
Dynamic-GTN: Learning an Node
Efficient Embedding in Dynamic Graph

with Transformer

Thi-Linh Hoang and Viet-Cuong Ta(B)

HMI Laboratory, University of Engineering and Technology,
VNU Hanoi, Hanoi, Vietnam

{hoanglinh,cuongtv}@vnu.edu.vn

Abstract. Graph Transformer Networks (GTN) use an attention mech-
anism to learn the node representation in a static graph and achieves
state-of-the-art results on several graph learning tasks. However, due to
the computation complexity of the attention operation, GTNs are not
applicable to dynamic graphs. In this paper, we propose the Dynamic-
GTN model which is designed to learn the node embedding in a
continous-time dynamic graph. The Dynamic-GTN extends the atten-
tion mechanism in a standard GTN to include temporal information of
recent node interactions. Based on temporal patterns interaction between
nodes, the Dynamic-GTN employs an node sampling step to reduce the
number of attention operations in the dynamic graph. We evaluate our
model on three benchmark datasets for learning node embedding in
dynamic graphs. The results show that the Dynamic-GTN has better
accuracy than the state-of-the-art of Graph Neural Networks on both
transductive and inductive graph learning tasks.

Keywords: Graph Transformer Network · Dynamic graph · Node
sampling

1 Introduction

In recent years, Graph Neural Networks (GNN) have gained a lot of attention
for learning in graph-based data such as social networks [1,2], author-papers in
citation networks [3,4], user-item interactions in e-commerce [2,5,6] and protein-
protein interactions [7,8]. The main idea of GNN is to find a mapping of the
nodes in the graph to a latent space, which preserves several key properties of
the graphs. Given that every single node has a certain influence on its neigh-
bors, node embedding is created by GNN based on a message passing mechanism
to aggregate information from the neighborhood nodes, which can be used for
downstream tasks such as node classification, edge prediction, or graph classifi-
cation.

The embedding learned by traditional GNN methods can describe the local
and global structures on a static graph with the constraint that the graph’s nodes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 430–443, 2022.
https://doi.org/10.1007/978-3-031-20865-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20865-2_32&domain=pdf
https://doi.org/10.1007/978-3-031-20865-2_32


Dynamic-GTN 431

and edges do not change over time. For online systems such as social networks
or e-commerce, this assumption usually does not hold. In order to deal with
dynamic graphs, one could employ a snapshot-based approach. More specifically,
a GNN model such as Graph Convolution Network (GCN) [3], Graph Attention
Network (GAT) [4], or Graph Transformer [9] is trained to learn the graph
representation at a specific timestamp. The drawback of this approach is that
the learned representation at each snapshot ignores the temporal interactions
because each models is trained separately. The trained embedding model in this
case can only capture the graph specific structures at the end of a time interval. In
addition to that, the snapshot-based approach is a time-consuming one because
it has to retrain the model from scratch.

Dynamic-based graph learning methods overcome these issues by learning
both temporal and structural properties of the dynamic graph. Recent works
can be classified into discrete-time approaches and continuous-time approaches.
Discrete-time methods improve the snapshot-based approach by adding the tem-
poral relations to the node representation. Several architectures are proposed
such as DynGEM [10] with regularized weights or DySAT [11] with structural
attention layers. Discrete-time methods have issues in learning the fine-grained
temporal structure of the dynamic graph. Continuous-time methods avoid the
issues by seeing the dynamic graph as a sequence of nodes’ interaction with a
timestamp. Then, a sequence learning network is employed to extract the tem-
poral pattern of interactions. For example, RNN [12] is used in DeepCoevolve
[6] and LSTM [13] is used in Temporal Dependency Interaction Graph [14].

Although continuous-time approaches are more natural in learning temporal
information in dynamic graphs than the discrete ones, they still have significant
drawbacks. The usage of RNN-like architectures to aggregate information from
temporal neighbors are unable to capture long-term dependencies. When the
temporal information spreads over a long period of time, the learnt dynamic
representations usually degrade. Secondly, these approaches usually compute
dynamic embeddings of the two target interactions nodes independently without
taking into account the semantic relatedness between their temporal regions (i.e.
historical behaviors), which could be a causal element for the target interactions.

