
Dynamic Refining Knowledge Distillation
Based on Attention Mechanism

Xuan Peng and Fang Liu(B)

School of Electronic Science, National University of Defense Technology,
Changsha, China

smartlf@sina.com

Abstract. Knowledge distillation is an effective strategy to compress
large pre-trained Convolutional Neural Networks (CNNs) into models
suitable for mobile and embedded devices. In order to transfer better
quality knowledge to students, several recent approaches have demon-
strated the benefits of introducing attention mechanisms. However, the
existing methods suffer from the problems that the teachers are very
rigid in their teaching and the application scenarios are limited. In face
of such problems, a dynamic refining knowledge distillation is proposed
in this paper based on attention mechanism guided by the knowledge
extraction (KE) block whose parameters can be updated. With the help
of the KE block, the teacher can gradually guide students to achieve the
optimal performance through a question-and-answer format, which is a
dynamic selection process. Furthermore, we are able to select teacher
networks and student networks more flexibly with the help of channel
aggregation and refining factor r. Experimental results on the CIFAR
dataset show the advantages of our method for training small models
and having richer application scenarios compared to other knowledge
distillation methods.

Keywords: Network compression · Knowledge distillation · Dynamic
refining · Attention mechanism

1 Introduction

Convolutional neural networks (CNNs) have achieved impressive success in com-
puter vision tasks such as image classification [4,23], object detection [14,16],
and semantic segmentation [21,24]. However, the advantages of performance are
driven at the cost of training and deploying resource intensive networks with mil-
lions of parameters. As application scenarios shift toward mobile and embedded
devices, the computational cost, memory consumption, and power consump-
tion of large CNNs prevent them from being deployed to these devices, which
drives research on model compression. Several directions such as model pruning
[10,11,20], model quantization [12], and knowledge distillation [5,9,15,17,22] are
proposed to enable the model to be deployed in resource-constrained scenarios.
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Among them, knowledge distillation aims to compress a network by using the
knowledge of a larger network or its ensemble (teacher) as a supervision to train
a compact network (student) [19]. Different from other compression methods, it
can compress the network regardless of the structural differences between teach-
ers and students.

Attention plays a critical role in the human visual experience. In computer
vision, methods of focusing attention on the most important regions of an image
and ignoring irrelevant parts are called attention mechanisms [3]. In a vision
system, the attention mechanism can be considered as a dynamic selection pro-
cess, which is implemented by adaptively weighting the features according to
the importance of the input. [22] first introduced spatial attention in knowl-
edge distillation (AT), which transfers spatial attention maps to students as
knowledge. [17] introduced channel attention in knowledge distillation (KDPA)
through borrowing the squeezing operation of Squeeze-and-Excitation Networks
proposed by [6]. These methods have yielded good results, but there are still
some problems.

For example, firstly, teachers are too rigid in teaching students as they only
give steps on how to solve a problem, which is more like students learning on
their own through reference answers. However, this is not enough, because a
real teacher usually guides his students’ learning through a question-and-answer
format. More interaction should be generated between the teacher and the stu-
dents. Secondly, the choice of teacher-student combinations is restricted. AT
must ensure that the spatial dimensions W × H of the blocks corresponding to
the teacher and student networks are equal, while KDPA needs to ensure that
the channel dimension C of the blocks corresponding to the teacher and student
networks is equal.

In order to address these issues, we propose a dynamic refining knowledge
distillation based on attention mechanism named DRKD, which introduces the
KE block whose parameters can be updated. During training, a complete ques-
tion and answer session is composed of one forward and one backward propa-
gation. The forward propagation means that the teacher and the student give
their answers separately to the same problem. During the back propagation, the
parameters of both the KE block and the student are updated. The process of
the student’s parameters being updated indicates that the student is correct-
ing the answer based on the teacher’s response, and the parameters of the KE
block being updated means that the teacher is recalibrating the answer based
on the student’s feedback. After many question and answer sessions, the teacher
gradually guides the students to find the best answer. Moreover, with the help
of the channel encoding and the channel refining, the choice of teacher-student
combinations can be more flexible regardless of the dimensional differences in
the feature maps of the corresponding blocks between teachers and students. In
short, the contributions of this paper can be summarized as follows:

1) We propose a novel knowledge distillation method named DRKD. By intro-
ducing the KE block with parameters that can be updated, our approach is
able to dynamically adjust the knowledge transferred to students based on
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their feedback. The approach emulates the human knowledge transfer app-
roach driven by questions.

