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Abstract. As a fundamental task of computer vision, human pose
estimation (HPE) has achieved significant improvement with the rise
of deep learning. However, many existing methods focus too much on
model accuracy, leading to high complexity models, which are hard to
be deployed especially in computation-limited devices. This paper pro-
poses a lightweight HPE network named efficient high-resolution human
pose estimation (EHR-HPE). EHR-HPE network first adopts the high-
resolution pattern to acquire accurate heatmaps; then an efficient shuffle
block is proposed to reduce the model complexity and boost model per-
formance; finally, the efficient dense connections are designed to further
improve model accuracy. Extensive experiment results on two bench-
mark datasets show that the proposed EHR-HPE network achieves a
great tradeoff between accuracy and model complexity. EHR-HPE net-
work can achieve 70.1 mean average precision scores on Common Objects
in Context (COCO) test-dev dataset with only 1.7M parameters and 0.91
GFLOPs.

Keywords: Human pose estimation · Lightweight network · Efficient
shuffle block · Dense connection

1 Introduction

Human pose estimation (HPE) task is to detect and localize body keypoints
(elbows, wrists, knees, etc.) of the input person images. It is a fundamental yet
challenging task in the field of computer vision and is widely adopted for action
recognition, pose tracking, human-computer interaction, etc.

HPE can be divided into single-person pose estimation and multi-person pose
estimation according to the number of human instances in the input image. This
paper focuses on single-person pose estimation because it is the basis for related
vision tasks, such as multi-person pose estimation, video-based pose estimation,
and pose tracking. Significant progress has been made in the field of HPE due

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13631, pp. 383–396, 2022.
https://doi.org/10.1007/978-3-031-20868-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20868-3_28&domain=pdf
https://doi.org/10.1007/978-3-031-20868-3_28


384 X. Qin et al.

to the widespread use of deep neural networks [3,7,16,21,22,24]. These state-of-
the-art methods typically employ deep and wide networks with a large number
of parameters and a huge amount of floating-point operations (FLOPs), which
result in high memory requirements and serious latency. These complex mod-
els are hard to be deployed especially for computation-limited devices (such
as smartphones and embedded devices). Therefore, it is necessary to develop
lightweight yet capable HPE methods.

Instead of recovering the resolution of input representation through a low-
to-high process, HRNet [21] has a branch that maintains the highest resolution
of the input representation throughout the process, this pattern is called high-
resolution pattern in HRNet. The high-resolution pattern and multi-level fea-
tures fusion strategies make HRNet becomes an excellent backbone for several
vision tasks. However, the complexity of HRNet is very high. Small HRNet1 is a
much lighter network by reducing the depth and width of the original HRNet, but
its performance drops significantly. This paper designed an efficient shuffle block
to replace the costly residual block in Small HRNet, further reducing model
complexity but improving performance. Furthermore, we added some efficient
dense connections between the adjacent modules in the same stage to encourage
feature reuse, which can also improve the performance of the model. This paper
follows the high-resolution pattern in HRNet and Small HRNet, and consider-
ing the use of efficient shuffle block and efficient dense connections in it, this
paper is consequently named efficient high-resolution human pose estimation
(EHR-HPE) which architecture is shown in Fig. 1.

Fig. 1. The architecture of efficient high-resolution human pose estimation (EHR-HPE)
network. The network consists of four stages, the deeper stage has more branches.
Stages are connected by the transition layer that adds a new branch with lower reso-
lution but more channel numbers through a 3× 3 convolution. A stage has a sequence
of modules, each module contains two efficient shuffle blocks for one branch and a
multi-resolution fusing operation across the branches. The dashed lines indicate effi-
cient dense connections between adjacent modules within a stage.

