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Abstract. Temporal knowledge graphs store a large number of tempo-
ral facts that simulate the dynamic interactions of entities along the
timeline. Since existing temporal knowledge graphs often suffer from
incompleteness, it is crucial to build time-aware representation learn-
ing models that help to infer the missing temporal facts. However, most
of the existing models for temporal knowledge graph reasoning focus on
mining temporal associations between entities, and do not fully exploit
spatial information contained in entities. To this end, we propose spatial-
temporal network(ST-Net), a new representation learning model for tem-
poral knowledge graphs, which has both temporal and spatial awareness
capabilities. Specifically, ST-Net enriches the hidden features of entities
by simultaneously fusing their temporal and spatial information. At the
same time, we introduce the core idea of Copy-Generation Networks,
which predicts future facts based on either the historical vocabulary or
the whole entity vocabulary. We evaluate our proposed method via link
prediction at future times on three benchmark datasets. Through exten-
sive experiments, we demonstrate ST-Net has superior performance on
the future link prediction tasks.

Keywords: Temporal knowledge graph · Representation learning ·
Link prediction

1 Introduction

Knowledge graphs (KGs) is widely used in natural language processing applica-
tions due to its ability to represent structured knowledge. However, most KGs
suffers from incompleteness, which limits the performance and scope of KG appli-
cations to a certain extent. Therefore, it is an important task to predict the miss-
ing facts by KG reasoning. Recently, inference task has been expanded from KGs
to a more challenging field: Temporal Knowledge Graphs(TKGs). The inference
task on TKGs can be simply expressed as predicting missing object entity in
query (subject entity, relation, ?, timestamp). Most of their researches focus on
how to effectively integrate temporal information into the model. It’s suggested
by some researches that the traditional KG embedding method can be extended
to TKGs [1,2]. However, they only pay attention to learning the potential repre-
sentation of entity in a snapshot, while ignoring modeling the dynamic evolution
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Fig. 1. Illustrates the process of ST-Net leveraging spatial information to predict future
facts.

process of entity. Recently, some researchers have also conducted researches on
the dynamic evolution of entity and relation [3–6], which combine historical
information from previous snapshots.Another part of researchers try to enrich
the potential representations of entity by incorporating multiple information [7–
9], such as entity descriptions, event descriptions and uncertain information.

Inspired by this, we find that the above methods all ignore the importance
of the spatial information (country, city, organization) attached to the entity. In
fact, the occurrence of an event cannot be separated from spatial information,
and the interaction between two entities also means the interaction between
two spaces. Specifically, we found that the probability of entities in same event
located in same space is 41.13% according to ICEWS18 dataset, which shows
the importance of leveraging the spatial information contained in the entity to
predict future facts.

To this end, we propose a innovative TKG representation learning model with
both temporal and spatial perception. Mining the spatial information attached
to the entity would help in fine-grained modeling of entity representation, and
further strengthen the representation ability of entity embedding. At the same
time, we introduce two inference modes in the copy generation network [6] to pre-
dict future facts from the historical vocabulary and the whole entity vocabulary.
As shown in Fig. 1, after applying the spatial information, two nodes without
interaction, Farm Worker and Hindustan Times, can be connected in the same
space to pave the way for prediction.

We evaluated our proposed method on three benchmark datasets and the
experimental results show that ST-Net is superior to the baseline model in link
prediction task. The ablation experiment further proves that spatial information
can help the model predict future facts better.

The main contributions of this work are as follows:

1. We propose a innovative TKG representation learning model ST-Net, which
implements fine-grained modeling of entity representation by mining the spa-
tial information attached to entity.
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2. We introduce two inference modes in the Copy-Generation Networks [6],
which predict future facts from the historical vocabulary and the whole entity
vocabulary respectively.

3. We conduct extensive experiments on three public TKG datasets and demon-
strate the effectiveness of ST-Net in link prediction.

2 Related Work

We discuss three relevant research directions. Since there is massive work in each
direction, we can only select representative and closely related ones to elaborate.

2.1 Static Knowledge Graph Embeddings

Without considering temporal facts, researchers have made passable progress
in KG embedding, which Ji et al. [10] summarizes. A classic class of models is
translation model (TransE and its variants) [11–13], which leverages a distance-
based scoring function to measure the reasonableness of facts. The other is the
semantic matching model (such as ComplEx [14], DistMult [15], etc.), which
uses a similarity-based scoring function and measure the plausibility of facts
through semantic matching. Recently, some methods based on deep neural net-
works (such as R-GCN [16], ConvE [17], RSN [18], etc.) have emerged, which
utilize CNN, RNN, and graph neural networks (GCN, R-GCN, etc.) to help
models learn embedding of entity and relation. However, these methods cannot
capture temporal facts.