2) Our proposed method effectively mitigates the problem that many excellent
knowledge distillation methods cannot be used in most teacher-student com-
binations, which greatly enriches the application scenarios of the algorithm.

3) We experimentally demonstrate that our approach provides significant
improvements in the training of small models and shows flexibility in the
selection of teacher-student combinations.

2 Related Work

Knowledge Distillation. Many studies have been conducted since [5] proposed
the first knowledge distillation based on the soften class probabilities. [15] first
introduced the knowledge of the hidden layer to improve knowledge distillation,
which suggests that the knowledge of the hidden layer also has an important
impact on students during the process of knowledge transfer. Inspired by this,
various other methods have been proposed to indirectly match the feature activa-
tion values of teacher and student networks. [9] proposed knowledge distillation
combined with singular value decomposition (SVD) to effectively remove the
spatial redundancy in the feature map by reducing the spatial dimension of the
feature maps. [8] introduced the so-called “factors”, which uses convolutional
operations to paraphrase teacher’s knowledge and to translate it for the stu-
dent. [7] utilized the outputs of the hint layer of teacher to supervise student,
which reduces the performance gap between teacher and student. [22] proposed
to use the sum of absolute values of a feature as the attention map to implement
knowledge distillation. [17] used the channel attention mechanism to highlight
the expressive feature in the middle layer.

Channel Attention Mechanism. In deep neural networks, different channels in
different feature maps usually possess different features [1]. Channel attention
adaptively adjusts the weights of each channel, which can be seen as a feature
selection process to determine what should be paid attention to [3]. [6] first pro-
posed the concept of channel attention and presented SENet, which can capture
channel-wise relationships and improve representation ability. Inspired by this,
many SENet-based channel attention studies began to emerge. [2] proposed a
global second-order pooling block to solve the problem of SENet’s difficulty in
capturing higher-order statistics. [18] proposed the efficient channel attention
block which uses a 1D convolution to determine the interaction between chan-
nels. It tackles the issue that SENet cannot directly model the correspondence
between weight vectors and inputs. Only using the global average pooling in the
squeeze module limits representation ability. To obtain a more powerful repre-
sentation ability, [13] rethought global information captured from the viewpoint
of compression and analysed global average pooling in the frequency domain.
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3 Methodology

The core idea of our proposed approach is how to dynamically extract the knowl-
edge transferred to students. This section is divided into three parts to present
our proposed method. Section 3.1 presents the general structure of DRKD.
Sect. 3.2 introduces the specific details of implementing the KE block. Finally,
we define the loss terms in Sect. 3.3 based on the carefully designed distilled
knowledge.

3.1 Overall Structure of DRKD

The structure of the DRKD is shown in Fig. 1. Most existing neural networks are
composed of several blocks. For example, WideResNet (WRN) consists of three
blocks and ResNet consists of four blocks. Each block contains many convolu-
tional layers, batch normalization layers and activation layers. In this paper, the
dynamic refining process is implemented by introducing a pair of the KE blocks
at the output of the corresponding blocks in the teacher and student networks.
The refining process does not mean to extract specific knowledge, but rather to
dynamically adjust the knowledge transferred to students based on their feed-
back. And this process is more similar to the dynamic selection process of the
attention mechanism.

Fig. 1. Schematic diagram of the overall structure of the algorithm. Ti and Si denote
the output feature maps of the i-th block of the teacher and student networks, respec-
tively. Ci

T and Ci
S denote the number of channels of the feature map of the i-th block

of the teacher and student networks, respectively.

In details, the feature map of i-th block of the teacher network is written
as Ti =

{
f1
Ti

, f2
Ti

, · · · , f
Ci

T

Ti

}
, Ci

T denotes the number of channels of the Ti, and
the feature map of all blocks of the teacher network can be described as T =
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Fig. 2. Schematic diagram of the structure of the KE block, which is divided into two

steps: g(·) and f(·, W ). Where W ∈ RCi
T×Min(Ci

T ,Ci
S)

r , which is determined by the
number of channels of the i-th block feature map of the teacher and student networks.

{T1, T2, · · · , TN}, N denotes the number of the entire network block. The feature

map of i-th block of the student network is written as Si =
{

f1
Si

, f2
Si

, · · · , f
Ci

S

Si

}
,

Ci
S denotes the number of channels of the Si, and the feature map of all blocks

of the student network can be described as S = {S1, S2, · · · , SN}, N denotes the
number of the entire network block.

