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Preface

These three-volume proceedings contain the papers presented at the 19th Pacific Rim
International Conference on Artificial Intelligence (PRICAI 2022), held as a hybrid
conference with both physical and online options during November 10–13, 2022, in
Shanghai, China.

PRICAI, which was inaugurated in Tokyo in 1990, started out as a biennial
international conference concentrating on artificial intelligence (AI) theories, technolo-
gies, and applications in the areas of social and economic importance for Pacific Rim
countries. It provides a common forum for researchers and practitioners in various
branches of AI to exchange new ideas and share experience and expertise. Since then,
the conference has grown, both in participation and scope, to be a premier international
AI event for all major Pacific Rim nations as well as countries from all around the world.
In 2018, the PRICAI Steering Committee decided to hold PRICAI on an annual basis
starting from 2019.

This year, we received an overwhelming number of valid submissions to the main
track (403 submissions), the special track (18 submissions), and the industry track
(11 submissions). This number was impressive considering the continuing COVID-19
pandemic situation around the globe. All submissions were reviewed and evaluated with
the same highest quality standard through a double-blind review process.

Each paper received at least two reviews, with over 90% receiving three or more.
During the review process, discussions among the Program Committee (PC) members
in charge were carried out before recommendations were made, and, when necessary,
additional reviews were sourced. Finally, the conference and program co-chairs read
the reviews and comments and made a final calibration for differences among individ-
ual reviewer scores in light of the overall decisions. The entire Program Committee
(including PC members, external reviewers, and co-chairs) expended tremendous effort
to ensure fairness and consistency in the paper selection process.

Eventually, we accepted 91 regular papers and 39 short papers for oral presentation.
This gives a regular paper acceptance rate of 21% and an overall acceptance rate of 30%.

The technical program consisted of three workshops and the main conference
program. The workshops included the “Principle and practice of data and Knowledge
AcquisitionWorkshop (PKAW2022),” the “DecodingModels ofHumanEmotionUsing
Brain Signals Workshop”, and the “The 1st International Workshop on Democracy and
AI (DemocrAI2022)”. The main program included an industry track and a special track
on “Strong and General AI.”

All regular and short papers were orally presented over four days in parallel and
in topical program sessions. We were honored to have keynote presentations by four
distinguished researchers in the field of AI whose contributions have crossed disci-
pline boundaries: Toby Walsh (University of New South Wales, Australia), Qing Li
(Hong Kong Polytechnic University, China), Jie Lu (University of Technology Sydney,
Australia), and Yu Zheng (JD Technology, China). We were grateful to them for sharing
their insights on their latest research with us.
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The success of PRICAI 2022 would not be possible without the effort and support of
numerous people from all over the world. First, we would like to thank the authors, PC
members, and external reviewers for their time and efforts spent in making PRICAI 2022
a successful and enjoyable conference. We are also thankful to various fellow members
of the conference committee, without whose support and hard work PRICAI 2021 could
not have been successful:

– Advisory Board: Abdul Sattar, Beyong Kang, Takayuki Ito, Zhihua Zhou, Chengqi
Zhang, and Fenrong Liu

– Special Track Chairs: Ji Zhang and Biao Wang
– Industry Chair: Hengshu Zhu
– Workshop Chairs: Ryuta Arisaka and Zehong Cao
– Tutorial Chairs: Weiwei Yuan and Rafik Hadfi
– Finance Chair: Shiyou Qian
– Local/Virtual Organizing Chairs: Shiyou Qian and Nengjun Zhu
– Publicity Chairs: Yi Yang and Mukesh Prasad
– Sponsorship Chairs: Dengji Zhao and Xiangfeng Luo
– Webmaster: Shiqing Wu

We gratefully acknowledge the organizational support of several institutions
including the University of Tasmania (Australia), the University of Technology
Sydney (Australia), Shanghai Jiao Tong University (China), CSIRO (Australia), Griffith
University (Australia), Kyoto University (Japan), ShanghaiTech University (China), the
University of South Australia (Australia), Nanjing University of Aeronautics and Astro-
nautics (China), Shanghai University (China), Hefei University of Technology (China),
the University of Southern Queensland (Australia), and the Shanghai Computer Soci-
ety (China). Finally, we thank the team at Springer for their assistance in publishing the
PRICAI 2022 proceedings as three volumes of its Lecture Notes in Artificial Intelligence
series.

November 2022 Sankalp Khanna
Jian Cao
Quan Bai

Guandong Xu
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Abstract. Estimating the average treatment effect (ATE) from obser-
vational data is challenging due to selection bias. Existing works mainly
tackle this challenge in two ways. Some researchers propose construct-
ing a score function that satisfies the orthogonal condition, which guar-
antees that the established ATE estimator is “orthogonal” to be more
robust. The others explore representation learning models to achieve a
balanced representation between the treated and the controlled groups.
However, existing studies fail to 1) discriminate treated units from con-
trolled ones in the representation space to avoid the over-balanced issue;
2) fully utilize the “orthogonality information”. In this paper, we pro-
pose a moderately-balanced representation learning (MBRL) framework
based on recent covariates balanced representation learning methods and
orthogonal machine learning theory. This framework protects the repre-
sentation from being over-balanced via multi-task learning. Simultane-
ously, MBRL incorporates the noise orthogonality information in the
training and validation stages to achieve a better ATE estimation. The
comprehensive experiments on benchmark and simulated datasets show
the superiority and robustness of our method on treatment effect esti-
mations compared with existing state-of-the-art methods.

Keywords: Treatment effects · Causal inference · Representation
learning

1 Introduction

Causal inference has drawn a lot of attention across various research areas includ-
ing statistics [2,25], economics and finance [3,7,15] commercial social network
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applications [5,10] and health care [8,12]. One of the main tasks of causal infer-
ence is to estimate the average treatment effect (ATE). For example, a biotech
company must know to what extent a newly developed vaccine can reduce the
probability of infection for the whole population. The classical method to acquire
the ATE is to conduct randomized controlled trials (RCTs), where the treatment
is randomly assigned to the population but not selectively. Then the effect of
the vaccine (treatment) on the infection (outcome) is measured by the differ-
ence between the average infection rate of the vaccinated group (treated group)
and that of the unvaccinated group (controlled group). RCTs are regarded as
the golden standard for treatment effect estimation, but conducting RCTs is
costly and time-consuming [9,21]. Thus, estimating the treatment effects in the
observational study instead of RCTs becomes more and more tempting.

When it comes to estimating the ATE from the observational data, we need to
handle the selection bias. The selection bias exists due to the non-random treat-
ment assignment. The treatment assignment may be further influenced by the
covariates that also directly affect the outcome. In the vaccine example, limited
vaccines tend to be distributed to vulnerable individuals who are susceptible to
infection. Such a non-random treatment assignment mechanism naturally results
in a covariate shift phenomenon. That is, the covariates of the treated population
can substantially differ from that of the controlled population.

Two classical methods are developed for adjusting the shifted covariates:
inverse propensity weighting (IPW) and regression adjustment (see more details
in [26]). IPW weights the instances based on the propensity scores to mimic the
principle of RCTs to estimate ATE. Nevertheless, the IPW estimators are sensi-
tive to the misspecification of the propensity score. Regression adjustment meth-
ods directly estimate the outcome model instead of propensity scores, whereas
they would inevitably lead to biased ATE estimations due to overfitting and reg-
ularization bias [3]. Researchers improve classical methods from the perspectives
of statistics and methodology.

The orthogonal score function proposed in [3] is a statistical correction by
incorporating both the outcome model and the propensity score estimations.
Since such a score function satisfies the orthogonal condition, the ATE estimator
derived from the score function is consistent as long as one of the two underlying
relations is correctly specified. This is also known as the doubly robust property.
Recently, balanced representation learning techniques have attracted researchers’
attention. The intuitive idea is to construct a pair of “twins” in the representation
space by minimizing the imbalance between the distributions of the treated
and controlled groups [23]. However, such methods mainly focus on the balance
but overlook the discrimination between treated and controlled units. If the
distributions of the treated and controlled groups in the representation space are
too similar to be distinguished, it would be difficult to infer the ATE accurately.
Such a trade-off plays a crucial role in identifying the treatment effects [23]. The
importance of the undiscriminating problem is also emphasized by [10].

In this paper, with the tool of orthogonal machine learning, we propose a
moderately-balanced representation learning (MBRL) framework to estimate
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the treatment effects. MBRL trains in a multi-task framework and stops on
a perturbation error metric to obtain a moderately-balanced representation.
The merits of MBRL include i) preserving predictive information for inferring
individual outcomes; ii) designing a multi-task learning framework to achieve a
moderately-balanced rather than over-balanced representation; iii) fully utiliz-
ing the orthogonality information during the training and validation stages to
achieve superior treatment effect estimations.

2 Preliminaries

Potential Outcome Framework. Let Z be s-dimensional covariates such that
Z ∈ Z ⊂ R

s, where Z is the sample space of covariates. D ∈ {0, 1} denotes the
treatment variable. Y (0), Y (1) represent the potential outcomes for the treat-
ment D = 0 and D = 1 respectively such that Y (0), Y (1) ∈ Y ⊂ R with Y
being the sample space of outcome. We denote w = (z, d, y) as the realizations
of the random variables W = (Z,D, Y ). If the observed treatment is d, then the
factual outcome Y F equals Y (d). We suppose the observational dataset contains
N individuals and the mth individual is observed as (zm, dm, ym). The target
quantity ATE τ is defined as τ := E [Y (1) − Y (0)].

Identifying the treatment effects under the potential outcome framework [22]
requires some fundamental assumptions: Strong Ignorability, Overlap, Consis-
tency and Stable Unit Treatment Value Assumption (SUTVA). These assump-
tions guarantee that treatment effects can be inferred if we specify the relation
E [Y | D,Z], which is equivalent to estimating g0(D,Z) in the following interac-
tive model when the treatment variable takes a binary value [3]:

Y = g0(D,Z) + ξ, E [ξ | D,Z] = 0,
D = m0(Z) + ν, E [ν | Z] = 0.

(1)

Here, g0 and m0 are the true nuisance functions. ξ and ν are the noise terms.
m0(Z) = E [D | Z] is the propensity score. Let i be an element of {0, 1}. The true
causal parameter θi

0 is defined as θi
0 := E [Y (i)] = E [g0(i,Z)] for i ∈ {0, 1}, and

the true ATE τ is computed by τ = θ1
0 −θ0

0. We denote the estimated (θi
0, g0,m0)

as (θ̂i, ĝ, m̂), and then the estimated ATE is computed by τ̂ = θ̂1 − θ̂0.

Orthogonal Estimators. We aim to estimate the true causal parameters θ1
0 and

θ0
0 given N i.i.d. samples {Wm = (Zm,Dm, Ym)}N

m=1. The standard procedure
to acquire the estimated causal parameters θ̂1 and θ̂0 is: 1) getting the esti-
mated nuisance functions ρ̂, e.g., ρ̂ = (ĝ, m̂); 2) constructing a score function
ψ(W, θi, ρ) such that we can derive the estimated causal parameter θ̂i by solving
E

[
ψ(W, θi, ρ̂)

]
= 0, where θi is a causal parameter that lies in the causal param-

eter space. According to [3], the estimator θ̂i solved from E
[
ψ(W, θi, ρ̂)

]
= 0 is

robust to the estimated nuisance functions ρ̂ if the corresponding score function
ψ(W, θi, ρ) satisfies the orthogonal condition that is stated in Definition 1.
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Definition 1 (Orthogonal Condition). Let W = (Z,D, Y ), ρ0 =
(h0,1, . . . , h0,γ) be the true nuisance functions and θ0 be the true causal param-
eter with θ being a causal parameter that lies in the causal parameter space. A
score function ψ(W, θ, ρ) is said to satisfy the orthogonal condition with respect
to ρ = (h1, ..., hγ) if

E [∂hi
ψ(W, θ, ρ) |ρ=ρ0,θ=θ0 | Z] = 0 ∀1 ≤ i ≤ γ.

Under the interactive model setup (1), the nuisance functions are (g,m),
and the true ones are (g0,m0). In this case, the orthogonal condition guarantees
that the estimator is consistent if either one of the two nuisance functions, but
unnecessarily both, is accurately estimated. This is well known as the doubly
robust property. In this paper, we introduce two orthogonal estimators θ̂1 [3]
and θ̂2 [14] in Proposition 1, and we can estimate ATE by plugging the learned
nuisance functions into the orthogonal estimators.

Proposition 1 (Orthogonal Estimators). Let the nuisance functions be
ρ = (g,m) and the causal parameter be θi for i ∈ {0, 1}, the score functions
ψ1(W, θi, ρ) and ψ2(W, θi, ρ) that satisfy the orthogonal condition (Definition 1)
are:

ψ1(W, θi, ρ) = θi − g(i,Z) − (Y − g(i,Z))
iD + (1 − i)(1 − D)

im(Z) + (1 − i)(1 − m(Z))
; (2)

ψ2(W, θi, ρ) = θi − g(i,Z) − (Y (i) − g(i,Z))
((D − m(Z)) − E [ν | Z])2

E [ν2 | Z]
. (3)

The corresponding orthogonal estimators are:

θ̂i
1 solves

1
N

N∑

m=1

ψ1(Wm, θi, ρ̂) = 0; θ̂i
2 solves

1
N

N∑

m=1

ψ2(Wm, θi, ρ̂) = 0.

3 Method

In this section, we first introduce the orthogonality information in Sect. 3.1.
Then we present the network structure, objective function and model selection
criterion of the proposed MBRL method based on the orthogonality information
in Sect. 3.2.

3.1 Orthogonality Information

Recall that the ATE estimators θ̂i
1 and θ̂i

2 are doubly robust since they are
orthogonal estimators. Still, they could be non-orthogonal once the model setup
(1) relaxes the restrictions on the noise terms ξ and ν since the score func-
tions ψ1 and ψ2 might violate the orthogonal condition. Hence, we propose the
Noise Conditions, which would enforce the learned nuisance functions adapted
to orthogonal estimators.
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Proposition 2 (Noise Conditions). Under the interactive model setup (1),
the conditions on the noise terms ξ and ν, i.e., E [ξ | D,Z] = 0 and E [ν | Z] = 0,
are sufficient conditions for ψ1 and ψ2 being orthogonal score functions (θ̂i

1 and
θ̂i
2 being orthogonal estimators).

Given the noise conditions, we can exploit an essential property, the noise orthog-
onality property.

Property 1 (Noise Orthogonality). Under the interactive model setup (1) and
the noise conditions, we have E[(Y − g0(D,Z))(D − m0(Z))] = 0.

The noise conditions are sufficient conditions for the estimators θ̂i
1 and θ̂i

2 being
orthogonal, so noise conditions play an important role when we approximate the
true nuisance functions (g0,m0) with estimated ones (ĝ, m̂). Besides, under the
noise conditions, the noise orthogonality can be utilized for our model selection.
The decompositions similar to Noise Orthogonality also appeared in [3,11].

3.2 The Proposed Framework

We propose a moderately-balanced representation learning (MBRL) framework
to obtain (ĝ, m̂) to estimate ATE, and the MBRL architecture is illustrated
in Fig. 1. The MBRL network maps the original covariates space to the rep-
resentation space (i.e., Φ : Z → R) such that 1) the representation preserves
predictive information for outcomes; 2) the map makes the distributional dis-
crepancy between the treated group and the controlled group small enough; 3)
the domain (treated or controlled) of each individual is well discriminated; 4)
the orthogonality information is involved.

Fig. 1. The MBRL network architecture.

Learning Representation of Covariates. The distributions of the treated group
and the controlled group are inherently disparate due to selection bias. Previ-
ous works handle this problem using a balanced representation learning method
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[16,23], which forces the distributions of treatment and control groups to be sim-
ilar enough in the representation space. Specifically, a representation is learned
by minimizing the integral probability metrics (IPM), which measures the imbal-
ance between the distributions of the treated population and the controlled pop-
ulation (see the details in [23]):

Limb = IPMG({Φ(zm)}m:dm=1, {Φ(zm)}m:dm=0). (4)

The Prediction of Outcome and Treatment. MBRL predicts the outcome by the
function f : {0, 1} × R → Y , which is partitioned into two functions f0 and f1:

f(dm,Φ(zm)) = dmf1(Φ(zm)) + (1 − dm)f0(Φ(zm)). (5)

f1 and f0 are the output functions that map the representation to the potential
outcomes for D = 1 and D = 0, respectively. f(dm,Φ(zm)) is the predicted
factual outcome and we aim to minimize the factual outcome loss Lfo such that

Lfo =
1
N

N∑

m=1

[ym − f(dm,Φ(zm))]2 . (6)

Here, ĝ(dm, zm) = f(dm,Φ(zm)) is the estimated factual outcome of the mth

unit. Aside from making a low-error prediction over factual outcomes with a
small divergence between treated and controlled groups, the distinguishability
of the treated units from the controlled ones is also non-negligible. Therefore, we
propose to maximize the distinguishability loss Ldis (measured by log-likelihood)
such that

Ldis =
1
N

N∑

m=1

[
dm log π(Φ(zm)) + (1 − dm) log(1 − π(Φ(zm)))

]
. (7)

Here, m̂(zm) = π(Φ(zm)) is the estimated probability of the mth unit being
assigned the treatment D = 1 (aka the estimated propensity score).

The Noise Regularizations. Recall Proposition 2 that E [ξ | D,Z] = 0 and
E [ν | Z] = 0 are sufficient conditions for score functions ψ1 and ψ2 being orthog-
onal. Empirically, we want to involve the following constraints:

1
N

N∑

m=1

[ym − f(dm,Φ(zm))] = 0,

1
N

N∑

m=1

[dm − π(Φ(zm))] = 0.

(8)

This motivates us to formalize Ωy and Ωd such that

Ωy = εy

∣
∣ 1
N

N∑

m=1

[ym − f(dm,Φ(zm))]
∣
∣,

Ωd = εd

∣
∣ 1
N

N∑

m=1

[dm − π(Φ(zm))]
∣
∣.

(9)
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The partial derivative of Ωy w.r.t. εy (or Ωd w.r.t. εd) equaling 0 forces the learned
nuisance functions to satisfy Eqn. (8). Therefore, minimizing the noise regular-
izations Ωy and Ωd adapts the entire learning process to satisfy the orthogonal
score function. This idea corresponds to the targeted regularizations (see more
discussions in [11,24]).

Multi-task Learning and Perturbation Error. MBRL learns the nuisance func-
tions through multi-task learning with following three tasks in each iteration:

Task 1: max
π,εd

Ldis − λ1Ωd

Task 2: min
Φ

Limb

Task 3: min
Φ,f,εy

Lfo + λ2Ωy

(10)

Instead of putting Limb into Task 3 as a regularization, we let Limb be one of the
multiple tasks. To be specific, Task 1 updates π to produce the propensity scores,
and Task 2 achieves a balance between {Φ(zm)}m:dm=1 and {Φ(zm)}m:dm=0.
Additionally, MBRL incorporates a novel model selection criterion, the Pertur-
bation Error, according to the noise orthogonality property. It takes advantage of
the noise orthogonality information by perturbating the main evaluation metric.
For example, if the final model is selected by the metric root-mean-square error

(RMSE =
√

1
N

∑N
m=1(ym − ŷm)2), then the perturbation error εp is defined as

εp = RMSE + β| 1
N

N∑

m=1

(ym − ŷm)(dm − d̂m)|.

Here, β is the perturbation coefficient which is a constant; ŷm and d̂m are the
predicted values of f(dm,Φ(zm)) and π(Φ(zm)), respectively. The final model
is selected on the validation set based on the minimum εp. If either outcome or
propensity score is well specified (i.e., representations are moderately-balanced
instead of over-balanced), the second term in εp would be small.

4 Experiments

In this section, we conduct comprehensive experiments on benchmark datasets to
evaluate the performance produced by MBRL and other prevalent causal infer-
ence methods. We further test the effectiveness of MBRL on simulated datasets
with different levels of selection bias. All the experiments are run on Dell 7920
with 1× 16-core Intel Xeon Gold 6250 3.90 GHz CPU and 3x NVIDIA Quadro
RTX 6000 GPU.

