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Abstract. Estimating the average treatment effect (ATE) from obser-
vational data is challenging due to selection bias. Existing works mainly
tackle this challenge in two ways. Some researchers propose construct-
ing a score function that satisfies the orthogonal condition, which guar-
antees that the established ATE estimator is “orthogonal” to be more
robust. The others explore representation learning models to achieve a
balanced representation between the treated and the controlled groups.
However, existing studies fail to 1) discriminate treated units from con-
trolled ones in the representation space to avoid the over-balanced issue;
2) fully utilize the “orthogonality information”. In this paper, we pro-
pose a moderately-balanced representation learning (MBRL) framework
based on recent covariates balanced representation learning methods and
orthogonal machine learning theory. This framework protects the repre-
sentation from being over-balanced via multi-task learning. Simultane-
ously, MBRL incorporates the noise orthogonality information in the
training and validation stages to achieve a better ATE estimation. The
comprehensive experiments on benchmark and simulated datasets show
the superiority and robustness of our method on treatment effect esti-
mations compared with existing state-of-the-art methods.

Keywords: Treatment effects · Causal inference · Representation
learning

1 Introduction

Causal inference has drawn a lot of attention across various research areas includ-
ing statistics [2,25], economics and finance [3,7,15] commercial social network
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applications [5,10] and health care [8,12]. One of the main tasks of causal infer-
ence is to estimate the average treatment effect (ATE). For example, a biotech
company must know to what extent a newly developed vaccine can reduce the
probability of infection for the whole population. The classical method to acquire
the ATE is to conduct randomized controlled trials (RCTs), where the treatment
is randomly assigned to the population but not selectively. Then the effect of
the vaccine (treatment) on the infection (outcome) is measured by the differ-
ence between the average infection rate of the vaccinated group (treated group)
and that of the unvaccinated group (controlled group). RCTs are regarded as
the golden standard for treatment effect estimation, but conducting RCTs is
costly and time-consuming [9,21]. Thus, estimating the treatment effects in the
observational study instead of RCTs becomes more and more tempting.

When it comes to estimating the ATE from the observational data, we need to
handle the selection bias. The selection bias exists due to the non-random treat-
ment assignment. The treatment assignment may be further influenced by the
covariates that also directly affect the outcome. In the vaccine example, limited
vaccines tend to be distributed to vulnerable individuals who are susceptible to
infection. Such a non-random treatment assignment mechanism naturally results
in a covariate shift phenomenon. That is, the covariates of the treated population
can substantially differ from that of the controlled population.

Two classical methods are developed for adjusting the shifted covariates:
inverse propensity weighting (IPW) and regression adjustment (see more details
in [26]). IPW weights the instances based on the propensity scores to mimic the
principle of RCTs to estimate ATE. Nevertheless, the IPW estimators are sensi-
tive to the misspecification of the propensity score. Regression adjustment meth-
ods directly estimate the outcome model instead of propensity scores, whereas
they would inevitably lead to biased ATE estimations due to overfitting and reg-
ularization bias [3]. Researchers improve classical methods from the perspectives
of statistics and methodology.

The orthogonal score function proposed in [3] is a statistical correction by
incorporating both the outcome model and the propensity score estimations.
Since such a score function satisfies the orthogonal condition, the ATE estimator
derived from the score function is consistent as long as one of the two underlying
relations is correctly specified. This is also known as the doubly robust property.
Recently, balanced representation learning techniques have attracted researchers’
attention. The intuitive idea is to construct a pair of “twins” in the representation
space by minimizing the imbalance between the distributions of the treated
and controlled groups [23]. However, such methods mainly focus on the balance
but overlook the discrimination between treated and controlled units. If the
distributions of the treated and controlled groups in the representation space are
too similar to be distinguished, it would be difficult to infer the ATE accurately.
Such a trade-off plays a crucial role in identifying the treatment effects [23]. The
importance of the undiscriminating problem is also emphasized by [10].

