
FusionSeg: Motion Segmentation
by Jointly Exploiting Frames and Events

Lin Wang1, Zhe Liu1, Yi Zhang2, Shaowu Yang1, Dianxi Shi2,
and Yongjun Zhang2(B)

1 College of Computer, National University of Defense Technology, Changsha, China
wanglin12@nudt.edu.cn

2 Artificial Intelligence Research Center, National Innovation Institute of Defense
Technology, Beijing, China

yjzhang@nudt.edu.cn

Abstract. Segmentation of independently moving objects is an impor-
tant stage in scene comprehension tasks like tracking and recognition.
Frame-based cameras employed for dynamic scenes suffer from motion
blur and exposure artifacts due to the sampling principle. In contrast,
event-based cameras sample visual information based on scene dynam-
ics and have the advantages of microsecond temporal resolution, high
dynamic range, and more. Inspired by the complimentary of frame-based
cameras and event-based cameras, we propose a cross-domain motion
segmentation method, named FusionSeg, for fusing visual signals from
frames and events to improve motion segmentation performance. To solve
motion segmentation problem on the multi-objects scenario, we use the
identification mechanism to embed multiple objects into the same feature
space. In addition, to solve the feature matching and propagation prob-
lem, we design a long and short-term temporal-spatial attention. Our
FusionSeg is evaluated on public datasets and outperforms the state-of-
the-art by 4.7% in terms of detection rate. Experiments also demonstrate
our method’s robustness in situations with varying motion patterns and
numbers of moving objects.
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1 Introduction

Humans can easily perceive a complex scene as a set of distinct objects, a
phenomenon known as perceptual grouping [23]. Robotic applications, such as
autonomous driving and AR/VR, require the perception of dynamic scenes to
interact effectively with the environment. In computer vision, perceptual group-
ing is closely related to the segmentation problem. That is, extracting objects
with arbitrary shapes from a cluttered scene.
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Much of the work in the visual segmentation research field involves optical
flow computing as the initial stage [2,27]. However, precise optical flow calcula-
tion is difficult due to problems such as discontinuity and occlusion of moving
objects. In the optimization field, various approaches use the idea of contrast
maximization to accomplish the segmentation task [19]. In a multi-objects sce-
nario, the motion-compensated images of each object need to be computed,
which increases the computational cost. Feature point tracking allows for long-
term estimation of pixel motion trajectories, which can resolve ambiguities in
motion by analyzing pixel matches over larger time intervals. However, from a
perceptual point of view, challenging visual effects (such as motion blur and
underexposure/overexposure) make problem-solving with frame-based cameras
more difficult. Therefore, inspired by biological visual motion processing mecha-
nisms, neuromorphic engineers have developed a kind of sensor which is known
as the event-based camera. It is not driven by a common clock because each
pixel acts as an independent circuit, i.e., each pixel responds to motion indepen-
dently and is therefore able to perceive dynamic changes in the scene efficiently
and accurately. In addition, it can tolerate different lighting conditions and is
sparsely encoded. The advantages in terms of temporal resolution, low latency
,and low bandwidth are enormous compared to frame-based cameras.

While event-based cameras have many benefits, they cannot measure abso-
lute light intensity and difficult to capture slow motion and fine-grained texture
information, which are important for high-performance segmentation. Frame-
based cameras can just compensate for this. This unique complementarity leads
us to propose a visual segmentation method based on the fusion of frames and
events, called FusionSeg. In this paper, we use a simple and effective events
aggregation method to discrete the time domain of asynchronous events. Thus
it can be more easily processed based on CNN models. Another challenge is to
efficiently obtain meaningful cues from the events domain and frames domain
for different scenes. To this end, we introduce a new feature fusion method to
efficiently fuse visual cues from both events and frames. The adaptive nature
of our approach is maintained by a weighting scheme specifically designed to
balance the contributions of both domains.

To make effective use of the motion information in the sequence, we propose
a feature matching and propagation method. Firstly, we use an identification
mechanism that assigns a unique recognition identity to each object and embeds
multiple objects into the same feature space. The network can learn the associ-
ation between all objects. The long and short-term temporal-spatial attention is
then designed to implement feature matching and propagation. We demonstrate
that our method outperforms other approaches on public datasets.

In summary, our contributions are:

(1) We introduce a feature fusion method that adaptively fuses visual cues from
events and frames, and thus makes full use of both data for segmenting scene
objects.

(2) We introduce feature matching and propagation methods to make effective
use of motion information from time sequences. To our knowledge, this is
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the first attempt to introduce Transformer into event-based motion segmen-
tation.

