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Abstract. Role-oriented network embedding has become a powerful
technique for solving real-world problems, because it can capture the
structures of nodes and make node embeddings better reflect the func-
tions or behaviors of entities in the network. At present, various role-
oriented network embedding methods have been proposed. However,
most of the methods ignore degree distribution and the commonali-
ties among local structures, resulting in insufficient information of node
embeddings, and some methods that preserve commonality always have
high time complexity. To address the above challenges, we propose a
novel model ReVaC from two aspects of extracting higher-quality local
structural features and strengthening the commonalities among local
structures in node embeddings. In detail, the degree distribution from
node’s 1-hop egonet is incorporated into the extraction process of local
structural features to improve traditional ReFeX firstly, and the Vari-
ational Auto-Encoder is used to map those features to the local struc-
tural embedding space. Then, in the embedding space, we cluster nodes
to model the commonalities among local structures. Finally, local struc-
tural embeddings and commonalities are fused to get node embeddings.
We conduct extensive comparative experiments on real-word networks,
and results show that ReVaC has better performance than other state-
of-the-art approaches and adapts well to network scale.

Keywords: Role-oriented network embedding · Degree distribution ·
Local structural commonality

1 Introduction

In almost all networks, nodes tend to have one or more functions that largely
determine their structural identity in the system. When considering the problem
of learning a representation that captures the structural identity of nodes in a
network, even if two nodes do not share the connection or are even far apart, but
they have similar functions or occupy similar positions (similar structures) in the
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network, then their potential representations should be close to each other. Obvi-
ously, community-oriented embedding methods can’t handle such case, those are
all based on the connection of nodes. The structure-based network embedding
methods emerge as the times require. They encode local structural features into
vectors to capture structural similarity and obtain role-oriented embedding rep-
resentations, so are also called role-oriented embedding methods.

At present, role-oriented network embedding has gradually become one of the
most important research hotspots. It still faces the following challenges: (1)the
key to learning role-oriented network embedding is to extract high-quality local
structural features, degree distribution is a very good local structural feature.
According to the paper [1], it is shown that degree distribution, generalized to
include the distribution in its k-hop neighborhood, may indeed be a good indi-
cator of the structural position or role in the network. It excels in the evaluation
of automorphic and regular equivalence, and achieves superior results in various
experiments on real networks. However, this useful structural information is not
well utilized. Few methods take advantage of it, and operations based on it are
limited. For example, struc2vec [2] and XNetMF [3] determine their similarity
only by computing distances between k-order degree sequences or degree vectors.
(2)Some approaches only preserve the local structural features of nodes as much
as possible into embeddings, ignoring the commonalities among local structures.
The commonality of a class of similar local structures can be regarded as the fea-
ture a structural role, and ignoring it means losing part of the characteristics of
the role, which is unfriendly to role-oriented embedding. However, the approach
that retains commonalities needs to calculate structural similarities, which often
has high time complexity and is not suitable for large datasets.

In order to meet the above challenges, we propose our model ReVaC from two
aspects of extracting higher-quality local structural features and strengthening
the commonalities among local structures. The model consists of three parts:
local structural feature extraction, commonality modeling and fusion encoding.
Firstly, we improve the traditional ReFeX [4] by incorporating degree distribu-
tions from nodes’ 1-hop egonet into their initial features and leveraging itera-
tive process to obtain local structural features. At the same time, to avoid the
over-fitting caused by the high-order iteration, the Variational Auto-Encoder is
regarded as the operator to map those features to a local structural embedding
space. Secondly, in the embedding space, we model the commonalities among
local structures. That is, nodes with similar local structures are captured by
clustering, and then the common feature of nodes in the same cluster is modeled
as the commonality of such similar nodes. Finally, to enrich the structural infor-
mation of nodes and make the structural roles and embedding distances of nodes
highly correlated, local structural embeddings and commonalities are fused to
obtain node embeddings. Our main contributions can be summarized as follows:

– The traditional ReFeX is improved to incorporate degree distributions of
nodes into their initial features, and iterate new initial features to obtain
higher-quality local structural features.
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– We propose to explicitly model the commonalities among local structures by
clustering in the local structural embedding space, and fuse them with local
structure embeddings. That enriches the information of node embeddings and
improves the expressive ability of node embeddings.