3.2 KE Blocks

Figure 2 shows the specific structure of the KE block with Ti as the input exam-
ple. The KE block is implemented on the features of each block through two
steps: channel encoding and channel refining.

Channel Encoding. In order to tackle the issue of spatial dimension mismatch
between corresponding blocks of the teacher and student networks, it is a feasible
approach that encodes the global spatial information of each channel into a
channel descriptor. The study by [6] also showed that features Ti or Si in the
hidden layer can be interpreted as a collection of the local descriptors whose
statistics are expressive for the whole image. Many aggregation strategies can be
used to achieve channel aggregation. Considering the computational complexity,
the simplest global average pooling is chosen. The statistics ZTi

∈ R
Ci

T and
ZSi

∈ R
Ci

S are generated by shrinking Ti and Si through spatial dimensions,
respectively. The k-th element of ZTi

and the m-th element of ZSi
are calculated

by:

Zk
Ti

= g
(
fk
Ti

)
=

1
HTi

× WTi

HTi∑
x=1

WTi∑
y=1

fk
Ti

(x, y) (1)

Zm
Si

= g
(
fm
Si

)
=

1
HSi

× WSi

HSi∑
x=1

WSi∑
y=1

fm
Si

(x, y) (2)

where Zk
Ti

denotes the k-th element of the channel descriptor vector of the i-th
block of the teacher network, fk

Ti
denotes the k-th channel feature map of the
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i-th block of the teacher network, and HTi
× WTi

denotes the spatial dimension
of the i-th block of the teacher network. The student network is as above. Where
1 ≤ k ≤ Ci

T , 1 ≤ m ≤ Ci
S .

Channel Refining. Related studies [10,11] have shown that there is a certain
degree of redundancy in the numerous channels in the convolutional neural net-
works. Therefore, in order to take advantage of the information aggregated in
the channel encoding operation, we follow it with a second operation which aims
to dynamically refine the knowledge transferred to the students based on their
feedback. To fulfil this objective, the function must satisfy two criteria: first, its
parameters must be updatable since we need to ensure that knowledge transfer
is a dynamic selection process, and second, its input must be 1D tensor as the
output of the channel encoding is 1D tensor. Besides, the function must also
act as a dimensionality reduction, considering the problem of channel dimension
mismatch between teachers and students. Therefore, the fully connected layer is
the only choice:

VTi
= f (ZTi

,WTi
) = σ (WTi

ZTi
) (3)

VSi
= f (ZSi

,WSi
) = σ (WSi

ZSi
) (4)

where WTi
∈ R

Min(Ci
T ,Ci

S)
r ×Ci

T , WSi
∈ R

Min(Ci
T ,Ci

S)
r ×Ci

S and σ refers to sigmoid
activation function. The r is a hyperparameter which plays a crucial role in our
proposed algorithm. With the help of r, the problem of mismatching the number
of channels in the corresponding blocks of the teacher and student networks can
be solved. And r is usually set to an integer value, 1 ≤ r ≤ Min

(
Ci

T , Ci
S

)
. As

r increases, the total amount of knowledge transferred from the teacher to the
students is decreasing, with a greater tendency to filter for high-priority features.
The balance between quality and quantity is very important in the knowledge
transfer process. The degree of dynamic refining can be adjusted according to
the actual situation with the help of r (the choice of this hyperparameter is
discussed in Sect. 4.4).

3.3 Loss Function

The loss function of our proposed method consists of two components. One is a
cross-entropy loss based on the ground-truth labels and the predicted labels of
the student network, and the other is a dynamic refining (DR) loss based on the
middle layer features of the network.

At the beginning of training, the ground-truth loss plays an important role in
improving the convergence speed of the student network. The loss is calculated
by:

Lcross = Hcross(y, ŷ) (5)

where y denotes the ground-truth label, ŷ denotes the predicted label of the
student network, and Hcross denotes the cross-entropy function.
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During network training, the DR loss acts as a regularization term and helps
improve robust. The loss is calculated by:

LDR =
N∑
i=1

1
λi

‖VTi
− VSi

‖22 , λi =
Min

(
Ci

T , Ci
S

)
r

(6)

where VT = {VT1 , VT2 , · · · , VTN
} represents the knowledge transferred from the

teacher to the student. The r is usually set to an integer value and 1 ≤ r ≤
Min

(
Ci

T , Ci
S

)
.