1 Small HRNet: https://github.com/HRNet/HRNet-Semantic-Segmentation.

https://github.com/HRNet/HRNet-Semantic-Segmentation
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Experiments are conducted on two benchmark datasets to demonstrate the
effectiveness and efficiency of the proposed EHR-HPE network. Experimental
results show that the EHR-HPE network can achieve superior performance while
maintaining a small model size and computation cost. The contributions of this
paper can be summarized as follows:

1. The EHR-HPE network follows the high-resolution pattern of Small HRNet,
and replaces the costly residual blocks with the newly designed efficient shuf-
fle blocks. Efficient shuffle blocks adopt 1 × 1 Ghost modules [6] instead of
costly pointwise convolutions to exchange information across channels. Addi-
tionally, an attention module is designed based on the GC block [2] to enhance
the ability to model long-range dependencies and inter-channel relationships.
Ablation studies have shown that the efficient shuffle block can achieve supe-
rior performance while halving computation cost and slightly reducing the
number of parameters.

2. Efficient dense connections are added between the adjacent modules within
the same stage, which inevitably widens the feature channels, so 1 × 1 Ghost
modules are used to reduce the channel dimension. Efficient dense connec-
tions can strengthen feature reuse, facilitate convergence and promote net-
work accuracy.

2 Related Works

In HPE tasks, the traditional methods adopt pictorial structure models [5,18,27]
to infer the human pose. While these methods can perform efficient inference on
simple images, they cannot handle complex scenarios such as occlusion. With the
rise of deep learning, CNN-based methods [3,7,16,17,21,23,24,26] have become
the main solution for HPE.

CNN-based HPE methods can fall into two categories, i.e., regressing the
position of keypoints directly and estimating the keypoints through heatmaps.
Compared with the direct regression method, the method based on heatmap [16,
21,24] can fully use of the spatial information in the image, and achieve better
accuracy and robustness. CPM [24] utilizes a multi-stage network to gradu-
ally refine detection results and adopts intermediate supervision to alleviate
the vanishing-gradient problem. Hourglass network [16] follows the multi-stage
pattern of CPM, and designs a symmetric encoder and decoder structure with
short connections between the downsampling and upsampling branches to inte-
grate multi-scale features. HRNet [21] further exploits the benefits of multi-scale
features fusion by connecting sub-networks of different resolutions in parallel,
preserving high-resolution features while fusing multi-level semantics to gain
more accurate and precise heatmap estimation. The results of extensive exper-
iments demonstrate the excellent performance of HRNet for HPE tasks. The
method proposed in this paper follows the high-resolution pattern of HRNet,
but contrives to give a more lightweight version.

Lightweight networks have aroused pervasive enthusiasm in the HPE research
community. Zhang et al. [30] proposed LPN, which applies depthwise convolution
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and attention mechanism to SimpleBaseline [26]. Qin et al. designed a lightweight
HPE network named CVC-Net [19] based on pruned Hourglass, and many off-
the-shelf tricks are used to enhance model performance. Based on HRNet, Yu
et al. [28] proposed the conditional channel weighting unit to replace the costly
pointwise convolution, which can greatly improve the computational efficiency
at a slight decrease in accuracy.

Attention mechanism [11,12,25] can be regarded as a kind of conditional
weight generation. Cao et al. [2] designed GC block to capture long-range depen-
dencies. This paper designed a channel global context block named CGC, and
combined CGC with GC block to form a more powerful attention module.

To capture more information across multiple scales, deep learning networks
are now designed to go deeper, but vanishing-gradient problem occurs as the net-
work deepens. ResNets [8] and DenseNet [13] build short paths between layers to
alleviate vanishing-gradient, in which DenseNet realizes features reuse through
concatenating feature maps with all subsequent layers and achieves better per-
formance on several public datasets with fewer parameters. To strengthen the
feature reuse of the HPE network, this paper follows the dense connection pat-
tern of DenseNet to establish short paths between the adjacent modules within
the same stage of the high-resolution architecture.