In this paper, with the tool of orthogonal machine learning, we propose a
moderately-balanced representation learning (MBRL) framework to estimate
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the treatment effects. MBRL trains in a multi-task framework and stops on
a perturbation error metric to obtain a moderately-balanced representation.
The merits of MBRL include i) preserving predictive information for inferring
individual outcomes; ii) designing a multi-task learning framework to achieve a
moderately-balanced rather than over-balanced representation; iii) fully utiliz-
ing the orthogonality information during the training and validation stages to
achieve superior treatment effect estimations.

2 Preliminaries

Potential Outcome Framework. Let Z be s-dimensional covariates such that
Z ∈ Z ⊂ R

s, where Z is the sample space of covariates. D ∈ {0, 1} denotes the
treatment variable. Y (0), Y (1) represent the potential outcomes for the treat-
ment D = 0 and D = 1 respectively such that Y (0), Y (1) ∈ Y ⊂ R with Y
being the sample space of outcome. We denote w = (z, d, y) as the realizations
of the random variables W = (Z,D, Y ). If the observed treatment is d, then the
factual outcome Y F equals Y (d). We suppose the observational dataset contains
N individuals and the mth individual is observed as (zm, dm, ym). The target
quantity ATE τ is defined as τ := E [Y (1) − Y (0)].

Identifying the treatment effects under the potential outcome framework [22]
requires some fundamental assumptions: Strong Ignorability, Overlap, Consis-
tency and Stable Unit Treatment Value Assumption (SUTVA). These assump-
tions guarantee that treatment effects can be inferred if we specify the relation
E [Y | D,Z], which is equivalent to estimating g0(D,Z) in the following interac-
tive model when the treatment variable takes a binary value [3]:

Y = g0(D,Z) + ξ, E [ξ | D,Z] = 0,
D = m0(Z) + ν, E [ν | Z] = 0.

(1)

Here, g0 and m0 are the true nuisance functions. ξ and ν are the noise terms.
m0(Z) = E [D | Z] is the propensity score. Let i be an element of {0, 1}. The true
causal parameter θi

0 is defined as θi
0 := E [Y (i)] = E [g0(i,Z)] for i ∈ {0, 1}, and

the true ATE τ is computed by τ = θ1
0 −θ0

0. We denote the estimated (θi
0, g0,m0)

as (θ̂i, ĝ, m̂), and then the estimated ATE is computed by τ̂ = θ̂1 − θ̂0.

Orthogonal Estimators. We aim to estimate the true causal parameters θ1
0 and

θ0
0 given N i.i.d. samples {Wm = (Zm,Dm, Ym)}N

m=1. The standard procedure
to acquire the estimated causal parameters θ̂1 and θ̂0 is: 1) getting the esti-
mated nuisance functions ρ̂, e.g., ρ̂ = (ĝ, m̂); 2) constructing a score function
ψ(W, θi, ρ) such that we can derive the estimated causal parameter θ̂i by solving
E

[
ψ(W, θi, ρ̂)

]
= 0, where θi is a causal parameter that lies in the causal param-

eter space. According to [3], the estimator θ̂i solved from E
[
ψ(W, θi, ρ̂)

]
= 0 is

robust to the estimated nuisance functions ρ̂ if the corresponding score function
ψ(W, θi, ρ) satisfies the orthogonal condition that is stated in Definition 1.
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Definition 1 (Orthogonal Condition). Let W = (Z,D, Y ), ρ0 =
(h0,1, . . . , h0,γ) be the true nuisance functions and θ0 be the true causal param-
eter with θ being a causal parameter that lies in the causal parameter space. A
score function ψ(W, θ, ρ) is said to satisfy the orthogonal condition with respect
to ρ = (h1, ..., hγ) if

E [∂hi
ψ(W, θ, ρ) |ρ=ρ0,θ=θ0 | Z] = 0 ∀1 ≤ i ≤ γ.