(3) Our extensive experimental results show that our method has significant
advantages over other state-of-the-art methods.

In the rest of the paper, we first review related work (Section II) and then explain
our approach (Sections III). Finally, the model is validated (Section IV).

2 Related Work

2.1 Motion Segmentation

In the last decade, event-based motion segmentation has been solved for different
scene complexities. For a moving event camera, events are triggered by static
background and moving objects. The goal of motion segmentation is to infer
the causal classification of each event. However, the amount of information car-
ried by each event is small, and classifying each event is extremely challenging.
Since moving objects produce different events trajectories in the image plane,
event-based segmentation algorithms achieve the segmentation task primarily by
inferring the trajectories of moving objects.

Assuming that the shape of the object to be segmented is known, Glover et al.
[21]. Extracted the optical flow from the time window of the event stream based
on the Hough transform, which in turn enables the segmentation and tracking
of the ball. Later, they extended the method using particle filtering to improve
tracking robustness, i.e.by dynamically selecting the duration of the observation
window to accommodate sudden changes in object acceleration [4].

Some recent work has proposed the idea of using motion-compensated event
images [3] to solve the problem of motion segmentation. Essentially, the tech-
nique associates events that produce sharp edges based on motion assumptions.
The simplest assumption is a linear motion model, where the scene can be
described as a collection of objects over a short period time, producing events
that fit multiple linear motion models. Timo [20] et al. first fited a camera
motion compensation model to the main events, then eliminated these events
and finally greedily fited the remaining events to another linear model to pro-
duce motion compensated images with clear object contours. They later pro-
posed an iterative clustering algorithm [19] that jointly estimated the motion
parameters of the event-objects association and the objects that produced
the sharpest motion-compensated event images. It allows a generic paramet-
ric motion model to describe each object and produces relatively good results.
Immediately afterward, Anton et al. [10] segmented moving objects by fitting
a motion-compensated model to events caused by the background and then
detecting events that were inconsistent with the background, and they tested
the method in challenging scenes (HDR, high speed) that are difficult to capture
with frame-based cameras and published the dataset.

More and more machine learning methods have recently been used for motion
segmentation tasks. Anton et al. [13] proposed a motion segmentation framework
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to jointly estimate optical flow, 3D motion and objects segmentation tasks and
published the dataset for motion object segmentation. Later on, they used graph
convolutional neural networks to segment the 3D events cloud [12], effectively
improving problems such as occlusion and demonstrating that larger temporal
slices can produce better results. In the same year Daniel et al. [7] proposed
a visual motion network that predicts more accurate local visual motion and
confidence levels as a way to achieve motion segmentation and camera pose
estimation.

2.2 Visual Transformer

Through the attention mechanism, the Transformer architecture excels at mod-
eling long-term relationships in input sequences. The Transformer module, like
non-local neural networks, computes correlations with all input elements and
aggregates their information using an attention mechanism. Transformer net-
works, when compared to RNNs, model global correlations in parallel, improving
memory efficiency. They were originally used for language tasks but have since
been applied to popular computer vision problems such as object segmentation
[22] and object detection [1,9].

We use an attention mechanism in this work to match object features and
pass segmentation masks from previous frames to the current frame. A long
and short-term temporal-spatial attention is also designed to allow for efficient
feature matching and propagation.

3 Methodology

3.1 Input Representation

From the perspective of perception principles, the frame-based camera records
the intensity of all pixels by means of frames to capture the global scene. In
contrast, the event-based camera asynchronously measures the light intensity
changes in the scene. When the change in light intensity is greater than a thresh-
old value, the pixel triggers an event independently. The polarity of the event
reflects the direction of the change. As shown in Eq. 1, an event can be defined
as

ε = {ek}Nk=1 = {[xk, yk, tk, pk]}Nk=1 (1)

where ek denotes an event. (xk, yk) denotes the pixel location of the event. tk
denotes the timestamp of the event. pk ∈ {−1,+1} is the polarity of the event,
with a positive polarity indicating an increase in light intensity and a negative
polarity indicating a decrease in light intensity.

Since the asynchronous events format is very different from synchronous
frames, in order to accommodate the CNN input, previous approaches typi-
cally aggregate events into a frame-based representation. In this work we divide
the event stream into successive time slices. Each time slice is projected onto a
plane. The representation has three channels, two of which are accumulations of
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positive and negative events, and the third is a temporal image [26]. Compared
to the 3D learning approach, the 2D input representation has the advantage of
reducing the sparsity of the data, thus improving computational efficiency.