3 Method

3.1 Efficient Shuffle Block

Replacing Costly 1 × 1 Convolution. Efficient shuffle block is designed based
on the shuffle block in ShuffleNet [15]. The shuffle block uses 1 × 1 convolutions
to exchange information across channels, which is very costly and dominates
the parameter and computational complexity of the shuffle block. As Fig. 2 (b)

Fig. 2. (a) Shuffle block (b) efficient shuffle block (c) GC block (d) CGC block.
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shows, this paper introduces the Ghost module proposed in GhostNet [6] to
replace the costly pointwise (1 × 1) convolutions in shuffle blocks, which can
reduce the model complexity while improving the performance.

GhostNet asserts that a handful of intrinsic feature-maps contain most of the
dominant information of the output, so as shown in Fig. 3, an ordinary convo-
lution is divided into two parts, a primary convolution for generating intrinsic
feature-maps and a cheap operation for generating the remaining feature-maps.

Specifically, given the input data X ∈ R
c×h×w, the desired output feature-

maps Y ∈ R
h′×w′×n, where c and n represent the input and output channel

numbers, and h, w and h′, w′ represent the height and width of the input and
output, respectively. A primary convolution is used to generate l intrinsic feature-
maps Y ′ ∈ R

h′×w′×l:
Y ′ = X ∗ f ′ (1)

where f ′ ∈ R
c×k×k×l is the convolution filter with k × k kernel size, and l ≤ n.

Subsequently, a series of cheap operations are applied on each intrinsic
feature-map in Y ′ to obtain the other n − l feature-maps according to the fol-
lowing function:

yi,j = Φi,j (y′
i) , ∀i = 1, . . . , l, j = 1, . . . , r − 1 (2)

where yi
′ is the i-th intrinsic feature-map in Y ′, Φi,j is the j-th linear operation

on yi
′ for generating the feature-map yi,j . Concatenating the output feature-

maps of primary convolution and cheap operation, the final output of a Ghost
module Y = [[y1, . . . , yl] , [y1,1, y1,2, . . . , yl,r−1]] can be obtained, where n = l ×
1 + l × (r − 1), r represents the proportion of intrinsic feature-maps, and l
consequently equals to n

r .

Fig. 3. The illustrations of a ordinary convolutional and a Ghost module.

In this paper, the kernel size of the Ghost module is set to 1 (k = 1), which
results in a 1 × 1 Ghost module. In addition, r is set to 2, and following Ghost-
Net, 3 × 3 convolutions are used as the cheap operations. Consequently, after
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replacing the original 1 × 1 convolution with the 1 × 1 Ghost module, the theo-
retical compression ratio of parameters and speed-up ratio of computation can
be calculated as:

R =
c · k · k · n

c · k · k · n
r + (r − 1) · n

r · d · d
=

c · 1 · 1 · c

c · 1 · 1 · c
2 + (2 − 1) · c

2 · 3 · 3

=
2 · c2

c2 + 9 · c
≈ 2

(3)

As the above formulation shows, computation and parameters have been halved.

Attention Module. Capturing long-range dependencies is critical for HPE,
but simply stacking ordinary convolution layers cannot effectively extract the
global understanding of the visual scene. Cao et al. [2] proposed a global context
network (GCNet), in which the global context (GC) block can effectively aggre-
gate the global information. Consequently, this paper introduces GC block to
strengthen the capture ability of long-range dependencies. Figure 2 (c) depicts
the structure of the GC block, which can be abstracted into three procedures:
(a) global attention pooling, which employs a 1 × 1 convolution and a softmax
function to obtain the attention weights, and then use these attention weights
to perform the attention pooling, which aggregates the features of all positions
together to acquire the global context features; (b) feature transform, which
adopts 1 × 1 convolution to capture channel-wise interdependencies; (c) Fea-
ture aggregation, which uses element-wise addition to merge the global context
features into all positions.