Objective function:
LTotal = Lcross + αLDR (7)

where the α is a hyperparameter that adjusts the proportion of the DR loss term
in the final objective function.

4 Experiments

In this section, WideResNet (WRN) and ResNet will be used as our deep neural
network models and experimented on the CIFAR datasets. The CIFAR dataset
contains CIFAR-10 and CIFAR-100, consisting of 60,000 RGB images of 32×32
pixels. The ratio of both training set and test set is 5 : 1.

4.1 Experiments on Benchmark Datasets

The performance of the algorithm will be proved in two aspects: different network
architectures and different number of channels. Therefore, three teacher-student
combinations will be chosen, which are the [ResNet34, ResNet18], the [WRN-
28-2, WRN-16-2] and the [WRN-10-5, WRN-16-1]. In WRN-n-k, n denotes the
depth of the network, and k denotes that the number of channels of the network
is k times the number of base channels. During training, the teacher network
is untrainable and the student network is used with stochastic gradient descent
(SGD) as the optimizer, with momentum set to 0.9 and weight decay set to
5e-4. The initial value of the learning rate is set to 1e-1 and all learning rates are
multiplied by 0.7 every 10 epochs. When the [ResNet34, ResNet18] is trained,
the best received results are at α = 1.0, r = 1. When the [WRN-28-2, WRN-16-2]
is trained, the best received results are at α = 1.0, r = 2. When the [WRN-10-5,
WRN-16-1] is trained, the best received results are at α = 1.0, r = 16.

Table 1 and Table 2 show the performance of DR on the CIFAR-10 and
CIFAR-100, respectively. In the tables, the compression ratio is calculated as
Tparams−Sparams

Tparams
. Among them, Tparams denotes the parameters of the teacher,

and Sparams denotes the parameters of the student. When the experiment is con-
ducted on the ResNet, ResNet34 is selected as the teacher network and ResNet18
is chosen as the student network. Compared with the student baseline, the accu-
racy of the student trained by DR on the CIFAR-10 and CIFAR-100 is improved
by 1.99% and 3.29%, separately. When the experiment is carried out on the
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Table 1. The performance of DR algorithm on CIFAR-10

Teacher Student Compression FLOPs Student DR Teacher

Ratio Baseline Baseline

ResNet34, ResNet18, 47.51% 0.56 G 94.10% 96.09% 94.21%

21.28M 11.17M

WRN-28-2, WRN-16-2, 53.06% 0.13 G 92.80% 95.70% 93.89%

1.47M 0.69M

WRS-10-5, WRN-16-1, 95.68% 0.01 G 90.19% 93.36% 92.05%

1.90M 0.08M

Table 2. The performance of DR algorithm on CIFAR-100

Teacher Student Compression FLOPs Student DR Teacher

Ratio Baseline Baseline

ResNet34, ResNet18, 47.51% 0.56G 76.01% 79.30% 76.71%

21.28M 11.17M

WRN-28-2, WRN-16-2, 53.06% 0.13G 70.79% 75.39% 72.50%

1.47M 0.69M

WRS-10-5, WRN-16-1, 95.68% 0.01G 64.92% 71.09% 70.09%

1.90M 0.08M

WideResNet, two teacher-student combinations are selected in terms of whether
the number of channels matches. One is the [WRN-28-2, WRN-16-2], in which
the accuracy of the student trained by DR on the CIFAR-10 and CIFAR-100 is
improved by 2.90% and 4.60%, respectively, compared with the student baseline.
The other is the [WRN-10-5, WRN-16-1], in which the accuracy of the student
trained by DR on the CIFAR-10 and CIFAR-100 is improved by 3.17% and
6.17%, separately, compared with the student baseline.

From these experiments, it can be seen that DR can significantly improve
the performance of the student. As the capacity of the student network grad-
ually decreases, the performance improvement of the students trained by DR
gradually becomes larger and the value of the refining factor r increases. Among
them, the improvement is more obvious on the CIFAR-100. These show that our
method works very well when small models are trained since the lower capac-
ity student network is transferred with higher quality knowledge, reflecting the
adjustment effect of r on the balance between quantity and quality. Furthermore,
the students even outperform the teachers due to the added ground-truth loss.