– We conduct several extensive experiments on real-world networks via our
model ReVaC, and compare the results with other state-of-the-art methods.
The results demonstrate the superiority of our model, and prove that our
model scales well with network size.

2 Related Work

Obtaining high-quality structural features is the key to learning role-oriented
embeddings, and current methods are diverse. ReFeX [4] (Recursive Feature
eXtraction) extracts local and egonet features and aggregates the features of
neighbors recursively. As an effective method to capture structural features,
ReFeX is widely used in many other role-oriented embedding methods. For
example, RolX [5] and GLRD [6] leverage the structural features extracted by
ReFeX and uses matrix factorization to get low-dimension node representation.
In RESD [7] and RDAA [8], ReFeX is proposed to extract structural features
and utilizes encoder framework to map the network to the latent space. The key
idea of GAS [9] is to extract some key structural features based on ReFeX as
the guidance information to train the model. There are other methods directly
based on degree features, such as SIR-GN [10] encodes the degree of each node
as a one-hot vector. RoINE [11] also concatenates the degree of a node and the
sum of its immediate neighbors’ degree as structural feature. Besides, HONE
[12] generates the high-order network embeddings by decompose a set of motif-
based matrices. GraphWave [13] is based on heat-wavelet diffusion patterns, it
treats graph diffusion kernels as probability distributions over networks. DRNE
[14] is designed to leverage a layer-normalized LSTM to process the sequences of
nodes’ degree-based direct neighbors, which are treated as structural features.
Gralsp [15] captures structural patterns by generating w anonymous random
walks starting from one node with length L.

Structural properties also are contained in pair-wise similarities, and there are
various ways to calculate them. XNetMF [3] take advantages of Singular Value
Decomposition to encode the similarities based on the K-order degree vector
and attribute vector as embeddings. Struc2vec [2] constructs a hierarchy of com-
plete graphs by transforming similarities of the k-order ordered degree sequences
to weights of edges. SEGK [16] decomposes the similarity matrix computed by
graph kernels. REACT [17] aims to obtain node representations by applying
non-negative matrix database on RoleSim [18] similarity matrix and adjacency
matrix, respectively. Struc2gauss [19] generates structural contexts based on the
RoleSim similarity matrix, and learns node representations in the space of Gaus-
sian distributions. SPaE [20] computes cosine similarity between the standard-
ized Graphlet Degree Vectors of nodes, and generates role-based embeddings via
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Laplacian eigenmaps method. Role2vec [21] also recommends Motif-based fea-
tures, such as mapping nodes to multiple disjoint roles based on Graphlet degree
vectors.

To sum up the above, we have to admit that degree, degree-based sequences,
and related degree vectors are recognized good indicators of structures, and most
methods directly or indirectly utilize them. However, it is obvious that only a
few methods involve degree distribution in the process of constructing feature
matrix, and their operations on it are too limited.

3 Methodology

In this section, we declare the concepts used in this paper, and then introduce
our framework ReVaC in detail.

Fig. 1. An overview of the proposed ReVaC: (1) extract local structural features X
with improved ReFeX and map them to local structural embedding space Y by the
VAE, (2) explicitly model the commonalities among local structures in the space by
clustering and obtain the common features XR, (3) fuse local structure embeddings Y
and common features XR to obtain the final node embeddings Z.

3.1 Notions

A network is represented by an undirected unweighted graph G = (V,E), where
V = {v1, ..., vn} is the set of nodes and E is the set of edges. For each node
v ∈ V , the set of node v′s neighbors is defined as N(v), d(v) denotes the degree
of node v. The 1-hop egonet of node v is defined as Gv = {V (gv), E(gv)}, where
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V (gv) = {v}⋃{u ∈ V |(v, u) ∈ E} and E(gv) is the set of edges in the 1-hop
egonet of v. Dv represents the degree distribution from the 1-hop egonet of
node v. The extracted features of nodes are denoted as X ∈ Rn×f , where f
is the dimension of features. Y ∈ Rn×d are the local structural embeddings.
XR ∈ Rk×d are the common features of similar local structures, where k is the
number of node structure roles. Z ∈ Rn×d represent the final node embeddings,
where d is the dimension of embedding.

