can traverse plant cell walls and can be fine-tuned in size, 
shape, physical, mechanical and optical properties for diverse cargo conjugation 
(Cunningham et al. 2018). To be used in agriculture, they must have biocompat-
ible source materials and nontoxic synthetic pathways. “Green nanotechnology” is 
coming into place, where plant- and biobased materials can be used to synthesize 
nanoscale systems with new form and function. 

Different NPs interact with diverse plants in unique ways. Nanomaterials with 
higher surface activity can decrease energy flow between interfaces (Yang et al. 2020). 
Nanomaterial fullerene aids in the response of Zea mays L. cells to oxidative stress 
caused by cobalt (Co). It cancels out the effects on stomatal control, gas exchange, and 
water parameters of content and osmotic potential. It safeguards the PSI-PSII photo-
systems and photosynthetic machinery (Ozfidan-Konakci et al. 2022). Maize grown 
in soil treated with 100 mg/kg of SiO2, TiO2, or Fe3O4NPs for four weeks showed 
significant changes in the carbon and nitrogen profiles of the leaves and roots, as well 
as in metabolomics. They cause the plant roots to release metabolites like organic acid 
and nicotianamin that chelate Cu ions in the soil and lowered its bioavailability (Zhao 
et al. 2019). Nano-CuO of concentrations 0.1 and 2.5 μM increase shoot fresh weight 
of Ruta graveolens L., but only 2.5 μM increased the dry weight while decreasing root 
water content. 50 mg/l led to decreased shoot length, and high concentrations caused 
stomata closure, slowing growth, increased photosynthetic energy loss during the 
violaxanthin cycle, and decrease in total chlorophyll (Mazaheri-Tirani et al. 2021). 
The effects of MgONPs exposure on enhanced Mg absorption, growth stimulation, 
and several favorable morpho-physiological changes was seen in tobacco plants. 
After 30 days of treatment, MgONPs significantly enhanced the chlorophyll a and b 
contents from 0.21 and 0.12 g/g to 1.21 and 0.67 g/g respectively (Cai et al. 2018). 
Jhansi et al. also reported that plant leaves’ chlorophyll content can be increased 
by soaking peanut seeds in 500 mg/mL slurry of MgONP (particle sizes varying 
from 10 to 80 nm) for 12 h (Jhansi et al. 2017). Due of NPs’ high surface reactivity, 
which leads to increased hydromineral transportation in the roots, the roots can grow 
and produce root pores. Exposure to MgONPs may result in a significant increase 
in Mg concentration, which may enhance plant photosynthetic efficiency. MgONPs 
showed an advantage over other nanomaterials since plants subjected to 250 mg/mL 
of MgONP did not exhibit any significant damage or stress, indicating that the plants 
probably have enzymatic defences to handle relatively low MgONP concentrations. 
Its non-toxic effects are further supported by the cortex, epidermis, and pericycle 
of the MgONP-treated and untreated plants in the study, which all grew well with 
compact structures in the root, stem, and leaves. The plants exposed to MgONPs 
showed no adverse effects, such as distortion, curling, chlorosis, or necrosis in the 
leaves. NPs can widen existing root pores and enhance nutrient and hydromineral 
absorption because of their strong surface reactivity (Cai et al. 2018) (Fig. 9.3).
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Fig. 9.3 Effect of MgONPs on root and shoot growth of Nicotiana tabacum L. (Elements in this 
image have been created with the help of Pixabay. https://pixabay.com/) 

Iron NPs caused an increase in root length in Arabidopsis thaliana by cell wall 
loosening mediated by nZVI-mediated OH radical (Kim et al. 2014). Hydrolyzed 
collagen or sodium alginate has good strength of thermoplastic starch (TPS), which 
are biodegradable nanocomposites that induce protective effects for loquat and 
cherry, lowering water permeability (Benckiser 2019). Using zeolites or nano-
clays in the soil improves water absorption in plants (Duhan et al. 2017). When 
nanoceria, highly charged NPs which are reactive oxygen species (ROS) scavengers 
and SWNTs are introduced to the mesophyll tissue, they localize inside the chloro-
plasts, increasing photosynthesis and the lifespan of extracted chloroplasts (Giraldo 
et al. 2014). For the treatment of plant illnesses as well as the discovery of chitosan’s 
cellular localization and immunomodulatory role in plants, chitosan nanoparticles 
(CNP) are a more effective therapeutic tool. The exact imaging-based visual portrayal 
of the relative bio-accessibility and bio-accumulation of chitosan versus its NPs 
(CNP) in plant cells reveals that CNP interacts with plant cells at a higher level than 
was noticed for natural chitosan (Chandra et al. 2015). 

In general, NP-mediated biomolecule distribution is less effective than traditional 
biotic delivery methods like agro-infiltration, though it may be necessary in specific 
cases (due to species). Commercial transfection agents are costly, thus they can’t 
be applied widely (Sarker et al. 2020). Lower efficiency cannot be overcome by 
simply increasing the amount of delivered NPs due to toxicity. Thus the interactions 
between macromolecules must be studied to understand which NPs and with what 
concentration must be applied (González-Grandío et al. 2021). The importance of 
size was demonstrated when Zhang and coworkers non-biolistically delivered DNA 
coated onto gold NPs of spherical and rod-like shapes, between sizes 5–20 nm into

https://pixabay.com/
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Nicotiana benthamiana L. leaves. The smaller NPs showed interaction with plant 
cell walls occurs at higher, more frequent, and more persistent levels. However, only 
the rod shaped ones were internalized by the cells. Yet, it was also observed that 
small-interfering RNA (siRNA)-which were functionalized on the 10 nm spherical 
AuNPs were the most effective for delivery and they induced gene silencing in the 
leaves. The work also showed that internalization is not required for the RNA-NP 
interaction to be efficient for nucleic acid delivery (Zhang et al. 2021). 

GO shows high ecotoxicity. Low levels of graphene promote the growth of 
seedlings, but large levels of the material lead to oxidative stress, cell damage, 
decreased protein synthesis, and genetic alterations. By obstructing seed epithelial 
pores, graphene in rice limits the amount of water in seeds (Zhang et al. 2015). Rice 
seedling stem development is severely impeded due to the blockage of plant growth 
factor synthesis or excessive enzymatic activity. As carbon nanotubes puncture seed 
epithelia, forming new nanoscale channels, or as a result of their capillary action 
being similar to water channel proteins, other seedlings displayed increased water 
content and germination rates. Metabolic by-product levels rise later and prevent 
graphene invasion to safeguard seedlings. Static electricity allows low concentration 
GO to stick to the surfaces of roots. An increase in membrane oxidation caused by a 
moderate dose can lead to aberrant biological markers and uneven gene levels. Plants 
may be impacted by physical obstruction or mechanical harm by changes in reactive 
oxygen species (ROS) (Yang et al. 2020). 

The following table shows how different concentrations of the same NP can cause 
different morphological and physiological changes in various plant species (Table 
9.2).

9.6 Interaction of NPs with Nucleic Acids 

9.6.1 Interaction of NPs with RNA 

9.6.1.1 Interaction with Carbon Nanotubes 

siRNA can be loaded onto SWNTs by probe-tip sonication. siRNA desorbs from 
SWNT carriers only in the cytosol, as proven by thermodynamic analysis of hydrogen 
bonding and π-π stacking interactions energetics. 98% of free-siRNA is degraded 
by RNases inside the cell, and only 16% of SWNT-bound RNA is, showing that it 
can give stability within the cell (Demirer et al. 2019).
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9.6.1.2 Interaction with BioClay 

Layered double hydroxide (LDH) nanosheets are synthesized as stacks of positively 
charged sheets of size 15–120 nm. LDH nanosheets are inorganic layered materials, 
given by the formula: 

[(M2+ 
(1−x)M3+ 

x (OH)2) x+ · (Am−
x/m · nH2O)x−], M indicating metal ions and A 

for anions (Xu et al. 2005). 
By loading dsRNA into LDH in a mass ratio of 1:4, dsRNA-LDH complexes 

(BioClay) are created, which no longer move during electrophoresis, demonstrating 
neutrality owing to binding. The dsRNA chain may be seen in part by TEM imaging 
between LDH nanosheets, indicating that it is either adsorbed on the surface or 
wrapped around several LDH particles (Mitter et al. 2017). Atmospheric CO2 and 
moisture break down LDH slowly into a biocompatible residue, releasing the loaded 
biomolecules (Xu et al. 2005). When droplets of LDH suspension were placed on 
detached tobacco leaves at 27 °C in 95% relative humidity and 5% CO2 for 7 days, 
the LDH residue had 28% decrease in aluminum and 22% decrease in magnesium 
respectively. In solution, when dsRNA–LDH is suspended for a week in 5% CO2, 
northern blot reveals a reduction in residual LDH-bound dsRNA compared to normal 
atmospheric CO2 conditions. Spraying the loaded NPs on leaves still permits detec-
tion of abundant levels of the conjugates even after 30 days, indicating protection 
of nucleic material from RNase. The complexes also dissociate at pH 3.0. Carbonic 
acid formation on the leaf surface causes a slow and sustained release of dsRNA. 
RNase treatment degrades naked dsRNA more than the conjugate. Its application is 
in protection of plants from RNA viruses (Mitter et al. 2017) (Fig. 9.4).

9.6.2 Interaction of NPs with DNA 

9.6.2.1 Interaction with SiNPs 

Functionalized-SiNPs (f-SiNPs) interact with DNA at H2PO4
− through ionic bonds 

and have a stronger affinity for the cells. To test for NP interaction, DNA from leaves 
of the Bixa orellana L. plant was employed. A260:A280 ratios greater than 1.8 are 
considered to be indicative of protein and RNA contamination, according to spec-
trophotometry. SiNPs interaction resulted in the reading of a value of 1.802. SiNPs 
and f-SiNPs denature into single-stranded DNA or intercalate into DNA double 
helices by hydrophobic contact, which may then contribute to further DNA replica-
tion. Due to its hydrophobicity, which protects the DNA, the alanine functional group 
exhibits greater intercalation. DNA is denaturalized or replicated by nanoparticles 
with lysine functionalization (Kumar et al. 2021).
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Fig. 9.4 BioClay preparation and application (Elements in this image have been created with the 
help of Pixabay. https://pixabay.com/)

9.6.2.2 Interaction with Arabinoxylan 

Polymer complexation and nanoprecipitation by solvent shifting create the self-
assembled arabinoxylan nanostructures. They were dissolved in distilled water with 
CRISPR-Cas9 vector DNA for 30 min at room temperature for binding. Character-
ization by Dynamic light scattering (DLS) at 90° angle showed that the free parti-
cles form highly monodisperse NPs, the average hydrodynamic diameter of anionic 
NP being 93.25 ± 19.24 nm and of the cationic NP being 125.08 ± 25.83 nm. 
Monodispersed means that the colloidal stability of NP aggregation is not influenced 
by water, but rather by surface charges and steric effects. Large, unstable colloids 
formed when the cationic and anionic AX electrostatically complexed. The cationic 
AX also forms stable complexes with the CRISPR-Cas9 vector DNA, at a ratio of 
15:1. When analyzed by TEM, the particle size is smaller than in DLS due to the 
hydrophilic corona shrinking from drying (Sarker et al. 2020). 

9.6.2.3 Interaction with SWNTs 

Carbon nanotube scaffolds are coated with sodium dodecyl sulphate (SDS) surfactant 
and then subjected to dialysis in order to transplant DNA. SDS will desorb, and 
by dynamic ligand exchange process and π-π stacking interactions, DNA adsorbs 
onto the surface of carbon nanotubes. A distinctive solvatochromic change in the 
SWCNT nIR fluorescence emission spectra in the CNT dielectric environment can

https://pixabay.com/
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Table 9.3 Variation of 
physical properties of 
nanomaterials due to 
functionalization 

Verification Atomic force 
microscopy: (Height) 

Zeta potential 

COOH-Single 
walled nano tubes 

1.3 nm −51.9 mV 

PEI-Single walled 
nano tubes 

8.1 nm +40.2 mV 

DNA-PEI-Single 
walled nano tubes 

16.3 nm +31.7 mV 

serve as evidence of adsorption. Carboxylated CNTs (COOH-CNT) are covalently 
modified with a cationic polymer (polyethylenimine, PEI) for a net positive charge 
in the electrostatic grafting process. After that, they are incubated for 30 min with 
negatively charged DNA vectors in a ratio of 1:1 by mass (Demirer et al. 2019). 
The following table shows the change in the physical parameters with each step in 
grafting of DNA to the NP (Table 9.3). 

When it comes to loading DNA, electrostatic grafting is 100% more effective 
than the dialysis technique (50–70%). The electrostatic attraction has smaller equi-
librium dissociation constant and a greater binding energy value than π-π—stacking 
interactions. By incubating the conjugates with proteins that mimicked plant intra-
cellular conditions, the stability of the conjugates was demonstrated. Half of the 
DNA remained adhered to the carbon nanotubes after 3 days. It is also possible to 
store PEI-CNTs for a month at 4 °C (Demirer et al. 2019). 

9.6.2.4 Interaction with DNA Material 

There are some negative interactions of NPs with DNA. The interaction between the 
surface DNA-wrapped carbon nanotube and lipids decreases water density around 
the nanotubes (Jena et al. 2017). Tan et al. (2009) showed that 20, 40 and 80 ppm 
of 10–30 nm MWCNT causes chromatin condensation and shrinkage of cells in O. 
sativa L. (Tan et al. 2009). DNA was damaged when R. sativus L. and L. perenne 
L. were exposed to 10, 100, 500, and 1000 ppm of 100 nm size copper oxide NPs 
(Atha et al. 2012). Fullerene disturbs the routes of electron transport and energy by 
suppressing transcriptional genes (Hossain et al. 2016). 

When carbon nanotubes pass through water channels of Solanum lycoper-
sicum L., they activate the aquaporin gene (LeAqp2) and genes related to stress 
(Khodakovskaya et al. 2010). Damage to structural DNA is seen in G. max L. upon 
2000 and 4000 ppm exposure of engineered CeO2 NPs (López-Moreno et al. 2010). 
4 mM of TiO2 NPs caused bridge formation in telophase and anaphase of A. cepa L. 
(Ghosh et al. 2010). TiO2 NPs at 2 and 10 mM concentration damaged DNA in N. 
tabacum L. and Z. mays L. respectively. They also cause fragmentation of chromo-
some arms in narbon bean (Vicia narbonensis L.) (Ruffini Castiglione et al. 2010). 
100 mg/kg of soil of Fe3O4 also particularly inhibited pyrimidine metabolism in
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maize, which could be a strategy to conserve resources for stress-related processes 
as pyrimidines are mainly used in reproduction (Kafer et al. 2004). 

Aside from these, interactions of DNA and NPs can have important applications. 
Gold NPs were functionalized with a specific single-stranded DNA and could detect 
just 15 ng of R. solanacearum Smith genomic DNA, to assay a soil bacteria that 
causes potato wilt (Khaledian et al. 2017). With a synergistic interaction between 
Tb(lll) ions and CDs, a paper-based fluorescent Tb(lll)-CD probe was created to 
detect as little as 50 nM of 3,-diphosphate-5,-diphosphate, the reaction of plants to 
harsh environmental circumstances (Chen et al. 2018). Different genes and pathways 
can be up or down regulated upon interaction with nanomaterials. A recent report 
shows that under Co-induced stress conditions, nanomaterial fullerenes control the 
gene expression of the RuBisCo large subunit (rbcL), tonoplast intrinsic protein2-1 
(TIP2-1) and nodulin 26-like intrinsic protein1-1 (NIP1-1) (Ozfidan-Konakci et al. 
2022). A study by Pagano et al. (2022) showed how treatment of Arabidopsis thaliana 
L. with nanoscale FeOx and ZnS QDs increase in plastid (pt) and mitochondrial (mt) 
DNA copy numbers by 1 to 3 times. The following table describes how diverse NPs 
interacting with nucleic material affect the metabolism of the plant (Table 9.4).

Metal oxide NPs are thought to release ions on entering the cell, which may have 
their own impact depending on the metal’s chemical properties and the overall crystal 
structure of the particle. Genes can be affected in different ways depending on the 
NP. The following table describes when a gene gets up or down regulated in response 
to which NP (Table 9.5).

SRO5 is upregulated for a variety of NPs but not CeO2 (Khandelwal et al. 2008). 
A. thaliana L. from Ac/Ds mutagenized lines are resistant to normally lethal concen-
tration of CdS quantum dots (Marmiroli et al. 2014). The genes for leucine biosyn-
thesis: IMD3, IPMI2 and IPMI1, and for fatty acid metabolism (FAD3), are strongly 
down-regulated. 

9.6.2.5 Interaction with Carbon Nanotubes 

Biomolecules bound to carbon nanotubes are protected from cellular metabolism 
and degradation (Wu et al. 2008). Oligonucleotide adsorbed-pristine SWNTs and 
polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs) are used for 
plant delivery and sensing applications. This gives transient expression, regardless 
of plant species, which can be confirmed by ddPCR experiments. Plasmid DNA 
delivered by PEI-SWNT is 700 times more efficient than the pristine nanomate-
rial and linear DNA. This is probably due to plasmid DNA being unaffected by 
exonucleases, while linear is affected by both exo- and endonucleases present in the 
plant cell. Protoplast transformation was 76% efficient when the nuclear localiza-
tion signal UBQ10 was used and 86% when 35S was used. When tobacco, arugula, 
wheat, and cotton leaves were treated with plasmid DNA-PEI-SWNT conjugates, 
there was around 7500-fold expression 3 days after infiltration, and just two-fold on 
the tenth day, indicating transient expression. There is no decrease in quantum yield 
measurements of photosystem II in tobacco leaves, showing non-toxicity (Demirer
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Table 9.5 Effect of diverse NPs on different genes 

Gene Description CdS QD Ag NPs ZnO CuO TiO2 Reference 

CHL Chloroplastic 
lipocalin, 
oxidative 
stress 
response 

Up 
regulation 

– – Down 
regulation 

Up 
regulation 

Malnoë et al. 
(2017) 

FSD1 Fe-Superoxide 
dismutase, 
oxidative 
stress and to 
bivalent ions 
response 

– – Down 
regulation 

Down 
regulation 

– Perea-García 
et al. (2015) 

NIR Reduction of 
nitrite, 
salt stress 

Down 
regulation 

– Down 
regulation 

Down 
regulation 

Garai and 
Tripathy 
(2018) 

SRO5 ROS 
scavenging 
and salt stress 

Up 
regulation 

Up 
regulation 

Up 
regulation 

Up 
regulation 

Up 
regulation 

Khandelwal 
et al. (2008)

et al. 2019). However, contradicting results were seen in Arabidopsis by RNA-seq 
analysis of leaf infiltrated with 50 mg/L SWNTs and PEI-SWNTs, 48 h after expo-
sure. The conjugates are transported across the plant nuclear membrane and they 
dissociate in the nucleoplasm for gene expression. Pristine SWNTs are well toler-
ated by the plant since they trigger a modest stress response with no phenotypic 
change, comparable to the water infiltration process. However, PEI-SWNTs led to 
transcriptional reprogramming, which was akin to senescence’s constitutive immune 
response or what happened when plants were exposed to stress-priming agrochemi-
cals. This indicates that PEI causes biotoxicity (González-Grandío et al. 2021). Table 
9.6 shows the number of genes whose transcription is affected when infiltrated only 
with water and when exposed to the NP. It is possible to obtain the gene panel of those 
genes that are affected only by SWNT infiltration by removing the ones common to 
it and water. The same can be done to find the gene panel for PEI effect (Table 9.6). 

Table 9.6 Magnitude of 
transcriptional change due to 
infiltration and nanomaterials 

Material infiltrated No. of upregulated 
genes 

No. of 
down-regulated 
genes 

Water 452 321 

Single walled nano 
tubes 

797 347 

Polyethylenimine 
single walled nano 
tubes 

1364 997
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Hypoxia, which can be brought on by injecting a liquid into leaf tissue with lots 
of air gaps, was linked to genes that were common to all pathways. Other preva-
lent genes were involved in the construction of cell walls and the manufacture of 
glycosinolates (defense metabolites). Therefore, hypoxia activates additional stress-
related genes. Between the SWNTs and PEI-SWNTs treatments, there are 76% of 
upregulated and 62% of downregulated genes in common. Therefore, independent 
of the surface functionalization, these genes are responsive to carbon nanotubes. 
The immune system, cell death mechanisms, and the manufacture of the principal 
aromatic amino acid (tryptophan) and secondary metabolite (salicylic acid) are all 
overrepresented in the genes of PEI-SWNTs treated leaves. This is comparable to 
plants that are dehydrated (Tran et al. 2007) and opposite to those of plants treated 
with glucose (Li et al. 2006). Due to PEI-SWNT treatment, the genes PCR2 for Zinc 
detoxification, FRK1 for senescence, and PR1, CHX17 and PAD3 for leaf chlorosis 
and cell death are upregulated. The genes AGP41, At3g54830 and NAI2 which are 
also related to leaf chlorosis and cell death are down regulated. 

In plants, a prolonged immune response often leads to programmed cell death 
(Pitsili et al. 2019). Because of the polymer’s tiny size and reduced amine density, 
hydrophobically modified low molecular weight linear L-PEI (800 Da) is tolerated 
by Nicotiana. PEI-750 k’s low toxicity to plants may be a result of its size, which 
hinders cellular internalization. This temporal response could prepare plants to more 
effectively withstand upcoming abiotic challenges because low levels of PEI-SWNTs 
could be sustained for several days. 

9.7 Interaction of NPs with Proteins 

The study of proteomics is done by separating proteins based on their isoelectric 
point, mass and hydrophobicity, after which mass spectrometry for fingerprinting is 
conducted (Pagano et al. 2018). NPs have weak molecular reactions with proteins 
through Van der Waals’ forces, static electricity, hydrogen bonding and hydrophobic 
interactions, which make alterations in protein structure and function (Lynch and 
Dawson 2008).Upon entrance of metal NPs into the root cells, they get dissolved 
into redox-active ions which interact with protein functional groups like carboxyl 
and sulfhydryl, altering their activity (Hossain et al. 2020). The ions generate ROS 
by Fenton and Haber–Weiss reactions (Halliwell and Gutteridge 2015). Metal ions 
react with hydrogen peroxide, forming hydroxyl radicals and anions which are even 
more toxic ROS. Quinone reductases (QRs) of the plants detoxify the free radicals. 
When zinc oxide and silver NPs are applied to soybean seedlings, a severe oxidative 
burst causes their levels to decrease along with thioredoxins (Hossain et al. 2016). 

A bio-corona can arise when proteins and other macromolecules adsorb on nano-
materials (González-Grandío et al. 2021). When under Co stress, nanomaterial 
fullerene causes ascorbate regeneration in Zea mays L., through increasing monode-
hydroascorbate reductase and dehydroascorbate reductase levels (Ozfidan-Konakci 
et al. 2022). When A. thaliana L. is treated with 5.8 μM quantum dots, there is a



252 R. Mascarenhas et al.

drop in glutathione (Navarro et al. 2012). Maize grown in 100 mg/kg soil treated with 
Fe3O4 had increased concentrations of the amino acids aspartic acid, lysine, serine, 
valine as well as phenylalanine, a precursor of antioxidant phenolic acids in the 
leaves, and tyrosine in the roots (Zhao et al. 2019). Concentrations of polyamines, 
like spermine and its citrulline precursor, implicated in the reaction to stress and 
the development of diverse plant tissues were increased (Alcázar et al. 2010). The 
polyamine putrescine was produced in response to both TiO2 and Fe3O4. 

Soybean plants were treated with 200 μg/ml cadmium sulfide-quantum dot (CdS-
QD) treated vermiculite. Transport across the roots is aided by a phosphate trans-
porter and a copper-binding transmembrane metal transporter. HIPP22 genes that 
regulate Cd binding protein themselves show reduced expression in a negative feed-
back loop. ATPase-coupled Ca2+-transmembrane transporter protein (K7LC34) is 
also expressed less, preventing transport of copper to the leaves. These were coated 
with thiol mercaptoacetic acid (MAA) and glycine (GLY) which accumulated in 
root cell walls. Coating of hydrophobic trioctylphosphine oxide (TOPO) caused 
instability and released Cd2+ into the cell membranes. This down regulated protein 
transport channels so less influx of Cd would take place to the cytosol and chloro-
plast. Water-soluble polyvinylpyrrolidone coated QD was transported to the leaves 
where it reduced biomass. These last 3 had the largest hydrodynamic diameters. 
Tandem mass spectrometry was used to analyse trypsin-digested protein. Zeta ζ-
potential values in root exudate medium ranged from −24 to −28 mV for all the 
coatings except for the TOPO coat which had −17.5 mV. These values were all 
less than that for Milli-Q-water, showing the increased stability due to root metabo-
lites forming a biocorona around them. Several proteins were found to be expressed 
in roots only due to the treatment with QDs. These affect metabolic pathways of 
glutathione, carbon, amino acids and secondary metabolites like isoflavonoids and 
monoterpenoids. The defensive response, ion complexing, membrane organization 
and channel dynamics are additional functions they play. Tryptophan is accumu-
lated to over thrice the normal concentration. Calcium-transporting ATPase activity 
however was downregulated. There was also less of defense enzymes like peroxi-
dases, cytochrome P-450, phenylpropanoid pathway intermediates like coumarinate 
and caffeoyl CoA. Proteins that accumulate in the roots due to Cd2+ stress include 
those for Cys biosynthesis, TCA cycle, carbon fixation and glyoxylate metabolism 
(Majumdar et al. 2019a, b). Proteins for β-oxidation and phenylpropanoid pathways, 
lignin, sphingosine and jasmonic acid biosynthesis are over abundant in the CdS-
QD-treated roots as a result of stress signaling pathway overexpression (Sharma et al. 
2019). 

9.7.1 Interaction with Specific Proteins Dealing with Stress 

Excessive NaCl levels were used to culture the “Valencia” (Citrus x sinensis L. 
Osbeck) sweet orange plants, which led to salt stress, foliar drop, and reduced growth. 
When 400 mM of nanosized, monodisperse silicon particles were sprayed directly
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onto the leaves, the water status, ion content regulation, root growth, photosynthesis, 
chlorophyll content, and osmotic effect were all improved. Additionally, it increased 
the amount of aquaporin (CsPIP1;1, CsPIP2;3, and CsTIP4;1) and Na+ cotransporter 
(CsSOS1, CsSOS2, CsSOS3, and CsNHX1) in the root tissues (Mahmoud et al. 
2022). Crops commonly suffer from boron deficiency, and boron has limited mobility 
inside plant tissues. This micronutrient was encapsulated in nano-proteoliposomes 
made from natural membranes as a delivery mechanism. Ipomoea batata L. plants 
grown in vitro were used to evaluate this method, and they demonstrated a ten-
fold rise in boron in the leaves as well as increases in Fe and Mn. Additionally, 
noticeable increase in formic acid, asparagine, and valine was observed. Boron trans-
porters (BOR2, BOR4, and BOR7;1) and NIP aquaporins (NIP1;2, NIP1;3, NIP4;1, 
NIP4;2, NIP5;1, NIP6;1, and NIP7) are also expressed more (Nicolas-Espinosa et al. 
2022). In the mitochondria, ammonium and fatty acid transporters play major roles 
in detoxification of NPs and are also the target of nanotoxicity. TiO2, ZnO and 
CuO cause the modulation of AlaAT1, an alanine aminotransferase, which usually 
responds to conditions of hypoxia. Cold temperatures sensitive MDAR6, a monode-
hydroascorbate reductase, mitochaondrial encoded mtLPD1, mtLPD2 lipoamide 
dehydrogenases and mtHsc70-1 heat shock protein, are also affected. All of the 
mentioned genes respond to cadmium exposure. HSP60 is a mitochondrial protein 
with functions of organization, heavy metal and heat shock response. SAMC1 is an 
S-adenosylmethionine transmembrane transporter for organelles. In A. thaliana L., 
HSP60 and SAMC1 are up-regulated upon exposure to TiO2NPs. HSP60 is down-
regulated with ZnO (Pagano et al. 2018). Cerium oxide NPs caused increase in 
HSP70 in maize, as well as increased ascorbate peroxidase and catalase (Zhao et al. 
2012). In the chloroplast, treatment of 10 mg/L silver NPs on Spirodela polyrhiza L. 
reduced RuBisCo activity by 37% (Jiang et al. 2017), and inhibited Photosystem II. 
In soybean roots treated with zinc oxide NPs, gel-free proteome analysis revealed a 
reduction in redox cascade proteins such as galactose oxidase, GDSL motif lipase 
5, quinone reductase and SKU5 similar 4 (Hossain et al. 2016). The interaction of 
soybean plants with CdS NPs with different functional groups caused the differential 
increase or decrease of the proteins peroxisome-localized uricase-2 isozyme-1, Pectin 
esterase, γ-GST, glutamate dehydrogenase, amine oxidase, γ-glutamyl hydrolase, 
3Fe-4S cluster binding proteins, phosphoric diester hydrolase, GST, carboxypepti-
dase, GSH synthetase, S-(hydroxymethyl) glutathione dehydrogenase, SOD, Patho-
genesis related gene (PR1), MT type-2B, SULTR4;2 and TIP2;1 (Majumdar et al. 
2019a, b). 

9.7.2 Interaction with Specific Proteins Dealing with Effect 
on Growth 

In general, changes in the activity of particular enzymes directly correspond to the 
level of stress experienced by plant cells after being externally stimulated through
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stress, which leads to the breakdown of the equilibrium system. SOD and POD are 
antioxidant protection enzymes that aid in the body’s ability to deal with oxida-
tive malfunction and maintain the ever changing equilibrium of ROS, according 
to several studies. While SOD can capture superoxide ion free radicals throughout 
the growth of the organism, regulate the membrane structure, and limit ROS gener-
ation, POD primarily catalyses the breakdown of hydrogen peroxide into oxygen 
and water. The H2O2 produced by SOD, catalase, and POD is quenched by nano-
material fullerenes in Zea mays L. (Ozfidan-Konakci et al. 2022). Treating Ruta 
graveolens L. with 0.1 μM and 2.5 μM of CuO NPs increased the total protein 
levels, but decreased SOD. 0.1 μM concentrations could increase CAT activity, 
while 2.5 μM decreased it in the shoot. Both concentrations increased shoot IRT1 
expression (iron-regulated transport 1), which is important for Mn, Zn, Cd, and Fe 
transport and essential for iron homeostasis (Mazaheri-Tirani et al. 2021). Addition-
ally, MgONP treatment led to significant POD activities in tobacco plants, which 
were able to remove too much H2O2 from cells, maintain membrane integrity and 
reduce the peroxidizing effects of H2O2 on its lipids. These outcomes might affect 
how POD activity is stimulated and how oxidative stress is reduced. Raised POD and 
SOD activity, unaltered levels of MDA, and protein levels, and rather constant water 
levels may show that the NPs heightened the plants’ oxidative stress while sparing 
the tobacco plants’ membranes any harm (Cai et al. 2018). CNP and chitosan bind 
to cells extracellularly. Chitosan NPs (CNP) can be used at a dose almost ten times 
lower than that needed for chitosan. CNP may similarly function as a powerful plant 
defence inducer in a cellular setting and achieve significantly higher immunomod-
ulatory efficiency. CAT and SOD, two essential antioxidant enzymes involved in 
the scavenging of ROS, were shown to have considerably greater enzyme activity 
and mRNA expression levels in the chitosan and CNP treated Camellia sinensis L. 
Kuntze leaves compared to the untreated control counterparts. This outcome is in 
line with that of Ortega-Ortez et al. who demonstrated that tomato fruits can exhibit 
CAT activity when chitosan and salicylic acid are applied (Ortega-Ortiz et al. 2007). 
The CNP-treated leaves had larger accumulations of peroxidase (PO), polyphenol 
oxidase (PPO), beta-1, 3-glucanase, and phenylalanine ammonia lyase (PAL) than 
their chitosan-treated counterparts. It is known that PO and PPO participate in the 
lignin production pathway. By increasing the plant’s cell wall barrier, this pathway 
improves defense against several diseases and pathogens. Induced production of 
beta-1, 3-glucanase would also improve cell division, flower development, and seed 
maturation. Therefore, because chitosan or CNP treatment can directly affect the 
hydrolysis of glucans in fungal cell walls, it may be useful to induce the expression 
of beta-1, 3-glucanase at the moment of pathogen invasion. Enhanced thaumatin like 
protein (TLP) activity could improve immunity to diseases, such as those vectored 
by insects. The phenylpropanoid biosynthesis pathway’s initial enzyme, PAL, is also 
involved in the creation of phenolic compounds and phytoalexins. It has already been 
established that phenolic compounds play a role in disease resistance. Tea leaves 
treated with CNP accumulated more phenolic compounds than tea leaves treated 
with chitosan, which may have been caused directly by the PAL activity that was 
increased in the CNP-treated portions. The analysis of the induced expression of the
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C4H, ANR and F3H genes in the chitosan- and CNP-treated leaves confirmed this 
up-regulation. The flavonoid biosynthesis pathway, which involves F3H, produces a 
broad family of flavonoid molecules with a variety of biological properties, including 
disease resistance. In addition, F3H catalyzes the biosynthesis of other flavonoids. 
These act as feeding inhibitors and as a potent antioxidant system. Plants treated 
with chitosan and CNP produced more NO than the untreated (Chandra et al. 2015). 
The concentration of GO determines the effect on plant growth. Table 9.7 gives the 
effect of GO on rapeseed. For this cash crop, the critical stimulating effects of GO 
sheets may take place between concentrations of 10–25 mg/L (Yang et al. 2020).

NPs can also behave like antioxidants: nCo3O4, nFe3O4, and nCeO2 imitate CAT; 
nCo3O4, nCeO2, nFe3O4, nAu, nMnO2 and nCuO and imitate peroxidase; nCeO2, 
fullerene and nPt imitate SOD (Wei and Wang 2013). 

9.7.3 Applications of NP Interaction with Proteins 

CdSe/ZnS core–shell QDs tagged with anti-gliadin antibodies were used to analyze 
the distribution of gliadin during baking (Ansari et al. 2015). These conventional QDs 
can have autofluorescence and photobleaching, so they are doped with lanthanides 
to create fluorophores. Ricin can be detected by amine-functional europium-doped 
KGdF4 NPs. 

The absorption property of MWCNTs is high owing to the more expanded surface 
area, chemical and thermal stability. GO planar sheets have better adsorption than 
MWCNTs due to ease of synthesis from graphite, and the latter’s steric hindrance 
for compounds, and metal contamination (Liu et al. 2011). They are effective energy 
acceptors with delocalized electronic excitations for long-range resonance energy 
transfer (LrRET) which quenches fluorophore emission. GO quenches fluorescence 
and amplifies fluorescence anisotropy (FA) due to its larger mass and slower rotation 
rate (Xiao et al. 2015). 

During protein detection, antibody probes interact better with the target in the 
presence of nanomaterial coated electrodes. Aptamers are nano-sized receptors for 
proteins, which have been used in apta assays to detect gliadin in food by binding 
to its immunodominant apolar peptide. Stem-loop DNA aptamer probes can capture 
toxin genes and undergo a conformational change which changes the effectiveness of 
electron transfer, creating an electrochemical signal (White et al. 2016). QD-aptamer-
GO NPs change shape when interacting with food allergens, causing difference in 
fluorescence caused by quenching and signal recovery by GO (Weng and Neethirajan 
2016). To prevent this quenching, space should be there between the fluorophore and 
GO. 

The lanthanide doped NPs used GO as a ricin competitor to adsorb the aptamer 
and quench the excited donor fluorophore (Huang et al. 2014). On recognizing ricin, 
the aptamer becomes a rigid tertiary structure which gives only partial fluorescence 
as it cannot be bound and quenched, so it is used for detection. A biosensor detects 
Ara h 1 peanut allergen using DNA probes immobilized on a glassy carbon electrode
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Table 9.7 Regulation of plant protein expression based on nanomaterial concentration 

Nanomaterial 
concentration 

Plant Plant proteins Regulation Observation Reference 

25- to 
100-mg/L of 
GO 

Brassica napus L. 
(rapeseed) 

SOD Up 
regulated 

Inhibits root 
growth, 
Lipid 
peroxidation 
increases 
slightly 

Cheng 
et al. 
(2016)Catalase Up 

regulated 

POD Down 
regulated 

5–10 mg/L 
of GO 

Brassica napus L. 
(rapeseed) 

SOD Down 
regulated 

Stimulates 
root growth 

Cheng 
et al. 
(2016)Catalase Down 

regulated 

POD Up 
regulated 

20 mg/L GO Solanum lycopersicum 
L. (Wild tomato) 

SOD Down 
regulated 

Root length 
increases 

Jiao et al. 
(2016) 

POD Down 
regulated 

CAT Down 
regulated 

100, 200, 
1600 mg/L 

Vicia faba L. (broad 
beans) 

APX Down 
regulated 

Germination, 
root 
extension 
inhibited, 
increased 
ROS 

Anjum 
et al. 
(2014)CAT Down 

regulated 

400, 
800 mg/L 

Vicia faba L. (broad 
beans) 

APX Up 
regulated 

Enhanced 
growth, 
more water 
content, less 
ROS stress, 
less 
electrolyte 
leakage 

Anjum 
et al. 
(2014)CAT Up 

regulated 

Aluminum 
oxide NPs 
(8 nm) 

Nicotiana tabacum L. Dehydrogenase, Down 
regulated 

Poborilova 
et al. 
(2013)Oxido-reductase Down 

regulated 

NiO NPs Solanum lycopersicum 
L. (Tomato) 

SOD Up 
regulated 

Lipid 
peroxidation 
increases, 
more 
glutathione 
content 

Faisal 
et al. 
(2013)CAT Up 

regulated

(continued)
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Table 9.7 (continued)

Nanomaterial
concentration

Plant Plant proteins Regulation Observation Reference

nTiO2-A S. oleracea L. SOD Up 
regulated 

Lei et al. 
(2007) 

CAT Up 
regulated 

APX Up 
regulated 

GPX Up 
regulated 

APX = Ascorbate Peroxidase 
SOD = Superoxide dismutase 
POD = Peroxidase (Horseradish roots) enzyme

(GCE) with chitosan MWCNTs which promotes kinetics of electron transfer (Sun 
et al. 2015). Au NP-coated screen-printed carbon electrode conjugated with mono-
clonal antibodies was used as a voltammetric biosensor for the detection of peanut 
allergens Ara h 1 and  Ara h 6 in food  (Alves  et  al.  2015a, b). A detector complex of 
Surface-enhanced Raman scattering (SERS) platform is created by attaching opti-
mized single-stranded oligodeoxynucleotides (ssODNs) to Au NPs (Tang et al. 2016). 
It is used for the detection of ricin which depurinates the ssDNA releasing adenine, 
which causes signal attenuation. Silica nanospheres and gold film-over-nanospheres 
create a SERs platform where a glycopolymer NAGEMA is attached to detect ricin 
B-chain in spiked fruit juice (Szlag et al. 2016). 

Nanomaterials of gold, copper and cobalt have high conductivity, adsorption due 
to extensive surface area, and biocompatibility, so they are used in electrochemical 
sensors. Silver NPs have high fluorescence enhancement due to radiative decay engi-
neering and local field enhancement. Silver NPs of diameter 50 nm created dendrites 
for detecting ricin in liquid food samples using SERS spectrum (He et al. 2011). 
Carbon, silica and metals give structural support to sensors by linking antibodies 
with probes or modifying the electrode surface. 

Ammonium persulphate is used to modify canola protein which are attached to 
graphite oxide (GO) and nanocrystalline cellulose (NCC) to create a naturally sourced 
hybrid adhesive. The former is in the form of single or stacked sheets that range in 
width from 600 to 800 nm. The latter has a fibrous rod structure of diameter 60–90 nm. 
Ammonium persulphate crosslinks the protein by inter tyrosine and tyrosine-histidine 
free radical interactions creating a protein network that is covalently stabilized. The 
hydrophobic functional groups, nanomaterial exfoliation, cohesive interactions and 
thermal stability cause the adhesive to have improved properties like water resistance 
(Bandara and Wu 2017). 

NPs are used for the treatment of plant viruses. Positively charged LDH sheet-
like clay NPs are used as dsRNA carriers to protect against plant viruses (Mitter 
et al. 2017). N. benthamiana Domin and cowpea (Vigna unguiculata L.) could resist 
aphid vectored potyvirus, bean common mosaic virus (BCMV), 5 days after topical
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application of dsRNA using BioClay. Silver NPs (AgNPs) bind the coat proteins 
of tomato mosaic virus (ToMV) and potato virus Y (PVY) in plant (El-Dougdoug 
et al. 2018). 50 mg/L spray reduced local lesions, and antioxidant enzymes (PPO and 
POD) and total soluble protein contents increased (Farooq et al. 2021). The chemistry 
behind the interaction between nanomaterials and proteins has been explained by 
Zhang et al. (2018). 

9.8 Interaction of NPs with Hormones 

The original definition of plant hormones can be stated as naturally occurring 
compounds that showcased physiological activity within plants (Weyers and Paterson 
2001). Physiological activity is in reference to growth, maturation and towards stress 
responses in a plant. Some may cause the elongation of roots or shoots while others 
may be involved in senescence (Yang et al. 2017). The plant hormones are classified 
based upon their chemical structure and/or their physiological activity (Weyers and 
Paterson 2001). Thus plant hormones have been classified into five main classes of 
naturally occurring plant hormones: auxin, cytokinin, gibberellins, abscisic acid and 
ethylene (Gaspar et al. 1996). This system of classification thus giving “classical five” 
came into existence only since 1937 before which under the category of phytohor-
mones, only auxins existed (Kende and Zeevaart 1997). Apart from the classical five, 
there are plant hormones that exist such as brassinosteroids, salicylic acid, jasmonic 
acid and strigolactones. Strigolactones have been discovered to contribute towards 
the plant growth and development as well as respond to biotic and abiotic stresses 
(Bari and Jones 2008). 

Hormonal routes were examined in Bright Yellow 2 (BY-2) tobacco (Nico-
tiana tabacum L.) cell suspensions treated with manganese ferrite nanoparticles 
(nMnFe2O4) or nitrogen-doped carbon dots (N-CDs). N-CDs (2.9 ± 0.5 nm) at 
0.1 mg/L and nMnFe2O4 (28.7 ± 7.7 nm) at 1 mg/L from the dosage response 
study significantly increased cell survival by 11.6% and 30.4%, respectively. The 
cell shape, hormone content, H+, K+, and IAA fluxes, gene expression, and metabo-
lite profiles were assessed for a subset of samples based on this information. Fresh 
weight and cytokinin levels were respectively increased by 48.2% and 70.22% after 
exposure to nMnFe2O4 and by 30.82% and 37.22%, respectively, after exposure to 
N-CDs. Specifically, nMnFe2O4 enhanced the expression of expansin by 3.3 fold 
for cell expansion by increasing the outflow of H+ (by 75.7%) and influx of K+ (by 
278%). N-CDs caused late extrusion of H+ and early expression of CYCB (by 4.9 
fold) for the cell cycle. Metabolomic research also showed that N-CDs contributed 
to stress resistance (by 41.8–121%) and IAA synthesis, while nMnFe2O4 increased 
metabolism in cytokinin signalling by 5.4–17.0%, ATP synthesis by 22.6–200%, 
and cell growth (27.5%) by 63.3%. Together, it appears that nMnFe2O4 started the 
SCFTIR1/AFB-AUX/IAA signaling pathway, and N-CDs may have turned on the 
IAA-mediated cell cycle to encourage cell proliferation (Wang et al. 2022).
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SeNPs synthesized by reducing H2SeO3 with ascorbic acid and arabic gum had 
spherical shape and an average size of 80 nm. When tested on gerbera in vitro, they 
performed well as a rooting agent and substituted for auxin. This led to improved 
phenotypic characteristics, such as 0.3 to 1.5 mg/L SeNPs decreased the rooting 
time, 0.7 to 1.5 mg/L increased leaf length, and 1 mg/L gave rise to the most chloro-
phyll (35.47 nmol/cm2). 3 mg/L SeNPs led to the highest CAT activity (275.58 
Umin−1 g−1prot) and increased the ABA content to 4.33 times the positive control. 
1.5 mg/L gave auxin content 6.14-fold higher, kinetin 2.78 higher and Gibberellic 
acid 4.70 higher than the negative control. 1 mg/L gave the highest SOD activity 
(43.13 Ug−1prot ± 3.48). 0.7 mg/L SeNPs raised the zeatin levels to 4.79 times 
higher than the negative control. The highest plant survival (95%) was seen in 0.7, 
1 and 1.5 mg/L SeNPs treatment, whereas plants treated with IBA and free-auxin 
showed lower survival (Khai et al. 2022). 

The applications of NPs have been found in carrier systems for delivery systems to 
deliver such plant hormones. One such example is the delivery of the plant hormone 
gibberellic acid (GA3) by nanocarriers such as alginate/ chitosan system or chitosan/ 
tripolyphosphate system. It was observed that both these nanocarriers were stable for 
60 days but their release mechanism differed with temperature and pH. In addition, 
it was identified that when alginate/ chitosan system was used to deliver GA3 in 
Phaseolus vulgaris L., there was an increase in leaf area as well as elevation in the 
levels of carotenoids and chlorophyll (Pereira et al. 2017). Yang et al. fabricated a 
core–shell structured made from a substrate of multiwalled nanotubes (MWNTs), 
which could be used to trace presence of phytohormones in fruit juices (Yang et al. 
2022). 

NPs have also been used to study phytotoxicity of plant hormones in plants when 
they surpass the adequate limit in terms of quantity required for their various activ-
ities (Weyers and Paterson 2001). NPs can increase in the plants defense hormones 
like salicylic acid, jasmonic acid, abscisic acid, zeatin riboside and brassinosteroids 
(Farooq et al. 2021). Silica NPs improve disease resistance via salicylic acid-mediated 
systemic acquired resistance (El-Shetehy et al. 2020). 

Eleven biochemical pathways were altered in maize leaves due to the growth 
conditions of 100 mg Fe3O4NP/kg of soil, related to glycolysis and gluconeogenesis, 
like the TCA cycle (Zhao et al. 2019). This affects the synthesis of plant hormones 
like salicylic acid, ethylene, and auxin, as well as amino acids (Metch et al. 2018). 
The same concentrations of SiO2, TiO2 and Fe3O4 also increase 4-aminobutyric 
acid (GABA) and its precursor glutamic acid, which have many roles including 
signal transduction and stress defense (Shelp et al. 1999). GABA produces the stress 
response chemical succinate semialdehyde in the mitochondria, and this is increased 
upto eightfold due to the soil treatment (Allan et al. 2012). This indicates that the plant 
sensed the root stress and accordingly readied the shoot tissues. 4 pathways were 
disrupted in the roots: inositol phosphate (a secondary messenger for extracellular 
signals), ascorbate, aldarate, glycerolipid metabolism (related to antioxidant plant 
defense) and the TCA cycle. This shows that Fe3O4 causes stress response. TiO2 

additionally affected the methane production pathway.
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Fig. 9.5 Structure of IAA 
rendered on MolView 

9.8.1 Effect on Levels of IAA 

Indole-3-acetic acid (IAA) is the main naturally-occurring auxin (Fig. 9.5). This 
auxin is primarily produced in plants. This is achieved by a de novo biosynthesis 
pathway which utilizes tryptophan as a pivotal precursor. Through this pathway, 
the IAA generated is utilized in the processes of seedling growth, flower develop-
ment, embryogenesis and vasculature (Zhao 2012). 25- to 100-mg/L GO exposure 
in rapeseed causes decrease in IAA levels (Cheng et al. 2016). 

In the IAA transcription process of transgenic plants, IAA4 and IAA10 are down-
regulated, and IAA7 is upregulated. In the wild type, IAA7 is downregulated; IAA10 
is upregulated (Jiao et al. 2016). However, it was observed that when CeO2-NPs were 
used, at a concentration of 500 mg/L there was significant increase in the levels of 
IAA in the leaves of conventional cotton but not in the transgenic cotton leaves. 
In another study, the presence of carbon nanotubes in rice, IAA levels decreased 
in the shoot regions as well as in the root regions. When CuO at an intensity of 
10 or 200 mg/L interacts with shoot tissue of lpt-cotton, IAA levels declined while 
at a concentration of 1000 mg/L, in the root tissues of the same plant, IAA levels 
increased (Yang et al. 2017). 

9.8.2 Effect on the Levels of Abscisic Acid (ABA) 

Abscisic acid is a sesquiterpenoid which implies that its structure comprises 15 
carbon atoms (Fig. 9.6) (Rai et al.  2011). It has numerous functional moieties and a 
non-planar structure. ABA can be synthesized from mevalonate or from beta carotene
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and it is produced primarily under conditions when the plant is under some form of 
stress. This may be in the form of drought, radiation, heavy metal, heat or thermal 
stress. On the whole, ABA is active during the time when the plant experiences abiotic 
stress. ABA responds by acting on and thus modifying the expression level of genes 
especially the cis- and trans- acting regulatory elements of responsive promoters 
(Vishwakarma et al. 2017). Apart from stressed conditions, ABA is crucial for the 
control of numerous plant physiological systems. For instance, in plant tissue culture 
systems, ABA is used to promote somatic embryogenesis. The presence of ABA 
enhances the quality of the somatic embryos by preventing precocious germination 
and increasing desiccation tolerance (Rai et al. 2011). 

Concentrations of 25- to 100-mg/L GO exposure in rapeseed cause abscisic acid 
(ABA) levels to increase (Cheng et al. 2016). In tomato, ABA limiting enzyme 
NCED transcription with exposure to 20 mg/L GO, especially in transgenic plants, 
indicates that the rd29A activator (drought and salt resistance factors) is activated 
by GO; highly transcribed genes include ABCG25 and ABCG40. In the wild type, 
ABCG25 and ABCG40 are not affected (Jiao et al. 2016). When CeO2 at a 100 mg/L 
concentration was present in Bt-transgenic cotton, the levels of ABA in the root 
tissue decreased. Furthermore, the presence of Fe2O3 in peanuts at a concentration

Fig. 9.6 Structure of ABA 
rendered on MolView 
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of 250 mg/L decreased the ABA content in tissues of the shoot while a concentration 
of 1000 mg/L decreased the ABA content in the root tissues. Another interesting 
finding is that in lpt-cotton, when the amount of CuO NPs was around 10 mg/L, the 
concentration of ABA decreased, but when it was around 200 or 1000 mg/L, the 
concentration of ABA increased in both the root and shoot tissues (Yang et al. 2017). 