Under the interactive model setup (1), the nuisance functions are (g,m),
and the true ones are (g0,m0). In this case, the orthogonal condition guarantees
that the estimator is consistent if either one of the two nuisance functions, but
unnecessarily both, is accurately estimated. This is well known as the doubly
robust property. In this paper, we introduce two orthogonal estimators θ̂1 [3]
and θ̂2 [14] in Proposition 1, and we can estimate ATE by plugging the learned
nuisance functions into the orthogonal estimators.

Proposition 1 (Orthogonal Estimators). Let the nuisance functions be
ρ = (g,m) and the causal parameter be θi for i ∈ {0, 1}, the score functions
ψ1(W, θi, ρ) and ψ2(W, θi, ρ) that satisfy the orthogonal condition (Definition 1)
are:

ψ1(W, θi, ρ) = θi − g(i,Z) − (Y − g(i,Z))
iD + (1 − i)(1 − D)

im(Z) + (1 − i)(1 − m(Z))
; (2)

ψ2(W, θi, ρ) = θi − g(i,Z) − (Y (i) − g(i,Z))
((D − m(Z)) − E [ν | Z])2

E [ν2 | Z]
. (3)

The corresponding orthogonal estimators are:

θ̂i
1 solves

1
N

N∑

m=1

ψ1(Wm, θi, ρ̂) = 0; θ̂i
2 solves

1
N

N∑

m=1

ψ2(Wm, θi, ρ̂) = 0.

3 Method

In this section, we first introduce the orthogonality information in Sect. 3.1.
Then we present the network structure, objective function and model selection
criterion of the proposed MBRL method based on the orthogonality information
in Sect. 3.2.

3.1 Orthogonality Information

Recall that the ATE estimators θ̂i
1 and θ̂i

2 are doubly robust since they are
orthogonal estimators. Still, they could be non-orthogonal once the model setup
(1) relaxes the restrictions on the noise terms ξ and ν since the score func-
tions ψ1 and ψ2 might violate the orthogonal condition. Hence, we propose the
Noise Conditions, which would enforce the learned nuisance functions adapted
to orthogonal estimators.
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Proposition 2 (Noise Conditions). Under the interactive model setup (1),
the conditions on the noise terms ξ and ν, i.e., E [ξ | D,Z] = 0 and E [ν | Z] = 0,
are sufficient conditions for ψ1 and ψ2 being orthogonal score functions (θ̂i

1 and
θ̂i
2 being orthogonal estimators).

Given the noise conditions, we can exploit an essential property, the noise orthog-
onality property.

Property 1 (Noise Orthogonality). Under the interactive model setup (1) and
the noise conditions, we have E[(Y − g0(D,Z))(D − m0(Z))] = 0.

The noise conditions are sufficient conditions for the estimators θ̂i
1 and θ̂i

2 being
orthogonal, so noise conditions play an important role when we approximate the
true nuisance functions (g0,m0) with estimated ones (ĝ, m̂). Besides, under the
noise conditions, the noise orthogonality can be utilized for our model selection.
The decompositions similar to Noise Orthogonality also appeared in [3,11].

3.2 The Proposed Framework

We propose a moderately-balanced representation learning (MBRL) framework
to obtain (ĝ, m̂) to estimate ATE, and the MBRL architecture is illustrated
in Fig. 1. The MBRL network maps the original covariates space to the rep-
resentation space (i.e., Φ : Z → R) such that 1) the representation preserves
predictive information for outcomes; 2) the map makes the distributional dis-
crepancy between the treated group and the controlled group small enough; 3)
the domain (treated or controlled) of each individual is well discriminated; 4)
the orthogonality information is involved.

Fig. 1. The MBRL network architecture.

