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Abstract. Social media reading comprehension (SMRC) aims to answer
specific questions conditioned on short social media messages, such as
tweets. Sophisticated neural networks and pretrained language models
have been successfully leveraged in SMRC, accompanying with a series
of deliberately-designed data cleaning strategies. However, the exist-
ing SMRC techniques still suffer from unawareness of various entity
mentions, i.e., the successive tokens (words, sub-words or characters)
that fully or briefly describe named entities, such as abbreviated person
names. This unavoidably brings negative effects into question answer-
ing towards the questions of “who”, “where”, “which organization”, etc.
To address the issue, we propose to enhance the capacity of a SMRC
model in recognizing entity mentions and, more importantly, construct
an entity-aware encoder to incorporate latent information of entities
into the understanding of questions and tweets. In order to obtain a
self-contained entity-aware encoder, we build a two-channel encoder-
shareable neural network for multitask learning. The encoder is driven to
produce distributed representations that not only facilitate decoding of
entity mentions but prediction of answers. In our experiments, we employ
12-layer transformer encoders for multi-task learning. Experiments on
the benchmark dataset TweetQA show that our method achieves signif-
icant improvements. It is also proven that our method outperforms the
state-of-the-art model NUT-RC, yielding improvements of 2.5% BLEU-
1, 3% Meteor and 2.2% Rouge-L, respectively.

Keywords: Social media reading comprehension · Named entity
recognition · Multi-task learning

1 Introduction

Machine Reading Comprehension (MRC) is a task of question answering condi-
tioned on the semantic understanding of question and paragraph-level context.
A variety of MRC datasets have been constructed to support related research in
this field, including SQuAD [1], CoQA [2], NarrativeQA [3]), etc.
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Table 1. An example of unrecognized named entities in social media domain.

Tweet: This forecast is deflated as much as New England Patriots footballs! I

apologize.W NJ has the most to lose. Dave Curren(@DaveCurren)January 27,2015

Question: Who has the most to lose?

Gold Answer: W NJ

Predict Answer: New England Patriots

Recently, TweetQA1 [4] is released for the evaluation of MRC techniques,
which limits the available contexts to tweets. It raises an intensive interest in
exploring effective MRC solutions towards short and informal texts. The task
defined on this dataset is referred to Social Media Reading Comprehension
(abbr., SMRC). Table 1 illustrates an example, where a specific SMRC model is
required to predict the answer “W NJ” given the question “Who has the most
to lose?”. The clues that support the prediction can be merely mined from the
single tweet.

Neural networks have been utilized for SMRC, which produced substantial
improvements so far (Sect. 2). In particular, large pretrained language models
were used to strengthen encoders of current SMRC models, such as BERT [5],
UniLM [6] and T5 [7]. Due to extensive learning over large-scale data for semantic
representation, the pretrained models significantly improve the understanding of
questions and tweets, and therefore, boost SMRC performance. It is noteworthy
that such pretrained models need to be fine-tuned over TweetQA in the mode of
transfer learning, and necessarily accompanied with proper data cleaning strate-
gies [8]. Transfer learning is applied for enhancing adaptation to domain-specific
characteristics of tweets, such as that for the idiom where the stop words “Down
Under” actually serve as the alternative name of “Australia”. Data cleaning is
used to recover or filter grammatical errors, such as the removal of redundant
spaces “did n’t” into “didn’t”.

Briefly, the existing neural SMRC models achieve promising performance
when transferring pretrained models to tweets and coupling them with data
cleaning. However, our empirical findings show that entity-oriented SMRC fails
to perform perfectly, where the state-of-the-art model such as NUT-RC [8]
obtains an error rate of 40.94%2. Though, the most noticeable fact regarding
data distribution is that the proportion of entity-type answers is up to 29.13%3

in all SMRC instances in TweetQA dataset.