Treatment of Arabidopsis wild-type and mutant line gl-1 (glabra-1) plants that 
lack trichomes on stems and leaves with silver NPs showed a change in stress-
related phytohormones and their derivatives. A 6 h treatment of 150 mg/L AgNPs 
boosted jasmonic acid, abscisic acid and salicylic acid levels. Abscisic acid and its 
metabolites phaseic acid (PA) and dihydrophaseic acid (DPA) showed an increase in 
the wild type by 7.9-fold and in gl-1 by 16.9-fold as compared through treatment with 
silver ions. gl-1 line showed a 1.4-fold increase of jasmonic acid and its precursor 
(cis-(+)-12-oxo-phytodienoic acid) by 2.5-fold, and hydroxy-JA catabolites by 2.3 
times, compared with the wild type (Angelini et al. 2022). 

9.8.3 Interaction with Gibberellins 

Gibberellic acid is used to activate enzymes, stimulate dormant seeds, and encourage 
plant growth by increasing the rate of cell division. It can also stimulate fruit growth, 
prevent senescence and increase yields (Quamruzzaman et al. 2021). Consequently, 
the appropriate use of GA is important for agriculture. Like the above-mentioned 
alginate/ chitosan system (Fig. 9.7) or chitosan/ tripolyphosphate systems, engineered 
NPs are being used for precision delivery of growth hormones to the plant tissues. 
This ensures less wastage of chemicals and a controlled release of the hormone. For 
instance, mesoporous silica NPs were used to store salicylic acid, and a decanethiol 
gatekeeper system caused the hormone to be released when glutathione was present 
(Yi et al. 2015).

Hollow mesoporous nanocarriers of silica with installed Fe3O4NPs functionalized 
with water soluble carboxylatopillar [5]arene ammonium are used as nanovalves. The 
structures are loaded with gibberellin GA3, and the host–guest interactions are bidi-
rectional and responsive to changes in environment. It was tested in A. thaliana L. and 
cabbages. The hormones were released in conditions of pH over 5 or pH less than 4, 
to help the plant respond to alkaline or acidic soil or water stress. The iron portion 
makes them magnetic for an extra layer of control. They could also respond to 
1,4-butanediamine (BDA) and ultrasound (Li et al. 2019). 

Another gibberellin delivery system used a porous metal–organic frameworks 
(MOFs) with a nanovalve made of carboxylated leaning tower[6]arene (CLT6) in 
Chinese cabbage and wheat. It was functionalized by coordination with quater-
nary ammonium stalks, which gave it a diameter of 101 nm and a zeta potential 
value of −13.2 mV (Yang et al. 2021). Gibberellin delivered this way increased the 
seed germination of the two species by 1.86 and 1.30-fold respectively. Leaning 
tower[6]arene is an improvement over Pillar[n]arenes due to higher yield during 
synthesis, cavity adaptability, hormone binding capacity, and fewer substituents. The
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Fig. 9.7 Effect of Chitosan/Alginate NPs on phytohormones

hormone cargo was released at lower pH of 5–6 due to reduced host–guest interaction 
of the anionic CLT6 macrocycles and cationic Q stalks. Higher temperature caused 
release due to decreased complex stability. Release was also mediated through the 
strong competitive binding of polyamines, chemicals common to plant tissues. The 
study by Yang et al. (2021) explains how loading capacity and encapsulation effi-
ciency can be calculated. These innovations are paving the path towards modern 
precision agriculture. 

9.9 Conclusion and Prospects 

NPs are structures which are in the size range of 1–100 nm. They are important due to 
the fact that owing to their size, physical and chemical properties, they can be used in 
a variety of systems to deliver a compound or simply to be used in toxicity studies of 
a system. Regardless, in all these conditions, the NPs interact with the system which 
can be a plant wherein the interaction occurs with macromolecules such as nucleic 
acids, proteins and hormones. The interactions observed are usually electrostatic, π-
π, covalent and Van der Waals in nature. However, the type of interaction differs with 
the type of NPs. The interactions of metal oxide NPs of zinc, copper, magnesium, iron, 
titanium, silica, cadmium sulphide and quantum dots have been explored. Graphene 
NPs include graphene oxide and different carbon nanotubes (CWTs). Here modifying 
the surface chemistry changes the properties of the NPs. Then, there are arabinoxylan 
NPs which have been prepared from wheat bran waste and chitosan NPs which have 
been used to deliver gibberellic acid in certain plant systems. BioClay NPs have
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also been used to deliver DNA and RNA by binding interactions. The effect of these 
NPs can be observed as they can modulate gene transcription based upon the NP 
being used. In addition, these particles can affect the growth of the plant and can 
induce a stress condition which causes an effect on the SOD, POD, and CAT, among 
other enzymes, are expressed and active. With regards to applications, nanomaterials 
have been used as sensors for food allergens, toxicity testing and to protect the 
plant from virus infection. More futuristic devices for highly individualized crop 
plant sensing take the form of high-tech nanodevices like a graphene-based wearable 
sensor developed by Oren et al. which monitors water evaporation from plant leaves 
(Oren et al. 2017). It senses this due to variations in the electrical resistance of 
graphene under various humidity conditions. Pt nano sensors functionalized with 
IgG antibodies were used to find bacteria associated with plants in soil and carrots 
(Ahmad et al. 2012). By understanding the interactions of a plant in its environment, 
NPs that mimic these relationships could go a long way in saving resources through 
precision pesticides, fertilizers and stress detectors. These can be applicable for both 
the agricultural setting and for monitoring endangered species, or even invasive ones 
without harming the native plants. More interdisciplinary studies for the intelligent 
design and deployment of these exemplary machines are required, especially to assess 
their safety in advance and to search for better materials that can be created through 
green synthesis and can breakdown once their purpose is served. Thus the future 
prospects of nanomaterial’s coexistence with plants are bright and further research 
can only uncover more efficient systems. 
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Chapter 10 
Influence of Nanomaterials 
on Non-enzymatic Antioxidant Defense 
Activities in Plants 

Antonio Juárez-Maldonado 

Abstract Plants are exposed to different types of stress throughout their develop-
ment. In order to tolerate these stressful conditions, plants have a series of systems 
that allow them to defend themselves and successfully complete their life cycle. One 
of the most important is the antioxidant defense system, through which enzymatic 
and non-enzymatic antioxidant compounds are synthesized. Antioxidants are neces-
sary as they prevent reactive oxygen or nitrogen species produced at the cellular 
level from damaging different cellular structures and consequently the integrity of 
the entire plant. In particular, non-enzymatic antioxidants have the great advantage 
of being non-specific which is why they can neutralize a variety of reactive species. 
Therefore, it is necessary to maintain adequate antioxidant production to avoid any 
type of damage caused by reactive species. Nanomaterials have proven to be an 
effective tool to induce positive responses in plants. This is due to the unique charac-
teristics they possess due to their size ranging from 1 to 100 nm. Nanomaterials can be 
applied to plants by different routes and enter cells. In this journey, they interact with 
the different cell structures such as cell wall, cell membrane, different organelles 
and even with the nucleus, this induces a series of responses that range from the 
production of reactive oxygen species, to the modification of different metabolic 
pathways and also gene expression. Finally, the result is the increase in the produc-
tion of different secondary metabolites and antioxidants such as phenols, flavonoids, 
alkaloids, carotenoids, ascorbic acid, etc. Adequately knowing the mechanism of 
action of nanomaterials on the antioxidant system of plants can be useful to plan 
management strategies aimed at obtaining specific results such as the increase in 
non-enzymatic antioxidants that are useful not only for the plant but also for human 
health. 
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10.1 Introduction 

Plant species are organisms that in most of their development are exposed to different 
environmental conditions that are outside their optimal level. These conditions, 
commonly called stress, can be biotic or abiotic in origin (Ramegowda and Senthil-
Kumar 2015). Global warming and climate change have made these stressful condi-
tions increasingly common. As a result, the productivity of plants can be affected 
to a greater extent. To defend themselves against different stress conditions, plants 
have a series of mechanisms and systems that allow them to tolerate stress and thus 
be able to complete their life cycle. One of the most important systems is the antiox-
idant defense system that involves the production of enzymatic and non-enzymatic 
antioxidants (Choudhary et al. 2020). Antioxidants have the ability to neutralize 
reactive oxygen species (ROS) or reactive nitrogen species (RNS), which are always 
produced at the cellular level under a stress condition; their overproduction causing 
oxidative stress (Bhattacharjee 2012). This can generate different types of damage 
at the cellular level such as cytotoxicity, genotoxicity, lipid peroxidation, apoptosis, 
intracellular protein degradation, and miRNA dysregulation (Rahmani et al. 2020). 

Non-enzymatic antioxidants are of utmost importance in plant metabolism. Since 
they have several advantages over enzymatic ones, unlike antioxidant enzymes, are 
not specific type. Therefore, they can neutralize a variety of ROS and RNS (Haida 
and Hakiman 2019). In addition, non-enzymatic antioxidants participate in other 
metabolic functions that are vital for plants (Rajput et al. 2021), e.g., carotenoids 
can dissipate excessive energy or even function as accessory pigments (Edge and 
Truscott 2018). In addition, phenols and flavonoids perform a variety of functions in 
plants, commonly related to tolerating different stress conditions (Vasconsuelo and 
Boland 2007; Thakur and Sohal 2013). Additionally, non-enzymatic antioxidants 
are important for human health, as they have beneficial effects on different non-
communicable diseases (Saini et al. 2015; Cisternas-Jamet et al. 2020; Cortés-Estrada 
et al. 2020). 

Nanotechnology through the use of nanomaterials (NMs) (materials on a scale of 
1–100 nm) has been an extremely useful tool in the development of science. This 
has been achieved due to the unique properties of NMs that can be exploited for a 
variety of applications in different areas of scientific applications (Juárez-Maldonado 
et al. 2019; Bai et al. 2021). Particularly, the application of NMs in plant species has 
been shown to have enormous beneficial effects, ranging from greater plant growth 
and development, to increasing the ability to tolerate both biotic and abiotic stress 
conditions (Rizwan et al. 2017; Kumar et al. 2019; Awasthi et al. 2020). 

One of the main impacts of the NMs application in plants is the modification 
of the antioxidant defense system, which stimulate the production of enzymatic 
and non-enzymatic antioxidants (Lala 2021; Juárez-Maldonado et al. 2021). This 
is accomplished due to the ability to modify cell metabolism and gene expression 
(Khodakovskaya et al. 2012; Yan et al. 2013). This chapter describes the mechanism 
through which NMs impact the production of non-enzymatic antioxidant compounds
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in plants. In addition, the influence of the different NMs applied through different 
routes on the production of non-enzymatic antioxidants in plants is reviewed. 

10.2 Antioxidant Defense System in Plants 

The antioxidant defense system of plants controls reactive oxygen species, since a 
balance is required between the production of ROS and their neutralization due to 
the effect of antioxidants. If this antioxidant defense system did not exist, the over-
production of ROS would cause oxidative stress at the cellular level and damage to 
the different cellular structures. The antioxidant defense system includes the produc-
tion of enzymatic and non-enzymatic compounds that will neutralize ROS, thus 
preventing damage (Choudhary et al. 2020). However, at low concentrations, ROS 
have the ability to function as signaling molecules and stimulate the production of 
compounds such as abscisic acid, salicylic acid, or jasmonic acid, that can induce 
tolerance to different stress conditions (Mertens et al. 2021). Thereby, ROS can 
be considered as compounds with double functions. Their high concentrations will 
cause oxidative stress and at low concentrations stimulate the production of beneficial 
compounds in plants. 

10.2.1 Plant Stress 

Plants, being living organisms, unable to move from one place to another. They are 
obliged to develop their entire life cycle in the same place and they will be exposed 
to different stress conditions including abiotic and biotic during developmental life 
cycle (Ramegowda and Senthil-Kumar 2015). Stress is not an optimal condition, 
unsuitable for the plant growth and development, prevents the maximum expression 
of their growth and yield potential (Shao et al. 2008). Therefore, any stress condition 
regardless of its origin (biotic or abiotic) will result in the reduction of the total plant 
productivity. The difference between the optimal and stressful conditions in the total 
plant productivity is known as the loss due to the stress factor (Atkinson and Urwin 
2012; Rejeb et al. 2014). 

Each stressor induces different type of response in plants, e.g. drought inhibits 
photosynthesis and increases abscisic acid (ABA), but also induces the production 
of ROS that generate oxidative stress (Ghosh and Xu 2014). High temperature stress 
decreases photosynthesis, induces membrane damage, affects carbon and nitrogen 
metabolism, and also induces oxidative stress (Asseng et al. 2011; Dias et al. 2011). 
Salt stress also negatively affects photosynthesis, induces osmotic stress, ionic toxi-
city, and also oxidative stress (Hanin et al. 2016; Zörb et al.  2019). Any type of 
abiotic stress induces ROS overproduction and exerts oxidative stress. 

In plants, biotic stress is caused by living organisms (fungi, bacteria, oomycetes, 
viruses, nematodes, insects and weeds) (Saddique et al. 2018; Araújo et al. 2020;
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Esgario et al. 2020). Under biotic stress conditions, the changes occur at biochemical, 
morphological, molecular aspects in plants (Zaynab et al. 2019). Plants recognize 
pathogens through transmembrane pattern recognition receptors (PRR), which is a 
part of the defense pathway called pathogen-associated molecular pattern (PAMP) 
activated immunity (PTI) (Monaghan and Zipfel 2012). There is also a second 
pathway called effector-activated immunity (ETI) where intracellular resistance 
protein receptors directly recognize specific pathogenic effectors or indirectly their 
interaction effects on host cell components (Sang et al. 2020; Yoo et al. 2020). 
While in the case of herbivorous organisms, plants detect them through damage-
associated molecular patterns (DAMP) (Quintana-Rodriguez et al. 2018), or by 
herbivore-associated molecular patterns (HAMP) (Si et al. 2020). 

In any case, the different biotic stress detection pathways trigger a series of 
responses such as ROS generation, calcium ion signaling, production of proteins 
related to pathogenesis (PR), changes in levels of salicylic acid (SA) and jasmonic 
acid (JA) (Monaghan and Zipfel 2012; Quintana-Rodriguez et al. 2018; Yoo  
et al. 2020; Si et al.  2020). Basically, any stress condition, ultimately induces an 
overproduction of ROS and consequently induces oxidative stress. 

10.2.2 Reactive Oxygen Species 

Photosynthesis is the physiological process through which life itself develops, since 
from this process sugars are synthesized that serve as the basis for the metabolism of 
plants. Photosynthesis uses carbon dioxide (CO2) from the atmosphere and releases 
molecular oxygen (O2). The activation or reduction of oxygen leads to the production 
of reactive oxygen species (ROS), among which are singlet oxygen (1O2), superoxide 
(O2 

•−), hydrogen peroxide (H2O2), hydroxyl radical (HO•), and others as perhy-
droxyl radical (HO2 

•−), alkoxy radical (RO•), peroxy radical (ROO•), and organic 
hydroperoxide (ROOH) (Bhattacharjee 2012; Tripathy and Oelmüller 2012; Rajput 
et al. 2021). One of the main ROS is the superoxide anion (O2 

•−), which can be 
switched to form hydrogen peroxide (H2O2) and hydroxyl radical (HO•) (Gutowski 
and Kowalczyk 2013). 

ROS are produced both in plants and in other living organisms in chloroplasts, 
mitochondria and peroxisomes mainly, due to the processes of photosynthesis and 
respiration (Tripathy and Oelmüller 2012; Kundu et al. 2018). Furthermore, ROS can 
be produced in the cell wall due to the presence of peroxidases and amine oxidases, 
and in the plasma membrane due to the effect of NADPH oxidase, as well as in 
the cytosol, glyoxysomes and endoplasmic reticulum (Tripathy and Oelmüller 2012; 
Janků et al.  2019). 

Although it is true that ROS are part of the aerobic metabolism of plants, their 
overproduction is risky, since it can induce what is known as oxidative stress (Bhat-
tacharjee 2012). Oxidative stress is the increase in oxidizing agents with the ability 
to extract electrons from organic molecules and therefore disrupt their cellular func-
tion. The excessive production of ROS can induce oxidative damage in different
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cell organelles by affecting proteins, lipids and even DNA (Tripathy and Oelmüller 
2012). However, plants can regulate the accumulation of ROS in such a way as to 
avoid oxidative damage at the cellular level. For this, plants take advantage of their 
antioxidant defense system, which is composed of a series of enzymes (superoxide 
dismutase [SOD], catalase [CAT], ascorbate peroxidase [APX]) that allow the elim-
ination of ROS, as well as electron donor compounds called non-enzymatic antioxi-
dants (ascorbic acid, glutathione, phenolic acids, alkaloids, flavonoids, carotenoids, 
etc.), thus limiting the possible harmful effects of ROS (Hasanuzzaman et al. 2020). 

10.2.3 Enzymatic and Non-enzymatic Antioxidants 

Plants commonly keep their antioxidant defense system active to maintain redox 
homeostasis (ROS production/ROS scavenging) (Miller et al. 2010). The compounds 
used in this system to avoid oxidative stress are called antioxidants, which are 
compounds that work as electron donors to neutralize free radicals (Haida and 
Hakiman 2019). 

Antioxidants can be of the enzymatic type such as superoxide dismutase, catalase, 
ascorbate peroxidase or of the non-enzymatic type such as ascorbic acid, glutathione, 
phenolic acids, alkaloids, flavonoids and carotenoids (Kapoor et al. 2019; Hasanuz-
zaman et al. 2020). This classification into enzymatic or non-enzymatic compounds 
depends on their catalytic action, where enzymatic antioxidants require cofactors and 
are highly specific for substrates, while non-enzymatic antioxidants do not have any 
specific substrate (Haida and Hakiman 2019). These antioxidants work as a defense 
against the damage that ROS can cause and therefore to maintain the health of plant 
cells, in addition to the fact that antioxidants are also important because they partici-
pate in a series of functions and mechanisms that influence development of the plants 
(Rajput et al. 2021). 

SOD dissolves O2 
•− to O2 and H2O2, while the enzymes peroxidases (POX), 

CAT, and GPX work on H2O2 and HO2 to convert them into water and (O2), or lipid 
alcohols (Rajput et al. 2021). These enzymes can perform their function thanks to 
other non-enzymatic compounds that function as electron donors. GPX by reducing 
H2O2 and HO2 to water and lipid alcohols, uses thioredoxin as an electron donor 
(Rajput et al. 2021). While APX uses ascorbate as specific electron donor to convert 
H2O2 to water (Pandey et al. 2017). 

Non-enzymatic antioxidants have the great advantage that, as they are not specific 
to any substrate, they can neutralize both ROS and RNS to different free radicals 
(Haida and Hakiman 2019). Antioxidants can also be classified according to their 
solubility as soluble in water (hydrophilic) or soluble in fat (lipophilic) (Kumar 
et al. 2017; Haida and Hakiman 2019). However, in plants most of the antioxi-
dants are hydrophilic, among which are phenols, flavonoids, SOD, CAT, GPX, as 
well as uric, lipoic, benzoic, and ascorbic acids. Lipophilic antioxidants include 
carotenoids, tocopherols, vitamin K, ubiquinone, and phospholipids (Haida and
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Hakiman 2019). The ascorbic acid and glutathione, phenolic acids, flavonoids, alka-
loids, and carotenoids are the main non-enzymatic antioxidants in plants (Gill and 
Tuteja 2010; Hasanuzzaman et al. 2020). 

10.2.4 Stress and Antioxidant System 

The ability of plants to neutralize ROS is of utmost importance since it directly 
influences their ability to tolerate different types of biotic or abiotic stress (Rajput 
et al. 2021). Although ROS can be toxic and damage different cell structures, they 
also function as signaling molecules that allow acclimatization to some type of stress 
(Choudhury et al. 2017). Virtually all types of abiotic stress such as salinity, extreme 
temperature, high light, and pollutants, induce increased ROS production (Kerchev 
et al. 2020). Hence, controlling or maintaining ROS levels at a point where they do 
not generate oxidative damage at the cellular level will help to tolerate different stress 
conditions. 

10.3 Nanotechnology and Nanomaterials 

Technology is a fundamental tool for the development of agriculture, since it 
allows improving agricultural systems enormously. One of the technologies that are 
currently available is that which is responsible for the study of materials on a scale of 
1–100 nm and is known as nanotechnology. On this scale, materials have different 
and special characteristics that are very useful for different applications. NMs have 
a higher surface/volume ratio, which gives them a greater amount of surface free 
energy and therefore greater reactivity (Juárez-Maldonado et al. 2019), in addition 
to other properties such as shape, size, chemical composition, concentration, surface 
structure, aggregation and solubility (Bai et al. 2021). 

At present there are different types of NMs such as metalloids and metal oxides, 
chitosan, or carbon-based nanomaterials as carbon nanotubes (CNT), graphene and 
fullerene, which have been used for different purposes in agriculture (Adeel et al. 
2021; Ors et al. 2021; Seleiman et al. 2021). 

NMs can induce biostimulation and favorable responses in plant growth and devel-
opment, as well as positive changes in metabolism that can result in a greater ability 
to tolerate different stress conditions. This is due to the fact that NMs, when applied 
to plants, interact with cell walls and membranes, triggering a series of responses 
such as changes in the transport of metabolites and ions, or cell organelles already 
within the cell and can induce oxidative stress (Juárez-Maldonado et al. 2019, 2021). 
Ultimately the different types of interaction with plant cells translate into changes 
in metabolism that can be positive or negative, or even in some cases there are no 
responses (Juárez-Maldonado et al. 2021).
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The stimulation of growth and productivity with the use of NMs is one of the 
main responses in plants, but an increase in the synthesis of antioxidant compounds, 
secondary metabolites such as phenols and flavonoids, among others, can also be 
observed (Rizwan et al. 2017; Kumar et al. 2019; Awasthi et al. 2020). However, 
these responses are dependent on the concentration of NMs applied, the type and 
size, and even on the plant species in which they are applied (Juárez-Maldonado 
et al. 2019, 2021). 

In addition to being biostimulants, NMs are elicitors of secondary metabolites in 
plants and of bioactive compounds (Lala 2021; Rivero-Montejo et al. 2021). Also 
by inducing oxidative stress at the cellular level, NMs can activate the antioxidant 
defense system and therefore induce the production of enzymatic and non-enzymatic 
antioxidant compounds (Lala 2021; Juárez-Maldonado et al. 2021). Hence, the appli-
cation of NMs in adequate amounts will induce a series of positive responses in 
plants, ranging from greater growth and development, synthesis of compounds or 
secondary metabolites, as well as the production and accumulation of antioxidants 
(Juárez-Maldonado et al. 2019, 2021). 

10.3.1 Nanomaterials and Non-enzymatic Antioxidant 
Defense 

Due to the high surface energy and a high surface/volume ratio, NMs present a 
greater reactivity and biochemical activity that may impact plants in various ways 
(Juárez-Maldonado et al. 2019). One of the main impacts is the induction of ROS 
and as a consequence an oxidative stress occurs at the cellular level (Marslin et al. 
2017), this in turn activates the antioxidant defense system and the production of 
antioxidant compounds (Khan et al. 2017; Czarnocka and Karpiński 2018). At the 
cellular level, the interaction of NMs with cellular organelles induces oxidative stress 
(Juárez-Maldonado et al. 2021) due to the production of ROS and/or RNS that can 
cause cytotoxicity, genotoxicity, lipid peroxidation, apoptosis, intracellular protein 
degradation, and miRNA dysregulation (Rahmani et al. 2020). Furthermore, ROS 
function directly as signaling molecules that can modify secondary metabolism and 
therefore induce the production of different secondary metabolites such as phenols, 
flavonoids, alkaloids, etc. (Marslin et al. 2017; Silva et al. 2020) (Fig. 10.1).

But also NMs can directly interact with DNA and modify the expression of various 
genes that participate in different metabolic pathways (Khodakovskaya et al. 2012; 
Yan et al. 2013), and therefore, increase the production of various compounds among 
which are non-enzymatic antioxidants. There is evidence that the application of Fe 
NPs in Zea mays L. positively modifies some important metabolic pathways linked 
to the synthesis of non-enzymatic antioxidants such as ascorbic acid, phenols and 
flavonoids. Among the main modifications due to the application of Fe NPs, it was 
observed that the ascorbate and aldarate metabolism and the tricarboxylic acid cycle 
were activated (Li et al. 2020). In wheat plants (Triticum aestivum L.) the application
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Fig. 10.1 A NMs can be applied to plants through different routes, either under in vitro conditions, 
directly to the soil or substrate, to the root, or foliar way. B Once they enter the plant, they interact 
with cell walls and membranes, triggering a series of responses such as the production of ROS. 
Upon entering the cell, they interact with the different cellular organelles inducing ROS, changes 
in gene expression and secondary metabolism that result in the production of phenolic compounds 
and diverse antioxidant compounds (Figure constructed by Yolanda González-García)

of TiO2 NPs up-regulated the metabolisms of reserve sugars and tocopherol, and the 
phenylalanine and tryptophan pathways, the aspartate family pathway together with 
serine, alanine and valine metabolisms and the glycerolipids biosynthesis (Silva et al. 
2020). 

Another important route that can be modified is the plastidic isoprenoid biosyn-
thetic pathway, which is where carotenoids are synthesized, which are very important 
compounds that participate as accessory pigments in chloroplasts, energy dissipa-
tors and antioxidants (Joyard et al. 2009). There is evidence that the application of 
various NMs can induce the accumulation of carotenoids in different plant species 
such as Al2O3 NPs in Hibiscus sabdariffa L. (Abdel Latef et al. 2020), CeO2 NPs in 
Dracocephalum moldavica L. (Mohammadi et al. 2021), chitosan nanoparticles (CS 
NPs) in Vigna radiata L. (Sen et al. 2020), Fe2O3 NPs in Lactuca sativa L. (Jurkow 
et al. 2020), even multilayer carbon nanotubes (MWCNT) in Catharanthus roseus 
L. (Ghasempour et al. 2019), among other (See Table 10.1).

In any case, the application of NMs in plants will induce a series of responses 
linked to the antioxidant defense system and secondary metabolism that will result
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in the production of non-enzymatic antioxidants such as glutathione, ascorbic acid, 
carotenoids, phenols and flavonoids, among others. In addition, the effect of NMs 
on the antioxidant system of plants is considered one of the main functions that are 
related to tolerance to different stress conditions (Mahto et al. 2021). 

Several studies have demonstrated the impact of the application of NMs on the 
production of non-enzymatic antioxidant compounds through the modification of 
gene expression. In addition, it has been shown that the induction of these compounds 
occurs independently of the routes of application (Wang et al. 2021), found in corn (Z. 
mays) that the foliar application of Si NPs induces the expression of genes (PAL, C4H, 
4CL, C3H and HCT ) linked to the biosynthesis of chlorogenic acid, which resulted 
in higher production of this compound and of all phenols in corn husks. Hassan et al. 
(2021) found that foliar application of chitosan nanoparticles in C. roseus increased 
the gene expression of mitogen-activated protein kinases (MAPK3), geissoschizine 
synthase (GS), and octadecanoid-derivative responsive AP2-domain (ORCA3), this 
resulted in a greater accumulation of alkaloids both in shoot and root. 

The application of silicon dioxide nanoparticles (SiO2 NPs) in the MS culture 
medium where Dracocephalum kotschyi L. was grew, induced an overexpression 
of phenylalanine ammonia-lyase (PAL) and rosmarinic acid synthase (RAS) genes 
related to rosmarinic acid (RA) biosynthetic pathway, and increased flavonoid content 
(xanthomicrol, cirsimaritin and isokaempferide) (Nourozi et al. 2019). While in 
Hyoscyamus reticulatus L. and H. pusillus the application of SiO2 NPs directly to 
the root increased the expression of the genes pmt (putrescine N-methyltransferase) 
and h6h (hyoscyamine 6<beta>-hydroxylase), resulting in increased production of 
phenols and flavonoids, and accumulation of tropane alkaloid (hyoscyamine and 
scopolamine) (Hedayati et al. 2020). 

The application of nickel oxide nanoparticles (NiO NPs) in the seeds of Chinese 
cabbage (Brassica rapa L. ssp. Pekinensis var. Seoul) induced an overexpression of 
the genes related to oxidative stress (CAT, POD, and GST ), MYB transcription factors 
(BrMYB28, BrMYB29, BrMYB34, and BrMYB51), and phenolic compounds (ANS, 
PAP1, and PAL), this resulted in a higher content of anthocyanins, glucosinolates 
and phenolic compounds (Chung et al. 2019b). 

10.4 Influences of NMs on Non-enzymatic Antioxidants 

In the literature there is a vast amount of research that demonstrates the positive 
impact of the use of a variety of nanomaterials on the production of non-enzymatic 
antioxidant compounds in plants (Table 10.1). Among the most studied metallic or 
non-metallic NMs are NPs based on Ag, Al, Ce, Cu, Fe, Mn, Mo, Ni, Ti, Se, Si and 
Zn. In the case of carbon-based nanomaterials are graphene, fullerene and commonly 
MWCNT. In addition to these NMs, there are some others that have shown positive 
effects such as CS NPs that have been extensively studied recently, but also Lignin 
NPs. While the routes through which the NMs have been applied are foliar, seed
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priming, root using nutritive solution, soil or substrate, drench, or added to culture 
medium mainly. 

10.4.1 Impact of NMs on Phenolic Compounds 

Possibly one of the main effects of the application of NMs is the modification of the 
phenylpropanoid pathway, where phenolic compounds such as phenols, flavonoids, 
anthocyanins, and lignins, among others, are synthesized (Boudet 2007). In numerous 
plant species, the increase of phenols has been reported by the application of Ag 
NPs, such as in Allium cepa L., Pennisetum glaucumK L., Momordica charantia L., 
Caralluma tuberculata N.E.Br. (Chung et al. 2018; Ali et al. 2019a; Casillas-Figueroa 
et al. 2020; Khan et al. 2020). 

The application of Cu NPs in plant species such as Capsicum annuum L., 
Annona muricata L., T. aestivum (Noman et al. 2020; Jonapá-Hernández et al. 
2020; González-García et al. 2021), or CuO NPs in L. sativa, Nicotiana tabacum 
L., Gymnema sylvestre R.Br. (Mahjouri et al. 2018; Chung et al. 2019a; Xiong et al. 
2021) increased content of phenols, flavonoids, or both. 

In the case of iron-based nanoparticles such as Fe2O3 NPs, the phenol content in 
Melissa officinalis L. has been increased with the application to the soil (Mohasseli 
et al. 2020). While in D. moldavica the content of phenols and flavonoids increased 
with the application of NPs via foliar application (Moradbeygi et al. 2020). In L. 
sativa var. Foliosa Bremer, the foliar application of Fe2O3 NPs induced a greater 
accumulation of phenols, carotenoids and ascorbic acid (Jurkow et al. 2020). 

Other NPs based on elements such as Al, Hg, Mn, Mo, Ni, Se, Si, Ti, and Zn 
have increased the content of phenolic compounds in various plant species such as 
Nigella arvensis L., Z. mays, Atropa belladonna L., Cucumis sativus L., Brassica 
rapa L., C. annuum, Camellia sinensis (L.) Kuntze, Punica granatum L., Vicia faba 
L., T. aestivum, Oryza sativa L., H. reticulatus, D. kotschyi, Raphanus sativus L., 
Brassica oleracea L., Brassica napus L., Stevia reboudiana Bertoni, and Lupinus 
termis L. (See Table 10.1). This confirms the impact of the application of NMs on the 
secondary metabolism of plants, in this particular case the phenylpropanoid pathway. 

Carbon-based NMs also modify the synthesis of phenolic compounds, in Ocimum 
basilicum L. the foliar application of graphene oxide NPs induced a greater produc-
tion of phenols such as estragol, methyl chavicol, germacreno D and linalool (Ganjavi 
et al. 2021). While the addition of MWCNT in MS culture medium induced an 
increase in the content of phenols, but also of alkaloids and carotenoids in C. roseus 
(Ghasempour et al. 2019). This same effect was observed in Satureja khuzestanica L. 
and Thymus daenensis Celak with the addition of MWCNT to the culture medium, 
since in both cases the content of phenols and flavonoids increased (Ghorbanpour 
and Hadian 2015; Samadi et al. 2020). 

Chitosan nanoparticles have also been effective in increasing the content of 
phenolic compounds in various plant species. In C. annuum and O. sativa the foliar 
application of CS NPs induced a higher content of phenols (Taheri et al. 2020; Divya
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et al. 2020). In C. sinensis, the content of various phenols such as gallic acid, epicat-
echin, epigallocatechin gallate, gallocatechin gallate, and epicatechin gallate were 
increased when CS NPs were applied through the nutrient solution (Chandra et al. 
2015). While in V. radiata the application of CS NPs through seed priming increased 
the content of phenols and flavonoids, as well as carotenoids and ascorbic acid (Sen 
et al. 2020). 

10.4.2 Impact of NMs on Ascorbic Acid 

Ascorbic acid and glutathione are two of the main non-enzymatic antioxidant 
compounds in plants, and in addition to their ability to directly neutralize ROS, 
they are also cofactors for enzymes such as APX and GPX. These antioxidants are 
also increased by the application of various NMs. 

The application of Ag NPs and Fe2O3 NPs through the foliar route induced a 
higher content of ascorbic acid in L. sativa (Jurkow et al. 2020; Wu et al.  2020). 
In V. radiata it was increased with the application of CS NPs through seed priming 
(Sen et al. 2020), in C. annuum with Cu NPs applied to the soil (Rawat et al. 2019). 
ZnO NPs also increased the content of ascorbic acid in Glycine max L. with foliar 
application (Ahmad et al. 2020), in Solanum lycopersicum L. applied to the soil 
(Akanbi-Gada et al. 2019), and in L. termis through seed priming (Abdel Latef et al. 
2017). 

The application of Fullerene through seed priming in T. aestivum also induced an 
increase in ascorbic acid (Shafiq et al. 2021). While in Calendula officinalis L. the 
same effect was observed when MWCNT was applied via foliar (Sharifi et al. 2021). 

10.4.3 Impact of NMs on Carotenoids 

It has been consistently reported that the application of NMs induces an increase in 
carotenoids. In other antioxidants, carotenoids are stimulated by the application of 
NMs through different pathways and with different types of NMs. The carotenoids 
content has increased through seed priming by the application of Al2O3 NPs in H. 
sabdariffa (Abdel Latef et al. 2020), SiO2 NPs in S. lycopersicun and Astragalus 
fridae Rech.f. (Moghanloo et al. 2019; Madany et al. 2020), ZnO NPs in T. aestivum 
(Rai-Kalal and Jajoo 2021) and CS NPs in V. radiata (Sen et al. 2020). 

In application directed to the root of plants, it has also been possible to increase 
the content of carotenoids with the application of NiFe2O4 NPs through the nutrient 
solution in Hordeum vulgare L. (Tombuloglu et al. 2019), Si NPs applied to the soil in 
T. aestivum (Ali et al. 2019b), ZnO NPs applied to the soil in S. lycopersicum (Ahmed 
et al. 2021). While via drench with ZnO NPs in Arabidopsis thaliana (L.), Heynh. 
(Wang et al. 2016) and with ZnFe2O4 NPs in Pisum sativum L. (Abdelhameed et al. 
2021).
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Through foliar application of NMs, it has been possible to consistently increase 
the carotenoids content. This has been observed in D. moldavica with CeO2 NPs 
(Mohammadi et al. 2021), in L. sativa and T. aestivum with Fe2O3 NPs (Jurkow et al. 
2020; Al-Amri et al.  2020), in C. sinensis and Fragaria x ananassa with Se NPs 
(Zahedi et al. 2019a; Li et al.  2021), in Coriandrum sativum L., Linum usitatissimum 
L. and S. lycopersicum with TiO2 NPs (Raliya et al. 2015; Aghdam et al. 2016; Hu  
et al. 2020), and in Phaseolus vulgaris L. with ZnO NPs (Salehi et al. 2021). 

It has even been reported that adding MWCNT to the MS culture medium 
increased the content of carotenoids as well as that of phenols and alkaloids in 
C. roseus (Ghasempour et al. 2019). 

As has been shown in the literature, the application of NMs in plants definitely 
influences the synthesis and accumulation of non-enzymatic antioxidant compounds. 
With practically any type of NMs as well as by any application route, favorable results 
have been observed in plants (Table 10.1). This is due, as previously described, to 
the unique characteristics of NMs and their interaction with the various cellular 
structures that trigger a series of responses such as ROS production, modification in 
gene expression, and changes in metabolism, resulting in the production of a variety 
of compounds and metabolites, including non-enzymatic antioxidants. 

10.4.4 Impact of NMs on Food Quality and Human Health 

Antioxidants in general, especially non-enzymatic type, are very important for human 
health. This is because, as in plants, they have beneficial effects on human health 
such as reducing the risks of different chronic non-communicable diseases, and 
even reducing the risks of cancer (Saini et al. 2015; Cisternas-Jamet et al. 2020; 
Cortés-Estrada et al. 2020). 

Since the fruits and vegetables that are consumed are the main source of bioactive 
compounds such as ascorbic acid, phenols, flavonoids, carotenoids, etc. (Arnao et al. 
2001), then it becomes essential to improve the content of these compounds. NMs 
have the ability to induce the production of these compounds in plants (Table 10.1). 
Therefore, the application of NMs can be an excellent tool to improve the quality of 
plants that serve as food and thus induce positive effects on human health. 

10.5 Conclusions and Prospects 

Non-enzymatic antioxidants perform a series of fundamental functions for the devel-
opment of plants, not only as antioxidants to neutralize ROS or RNS, but also other 
types of metabolic functions such as energy dissipation, or stress tolerance. 

The production of these compounds can be modified by the application of various 
NMs and through different pathways, due to the ability of these materials to interact 
with cellular structures and overexpress different genes and metabolic pathways
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linked to the synthesis of non-enzymatic antioxidants. Thus, the use of NMs to 
regulate the synthesis of non-enzymatic antioxidants in plants can be a very important 
strategy to achieve different goals such as the production of foods with a higher 
content of bioactive compounds, or to improve the content of secondary metabolites 
that are of interest in industrial crops, or even crops with a greater capacity to tolerate 
biotic or abiotic stress. 
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Chapter 11 
2D-Nanosheets Based Hybrid 
Nanomaterials Interaction with Plants 

Divya Chauhan, Mohammad Ashfaq , R. V. Mangalaraja, 
and Neetu Talreja 

Abstract Agricultural growth needs a newer policy that speeds up plant growth 
and the nutritional value of the crops. Numerous agrochemicals, pesticides, and 
fertilizers provide nutrients to crops and enhance plant growth and nutrition quality. 
However, the demand for food remains a concern. In this context, 2D-nanomaterials 
or nanosheets have the potential ability to overcome issues associated with agro-
chemicals. 2D-nanosheets easily penetrate the seed coats and translocate with the 
plants using apoplastic and symplastic pathways. The high translocation ability 
regulates various molecular and biochemical pathways, thereby improving plant 
growth and development. However, a higher dose of the 2D-nanosheets shows the 
phytotoxic effects by increasing the production of reactive oxygen species. In this 
context, 2D-nanosheets-based hybrid materials might be beneficial for improved 
plant growth with minimal phytotoxicity. Moreover, 2D-nanosheets-based hybrid 
materials also protect crops against various pathogenic microorganisms. This book
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chapter focuses on synthesizing 2D-nanosheets, 2D-nanosheets-based hybrid mate-
rials, and their interaction with the plants. We also discuss the effect of 2D-nanosheets 
and 2D-nanosheet-based hybrid materials for plant growth and the protection of 
crops. 

Keywords Crop protection · Nanofertilizers · Plant growth · Translocation ·
2D-nanosheets 

11.1 Introduction 

Presently, the fast population growth and changes in the weather/climate globally 
require effective crop cultivation practices that fulfill increasing food needs. Effi-
cient crop cultivation processes are one of the significant challenges now-a-days. 
Agricultural growth requires a new platform to accelerate plant growth and crop 
nutrition quality. Moreover, several materials in the form of pesticides and fertil-
izers are used to provide protection and nutrients to crops for enhanced plant growth 
and nutrition. These chemicals manage phytohormones levels within the plants that 
improve plant growth, crop yield, and the nutritional quality of grains. However, 
excessive use of agrochemicals decreases soil fertility and adversely affect the envi-
ronment. Additionally, these chemicals accumulate in the plants and cause adverse 
effects to humans and animals health as well as negative impact on the environ-
mental (Afreen et al. 2022b, 2022a; Ashfaq and Khan 2017; Chauhan et al. 2020; 
Sultana et al. 2022). To overcome these limitations, several nanomaterials have been 
synthesized and applied as nanofertilizers. 

Nanomaterials (NMs) such as one-dimensional (1D) (carbon nanotubes 
(CNTs), carbon nanofibers (CNFs), metal-and metal-oxides), two-dimensional (2D) 
(graphene, graphene oxide (GO), and nanosheets of metal-and metal-oxide) nanoma-
terials have been used to augment plants growth. The 1D-nanomaterials like metal 
and metal-oxide (Cu, Zn, Fe, Ce, and Au) augmenting the growth of the plants. 
However, these metals and metal-oxides accumulate on the root surface causing less 
translocation ability and phytotoxicity (Ashfaq et al. 2022; Irsad et al. 2020; Kumar 
and Talreja 2019; Mustafa et al. 2011; Omar et al. 2019a, 2019b; Talreja and Kumar 
2018). In this respect, carbon-based nanomaterials like CNTs, and CNFs are effi-
ciently used in various applications, mainly antibiotics materials (Ashfaq et al. 2016), 
drug delivery (Ashfaq et al. 2014), environmental remediation [i.e., removal of heavy 
metals ions (Afreen et al. 2018; Khare et al. 2013; Kumar et al. 2011; Talreja et al. 
2014), pharmaceuticals compounds (Saraswat et al. 2012; Talreja et al. 2016), and 
microorganism from water (Singh et al. 2013)], sensor (Ashfaq et al. 2018; Kumar 
and Talreja 2019), wound dressing (Ashfaq et al. 2017b; Bhadauriya et al. 2018), 
nanomedicine (Madani et al. 2011) and agriculture (Ashfaq et al. 2017a; Kumar et al. 
2018). The CNTs and CNFs have the potential ability to penetrate seed coats, thereby 
efficiently translocate within the plants. The CNTs and CNFs also served as carriers 
for the agrochemicals or micronutrients, or fertilizers due to insignificant toxicity
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against both animal and plant cells (Ashfaq et al. 2013). Despite the tremendous 
success of the 1D materials, researchers continue focusing on the development of 
newer NMs that enhances the growth, development, and yield of the crops. In this 
aspect, 2D-nanomaterials have the potential ability to efficiently translocate within 
the plants and enhance the crops’ growth and productivity. 2D-NMs are the newer 
class of material that has at least 1D in nanometer-sized. The 2D-NMs are widely used 
in several applications, including agricultural, energy storage, sensor, environmental 
decontamination, photocatalyst, biomedical, etc. due to their excellent property such 
as large surface area, feasible surface charge, high mobility in soil, biocompatibility 
makes it an ideal candidate (Ashfaq et al. 2021, 2022; Nag et al. 2018; Sasidharan 
et al. 2021, Sun et al. 2018, Tao et al. 2017; Wang et al. 2019; Ismail 2019; Zheng 
et al. 2021). One of the widely used members of this class is Graphene. Graphene 
was first exfoliated from graphite, a three-dimensional counterpart of graphene using 
the scotch tape method by Novoselov and Geim in 2004 (Cai et al. 2012); after that, 
several methods have been adopted to synthesize graphene. Few layered graphenes 
(FLG), ultrathin graphite, graphene oxide (GO), reduced graphene oxide (rGO), 
graphene oxide (GO), and graphene nanosheets (GNS) and their composites have 
been widely used in plant growth and development. Interestingly, these 2D-NMs 
like graphene and GO have translocation ability that easily penetrates seed coat due 
to the graphitic content and π-π electron. The higher translocation ability of the 
graphene and GO might be beneficial for the plants in various aspects, (1) increased 
the water uptake ability, (2) improved micronutrient delivery, (3) germination rate, 
(4) increased nutritional value of grains, and (5) plant growth and development. 
However, it seems difficult to used 2D-nanomaterials directly in the agricultural 
land due to handing that leads phytotoxicity. In this aspect, 2D-nanomaterials based 
hybrid materials might be resolved issues associated with 2D-nanomaterials. 

Numerous polymers, such as polyvinyl alcohol (PVA), starch, cellulose, and 
chitosan, have been used to encapsulate 2D-NMs that efficiently delivered the 
agrochemicals or micronutrients or fertilizers (Sampathkumar et al. 2020; Sikder 
et al. 2021). These polymers aided various advantages like the controlled release of 
micronutrients or fertilizers or agrochemicals, increased soil nourishments, improved 
photosynthesis, water uptake capacity, and biocompatibility of the 2D-NMs. Herein, 
we discuss the synthesis of 2D-NMs, the interaction of 2D-NMs with plants, the 
role of 2D-NMs in the growth and development of plants, and the role of 2D-NMs 
based hybrid materials for plant growth. We also discuss the toxicity and prospects 
of 2D-nanosheets-based hybrid materials in agriculture. 

11.2 Synthesis of 2D-Nanosheets 

Recently, the synthesis of high-quality atomically thin 2D-NMs is attracting research 
interest as large areas and crystal quality enables the integration of optical and elec-
tronic devices with improved efficiency. Several challenges have to be overcome 
while synthesizing 2D material, such as thickness control, defects, size, crystal
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quality, and disorders; otherwise, detrimental consequences have been observed 
during device performances. Various synthetic approaches, including top-down and 
bottom-up, have been adopted to overcome these challenges, such as non-uniformity 
and defects in 2D crystals, which subsequently affect device performance (Han et al. 
2015; Zavabeti et al. 2020). These methods have divided as follows. 

11.2.1 Top Up Approach for the Synthesis of 2D-Nanosheets 

The most widely used exfoliation techniques are part of the top-up approach. Exfolia-
tions are of two types (1) liquid phase and (2) mechanical exfoliation. Liquid exfolia-
tion is a straightforward, low cost and simple method. Nanosheets can be synthesized 
by placing the bulk materials into appropriate solvent and using sonication for some 
hrs. Solvent selection is one of the essential parts of liquid phase exfoliation is. The 
surface energy of solvent should be matched with the Vander wall interaction of 
nanosheet, which can improve the quality of exfoliation. Several kinds of literature 
use liquid-phase exfoliation to synthesize nanosheets, such as León-Alcaide et al. 
(2020) utilized the liquid-phase exfoliation method to separate Fe-based magnetic 
MOFs MUV-1-X, having a lateral dimension of 8 μm and thicknesses of 4 nm. The 
author observed nanosheets retain their structural integrity and magnetic properties. 
Huang et al. (2017) exfoliated SnSe nanosheet using liquid-phase exfoliation and 
the synthesized nanosheet is of high quality and can be utilized in photoelectronic 
applications (Huang et al. 2017). These studies suggest that liquid-phase exfoliation 
can be widely used. However, liquid-phase exfoliation also has several disadvan-
tages, such as lower crystal quality and low yield limits its practical application (Huo 
et al. 2015). Figure 11.1 shows the schematic representation of the liquid exfoliation 
process.