Learning Representation of Covariates. The distributions of the treated group
and the controlled group are inherently disparate due to selection bias. Previ-
ous works handle this problem using a balanced representation learning method



8 Y. Huang et al.

[16,23], which forces the distributions of treatment and control groups to be sim-
ilar enough in the representation space. Specifically, a representation is learned
by minimizing the integral probability metrics (IPM), which measures the imbal-
ance between the distributions of the treated population and the controlled pop-
ulation (see the details in [23]):

Limb = IPMG({Φ(zm)}m:dm=1, {Φ(zm)}m:dm=0). (4)

The Prediction of Outcome and Treatment. MBRL predicts the outcome by the
function f : {0, 1} × R → Y , which is partitioned into two functions f0 and f1:

f(dm,Φ(zm)) = dmf1(Φ(zm)) + (1 − dm)f0(Φ(zm)). (5)

f1 and f0 are the output functions that map the representation to the potential
outcomes for D = 1 and D = 0, respectively. f(dm,Φ(zm)) is the predicted
factual outcome and we aim to minimize the factual outcome loss Lfo such that

Lfo =
1
N

N∑

m=1

[ym − f(dm,Φ(zm))]2 . (6)

Here, ĝ(dm, zm) = f(dm,Φ(zm)) is the estimated factual outcome of the mth

unit. Aside from making a low-error prediction over factual outcomes with a
small divergence between treated and controlled groups, the distinguishability
of the treated units from the controlled ones is also non-negligible. Therefore, we
propose to maximize the distinguishability loss Ldis (measured by log-likelihood)
such that

Ldis =
1
N

N∑

m=1

[
dm log π(Φ(zm)) + (1 − dm) log(1 − π(Φ(zm)))

]
. (7)

Here, m̂(zm) = π(Φ(zm)) is the estimated probability of the mth unit being
assigned the treatment D = 1 (aka the estimated propensity score).

The Noise Regularizations. Recall Proposition 2 that E [ξ | D,Z] = 0 and
E [ν | Z] = 0 are sufficient conditions for score functions ψ1 and ψ2 being orthog-
onal. Empirically, we want to involve the following constraints:

1
N

N∑

m=1

[ym − f(dm,Φ(zm))] = 0,

1
N

N∑

m=1

[dm − π(Φ(zm))] = 0.

(8)

This motivates us to formalize Ωy and Ωd such that

Ωy = εy

∣
∣ 1
N

N∑

m=1

[ym − f(dm,Φ(zm))]
∣
∣,

Ωd = εd

∣
∣ 1
N

N∑

m=1

[dm − π(Φ(zm))]
∣
∣.

(9)
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The partial derivative of Ωy w.r.t. εy (or Ωd w.r.t. εd) equaling 0 forces the learned
nuisance functions to satisfy Eqn. (8). Therefore, minimizing the noise regular-
izations Ωy and Ωd adapts the entire learning process to satisfy the orthogonal
score function. This idea corresponds to the targeted regularizations (see more
discussions in [11,24]).

Multi-task Learning and Perturbation Error. MBRL learns the nuisance func-
tions through multi-task learning with following three tasks in each iteration:

Task 1: max
π,εd

Ldis − λ1Ωd

Task 2: min
Φ

Limb

Task 3: min
Φ,f,εy

Lfo + λ2Ωy

(10)

Instead of putting Limb into Task 3 as a regularization, we let Limb be one of the
multiple tasks. To be specific, Task 1 updates π to produce the propensity scores,
and Task 2 achieves a balance between {Φ(zm)}m:dm=1 and {Φ(zm)}m:dm=0.
Additionally, MBRL incorporates a novel model selection criterion, the Pertur-
bation Error, according to the noise orthogonality property. It takes advantage of
the noise orthogonality information by perturbating the main evaluation metric.
For example, if the final model is selected by the metric root-mean-square error

(RMSE =
√

1
N

∑N
m=1(ym − ŷm)2), then the perturbation error εp is defined as

εp = RMSE + β| 1
N

N∑

m=1

(ym − ŷm)(dm − d̂m)|.

Here, β is the perturbation coefficient which is a constant; ŷm and d̂m are the
predicted values of f(dm,Φ(zm)) and π(Φ(zm)), respectively. The final model
is selected on the validation set based on the minimum εp. If either outcome or
propensity score is well specified (i.e., representations are moderately-balanced
instead of over-balanced), the second term in εp would be small.