4.1 Dataset Description

Since the ground truth of treatment effects are inaccessible for real-world data,
it is difficult to evaluate the performance of causal inference methods for ATE
estimation. Previous causal inference literatures assess their methods on two
prevalent semi-synthetic datasets: IHDP and Twins.
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IHDP. The IHDP dataset is a well-known benchmark dataset for causal infer-
ence introduced by [13]. It includes 747 samples with 25-dimensional covariates
associated with the information of infants and their mothers, such as birth weight
and mother’s age. These covariates are collected from a real-world randomized
experiment. Our aim is to study the treatment effect of the specialist visits
(binary treatment) on the cognitive scores (continuous-valued outcome). The
outcome is generated using the NPCI package [6], and the selection bias is cre-
ated by removing a subset of the treated population. We use the same 1000
IHDP datasets as the ones used in [23], where each dataset is split by the ratio
of 63%/27%/10% as training/validation/test sets.

Twins. The Twins dataset [19] collects twin births in the USA between 1989
and 1991 [1]. After the data processing, each unit has 30 covariates relevant to
parents, pregnancy and birth [28]. The treatment D = 1 indicates the heavier
twin while D = 0 indicates the lighter twin, and the outcome Y is a binary
variable defined as the 1-year mortality. Similar to [28], we only select twins who
have the same gender and both weigh less than 2 kg, which finally gives 11440
pairs of twins whose mortality rate is 17.7% for the lighter twin, and 16.1% for
the heavier twin. To create the selection bias, we selectively choose one of the
two twins as the factual observation based on the covariates of mth individual:
Dm|Zm ∼ Bernoulli(Sigmoid(wTZm +n)), where w ∼ U((−0.01, 0.01)30×1) and
n ∼ N (0, 0.01). We repeat the data generating process for 100 times, and the
generated 100 Twins datasets are all split by the ratio of 56%/24%/20% as
training/validation/test sets.

4.2 Performance Measurement and Experimental Settings

Performance Measurement. Generally, the comparisons are based on the abso-
lute error in ATE: εATE = |τ − τ̂ |. Additionally, we also test the performance
of MBRL on individual treatment effect (ITE) estimations. For IHDP datasets,
we adopt Precision in Estimation of Heterogeneous Effect (PEHE):

εPEHE =
1
N

N∑

m=1

([ym(1) − ym(0)] − [ŷm(1) − ŷm(0)])2 .

For Twins datasets, we follow [19] to adopt Area Under ROC Curve (AUC).

Baseline Models. We compare our MBRL method with the following basline
models: linear regression with the treatment as feature (OLS/LR1), sepa-
rate linear regression for each treatment group (OLS/LR2), k-nearest neigh-
bor (k-NN), bayesian additive regression trees (BART) [4], causal forest (CF)
[25], balancing linear regression (BLR) [16], balancing neural network (BNN)
[16], treatment-agnostic representation network (TARNet) [23], counterfactual
regression with Wasserstein distance (CFR-WASS) [23], causal effect varia-
tional autoencoders (CEVAE) [19], local similarity preserved individual treat-
ment effect (SITE) [27], generative adversarial networks for inference of treat-
ment effect (GANITE) [28] and (Dragonnet) [24].
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Experimental Details. In our experiments, IPMG is chosen as the Wasserstein
distance. Let the empirical distribution of representation be P (Φ(Z)) = P (Φ(Z) |
D = 1) for the treated group and Q(Φ(Z)) = Q(Φ(Z) | D = 0) for the controlled
group. Assuming that G is defined as the functional space of a family of 1-
Lipschitz functions, we obtain the 1-Wasserstein distance for IPMG [23]:

Wass(P,Q) = inf
k∈K

∫

h∈{Φ(Zm)}m:Dm=1

‖k(h) − h‖P (h)dh.

Here, K = {k | k : Q(k(Φ(Z))) = P (Φ(Z))} defines the set of push-forward
functions that transform the representation distribution of the treated group
P (Φ(Z)) to that of the controlled group Q(Φ(Z)).

Table 1. Performance comparisons and ablation study with mean ± standard error
on 1000 IHDP datasets. εATE : Lower is better.

√
εPEHE : Lower is better.

Method In-sample Out-of-sample√
εPEHE εATE

√
εPEHE εATE

OLS/LR1 5.8 ± .3 .73 ± .04 5.8 ± .3 .94 ± .06

OLS/LR2 2.4 ± .1 .14 ± .01 2.5 ± .1 .31 ± .02

k-NN 2.1 ± .1 .14 ± .01 4.1 ± .2 .79 ± .05

BART 2.1 ± .1 .23 ± .01 2.3 ± .1 .34 ± .02

CF 3.8 ± .2 .18 ± .01 3.8 ± .2 .40 ± .03

CEVAE 2.7 ± .1 .34 ± .01 2.6 ± .1 .46 ± .02

SITE .69 ± .0 .22 ± .01 .75 ± .0 .24 ± .01

GANITE 1.9 ± .4 .43 ± .05 2.4 ± .4 .49 ± .05

BLR 5.8 ± .3 .72 ± .04 5.8 ± .3 .93 ± .05

BNN 2.2 ± .1 .37 ± .03 2.1 ± .1 .42 ± .03

TARNet .88 ± .0 .26 ± .01 .95 ± .0 .28 ± .01

CFR-WASS .71 ± .0 .25 ± .01 .76 ± .0 .27 ± .01

Dragonnet 1.3 ± .4 .14 ± .01 1.3 ± .5 .20 ± .05

MBRL .52± .0 .12 ± .01 .57± .0 .13± .01

MBRL + θ̂i
1 .52± .0 .10± .00 .57± .0 .17 ± .01

MBRL + θ̂i
2 .52± .0 .11 ± .00 .57± .0 .20 ± .01

In addition, we adopt ELU activation function and set 4 fully connected lay-
ers with 200 units for both the representation encoder network Φ(·) and the
discriminator π(·), and 3 fully connected layers with 100 units for the outcome
prediction networks f0(·) and f1(·). The optimizer is chosen as Adam [17], and
the learning rate for the optimizer is set to be 1e−3. We set (batch size, epoch) to
be (100, 1000)/(1000, 250) for IHDP/Twins experiments, and the hyper parame-
ters (λ1, λ2) to be (0.01, 0.01)/(0.1, 0.1) for IHDP/Twins experiments. The final
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model early stops on the metric εp, and we choose β in εp as 0.1 and 100 for
IHDP experiments and Twins experiments, respectively.

For the baseline models, we follow the same settings of hyperparameters as in
their published paper and code. For our MBRL network, the optimal hyperpa-
rameters are chosen in the same way as [23]. The searching ranges are reported
in Table 4.

4.3 Results Analysis

Table 1 and Table 2 report part of the performances of baseline methods and
MBRL on IHDP and Twins datasets. We present the average values and standard
errors of εATE , εPEHE and AUC (mean ± std). The lower εATE and εPEHE or
the higher AUC, the better. Bold indicates the best method for each dataset.

As stated in Table 1 and Table 2, we have the following observations. 1)
MBRL achieves significant improvements in both ITE and ATE estimations
across all datasets compared to the baseline models. 2) The advanced represen-
tation learning methods that focus on estimating ITE (such as SITE, TARNet
and CFR-WASS) show their inapplicability to ATE estimations. By contrast,
MBRL not only significantly outperforms these representation learning meth-
ods in ITE estimations but also remains among the best ATE results. 3) The
state-of-the-art ATE estimation method, Dragonnet, achieves superior ATE esti-
mations across all the baseline models but yields a substantial error in ITE
estimations. Although Dragonnet shares a similar basic network architecture to
MBRL, MBRL can obtain a substantially lower εATE than Dragonnet owing to

Table 2. Performance comparisons with mean ± standard error on 100 Twins
datasets. εATE : Lower is better. AUC: Higher is better.

Method In-sample Out-of-sample

AUC εATE AUC εATE

OLS/LR1 .660 ± .005 .004 ± .003 .500 ± .028 .007 ± .006

OLS/LR2 .660 ± .004 .004 ± .003 .500 ± .016 .007 ± .006

k-NN .609 ± .010 .003± .002 .492 ± .012 .005± .004

BART .506 ± .014 .121 ± .024 .500 ± .011 .127 ± .024

CEVAE .845 ± .003 .022 ± .002 .841 ± .004 .032 ± .003

SITE .862 ± .002 .016 ± .001 .853 ± .006 .020 ± .002

BLR .611 ± .009 .006 ± .004 .510 ± .018 .033 ± .009

BNN .690 ± .008 .006 ± .003 .676 ± .008 .020 ± .007

TARNet .849 ± .002 .011 ± .002 .840 ± .006 .015 ± .002

CFR-WASS .850 ± .002 .011 ± .002 .842 ± .005 .028 ± .003

MBRL .879± .000 .003± .000 .874± .001 .007 ± .001

MBRL + θ̂i
1 .879± .000 .003± .000 .874± .001 .008 ± .000

MBRL + θ̂i
2 .879± .000 .003± .000 .874± .001 .006 ± .001
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the multi-task learning framework and the utilization for orthogonality informa-
tion. These observations indicate that the proposed MBRL method is extremely
effective for estimating treatment effects.

We further conduct an ablation study on IHDP datasets to test if orthog-
onality information is practical in real applications. The relevant results are
reported in Table 3. We let MBRL* denote MBRL without perturbation error
εp, and MBRL** denote MBRL without any orthogonality information (εp, Ωd

and Ωy). We find that incorporating orthogonality information will enhance the
power of estimating treatment effects, whether with or without orthogonal esti-
mators. This enhancement is pronounced especially when orthogonal estimators
are plugged in for in-sample data.

4.4 Simulation Study

In this part, we mainly investigate two questions. Q1. Does MBRL perform more
stably to the level of selection bias than the state-of-the-art model Dragonnet?
Q2. Can the noise orthogonality information, the perturbation error εp, improve
ATE estimations regardless of different models/estimators/selection bias levels?

We generate 2500 treated samples whose covariates Z1 ∼ N (µ1, 0.5×ΣΣT ),
and 5000 controlled whose covariates Z0 ∼ N (µ0, 0.5 × ΣΣT ), where µ1 and
µ0 are both 10-dimensional vector and Σ ∼ U((−1, 1)10×10). The level of selec-
tion bias, measured by KL divergence of µ1 with respect to µ0, would vary
by fixing µ0 and adjusting µ1. The potential outcomes of mth individual are
generated as Y (1) | Zm ∼ (wT

1 Zm + n1), Y (0) | Zm ∼ (wT
0 Zm + n0), where

w1 ∼ U((−1, 1)10×1), w0 ∼ U((−1, 1)10×1), n1 ∼ N (0, 0.1), n0 ∼ N (0, 0.1). By
adjusting µ1 and fixing µ0, we obtain five datasets with different levels of KL
divergence in {0, 62.85, 141.41, 565.63, 769.89}. We run experiments on each
dataset 100 times and draw box plots with regard to εATE on the test set in
Fig. 2.

In Fig. 2(a), we first find that MBRL shows stronger robustness and achieves
significantly better ATE estimations with regard to different selection bias levels

Table 3. Ablation study on IHDP
datasets.

Method In-sample Out-of-sample
√

εPEHE εATE
√

εPEHE εATE

MBRL** .523 ± .006.129 ± .005.568 ± .009.141 ± .006

MBRL* .522 ± .006.128 ± .005.567 ± .009.139 ± .006

MBRL .522 ± .007.121 ± .005.565 ± .008.133 ± .005

MBRL** + θi
1 .523 ± .006.101 ± .004.568 ± .009.171 ± .007

MBRL* + θi
1 .523 ± .006.102 ± .004.567 ± .009.170 ± .007

MBRL + θi
1 .522 ± .007.102 ± .004.565 ± .008.166 ± .007

MBRL** + θi
2 .523 ± .006.122 ± .005.568 ± .009.210 ± .008

MBRL* + θi
2 .523 ± .006.121 ± .005.567 ± .009.208 ± .008

MBRL + θi
2 .522 ± .007.114 ± .005.565 ± .008.204 ± .008

Table 4. The searching ranges of
hyperparameters.

Hyperparameters IHDP Twins

λ1, λ2 0.01, 0.1, 1 0.01, 0.1, 1

Depth of Φ 2, 3, 4 2, 3, 4

Dim of Φ 100, 200 100, 200

Depth of π 2, 3, 4 2, 3, 4

Dim of π 100, 200 100, 200

Depth of f0, f1 2, 3, 4 2, 3, 4

Dim of f0, f1 100, 200 100, 200

Batch size 100, 300 500, 1000

Epoch 500, 1000 250, 500
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compared with Dragonnet. In addition, it is noticable that choosing the pertur-
bation error εp as the model selection metric would yield smaller εATE for any
model (Dragonnet or MBRL). Particularly, εp corrects more errors for MBRL
than Dragonnet, which indicates that εp works better if a model utilizes the
orthogonality information in the training stage. In Fig. 2(b), we have two main
observations: i) the criterion εp improves ATE estimations for all estimators
across different selection bias levels; ii) the improvement brought by εp becomes
more substantial when selection bias increases.

5 Related Work

Representation Learning. Our work has a strong connection with the balanced
representation learning methods proposed in [16,23], where they mainly focus
on minimizing the imbalance between the different treatment groups in the rep-
resentation space but overlook maximizing the discrimination of each unit’s
treatment domain. IGNITE framework is proposed in [10] to infer individual
treatment effects from networked data, where they achieve a balanced repre-
sentation that captures patterns of hidden confounders predictive of treatment
assignments. This inspires us to study treatment effects by training a moderately-
balanced representation via multi-task learning. Other works relevant to repre-
sentation learning include [18,19,24,27,28] and references therein.

Orthogonal Score Function. [3] develop the theory of double/debiased machine
learning (DML) from [20]. They define the notion of orthogonal condition, which
allows their DML estimator to be doubly robust. Based on the theory of [3],
another orthogonal estimator is proposed by [14], aiming to overcome the high

(a) MBRL vs. Dragonnet (b) MBRL vs. MBRL with θ1 and θ2 plugged
in.

Fig. 2. Comparisons between models with and without εp w.r.t. varying levels of selec-
tion bias.
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variance issue suffered by DML due to the misspecified propensity score. Despite
the success of orthogonal estimators, the establishment of them requires the noise
conditions to guarantee the corresponding score functions satisfying the orthogo-
nal condition. None of the existing literature emphasizes the critical role of noise
conditions or utilizes the orthogonality information for the model selection.

6 Conclusion

This paper proposes an effective representation learning method, MBRL, to
study the treatment effects. Specifically, MBRL avoids the over-balanced issue
by leveraging treatment domains of the representations via multi-task learning.
MBRL further takes advantage of the orthogonality information and involves it
in the training and validation stages. The extensive experiments show that 1)
MBRL has strong predictability for the potential outcomes, distinguishability for
the treatment assignment, applicability to orthogonal estimators, and robustness
to the selection bias; 2) MRBL achieves substantial improvements on treatment
effect estimations compared with existing state-of-the-art methods.
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Abstract. Unsupervised Domain Adaptation (UDA) challenges the
problem of alleviating the effect of domain shift. Common UDA methods
all require labelled source samples. However, in some real application sce-
narios, such as Federated Learning, the source data is inaccessible due to
data privacy or intellectual property, and only a pre-trained source model
and target data without labels are accessible. This challenging problem
is called Source-Free Domain Adaptation (SFDA). To address this, we
introduce a generation encoder to generate source prototypes depending
on the hidden knowledge from the pre-trained source classifier. The gen-
erated source prototypes can describe the distribution of source samples
in the feature space to a certain extent to solve the Source-Free problem.
We also propose Source-Free Implicit Semantic Augmentation (SFISA)
for adaptation. SFISA consists of two main stages: source and target class
prototypes generation and Source-Free semantic augmentation adapta-
tion based on generated class prototypes. Extensive experiments on the
UDA benchmarks demonstrate the efficacy of our generation encoder and
augmentation method SFISA.

Keywords: Source-free domain adaptation · Prototype generation ·
Implicit semantic augmentation

1 Introduction

On a variety of computer vision tasks, Deep Neural Networks (DNNs) have
shown exceptional performance [8,9,16]. The success of DNNs depends on a huge
amount of labelled data. Hence, it is necessary to utilize prior related labelled
datasets to avoid data labelling, which is time-consuming and expensive. Many
efforts to develop Unsupervised Domain Adaptation (UDA) methods have been
made to transfer knowledge from a labelled source domain to a related, unla-
belled target domain. UDA methods can be mainly divided into three branches:
(1) methods based on domain discrepancy minimization [6,12,20,21]; (2) meth-
ods based on adversarial learning [7,25]; (3) methods based on classifier adap-
tation [2,5,13,15,19,32]. However, sometimes only the source pre-trained model
is accessible in real-world application scenes due to data privacy. This situation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 17–31, 2022.
https://doi.org/10.1007/978-3-031-20865-2_2
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UDA with Transfer ISA Source-Free Scenarios SFISA for SFDA

Source
Target

Augmented Source
Augmented Prototypes

 Generated Prototypes
Decision Boundary Trained 

with Source Data 
Decision Boundary from 

Pre-trained Source Model 

Fig. 1. Motivation of SFISA. In Source-Free domain adaptation scenarios, SFISA is
able to augment generated source class prototypes towards target semantics in order
to effectively adapt the pre-trained classifier from source domain to target domain.

leads that common UDA methods fail due to the lack of source data (Source-Free
Scenarios in Fig. 1). Therefore, this paper concentrates on this more practical
task called Source-Free Domain Adaptation (SFDA). SFDA aims to adapt a pre-
trained source model to a target domain without source data. Existing SFDA
methods are concentrated on refining the pre-trained source model by using tar-
get pseudo-labelling training [10,17] or by generating target-style samples [14].
The shortcomings of these methods are: (1) pseudo-labelling may lead to noisy
labels due to the domain shifts, and (2) generating target-style samples may be
difficult due to the training difficulties of Generative Adversarial Networks.

Our Source-Free Implicit Semantic Augmentation (SFISA) is proposed to
address these problems (SFISA for SFDA in Fig. 1). Specifically, SFISA com-
prises two stages: (1) Class Prototype Generation: We use pre-trained models to
mine hidden knowledge from the source domain, and propose discriminant con-
sistency to generate reliable target class prototypes. (2) Source-Free Semantic
Augmentation Adaptation: The semantic bias between domains for each class
is firstly calculated. Then, to capture the target intra-class semantic variations,
SFISA calculates intra-class covariance. Finally, SFISA uses a multivariate nor-
mal distribution to sample semantic transformation directions for source pro-
totype augmentation to guide source augmented prototypes towards the target
domain. Extensive experiments on UDA benchmarks datasets demonstrate the
effectiveness of SFISA. The following are the primary contributions of this paper:

• In SFISA, a novel class prototype generation strategy for SFDA is proposed.
Our generation strategy makes the generated source prototypes more compact
and discriminative and the generated target prototypes more reliable.

• In SFISA, an implicit semantic augmentation adaptation method in the
Source-Free scenario for classifier adaptation is also proposed. This method
enables that source prototype features can be augmentated towards target
implicitly.

The rest of the paper is organized as follows: Sect. 2 provides the related work;
Sect. 3 describes the proposed method; Sect. 4 presents the results of applying
the method in different benchmarks; Sect. 5 presents the conclusions.
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2 Related Work

Our method is closely related to Unsupervised Domain Adaptation and Source-
Free Domain Adaptation. In this section, we give a brief review of these two
aspects.

2.1 Unsupervised Domain Adaptation (UDA)

UDA is to transfer knowledge from a label-rich source domain to a label-scarce
domain. UDA methods can be mainly divided into three categories: (1) UDA
based on adversarial Learning: With adversarial manners, UDA methods based
on adversarial training make models learn domain-invariant features, which
reduce the discrepancy between two domains. For instance, Domain Adver-
sarial Neural Network (DANN) [7] and Multi-Adversarial Domain Adaptation
(MADA) [25] introduce a domain discriminator or multi-mode discriminators
to make the features of two domains indistinguishable. (2) UDA based on
Statistical Moments Alignment (SMA): SMA concentrates on mitigating the
domain difference by minimizing statistical discrepancy. To name a few, max-
imum mean discrepancy (MMD) [20,21] minimizes the domain discrepancy by
measuring statistical metrics. Depending on contrastive learning, CAN [12] and
CoSCA [6] are able to maximize intra-class discrepancy and minimize inter-
class discrepancy. (3) UDA based on Classifier Adaptation: Classifier Adaptation
(CA) is also an indispensable part of UDA. This is because the classifier shar-
ing between domains is quite restrictive. Some CA methods augment training
samples towards target style to adapt the classifier [2,5,19]. Another typical line
of works concentrate on mitigating the classifier perturbation or achieving joint
distribution alignment by constructing task-specific classifiers, such as [13,32].