11.2.2 Mechanical Exfoliation of 2D-Nanosheet 

Novoselov et al. (2004) for the time used mechanical exfoliation to exfoliate graphene 
from graphite using scotch tape. After that, several 2D materials were synthesized 
using mechanical exfoliation. This method synthesizes high-quality 2D material with 
fewer defects and better crystal structure and controllability in patterned transfer. 
Huang et al. (2020) used Au-assisted mechanical exfoliation method and synthesized 
single-crystal nanosheet with high-quality crystal. He further made a theoretical study 
to confirm the method’s applicability. Li et al. (2018) utilized mechanical exfoliation 
to exfoliate 2D perovskite microplates. The synthesized 20 nm thick nanosheet can 
be applied as electrodes for photodetection (Li et al. 2018).
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Fig. 11.1 Schematically illustration of the liquid exfoliation process, a by ions intercalation, b by 
ions exchange, and c by sonication. The figure was reproduced with permission (Huo et al. 2015)

11.2.3 Bottom-Up Method for Synthesis of 2D-Nanosheet 

Chemical vapor deposition (CVD) is a potential method to grow nanosheets on 
various substrates such as nickel form, Cu foil, Activated carbon fabric, etc. The 
technique involves the decomposition of precursors on the substrate at high tempera-
tures. This method synthesizes high-quality crystal, scalable size, tunable thickness, 
and excellent electronic properties with the effortless operation, which is considered 
an industrial-grade method. However, several parameters need to consider to achieve 
higher growth, such as temperature, pressure, flow rate, precursor gas, and substrate. 
Several researchers reported that there should be a balance between reactive gas 
and material (Okada et al. 2019; Seravalli and Bosi 2021; Zhang 2015). The CVD 
method was used to synthesize high-quality nanosheets, including the synthesize of 
MoSe2 crystals on molten glass using CVD process within 5 min to achieve a trian-
gular monolayer with lateral size of 2.5 mm and having carrier mobility up to ∼95 
cm2/(V·s) (Chen et al. 2017). Another study synthesized a high-quality monolayer 
of WS2 on a SiO2/Si substrate using the CVD processsynthesized triangle domain of 
high crystal quality with 52 μm (Fu et al. 2015). Yan et al. synthesized HfS2 flakes 
using the CVD process with a lateral size of 5 μm and thickness of 1.5 nm having 
hexagonal structure (Yan et al. 2017).
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11.3 Interaction of 2D-Nanosheets with Plants 

Usually, NMs or 2D-nanosheets easily penetrate the seed coats and translocate with 
the plants using two pathways, (1) Apoplastic pathway, which takes place outside of 
the plasma membrane (using cell-wall, extracellular spaces, and xylem vessels), and 
(2) Symplastic pathway, which take place within the cytoplasm (using plasmodes-
mata). Understanding the NMs or 2D-nanosheets translocation pathways within the 
plant is essential to indicate the accumulation or translocation path (Chichiriccò and 
Poma 2015; Sanzari et al. 2019a, 2019b; Su et al.  2019). The NMs or 2D-nanosheets 
are translocated within the plants through the xylem, indicating the translocation 
from root to shoot to leaf. In other words, NMs or 2D-nanosheets should be applied 
to the roots for better translocation. Whereas NMs or 2D-nanosheets show effective 
translocation through the phloem, indicating the foliar applications or downwards. 
In other words, NMs or 2D-nanosheets accumulate on the plant’s fruits or grains. 
Moreover, translocation of the NMs or 2D-nanosheets is not limited to a specific cell 
(Cifuentes et al. 2010; Jeevanandam et al. 2018; Lin and Xing 2008; Spielman-Sun 
et al. 2019). The morphology and surface property of the NMs or 2D-nanosheets is 
mainly influenced the translocation ability. There are predominantly two characteris-
tics is essential for the translocation of any NMs or 2D-nanosheets, (1) size of the NMs 
or 2D-nanosheets, up to 1 μm length of the NMs or 2D-nanosheets easily translo-
cate within the plants. The nano-sized materials easily translocate within the plants 
through apoplastic and symplastic pathways. The NMs less than 50 nm in size easily 
translocate through the plasmodesmata. In contrast, larger size or more than 50 nm 
translocate through cell-wall, and (2) surface charge of the NMs or 2D-nanosheets, 
if the surface charge of the NMs or 2D-nanosheets is negative, so the negatively 
charged NMs or 2D-nanosheets interact with negatively charged plant cells, thereby 
NMs or 2D-nanosheets easily translocate within the plants through root to shoot 
to leaf due to strong repulsion force. On the other hand, if NMs or 2D-nanosheets 
are positively charged interact with negatively charged plants, thereby higher accu-
mulation onto the root surface or less translocation ability due to solid attraction 
force (Ashfaq et al. 2017a; Kumar et al. 2018; Pérez-de-Luque 2017; Sultana et al. 
2021). Figure 11.2 shows the translocation of the NMs or 2D-nanosheets within 
the plants through apoplastic and symplastic pathways. In general, smaller size and 
negatively charged NMs or 2D-nanosheets might be beneficial for practical translo-
cation ability. Moreover, with the help of a functional group, we can easily modify 
the surface charge of the NMs or 2D-nanosheets. The higher translocation ability of 
the or 2D-nanosheets efficiently enhanced the plant growth, development, and yield 
of the crops by increasing protein content, chlorophyll content, root-shoot length, 
germination rate, and water uptake ability.
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Fig. 11.2 Translocation of the NMs or 2D-nanosheets within the plants through apoplastic and 
symplastic pathways. The figure was reproduced with permission (Pérez-de-Luque 2017) 

11.4 2D-Nanosheets for Plant Growth 

The 2D-nanosheets research and development facilitate the next-generation delivery 
of micronutrients, agrochemicals, fertilizers, or pesticides within the plants. With 
the help of NMs or 2D-nanosheets, the plant’s growth easily improved by enhancing 
water uptake capacity, chlorophyll content, protein content, and translocation ability 
of the micro-nutrients. These 2D-nanosheets extensively used in drug delivery, 
sensor, nanomedicine, environmental remediation, energy, and agricultural appli-
cations due to their exceptional characteristics (Aïssa et al. 2015; Carvalho et al. 
2021; Choi et al. 2010; Dhinakaran et al. 2020; Hu and Zhou 2014; Mbayachi et al. 
2021). Numerous 2D-nanosheets, especially graphene and graphene oxide (GO), 
have been used to augment plant growth. For example, Zhang et al. (2015) tested  
graphene against tomato seed and suggested that it has the potential ability to pene-
trate the seed coat; thereby, translocation was effectively observed. Moreover, the
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higher translocation ability of the graphene increased germination rate and seedling 
growth. The study suggested that graphene’s remarkable translocation ability makes 
it a potential candidate for agricultural application (Zhang et al. 2015). Zhang et al. 
used graphene and tested it against wheat plants to determine graphene’s toxic effects 
at higher concentrations. The data suggested that graphene shows the toxic effect at 
higher doses that induced oxidative stress, decreased chlorophyll content, and photo-
synthesis (Zhang et al. 2016). He et al. used GO and tested against spinach seeds. The 
data suggested that the GO increased the germination rate and growth of the plants. 
The lower dose of GO increased the plant growth, whereas higher doses showed 
adverse effects. Interestingly, GO increase the water uptake ability, oxygen content 
and efficiently translocate within the plants. Additionally, GO does not show any 
phytotoxic effect at a lower dose that makes promising materials for agriculture (He 
et al. 2018). Xie et al. use GO, and IAA-GO and tested against Brassica napus L. The 
data suggested that the GO inhibits the development of the roots. The co-treatment of 
phytohormones IAA-GO increased the inhibition rate. The exposure of GO increased 
the abundance of 1-aminocyclopropane-1-carboxylic acid synthase 2 (ACS2). The 
data suggested that the GO easily modulates various pathways to control the plants’ 
growth (Xie et al. 2020). Park et al. synthesized GO using a chemical oxidation 
process and tested it against Arabidopsis thaliana L plants. The data suggested that 
the GO shows the constructive effects on the plants in terms of enhancing the length 
of roots, rate of flower bud formation, number of leaves, and area of leaves. More-
over, GO enhanced the size of fruits and ripening process, ultimately sweeter fruits 
than control plants fruits (Park et al. 2020). Mahmoud and Abdelhameed synthesized 
GO, lysine-GO (L-GO), and methionine-GO (M-GO) and tested against pearl millet 
(Pennisetum glaucum L.). The data suggested that the GO, L-GO, M-GO shows 
significant effect on the plants in terms of increasing the biomass accumulation, 
growth of the plants, photosynthetic pigments, and yield of the crops. Moreover, 
reducing reactive oxygen species (ROS) in plants under stress conditions (Mahmoud 
and Abdelhameed 2021). Figure 11.3 shows the photographic images of the pearl 
millet with exposure of GO, L-GO, and M-GO. Another study suggested focusing on 
the synthesis of GO and tested against different plants, mainly radish, alfalfa, lettuce, 
perennial ryegrass, and cucumber seeds. The data suggested that GO shows positive 
effects against radish, alfalfa, perennial ryegrass, and cucumber seeds. However, GO 
decrease the germination rate at lettuce plants. Moreover, phytotoxic effects were 
observed at a higher concentration of GO exposure. The data suggested that phyto-
toxicity depends on various factors like the amount of nanomaterials, plants species, 
and types of nanomaterials (Lee et al. 2021). Table 11.1 shows the comparative 
data of 2D-nanosheets, mainly graphene and GO, and its effects on different plants. 
The data suggested that the graphene and GO effectively increased the growth of 
the plants by increasing various factors like increased the root length, shoot length, 
biomass, chlorophyll content, protein content, photosynthesis process, water uptake 
ability, and germination rate. In general, 2D-nanosheets mainly graphene and GO 
has a potential ability that translocates within the plants. The higher translocation 
ability of the 2D-nanosheets improved growth and yield of the crops. Moreover,
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Fig. 11.3 Photographic images of the pearl millet with exposure of GO, L-GO, and M-GO. The 
figure was reproduced with permission (Mahmoud and Abdelhameed 2021)

the 2D-nanosheets do not show any toxicity at lower doses. However, high concen-
trations might show adverse effects in some plant species. The phytoxicity of the 
2D-nanosheets mainly depends on various factors like types of nanomaterials, and 
types of plant species. Moreover, negatively charged graphene and GO effectively 
translocate within the plants. 
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Table 11.1 Different 2D-nanosheets and their effects on the plant growth 

Nanosheets Synthesis process Plants Effect of interaction References 

Graphene Commercial Tomato Increased the 
germination rate 

Zhang et al. 
(2015) 

Graphene – Wheat Induced oxidative 
stress, decreased 
chlorophyll content 

Zhang et al. 
(2016) 

GO Commercial Spinach Increased the 
germination rate 

He et al. (2018) 

GO Commercial Brassica 
napus L 

Inhibit the 
development of root 

Xie et al. (2020) 

GO Chemical oxidation Arabidopsis 
thaliana L 

Increased the root 
length, fruit size, and 
sugar content 

Park et al. 
(2020) 

GO Chemical oxidation Pearl millet It is increased plant 
growth, 
photosynthetic 
pigments, and 
biomass 
accumulation 

Mahmoud and 
Abdelhameed 
(2021) 

L-GO Chemical oxidation Pearl millet It is increased plant 
growth, 
photosynthetic 
pigments, and 
biomass 
accumulation 

Mahmoud and 
Abdelhameed 
(2021) 

M-GO Chemical oxidation Pearl millet It is increased plant 
growth, 
photosynthetic 
pigments, and 
biomass 
accumulation 

Mahmoud and 
Abdelhameed 
(2021) 

GO Chemical oxidation Lettuce, radish, 
alfalfa, perennial 
ryegrass, and 
cucumber seeds 

Positive effects on 
plant growth. GO 
shows the negative 
impacts on lettuce 

Lee et al. 
(2021) 

11.5 2D-Nanosheets Based Hybrid Materials for Plant 
Growth and Protection 

The 2D-nanosheets, mainly graphene and GO, are extensively used in agricultural 
applications. However, 2D-nanosheets shows toxic effect at higher doses that remains 
a concern. The researcher still focuses on modifying 2D-nanosheets for various 
aspects like incorporating the metal-nanoparticles and polymers that might improve 
the applicability and reduce the toxicity concern. Numerous 2D-nanosheets-based 
hybrid materials have been used for the improving growth and development of the
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plants (El Miri et al. 2016; Facure et al. 2017; Salim et al. 2021; Soraki et al. 2021; 
Rashidi Nodeh et al. 2017). For example, Zhang et al. synthesized fertilizers incor-
porated KNO3 encapsulated graphene (F-K-Graphene) based hybrid materials and 
tested them for crop production. The data suggested that the F-K-Graphene-based 
hybrid materials release fertilizers in a controlled manner that might dramatically 
enhance the productivity of the crops (Zhang et al. 2014). Ren et al. synthesized 
sulfonated graphene and tested it against maize seedlings to determine oxidative 
stress at different concentrations. The data suggested that the sulfonated graphene 
increased the plant’s growth at lower doses, whereas at higher doses decreased the 
development of the plants. Moreover, the rise in sulfonated graphene produces reac-
tive oxygen species, reduces the soluble proteins, increases the enzymatic activity 
and intracellular Ca ions (Ren et al. 2016). Huang et al. synthesized C-14 labeled 
graphene (C-14-Graphene) and tested against rice plant. The data suggested that the 
C-14-Graphene increased the transformation and uptake within the plants that grew 
the plant growth and development (Huang et al. 2018). Soraki et al. synthesized Ag-
nanoparticles and graphene-based hybrid materials and tested them against Melissa 
officinalis. The data suggested that the expression of synthase gene upon exposure to 
Ag-nanoparticles and Ag-graphene-based hybrid materials. Moreover, lower doses 
effectively induce the various molecular and biochemical pathways that enhance 
the growth of the plants (Soraki et al. 2021). Another study of the different group 
synthesized the similar Ag-graphene hybrid material and tested against Stevia rebau-
diana. The data suggested that the Ag-graphene-based hybrid materials effectively 
increased the chlorophyll content, protein content, falvonoide content, accumula-
tion of soluble sugar content, and total phenols. Moreover, the regulation of various 
molecular and biochemical pathways enhanced the growth and development of plants 
(Nokandeh et al. 2021). The above literature study suggested that the 2D-nanosheets-
based hybrid materials effectively increased the growth of the plants and the yield 
of the crops. However, higher doses of the hybrid materials show the adverse effect 
that increased the production of reactive oxygen species. On the other hand, 2D-
nanosheets-based hybrid materials also protect the crops against various pathogens. 
Several studies suggested that 2D-nanosheets-based hybrid materials effectively kill 
or protect the crops against pathogens. For example, Chan et al. synthesized Ag-
graphene-based hybrid materials and tested them against Fusarium graminearum. 
The data suggested that the synthesized Ag-graphene-based hybrid materials effi-
ciently inhibit the fungus in both in-vitro and in-vivo. The spore germination was 
inhibited even at a lower concentration of the hybrid materials. The mode of action 
of the hybrid materials might be increasing the production of reactive oxygen species 
and physical injury (Chen et al. 2016). Figure 11.4 shows the synthesis of Ag-
graphene-based hybrid materials and their antifungal activity. Li et al. synthesized 
borneol-GO (B-GO) based hybrid materials and tested them against M. racemosus. 
The data suggested that the B-GO effectively inhibits the spore germination of the 
fungus. Moreover, no growth was observed up to five days of exposure, indicating the 
exceptional antifungal agents (Li et al. 2017). El-Abeid et al. synthesized Cu deco-
rated reduced-GO (Cu-rGO) based hybrid materials and tested them against fusarium 
and wilt diseases of tomato and pepper plants. The data suggested that the Cu-rGO
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based hybrid materials effectively inhibit fungus growth and reduce wilt diseases 
without any phytotoxic effects up to 70 days (El-Abeid et al. 2020). Table 11.2 
summarizes the comparative data of the different 2D-nanosheets-based hybrid mate-
rials and their impact on plant growth and crop protection. The study suggested that 
2D-nanosheets-based hybrid materials effectively increased the growth and devel-
opment of the plants by improving various molecular and biochemical pathways. 
Moreover, these 2D-nanosheets-based hybrid materials do not show any phytotoxic 
effects at lower doses, whereas some of the 2D-nanosheets-based hybrid materials 
show toxic effects at higher doses. The phytotoxicity of the 2D-nanosheets-based 
hybrid materials depends on various factors like types of 2D-nanosheets-based hybrid 
materials, plants, and species of the plants. 2D-nanosheets-based hybrid materials 
show lesser toxic effects compare with that of the 2D-nanosheets. Interestingly, the 
high translocation ability of the 2D-nanosheets-based hybrid materials aided advan-
tageous that improved the delivery of micronutrients or fertilizers or agrochemicals, 
thereby high yield of the crops. Besides the growth and development of plants, 2D-
nanosheets based hybrid materials are also effectively used for the protection of 
crops against various pathogens, as numerous polymers and metals have exceptional 
antimicrobial activity. In general, with the help of the 2D-nanosheets based hybrid 
materials we can easily improve plant growth as well as crop protection. 

Fig. 11.4 Schematic representation of the synthesis of Ag-graphene-based hybrid materials and 
their antifungal activity. The image was reproduced with permission (Chen et al. 2016)
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Table 11.2 Different 2D-nanosheets-based hybrid materials for plant growth and crop protection 

Hybrid materials Plants/Pathogens Effects References 

Ag-graphene Melissa officinalis Low doses induce 
molecular and 
biochemical pathways 

Soraki et al. (2021) 

Ag-graphene Stevia rebaudiana Increased chlorophyll 
and protein content 

Nokandeh et al. (2021) 

Ag-graphene Fusarium 
graminearum 

Inhibit phytopathogens Chen et al. (2016) 

B-GO M. racemosus Inhibit fungal growth Li et al. (2017) 

Cu-rGO Fusarium and wilt 
diseases 

Inhibit spore 
germination 

El-Abeid et al. (2020) 

C-14-Graphene Rice Increased uptake and 
transformation 

Huang et al. (2018) 

F-K-GO – Controlled release of 
fertilizers 

Zhang et al. (2014) 

Sulfonated-graphene Maize Lower doses increased 
the plant growth, 
whereas higher 
concentration decreased 

Ren et al. (2016) 

11.6 Conclusion and Prospects 

Tis chapter has addressed the synthesis of 2D-nanosheets or NMs, the interaction 
of 2D-nanosheets with plants, the role of 2D-nanosheets in the growth and develop-
ment of plants. The effect of 2D-nanosheets-based hybrid materials for plant growth 
and crops protection was also discussed. The nano-sized and negatively charged 2D-
nanosheets might be beneficial for effective translocation ability. Additionally, with 
the help of a functional group, tuning the surface charge of the 2D-nanosheets can be 
easily achieved. The higher translocation ability of the NMs or 2D-nanosheets effi-
ciently enhanced the plant growth, development, and yield of the crops by increasing 
protein content, chlorophyll content, root-shoot length, germination rate and water 
uptake ability. 2D-nanosheets-based hybrid materials are also effectively used for 
the protection of crops against various pathogens. Therefore, the 2D-nanosheets-
based hybrid materials can potentially improve plant growth and crop protection that 
might be next-generation tools for agriculture. Polymeric delivery system might be 
beneficial for the real-time application of NMs. 
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Chapter 12 
Nanomaterial Impact on Plant 
Morphology, Physiology and Productivity 

Mahroos A. Bahwirth , Salim F. Bamsaoud , and Lina M. Alnaddaf 

Abstract Nanoparticles (NPs) have a remarkable impact on plants. Plants respond 
to NPs in many ways, including stimulation and inhibition. The responses could 
be clearly observed via the changes in plants’ morphological, physiological, and 
productive indicators. This chapter focuses on the morphological changes in plants 
and seedlings’ growth and the fresh and dry weight of plants and seedlings. In addi-
tion, the chapter concentrates on the number and lengths of roots, shoots, and leaves. 
Different modifications that occur due to NPs’ influence on flowers, pods, and grain 
are also covered. The chapter further discusses the interaction mechanism of NPs 
with seed germination, plant development, and reproduction by interacting with 
plant cells’ surfaces. The biochemical interaction series that could stimulate the 
plants internally are also discussed. Furthermore, the chapter provides details on the 
negative and positive effects of NPs on various plant parts, including root, stem, 
leaf, flower, and fruit. The impacts of different nanomaterials (NMs) include carbon, 
titanium dioxide, silver, zinc oxide, copper oxide, silica, cerium dioxide, aluminum 
oxide, selenium, gold, fullerene, and iron, on plants are demonstrated in this chapter. 
The material’s particle size, concentration as well as plant species are also taken into 
account. All the previously mentioned effects demand more research to realize the 
mechanisms that occur in plants as a result of treatment with various NPs. 
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12.1 Introduction 

Humans have intelligently utilized plant organs for a variety of uses, including food 
and medicine (fruits, seeds, roots, stems, and leaves), clothes (flowers), furniture 
(trunks), and paper (trunks). In addition, plant leaves absorb carbon dioxide and 
produce renewable oxygen (Ali et al. 2021). These plant organs are affected by 
numerous factors such as temperature, light, nutrients, and water (Patil et al. 2021, 
Shafiq et al. 2021). 

The study of the shape, size and placement of plant organs such as seeds, roots, 
stems, leaves, flowers, and fruits is known as plant morphology (Hossain et al. 2020). 
Recent researchers have demonstrated the significant impact of nanotechnology on 
plant morphology, including particle size, shape, and material concentration (Singh 
et al. 2015). These variables might influence not only plant morphology but also 
seedling germination and phytotoxicity. As a result, nanotechnology can alter the 
present synthetic framework used in modern agriculture systems (Arora 2018, Kerry 
et al. 2017; Prasad et al.  2017; Shang et al. 2019; Usman et al 2020). 

This chapter describes the influence of NPs on plant morphology. It covers the 
mechanism of seed interaction with NPs, explains the recent experimental results of 
the effect of NPs on seed germination and root growth, and discusses how NPs of 
different elements and their oxides affect the morphology of stem, leaves, flowers, 
and fruit. 

12.2 Mechanism of NPs Interaction in Seed 

The plant growth inhibitory or stimulatory effects are produced by interacting 
between the surface charges of NMs/NPs and the surface charges of plant cells. 
However, that interaction with metal NPs differs depending on the features of NPs, 
such as the metal nature, concentrations of NPs, phase growth, and plant species 
(Pérez-de-Luque 2017). 

NPs can induce seed germination and develop many parts of a plant (Juárez-
Maldonado et al. 2019). Seed germination is the foundation-initiated stage for 
plants’ growth, development, and productivity (Hossain et al. 2020). NPs-treated 
seeds achieve high germination by improving seed absorption and water retention 
(Juárez-Maldonado et al. 2019) (Fig. 12.1). 

The bio-stimulation effect is demonstrated in two stages. The first stage is imple-
mented via the interaction of surface charges of a physicochemical nature. Following 
this stage and as a second stage, a series of biochemical stimuli are triggered via the 
entry of NPs and NMs into the plant cells due to alteration of the cellular membrane 
(Ali et al. 2021). Figure 12.2 shows the most probable effect of nanoparticles on 
plant parts.
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12.3 Effect of NPs on Seed Germination and Root Growth 

12.3.1 Carbon-Based NPs 

Utilizing carbon-based nanomaterials (CNTs) raised water uptake for the seed via 
passing it from the seed coat and then reaching to shoots and leaves (Omar et al. 2019) 
which favorably affects the germination percentage and plant growth via capitalizing 
on the efficiency of water uptake moreover increasing some substantial nutrients 
uptake (Singh et al. 2015). This stimulatory effect can be explained by producing 
microspores by the CNTs (Ali et al. 2021; Sanborn et al. 2018). This mechanism has 
been applied to enhance seed germination and root growth, and final plant growth 
for several crops, such as hybrid Bt cotton, Phaseolus mungo L., Brassica juncea L., 
tomato (Lycopersicum esculentum Mill), and rice (Oryza sativa L.) which increased 
the biomass of rice plants and the germination rate of seeds by 90% within 20 days, 
compared with 71% in the control sample (Ali et al. 2021). 

The results of the research show the role of CNTs as a promoter of rice seedling 
growth, activation effects on root elongation, and seed germination in zucchini 
species (Aslani et al. 2014). In addition10-40 mg/L CNTs significantly increased 
seed germination, vegetative biomass, and tomato plant growth (Remedios et al. 
2012). Also, the influence of MWCNT (50 μg/ml) on tomato roots was observed in 
fresh and dry mass and gene expression variety (Predoi et al. 2020). 

In addition, MWCNTs increased the germination of previously treated seedlings, 
as confirmed by transmission electron microscopy (TEM) and Raman spectroscopy 
(Singh et al. 2015). 

As well as the treatments by single-walled carbon nanohorns (SWCNHs) 
increased seed germination in some crop species: maize, tobacco, switchgrass, rice, 
tomato cell cultures, Barley, Wheat, and soybean (Ali et al. 2021). On the contrary, 
no effect was found for treatment by SWCNTs (84 h) for roots of cucumber seedlings 
(Aslani et al. 2014). 

12.3.2 Titanium Dioxide NPs 

The impact on the morphology of plants is varied on the type of NPs and the method 
of application (Hossain et al. 2020). However, the essential key to promoting the 
seed germination rate is the permeation of NMs into the seed (Aslani et al. 2014). 
The best effects were at 2500 mg/L when applying the concentrations from 2500 to 
40,000 mg/L to senescent seeds. 

Titanium dioxide NPs have promoted seed germination through their more 
capacity to the carriage of water to the internal tissues and increased the metabolism 
of the seed reserves as indicated for the NPs of Ag and graphene (Juárez-Maldonado 
et al. 2019).
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At 250–4000 mg/L, TiO2 nanoparticles substantially increase the germination 
rate and germination index of naturally aged spinach seeds. TiO2 NPs increases the 
seedling’s dry weight and seedling vigor index considerably. (Predoi et al. 2020). In 
addition, titanium dioxide NPs facilitate water absorption and consequently quicken 
seed germination (Ali et al. 2021). 

Treated seeds with TiO2 NPs provided plants with three times higher photosyn-
thetic rates, 73% more dry weight, a 45% increase in chlorophyll compared to the 
control over the germination period of 30 days (Aslani et al. 2014). 

When spinach roots are exposed to TiO2 NPs, increased plant growth has been 
observed by improving nitrogen metabolism that promotes the adsorption of nitrate 
and photosynthetic rate (Predoi et al. 2020). There was a correlation between the 
growth rate of spinach and the size of the materials, so the smaller NMs produce 
better germination (Siddiqui et al. 2020). Foliar application with 20 g/L TiO2 NPs 
increased root and stem length, ear mass biomass, flowering, and seed number of 
wheat (Predoi et al. 2020). 

Application of TiO2 NPs for seedlings plants canola stimulated the growth of 
radicle and plumule, root, and seed germination. However, it inhibited root elonga-
tion in cucumber (Khana et al. 2019). Titanium dioxide NPs at 60 mg/L (bulk and 
nanosized) encouraged seed germination percentages of the sage plants. This concen-
tration could gain the lowest mean germination time. However, higher concentrations 
did not do that. Therefore, the vigor index of sage was raised by using TiO2 NPs to 
seeds compared to the control and bulk TiO2 treatments (Aslani et al. 2014). 

12.3.3 Silver NPs 

Silver NPs had positive or negative effects on vascular plants, such as seed germina-
tion, root growth, and plant biomass. These effects were related to the concentration 
and the shape of NPs (Aslani et al. 2014). Furthermore, these effects may be attributed 
to chemical precursors. Therefore, plant extractions are involved in the biosynthesis 
method which is widely used to synthesize NPs. Figure 12.1 illustrates the schematic 
presentation for biosynthesized Ag NPs using leave extraction. The approach demon-
strated well-controlled particle concentration and size (21–42 nm), as well as particle 
dispersion. They are spherical in shape and uniformly distributed (Bamsaoud et al. 
2021). This method may aid in reducing the negative effects of NPs.

Many researchers have observed the effects of silver NPs on plants growth. For 
example, silver NPs show harmful effects on seed germinations, root, and shoot 
growth on species of Chinese cabbage (Brassica campestris), rice (Oryza sativa 
L.), and Mung bean (Vigna radiata L. Wilczek) at concentrations of 3000 g/mL, 
4500 g/mL and 6000 g/mL, respectively (Yan and Chen 2019). On the other hand, 
silver NPs positively affected seed germination and the root growth of zucchini plants 
in hydroponic solution. At the same time, it observed a decrease in plant biomass 
and transpiration in the presence of Ag NPs (Aslani et al. 2014).
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Fig. 12.1 Schematic presentation for biosynthesis, characterization, and plant application of 
synthesized silver nanoparticles using leaf extract 

Fig. 12.2 The most probable effect of nanoparticles on plant parts
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It has been certified that Ag NPs with sizes of up to 29 nm had harmful effects 
on the germination of cucumber seeds and lettuce. Still, no toxic effect has been 
observed on the germination of barley and ryegrass exposed to Ag NPS (Yan and 
Chen 2019). The number of studies about the effect of Ag NPS in two varieties of 
wheat and barley noted an increase in germination ratio stem length and reduced 
length root compared to the control (Al-Hadede et al. 2020). 

Treatment with 75 ppm Ag NPs application on wheat plants resulted in a negative 
response for fresh root weight and root length. At the same time, a positive response 
was observed to cowpea (50 ppm) and brassica plants (Yan and Chen 2019). Silver 
NPs promoted growth and increased root nodulation. Low concentrations of Ag NPs 
(10–20 g/mL) improved seedling development and seed germination in fenugreek 
plants (Predoi et al. 2020). 

12.3.4 Zinc Oxide NPs 

Plants required low concentrations of ZnO NPs for the normal developmental process. 
On the other hand, higher levels of Zn in plants can cause toxic effects such as 
inhibition of cell elongation and division, the reduction of growth and plant biomass, 
curling and rolling of young leaves, chlorotic and necrotic leaf tips, wilting, and root 
growth inhibition (Predoi et al. 2020). For example application of ZnO NPs resulted in 
a dose-dependent inhibition of seed germination in cabbage. During seed germination 
in wheat, lower concentrations of ZnO NPs were more beneficial. However, the lower 
concentration does not inhibit seedling growth and cell division in onions (Khana 
et al. 2019). 

Similarly, the germination of cucumber seeds increased 10% by ZnO-NPs 
compared to the control (Velasco et al. 2020). In addition, lower concentrations 
of ZnO NPs improve seed germination in soybean, wheat, tomato, and onion. Also, 
ZnO NPs with (50 nm) particle size positively affected the rooting of rapeseed in 
contrast with the impact of Zn+2 ions (Khana et al. 2019). 

Using ZnO NMs on different plants increased root length (4.2%), shoot length 
(15.1%). In addition, ZnO NPs application on the coffee plants had a positive effect 
by increasing the fresh weight of roots (37%) (Predoi et al. 2020). 

The biogenic ZnO-NPs influenced the shoot and root length of maize seedlings at 
14 DAS. The treatment which effectively increased root length was 25 mg/L (T25). 
In contrast, the 200 mg/L (T200) concentration of ZnO-NPs exerted an inhibiting 
effect (Buono et al. 2021). 

Biological synthesis of ZnO NPs has been prepared using brown seaweed 
Turbinaria ornata. (Turner) J. Agardh extracts to promote rice seed quality and crop 
yield. ZnO NPs at (10 mg/L) showed that they have been prompt in the seed germi-
nation (100%), root length (185 mm) root width (0.5 mm) compared to control 
(Itroutwar et al. 2019).
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12.3.5 Copper Oxide NPs 

Cu NPs up to 1000 mg/L have detrimental impacts on the seedling growth of mung 
bean (Vigna radiata L. Wilczek) and wheat, and may reduce the biomass of zucchini 
by 90% relative to the control compared to the higher concentration (Omar et al. 
2019). Also using higher concentrations of Cu NPs reduce shoot and root growth 
of soybean, decrease germination rate and biomass in Oryza sativa L. and it could 
inhibit seed germination in cucumber (Predoi et al. 2020). On the other hand, it was 
indicated that soil amendments with metallic Cu NPs up to 600 mg/kg significantly 
increased lettuce seedling growth up to 91% without toxic effects (Omar et al. 2019). 

The Sesbania virgata (Cav.) Pers seeds were subjected to different concentrations 
of CuO NPs. The results showed that CuO NPs induced a considerable change in seed 
temperature and a reduction in root length. This was signalized metabolic damage 
and changes in energy dissipation and plant growth (Santos et al. 2021). 

12.3.6 Iron Oxide NPs 

The research results showed that nα-Fe2O3 was effective on seed germination 
(89.17%) due to the role of iron in germination and increasing biomass of Oenothera 
biennis L. (Asadi-Kavan et al. 2020). Furthermore, nano zero-valent iron utilized 
promoted the elongation of the root system in A. thaliana (Khana et al. 2019). Predoi 
et al. (2020) indicated that the foliar and root usage of Fe2O3 NPs increase root 
elongation. 

12.3.7 Silica NPs 

Lower amounts of nano SiO2 (in the concentration of 8 g/L) increased the germination 
of seeds in tomatoes by 22.16%, mean germination time, seed germination index, 
seed vigor index, fresh seedling weight, and dry weight. In addition, with a significant 
impact on root growth through the main length of roots, seedlings lateral root number, 
and diameter of root collar (Predoi et al. 2020). Similarly, rice seed germination was 
induced with Si NPs, while quantum dots arrested the germination (Aslani et al. 
2014). 

Increases in seed germination caused by Si NPs in maize are related to enhanced 
nutritional availability to seeds (Singh et al. 2015). For example, in Changbai larch 
(Larix olgensis Henry) seedlings, Si NPs improved seed germination traits, including 
percent germination and germination rate, length, fresh and dry mass of root and 
shoot (Siddiqui et al. 2020). Also, in tall wheatgrass (Thinopyrum intermedium L.), 
using Si NPs for Pre-chilling seeds breaks inertia, promotes seed germination, and



326 M. A. Bahwirth et al.

increases vigor index, mean germination time, and dry weight seedling roots and 
shoots (Al-Hadede et al. 2020). 

Additionally, using Si-NPs in seed priming and seed soaking increased seedling 
biomass and vigor index along with seedling root and shoot length of Helianthus 
annuus L. (Omar et al. 2019). Germination and growth of soybean (Glycine max L.) 
were improved by increasing nitrate reductase activity and enhancing seeds’ ability 
to absorb and utilize water and nutrients (Siddiqui et al. 2020). The positive effects 
on seed germination, length, and dry weight of root and shoot in rice (Oryza sativa 
L.) seedlings were observed when Si-NPs were used (Elshayb et al. 2021). 

12.3.8 Cerium Dioxide NPs 

The results of the effect of CeO2 on seeds of tomato (Lycopersicon esculentum 
Mill.), cucumber (Cucumis sativus L.), and corn (Zea mays L.) found that CeO2 NPs 
(2000 mg/L) meaningfully decreased corn germination (about 30%). The germina-
tion of tomato and cucumber was reduced by 30 and 20%, respectively (Ali et al. 
2021). On the other hand, adding cerium dioxide, NPs can raise plant biomass and 
prompt anthocyanin production, yet showed little impact on root lengthening (Khana 
et al. 2019). 

12.3.9 Aluminum Oxide NPs 

Al2O3 NPs at concentrations up to 4000 mg/L had no significant toxic effects on 
seed germination, root elongation of Arabidopsis thaliana L. (Remedios et al. 2012). 
Al2O3 NPs (The aqueous suspension) improved the root growth of radish. On the 
contrary, the root growth decreased in cucumber (Hossain et al. 2020). 

12.3.10 Selenium NPs 

Correlation of Se NPs with selenate in Nicotiana tabacum L. showed that Se NPs 
invigorated organogenesis and expanded the advancement of the root by up to 40% 
compared to the impact of aqueous selenate (Khana et al. 2019). 

12.3.11 Gold NPs 

Maize aged seeds’ exposure to photosynthesized gold NPs (5–15 mg/L) significantly 
improved their germination and physiology without any toxicity (Elemike et al.
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2019). In addition, enhanced seed germination in (Boswellia ovalifoliolata Balakr 
and A.N. Henry) (Singh et al. 2015), Arabidopsis thaliana L. (Remedios et al. 2012), 
lettuce and cucumber, Brassica juncea L. and Gloriosa superba L. (Predoi et al. 
2020). On the other hand, it resulted in cultures of barley with addition Au NPs 
decreased biomass, yellow leaves, and dark roots (Khana et al. 2019). 

12.4 Effect of NPs on Shoots 

In botany, the stem is the plant axis that carries buds and shoots with leaves and roots 
at its base. The stem’s primary duties are to sustain the leaves by transporting the 
leaves’ products to other plant sections, especially the roots, and conveying water 
and nutrients to the leaves. The stem is a component of a plant that is frequently 
exposed to NPs when NPs are used as soil fertilizers by which NPs enter through 
the root system (Ali et al. 2019; Abbas et al. 2021a, b). Seed treatments with NPs, 
such as priming and soaking, may also potentially produce morphological changes in 
the stem. (Bamsaoud and Bahwirth 2017; Mutlu et al. 2018; Choudhary et al. 2019; 
Galaktionova et al. 2020; Ramesh et al. 2021). On the other hand, NPs could enter 
the stem and roots through the leaves system when foliar spraying is used (Haytova 
2013; Deshpande et al. 2017; Ali et al. 2019). Therefore, the various effects of NMs 
on a plant stem need to be recognized since the stem, on the other hand, is believed 
to be capable of photosynthesis. 

Numerous reports in the literature confirm that nano-forms of applied materials 
positively affect plant stem morphology, mainly stem length, while just a few reports 
reveal negative consequences (Kasote et al. 2019; Rahman et al. 2020). The most 
frequent materials in their nano-form are metal and metal compounds. These NMs 
could affect the hypocotyl and plumule or/and stem diameter (Choudhary et al. 2019; 
Khan et al. 2020) and/or length as well as other physiological characteristics of the 
stem. In general, without referring to all the reported nanomaterial-based agriculture 
treatments, researchers found an increase in plant height, which most likely relates to 
a change in stem length (Behboudi 2018; Bhatia et al. 2014; Choudhary et al. 2019; 
Dhoke et al. 2013; Khan et al. 2021; Sharifi et al. 2016; Shinde 2020). However, the 
ambiguity of claiming that activating various enzymes by some NPs may cause an 
increase in the length of the plant stem necessitates additional research activity to 
prove or/and understand the precise reason. 

One of the reactions of plants to NPs materials, according to published studies, is 
an increase in the length of the stem. Dhoke et al. (2013) observed a substantial rise in 
the stem of mung (Vigna radiate L.) when ZnO, nano FeO, and nano-ZnCuFe-oxide 
particles were applied by foliar spray (Dhoke et al. 2013). Plants treated with Zn Fe 
Cu oxide NPs had a 15.71% increase in shoot length, whereas plants treated with 
FeO NPs had a 10.25% increase and ZnO NPs had a 6.47% increase in shoot length 
compared to control. When a foliar spray of Fe NPs was given to forage maize (Zea 
mays L.), a significant increase in plant height was observed (Saedpanah et al. 2016). 
Fe NPs enhance plant height by 23% compared to the control, while Zn increases
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plant height by 5%, respectively. In a different study, the height of forage maize (Zea 
mays L.) was increased by 37% and 24% compared to the control when nano-Fe and 
nano-Zn were applied individually (Sharifi et al. 2016).  Ali et al.  (2019) observed 
an increase in shoot length after foliar spraying wheat (Triticum aestivum L.) using 
Si NPs. Tovar et al. (2020) combined nutrients into iron NPs and applied them to 
Corn (Zea mays L.) seedlings. After 30 days, all samples were identical in terms of 
stem length compared to the control. The height of maize plants rises by around 20% 
when Zn NPs are employed as a soil fertilizer and foliar spray, compared to control 
(Abbas et al. 2021a, b). 

Regarding the method of treating seeds with NPs, Bamsaoud and Bahwirth (2017) 
observed an increase in the length of hypocotyls of Cucurbita pepo L. when seeds 
were treated with silver NPs prepared via neem extraction. The highest length of 
hypocotyls (increased by 12% to control) was noted for seeds treated with silver 
NPs prepared using Neem. Furthermore, when seeds were immersed in chemically 
produced silver NPs, the hypocotyls of wheat grains Triticum aestivum L. increased 
by 12%. (Bahwirth and Bamsaoud 2020). Maswada et al. (2018) performed exper-
iments on Sorghum seeds. The seed priming with nano-Fe2O3 was more effective 
than seed soaking in enhancing seedling growth, and the experiments showed that 
the seedling length increased by 33%. The experiments of Raj and Chandrashekara 
showed that the higher plant height of Cotton (Gossypium hirsutum L.) was around 
24% higher than the control gave. In their experiments, the seeds were treated with 
chelated nano ZnO followed by foliar application of 1000 ppm nano ZnO (Raj and 
Chandrashekara 2019). Joshi et al. (2021) primed tomato seeds (cv. Sagar) with 
Selenium NPs by mixing Se NPs solution with 400 tomato seeds. The experiment’s 
findings revealed a substantial increase in plant height (51.2%) for treated tomato 
seeds compared to control ones. Nematzadeh’s studies showed that silver NPs treat-
ment at 80 ppm concentration did not prevent germination at high salinity despite a 
progressive increase in salinity levels. The stem of Satureja hortensis L. increased by 
15% compared to the control (Nejatzadeh 2021). Due to the small size, NPs reach the 
branch through stomates or the base of trichomes in the leaves (Eichert et al. 2008; 
Uzu et al. 2010). Even though NMs caused a significant difference in stem traits, 
no research is available and directly studies the considerable reasons for improving 
plant stem. 

12.5 Effect of NPs on Leaves 

The leaves consist of stomata or cuticles that allow entering the NPs > 10 nm. 
Their transfer through the cellular membrane occurs by apoplastic (between 50 and 
200 nm) and symplastic (between 10 and 50 nm) routes into the vascular system 
of the plant (Ali et al. 2021). There are essential factors that affect the existence 
of NPs on the leaf’s surface, such as leaf morphology and its chemical composi-
tion, the presence of trichrome, and the existence of leaf exudates (Al-Hadede et al. 
2020). The fullerene transmission in the plants is similar to the route of nutrients
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and water through the xylem (Aslani et al. 2014). In addition, the fullerene existed 
as black aggregates form in seeds and roots compared to the stems and leaves for 
rice seeds (Sanborn et al. 2018). The spinach leaves grew better with titanium-oxide 
NPs through foliar spray (Hossain et al. 2020). The fresh weight of the leaves coffee 
plant is increased when applied ZnO NPs in percentages of 95% as compared to 
control (Predoi et al. 2020). The favorable effect of nano-FeO and nano-ZnCuFe 
oxide was observed on the growth of mung (Vigna radiate L.) seedling and leaf and 
pod dry weight on soybean yield (Asadi-Kavan et al. 2020). Likewise, the number of 
leaves increased in percentage by 21.42% compared to control plants when applying 
nano-Fe-EDTA. Magnetic Fe-NPs by Low concentrations increases significantly 
the chlorophyll contents in sub-apical leaves of soybeans under hydroponic condi-
tions. In contrast, the high amount of iron oxide (Fe3O4) as a magnetic nanomaterial 
harmed plant growth (Predoi et al. 2020). The nano-organic iron chelated fertilizers 
demonstrated high absorption, increase in photosynthesis, aided in the transfer of 
iron photosynthate, and expansion in the leaf surface area of peanut plants (Singh 
et al. 2015). 

Agronomic use efficiency for nano-SiO2 is higher for foliar application than 
soil application (Predoi et al. 2020). When seedlings were treated with SiO2 NPs, 
their photosynthetic rate increased. Carbonic anhydrase activity and photosynthetic 
pigment production both contributed to this rise. (Siddiqui et al. 2020). Using Si-NPs 
as fertilizer with different concentrations promoted plant height, leaf number, and 
root length of Solanum lycopersicum L. (Predoi et al. 2020). As well as advertised net 
assimilation rate (NAR), leaf area index (LAI), relative growth rate (RGR), and yield 
of soybean plants but did not affect height, leaves number, or stem diameters of plants 
(Siddiqui et al. 2020). It is suggested that the accumulation of Si in leaves is benefi-
cial in maintaining leaves upright and stretching leaf surfaces to capture maximum 
sunlight, thus optimizing photosynthesis (Predoi et al. 2020). When nano SiO2 was 
applied to Changbai larch (Larix olgensis Henry) seedlings, it further developed 
seedling development and chlorophyll biosynthesis (Singh et al. 2015). Adding low 
concentrations of CeO2 NP (125 and 250 mg/kg) prompted grain creation, though 
significant measures of Ce are collected in grains and leaves (Ali et al. 2021). 

Al2O3 NPs had no significant toxic effects on root elongation and some leaves of 
Arabidopsis thaliana at concentrations up to 4000 mg/L (Remedios et al. 2012). Using 
Au NPs resulted in a better crop yield through a favorable influence on the number of 
leaves, leaf area, plant height, and sugar and chlorophyll content (Singh et al. 2015). 
On the contrary, during in vitro cultures of Barley, Au NPs supplementation resulted 
in dark roots, yellow leaves, and decreased biomass (Khana et al. 2019).
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12.6 Effect of NPs on Flowers 

The flower is a stem bearing leaves that are specialized for sexual reproduction. 
Many scientists have discussed the effect of NMs on flowers, particularly in terms 
of increasing their number or their opening speed. Table 12.1 shows the NMs that 
increased the number of flowers or their opening speed.

12.7 Effect of NPs on Fruits 

The researchers used many nanocomposites with different concentrations on different 
plant species to study their effect on production and increase the yield. Table 12.2 
shows the nanocomposites and their concentrations and the extent of the increase in 
the production of different plant species.

12.8 Conclusion and Prospects 

Nanotechnology has excellent potential for multidisciplinary studies in agriculture, 
including improving the agricultural industry. Despite the research that focuses on 
realizing the beneficial effects of NPs on plants, it is still incomplete. The effects of 
NPs differ from one plant to another and is dependent on the technique of production, 
application, size, shape, and concentrations, according to the data obtained. Also, 
biological nanocomposites have positive and negative effects that must be studied 
carefully. For example, soaking seeds into NPs improves germination, growth, and 
production characteristics. NMs can be exploited to overcome different stresses size, 
and concentrations of NPs did not show any adverse effects; on the contrary, they 
showed beneficial currents. 

On the other hand, it has been observed that more significant quantities of 
NPs/NMs are hazardous to plant development, which ultimately depends on particle 
size. Therefore, in future research, a checkpoint might be established to define the 
threshold concentration of particular NPs/NMs of a specific size, and the alterna-
tive combinations need to be checked. There is a broad scope for green nano-feeding 
crop plants considering the nanotoxicity effects of NMs/NPs reported. Consequently, 
green NMs/NPS may be utilized as a source of nutrients for crops and can play an 
essential part in greener nano feeding for environmental sustainability. 

As a future view, promoting the activation of multidisciplinary joint collabora-
tive efforts, combining complementary professional skills such as plant biologists, 
geneticists, chemists, biochemists, and engineers, may offer new possibilities in 
phytotechnology. For example, in agriculture, genes have been changed in many 
plants to improve genetic traits and resistance to diseases and pests. Also, involving
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the plant extracts in synthesizing NPs is the safest material for agriculture that remains 
an open framework with promising results. 
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Chapter 13 
Role of Nanomaterials in Improving 
Crop Productivity 

Lina M. Alnaddaf, Jameel M. Al-Khayri, and S. Mohan Jain 

Abstract Nanotechnology is currently used in various fields due to the unique 
properties of nanoparticles (NPs). These properties are important in agriculture for 
their effect on plant growth and development (stimulating or inhibiting). As well 
as, obtain the best productivity in quantity and quality. The effect of NPs varies 
according to plant species, NPs and their different properties (size, shape, concen-
tration, surface and other characterization). NPs accumulate in different plant parts 
which are reflected as well positively or negatively, quantitatively and qualitatively 
in plant growth and development. The nutritional value of treated plants is enhanced 
as a result of increasing the nutrient concentration which is reflected positively in 
human and animal nutrition. Similarly, the NPs positively promote the growth and 
development of plants, leading to an increase in the yield and productivity of plants. 
Whereas, this accumulation may have phytotoxicity effects on the plant and the 
accumulation of free radicals and abnormal cell division decreases plant produc-
tion. Therefore, more research is needed to investigate the effectiveness of different 
particles on various plant species. 
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13.1 Introduction 

Nanotechnology will be the best option in the agricultural sector through its applica-
tions in several fields in a sustainable manner (Shahrajabian et al. 2021). For example, 
a lot of yield seeds and fruits will be natural throughout the year. Likewise, helps in 
the protection of plants through the early detection of diseases and stresses. Also, 
nanostructured catalysts are accessible to raise the effectiveness of pesticides and 
herbicides. It is necessary to comprehend the activity and impacts of nanoparticles 
(NPs) when being applied to crops (Rivero-Montejo et al. 2021). 

The surface structure, shape, chemical composition, size, concentration, solu-
bility, and aggregation of engineered nanomaterials (NM) are fundamental qualities 
to understanding their impact on plants. Additionally, plant species have various 
responses (enhancing or inhibiting) to different NPs (Fig. 13.1). The impact of engi-
neered NM on plants can change with the phases of plant development and period of 
exposure (Abd El-Moneim et al. 2021). NM promotes various plant essential param-
eters upon absorption via roots and leaves which are the vitally supplement entree 
of plants (Shang et al. 2019). All changes caused by the NPs in plant physiological 
parameters, morphological traits, and gene expressions are vital to further enhance 
field yields to satisfy future food needs. Understanding both the positive and negative 
impacts of NPs is important to realize higher crop productivity. Despite what might 
be positively expected, hazards must be identified with a long exposure of farmers to 
NM, various environmental interactions, and conceivable intensified bioaccumula-
tion of NPs, all of these aspects ought to be taken into account before nanotechnology 
application (Abd El-Moneim et al. 2021).

This chapter describes various properties of NM and their effects on crop produc-
tion and the importance of nanotechnology in agriculture. Furthermore, it highlights 
features of NPs as well as the differences between nano fertilizers (NFs) and conven-
tional fertilizers including the factors that affect their properties, and the impact of 
NPs on crop production quality and quantity. 

13.2 Features of NM to Improve Crop Productivity 

Nanotechnology further impacts on crop yields and uses NPs effectiveness to lessen 
extreme wastage from the fertilizers utilized (Mali et al. 2020). Thirty-three percent 
of crop productivity is dependent on fertilizers and the utilization effective of other 
agricultural inputs. Nevertheless, the benefit from using conventional fertilizers does 
not exceed 30–40%. 

The plants benefit from small amounts of traditional fertilizers utilized, and the 
bulk remains in the soil, leading to environmental pollution, the negative impact of 
which reflects on the typical development of flora and fauna (Shang et al. 2019). In 
addition, the plant’s benefit from the added fertilizers, whether adding to the soil or
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Fig. 13.1 The influence of nanotechnology on sustainable agriculture. Plants have various reac-
tions (enhancing or inhibiting) related to NPs properties, different growth stages and conditions 
(Constructed by L .M. Alnaddaf)

sprayed on the leaves, is related to the concentration used, which reaches the target 
plant part (Solanki et al. 2015). 

Plant absorbs a very small amount of it. In contrast, a large amount of fertilizers 
is lost by runoff, evaporation, drift, photolytic, hydrolysis, and microbial degrada-
tion leading to salts aggregation and soil deterioration (Sabir et al. 2014). Therefore, 
NFs introduce the solutions for what was previously mentioned. Appropriately, nano 
formulations inhibit the losses of macronutrients and micronutrients via plant absorp-
tion of the added quantities needed by the plant as a result of the properties of NM, 
by shaping a nano network in the soil via surface tension and molecular force. The 
network keeps nutrients around plant roots, to soak up the needs all through the 
development plant cycle (Shang et al. 2019). Additionally, the size decrease of NM 
leads to an increase in the surface mass proportion of particles; accordingly, plants 
absorb these nutrient particles and dissolve them gradually for a lengthy time frame 
(Monreal et al. 2016) (Table 13.1). An assortment of materials is utilized to create 
and cover NM; for example, plant extracts, polymers, metal oxides, lipids, ceramics, 
and emulsions (Mali et al. 2020).

Various research showed that nano calcite CaCO3 (40%) application with nano 
SiO2 (4%), Fe2O3 (1%), and MgO (1%) not only enhanced the take-up of Ca, Mg, 
and Fe but improved the sucking of P, micronutrients Zn and Mn prominently (Sabir 
et al. 2014). NFs deliver their essential nutrients in 40–50 days, while traditional
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Table 13.1 Comparison 
between the use of 
conventional and 
nanofertilizer in agriculture 

Fertilizers properties Conventional 
fertilizers 

Nano fertilizers 

Utilization amount from 
fertilizers 

Large Small 

Utilization efficiency 
from fertilizers 

Low High 

Benefit from fertilizers 
% 

30–40% 60–70% 

Plant absorption 4–10 days 40–50 days 

Environmental pollution Yes Less pollution

fertilizers do likewise in 4–10 days. Therefore, over 70% of traditional urea fertilizer 
added to field, is quickly lost through filtering and volatilization and leaving about 
20% easily accessible for plants (Seleiman et al. 2021). 