4 Experiments

In this section, we conduct comprehensive experiments on benchmark datasets to
evaluate the performance produced by MBRL and other prevalent causal infer-
ence methods. We further test the effectiveness of MBRL on simulated datasets
with different levels of selection bias. All the experiments are run on Dell 7920
with 1× 16-core Intel Xeon Gold 6250 3.90 GHz CPU and 3x NVIDIA Quadro
RTX 6000 GPU.

4.1 Dataset Description

Since the ground truth of treatment effects are inaccessible for real-world data,
it is difficult to evaluate the performance of causal inference methods for ATE
estimation. Previous causal inference literatures assess their methods on two
prevalent semi-synthetic datasets: IHDP and Twins.
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IHDP. The IHDP dataset is a well-known benchmark dataset for causal infer-
ence introduced by [13]. It includes 747 samples with 25-dimensional covariates
associated with the information of infants and their mothers, such as birth weight
and mother’s age. These covariates are collected from a real-world randomized
experiment. Our aim is to study the treatment effect of the specialist visits
(binary treatment) on the cognitive scores (continuous-valued outcome). The
outcome is generated using the NPCI package [6], and the selection bias is cre-
ated by removing a subset of the treated population. We use the same 1000
IHDP datasets as the ones used in [23], where each dataset is split by the ratio
of 63%/27%/10% as training/validation/test sets.

Twins. The Twins dataset [19] collects twin births in the USA between 1989
and 1991 [1]. After the data processing, each unit has 30 covariates relevant to
parents, pregnancy and birth [28]. The treatment D = 1 indicates the heavier
twin while D = 0 indicates the lighter twin, and the outcome Y is a binary
variable defined as the 1-year mortality. Similar to [28], we only select twins who
have the same gender and both weigh less than 2 kg, which finally gives 11440
pairs of twins whose mortality rate is 17.7% for the lighter twin, and 16.1% for
the heavier twin. To create the selection bias, we selectively choose one of the
two twins as the factual observation based on the covariates of mth individual:
Dm|Zm ∼ Bernoulli(Sigmoid(wTZm +n)), where w ∼ U((−0.01, 0.01)30×1) and
n ∼ N (0, 0.01). We repeat the data generating process for 100 times, and the
generated 100 Twins datasets are all split by the ratio of 56%/24%/20% as
training/validation/test sets.

4.2 Performance Measurement and Experimental Settings

Performance Measurement. Generally, the comparisons are based on the abso-
lute error in ATE: εATE = |τ − τ̂ |. Additionally, we also test the performance
of MBRL on individual treatment effect (ITE) estimations. For IHDP datasets,
we adopt Precision in Estimation of Heterogeneous Effect (PEHE):

εPEHE =
1
N

N∑

m=1

([ym(1) − ym(0)] − [ŷm(1) − ŷm(0)])2 .

For Twins datasets, we follow [19] to adopt Area Under ROC Curve (AUC).

Baseline Models. We compare our MBRL method with the following basline
models: linear regression with the treatment as feature (OLS/LR1), sepa-
rate linear regression for each treatment group (OLS/LR2), k-nearest neigh-
bor (k-NN), bayesian additive regression trees (BART) [4], causal forest (CF)
[25], balancing linear regression (BLR) [16], balancing neural network (BNN)
[16], treatment-agnostic representation network (TARNet) [23], counterfactual
regression with Wasserstein distance (CFR-WASS) [23], causal effect varia-
tional autoencoders (CEVAE) [19], local similarity preserved individual treat-
ment effect (SITE) [27], generative adversarial networks for inference of treat-
ment effect (GANITE) [28] and (Dragonnet) [24].
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Experimental Details. In our experiments, IPMG is chosen as the Wasserstein
distance. Let the empirical distribution of representation be P (Φ(Z)) = P (Φ(Z) |
D = 1) for the treated group and Q(Φ(Z)) = Q(Φ(Z) | D = 0) for the controlled
group. Assuming that G is defined as the functional space of a family of 1-
Lipschitz functions, we obtain the 1-Wasserstein distance for IPMG [23]:

Wass(P,Q) = inf
k∈K

∫

h∈{Φ(Zm)}m:Dm=1

‖k(h) − h‖P (h)dh.