1 https://tweetqa.github.io/.
2 We reproduce NUT-RC [8] and evaluate it on the development set. On the basis, we

verify the error rate for entity-oriented SMRC.
3 We employ an off-the-shelf Named Entity Recognition (NER) toolkit Twitter-Stanza

to automatically determine whether gold SMRC answers are the ones containing
named entities. The toolkit has been well-trained on the TweeTbank-NER dataset
(https://github.com/social-machines/TweebankNLP).

https://tweetqa.github.io/
https://github.com/social-machines/TweebankNLP
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Entity-oriented SMRC instances refer to the ones whose ground-truth
answers are entity mentions, such as names of person (PER), organization (ORG)
and location-type (LOC) entities. The reason why SMRC models fall into the
misjudgement for some of them is because of the unawareness of entity knowl-
edge [9]. For example, the clue for reasoning in the case in Table 1 is evident
(i.e., the text “W NJ has the most to lose” which is even consistent with the
question in morphology and pragmatics), though SMRC models fail to identify
the entity “W NJ” (i.e., the abbreviated mention of “West New Jersey”) in it as
the answer. It reveals the possibility that, to the end, SMRC models are unaware
of what the mention “W NJ” is, or even regard it as a sequence of meaningless
characters instead of the closely related entity to the “Who”-type question.

To address the issue, we propose to enhance the awareness of entity men-
tions during encoding questions and tweet contexts. The two-channel multi-task
learning is utilized, where SMRC and NER tasks are considered. The share-
able encoder across the two learning channels is trained to perceive interaction
between question and tweet context, as well as the latent information of various
entity mentions. This contributes to the construction of a self-contained entity-
aware SMRC model. We experiment on the benchmark dataset TweetQA [4].
Experimental results show that our method yields substantial improvements,
and it outperforms the published state-of-the-art model NUT-RC [8].

2 Related Work

A variety of innovative approaches have been proposed for SMRC. Huang et al.
(2020) [8] design heuristic rules to standardize informal texts in tweets. More
importantly, Huang et al. (2020) bridge generative and extractive SMRC by
answer selection mechanisms. Tian et al. (2021) [10] enhance the representa-
tion learning of questions and tweets using concepts. Hashtags are used as con-
cepts. They are extracted from the closely-related tweets, the ones retrieved and
highly-ranked in terms of topic-level relevance. BERT-based pointer network is
utilized for extracting concepts. Xue et al. (2022) [11] demonstrate the effec-
tiveness of character-level models in dealing with noisy and informal datasets,
such as TweetQA [4]. Instead of using the limited vocabulary to tokenize words,
they directly take the UTF-8 bytes as the input. On the basis, a character-level
pre-trained model is developed based on T5 [7] architecture.

Our approach is different from aforementioned approaches. We capture the
exclusive characteristics that some of entity mentions play an important role for
reasoning answers in tweets, or even serve as answers themselves. Accordingly,
we intend to enhance the awareness of entity knowledge when encoding questions
and tweets. To pursue the goal, we utilize the entity recognition as an auxiliary
task, so as to drive the encoder to perceive and represent entity mentions.
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3 Approach

In this section, we present the components of our SMRC model step by step,
including preprocessing over tweets, entity-aware encoding by multi-task learn-
ing, as well as answer prediction.

Fig. 1. Architecture of our multi-task learning model, which is used to enhance the
awareness of entity information during encoding.

3.1 Text Preprocessing

We employ Huang et al. (2020)’s heuristic rules [8] to separate the mixed-tokens
in tweets. Specifically, we split both Hashtags and User-Ids into formal texts
(e.g., “#WhiteHouse”→“# White House”), so as to avoid the misunderstanding
or omission of entity mentions.

3.2 Entity-Aware Encoding Grounded on Multi-task Learning

We conduct two-channel multi-task learning, where shareable multi-layer trans-
former encoders are used. One learning channel aims to train the encoder for
generative SMRC (primary task), while the other performs for NER (auxiliary
task). Different attention masks are utilized in the two learning channels. The
neural network we used is constructed with embedding layer and transformer
encoders, as well as two separate decoding layers coupled with truncation and
dropout operations. Figure 1 shows the architecture of our learning model.
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Embedding Layer: Given an SMRC instance in the training set, we construct
two kinds of input sequences for SMRC and NER tasks respectively. For NER,
we concatenate the token sequence of question q and that of tweet p, where the
special tokens “[CLS]” and “[SEP]” are used (see the concatenation mode in
Fig. 1). The resultant input sequence is denoted as X. For generative SMRC, we
concatenate X with two additional sequences Y and M . Y comprises tokens of
the ground-truth answer y and “[SEP]”. M serves as the shuffled version of Y .
Specifically, the tokens in M are duplicated from Y , though at the initialization
stage, they are randomly masked by special character “[MASK]” or replaced
with other words in the vocabulary [12]. M is primarily used for pseudo-masked
fine-tuning, which contributes to the alleviation of exposure bias.