One of the main highlights of NFs is small particle size, which gives it the ability 
to enter plants when it is utilized as soil amendments or spray of leaves. Besides, 
NFs are different from artificial fertilizers by the ability to solve in water and evenly 
distributed in the soil solution. In addition, NFs give extreme reactivity and constant 
availability of nutrients to plants as a result of having high surface areas (Liscano 
et al. 2000; Siddiqi and Husen 2017). As of late, NFs were prepared by covering 
the area with hydroxyapatite NPs, which slowed the absorbance of N as much as 12 
times slower than traditional urea in the rice (Oryza sativa L.). This led to increased 
grain yields at only 50% of the rate compared with traditional urea (Seleiman et al. 
2021). Likewise, utilizing a zero-urea nano fertilizer on maize plants produces better 
grain quality, growth, and yield development compared with conventional usage 
(Manikandan and Subramanian 2016). 

The utilization of chitosan and zeolites has contributed to significantly further 
developing absorb efficiency by controlling the release and reducing the amount 
of Nitrogen (Abdel-Aziz et al. 2016). For instance, using urea-modified zeolites 
increased the seed yield of soybean (Glycine max L.) (Liu and Lal 2015), (Solanum 
tuberosum L.) (Zareabyaneh and Bayatvarkeshi 2015) and (Brassica napus L.) 
(DeRosa et al. 2010; Liu and Lal 2015). 

Likewise, nano-formulations of Phosphor (p) decrease the loss of P through the 
utilization of ammonium zeolites and absorb it immediately by the plant (Dwivedi 
et al. 2016). Therefore, the utilization of P-enriched hydroxyapatite NPS in soybeans 
(Glycine max L.) increases the grain yield (18%), shoot growth, and plant height 
contrasted with p fertilizer (Liu and Lal 2015; Shalaby et al. 2016). In addition, 
nano capsules are used as smart delivery for herbicides and pests that have less 
effect on human health and the environment. Adding macronutrients, micronutri-
ents like manganese, copper, boron, chlorine, iron, zinc, and molybdenum assume a 
fundamental part in developing and increasing crop productivity (Shang et al. 2019).
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13.3 Impact of NPs on Crop Quality 

NFs provide crops with a balanced nutrient throughout the growth cycle that ulti-
mately improves agricultural production. It should be noted that increased produc-
tivity might encourage farmers to use the product more efficiently (Rajputa et al. 
2020) (Table 13.2). As a promising field of multidisciplinary research, nanotech-
nology has revived its greatness in agriculture. These changes will bring benefits to 
feeding malnourished people and feeding animals with rich, nutritious grass. The 
absorption of NPs varies with the species of plant, tissue/organ utilized directly for 
food or food processing, and the type and size of NPs (Elshayb et al. 2021). This 
may lead to the accumulation NPs in various tissues and cause toxic problems in 
both plants and humans (Zulfiqar et al. 2019).

In red spinach (Amaranthus tricolor L.) multi-walled carbon nanotubes had phyto-
toxicity effects resulting in growth inhibition, cell death, and producing reactive 
oxygen species (Pullagurala et al. 2018). CeO2 NPs increased the nitrogen potential 
percentage of soybean causing human health problems (Priester et al. 2012). In addi-
tion, apply of fullerene increased the accumulation of dichlorodiphenyldichloroethy-
lene (DDT) in zucchini, soybean, and tomato plants (Torre-Roche et al. 2012). 

Rico et al. (2013) planted three varieties of rice with a variety of amylose grains 
(low, medium, and high) in the soil with 500 mg CeO2NPs/kg soil. CeO2 NP treatment 
grains contained small amounts of starch, prolamin, glutelin, iron, sulfur, valeric, and 
lauric acid. NPs treatment lower antioxidant levels, in addition to those flavonoids, in 
grain. The concentration of Ce in the grain was greater in low- and medium-amylose 
cultivars than in high-amylose cultivars (Khan et al. 2020). 

ZnNPs promote the quality and yield of coffee beans by having a positive effect 
on color index, polyphenol oxidase activity, caffeine and trigonelline, chlorogenic 
acid, and sucrose. 

Nano-Ca fertilization decreases the total number of phenolic compounds in 
pomegranate fruit juice and has no significant effect on overall anthocyanin content, 
antioxidant activity, and the harvest of cherries, strawberries, grapes, and kiwifruit 
(Predoi et al. 2020). 

13.4 Impact of NPs on Crop Quantity 

The plants demonstrated different responses in the plant growth and development 
resulting from NPs treatment (Table 13.3). Seed treatment of spinach (Spinacia oler-
acea L.) by TiO2 NPs (0.25–4.0% w/v) has a positive effect on biomass accumulation 
(60%), increasing some indicators such as plant dry weight (73%), chlorophyll (45%), 
photosynthesis rate rubisco activity and nitrogen assimilation. This positive effect 
is related to decreased TiO2 particle size (30–40 nm) (Masarovičová and Kráľová 
2013).
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Table 13.2 Various effects of NPs on the quality indicators of different plants 

Plant species Nanoparticles Effects References 

Apium graveolens L Se Increased of total 
phenols and flavonoids, 
soluble sugar, 
beta-carotene, 
tryptophan, chlorophyll, 
proteins, proline, 
glutamic acid, arginine, 
jasmonic acid, aspartic 
acid, total antioxidant 
capacity and vitamin C 

Li et al. (2020a, b) 

Bacopa monnieci L Ag NPs Increased The 
germination rate, the 
proteins and 
carbohydrates content. 
Decreased catalase 
activity, the phenol 
content, and peroxidase 
activity 

Khan et al. (2020) 

Calendula officinalis L (methyl jasmonat) 
MeJA and Ag 

Promote saponin. Rising 
membrane lipid 
peroxidation. Whereas, 
flavonoid, anthocyanin, 
carotenoid, chlorophyll 
content, DPPH radical 
scavenging activity were 
decreased 

Ghanati and 
Bakhtiarian (2014) 

Camelina sativa L ZnO Rise of anthocyanins, 
carotenoid total phenol 
content, phosphorus, 
calcium and zinc. 
Decreased total 
flavonoid content and 
antioxidant capacity 

Hezaveh et al. 
(2020) 

Capsicum annuum L Cu absorbed on 
chitosan hydrogel 

Maintaining 
post-harvest weight 
fruits. The content of 
phenols and flavonoids, 
antioxidants and 
titratable acidity was 
raised 

Pinedo-Guerrero 
et al. (2017) 

(continued)

The spray of nano-iron oxide (0.5–0.75 g/dm3) increased the grain yield of 
soybean by 48%. In addition, it had a positive impact on the dry weight of a leaf 
and pod. Likewise, TiO2 and SiO2 enhanced seedling growth and germination of 
soybean (Sheykhbaglou et al. 2010). In addition, using nano-sized hydroxyapatite 
(nHA) improved seed yield (20.4%) (Seleiman et al. 2021).
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Table 13.2 (continued)

Plant species Nanoparticles Effects References

Catharanthus roseus L Fe3O4 NPs Increase in leaf growth 
parameters and the 
carbohydrate contents. 
The quantity of 
antioxidants, proline, 
and density of leaf 
stomata was not 
influenced 

Seleiman et al. 
(2021) 

Corylus avellana L. cv. 
Gerd Eshkevar 

Ag Rising taxanes content 
(taxol and baccatin III) 
and lipid peroxidation. 
Reducing total contents 
of flavonoids and 
soluble phenols 

Jamshidi and 
Ghanati (2017) 

Cucumis anguria L AgNPs and 
AgNO3 

Increased the biomass 
accumulation, total 
phenols content and 
biological activity 
(antibacterial, 
antioxidant, anticancer 
and antifungal) 

Chung et al. (2018) 

Cucumis sativus L Cu Rising most of the 
organic compounds such 
as leucine, valine, 
isoleucine, threonine, 
tyrosine, fructose, 
xylose, glutaric acid, 
benzoic acid, linolenic 
acid, caprylic acid, 
glycine, imidazole and 
proline. whereas 
decreased methionine 
and lysine 

Zhao et al. (2017) 

Momordica charantia L ZnO NPs, 
jasmonate and 
chittosan 

Increase anthocyanin 
content, flavonoids, 
phenols, carbohydrate as 
well as carotenoids. 
Antioxidant enzyme 
activity and proline 
content too 

Sharifi-Rad et al. 
(2020) 

Prunella vulgaris L Ag, Au and 
naphthalene acetic 
acid (NAA) 

Promoted total phenols 
and flavonoids, biomass, 
and DPPH-radical 
scavenging activity 

Fazal et al. (2019)

(continued)
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Table 13.2 (continued)

Plant species Nanoparticles Effects References

Solanum lycopersicum L Cerium oxide 
(nCeO2) and Citric 
acid coated cerium 
oxide (nCeO2 + 
CA) 

(nCeO2) Increased of 
lycopene. Whereas, 
nCeO2 + CA reducing 
sugar and starch 

Barrios et al. (2017) 

Cu absorbed on 
chitosan hydrogel 

Increased activity of 
titratable acidity, 
catalase activity and 
lycopene 

Juarez-Maldonado 
et al. (2016) 

Stevia rebaudiana 
(Bertoni) Hemsl 

ZnO and CuO Increased total phenolic 
content, total flavonoid 
content, total antioxidant 
activity. Reduced weight 
and quality of callus at 
high concentration 

Ahmad et al. (2020) 

Tanacetum parthenium L SiO2 and TiO2 NPs Rising of TpGAS, 
COST, TpCarS gene and 
β-caryophyllen 
biosynthesis pathway 

Khajavi et al.  (2019) 

Withania somnifera L. 
Dunal 

CuO Polyphenols and 
antioxidant activity were 
influenced 

Singh et al. (2018) 

The application of carbon NPs with fertilizer promoted grain yields of soybean 
(16.74%), spring maize (10.93%), rice (10.29%), and vegetables (12.34–19.76%) and 
winter wheat (28.81%) (Shang et al. 2019). Nano-K fertilizer-loaded zeolites affect 
the K concentration, harvest index, yield, and chlorophyll content of hot pepper 
(Capsicum annuum L.) (Seleiman et al. 2021). In addition, the same influence was 
observed in the biomass, growth, and quality of Cucurbita pepo L. (Gerdini 2016). 
Au NPs (10 ppm) led to promote seed yield and growth in mustard (Khan et al. 2019).

Furthermore, developed seed germination affected the expression of miRNA in 
Arabidopsis thaliana L. which led to the development of growth and yield (Kumar 
et al. 2013). There were positive effects in Quercus macdougallii. Martínez. a result 
of the Fe2O3 NPs treatment such as Plant growth, seed germination, chlorophyll 
content, and biomass (Pariona et al. 2017). The foliar application of Zn, Mg, and 
Ti NPs had an effective impact on the growth and yield indicators for watermelon 
(Wang et al. 2016). 

Rico et al. (2015) indicated that using CeO2 NPs increases plant biomass in barley. 
Also, zinc oxide NPs enhance physiological responses, shoot and root elongation, 
photosynthesis, fresh, dry weight, stimulate nutrient use efficiency and raise produc-
tivity by way of ninety-one%, while conventional bulk ZnSO4 increases productivity 
by 31% as compared to the control (Kale and Gawade 2016). The same influence on 
zinc oxide NPs was observed for peanuts (Elemike et al. 2019).
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Table 13.3 Various impact of nanotechnology on the quantity indicators of Crops 

Plant species Nanoparticles Effects References 

Arabidopsis 
thaliana L 

Fullerenes Enhanced yield Gao et al. (2011) 

Arachis hypogaea L Nano-potash (K) Enhanced yield Asgari et al. (2018) 

Ag Reduced yield and plant 
growth parameters 

Rui et al. (2017) 

Cicer arietinum L FeS2 Enhanced yield Das et al. (2016) 

Cuminum cyminum 
L 

Nano-iron oxide (Fe) Promoted stem length, Fe 
concentration and yield 

Sabet and 
Mortazaeinezhad 
(2018) 

Cyamopsis 
tetragonoloba L. 
Taub 

ZnO NPs Increased nutrient 
contents, biological yield 
and growth 

Raliya and Tarafdar 
(2013) 

Glycine max L. 
Merr 

ZnO, B2O3, CuO Increased dry weight, 
count, the content of N 
and K of grain 

Dimkpa et al. 
(2017b) 

Oryza sativa L CuO Grain yield and 
Physiological parameters 
adversely influenced. the 
grain content of Cu and 
Zn greatly existed in 
mature plants 

Peng et al. (2017) 

TiO2 Decreased grain yield 
and plant biomass 

Du et al. (2017) 

Pennisetum 
americanum (L.) 
Leeke 

Zn NPs Enhanced yield Zulfiqar et al. 
(2019) 

Pisum sativum L Fe-based NFs Rising seed weight and 
chlorophyll contents 

Giorgetti et al. 
(2019) 

Solanum 
lycopersicum L 

Cu NPs Rising fruit firmness and 
antioxidant contents 

Ahmed et al. (2018) 

Ag with PEG coating Reduced chlorophyll 
content, NPK uptake, 
fruit yield; increased fruit 
Ag content 

Das et al. (2018) 

MWCNTs Enhanced yield Khodakovskaya 
et al. (2013) 

Sorghum bicolor L. 
Moench 

ZnO Increased grain content 
of Zn, N, K, and P and 
grain yield 

Dimkpa et al. 
(2017a) 

Spinacia oleracea L TiO2 Increased nitrogen and 
protein content, 
chlorophyll, biomass 
accumulation 

Yang et al. (2007)

(continued)
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Table 13.3 (continued)

Plant species Nanoparticles Effects References

Triticum aestivum L ZnO NPs Rising biomass 
accumulation and grain 
yield 

Du et al. (2019) 

CuO NPs Enhanced yield Dimkpa et al. 
(2012) 

Chitosan-NPK Decreased protein 
content. Whereas 
increased P and K 
contents 

Abdel-Aziz et al. 
(2018) 

Nano-silica (SiO2) Enhanced yield Behboudi et al. 
(2018) 

MWCNTs Enhanced yield Wang et al. (2012) 

ZnO Increased in Grain yield 
and Zn content 

Dimkpa et al. 
(2018) 

Zea mays L MWCNTs Rising nutrient transport 
and yield 

Tiwari et al. (2014) 

ZnO NPs Increased morphological 
parameters, chlorophyll 
content, and grain quality 

Raliya et al. (2016)

The exploitation of the solar spectrum via CuInS2/ZnS quantum dot (QD) films 
improves the absorption of blue photons and redshift ultraviolet, which led to an 
increase in the biomass of red romaine lettuce (Parrish et al. 2021). Cu NPs 600 mg/kg 
enhance the growth of lettuce seedlings by up to 91% (Predoi et al. 2020). 

Comparing the effect of NPs (CuO, ZnO, MnO, and FeO) and ions (Cu, Zn, Mn, 
and Fe) on the growth of lettuce seedlings Lactuca sativa L. with concentrations 
of (<50 mg/L). The results indicated that toxic effects for CuO NPs were more as 
compared to Cu ions. While the toxic effect of ions Zn was like that of ZnO NPs. 
Whereas, MnO and FeO NPs promoted the seedling’s lettuce growth from 12 to 54%. 
In addition, it’s less toxic compared with its ionic shapes (Lü et al. 2016). 

Multiple wall carbon nanotubes (MWCNT) contribute to stimulating the growth 
and division of cell tobacco culture (Khodakovskaya et al. 2012). Tobacco seed 
treatment with TiO2 NP did not affect its positive growth and development. Using 
TiO2 NPs led to reducing the fresh and dry weight of plants and decreased growth 
and development of roots and shoots (Burklew et al. 2012). 

TiO2 NPs improved photosynthesis by 30% and decreased cucumber infecting 
with Psilocybe cubensis (Earle) by 91%. Also, ZnO NPs (100 mg/kg) reduced 
the indicator of cucumber growth (Cui et al. 2009). Tomato roots treatment with 
MWCNT (50 μg/ml) stimulated root biomass. In addition, using Fe2O3 NPs as root 
and foliar applications could promote root elongation and photosynthesis (Predoi 
et al. 2020).
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The effect of silver NPs on a wheat plant varies between positive and negative 
effects, according to the size of the particles. The positive effect resulting in increased 
content of aminocyclopropane-1-carboxylic acid (ACC) and phytohormones led to 
the promotion of growth and production indications, especially when using low 
concentrations from AgNPs such as 25 ppm and size particles about (50–70) nm. 
The high concentration of AgNPs and small particle size (30) nm had inhibition 
effects on wheat growth due to abnormal cell division and toxic effects (Wang et al. 
2020). 

Apply of TiO2 NPs at 20 g/L led to promote biomass, ear mass, stem elongation, 
flowering, and seed number (Predoi et al. 2020). In addition, 2.5% (w/v) TiO2 NPs 
contributed to increase seed germination (Khan et al. 2020). Mn NPs improved 
the growth and development traits of wheat compared with the control; however, 
increasing the amount of Mn NPs was not useful resulting in competition in transport, 
uptake, and use with other ions Mg, Fe and Ca (Predoi et al. 2020). 

Chitosan-NPK fertilizer enhanced the yield at the rate of 5.5% as well as the 
crop and harvest indexes compared with the control (Shang et al. 2019). ZnO NPs 
positively promoted coffee plant biomass, photosynthesis, and the carbon absorption 
rate and conduct of stomatal which raised the content of CO2 in the chloroplast and 
increased rubisco enzyme effectiveness (Predoi et al. 2020). 

Applying NPK NF stimulated photosynthesis at 71.7% and the number of leaves. 
In addition, it increased the NPK contents in a plant by 67.5% compared with the 
control (Seleiman et al. 2021). 

Apply boron (B) (34 mg/tree) and Zn (636 mg/tree) NFs as a foliar spray had posi-
tive effects on fruit yield by 30% compared with the control. Also, these treatments 
affected affirmatively the physical parameters of fruit size such as fruit calyx diameter, 
fruit diameter, and average weight. There were no significant differences between 
the treatments and control in pomegranate trees (Punica granatum cv. Ardestani) 
(Predoi et al. 2020). The utilizing foliar spray of boron (B) and Zn NFs for Draco-
cephalum moldavica L., led to improvement the contents of the essential oil beside 
to stimulate growth and development of it. All of these effects could be clarified by 
increasing water and nutrient absorption, which promoted the activity of enzymes 
and root growth (Shang et al. 2019). 

Ocimum basilicum L. plants were stimulated by a foliar spray of potassium, 
calcium, and Fe3O4 NFs which affected grain yield, harvest index, and biological 
yield. In addition, they increased the biochemical indicators such as chlorophyll, 
carbohydrate, oil levels, and the percentage content of potassium, calcium, and iron 
(Rautela et al. 2021). 

In rice, production improved through enhancement of disease-resistant, resulting 
in a 14.8% increased yield by using Carbon Dots CDs (0.56 mg/ml) (Li et al. 2020a, 
b). ZnO NPs were biosynthesized by seaweed Turbinaria ornata. (Turner) J. Agardh. 
promote seed germination, growth and development parameters, 1000 grain weight, 
and yield for rice plants (Itroutwar et al. 2020). The various effects of nanotechnology 
during the different stages of plant growth and development are shown in Fig. 13.2.



352 L. M. Alnaddaf et al.

Fig. 13.2 The Inhibitory and stimulatory effects of NPs in plant cells during the different stages 
of plant growth and development. Also, its cumulative effects in different organisms (Constructed 
by L. M. Alnaddaf) 

13.5 Conclusion and Prospects 

Nanotechnology is an advanced tool for sustainable agriculture and increases plant 
produced in an eco-accommodating way even under various stresses. NPs consider 
a great promise tool in increasing crop production. Agriculture takes advantage of 
NM for promoting the productivity of crops. In addition, NFs are eco-friendly, reduce 
the over-use of conventional fertilizer and are effective for a long time. NPs have 
toxic effects and causes harm to human, plant, and the environment. NPs interact 
with various biomacromolecules present in the living system and environments. As 
well as NPs accumulate in the soil–plant systems. For this reason, the inhibitory or 
stimulatory effects of NPs in plant cells need more research to illustrate different 
plant responses in physio-biochemical mechanisms besides ecological, phenolog-
ical, cytological, anatomical, and molecular mechanisms. Finally, it is essential to 
balance the applications of NM based on their characterization for the best use in crop 
production, the reduction of phytotoxicity and increasing the quantity and nutritional 
value of crops for ensuring food for the increasing world population.
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Chapter 14 
Role of Nanomaterials in Plant Cell 
and Tissue Culture 

Sanaz Feizi 

Abstract The plant tissue culture (PTC) technique has been established based on 
totipotency and regeneration capacity of plant cells by culturing different types of 
explants on a nutritional culture medium for regenerating the whole organ. It has 
an economically important place and its use in basic sciences such as genetics, 
biochemistry, tissue engineering, and biotechnology shows its value. This tech-
nique may provide some key applications including plant conservation, higher mass 
reproduction, genetic manipulation, and biologically active compound production. 
Nanoparticles (NPs) are small particles with a diameter of 1–100 nm. It is recently 
believed that many nanoparticles NPs could implicate significant effects on the 
various aspects of plant tissue culture including somatic embryogenesis, organo-
genesis, callus induction, sacral modification, genetic transformation, control of 
microbial pollutants, and the production of secondary metabolites. This chapter 
has focused on the different effects of several important NPs including metal and 
metal oxide, polymeric, dendrimers, quantum on the various plant abiotic stresses 
and then a comprehensive application of them on the amelioration of plant growth, 
crop production, and cytotoxicity remediation and the mechanism of nanoparticles 
affecting callus and secondary metabolism would be discussed. Of note, we would 
highlight different approaches to explore appropriate NPS for the improvement of 
the potential adaptation of plants under abiotic stresses aiming for their sustainable 
productivity. 
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14.1 Introduction 

Plant tissue culture (PTC) is a vital, eco-friendly, and cost-effective technique impli-
cated in different aspects of plant biology such as cell biology, biotechnology, 
biochemistry, and genetics (Thorpe 2007). This approach may be utilized for the mass 
propagation of plant cells, the production of genetically modified and free-disease 
tissues, and the efficient production of secondary metabolites (Khosroushahi et al. 
2006). Moreover, PTC may minimize environmental variations by the use of specific 
and unique nutrient media in a controlled culture condition, nutrient availability in a 
homogenous manner, and decreased stress severity (Sakthivelu et al. 2008). Tissue 
cultures such as cell suspensions, callus, and hairy roots provided several advantages 
including simple and fast exploration of the effects of microflora and also membrane 
barriers on the cell and tissues compared with the whole-plant systems (Doran 2009). 
NPs particle size range is from 1–100 nm which provided a much larger surface 
area to volume ratio resulting in the enhancement of catalytic reactivity, thermal 
conductivity, biological activity, and chemical steadiness compared to their bulk 
forms. Accordingly, NPs could be used in health, cosmetic industries, food supple-
ments, agriculture, electronics, and textile industries (Agarwal et al. 2017; Prasad 
et al. 2017; Dimkpa and Bindraban 2018). Interestingly, several reports identified the 
positive effects of nanoparticles (NPs) on the plant cells and tissue cultures in which 
they might significantly increase the secondary metabolite production, induce callus 
formation, somatic embryogenesis, organogenesis, and facilitate some genetic modi-
fications (Kim et al. 2013). Moreover, a supplement of NPs can effectively lead to the 
control of microbial pollutants in plant culture medium (Helaly et al. 2014). Further 
reports confirmed NPs might facilitate genetic engineering procedures during callus 
regeneration experiments. NPs such as magnetic-related NPs and carbon nanotubes 
can mediate the accurate transfer of DNA molecules into the cells by reducing the 
integrity of plant cell walls (Lv et al. 2020). Ag NPs and Au NPs can induce random 
changes in the coding sequences of pectin methylesterase enzyme and Mlo-like 
protein during differentiation of callus of Flaxseed (Linum usitatissimum. However, 
the mechanisms of variations in nuclear genome induced by NPs have still been 
remain ununderstood (Kokina et al. 2017b). 

14.2 Impact of Nanomaterials on Callus Induction 

Overall, nanomaterials (NMs) have been categorized into Carbon- and metal-
related nanomaterials. Carbon-related NMs have included fullerenes, graphene, and 
carbon nanotubes (e.g., single-walled carbon nanotubes and multi-walled carbon 
nanotubes) (Buzea and Pacheco 2017). While metal-based NPs are composed of 
zero-valent metals (e.g., Au, Ag, and Fe), metal oxides (i.e., nano-CuO, -ZnO, -
CeO2, -TiO2, -Fe2O3, and -SiO2), quantum dots (CdSe and CdTe), nano-sized 
polymers (dendrimers and polystyrene), and metal salts (nano silicates and ceramics)



14 Role of Nanomaterials in Plant Cell and Tissue Culture 361

(Dallavalle et al. 2015). Different reports confirmed that the NPs could significantly 
improve seed germination and bioactive compound production, enhance plant growth 
and yield, and intensely increase plant protection capacity (Wang et al. 2016; Ruttkay-
Nedecky et al. 2017). Although several metallic NPs are currently utilized in the agri-
culture industry, the release of these molecules into the environment might impose 
negative cytotoxic impacts on the living organisms. These toxic effects came from the 
size, morphology, nature, surface area ratio, composition, and reactivity charcharis 
of metal-based NPs (Zaka et al. 2016). It is frequently reported that metallic stress 
(Cu, Cd, Al, Pb, and Ni) could stimulate the phenylalanine ammonia-lyase (PAL) and 
chalcone synthase enzymes resulting in the induction of plant secondary metabolite 
production (Singh et al. 2015). It seems the higher tendency of phenolic compounds to 
the chelate metals are involved in the enhanced biosynthesis of these molecules (Jun 
et al. 2003). In this context, engineered NPs provided some unique physicochemical 
properties which facilitated their penetration into plant cells and tissues and subse-
quent delocalization (Keller et al. 2013). Notably, NPs such as gold, cerium oxide, 
aluminum oxide, and zero-valent iron might increase plant growth rates, modulate 
gene expression levels, and induce the synthesis of proteins and other metabolites in 
the different plant cells and tissues (Jaskulak et al. 2019; Montes et al. 2017; Kim  
et al. 2014; Kumar et al. 2013; Lee et al. 2010; Yang et al. 2017). The effects of 
several NPs on physiology, morphology and metabolism-related pathways of plant 
callus or cell suspension cultures obtained from some recent research are discussed 
below. 

Zinc Oxide (ZnO) 

Several studies have been performed to evaluate the impact of biosynthesized zinc 
oxide NPs on in vitro production of bioactive compounds and the improvement of 
biomass in different plants. It is reported that low concentrations of ZnO NPs could 
stimulate callus growth and also enhance regeneration, organogenesis, and decontam-
ination (Mousavi Kouhi and Lahouti 2018; Kavianifar et al.  2018). Upon exposure 
of plant cells to the ZnO NPs, the production of secondary metabolites has been 
induced in which they functioned as phytoalexins to protect plant cells and tissues 
against biotic and abiotic stress (Marslin et al. 2017; Abdel-Lateif et al. 2012). Of 
note, Zinc Oxide NPs might modulate the antioxidant and macromolecules systems 
in the callus of Solanum nigrum. It is identified that the dry weight of callus was 
increased upon exposure to the lowest concentration of ZnO NPs. Moreover, the 
activity of lipoxygenase and antioxidant enzymes were increased at the highest level 
of ZnO NPs. Although the activity of phenolic and phenylalanine ammonia-lyase 
compounds was not changed by the treatment of ZnO NPs, the polyphenol oxidase 
activity was significantly decreased. It should be highlighted that the amino acid, 
soluble protein and carbohydrates, and also Zn contents were highly enhanced in the 
callus treated with ZnO NPs (Abdel Wahab et al. 2020). Zn provided vital roles in 
different biochemical, physiological, and anatomical pathways. ZnONPs have been 
widely utilized in personal and medical care products, paints, coating materials, UV 
protectors, and absorber materials. However, these nano molecules might increase 
health and environmental risks because of their interaction with many biological
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and chemical biomaterials (Chithrani et al. 2006). Further research confirmed that 
the treatment of Juniperus procera cells with a suitable amount of biosynthesized 
ZnO NPs caused a significant enhancement in growth rate, chlorophyll A, and total 
protein contents (Salih et al. 2021). Interestingly, the treatment of callus of wheat and 
tobacco with ZnO NPs causes an increment in nutrient and protein contents respec-
tively (Rizwan et al. 2019; Mazaheri-Tirani and Dayani 2020). It is further identified 
that ZnO NPs could modulate the expression of some genes encoded by certain 
proteins resulting in turn on/off the expression of some downstream genes (Salama 
et al. 2019). Also, zinc oxide NPs might increase the CAT activity in the callus of 
Punica granatum and Prosopis glandulosa (Farghaly et al. 2020; Hernandez-Viezcas 
et al. 2011). A strong correlation existed between CAT activity and Zn concentration 
might be revealed that the CAT enzyme is involved in defense response against ZnO-
NPs or BP stress (Hernandez-Viezcas et al. 2011). Moreover, the strong correlations 
between LOX activity and Zn concentration were also confirmed in which ZnO–NPs 
could increase O2

− formation causing oxidative stress (Manke et al. 2013). Upon 
the ZnO-NPs reaching into the mitochondria, they might induce ROS production 
by interfering with their reactions resulting in the depolarization of mitochondrial 
membranes (Xia et al. 2006). Of note, some enzymatic antioxidants were increased 
under ZnO NPs confirming these enzymes could be enabled plants to neutralize 
the stress. ZnO NPs provided some positive effects on the protein content of the 
callus of tomatoes even under salt stress (Alharby et al. 2016). Treatment of Echi-
nacea purpurea callus extracts with biosynthesized ZnO NPs enhances secondary 
metabolite and anticancer activities (Karimi et al. 2018). In different concentrations, 
zinc as a micronutrient improves the efficiency of callogenesis and regeneration in 
Panicum virgatum (Shafique et al. 2020). ZnO NPs and ZnO submicron particles 
have been shown to improve onion ) Allium cepa L. ‘Sochaczewska’( seed germina-
tion and seedling growth in vitro. Seeds treated with 800 mgL1 of the NPs had the 
highest percentage of germination (Fig. 14.1a) (Tymoszuk and Wojnarowicz 2020). 
Zafar et al. (2016) reported Brassica nigra seed germination and seedling growth 
are affected with ZnO NPs concentrations ranging from 500 to 1500 mg/L, that also 
leads to improvement of antioxidative and non-antioxidants activities (Fig. 14.1b).

Silver (Ag) 

Silver NPs are considered as one of the most important NPs produced worldwide and 
provide antimicrobial, cytotoxic, antifungal, physiological, and phytotoxic proper-
ties (Keller et al. 2013; Nel et al. 2006). Ag NPs are able to inhibit chronic contam-
ination caused by microorganisms during plant culture experiments (Elechiguerra 
et al. 2005). These features came mainly from small size and unique phytochemical 
properties allowing Ag NPs to cross through biological membranes and organs and 
tissues to improve plant health (Kim et al. 2017). AgNPs significantly enhanced 
seed germination capacity and seedling growth rate in rice (Oryza sativa L., cv. 
Swarna) (Gupta et al. 2018). This NP has presented different applications in plant 
tissue technology including simultaneously improvement of callus induction, somatic 
embryogenesis, organogenesis, genetic transformation, somaclonal variations, and
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Fig. 14.1 Impact of ZnO NPs on seed germination and stem explants. Allium cepa L. 
‘Sochaczewska’ (a), Brassica nigra (b). Source Tymoszuk and Wojnarowicz (2020), Zafar et al. 
(2016)

secondary metabolites production (Lateef et al. 2018; Adebomojo and AbdulRa-
haman 2020). In addition, AgNPs presented a high potential for improvement of 
growth, biomass, and secondary metabolites in plant cell cultures (Elechiguerra et al. 
2005). It is identified that a suitable concentration of AgNPs can significantly induce 
the callus formation, the regeneration of shoot and roots, and the nursery phase during 
the propagation of banana (Musa ssp.) (Huong et al. 2021) of note Ag-SiO2 stimulates 
the production of artemisinin in the roots of Artemisia annua (Zhang et al. 2013). 
Moreover, biologically synthesized AgNPs can increase the callus fresh weight and 
also callus formation in the leaf explants of Solanum nigrum (Ewais et al. 2015). 
Another recent report identified that supplementation of AgNPs and plant growth 
regulators sustainably enhanced the callus proliferation, biomass, antioxidant, and 
secondary metabolites production during in vitro culture of Caralluma tuberculate. 
While the sole application of AgNPs produced a higher amount of antioxidants and 
secondary metabolites (Ali et al. 2019b). On Nicotiana tabacum, hormone-stabilized 
AgNPs fully promoted the roots (a) control water treatment, (b) IAA, (c) IBA, (d) 
AgIAA, (e) AgIBA) (Fig. 14.2a). (Thangavelu et al. 2018) Silver NPs in concentra-
tions ranging from 1 to 5 ppm were found to be effective on banana (Musa spp.). In 
vitro shoot cultures on media containing 3 ppm AgNPs also produced a significant 
number of roots (Fig. 14.2b) (Do et al. 2018).

Gold (Au) 

The incorporation of Au NPs into the callus medium of Arabidopsis thaliana could 
improve the seed germination, seedling growth capacity, pod length, and a number of
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Fig. 14.2 Effect of AgNPs on rooting. Nicotiana tabacum (a), on banana (Musa spp.) (b). Source 
Thangavelu et al. (2018), Do et al. (2018)

seeds. Moreover, the use of Au NPs might enhance the antioxidant enzyme activity 
in the A. thaliana through the decrease of microRNA expression levels miR398 
and miR408) (Kumar et al. 2013). Further reports confirmed that the treatment of 
cell suspension cultures with Au NPs increases the intracellular free amino acid 
pools (alanine, valine, and γ-aminobutyric acid) and also modulates the extracellular 
proteins composition (Selivanov et al. 2017). 

Copper (Cu) 

The treatment of callus culture of Mentha longifolia with Cu and Co NPs has a 
positive impact on the improvement of fatty acid contents in which the linalool and 
linalyl acetate contents were higher in the treated cells (Talankova-Sereda et al. 2016). 
Like the other NPs, the use of CuO NPs in the O. basilicum callus cultures could 
elicit the biosynthesis of bioactive compounds with a high antioxidative capacity.
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Moreover, the accumulation of flavonoid and phenolic molecules was also signifi-
cantly improved in the media supplemented with CuO NPs. In addition, the SOD 
and POD (Peroxidase) activities were highly elicited in the CuO NPs treated cultures 
compared to the control. Notably, the HPLC data identified that the production of 
rosmarinic acid, chicoric acid, and eugenol was improved when the callus cultures 
of O.basilicum were treated with CuO NPs (Nazir et al. 2021). (Paramo et al. 2020) 
suggested that the positive impact of Cu NPs is due to copper showing a greater posi-
tive effect in the physio-biochemical processes such as hormone signaling pathways, 
metabolism, and electron transport reactions. However, the increase in NPs concen-
trations might show some negative effects on biomass production. Another report 
showed that CuO NPs could stimulate the in vitro induction of bioactive compounds 
in the suspension cells of Stevia rebaudiana (Javed et al. 2017b). While the use of 
five levels of CuO NPs caused a significant decrease in fresh and dry weight, water 
content, amino acids, and potassium contents in the callus cells of Solanum nigrum 
(Abdel-Wahab et al. 2019). Capped CuO NPs were more toxic for the callus cells 
of Trigonella foenum-graecum than uncapped forms causing a higher production 
of secondary metabolites (ul Ain et al. 2018). It should be noted that CuO NPs 
could be elicited biomass and bioactive compounds accumulation, and antioxidants 
biosynthesis in callus cultures of Ocimum basilicum (Nazir et al. 2021). 

Carbon Nanomaterials (CNMs) 

Today, carbon nanomaterials (CNMs) have been attracted much more attention for 
their application in plant biology. These materials have exhibited positive potential 
for regulating the plant growth capacity which was a promising future for agriculture. 
However, the precise mechanism of CNMs in plants is yet well understood especially 
at the molecular levels (Zhenjie et al. 2020). Until now, the potential different CNMs 
such as carbon nanotubes and graphene have been evaluated in plant biology research. 
The appropriate concentration (25–500 μg mL−1) of multi-walled carbon nanotubes 
can highly improve the callus growth rate in the leaf explants of Satureja khuzes-
tanica. Whilst, the higher amounts (100–500 μg mL−1) of these nanotubes might 
decrease the callus biomass production (Ghorbanpour and Hadian 2015). Similarly, 
the incorporation of about 100 μg/mL of multi-walled carbon-related nanotubes 
significantly increased the callus growth cates in the tobacco explants. It is believed 
these activities are achieved through the upregulation of the genes involved in cell 
division and extension, cell division, and water transport (Khodakovskaya et al. 
2012). Of note, multi-walled carbon nanotubes could intensely improve the nitroge-
nase activity and also increase gene expression levels involved in the regulation of 
nodules development (Yuan et al. 2017). However, the treatment of Arabidopsis cell 
cultures with 10–600 mg/L of carbon nanotube treatment was decreased the viability 
and dry weight of plant cells (Lin et al. 2009). The exposure to low concentra-
tions of single-walled carbon-related nanotubes provided drought stress induced by 
polyethylene glycol through the activation of some antioxidant enzymes (Superoxide 
dismutase (SOD), Catalase (CAT), Peroxidase (POD), and Ascorbate peroxidase 
(APX) and also biosynthesis of secondary metabolites (ie., phenols and proline) in
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the seedlings of Hyoscyamus niger (Hatami et al. 2017). Graphene-related nanoma-
terials provided some impressive characteristics such as two-dimensional structure, 
unique electronic and optical attributes, mechanical flexibility, electrical conduc-
tivity, and high and chemical stability resulting in greatly broadened applications in 
biology, chemistry, and medicine (Shehzad et al. 2016; Shen et al. 2016; Dreyer et al. 
2010). 

Iron (Fe) 

It is reported that the use of FeO NPs in the medium of Hyoscyamus reticulatus 
could increase the production of tropane alkaloid hairy roots through the induction 
of oxidative stress reactions (Moharrami et al. 2017). Further research identified that 
SiO2 and Fe NPs could significantly enhance the accumulation of some essential 
pharmaceutical biologics including rosmarinic acid and xanthomicrol in the hairy 
roots of Dracocephalum kotschyi (Nourozi et al. 2019a, b). 

Silicon (Si) 

Silicon (Si) as the second most frequent element is enabled of protecting plants 
from biotic and abiotic stresses, decreasing transpiration losses, and improving their 
resistance to different diseases (Liang et al. 2007; Ma  2004; Nawrot et al.  2010). 
It is identified that the treatment of rice cell cultures with silica NPs noticeably 
reduced Cd toxicity by a decrease in silica NPs size. Moreover, silica NPs could 
respectively increase and decrease the Si and Cd uptake capacities allowing the 
alleviation of Cd toxicity in the cells (Cui et al. 2017). It is reported that the fluorescein 
isothiocyanate-labeled mesoporous silica NPs (MSNs) could successfully interact 
with hybrid suspension cells of Liriodendron through the internalization of MSNs 
via endocytosis. Owing to admirable biocompatibility, MSNs might be considered 
as a potential nanocarrier for walled-plant cells (Xia et al. 2013). 

Ca 

CaO NPs are vital elements that functioned as transducers in several adaptive and 
developmental reactions in plants. These elements could enhance the tolerance of 
callus of Triticale against salt stress through the improvement of biochemical activity 
(Yazıcılar et al. 2021). 

SnO2 

The cytotoxic effects of SnO2 and Ag/SnO2 NPs on the tobacco cell cultures identi-
fied the importance of structural modifications on the toxic properties of NPs. Indeed, 
SnO2 NPs presented low toxicity while Ag-doped NPs have a significant effect in 
inhibiting the toxicity through modulation of oxidative stress pathways in tobacco 
cells. Microscopic analyses demonstrated a high level of cell mortality upon treat-
ment with a high level of SnO2 NPs (e.g., 0.5 mg/ mL) or even a low concentration 
of Ag/SnO2 NPs (e.g., 0.2 mg /mL). Further experiments showed these components 
could significantly enhance the accumulation of neutral red stain into the vacuole of 
NPs-treated tobacco cells inducing the high acidification (Mahjouri et al. 2020).
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Polymeric Nanoparticles 

Polymeric NPs are colloidal nano molecules ranging from 1 to 1000 nm which are 
generally prepared from biodegradable polymers (Prabha et al. 2020; Bhattacharjee 
et al. 2016). Biodegradable polymers mainly utilized for the polymeric NPs fabrica-
tions such as poly (lactide) (PLA), poly (amino acids), poly (lactide-co-glycolide), 
poly (E-caprolactone) (PCL), (PLGA) copolymers, and several natural polymers 
especially alginate and chitosan (Asti and Gioglio 2014). Notably, polymeric NPs 
presented some important advantages such as biocompatibility, biodegradability, 
simple and easy fabrication process, non-toxicity, non-immunogenicity, and capa-
bility to site-specific targeting organs or tissues (Jawahar and Meyyanathan 2012). 
Recently, polymeric NPs have extensively been implicated in the production of 
pesticides, herbicides, fertilizer, and plant growth regulators. It is reported that 2,4-
D loaded PLGA NPs could significantly increase the growth rate and biomass of 
Medicago sativa cell suspension cultures compared to its free form (Poyraz et al. 
2021). Furthermore, the potential of bulk or nano-chitosan components, as an eco-
friendly natural nano-molecule, has been evaluated in morphogenesis, growth, micro-
propagation, and physiology of Capsicum annuum suspension cells. The treatment of 
suspension cells with bulk chitosan or synthesized chitosan/tripolyphosphate (TPP) 
NPs were manipulated morphology and differentiation of some tissues and organs, 
especially the root architecture. Of note, the appropriate concentration of nano-
chitosan might trigger organogenesis through micropropagation (Asgari-Targhi et al. 
2018). The chitosan NPs synthesized by Penaeus semisulcatus shrimp shells could 
strongly inhibit some bacterial and fungal pathogens. In addition, chitosan NPs may 
use to develop pesticides against mosquito vectors in food packaging applications 
(Thamilarasan et al. 2018). 

Dendrimer Nanoparticles 

Cationic polyamidoamine (PAMAM) dendrimers as a highly branched NP could 
be utilized for the improvement of gene delivery capacity into the different cells. In 
fact, PAMAM may interact with DNA molecules allowing protection from ultrasonic 
damage. The use of PAMAM could intensely improve the transformation and gene 
expression efficacy in the alfalfa cells (Amani et al. 2018). 

Quantum Dots (QDs) 

QDs are fluoresce-based NPs expressed with bright and pure colors upon excita-
tion with UV wavelength (Whiteside et al. 2019). The treatment of the suspension 
culture of Medicago sativa with mercaptopropionic acid-coated CdSe/ZnS QDs to 
the suspension culture significantly reduced cell growth rate. Subsequently, a high 
accumulation of the CdSe/ZnS QDs in the cytoplasm and nucleus led to dose- and 
time-dependent production of ROS (Santos et al. 2010). Further data showed these 
cytotoxic and genotoxic features were induced by the activation of DNA-related 
repair genes and ROS-eliminating enzymes (Santos et al. 2013). The below table 
shows the effect of some NPs on plant cell and tissue culture (Table 14.1).
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14.3 Mechanism of Improvement of Secondary Metabolism 
by Nanoparticles 

Elicited plant cell and suspension cultures have attracted more attention worldwide 
because of their capacity for the production of industrially vital secondary metabo-
lites (Ali et al. 2019a). Plant secondary metabolites are organic components which 
involved directly in the growth, development, and reproduction of plant cells and 
tissues. Moreover, these molecules are contributed to different signaling cascades, 
and also defense pathways against several microorganisms, pathogens, and insects 
(Hartmann 2007). Most of the secondary metabolites are considered as an enriched 
resource of pharmaceutical molecules with defensive properties in the human body 
(Zhao et al. 2005a, b). The biosynthesis of secondary metabolites is dependent on 
biotic and abiotic factors such as growth rate, physiology, light intensity, temperature, 
and humidity. Moreover, the secondary metabolite productivity of callus cultures 
has been especially dependent on culture media composition, pH, agitation, aera-
tion, and light density (Ochoa-Villarreal et al. 2016; Isah et al.  2018). Nowadays, 
several various biotic and abiotic factors have been evaluated to induce the produc-
tion and concentration of the secondary metabolites and also increment cell volume 
in plant suspension cultures (Rao and Ravishankar 2002). Many NPs could be acti-
vated through enzymatic pathways which are responsible for secondary metabolites 
production (Wang et al. 2021). Nanomaterials could be considered a novel effective 
abiotic for the stimulation of biosynthesis of secondary metabolites (Fakruddin et al. 
2012). Different reports have been identified that the nanomaterials could increase 
the expression of several genes involved in the biosynthesis of secondary metabolites 
(Ghasemi et al. 2015; Yarizade and Hosseini 2015). Titanium oxide NPs, for example, 
could distinctly increase the production of gallic acid, cinnamic acid, chlorogenic 
acid, tannic acid, and o-coumaric acid in the embryonic callus of Cicer arietinum 
(Mohammed 2015). Moreover, the use of silver NPs might increase the concentra-
tion of artemisinin in the hairy root cultures of Artemisia annua (Zhang et al. 2013). 
Notably, the growth rate of calli of Satureja khuzestanica was significantly improved 
when treated by gradually increasing concentrations of carbon nanotubes in the 
plant medium (Ghorbanpour and Hadian 2015). While, in the higher concentration 
of carbon nanotubes (i.e., 500 mg/L), the highest amounts of H2O2, PPO, POD, and 
secondary metabolic activities were observed. Similarly, the use of about 250 and 
1000 mg/L CeO2 and also indium oxide NPs caused excessive ROS production and 
PAL, and PPO in the A. thaliana suspension cells which revealed the possible func-
tion of secondary metabolites against oxidative stresses (Ma et al. 2016). Although 
NPs could implicate positive impacts on some signaling pathways and modulate 
the metabolism of secondary compounds, the precise mechanisms of these reactions 
were not understood. It is believed that the initial responses of different plants to the 
NPs might be elevated levels of ROS, cytoplasmic calcium and subsequent upregula-
tion of mitogen-activated protein kinase (MAPK) cascades observed during abiotic 
stresses (Sosan et al. 2016). The increase of Ca2+ levels is associated with upregu-
lating some protein signaling pathways in the O. sativa roots treated with AgNPs
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(Mirzajani et al. 2014). It is hypothesized that AgNPs might impede cell metabolism 
through binding to the Ca2+ receptors, Ca2+ channels, and Ca2+/Na+ ATPases. More-
over, NPs could minimize Ca2+ or signaling molecules in the cytosol upon sensing 
calcium ions by calcium-binding proteins or other NP-specific proteins (Khan et al. 
2017). Further data identified that MAPK phosphorylation and also the activation 
of downstream transcription factors led to induce of transcriptional reprogramming 
of secondary metabolism in many plants (Vasconsuelo and Boland 2007; Schlut-
tenhofer and Yuan 2015; Phukan et al. 2016). Although the exact evidence for the 
contribution of MAPK pathways in plant-NP interactions is yet identified, analogous 
pathways involved in AgNP-induced signaling reactions were found in the animal 
and human cell line studies (Eom and Choi 2010; Lim et al. 2012). In this sense, 
it is believed that plants might utilize MAPK pathways upon exposure to the Ag 
NPs (Kohan-Baghkheirati and Geisler-Lee 2015). Recent data confirmed that NPs 
could be regarded as a nutrient resource or an elicitor inducing the overproduc-
tion of secondary metabolites (Kim et al. 2017). For instance, the treatment of the 
tobacco cell suspension cultures with different concentrations of Al2O3 NPs could 
accumulate phenolic molecules (Poborilova et al. 2013). Similarly, the addition of 
Ag-SiO2 core–shell NPs into the Artemisia annua hairy root cultures could intensely 
improve artemisinin content (Zhang et al. 2013). Multi-walled carbon nanotubes 
could significantly induce the production of total phenolics, flavonoids, rosmarinic 
acid, and caffeic acid in the Satureja khuzestanica callus cultures compared to the 
control experiments (Ghorbanpour and Hadian 2015). The cultures supplemented 
with zinc nano-oxide showed an increased amount of hypericin and hyperforin 
(Sharafi et al. 2013). It should be noted that recent genomic data have been found 
that plants might respond to the internalization of nanomaterials similar to the biotic 
or abiotic stresses (Khodakovskaya et al. 2012; Kohan-Baghkheirati and Geisler-
Lee 2015). Indeed, NPs could be modulated the secondary metabolites production 
through the induce of several signal transduction pathways including calcium flux, 
overproduction of ROS, and MAPK phosphorylation reactions (Mahjouri et al. 2018). 
It seems that NP-induced ROS can function as a signal to trigger the plant’s secondary 
metabolism (Marslin et al. 2017). Plants could produce different types of ROS such 
as H2O2, superoxide, hydroxyl radical, and singlet oxygen during the detoxification 
mechanism. Different antioxidant enzymes (oxidoreductases and CAT), hormones 
(e.g., abscisic acid and salicylic acid), and antioxidants with low molecular weight 
(thiols and ascorbate) are involved in the neutralization of these toxic molecules. 
Notably, excessive ROS might lead to increase lipid peroxidation capacity, electrolyte 
leakage, and finally, DNA degradation caused cell death (Dev et al. 2018; Tripathi 
et al. 2017). It is believed that callus, cell suspension, and hairy root cultures could be 
considered as an advanced strategy for the production of therapeutically important 
plant alkaloids (Moreno et al. 1995; Goldhaber-Pasillas et al. 2014). For example, the 
hairy root cultures ofCatharanthus roseus caused the significant production of indole 
alkaloids such as horhammericine, catharanthine, lochnericine, and tabersonine (Li 
et al. 2011). Moreover, different alkaloids such as ajmalicine, serpentine, antirhine, 
cathindine, acuamicine, and lochnericine have been successfully obtained from the 
plant calli, cell suspensions, sprouts, pilose roots, somatic embryos, and vincristine
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in sprouts and embryos (van Der Heijden et al. 2004; El-Sayed and Verpoorte 2007; 
Almagro et al. 2014). In fact, the activation of signaling pathways could modulate the 
gene expression levels which followed by continuous enzymatic reactions resulting 
in consecutively change in secondary metabolites production. Previously reported 
that any change in the activity of phenylalanine ammonia lyase, polyphenol oxidase, 
and peroxides could modulate the biosynthesis of secondary metabolites (Hatami 
et al. 2016). The influence of NPs on biosynthesis of secondary metabolites in plant 
cell and tissue cultures is shown in Fig. 14.3. 