Here, K = {k | k : Q(k(Φ(Z))) = P (Φ(Z))} defines the set of push-forward
functions that transform the representation distribution of the treated group
P (Φ(Z)) to that of the controlled group Q(Φ(Z)).

Table 1. Performance comparisons and ablation study with mean ± standard error
on 1000 IHDP datasets. εATE : Lower is better.

√
εPEHE : Lower is better.

Method In-sample Out-of-sample√
εPEHE εATE

√
εPEHE εATE

OLS/LR1 5.8 ± .3 .73 ± .04 5.8 ± .3 .94 ± .06

OLS/LR2 2.4 ± .1 .14 ± .01 2.5 ± .1 .31 ± .02

k-NN 2.1 ± .1 .14 ± .01 4.1 ± .2 .79 ± .05

BART 2.1 ± .1 .23 ± .01 2.3 ± .1 .34 ± .02

CF 3.8 ± .2 .18 ± .01 3.8 ± .2 .40 ± .03

CEVAE 2.7 ± .1 .34 ± .01 2.6 ± .1 .46 ± .02

SITE .69 ± .0 .22 ± .01 .75 ± .0 .24 ± .01

GANITE 1.9 ± .4 .43 ± .05 2.4 ± .4 .49 ± .05

BLR 5.8 ± .3 .72 ± .04 5.8 ± .3 .93 ± .05

BNN 2.2 ± .1 .37 ± .03 2.1 ± .1 .42 ± .03

TARNet .88 ± .0 .26 ± .01 .95 ± .0 .28 ± .01

CFR-WASS .71 ± .0 .25 ± .01 .76 ± .0 .27 ± .01

Dragonnet 1.3 ± .4 .14 ± .01 1.3 ± .5 .20 ± .05

MBRL .52± .0 .12 ± .01 .57± .0 .13± .01

MBRL + θ̂i
1 .52± .0 .10± .00 .57± .0 .17 ± .01

MBRL + θ̂i
2 .52± .0 .11 ± .00 .57± .0 .20 ± .01

In addition, we adopt ELU activation function and set 4 fully connected lay-
ers with 200 units for both the representation encoder network Φ(·) and the
discriminator π(·), and 3 fully connected layers with 100 units for the outcome
prediction networks f0(·) and f1(·). The optimizer is chosen as Adam [17], and
the learning rate for the optimizer is set to be 1e−3. We set (batch size, epoch) to
be (100, 1000)/(1000, 250) for IHDP/Twins experiments, and the hyper parame-
ters (λ1, λ2) to be (0.01, 0.01)/(0.1, 0.1) for IHDP/Twins experiments. The final
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model early stops on the metric εp, and we choose β in εp as 0.1 and 100 for
IHDP experiments and Twins experiments, respectively.

For the baseline models, we follow the same settings of hyperparameters as in
their published paper and code. For our MBRL network, the optimal hyperpa-
rameters are chosen in the same way as [23]. The searching ranges are reported
in Table 4.

4.3 Results Analysis

Table 1 and Table 2 report part of the performances of baseline methods and
MBRL on IHDP and Twins datasets. We present the average values and standard
errors of εATE , εPEHE and AUC (mean ± std). The lower εATE and εPEHE or
the higher AUC, the better. Bold indicates the best method for each dataset.