To address the above limitations, in this work, we extend the Graph Trans-
former network to capture the long-term dependencies of temporal interactions
between nodes in the dynamic graphs. We introduce a Time Projection layer
which is added after the standard transformer layer. Firstly, the multi-head
attention layer is used to aggregate both time-based node interactions and local
structures of the graph. Then, the projection layer uses node embedding with
temporal interactions to predict the future node representation of the graph.
In order to reduce the computing complexity of the multi-head attention layer,
a node sampling component is added based on the dynamic embedding of the
projection layer. The attention operation only includes similar nodes which are
defined by a clustering process on the node embedding. We evaluate our model
on three time-dynamic graph datasets: Wikipedia, Reddit, and MOOC [15]. The
experiments show that our proposed Dynamic-GTN could improve the overall



432 T.-L. Hoang and V.-C. Ta

accuracy of downstream tasks, and also reduce the computational time of the
model.

2 Related Works

The existing modeling approaches are roughly divided into two categories based
on how the dynamic graph is constructed: discrete-time methods and continuous-
time methods.

Discrete-Time Methods: This category of methods deals with a sequence of
discretized graph snapshots that coarsely approximate a time-evolving graph.
DynGEM [10] is an auto-encoding method that minimizes reconstruction loss
and learns incremental node embeddings from previous time steps. DySAT [11]
computes dynamic embeddings by employing structural attention layers on each
snapshot, followed by temporal attention layers to capture temporal variations
among snapshots, as inspired by the self-attention mechanism. EvolveGCN [16]
recently leverages RNNs to regulate the GCN model (i.e., network parameters) at
each time step in order to capture the dynamism in the evolving network param-
eters. Regardless of progress, snapshot-based methods will always fail to capture
fine-grained temporal and structural information due to the coarse approxima-
tion of continuous-time graphs. It is also difficult to specify an appropriate aggre-
gation granularity.

Continuous-Time Methods: Methods in this category operate directly on
time-evolving graphs without time discretization and focus on designing various
temporal aggregators to extract information. The dynamic graphs are repre-
sented as a series of chronological interactions with precise timestamps. DyRep
[17] is based on a temporal point process to capture immediate information and
long-term information at the same time by consider both association events and
communication events. DeepCoevolve [6] and it’s variant JODIE [15] see two
coupled RNNs to update dynamic node embeddings based on each interaction.
They provide an implicit way to construct the dynamic graph in which only the
historical interaction information of the two involved nodes of the interactions
at time t is used. TDIG-MPNN [14] provides a graph creation approach called
Temporal Dependency Interaction Graph (TDIG), which generalizes the above
implicit construction and is formed from a sequence of cascaded interactions
to explicitly leverage the topology structure of the temporal graph. To acquire
the dynamic embeddings, they use a graph-informed Long Short Term Memory
(LSTM) [13] based on the topology of TDIG.

Recent work such as TGAT [18] and TGNs [19] use a different graph creation
technique, namely a time-recorded multi-graph, which allows for more than one
interaction (edge) between two nodes. A single TGAT layer is used to collect
one-hop neighborhoods, similar to the encoding process in static models (e.g..
GraphSAGE [20]). By stacking numerous layers, the TGAT model can capture
high-order topological information. TGNs generalize TGAT’s aggregation and
use a node-wise memory to keep track of long-term dependencies.



Dynamic-GTN 433

Node Sampling: Node sampling or graph pooling in GNN is often used to
reduce the computing complexity in the aggregate. The idea to connect between
graph learning and local node structures is not new. In [21], they arrange the
nodes into a binary tree to fast pool adjacent nodes. The GraphSAGE [20]
framework defines a neighborhood set with a fixed number of nodes to reduce
the computational footprint. By exploiting the graph clustering structure, the
authors propose a novel GCN training algorithm, namely Cluster GCN [22].
The Cluster GCN restricts the neighborhood search into a sub-graph in each
learning batch. The sub-graphs are split from the original graph by a graph
clustering algorithm. Our work is motivated by the work of Cluster GCN. Instead
of defining the learning batches for updating the graph cluster, we utilize the
time step in a time-dynamic graph to define a learning batch.