2.2 Temporal Knowledge Graph Embeddings

TKG embedding incorporates timestamp of facts into the learning process. Some
researchers attempt to extend the static KGs directly to the field of TKGs.
TTransE [1] is an extension of TransE, which simply integrates time information
into the scoring function; HyTE [2] replaces the unit normal vector of the hyper-
plane projection in TransH with a time-specific normal vector. Other researchers
focus on the dynamic evolution of entity and relation. Know-Evolve [3] models
the occurrence of facts as a temporal point process to learn non-linearly evolv-
ing entity representation over time; Goel et al. [4] provides the embedding of
an entity at any point in time by equipping the static model with a diachronic
entity embedding function. However, none of these methods correlate snapshots
that have occurred in history.

To solve the problem that the model cannot capture the long-term depen-
dency of facts, the autoregressive model is proposed. Jin et al. [5] modeled the
TKGs in the way of autoregressive, that is, the snapshot at T timestamp depends
on the historical snapshot before T; Han et al. [19] leverages continuous tem-
poral embedding to encode the temporal and structure information of historical
snapshots; Zhu et al. [6] utilizes the recurrence rule of facts and combines two
inferring modes to predict future facts from historical vocabulary and whole
entity vocabulary respectively.
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2.3 Embedding with Auxiliary Information

More recent attempts have been made to combine multimodal information with
structured information in KGs to promote more effective knowledge representa-
tion. SSP [8] provides more precise semantic embedding for entity and relation
by projecting triples and text descriptions into semantic subspaces. Glean [7]
leverages graph neural networks to fuse unstructured event descriptions and
structured data from TKGs to enrich the hidden features of event participants.
The uncertain KG embedding model proposed by Chen et al. [9] incorporates
the confidence scores of uncertain relation facts when learning embedding. Influ-
enced by this, we try to fuse the spatial information contained in the entity with
the structured information of the TKGs. As we know, this is the first work to
incorporate spatial information into TKG representation learning.

3 Spatial-Temporal Network

In this section, we start with the notations for building our model and problem
definition, and then introduce the model architecture as well as its training and
inference procedures in detail. Figure 2 illustrates an overview of ST-Net reason-
ing process. ST-Net can be decomposed into 3 sub-modules: Query Vectorization,
Capture History Vocabulary, and Copy-Generation Mode.

3.1 Notations

TKGs consists of temporal facts, each of which can be simply described as sub-
ject and object entity s ∈ E and o ∈ E have a relation r ∈ R at timestamp
t ∈ T , denoted as quadruple (s,r,o,t), where E , R represent the vocabularies
corresponding to the entities and relations respectively, and T is the set of times-
tamps. The boldface s,r,o,t represent the corresponding embedding vectors. A
TKG can be divided into a set of snapshots {G1, G2, · · · , Gtk} according to the
timestamps, where Gt is a snapshot of the TKG at time step t, containing all
temporal facts at time step t. For each subject entity and relation pair at times-
tamp tk, we define a delimited subset of E specific to (s, r, tk) as H(s,r)

tk
, namely

historical vocabulary for (s, r, tk), which contains all object entities in tempo-
ral facts with the subject entity s and the relation r in the known snapshots
G(t1,tk−1) = {Gt1 , Gt2 , · · · , Gtk−1} before tk, where the historical vocabulary
H(s,r)

tk
is an N -dimensional multi-hot indicator vector and N is the cardinality

of E , the value of entities in the historical vocabulary are masked 1 while others
are 0.
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Fig. 2. Overview of ST-Net. ST-Net implement fine-grained modeling of entity repre-
sentation by mining spatial information of entity, and conbines two inference modes to
predict missing entity in the query. In the figure, light purple nodes are the candidate
object entities in the historical vocabulary for query (s1, r2, ?, tq).

Prediction of a missing temporal fact aims to infer the quadruple (s, r, ?, tq) or
(?, r, o, tq) from the known snapshots G(t1,tq−1) = {G1, G2, · · · , Gtq−1}. Without
loss of generality, the task of the model is defined as predicting missing object
entity.