As stated in Table 1 and Table 2, we have the following observations. 1)
MBRL achieves significant improvements in both ITE and ATE estimations
across all datasets compared to the baseline models. 2) The advanced represen-
tation learning methods that focus on estimating ITE (such as SITE, TARNet
and CFR-WASS) show their inapplicability to ATE estimations. By contrast,
MBRL not only significantly outperforms these representation learning meth-
ods in ITE estimations but also remains among the best ATE results. 3) The
state-of-the-art ATE estimation method, Dragonnet, achieves superior ATE esti-
mations across all the baseline models but yields a substantial error in ITE
estimations. Although Dragonnet shares a similar basic network architecture to
MBRL, MBRL can obtain a substantially lower εATE than Dragonnet owing to

Table 2. Performance comparisons with mean ± standard error on 100 Twins
datasets. εATE : Lower is better. AUC: Higher is better.

Method In-sample Out-of-sample

AUC εATE AUC εATE

OLS/LR1 .660 ± .005 .004 ± .003 .500 ± .028 .007 ± .006

OLS/LR2 .660 ± .004 .004 ± .003 .500 ± .016 .007 ± .006

k-NN .609 ± .010 .003± .002 .492 ± .012 .005± .004

BART .506 ± .014 .121 ± .024 .500 ± .011 .127 ± .024

CEVAE .845 ± .003 .022 ± .002 .841 ± .004 .032 ± .003

SITE .862 ± .002 .016 ± .001 .853 ± .006 .020 ± .002

BLR .611 ± .009 .006 ± .004 .510 ± .018 .033 ± .009

BNN .690 ± .008 .006 ± .003 .676 ± .008 .020 ± .007

TARNet .849 ± .002 .011 ± .002 .840 ± .006 .015 ± .002

CFR-WASS .850 ± .002 .011 ± .002 .842 ± .005 .028 ± .003

MBRL .879± .000 .003± .000 .874± .001 .007 ± .001

MBRL + θ̂i
1 .879± .000 .003± .000 .874± .001 .008 ± .000

MBRL + θ̂i
2 .879± .000 .003± .000 .874± .001 .006 ± .001
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the multi-task learning framework and the utilization for orthogonality informa-
tion. These observations indicate that the proposed MBRL method is extremely
effective for estimating treatment effects.

We further conduct an ablation study on IHDP datasets to test if orthog-
onality information is practical in real applications. The relevant results are
reported in Table 3. We let MBRL* denote MBRL without perturbation error
εp, and MBRL** denote MBRL without any orthogonality information (εp, Ωd

and Ωy). We find that incorporating orthogonality information will enhance the
power of estimating treatment effects, whether with or without orthogonal esti-
mators. This enhancement is pronounced especially when orthogonal estimators
are plugged in for in-sample data.

4.4 Simulation Study

In this part, we mainly investigate two questions. Q1. Does MBRL perform more
stably to the level of selection bias than the state-of-the-art model Dragonnet?
Q2. Can the noise orthogonality information, the perturbation error εp, improve
ATE estimations regardless of different models/estimators/selection bias levels?

We generate 2500 treated samples whose covariates Z1 ∼ N (µ1, 0.5×ΣΣT ),
and 5000 controlled whose covariates Z0 ∼ N (µ0, 0.5 × ΣΣT ), where µ1 and
µ0 are both 10-dimensional vector and Σ ∼ U((−1, 1)10×10). The level of selec-
tion bias, measured by KL divergence of µ1 with respect to µ0, would vary
by fixing µ0 and adjusting µ1. The potential outcomes of mth individual are
generated as Y (1) | Zm ∼ (wT

1 Zm + n1), Y (0) | Zm ∼ (wT
0 Zm + n0), where

w1 ∼ U((−1, 1)10×1), w0 ∼ U((−1, 1)10×1), n1 ∼ N (0, 0.1), n0 ∼ N (0, 0.1). By
adjusting µ1 and fixing µ0, we obtain five datasets with different levels of KL
divergence in {0, 62.85, 141.41, 565.63, 769.89}. We run experiments on each
dataset 100 times and draw box plots with regard to εATE on the test set in
Fig. 2.

In Fig. 2(a), we first find that MBRL shows stronger robustness and achieves
significantly better ATE estimations with regard to different selection bias levels

Table 3. Ablation study on IHDP
datasets.