Dynamic Refining Knowledge Distillation Based on Attention Mechanism 53

4.2 Comparison with Other Methods

In order to demonstrate the effectiveness of our proposed DR more extensively, it
is used to compare with other typical knowledge distillation methods. WideRes-
Net is widely used in various knowledge distillation methods for training on the
CIFAR. Therefore, WRN-28-2 is chosen as the teacher and WRN-16-2 is selected
as the student to perform experiments on the CIFAR. Table 3 shows the per-
formance of DR compared with other typical knowledge distillation algorithms.
The accuracy’s improvement in the table refers to the comparison with the stu-
dent baseline, which is obtained by training with a standard back-propagation
algorithm. Here the teacher baseline corresponds to the last column of Table 1
and Table 2 and the student baseline corresponds to column 5 of Table 1 and
Table 2.

Table 3. Comparison of DR and other typical algorithms on CIFAR

Algorithm Parameters FLOPs CIFAR-10 CIFAR-100

Teacher 1.47 M 0.21 G +1.09% +1.71%

KD 0.69 M 0.13 G +0.74% +1.52%

AT 0.69 M 0.13 G +1.17% +1.66%

KDPA 0.69 M 0.13 G +1.75% +2.32%

DRKD (our) 0.69 M 0.13 G +2.90% +4.60%

From these experiments, it can be found that the accuracy of the student
trained by DR is improved by 2.90% and 4.60% on the CIFAR-10 and CIFAR-
100, respectively, compared to the student baseline. Compared to the teacher
baseline, the improvement is 1.81% and 2.89% separately. It performs the best
of all methods. And this improvement is even more evident on the CIFAR-100,
which again demonstrates the advantage of our approach to train small models.
This is because the capacity of the student network is small compared to the
task complexity of the CIFAR-100. Our method is more advantageous in dealing
with the problem that small capacity networks are difficult to train.

4.3 Ablation Experiments

In this section, a series of experiments based on the teacher-student combination
[WRN-28-2, WRN-16-2] are employed to investigate the effect of the hyperpa-
rameter α and each block in the network on the algorithm.

First, the effect of each block in the network on the algorithm is studied.
WideResNet has three blocks. θ is used to indicate that some blocks of the
network are not involved in the loss calculation. For example, θ = 001 means
to only calculate the loss for the third block, and so on. When studying the
importance of each block, hold other hyperparameters constant and let α = 1,
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r = 2. As shown in Table 4, the student obtains the optimal result when all
blocks of the teacher and the student are involved in the loss calculation. From
these experiments, it can be found that distillation is not very effective when
the knowledge is transferred for only one block, suggesting that the shallow
information of the network also plays an important role in guiding students.

Table 4. The effect of each block in the network on the performance of the DR algo-
rithm

θ CIFAR-10 CIFAR-100

001 93.75% 74.22%

010 95.31% 74.61%

011 94.14% 74.61%

100 94.53% 75.00%

101 94.14% 74.22%

110 94.14% 74.22%

111 95.70% 75.39%

Second, the importance of the DR loss term is investigated. The α is used
to adjust the DR loss term as a percentage of the total loss. When exploring
the effect of α on the algorithm, keep other hyperparameters unchanged and let
r = 2, θ = 111. Table 5 shows how the accuracy of the student network on the
CIFAR changes when the DR loss term increases as a percentage of the total
loss, and the student obtains the best results when α = 1. At first, the accuracy
of the student network increases as α becomes larger, but starts to decrease after
reaching a certain threshold. Moreover, the algorithm is more sensitive to the
value of α before reaching the threshold, because its small changes can lead to
large fluctuations in accuracy. From these experiments, it can be found that a
balance should be maintained between the DR loss term and the ground-truth
loss term. It still helps to improve student’s performance when the DR loss
is small. But when the DR loss is too large, the degradation of the students’
performance is very dramatic as the ground-truth loss term hardly works.

Table 5. The effect of α on the performance of the DR algorithm

α CIFAR-10 CIFAR-100

0.1 94.53% 73.83%

0.5 94.92% 74.22%

0.7 95.31% 74.61%

1 95.70% 75.39%

2 94.92% 73.83%

4 95.31% 75.00%

6 94.53% 74.22%

8 94.53% 73.44%

30 93.75% 72.67%
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4.4 Refining Factor

The refining factor r is an important hyperparameter that can be used to control
the balance between the quantity and the quality of knowledge transferred to
students. In this paper, the quantity of knowledge is simply measured by the
number of channels. To investigate this relationship, the experiment has been
conducted based on whether the number of teacher-student channels matches.

Table 6. Performance of the teacher-student combinations [ResNet34, ResNet18] and
[WRN-28-2, WRN-16-2] on CIFAR when the refining factor r takes different values.