3.2 Model Components

Query Vectorization. In encoding phase, the information contained in query
needs to be converted into a continuous low-dimensional vector by the embedding
layer. ST-Net first randomly initializes entity feature si and relation feature ri for
all s ∈ E and all r ∈ R. In order for the model to be time-aware, the timestamp
in temporal facts need to be encoded. Define the embedding for a unit step of
time as tu and t1 = tu, so the embedding of timestamp tk is represented as
follows:

tk = tk−1 + tu (1)

ST-Net expands the spatial-aware based on time-aware. Due to the complex-
ity and uncertainty of data, the spatial information attached to entity is hard
to learn by neural networks. We found that the text for most entities in TKGs
already contains spatial information, like Citizen(India), Government(Pakistan).
This is becasue these information have been summarized and sorted out in the
process of temporal fact extraction, but they were not fully utilized. ST-Net
obtains spatial information by preprocessing the text of the entity and the text
in the raw data. After processing, for few of entities lacking spatial information,
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the entity itself can be directly used as its spatial information or use the existing
mature pretraining language model to generate these message by prompt learn-
ing. After acquiring the spatial information for all entities, ST-Net randomly
initializes them to get the spatial feature sp.

The discovered spatial information can support the model to carry out fine-
grained modeling of entity representation, so that the entity has a richer and
more favorable embedding to improve the effect of downstream tasks. After
query Vectorization, the model needs to capture historical vocabulary of the
query in advance to facilitate the next reasoning process.

Capture Historical Vocabulary. First, the training dataset can be divided
into a series of snapshots G1, G2, · · · , Gttrain

by timestamp. Then obtain the
historical vocabulary for each subject entity and relation combination (s, r, t)
in each snapshot, i.e. {h(s,r)

t1 ,h(s,r)
t2 , · · · ,h(s,r)

ttrain
}. During training process, ST-

Net is trained on each snapshot in timestamp order by incrementally maintain
the historical vocabulary for all the previous snapshots. When evaluating the
performance of our model on the validation set and test set, the maximum
historical vocabulary from the whole training set will be used.

Specifically, for each query quadruple (s, r, ?, tk) at time tk, during the train-
ing process, ST-Net will expand the historical vocabulary that specific to (s, r, tk)
from the snapshot before time tk, as formalized below:

H(s,r)
tk

= h(s,r)
t1 + h(s,r)

t2 + · · · + h(s,r)
tk−1

(2)

where H(s,r)
tk

is an N-dimensional multi-hot indicator vector where 1 is marked
for all entities in the current historical vocabulary. Next two modes of reasoning
will be introduced.

Copy-Generation Mode. The Copy mode aims to identify repeated facts and
predict future facts by down sampling known facts of the same type in history.
Given a query (s, r, ?, tk) and its corresponding historical vocabulary H(s,r)

tk
, the

copy mode will increase the probability estimated for the object entity that are
selected in the historical vocabulary. The Copy mode generates the query vector
vq with an MLP:

vq = tanh(Wc[s, sp, r, tk] + bc) (3)

where Wc ∈ R
4d×N and bc ∈ R

N are trainable parameters. The query vector
vq is an N-dimensional vector, where N is the cardinality of the whole entity
vocabulary E .

To minimize the probability of some entities that do not form known facts
with s and r in history, we first change the index value for an uninterested entity

in H(s,r)
tk

to a small negative number denoted ˙H(s,r)
tk

. Then, the Copy mode can

add the query vector and the changed multi-hot indicator vector ˙H(s,r)
tk

to limit
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the scope of candidate entities. After applying softmax function, the probability
of the uninterested entities will be minimized.

cq = vq +
˙H(s,r)
tk

(4)

p(c) = softmax(cq) (5)

where cq is an N-dimensional index vector. p(c) is an N-dimensional probability
distribution vector representing the prediction probabilities on the historical
vocabulary. Finally, we use the entity with the largest probability value in p(c)
to answer the query. The advantage of the Copy mode is that it enable to predict
from a more limited candidate entity space than the overall vocabulary. However,
facts can also appear in upcoming snapshot, therefore a Generation mode is
needed to predict such facts.