3.2 Model

In this section, we introduce the proposed method ReVaC. The framework is
shown in Fig. 1. The ReVaC consists of three parts: (1) local structural feature
extraction, (2) commonality modeling, (3) fusion encoding.

Feature Extraction. ReFeX is an effective method to capture structural fea-
tures, which firstly computes initial features and then aggregates neighbors’ ini-
tial features with sum- and mean-aggregator recursively to get local structural
features. The initial feature of the traditional ReFeX is mostly composed of node
degree and egonet-based information. It is still hard to be applied to discover
node roles and complex tasks as simple statistical is preserved. Recent research
[2] shows that node’s degree distribution may indeed be a good indicator of the
structural position or role of the node in the network and degree distributions
of higher-order local neighborhoods are also sufficiently expressive structural
descriptors. The 1-hop egonet of node is the smallest local structure, degree
distribution from it can intuitively reflect connection pattern. So, we draw on
the experience of ReFeX to incorporate degree distribution features from 1-hop
egonet of nodes into initial features to help to enrich local domain information
and participate in recursive process to capture higher-quality local structural
features.

For each node v, the initial features extracted in this paper are as follows:

– (1) The degree of v: f1 = |N(v)|
– (2) The sum of node’s degree in the 1-hop egonet of v: f2 =

∑
u∈V (gv)

d(u)
– (3) The number of edges from the 1-hop egonet of v: f3 = |E(gv)|
– (4) The degree distribution in the 1-hop egonet of v: f4 = Dv

We represent Dv with the degree distribution of node v’s 1-hop neighbors. To
prevent one high-degree node from inflating the length of these vectors and
make their entries more robust, we bin nodes together into b = [log(dmax + 1)]
logarithmically scaled buckets, where dmax is the maximum degree in the original
graph. So that the i-th item of the degree distribution vector Dv of node v
is the number of nodes that satisfy [log(d(u) + 1)] = i, u ∈ V (gv). Namely,
Di

v = |{u ∈ V (gv)|[log(d(u) + 1)] = i}|, where the dimension of Dv is b. And
then, based on the initial features, an iterative process similar to traditional
ReFeX is used to obtain local structural features, so we call the above process as
New ReFeX, and the features are denoted as: X = New ReFeX(f1, f2, f3, f4).
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At the same time, we also noticed that with the increase of the number of
iterations, each node can meet fairly high-order neighbors, which may cause over-
fitting. For this reason, the Variational Auto-Encoder is acted as the operator to
encode local structural features to get more compact and robust local structural
embeddings. Specifically, the structural feature reconstruction loss of VAE is
defined as follows:

LV AE = ||X − X̂||22 =
n∑

v=1

||Xv − X̂v||22 (1)

At the same time, to prevent over-fitting and better preserve key local structural
information, referring to RESD, we add a degree-based regularizer, as follows:

Lreg =
n∑

v=1

(log(d(v) + 1) − MLP (Yv))2 (2)

where MLP (·) is also a Multi-Layer perceptron model with rectified linear unit
activation ReLU(·).

We train our model ReVaC by jointly minimizing the loss of feature recon-
struction and degree-regularized constraint as follows:

L = LV AE + αLreg (3)

where α is the weight of the degree-based regularize. Through the above process,
we get the local structural embeddings, we define: Y = V AE(X).

Commonality Modeling. When looking at the similarity from a global per-
spective, the local structural information extracted are preserved as much as
possible in the local structural embeddings in the above process, while common-
alities among local structures are ignored. The similar local structures always
correspond to the same structural role, so the commonality can be regardes as a
common feature of a class of similar local structures, and can also be regarded as
the feature of a structural role. If commonalities preserved in node embeddings,
there is no doubt that we have captured different structural roles to which the
nodes belongs, which helps to make nodes with similar local structures have
similar embeddings. However, most of the current role-oriented methods ignore
commonalities, and some methods that preserve commonalities tend to have high
time and space complexity.