3.2 Network Architecture

The overall architecture of the FusionSeg is illustrated in Fig. 1. The first part of
our approach is the feature fusion module, which is used to balance the advan-
tages of two domain features. To accommodate multi-objects scenarios, we use
an identification mechanism to associate multiple targets. In addition, based on
the identification mechanism, we design a long and short-term temporal atten-
tion for feature matching and propagation. Finally, the prediction mask is output
by the MLP layer and decoder.

Fig. 1. An overview of our proposed Segmentation framework(FusionSeg) via collabo-
ration of frames and events.

3.3 Feature Fusion Method

While frame-based cameras can easily capture rich textural and semantic cues,
event-based cameras can easily capture edge information and have a high
dynamic range. A feature fusion module is therefore designed to make effective
use of both domain data. In the case of motion segmentation, objects are only
detected when they are moving independently relative to the camera. Thus, pre-
vious work has attempted to compensate for camera motion. Instead of estimat-
ing the camera motion explicitly, we normalize the instances for each channel of
each sample. Intuitively, the average activation tends to be controlled by motion
in a large homogeneous region (usually the background). This normalization,
combined with RELU, helps to separate background motion from foreground
motion. As shown in the Fig. 2, the following feature enhancement scheme has
been defined to generate enhanced features F̂e for events.
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F̂e = F̂e→e ⊕ F̂v→e ⊕ Fe (2)

F̂e→e = σ (ψ3×3 (Fe)) ⊗ Fe (3)

F̂v→e = σ (ψ1×1 [ξ (ψ1×1 (Fv)) , ξ (ψ3×3 (Fv)) , ξ (ψ5×5 (Fv))]) ⊗ Fe (4)

WFe
= σ

(
ψ1×1

(
ξ
(
ψ1×1

(
A

(
F̂e

)))))
(5)

where [·] indicates channel-wise concatenation. ψ is convolutional layer. ξ is the
instance normalization followed by a ReLU activation function. F̂e→e indicates
event-based self-reinforcing features. F̂v→e indicates frame-based cross-domain
reinforced features designed to enhance event-based features. WFe

indicates the
weight of event-enhanced features.

Inversely, the enhanced features of frames F̂v and weight WFv
can be gen-

erated. To balance the contributions of frames and events, inspired by [28], we
propose an adaptive weighting balancing scheme:

X = WFe
F̂e ⊕ WFv

F̂v (6)

Fig. 2. The network structure of feature fusion network.

3.4 Multi-Object Association

The main challenge in propagating and decoding multi-objectes mask informa-
tion in an end-to-end network is to use the network to accommodate different
numbers of objects. To overcome this problem, inspired by [25], we use an identi-
fication mechanism consisting of identity embedding and identity decoding.
For a multi-objects scenario, the identity embedding is constructed by assigning
different identification vectors to different object regions. Specifically, we initial-
ize a vector bank D ∈ RM×C . M denotes the maximum number of objects.
Y ∈ {0, 1} is the mask of objects. Suppose there are N (N < M) objects in the
scenario. Then the identity embedding E ∈ RTHW×C can be expressed as

E = ID (Y,D) = Y PD (7)

where P ∈ {0, 1}HW×C is the random permutation matrix. After ID assignment,
different objects have different recognition embedding vectors.
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Identity decoding: The convolution’s decoding network is used to predict
the probability of each identity in the identity bank before selecting the speci-
fied identity and calculating the probability. Common multi-classes segmentation
losses, such an cross-entropy losses, are used during training to optimize multiple
objects with respect to ground-truth labels. The identity bank is trainable and
is randomly initialized at the start of training. We re-initialize the random per-
mutation matrix at each sequence sample and optimization iteration to ensure
that all identity vectors have the same chance of competing with each other.

3.5 Feature Matching and Propagation

Based on the identification mechanism, we elaborate the long and short-term
temporal-spatial attention for feature matching and propagation. The network

Fig. 3. The network structure of long and short-term temporal-spatial attention

starts with a self-attention layer that learns the correlation between objects
in template frames and search frames, respectively. Then, long-term attention
is introduced to aggregate features of template frames, short-term attention is
introduced to learn memory frame features, and spatial attention is introduced
to propagate memory frame object location information. Figure 3 illustrates the
structure of our approach.