Meanwhile, inspired by CBAM [25], this paper redesigns the GC block and
proposes a new attention block named channel global context(CGC) block, which
emphasizes the modeling of inter-channel relationships. The GC block can be
regarded as a kind of first-spatial-then-channel attention, in contrast to the GC
block, the CGC block firstly aggregates the features of all channels together to
form a global channel descriptor; and then models the inter-spatial relationships
to obtain the final global channel context. Different modeling order leads to dif-
ferent attention maps, the CGC block focuses more on dependencies between
channels. As shown in Fig. 2 (d), the CGC block can be summarized as three
procedures: (a) Channel attention pooling, which firstly applies average-pooling
along the spatial dimension and a softmax function to obtain the channel atten-
tion weights, then attention pooling is performed by matrix multiplication, and
the features of all channels are aggregated together to obtain channel context
features; (b) Spatial features transform, which adopts a 7 × 7 convolution to
capture the inter-spatial relationships; (c) Feature aggregation, which employs
element-wise addition for feature fusion.

The CGC block can act as a complementary for the GC block to com-
pensate for its insufficient modeling ability of inter-channel relationships. This
paper combines GC and CGC blocks to enhance the modeling ability of both
inter-channel and inter-spatial relationships. Experimental results show that the
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performance of GC-block-first combination form is slightly better than CGC-
block-first form, so the attention module in the subsequent paper refers to the
GC-block-first combination form.

3.2 Efficient Dense Connection

Fig. 4. The illustration of efficient dense connection.

DenseNet [13] proposed the concept of dense connection, which directly con-
nects all layers with the same feature size to each other to ensure maximum infor-
mation flow. Dense connections strengthen the feature propagation and reuse,
alleviate vanishing-gradient problems, and make the network easy to train.

Inspired by DenseNet, this paper introduces dense connections between the
different modules within the same stage and achieves feature reuse by concate-
nating operations. Existing studies [15] have shown that the connections between
adjacent layers are much stronger than the others, therefore this paper only adds
dense connections between the adjacent modules instead of all to achieve a better
tradeoff between accuracy and speed.

Considering the s-th stage, there are s parallel branches with different reso-
lutions. Each stage contains M modules, each of which implements a complex
non-linear transformation Hm(·), where m is the index of the module. As the
Module in Fig. 1 shows, Hm(·) contains a sequence of two efficient shuffle blocks
and one multi-resolution fusion. This paper denotes the output of the mth mod-
ule as xm, the number of input channels as cm.

When the efficient dense connections are not added, the output of the mth

module is fed into the (m + 1)th module as input, which can be expressed as:

xm = Hm (xm−1) (4)

Figure 4 illustrates the layout of efficient dense connections. The mth module
receives the feature-maps of the preceding two modules (except m = 1), i.e.,
xm−2 and xm−1, as input:

xm = Hm (Gm ([xm−2,xm−1])) (5)
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where [xm−2,xm−1] is the concatenation of the feature-maps produced by mod-
ules m−2 and m−1. In addition, because the channel number has changed from
cm to 2cm, this paper applies 1 × 1 Ghost module Gm to recover the channel
number to match the mth module. The 1 × 1 Ghost module adopts the same
setting as Sect. 3.1.

This paper refers to the added connections as efficient dense connections
because that, benefiting from the feature reuse of only adjacent modules and the
efficiency of 1 × 1 Ghost module, these connections can facilitate convergence
and promote network accuracy with a slight increase in model complexity.

4 Experiments

In this section, several experiments are conducted on two human pose estimation
datasets, COCO [14] and MPII [1]. Comparative experiments between EHR-HPE
and some state-of-the-art methods are conducted on both datasets, ablation
studies are only carried out on MPII to demonstrate the effectiveness of each
component.