To solve the above problem, we propose to explicitly model commonalities
among local structures. We were inspired by two things: (1) Clustering algo-
rithms can cluster nodes with similar local structures. So we find the nodes
with the same structural role by clustering in the embedding space. (2) Clusters
describe the main structural roles that exist in the local structural embedding
space, we can model their commonalities according to the set of nodes in the clus-
ter. So in the commonality modeling part of ReVaC, the details are as follows:
we use K-Means clustering based on Euclidean distance in the local structural
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embedding space to make nodes with similar local structures have the same clus-
ter label. The cluster label of the i cluster is denoted i, and all nodes in this
cluster form the node set Ri. Because the centroid of a cluster is the mean of the
local structural embeddings of all nodes in the cluster, it represents the common
feature of the cluster to a certain extent. Thus, the centroid of a cluster can
be modeled as the commonality among a class of similar local structures. That
is for the node v, the label i of its cluster is obtained by K-means algorithm,
and then the cluster center is modeled as a commonality with a similar local
structures to v, and its feature is denoted as:

XRi
=

∑
u∈Ri

Yu

|{u|u ∈ Ri}| (4)

where Yu is the local structural embedding of node u and Ri denotes the set of
nodes of cluster i.

For the K-mean algorithm, since the degree of real network always follows the
power-law distribution, so we set K as the logarithm of the maximum degree in
the network, K = [log(dmax+1)], that is, assuming the number of potential main
structural roles in the network is K. Then, we finally get the features of all struc-
tural roles via modeling, which are defined as follows: XR = clustering(Y,K)

Fusion Encoding. The key idea of our algorithm is to strengthen the structural
role features of nodes on the basis of preserving local structural information, that
is, to explicitly preserve commonalities among local structures in node embed-
dings. In detail, the modeled commonalities and the local structural embeddings
of nodes are fused to get node embeddings. For node v, its node embedding is
defined as follows:

Zv = β ∗ Yv + γ ∗ XRi
(5)

where Yv is the local structural embedding of node v, and XRi
is the common

feature of similar local structures of the i-th cluster which v belongs. And β and
γ are hyperparameters. We think the local structural embedding and common
feature of node to be equally important, so both β and γ are set to 0.5. The
above is the whole process of the algorithm.

3.3 Complexity Analysis

Given a network G, let n denote the number of nodes, e denote the number
of edges, m denote the feature aggregation number of New ReFeX, f be the
dimension of extracted feature matrix X, d represent the dimension of local
structural embedding Y . For the local structural feature extraction part, firstly,
it takes O(n+f ·m·(e+nf)) to iteratively capture the local structural features of
nodes by improving the traditional ReFeX method, and then map the extracted
features to the local structural embedding space through the VAE, which requires
O(nf2d+nd2). Therefore, the time complexity of this part is O(n+ f · bin · (e+
nf) + nf2d + nd2). For the commonality modeling part, the time complexity of
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K-Means clustering is O(nkt), where k is the number of cluster centroids and t is
the number of clustering iterations. At last, for the fusion encoding part, fusing
local structural embeddings and commonalities to get node embeddings takes
O(n). To sum up, the whole computation of ReVaC is O(2n+ktn+ f2 · bin ·n+
f · bin ·e+f2dn+d2n). Since k, t, bin are always very small and k < f < d � n,
our model has an advantage over other methods for large-scale networks, such
as the complexity of struc2vec is O(n3).

Table 1. Detailed statistic of the datasets, including the number of nodes, edges,
categories, and nodes in each category.