Fig. 14.3 The effect of nanoparticles on the synthesis of secondary metabolites in plant cell and 
tissue cultures
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14.4 Mechanisms of Nanoparticles Affecting Callus 

The callus culture could provide the required sterilized and reliable large-scale 
resources of plant materials for the synthesis of NPs have positive impacts on the 
callus physiology and secondary metabolites pathways through the production of 
oxidative stress which eventually activated plant metabolic reactions to inhibit the 
oxidative outbursts through the production of phytochemicals (Choi and Hu 2008). 
Biotic and abiotic stresses might suppress cell differentiation during callogenesis 
through the unwanted production of ROS or the production of toxic metabolites 
injured directly by the plant cells (Srinivasan 2007). Plant cells could fight against 
oxidative stress through several enzymes such as SOD, CAT, POD, and APX in 
which they scavenged the free radicals during cell division (Abbasi et al. 2011). It 
should be noted that the inclusion of different NPs into the tissue culture media might 
improve the morphogenetic potential of treated explants (Mandeh et al. 2012). The 
optimum concentration of AgNPs could improve the callus induction and biomass 
in the explants of Phaseolus vulgaris (Mustafa et al. 2017). While the precise phys-
iological and molecular responses of this impact are yet understood, it is speculated 
that AgNPs may enhance the nutrient and water uptake capacity from the culture 
media by mutilating the plant cell wall (Ali et al. 2018). The chemical composition 
of NPs is mainly responsible for the motivation or inhibition effects of metallic oxide 
NPs on the callus cells and also the stresses induced by the size, shape, and surface 
of these NPs. It should be highlighted that the mechanism of transferring NPs across 
the cell membrane is not well understood, but it is believed that the use of NPs 
could increase the lipid membrane peroxidation induced by enhancement of ROS 
production and upregulation of MAPK cascades (Marslin et al. 2017). Moreover, 
size reduction, surface area enhancement, and capability of apoplastic or symplastic 
transportation could lead to more electrostatic interactions of many NPs with the 
living cell membranes resulting in the activation pathways for the biosynthesis of 
secondary metabolites in the plant cells (Javed et al. 2017a). Upon exposure to NPs, 
plant cells suffered a series of cascade reactions resulting in oxidative outbursts, ROS 
generation damage, and subsequent disruption of cell membrane and nuclei. Plants 
have activated their metabolic pathways such as secondary metabolites induction and 
MAPK cascades to inhibit intense stress situations and improve the ROS scavenging 
capacity (Sinha et al. 2011). CAT and APX antioxidant enzymes could significantly 
scavenge ROS and play a crucial role in the mitigation of oxidative stress (Garg 
and Manchanda 2009). It should be highlighted that the precise physiological and 
molecular responses of plant suspension and callus cells to the NPs are still unclear 
(Bezirğanoğlu 2017; Elmaghrabi and Ochatt 2006).
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14.4.1 Impact of Nanoparticles on Quantitative 
and Qualitative Features of Calli 

The treatment of Salvadora persica callii with ZnO, SiO2, and Fe3O4NPs increased 
callus growth rates and improved the production of constituent benzyl isothiocyanate. 
Further data identified that the increment of benzyl isothiocyanate activity was asso-
ciated with the decrease of H2O2 content and the increase in the activity of superoxide 
dismutase and peroxidase. Moreover, the genomic DNA stability was reduced when 
higher doses of NPs utilized (Fouda et al. 2021). CuO, ZnO, and CaO NPs could 
present an effective approach for the protection of alfalfa callus against NaCl stress 
(Simsek et al. 2021). The treatment of wheat and Stevia rebaudiana Bertoni calli 
with ZnO NPS could increase proline concentration, flavonoid contents, and antiox-
idant enzyme (Javed et al. 2018; Barbasz et al. 2016). Exposure of Zn and ZnO NPs 
on callus cultures of bananas induced a significant decrease in growth rate but it 
enhanced the total proline associated with CAT, SOD, and POD activities. Despite 
the antifungal and antibacterial properties, further analyses confirmed NPs have no 
negative effects on explants regeneration (Helaly et al. 2014; Rad et al. 2020). Ag 
NPs could present positive effects on plant organogenesis through the inhibition of 
ethylene production. Upon exposure to Ag NPs, the number of shoots, their lengths, 
and the percentage of produced shoots were substantially enhanced in the nodal 
explants of Tabernaemontana undulata (Aghdaei et al. 2012c). 

14.5 Some Important Applications of Nanomaterials 
in PTC 

14.5.1 Somaclonal Variation 

Generally, any changes in chromosome structure and number, DNA sequence, DNA 
arrangement, and transposable elements activation have been known as somaclonal 
variation (Kim et al. 2017). Moreover, somaclonal variation is proposed for the 
description of the plant tissue culture-induced phenotypic and genotypic variation 
in regenerated plants (Ngezahayo et al. 2007). Indeed, this parameter could evaluate 
the genetic and epigenetic variation that existed between clonal regeneration and the 
relative plant (Kaeppler et al. 2000; Wang and Wang 2012). It is identified that the 
use of gold and silver NPs could in vitro evaluate somaclonal variation in the coding 
sequence of methylesterase and also Mlo-like protein during tissue developmental 
stages of donor plant, calli, and regeneration in the Linum usitatissimum (Kokina 
et al. 2017b). Moreover, the treatment of Vanilla planifolia plantlets with different 
concentrations of AgNPs induced changes in repeat units and also polymorphism in 
its nuclear genome. Interestingly, the polymorphism percentage was enhanced by the 
increase in the concentration of AgNPs (Bello-Bello et al. 2018). Of note, the addition



382 S. Feizi

of AgNPs to the culture medium induced variation in morphology, anatomy, protein 
content, and DNA profile of Solanum nigrum calli (Ewais et al. 2015). Somaclonal 
variations might create plants associated with several key features such as higher 
secondary metabolite production and more resistance to stresses (Kim et al. 2017). 

14.5.2 Organogenesis 

Different NPs (Au and Ag) could be effective on the inhibition or induction of regen-
eration capacity and growth of adventitious organs such as roots and shoots through 
the inhibition of ethylene production (Kim et al. 2017). It is confirmed that tobacco 
root cells could directly uptake AgNPs resulted in significant adventitious roots 
formation (Cvjetko et al. 2018). Moreover, the treatment of S. viarum and Gentiana 
lutea cells with silver nitrate NPs might induce root formation (Purine et al. 2015; 
Petrova et al. 2011). Further reports showed that suitable concentrations of AgNPs 
and AuNPs have positive effects on the random organogenesis in chrysanthemums, 
gerbera, and cape primrose (Tymoszuk and Miler 2019). It should be noted that 
shoot induction percentage and also their lengths were significantly improved upon 
the treatment of stem and nodal explants of Tecomella undulata treated with AgNPs 
(Aghdaei et al. 2012a). 

14.5.3 Somatic Embryogenesis 

Somatic embryogenesis, developed from somatic cells, is an effective method for 
micropropagation, regeneration of new plants, and genetic improvement of plant 
cells (Aghdaei et al. 2012a). Figure 14.4 Cu-NPs could significantly trigger the 
regeneration capacity of Ocimum basilicum through somatic embryogenesis. Indeed, 
Cu-NPs presented a higher potential for the production of somatic embryos compared 
to the plantlets/explant treated with CuSO4·5H2O (Ibrahim et al.  2019). Notably, ZnO 
NPs might positively increase the callus and somatic embryo induction (Devasia 
et al. 2020). In addition, the treatment of rhizome of Panax vietnamensis with Ag 
NPs could intensely induce somatic embryogenesis and plantlets (Du et al. 2021) 
(Fig. 14.5a, b).

The use of Phyto molecule-coated Ulva lactuca silver NPs (ULAgNPs) could 
also induce somatic embryogenesis and plant regeneration capacity in the rhizome 
explants of Gloriosa superba. Similarly, Ag NPs could efficiently enhance the 
percentage of somatic embryogenesis (almost 40%) in the explants of Begonia tuber-
ousvia through cell layer culture (Mahendran et al. 2018). Notably, Cu-NPs and 
also Fe3O4-NPs could significantly improve somatic embryogenesis in the explants 
of Ocimum basilicum (84%) and L. usitatissimum (100%) when compared to the
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Fig. 14.4 effect of nanoparticles on organogenesis and somatic embryogenesis in plant tissue 
culture 

Fig. 14.5 The embryogenic calli induction and somatic embryo. Panax vietnamensis (a), Ocimum  
basilicum (b). Source (Du et al. 2021; Ibrahim et al. 2019)

control experiments (Ibrahim et al. 2019; Kokina et al. 2017a). However, the precise 
mechanism of NPs in somatic embryogenesis has not been understood yet, but these 
molecules might implicate their impacts by modulating the expression of some genes 
involved in embryogenesis (Kim et al. 2017).
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14.5.4 Disinfection 

Many NPs could be potentially utilized in superficial disinfection processes in the 
callus and cell suspension cultures (Sarmast and Salehi 2016). For instance, Ag 
NPs are effective in significantly decreasing bacterial contamination in the callus of 
Vanilla planifolia (Spinoso-Castillo et al. 2017). Moreover, Au NPs have frequently 
been utilised as an antimicrobial factor to surface sterilization of callus and explants 
in tissue culture experiments. The antibacterial, antiviral, antifungal, and antiseptic 
features of Au NPs have been relied on their potential to attack the wide range 
of organic processes in microorganisms inducing the disruption of the structure of 
plasma and cell membranes. These processes could lead to the depletion of intra-
cellular ATP and cell death (Rudramurthy et al. 2016). Interestingly, plant-derived 
Au NPs could provide a better antimicrobial activity compared to the other NPs 
synthesized by physical and/or chemical methods. In detail, silver NPs are rapidly 
and environmental-friendly synthesized through the reduction of aqueous Ag+ ions 
using Dioscorea bulbifera tuber extracts. The quality of the green AgNPs was eval-
uated by different approaches such as ultraviolet–visible absorption spectroscopy, 
high-resolution, and x-ray diffraction. Further data identified that this nanopar-
ticle presented a potent antibacterial property against both gram-positive and gram-
negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa 
(Ghosh et al. 2012). 

14.5.5 Genetic Fidelity and Regeneration 

Silver nano-complexes have positive impacts on the shoot regeneration capacity 
and genetic fidelity of in vitro-propagated Alternanthera sessilis cells. As a muta-
genic factor, NPs could be efficacious for the induction of genotoxic effects in 
many plants because of their ease of interaction with plant cells (Kulus et al. 2022). 
Until now, the mutagenicity of ZnONPs and AgNPs was respectively confirmed in 
the Allium cepa and Chrysanthemum species (Kumari et al. 2011; Tymoszuk and 
Kulus 2020). The addition of AuNPs into the medium of Lamprocapnos spectabilis 
explants induced mutation in its genome which was detected by several molecular 
markers such as RAPD, SCoT, and DAMD markers (Kulus et al. 2022). These muta-
tions mediated by NPs might result in phenotype and physiological variations in 
plants leading to the creation of new variants with improved characteristics. More-
over, the use of Phyto molecule-loaded silver nano-complex with AdS combination 
highly increases multiple shoot regeneration capacity in the A. sessilis cells (Venkat-
achalam et al. 2017). It is believed that many NPs especially Ag-related NPs have 
presented positive impacts on the improvement of regeneration capacity of different 
plant cell and callus cultures. In fact, NPs could downregulate several genes such as
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1-aminocyclopropane-1-carboxylic acid (ACC) and 2-chloroethyl phosphonic acid 
(CEPA) to induce the pant regeneration pathways (Helaly et al. 2014). Moreover, 
the supplement of several plant cells such as tobacco, triticale, rape, and wheat 
with the increasing concentration of CuSO4 NPs could improve the regeneration 
capacity of shoots (Purnhauser and Gyulai 1993). In addition, regeneration capacity 
through somatic embryogenesis in different recalcitrant cereal plants (e.g., barley, 
bread wheat, durum wheat, and rice) were enhanced upon treatment with a suitable 
concentration of CuNPs (Ibrahim 2012; Ibrahim et al. 2010; Eudes et al. 2003; Fahmy 
et al. 2012). It is also reported that CuO-NPs could significantly improve callogenesis 
and regeneration in the Oryza sativa. The suitable concentrations for improvement 
of regeneration capacity and callogenesis were identified as 20 mg/L and 10 mg/L 
of CuO-NPs (Anwaar et al. 2016). 

14.6 Conclusions and Prospects 

Today, nanotechnology has highly implicated in many industries especially agricul-
ture, medicine, pharmacology, cosmetics, and environmental conservation. Different 
NPs have contributed to different aspects of plant biology including orogenesis, 
embryogenesis, tissue formation, differentiation, and development of plant cells and 
calli (Fig. 14.6). Notably, NPs especially are involved in the induction of secondary 
metabolites production and several pharmaceutical components through the up- or 
down-regulation of some plant genes. Moreover, plant cells and tissues could be 
considered as a more powerful platform for the production of different green NPs. 
However, further utmost research is needed to highlight the possible adverse effects 
of NPs on plant cell and tissue cultures. Plant cell and culture technology could be 
used as a green bio factory for the production of different valuable NPs. Notably, 
these green synthetized NPs could be regarded as a more powerful platform for drug 
delivery approaches provided fewer side effects.
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Fig. 14.6 Application of nanoparticles (NPs) in different aspects of plant cell and tissue culture 
approaches 
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Kokina I, Mickeviča I, Jahundoviča I et al (2017a) Plant explants grown on medium supplemented 
with Fe3O4 nanoparticles have a significant increase in embryogenesis. J Nanomater 
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Chapter 15 
Role of Nanomaterials in Improving 
the Nutritional Value of Crops 

Mansoureh Nazari, Mojtaba Kordrostami, Ali Akbar Ghasemi-Soloklui, 
and Jameel M. Al-Khayri 

Abstract In recent years, nanotechnology has been applied to revolutionize the 
technological progress in biomedicine, industry, and agriculture. Chemical, biolog-
ical, and physical methods used for synthesis of nanomaterials substances and these 
materials applied at a tiny scale. The purpose of using nanomaterials in food and 
agriculture is to reduce the use of chemicals and nutrient losses and to increase 
crop yield through pest and nutrient management. In addition, these materials use to 
improve the nutritional value of crops. Due to the low macronutrient use efficiency 
and cost-intensive of conventional fertilizers, Nanomaterials are more effective than 
conventional fertilizers for the improvement of nutrient use efficiency. Nanomaterials 
are used to provide essential elements for plants directly or increment the efficiency 
in using nutrients. One of the main challenges facing developed and developing coun-
tries is the increasing demand for adequate and safe food and the risk of environ-
mental damage by conventional agriculture. One way to boost agricultural efficiency 
is the use of nanotechnology. At present, numerous novel nanomaterials are commer-
cially used in agriculture and have been developed to improve crop productivity and 
preserve food quality and safety. This chapter focuses on advances in nanotechnology 
and nanomaterials in improving the nutritional value of crops.
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15.1 Introduction 

One of the most important parts of the industry in all countries in food industry. With 
the scarcity of food resources and the increase in population, the development of this 
part of the industry seems necessary. The use of new technologies in this area is a 
new approach that is highly regarded. Nanotechnology is one of the promising areas 
to enhance food production and to improve newer products for useful aims (Neme 
et al. 2021). 

Nanomaterial (NMs) are engineered particles made to have their large surface–to-
volume ratio and unique physical and chemical properties provide the clear advan-
tage to use them in agriculture (Mittal et al. 2020). Several researchers have been 
widely studied the multiple types of nanomaterials, including fertilizers, herbicides, 
fungicides, pesticides, and sensors in crop production (Mittal et al. 2020). 

Plants play an important role in human diet that provides carbohydrates, vita-
mins, minerals, proteins, lipids, fiber and water for our body (Goicoechea and Antolín 
2017). Increasing the nutritional value of vegetables, fruits and other edible plants can 
improve the level of nutrients in plants without the need for increased consumption. 
There are several methods to significantly boost the nutritional levels of crops One 
of the methods is to use nanotechnology. Application of nanomaterials investigated 
for improving nutritional value in many crops. Several species have been exposed 
to different concentrations of nanomaterials and exposure to NMs significantly 
increased contents of carbohydrates, proteins, lipids, and antioxidant compounds in a 
plant (Gomez et al. 2021). In general, nanomaterials improved contents of nutrition 
characteristics in various plant via modulating nutrient concentrations, increasing 
chlorophyll content, enhanced photosynthetic activity, and enhancing key enzymes 
activity (Gomez et al. 2021). 

There are many studies on the effects of nanomaterials on improving the produc-
tivity, protection, quality and postharvest decrements of many plants. However, no 
comprehensive review has yet been highlighted the impacts of different nanoma-
terials at diverse concentrations on improving the nutritional value of various crop 
plants. This present chapter includes literature concerning potential applications of 
nanomaterials in agricultural production and the effects of nanomaterials on food 
quality and improving the nutritional value of crops.
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Fig. 15.1 Definition of nanomaterials as revealed by different organizations. EPA (Environ-
mental Protection Agency), USFDA (United States Food and Drug Administration), EU (European 
Commission), BSI (British Standards Institution) 

15.2 Nanomaterials Principles 

15.2.1 Nanomaterials Definition 

Nanomaterials (NMs) have mainly been used in every food industry, including food 
agriculture, processing, food storage, and transportation. In general, materials with 
at least one dimension with a length of 1 to 1000 nm are called nanomaterials. 
However, globally, nanomaterials are known as materials with diameters ranging 
from 1 to 100 nm (Jeevanandam et al. 2018). 

There is no accepted cosmopolitan unit definition for NMs. Different organiza-
tions differ in the definition of NMs (Brandon et al. 2006), which are briefly discussed 
in Fig. 15.1. 

15.2.2 Nanomaterials Synthesis 

Nanomaterials have transpired as a phenomenal category of materials due to their 
unique electronic, optical, mechanical, magnetic, and chemical attributes compared
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Fig. 15.2 Schematic representation of ‘top-down’ and ‘bottom-up’ methods for synthesis of 
nanomaterials 

with their bulk counterparts (Khan et al. 2019). Two procedures have been applied 
to made nanomaterials successfully. Two main methods for nanomaterials synthesis 
are “top-down” and “bottom-up” that explained in this chapter (Luther 2004). 

15.2.3 Top-Down Method 

Top-down synthesis techniques have been used for producing micron-sized particles 
when a source of energy is applied. The top-down method entails smashing the 
bulk material into minor construction or particles using physical processes including 
milling, grinding, and crushing. In general, the top-down approach implicates the 
mechanical methods to break/crushing of bulk materials into several parts to get tiny 
size nanoparticles (Fig. 15.2). 

15.2.4 Bottom-Up Method 

The synthesis of nanoparticles means bottom-up with the interaction of atom-by-
atom, molecule-by-molecule and, cluster-by-cluster through a set of chemical reac-
tions provided by the Method (Fig. 15.2). This method is considered more straightfor-
ward and more precise, so it is more frequently applied in synthesizing small nanopar-
ticles (Habiba et al. 2014). The bottom-up approach is more advantageous than 
the top-down approach because it produces a uniform shape, size, well-distributed 
nanomaterials, less contamination, and fewer defects.



15 Role of Nanomaterials in Improving the Nutritional Value of Crops 403

The bottom-up approach consists of chemical vapor deposition, the sol–gel, solvo 
thermal and hydrothermal, soft and hard template, and reverse micelle methods (Baig 
et al. 2021). 

15.3 Classification of Nanomaterials 

For variant use, several kinds of nanomaterials are made; it is required to classify 
these materials for appropriate usages (Khan 2020). 

Nanomaterials are categorized according to their dimension of nanoparticles that 
are mainly classified into four types, including 0 Dimension (0D), 1 Dimension 
(1D), 2 Dimension (2D), and 3 Dimension (3D) nanomaterial. The nanomaterials 
classification is shown in Fig. 15.3, based on the number of dimensions. 

On the other hand, nanomaterials can be classified as the natural origin or 
synthetically produced (Khan 2020). 

Natural nanomaterials has made in microbes or plants through human activ-
ities and move annually between different compartments (atmosphere, biosphere, 
lithosphere, and hydrosphere) within the global biogeochemical cycle (Khan 2020; 
Lespes et al. 2020). 

Synthetic Nanomaterials are mostly applied method to synthesis nanomate-
rials. Engineered nanoparticles synthetically play a significant role in nanotech-
nology applications. They have been used in many applications on a large scale,

Fig. 15.3 Classification of nanomaterials according to dimensions 
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including embedded in a solid body (nanocomposites), distributed in fluids (dispersed 
ferrofluids), and dispersions in gases (e.g., as aerosols) (Raab et al. 2011). 

15.4 Types of Nanomaterials 

As the science of nanotechnology is advancing rapidly and is used in many different 
fields, many types of nanomaterials have been synthesized and it is necessary to 
classify all of these nanomaterials based on shape, size and chemical synthesis to 
distinguish them from each other (Khan 2020). Regarding their chemical compounds, 
nanomaterials could be classified into four types such as (1) Carbon-Based Materials, 
(2) Organic Based Materials, (3) inorganic-based nanomaterials, and (4) composite-
based nanomaterials. Commonly, inorganic-based nanomaterials comprise various 
metal and metal oxide nanomaterials, brawny antibacterial factors (Loomba and 
Scarabelli 2013; Majhi and Yadav 2021). Inorganic nanoparticles are synthesized 
from inorganic elements (Ag, Ti, Au) (Fytianos et al. 2020). 

The organic-based nanomaterials are organized from organic matter (Jain et al. 
2014; Khan 2020). Carbon nanomaterials are a distinct class of nanomaterials, and 
a growing family of materials made up of carbon atoms. They are used in multi-
disciplinary fields because of their unique morphology and multifaceted properties 
(Rizwan et al. 2021). 

Composite-based nanomaterials are generated by a combination of two or more 
materials; therefore, these are hybrid materials. Nanocomposites are frequently 
prepared by chemically oriented synthetic methods (Sen 2020). Examples of each 
type of nanomaterials are shown in Fig. 15.4.

15.5 Use of Nanotechnology in Agriculture 

In recent decades, nanotechnology has grown exponentially and the use of nano-
materials (NMs) has become increasingly widespread. There are various essential 
applications of nanomaterials in various fields, including biomedical, environmental, 
industrial, and food industries (Zaman et al. 2014) (Fig. 15.5).

Agriculture faces many limitations such as nutrient deficiencies and environmental 
pollution, and nanotechnology can improve agriculture industry (Shang et al. 2019). 
To date, several types of nanomaterials (often based on metal and carbon) have been 
used to improve plant growth and development (Agrawal and Rathore 2014). 

It can be applied to all aspects of agriculture, including food packaging, food 
processing, nutraceuticals, and biomedicine. This technology also seems beneficial 
in improving minerals, vitamins, phytochemicals, antioxidants, nutritious oils in 
crops (Ravichandran 2010).
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Fig. 15.4 Example of the type of nanomaterials based on composition

Fig. 15.5 Various applications of Nanomaterials
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The objective of NMs applications in agriculture is to increase plant yields. Major 
plants provide the nutrients needed by humans and livestock. Functional food ingredi-
ents such as vitamins, phytochemicals, minerals, and antioxidants may exploit phys-
iological effects beyond nutrition, promoting human health and disease prevention 
(Goicoechea and Antolín 2017). The use of nanomaterials improved the germination, 
development, and production of many crops. Tolerance to various biotic and abiotic 
stresses increased with the use of nanomaterials and also the application of nano-
materials improved the absorption of nutrients (Usman et al. 2020). These materials 
accomplish this through various mechanisms mentioned below (Liu et al. 2021). 

Seed germination enhancement is induced through; (1) increased antioxidant 
enzyme activity and (2) improved assimilation and utilization of water and oxygen. 

Growth improvement is induced through; (1) increased antioxidant enzyme 
activity, (2) improved plant cell morphology, (3) changes in the content of protein 
and organic compounds, (4) increased gene expression-related nutrient absorption, 
and (5) plant hormone balance. 

Stress tolerance is induced through; (1) enhanced ability of scavenging ROS, (2) 
photosynthesis rate and photoprotection capacity, and (3) increased gene expression 
and protein abundance related to stress. 

In common, at the low concentrations of nanoparticles has often been enhanced 
plant growth (root length, shoot length, biomass). Several pieces of research indicate 
high concentration of NMs cytotoxic for crops (Chenxu Liu et al. 2021; Rana et al. 
2021). For example, AgNPs showed some toxicity at higher concentrations in poplars 
and Arabidopsis (Wang et al. 2013), squash onion (Liu et al. 2021), corn (Saha and 
Gupta 2017), and Common bean (Hediat MH Salama 2012). 

The direct impact of toxicity of nanomaterials at the high doses includes 
inhibiting seed germination, decreasing leaf development and biomass production, 
and restricting root elongation (Lee et al. 2010; Colman et al.  2013; Yang et al. 2017). 

The impact of nanomaterials on germination, growth, and plant protection is 
summarized and presented in Table 15.1.

15.6 Nanomaterials and Nutritional Value of Crops 

The major nutrients required for the human diet supply from plants. The nutritional 
quality of crops affects human health. The progress of nanotechnology presented a 
new manner to increase the nutritional value of plant products, improve the rate and 
quality of carbohydrates, protein, and lipids in various plants and enhance amounts 
of antioxidants components (Fig. 15.6).

Although, there is considerable research into the relationship of nanomate-
rials to plants, but publications on the improvement of plant nutritional value by 
nanomaterials are yet limited (Wang et al. 2020).
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Table 15.1 Impact of different nanomaterials on crop physiology and plant protection 

Nanomaterial Crop species Dose used Effect on plant References 

AgNPs Wheat 50 mg/L and 
75 mg/L 

Improved growth 
and tolerance to heat 
stress 

Iqbal et al. (2019) 

AgNPs Onion 5 and 10 μg/mL promote growth 
without damage to 
roots or bulbs 

Casillas-Figueroa 
et al. (2020) 

AgNPs Strawberry 0. 5 mg/L Stimulates the 
growth of shoot and 
plantlet and 
shortened the 
duration of root 
formation in vitro 

Tung et al. (2021) 

AgNPs Banana 1 and 5 mg/L A significant 
increment in FW, 
DW and the number 
of roots 

El-Mahdy et al. 
(2019) 

AgNPs Pearl millet 20 mM Improved plant 
growth by reducing 
oxidative stress and 
Na and Cl 
absorption 

Khan et al. (2021) 

AgNPs Brassica 50 ppm Positive effect on 
root and shoot length 
and seedling index 

Sharma et al. (2012) 

Carbon 
nanotubes 
(MWCNT) 

Tomato 10–40 mg/L Enhances 
germination and 
growth rate but 
inhibits elongation 
of root 

Khodakovskaya 
et al. (2013) 

Carbon 
nanotubes 
(MWCNT) 

Wheat, 
maize, 
peanut and 
garlic 

50 μg/mL Increased biomass 
accumulation and 
Improved and rapid 
germination, 

Srivastava and Rao 
(2014) 

Carbon 
nanotubes 
(MWCNT) 

Onion and 
cucumber 

10–40 mg/L Enhances elongation 
of the root 

Cañas et al. (2008) 

Cu NPs Chili below 50 ppm Promotes growth 
and height of a plant 

Méndez-Argüello 
et al. (2016) 

CuO Spinach 200 mg/kg Improved 
photosynthesis and 
biomass production 

Wang et al. (2019) 

Fe/SiO2 Barely and 
corn 

15 mg/kg Enhanced 
plantsgrowth and 
biomass 
accumulation 

Najafi Disfani et al. 
(2017)

(continued)
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Table 15.1 (continued)

Nanomaterial Crop species Dose used Effect on plant References

Fe3O4 Bean 1000–2000 mg/L Positive effect on 
nutrient uptake 

De Souza et al. 
(2019) 

Fe3O4 Corn 50 and 500 mg/kg significantly 
increased the maize 
root length 

Yan et al. (2020) 

FeS2 Carrot, 
alfalfa, 
mustard, 
sesamum 

80–100 μg/mL Increased 
germination and 
crop yield 

Das et al.( 2016) 

TiO2 Spinach 1000 to 2000 mg/L Promotes growth 
and photosynthesis 

Yang et al. (2006), 
Hong et al. (2005) 

TiO2 Wheat 2 and 10 ppm Promotes seed 
germination 

Feizi et al. (2012) 

TiO2 Fennel 60 ppm Promotes seed 
germination and 
shoot dry weight 

Feizi et al. (2013) 

TiO2 and SiO2 Corn 20 and 30 mg/L improved growth by 
stimulating 
antioxidant 

Rizwan et al. (2019) 

ZnO Wheat 20 mg/L Increased grain yield 
and biomass 
accumulation 

Wei Du et al. (2019) 

ZnO Tobacco 0.2 μ M and  1  μ M Promotes growth 
physiology of plants 

Tirani et al. (2019) 

ZnO Mung bean 20, 40, 60 and 
100 mg 

Enhances 
germination rate, 
fresh and dry 
weights of roots and 
shoots 

Jayarambabu et al. 
(2014) 

ZnO Soybean 0.05–0.5 mg/L Affected 
photosystem II 
quantum efficiency 

Priester et al. (2017) 

ZnO and TiO2 Tomato 0 to 1000 mg/ kg Enhances growth 
and development 

Raliya et al. (2016) 

ZnO, CuO and 
AgNPs 

Cluster bean 10 mg/L Improved plant 
growth, biomass 
accumulation 

Raliya and Tarafdar 
(2013)

15.6.1 Role of Nanomaterials in the Carbohydrate Content 

Carbohydrates provided energy to all cells in the human body, and are one of the vital 
food nutrients. In plants, carbohydrates produced by photosynthesis activity exhibit 
the most significant proportion of organic compounds and because of their essential
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Fig. 15.6 Some indices of plant nutritional value

role in supplying energy, they are known as a vital source of energy (Trouvelot et al. 
2014). 

A significant increase in carbohydrates under silver nanoparticles (AgNPs) treat-
ment was reported in Pisum sativum L. seeds (Mehmood and Murtaza 2017). Also, 
Salama (2012) reported that 600 ppm AgNPs enhanced the carbohydrate content 
of Phaseolus vulgaris L. and Zea mays L. plants by 57% and 62%, respectively. A 
remarkable decreasing (19 and 18% for common bean and 28 and 31% for maize 
relative to the control) in carbohydrate content was observed at 80 and 100 ppm 
AgNPs. Another study showed an increasing carbohydrate in plants by using ferric 
oxide nanomaterials (Liu et al. 2005). Total carbohydrate content in leaves of Linum 
usitatissimum L. by 54.15% over the control greatly increased by foliar application 
of ZnO nanoparticles (Singh et al. 2021). 

Supplementary usage of zinc, boron, and zeolite nanoparticles in potato tubers 
significantly increased starch and carbohydrate content (Mahmoud et al. 2020). In 
general, nanomaterials have a critical impact in enhancing the total chlorophyll 
content, leave photosynthesis, and CO2 assimilation, which raises the production 
of carbohydrates in the economic parts of crops (Song et al. 2014; Wang et al. 2015; 
De Smedt et al. 2017; Mahmoud et al. 2020). Also, nano-SiO2 enhances carbonic 
anhydrase activity that supplies more carbon dioxide for the Rubisco, consequently 
improving the photosynthesis machine (Xie et al. 2011; Siddiqui and Al-Whaibi 
2014).
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Iron oxide nanoparticles enhance chlorophyll a and chlorophyll b content in 
soybean and improve the biochemical reactions of thylakoid membranes and chloro-
plast that improve the plant’s photosynthetic activity and carbohydrates biosynthesis 
(Mohammadi 2015). 

15.6.2 Role of Nanomaterials in the Protein Content 

Proteins are the fundamental macronutrients, which our body needs in larger 
amounts. Plant foods can be great origins of protein. They are polymers with a 
complex three-dimensional structure that are made up of different amino acids 
and are required for chemical processes and general metabolism in living cells 
(Kinsella 1982). Many efforts made to improve protein content in plants. One of 
these procedures is the usage of nanomaterials in crops. Several studies suggested 
that nanomaterials could improve the content of protein in crops. 

Nanosilver can interact with protein production (Krishnaraj et al. 2012). The 
maximum protein content was found for Pisum sativum L. seeds treated with 60 ppm 
AgNPs (Mehmood and Murtaza 2017). Also, the highest protein contents (30% 
for common bean and 24% for corn) in response to AgNPs application at 60 ppm 
have been studied in Phaseolus vulgaris L. and Zea mays L. (Salama 2012). The 
results of (Liu et al. 2005) indicated that iron oxide nanomaterials also significantly 
increased protein content in plants. Total protein of leaves for Zea mays L., Phaseolus 
vulgaris L., Hyssopus officinalis L., Nigella sativa L., Amaranthus retroflexus L. and 
Taraxacum officinale L. 400 mg L−1 of SiO2 NPs showed a significant increase 
relative to the control (Sharifi-Rad et al. 2018). Mahmoud et al. (2020) showed  
enhancement of protein content in potato tubers treated with zinc, boron, and zeolite 
nanoparticles. It has been demonstrated that zinc, boron, and zeolite nanoparticles 
contribute to multiple enzymes activation involved in protein production (Wang et al. 
2013). 

WsCNOs (bio-waste derived) exposed Cicer arietinum L. plants produce seeds 
that exhibited a notable enhancement in their yield and increased protein content in 
the seeds (Tripathi et al. 2017). Raliya and Tarafdar (2013) showed in Cluster bean 
(Cyamopsis tetragonoloba L.), that total soluble leaf protein was increased by 27.1% 
with 10 mg/L ZnO treatment. Studies also revealed that the use of Silver nanoparticles 
(AgNPs) (100, 500, and 1000 mg/L) boosted protein content in Brassica juncea L. 
(Indian Mustard) at all doses (Pandey et al. 2014). 

Application of CeO2 at 100 and 400 mg/kg on wheat plants increased grain protein 
by 24.8% and 32.6%, respectively (Du et al. 2015). Also, there was an increment in 
protein levels of the C. arietinum seeds, by using an aqueous colloidal dispersion of 
copper nanoparticle-grown carbon nanofiber (Cu-CNF) (Ashfaq et al. 2017). 

Higher protein contents were found in Bell Pepper under treatment of ZnO 
nanoparticles (Uresti-Porras et al. 2021). In addition, zinc oxide nanoparticles have 
been shown to act as a regulatory cofactor in protein biosynthesis in crops. In 
spinach, has been upregulated contents of amino acids such as methionine, cysteine,
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asparagine, and glutamine by using CeO2 ENPs (0, 0.3, and 3 mg per plant) (Zhang 
et al. 2019). Similarly, use of ZnO NPs at 1000 mg/L enhanced protein content in 
leaves of spinach (Kisan et al. 2015). Also, CeO2 ENPs at 125 mg/kg significantly 
increased linolenic acid by 6.17% in wheat grains (Rico et al. 2014). 

Another study also showed that treatment of the Linum usitatissimum L. plant with 
nano TiO2 at 100 mg/L increased the protein content (19.8 and 22.28%) (Aghdam 
et al. 2016). Yang et al. (2006) demonstrated that the use of TiO2 NPs pronouncedly 
raised the activities of glutamate dehydrogenase, nitrate reductase, glutamic-pyruvic 
transaminase, glutamate dehydrogenase, and glutamine synthase in plants. Nitrate 
uptake and conversion of mineral nitrogen to organic nitrogen compounds such as 
protein and chlorophyll increased by TiO2 nanoparticles (Khater 2015). In general, 
glutamate dehydrogenase and glutamine synthetase are two key enzymes in the 
synthesis of amino acids in plants. 

15.6.3 Role of Nanomaterials in the Mineral Elements 

Both humans and plants need macronutrients and micronutrients for optimal growth 
and development. Minerals as nutrients are essential for boosting the metabolism and 
other biological activities of many organisms. Crops contain a wide range of minerals 
including potassium (K+), iron (Fe2+), calcium (Cu2+), phosphorus (P), magnesium 
(Mg2+), Zinc (Zn), Copper (Cu) and Manganese (Mn). A large number of studies 
demonstrated that NPs significantly have the benefit of high activity, stability, and 
productiveness in nutrient delivery. 

Mahmoud et al. (2020) showed an increment in the tissue concentration of N, P, 
Ca, Zn and B of potato under nanoparticles treatment. Scientists have reported that 
nano-zinc enhances P absorption. It is demonstrated that nano-ZnO particles act as a 
cofactor and increase the activity of the phosphatase enzyme, also phytase, in mung 
bean (Raliya et al. 2016). Also, Si enhanced the bioavailability of phosphorus that 
may be due to the chemical competition for the adsorption sites between the silicate 
anions and dihydrogen phosphate (Liang 1999). According to Raliya and Tarafdar 
(2013), the use of 10 mg/L ZnO nanoparticles improved the P concentration by 10.8% 
in Cluster bean (Cyamopsis tetragonoloba L.). 

The usage of the CNMs in proper concentration benefits mineral improvement 
(Verma et al. 2019). Application of wsCNOs increased plant growth, fruit yield and 
enhanced Manganese, Molybdenum, Copper, Zinc, Iron, and Nickel) content in C. 
arietinum seeds (Tripathi et al. 2017). Salama et al. (2019) reported foliar spray of 
40 ppmZnO NPs on common dry bean (Phaseolus vulgaris L.) statistically increased 
contents of Nitrogen, Iron, and Zinc in leaves and seeds. 

In Bell peppers, ZnO nanoparticles at 30 mg/L enhanced the N and P contents by 
12.3% and 25.9% higher than the control plants. Also, the Mg2+,Mn2+, Zn2+and Fe2+ 

contents were 36.8, 42.2, 27 and 45% higher compared to the control (Uresti-Porras 
et al. 2021). Dimkpa et al. (2017) showed an increment of N and Mg in sorghum by 
8% and 16% under ZnO NPs treatments.
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Srivastava and Rao (2014) concluded that presence of FeS2 ENPs (80 μg/mL, 14 h) 
enhanced the levels of Calcium (36.6%), Zinc (58.0%), and Manganese (26.4%), 
compared to control. In coriander (Coriandrum sativum L.), contents of Ca, Fe, 
K, Mg, Mn, and Zn enhanced in application of 50 and 100 mg/L TiO2 ENMs in a 
hydroponic system (Hu et al. 2020). ZnO NPs application also enhanced Zinc content 
in wheat (Zhang et al. 2017). 

Rico et al. (2014) showed that use of 250 mg/kg CeO2 ENM, resulted in 
outstanding enhancement in P, Mg, K, Ca, S, Zn, Cu, Fe, and Al contents of barley. 
Also, Zinc and Manganese content was increased by application of 500 mg/kg of TiO2 

ENMs. According to Servin et al. (2013) TiO2 treatments at 500 mg/kg indicated an 
enhancement in K+ (35%) and P (34%) contents of cucumber fruit. Treatment with 
50 and 100 mg/kg CeO2 NPs increased Molybdenum content in cucumber (Hong 
et al. 2016). 

15.6.4 Role of Nanomaterials in the Antioxidant Capacity 

Antioxidants are essential for normal plant functioning and can delay or inhibit the 
oxidation of lipids or other molecules. Carotenoids, vitamin C, E, K, Flavonoids and 
Phenolic Acids are some non-enzymatic antioxidants in plants (Carocho and Ferreira 
2013) (Fig. 15.7).

In tomatoes, nano Zn increased the antioxidant capacity and improved photosyn-
thetic efficiency (Faizan et al. 2018). In radish tubers, 250 mg/kg nCeO2 enhanced 
antioxidant activity (Corral-Diaz et al. 2014). In Phaseolus vulgaris L. of Toska 
cultivar, application of nano-Gro experimented and an increase of total phenolic 
compounds and subsequently elevation of antioxidant capacity was observed under 
nano-Gro treatment (Kocira et al. 2015). Similar results were reported that applying 
nano-selenium in sweet basil (Ocimum basilicum L.) increased the antioxidant poten-
tial (Ardebili et al. 2015). Nanoparticles of selenium have a potential antioxidant and 
reported an improvement in the total antioxidant of groundnut plants by using nano-
selenium (Hussein et al. 2019). 

In the last years, enhanced concern use of the natural phenolic compounds that 
are divided into several subgroups, including phenolic acids, lignans, quinones, 
tannins, flavonoids, coumarins, curcuminoids, and stilbens (Giada 2013). They are 
well known for their health advantage related to antioxidant activity (Martillanes 
et al. 2017). Some researchers studied increasing phenolic compounds in various 
crops. Many researchers showed that nanomaterials could be used as enhancers of 
secondary metabolite synthesis including phenolic compounds in plants. 

It has been reported that total phenolic compounds and anthocyanins in licorice 
seedlings by application of nanoZnO and CuO (Oloumi et al. 2015). In Capsicum 
annuum L. use of ZnO-NPs in a range of 100 to 500 ppm significantly enhanced 
total phenols, condensed tannins, and flavonoids (Casillas-Figueroa et al. 2020). An 
increment in total phenols of potato plants by 1, 20 and 22%, also was observed at 
100, 300 and 500 ppm ZnO-NPs treatment, respectively (Raigond et al. 2017). Under
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Fig. 15.7 Types of non-enzymatic antioxidants

use of ZnO-nanoparticles on Brassica nigra L. was also obtained an increment in 
phenolic compounds (Zafar et al. 2016). Phenolics and flavonoids constituents are 
synthesized via the shikimate phenyl propanoids-flavonoids pathway and zinc plays 
a role in the application of carbon to produce phenolic compounds via this pathway 
(Misra et al. 2006). 

In addition, exposure to 100 μg/mL MWCNTs (multi-walled carbon nanotubes) 
extremely improved two important phenolic acids (caffeic acid and rosmarinic acid) 
contents in Satureja khuzestanica L. in in vitro condition (Ghorbanpour and Hadian 
2015). In another study, under different concentrations of TiO2NPs showed a substan-
tial gain in total phenolics of leaf and flavonoids contents of Salvia officinalis L. In 
general, following the enhanced H2O2 content caused by the use of high levels of 
MWCNTs, significantly increased contents of phenolics, rosmarinic acid, flavonoids, 
and caffeic acid (Ghorbanpour 2015). 

Use of ZnO NPs (80 mg/L) improved the phenolic content of rapeseed seeds 
(Akhavan Hezaveh et al. 2020). The total phenolic content (TPC) of rice grains is 
enhanced with nano fertilizer (FRR-NF) (Benzon et al. 2015). Although, other studies 
showed that the zinc and boron nano-fertilizers statistically enhanced total phenolic 
compounds in pomegranates (Punica granatum cv. Ardestani) fruit (Davarpanah 
et al. 2016).
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Another studyobserved that flavonoid content (23%) and (44%) in the canola 
varieties Faisal canola and Shiralee, respectively increased by using 15 mg/L and 
25 mg/L Zn nanoparticles (Kamran et al. 2020). 

15.6.5 Role of Nanomaterials in the Fatty Acids Contents 

Fatty acids are effective for normal growth and have therapeutic properties that 
prevent persistent illnesses. One of the important use of some plant species includes 
the extraction of oil from different plant tissue. Many authors reported that nanoma-
terials alter the content of Fatty acid in various plants. Some of the main fatty acids 
in plant oil are palmitic, oleic, linolenic, linoleic, and stearic acids. 

An increase in essential oil was obtained at 2000 ppm ZnONPs (0.9% V/W) 
in Feverfew (Tanacetum parthenium (L.) Schultz Bip.) (Shahhoseini et al. 2020). 
Kamran et al. (2020) exposed both canola varieties (Faisal canola and Shiralee) to 
Zn NPs and reported an increase in oleic acid and linolenic acid. Faisal canola at Zn 
NPs 25 mg/L had maximum oleic acid (68.4%) and variety Shiralee had maximum 
oleic acid (66.1%) at 5 mg/L Zn NPs. The maximum linolenic acid recorded 12.6% at 
25 mg/L with treated seeds with Zn NPs andwas (9.5%) in control plants for Shiralee. 
Similarly, Rui et al. (2017) reported an increase in oleic acid by 49.1% in peanuts on 
treatment with TiO NPs. Also, peanut crop exposed to 500 mg/kg of Ag NPs had an 
increase in linolenic acid (Rui et al. 2018). 

In another survey presented recorded a positive effect of nano-Se on the oil quality 
of the groundnut plants. Regarding Gregory var., nano-Se application enhanced 
palmitic and stearic saturated fatty acids at 20 ppm. On the other hand, oleic acid 
enhanced by 15.54 and 21.0% under treatment of 20 ppm and 40 ppm nano-Se 
respectively, compared to the control plants (Hussein et al. 2019). 

Dragon’s head (Lallemantia iberica Fisch. & C. A. Mey.) plants treated 
with NPKsoil + NPKnano + chelated-Fenano had the highest linolenic acid 
(65.362%), saturated fatty acids (9.54%), palmitic acid percentage (7.943%) 
(Mohammadghasemi et al. 2021). Soybean treated with nano-iron chelate fertil-
izer + farmyard manure showed an increase in oleic acid content (Mohammadi 
2015). 40 mg/L silver nanoparticles improved linoleic acid content (58.58%) in 
Helianthus annuus L. (sunflower) and a minute increase (4.05%) in palmitic acid 
contents was recorded at a 20 mg/L of silver nanoparticles, while Oleic acid showed 
a 29% enhancement at 80 mg/L of Ag NPs (Batool et al. 2021).
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15.7 Role of Nano-Encapsulation Technology in Improving 
the Nutritional Values of the Product 

Accumulation of vitamins, minerals, and bioactive compounds in the edible tissues 
of plants can boost concentration and bio accessibility of these components. The 
great purpose of encapsulation is coating sensitive compounds with suitable wall 
materials and creating a delivery system for sensitive compounds into food formu-
lations. Nanoencapsulation clearly could improve the nutritional values of the food 
product (Delshadi et al. 2020). 

There are many wall materials for encapsulation of food components including 
Carbohydrates (Chitosan, Pectin, Alginates, Cyclodextrins, Cellulose derivates, and 
Modified starch), Proteins (Sodium caseinate, Soy proteins, Gelatin, Caseins, and 
Zein), Fat and Waxes (Bee wax, Lecithin and Hydrogenated vegetable oils) and Poly-
mers (Polyglycolides, Polylactides, Polyorthoesters, Polycaprolactone, Polyacrylic 
acid, and Polyvinyl alcohol (Pateiro et al. 2021). 

Some of the components, such as the lipophilic functional ingredients, including 
active lipids (omega-3 fatty acids) and oil-soluble flavors, vitamins, and nutraceu-
ticals successfully have been encapsulated (Karunaratne et al. 2017). Loading of 
ascorbic acid into ionic gelation nanoparticles and TPP crosslinking stabilized 
ascorbic acid to heat during heat processing. 

Rosemary extract antimicrobial activity improved by chitosan nano encapsulated 
in composition with γ-poly glutamic. Lee et al. (2019) reported that the use of an elec-
trospinning method for carotenoids encapsulation extracted from tomato peel into 
zein nanofibers is an effective method to improve its antioxidant activity, thermal and 
storage stability (Horuz and Belibağlı 2019). Other researchers applied a core–shell 
nanofiber structure (zein-tragacanth) via coaxial electrospinning technique for encap-
sulation of aqueous saffron extract showed high thermal stability (Dehcheshmeh and 
Fathi 2019). 

In general, novel nano-encapsulation technologies improve the stability and 
aqueous solubility of insoluble bioactive compounds and also provide a controlled 
release to protect their pharmacological/biological activity in the body. 

15.8 Conclusion and Prospects 

More recently, interest in the development of nanotechnology increased and the use 
of nanomaterials in plant science. Nanotechnology in agriculture is considered as 
one of the effective methods to greatly raise crop produce and feed world growing 
population. Therefore, due to population increase and the consequent increase in 
demand for food, there is a need to produce plants with higher nutritional value. 
Research has shown that one of the efficient approaches to improve the nutritional 
value of plants is the use of nanomaterials that can increase the nutritional value in 
plants by affecting the physiological and biochemical properties of plants. Although,
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more study is needed to investigate the toxicity effects of nanomaterial accumulation 
or deposition on plant tissues. In addition, it is necessary to study the impact of these 
materials in improving the nutritional value of crops in real soil conditions and at 
high cultivation levels. 
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Chapter 16 
Role of Nanomaterials in Improving 
Crop Tolerance to Abiotic Stress 

Farhat Yasmeen 

Abstract The nanomaterials include the particles of hundred nanometers are applied 
in various areas of physio-biological sciences with diverse range of effects. However, 
the mode of synthesis is the major determent for the properties of nanoparticles. 
The particles synthesized through physical and chemical methods have compara-
tively different effects than the nanoparticles synthesized through green methods. 
The diverse effects of nanoparticles also reduced on green synthesis. So, nanoparti-
cles synthesized via green methods have wide range of utilization in almost every field 
of life i.e. agriculture, engineering, cosmetics industry as well as into the medicine. 
These varied fields of utilizations of nanoparticles led their way out into the envi-
ronment. These nanoparticles challenged the plant cells with a varied inauspicious 
environmental situation that limit growth of plants and demarcated the production 
of cultivated flora where numerous abiotic stresses that include drought, salinity, 
temperature etc. already were impacting the yield and productivity of crops. The 
present chapter spotlight actual apprehension of plant responses to nanoparticles on 
morphophysiological responses of plants as well as change in stress response under 
nanoparticles application. The morpho-physiological effects and nanoparticles role 
in mitigating the various abiotic stresses are discussed in detail to apprehend the 
inexplicit mechanism of nanoparticles stress adaptation. 

Keywords Nanotechnology · Nanoparticles · Crops ·Morpho-physiology ·
Abiotic stresses 

16.1 Introduction 

Abiotic stresses and limited soil nutrients availability are serious environmental situa-
tions for decreasing physical and reproductive characters of plants (Gong et al. 2020). 
Being immobile nature of plants, they have to face all sort of abiotic stresses related 
to water, salt and temperatures (Zhang et al. 2022). Various mechanical perceptions
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have evolved within plants for these environmental challenges and send stress signals 
inter and intracellularly for survival and reproduction (Gong et al. 2020). However, 
these stressors negatively impact the plants distribution with decline in growth and 
productivity (Zhang et al. 2022). With uncomplimentary climatic variation and fast 
increase in population, there is a desire for more productive and stress-tolerant crops 
(Nowicka et al. 2018). At the same time, conventional crop improvement techniques 
have perhaps touched its limits, so; in this kind of scenario, nanotechnology could 
be considered as a possible solution. 

The nanomaterials are characterized as the units with a size of less than hundred 
nanometer (Khot et al. 2012). The progress in nanotechnology expanded the utiliza-
tion of nanomaterials in various areas of physio-chemical and life sciences (Roco 
2001). Nanobiotechnology is a ghastly flourishing area of studies that utilizes biosyn-
thetic and eco-friendly techniques which are known to be non-toxic, chemically 
stabilized, biocompatible and applied in wide range of cosmetics (Rosi et al. 2005). 