3 Continuous-Time Dynamic Graph

We define a dynamic continuous graph as Gt = (Vt, Et) consists of a node set
Vt and an set of edges Et ordered by time t ∈ R

+ and described chronological
interactions up to time t. An interaction appearing at time t is denoted as eu,v,t,
where nodes u, v ∈ Vt are two nodes involved in this interaction, eu,v,t has
features extract from the interaction between two nodes. One node can have
multiple interactions at different time points, we let u(t) represent the node u
at time t.

Since t can also indicate the order of interactions between two nodes, by
recording the time or order of each edge, a dynamic graph can capture the
evolution of the relationship between nodes. Given the topology of a graph Gt,
dynamic graph embedding aims to learn mapping function at time t:

ft : Vt → R
d, (1)

where d is the number of node embedding dimensions. As long as the correctness
of node representation in latent space, the downstream tasks such as node clas-
sification, and link prediction will more benefit from it. With interaction nodes
u(t) and v(t), i.e., hu(t), hv(t) are node embedding of u, v at time t.

For example, Fig. 1 shows a graph evolve with time, which describes inter-
actions between users and items. Given an ordered sequence of temporal node
interactions at time 0 < t1 < t2 < t3 < t, the target is learning embedding of
node u at time t: u(t) (square symbol). And uses the previous observed state
u(t) and the elapsed time Δt to predict the future embedding of the node at
t + Δt. For each node, its dynamic associated nodes and their neighbor from a
graph structure, which includes more time/order information than conventional
static graphs. It is not trivial to encode the preference of each user from this
dynamic graph.



434 T.-L. Hoang and V.-C. Ta

Fig. 1. Illustration of the temporal graph aggregation and label prediction with con-
tinuous time event

4 Graph Transformer Network for Continuous-time
Dynamic Graph

Our proposed model, Dynamic-GTN, works on the chronological interactions
between two nodes in the continuous-time dynamic graph. It includes three
major components as illustrated in Fig. 2:

– Node sampling : A sampled subgraph of an original graph G should obtain a
good sample quality. The goal of this component is to find a better way to
evaluate the entire sample clustering process which integrates node sampling
with clustering. Node sampling base on cluster can remove the edges with
high similarity centrality and then optimize the calculation of multi-head
attention steps in Graph Transformer.

– Graph Transformer Network and Time Projection layer : the Graph Trans-
former Network (GTN) layer based on GT [9] is used to aggregate both
continuous-time embedding and structural information of the graph. Output
embedding from the GTN layer is used to project the self-node to the future
embedding by the Time Projection layer. The resulting embedding are used
to improve the node sampling and representing as dynamic embedding for
the Prediction Layer.

– Output layer : it utilizes output embedding from the Time Projection layer
to calculate the target values. In Fig. 2, the link prediction task is computed
by concatenating the output of two related nodes. In the node classification
task, we could omit the Concatenation layer and feed the embedding into the
feed-forward layer directly.

4.1 Node Sampling

At the first block, we employ a node sampling method based on cluster with
dynamic information to extract relevant nodes based on the latent space of the



Dynamic-GTN 435

Fig. 2. Illustration of the architecture of the proposed model

graph. This component allows the Graph Transformer to learn different graph
attention kernels for different regions based on a gradient-based self-clustering
assignment such that different regions are treated differently in spatial depen-
dency modeling.

First, a vertex-level soft-assignment to M clusters is learnt from the tempo-
ral pattern of each vertex. To partition the graph, we employ graph clustering
methods. Node sampling component try to build partitions over the vertices
in the graph such that within-cluster ties are significantly more than between-
cluster links in order to better represent the graph’s clustering and community
structure. This is precisely what we require because: As previously stated, the
embedding usage for each batch is equal to within-cluster linkages. Intuitively,
each node and its neighbors are usually in the same cluster, hence neighborhood
nodes with a high chance of being in the same cluster after a few hops are still
in the same cluster.

C = σs

(
σr

(
hi(t)Wf

)
t
Wt

)
, (2)

where C is the cluster assignment score for each vertex to M clusters. hi(t)

represent embedding of node i at time t and Wt is parameters for linear layers
on the feature mode and temporal mode, respectively, and σr and σs represent
the relu and softmax activation functions. The feature dimension of input tensor
hi(t) is first squeezed to 1 using Wf , in order to provide a summarized temporal
pattern at each vertex. The Wt is further applied to the temporal pattern to
calculate a M -dimensional cluster assignment score.