Following Devlin et al. (2019)’s practice [5], we obtain the input embed-
dings by conducting element-wise aggregation over token, segment and position
embeddings. It is noteworthy that the embedding layer is trainable.

Encoder Layers: We apply N-layer Transformer encoders of UniLM v2.0 to
convert the input embeddings to contextual semantic representations, no matter
whether the input is {X,Y,M} or {X} (“{∗}” denotes concatenation operation).

H l = Transformer(H l−1) (1)

where, l ∈ [1, N ] signals the l-th transformer layer which produces the hidden
states H l. H l contains the token-level hidden states of all tokens and special
characters in the input sequence. We use HN as the final hidden states, i.e.,
the distributed representations output by the last (N -th) transformer layer. For
generative SMRC, the final hidden states act as HN = {hN

1 , hN
2 , ..., hN

s+t+t},
where, s and t constrain the maximum length of HN which are numbers of tokens
in X and Y . For NER, the final hidden states act as ȞN = {ȟN

1 , ȟN
2 , ..., ȟN

s }.
Selective masking mechanism is required to perform during training due to

the different prediction modes (decoding modes) of generative SMRC and NER.
Specifically, generative SMRC serves as a generation model, and therefore needs
to possess the capacity of predicting the current token in terms of preceding pre-
dictions (and tweet context). In fact, this recursive prediction mode conforms
to the fundamental limitation that ground-truth answer Y is invisible in the
test process. In order to simulate the recursive prediction mode, we need to
impose masks on the hidden states of subsequent tokens in HN during training.
By contrast, NER serves as a sequence labeling task, which performs B/I/O
tag classification for each token separately and independently. Therefore, it is
unnecessary to impose masks over the hidden states ȞN . To facilitate the rep-
resentation learning of shareable encoders between the two tasks, we establish
a selective masking mechanism, where Bao et al. (2020)’s pseudo-masked atten-
tion learning [13] is used. The attention score ATTNl of the transformer l is
computed as follows:

ATTNl = (
QlK

T
l√

dk
+ MASK)vl (2)
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Table 2. An example of named entities for questions and tweets

Question+Tweet: [CLS] Who have the cavs released? [SEP] The Cavs have

released Edy Tavares . No surprise . He was on a non - guaranteed contract . Roster

stands at 19 . - Jason Lloyd ( @ Jason Lloyd NBA ) [SEP]

Named Entities: [CLS] O O O S-ORG O [SEP] O S-ORG O O B-PER I-PER O

O O O O O O O O O O O O S-ORG O O O O O B-PER I-PER O O O O O O [SEP]

MASKij =
{

0, Attention is allowed
−∞, Attention is not allowed (3)

where, Ql,Kl,Vl respectively denote the Query, Key and Value vectors that are
obtained by linearly converting HN or ȞN . MASK denotes the attention mask.
Figure 1 shows the diagrams of masked hidden states at a certain encoding step.

Decoding of SMRC and Loss Estimation: Given the pseudo-masked final
hidden states HN , we take the hidden states HN

M of M out of HN by truncation,
which contain latent information for predicting answers. We feed HN

M into the
linear layer G with Softmax to compute the probability distribution that every
token in the vocabulary serves as an answer or part of it:

{
HN

M = [hN
s+t+1, h

N
s+t+2, ..., h

N
s+t+t]

Yge = softmax(LinearG(HN
M )) (4)

During training, the loss of answer prediction is estimated with the probabil-
ity distribution Yge. It is the reliance for back propagation. Cross entropy fCE

is used to estimate the loss Lge (where Y denotes the ground-truth answer):

Lge = fCE(Yge, Y ) (5)

Decoding of NER and Loss Estimation: Given the final hidden states ȞN ,
we feed them into a dropout layer for purifying their latent information. This
helps to avoid overfitting. On the basis, we deliver the purified hidden states ȞN

to the linear layer D with Softmax, so as to predict the probability distributions
Yen over B/I/O tags for each token. Similarly, we utilize cross entropy fCE to
estimate the loss Lne. All computations of NER for decoding are as follows
(where Yen denotes the ground-truth B/I/O tags of NER):