These methods all require source domain labelled samples. However, source
data may be inaccessible in practice due to data privacy, which makes these
methods fail in Source-Free scenarios.

2.2 Source-Free Domain Adaptation (SFDA)

Source-Free Domain Adaptation (SFDA) aims to only utilize a pre-trained source
model to transfer knowledge to target domain without using data from the source
domain. Some existing methods adopt a self-training strategy to refine the pre-
trained model either by generating pseudo-labels as SHOT [17] and NRC [31] or
by generating samples with target domain style as MA [14]. However, the pseudo-
labels can be quite noisy owing to the domain discrepancy, which is ignored by
these methods. Moreover, it is tricky to train a Generative Adversarial Networks
(GANs) to generate images with target style. BAIT [30] utilizes pre-trained
source classifiers as anchors to align domains on class level.

Compared with the above methods, our SFISA generates source class pro-
totypes to implement classifier adaptation rather than generating images with
target style. Meanwhile, SFISA further alleviates the negative transfer effect
by implementing weighted contrastive alignment and maintaining diversity-
discriminability.
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Fig. 2. Overview of our SFISA. SFISA consists of two stages: (1) Class Prototype
Generation: Source class prototypes are generated depending on the hidden knowl-
edge from Cy by Lce + Lp

con and target class prototypes are generated based on the
pseudo-labelling strategies. (2) Source-Free Semantic Augmentation Adapta-
tion: This adpatation is based on the generated prototypes by LSFISA+Lw

con+ηLD−D.

3 Method

The preliminaries of Source-Free Domain Adaptation (SFDA) are: Consider a
source domain D̂s only with a pre-trained source model Ms consisting of feature
extractor Gf and classifier Gy and a target domain D̂t with nt unlabelled target
examples. SFDA assumes a shared label space Y (|Y | = K) between D̂s and D̂t.

The ultimate objective of SFDA is to adapt the source pre-trained model to
the target domain only with the unlabelled target examples. Due to the shortage
of source labelled data, the SFDA task is quite challenging because it is hard to
tackle this task by using conventional Domain Adaptation methods.

3.1 Overall Scheme

Our SFISA comprises two stages (shown in Fig. 2): In stage one, the Source
Class Prototype Encoder Esp is trained to generate source class prototypes pk

depending on the hidden knowledge from Gy. The loss function LEsp
+ Lp

con

makes the generated source prototypes compact and discriminative. We also
propose discriminant consistency to generate dependable target prototypes qk.

In stage two, Source-Free Semantic Augmentation Adaptation is imple-
mented based on the generated pk and qk through the loss LSFISA. Con-
trastive class-wise alignment and diversity-discriminability maintaining are also
conducted to reduce the pseudo-labelling noises, and the loss functions are Lw

con
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Algorithm 1. Training of SFISA
Input: Ms,D̂t; Source Class Prototype Encoder Esp; Parameters τ , η
for t = 1 to T do

Generate the k-th source prototypes pk based on Esp;
Compute LEsp and Lp

con according to Eq. 3 and Eq. 4 ;
The loss (Lce + Lp

con).backward() to train Esp;
end for
for r = 1 to R do

Source prototypes are generated based on fixed Esp;
Get the features of target data based on Gf ;
Obtain each class’s target prototype based on Eq. 7 and Eq. 12;
Compute LSFISA, Lw

con, LD−D based on Eq. 16, Eq. 9 and Eq. 17;
loss.backward() (loss = LSFISA + Lw

con + LD−D).
end for
Output: Gf and Gy.

and LD−D respectively. The overall procedure of SFISA can be roughly formu-
lated as:

min
θE

LEsp
(θE) + Lp

con (θE) (Stage1), (1)

min
{θGf

,θGy}
LSFISA

(
θGy

)
+ Lw

con

(
θGf

)
+ ηLD−D

(
θGf

, θGy

)
(Stage2), (2)

where θE , θGf
and θGy

denotes the parameters of Esp, Gf and Gy. The overall
scheme of SFISA is summarized as the algorithm flowchart Algorithm 1.

3.2 Source Class Prototype Generation

The lack of data from source domain is the reason why Source-Free Domain
Adaptation (SFDA) is so challenging. Inspired by [26,29], a Source Class Proto-
type Encoder Esp is designed to generate class prototype for each class. We utilize
the pre-trained source classifier Gy to train Esp (The parameters of Gy is fixed
during training). Given a noise complying with uniform distribution Z ∼ U(0, 1),
the element-wise result of the noise Z and the k-th class embedding Embedk is
the input of Esp to generate the k-th class prototype pk = Esp(Z � Embedk)
firstly. Then the generated k-th class prototype can be judged whether this pro-
totype belongs to class k and Esp can be trained via the loss:

LEsp
= −

K∑

k=1

yk log Gy(Esp(Z � Embedk)). (3)

In this way, Esp is able to generate source class prototypes for each class. Con-
sidering the generated feature class prototypes from the same class should be
compact, we impose a contrastive loss function motivated by simCLR and
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Prototype Generation with Contrastive Loss Prototype Generation without Contrastive Loss 

Fig. 3. The procedure of Source Class Prototype Generation. These two pictures illus-
trate the distribution of a certain class of source prototypes (red dots) generated in the
feature space using and not using the contrastive loss Lp

con. The contrastive loss Lp
con

encourages the generated prototypes from the same class more compact. (Color figure
online)

InfoNCE [23]. Implementing this loss can make the prototypes more discrim-
inative. The prototype contrastive loss is formalized as:

Lp
con = − log

exp (φ (p,p+) /τ)

exp (φ (p,p+) /τ) +
∑K−1

j=1 exp
(
φ

(
p,p′

j

)
/τ

) , (4)

where p represents the anchor prototype from any class. For every anchor pro-
totype, the positive pair p+ is sampled from the same class to the anchor p, and
K − 1 negative pairs p

′
j which have different classes from the anchor are also

sampled. For each class, as least two class prototypes are sampled to implement
the contrastive loss. φ is the measurement criterion of prototype similarity and
we use cosine similarity cos(a, b) = a • b

||a||2×||b||2 as the criterion. τ is the factor
which controls the contrastive training intensity.

Overall, Esp is trained with the sum of LEsp
and Lp

con, which makes the
source class prototypes more compact and representative as the Fig. 3 shows.

3.3 Target Class Prototype Generation Based on Pseudo-labelling
Strategy

Pseudo-labelling Strategy for Target Domain Samples. Considering the
data structure especially the diversity among predictions of unlabelled target
data is different from the source data, a strategy which can exploit the structure
of the target data should be used [18]. In SFISA, we generate pseudo-labels
based on the clustering strategy proposed by Liang [17]. The initial centroid for
each class in the target domain is attained by:

c
(0)
k =

∑
xt∈Xt

δk(Gy (Gf (xt))) Gf (xt)∑
xt∈Xt

δk(Gy (Gf (xt)))
, (5)
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where δk(a) = exp(ak)∑
i exp(ai)

represents the k-th element in the softmax output of
the vector a. These class centroids can reliably characterize the distribution of
different categories and the diversity of data structure in the target domain. After
that, the initial pseudo-labels are obtained by the nearest centroid strategy:

ŷt = arg min
k

Df

(
Gf (xt) , c

(0)
k

)
, (6)

where Df is the cosine distance. Finally, the final centroids are computed based
on the pseudo-labels generated in Eq. 6 and the final pseudo-labels are obtained:

c
(1)
k =

∑
xt∈Xt

I (ŷt = k) Gf (xt)∑
xt∈Xt

I (ŷt = k)
, ŷt = arg min

k
Df

(
Gf (xt) , c

(1)
k

)
. (7)

Class Prototype Generation for Target Data. To make the target pro-
totypes more reliable and the direction of Source-Free implicit semantic aug-
mentation more clear, class-wise contrastive alignment is conducted to make the
target features ft = Gf (xt) more compact in the feature space and closer to the
source prototypes. Reliable samples are generally closer to the class centroid.
Each contrastive confidence weight is computed by:

wi =
exp

(
φ

(
Gf (xi

t), c
(1)

ŷi
t

)
/τ

)

∑K
k=1 exp

(
φ

(
Gf (xi

t), c
(1)
k

)
/τ

) . (8)

To avoid the collapsing problems [11], we depend on a trainable nonlinear projec-
tor Cpro to design the contrastive criterion. φ is cosine similarity criterion based
on the projection (φ(a, b) = cos (Cpro(a), Cpro(b))). The features closer to the
corresponding centroid will have higher weight. Then the contrastive class-wise
alignment is conducted. In this alignment, f i

t represents the feature of the target
samples xi

t and the criterion of the indicator function I is whether j �= ŷi
t:

Lw
con = −wi log

exp
(
φ

(
f i
t ,p

ŷi
t

)
/τ

)

exp
(
φ

(
f i
t ,pŷi

t

)
/τ

)
+

∑K
j=1 I exp

(
φ

(
f i
t ,pj

)
/τ

)
.

(9)

Due to the noises in pseudo-labelling, the target domain’s class prototypes qk

should be generated according to the confidence of target samples annotated as
class k. In SFISA, we propose Discriminant Consistency (DC) to weight the tar-
get domain samples. More specifically, DC refers to the classifier’s discrimination
similarity between the target samples and these samples after data augmenta-
tion. If the classifier provides two quite different class predictions for a target
sample, the approximated discrimination similarity will obtain one small value.
Jensen-Shannon divergence is used to measure the discrimination similarity of
predictions (P is the prediction probability of the augmentated samples):

JS(P‖P ) =
1
2

∑
p(x) log

(
2 p(x)

p(x) + p(x)

)
+

1
2

∑
p(x) log

(
2 p(x)

p(x) + p(x)

)
.

(10)
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When generating the target class prototype qk, we hope that samples with
higher discriminative consistency (smaller JS(P‖P )) have greater weight. The
generated weight of target sample ti judged as class k is:

gwi =
nk

t

(
1 + exp

(−JS
(
Pi‖Pi

)))

∑nt

i′=1 I(ŷ
i′
t = k)

(
1 + exp

(−JS
(
Pi′ ‖Pi′

))) , (11)

where nk
t is the number of target samples judged as class k. Overall, for each

class k, the calculation of target class prototype can be formulated as:

qk =
∑nt

i=1 I(ŷ
i
t = k) gwi Gf (xi

t)∑nt

i=1 I(ŷ
i
t = k) gwi

, (12)

3.4 Source-Free Semantic Augmentation Adaptation Based
on Generated Class Prototypes

Transferable Semantic Augmentation (TSA) [15] has been proven effective in
enhancing the adaptation ability. To address this issue, our SFISA uses gener-
ated class prototype to obtain inter-domain class difference. In the k-th class,
the inter-domain class difference Δμk = qk − pk can be exploited as the over-
all semantic bias. Meanwhile, the k-th target intra-class feature covariance Σk

t

is paid attention to capture semantic variations in the target domain. The
semantic transformation directions from gaussian distribution are sampled as
N(λΔμk, λΣk

t )(λ = λ0 × (t/T )), where T and t are the maximum and current
iterations respectively, and λ0 is the hyper-parameter to control the augmenta-
tion strength.

After the construction of K sampling distributions, the k-th generated source
class prototype pk can conduct different target semantic transformations along
the random directions sampled from the distribution N(λΔμk, λΣk

t ) to generate
the augmented prototype pk ∼ N(pk+λΔμk, λΣk

t ). We can augment generated
prototypes from each class for M times naively:

Lsf (W, b) =
1
M

M∑

m=1

1
K

K∑

k=1

− log

⎛

⎝ ew�
k pk+bk

∑K
k′=1 e

w�
k

′ pk+b
k

′

⎞

⎠ , (13)

where W = [w1,w2, . . . ,wK ]� ∈ R
K×F and b = [b1, b2, . . . , bK ]� ∈ R

K are
the weight matrix and bias vector of the pre-trained classifier Gy respectively.
To achieve our desired performance, we implicitly generate infinite augmented
source class prototypes. The upper-bound of the augmentation loss can be
derived according to the Law of Large Numbers. To be specific, in the case
of M → +∞, the expected transferable semantic augmentation loss over the
augmented source class prototype can be formulated as:
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lim
M→+∞

Lsf =
1
K

K∑

k=1

E
pk

⎡

⎣− log

⎛

⎝ ew�
k pk+bk

∑K
k′=1 e

w�
k

′ pk+b
k

′

⎞

⎠

⎤

⎦

=
1
K

K∑

k=1

E
pk

⎡

⎣log

⎛

⎝
K∑

k′=1

e

(
w�

k
′ −w�

k

)
pk+(b

k
′ −bk)

⎞

⎠

⎤

⎦ .

(14)

According to Jensen’s inequality [22], it is obvious that E[log(X)] ≤
log(E[X]). In this way, the upper bound of limM→+∞ Lsf is derived as:

lim
M→+∞

Lsf ≤ 1
K

K∑

k=1

log

⎛

⎝E
pk

⎡

⎣
K∑

k′=1

e

(
w�

k
′ −w�

k

)
pk+(b

k
′ −bk)

⎤

⎦

⎞

⎠

=
1
K

K∑

k=1

log

⎛

⎝
K∑

k′=1

E
pk

[
e

(
w�

k
′ −w�

k

)
pk+(b

k
′ −bk)

]
⎞

⎠ .

(15)

Due to pk ∼ N(pk + λΔμk, λΣk
t ), we can derive that

(
w�

k′ − w�
k

)
pk +

(bk′ − bk) ∼ N
((

w�
k′ − w�

k )
(
pk + λΔμk

)
+ (bk′ − bk) , σk

′

k

)
, where σk

′

k =

λ
(
w�

k′ − w�
k

)
Σk

t (wk′ − wk) . Leveraging the moment generating function

E
[
eaX

]
= eaμ+ 1

2a2σ, where X complies with the Gaussian distribution N(μ, σ),
we can obtain that:

lim
M→+∞

Lsf ≤ LSFISA = − 1
K

K∑

k=1

log
eZk

k

∑K
k′=1 eZk

′
k

, (16)

where Zk
′

k = ŷk
′

k + λ
(
w�

k′ − w�
k

)
Δμk + σk

′
k

2 . ŷk
′

k denotes the k
′
-th element of

logits output of pk.
By optimizing the upper bound loss function LSFISA of limM→+∞ Lsf using

cross entropy loss, Source-Free semantic augmentation adaptation based on gen-
erated class prototypes can be implemented to train the classifier.

3.5 Diversity and Discriminability Analysis During Source-Free
Adaptation

In Domain Adaptation, maintaining the diversity and discriminability of predic-
tion is quite important. Due to the target label insufficiency, the domain adap-
tation performance degrades on the decision boundary with high data density
dramatically [3,4]. The Shannon Entropy Minimization (SEM) is used to pro-
mote the discriminability of each target sample. However, the side effect of using
SEM is that the diversity of overall data prediction will be impaired: SEM pushes
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the sample to nearby examples far from the decision boundary. Since the dis-
tribution of the data mostly follows the long-tailed distribution, examples from
minority categories are prone to be pushed into majority categories. To alleviate
the side effect caused by SEM, the maximization of average prediction entropy
max(

∑K
k=1 −P̂ k log P̂ k) is implemented to maintain the diversity of overall data

prediction (P̂ = 1
nt

∑nt

i=1 Pi). The objective loss function is formalized as:

LD−D =
K∑

k=1

P̂ k log P̂ k − 1
nt

nt∑

i=1

K∑

k=1

P k
i log P k

i . (17)

3.6 Theoretical Insight

Let H denote a classification hypothesis space which VC dimension is d [1], the
upper bound of the classification error on target domain can be defined as:

εt(h) ≤ ε̂s(h) + dH
(
D̂s, D̂t

)
+ λ� +

√
4
m

(
d log

2em

d
+ log

4
δ

)
, (18)

where ε̂s(h) is the generalization classification error on source domain, e is the
natural base, λ∗ = εs (h∗) + εt (h∗) represents the ideal joint error of an ideal
joint hypothesis.

In our SFISA, ε̂s is well bounded because the source pre-trained model has
already been trained in the source domain. The contrastive adaptation of target
domain samples to source domain prototypes can effectively bound the distri-
bution difference dH

(
D̂s, D̂t

)
. Furthermore, the constructed multivariate dis-

tribution’s transformation directions enable the pre-trained classifier to jointly
minimize εs (h∗) and εt (h∗) of the joint error λ∗. To summarize, our SFISA
enhances the adaptation ability dramatically because it complies with the trans-
fer learning theory based on H-divergence well.

4 Experiments

4.1 Datasets

Office-31 [27] is one of the most popular benchmark in visual Source-Free
Domain Adaptation field, which consists of 3 different domains: Amazon (A),
Webcam (W), and DSLR (D), our SFISA is evaluated on 6 transfer tasks.
Office-Home [28] is a more challenging benchmark which consists of images
from 4 different domains: Artistic (Ar) images, Clip Art (Cl), Product (Pr)
images, and Real-World (Rw) images, 8 transfer tasks are selected for evalua-
tion.
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4.2 Implementation Details

SFISA is implemented based on PyTorch. ResNet-50 [9] is adopted as the back-
bone network pre-trained on ImageNet. For every transfer task, the source pre-
trained model is trained based on label smoothing strategy [24]. The learning
rate of mini-batch SGD optimizer and the training epochs are set as 10−3 and
400. For other hyper-parameters, batch size, τ , η, λ0 and the dimension of source
prototype generation noise Z are set as 64, 0.07, 0.1, 0.15 and 100.

Table 1. Accuracy (%) for unsupervised domain adaptation on Office-31 [27] based
on ResNet-50.

Method \ Tasks Source-Free A→W A→D D→W W→D D→A W→A AVG

ResNet-50 [9] � 68.4 68.9 96.7 99.3 62.5 60.7 76.1

BNM [3] � 94.0 92.2 98.5 100 74.9 75.3 89.2

ATDOC [18] � 94.0 92.2 98.5 100 74.9 75.3 89.2

TSA [15] � 96.0 95.4 98.7 100 76.7 76.8 90.6

SHOT [17] � 90.9 93.1 98.8 99.9 74.5 74.8 88.7

BAIT [30] � 94.6 92.0 98.1 100 74.6 75.2 89.1

NRC [31] � 90.8 96.0 99.0 100 75.3 75.0 89.4

SFISA(ours) � 94.1 94.2 98.7 100 75.5 75.0 89.6

4.3 Results

Our SFISA is compared with the state-of-the-art methods. The classification
accuracies on the dataset Office-31 based on the ResNet are shown in Table 1.
SFISA achieves the best performance on average accuracy compared with all
of the state-of-the-art methods. In addition, our SFISA shows superiority on
the tasks W→D and D→A and outperforms SHOT [17] by a notable margin
of 0.9%. This demonstrates that our method can effectively adapt the classifier
by implicitly generating prototypes towards target semantics. From Table 2, our

Table 2. Accuracy (%) for unsupervised domain adaptation on Office-Home [27]
based on ResNet-50.

Method \ Tasks Source-Free Ar→Cl Ar→Pr Ar→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl AVG

ResNet-50 [9] � 34.9 50.0 58.0 38.5 31.2 60.4 53.9 41.2 46.0

BNM [3] � 56.7 77.5 81.0 65.3 55.1 82.0 73.6 57.0 68.5

ATDOC [18] � 58.3 78.8 82.3 67.1 56.0 82.7 72.0 58.2 69.4

TSA [15] � 57.6 75.8 80.7 66.7 55.7 81.2 75.7 61.9 69.5

SHOT [17] � 56.9 78.1 81.0 67.0 54.6 81.8 73.4 58.1 68.9

BAIT [30] � 57.4 77.5 82.4 67.1 55.5 81.9 73.9 59.5 69.4

NRC [31] � 57.7 80.3 82.0 65.3 56.4 83.0 71.0 58.6 69.3

SFISA(ours) � 58.3 78.6 79.9 65.4 57.3 81.4 71.7 62.4 69.4



28 Z. Zhang and Z. Zhang

SFISA outperforms almost all of the state-of-the-art methods on the more chal-
lenging dataset benchmark Office-Home. Moreover, our SFISA is able to sur-
pass some baseline methods requiring source data, which further demonstrates
the effectiveness of SFISA.