436 T.-L. Hoang and V.-C. Ta

At the beginning, i.e at time t = 0, the output embedding from the Time
Projection layer is not available. Therefore, the Dynamic-GTN uses the default
node embedding PE for clustering the nodes as the initial clusters.

4.2 Graph Transformer Network

Observing the benefits of the Transformer in capturing long-term dependencies
and in computational effort, we propose to extract temporal and structural infor-
mation of dynamic graph by Transformer type of architecture. Thus, We use the
Graph Transformer to aggregate information from neighbor nodes, and it will
derive information from both spatial as well as temporal features. An importance
of using Transformer in graph is that we need to have position encoding (PE)
to feed as an input in Transformer Encoder layer. Several works introduce PE
to Transformer-based GNNs to help model capture the node position informa-
tion. We use Laplacian PE is employed in [9], the authors prove that it performs
better than other PE. To enhance node’s positional information, we also employ
time intervals that usually convey important behavior information.

Dynamic Node Embedding: Firstly, we update the hidden feature h of the i
t́h node in a graph from layer l to layer l+1 at time t when there is a interaction
of node i as follows:

h�+1
i (t) =

∑

j∈N (i)

wij

(
V �h�

j

)
(3)

where

wij = softmaxj

(
Q�h�

i · K�h�
j√

d

)

(4)

and j ∈ N (i) denotes the set of neighbor nodes of node i in graph and Q�,K�, V �

are learnable linear weights (denoting the Query, Key and Value for the attention
computation, respectively). N (i) is neighborhood of node i evolve by time and
after node or edge event such as create a new node, delete/edit edge N (i) can
be change, also have many version of interactions, thus we formulate neighbor
of node i at time t as Nt(i), which describes in Fig 2. The method uses for sam-
pling neighborhoods is cluster-based sampling as we introduced in the previous
section. The attention mechanism is performed parallelly for each node in the
neighbor nodes to obtain their updated features in one shot-another plus point
for Transformers over RNNs, which update features node-by-node.

Multi-head Attention: Getting this straightforward dot-product attention
mechanism to work proves to be tricky. Bad random initializations of the learn-
able weights can destabilize the training process. We can overcome this by paral-
lelly performing multiple ’heads’ of attention and concatenating the result (with
each head now having separate learnable weights):

ĥ�+1
i (t) = O�

h‖H
k=1

⎛

⎝
∑

j∈Ni

wk,�
ij V k,�h�

j

⎞

⎠ , (5)



Dynamic-GTN 437

where,

wk,�
ij = softmaxj

(
Qk,�h�

i · Kk,�h�
j√

dk

)

, (6)

and Qk,�,Kk,�, V k,� are the learnable weights of the kth attention head and O�

is a down-projection to match the dimensions of h�+1
i and h�

i across layers. The
attention outputs ĥ�+1

i (t) are then passed to a Feed Forward Network (FFN)
preceded and succeeded by residual connections and normalization layers, as:

z�+1
i (t) = Norm

(
h�

i(t) + ĥ�+1
i (t)

)
, (7)

ẑ�+1
i (t) = W �

2 ReLU
(
W �

1z�+1
i (t)

)
, (8)

h�+1
i (t) = Norm

(
z�+1
i (t) + ẑ�+1

i (t)
)
, (9)

where W �
1 ,W �

2 , z�+1
i (t), ẑ�+1

i (t) denote intermediate representations, and Norm
can either be LayerNorm or BatchNorm.

Time Projection: Our proposed model projects the embedding to capture
temporal information, and predicts the future embedding at a time. After a
short duration Δt the node i’s projected embedding is update to as follow:

hi(t+Δt) = (1 + w) ∗ hi(t) (10)

where w is time-context vector is converted from Δt by using a linear layer:
w = WpΔt. The vector (1+w) works as a temporal attention vector to scale the
past node embedding.