Dataset Nodes Edegs Classes Category0 Category1 Category2 Category3

Brazil 131 1074 4 32 32 32 35

Europe 399 5995 4 99 99 99 102

USA 1190 13599 4 297 297 297 299

Actor 7779 26733 4 1782 1787 1798 1797

Film 27312 122706 4 10101 2378 3725 11108

4 Experiments

In this section, to evaluate the effectiveness of our model, we select three tasks
for the evaluation including (1)the visualization experiment by plotting the node
representations in a 2-D space to observe the relationships between node embed-
dings and their roles, (2)the classification experiment based on the ground-truth
labels of datasets by comparing the Micro-F1 and Macro-F1 scores, (3)the top-k
similarity search experiment to see if nodes in the same role are mapped into
close position in the embedding space.

4.1 Datasets

We conduct experiments on several real-world networks with unweighted undi-
rected edges. The datasets we use are listed as follows and the statistics are
shown in Table 1:

(1) Air-traffic networks [15]: there are three networks, consisting of American,
Brazilian, and Europe air-traffic networks (Brazil, Europe, and USA for
short). In these networks, nodes represent airports and edges represent the
existed flights between airports.

(2) Actor co-occurrence network [22]: In Actor network, nodes represent actors
and are labeled based on their influences which are measured via the number
of words in their Wiki pages.

(3) English-language film network [23]: it is a film-director-actor-writer-network
(Film for short). And edges denote whether two nodes appear in the same
Wiki page.
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4.2 Baseline

We evaluate the effectiveness of the ReVaC by comparing it with widely used
role-oriented embedding algorithms. We choose eight state-of-the-art methods
including struc2vec [2], ReFeX [4], RolX [5], RESD [7], RDAA [8], GraphWave
[13], SEGK [16], role2vec [21]. In addition, the results of New ReFeX on those
datasets are also demonstrated in subsequent experiments.

4.3 Experiment Settings

All embedding methods using ReFeX set the number of feature aggregations to
3, the number of bins to 4, as does New ReFeX. The number of hidden layers of
the encoder and decoder are all set to 2. We apply Adam SGD optimizer with
the learning rate of 0.001 and set the L2 regularization with weight of 0.001 to
avoid over-fitting. In our later experiments, if not stated specifically, α is set to
0.3, β and γ are both set to 0.5. The dimension of node embedding is set to 128
for all methods, except ReFeX and New ReFeX.

Fig. 2. Visualization of node representations on Brazil network in two-dimensional
space. The label is mapped into color of point.

4.4 Visualization

In this section, we visualize the learned embeddings, which can directly reflect
the performance of different methods. The Brazil network is selected, and we
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apply t-SNE to reduce the dimension of embeddings to 2 for visualization. Each
node is represented as a point and the color indicates its role label. Ideally, points
in the same color should be close together, and those in different colors should
be farther away from each other. As shown in Fig. 2, we observe that role2vec
cannot extract role information well as the points in different colors are mixed
up. Graphwave may be over-fitting to one specific structure characteristic as the
points are almost lined up. The other methods achieve that points in the same
color are clustered in varying degrees, such as RDAA, RESD, RolX, SEGK,
struc2vec. We note that the New ReFeX extracts higher quality features than
ReFeX as expected, because points in the same color are closer and points in
different colors are further apart. Obviously, the ReVaC divides the points with
different colors into different clusters, and the clusters in different colors are far
apart.

Table 2. Node classification average F1-micro score(F1 for short) and F1-macro
score(F2 for short) on different networks. For each column, we mark the values with
significant advantages, i.e. the top results of these methods. OM means that it cannot
be calculated in fixed memory, and OT means that the result cannot be calculated
within 12 h.