The mode of synthesis is the major determent for the properties of nanoparticles. 
The style of synthesis includes variety of methods which could be physico-chemical 
and biological for the commercially crucial nanoparticles (Iravani et al. 2014). The 
physical methods of nanoparticles production include tube furnace, laser ablation, 
thermal dehydration and thermal decomposition (Yasmeen et al. 2020). However, 
in the case of chemical methods, chemical reduction using various reducing agents, 
electro-chemical techniques, physico-chemical reduction, and radiolysis are popular 
(Peyser et al. 2001). In the biological or green method, any part of living organisms 
e.g. bacteria, viruses and plants probably be consumed as capping and reduction agent 
(Yasmeen et al. 2020). The main objective is to understand the role of nanoparticles 
in the improvement of plants growth and productivity under various abiotic stress 
situations without impacting the natural environment. 

16.2 Morpho-Physiological Impact of Nanomaterials 
on Plant 

The highly precocious interdisciplinary agency with diverse potency in agriculture 
for enhancing crop production utilizing nanomaterials with different size, density 
and surface charge impacted the maturation and physical processes of various plant 
species (Ma et al. 2010). These nanoparticles with their morpho-physiological effects 
are enlisted in Table 16.1.

16.2.1 Alumina Nanoparticles 

Alumina nanoparticles are most widely applied in defensive and marketable goods 
(Handy et al. 2008). Diverse utilization of alumina nanoparticles raised a concern



16 Role of Nanomaterials in Improving Crop Tolerance to Abiotic Stress 425

Ta
bl
e 
16
.1
 
E
ff
ec
ts
 o
f 
na
no
m
at
er
ia
ls
 o
n 
va
ri
ou
s 
m
or
ph
o-
ph
ys
io
lo
gi
ca
l r
es
po
ns
es
 o
f 
cr
op
s 

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
l r
es
po
ns
e

R
ef
er
en
ce
s 

A
lu
m
in
a 
na
no

pa
rt
ic
le

C
uc
um

is
 s
at
iv
us
 (
cu
cu
m
be
r)

D
ec
lin

ed
 th

e 
gr
ow

th
 o
f 
ro
ot

Y
an
g 
an
d 
W
at
ts
 (
20
05
) 

G
ly
ci
ne
 m
ax
 L
. (
so
yb
ea
n)

E
le
va
te
d 
su
rv
iv
al
 p
er
ce
nt
ag
e 
an
d 
gr
ow

th
 o
f 

ro
ot
 

Y
as
m
ee
n 
et
 a
l. 
(2
01
6a
, b

) 

G
ly
ci
ne
 m
ax
 L
. (
so
yb
ea
n)

E
le
va
te
d 
le
ng

th
 o
f 
ro
ot

M
us
ta
fa
 e
t a
l. 
(2
01
6)
 

R
ap
ha
nu
sr
ap
ha
ni
st
ru
m

E
nh
an
ce
d 
th
e 
gr
ow

th
 o
f 
ro
ot

L
in
 a
nd
 X
in
g,
 (
20
07
) 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

Si
gn
ifi
ca
nt
 im

pr
ov
em

en
t i
n 
th
e 
le
ng
th
 o
f 
ro
ot
 
R
ia
hi
-M

ad
va
r 
et
 a
l. 
(2
01
2)
 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

D
ec
lin

e 
in
 e
lo
ng
at
io
n 
of
 r
oo
t

Y
an
g 
an
d 
W
at
ts
 (
20
05
) 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

St
im

ul
at
ed
 le
ng

th
 o
f 
ro
ot

L
in
 a
nd
 X
in
g 
(2
00
7)
 

C
ar
bo
n 
na
no
pa
rt
ic
le
s

R
os
a 
in
di
ca
 (
ro
se
)

In
cr
ea
se
 in

 th
e 
co
nt
en
t o

f 
en
do
ge
no
us
 

ho
rm

on
es
 

H
ao
 e
t a
l. 
(2
01
8)
 

A
ll
iu
m
 c
ep
a 
(o
ni
on
)

Im
pr
ov
ed
 le
ng
th
 o
f 
ro
ot

C
an
as
 e
t a
l. 
(2
00
8)
 

C
ur
cu
rb
it
a 
Pe
po
 (
pu
m
pk
in
)

D
ec
lin

ed
 o
ve
ra
ll 
pl
an
t w

ei
gh

t
St
am

po
ul
is
 e
t a
l. 
(2
00
9)
 

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

D
ec
lin

ed
 le
ng

th
 o
f 
ro
ot

C
an
as
 e
t a
l. 
(2
00
8)
 

Ly
co
pe
rs
ic
on
 e
sc
ul
en
tu
m
 (
to
m
at
o)

Im
pr
ov
ed
 g
er
m
in
at
io
n 
ra
te
 a
nd

 f
re
sh
 b
io
m
as
s 

K
ho
da
ko
vs
ka
ya
 e
t a
l. 
(2
00
9)
 

Ly
co
pe
rs
ic
on
 e
sc
ul
en
tu
m
 (
to
m
at
o)

R
ed
uc
ed
 r
oo
t g

ro
w
th

C
an
as
 e
t a
l. 
(2
00
8)
 

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

Su
sp
en
de
d 
flo

w
er
in
g 
re
su
lti
ng

 in
 d
ec
lin

ed
 

pr
od

uc
tiv

ity
 

L
in
 e
t a
l. 
(2
00
9)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

E
le
va
te
d 
th
e 
le
ng

th
 o
f 
ro
ot

W
an
g 
et
 a
l. 
(2
01
2)
 

C
er
iu
m
 o
xi
de
 n
an
op
ar
tic
le
s

A
ll
iu
m
 c
ep
a 
(o
ni
on
)

Im
pr
ov
ed
 p
la
nt
 g
ro
w
th
 a
nd
 n
ut
ri
en
t c
on
te
nt

A
bd

 E
l-
A
zi
z 
et
 a
l. 
(2
01
9)
 

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

St
op
pe
d 
th
e 
gr
ow

th
 o
f 
ro
ot

M
a 
et
 a
l. 
(2
01
0)
 

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

O
xi
da
tiv

e 
st
re
ss

Z
ha
ng
 a
nd
 S
on
ne
w
al
d 
(2
01
7)
 

Ly
co
pe
rs
ic
on
 e
sc
ul
en
tu
m
 (
to
m
at
o)

Se
ve
re
 r
ed
uc
tio

n 
in
 s
ho
ot
 g
ro
w
th

L
op
ez
-M

or
en
o 
et
 a
l. 
(2
01
0)

(c
on
tin

ue
d)



426 F. Yasmeen

Ta
bl
e
16
.1

(c
on
tin

ue
d)

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
lr
es
po
ns
e

R
ef
er
en
ce
s

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

E
xp
on
en
tia
l r
at
e 
of
 g
ro
w
th

D
iv
ya
 e
t a
l. 
(2
01
8)
 

So
rg
hu
m
 b
ic
ol
or
 L
. (
so
rg
hu
m
)

In
cr
ea
se
d 
po

lle
n 
ge
rm

in
at
io
n 
an
d 
se
ed
 y
ie
ld
 

pe
r 
pl
an
t 

D
ja
na
gu

ir
am

an
 e
t a
l. 
(2
01
8)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

R
is
en
 th

e 
gr
ow

th
, s
ho
ot
 w
ei
gh
t, 
an
d 

pr
od

uc
tiv

ity
 

R
ic
o 
et
 a
l. 
(2
01
3)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

R
ed
uc
tio

n 
in
 th

e 
pl
an
t w

ei
gh
t

D
u 
et
 a
l. 
(2
01
5)
 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

Im
pr
ov
ed
 th

e 
gr
ow

th
 o
f 
ro
ot
 a
nd
 s
te
m

L
op
ez
-M

or
en
o 
et
 a
l. 
(2
01
0)
 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

Si
gn
ifi
ca
nt
 im

pr
ov
em

en
t i
n 
th
e 
gr
ow

th
 o
f 

ro
ot
 a
nd
 s
te
m
 

L
op
ez
-M

or
en
o 
et
 a
l. 
(2
01
0)
 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

Se
ve
re
 d
ec
lin

e 
in
 p
la
nt
 w
ei
gh
t

L
op
ez
-M

or
en
o 
et
 a
l. 
(2
01
0)
 

C
op
pe
r 
nn
an
op
ar
tic
le
s

A
ra
bi
do
ps
is
 th

al
ia
na
 (
A
ra
bi
do
ps
is
)

In
cr
ea
se
 in

 r
oo
t l
en
gt
h 
an
d 
fr
es
h 
w
ei
gh
ts

Sh
aw

 a
nd

 H
os
sa
in
 (
20
13
) 

C
uc
ur
bi
ta
 p
ep
o 
(p
um

pk
in
)

D
ec
lin

ed
 p
la
nt
 w
ei
gh
t a
nd
 g
ro
w
th
 o
f 
ro
ot

St
am

po
ul
is
 e
t a
l. 
(2
00
9)
 

C
ur
cu
rb
it
a 
pe
po
 (
pu
m
pk
in
)

D
ec
re
as
e 
in
 p
la
nt
 w
ei
gh
t

St
am

po
ul
is
 e
t a
l. 
(2
00
9)
 

E
lo
de
a 
C
an
ad
en
si
s 
(C
an
ad
ia
n 
w
at
er
w
ee
d)

R
ed
uc
ed
 tu

rg
id
ity

 a
nd
 p
ig
m
en
t c
on
te
nt
 o
f 

le
av
es
 

Jo
hn
so
n 
et
 a
l. 
(2
01
1)
 

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

In
cr
ea
se
 in

 r
at
e 
of
 s
ho
ot
 a
nd
 r
oo
t

Sh
ah
 a
nd

 B
el
oz
er
ov
a 
(2
00
9)
 

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

E
nh

an
ce
d 
th
e 
se
ed
lin

g 
gr
ow

th
Sh

ah
 a
nd

 B
el
oz
er
ov
a 
(2
00
9)
 

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

Im
pr
ov
ed
 r
at
e 
of
 s
ho
ot
 a
nd
 r
oo
t

Sh
ah
 a
nd

 B
el
oz
er
ov
a 
(2
00
9)
 

L
an
do
lt
ia
 p
un
ct
ua
ta
 (
du
ck
w
ee
d)

Im
pr
ov
ed
 g
ro
w
th
 w
ith

 e
le
va
te
d 
ch
lo
ro
ph
yl
l 

co
nt
en
t 

Sh
i e
t a
l. 
(2
01
1)
 

H
or
de
um

 s
at
iv
um

 (
ba
rl
ey
)

D
ec
lin

ed
 th

e 
co
nc
en
tr
at
io
n 
of
 p
la
st
og

lo
bu
le
 

an
d 
st
ar
ch
 g
ra
nu
le
 o
n 
ch
lo
ro
pl
as
t 

R
aj
pu

t e
t a
l. 
(2
01
9)

(c
on
tin

ue
d)



16 Role of Nanomaterials in Improving Crop Tolerance to Abiotic Stress 427

Ta
bl
e
16
.1

(c
on
tin

ue
d)

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
lr
es
po
ns
e

R
ef
er
en
ce
s

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

D
ec
re
as
e 
in
 th

e 
ge
rm

in
at
io
n 
ra
te
 a
nd
 p
la
nt
 

w
ei
gh
t 

Sh
aw

 a
nd

 H
os
sa
in
 (
20
13
) 

R
os
a 
in
di
ca
 L
. (
ro
se
)

C
ha
ng
e 
in
 c
on
ce
nt
ra
tio

n 
of
 e
nd
og
en
ou
s 

ho
rm

on
es
 

H
ao
 e
t a
l. 
(2
01
8)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

D
ec
lin

ed
 th

e 
gr
ow

th
 o
f 
se
ed
lin

g
M
us
an
te
 a
nd

 W
hi
te
 (
20
12
) 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

D
ec
re
as
e 
in
 th

e 
gr
ow

th
 o
f 
ro
ot
 a
nd
 s
ee
dl
in
g

L
ee
 e
t a
l. 
(2
00
8)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
cr
ea
se
 in

 p
la
nt
 g
ro
w
th
 a
nd

 w
ei
gh

t w
ith

 
im

pr
ov
ed
 n
ut
ri
en
t u

pt
ak
e 

N
om

an
 e
t a
l. 
(2
02
0)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
hi
bi
te
d 
gr
ow

th
 a
nd
 s
tr
uc
tu
re
 o
f 
th
e 
ro
ot

Ta
ng

 e
t a
l. 
(2
01
6)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
W
he
at
)

D
ec
lin

ed
 th

e 
gr
ow

th
 o
f 
ro
ot
 a
nd

 s
ee
dl
in
g

L
ee
 e
t a
l. 
(2
00
8)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
W
he
at
)

D
ec
lin

e 
in
 g
er
m
in
at
io
n 
pe
rc
en
ta
ge

Y
as
m
ee
n 
et
 a
l. 
(2
01
5)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
W
he
at
)

In
cr
ea
se
 in

 w
ei
gh
ts
 a
nd
 le
ng
th
s 
of
 p
la
nt

Y
as
m
ee
n 
et
 a
l. 
(2
01
8)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
W
he
at
)

In
cr
ea
se
 in

 s
 a
ll 
gr
ai
n 
pa
ra
m
et
er
s

Y
as
m
ee
n 
et
 a
l. 
(2
01
7)
 

Tr
it
ic
um

 a
es
ti
vu
m
L
.(
W
he
at
)

E
le
va
te
d 
pl
an
t h

ei
gh

t a
nd

 b
io
m
as
s 
w
ith

 
en
ha
nc
ed
 n
ut
ri
en
t 

N
om

an
 e
t a
l. 
(2
02
0)
 

Vi
gn
a 
ra
di
at
e 
(m

un
g 
be
an
)

D
ec
re
as
e 
in
 th

e 
gr
ow

th
 o
f 
se
ed
lin

g
L
ee
 e
t a
l. 
(2
00
8)
 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

St
op
pe
d 
th
e 
gr
ow

th
 o
f 
se
ed
lin

g
W
an
g 
et
 a
l. 
(2
01
2)
 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

St
op
pe
d 
ro
ot
 e
xt
en
si
on

W
an
g 
et
 a
l. 
(2
01
2)
 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

In
cr
ea
se
 in

 th
e 
co
nt
en
ts
 o
f 
an
th
oc
ya
ni
n,
 

ch
lo
ro
ph
yl
l a
nd
 c
ar
ot
en
oi
d 

N
gu
ye
n 
et
 a
l. 
(2
02
1)
 

G
ol
d 
na
no

pa
rt
ic
le
s

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

E
nh
an
ce
 r
oo
t e
lo
ng
at
io
n

B
ar
re
na
 e
t a
l. 
(2
00
9)
 

Ir
on
 n
an
op
ar
tic
le
s

A
ra
bi
do
ps
is
 th

al
ia
na
 (
A
ra
bi
do
ps
is
)

In
cr
ea
se
 in

 r
oo
t l
en
gt
h

K
im

 e
t a
l. 
(2
01
4)

(c
on
tin

ue
d)



428 F. Yasmeen

Ta
bl
e
16
.1

(c
on
tin

ue
d)

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
lr
es
po
ns
e

R
ef
er
en
ce
s

A
ra
ch
is
 h
yp
og
ae
a 
(p
ea
nu
t)

E
le
va
te
d 
th
e 
ra
te
 o
f 
ge
rm

in
at
io
n 
an
d 

de
ve
lo
pm

en
t o

f 
pl
an
t 

L
i e
t a
l. 
(2
01
5)
 

C
uc
um

is
 s
at
iv
us
 (
cu
cu
m
be
r)

in
hi
bi
to
ry
 e
ff
ec
ts

M
us
ht
aq
 (
20
11
) 

C
ur
cu
rb
it
a 
m
ix
ta
 (
pa
ng
)

N
o 
to
xi
c 
ef
fe
ct

Z
hu

 e
t a
l. 
(2
00
8)
 

F
ra
ga
ri
a 
an
an
as
sa
 (
st
ra
w
be
rr
y)

Im
pr
ov
ed
 p
la
nt
 b
io
m
as
s 
w
ith

 in
cr
ea
se
 in

 
ph
ot
os
yn
th
et
ic
 p
ig
m
en
ts
 a
nd
 to

ta
l 

so
lu
bl
e 
ca
rb
oh
yd
ra
te
 

M
oz
af
ar
i e
t. 
al
. (
20
19
) 

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

In
hi
bi
tio

n 
in
 g
er
m
in
at
io
n

T
ru
jil
lo
-R

ey
es
 e
t a
l. 
(2
01
4)
 

L
in
um

 u
si
ta
ti
ss
im

um
 (
fla
xs
ee
d)

C
om

pl
et
el
y 
in
hi
bi
te
d 
ge
rm

in
at
io
n

E
l-
Te
m
sa
h 
an
d 
Jo
ne
r, 
(2
01
2)
 

L
ol
iu
m
 p
er
en
ne
 L
. (
ry
eg
ra
ss
)

Si
gn
ifi
ca
nt
 in

cr
ea
se
 in

 a
nt
io
xi
da
nt
 e
nz
ym

es
 

ac
tiv

iti
es
, a
nd

 li
pi
d 
pe
ro
xi
da
tio

n 
W
an
g 
et
 a
l. 
(2
01
1)
 

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

Im
pr
ov
ed
 p
la
nt
 le
ng

th
 a
nd

 b
io
m
as
s 
w
ith

 
im

pr
ov
ed
 le
ve
l o

f 
pr
ol
in
e,
 g
lu
ta
th
io
ne
 a
nd
 

ph
yt
o-
ch
el
at
in
s 

B
id
i e
t a
l. 
(2
02
1)
 

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

In
cr
ea
se
d 
bi
om

as
s 
w
ith

 im
pr
ov
ed
 

ph
ot
os
yn
th
et
ic
 p
ot
en
tia
l a
nd
 n
ut
ri
en
t u

pt
ak
e 

A
hm

ed
 e
t a
l. 
(2
02
1)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
L
. (
w
he
at
)

In
cr
ea
se
 in

 p
la
nt
 g
ro
w
th
 w
ith

 im
pr
ov
ed
 

bi
om

as
s 
an
d 
le
af
 s
ur
fa
ce
 in

de
x 

M
og
ha
da
m
 e
t a
l. 
(2
01
2)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

E
nh

an
ce
d 
th
e 
ra
te
 o
f 
ge
rm

in
at
io
n 
an
d 

de
ve
lo
pm

en
t o

f 
pl
an
t 

Fe
iz
i e
t a
l. 
(2
01
3)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
cr
ea
se
 in

 b
io
m
as
s 
an
d 
pl
an
t l
en
gt
h

Y
as
m
ee
n 
et
 a
l. 
(2
01
6a
, b

) 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
cr
ea
se
 in

 g
ra
in
 r
el
at
ed
 c
ha
ra
ct
er
s

Y
as
m
ee
n 
et
 a
l. 
(2
01
7)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

Im
pr
ov
ed
 g
er
m
in
at
io
n

Y
as
m
ee
n 
et
 a
l. 
(2
01
5)
,

(c
on
tin

ue
d)



16 Role of Nanomaterials in Improving Crop Tolerance to Abiotic Stress 429

Ta
bl
e
16
.1

(c
on
tin

ue
d)

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
lr
es
po
ns
e

R
ef
er
en
ce
s

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
cr
ea
se
 in

 p
la
nt
 h
ei
gh

t a
nd

 s
pi
ke
 le
ng

th
 w
ith

 
im

pr
ov
ed
 c
hl
or
op
hy
ll 
co
nt
en
t 

A
dr
ee
s 
et
 a
l. 
(2
02
1)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
cr
ea
se
 in

 p
la
nt
 h
ei
gh
t w

ith
 s
pi
ke
 le
ng
th
 a
nd
 

im
pr
ov
ed
 th

e 
bi
om

as
s 
an
d 
pr
od
uc
tiv

ity
 

R
iz
w
an
 e
t a
l. 
(2
01
9a
, b

) 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
cr
ea
se
 in

 s
up
er
ox
id
e 
di
sm

ut
as
e 
an
d 

pe
ro
xi
da
se
 c
on
te
nt
 

K
on

at
e 
et
 a
l. 
(2
01
7)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

In
cr
ea
se
 in

 p
la
nt
 b
io
m
as
s 
w
ith

 e
nh

an
ce
d 

an
tio

xi
da
nt
s 
an
d 
pi
gm

en
t c
on
te
nt
 

M
an
zo
or
 e
t a
l. 
(2
02
1)
 

V
ar
io
us
 p
la
nt
s

D
ev
el
op
m
en
t o

f 
th
ic
ke
r 
ro
ot
s

B
ar
re
na
 e
t a
l. 
(2
00
9)
 

Vi
ti
s 
vi
ni
fe
ra
 (
gr
ap
es
)

Si
gn

ifi
ca
nt
 in

cr
ea
se
 in

 th
e 
to
ta
l p

ro
te
in
 

co
nt
en
t, 
an
d 
an
tio

xi
da
nt
 a
ct
iv
iti
es
 

M
uz
af
ar
i e
t a
l. 
(2
01
8a
; b

) 

M
ix
tu
re
 o
f 
A
u/
C
u

L
ac
tu
ca
 s
at
iv
a 
(l
et
tu
ce
)

E
nh
an
ce
d 
ra
te
 o
f 
sh
oo
t a
nd
 r
oo
t

Sh
ah
 a
nd

 B
el
oz
er
ov
a 
(2
00
9)
 

M
ix
tu
re
 o
f 
Si
O
2
/T
iO

2
G
ly
ci
ne
 m
ax
 L
. (
so
yb
ea
n)

In
cr
ea
se
d 
ge
rm

in
at
io
n 
an
d 
sh
oo
t g

ro
w
th
 w
ith

 
en
ha
nc
ed
 a
nt
io
xi
da
nt
 s
ys
te
m
 

L
u 
et
 a
l. 
(2
00
2)
 

N
d 2
O
3 
na
no

pa
rt
ic
le
s

C
uc
ur
bi
ta
 p
ep
o 
(p
um

pk
in
)

Su
pe
ro
xi
de
 d
is
m
ut
as
e 
(S
O
D
) 
an
d 
pe
ro
xi
da
se
 

(P
O
D
) 
ac
tiv

ity
 in

cr
ea
se
d,
 a
sc
or
ba
te
 

pe
ro
xi
da
se
 (
A
PX

) 
an
d 
ca
ta
la
se
 (
C
A
T
) 

de
cr
ea
se
d 

C
he
n 
et
 a
l. 
(2
01
6)
 

N
ic
ke
l o

xi
de
 n
an
om

at
er
ia
l

L
Ly
ci
um

 b
ar
ba
ru
m
 L
. (
bo
xt
ho
rn
)

O
ve
rp
ro
du
ct
io
n 
of
 li
pi
d 
pe
ro
xi
da
tio

n;
 

pr
ol
in
e,
 a
sc
or
ba
te
, g
lu
ta
th
io
ne
 a
nd
 p
he
no
ls
 

Pi
nt
o 
et
 a
l. 
(2
01
8)
 

Po
ta
ss
iu
m
 s
ili
ca
te

Vi
ti
s 
vi
ni
fe
ra
 (
gr
ap
es
)

Si
gn

ifi
ca
nt
 in

cr
ea
se
 in

 th
e 
to
ta
l p

ro
te
in
 

co
nt
en
t a
nd

 a
nt
io
xi
da
nt
 a
ct
iv
iti
es
 

M
oz
af
ar
i e
t a
l. 
(2
01
8a
, b

) 

Si
lic

on
 n
an
op

ar
tic

le
s

C
ra
ta
eg
us
ar
on
ia
 L
. (
ha
w
th
or
n)

In
cr
ea
se
d 
pl
an
t b

io
m
as
s 
w
ith

 im
pr
ov
ed
 th

e 
ph

ot
os
yn

th
et
ic
 r
at
e 
an
d 
st
om

at
al
 

co
nd
uc
ta
nc
e 

A
sh
ka
va
nd
 e
t a
l. 
(2
01
5)

(c
on
tin

ue
d)



430 F. Yasmeen

Ta
bl
e
16
.1

(c
on
tin

ue
d)

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
lr
es
po
ns
e

R
ef
er
en
ce
s

F
ra
ga
ri
a 
an
an
as
sa
 (
st
ra
w
be
rr
y)

C
ha
ng

e 
in
 g
ro
w
th
 a
nd

 y
ie
ld
 p
ar
am

et
er
s 
w
ith

 
im

pr
ov
ed
 r
el
at
iv
e 
w
at
er
 c
on

te
nt
, 

w
at
er
 u
se
 e
ffi
ci
en
cy
 

Z
ah
ed
i e
t a
l. 
(2
02
0)
 

G
ly
ci
ne
 m
ax
 L
. (
so
yb
ea
n)

Im
pr
ov
ed
 s
ee
dl
in
g 
w
ei
gh
t a
nd
 c
hl
or
op
hy
ll

L
i e
t a
l. 
(2
02
0)
 

M
an

gi
fe
ra
 in

di
ca
 L
. (
m
an
go
s)

In
cr
ea
se
d 
le
af
 a
re
a 
w
ith

 e
le
va
te
d 
nu

tr
ie
nt
 

up
ta
ke
 a
nd

 a
nt
io
xi
da
nt
 a
ct
iv
iti
es
 

E
ls
he
er
y 
et
 a
l. 
(2
02
0)
 

M
us
a 
ac
um

in
at
e 
(b
an
an
a)

In
cr
ea
se
d 
nu
m
be
r 
an
d 
le
ng
th
 o
f 
sh
oo
t w

ith
 

im
pr
ov
ed
 c
hl
or
op
hy
ll 
co
nt
en
t a
nd
 d
ec
re
as
ed
 

el
ec
tr
ol
yt
e 
le
ak
ag
e 
an
d 
m
al
on

di
al
de
hy
de
 

co
nt
en
t 

M
ah
m
ou
d 
et
 a
l. 
(2
02
0)
 

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

Im
pr
ov
ed
 y
ie
ld

H
us
sa
in
 e
t a
l. 
(2
02
0)
 

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

R
ed
uc
ed
 m

et
al
 u
pt
ak
e

C
ui

et
al
. (
20
17
) 

P
is
um

 s
at
iv
um

 L
. (
Pe

a)
Im

pr
ov
ed
 th

e 
gr
ow

th
, i
nc
re
as
e 
in
 d
ef
en
se
 

en
zy
m
es
 a
nd
 n
ut
ri
en
t u

pt
ak
e 

T
ri
pa
th
i e
t a
l. 
(2
01
5)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

Im
pr
ov
em

en
t i
n 
ch
lo
ro
ph
yl
l a
nd
 r
ed
uc
ed
 th

e 
m
al
on
di
al
de
hy
de
 c
on
te
nt
 

K
ha
n 
et
 a
l. 
(2
02
0)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

Im
pr
ov
ed
 s
ee
dl
in
g 
he
ig
ht
 a
nd
 c
hl
or
op
hy
ll

Ji
an
g 
et
 a
l. 
(2
02
1)
 

Si
lv
er
 n
an
op

ar
tic

le
A
ra
bi
do
ps
is
 th

al
ia
na
 (
ar
ab
id
op
si
s)

E
le
va
te
d 
th
e 
as
se
m
bl
ag
e 
of
 r
ea
ct
iv
e 
ox

yg
en
 

sp
ec
ie
s 

Sy
u 
et
 a
l. 
(2
01
4)
 

B
ra
ss
ic
a 
ol
er
ac
ea
 (
ca
bb
ag
e)

D
ec
lin

ed
 le
ng

th
 o
f 
ro
ot

Po
kh
re
l e
t a
l. 
(2
01
3)
 

C
ar
um

 c
op
ti
cu
m
 (
cu
m
in
)

R
is
en
 a
bs
or
ba
nc
e 
of
 n
ut
ri
en
t w

ith
 d
ec
re
as
ed
 

re
qu

ir
em

en
t f
or
 f
er
til
iz
er
 

Se
gh

at
ol
es
la
m
i e
t a
l. 
(2
01
5)
 

C
uc
ur
bi
ta
 p
ep
o 
(p
um

pk
in
)

D
ec
lin

e 
in
 p
la
nt
 w
ei
gh
t

St
am

po
ul
is
 e
t a
l. 
(2
00
9)
 

C
uc
ur
bi
ta
 p
ep
o 
(p
um

pk
in
)

D
ec
lin

e 
in
 r
an
sp
ir
at
io
n 
ra
tio

St
am

po
ul
is
 e
t a
l. 
(2
00
9)

(c
on
tin

ue
d)



16 Role of Nanomaterials in Improving Crop Tolerance to Abiotic Stress 431

Ta
bl
e
16
.1

(c
on
tin

ue
d)

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
lr
es
po
ns
e

R
ef
er
en
ce
s

O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

E
nh
an
ce
d 
ro
ot
 e
lo
ng
at
io
n

Y
an
g 
et
 a
l. 
(2
01
8)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

D
ec
lin

e 
in
 p
er
ce
nt
 g
er
m
in
at
io
n

Y
as
m
ee
n 
et
 a
l. 
(2
01
5)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

D
ec
lin

e 
in
 s
ee
dl
in
g 
w
ei
gh
t

Si
ng

h 
et
 a
l. 
(2
01
5)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

E
le
va
te
d 
an
tio

xi
da
tiv

e 
en
zy
m
es
 a
ct
iv
iti
es

M
oh

am
ed
 e
t a
l. 
(2
01
7)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

D
ec
re
as
e 
in
 g
ro
w
th
 o
f 
se
ed
lin

g
V
an
ni
ni
 e
t a
l. 
(2
01
4)
 

Vi
gn
a 
ra
di
at
a 
(m

un
g 
be
an
)

R
ed
uc
tio

n 
in
 b
io
m
as
s 
of
 p
la
nt

Si
ng

h 
et
 a
l. 
(2
01
5)
 

Vi
gn
a 
ra
di
at
e 
(m

un
g 
be
an
)

O
rg
an
iz
ed
 th

e 
gr
ow

th
 o
f 
se
ed
lin

g
Si
ng
h 
an
d 
K
um

ar
 (
20
15
) 

Z
ea
 m
ay
s 
L
. (
m
ai
ze
)

In
cr
ea
se
 in

 le
ng
th
 o
f 
ro
ot

Po
kh
re
l e
t a
l. 
(2
01
3)
 

Se
O
ry
za
 s
at
iv
a 
L
. (
ri
ce
)

Im
pr
ov
ed
 y
ie
ld

H
us
sa
in
 e
t a
l. 
(2
02
0)
 

T
ita

ni
um

 o
xi
de
 n
an
op
ar
tic
le
s

C
or
ia
nd
ru
m
 s
at
iv
um

 L
. (
co
ri
an
de
r)

Im
pr
ov
ed
 p
la
nt
 g
ro
w
th
 w
ith

 in
cr
ea
se
d 

an
tio

xi
da
nt
s 
ac
tiv

iti
es
 

Sa
rd
ar
 e
t a
l. 
(2
02
2)
 

C
uc
um

is
 s
at
iv
us
 (
cu
cu
m
be
r)

In
hi
bi
te
d 
ro
ot
 e
lo
ng
at
io
n

L
in
 e
t a
l. 
(2
00
7)
 

D
au
cu
s 
ca
ro
ta
 (
ca
rr
ot
)

St
op
pe
d 
ro
ot
 e
xt
en
si
on

Y
an
g 
an
d 
W
at
ts
 (
20
05
) 

D
D
ra
co
ce
ph
al
um

 
M
ol
da

vi
ca
 L
. (
dr
ag
on
he
ad
) 

Im
pr
ov
ed
 p
he
no
lic
 s
ub
st
an
ce
s

K
am

al
iz
ad
eh
 e
t a
l. 
(2
01
9)
 

L
in
um

 u
si
ta
ti
ss
im

um
 L
. (
fla
xs
ee
d)

C
ap
su
le
 n
um

be
r 
in
cr
ea
se
d 
in
 e
ve
ry
 p
la
nt
 w
ith

 
en
ha
nc
ed
 s
ee
d 
w
ei
gh
t 

A
gh
da
m
 e
t a
l. 
(2
01
6)
 

N
ic
ot
ia
na
 ta

ba
cu
m
 (
to
ba
cc
o)

T
he
 e
m
er
ge
nc
e 
of
 th

e 
se
co
nd
ar
y 
ro
ot
s

C
ox

 e
t a
l. 
(2
01
6)
 

R
os
a 
in
di
ca
 (
ro
se
)

Im
pr
ov
ed
 th

e 
en
do
ge
no
us
 h
or
m
on
es

H
ao
 e
t a
l. 
(2
01
8)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

H
ei
gh

te
ne
d 
th
e 
gr
ow

th
H
on
g 
et
 a
l. 
(2
00
5)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

Im
pr
ov
em

en
t i
n 
gr
ow

th
 o
f 
pl
an
t

Y
an
g 
et
 a
l. 
(2
00
6)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

Si
gn
ifi
ca
nt
 e
ff
ec
t o

n 
pl
an
t g

ro
w
th

Z
he
ng

 e
t a
l. 
(2
00
5)

(c
on
tin

ue
d)



432 F. Yasmeen

Ta
bl
e
16
.1

(c
on
tin

ue
d)

N
an
om

at
er
ia
ls

C
ro
ps

M
or
ph
o-
Ph

ys
io
lo
gi
ca
lr
es
po
ns
e

R
ef
er
en
ce
s

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

In
cr
ea
se
 in

 le
ng
th
 a
nd
 w
ei
gh
t o

f 
se
ed
lin

gs
G
ao
 e
t a
l. 
(2
00
6)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

Im
pr
ov
ed
 b
io
m
as
s 
an
d 
ch
lo
ro
ph
yl
l

Z
he
ng

 e
t a
l. 
(2
00
5)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

In
cr
ea
se
 in

 w
ei
gh
t

H
on
g 
et
 a
l. 
(2
00
5)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

St
im

ul
at
ed
 th

e 
pr
oc
es
s 
of
 n
itr
og

en
 fi
xa
tio

n
Y
an
g 
et
 a
l. 
(2
00
7)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

E
nh
an
ce
d 
ab
so
rb
an
ce
 o
f 
lig

ht
 a
nd
 p
ro
m
ot
ed
 

fix
at
io
n 
of
 c
ar
bo
n 
di
ox
id
e 

L
in
gl
an
 e
t a
l. 
(2
00
8)
 

Sp
in
ac
ia
 o
le
ra
ce
a 
(s
pi
na
ch
)

Im
pr
ov
ed
 g
er
m
in
at
io
n 
an
d 
sh
oo
t g

ro
w
th
 w
ith

 
en
ha
nc
ed
 a
nt
io
xi
da
nt
 s
ys
te
m
 

L
u 
et
 a
l. 
(2
00
2)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

E
le
va
te
d 
ro
ot
 le
ng

th
 w
ith

 n
o 
ef
fe
ct
 o
n 

ge
rm

in
at
io
n 
an
d 
pl
an
t w

ei
gh
t 

L
ar
ue
 e
t a
l. 
(2
01
2)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

L
en
gt
h 
of
 s
ho
ot
 e
nh
an
ce
d

R
afi

qu
e 
et
 a
l. 
(2
01
4)
 

Tr
it
ic
um

 a
es
ti
vu
m
 L
. (
w
he
at
)

D
ec
lin

ed
 th

e 
pl
an
t o

ve
ra
ll 
w
ei
gh

t
Ja
co
b 
et
 a
l. 
(2
01
3)
 

Vi
ci
a 
na
rb
on
en
si
s 
(n
ar
bo
n 
ve
tc
h)

D
ec
re
as
e 
in
 r
at
e 
of
 g
er
m
in
at
io
n 
an
d 
le
ng

th
 o
f 

ro
ot
 

C
as
tig

lio
ne
 e
t a
l. 
(2
01
1)
 

Vi
gn
a 
ra
di
at
a 
L
. (
m
un
g 
be
an
)

In
cr
ea
se
d 
le
ng

th
 a
nd

 w
ei
gh

t o
f 
ra
di
cl
e 
w
ith

 
de
cl
in
e 
in
 f
re
e 
re
di
ca
l 

K
at
iy
ar
 e
t a
l. 
(2
02
0)
 

Vi
ti
s 
vi
ni
fe
ra
 (
gr
ap
es
)

E
nh

an
ce
s 
th
e 
an
tio

xi
da
nt
 c
ap
ac
ity

 a
nd

 
ph
en
ol
ic
 c
on
te
nt
 

K
őr
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about their possible escape into environment with ultimate interaction with living 
organisms (Shabnam and Kim, 2018). Treatment of aluminum oxide nanoparticles 
stimulated the chances of survival with elevated weight and length of root in soybean 
(Yasmeen et al. 2016a, b; Mustafa et al. 2016) with significant improvement in the 
length of wheat root (Riahi-Madvar et al. 2012) and lettuce (Lin and Xing 2007). 
Nevertheless, length of root was reduced in cucumber on alumina nanoparticles 
exposure (Yang and Watts 2005). 

16.2.2 Carbon Nanoparticles 

Utilization of carbon nanotubes in delivery systems of various drugs into cell is 
the development of this era. This advancement increased the effort of scientist 
to observe for the consumption and transportation of these nanotubes within the 
plant (Rico et al. 2011). Morphological parameters such as germination rate was 
increased in tomato on carbon nanoparticles exposure (Khodakovskaya et al. 2009) 
with significant increase in root length of onion (Canas et al. 2008), and wheat 
(Wang et al. 2012). Carbon nanoparticles treatment also enhanced germination of 
seed with extended hypocotyl and larger cotyledon area leading to elevated chloro-
phyll content in Arabidopsis seedlings (Kumar et al. 2018). However, flowering was 
delayed and productivity was reduced in rice with carbon nanoparticles treatment 
(Lin et al. 2009). Carbon nanoparticles increased fungal resistance in rose plants by 
modifying the concentration of endogenous hormones (Hao et al. 2018). 

16.2.3 Cerium Oxide Nanoparticles 

Nanoceria are the utmost auspicious candidate for managing soft tissue lesions 
because of antioxidant, anti-inflammatory and antibacterial activities (Sadidi et al. 
2020). The growth of the root was increased, whereas of shoot was inhibited in 
soybean (Li et al. 2020) and wheat (Rico et al. 2013). However, root growth was 
inhibited in lettuce (Ma et al. 2010). Significant reduction in biomass was observed 
in maize (Lopez-Moreno et al. 2010) and in wheat (Du et al. 2015). Nano ceria 
directly influence the process of photosynthesos by inhibiting chlorophyll synthesis 
and reducing the photochemical quenching in soybean (Li et al. 2020). 

16.2.4 Copper Nanoparticles 

Amongst the metalic nanomaterials, copper nanoparticles are utilized in electronics, 
wind and hydraulic filtration, ceramics, wood preservatives, and bioactive coverings, 
showbiz industries and textile, makeups, and in lubricants oil (Yang et al. 2009). These
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wide range utilizations has heightened the interest of their effect on overall ecosystem 
(Chen et al. 2010). Copper nanoparticles has altered the morphological characters in 
various plants such as elevation in the height of plant and shoot dry weight of wheat 
(Noman et al. 2020), improved rate of shoot and root in lettuce (Shah and Belozerova 
2009), elevated the weights and lengths of wheat plant (Yasmeen et al. 2018). While; 
couple of studies also indicated negative response of copper nanoparticles such as 
decline in growth of wheat and mungbean (Lee et al. 2008), declined plant weight and 
growth of root in zucchini (Stampoulis et al. 2009), decreased the rate of germination 
and plant weight in rice and Arabidopssis (Shaw and Hossain, 2013), quenched root 
elongation in maize (Wang et al. 2012), and repressed development and assembly of 
the root in wheat (Tang et al. 2016). 

Physiological responses were also altered on copper nanoparticles exposure such 
as treatment of copper nanoparticles stimulated the anthocyanin, chlorophyll, and 
carotenoid and elevated tolerance to water deficit by reducing the oxidative stress 
(Nguyen et al. 2021). Nutrient uptake was also enhanced on copper nanoparticles 
exposure in wheat (Noman et al. 2020). Compliance to the previous responses, copper 
nanoparticles could potentially be used as target agent for targeting any particular 
physiological response. 

16.2.5 Iron Oxide Nanoparticles 

Among the different metallic nanomaterials, iron nanoparticles are used in various 
commercialized enterprise, and biomedical activities to bring positive change in 
society (Teja et al. 2009). Due to higher reactivity and magnetic property, iron 
nanoparticles were exploited as rectification tools for ecosystem (Yan et al. 2013). 
Iron nanoparticles improved the morphological traits with increased productivity 
and grains in wheat (Yasmeen et al. 2017; Rizwan et al. 2019a, b; Manzoor et al. 
2021; Adrees et al. 2021). Similarly, growth of rice was improved with the treat-
ment of iron nanoparticles (Bidi et al. 2021; Ahmed et al. 2021). High concentration 
of iron nanoparticles increased dry weight of the explants of strawberry (Mozafari 
et al. 2019). However high concentration of iron nanoparticles was toxic to lettuce as 
germination was declined (Trujillo-Reyes et al. 2014). Other way round, stimulatory 
effects on the germination ratio and development of peanut (Li et al. 2015) and wheat 
(Feizi et al. 2013; Yasmeen et al. 2016a, b) were also discussed. 

Utilization of iron nanoparticles raised the level of proline, glutathione and phyto-
chelatins and defense enzymes in rice (Bidi et al. 2021) as well as in wheat (Konate 
et al. 2017), ryegrass and pumpkin (Wang et al. 2011). However, a noteworthy decline 
in proline content was observed in grapes (Muzafari et al. 2018a, b) and in strawberry 
(Mozafari et al. 2019). Iron nanoparticles increased depolluting enzymes, photosyn-
thetic potential, and nutrient concentration while declined the formation of reactive 
oxygen species in rice (Ahmed et al. 2021). These studies explicit the response of 
iron nanoparticles is plant and concentration dependent for its positive or negative 
attribute.



16 Role of Nanomaterials in Improving Crop Tolerance to Abiotic Stress 437

16.2.6 Silicon Nanoparticles 

After oxygen, silicon being the richest element; act as (Ma 2004) physico-mechanical 
barrier. Silicon is component of the epidermal cell walls and conducting tissues 
throughout the plant (Siddiqui et al. 2014). The stimulatory effects of the silicon 
macroparticles have been described in plants by researchers; though, nanoparticles of 
silicon are absorbed more comparative to bulks (Suriyaprabha et al. 2012). Morpho-
logical characters such as improvement in growth in pea (Tripathi et al. 2015), number 
and length of shoot in banana (Mahmoud et al. 2020), increased leaf area (in mango 
(Elsheery et al. 2020), enhanced the growth and productivity of strawberry (Zahedi 
et al. 2020), improved seedling fresh weight in soybean (Li et al. 2020) and improved 
yield in rice (Hussain et al. 2020). 

Silicon with a size of 10 µM improved the growth, risen the synthesis of defense 
enzymes and increased nutrient uptake in pea (Tripathi et al. 2015). In wheat, treat-
ment of silicon nanoparticles significantly elevated the chlorophyll contents and 
amend oxidative emphasis by declining the malondialdehyde, hydrogen peroxides 
and electrolyte leakage (Khan et al. 2020). All doses of silicon dioxide nanoparticles 
improved the growth of shoots in banana. Application of silicon dioxide nanoparticles 
in banana risen chlorophyll content, declined electrolyte leakage with the change in 
phenolic compound (Mahmoud et al. 2020). In the case of rice, silicon nanoparticles 
not only improved the yield (Hussain et al. 2020) but also edited the gene expression 
involved in declined metal uptake (Cui et al. 2017). These previous studies show that 
silicon nanoparticles could potentially be used as remediator in heavy metals prone 
areas. 

16.2.7 Silver Nanoparticles 

Being antibacterial in nature (Weir et al. 2008) silver nanoparticles are manufactured 
via various physico-chemical, and biological methods with specific size and shape 
(Iravani et al. 2014). Application of silver nanoparticles enhanced the reactions of 
critical antioxidative enzymes whilst decreased the concentration of stress signals in 
wheat leaves (Mohamed et al. 2017). Silver nanoparticles also decreased the growth 
in wheat (Vannini et al. 2014; Singh et al. 2015), zucchini (Stampoulis et al. 2009) and 
declined root length in mung bean (Singh et al. 2015), and in cabbage (Pokhrel et al. 
2013) with reduced rate of germination in wheat (Yasmeen et al. 2015). However, 
root length was increased in maize on treatment with silver nanoparticles (Pokhrel 
et al. 2013). 

Silver nanoparticles also enhanced the aggregates of reactive oxygen species in 
arabidopsis (Syu et al. 2014) and stimulated the activities of dynamic antioxidative 
enzymes whilst decreased the contents of malondialdehyd and hydrogen peroxide in 
wheat (Mohamed et al. 2017) with tremendous improvement of water use efficacy, 
nutrient uptake and decreased fertilizer necessity in cumin seeds (Seghatoleslami
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et al. 2015). Silver nanoparticles raised the seedling growth in mungbean (Singh 
and Kumar 2015). However, percent germination was reduced in wheat (Yasmeen 
et al. 2015). Silver nanoparticles also reduced the seedling weight in wheat (Singh 
et al. 2015) and decreased plant biomass in mungbean (Singh et al. 2015). These 
earlier studies indicated the undesirable influence of silver nanoparticles on physical 
characters of plants and need further exploration. 

16.2.8 Titanium Oxide Nanoparticles 

Titanium dioxide nanoparticles are mostly applied nanomaterials in the variety of 
consumer and agriculture products enabling their passage into the environment (Hou 
et al. 2019). Diverse utilization of titanium dioxide nanoparticles has been docu-
mented in private skincare product and water-treatment mediator (Riu et al. 2006; 
Tan et al. 2007). Priming of maize seed with titanium dioxide nanoparticles positively 
impacted the germination and seedling growth while reduced the mean emergence 
time (Shah et al. 2021). However; in the case of wheat, root length was increased 
but rate of germination and plant weight was not enhanced (Larue et al. 2012). 
The emergence of the secondary roots was observed in tobacco (Cox et al. 2016). 
Radicle length and biomass in mungbean was increased with nanoparticles appli-
cation (Katiyar et al. 2020). Root elongation was inhibited in cucumber (Lin et al. 
2007), carrot (Yang and Watts 2005), while an improvement in growth of spinach 
was recorded (Hong et al. 2005; Zheng et al. 2005; Yang et al. 2006). Capsules ration 
per plant enhanced in plants on treatment with titanium dioxide nanoparticles and 
increased the seed weight in linseed (Aghdam et al. 2016). 

Treatment of titanium dioxide nanoparticles also enhanced the number of potas-
sium ion, relative water content, contents of total phenolic and proline; stimulated 
antioxidants activities; andreducedsodium ion concentration, membrane electrolyte 
leakage,in maize (Shah et al. 2021). However, in mungbean, there was a reduction 
in the level of free radicals and lipid peroxidation (Katiyar et al. 2020). So, titanium 
dioxide nanoparticles could potentially be the source of stress tolerable in plants. 

16.2.9 Zinc Oxide Nanoparticles 

Utilization of zinc-oxide nanomaterials in various commercial applications with a 
possible way out into the ecosystem (Rajput et al. 2018). Influence of zinc oxide 
nanoparticles are plant dependent as in wheat there was reduction in the biomass 
(Du et al. 2015; Jacob et al. 2013) while improved in soybean (Lopez-Moreno et al. 
2010). Exposure to zinc oxide nanoparticles decreased the plant weight, thin root 
tips and damaged epidermis and root cap in ryegrass (Lin and Xing 2008). While; 
growth of seedling was improved with zinc oxide nanoparticles treatments in rice 
(Yan et al. 2021).
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Growth and productivity was enhanced on spraying of zinc oxide nanoparticles 
with stimulated chlorophyll content and the antioxidant activities in wheat (Adrees 
et al. 2021). However; in wild tamarind, pigments and soluble proteins were improved 
while peroxidase was reduced (Venkatachalam et al. 2017). Photosynthesis was also 
improved in soybean with healthy root and shoot growth on zinc oxide nanoparticles 
exposure (Ahmad et al. 2020). Spraying of zinc oxide nanoparticles improved the 
eggplant growth and productivity (Semida et al. 2021). The total yield and physio-
chemical properties in mango increased with wider leaf area on zinc oxide nanopar-
ticles treatment (Elsheery et al. 2020). Similarly; application of these nanoparticles 
stimulated all macronutrients and antioxidants activities in mango (Elsheery et al. 
2020). 

16.2.10 Miscellaneous 

Employment of individual and binary treatment of zeolite nanoparticles in tomatos 
enhanced plant elevation, shoot dry mass, number of stems per plant, and tuber yield 
(Mahmoud et al. 2019). Nanoparticles treatment stimulated relative water content and 
chlorophyll concentration with improved nutrients uptake in tomatoes (Mahmoud 
et al. 2019). Application of potassium silicate in grapes importantly enhanced the 
total protein content and activities of antioxidative enzymes while reduced proline 
content (Mahmoud et al. 2019). Submission of nickle oxide nanoparticles in wolf-
berry resulted in excessive production of hydrogen peroxide and superoxide anion 
with ultimate increase in lipid peroxidation, proline, ascorbate, glutathione and 
phenols levels (Pinto et al. 2018). Mixture of nanoparticles has also altered the 
growth and yield of various plants. Mixture of silicate and titanium oxide nanoparti-
cles increased germination and shoot growth with elevated nitrate reductase activity 
and enhanced antioxidant system (Lu et al. 2002). However, mixture of Au/Cu has 
zero response towards the germination but rate of shoot and root of lettuce was 
improved (Shah and Belozerova 2009). 

16.3 Nanomaterials Response Against Abiotic Stresses 

In agriculture, the application of nanoparticles is thriving rapidly and analyses of their 
effects are done through variation in the germination ratio, growth and development 
(Siddiqui et al. 2015). The nanoparticles interact in a straight line or by chance release 
in the neighborhood of plants (Rico et al. 2011). These nanoparticles have also been 
utilized to mitigate the effects of various abiotic stresses (Table 16.2) (Fig. 16.1).
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Table 16.2 Effects of various nanomaterials in response to abiotic stresses on economically 
important crops 

Stress Nanomaterials Crops Effects References 

cold Titanium 
dioxide 

Chickpea (Cicer 
arietinum) 

Enhanced redox status 
of plants 

Mohammadi 
et al. (2013) 

Drought Iron Wheat (Triticum 
aestivum L.) 