Given the same query (s, r, ?, tk) as the copy mode, the Generation mode is
responsible for selecting the object entity from the whole entity vocabulary E to
predict facts. The reasoning of Generation mode is that regards the predicted
fact as a completely new fact without reference to the facts that have happened
in history. The Generation mode also generates a query vector gq and is further
normalized using the softmax function for prediction:

gq = Wg[s, sp, r, tk] + bg (6)

p(g) = softmax(gq) (7)

where Wg ∈ R
4d×N and bg ∈ R

N are trainable parameters. Similar to p(c) in
the Copy mode, p(g) represents the predicted probability on the entire entity
vocabulary. The maximum value in pg denotes the object entity predicted by
Generation mode throughout the entity vocabulary. The Generation mode is
complementary to the Copy mode, with the ability to predict entirely new facts.

3.3 Parameter Learning and Inference

Given a query (s, r, ?, t) to predict the object entity can be viewed as a multi-
class classification task, where each class corresponds to each object entity. The
learning objective is to minimize the following cross-entropy loss L:

L = −
∑

t∈T

∑

i∈E

K∑

k=1

oitlnp(yik|s, r, t) (8)

where oit is the i-th ground truth object entity in the snapshot Gt, p(yik|s, r, t)
is the combined probability value of the k-th object entity in the snapshot Gt

when the i-th ground truth object entity is oi.
In order to ensure that the sum of the probability equals 1 for all entities in

E , we set a hyperparameter α to adjust the weight between the Copy mode and
the Generation mode, which is defined as follows:

p(o|s, r, t) = α ∗ p(c) + (1 − α) ∗ p(g) (9)
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ot = argmaxo∈Ep(o|s, r, t) (10)

where α ∈ [0, 1], p(o|s, r, t) is the final predicted probability vector, which con-
tains the probabilities of all entities under the current query.

4 Experiments

In this section, we evaluate our proposed method on the link prediction task on
three public TKG datasets. We first introduce experimental settings in detail,
including details of datasets and baselines. After that, we compare and analyze
the experimental results and conduct an ablation study to evaluate the impor-
tance of spatial information.

4.1 Experimental Setup

Table 1. Statistics of the datasets.

Data Entities Relation Training Validation Test Granularity Time granules

ICEWS18 23,033 256 373,018 45,995 49,545 24 h 304
ICEWS14 7,128 230 74,845 8514 7371 24 h 365
ICEWS05-15 10,488 251 368,868 46,302 46,159 24 h 4,017

Datasets and Evaluation Metrics. We evaluate ST-Net on three benchmark
datasets for link prediction: ICEWS18 [20], ICEWS14 [21] and ICEWS05-15 [21].
Table 1 provides a summary of these datasets statistics. We divide each dataset
into training set, validation set and testing set into 80%/10%/10% splits in the
chronological order, and adopt a filited version of Mean Reciprocal Ranks(MRR)
and Hits@1/3/10 to measure the performance of ST-Net.

Baselines. We compare ST-Net with multiple static knowledge graph embed-
ding(SKGE) and temporal knowledge graph embedding(TKGE) models. The
former includes TransE [11], DistMult [15], ComplEx [14], RotatE [22], and
SimplE [23], while the latter includes TTransE [1], HyTE [2], TA-DistMult [21],
DE-DistMult [4], DE-SimplE [4], RE-Net [5], CyGNet [6], and ATiSE [24].

Parameter Settings. The value of the hyperparameter α used to tune the
weight of Copy mode and Generation mode is determined based on the MRR
performance on the validation set of the current dataset. After extensive experi-
ments, we found that the model works best when α is set to 0.8 on ICEWS14 and
ICEWS18 and 0.9 on ICEWS05-15. The parameters of the model are initialized
with Xavier initialization (Glorot and Bengio 2010) [25], and then optimized
using an AMSGrad optimizer with a learning rate of 0.001. The batch size is
set to 1024. The hidden layer embedding dimension is set to 200. The training
epoch is limited to 30, which is enough for the model to converge in most cases.
The baseline results are adopted from CyGNet [6] and ATiSE [24].
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4.2 Results

Table 2. Results on ICEWS18, ICEWS14 and ICEWS05-15. The best results are in
bold, and the second best ones are underlined.