4.3 Output Layer

In the link prediction task, The interaction of two nodes u and v at time t + Δt
for link prediction task represent by:

ŷu,v(t + Δt) = W ∗ (hu(t+Δt) ‖ hv(t+Δt)) + b (11)

To learn model parameters, we optimize the cross entropy loss. The objective
function L is defined follows:

L = −
∑

S
yu,v log (ŷu,v) + (1 − yu,v) log (1 − ŷu,v) + λ‖Θ‖2 (12)

where S denotes the training samples, yu,v is input interaction of node u and
node v and ŷu,v is the predicted interaction of node u and node v from the
classification layer of the model.

In the node classification task, we could directly use the embedding in Eq.
10 without the concatenation layer for predicting the label of a specific node at
time t + Δt.



438 T.-L. Hoang and V.-C. Ta

5 Experiments

5.1 Datasets

For testing our proposed Dynamic-GTN model, we use three popular time-
continous dynamic graph datasets: Wikipedia, Reddit, and MOOC, these
datasets public in [15]. These datasets consist of one month of interaction
between user and item (i.e., MOOC: MOOC online course, Reddit: post,
Wekipedia: page). The detail statistics of each dataset is described in Table 1. We
evaluate the efficiency of our model output embedding on both transductive and
inductive settings. Our experiments follow the setting in [19] in continuous-time
graph learning.

More specifically, we split the data by time for training, validating and test-
ing. We use the first 70% interaction to train, next 15% to evaluate, and the
final 15% to test. For example, on Reddit dataset consist of four weeks of posts
created by users on subreddits, in a week the models take the first 5 days data
of week to train, the next day to evaluate, and the last day to test. The fixed
evaluation period is selected at one week duration. Because our proposed model
can learn continuously, the duration could be changed freely.

Table 1. Statistics of the datasets used in our experiments

Information MOOC Reddit Wikipedia

#Nodes 7,144 10,984 9,227

#Edges 411,749 672,447 157,474

#Dynamic Nodes 4,066 366 217

Nodes’ Label Type Course dropout Posting ban Editing ban

5.2 Baseline

In the transductive edge prediction and inductive node classification, we
use the state-of-the-art algorithms for representation learning on temporal
graphs as baselines: Discrete-Time Methods: EvolveGCN [16] and DySAT [11];
Continuous-Time Methods: JODIE [15] , TGAT [18], DyRep [17], and TGN [19]
for comparison.

Evaluation Metric: With future link prediction task, given an interaction eu,v,t

each method outputs calculate the node u’s preference score over node v at time t
in test set. This score is used to classify if there is a connection between two nodes
at time t. To evaluate the performance of the proposed method and baseline we
use average precision for future edge prediction task in transductive setting. In
the node classification task, we aim to represent a node u at time t as u(t), and
base on this representation these model prediction status of node u at time t.
Accuracy is used to measure the achievement of methods.



Dynamic-GTN 439

5.3 Performance

We implement our method in PyTorch. For the other methods, we use all the
original papers’ code from their github pages. For all the methods we use the
Adam optimizer with learning rate as 0.01, dropout rate as 20%, weight decay
as zero. The mean aggregator proposed by TGN is adopted and the number
of hidden units is the same for all methods. All the results were averaged over
10 runs. For Dynamic-GTN, the number of partitions and clusters per batch
for each dataset are listed in Table 5 and we show that graph clustering only
takes a small portion of preprocessing time. Note that clustering is seen as a
preprocessing step and its running time is not taken into account in training.

Table 2 and Table 3 shows the performance results on dynamic node clas-
sification task and future link prediction task, respectively. In general, the
continuous-time methods perform better than the discrete-time methods. This
can be explained by the fact that continuous-time methods can access to a
more fine-gained temporal and structural information. Built on continuous-time
approach, our model Dynamic-GTN outperforms all the competitors on all the
datasets. The improvements are stable across the two down stream tasks. The
nearest competitor to our model is the TGN architecture. By combining the
time-based embedding with the self-attention operation, our model likely cap-
tures more interaction information than the compared baselines without the need
to retrain the models.