Fig. 4. Optimization accuracy curves of SFISA on benchmark Office-31(A→W and
W→A).

4.4 Robustness Analysis

The robustness of our SFISA on the tasks A→W and W→A based on the bench-
mark Office-Home is studied. Figure 4 shows that our SFISA converges well
in terms of accuracy in the training phase. Training for 20 epochs increases the
accuracy by about 12% in the A→W task and 8% in the W→A task, which
demonstrates the efficiency of our method. Besides, the curve on the Valida-
tion set means our pseudo-labelling strategy can alleviate pseudo-labelling noise
effectively.

4.5 Ablation Study

A series of ablation studies on Office-Home are implemented to evaluate the
effectiveness of each module proposed in SFISA. Firstly, the importance of Lp

con

and our proposed Discriminant Consistency (DC) in the class prototype gener-
ation stage are studied. Lp

con makes the source inter-class prototypes separated
(i.e., larger inter-class distance) and intra-class prototypes compact (i.e., smaller
intra-class distance), which makes the enhancement from 67.9% to 68.7% and
68.8% to 69.4% shown in Table 3. DC makes SFISA improve slightly in per-
formance. Then we investigate the losses of Source-Free semantic augmentation
adaptation and show the quantitative results of the model that has been opti-
mized using various loss combinations which are also shown in Table 3. Com-
bining all the three losses (Lw

con, LD−D and LSFISA), the best performance is
obtained.
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Table 3. Ablation Studies for the losses(Lp
con, Lw

con, LD−D, LSFISA) on Office-Home
based on ResNet-50. These studies include average accuracies, inter-class distance and
intra-class distance (based on cosine distance).

ResNet-50 [9] Lp
con Lw

con LD−D LSFISA DC AVG

� 46.0

� � � � 67.9

� � � � � 68.8

� � � � � 68.7

� � � � � 69.2

� � � � � � 69.4

loss combination Intra-class Distance Inter-class Distance

LEsp 2.41 × e−3 0.421

LEsp + Lp
con 1.05 × e−5 0.592

5 Conclusions

This paper proposed a prototype generation strategy and an implicit semantic
augmentation adaptation approach (SFISA) in Source-Free Domain Adaptation
(SFDA) scenario. Common SFDA methods always suffer from the label noise of
the target pseudo-labeled samples and domain discrepancies which are hard to
be calculated. To alleviate the negative effect of the label noise, a reliable pseudo-
labelling strategy and Discriminant Consistency are adopted. In order to calcu-
late and minimize the domain discrepancies precisely, the class prototype genera-
tion strategy is proposed to address the lack of source data and generate reliable
source and target prototypes. Based on these generated prototypes, Source-Free
semantic augmentation adaptation adapts the classifier through implicitly gener-
ating source prototypes towards target semantics. Comprehensive experiments
on several cross-domain benchmark tasks have demonstrated the efficacy and
versatility of SFISA.
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Abstract. Role-oriented network embedding has become a powerful
technique for solving real-world problems, because it can capture the
structures of nodes and make node embeddings better reflect the func-
tions or behaviors of entities in the network. At present, various role-
oriented network embedding methods have been proposed. However,
most of the methods ignore degree distribution and the commonali-
ties among local structures, resulting in insufficient information of node
embeddings, and some methods that preserve commonality always have
high time complexity. To address the above challenges, we propose a
novel model ReVaC from two aspects of extracting higher-quality local
structural features and strengthening the commonalities among local
structures in node embeddings. In detail, the degree distribution from
node’s 1-hop egonet is incorporated into the extraction process of local
structural features to improve traditional ReFeX firstly, and the Vari-
ational Auto-Encoder is used to map those features to the local struc-
tural embedding space. Then, in the embedding space, we cluster nodes
to model the commonalities among local structures. Finally, local struc-
tural embeddings and commonalities are fused to get node embeddings.
We conduct extensive comparative experiments on real-word networks,
and results show that ReVaC has better performance than other state-
of-the-art approaches and adapts well to network scale.

Keywords: Role-oriented network embedding · Degree distribution ·
Local structural commonality

1 Introduction

In almost all networks, nodes tend to have one or more functions that largely
determine their structural identity in the system. When considering the problem
of learning a representation that captures the structural identity of nodes in a
network, even if two nodes do not share the connection or are even far apart, but
they have similar functions or occupy similar positions (similar structures) in the
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network, then their potential representations should be close to each other. Obvi-
ously, community-oriented embedding methods can’t handle such case, those are
all based on the connection of nodes. The structure-based network embedding
methods emerge as the times require. They encode local structural features into
vectors to capture structural similarity and obtain role-oriented embedding rep-
resentations, so are also called role-oriented embedding methods.

At present, role-oriented network embedding has gradually become one of the
most important research hotspots. It still faces the following challenges: (1)the
key to learning role-oriented network embedding is to extract high-quality local
structural features, degree distribution is a very good local structural feature.
According to the paper [1], it is shown that degree distribution, generalized to
include the distribution in its k-hop neighborhood, may indeed be a good indi-
cator of the structural position or role in the network. It excels in the evaluation
of automorphic and regular equivalence, and achieves superior results in various
experiments on real networks. However, this useful structural information is not
well utilized. Few methods take advantage of it, and operations based on it are
limited. For example, struc2vec [2] and XNetMF [3] determine their similarity
only by computing distances between k-order degree sequences or degree vectors.
(2)Some approaches only preserve the local structural features of nodes as much
as possible into embeddings, ignoring the commonalities among local structures.
The commonality of a class of similar local structures can be regarded as the fea-
ture a structural role, and ignoring it means losing part of the characteristics of
the role, which is unfriendly to role-oriented embedding. However, the approach
that retains commonalities needs to calculate structural similarities, which often
has high time complexity and is not suitable for large datasets.

In order to meet the above challenges, we propose our model ReVaC from two
aspects of extracting higher-quality local structural features and strengthening
the commonalities among local structures. The model consists of three parts:
local structural feature extraction, commonality modeling and fusion encoding.
Firstly, we improve the traditional ReFeX [4] by incorporating degree distribu-
tions from nodes’ 1-hop egonet into their initial features and leveraging itera-
tive process to obtain local structural features. At the same time, to avoid the
over-fitting caused by the high-order iteration, the Variational Auto-Encoder is
regarded as the operator to map those features to a local structural embedding
space. Secondly, in the embedding space, we model the commonalities among
local structures. That is, nodes with similar local structures are captured by
clustering, and then the common feature of nodes in the same cluster is modeled
as the commonality of such similar nodes. Finally, to enrich the structural infor-
mation of nodes and make the structural roles and embedding distances of nodes
highly correlated, local structural embeddings and commonalities are fused to
obtain node embeddings. Our main contributions can be summarized as follows:

– The traditional ReFeX is improved to incorporate degree distributions of
nodes into their initial features, and iterate new initial features to obtain
higher-quality local structural features.
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– We propose to explicitly model the commonalities among local structures by
clustering in the local structural embedding space, and fuse them with local
structure embeddings. That enriches the information of node embeddings and
improves the expressive ability of node embeddings.

– We conduct several extensive experiments on real-world networks via our
model ReVaC, and compare the results with other state-of-the-art methods.
The results demonstrate the superiority of our model, and prove that our
model scales well with network size.

2 Related Work

Obtaining high-quality structural features is the key to learning role-oriented
embeddings, and current methods are diverse. ReFeX [4] (Recursive Feature
eXtraction) extracts local and egonet features and aggregates the features of
neighbors recursively. As an effective method to capture structural features,
ReFeX is widely used in many other role-oriented embedding methods. For
example, RolX [5] and GLRD [6] leverage the structural features extracted by
ReFeX and uses matrix factorization to get low-dimension node representation.
In RESD [7] and RDAA [8], ReFeX is proposed to extract structural features
and utilizes encoder framework to map the network to the latent space. The key
idea of GAS [9] is to extract some key structural features based on ReFeX as
the guidance information to train the model. There are other methods directly
based on degree features, such as SIR-GN [10] encodes the degree of each node
as a one-hot vector. RoINE [11] also concatenates the degree of a node and the
sum of its immediate neighbors’ degree as structural feature. Besides, HONE
[12] generates the high-order network embeddings by decompose a set of motif-
based matrices. GraphWave [13] is based on heat-wavelet diffusion patterns, it
treats graph diffusion kernels as probability distributions over networks. DRNE
[14] is designed to leverage a layer-normalized LSTM to process the sequences of
nodes’ degree-based direct neighbors, which are treated as structural features.
Gralsp [15] captures structural patterns by generating w anonymous random
walks starting from one node with length L.

Structural properties also are contained in pair-wise similarities, and there are
various ways to calculate them. XNetMF [3] take advantages of Singular Value
Decomposition to encode the similarities based on the K-order degree vector
and attribute vector as embeddings. Struc2vec [2] constructs a hierarchy of com-
plete graphs by transforming similarities of the k-order ordered degree sequences
to weights of edges. SEGK [16] decomposes the similarity matrix computed by
graph kernels. REACT [17] aims to obtain node representations by applying
non-negative matrix database on RoleSim [18] similarity matrix and adjacency
matrix, respectively. Struc2gauss [19] generates structural contexts based on the
RoleSim similarity matrix, and learns node representations in the space of Gaus-
sian distributions. SPaE [20] computes cosine similarity between the standard-
ized Graphlet Degree Vectors of nodes, and generates role-based embeddings via
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Laplacian eigenmaps method. Role2vec [21] also recommends Motif-based fea-
tures, such as mapping nodes to multiple disjoint roles based on Graphlet degree
vectors.

To sum up the above, we have to admit that degree, degree-based sequences,
and related degree vectors are recognized good indicators of structures, and most
methods directly or indirectly utilize them. However, it is obvious that only a
few methods involve degree distribution in the process of constructing feature
matrix, and their operations on it are too limited.

3 Methodology

In this section, we declare the concepts used in this paper, and then introduce
our framework ReVaC in detail.

Fig. 1. An overview of the proposed ReVaC: (1) extract local structural features X
with improved ReFeX and map them to local structural embedding space Y by the
VAE, (2) explicitly model the commonalities among local structures in the space by
clustering and obtain the common features XR, (3) fuse local structure embeddings Y
and common features XR to obtain the final node embeddings Z.

3.1 Notions

A network is represented by an undirected unweighted graph G = (V,E), where
V = {v1, ..., vn} is the set of nodes and E is the set of edges. For each node
v ∈ V , the set of node v′s neighbors is defined as N(v), d(v) denotes the degree
of node v. The 1-hop egonet of node v is defined as Gv = {V (gv), E(gv)}, where
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V (gv) = {v}⋃{u ∈ V |(v, u) ∈ E} and E(gv) is the set of edges in the 1-hop
egonet of v. Dv represents the degree distribution from the 1-hop egonet of
node v. The extracted features of nodes are denoted as X ∈ Rn×f , where f
is the dimension of features. Y ∈ Rn×d are the local structural embeddings.
XR ∈ Rk×d are the common features of similar local structures, where k is the
number of node structure roles. Z ∈ Rn×d represent the final node embeddings,
where d is the dimension of embedding.

3.2 Model

In this section, we introduce the proposed method ReVaC. The framework is
shown in Fig. 1. The ReVaC consists of three parts: (1) local structural feature
extraction, (2) commonality modeling, (3) fusion encoding.

Feature Extraction. ReFeX is an effective method to capture structural fea-
tures, which firstly computes initial features and then aggregates neighbors’ ini-
tial features with sum- and mean-aggregator recursively to get local structural
features. The initial feature of the traditional ReFeX is mostly composed of node
degree and egonet-based information. It is still hard to be applied to discover
node roles and complex tasks as simple statistical is preserved. Recent research
[2] shows that node’s degree distribution may indeed be a good indicator of the
structural position or role of the node in the network and degree distributions
of higher-order local neighborhoods are also sufficiently expressive structural
descriptors. The 1-hop egonet of node is the smallest local structure, degree
distribution from it can intuitively reflect connection pattern. So, we draw on
the experience of ReFeX to incorporate degree distribution features from 1-hop
egonet of nodes into initial features to help to enrich local domain information
and participate in recursive process to capture higher-quality local structural
features.

For each node v, the initial features extracted in this paper are as follows:

– (1) The degree of v: f1 = |N(v)|
– (2) The sum of node’s degree in the 1-hop egonet of v: f2 =

∑
u∈V (gv)

d(u)
– (3) The number of edges from the 1-hop egonet of v: f3 = |E(gv)|
– (4) The degree distribution in the 1-hop egonet of v: f4 = Dv

We represent Dv with the degree distribution of node v’s 1-hop neighbors. To
prevent one high-degree node from inflating the length of these vectors and
make their entries more robust, we bin nodes together into b = [log(dmax + 1)]
logarithmically scaled buckets, where dmax is the maximum degree in the original
graph. So that the i-th item of the degree distribution vector Dv of node v
is the number of nodes that satisfy [log(d(u) + 1)] = i, u ∈ V (gv). Namely,
Di

v = |{u ∈ V (gv)|[log(d(u) + 1)] = i}|, where the dimension of Dv is b. And
then, based on the initial features, an iterative process similar to traditional
ReFeX is used to obtain local structural features, so we call the above process as
New ReFeX, and the features are denoted as: X = New ReFeX(f1, f2, f3, f4).



ReVaC: A Role-Oriented Network Embedding Method 37

At the same time, we also noticed that with the increase of the number of
iterations, each node can meet fairly high-order neighbors, which may cause over-
fitting. For this reason, the Variational Auto-Encoder is acted as the operator to
encode local structural features to get more compact and robust local structural
embeddings. Specifically, the structural feature reconstruction loss of VAE is
defined as follows:

LV AE = ||X − X̂||22 =
n∑

v=1

||Xv − X̂v||22 (1)

At the same time, to prevent over-fitting and better preserve key local structural
information, referring to RESD, we add a degree-based regularizer, as follows:

Lreg =
n∑

v=1

(log(d(v) + 1) − MLP (Yv))2 (2)

where MLP (·) is also a Multi-Layer perceptron model with rectified linear unit
activation ReLU(·).

We train our model ReVaC by jointly minimizing the loss of feature recon-
struction and degree-regularized constraint as follows:

L = LV AE + αLreg (3)

where α is the weight of the degree-based regularize. Through the above process,
we get the local structural embeddings, we define: Y = V AE(X).

Commonality Modeling. When looking at the similarity from a global per-
spective, the local structural information extracted are preserved as much as
possible in the local structural embeddings in the above process, while common-
alities among local structures are ignored. The similar local structures always
correspond to the same structural role, so the commonality can be regardes as a
common feature of a class of similar local structures, and can also be regarded as
the feature of a structural role. If commonalities preserved in node embeddings,
there is no doubt that we have captured different structural roles to which the
nodes belongs, which helps to make nodes with similar local structures have
similar embeddings. However, most of the current role-oriented methods ignore
commonalities, and some methods that preserve commonalities tend to have high
time and space complexity.

To solve the above problem, we propose to explicitly model commonalities
among local structures. We were inspired by two things: (1) Clustering algo-
rithms can cluster nodes with similar local structures. So we find the nodes
with the same structural role by clustering in the embedding space. (2) Clusters
describe the main structural roles that exist in the local structural embedding
space, we can model their commonalities according to the set of nodes in the clus-
ter. So in the commonality modeling part of ReVaC, the details are as follows:
we use K-Means clustering based on Euclidean distance in the local structural
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embedding space to make nodes with similar local structures have the same clus-
ter label. The cluster label of the i cluster is denoted i, and all nodes in this
cluster form the node set Ri. Because the centroid of a cluster is the mean of the
local structural embeddings of all nodes in the cluster, it represents the common
feature of the cluster to a certain extent. Thus, the centroid of a cluster can
be modeled as the commonality among a class of similar local structures. That
is for the node v, the label i of its cluster is obtained by K-means algorithm,
and then the cluster center is modeled as a commonality with a similar local
structures to v, and its feature is denoted as:

XRi
=

∑
u∈Ri

Yu

|{u|u ∈ Ri}| (4)

where Yu is the local structural embedding of node u and Ri denotes the set of
nodes of cluster i.

For the K-mean algorithm, since the degree of real network always follows the
power-law distribution, so we set K as the logarithm of the maximum degree in
the network, K = [log(dmax+1)], that is, assuming the number of potential main
structural roles in the network is K. Then, we finally get the features of all struc-
tural roles via modeling, which are defined as follows: XR = clustering(Y,K)

Fusion Encoding. The key idea of our algorithm is to strengthen the structural
role features of nodes on the basis of preserving local structural information, that
is, to explicitly preserve commonalities among local structures in node embed-
dings. In detail, the modeled commonalities and the local structural embeddings
of nodes are fused to get node embeddings. For node v, its node embedding is
defined as follows:

Zv = β ∗ Yv + γ ∗ XRi
(5)

where Yv is the local structural embedding of node v, and XRi
is the common

feature of similar local structures of the i-th cluster which v belongs. And β and
γ are hyperparameters. We think the local structural embedding and common
feature of node to be equally important, so both β and γ are set to 0.5. The
above is the whole process of the algorithm.

3.3 Complexity Analysis

Given a network G, let n denote the number of nodes, e denote the number
of edges, m denote the feature aggregation number of New ReFeX, f be the
dimension of extracted feature matrix X, d represent the dimension of local
structural embedding Y . For the local structural feature extraction part, firstly,
it takes O(n+f ·m·(e+nf)) to iteratively capture the local structural features of
nodes by improving the traditional ReFeX method, and then map the extracted
features to the local structural embedding space through the VAE, which requires
O(nf2d+nd2). Therefore, the time complexity of this part is O(n+ f · bin · (e+
nf) + nf2d + nd2). For the commonality modeling part, the time complexity of
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K-Means clustering is O(nkt), where k is the number of cluster centroids and t is
the number of clustering iterations. At last, for the fusion encoding part, fusing
local structural embeddings and commonalities to get node embeddings takes
O(n). To sum up, the whole computation of ReVaC is O(2n+ktn+ f2 · bin ·n+
f · bin ·e+f2dn+d2n). Since k, t, bin are always very small and k < f < d � n,
our model has an advantage over other methods for large-scale networks, such
as the complexity of struc2vec is O(n3).

Table 1. Detailed statistic of the datasets, including the number of nodes, edges,
categories, and nodes in each category.

Dataset Nodes Edegs Classes Category0 Category1 Category2 Category3

Brazil 131 1074 4 32 32 32 35

Europe 399 5995 4 99 99 99 102

USA 1190 13599 4 297 297 297 299

Actor 7779 26733 4 1782 1787 1798 1797

Film 27312 122706 4 10101 2378 3725 11108

4 Experiments

In this section, to evaluate the effectiveness of our model, we select three tasks
for the evaluation including (1)the visualization experiment by plotting the node
representations in a 2-D space to observe the relationships between node embed-
dings and their roles, (2)the classification experiment based on the ground-truth
labels of datasets by comparing the Micro-F1 and Macro-F1 scores, (3)the top-k
similarity search experiment to see if nodes in the same role are mapped into
close position in the embedding space.

4.1 Datasets

We conduct experiments on several real-world networks with unweighted undi-
rected edges. The datasets we use are listed as follows and the statistics are
shown in Table 1:

(1) Air-traffic networks [15]: there are three networks, consisting of American,
Brazilian, and Europe air-traffic networks (Brazil, Europe, and USA for
short). In these networks, nodes represent airports and edges represent the
existed flights between airports.

(2) Actor co-occurrence network [22]: In Actor network, nodes represent actors
and are labeled based on their influences which are measured via the number
of words in their Wiki pages.

(3) English-language film network [23]: it is a film-director-actor-writer-network
(Film for short). And edges denote whether two nodes appear in the same
Wiki page.
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4.2 Baseline

We evaluate the effectiveness of the ReVaC by comparing it with widely used
role-oriented embedding algorithms. We choose eight state-of-the-art methods
including struc2vec [2], ReFeX [4], RolX [5], RESD [7], RDAA [8], GraphWave
[13], SEGK [16], role2vec [21]. In addition, the results of New ReFeX on those
datasets are also demonstrated in subsequent experiments.