4.1 Experimental Setup

Datasets. The COCO dataset [14] contains over 200K images and 250K person
instances labeled with 17 keypoints. COCO is divided into train, validation,
and test sets. This paper trains EHR-HPE on train2017 dataset, including 57K
images and 150K person instances. Evaluations are carried out on val2017 set
and test-dev2017 set, containing 5K images and 20K images, respectively. The
MPII dataset [1] provides around 25K images containing over 40K labeled person
instances, in which 12K instances are used for testing, and 28K are used for
training.

Training. The network is implemented by PyTorch and random parameter
initialization is used. Adam optimizer is adopted with a mini-batch of size 32
and 210 epochs are trained. The initial learning rate is set to 5e−4 and reduced
by a factor of 10 at the 170th and 200th epoch. In data preprocessing, the human
detection box is expanded to a fixed aspect ratio of 4: 3, and then crop the box
from the images. The input images are resizeed to 384 × 288 for COCO dataset
and 256 × 256 for MPII dataset. Data augmentation operations are performed
on two datasets to strengthen models’ robustness, including random rotation
([−30◦, 30◦]), random scale ([0.75, 1.25]), and random flipping, what’s more, half
body data augmentation is also used for COCO. All experiments are conducted
on two NVIDIA 1080Ti GPUs.

Testing. For COCO, the two-stage top-down paradigm is used, i.e., firstly detect
the person instance via a person detector provided by SimpleBaseline [26], and
then predict keypoints. For MPII, the standard strategy (using the provided
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person boxes) is adopted to guarantee the fairness of the results. Following the
common practice [28,30], heatmaps are computed via averaging the heatmaps
of the original and flipped images.

Evaluation Metrics. For COCO, this paper uses the OKS-based mAP metric
and reports standard average precision and recall scores. OKS (Object Keypoint
Similarity) represents the similarity between human poses. AP50 represents the
AP scores at OKS = 0.50, AP75 represents the AP scores at OKS = 0.75, AP
represents the mean of AP scores at 10 positions, OKS = 0.50, 0.55, ..., 0.95.
APM represents AP for medium objects, APL represents AP for large objects.
For MPII, this paper uses the standard metric PCKh@0.5 (detected keypoint
is considered correct if the distance between the predicted and ground-truth
keypoints is less than 50% of the length of head bone link) to evaluate the
performance.

4.2 Results

Results on COCO Val. Table 1 gives the results of EHR-HPE and other state-
of-the-art methods. The proposed EHR-HPE achieves 71.2 AP score when the
input size is 384×288, with only 1.7M parameters and 0.91 GFLOPs. EHR-HPE
outperforms Small HRNet-162 over 15 AP points. Compared to ShuffleNetV2
and MobileNetV2, EHR-HPE achieves 7.6 and 3.9 points gain, respectively, while
taking on much lower complexity. Compared to LPN, EHR-HPE improves AP
by 2.1 points with lower complexity. Lite-HRNet is an effective lightweight pose
network, and EHR-HPE achieves better accuracy than it with a slight increase in
computation cost. Compared to FLPN whose accuracy is only 0.1 points higher
than ours, our parameter size is only 16.8% of it, and the computation cost is
also lower. In comparison with large models, EHR-HPE achieves a better AP
score than CPN, Hourglass, and SimpleBaseline, with much less complexity.

Due to the effectiveness of our efficient shuffle blocks and the feature reuse
of efficient dense connections, the proposed EHR-HPE achieves a great tradeoff
between accuracy and model complexity.

Results on COCO Test-Dev. Table 2 reports the results of EHR-HPE and
the existing state-of-the-art methods. The proposed EHR-HPE achieves 70.1
AP score, which outperforms all the small networks. Compared to Lite-HRNet,
EHR-HPE achieves 0.4 points gain with a little increase in computation cost.
In comparison with large models, EHR-HPE outperforms Mask-RCNN, G-RMI
and Integral Pose Regression, achieves acceptable results, and is much more
efficient in terms of model size (Params) and computation cost.