Method ICEWS18 ICEWS14 ICEWS05-15
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 17.56 2.48 26.95 43.87 28.00 9.40 – 63.70 29.40 9.00 – 66.30
DistMult 22.16 12.13 26.00 42.18 43.90 32.30 – 67.20 45.60 33.70 – 69.10
ComplEx 30.09 21.88 34.15 45.96 46.70 34.70 52.70 71.60 48.10 36.20 53.50 72.90
RotatE 23.10 14.33 27.61 38.72 41.80 29.10 47.80 69.00 30.40 16.40 35.50 59.50
SimplE – – – – 45.80 34.10 51.60 68.70 47.80 35.90 53.90 70.80
TTransE 8.36 1.94 8.71 21.93 25.50 7.40 – 60.10 27.10 8.40 – 61.60
HyTE 7.31 3.10 7.50 14.95 29.70 10.80 41.60 65.50 31.60 11.60 44.50 68.10
TA-DistMult 28.53 20.30 31.57 44.96 47.70 36.30 – 68.60 47.40 34.60 – 72.80
DE-DistMult – – – – 50.10 39.20 56.90 70.80 48.40 36.60 54.60 71.80
DE-SimplE – – – – 52.60 41.80 59.20 72.50 51.30 39.20 57.80 74.80

RE-NET 42.93 36.19 45.47 55.80 45.71 38.42 49.06 59.12 – – – –
CyGNet 46.69 40.58 49.82 57.14 49.99 43.51 53.55 61.42 57.22 50.25 61.77 68.58
ATiSE – – – – 55.00 43.60 62.90 75.00 51.90 37.80 60.60 79.40
ST-Net 47.47 41.07 50.62 58.52 51.84 44.74 55.59 64.57 58.34 51.26 62.85 70.22

Table 2 report the link predition results of ST-Net and baseline methods on
three TKG datasets. We observe that all SKGE methods perfrom worse than
most TKGE methods, because they cannot capture temporal information in facts
and cannot model dynamic interactions of entities and relations. However, their
preformance generally outperform TTransE and HyTE. The reason we believe
is that TTransE and HyTE only learn the representation at this timestamp
for each snapshot separately, without linking entity representations at different
timestamp, so it lacks the ability to capture time sequence information.

Table 2 also show that significantly outperforms other baselines on ICEWS18
and ICEWS05-15. For further analysis, we calculated the probability of repeated
events in ICEWS18 to be 49.24%, which will improve the prediction effect of the
Copy mode to a certain extent. And in ICEWS18, as many as 41.3% of the
groups where the subject entity and the object entity are in the same space,
which also explains that the reasonable use of spatial information can improve
the prediction result. We argue that spatial message between entities in a fact
can also help the model learn the semantic information implied by the relation,
that is, the relation often occur between those spatial locations.

The experimental results indicate that ST-Net use the spatial information
attached to the entity to implement fine-grained modeling of entity representa-
tion, which can effectively enrich entity information and improve the effect for
link prediction.
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4.3 Ablation Study

Table 3. Results (in percentage) of ablation study on the ICEWS18.

Method ICEWS18
MRR Hits@1 Hits@3 Hits@10

ST-Net-No-Spatial-Information 46.68 40.72 49.67 56.82
ST-Net-Prompt(bert-base-cased) 47.03 40.86 50.12 57.60
ST-Net 47.47 41.07 50.62 58.52

In order to explore the impact of different acquisition of spatial information
on the model, we conducted an ablation study. To do this, we create variants
of ST-Net by adjusting how spatial information is obtained in the model, and
compare their performance gaps with ST-Net on the ICEWS18 dataset. From
the results in Table 3, we can observe the importance of spatial information.
After removing the spatial information, all metrics of the model have decreased,
which demonstrates that the spatial information contained in entity play a vital
part for predicting future facts. In addition, ST-Net-Prompt(bert-base-cased)
complete the missing spatial information of entity through the Fill-Mask task
in the pre-trained language model (bert-base-cased), where the template of the
Fill-Mask task is set to : [Entity text]’s country is [MASK]. Its performance
ranks between ST-Net and ST-Net-No-Spatial-Information, which further illus-
trates the importance of spatial information and reflects the shortcomings of the
method we designed to complete the spatial information through the pre-trained
model.

5 Conclusion

In this paper, we explore the spatial information attached to the entity and pre-
dict the future facts by combining the copy and generation reasoning mode. The
experimental results show that ST-Net has promising performance in predicting
the future facts in the temporal knowledge graph. In the future work, we plan to
mine more accurate and effective information in entity through prompt learning,
and combine them to help the model perform better. Meanwhile, further study
on the utilization of spatial information is also significant.
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