Method Brazil Europe USA Actor Film

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

GraphWave 0.762 0.757 0.521 0.490 0.523 0.472 0.477 0.448 OM OM

RDAA 0.790 0.783 0.462 0.436 0.610 0.597 0.473 0.456 0.509 0.406

ReFeX 0.763 0.758 0.567 0.555 0.630 0.625 0.479 0.460 0.513 0.409

New ReFeX 0.786 0.782 0.572 0.563 0.641 0.635 0.480 0.461 0.539 0.411

RESD 0.791 0.787 0.557 0.545 0.631 0.622 0.471 0.458 0.477 0.375

role2vec 0.323 0.312 0.350 0.348 0.422 0.418 0.311 0.304 0.338 0.302

RolX 0.796 0.793 0.551 0.528 0.627 0.618 0.467 0.452 0.487 0.383

SEGK 0.733 0.726 0.536 0.524 0.615 0.606 OT OT OT OT

struc2vec 0.742 0.737 0.578 0.560 0.647 0.644 OT OT OT OT

ReVaC 0.835 0.831 0.582 0.563 0.660 0.654 0.481 0.463 0.526 0.401

4.5 Role-Oriented Node Classification

We conduct the task of role-based node classification on five real-world networks
to quantitatively evaluate role-oriented embedding methods. To be specific, for
each dataset, a linear logistic regression classifier trained and tested using embed-
dings generated by each base-line and our model. We randomly sample 70% node
embeddings as the training set and the other embeddings are used as the test
set with 20 random runs. The performance on the Micro-F1(F1 for short) and
Macro-F1(F2 for short) is shown in Table 2, for each column, we label the values
of methods with significant advantages.
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We have following observations: (1) Role2vec gets the worst performance.
RESD achieves competitive results on this task. Struc2vec shows superiority
on small networks, like USA, Europe, while struc2vec and SEGK have high
computational complexity. (2) As expected, the classification results of New -
ReFeX on multiple datasets are better than that of ReFeX, where New ReFeX
outperforms others on Actor and gets the highest score on Film. This further
illustrates that the New ReFeX extracts higher quality local structural features
and performs well on large datasets. (3) In general, Our ReVaC overperforms
all of the baselines on all the datasets, which verifies the correctness of the
idea extracting degree distribution features and strengthening the commonalities
among local structures in node embeddings. ReVaC is a state-of-the-art method
for role-oriented network representation learning.

Fig. 3. Accurate values of Top-k similarity search for different embedding methods on
three datestes.

4.6 Top-k Similarity Search

In this section we demonstrate the effectiveness of our model in finding the
top-k nodes that are most structurally similar to the query node. We apply
the top-k similarity search task on the three air-traffic datasets, respectively. In
specific, we find the k most similar nodes for the central node by computing the
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euclidean distance. Then we count the nodes with the same label as the central
node among the K nodes and calculate the accurate value of top-k. We expect
that the embedding distance of nodes with similar local structures is closer, and
the number of nodes with the same label in the K nodes is greater, that is, the
larger the accurate value, the better. Referring to Table 1, the number of nodes
in different categories of the three air-traffic datasets is different, so we set K =
32, K = 97, K = 297. Figure 3 shows the performance of top-k search on four
categories of three datasets by different embedding methods.

We can come to this conclusion gradually through the following observations:
(1)none of the compared methods can produce top results on all categories across
the three air traffic networks. Some methods have very high accuracy in one cat-
egory but low accuracy in other categories, which leads to poor overall perfor-
mance of embedding methods, such as the performance of role2vec and struc2vec
on the USA network. (2)our model achieves excellent and stable results. Firstly,
the accuracy of the ReVaC on all four categories on the Brazil network is sig-
nificantly higher than other baseline methods. Secondly, on Europe and USA
networks, although the accuracy of ReVaC on all four categories is not better
than that of other methods, the average accuracy of those is significantly higher.

5 Conclusion

In this paper, aiming at the challenges of the existing role-oriented network
embedding methods, we propose solutions from two aspects. On the one hand, we
incorporate degree distributions of nodes into the extraction of local structural
features to improve the traditional ReFeX, and then we use the Variational
Auto-Encoder as an operator to obtain noise-reduced and more robust local
structural embeddings. On the other hand, in the local structural embedding
space, we exploit a clustering algorithm to model the common features among
similar local structures and fuse them into the local structural embeddings. This
makes it possible to strengthen the commonality of local structural roles on
the basis of keeping local structural features, so as to achieve the purpose of
enriching structural information and improving the expression power of node
embedding. At the same time, we also introduce the framework of the model,
carried out theoretical analysis and experiments. Extensive experiments confirm
the effectiveness of ReVaC, and also demonstrate that our framework can adapt
well to network scale and dimensions.
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