4.3 Experiment Settings

All embedding methods using ReFeX set the number of feature aggregations to
3, the number of bins to 4, as does New ReFeX. The number of hidden layers of
the encoder and decoder are all set to 2. We apply Adam SGD optimizer with
the learning rate of 0.001 and set the L2 regularization with weight of 0.001 to
avoid over-fitting. In our later experiments, if not stated specifically, α is set to
0.3, β and γ are both set to 0.5. The dimension of node embedding is set to 128
for all methods, except ReFeX and New ReFeX.

Fig. 2. Visualization of node representations on Brazil network in two-dimensional
space. The label is mapped into color of point.

4.4 Visualization

In this section, we visualize the learned embeddings, which can directly reflect
the performance of different methods. The Brazil network is selected, and we
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apply t-SNE to reduce the dimension of embeddings to 2 for visualization. Each
node is represented as a point and the color indicates its role label. Ideally, points
in the same color should be close together, and those in different colors should
be farther away from each other. As shown in Fig. 2, we observe that role2vec
cannot extract role information well as the points in different colors are mixed
up. Graphwave may be over-fitting to one specific structure characteristic as the
points are almost lined up. The other methods achieve that points in the same
color are clustered in varying degrees, such as RDAA, RESD, RolX, SEGK,
struc2vec. We note that the New ReFeX extracts higher quality features than
ReFeX as expected, because points in the same color are closer and points in
different colors are further apart. Obviously, the ReVaC divides the points with
different colors into different clusters, and the clusters in different colors are far
apart.

Table 2. Node classification average F1-micro score(F1 for short) and F1-macro
score(F2 for short) on different networks. For each column, we mark the values with
significant advantages, i.e. the top results of these methods. OM means that it cannot
be calculated in fixed memory, and OT means that the result cannot be calculated
within 12 h.

Method Brazil Europe USA Actor Film

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

GraphWave 0.762 0.757 0.521 0.490 0.523 0.472 0.477 0.448 OM OM

RDAA 0.790 0.783 0.462 0.436 0.610 0.597 0.473 0.456 0.509 0.406

ReFeX 0.763 0.758 0.567 0.555 0.630 0.625 0.479 0.460 0.513 0.409

New ReFeX 0.786 0.782 0.572 0.563 0.641 0.635 0.480 0.461 0.539 0.411

RESD 0.791 0.787 0.557 0.545 0.631 0.622 0.471 0.458 0.477 0.375

role2vec 0.323 0.312 0.350 0.348 0.422 0.418 0.311 0.304 0.338 0.302

RolX 0.796 0.793 0.551 0.528 0.627 0.618 0.467 0.452 0.487 0.383

SEGK 0.733 0.726 0.536 0.524 0.615 0.606 OT OT OT OT

struc2vec 0.742 0.737 0.578 0.560 0.647 0.644 OT OT OT OT

ReVaC 0.835 0.831 0.582 0.563 0.660 0.654 0.481 0.463 0.526 0.401

4.5 Role-Oriented Node Classification

We conduct the task of role-based node classification on five real-world networks
to quantitatively evaluate role-oriented embedding methods. To be specific, for
each dataset, a linear logistic regression classifier trained and tested using embed-
dings generated by each base-line and our model. We randomly sample 70% node
embeddings as the training set and the other embeddings are used as the test
set with 20 random runs. The performance on the Micro-F1(F1 for short) and
Macro-F1(F2 for short) is shown in Table 2, for each column, we label the values
of methods with significant advantages.
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We have following observations: (1) Role2vec gets the worst performance.
RESD achieves competitive results on this task. Struc2vec shows superiority
on small networks, like USA, Europe, while struc2vec and SEGK have high
computational complexity. (2) As expected, the classification results of New -
ReFeX on multiple datasets are better than that of ReFeX, where New ReFeX
outperforms others on Actor and gets the highest score on Film. This further
illustrates that the New ReFeX extracts higher quality local structural features
and performs well on large datasets. (3) In general, Our ReVaC overperforms
all of the baselines on all the datasets, which verifies the correctness of the
idea extracting degree distribution features and strengthening the commonalities
among local structures in node embeddings. ReVaC is a state-of-the-art method
for role-oriented network representation learning.

Fig. 3. Accurate values of Top-k similarity search for different embedding methods on
three datestes.

4.6 Top-k Similarity Search

In this section we demonstrate the effectiveness of our model in finding the
top-k nodes that are most structurally similar to the query node. We apply
the top-k similarity search task on the three air-traffic datasets, respectively. In
specific, we find the k most similar nodes for the central node by computing the
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euclidean distance. Then we count the nodes with the same label as the central
node among the K nodes and calculate the accurate value of top-k. We expect
that the embedding distance of nodes with similar local structures is closer, and
the number of nodes with the same label in the K nodes is greater, that is, the
larger the accurate value, the better. Referring to Table 1, the number of nodes
in different categories of the three air-traffic datasets is different, so we set K =
32, K = 97, K = 297. Figure 3 shows the performance of top-k search on four
categories of three datasets by different embedding methods.

We can come to this conclusion gradually through the following observations:
(1)none of the compared methods can produce top results on all categories across
the three air traffic networks. Some methods have very high accuracy in one cat-
egory but low accuracy in other categories, which leads to poor overall perfor-
mance of embedding methods, such as the performance of role2vec and struc2vec
on the USA network. (2)our model achieves excellent and stable results. Firstly,
the accuracy of the ReVaC on all four categories on the Brazil network is sig-
nificantly higher than other baseline methods. Secondly, on Europe and USA
networks, although the accuracy of ReVaC on all four categories is not better
than that of other methods, the average accuracy of those is significantly higher.

5 Conclusion

In this paper, aiming at the challenges of the existing role-oriented network
embedding methods, we propose solutions from two aspects. On the one hand, we
incorporate degree distributions of nodes into the extraction of local structural
features to improve the traditional ReFeX, and then we use the Variational
Auto-Encoder as an operator to obtain noise-reduced and more robust local
structural embeddings. On the other hand, in the local structural embedding
space, we exploit a clustering algorithm to model the common features among
similar local structures and fuse them into the local structural embeddings. This
makes it possible to strengthen the commonality of local structural roles on
the basis of keeping local structural features, so as to achieve the purpose of
enriching structural information and improving the expression power of node
embedding. At the same time, we also introduce the framework of the model,
carried out theoretical analysis and experiments. Extensive experiments confirm
the effectiveness of ReVaC, and also demonstrate that our framework can adapt
well to network scale and dimensions.
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Abstract. Knowledge distillation is an effective strategy to compress
large pre-trained Convolutional Neural Networks (CNNs) into models
suitable for mobile and embedded devices. In order to transfer better
quality knowledge to students, several recent approaches have demon-
strated the benefits of introducing attention mechanisms. However, the
existing methods suffer from the problems that the teachers are very
rigid in their teaching and the application scenarios are limited. In face
of such problems, a dynamic refining knowledge distillation is proposed
in this paper based on attention mechanism guided by the knowledge
extraction (KE) block whose parameters can be updated. With the help
of the KE block, the teacher can gradually guide students to achieve the
optimal performance through a question-and-answer format, which is a
dynamic selection process. Furthermore, we are able to select teacher
networks and student networks more flexibly with the help of channel
aggregation and refining factor r. Experimental results on the CIFAR
dataset show the advantages of our method for training small models
and having richer application scenarios compared to other knowledge
distillation methods.

Keywords: Network compression · Knowledge distillation · Dynamic
refining · Attention mechanism

1 Introduction

Convolutional neural networks (CNNs) have achieved impressive success in com-
puter vision tasks such as image classification [4,23], object detection [14,16],
and semantic segmentation [21,24]. However, the advantages of performance are
driven at the cost of training and deploying resource intensive networks with mil-
lions of parameters. As application scenarios shift toward mobile and embedded
devices, the computational cost, memory consumption, and power consump-
tion of large CNNs prevent them from being deployed to these devices, which
drives research on model compression. Several directions such as model pruning
[10,11,20], model quantization [12], and knowledge distillation [5,9,15,17,22] are
proposed to enable the model to be deployed in resource-constrained scenarios.
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Among them, knowledge distillation aims to compress a network by using the
knowledge of a larger network or its ensemble (teacher) as a supervision to train
a compact network (student) [19]. Different from other compression methods, it
can compress the network regardless of the structural differences between teach-
ers and students.

Attention plays a critical role in the human visual experience. In computer
vision, methods of focusing attention on the most important regions of an image
and ignoring irrelevant parts are called attention mechanisms [3]. In a vision
system, the attention mechanism can be considered as a dynamic selection pro-
cess, which is implemented by adaptively weighting the features according to
the importance of the input. [22] first introduced spatial attention in knowl-
edge distillation (AT), which transfers spatial attention maps to students as
knowledge. [17] introduced channel attention in knowledge distillation (KDPA)
through borrowing the squeezing operation of Squeeze-and-Excitation Networks
proposed by [6]. These methods have yielded good results, but there are still
some problems.

For example, firstly, teachers are too rigid in teaching students as they only
give steps on how to solve a problem, which is more like students learning on
their own through reference answers. However, this is not enough, because a
real teacher usually guides his students’ learning through a question-and-answer
format. More interaction should be generated between the teacher and the stu-
dents. Secondly, the choice of teacher-student combinations is restricted. AT
must ensure that the spatial dimensions W × H of the blocks corresponding to
the teacher and student networks are equal, while KDPA needs to ensure that
the channel dimension C of the blocks corresponding to the teacher and student
networks is equal.

In order to address these issues, we propose a dynamic refining knowledge
distillation based on attention mechanism named DRKD, which introduces the
KE block whose parameters can be updated. During training, a complete ques-
tion and answer session is composed of one forward and one backward propa-
gation. The forward propagation means that the teacher and the student give
their answers separately to the same problem. During the back propagation, the
parameters of both the KE block and the student are updated. The process of
the student’s parameters being updated indicates that the student is correct-
ing the answer based on the teacher’s response, and the parameters of the KE
block being updated means that the teacher is recalibrating the answer based
on the student’s feedback. After many question and answer sessions, the teacher
gradually guides the students to find the best answer. Moreover, with the help
of the channel encoding and the channel refining, the choice of teacher-student
combinations can be more flexible regardless of the dimensional differences in
the feature maps of the corresponding blocks between teachers and students. In
short, the contributions of this paper can be summarized as follows:

1) We propose a novel knowledge distillation method named DRKD. By intro-
ducing the KE block with parameters that can be updated, our approach is
able to dynamically adjust the knowledge transferred to students based on
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their feedback. The approach emulates the human knowledge transfer app-
roach driven by questions.

2) Our proposed method effectively mitigates the problem that many excellent
knowledge distillation methods cannot be used in most teacher-student com-
binations, which greatly enriches the application scenarios of the algorithm.

3) We experimentally demonstrate that our approach provides significant
improvements in the training of small models and shows flexibility in the
selection of teacher-student combinations.

2 Related Work

Knowledge Distillation. Many studies have been conducted since [5] proposed
the first knowledge distillation based on the soften class probabilities. [15] first
introduced the knowledge of the hidden layer to improve knowledge distillation,
which suggests that the knowledge of the hidden layer also has an important
impact on students during the process of knowledge transfer. Inspired by this,
various other methods have been proposed to indirectly match the feature activa-
tion values of teacher and student networks. [9] proposed knowledge distillation
combined with singular value decomposition (SVD) to effectively remove the
spatial redundancy in the feature map by reducing the spatial dimension of the
feature maps. [8] introduced the so-called “factors”, which uses convolutional
operations to paraphrase teacher’s knowledge and to translate it for the stu-
dent. [7] utilized the outputs of the hint layer of teacher to supervise student,
which reduces the performance gap between teacher and student. [22] proposed
to use the sum of absolute values of a feature as the attention map to implement
knowledge distillation. [17] used the channel attention mechanism to highlight
the expressive feature in the middle layer.

Channel Attention Mechanism. In deep neural networks, different channels in
different feature maps usually possess different features [1]. Channel attention
adaptively adjusts the weights of each channel, which can be seen as a feature
selection process to determine what should be paid attention to [3]. [6] first pro-
posed the concept of channel attention and presented SENet, which can capture
channel-wise relationships and improve representation ability. Inspired by this,
many SENet-based channel attention studies began to emerge. [2] proposed a
global second-order pooling block to solve the problem of SENet’s difficulty in
capturing higher-order statistics. [18] proposed the efficient channel attention
block which uses a 1D convolution to determine the interaction between chan-
nels. It tackles the issue that SENet cannot directly model the correspondence
between weight vectors and inputs. Only using the global average pooling in the
squeeze module limits representation ability. To obtain a more powerful repre-
sentation ability, [13] rethought global information captured from the viewpoint
of compression and analysed global average pooling in the frequency domain.
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3 Methodology

The core idea of our proposed approach is how to dynamically extract the knowl-
edge transferred to students. This section is divided into three parts to present
our proposed method. Section 3.1 presents the general structure of DRKD.
Sect. 3.2 introduces the specific details of implementing the KE block. Finally,
we define the loss terms in Sect. 3.3 based on the carefully designed distilled
knowledge.

3.1 Overall Structure of DRKD

The structure of the DRKD is shown in Fig. 1. Most existing neural networks are
composed of several blocks. For example, WideResNet (WRN) consists of three
blocks and ResNet consists of four blocks. Each block contains many convolu-
tional layers, batch normalization layers and activation layers. In this paper, the
dynamic refining process is implemented by introducing a pair of the KE blocks
at the output of the corresponding blocks in the teacher and student networks.
The refining process does not mean to extract specific knowledge, but rather to
dynamically adjust the knowledge transferred to students based on their feed-
back. And this process is more similar to the dynamic selection process of the
attention mechanism.

Fig. 1. Schematic diagram of the overall structure of the algorithm. Ti and Si denote
the output feature maps of the i-th block of the teacher and student networks, respec-
tively. Ci

T and Ci
S denote the number of channels of the feature map of the i-th block

of the teacher and student networks, respectively.

In details, the feature map of i-th block of the teacher network is written
as Ti =

{
f1
Ti

, f2
Ti

, · · · , f
Ci

T

Ti

}
, Ci

T denotes the number of channels of the Ti, and
the feature map of all blocks of the teacher network can be described as T =
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Fig. 2. Schematic diagram of the structure of the KE block, which is divided into two

steps: g(·) and f(·, W ). Where W ∈ RCi
T×Min(Ci

T ,Ci
S)

r , which is determined by the
number of channels of the i-th block feature map of the teacher and student networks.

{T1, T2, · · · , TN}, N denotes the number of the entire network block. The feature

map of i-th block of the student network is written as Si =
{

f1
Si

, f2
Si

, · · · , f
Ci

S

Si

}
,

Ci
S denotes the number of channels of the Si, and the feature map of all blocks

of the student network can be described as S = {S1, S2, · · · , SN}, N denotes the
number of the entire network block.

3.2 KE Blocks

Figure 2 shows the specific structure of the KE block with Ti as the input exam-
ple. The KE block is implemented on the features of each block through two
steps: channel encoding and channel refining.

Channel Encoding. In order to tackle the issue of spatial dimension mismatch
between corresponding blocks of the teacher and student networks, it is a feasible
approach that encodes the global spatial information of each channel into a
channel descriptor. The study by [6] also showed that features Ti or Si in the
hidden layer can be interpreted as a collection of the local descriptors whose
statistics are expressive for the whole image. Many aggregation strategies can be
used to achieve channel aggregation. Considering the computational complexity,
the simplest global average pooling is chosen. The statistics ZTi

∈ R
Ci

T and
ZSi

∈ R
Ci

S are generated by shrinking Ti and Si through spatial dimensions,
respectively. The k-th element of ZTi

and the m-th element of ZSi
are calculated

by:

Zk
Ti

= g
(
fk
Ti

)
=

1
HTi

× WTi

HTi∑
x=1

WTi∑
y=1

fk
Ti

(x, y) (1)

Zm
Si

= g
(
fm
Si

)
=

1
HSi

× WSi

HSi∑
x=1

WSi∑
y=1

fm
Si

(x, y) (2)

where Zk
Ti

denotes the k-th element of the channel descriptor vector of the i-th
block of the teacher network, fk

Ti
denotes the k-th channel feature map of the
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i-th block of the teacher network, and HTi
× WTi

denotes the spatial dimension
of the i-th block of the teacher network. The student network is as above. Where
1 ≤ k ≤ Ci

T , 1 ≤ m ≤ Ci
S .

Channel Refining. Related studies [10,11] have shown that there is a certain
degree of redundancy in the numerous channels in the convolutional neural net-
works. Therefore, in order to take advantage of the information aggregated in
the channel encoding operation, we follow it with a second operation which aims
to dynamically refine the knowledge transferred to the students based on their
feedback. To fulfil this objective, the function must satisfy two criteria: first, its
parameters must be updatable since we need to ensure that knowledge transfer
is a dynamic selection process, and second, its input must be 1D tensor as the
output of the channel encoding is 1D tensor. Besides, the function must also
act as a dimensionality reduction, considering the problem of channel dimension
mismatch between teachers and students. Therefore, the fully connected layer is
the only choice:

VTi
= f (ZTi

,WTi
) = σ (WTi

ZTi
) (3)

VSi
= f (ZSi

,WSi
) = σ (WSi

ZSi
) (4)

where WTi
∈ R

Min(Ci
T ,Ci

S)
r ×Ci

T , WSi
∈ R

Min(Ci
T ,Ci

S)
r ×Ci

S and σ refers to sigmoid
activation function. The r is a hyperparameter which plays a crucial role in our
proposed algorithm. With the help of r, the problem of mismatching the number
of channels in the corresponding blocks of the teacher and student networks can
be solved. And r is usually set to an integer value, 1 ≤ r ≤ Min

(
Ci

T , Ci
S

)
. As

r increases, the total amount of knowledge transferred from the teacher to the
students is decreasing, with a greater tendency to filter for high-priority features.
The balance between quality and quantity is very important in the knowledge
transfer process. The degree of dynamic refining can be adjusted according to
the actual situation with the help of r (the choice of this hyperparameter is
discussed in Sect. 4.4).

3.3 Loss Function

The loss function of our proposed method consists of two components. One is a
cross-entropy loss based on the ground-truth labels and the predicted labels of
the student network, and the other is a dynamic refining (DR) loss based on the
middle layer features of the network.

At the beginning of training, the ground-truth loss plays an important role in
improving the convergence speed of the student network. The loss is calculated
by:

Lcross = Hcross(y, ŷ) (5)

where y denotes the ground-truth label, ŷ denotes the predicted label of the
student network, and Hcross denotes the cross-entropy function.
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During network training, the DR loss acts as a regularization term and helps
improve robust. The loss is calculated by:

LDR =
N∑
i=1

1
λi

‖VTi
− VSi

‖22 , λi =
Min

(
Ci

T , Ci
S

)
r

(6)

where VT = {VT1 , VT2 , · · · , VTN
} represents the knowledge transferred from the

teacher to the student. The r is usually set to an integer value and 1 ≤ r ≤
Min

(
Ci

T , Ci
S

)
.

Objective function:
LTotal = Lcross + αLDR (7)

where the α is a hyperparameter that adjusts the proportion of the DR loss term
in the final objective function.

4 Experiments

In this section, WideResNet (WRN) and ResNet will be used as our deep neural
network models and experimented on the CIFAR datasets. The CIFAR dataset
contains CIFAR-10 and CIFAR-100, consisting of 60,000 RGB images of 32×32
pixels. The ratio of both training set and test set is 5 : 1.

4.1 Experiments on Benchmark Datasets

The performance of the algorithm will be proved in two aspects: different network
architectures and different number of channels. Therefore, three teacher-student
combinations will be chosen, which are the [ResNet34, ResNet18], the [WRN-
28-2, WRN-16-2] and the [WRN-10-5, WRN-16-1]. In WRN-n-k, n denotes the
depth of the network, and k denotes that the number of channels of the network
is k times the number of base channels. During training, the teacher network
is untrainable and the student network is used with stochastic gradient descent
(SGD) as the optimizer, with momentum set to 0.9 and weight decay set to
5e-4. The initial value of the learning rate is set to 1e-1 and all learning rates are
multiplied by 0.7 every 10 epochs. When the [ResNet34, ResNet18] is trained,
the best received results are at α = 1.0, r = 1. When the [WRN-28-2, WRN-16-2]
is trained, the best received results are at α = 1.0, r = 2. When the [WRN-10-5,
WRN-16-1] is trained, the best received results are at α = 1.0, r = 16.