Improved plant 
elevation, spike size and 
dry weight with 
chlorophyll 

Adrees et al. 
(2021) 

Selenium Strawberry 
(Fragaria ananassa) 

Improved the growth 
and yield with elevated 
water use efficiency 

Zahedi et al. 
(2020) 

Silica Strawberry 
(Fragaria ananassa) 

Improved the growth 
and yield with increased 
water use efficiency and 
antioxidant activities 

Zahedi et al. 
(2020) 

Silica Mango (Mangifera 
indica L.) 

Enhanced leaf area with 
increased productivity 
and fruit qualities with 
enhanced antioxidant 
activities 

Elsheery 
et al. (2020) 

Silica Wheat (Triticum 
aestivum L.) 

Increase in shoot, root, 
and grain  dry biomass  
with enhanced 
chlorophyll and 
antioxidants 

Khan et al. 
(2020) 

Silica Hawthorn 
(Crataegus sp.) 

Improved plant overall 
weight and xylem water 
potential with elevated 
the photosynthetic rate 
and stomatal 
conductance 

Ashkavand 
et al. (2015) 

Titanium 
dioxide 

Flax(Linum 
usitatissimumL.) 

Step-up carotenoids 
content and ameliorated 
cell membrane damage 

Aghdam 
et al. (2016) 

Titanium 
dioxide 

Dragonhead 
(Dracocephalum 
moldavicaL.) 

Increased certain 
beneficial phenolic 
substances 

Kamalizadeh 
et al. (2019) 

Zero-valent 
copper 

Maize (Zea mays L.) Improved the biomass 
and stimulated total seed 
number and grain yield 
with increased contents 
of 
anthocyanin,chlorophyll, 
and carotenoid 

Nguyen 
et al. (2021) 

Zinc Oxide Mango 
(MangiferaindicaL.) 

Enhanced leaf area with 
increased productivity 
and fruit qualities 

Elsheery 
et al. (2020)

(continued)
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Table 16.2 (continued)

Stress Nanomaterials Crops Effects References

Zinc Oxide Wheat (Triticum 
aestivum L.) 

Late panicle initiation 
time with exponential 
grain yield 

Dimkpa 
et al. (2020) 

Zinc Oxide Eggplant (Solanum 
melongena L.) 

Stimulated the plant 
growth and productivity 
with enhanced macro-
and micronutrients’ 
uptake andincreased 
relative water content 

Semida et al. 
(2021) 

Zinc Oxide Wheat (Triticum 
aestivum L.) 

Improved growth and 
productivity with 
enhanced chlorophyll 
and antioxidants 
activities 

Adrees et al. 
(2021) 

Heavy metal 
stress 

Gold Rice (Oryza sativa 
L.) 

Bettermet in antioxidant 
defense enzyme with 
limited manifestation of 
genes associated with 
metal transport 

Jiang et al. 
(2021) 

Silica Wheat (Triticum 
aestivum L.) 

Improved chlorophyll 
and photosynthesis 

Jiang et al. 
(2021) 

Zinc Oxide Wheat (Triticum 
aestivum L.) 

Evoked plant growth, 
dry weight, and grains 
and declined the loss of 
electrolyte and 
antioxidant activities 

Rizwan et al. 
(2019a, b) 

High temperature 
Stress 

Silver Wheat (Triticum 
aestivum L.) 

Improve length of root 
and shoot with increased 
root number and plant 
biomass 

Iqbal et al. 
(2017) 

Salinity Carbon Lettuce (Lactuca 
sativa) 

Significant improvement 
in the germination rate n 
some 

Baz et al. 
(2020) 

Iron Grapes(Vitis 
vinifera) 

Significant increase in 
the total protein content 
with improved activities 
of antioxidative enzymes 
and hydrogen peroxide 

Mozafari 
et al. (2018a, 
b) 

(continued)

16.3.1 Drought 

The utmost vital source for the survival of plants is water which is required for the 
transportation of nutrients which went under threat during the period of drought 
(Martinez-Vilata and Pinol 2002). Growth of plant declined (Bigler et al. 2006) with 
elevated rate of mortality (Rebetez and Dobbertin 2004). Under stress situations, the
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Table 16.2 (continued)

Stress Nanomaterials Crops Effects References

Iron Strawberry 
(Fragaria ananassa) 

Enhanced dry weight of 
the root and explants 
with improved 
photosynthetic pigments 
and total soluble 
carbohydrate, membrane 
stability index, and 
relative water content 

Mozafari 
et al. (2019) 

Iron Wheat (Triticum 
aestivum L.) 

Elicited plant growth, 
dry weight, and grains 
and declined the loss of 
electrolyte and 
antioxidant activities 

Rizwan et al. 
(2019a, b) 

N–Na2SiO3 Potato (Solanum 
tuberosum L.) 

Increased tuber 
productivitywith 
increased water use 
efficiency and tuber dry 
matter percentage 

Kafifi et al. 
(2019) 

Potassium 
silicate 

Grapes(Vitis 
vinifera) 

Significant increase in 
the total protein content, 
activities of 
antioxidative enzymes 
and hydrogen peroxide 

Muzafari 
et al. (2018a; 
b) 

Silica Banana (Musa 
acuminata) 

Increased the nu 
Increase in number of 
shoots and shoot length 
with improved 
chlorophyll and lowered 
electrolyte leakage 

Mahmoud 
et al. (2020) 

Silver Wheat Triticum 
aestivum L.) 

Stimulated the weight 
with increased the 
activities of vital 
antioxidative enzymes 

Mohamed 
et al. (2017) 

Titanium 
dioxide 

Maize (Zea mays L.) Stimulated the 
germination and growth 
of seedling and reduced 
the mean emergence 
time 

Shah et al. 
(2021) 

Zinc Oxide Fenugreek 
(Trigonella 
foenum-graecum) 

Interaction reverse the 
salinity evoked 
consequences 

Noohpisheh 
et al. (2021) 

Zinc Oxide Tomato 
(Lycopersicon 
esculentum) 

Increase in length of 
shoot and root, weight, 
and leaf area with 
improved chlorophyll 
and 
photosynthetic attributes 

Faizan et al. 
(2021)

(continued)
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Table 16.2 (continued)

Stress Nanomaterials Crops Effects References

Zn-, B-, Si Potato (Solanum 
tuberosum L.) 

Stimulated plant height, 
shoot dry weight, and 
tuber yield with 
increased photosynthetic 
rate 

Mahmoud 
et al. (2019) 

Fig. 16.1 Pictorial view of abiotic, environmental and nanoparticles mediated responses in plants 

plants try different approaches for survival trough morpho-physiological adjustments 
for tolerence or avoidence (Bassett, 2013). However, under water stress, photosyn-
thesis is limited with ultimate decline in plant biomass (Zarafshar et al. 2014). Pre-
treatment with silver nanoparticles helped in improvement of growth and biomass 
under water restricted environment (Khan et al. 2020). Silica nanoparticles enhanced 
plant overall weight and xylem water potential in water deficit Crataegus sp with 
elevated rate of photosynthesis and conduction of stomata (Ashkavand et al. 2015). 

Foliar submission of different nanoparticles also enhanced the growth and produc-
tivity of water deficit plants. Treatment of selenium and silica nanoparticles preserved 
more photosynthetic pigments with enhanced water use efficiency (Zahedi et al. 
2020). Delay in panical initiation time leading to improved grain yield in wheat 
was observed under zinc oxide nanoparticles application (Dimkpa et al. 2020).
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Treatment with zinc oxide nanoparticles also stimulated macro- and micronutri-
ents’ uptake and elevated relative water content in eggplants under water deficit area 
(Semida et al. 2021). Copper nanoparticles improved the biomass and enhanced seed 
count and productivity of maize plants trending to reinforced drought stress toler-
ance (Nguyen et al. 2021). Titanium oxide nanoparticles elevated the carotenoids 
content and amended cell membrane damage and seed oil and protein (Aghdam et al. 
2016). These studies indicated that more in-depth research is required for developing 
tolerance against drought with the help of nanoparticles. 

16.3.2 Heavy Metal Stress 

Metal uptake could be declined with application of silicon nanoparticles in rice 
(Cui et al. 2017) and minimized the growth inhibitory action of mercury in soybean 
(Li et al. 2020) and in wheat tissues (Jiang et al. 2021). Nanoparticles have different 
behaviour in different plants as zinc oxide nanoparticles and iron nanoparticles ampli-
fied the cadmium concentration in lettuce (Venkatachalam et al. 2017) while disclo-
sure of plants to contrary form of nanoparticles boost the growth and declined the 
cadmium content in plants (Wang et al. 2012). Likewise, silicon nanoparticles miti-
gated the cromium morbidity in pea (Tripathi et al. 2015). Iron nanoparticles treat-
ment increased the wheat growth and declined the metal phytoremediation (Konate 
et al. 2017). Zinc oxide nanoparticles elicited plant growth, and yield under cadmium 
stress in wheat (Rizwan et al. 2019a, b) Treatment with zinc oxide nanoparticles expe-
dited less aggregation of arsenic in root and shoot (Yan et al. 2021). Copper nanopar-
ticles has also critical role in reduction of cadmium transport in wheat (Noman et al. 
2020). 

16.3.3 Salinity 

The major threat to modern agriculture is the salinity which inhibited and impaired 
the crop growth and development (Isayenkov 2012). Responses of plants to salinity 
could be ion-independent growth reduction (Rajendran et al. 2009) or formation of 
cytotoxic ion levels with slow metabolic methods (Roy et al. 2014).Various physio-
molecular mechanisms help in development of tolerance to stress (Rajendran et 
al. 2009). Application of nanosilica decreased the hazardeous impact of salinity 
on germination, root length and plant dry weight in tomatos (Haghighi et al. 2012). 
Similarly; treatment of carbon nanoparticles stimulated the germination rate in lettuce 
(Baz et al. 2020). 

Interaction of zinc oxide nanoparticles with salinity stress reversed the salinity 
induced antioxidants enzymes production in two cultivars of fenugreek (Noohpisheh 
et al. 2021). Zinc oxide nanoparticles also enhanced shoot and root elevation, plant 
weight, and leaf area in tomato (Faizan et al. 2021) with elevated chlorophyll and
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photosynthetic qualities, protein content and activities of antioxidative enzymes 
in salinity-stressed tomato plant. Priming with silver nanoparticles significantly 
increased the plant weight of salinity stressed wheat (Mohamed et al. 2017). 

16.3.4 Miscellaneous 

Increase or decrease on temperature (High temperature stress or low temperature 
stress or cold) also participate in the growth of plants. High temperature is a partic-
ular interest for major cash crops due to severe reduction in crop yield (Mondala 
et al. 2013) and numerous tactics such as hybridization (Zhao et al. 2008; Semenov 
and Halford 2009), genetic engineering (Barnabas et al. 2008), molecular markers-
assisted selection and QTL mapping (Vinh and Paterson 2005) are in use to mitigate 
these hazardeous effects. High temperature significantly reduced the chlorophyll 
content and increased membrane injury index in wheat (Almeselmani et al. 2006). 
However, Treatment with silver nanoparticles protected wheat plants in contradic-
tion of heat stress and improved length of root and shoot length with increase in root 
number and plant biomass (Iqbal et al. 2017). Titanium oxide nanoparticles built 
redox status of cold sensitive and tolerant chickpea plants (Mohammadi et al. 2013). 

16.4 Conclusion and Prospects 

Abiotic stresses and limited nutrient are main environmental conditions that decrease 
plant growth, productivity and quality (Gong et al. 2020). Abiotic stresses destruc-
tively impact the plant’s growth and development trending to decline in productivity 
in terms of both the quality and quantity (Sharma et al. 2019). These abiotic stresses 
directly influence the plant by bringing changes in the structural and chemical compo-
sition of the plant. However, if plants are exposed or treated with nanoparticles then 
their response to stresses will be different. Nanoparticles have the ability to impact 
the hereditary material of the plant such as DNA and affect the growth of plants 
under various stresses. Nanotechnology has achieved enormous impulse in recent 
times because of the varietal utilization of nanoparticles in agriculture, drug and 
cosmetic industry. Their wide application raised concerns about their possible way 
out into the ecosystem and their interaction with the plants. Nanoparticles have the 
ability to alter the morpho-physiological responses of plants. Nanoparticles have 
also altered the expression of various genes and changed the chemical composition 
of various plants. This property could potentially be used to address various abiotic 
stresses. Various research groups are now focusing on this aspect of nanoparticles 
and drawing outstanding results. However, in future there is a need for more compre-
hensive studies, so that the effects of the practiced nanoparticles on plants can be 
determined well in time. There is also a desire to understand their impact on all kinds
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of living organisms in future because of their continuous entry into the environment 
with ultimate exposure of all kinds of lives on earth. 
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Chapter 17 
Plant Mediation to Tolerate Cadmium 
Stress with Selenium and Nano-Selenium 

Ali Akbar Ghasemi-Soloklui, Fardad Didaran, Mojtaba Kordrostami, 
and Jameel M. Al-Khayri 

Abstract After mercury and lead, cadmium is the third greatest hazard dangerous 
to the environment. Cadmium is non-essential biological functions metal element 
and has a series of harmful effects on the health of human, animal, and plants at 
low concentrations. Cadmium is unique heavy metal that causes health problems 
Plants in many areas are low or mildly polluted with cadmium may not display 
any toxicity problems. They can accumulate cadmium in their edible portions at 
levels that are higher than the permissible threshold for people. Plant foods are 
generally considered to be the most prevalent source of cadmium exposure in the 
population, and grains account for a considerable portion of total dietary intake. It 
is well documented that added at low concentrations of selenium exerts beneficial 
effects regulation of photosynthesis and respiration, increased antioxidant capacity, 
improvement of abiotic stress tolerance, and attracted attention in the alleviation of 
heavy metal toxicities stresses in different plant species. This chapter summarized 
how selenium and Nano-selenium can be mitigated cadmium stress in plants. 
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17.1 Introduction 

Cadmium is a soft, ductile, silvery white with blue tint, glossy, and electropositive 
element with atomic number 48, atomic mass 112, melting point 321 °C, and boiling 
point 765 °C, and it has no odor or flavor and is extremely dangerous. Cadmium is 
known to fourth most heavy metal toxic to plant (Qadir et al. 2004). It is non-essential 
biological functions metal element and has a series of harmful effects on the health of 
human, animal and plants at low concentrations (Solenkova et al. 2014). The ability of 
plants to uptake and cadmium accumulates capacity in different types of plants crop 
related to soil and environmental factors including; concentration of cadmium in soil, 
pH, temperature, redox potential, level of other mineral nutrition, soil organic matter 
and as well as Plant physiological properties such as species and cultivars’ capacity 
to accumulate and translocate, sequestration inside root vacuoles, translocation in 
the xylem and phloem, and dilution within plant tissue (Ismael et al. 2019a). Sele-
nium name comes from the Greek word for moon or Selene and was discovered by 
Jakob Berzelius in 1817. The selenium has been forming of the Group 16 (chalcogen 
element) with an atomic weight of 78.96 and Ionic radius of selenium similar chem-
ical properties with sulfur (S). Selenium exists in both forms (inorganic and organic) 
in the environment (Gupta et al. 2017). The most common inorganic forms of sele-
nium exist in five forms state to selenide (HSe−), elemental selenium (Se0), selenite 
(HSeO3

− and SeO3 
2−), and selenate (SeO4 

2−), whereas predominant organic forms 
of selenium in biological matter were methylated selenium compounds, selenoamino 
acids, and selenoproteins (Rizwan et al. 2021). Zhu et al. (2009) reported that both 
organic and inorganic forms of selenium can be uptake by plants. Under Cadmium 
stress, the heavy metal Cadmium is easily transported from soil to plants (Riaz 
et al. 2021a, b). When considering the harmful effects of heavy metals on plants, 
it’s important to remember that toxicity is determined by the external bioavailable 
metal content, the exposure period, the plant genotype, and the plant’s overall state. 
Furthermore, dose–response curves for essential and non-essential components differ 
(Fig. 17.1). Inorganic Selenium was found to reduce Cadmium absorption in tomato, 
pakchoi, wheat, and other plants in studies (Wu et al. 2013; Zhou et al. 2020). Also, the 
addition of Nano-Selenium, Selenium (IV), and SeleniumMet decreased Cadmium 
in rice tissues (shoots and roots), with the SeleniumMet treatment having the greatest 
impact. Low levels of Selenium increased the proportion of coarse roots, resulting in 
lower Cadmium absorption; however, at higher Selenium and Cadmium concentra-
tions, Selenium impeded plant development rather than reducing Cadmium toxicity, 
which was attributed to increased root cell permeability to Cadmium owing to root 
cell membrane degradation.
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Fig. 17.1 Plant 
dose–response curves for 
essential and non-essential 
micronutrients 

17.1.1 Cadmium and Health Effects 

The base of origin product can be divided into two types of cadmium; one is from 
natural sources, the other type is of anthropogenic origin, that can be widely present in 
soil, water, and the atmosphere (Alloway 2012; Shahid et al. 2016; Wang et al. 2015a, 
b). In nature, cadmium is released into the environment immobilized by interacting 
with iron (Fe) and manganese (Mn) oxides and can also be atmospherically deposited 
on rain, dust, snow and mainly from weathering of soil parent material and volcanic 
activities (Cook et al. 1995; Hayat et al. 2019; Zhang et al. 2013). Anthropogenic 
cadmium emissions, on the other hand, are much more serious, accounting for 8000 
to 10,000 mt per year. Industrial activity (manufacturing of plastics, chemical stabi-
lizers, paint pigments processes, metallic coatings and alloys), chemical fertilizers, 
contaminated sewage sludge and waste water, sewage effluents, and agricultural run-
offs are the major targets of anthropogenic activities (IPCS 1992; Ji et al.  2011; 
Misra et al. 2005; Xue et al. 2014; Zarcinas et al. 2004). Cadmium concentrations 
in uncontaminated soils are typically around 0.5 mg kg−1 (Vahter et al. 1991), but 
because it is readily absorbed by plants growing on cadmium-supplemented soils, 
cadmium concentration in polluted soils can be 10–500 times greater than in non-
polluted soils and may directly contributing to plant and human health (Yanqun et al. 
2005). Cadmium contamination in food is mostly caused by widespread low-level soil 
pollution and effective cadmium soil-to-plant transfer. And since cadmium cannot 
be destroyed and has a biological half-life of up to 30 years, it is possible that it may 
accumulate in the body through the food chain and finally end up in the human kidney 
(Ismael et al. 2019a). After mercury and lead, cadmium is the third greatest hazard
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dangerous to the environment, according to the US Environmental Protection Agency 
(EPA) (Jamers et al. 2013). Also, cadmium is the unique heavy metal that causes 
health problems, plants in many areas that are proven low or mildly polluted with 
cadmium may not display any toxicity problems, but they can accumulate cadmium 
in their edible portions at levels that are higher than the permissible threshold for 
people. When these plants reach the food chain, they become extremely toxic and 
can cause a variety of health risks (Ismael et al. 2019a). The authors demonstrate that 
98 percent of cadmium intake is expected to come from terrestrial foods, 1% from 
aquatic foods, and 1% from cadmium in drinking water (Van Assche 1998). Thus, 
plant foods are generally considered to be the most prevalent source of cadmium 
exposure in the population, and grains account for a considerable portion of total 
dietary intake (Huang et al. 2020). The FAO/WHO Codex Alimentarius Commis-
sion is debating a limit of 0.1 mg kg−1 for cereal grains and oilseeds traded on 
global markets while the World Health Organization determined a maximum provi-
sional acceptable intake limit of 60–70 g cadmium per day for adults (WHO 1973). 
Thus, even at low-level chronic exposure for both people and animals at plant tissue 
amounts that are naturally not phytotoxic, extremely substantial health problems 
might occur. 

17.1.2 Selenium in Soil and Plants 

The average selenium concentration in different soils is 0.4 mg/Kg in worldwide; 
however mountainous countries such as Finland, Sweden, and Scotland are gener-
ally deficient selenium value in soil whereas dried areas in world are selenium rich 
regions (Gupta et al. 2017). Generally, the bioavailability of selenium in the soils 
depends on its chemical nature of selenium form and is affected by pH, local precipi-
tation, application of mineral fertilizers, redox potential, organic matter, competitive 
ions, microbiological activity of soil, plant species and cultivars (Hartikainen 2005; 
Hawrylak-Nowak et al. 2015; Zhang et al. 2007). Sieprawska et al. (2015a) suggest 
that the concentration of selenium in the soil determines accumulation of this nutri-
tion element in different parts of plants. Based capacity of accumulation selenium 
inside their cells, Galeas et al. (2007) were classified crop plants into three groups 
including; non-accumulators groups which usually contain less than 25 μg Se/g 
dry weight (DW); indicators groups accumulating from 25 to 1000 μg Se/g DW 
and hyper accumulators groups having the ability to absorb higher amounts of their 
cells more than 1000 g in 1 g of DW. Selenium is the most important element for 
animals, humans and plants, although there is no evidence of selenium as considered 
an essential element for higher plants. However, several previous reports showed 
that selenium exerts beneficial effects on important to plays vitals roles in plants and 
promote plant growth (Jia et al. 2018; Kamran et al.  2020; Pilon-Smits et al. 2017). 
It is well documented that added at low concentrations of selenium exerts beneficial 
effects regulation of photosynthesis and respiration, increased antioxidant capacity, 
improvement of abiotic stress tolerance, and attracted attention in the alleviation of
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heavy metal toxicities stresses in different plant species (Dai et al. 2019; Duan et al. 
2019; Ulhassan et al. 2019; Wang et al. 2015a, b). Moreover, this devastating sele-
nium could affect crop plant quantity and quality in several plants. Thus, selenium 
is a considerably beneficial element for physiological and biochemical responses in 
different plant species. 

17.1.3 Se Interactions with Cadmium in Plants 

Due to the unfavorable impact on physiological processes such as photosynthesis, 
food absorption, and water balance, plants growing in excess Cadmium display 
stunted growth and development. Selenium can have a significant effect on toler-
ance to this heavy metal (Hasanuzzaman et al. 2020; Seifikalhor et al. 2020; Wu  
et al. 2013). Selenium’s possible function in reducing heavy metal (particularly 
Cadmium) toxicity in plants has received more attention in recent years. Wan et al. 
found that rice seedlings fed with selenite [Selenium (IV)] and selenate [Selenium 
(VI)] had lower root-to-shoot Cadmium translocation. In plants, Selenium may 
interact with Cadmium to produce a stable Selenium-Cadmium complex (Ryant 
et al. 2020; Xia et al. 2020; Zohra et al. 2021; Zwolak  2020). In Brassica juncea 
L., Ahmad et al. discovered that applying Selenium (IV) reduced lipid peroxidation 
and Cadmium absorption, transport, and distribution while minimizing the Cadmium 
oxidant impact (Hossain et al. 2021; Zohra et al. 2021). Lin et al. also discovered that 
Selenium (IV) can limit the availability of Cadmium. Under Cadmium stress, Sele-
nium aids in the repair and regeneration of the cell’s structure (cell membrane and 
chloroplast) (Lin et al. 2012). Selenium (IV) addition decreased Cadmium buildup 
and relieving Cadmium toxicity in pepper, according to Feng et al., via increasing 
chlorophyll concentrations and overall antioxidant activity (Feng et al. 2021). These 
findings show that Selenium, particularly Selenium (IV) and Selenium (VI), has posi-
tive effects in plants under Cadmium stress. In the environment, there are several types 
of Selenium. Under a well-drained mineral environment, Selenium (IV) is the major 
form of Selenium; but, in alkaline and well-oxidized circumstances, Selenium (VI) 
is the dominating species (Medrano-Macías et al. 2018; Riaz et al. 2021a, b; Rizwan  
et al. 2020). Organic forms of Selenium account for a significant portion of the Sele-
nium in soil. Because organic Selenium is quickly absorbed by plant roots, even low 
amounts of organic Selenium in the soil are significant (Ryant et al. 2020; White 
2018). According to Schiavon et al., wheat and canola absorb selenomethionine 
(SeleniumMet) 20 times faster than Selenium (VI) or Selenium (VII) (IV) (Malagoli 
et al. 2015). Nano-selenium, which is employed in agriculture, medicinal therapy, and 
Selenium fertilization, has received a lot of interest in recent years (Chakraborty et al. 
2021; El-Ramady et al. 2015, 2020). The reduction of Selenium oxyanions results 
in Nano-sized elemental Selenium (selenium nanoparticles, Selenium NPs). Nano-
selenium, which is employed in agricultural areas, medicinal therapy, and Selenium 
fertilization, has gotten a lot of interest in recent years (Medrano-Macías et al. 2018; 
Zohra et al. 2021). In the environment, Nano-sized elemental Selenium (selenium
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nanoparticles, Selenium NPs) generated by the reduction of Selenium oxyanions via 
biotic or abiotic routes are abundant. In the roots and shoots, plants absorb Nano-
selenium and convert it to inorganic Selenium molecules like Selenium (IV) and 
Selenium (VI). At the whole-plant level, Selenium (IV) and Selenium (VI) signifi-
cantly decrease Cadmium absorption; nevertheless, the mechanisms that ameliorate 
Cadmium stress remain unexplored (Hasanuzzaman et al. 2020; Ismael et al. 2019a; 
Rizwan et al. 2020; White 2018). Furthermore, the Selenium species implicated in 
successful Cadmium phytotoxicity mitigation are unclear. 

The addition of selenium (VI) did not cause a significant change in root cadmium 
level, but it did cause a decrease in shoot Cadmium content. Yu et al. also found that 
Selenium (IV) decreased Cadmium levels in Pakchoi shoots whereas Selenium (VI) 
enhanced it. Both Selenium (IV) and Selenium (VI) decreased Cadmium absorption 
in tomato, according to Alves et al. (Solanum lycopersicum L.) (Adnan 2020; El-
Ramady et al. 2015; Hasanuzzaman et al. 2020; Ismael et al. 2019a; Riaz et al. 2021a, 
b). These findings indicate that the particular impact is dependent on Cadmium 
dose, plant species, and Selenium species. The positive impact of selenium was 
strongly connected to the reduction in Cadmium absorption or translocation towards 
the shoots, whereas roots function as a barrier against Cadmium translocation (Xia 
et al. 2020; Yin et al. 2019; Zhou et al. 2020; Zohra et al. 2021; Zwolak  2020). 

Cd exposure causes the buildup of thiol compounds in living organisms, according 
to several lines of evidence. Thiol sulphydryl groups (e.g. GSH) may bind to HMs like 
Cd, resulting in effective metal sequestration. Previous research has shown demon-
strated that intolerant plants’ activity of γ-glutamyl-cysteine synthase, a rate-limiting 
enzyme in GSH metabolism, is lower than that of sensitive plants (Zagorchev et al. 
2013). Cd sensitivity was also seen in transgenic Arabidopsis plants with bacterial 
γ-glutamyl-cysteine synthetase (Xiang et al. 2001). These data lead us to believe that 
different plants’ Cd tolerance is based on distinct processes. Abiotic stresses such 
as Cd shock may cause GSH to “transiently” rise. Plants, on the other hand, use a 
variety of ways to commit high Cd levels. The system that prevents Cd absorption 
or translocation in plants is one example. Cd penetrates plants primarily through 
root epidermal cells at the cellular level. This entry is associated with three well-
known steps: I Cd exchange with H2CO3

−released H+, (ii) recruitment of Fe2+, Zn2+ 

(belonging to ZIP family transporters) such as Yellow Stripe 1-Lik (YSL) protein and 
Ca2+ channels, and (iii) formation of metal–ligand complexes with mugineic acids 
(MA) in soil, and (iv) authorization for entrance (Seifikalhor et al. 2020) (Fig. 17.2).

17.1.4 Selenium Roles to Mitigate Cadmium Toxicity 

Selenium reduces Cadmium’s buildup and relieves the symptoms of this harmful 
heavy metal poisoning and plant growth inhibition. Plants have a variety of processes 
that might be involved in heavy metal detoxification (Adnan 2020; Lin et al. 2012). 
These systems appear to be engaged mainly in preventing toxic concentrations from 
building up at sensitive areas inside roots, reducing harmful consequences. The
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Fig. 17.2 Se’s regulating role in plant cells under Cd stress is depicted schematically. Se is engaged 
in a variety of metabolic and molecular activities (black arrows and lines), and the cell’s Se content 
is affected by a variety of routes (red arrows)

hydroponic experiment revealed that most of the Selenium absorbed by plants was 
stored in the roots (White 2018; Wu et al.  2013; Zhou et al. 2020; Zohra et al. 2021; 
Zwolak 2020). According to several studies, Selenium is inadequately translocated 
to shoots in selenite-treated plants. 

Meanwhile, compared to Cadmium-alone treatment, all plants grown on Cadmium 
+ Selenium media revealed a typical response pattern that reduced Cadmium levels 
in both leaves and roots (Rizwan et al. 2020; Ryant et al. 2020; Seifikalhor et al. 
2020). Cadmium fluorescence location and intensity show that Selenium signifi-
cantly reduced Cadmium accumulation in the roots of Cadmium-treated rice plants. 
Different studies show that Hg- and Selenium-containing protein complex forms and 
is present in plant roots. This compound is sturdy enough to prevent mercury from 
reaching the plant’s aerial components (Adnan 2020; El-Ramady et al. 2020). Sele-
nium ions are thought to be co-transported with Cadmium ions by the same protein 
carriers, resulting in a reduction in Cadmium at metabolically active membrane 
regions. Both Cadmium and Selenium are attached to thiol groups of cysteine, 
an amino acid found in specific proteins, according to Filek et al. (2008). As a 
result, competition for specific protein binding sites may explain some of the lower 
Cadmium absorption and Selenium’s protective impact against Cadmium toxicity.
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The addition of 3 μM Selenium to 50 μM Cadmium resulted in a significant increase 
in the Cadmium-induced reduction in plant growth, as measured by the SPAD value, 
plant height, root length, and biomass (Filek et al. 2008; Hasanuzzaman et al. 2020; 
White 2018). According to Pennanen et al. (2002) Selenium promotes plant develop-
ment via increasing starch accumulation. In the chloroplast, Selenium is assimilated, 
which needs reducing power from NADPH and GSH. This can change the redox 
status of chloroplasts, impacting biomass production (Sieprawska et al. 2015a, b). 
The current findings show that Selenium may effectively relieve Cadmium-induced 
growth inhibition as well as the symptoms of chlorosis and necrosis on leaves, 
suggesting that low micromoles of Selenium might have positive effects on plants, 
even though Selenium is poisonous at significant concentrations (Chakraborty et al. 
2021; Feng et al. 2021; Hossain et al. 2021; Riaz et al. 2021a, b; Zhou et al. 2020; 
Zohra et al. 2021; Zwolak  2020). 

Selenium has also been used as a soil additive to decrease Cadmium toxicity 
in various plant species at various Cadmium concentrations. When Selenium was 
administered to plants growing under Cadmium stress, the Cadmium content in 
Chinese cabbage (Brassica rapa) and lettuce (Lactuca sativa L.) reduced dramat-
ically, but several good mineral elements were concentrated, such as Mn and Mg 
rose to some amount (Hu et al. 2014; Sillanpää et al. 1992). The soil application 
of Selenium to Brassica juncea reversed the unfavorable effects of Cadmium and 
increased plant growth, relative water content (RWC), pigment content, and protein 
content (Pedrero et al. 2008). Selenium may also reduce the buildup of H2O2 and 
lipid peroxidation, boost the activity of antioxidant enzymes like CAT and APX, and 
regulate Cadmium accumulation in roots and shoots. When Selenium was applied 
to wheat under Cadmium stress, it reduced ethylene levels and increased proline 
accumulation and the activities of glutathione reductase (GR) and glutathione perox-
idase (GPX), alleviating Cadmium-induced oxidative stress. Selenium substantially 
decreased Cadmium accumulation in Cadmium-treated pepper plants and enhanced 
fruit number, fruit diameter, and fruit output per plant in Cadmium-treated plants. 
When Selenium was given to the Cadmium-treated plants, the pepper fruits’ chloro-
phyll contents and total antioxidant activity increased (Khan et al. 2015; Sun et al. 
2013). 

Abiotic and biotic stressors both include oxidative stress. A major cell imbalance 
between ROS generation, such as O2•, •OH, and H2O2, and antioxidative enzymes 
causes this process, leading to catastrophic physiological problems. Higher lipid 
peroxidation in plant cells might cause Cadmium harm, as seen by increased MDA 
levels. Several studies have shown that Selenium reduces oxidative stress caused 
by Cadmium, as seen by lower levels of O2 

•, H2O2, and MDA (Qi et al. 2021; Wu  
et al. 2020). ROS can cause peroxidation and degradation of the lipid bilayer of 
the cell membrane, which has an impact on cell function (El-Ramady et al. 2015; 
Hossain et al. 2021; White 2018). Plant cell membranes are one of the initial targets 
for various stressors and maintaining membrane integrity and stability is critical for 
stress tolerance. The cell viability results in roots match those of Cadmium stress-
induced ROS measurements. It is conceivable that a fraction of the oxidative radicals 
is eliminated non-enzymatically in the presence of Selenium (Tang et al. 2015).
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Selenium has been found to alter the activity of oxidoreductase enzymes in wheat, 
potato, and soybean. Selenium exerts synergistic effects on the transcription of ant 
oxidative enzymes including CuZnSOD and GPX in plants, according to Seppänen 
et al. 2004 Selenium enhances H2O2 scavenging by raising the activity of GPX, which 
was first discovered as an abiotic stress-responsive enzyme. However, additional 
research is needed to identify the role of Selenium in rice’s antioxidative system in 
the case of Cadmium poisoning (Kantola et al. 2004; Mabeyo et al. 2015; Malagoli 
et al. 2015; Sieprawska et al. 2015a, b; Tang et al. 2015). 

17.1.5 Mechanisms of Selenium Strategies Towards 
in Cadmium Toxicity 

In a variety of methods, Selenium can prevent the oxidative damage induced by 
Cadmium. Selenium lowered Cadmium concentrations in the leaves, roots, and stems 
of diverse plants cultivated in a Cadmium-contaminated hydroponic culture, restored 
root cell viability, and significantly reduced O2,H2O2, and malondialdehyde accumu-
lation in various plant tissues. It also increased the root H+- and Ca2+-ATPase activity 
in Cadmium-stressed roots (Lin et al. 2012; Medrano-Macías et al. 2018; Seifikalhor 
et al. 2020). Furthermore, Selenium supplementation of Cadmium-treated plants 
decreased PC accumulation in roots but did not affect PC concentration in cucumber 
leaves. Selenium treatments, either alone or in combination with Si, could stimulate 
the efficiency of the GSH–AsA cycle by increasing glutathione (GSH) and ascor-
bate (AsA) concentrations in Chinese cabbage tissues under Cadmium stress, in 
addition to increasing the activities of antioxidant enzymes such as SOD, CAT, and 
APX (Štajn et al. 1997; Wu et al.  2017). Selenium has been shown to boost GSH– 
PC levels in various plants. When exposed to heavy metals, Selenium may protect 
against cadmium toxicity by raising the concentration of GSH–PCs, implying that 
Selenium may protect against cadmium toxicity by increasing the concentration of 
GSH–PCs. In the case of rapeseed seedlings, similar conclusions were also found (Li 
et al. 2016). In an in vitro experiment, chloroplasts from rape leaves were cultivated 
and given 2.0 mM Na2SeO4 and/or 400 mM CadmiumCl2, and selenium was shown 
to partially counteract the harmful effects of cadmium, resulting in an increase in 
chloroplast size and rebuilding of the chloroplast ultrastructure (Das et al. 2018; Van  
Puymbroeck et al. 1982). 

Generally, the effect of Selenium on cadmium uptake was discovered to be depen-
dent on the degree of cadmium contamination. Thus, at low cadmium concentrations, 
Selenium might inhibit Cadmium absorption in plants and increase biomass; but, at 
high cadmium concentrations, the addition of selenium enhanced cadmium uptake 
and negatively impacted plant development, particularly at high Selenium concen-
trations. Nonetheless, selenium improved the absorption of other nutrients, including 
Ca, Mg, Mn, Cu, and Zn in both circumstances, but cadmium alone inhibited their 
uptake (El-Ramady et al. 2015; Malagoli et al. 2015; Medrano-Macías et al. 2018;
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Ryant et al. 2020). In a study comparing the effects of various forms of Selenium on 
cadmium uptake in plants over time, selenite boosted cadmium uptake after short-
term exposure, but selenate did not affect cadmium flow, ruling out any potential 
rivalry between selenium and cadmium on the root surface. Indeed, the root cells 
take up cadmium and selenate (selenite) through ZIP and sulfate (phosphate) trans-
porters, respectively, indicating that they do not use the same transporters (Ismael 
et al. 2019b). However, when the culture time was extended, selenium appeared to 
diminish cadmium absorption by roots and root-to-shoot translocation, which was 
more noticeable at higher Selenium concentrations. As a result, selenium inhibits 
cadmium absorption and translocation to higher plant tissues and the toxic symp-
toms associated with it. Selenium has multiple hypothesized methods to decrease 
cadmium-induced oxidative damage due to its diverse positive activities in plants. 
Although certain postulated functions are supported by evidence in most publica-
tions, other possibilities cannot be ruled out (Gupta et al. 2016; Khan et al. 2015; Li  
et al. 2016; Mabeyo et al. 2015; Malagoli et al. 2015; Sieprawska et al. 2015a, b; 
Tang et al. 2015). 

Aside from the chemical functions that selenium may play in cadmium absorption, 
translocation, and sequestration, selenium has a significant capacity to interact with 
heavy metals including cadmium, Hg, Ag, and Tl to form complexes that are not 
accessible for uptake. When selenium is given to soil or hydroponic culture that has 
been polluted with cadmium, one probable mechanism is that it binds the Cadmium 
and converts it into other forms that are not available for absorption, reducing the 
amount of Cadmium in plant tissues. Short-term exposure to selenite or selenate 
(60 min) modestly increased Cadmium inflow in roots and accelerated Cadmium 
uptake, suggesting that Selenium and Cadmium do not compete for absorption on 
the root surface. The inclusion of Selenium in the culture solution, on the other hand, 
lowers Cadmium absorption when the culture duration is increased (Adnan 2020; 
Ali et al. 2020; Yin et al. 2019). 

In general, there is little research on the effect of Selenium on Cadmium toxi-
city in plants at the molecular level, including how it changes the expression levels 
of genes involved in Cadmium absorption and processing. However, a few reports 
may be expanded upon to help us better comprehend this critical point. When plants 
suspension cells were exposed to Cadmium in the presence or absence of Selenium, 
the Selenium-pretreated plant cells had lower expression levels of the OsLCT1, 
OsNramp5, OsNramp1, OsIRT1, and OsIRT2 genes, as well as decreased Cadmium 
absorption. These data suggest that Selenium inhibits the expression of OsLCT1, 
OsNramp5, OsNramp1, OsIRT1, and OsIRT2 in cells, lowering Cadmium absorp-
tion. However, when the Cadmium content in the medium rose, the expression level 
of OsHMA3 increased dramatically in the Selenium-pretreated cells, but no notice-
able changes in OsHMA3 expression were seen in the cells lacking Selenium (Cui 
et al. 2018; Wang et al. 2020). This finding suggests that adding Selenium to plant 
cells increased OsHMA3 overexpression, which improved their tolerance to toxic 
cadmium (Cui et al. 2018). 

Cadmium is mainly linked to S-containing ligands such MTs, GSH, and PCs, 
which are involved in heavy metal sequestration and detoxification. Selenium can
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trigger GSH–PCs biosynthesis in a variety of plants that have been exposed to heavy 
metals (Rana et al. 1996). This suggests that Selenium may protect against cadmium 
toxicity by raising the concentration of GSH–PCs. Selenium also increased plant 
tolerance to Cadmium by upregulating PCS1 expression in B. napus leaves under 
cadmium stress. Even though the cadmium concentration in the Selenium-treated 
plants was more significant than in the non-treated plants, this cadmium toler-
ance improved plant development. Selenium also increased IRT1 expression in root 
tissues, resulting in increased Cadmium absorption by the roots, which was in line 
with the elevated cadmium level in the roots of Selenium-treated plants compared to 
cadmium-only plants(Ismael et al. 2018). Furthermore, Selenium treatment increased 
cadmium root-to-shoot translocation by upregulating the HMA2 and HMA3 genes. 

17.1.6 Optimal Dosages of Selenium Reduce the Levels 
of ROS 

The current method for applying Selenium fertilizer as a foliar spray or a base fertil-
izer has been utilized to boost Selenium content in the edible section of crops while 
also counteracting the damage caused by various environmental conditions. For 
instance, Waisberg et al. (2004) discovered that adding selenite to lettuce (Lactuca 
sativa L.) plants exposed to Pb and Cadmium reduced the accumulation of these 
heavy metals while increasing the absorption of some critical elements, including 
Selenium, in a field experiment. However, while employing this technique, the ques-
tion of what is the ideal Selenium dose frequently arises (Waisberg et al. 2004). 
Selenium has a two-fold influence on plant growth. It may boost plant develop-
ment and neutralize many forms of environmental stressors, including HM, at low 
concentrations, but it can also function as a pro-oxidant and harm plants in excessive 
quantities. In ryegrass (Lolium perenne), 1 mg/ kg Selenium (H2SeO4) injected into 
the soil was thought to be mildly hazardous (Luo et al. 2011).Selenium can affect 
the formation and quenching of ROS either directly or indirectly through antioxi-
dant regulation. The modulation of ROS levels by Selenium might be an important 
strategy for plants to combat environmental stress. Under normal circumstances, 
ROS generation in plant cells is kept to a minimum, i.e. less than 240 M s−1 O2 

• 

and 0.5 M H2O2 in chloroplasts. In plants exposed to a variety of environmental 
challenges, a modest addition of Selenium to the growth substrates can minimize 
excess ROS production, particularly O2 

• and/or H2O2(El-Ramady et al. 2015; Filek 
et al. 2008; Kantola et al. 2004; Sun et al. 2013; White 2018). Selenite relieved Al-
induced oxidative stress in ryegrass roots, according to Cartes et al. (2010), mostly 
via increasing the spontaneous dismutation of O2 

• to H2O 
2(Cartes et al. 2011). Mroczek-Zdyrska and Wójcik (2012) discovered that a 

modest dose of Selenium (1.5 M Na2SeO3) reduced O2 
• levels in Pb-exposed Vicia 

faba L. roots(Mroczek-Zdyrska et al. 2012). The addition of 2 M Selenium (Na2SeO4) 
to rape (Brassica napus) seedlings subjected to 400 or 600 M Cadmium was shown
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to reduce H2O2 buildup in the plant’s shoots and roots in one experiment (Sieprawska 
et al. 2015b). Reduced ROS levels in plants exposed to other stresses, such as grain 
sorghum (Sorghum bicolor (L.) seedlings exposed to high temperature (O2 and 
H2O2) (Na2SeO4), wheat (Triticum aestivum L., cv) seedlings exposed to UV-B 
radiation stress (O2 

•) (Na2SeO3) and cold stress (O2 
•) (Na2SeO (H2O2).The spon-

taneous dismutation of O2 
• into H2O2 (without catalysis by the SOD enzyme), the 

direct quenching of O2 
• and OH by Selenium compounds, and the control of antiox-

idative enzymes have all been postulated as probable reasons for the drop in O2 
• 

levels when suitable amounts of Selenium were administered. 

17.1.7 Conclusion and Prospects 

Cadmium is a common contamination that is very hazardous to the environment, 
making it the third most dangerous contaminant (after mercury and lead). Cadmium 
has negative health effects on humans and is the only metal that causes health hazards 
to both people and animals at non-phytotoxic plant tissue quantities. Uptake by roots, 
loading to xylem, translocation to shoots, and lastly phloem transfer to seeds are the 
four primary phases for cadmium, like other heavy metals, to reach upper plant parts 
such as leaves and fruits. Cadmium (re)distribution between roots and shoots is a 
dynamic process mediated by metal transporters at the plasma membrane of the root, 
xylem loading/unloading, and phloem loading/unloading. These mechanisms involve 
many channels and metal transporters, which require a thorough understanding to 
manipulate cadmium translocation/accumulation in various plant tissues, including 
seeds, which are critical in the food chain. Cadmium stress inhibits plant develop-
ment through various causes, including reduced water and nutrient intake, photo-
synthesis, carbon and nitrogen assimilation, oxidative damage, and so on. Essential 
plant nutrients have been shown to reduce Cadmium toxicity in plants and regulate 
the accumulation of cadmium and other heavy metals in their edible sections. Many 
mechanisms for reducing cadmium toxicity in plants using trace levels of Selenium 
have been proposed, including (i) regulating reactive oxygen species and enzymatic 
and non-enzymatic activities; (ii) inhibiting Cadmium uptake and translocation and 
manipulating its fractions in plant cells; (iii) rebuilding damaged cell membranes, 
chloroplast structures, and components of the photosynthetic system damaged by 
Cadmium; and (iv) regulating essential element uptake. Selenium can change the 
expression level of various genes involved in the absorption, translocation, and detox-
ification of Cadmium at the molecular level, albeit this has received little attention 
and requires further research.
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Chapter 18 
Synthesis and Applications of Cellulose 
Nanomaterials Derived 
from Agricultural Waste and Byproducts 

Amira A. Ibrahim , Sawsan Abd-Ellatif, El-Sayed S. Abdel Razik, 
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Khaled F. M. Salem , and Mohamed F. M. Salem 

Abstract Cellulose is widely used as a renewable natural polymer for the prepara-
tion of various kinds of nanomaterials. Aside from being a nanostructured material, 
it has also other characteristics in producing different kinds of nanomaterials. Aside 
from bacterial nano cellulose, cellulose is also a bio-available source of cellulose.
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This chapter discusses its various structural characteristics to analyze the main struc-
tural features of nano cellulose. It shows that these materials have attractive and 
effective characteristics. The lateral portion of nano crystallites of cellulose is the 
same as that of elementary nanofibrils, though its length can vary from 50 to 200 nm. 
Heterogeneous acid hydrolysis is a process that involves the use of enzymes to 
increase the cellulose’s micro and nanoparticles’ crystallinity. It can also produce 
higher-quality aggregates. This chapter also covers various experimental procedures 
for the production of cellulose nanomaterials and the uses of nano-cellulose. 

Keywords Cellulose nanocrystals · Characterization · Nanocellulose nanofibrils 
application 

18.1 Introduction 

Cellulose is the primary component of the plant cell wall. It can be extracted from 
various sources, such as wood, algae, fungi and bacteria. The plant cell wall also 
contains hemicellulose, lignin and small amounts of extractives (Chen et al. 2015). 
Due to their energy-efficient nature, agricultural byproducts are more advantageous 
in terms of processing than their counterparts. Although cellulose has been used in 
high-value-added applications, its hygroscopic nature makes it hard to perform these 
tasks and is suitable for many high-end processes (Zhang et al. 2022). 

Due to its renewable nature and its various advantages, nano cellulose has gained 
increasing attention in the fields of biomedical engineering and materials science. 
Its various applications include biocompatibility, flexible electronic components and 
medical devices. Although various methods have been proposed for the production 
of nano cellulose, the commercial process still involves harsh chemicals. This is 
the reason why the process should be developed as a sustainable and environment-
friendly one (Cindradewi et al. 2021; Hofmann and Reid 1929). 

Numerous studies have been published in the field of nano cellulose (Das et al. 
2022a, b; Hoenders et al. 2018; Oprea and Panaitescu 2020; Zeng et al. 2020). These 
studies mainly focused on the various aspects of nano cellulose production and its 
applications. It is usually necessary to carry out a detailed study to analyze the various 
steps involved in the cellulose extraction process. Due to the increasing importance 
of green and sustainable materials in the production of various high-value products, 
this field has gained widespread acceptance (Nehra and Chauhan 2021). This field 
of research has garnered the interest of various individuals and industries due to the
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potential of these materials to be used as an alternative energy source and a way to 
reduce greenhouse gas emissions. 

Among the promising candidates for the abundant availability of resources are 
starch, cellulose, chitin, gelatin and chitosan. Among these, cellulose is the most 
abundant renewable compound. Cellulose is a fascinating polymer that has the poten-
tial to be used in various industrial applications. Its inexhaustive nature makes it an 
ideal source of raw materials (Siqueira et al. 2019). The properties of cellulose can 
be further enhanced by bundling them together, which can generate highly ordered 
regions. These materials are then considered nano-particles. These materials are 
abundant and renewable and they have various characteristics such as low thermal 
conductivity, high strength and low density (Ho et al. 2020). 

Usually, nano cellulose can be divided into two main classes: nanostructured 
materials and nanofibers. The former can be made up of cellulose microcrystals and 
nanofibrils, while the latter can be derived from bacterial cellulose. The character-
istics of nano cellulose vary depending on its origin and processing conditions (Yu 
and Yan 2017). For instance, the size and morphology of nano cellulose are related 
to the origin and processing conditions. The advantages of nano cellulose in terms 
of its physical and chemical properties, as well as its 3D hierarchical structure, have 
numerous applications in various industries (Siqueira et al. 2019; Yu et al.  2020). 
The increasing demand for nano cellulose has led to the creation of new jobs in the 
field of nano cellulose. 

With its numerous industrial applications, nano cellulose has the potential to trans-
form many industries. Its versatile properties can be utilized in various fields such as 
biomedical products, food coatings and various other industries (Yu et al. 2020). The 
search for novel applications and improving properties of nano cellulose-based prod-
ucts are driving forces for R&D in various research groups. Several literature reviews 
have been published in the last few years that mainly focused on the production and 
their modification (Yu and Yan 2017; Siqueira et al. 2019; Zhang et al. 2020; Zheng 
et al. 2020). This chapter presents an overview of cellulose including its structure and 
source, nomenclature and types, methods of preparation, characterization, properties 
and applications. 