⎧⎨
⎩

ȞN ′
= dropout(ȞN )

Y̌en = softmax(LinearD(ȞN ′
))

Lne = fCE(Y̌en, Yen)
(6)

The learning in the channel of NER, frankly, requires the ground-truth B/I/O
tags of entity mentions for supervision. However, TweetQA dataset doesn’t pos-
sess annotation results of named entities. Therefore, we use the existing NER
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toolkit Twitter-Stanza [14] to automatically annotate named entities of both
questions and tweets. Table 2 shows the example regarding B/I/O tags of enti-
ties towards a SMRC case in TweetQA.

Fig. 2. The data flow produced step by step during the decoding process.

Multi-task Learning: During training, we conduct supervised learning for
generative SMRC and NER tasks alternatively and iteratively in each epoch.
Both the losses produced in SMRC and NER are jointly used to optimize the
parameters in embedding layer, transformer encoders and predictors (i.e., gen-
erator G for SMRC while discriminator D for NER). We compute the joint loss
Lall as follows (where λ denotes a trade-off coefficient):

Lfinal = Lge + λLner (7)

3.3 Generating Answers

Instead of extracting answers from tweets (by pointer networks), we generate
answers, i.e., search the most possible tokens in the vocabulary to sequentially
constitute an answer, where the greedy algorithm is used.

Specifically, conditioned on the i-th hidden state hN
i in HN

M (see Eq. 4), we
predict the i-th token y′

i of the possible answer at the i-th time step. In order
to speed up decoding, we hold up emebeddings of {X, y′

1, ..., y
′
i} for each time

step at run time, and concatenate them with emebedding of {y′
i, [MASK]}. The

resultant representation will be fed into the encoder to produce (i+1)-th hidden
sate hN

i+1 in HN
M (See Fig. 2). In this way, we iteratively predict tokens in the

answer and produce the next hidden state until “[SEP]” is predicted.
In addition, we design an answer corrector to post-process the generated

answer. It is capable of dealing with the following informal text spans. The
major heuristic rules including 1) Word Recovery (e.g., “did n’t”→“didn’t”)
and 2) Removing Redundant Characters (e.g., removing “@” or “#”).
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4 Experimentation

4.1 Data, Evaluation and Hyperparameter Settings

• Dataset: We experiment on TweetQA [4]. Compared to other MRC datasets,
TweetQA [4] contain a large number of unusual entities. More importantly,
the answers in TweetQA [4] are free-form texts rather than the ones toughly
extracted from tweets. We follow the previous work to split TweetQA. The
training, validation and test sets contain 10,692, 1,086 and 1,979 instance,
respecitvely.

Table 3. Performance of the state-of-the-art SMRC models and ours.

Model BLEU-1 Meteor Rouge-L

Dev Test Dev Test Dev Test

BIDAF (Seo et al., 2016) [19] 48.3 48.7 31.6 31.4 38.9 38.6

Seq2Seq (Song et al., 2017) [18] 53.4 36.1 32.1 31.8 39.5 39.0

BERT-EX (Devlin et al., 2018) [5] 61.0 58.4 64.2 63.2 60.9 65.8

NUT-RC (Huang et al., 2020) [8] 78.2 76.1 73.3 72.1 79.6 77.9

TKR (Tian et al., 2021) [10] 68.7 69.0 64.7 65.6 70.6 71.2

EA-SMRC (Original) 79.1 78.5 74.5 74.7 80.6 80.0

EA-SMRC (Variant) 78.7 77.8 74.5 74.2 80.1 79.4

• Evaluation Metrics: For comparison, we follow the common practice to use
BLEU-1 [15], Meteor [16] and Rouge-L [17] to evaluate SMRC models. The
test set is not publicly available. Therefore, we submit the predicted answers
to the official website of TweetQA 1 for obtaining the test performance.

• Hyperparameter Settings: Our source code is based on s2s-ft [12]. We use
the Adam optimizer to train the MRC model. The learning rate for training is
2e-5. We set the maximum length of X to 128 and the maximum length of Y
to 24. We initialize our model using the parameters of UniLM v1.2 [12], and
fine-tune our model on TweetQA in 10 epochs. The batch size for training is
12. The opimal λ is set to 1. The dropout rate used for the NER task is set
to 0.1.