Table 1 and Table 2 show the performance of DR on the CIFAR-10 and
CIFAR-100, respectively. In the tables, the compression ratio is calculated as
Tparams−Sparams

Tparams
. Among them, Tparams denotes the parameters of the teacher,

and Sparams denotes the parameters of the student. When the experiment is con-
ducted on the ResNet, ResNet34 is selected as the teacher network and ResNet18
is chosen as the student network. Compared with the student baseline, the accu-
racy of the student trained by DR on the CIFAR-10 and CIFAR-100 is improved
by 1.99% and 3.29%, separately. When the experiment is carried out on the
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Table 1. The performance of DR algorithm on CIFAR-10

Teacher Student Compression FLOPs Student DR Teacher

Ratio Baseline Baseline

ResNet34, ResNet18, 47.51% 0.56 G 94.10% 96.09% 94.21%

21.28M 11.17M

WRN-28-2, WRN-16-2, 53.06% 0.13 G 92.80% 95.70% 93.89%

1.47M 0.69M

WRS-10-5, WRN-16-1, 95.68% 0.01 G 90.19% 93.36% 92.05%

1.90M 0.08M

Table 2. The performance of DR algorithm on CIFAR-100

Teacher Student Compression FLOPs Student DR Teacher

Ratio Baseline Baseline

ResNet34, ResNet18, 47.51% 0.56G 76.01% 79.30% 76.71%

21.28M 11.17M

WRN-28-2, WRN-16-2, 53.06% 0.13G 70.79% 75.39% 72.50%

1.47M 0.69M

WRS-10-5, WRN-16-1, 95.68% 0.01G 64.92% 71.09% 70.09%

1.90M 0.08M

WideResNet, two teacher-student combinations are selected in terms of whether
the number of channels matches. One is the [WRN-28-2, WRN-16-2], in which
the accuracy of the student trained by DR on the CIFAR-10 and CIFAR-100 is
improved by 2.90% and 4.60%, respectively, compared with the student baseline.
The other is the [WRN-10-5, WRN-16-1], in which the accuracy of the student
trained by DR on the CIFAR-10 and CIFAR-100 is improved by 3.17% and
6.17%, separately, compared with the student baseline.

From these experiments, it can be seen that DR can significantly improve
the performance of the student. As the capacity of the student network grad-
ually decreases, the performance improvement of the students trained by DR
gradually becomes larger and the value of the refining factor r increases. Among
them, the improvement is more obvious on the CIFAR-100. These show that our
method works very well when small models are trained since the lower capac-
ity student network is transferred with higher quality knowledge, reflecting the
adjustment effect of r on the balance between quantity and quality. Furthermore,
the students even outperform the teachers due to the added ground-truth loss.
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4.2 Comparison with Other Methods

In order to demonstrate the effectiveness of our proposed DR more extensively, it
is used to compare with other typical knowledge distillation methods. WideRes-
Net is widely used in various knowledge distillation methods for training on the
CIFAR. Therefore, WRN-28-2 is chosen as the teacher and WRN-16-2 is selected
as the student to perform experiments on the CIFAR. Table 3 shows the per-
formance of DR compared with other typical knowledge distillation algorithms.
The accuracy’s improvement in the table refers to the comparison with the stu-
dent baseline, which is obtained by training with a standard back-propagation
algorithm. Here the teacher baseline corresponds to the last column of Table 1
and Table 2 and the student baseline corresponds to column 5 of Table 1 and
Table 2.

Table 3. Comparison of DR and other typical algorithms on CIFAR

Algorithm Parameters FLOPs CIFAR-10 CIFAR-100

Teacher 1.47 M 0.21 G +1.09% +1.71%

KD 0.69 M 0.13 G +0.74% +1.52%

AT 0.69 M 0.13 G +1.17% +1.66%

KDPA 0.69 M 0.13 G +1.75% +2.32%

DRKD (our) 0.69 M 0.13 G +2.90% +4.60%

From these experiments, it can be found that the accuracy of the student
trained by DR is improved by 2.90% and 4.60% on the CIFAR-10 and CIFAR-
100, respectively, compared to the student baseline. Compared to the teacher
baseline, the improvement is 1.81% and 2.89% separately. It performs the best
of all methods. And this improvement is even more evident on the CIFAR-100,
which again demonstrates the advantage of our approach to train small models.
This is because the capacity of the student network is small compared to the
task complexity of the CIFAR-100. Our method is more advantageous in dealing
with the problem that small capacity networks are difficult to train.

4.3 Ablation Experiments

In this section, a series of experiments based on the teacher-student combination
[WRN-28-2, WRN-16-2] are employed to investigate the effect of the hyperpa-
rameter α and each block in the network on the algorithm.

First, the effect of each block in the network on the algorithm is studied.
WideResNet has three blocks. θ is used to indicate that some blocks of the
network are not involved in the loss calculation. For example, θ = 001 means
to only calculate the loss for the third block, and so on. When studying the
importance of each block, hold other hyperparameters constant and let α = 1,
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r = 2. As shown in Table 4, the student obtains the optimal result when all
blocks of the teacher and the student are involved in the loss calculation. From
these experiments, it can be found that distillation is not very effective when
the knowledge is transferred for only one block, suggesting that the shallow
information of the network also plays an important role in guiding students.

Table 4. The effect of each block in the network on the performance of the DR algo-
rithm

θ CIFAR-10 CIFAR-100

001 93.75% 74.22%

010 95.31% 74.61%

011 94.14% 74.61%

100 94.53% 75.00%

101 94.14% 74.22%

110 94.14% 74.22%

111 95.70% 75.39%

Second, the importance of the DR loss term is investigated. The α is used
to adjust the DR loss term as a percentage of the total loss. When exploring
the effect of α on the algorithm, keep other hyperparameters unchanged and let
r = 2, θ = 111. Table 5 shows how the accuracy of the student network on the
CIFAR changes when the DR loss term increases as a percentage of the total
loss, and the student obtains the best results when α = 1. At first, the accuracy
of the student network increases as α becomes larger, but starts to decrease after
reaching a certain threshold. Moreover, the algorithm is more sensitive to the
value of α before reaching the threshold, because its small changes can lead to
large fluctuations in accuracy. From these experiments, it can be found that a
balance should be maintained between the DR loss term and the ground-truth
loss term. It still helps to improve student’s performance when the DR loss
is small. But when the DR loss is too large, the degradation of the students’
performance is very dramatic as the ground-truth loss term hardly works.

Table 5. The effect of α on the performance of the DR algorithm

α CIFAR-10 CIFAR-100

0.1 94.53% 73.83%

0.5 94.92% 74.22%

0.7 95.31% 74.61%

1 95.70% 75.39%

2 94.92% 73.83%

4 95.31% 75.00%

6 94.53% 74.22%

8 94.53% 73.44%

30 93.75% 72.67%



Dynamic Refining Knowledge Distillation Based on Attention Mechanism 55

4.4 Refining Factor

The refining factor r is an important hyperparameter that can be used to control
the balance between the quantity and the quality of knowledge transferred to
students. In this paper, the quantity of knowledge is simply measured by the
number of channels. To investigate this relationship, the experiment has been
conducted based on whether the number of teacher-student channels matches.

Table 6. Performance of the teacher-student combinations [ResNet34, ResNet18] and
[WRN-28-2, WRN-16-2] on CIFAR when the refining factor r takes different values.

Teacher- r Compression FLOPs CIFAR-10 CIFAR-100

Student ratio

[ResNet34, ResNet18] 1 47.51% 0.56 G 96.09% 79.30%

2 47.51% 0.56 G 95.70% 78.91%

4 47.51% 0.56 G 95.70% 78.91%

8 47.51% 0.56 G 95.31% 78.91%

16 47.51% 0.56 G 95.31% 77.73%

32 47.51% 0.56 G 94.53% 75.39%

[WRN-28-2, WRN-16-2] 1 53.06% 0.13 G 93.75% 74.22%

2 53.06% 0.13 G 95.70% 75.39%

4 53.06% 0.13 G 94.92% 73.43%

8 53.06% 0.13 G 94.53% 75.00%

16 53.06% 0.13 G 94.53% 73.44%

32 53.06% 0.13 G 94.14% 73.05%

Table 7. Multiple teacher-student combinations with mismatched channel numbers

Student Teacher Compression k

Ratio

WRN-16-1 WRN-10-2 75.00% 2

WRN-10-3 88.41% 3

WRN-10-4 93.44% 4

WRN-10-5 95.68% 5

When the Number of Channels in the Teacher-Student Combination
Matches. Considering Ci

T = Ci
S , experiments have been performed based on

teacher-student combinations [ResNet34, ResNet18] and [WRN-28-2, WRN-16-
2] for a range of different r values. When studying the effect of r on the algorithm,
hold the other hyperparameters constant and let α = 1, θ = 111.
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The top half of Table 6 shows that the best results are obtained from
the teacher-student combination [ResNet34, ResNet18] with the refining fac-
tor r = 1, meaning that the KE block is still beneficial for improving student’s
performance even without refining channel features. The bottom half of Table 6
shows that the teacher-student combination [WRN-28-2, WRN-16-2] obtains
the optimal results with the refining factor r = 2. In summary, when the total
amount of knowledge is equal, the knowledge of the high-capacity teacher net-
work can be transferred to students without refining, on the contrary, the low-
capacity teacher network needs to further improve the quality of knowledge.

When the Number of Channels in the Teacher-Student Combination
Does Not Match. Considering Ci

T �= Ci
S , experiments have been conducted

based on Table 7 for a range of different r values, where k denotes the ratio of
the number of teacher and student channels. When exploring the effect of r on
the algorithm, keep the other hyperparameters constant and let α = 1, θ = 111.

Fig. 3. On the CIFAR-10, the student gets the highest accuracy rate of 92.58% at r = 3
when k = 2, 92.58% at r = 3 when k = 3, 92.97% at r = 4 when k = 4 and 93.36%
at r = 16 when k = 5. On the CIFAR-100, the student gets the highest accuracy rate
of 69.53% at r = 3 when k = 2, 69.53% at r = 3 when k = 3, 69.92% at r = 4 when
k = 4 and 71.09% at r = 16 when k = 5.

Figure 3(a) and Fig. 3(b) show the variation in student’s accuracy for different
student-teacher combinations for different r values on the CIFAR-10 and CIFAR-
100, respectively. From these experiments, it can be found that as the ratio of the
number of channels between teachers and students increases, the refining factor
r for obtaining the best performance increases as well. However, the refining fac-
tor cannot always be increased because of the limitations of the student network.
In general, when the total amount of knowledge is not equal, the larger the total
amount is, the more the teacher network needs to further improve the quality of
the knowledge transferred to the students. This is also consistent with our conven-
tional perception that the larger the total amount is, the more redundancy exists.
But the refining factor r cannot be increased all the time and its maximum value
is Min

(
Ci

T , Ci
S

)
limited by the teacher and student network architecture.
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5 Conclusion

In this paper, we propose a knowledge distillation method based on attention
mechanism named DRKD, which aims to dynamically select the knowledge
transferred to students. This provides a novel way of thinking, where the teacher
gradually guides the students to get the best answer through a question-and-
answer format as a real teacher teaches the students, rather than simply instill-
ing them with knowledge. In addition, our proposed approach deeply explores
the balanced relationship between the quantity and the quality of knowledge
transferred from the teacher to the student, not only laying the theoretical foun-
dation for achieving stronger compression for small model optimization, but also
improving the versatility of knowledge distillation methods for multi-structural
combination situations. Finally, we testify the effectiveness of this approach and
the flexibility in selecting teacher-student combinations on the CIFAR-10 and
CIFAR-100.
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Abstract. Inductive relation prediction is to predict relations between
unseen entities. The current methods implicitly learn the logical rules in
the knowledge graph through the local subgraph structures, and obtain
the latent semantic representation of the predicted triples. However,
existing methods lack relation information of neighboring triples due
to the incompleteness of the knowledge graph, and the representation of
entities does not consider the connection structures between relations
which contain different semantic information. To address these chal-
lenges, we propose a novel entity representation by Neighboring Relations
Topology Graph (NRTG) for inductive relation prediction. Specifically,
we divide connection structures between relations into several topologi-
cal patterns, and design a module to extract relations of all neighboring
triples for constructing Neighboring Relations Topology Graph (NRTG).
In NRTG, the nodes represent the relations and the edges represent the
topological patterns. Afterward, we design an information aggregation
module to encode the NRTG as the entity representation, and then use
the scoring network to predict relations between unseen entities. Experi-
ments demonstrate that our model can effectively capture relation infor-
mation of neighboring triples and semantic information of connection
structures between relations. Moreover, it outperforms existing methods
on benchmark datasets for the inductive relation prediction task.

Keywords: Knowledge graph · Knowledge graph completion ·
Inductive relation prediction

1 Introduction

Nowadays, knowledge graphs play a very important role in natural language pro-
cessing [27], recommendation systems [21] and question answering [8]. However,
the existing knowledge graphs are incomplete, so the relation prediction task is
required for reasoning and completion. The relation prediction on the knowledge
graph is divided into transductive and inductive. Transductive relation predic-
tion [1,3,16] learns and operates on latent representations (i.e., embeddings) of
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entities and relations in a knowledge graph. However, this method can only make
relation predictions for entities that appear in the training set, and cannot rep-
resent unseen entities. On the contrary, inductive relation prediction [6,17,19] is
entity-independent, and this approach can make relation prediction for entities
that are not present in the training set. For the real world, existing knowledge
graphs cannot cover all entities, so the problem of relation prediction for unseen
entities has been paid more and more attention by researchers.

Existing models of inductive relation prediction mainly predict missing rela-
tions by learning logical rules in knowledge graphs. At present, there are mainly
two types of methods for learning logic rules. Rule-based learning explicitly mines
logical rules based on co-occurrence patterns of relations. Inductive relation pre-
diction by local subgraph structures, such as GraIL [17], implicitly learns the
logical rules in subgraph based on Graph Neural Networks (GNN) [7,12,14].
More recently, TACT [2] classifies relation pairs in subgraphs into several pat-
terns, and incorporates these messages into the representation of relations.

Although subgraph-based models have shown inductive learning capability
in validating unseen nodes, there are some disadvantages. First, many infer-
ence paths are disconnected due to the incompleteness of the knowledge graphs.
Therefore, the subgraph will miss a lot of neighboring relation information. Tak-
ing Fig. 1 as an example, for entity “GSW”, neighboring relations “coach of” and
“belong to” are not connected to the tail node so the representation of “GSW”
lacks these relation information. Moreover, existing methods do not take into
account connection structures between relations in entity representation. For
example, in Fig. 1, the relation “part of” has three connection structures such as
“parallel”, “tail-to-head” and “tail-to-tail” with predicted relation “located in”
and these connection structures have different effects on the representation of
“GSW”. In this way, the representations of nodes “GSW” and “Californla” with
topology information are obtained, respectively. Then, combine the embedding
of “located in” into the scoring function to get the likelihood of this triple.

Fig. 1. An example in knowledge graphs.
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To address these disadvantages, we propose a novel entity representation by
Neighboring Relations Topology Graph (NRTG) for inductive relation predic-
tion. Specifically, the NRTG extracts all neighboring triples and then divides
the connection structures between relations into six topological patterns. There-
fore, our method can capture relation information of neighboring triples and
connection structures between relations by NRTG.

For predicted triples, our model consists of the following stages: (1) con-
structing NRTG via relations topology module. (2) getting head and tail entity
representations of predicted triple via information aggregation module based on
GNN [7]. (3) inputting head and tail entity representations and embedding the
predicted relation into the scoring network to obtain the predicted triples score.

Our contributions are as follows. First of all, we propose a novel framework
that uses two graph structures to represent the head and tail entities of pre-
dicted triples separately. This framework can more completely mine the logical
information implied by the head and tail entities in the knowledge graph. Sec-
ondly, we design Neighboring Relations Topology Graph (NRTG) to capture the
semantic information of connection structures among relations. Finally, it signifi-
cantly outperforms existing inductive relation prediction methods on benchmark
datasets.

The remainder of this article is structured as follows. Related works are
introduced in Sect. 2. The specific details of our method are introduced in Sect.
3. The experiments used to analyze and verify the effectiveness of our method
in Sect. 4. Section 5 concludes this article and proposes future works.

2 Related Work

At present, there are two main methods for relation prediction on knowledge
graphs. One is the rule learning-based methods, and the other is the embedding-
based reasoning methods:

Rule Learning-Based Methods. Rule-based methods [4] learn logical
rules by relational co-occurrence patterns of knowledge graphs. Because these
logic rules are independent of entities, these methods can predict relations
between unseen entities. Despite the fact that these methods are inherently
inductive, these methods are difficult to scale to large datasets. Recently, Neu-
ralLP [23] proposed an end-to-end framework to address scalability issues. Based
on NeuralLP, DRUM [13] can mine more correct logic rules. However, These log-
ical rules cannot learn the complex topological structure between relations.

Embedding-Based Methods. Most of the existing methods are
embedding-based methods such as TransE [1], ConvE [3], ComplEx [20] and
RotatE [16], which is to learn a low-dimensional embedding vector for each entity
and relation in a knowledge graph. In recent years, more and more researchers
have applied graph neural networks (GNN) [7,12,14] to relation prediction, as
knowledge graphs naturally have graph structures. Schlichtkrull et al. [15] pro-
pose a relational graph neural network that considers the connected relations to
represent entities. Afterward, GAT [11] proposes a graph neural network based
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on an attention mechanism to teaches the representation of entities, which effec-
tively learn the knowledge of neighboring triples. More recently, Zhang et al.
[26] proposed a relational graph neural network with hierarchical attention to
effectively utilize the neighborhood information of entities in knowledge graphs.

To predict the relation between unseen entities, GraIL [17] reasons via entity-
independent local subgraph structures. On the basis of GraIL, TACT [2] consid-
ers semantic correlations between relations, and models correlation coefficients of
the different semantic correlations into relation representation. Moreover, there
are some neural networks [24,25] that learn topology.

However, these methods have limitations. The incompleteness of the graph
can lead to insufficient learning of neighboring relations. Furthermore, these
methods are too simplistic to model entity representations since these methods
do not take into account the topological structure between neighboring relations
and predicted relations.

3 Methods

In this section, we introduce our proposed model. The task of our model is induc-
tive relation prediction, which predicts the relation between unseen entities. For
inductive relation prediction, we need to represent entities that have not been
seen in the training set. Therefore, our model uses two Neighboring Relations
Topology Graphs (NRTGs), in which the nodes represent the relations and the
edges represent the connection structures between relations, to represent the
head and tail entity respectively. Then our model scores the predicted triple
through head representation, tail entity representation and embedding of pre-
dicted relation. Our model consists of the following parts: (1) Relations topology
module. (2) Information aggregation module based on GNN [7]. (3) Scoring net-
work and Loss function. Figure 2 gives an overview of our model.

3.1 Relations Topology Module

In order to solve the problems that the existing model does not capture the com-
plete neighboring relations and does not consider connection structures between
relations, we design this module to fully mine the implicit logical rules of pre-
dicted triple in knowledge graphs in two aspects: neighboring relations extraction
and Neighboring Relations Topology Graph (NRTG).

Neighboring Relations Extraction. For existing subgraph-based meth-
ods, they assume that the paths connecting the head and tail entity contain the
logical information that could represent the predicted triple. Differing from the
existing subgraph-based models, we assume that the relations of all neighbor-
ing triples imply the logical rules of relation prediction. Because the knowledge
graph is incomplete, many reasoning paths are disconnected. Therefore, neigh-
boring relations that do not exist on the reasoning path can also provide a
basis for relation prediction. Furthermore, we extract two subgraphs from the
knowledge graph to represent the head and tail entity of the predicted triple,
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Fig. 2. An overview of our model. The framework consists of two modules. The blue
vector represents the initial predicted relation embedding. We use a scoring network
to score a triple. (Color figure online)

respectively. Compared with using an enclosing subgraph to represent triples,
our method can better emphasize the logical information implied by entities.