Results on MPII Val. This paper evaluates EHR-HPE on MPII to further
compare it with other lightweight networks and the results is shown in Table 3.
2 Available from https://github.com/HRNet/HRNet-Semantic-Segmentation.

https://github.com/HRNet/HRNet-Semantic-Segmentation
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Table 1. Comparison on the COCO val set.

Model Backbone Input size #Params GFLOPs AP AP50 AP75 APM APL AR

Large networks

8-stage Hourglass [16] 8-stage Hourglass 256 × 192 25.1M 14.3 66.9 - - - - -

CPN [3] ResNet-50 256 × 192 27.0M 6.20 68.6 - - - - -

SimpleBaseline [26] ResNet-50 256 × 192 34.0M 8.90 70.4 88.6 78.3 67.1 77.2 76.3

HRNetV1 [21] HRNetV1-W32 256 × 192 28.5M 7.10 73.4 89.5 80.7 70.2 80.1 78.9

DARK [29] HRNetV1-W48 128 × 96 63.6M 3.6 71.9 89.1 79.6 69.2 78.0 77.9

Small networks

Small HRNet HRNet-W16 384 × 288 1.3M 1.21 56.0 83.8 63.0 52.4 62.6 62.6

ShuffleNetV2 1× [15] ShuffleNetV2 384 × 288 7.6M 2.87 63.6 86.5 70.5 59.5 70.7 69.7

MobileNetV2 1× [10] MobileNetV2 384 × 288 9.6M 3.33 67.3 87.9 74.3 62.8 74.7 72.9

LPN [30] ResNet-50 256 × 192 2.9M 1.0 69.1 88.1 76.6 65.9 75.7 74.9

Lite-HRNet [28] Lite-HRNet-30 384 × 288 1.8M 0.70 70.4 88.7 77.7 67.5 76.3 76.2

FLPN [20] SResNet-50 256 × 192 10.0M 1.10 71.3 91.6 79.0 68.8 75.3 74.5

EHR-HPE EHRNet 384 × 288 1.7M 0.91 71.2 89.1 78.8 69.0 76.8 75.3

The proposed EHR-HPE achieves 87.3 PCKh@0.5, outperforms Small HRNet-
16, ShuffleNetV2, MobileNetV2, MobileNetV3 [9] and Lite-HRNet by 7.1, 4.5,
1.9, 3.0 and 0.3 points, respectively. Compared to FLPN, there is a little gap
(0.5 points). However, the amount of the parameters and the computation cost
of EHR-HPE are only 17% and 48% of FPLN, respectively.

Table 2. Comparision on the COCO test-dev set.

Model Backbone Input size #Params GFLOPs AP AP50 AP75 APM APL AR

Large networks

Mask-RCNN [7] ResNet-50-FPN - - - 63.1 87.3 68.7 57.8 71.4 -

G-RMI [17] ResNet-101 353 × 257 42.6M 57.0 64.9 85.5 71.3 62.3 70.0 69.7

Integral Pose Regression [22] ResNet-101 256 × 256 45.0M 11.0 67.8 88.2 74.8 63.9 74.0 -

CPN [3] ResNet-Inception 384 × 288 - - 72.1 91.4 80.0 68.7 77.2 78.5

RMPE [4] PyraNet 320 × 256 28.1M 26.7 72.3 89.2 79.1 68.0 78.6 -

SimpleBaseline [26] ResNet-152 384 × 288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0

HRNetV1 [21] HRNetV1-W32 384 × 288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1

HRNetV1 [21] HRNetV1-W48 384 × 288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5

DARK [29] HRNetV1-W48 384 × 288 63.6M 32.9 76.2 92.5 83.6 72.5 82.4 81.1

Small networks

Small HRNet HRNet-W16 384 × 288 1.3M 1.21 55.2 85.8 61.4 51.7 61.2 61.5

ShuffleNetV2 1× [15] ShuffleNetV2 384 × 288 7.6M 2.87 62.9 88.5 69.4 58.9 69.3 68.9