4.2 State-of-the-art SMRC Models for Comparison

We develop two versions of SMRC models, including the aforementioned entity-
aware SMRC grounded on multi-task learning (denoted as original EA-SMRC),
as well as its variant. The variant adopts the same learning architecture, though
the auxiliary task NER is implemented by Masked Language Modeling (MLM),
where MLM of BERT is transferred to the learning process.

We compare our models to the state-of-the-art models including 1) BIDAF
[4] which is an extractive MRC model based on Recurrent Neural Network
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(RNN), where bi-directional attention flow is used; 2) Seq2Seq [18] which acts
as a generative model within the RNN-based encoder-decoder framework, where
copy and coverage mechanisms are leveraged; 3) BERT-EX [5] which is obtained
by transferring the pretrained language model BERT to TweetQA and acts as
an extractive MRC model; 4) TKR [10] which incorporates concept knowledge
into the encoding process, so as to enhance the perception and representation
of unusual linguistic units, where external data is applied for retrieving concept
knowledge; and 5) NUT-RC [8] which possesses a two-channel multi-task learn-
ing architecture, where generative and extractive MRC are conducted in the two
channels, and answer selection is used.

Table 4. Ablation study on TweetQA

Model BLEU-1 Meteor Rouge-L

Dev Test Dev Test Dev Test

EA-SMRC (Original) 79.1 78.5 74.5 74.7 80.6 80.0

-NER 77.7 77.3 73.2 73.6 79.2 78.9

-NER&-CORR 75.6 76.6 71.4 72.6 77.5 78.2

-NER&-CORR&-SPLIT 74.0 75.5 69.8 71.4 75.9 77.3

4.3 Main Results

Table 3 shows the test results of our models (EA-SMRC) and the state of the
art. It can be observed that both original and variant EA-SMRC models produce
substantial performance gains, compared to previous work. Considering that
both the models utilize entity-aware multi-task learning framework, we suggest
that the proposed method is robust and capable of yielding steady improvements
to some extent. Experimental results reveal the fact that original EA-SMRC
achieves higher performance (BLEU-1, Meteor and Rouge-L scores) on TweetQA
[4]. It is because the original version accurately introduces entity knowledge into
the SMRC, while the variant one still requires to understand the semantics of
context to infer the entity types, which potentially brings a certain noise due to
the inadequate semantic understanding.

We concentrate on the previous work of NUT-RC [8] for advantage analysis,
which used to stand on the top of leader board for a long period of time and,
more importantly, it holds the same learning framework with our models (i.e.,
multi-task learning). From the perspective of effectiveness, our EA-SMRC mod-
els obtain better performance due to the incorporation of entity knowledge into
learning. From the perspective of efficiency, frankly, EA-SMRC is relatively vest-
pocket and less time-consuming because the kernel is constituted with a group
of transformer encoders and two independent linear layer. By contrast, NUT-RC
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possesses two groups of large transformer blocks in the learning channels, which
are initialized by UniLM v1.0 [6] and BERT-Large [5].

4.4 Ablation Study

We carry out ablation experiments to verify the effects of different components
in EA-SMRC. The components are progressively ablated, which include 1) “-
NER” denoting the ablation of the auxiliary task NER, which boils multi-task
learning down to entity-unaware single-task learning, 2) “-CORR” referring to
the condition that answer correction is disable, and 3) “-SPLIT” that refers to
the ablation of heuristic rules for text preprocessing.

Table 4 show the experimental results. It can be found that performance
constantly degrades when the components are progressively ablated. During test,
the largest performance reduction results from the ablation of NER. It proves
the dominant positive effect of entity-aware multi-task learning.