18.2 Source of Cellulose 

Agricultural residues, water plants, grasses, and other plant substances are all sources 
of cellulose. They contain hemicelluloses, lignins, and tiny amounts of extractives 
in addition to cellulose (Hon 1996; Seddiqi et al. 2021) (Table 18.1). Commercial 
cellulose manufacturing focuses on either harvested sources like wood or naturally 
pure supplies like cotton. Several bacteria from the genera Acetobacter, Agrobac-
terium, Sarcina and Rhizobium produce cellulose, which is becoming increasingly 
important (Jonas and Farah 1998; Tarchevsky and Marchenko 1991). Bacterial cellu-
lose (BC) is often very pure (no lignin or hemicelluloses), very crystalline and has a 
high degree of polymerization (DP).
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Table 18.1 Degree of polymerization of cellulose from various sources 

Source Type Degree of polymerization References 

Algae 2500–4300 Guo et al. (2017), Hallac 
and Ragauskas (2011) 

Bacteria 7000–16,000 Hallac and Ragauskas 
(2011), Tahara et al. (1997) 

Wood Wood from various species 6000–10,000 Hallac and Ragauskas 
(2011) 

Wood pulp 2000–4000 Henriksson et al. (2007), 
Sehaqui et al. (2011), 
Shimizu et al. (2016), 
Sjöström and Westermark 
(1999) 

Wood Cellulose nanofibers 
(CNF) 

250–3500 Benítez and Walther 
(2017), Guo et al. (2017), 
Henriksson et al. (2007, 
2008), Kurihara and Isogai 
(2015), Shinoda et al. 
(2012) 

Plants Cotton 10,000–15,000 Hallac and Ragauskas 
(2011), Kumar et al. (2009) 

Corn 1700 Xu et al. (2009) 

Wheat straw 2600 Jahan and Mun (2009) 

Jute 1900 Jahan and Mun (2009) 

Bagasse 1000 Hallac and Ragauskas 
(2011) 

Corn stover 2500 Hallac and Ragauskas 
(2011) 

Corn kernel 1700 Hallac and Ragauskas 
(2011) 

Tunicate 700–3500 Šturcová et al. (2005), 
Zhao and Li (2014), Zhao 
et al. (2015) 

Wood Wood from various species 6000–10,000 Hallac and Ragauskas 
(2011) 

Wood pulp 2000–4000 Henriksson et al. (2007), 
Sehaqui et al. (2011), 
Shimizu et al. (2016), 
Sjöström and Westermark 
(1999)

(continued)
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Table 18.1 (continued)

Source Type Degree of polymerization References

Wood Cellulose nanofibers 
(CNF) 

250–3500 Benítez and Walther 
(2017), Guo et al. (2017), 
Henriksson et al. (2007, 
2008), Kurihara and Isogai 
(2015), Shinoda et al. 
(2012) 

Source Seddiqi et al. (2021) 

Algae (Valonia ventricosa, Chaetamorpha melagonicum) are other sources of 
high-crystallinity cellulose that have been used to investigate the polymorphs of the 
biopolymer. Valonia cellulose can also be present in fungal cell walls. There are also 
various animal-derived celluloses, one of which, Tunican, a cell wall component of 
ascidians, has been extensively researched. 

18.2.1 Cellulose Derived from Traditional Sources 

18.2.1.1 Wood 

The production of wood via the biogenesis of cell walls proceeds in aqueous envi-
ronments, while the cell wall’s main component, cellulose, has insoluble in water. 
A hierarchical assembly (Fig. 18.1) overcomes the fundamental incompatibility 
between buckle-like and rod-like cellulose fibers, using hemicelluloses combine at 
the cellulose/lignin contact.

To release cellulose fibers, so-called pulping methods must be applied either 
mechanically or chemically. Before being split to fibrous material through abrasive 
refinement or grinding, mechanical pulping includes treating wood with steam. To 
dissolve the lignin and other compounds of the plant’s material, chemical pulping 
is mainly dependent on chemical reactants and heat and mechanical refinement for 
separating the fibers. These two techniques are mostly used to manufacture fiber 
material industrially (Sixta 2006). The worldwide yearly pulp production in 2010 
came to almost 4 to 108 tones (Toland et al. 2002). 

18.2.1.2 Cotton Linters 

Cotton (Gossypium spp.) is an annual shrub that grows in the subtropical and trop-
ical regions of the world, both north and south of the equator. The seed capsules of 
cotton blossoms contain 30–40 oil-containing seeds. Each cottonseed can produce 
anywhere from 5000 to 20,000 single seed hairs, or cotton fibers (Baumwollbörse
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Fig. 18.1 Structure of elementary fiber and simplified cellulose organization in hierarchical order 
from wood to the cell wall. Source Nasir et al. (2017a, b)

2008) (Fig. 18.2).Lint and linter are two different types of lint. The long-fiber popu-
lation is represented by lint (staple cotton). Cotton linter is the short and thick-walled 
fibers of the fuzz (Temming et al. 1973). 

Fig. 18.2 The anatomy of the developing cotton seed and fruit. (A) A schematic representation of 
developing cotton seed. (B) A longitudinal section of a cotton fruit at 6 d after anthesis (DAA). 
Note the young fibers from the seed epidermis inside the fruit. Bar ¼ 0.5 cm. (C) A fully mature 
cotton fruit at about 60 DAA, showing massive amounts of long fibers. Seeds are covered by fibers. 
Bar ¼ 1.3 cm. Abbreviations: e, endosperm and embryo; f, fiber; isc, inner seed coat; osc, outer 
seed coat; s, seed; v, vascular bundle. Source Ruan (2005)
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Cotton linter typically contains 80% cellulose on a bone-dry basis (Rafiq 
Chaudhry and Guitchounts 2003; Temming et al. 1973). The inherent and non-natural 
contaminations in cotton linter cellulose are eliminated using a bleaching process, 
resulting in cellulose of extremely high purity. Bleaching is a series of mechanical and 
chemical cleaning procedures. After the bales are opened, they are cleaned to elim-
inate physical contaminants such as field litter (through dry cleaning), sand, stones 
and seed hulls (via wet cleaning). Natural contaminants such as pectin, proteins and 
lipids are reduced as a result of wet cleaning. The digestion of caustic soda is the 
first stage of chemical purification. Fats and waxes are saponified, while breakdown 
products, pectin and proteins are dissolved in an alkaline media. 

Purified cotton linter has a high DP (when compared to most wood pulps) and 
is distinguished by its high purity, high a-cellulose content and high crystallinity. 
They are lignin-free and have a low number of carbonyl and carboxyl groups. As a 
result, using cotton linter in cellulose chemistry produces excellent yields, products 
that are resistant to light, heat and aging (for cellulose acetates) and derivatives that 
create clear, transparent and colorless high viscosity solutions. In the case of fiber 
manufacturing, the dissolved biopolymer has good filterability and spinnability, when 
using the cuprammonium and viscose process (Heinze et al. 2018). 

18.2.1.3 Alternative Sources of Cellulose: Sisal and Agricultural Residues 

The driving force behind the growing interest in the extraction of cellulose from ligno-
cellulosic by-products in agriculture is clear: the demand for wood in the construc-
tion, furniture, fiber, pulp and paper industries is growing from 1 up to 2% per year 
(Chandra 1998). Agricultural by-products, such as rice and wheat straw, corn cobs 
and bagasse, are generated in very large quantities, which represent an environmental 
and health problem, for example, when they are burned on the surface. Outdoor land 
is, on a large scale, an economic asset, if converted into material of greater economic 
value, for example, cellulose, animal feed and biofuels. 

18.3 Structure of Cellulose 

18.3.1 Cellulose Chemical Structure 

Cellulose is a linear homopolymer consisting of D-glucopyranose units (also known 
as anhydrous glucose and glucopyranose units but often abbreviated AGU) linked 
by β1,4 glycosidic linkages. It mainly contains carbon (44.44%), hydrogen (6.17%) 
and oxygen (49.39%). The chemical formula of cellulose is (C6H10O5)n; n, called 
the degree of polymerization (DP), which represents the number of glucose groups, 
ranging from hundreds to thousands or even tens of thousands. During the twentieth 
century, it was shown that cellulose consists of purified repeating units of dehydrated
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Fig. 18.3 Schematic representation of cellulose structures from resources to molecular level. 
Source Tavakolian et al. (2020) 

D-glucose, as shown in Fig. 18.3 and that the repeating units of cellulose are called 
cellobiose (Zugenmaier 2001). 

In the β-anomer, the hydroxyl group at C1 is located at the equatorial position, 
while in the α-anomer, the hydroxyl group is located at the axial position. The relative 
stability of the two anomers depends on the environment (Clayden et al. 2001). 

Sodium hydroxide solution of different concentrations and temperatures can 
dissolve cellulose of different DP. According to the different solubility under certain 
conditions, cellulose can be divided into three categories: (1) α-cellulose, which is 
dissolved in 16.5% NaOH at 20 °C, (2) β-cellulose, which separates the acid solution 
and the remaining alkaline solution after neutralization Extraction and (3) gamma 
cellulose, which is a soluble residue in the neutralization solution. Staudinger uses the 
viscosity method to measure the DP of these three celluloses. The results showed that 
the DPs of α-cellulose, β-cellulose and γ-cellulose were greater than 200, 10–200 
and less than 10, respectively. The industry usually uses α-cellulose to express the 
purity of cellulose. Traditionally, β-cellulose and γ-cellulose are collectively referred 
to as industrial hemicellulose. Whole cellulose refers to all carbohydrates in natural 
cellulose materials and is also the sum of cellulose and hemicellulose (Shuhui 2001). 

18.3.2 Cellulose Physical Structure 

The physical structure of cellulose refers to the spatial arrangement of structural 
units of various scales, including the chain structure and aggregation structure of 
polymers. Chain structure, also called primary structure, represents the geometric 
arrangement of atoms or groups in a molecular chain. Aggregate structure, also 
known as secondary structure, refers to the internal structure of the entire polymer, 
including crystalline structure, amorphous structure, oriented structure and liquid
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crystal structure. The chain structure of a polymer is the most important structural 
level, which reflects many properties of the polymer, such as melting point, density, 
solubility, viscosity and adhesion. The aggregate structure of the polymer is the main 
factor that determines its performance. Products are made from macromolecular 
compounds (Zhan 2005). 

18.3.2.1 Filament Structure 

Fibril is a small, stretchable unit, these units polymerize and then form the struc-
ture of some natural and synthetic fiber materials (textile fibers, wood or fibrin). 
Also, they form long molecular chains bundled in one direction. Due to the different 
sizes of fibril aggregates, current terms include elemental fibrils, micro and macro 
filaments (microfilament bundles). Natural cellulose has 10,000 glucose units and 
fibrils contain approximately 60–80 cellulose molecules. Hydrogen bonds are formed 
between adjacent molecules. In a certain area of space, when a certain number is 
reached, hydrogen bonds can be displayed in the X-ray image. This space is called 
the crystalline region, and the rest is called the amorphous region. Microfilaments 
are composed of basic fibrils and have a fixed size. The filament is composed of 
more than one microfilament and its size varies with the source of raw materials or 
processing conditions (Gao and Tang 1996). 

18.3.2.2 Aggregation Structure 

The aggregation state of cellulose, also known as the supramolecular structure of 
cellulose, mainly refers to how the cellulose molecules are arranged to form a crys-
talline and amorphous structure and then the basic fibril, fibril and microfiber struc-
ture. X-ray diffraction studies have shown that in the aggregates of cellulose macro-
molecules, the molecules are regularly arranged according to the crystal structure 
and have a clear X-ray pattern, which makes the cellulose density in the crystalline 
region high (1.588 gcm3). The molecular chains in the amorphous region are arranged 
irregularly and loosely, which makes the distance between the molecules large. The 
density of cellulose in the amorphous region is lower at 1,500 gcm3. However, the 
molecular chain is almost parallel to the main axis of cellulose. The crystallinity of 
cellulose, usually between 30 and 80%, refers to the percentage of all cellulose taken 
up in the crystallization zone (Shuhui 2001). Cellulose crystals are polymorphic. 
There are five crystal forms of solid cellulose and its properties can be reflected by 
the properties of its unit cell. Cellulose crystals can be transformed into many crystal 
variants under certain conditions. Type I is the crystalline form of natural cellulose. 
Type II, Type III, Type IV and Type X are those crystal forms of artificial cellulose 
under artificial processing. The generally accepted type I-unit cell structure is the 
monoclinic unit cell model introduced by Meyer and Misch in 1937 (Zhan 2005). 

It was first discovered by Payen in 1965 and is widely used as a mechanical 
strength-promoting substance (Barja 2021; Zhang et al. 2020). Its derivatives are
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widely used in various industries. Production of cellulose biopolymers is usually 
limited to 6109 tons annually. Although cellulose is a crystalline structure, its crys-
tallinity is imperfect. This means that a portion of the cellulose chain is less ordered 
than the ordered regions. The degree of crystallinity depends on the origin and isola-
tion method. Hemicellulose and lignin are the main components of cellulose, which 
is bound together by microfibrils. These microfibrils have a width of 10 to 50 m (He 
et al. 2016; Meng et al. 2016). 

Cellulose is an abundant organic material on earth that has renewability, 
biodegradability and non-toxicity. It is produced by photosynthesis. Various sources 
of cellulose include algae, fungi, marine animals, and bacteria. These include biomass 
from lignocellulosic forests. Cellulose has multiple structural levels as shown in 
Fig. 18.4. Its chain length is determined by the number of glucose units. Individual 
cellulose chains are assembled through van der Waals forces and hydrogen bonding 
(Köklükaya et al. 2017). These components then join into micro-fibrillated cellulose. 

Fig. 18.4 a Perspective representation of two-unit cells of cellulose Iβ determined from X-ray and 
neutron diffraction studies. The cellulose chain axis is along the c-direction and the hydrophobic 
facets of the two alternate sheets are stacked along the a-direction. The C, O, and H atoms are repre-
sented as black, red and light gray, respectively, b Hydrogen bonding network with the perspective 
looking down the bc plane. The hydrogen-bonding network contains three hydrogen bonds 2O– 
H···6O (black), 3O–H···5O (blue) and 6O–H···3O (red), c Three possible conformations, tg, gt or 
gg, of the OH group in the exocyclic C6H2OH group are shown on the right glucose unit. The t 
and g characters stand for trans and gauche conformations, respectively. The first italic character 
refers to the relative position between O5 and O6 (O5–C5–C6–O6), and the second italic character 
refers to the relative position between C4 and O6 (C4–C5–C6–O6). χ is the angle between C5–O5 
and C6–O6 bonds and d Cross-section view of a recent 18-chain model for cellulose microfibrils. 
Source Makarem et al. (2019)
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Different sources of cellulose, different isolation methods and different structural 
structures have led to different classifications of the commodity. Due to the rapid 
development of nanotechnology, many studies are focused on the isolation, charac-
terization, and application of nano-cellulose. This bio-based material is mainly used 
as a component of food packaging. There are four polymorphs of cellulose, namely, 
cellulose I, II, III, and IV. The main differences between these four types of cellulose 
are their structure and properties. 

According to the fringe-micelle theory, cellulose is a semicrystalline polymer that 
has several crystalline and amorphous parts. It is formed by the addition of a building 
block unit d-glabranose. The repeating unit in cellulose is composed of two glucose 
molecules known as hydro cellobioses. The disaccharide or DP of native cellulose 
varies depending on the source of the cellulose. Cellulose I is native to the allomorphs 
I and I. It is also known as regenerated cellulose. This type of crystal is stable and 
can be obtained by ammonia treatment (Kumari et al. 2021). 

Cellulose is the most abundant raw material on earth. Its annual production is 
around 1010 t. This resource is mainly utilized in the paper industry. In terms of 
sustainable production, cellulose is the most abundant raw material on earth (Ho 
et al. 2020; Siqueira et al. 2019). It is estimated that the annual production of this 
commodity is around 1010–1011 t. However, only a small portion of this resource is 
used by the industrial sector. 

This biomacromolecule was first extracted by Payen (1938), and its chemical 
structure was revealed by Herman Staudinger in 1941. These groups are involved in 
the production of micro-fibrils that are then formed into macro-fibrils. The properties 
of cellulose are related to the degree of polymerization and the length of the cellulose 
chain (Hoenders et al. 2018). Depending on the source and the extraction procedure, 
its crystallinity can vary from 40 to 70%. It is also prone to react with other groups. 
In contrast, crystalline ones are more resistant to various mechanical and chemical 
treatments. Various sources such as grass, wood, and animal feed can be used as raw 
materials to produce cellulose. A graphical representation of cellulose’s molecular 
structure and properties is shown in Fig. 18.5.

18.4 Nomenclature and Types of Nanocellulose 

Nanoscale technology has become one of the key factors that are driving a new 
industrial revolution in various fields, such as bio nano composites, sensing and 
biosensing. Despite its widely studied nature, nano cellulose has been regarded as 
a promising material in the last two decades. According to numerous widely used 
databases, it has various useful features such as its high surface area to volume ratio, 
low thermal expansion, and biocompatibility (Zhai et al. 2016). 

Nanocellulose is a new family of nanomaterials that has wide applications in 
various materials-related domains. Its various properties can be affected positively. 
At an initial workshop held in Arlington, the terminology for nano cellulose was
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Fig. 18.5 Graphical representation of cellulose’s molecular structure and properties. Source 
Ciolacu (2018)

suggested to avoid confusing the public. For instance, cellulose nanofibrils are 
classified as separate materials from cellulose microfibrils (Wang et al. 2017). 

Although bacterial cellulose is not considered a type of nano cellulose, it is still not 
included in this review. Instead, it is classified into two groups viz., nanocrystalline 
cellulose and nano-fibrillated cellulose (Zhai et al. 2016). To promote the use of 
cellulose nanomaterials, the Technical Association of the Paper Industry established 
a division dedicated to defining the terms for these natural fibers. The organization 
has already established a draft version of a standard that will be used by the industry. 

The first two categories are microcrystalline cellulose and bacterial cellulose. The 
former mainly consists of cellulose nanocrystals and cellulose nanofibril (Fedorov 
et al. 2019). Throughout the last two decades, various groups have been called 
nanocrystals, rods like cellulose crystals, nanorods, cellulose nanoballs and cellulose 
whiskers. These terms have also evolved to include cellulose nanocrystals and nano 
cellulose (Subhedar et al. 2021). 

Nano fibrillates cellulose, often obtained by mechanical processing, is a network 
structure with flexible and long nanofibers. It exhibits low crystallinity and is usually 
obtained using cellulose nanocrystals (CNCs). Cellulose nanofibers (CNF) are 
commonly found in various sources such as animal feed, medical equipment and 
research fields. Although it is known to be a promising biomaterial for biomedical 
applications, its cost-effectiveness is still not known (Wang et al. 2021). 

Due to the increasing interest in the use of nano cellulose as a material for high-
performance biomaterials, the synthesis of nano cellulose has achieved remarkable 
growth. Due to its biodegradable properties, nano cellulose is considered a sustainable 
material. Its various properties vary depending on the process and production method 
used (Mali and Sherje 2022). Positively charged sulfate groups are attached to the 
surface of nano cellulose particles, which prevent the aggregation of these particles in 
aqueous suspensions. Cellulose nanocrystals are different from cellulose nanofibrils.
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These are mainly produced by the disintegration of cellulose fibers into nano-sized 
particles (Nasir et al. 2017a, b). 

Conventional methods to produce bacterial cellulose (BC) and electrospun carbon 
nanofibers (ECNF) are not very successful. This process is now being studied for 
industrial applications. Due to the discovery of various pre-decomposition methods 
that can improve the mechanical separation of CNF, it has become a more widely 
used material (Mali and Sherje 2022). Nanocellulose is a type of cellulose that has a 
diameter of fewer than 100 nm. It can be divided into two categories: (1) nanofibers 
and (2) cellulose nanocrystals. The former has a diameter of less than 100 nm and is 
mainly used as a thickening agent. Individual CNC has a diameter of 3–50 nm and a 
length of 30–1000 nm. Cellulose nanofibers are typically produced through various 
mechanical disintegration methods (Lavoine et al. 2012). 

Due to the high energy consumption of the mechanical process, various chemical 
treatments are conducted to reduce the production cost. These include the use of 
enzymes and TEMPO oxidation. CNF has higher crystallinity and a higher specific 
surface area than plants. Its high aspect ratio and low thermal expansion coefficient 
are also remarkable properties (Ansar et al. 2022). CNF has properties that make 
it a suitable candidate for various applications, such as film, hydrogel and aerogel. 
Depending on the type of machine that one requires, different chemical treatments 
can be used to prepare the CNCs. These machines can only contain crystalline regions 
and have rod-like shapes (Patil et al. 2022). 

Compared to CNFs, CNCs have a larger surface area. Its high mechanical strength 
and ability to self-assemble make it more attractive for surface modification. When 
concentrations of CNCs reach a critical concentration, they will self-organize into 
liquid crystals, which will result in a chiral nematic phase. This phase can be preserved 
through the evaporation of water. This unique property can also be utilized in the 
development of sensors and coatings. Aqueous CNCs are also known to have a unique 
refractive index. Surface functional groups of CNCs have been studied to improve 
their physical properties (Subhedar et al. 2021). 

18.5 Methods of Preparation of Nanocellulose 

Despite being the most widely used biomacromolecule on earth, nano cellulose has 
received more attention due to its numerous advantages, such as its biocompatibility, 
high specific surface area, high crystallinity and its non-toxic properties. Due to the 
wide variety of characteristics of nano cellulose, its properties can be customized for 
specific applications (Tong et al. 2020). These materials can be used in various appli-
cations, such as energy storage, food additives, biomimetic materials and medical 
equipment. They can also be utilized as food additives, stabilizers and catalysts. 
The preparation of nano cellulose usually consists of two main stages. The first is 
the pretreatment of cellulose to obtain pure cellulose, while the second one is the 
transformation of cellulose into nano cellulose (Yu and Yan 2017).
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The first stage involves the removal of nonbiodegradable compounds such as 
resin, terpene, and fat from the feedstocks. Hemicellulose and lignin are also elim-
inated from these derivatives. The second stage is dedicated to the production of 
nanocrystals. The chains of disordered regions along the elementary fibrils are prone 
to hydrolytic action due to the reduced kinetic factors and steric hindrance. After 
the cellulose fibrils are cleaved, the resulting short CNCs with high crystallinity are 
produced (Laitinen et al. 2017). 

Although acid hydrolysis is the oldest process used for preparing CNCs, it is 
also commonly utilized for various industrial applications. This process involves 
the use of sulfuric acid as well as various other chemicals. Although its surface is 
generally covered in sulfate esters, CNCs retain their thermal stability. They can 
also be well-dispersed in aqueous media (Mohammadi et al. 2017). In recent years, 
various industrial chemicals such as hydrogen, nitrogen, and organic acids have been 
used in the production of CNC machines. Although the use of hydrochloric acid for 
cellulose hydrolysis produces better thermal stability, it can also cause agglomeration 
due to the lack of repulsion force. This issue can affect the properties of the finished 
products (Rajala et al. 2016). 

As part of their efforts to improve the characteristics of nano cellulose by 
producing CNCs, various preparation methods have been presented. These include 
the use of chemical acid hydrolysis. Various industrial procedures such as mechanical 
treatment, oxidation methods, enzyme hydrolysis, and ionic liquid treatments have 
been studied (Zhai et al. 2016). Various approaches have been proposed to produce 
CNCs. These include combining two or many processes, which can improve the 
properties of the CNC and reduce the cost. In addition, they have highlighted the 
increasing industrial interest in the field of cellulosic nanomaterials, especially due to 
the harmful effects of toxic chemicals on the environment and human health (Rohde 
et al. 2017). 

Most of the time, they refer to the various steps involved in the isolation and 
derivatization of particles. However, they also address the issue of scaling up the 
process to bulk-scale. Despite the obstacles that remain, more efforts are being made 
to overcome them. For instance, some companies that produce finished products 
are preparing to expand their operations by equipping their CNC machines with the 
necessary capacity to handle large batches (Jiang and Hsieh 2017). 

Despite the existence of alternative sources of cellulose for making CNCs, the 
utilization of these materials is still limited. As a result, the prices of these nanoma-
terials are expected to decrease significantly. Despite the lack of sufficient resources 
to produce large-scale CNCs, the use of alternative sources remains restrained. As a 
result, the price of these nanomaterials will likely decrease in the future (Deng et al. 
2021).
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18.6 Characterization and Properties of Nanocellulose 

Due to their large surface area and the presence of several hydroxyl groups, nano 
cellulose is an excellent platform for surface modification. During the 1920–1930s, 
hydrophilization of cellulose was achieved through esterification reactions. Over 
the last decades, various strategies have been utilized to achieve hydrophobicity 
(Cindradewi et al. 2021). Although the hydrolyzation of nano cellulose is widely 
explored, studies related to its advanced functionalization are still in their early days. 
Various long-chain aliphatic compounds have been grafted onto CNFs and resins to 
improve their moisture absorption and interfacial affinity (Ning et al. 2017). 

Due to the emergence of more sophisticated cellulose derivatives, their applica-
tions have started to be explored. One of these is the development of new products 
such as artificial skin and biosensors. The concept of ion exchangeable carboxyl 
groups using TEMPO mediated oxidation has been employed by several authors. 
This method is widely recognized as a promising platform for the development of 
various products such as emulsifiers, carbon dot anchoring, and fluorescent sensors 
(Li et al. 2020). 

The preparation of total organic carbon (TOC) has allowed the possibility of 
creating new functional materials. In addition, the process can be modified by grafting 
or two-step methods (Li et al. 2020). The former involves the use of vinyl monomers 
to mechanically attach functional groups to nano cellulose. Physical and chemical 
cross-linking have been utilized for the improvement of various characteristics of 
nano cellulose-based materials. These include their moisture sensitivity and the 
development of flexible aerogels (Ning et al. 2017). 

Nano crystallites of naturally generated cellulose have the same lateral width 
as the elementary cellulose nanofibrils. However, their length can vary from 50 to 
200 nm. Heterogeneous acid hydrolysis promotes the formation of nanoparticles and 
higher-quality crystallinity cellulose. However, treating the cellulose with solvents 
or saturating it with liquid ammonia can reduce its crystallinity and size (Das et al. 
2022a, b). 

Currently, the structural organization of cellulose two-phase models is presented. 
However, studies on Para crystalline fractions revealed the presence of non-
crystalline domains. Crystallites with Para crystalline fraction are integral compo-
nents of the elementary fibrils. They are known to have the CI allomorph with either 
the triclinic P1 or the monoclinic P21-space group (Patil et al. 2022). 

It was previously believed that elementary nanofibrils had a constant lateral width 
of 3.5 nm. However, recent studies revealed that the lateral size of these nanofibrils 
is different in different celluloses. The lateral size of elementary nanofibrils can vary 
widely depending on the type of cellulose. For example, the length of the elementary 
fibrils can reach several microns (Das et al. 2022a, b; Patil et al. 2022). 

Various models of elementary cellulose were proposed to visualize the molec-
ular structure of the cellulose. Although these models have historic value, they are 
not suitable to explain the properties of cellulose and nano cellulose. The model 
that follows shows that elementary nanofibrils are composed of non-paracrystalline
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nanodomains and nano-crystallites that are arranged along the fibril’s inner portion 
(Ansar et al. 2022). 

The main difference between elementary and non-paracrystalline cellulose is that 
the former has highly ordered cores and inaccessible constituents. The proposed 
model allows the study of various biochemical and mechanical properties of 
cellulose. For example, enzymes and acids can only be performed in weak non-
paracrystalline domains of cellulose. Also, the para-crystallites of elementary 
nanofibrils can be easily decontaminated despite their inaccessible layers (Yu et al. 
2020). The orientation of the para-crystallites can also affect the phase transitions 
and distortions of nano-crystallites. According to thermodynamics, the free energy 
from the surface can cause the nano-constituent to have an excess of free energy. 
Due to the nature of the nano-constituents, various of them tend to aggregate with 
the formation of larger structures (Kumari et al. 2021). 

The degradification of plant materials through the use of plasticizing mediums can 
promote the cleaning of the surface of nanocrystallites and nanofibrils. An example 
of this is the formation of large crystal aggregates in cellulose after the hydrolytic 
reaction of dilute mineral acids with the cellulose (Lavoine et al. 2012). To prevent 
the aggregation of the released nano constituents, special technology methods are 
required. The aggregated elementary nanofibrils are then formed into microfibrils 
that are composed of layers of cellulose fibers. Cellulose is a bio-based material that 
can be used as the main source of nanomaterials. Its unique structure promotes the 
isolation of free nano constituents (Wang et al. 2021). 

Due to the nature of cellulose’s structure, various artificial forms of nano cellu-
lose have been studied in the past. Some of these include nanocrystals, nanofib-
rils and amorphous nano cellulose. Currently, the research related to the artificial 
forms of cellulose is still in its infancy. Aside from being studied, these are also 
subject to various industrial processes (Barja 2021). In terms of cosmetic use, the 
powders and dispersions of cellulose nanofibrils can be used as part of the process of 
making cosmetic products. Unfortunately, the high energy consumption involved in 
the mechanical disintegration of cellulose fibers into nanofibers is a major obstacle 
to the commercialization of CNFs. Fortunately, various steps can help minimize this 
issue (Jorfi and Foster 2015). 

Amorphous nano celluloses can be obtained by undergoing acid hydrolysis to 
produce spherical nanoparticles. These can be used for filling liquid systems and 
reinforcing polymer materials. Aside from being used as a thickening agent, nano 
cellulose can also be used as a bio-based material for various applications. In addition, 
its porous nature makes it an excellent alternative for producing various filtering 
and blotting materials (Zhan et al. 2019). Like other types of nano cellulose, the 
microfibrils are joined to the nanocrystals to form a network. Due to its high water 
content, this material is biocompatible as an implant for veterinary medicine and 
cosmetic applications. Nanocellulose-based foams have the potential to be used in 
various applications. Its low density and porous nature make them ideal candidates 
for various biomedical and environmental applications (Hoenders et al. 2018). 

Cellulose nanofibrils and nanocrystals are two major types of cellulose nanomate-
rials. CNFs are obtained by mechanical refining of plant and wood fibers. CNCs are
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rod-like particles that are left after the acid hydrolysis of cellulose. Aside from being 
used as a drying agent, freeze-drying is also a widely used technique to produce low-
density foams made from nano cellulose (Chen et al. 2015). This process involves 
removing the moisture from the product by using a technique known as sublimation. 
Various studies have been successfully carried out on the use of nano cellulose in 
hybrid foams and aerogels due to their multifunctional properties. These features can 
be utilized in the production of porous aerogels and foams (Azzam et al. 2017). 

A recent study showed that hybrid foam made of montmorillonite and nanofibrils 
exhibited better thermal insulation and higher compressive strength when subjected 
to hydrogen bonding (Zhang et al. 2016). This material was designed to be used 
as an alternative to synthetic foams for food packaging. Clay-based materials such 
as kaolin can be commonly used as the building blocks of low-cost and sustainable 
materials. This resource can be found in various countries and is commonly used as 
low-cost and abundant clay. 

The properties of kaolin and cellulose hybrid materials were also studied in non-
foaming products such as paper and electronic components. The addition of kaolin 
helped improve the optical properties of paper. Due to their properties, cellulose 
nanomaterials have been extensively studied for their potential applications in water 
purification (Wang et al. 2017). A study conducted on aerogels revealed that they 
could achieve a maximum removal capacity of 86% when subjected to hydrox-
ypropyl methylcellulose (Yang et al. 2020). The researchers noted that the surface-
functionalization of these aerogels achieved a surface-active blue adsorption capa-
bility of up to 50%. A study showed that supercritical and freeze-drying techniques 
can be used to prepare crosslinked cellulose aerogels that are energy-efficient (Zhang 
et al. 2020). 

Aside from nano cellulose, kaolin can also be used to decontaminate wastewater 
due to its ability to remove the color from the water. It can also be utilized as an 
adsorbent for various industrial applications. Although the use of nano cellulosic 
materials and clay in combination has been successfully used in the past, it is not 
yet clear if this process can be utilized in the production of bio-based foams. This 
development has the potential to accelerate the global efforts to find more effective 
and eco-friendly materials (Nehra and Chauhan 2021). 

18.7 Applications of Nanocellulose 

18.7.1 Nanocellulose and Conductive Polymers 

These materials are mainly composed of carbon, metal and conductive polymers. In 
addition to carbon, nano cellulose can also be used to fabricate conductive composite 
that has high mechanical strength and flexibility. The surface grafting technique is 
widely used to introduce conductive materials to nano cellulose. The blending method 
is used to evenly distribute conductive materials among various components (Zhan
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et al. 2019). Currently, various materials such as conductive carbon nanoparticles and 
metallic nanoparticles are commonly blended with nano cellulose to create conduc-
tive hybrid materials. Green and biodegradable nano cellulose is a promising material 
for the electronics industry due to its properties, such as its ability to combine with 
conducting polymers (Subhedar et al. 2021). 

18.7.1.1 Nanocellulose in Hybrid Conductive Composites 

The poor solubility of certain conjugated polymers leads to the formation of brittle 
materials. This issue has presented new opportunities to develop eco-friendly mate-
rials with improved properties. In 1984, scientists from Lundm and Bjorklund 
reported the first known combination of cellulose and conducting polymers. This 
new material can be commonly used for sensing applications. In 2010, polyaniline 
was blended with chitin for humidity sensing applications. A novel technique was 
then introduced to make an aniline-on-chitosan hybrid (Oprea and Panaitescu 2020). 

For the development of luminescent and conductive elements, they were grafted 
onto cellulose through a two-step oxidation process. The resulting product exhibited 
a varying fluorene/thiophene ratio. Studies on the development of robust and flexible 
conductive materials have led to the widespread use of nano cellulose (Wang et al. 
2017). A recent study showed that a polypyrrole coating can be made on bacterial 
nanofibers using in-situ chemical polymerization. The resulting product exhibited a 
high conductivity and low tensile strength. Yao et al. (2017) revealed that poly (3,4-
ethylene dioxythiophene)/PEDOT:PSS was used as a conductive layer on nanofibers. 

The properties of the two combined materials were also enhanced using PPy and 
PEDOT. The researchers concluded that the resulting CNF films could now be made 
more energy-efficient. A well-defined core–shell structure was also used to create 
an interconnected network that resulted in higher electrical conductivity and better 
structural stability. The researchers discovered that the electrical and thermal proper-
ties of TONFC films were improved through a counter-ion exchange process instead 
of through a thermal exchange. The hybrid nanofilm made from nano cellulose and 
PEDOT exhibited higher electrical conductivity than its conventional counterpart. It 
also exhibited superior thermal stability (Yao et al. 2017). 

The higher concentration of PEDOT: PSS enabled the creation of larger carrier 
densities. The resulting films exhibited high transparency of about 95%. The 
researchers attributed the film’s improved mechanical and electrical properties to the 
TEMPO-mediated oxidation and the in situ photopolymerizations of a deep eutectic 
solvent (Zhai et al. 2016). Due to their high surface area and excellent electrical 
conductivity, new carbon materials such as carbon nanotube and graphene have been 
widely used for various applications. Although the concept of the simple blend of 
nano cellulose and carbon has been used for years, the hybrid approach is not suitable 
for commercial applications (Cui et al. 2017). 

Zhai et al. (2016) studied the development of a cross-linking nano cellulose super-
capacitor that could be used for various applications. The resulting product was highly
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resilient to compression. A step-by-step vacuum filtration technique was also used 
to prepare the sandwich-structured CNF/RGO films. 

A study published in 2020 showed that conductive paper made from nanofiltration 
was able to achieve exceptional conductivity of 120 Sm1. The same process was also 
used to make the film. The results of the study were similar to those of traditional 
carbon materials. The researchers then introduced the use of amphiphilic CNF as a 
multi-functional material that can be used as an exfoliating and dispersing agent for 
graphene nanofilm (Oprea and Panaitescu 2020). 

The hydrophilic surfaces of the CNF-bound films acted as carriers for the dispersed 
graphene. The cationic surfactants, which are cationic, stabilized the CNF-bound 
films in aqueous solutions. The reduction of the fractional free volume allowed the 
nanocomposites to exhibit higher electrical conductivity. The cationic surfactants 
also exhibited good stability while carrying out the same function (Cui et al. 2017). 

A combination of triethanolamine and TOCNF was then used to make a hybrid 
nanofilm with enhanced mechanical properties and thermal stability. The hexag-
onal structure of boron nitride nanosheets has garnered the attention of industrial 
and academic researchers due to their exceptional thermal and electrical insulating 
properties (Oprea and Panaitescu 2020). 

A two-dimensional structure known as MXenes has also attracted attention due 
to its metal-like electrical conductivity. Its unique surface design could allow the 
use of its hydrophilic properties without losing its electrical conductivity. A study 
published in 2019 revealed that a large number of CNFs can be combined with MXene 
to create a high-strength nanomaterial with good interfacial interaction (Köklükaya 
et al. 2017). 

18.7.1.2 Combination of Nanocellulose and Conductive Carbon 
Materials 

Hybrid nanocomposites made of various materials have been studied extensively. 
Many of these films were engineered with two or more constituent materials. The 
combination of these three components allowed the hybrid films to achieve high 
specific capacitance and outstanding retention. Due to their advantageous layered 
configuration, these films can be used for supercapacitor electrodes (Das et al. 2022a, 
b). 

Aside from electrical conductivity and mechanical robustness, these features also 
include self-healing capability and flexibility. For their study, the researchers used a 
core–shell structure of TEMPO-oxidized cellulose nanofibers (TOCNFs) to create a 
self-healing hydrogel (Ansar et al. 2022). The hybrid electrodes made from nanohy-
brid hydrogels exhibited potential for the development of wearable electronic devices. 
The researchers stated that these hybrid nanocomposites exhibited good stretcha-
bility, flexibility and conductivity. They could be used as sensors for monitoring 
human activity. The researchers were able to achieve strong anchoring interactions 
between CNF and reduced graphene oxide (rGO) through a layer-by-layer process.
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The results of this study indicated that these hybrid nanocomposites could be used 
for wearable applications. 

In a study by Chen et al. (2015), the authors noted that the addition of graphene 
to the hybrid material improved its thermal stability and conductivity. The authors of 
this study stated that these hybrid nanocomposites could be used as supercapacitors 
for various biomedical applications (Chen et al. 2015). 

The interactions among the components boosted the mechanical and electrical 
properties of the hybrid nanocomposite. The hydrogen bonds and chelation interac-
tions among the various components boosted the mechanical and electrical properties 
of the hybrid nanocomposite. Due to the wide range of colors that can be emitted 
by different chemical structures in the visible region, the use of conjugated and 
non-conjugated polymers has been studied (Chen et al. 2021). 

Due to the emergence of new technologies such as organic solar cells and bio-
based sensors, the transition from traditional devices to flexible and foldable ones 
is expected to occur rapidly. Various new technologies such as organic field emis-
sion transistors, bio-based sensors and flexible displays are expected to be launched 
shortly (Li et al. 2022). 

18.7.1.3 Nanocellulose-Based Luminescent Materials 

An organic light-emitting film made from light-sensitive polymers has been presented 
as an alternative to metal particles and Carbon dots (CDs). Grigoray et al. (2017) 
showed that a light-controlled pulp fiber could be made to be invisible when exposed 
to ultraviolet light. However, Tong et al. (2020) demonstrated the possibility of 
creating a highly transparent film using free radical polymerization of cellulose. 
Their work has great potential for flexible electroluminescent devices. 

An interesting aspect of the blue light emitted by the nanocomposite was that 
it responded differently depending on the strain. The same process was also used 
to produce a film with a variety of color variations. The blue light emitted by the 
nanocomposite was different depending on the strain (Beh et al. 2020). The same 
process was also used to produce a film with varying colors. In addition, CNC 
particles were added to the mix of vinyl alcohol and epoxy resins. 

Nanocomposites made of rice flour and modified to have a light emission inten-
sity response were developed to be sensor films that could detect protease activity in 
wound diagnosis. The robust nature of the nanocomposites enabled them to exhibit 
fluorescence under UV light. Their potential applications include wound diagnosis 
and biomedical technologies (Wang et al. 2020). The flexibility and transparency 
of bacterial nano paper made it an attractive substrate for the development of artifi-
cial tongues. A film made with CD grafted onto bacterial nano cellulose exhibited 
remarkable mechanical and physicochemical properties. An oxidizing liquid was 
also used as a solvent for the continuous film functionalization process. Hoenders 
et al. (2018) demonstrated that a film with tetrazole-functionalized CNF could be 
self-reporting through photo-induced phenomena.
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Hybrid materials made from cellulose and other organic components have been 
successfully used in the production of transparent nanofilms. The films were prepared 
by immersing them in nitrate complexes containing sodium carboxylate groups. The 
properties of these films, such as their ability to retain moisture resistance and their 
thermal stability, have potential applications in various electronic devices (Zhan et al. 
2019). 

The film was able to detect copper ion interference over a wide range of metal 
ions. It was also highly selective when subjected to different copper ion concentra-
tions. The resulting films exhibited flexible, thermal, and light-induced properties. 
Their development could provide new opportunities for temperature sensor devices 
(Curvello et al. 2019). 

Fedorov et al. (2019) made organic films based on strontium fluoride and CNF for 
use as laser radiation visualizers. A similar process was used by Zhang et al. (2017b) 
to make transparent and flexible nanofilms. The film’s thermal expansion coefficient 
was lower than that of fossil-based materials. 

18.7.2 Application of Nanocellulose 

Active packaging refers to systems that have active functions that are designed to 
protect products from degradation. Nanocellulose has intrinsic properties that make 
it an attractive candidate for the development of active food packaging. Its surface 
modification can endow it with new anti-bacterial and reinforcement agents (Nasir 
et al. 2017a, b). 

18.7.2.1 Nanocellulose Antibacterial Food Packaging 

According to the centers for disease control (CDC), approximately 48 million people 
get sick from food-related illnesses in the US each year. The agency noted that these 
illnesses cause around 128,000 hospitalizations and 3,000 deaths. The use of antimi-
crobial packaging can help prevent food-related illnesses (Beh et al. 2020). There are 
two types of packaging systems that are used for anti-bacterial purposes: leaching 
and non-leaching. The former refers to systems that are physically incorporated into 
the packaging. Bioactive agents, such as silver nanoparticles, are known to slowly 
release their nutrients to the environment to kill harmful bacteria. On the other hand, 
non-leaching antimicrobial packaging is made up of chemically grafted antimicrobial 
agents (Nasir et al. 2017a, b). 

In terms of antimicrobial properties, the non-leaching system is known as active 
contact food packaging. Usually, bioactive agents are composed of cationic polymers 
that have high molecular weight. Although the direct introduction of bioactive agents 
is the most used method for making antimicrobial food packaging, this process can 
cause various issues. Aside from reducing the effectiveness of the system, the release 
of these agents can also contribute to air pollution (Mali and Sherje 2022).
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The increasing concentration of biocides in food packaging can also contribute 
to the development of resistant bacteria. This issue could cause more environmental 
issues and health problems. Due to the numerous advantages of this method, the 
development of active contact food packaging has been focused on. In a study, the 
systems produced by these manufacturers exhibited antibacterial and bacteriostatic 
properties (Barja 2021). Non-toxic properties of CNCs have been observed in the 
development of active food packaging. They are usually incorporated into systems 
that are made up of hydrophilic components such as natural rubber and wheat gluten. 
Since the addition of 4 wt%, CNCs to a film has increased their tensile strength, it is 
widely used in the production of hydrophobic systems (Zhan et al. 2019). 

18.7.2.2 Application of CNCs in Food Packaging 

CNCs have been studied as the reinforcement agent for various packaging materials 
due to their non-toxicity and biodegradability. They are usually incorporated into the 
biodegradability and mechanical properties of various systems such as wheat gluten, 
natural rubber and polyvinyl alcohol (Tortorella et al. 2020). 

18.7.3 Industrial Application of Nanocellulose 

18.7.3.1 Nanocellulose in Paper Industry 

It is estimated that around 100 million tons of cellulose are harvested annually for 
paper production. This process involves preparing the paper components, forming 
the paper board and finishing. It is also mandatory for papermakers to refine cellulose 
fibers to obtain strong paper (Laitinen et al. 2017; Zhang et al. 2017a). The results 
of studies by Leykin and Ioelvich showed that introducing nano cellulose particles 
to paper can increase its strength and mechanical properties. 

18.7.3.2 Nanocellulose in Biomedical Industry 

Due to its biodegradability, nano cellulose can be used in the bio-medical industry 
as a bio-compatible material for cosmetic and personal hygiene products. It can also 
be used as a carrier for the immobilization of various drugs and for treating various 
skin diseases. Its nano-size makes it a carrier that can penetrate the skin and treat 
different skin conditions (Curvello et al. 2019). 

Advancements in nanotechnology have led to the development of new bio-inspired 
materials that can be used for biomedical applications. The coupling of various 
scientific fields has helped in the development of nano biomaterials (Brenes et al. 
2021). In 2006, the first study showing the potential of nano cellulose as a biomaterial
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for the construction of tissues was published. This work sparked numerous research 
activities that are focused on the use of nano cellulose in various medical fields. 

CNCs have shown great promise due to their various characteristics such as 
biodegradability, high surface-area-to-volume ratio and their ability to perform 
various mechanical and functional tasks. Although they are non-cytotoxic, CNCs 
can cause an inflammatory response and can induce oxidative stress in cells. Further 
research has revealed that their toxicity can vary depending on the surface chemistry 
and their size (Jorfi and Foster 2015; Kumari et al. 2021; Subhedar et al. 2021). 

The effects of CNCs on the cell’s immunogenicity can be modulated through their 
various physicochemical features. Further studies are needed to analyze the toxicity 
of these materials (Sharma and Bhardwaj 2019). An optimized drug delivery system 
has numerous advantages such as improved solubility, reduced drug release and 
enhanced therapeutic effect. Some of these features are exhibited by CNCs due to 
their high surface-to-volume ratio and low drug loading. Due to their hydrophobic 
properties, surface modifications are often carried out to improve the drug-binding 
performance of hydrophobic drugs. These modifications can be performed using 
the introduction of reactive functional groups on the CNC backbone (Siqueira et al. 
2019). 

For instance, Ho et al. (2020) and Wang et al. (2020) created hyperbranched 
polymers with modified CNCs by introducing glycidol as the initiator. The modified 
compounds were then converted into hydrazone groups and drug-delivery agents. 
The authors noted that an optimized colon-targeted drug release system could be 
developed by conjugating an anhydride CNC with a model drug and allowing the 
drug to be transported into the body (Siqueira et al. 2019). 

In another study, the team led by Ndong Ntoutoume et al. (2016) discovered that 
introducing a model drug to the body through a magnetic colloid nanocrystal cluster 
(MCNC) could entrap it. The resulting drug-delivery system exhibited antiprolifer-
ative effects against colon and prostate cancer cells. CNCs are also known to deliver 
better drug delivery capacity than traditional hydrogels. In a study, researchers from 
China and Japan combined chitosan and CNCs to create a nanocomposite hydrogel 
that can transport theophylline (Ansar et al. 2022). 

Wang et al. (2021) reported that such biocomposites exhibited excellent drug-
controlled release behavior. They were able to successfully deliver dexamethasone 
through their constructs. The authors of the study stated that the development of 
a simple green manufacturing process could provide a highly advantageous carrier 
for drug delivery. This process is known as bio issue engineering. It is a promising 
approach to developing biological substitutes for various applications. 

Due to their properties, CNC-based materials have been widely studied and are 
being investigated through the TE approach. This process involves carrying out 
various tests such as biodegradability, water retention and cell adhesion. Various 
techniques such as freeze-drying, solvent casting and 3D printing have been success-
fully used for the development of TE scaffolds. These components are known to be 
effective in various applications, such as the repair of various human organs and 
tissues (Mali and Sherje 2022).
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CNCs are known to have wide compatibility with various biological materials 
such as chitosan, alginate and collagen. Numerous formulations have been developed 
and successfully commercialized in the past. Various studies have been presented to 
improve the mechanical and physical properties of scaffolds made using freeze-
drying. The researchers noted that these components could improve the cell prolif-
eration and adherence of the scaffolds. In another study, Curvello et al. (2019) study 
stated that they were able to create cross-linked CNC aerogels that can support bone 
tissue scaffolds. They noted that these components exhibited a flexible and porous 
structure. For instance, they could help promote bone growth after they are surgically 
installed. 

Treating and managing skin injuries is an important part of a person’s health 
care. Aside from preventing infection, a wound dressing is also an effective way to 
heal wounds and minimize the risk of further damage. A wound dressing should be 
made with non-toxic and allergen-free materials that can stimulate wound healing 
and minimize the spread of bacteria and toxins (Jorfi and Foster 2015). Due to 
their properties, CNCs have been extensively used in the wound healing industry. 
Numerous studies have been published on their potential to be functionalized and 
useful in the wound care industry (Barja 2021; Mali and Sherje 2022; Oprea and 
Panaitescu 2020). 

18.8 Conclusions and Prospects 

The development of bio-based and sustainable raw materials has been widely studied 
in response to the increasing global need for low-cost and renewable sources of raw 
materials. The energy consumed during the nano cellulose fabrication process may 
make it commercially impracticable for certain applications. However, this material 
can still be used for more complex and sophisticated projects. Due to its energy-
efficient properties, nano cellulose has been identified as a promising material for 
the development of new energy-related devices. Due to its unique mechanical and 
flexibility properties, CNF has been regarded as the next big breakthrough in the 
field of advanced materials. Its continued development is being widely pursued by 
various companies. 

Many of the CNF’s features are known to provide excellent mechanical robustness 
and flexibility. Its ability to endure various load conditions has been demonstrated by 
using free-standing films made with the material. Through the CNC process, CNF 
can percolate with its surface chemistry. Its unique properties make it an attractive 
material for the development of functional chemicals and other non-toxic materials. 
Further studies are expected to be conducted on the integration of nano cellulose into 
society and commerce. Currently, it is focused on the development of luminescent 
films for sensing and detection applications. Also, it has been discovered that the
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TEMPO-mediated Oxidation of CNF can be used for the development of light-
emitting materials. Despite its numerous advantages, the process of making high-
performance materials from renewable resources still requires the use of multiple 
components. 

Due to its unique luminescence and conductivity, CNF has been widely considered 
a material that can be used for the production of green electronics. Due to the nature 
of bio-based materials, their development requires the use of various features and 
functionalities that are not found in nano cellulose. This, the use of a nano cellulose 
template can provide the necessary features and functionalities to enhance the perfor-
mance of the finished product. Through its functional properties, nano cellulose can 
be used to develop new materials to produce flexible electronics and energy-efficient 
components. The present chapter aims to stimulate further research in the field of 
nano cellulose by reviewing the various steps involved in preparing and modifying 
nano cellulose. Although the literature on the subject has been extensively studied, 
some of the challenges that remain are related to the various stages of production 
and extraction. 

It exhibits various useful characteristics such as high surface area, anisotropic 
shape, and better mechanical properties. Due to the emergence of cost-effective 
sources of nano cellulose, its potential is expected to grow even further. Further 
studies are needed to be conducted to establish the feasibility of the final products 
and to introduce them to the market. This can be done through the development of 
new methods and processes that can improve the efficiency of the production process. 
Despite the various challenges involved in making nano cellulose-based materials, 
we believe that their potential can improve the quality of life of people in the future. 
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