We define Q ∈ RHW×C , K ∈ RHW×C , V ∈ RHW×C as the query embedding
of the search frame, the key embedding of the template frame and the value
embedding of the template frame, respectively. Where T,H,W,C denote the
time, height, width and channel dimensions, respectively. The following is the
attention-based matching and propagation equation.

Att (Q,K, V ) = Corr (Q,K) V = softmax

(
QKT

τ

)
V (8)
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where Corr (·, ·) is the correlation function. τ is a temperature parameters con-
trolling the softmax distribution, which is inspired by [5].

It is beneficial to propagate a representation of the objects when the camera
changes dramatically in the scene. To suppress the background region, we mul-
tiply the template frame features by the mask recognition vector pixel by pixel,
which propagates the template frame object features to the search frame.

V ′ = Att (Q,K, V ⊗ ID (Y,D)) = Att (Q,K, V ⊗ E) (9)

where ⊗ is the pixel multiplication.
The self-attention operation is designed to enhance the features of the tem-

plate frame and the search frame.

AttSA
(
Xt,Xt,Xt

)
= Att

(
XtWQ,XtWK ,XtWV

)
(10)

Ŝsa = Ins.Norm
(
AttSA

(
Xt,Xt,Xt

)
+ Xt

)
(11)

where Xt is the template feature or search feature. Ins.Norm (·) indicates
instance normalization. WQ,WK ,WV represent the projection matrix for match-
ing and propagation.

Long-term attention is in charge of aggregating the features of the template
frame objects to the current frame. Temporal smoothness is difficult to achieve
because the time interval between the search frame and the template frame
is variable. Therefore, a non-local attention approach is used to implement the
long-term attention module. The following is the equation of long-term attention.

AttLT
(
Xt,Xm, Y m

)
= Att

(
XtWQ,XmWK ,XmWV ⊗ Em

)
(12)

Ŝlt = Ins.Norm
(
AttLT

(
Xt,Xm,Xm

)
+ Xt

)
(13)

where Xt is the search feature. t ∈ {2, . . . , T} is the feature index of sequence.
m ∈ {1} is the index of first frame. Xm and Y m are the template feature and
masks, respectively.

Short-term attention is in charge of aggregating the memory frame’s objects
features to the current frame. Changes between successive time slices appear to
be smooth and continuous. As a result, object matching and propagation can
be limited to a small spatiotemporal domain, providing greater efficiency than
non-local attention.

AttST
(
Xt,Xn, Y n | p

)
= Att

(
Xt

pW
Q,Xn

N(p)W
K ,Xn

N(p)W
V ⊗ En

N(p)

)
(14)

Ŝst = Ins.Norm
(
AttST

(
Xt,Xn, Y n | p

)
+ Xt

)
(15)

where Xt
p is the search feature at location p. N (p) is 15 × 15 spatial neigh-

bourhood centered at location p. n ∈ {t − 1} is the memory feature index of
sequence. Xn

N(p) and En
N(p) are the memory feature and masks of the spatial-

temporal neighbourhood, respectively.
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Spatial attention is in charge of aggregating the location information of mem-
ory frame objects to the current frame. The mutual attention establishes a pixel-
to-pixel relationship between the two frames so that it supports object location
propagation.

AttSP
(
Xt,Xn, En

)
= Att

(
XtWQ,XnWK , EnWV

)
(16)

Ŝsp = Ins.Norm
(
AttSP

(
Xt,Xn, En

) ⊗ En
)

(17)

4 Experiment and Results

To explore the effectiveness of our proposed algorithm for the motion segmen-
tation task, we validate it on two widely used and public datasets. Firstly, we
present the implementation details. And then describe the use of the datasets.
Finally, we show the performance of our method in both qualitative and quan-
titative terms.

4.1 Implementation Details

For feature extraction, we used MobileNet v3 [6] as the encoder and FPN [8]
as the decoder to generate the objects’ mask. The AdamW optimizer and a
sequential training strategy [24] with a sequence length of 5 are used. The loss
function is a combination of bootstrapped cross-entropy loss and soft Jaccard loss
[15]. We used an exponential moving average (EMA) [17]. The initial learning
rate was set to 0.0002. To reduce overfitting, the encoder’s initial learning rate
was reduced to 0.1 of the other network parts.

4.2 Overview of Datasets

The EV-IMO dataset [14] is a real dataset captured indoors with the DAVIS 346
camera that includes backgrounds like box, floor, table, and wall as well as multi-
ple independently moving objects. It is one of the most challenging open-source
datasets for segmenting independent motion objects. The authors provide dense
segmentation masks of independently moving objects for quantitative evalua-
tion. Two standard metrics are used in the quantitative evaluation, including
detection rate and Intersection over Union (IoU). Details about the metrics can
be found in [11,29].