Table 5. Performance obtained when different pretrained models are used

Model Framework BLEU-1 Meteor Rouge-L

UniLM v1.0 [6] FT 72.5 67.5 74.5

MTL 73.6 68.4 75.1

UniLM v2.0 [13] FT 71.0 65.7 73.1

MTL 72.2 66.9 74.0

BERT [5] FT 69.7 65.4 71.5

MTL 70.3 65.6 72.0

Table 6. Performance of EA-SMRC (Variant) on TweetQA using different NER tools

NER tool BLEU-1 Meteor Rouge-L

CoreNLP [21] 77.6 63.7 79.5

Stanza [22] 78.2 74.0 79.6

Twitter-Stanza [14] 79.1 74.5 80.6

4.5 Effects of Different Pretrained Models for Transfer

We verified the performance of EA-SMRC on the validation set when different
pretrained models are used for initialization. Initialization is conducted by sub-
stituting off-the-shelf parameters and embeddings of pretrained models into EA-
SMRC. This enables transfer learning on TweetQA within multi-task learning
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framework. We consider three pretrained models, including UniLM v1.0, UniLM
v2.0 and BERT. The variant EA-SMRC is used due to its better performance
on the validation set. Besides, two learning frameworks are considered, includ-
ing our entity-aware multi-task learning (denoted as MTL) and entity-unaware
single-task learning. The latter is equivalent to the case that pretrained models
are directly transferred to TweetQA and fine-tuned there (denoted as FT).

Table 5 shows the performance of aforementioned pretrained models. It can
be observed that utilizing different pretrained models will result in significantly
performance. Nevertheless, all the models can achieve better performance when
the MTL framework is used, compared to the FT framework. It illustrates that
our entity-aware learning strategy generalizes well. Besides, it can be found that
both UniLM v1.0 and UniLM v2.0 fail to produce competitive performance,
compared to UniLM v1.2 in our EA-SMRC (see Table 3). It is because that
UniLM1.2 doesn’t apply relative position bias [20], and thus it is adaptive to the
stationary position embeddings in our input layer.

4.6 Utility of NER Toolkits

We verify the utility of different NER toolkits in our method. Note that NER
toolkits are used for obtain entity mentions in the training data, which support
the learning of a self-contained encoder for perceiving entities. We consider three
NER toolkits, including CoreNLP [21], Stanza [22] and Twitter-Stanza [14]. The
former two provide a larger number of entity types (23 in CoreNLP and 18 in
Stanza) and instances, compared to Twitter-Stanza. Nevertheless, the training
data of Twitter-Stanza derives from the same domain with TweetQA.

Table 6 shows the experimental results. It can be observed that Twitter-
Stanza yields relatively-substantial performance gains. It proves that domain
relevance is more important than both data size and versatility of entity types
for the adoption and utilization of NER toolkits.

Fig. 3. The proportion of different error types.
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Table 7. Examples of prediction errors produced by our SMRC models.

Type Example

LRC Question: Who are they replying to? Tweet: This looks like
blank space taken to a NEW.LEVEL. (@dunderswiftlin). Gold
Answer: Gma and Taylor Swift (Reasons behind errors: Be

unaware of exact names of “dunderswiftlin” and their
relationship to “NEW.LEVEL)

OCR Question: Who wouldn’t give a long-term deal? Tweet: The
Red Wings didn’t believe they would get Mike Green because
they wouldn’t give a long-term deal. Gold Answer: The Red
Wings. (Reasons behind errors: Fail to correspond the
co-reference “they” to the entity “Red Wings”)

4.7 Error Analysis

We conduct error analysis on the predictions of our models over the valida-
tion set. The errors are caused by six classes of drawbacks, including Lack of
Related Commonsense (LRC for short), Omission of Co-reference Resolution
(OCR), Incorrect Segmentation of Mixed-tokens (ISM), Answer Boundary Mis-
judgement (ABM), Grammar Errors of the generated Answers (GEA), as well
as Unanswerable Questions (UQ) caused by inexact or improper annotations.
Figure 3 shows the proportions of aforementioned error types in all the misjudged
answers. Table 7 gives two examples of prediction errors.

5 Conclusion

We propose an entity-aware encoding method to strengthen the current SMRC
models. Multi-task learning is leveraged to enable the perception and fusion of
latent information of entity mentions. Experiments on the benchmark dataset
TweetQA demonstrate the effectiveness of our method. Besides of superior per-
formance (higher BLEU-1, Meteor and Rouge-L scores), our SMRC model is
vest-pocket and less time-consuming. In the future, we will enhance the entity-
aware encoder from two aspects, including 1) introducing external knowledge
of entities into the representation learning process, where group-based neural
models will be used, and 2) conducting co-reference resolution.
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