In this module, we extract all n-hop neighboring triples of the head and tail
entity, respectively. For example, given a predicted triplet (u, rt, v), we iteratively
obtain the n-hop neighboring triples of the node u and node v through the
breadth-first search(BFS) algorithm. Let Nn (u) and Nn (v) be set of triples in
the n-hop neighborhood of node u and node v in the KG. For existing subgraph-
based methods, they compute the enclosing subgraph by taking the intersection,
Nn (u) ∩ Nn (v), of these k-hop neighborhood sets. However, these models will
lack many neighboring triples. Therefore, we respectively use Nn (u) and Nn (v)
to represent node u and node v, which can fully capture the logical rules implied
by the neighboring triples of the head and tail entity.

Neighboring Relations Topology Graph. Since the n-hop neighboring
triples extracted from the KG do not consider the connection structures between
relations, we design the Neighboring Relations Topology Graph (NRTG) to
address this problem. Inspired by TACT [2], to model the connection struc-
tures between relations of neighboring triples, we categorize relation pairs, con-
sisting of neighboring and predicted relations, into six topological patterns. As
illustrated in Fig. 3, there are six connection structures for connected relations
in the knowledge graph, namely “head-to-tail”, “tail-to-tail”, “head-to-head”,
“tail-to-head”, “parallel”, and “loop”. The connection structures are called topo-
logical patterns and they are named “H-T”, “T-T”, “H-H”, “T-H”, “PARA” and
“LOOP” respectively.

Based on the definition of different topological patterns, we can convert the
n-hop neighboring triples to NRTG, where the nodes represent the relations
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Fig. 3. An illustration of the transition from connection structure between relations to
logical patterns.

and the edges indicate the topological patterns between neighboring relations
and predicted relations. For example, the triples (e1, r1, e2) and (e2, r2, e3) are
connected by e2, and their topological pattern is “H-T”. So, we construct a new
triple (r1,H − T, r2) in NRTG. For n-hop neighboring triples of head and tail
entity, Nn (u) and Nn (v), we can convert the n-hop neighboring triples of entity
u and entity v into NRTG in this way, respectively.

In this module, we extract the n-hop neighboring triples of the head and tail
entity, respectively, and then convert the neighboring triples into NRTGs. As we
can see, the NRTGs not only contain neighboring relations of the entities, but
also take into account the connection structures between relations. Therefore,
entity representation by NRTG can better mine the logical rules implied by
entities predicted in KG. The detailed procedure is presented in Algorithm 1.

3.2 Information Aggregation Module

Based on the Neighboring Relations Topology Graphs (NRTGs) of the head and
tail entity, we design a module to aggregate neighboring relations and topological
patterns between relations in NRTGs as entity representations. Specifically, the
information aggregation module is based on Relational Graph Convolutional
Network (R-GCN) [15], and uses a message passing mechanism [5] in graph
neural networks to update node representations. Finally, we use the average
pooling of all the latent node representations to represent head, and tail entities
of the predicted triple, respectively. As we can see, the entity representation
contains the neighboring relations and topological patterns through this module.
In this module, the message passing mechanism of node update is mainly divided
into message function and aggregation function.

Message Function. The purpose of the message function is to pass the
information to update the node in the NRTG. For each target node, it may
receive messages from multiple nodes. Inspired by R-GCN [15], we define the
message function of the k-th layer as:
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Algorithm 1. Neighboring Relations Topology Graph Construction
Input: Origin graph G, predicted triple (u, rt, v), hop of neighboring n
Output: neighboring relations topology graph of head entity Gu, neighboring relations

topology graph of tail entity Gv

1: N0 (u) ←− {u}, N0 (v) ←− {v}
2: for each triple (s, r, t) in G do
3: for i ←− 1 to n do
4: if (s, r, t) connect with Ni−1 (u) then
5: Ni (u) ←− Ni−1 (u) ∪ (s, r, t)
6: end if
7: if (s, r, t) connect with Ni−1 (v) then
8: Ni (v) ←− Ni−1 (v) ∪ (s, r, t)
9: end if

10: end for
11: end for
12: Gu ←− {}, Gv ←− {}
13: for each triple (s, r, t) in Nn (u) do
14: if (s, r, t) connect with (ui, rt, vi) then
15: Get pattern between (s, r, t) and (u, rt, v) via the definition of topological

patterns
16: Gu ←− Gu ∪ (rt, pattern, r)
17: end if
18: end for
19: for each triple (s, r, t) in Nn (v) do
20: if (s, r, t) connect with (ui, rt, vi) then
21: Get pattern between (s, r, t) and (u, rt, v) via the definition of topological

patterns
22: Gv ←− Gv ∪ (rt, pattern, r)
23: end if
24: end for
25: return Gu, Gv

mk
t =

P∑

p=1

∑

s∈Nr

ak
t,sW

k
p nk−1

s , (1)

where Nr is the neighboring relations of predicted triple and P is the topological
patterns between relations. nk−1

s represent the node representation of the last
layer, and it is represented as the embedding of relation when in the input layer.
W k

p represents the transformation matrix of the topological pattern p of the
relation pair at the k-th layer. ak

t,s is the edge attention weight at the k-th layer
corresponding to the edge connecting nodes s and t via topological patterns. The
attention weights of the k-th layer are as follows:

ak
t,s = σ

(
W a

1 · ReLU
(
W a

2

[
nk−1

s ⊕ nk−1
t ⊕ na

p

]))
. (2)
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Here W a
1 and W a

2 are the weight parameters in the attention mechanism, respec-
tively. na

p is the attention vector of topological pattern p. σ (·) and Relu (·) are
the activation functions.

Aggregation Function. The purpose of the aggregation function is to
update the representation of the node according to the neighboring message.
After obtaining the message vector mk

t , we update the nodes in the NRTG. The
aggregation function of the k-th layer is:

nk
t = σ

(
W k

0 nk−1
t + mk

t

)
, (3)

where W k
0 is the weight parameters.

We acquire the node representations of the NRTG through the message
function and aggregation function. Finally, the representation of the entity is
obtained by average pooling of all the latent node representations in the NRTG:

ek =
1

|V|
∑

i∈V
nk

i , (4)

where V denotes the set of vertices in the graph.
In this module, based on two NRTGs, we adopt two identical R-GCN [15] to

get the representation of head and tail entities, respectively.

3.3 Scoring Network and Loss Function

Scoring Network. The final step in our framework is to score the likelihood of
predicted triples. For the predicted triple (u, rt, v), the representations of entity
u and entity v is obtained by the information aggregation module, and then we
design a scoring network to output scores. The scoring function is defined as:

f (u, rt, v) = WT [ek
u ⊕ vrt

⊕ eu
v ]. (5)

In the scoring network, we obtain the scoring by a linear layer.
Loss Function. For each triple in the training graph, we sample a negative

triple by replacing the head (or tail) entity. Afterward, we train our model to
score positive triplets higher than the negative by using noise-contrastive hinge
loss [1]. The specific loss function is as follows:

L =
|ε|∑

i=1

max (0, f (u′
i, r

′
t, v

′
i) − f (u, rt, v) + γ) , (6)

where γ is the margin hyperparameter; ε is the set of all triplets in the neigh-
boring relations topology graph. (u′

i, r
′
t, v

′
i) denotes the i-th negative triple of the

ground-truth triple (u, rt, v).
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Table 1. Statistics of inductive benchmarks. We use #E and #R and #TR to denote
the number of entities, relations, and triples, respectively.

WN18RR FB15k-237 NELL-995

#R #E #TR #R #E #TR #R #E #TR

v1 Train 9 2746 6678 183 2000 5226 14 10915 5540

Test 9 922 1991 146 1500 2404 14 225 1034

v2 Train 10 6954 18968 203 3000 12085 88 2564 10109

Test 10 2923 4863 176 2000 5092 79 4937 5521

v3 Train 11 12078 32150 218 4000 22394 142 4647 20117

Test 11 5084 7470 187 3000 9137 122 4921 9668

v4 Train 9 3861 9842 222 5000 33916 77 2092 9289

Test 9 7208 15157 204 3500 14554 61 3294 8520

4 Experiments

In this section, there are the following parts. First, we introduce the experimental
setup, such as datasets, training protocol, and evaluation protocol. Second, we
compare our model with other approaches on several benchmark datasets. Third,
we show the results of ablation studies to verify the effectiveness of our method.
At last, we do some experiments to analyze the effect of hops on our model.

4.1 Experimental Setup

Datasets. In order to facilitate inductive testing, the test set needs to contain
entities not seen in the training set. Therefore, we use some benchmark datasets
for inductive relation prediction proposed in GraIL [17], which are derived from
WN18RR [3], FB15k-237 [18], and NELL995 [22]. Specifically, each dataset con-
sists of a pair of graphs: train-graph and ind-test-graph. We randomly select
10% of the edges/tuples in ind-test-graph as test edges. Details of the datasets
are summarized in Table 1. The distribution of the six topological patterns in
WN18RR and FB15k-237 is relatively uniform, and there are enough train-
ing examples. NELL-995 is a dataset with very sparse relationships, in which
“PAPR” and “LOOP” are relatively rare. Furthermore, the same relational pairs
have different topological patterns in each dataset.

Training Protocol. During training, we set the batch size to 32 and set the
epoch to 100. We set the size of relations embedding to 32. In order to repre-
sent the entity, we convert 2-hop (or 3-hop) neighboring triples to Neighboring
Relations Topology Graph (NRTG) and then use one-layer R-GCN [15] to rep-
resent an entity. We use Adam [9] to optimize all the parameters with an initial
learning rate set at 0.01.

Evaluation Protocol. In the relation prediction task, the aim is to predict
a triple (u, rt, v) with u or v missing. We use the area under the precision-
recall curve (AUC-PR) and Hits@10 to evaluate our models. To calculate the
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Table 2. AUC-PR results on the inductive benchmark datasets extracted from
WN18RR, FB15k-237 and NELL-995. The best score is in bold and second best score
is underlined.

WN18RR FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69

DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94

RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52

GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50

TACT 95.79 95.05 85.58 96.60 85.67 91.77 93.29 92.24 79.60 94.40 92.66 80.22

Our work 97.35 96.55 89.86 96.15 90.79 95.32 95.40 95.83 81.84 92.90 92.84 85.80

Table 3. H@10 results on the inductive benchmark datasets extracted from WN18RR,
FB15k-237, and NELL-995.The best score is in bold and second best score is
underlined.

WN18RR FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58

DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58

RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35

GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 87.50

TACT 84.04 81.63 58.59 76.34 64.39 82.11 84.04 90.58 57.50 92.96 93.32 74.07

Our work 90.69 86.39 74.71 84.07 81.95 93.20 94.45 95.11 59.00 91.80 89.80 81.25

AUC-PR, we replace the head or tail entity with a random entity to sample
the negative triple, and then score the positive triples with an equal number of
negative triples. To evaluate Hits@10, We select the top 10 triples among the 50
negative triples, and then calculate the proportion of correct triples.

4.2 Results and Analysis

We validate the models on classification metrics (AUC-PR) and ranking metrics
(Hit@10), respectively. Then, we compare our method to several state-of-the-art
methods on these metrics, such as NeuralLP [23], DRUM [13], RuleN [10], GraIL
[17] and TACT [2].

Table 2 shows the mean AUC-PR results, averaged over 5 runs. The results
show that our model achieves improvements on WN18RR and FB-237. Especially
on the FB-237, the accuracy is improved by an average of 5%. Competitive results
are achieved on the NELL-995. Table 3 shows the mean Hit@10 results, averaged
over 5 runs. Our model achieves the state-of-the-art results on WN18RR and
FB-237, and also competitive results on NELL-995.

As we can see, our model achieves huge improvements on all metrics on
WN18RR and FB237. Therefore, our model successfully captures neighboring
relations as well as the topological patterns between relations in entity rep-
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Table 4. Ablation results the inductive benchmark datasets extracted from WN18RR,
FB15k-237, and NELL-995. The best score is in bold

WN18RR FB15k-237 NELL-995

v1 v4 v1 v4 v1 v4

MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

Our work w/o NR 76.70 84.30 72.07 80.40 35.03 50.73 40.27 59.41 35.16 56.50 54.05 73.59

Our work w/o TP 69.71 85.37 71.52 77.92 34.45 70.73 55.52 90.66 41.17 49.50 25.93 63.67

Our work 81.22 90.69 78.95 84.07 58.49 81.95 74.15 95.11 53.98 59.00 54.68 81.25

resentation. Meanwhile, the improvement is particularly significant on FB237,
which indicates that our method can better model complex topological structures
between relations. Possible reasons why there is no improvement on NELL-995
are: compared to the other two datasets, the relational connection structures
of the NELL-995 dataset are relatively sparse, which makes it difficult for our
method to learn the topological patterns.

4.3 Ablation Study

In this part, we conduct ablation experiments to verify the effectiveness of our
model. We mainly emphasize the effectiveness of our method by two experiments
respectively: (1) Our work w/o NR (2) Our work w/o TP.

Our Work w/o NR. In order to learn the logical rules between the target
nodes of predicted triples, the existing methods extract paths of head and tail
nodes. However, these methods have obvious drawbacks: the incompleteness of
the knowledge graph leads to missing paths that disconnect with target nodes, so
the model lacks many useful neighboring relations. To verify the effectiveness of
neighboring relations extraction in the relations topology module, we perform an
ablation experiment with the subgraph construction method proposed by GraIL
[17] instead of our method. We called this ablation experiment “Our work w/o
NR”.

Our Work w/o TP. In the relations topology module, we classify the con-
nection structures between neighboring relations and predicted relations into
six topological patterns, and use the information aggregation module based on
R-GCN [15] to represent head and tail entities. To verify that we capture the
topological patterns between neighboring relations and predicted relation in the
entity representation, we set all topological patterns between relations to 1. We
called this ablation experiment “Our work w/o TP”.

Table 4 shows the performance of our method on three datasets. Results show
that our model performs better than the two ablated models on three datasets.
Experiments demonstrate that our method can more completely capture the
relational logic rules for predicting triples, and better represent entities.
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Fig. 4. The effect of different hops on MRR

4.4 Performance with Different Number of Hops

In this part, on WN18RR v1 and NELL-995 v1, we extract the 1-hop, 2-hop,
3-hop and 4-hop neighboring triples of the head and tail entities respectively
to construct NRTGs for inductive relation prediction. And we report the mean
MRR, averaged over 5 runs. In Fig. 4, the performance of the model improves
with the increase of the number of hops at the beginning, but after reaching 2
or 3 hops, the performance of the model does not improve, or even declines. The
results show that the more hops, the more complete the logical information in
the knowledge graph can be learned. However, the more hops will add a lot of
noise information, which will reduce the performance of the model. Furthermore,
with the number of hops increases, the fluctuation of the MRR value will also
increase. Experiments demonstrate that our model can best learn the logical
information implicit in the knowledge topology through the 2-hop (or 3-hop)
NRTG.

5 Conclusion

We propose a novel entity representation method for inductive relation predic-
tion. This entity representation method is based on a Neighboring Relations
Topology Graph (NRTG), in which the nodes represent relations and the edges
represent topological patterns between relations. The NRTG not only implies
the logical rules of neighbor, but also is entity-independent. Thus, our model is
able to make relation predictions in an inductive setting. Experiments demon-
strate that our method significantly outperforms several existing state-of-the-art
methods on benchmark datasets for the inductive link prediction task. In the
future, we plan to extend our model further to capture the implicit logical rules
in Few-shot Relations.
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Abstract. Knowledge graph embedding (KGE) models optimize loss
functions to maximize the total plausibility of positive triples and min-
imize the plausibility of negative triples. Negative samples are essential
in KGE training since they are not as observable as positive samples.
Currently, most negative sampling methods apply different techniques
to keep track of negative samples with high scores that are regarded as
quality negative samples. While, we found entities with similar semantic
contexts are easier to be deceptive and misclassified, contributing to qual-
ity negative samples. This is not considered in most negative sampling
approaches. Besides, the unequal effectiveness of quality negative samples
in different loss functions is usually ignored. In this paper, we propose
an Entity Similarity-based Negative Sampling framework (ESNS). The
framework takes semantic similarities among entities into consideration
with a shift-based logistic loss function. Comprehensive experiments on
the five benchmark datasets have been conducted, and the experimental
results demonstrate that ESNS outperforms the state-of-the-art negative
sampling methods in the link prediction task.

Keywords: Knowledge graph · Knowledge graph embedding ·
Negative sampling · Knowledge graph completion

1 Introduction

A knowledge graph (KG) is a structured graph with facts where entities as
nodes and relations between entities as edges. A fact in a knowledge graph is
usually represented by a triple (h, r, t), where h, r and t are the head entity,
the relation, and the tail entity, respectively. Figure 1 shows a small KG with
several facts in the form of discrete triples, i.e., (JerryY ang,Nationality, USA).
Large-scale KGs, such as Google Knowledge Vault [6], Freebase [3], and DBpedia
[2], have served many real-world applications including question answering [8],
recommendation [28], structured search [32], and etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 73–87, 2022.
https://doi.org/10.1007/978-3-031-20865-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20865-2_6&domain=pdf
http://orcid.org/0000-0003-3541-9031
http://orcid.org/0000-0001-7895-9551
http://orcid.org/0000-0001-9251-2852
http://orcid.org/0000-0002-8917-2196
http://orcid.org/0000-0003-1214-6317
https://doi.org/10.1007/978-3-031-20865-2_6


74 N. Yao et al.

Fig. 1. Entities, relations and facts in a knowledge graph.

Since triples in a KG are hard to be manipulated, knowledge graph embed-
ding (KGE) methods are proposed to provide better generalization ability and
inference efficiency [9] for large-scale KGs. These methods [4,9,12,16,25,33]
encode entities and relations into a low-dimensional vector space while preserv-
ing KG structures. A KGE model has a model-specific score function that is
designed to model complex interactions among entities and relations. A score
function tends to endow positive triples with high scores and negative samples
with low scores when optimizing a loss function.

While many works focus on designing score functions to improve the perfor-
mance of KGE, negative sampling methods have not received much attention.
Negative triples are constructed mainly by replacing either head or tail entities
from positive triples with entities sampled from entity sets. For a triple (h, r, t),
its negative samples are denoted as (h, r, t) = (h, r, t) ∪ (h, r, t), h, t ∈ E , where
E is the entity set. Generally, the quality of negative samples is measured by the
scoring function. Negative samples with high quality are those with high scores
and annotated as quality negative samples. It has been observed that quality
negative samples are rare but important, and the distribution of negative sam-
ples varies during the KGE training process [34]. However, why some negative
samples have high scores are rarely studied, which hinders the improvement of
KGE performance. To the best of our knowledge, we are the first to analyze
the underlying characteristics of quality negative samples and propose a simple
but effective method accordingly. Furthermore, in the past, negative sampling
methods are studied independently to loss functions. Our experimental analy-
sis reveals that the pairwise hinge loss function impedes discriminating quality
negative samples from other positive samples and deteriorates the effectiveness
of the quality negative samples. In the paper, we analyze the contribution of
semantically similar entities to quality negative samples and propose an Entity
Similarity-based Negative Sampling (ESNS) framework. The contributions of the
paper are:

– We analyze the link between entity similarity and quality negative triples and
find that similarity-based negative samples significantly contribute to quality
negative samples.

– We propose a simple but effective ESNS that identifies quality negative sam-
ples, captures the dynamic distribution and reduces false negatives.
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– We design a shift-based pointwise logistic loss function for quality negative
sampling methods. It works effectively with both translational distance-based
KGE models and semantic matching KGE models.

– Comprehensive experiments conducted on the five benchmark knowledge
graphs demonstrate that our method is more efficient and effective than the
state-of-the-art negative sampling methods.