MobileNetV2 1× [10] MobileNetV2 384 × 288 9.8M 3.33 66.8 90.0 74.0 62.6 73.3 72.3

LPN [30] ResNet-50 256 × 192 2.9M 1.0 68.7 90.2 76.9 65.9 74.3 74.5

FLPN [20] SResNet-50 256 × 192 10.0M 1.10 68.7 90.6 77.2 65.9 74.0 74.5

Lite-HRNet [28] Lite-HRNet-30 384 × 288 1.8M 0.70 69.7 90.7 77.5 66.9 75.0 75.4

EHR-HPE EHRNet 384 × 288 1.7M 0.91 70.1 91.2 77.9 66.7 75.6 75.2
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4.3 Ablation Study

A series of ablation studies on MPII validation set have been conducted to ana-
lyze the effectiveness of each component proposed in this paper. Table 4 reports
the results. Firstly, this paper combines shuffle blocks with Small HRNet as
baseline, which achieves 86.38 points (PCKh@0.5) with 1.3 M parameters and
419 MFLOPs. To further improve the performance, two 1 × 1 Ghost modules
(r is set to 2) are introduced to replace the two 1 × 1 convolutions in shuffle
blocks, thereby the number of parameters and the computation cost are reduced
by 0.17M and 60 MFLOPs, respectively, whereas the performance is improved
by 0.13 points.

Table 3. Comparisons on the MPII val set.

Model #Params GFLOPs PCKh@0.5

Small HRNet 1.3M 0.74 80.2

ShuffleNetV2 1× 7.6M 1.70 82.8

MobileNetV3 1× 8.7M 1.82 84.3

MobileNetV2 1× 9.6M 1.97 85.4

Lite-HRNet-30 1.8M 0.42 87.0

FLPN 10.0M 1.10 87.8

EHR-HPE 1.7M 0.53 87.3

Table 4. Ablation studies on the MPII val set.

Model #Params MFLOPs PCKh@0.5

Small HRNet 1.3M 736 80.2

Baseline 1.3M 419 86.38

+ 1 × 1 Ghost 1.13M 359 86.51

+ 1 × 1 Ghost + GC block 1.24M 361 86.63

+ 1 × 1 Ghost + CGC block 1.13M 365 86.58

+ 1 × 1 Ghost + attention module 1.25M 368 86.69

EHR-HPE 1.69M 534 87.33

Subsequently, GC blocks are introduced into the shuffle blocks to strengthen
the modeling ability on spatial long-range dependencies, and achieves 86.69
points. Based on GC block, CGC block is proposed to enhance the informa-
tion exchange across channels, and achieves 86.63 points. This paper combines
GC and CGC blocks as the attention module used in EHR-HPE to enhance the
modeling ability of both inter-channel and inter-spatial relationships, perfor-
mance has been improved by 0.18 points at the cost of 0.12M extra parameters
and 9 extra MFLOPs.
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Finally, efficient dense connections are proposed to facilitate convergence and
promote network accuracy, resulting in the final EHR-HPE, which achieves 87.33
points with 1.69M parameters and 534 MFLOPs on MPII validation set.

5 Conclusion

Considering the deployment difficulty of large human pose estimation meth-
ods, this paper proposes an efficient and lightweight network named EHR-HPE.
EHR-HPE network first follows the high-resolution pattern of Small HRNet to
acquire accurate heatmaps; then an efficient shuffle block is designed to reduce
the model complexity and boost model performance; finally, the efficient dense
connections are added to further improve model accuracy. Extensive experiment
results demonstrate that the proposed EHR-HPE network can achieve compa-
rable results with those top-performing methods, while the model complexity is
much lower, making it more suitable for resource-limited devices.

Acknowledgements. This work was funded by the Project Research on human-robot
interactive sampling robots with safety, autonomy, and intelligent operations supported
by NSFC (92048205).
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