The Extreme Event Dataset (EED) [11] is one of the first open-source
datasets used for independent moving objects detection and tracking research.
There are independent moving objects in addition to the camera’s ego-motion.
All sequences were captured in a laboratory setting to demonstrate the superior
performance of event cameras in HDR scenes.
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Table 1. Segmentation performance on the EVIMO dataset, measured by IoU.

EVDodgeNet [18] MOMS [16] EMSGC [29] EV-IMO [14] AOT [25] Ours

EVIMO 65.76 74.82 76.81 77.00 31.82 77.49

Fig. 4. Segmentation results on the EVIMO dataset, on sequences Box(rows 1–3) and
Table(rows 4–6).Time runs from left to right. Our segmentation masks(rows 2 & 5) are
shown on the frames. The masks from [29] (rows 3 & 6) are also shown on the frames.
The first and fourth row are ground truth labels

4.3 Discussion of Results

As can be seen from the quantitative results in Table 1 , our method outperforms
other state-of-the-art solutions. Moreover, due to the drastic changes in the
scene recorded in the EVIMO dataset, the AOT [25] using only frames could
not achieve satisfactory results, suggesting that exploiting the complementary
of events and frames can improve the robustness of the model under degraded
conditions.

Table 2. Segmentation performance on the EVIMO dataset, measured by detection
rate.

Algorithm Mitrokhin [10] MOMS [16] Ours

Detection rate 64.79 77.06 80.74

As shown in Table 2, our method outperforms other methods using the detec-
tion rate metric. Due to the lack of open source code, the numbers for the baseline
method were obtained directly from the corresponding publications [16]. Figure 4
shows the example results of our method on EVIMO. In the Box sequence, The
toy car moves from right to left on a highly textured carpet with multiple station-
ary interfering objects in the scene, and our model can still continuously detect
it as a moving object. In the Table sequence, there are two Independent mov-
ing objects, which hit each other and meet in the middle. The toy plane moves
slowly at the end of the sequence and [29] marks it as background. Even though
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they partially overlap, our method successfully segments out the independently
moving plane.

Fig. 5. Segmentation results on EED dataset. Time runs from top to bottom. The
ground truth bounding boxes (in yellow) show the 2D location of the independent
moving objects. column 1 and column 2 are recorded in low light conditions. column 3
and column 4 are recorded in the presence of obscuration. (Color figure online)

We ablate the main modules of our method. The key components of our
method are feature fusion, long-term attention, short-term attention, and spa-
tial attention. To verify their effectiveness, we modified the original model by
removing each component and retrained the modified model, accordingly, we
obtained four models. Table 3 reports the results of the four modified models.
It shows that the feature fusion module is the key to our excellent results. The
long and short-term spatio-temporal attention module does effectively match
and propagate the target features and location information. This reflects the
fact that our method can improve the model’s segmentation ability by combin-
ing events and frames and using the attention mechanism to learn the motion
information in the sequence, demonstrating that our method is robust to the
shape, size, and the number of objects.

In addition to the quantitative results above, we also show example results
from the EED dataset in Fig. 5. Note that it is sometimes difficult to detect the
objects in the corresponding frames, which motivates us to combine frames and
events and use motion cues for independent moving objects detection.
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Table 3. Ablation studies on feature fusion(FF), long-term attention(LT), short-term
attention(ST) and spatial-attention(SP).

Method FF LT ST SP IoU

Ours-A × � � � 75.99

Ours-B � × � � 74.97

Ours-C � � × � 75.94

Ours-D � � � × 76.94

FusionSeg � � � � 77.49

5 Conclusions and Future Work

This paper presents a multi-objects motion segmentation method using frames
and events. We design a feature fusion scheme that effectively fuses the informa-
tion obtained from the frames and events. In addition, we introduce the Trans-
former architecture to make full use of the motion cues for motion segmentation
of multi-objects scenes.

Our method can address slow object motion and highly textured scenes
through feature matching and propagation, demonstrating that exploiting the
complementary of events and frames can improve the robustness of motion seg-
mentation under degraded conditions. All these allow us to perform motion seg-
mentation in challenging scenes, thus unlocking the remarkable capabilities of
the event camera. In the future, we will investigate the feasibility of exploiting
the high measurement rate of the event camera to increase the segmentation
frequency.
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Science Foundation of China(No. 91948303).
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