Table 2. The performance of our model and base line on node classification task

Method Model MOOC Wikipedia Reddit

Discrete-time EvolveGCN 70.26 ± 0.5 63.41 ± 0.3 81.77 ± 1.2

DySAT 72.11 ± 0.5 61.79 ± 0.3 74.82 ± 1.2

Continuous-time Jodie 73.39 ± 2.1 61.23 ± 2.5 84.35 ± 1.2

TGAT 74.23 ± 1.2 65.43 ± 0.7 83.12 ± 0.7

DyRep 75.12 ± 0.7 62.79 ± 2.3 84.82 ± 2.2

TGN 77.47 ± 0.8 67.11 ± 0.9 87.41 ± 0.3

Dynamic-GTN (ours) 78.13 ± 0.9 69.74 ± 1.3 89.03 ± 0.3

5.4 Discussion

We perform further experiments to highlight different components of our propose
Dynamic-GTN for learning an efficient node representation in dynamic graphs.

Impact of Dynamic-GTN in Long Period: We test the accuracy of our
proposed model by varying the time projecting window Δt. The node classifica-
tion task results on Reddit dataset of our model and other baselines are shown
in Table 4. In general, it is more difficult to predict for a long period updating
time Δt than the short one. While all of the tested models drop accuracy, our
model still achieve the best accuracies. At the longest Δt = 7, the proposed



440 T.-L. Hoang and V.-C. Ta

Table 3. The performance of our model and base line on link prediction task

Method Model MOOC Wikipedia Reddit

Discrete-time EvolveGCN 78.33 ± 0.3 89.71 ± 0.5 80.79 ± 0.4

DySAT 74.05 ± 0.4 88.13 ± 0.5 87.23 ± 0.4

Continuous-time Jodie 76.34 ± 0.5 90.74 ± 0.3 79.11 ± 0.4

TGAT 75.36 ± 0.5 92.87 ± 0.3 87.42 ± 0.2

DyRep 73.45 ± 0.4 92.21 ± 0.3 86.89 ± 0.4

TGN 81.20 ± 0.6 92.37 ± 0.2 88.17 ± 0.2

Dynamic-GTN (ours) 84.42 ± 0.5 93.71 ± 0.3 89.69 ± 0.2

Dynamic-GTN achieves around 85.36% accuracy. The second highest accuracy
is the TGN with 82.53% accuracy. This demonstrates that our architectures is
more stable on learning node representation in dynamic graphs.

Table 4. The accuracy of node classification task on Reddit dataset by varying the
time projection Δt(days) of different models

Model Δt = 1 Δt = 3 Δt = 5 Δt = 7

EvolveGCN 81.77 ± 1.2 70.39 ± 0.7 71.22 ± 0.5 74.07 ± 0.5

DySAT 82.32 ± 0.7 75.13 ± 0.5 74.05 ± 0.4 71.39 ± 0.5

Jodie 84.35 ± 1.2 81.71 ± 0.8 81.13 ± 0.5 79.38 ± 0.7

TGAT 83.12 ± 0.7 84.46 ± 0.5 83.18 ± 0.7 78.59 ± 1.2

DyRep 84.82 ± 2.2 80.33 ± 0.5 81.05 ± 0.5 79.77 ± 1.1

TGN 87.41 ± 0.3 87.58 ± 0.5 86.11 ± 0.3 82.53 ± 0.5

Dynamic-GTN (ours) 89.03 ± 0.3 88.11 ± 0.2 86.43 ± 0.5 85.36 ± 0.7

Impact of Node Sampling: To evaluate the effects of node sampling step with
temporal information, we iterate the number of clustering components and com-
pare the accuracy and run time performance against the baseline architecture.
Table 5 compares three different node partitioning and model without clustering.
The usage of clustering could improve both accuracy and training time. From
our experimental results, the optimal number of clusters depend heavily on the
temporal and local structures of the graph. More investigation should be done
in future works to have a more accurate estimation of the number.

Impact of the Number of Attention Head Number: As the number of
attention head plays an important role in projecting between consecutive latent
spaces, we perform further experiments to test how it affects the performance
on down stream tasks. We plot the test accuracy on MOOC dataset with dif-
ferent number of heads in Fig 3. The model’s performance improves when the
head number increases from 1–5, reaching highest accuracy at 5 attention heads,
which demonstrates the effectiveness of multi-head attention in learning node



Dynamic-GTN 441

Table 5. The training time and the Accuracy (%) of node sampling component in
Dynamic-GTN, testing on node classification task with Reddit dataset. The average
time is reported per epoch with lower is better.