Teacher- r Compression FLOPs CIFAR-10 CIFAR-100

Student ratio

[ResNet34, ResNet18] 1 47.51% 0.56 G 96.09% 79.30%

2 47.51% 0.56 G 95.70% 78.91%

4 47.51% 0.56 G 95.70% 78.91%

8 47.51% 0.56 G 95.31% 78.91%

16 47.51% 0.56 G 95.31% 77.73%

32 47.51% 0.56 G 94.53% 75.39%

[WRN-28-2, WRN-16-2] 1 53.06% 0.13 G 93.75% 74.22%

2 53.06% 0.13 G 95.70% 75.39%

4 53.06% 0.13 G 94.92% 73.43%

8 53.06% 0.13 G 94.53% 75.00%

16 53.06% 0.13 G 94.53% 73.44%

32 53.06% 0.13 G 94.14% 73.05%

Table 7. Multiple teacher-student combinations with mismatched channel numbers

Student Teacher Compression k

Ratio

WRN-16-1 WRN-10-2 75.00% 2

WRN-10-3 88.41% 3

WRN-10-4 93.44% 4

WRN-10-5 95.68% 5

When the Number of Channels in the Teacher-Student Combination
Matches. Considering Ci

T = Ci
S , experiments have been performed based on

teacher-student combinations [ResNet34, ResNet18] and [WRN-28-2, WRN-16-
2] for a range of different r values. When studying the effect of r on the algorithm,
hold the other hyperparameters constant and let α = 1, θ = 111.
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The top half of Table 6 shows that the best results are obtained from
the teacher-student combination [ResNet34, ResNet18] with the refining fac-
tor r = 1, meaning that the KE block is still beneficial for improving student’s
performance even without refining channel features. The bottom half of Table 6
shows that the teacher-student combination [WRN-28-2, WRN-16-2] obtains
the optimal results with the refining factor r = 2. In summary, when the total
amount of knowledge is equal, the knowledge of the high-capacity teacher net-
work can be transferred to students without refining, on the contrary, the low-
capacity teacher network needs to further improve the quality of knowledge.

When the Number of Channels in the Teacher-Student Combination
Does Not Match. Considering Ci

T �= Ci
S , experiments have been conducted

based on Table 7 for a range of different r values, where k denotes the ratio of
the number of teacher and student channels. When exploring the effect of r on
the algorithm, keep the other hyperparameters constant and let α = 1, θ = 111.

Fig. 3. On the CIFAR-10, the student gets the highest accuracy rate of 92.58% at r = 3
when k = 2, 92.58% at r = 3 when k = 3, 92.97% at r = 4 when k = 4 and 93.36%
at r = 16 when k = 5. On the CIFAR-100, the student gets the highest accuracy rate
of 69.53% at r = 3 when k = 2, 69.53% at r = 3 when k = 3, 69.92% at r = 4 when
k = 4 and 71.09% at r = 16 when k = 5.

Figure 3(a) and Fig. 3(b) show the variation in student’s accuracy for different
student-teacher combinations for different r values on the CIFAR-10 and CIFAR-
100, respectively. From these experiments, it can be found that as the ratio of the
number of channels between teachers and students increases, the refining factor
r for obtaining the best performance increases as well. However, the refining fac-
tor cannot always be increased because of the limitations of the student network.
In general, when the total amount of knowledge is not equal, the larger the total
amount is, the more the teacher network needs to further improve the quality of
the knowledge transferred to the students. This is also consistent with our conven-
tional perception that the larger the total amount is, the more redundancy exists.
But the refining factor r cannot be increased all the time and its maximum value
is Min

(
Ci

T , Ci
S

)
limited by the teacher and student network architecture.
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5 Conclusion

In this paper, we propose a knowledge distillation method based on attention
mechanism named DRKD, which aims to dynamically select the knowledge
transferred to students. This provides a novel way of thinking, where the teacher
gradually guides the students to get the best answer through a question-and-
answer format as a real teacher teaches the students, rather than simply instill-
ing them with knowledge. In addition, our proposed approach deeply explores
the balanced relationship between the quantity and the quality of knowledge
transferred from the teacher to the student, not only laying the theoretical foun-
dation for achieving stronger compression for small model optimization, but also
improving the versatility of knowledge distillation methods for multi-structural
combination situations. Finally, we testify the effectiveness of this approach and
the flexibility in selecting teacher-student combinations on the CIFAR-10 and
CIFAR-100.
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