Method In-sample Out-of-sample
√

εPEHE εATE
√

εPEHE εATE

MBRL** .523 ± .006.129 ± .005.568 ± .009.141 ± .006

MBRL* .522 ± .006.128 ± .005.567 ± .009.139 ± .006

MBRL .522 ± .007.121 ± .005.565 ± .008.133 ± .005

MBRL** + θi
1 .523 ± .006.101 ± .004.568 ± .009.171 ± .007

MBRL* + θi
1 .523 ± .006.102 ± .004.567 ± .009.170 ± .007

MBRL + θi
1 .522 ± .007.102 ± .004.565 ± .008.166 ± .007

MBRL** + θi
2 .523 ± .006.122 ± .005.568 ± .009.210 ± .008

MBRL* + θi
2 .523 ± .006.121 ± .005.567 ± .009.208 ± .008

MBRL + θi
2 .522 ± .007.114 ± .005.565 ± .008.204 ± .008

Table 4. The searching ranges of
hyperparameters.

Hyperparameters IHDP Twins

λ1, λ2 0.01, 0.1, 1 0.01, 0.1, 1

Depth of Φ 2, 3, 4 2, 3, 4

Dim of Φ 100, 200 100, 200

Depth of π 2, 3, 4 2, 3, 4

Dim of π 100, 200 100, 200

Depth of f0, f1 2, 3, 4 2, 3, 4

Dim of f0, f1 100, 200 100, 200

Batch size 100, 300 500, 1000

Epoch 500, 1000 250, 500
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compared with Dragonnet. In addition, it is noticable that choosing the pertur-
bation error εp as the model selection metric would yield smaller εATE for any
model (Dragonnet or MBRL). Particularly, εp corrects more errors for MBRL
than Dragonnet, which indicates that εp works better if a model utilizes the
orthogonality information in the training stage. In Fig. 2(b), we have two main
observations: i) the criterion εp improves ATE estimations for all estimators
across different selection bias levels; ii) the improvement brought by εp becomes
more substantial when selection bias increases.

5 Related Work

Representation Learning. Our work has a strong connection with the balanced
representation learning methods proposed in [16,23], where they mainly focus
on minimizing the imbalance between the different treatment groups in the rep-
resentation space but overlook maximizing the discrimination of each unit’s
treatment domain. IGNITE framework is proposed in [10] to infer individual
treatment effects from networked data, where they achieve a balanced repre-
sentation that captures patterns of hidden confounders predictive of treatment
assignments. This inspires us to study treatment effects by training a moderately-
balanced representation via multi-task learning. Other works relevant to repre-
sentation learning include [18,19,24,27,28] and references therein.

Orthogonal Score Function. [3] develop the theory of double/debiased machine
learning (DML) from [20]. They define the notion of orthogonal condition, which
allows their DML estimator to be doubly robust. Based on the theory of [3],
another orthogonal estimator is proposed by [14], aiming to overcome the high

(a) MBRL vs. Dragonnet (b) MBRL vs. MBRL with θ1 and θ2 plugged
in.

Fig. 2. Comparisons between models with and without εp w.r.t. varying levels of selec-
tion bias.
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variance issue suffered by DML due to the misspecified propensity score. Despite
the success of orthogonal estimators, the establishment of them requires the noise
conditions to guarantee the corresponding score functions satisfying the orthogo-
nal condition. None of the existing literature emphasizes the critical role of noise
conditions or utilizes the orthogonality information for the model selection.

6 Conclusion

This paper proposes an effective representation learning method, MBRL, to
study the treatment effects. Specifically, MBRL avoids the over-balanced issue
by leveraging treatment domains of the representations via multi-task learning.
MBRL further takes advantage of the orthogonality information and involves it
in the training and validation stages. The extensive experiments show that 1)
MBRL has strong predictability for the potential outcomes, distinguishability for
the treatment assignment, applicability to orthogonal estimators, and robustness
to the selection bias; 2) MRBL achieves substantial improvements on treatment
effect estimations compared with existing state-of-the-art methods.
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