Model Avg. time (s) Accuracy

Dynamic-GTN (10 cluster) 50.23 90.67

Dynamic-GTN (15 clusters) 52.37 90.81

Dynamic-GTN (20 clusters) 52.58 90.08

Dynamic-GTN (w/o node sampling) 75.83 89.72

relationship in dynamic graph. Our results relate to the works in [23] that the
best performance can be achieved with 3 layers and 2 heads (6 effective heads).

Fig. 3. The comparison of number head attention in Dynamic-GTN on MOOC’s node
classification

6 Conclusion

In this paper, we propose a continuous-time dynamic graph representation learn-
ing method, called Dynamic-GTN. Dynamic-GTN generalizes the Graph Trans-
former Network (GTN) to extract temporal-based local structure information
on dynamic graphs via node embedding projection. Due to the cost computa-
tion in sampling graph in the temporal network, we utilize a cluster-based sam-
pling to help model to train faster both in inductive and transductive learning.
Several experiments are made to evaluate the characteristics of our proposed
architecture. The overall results on three benchmark datasets show that our
model achieves better performance than previous state-of-the-art GNN models
on continuous-time graphs.



442 T.-L. Hoang and V.-C. Ta

References

1. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying
and powering graph convolution network for recommendation. In: Proceedings of
the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, pp. 639–648 (2020)

2. Fan, W., et al.: Graph neural networks for social recommendation. In: The World
Wide Web Conference, pp. 417–426 (2019)

3. Hamilton,W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035 (2017)

4. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

5. Qiu, R., Li, J., Huang, Z., Yin, H.: Rethinking the item order in session-based
recommendation with graph neural networks. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 579–
588 (2019)

6. Dai, H., Wang, Y., Trivedi, R., Song, L.: Deep coevolutionary network: Embed-
ding user and item features for recommendation. arXiv preprint arXiv:1609.03675
(2016)

7. You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J.: Graph convolutional policy
network for goal-directed molecular graph generation. Adv. Neural Inf. Process.
syst. 31 (2018)

8. Jiang, M., et al.: Drug-target affinity prediction using graph neural network and
contact maps. RSC Adv. 10(35), 20701–20712 (2020)

9. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699 (2020)

10. Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: Deep embedding method for
dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

11. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dysat: deep neural represen-
tation learning on dynamic graphs via self-attention networks. In: Proceedings of
the 13th International Conference on Web Search and Data Mining, pp. 519–527
(2020)

12. Medsker, L.R., Jain, L.C.: Recurrent neural networks. Des. Appl. 5, 64–67 (2001)
13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
14. Chang, X., et al.: Continuous-time dynamic graph learning via neural interaction

processes. In: Proceedings of the 29th ACM International Conference on Informa-
tion & Knowledge Management, pp. 145–154 (2020)

15. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in
temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)

16. Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic
graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 04, pp. 5363–5370 (2020)

17. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: learning representations
over dynamic graphs. In: International Conference on Learning Representations
(2019)

18. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive representation
learning on temporal graphs. arXiv preprint arXiv:2002.07962 (2020)

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1609.03675
http://arxiv.org/abs/2012.09699
http://arxiv.org/abs/1805.11273
http://arxiv.org/abs/2002.07962


Dynamic-GTN 443

19. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.:
Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637 (2020)

20. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

21. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29
(2016)

22. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an
efficient algorithm for training deep and large graph convolutional networks. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 257–266 (2019)

23. Ma, X., Pino, J., Cross, J., Puzon, L., Gu, J.: Monotonic multihead attention.
arXiv preprint arXiv:1909.12406 (2019)

http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/1909.12406

	Dynamic-GTN: Learning an Node Efficient Embedding in Dynamic Graph with Transformer
	1 Introduction
	2 Related Works
	3 Continuous-Time Dynamic Graph
	4 Graph Transformer Network for Continuous-time Dynamic Graph
	4.1 Node Sampling
	4.2 Graph Transformer Network
	4.3 Output Layer

	5 Experiments
	5.1 Datasets
	5.2 Baseline
	5.3 Performance
	5.4 Discussion

	6 Conclusion
	References