2 Related Work

The negative sampling methods can be categorized into random sampling, static
sampling, and dynamic sampling. As random sampling methods, Uniform neg-
ative sampling [4] and Bernoulli sampling [30] have been used in many KGE
models for high efficiency and simplicity. Static sampling methods [11,14,15,31]
analyze some statistic features of knowledge graphs and get better performance
than random sampling methods. But the above-mentioned methods suffer from
the vanishing gradient problem because they ignore changes in negative sam-
ple distribution in the training process [34]. Most dynamic sampling methods
feature capturing the distribution of negative samples [1,5,7,17,23,26,34] and
generating negative samples from a list of candidates according to the proba-
bility distribution of their scores computed by model-specific scoring functions.
Among them, GAN-based approaches [5,7,17,26] use reinforcement learning to
effectively generate quality negative samples, but it introduces high computa-
tional complexity. NSCaching [34] maintains quality samples with high scores
in head/tail caches indexed by (r, t)/(r, h) to avoid vanishing gradient, but false
negative samples (not observed positive samples but regarded as negative sam-
ples) are easily stuck in caches. Self-Adv [23] is an effective self-adversarial nega-
tive sampling technique incorporated in RotatE model but does not have consis-
tent performances on other KGE models. SANS [1] improves from Self-Adv by
applying random walk to identify negatives but ignores that non-semantic sim-
ilar neighbors do not necessarily contribute to quality negative samples. Unlike
the above-mentioned methods, ANS [21] captures dynamic entity embeddings
rather than negative sample distribution. It suffers from the typical problems
of K-means clustering methods, including the hard-choice of cluster centers and
the dilemma of defining K for datasets with different distributions. Although
there is no clear definition, negative samples with high scores computed by KGE
model-specific score functions are regarded as quality negative samples in gen-
eral. This is because negative samples with low scores cannot contribute to the
loss function and result in the vanishing gradient problem.

Two widely used loss functions into which negative samples are fed are pair-
wise hinge loss function (PH) and pointwise logistic loss function (PL). The
former is usually adopted by translational distance-based models [4,9,16,23,30]:

L =
∑

(h,r,t)∈F
[γ − f(h, r, t) + f(h, r, t)]+ (1)

, where f is the scoring function, h, r and t are embeddings of h, r and t. F
is the set of facts, γ is the margin between positive and negative samples, and
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[x]+ = max(0, x) is the hinge function. The latter is introduced in [25] and
usually used by semantic matching models [10,27,34]:

L = −
∑

(h,r,t)∈F
log σ(f(h, r, t)) −

∑

(h,r,t)/∈F
log σ(−f(h, r, t)) (2)

, where σ(x) = 1
1+exp(−x) is a sigmoid function. Recent studies [20,22,35] explore

the influence of loss functions in KGE model training, but they only consider
general negative samples. The effectiveness of quality negative samples with
different loss functions in training is first discussed in this paper.

3 Entity Similarity-Based Negative Sampling Framework

In this section, we introduce the intuition behind our method and define the
concepts of Entity Context and Entity Similarity. Then, we analyze the con-
tributions of Entity Similarity to quality negative samples and introduce our
proposed ESNS framework.

3.1 Problem Definition

Our general intuition is that a negative sample (h, r, t) is hard to be discriminated
against a positive sample (h, r, t), when the negative entity h is similar to the
replaced entity h in terms of the contexts in a knowledge graph. For example, in
Fig. 1, given a positive triple (Steve Jobs, FounderOf, Apple Inc.), (Jerry Yang,
FounderOf, Apple Inc.) could be a quality negative sample because Steve and
Jerry share similar context {(FounderOf, Apple Inc.), (OnceLivedIn, San Jose),
(Nationality, USA)}. It is harder to be discriminated than (Havard, FounderOf,
Apple Inc.), (Yahoo, FounderOf, Apple Inc.) etc. Next, we formally define the
concept of Entity Context and Entity Similarity in a knowledge graph.

Definition 1 (Head/Tail Entity Context). Given an entity e, its head
context Ch(e) and tail context Ct(e) are a set of 2-tuples, where Ch(e) =
{(r, t)|(e, r, t) ∈ F} and Ct(e) = {(r, h)|(h, r, e) ∈ F} and F is the set of observed
facts.

Definition 2 (Head/Tail Entity Similarity). The entity similarity S
between two entities ei and ej is the number of shared head/tail context when ei
is a head/tail entity, respectively.

Sh(ei, ej) = |Ch(ei) ∩ Ch(ej)|, St(ei, ej) = |Ct(ei) ∩ Ct(ej)| (3)

Entity Context captures an entity’s structural and semantic contexts in a KG.
Entity Similarity computes the contextual similarity between two entities. In
Fig. 1, Steve Jobs shares the head contexts with Jerry Yang and Donald Trump,
given Sh(Steve Jobs, Jerry Yang) = 2((OnceLivedIn, San Jose), (Nationality,
USA)) and Sh(Steve Jobs,Donald Trump) = 1((Nationality, USA)). For all the
other entities, Sh(Steve Jobs, *) = 0. It indicates that using Jerry Yang or Donald
Trump to replace Steve Jobs as a negative sample would be more likely to be a
quality negative sample compared with the other entities.
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3.2 The Analysis of Quality Negative Samples

To verify our assumption, we experimentally analyze and compare the distribu-
tion of similarity-based negative samples (SNS, solid curve in Fig. 2) and that of
non-similar negative samples (NNS, dotted curve in Fig. 2), respectively. TransD
model and YAGO3-10 data (see Sect. 4.1) are used to show the analysis.

(a) Different Epochs (b) Different Triples

Fig. 2. Distribution of NS on YAGO3-10 trained by TransD. The black dashed line
indicates the minus margin λ in the PH loss function. (Color figure online)

SNS vs. NNS: We randomly pick one triple (h, r, t) and classify t’s all possible
negative samples into 2 groups by fixing h and r: (a) {(h, r, ts)}, in which enti-
ties tss share similar context with t (St(t, ts) > 0), and (b) {(h, r, tr)} includes
the rest of the negative samples (St(t, tr) = 0). Figure 2 uses the complementary
cumulative distribution function (CCDF) Fd(x) = P (d ≥ x) to show the propor-
tion of negatives that satisfy d ≥ x. d(h, r, t) = f(h, r, t) − f(h, r, t) is the minus
distance between the positive sample’s and its negative samples’ scores. When
d is smaller than a minus margin -λ (λ > 0), the distance between positive and
negative samples is large enough, and the negative sample contributes a zero gra-
dient to the loss function. Hence, quality negative samples (QNS) are those with
d > −λ. Figure 2(a) shows distributions of negative triples from two groups over
epochs 10, 200 and 1000. The distribution of SNS and QNS changes in different
epochs. Most of SNS have d > −λ and only a few QNS have d > −λ, which
means most of SNS could be potential QNS (d > −λ), but rare NNS could be
potential QNS (d > −λ). Figure 2(b) shows the results from 5 randomly picked
triples at epoch 200. The proportions of QNS in SNS are always far larger than
the proportions of QNS in NNS of these triples. This confirms that SNS can
contribute to QNS far more than NNS.

SNS vs. QNS: We further investigate the contribution of SNS to QNS. First, we
randomly pick 30 positive triples and compute all their quality negative samples
that contribute to a loss function at discrete epochs 50 and 1000. Figure 3(a)
shows the number of QNS and the number of SNS for each triple, respectively.
Most of the QNS are contributed by SNS. Figure 3(b) shows the proportion
of positive triples that satisfy |SNS|/|QNS| > x from 2000 triples randomly
picked from YAGO3-10. For 80% of the positive triples, more than 50% of QNS
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(a) Count of Quality Samples (b) Distribution of Percentage

Fig. 3. Statistics of the contribution of similarity-based NS to the quality NS at epoch
50 and 1000, respectively.

are contributed by SNS. For half of the positive triples, more than 80% of QNS
is contributed by SNS. Similar results can be found at any epoch on different
models. By the above analysis, we summarize our key observations as follows:

Ob1: The distribution of NS changes in the training process as in the previous
study [34].

Ob2: For most of NNS (dotted curve) in group (b), the distances are smaller
than the minus margin (d < −λ = −4). It means that the gradient of these
NNS will vanish to zero. Only a few NNS (d > −λ) contribute to the loss
function.

Ob3: Compared with NNS, most of but not every SNS in group (a) have dis-
tances larger than the minus margin. It means that SNS have higher proba-
bilities with large scores and thus be able to contribute to a loss function.

Ob4: Among all QNS (d > −λ), the SNS has a higher probability with larger
scores than NNS.

These comparisons further suggest that SNS should be considered as quality
negative sample candidates during KGE training since the observations men-
tioned above can be found through all the epochs and triples. Next, we present
our simple but effective ESNS method.

3.3 ESNS Negative Sampling Method

Recall that there are several challenges in generating quality negative samples:
(a) How to model the dynamic distribution, given the negative samples’ dis-
tribution changes in the training process; (b) How to balance the exploration
and exploitation? Quality negative samples are contributed by not only some
similarity-based samples but also other negative samples, although the amount
is very small. We need to ensure that all possible quality negative samples are
explored. Meanwhile, sampling the negative triples with large scores is more
effective than those with small scores; and (c) How to avoid false negatives that
may have very high scores? A negative sampling method needs to be carefully
designed to overcome these challenges. Next, we describe how entity similarity
is obtained from a KG. Then we describe our negative sampling method.
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Algorithm 1: KGE Training Process
Input : training KG F = {(h, r, t)}, h, t ∈ E (entity set), r ∈ R (relation set),

EIIk
h/t, score function f , sampling size N , quality candidate set size

N1, training epoch T , mini-batch size m
Output : the KGE model

1 Initialize the embedding of KGE;
2 foreach epoch ∈ [1, T ] do
3 Sample a mini-batch Fbatch ∈ F with size m;
4 foreach p = (h, r, t) ∈ Fbatch do

// negative sampling

5 e ← Bernoulli(h, t);
6 U ← uniformSampleSet(E , N);

7 Q ← getQualityCandidates(e, U , N1, EIIk
h/t);

8 ens ← getEntityWithHighestScore(Q, f);
9 p ← generateNegativeTriple(ens, p);

10 P ← P ∪ (p, p);

11 Compute the loss function Equation (4) using P;
12 Update the parameters of KGE;

13 return KGE

Inverted Index EIIh/t . Instead of using head-cache H (indexed by (r, t)) and
tail-cache T (indexed by (r, h)) to store negative candidates with large scores as
NSCaching does, an entity inverted index EIIh/t that stores the head/tail entity
similarity is proposed. Every entity has a unique identifier in a KG. Each row i
in EIIh/t, representing entity ei, stores a list of 2-tuple {(j, S(ei, ej))} that are
ei’s similar entities ejs and their corresponding entity similarity S. These ejs
act as quality negative candidates for ei in the training process. Parameter k is
defined to control the number of similar entities for each entity stored in EIIh/t.

Negative Sampling Method. Algorithm 1 shows the general framework of
KGE training with ESNS (Line 5–11) as the negative sampling method. For
each positive triple p in a mini-batch (Line 4), Bernoulli is applied to decide if
head h or tail t should be replaced to construct p’s negative triple (Line 5). From
Observations 2 and 3, we know that quality negatives are contributed by both
similar and non-similar entities. By uniformly sampling N entities from E (Line
6), we construct a small candidate set U that follows the same distribution as
E has. This step ensures that all possible negatives, including both similar and
non-similar entities are explored.

Recall that e’s similar entities es stored in EIIkh/t have higher probabilities
with large scores (Observation 3). For ∀es ∈ U , we retrieve the top N1 similar
entities from EIIkh/t and put them in Q (Line 7). Non-similar entities in U are
randomly selected for Q if the number of similar entities is less than N1. In other
words, e’s quality negative candidates can be dynamically identified because they
have higher probabilities with large scores (Observation 4). Entity ens in Q with
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the highest score f is selected (Line 8) to construct p’s negative triple p (Line
9). All the quality negative triples p in Fbatch are collected (Line 10). Then the
loss function is computed (Line 11).

ESNS Loss Function. We take the loss function in RotatE [23] as a base form
and propose a shift-based logistic loss function that requires only 1 negative
sample for each positive because our similarity-based sampling method is able
to target quality negatives very effectively. The introduced shift-based pointwise
logistic loss function (SPL)(Line 11) is as follows:

Ls = −
∑

(h,r,t)∈F
log σ(κ + f(h, r, t)) −

∑

(h,r,t)/∈F
log σ(−(κ + f(h, r, t))) (4)

, where κ is a configurable shift. When κ = 0, Equation (4) is equal to typical
pointwise logistic loss function used in semantic matching models. When κ > 0,
it replaces the PH loss function for translational distance-based models in ESNS.
The range of x in σ(x) needs to be close 0 (approaching from the positive and
negative sides) to conform to the principle of cross-entropy loss. In translational
distance-based models, the range of scores is (−∞, 0), so a shift is needed to
adjust its range.

The proposed method distinguishes itself from the state-of-the-art negative
sampling methods from 3 perspectives: First, by constructing a quality nega-
tive candidate set based on entity similarity, ESNS can effectively target rare
but quality negatives without applying either complex GAN or caching tech-
niques. Second, given a positive triple p, most existing methods choose p fol-
lowing a score probability distribution to avoid false negatives. In ESNS, the
sample with the highest score is selected as p. Because the 2-step selection pro-
cess involves uniform sampling and similarity-based filtering, the probability (a
false negative p is selected) is very low. Third, ESNS aborts PH loss function
on translational distance-based models. PH loss function maximizes the distance
between the scores from the positive triple and its corresponding negative sam-
ple by a margin γ. It favors the difference but ignore f(h, r, t)/f(h, r, t) may still
higher than other f(∗, r, t)/f(h, r, ∗), because the latter are not always equally
high [35]. This situation gets worse when facing quality negative samples for
their high scores. NSCaching uses head/tail caches indexed by (r, t)/(r, h) and
enables positive samples (∗, r, t)/(h, r, ∗) share quality negative samples, which
ensure f(h, r, t)/f(h, r, t) are smaller than f(h, r, ∗) (f(∗, r, t)). Since caching
incurs false negative samples, we introduce a shift-based pointwise logistic loss
function to ensure that quality negative samples have lower scores compared
with all positive samples and avoid false negative samples. These three changes
not only eliminate the cache maintenance cost, lead to fast convergence, but also
diminish the cache-induced false negatives. The experimental results confirm the
strength of our approach.
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4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our proposed method on five benchmark knowl-
edge graphs that have been widely used for KGE evaluation [4,12,23,30,33].
FB15K and WN18 are subsets of FreeBase [3] and WordNet [19], respectively.
FB15K237 [24] and WN18RR [29] remove duplicated and inverse relations from
FB15K and WN18. YAGO3-10 is a subset of YAGO3 [18]. The statistics of the
datasets are shown in Table 1.

Table 1. Statistics of the datasets

Dataset Ent. Rel. Train Valid Test

WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134

FB15K 14,951 1,345 483,142 50,000 59,071

FB15K237 14,541 237 272,115 17,535 20,466

YAGO3-10 123,182 37 1,079,040 5000 5000

Baselines. We compare ESNS with the following state-of-the-art negative sam-
pling methods. Uniform [4] and Bernoulli [30] are two basic random sampling
schemes. KBGAN [5] uses one KGE model as a negative sample generator that
continuously generates quality negative samples to train the other KGE model in
the discriminator. NKSGAN [17] obtains its generator by applying the attention
mechanism to the neighborhood aggregator. NSCaching [34] introduces caches to
track negative triples with large scores. ANS [21] is a present entity similarity-
based negative sampling method. Self-Adv [23] has multiple negative samples
for each positive sample, which is different from the previous methods. Perfor-
mances are tested on three representative translational distance-based models
(TransE [4], TransD [9], and RotatE [23]) and three representative semantic
matching models (DistMult [33], ComplEx [25] and SimplE [12]).

Evaluation Metrics. Link prediction is to predict the missing entity h (or t) in
a positive triple (h, r, t). In the task, we measure the rank of the missing entity
h (or t) among all the entity sets. Two standard metrics are used: (1) Mean
Reciprocal Rank (MRR), which computes the average of reciprocal ranks, and
(2) Hit@10, which calculates the percentage of ranks within the top 10. To be
consistent, the performance is reported in a “Filtered” setting so that all the
corrupted triples that exist in the train, valid and test set are filtered out.

Hyper-parameter Settings. We use the Adam method [13] as the opti-
mizer in training and adopt its default setting except for the learning rate and
weight decay. EIIkh/t index column size k = 1000 for ESNS. The candidate
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size N = 100 and N1 = 50 are set for ESNS, ANS, KBGAN, and N2 = 50,
N1 = 50 are set for NKSGAN and NSCaching. For Self-Adv, N1 = 50 neg-
ative samples per positive sample are fed into models. Grid search to select
hyper-parameters for others negative sampling approaches is defined as follows:
the hidden dimension d in {50, 100, 200}, batch size b in {512, 1024, 2048},
learning rate lr ∈ {0.00005, 0.0001, 0.0005, 0.001, 0.01}, the regularization factor
μ ∈ {0.1, 0.01, 0.001}, the shift value κ ∈ [5 · · · 25] and κ = 0 for translational-
based and semantic matching models. The hyper-parameters are fine-tuned on
the validation data sets. The results are evaluated within 1000 epochs, and the
early-stop process presents every 100 epochs.

4.2 Main Results

Table 2 summarizes the main comparison results. In the RotatE, DistMult, Com-
plEx and SimiplE models, we used the same SLP loss function in negative
sampling methods. ESNS outperforms other state-of-the-art negative sampling
methods and achieves the highest MRR, which is mainly influenced by the top 1
ranking. ESNS also wins in the overall performance on Hit@10, which evaluate
the general top rankings of correct entities. On YAGO3-10, ESNS has the biggest
improvements compared with others because each entity in YAGO3-10 has at
least ten relations and rich contexts. To conclude, the performance of ESNS rises
when rich entity contexts are contained in the KG.

NSCaching has comparable performance on most datasets. Self-Adv has the
best Hit@10 result on translational-based models on FB15K and FB15K237. For
datasets with smaller entity sets, it effectively benefits the general top ranking
because of multiple samples. Self-Adv does not have consistently good perfor-
mances on all KGE models, especially on semantic matching models. NKSGAN
has better MRR and Hit@10 results than KBGAN on most models and datasets
by aggregating neighborhood information in the generator, but its performance
is still inferior. The performance of ANS is worse than other negative sampling
methods on most models and datasets. This is because ANS ignores the dynamic
distribution of negative samples and only considers the dynamic of entity embed-
dings. Limited by length, we only present Hit@10 results here, but Hit@1 and
Hit@3 results from ESNS are pervasively better than other negative sampling
methods.

On TransE and TransD models, ESNS applies SPL loss function and others
apply PH loss function. Self-Adv, NSCaching and ESNS have shown the most
evident improvements to other models. Self-adv, NSCaching and ESNS overcome
the drawback of PH by multiple sampling, caching and applying SPL, respec-
tively. The results indicate that changing the loss function brings the greatest
improvement.

We also investigate the MRR and Hit@10 convergence trend from different
negative sampling algorithms. MRR and Hit@10 of ESNS increase much faster
and are more stable than other methods. Due to limited space, results are not
presented.
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Table 2. MRR and Hit@10 comparison. Results marked with − are cited from their
original papers.

Dataset Model Translational Distance-based Models Semantic Matching Models

TransE TransD RotatE DistMult ComplEx SimplE

Metric MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

YAGO3-10 ESNS .457 65.7 .466 66.3 .469 64.8 .455 61.8 .450 60.1 .462 61.0

Uniform .233 47.0 .202 46.3 .338 52.0 .150 31.3 .170 34.0 .172 35.9

Bernoulli .180 33.9 .176 34.2 .372 58.0 .266 43.9 .281 45.6 .255 43.2

NKSGAN .317 54.0 .327 55.0 .400 59.0 .453 60.1 .384 57.6 .448 59.9

KBGAN .228 56.6 .239 56.3 .395 58.5 .371 53.0 .377 53.5 .364 55.8

Self-Adv .403 61.7 .454 65.4 .464 64.5 .422 57.8 .403 57.9 .425 60.4

NSCaching .307− 50.7− .315− 52.7− .423 59.5 .403− 56.6− .405− 57.8− .419− 56.5−

ANS .239 57.9 .172 49.7 .383 55.2 .113 24.9 .249 43.6 .244 37.5

WN18 ESNS .801 95.4 .816 95.4 .950 96.0 .834 94.5 .943 95.2 .943 95.3

Uniform .642 93.9 .519 92.5 .928 94.4 .791 92.8 .842 86.6 .849 89.3

NSCaching .782− 94.6− .799− 95.2− .944 95.3 .831− 93.7− .936− 94.0− .942− 94.8−

NKSGAN .783 95.2 .811 95.4 .934 95.7 .821 94.5 .928 95.2 .942 95.0

KBGAN .710− 94.9− .779− 94.8− .937 95.3 .791 94.5 .933 94.5 .941 95.0

Bernoulli .432 93.9 .409 92.4 .926 95.3 .782 94.5 .923 94.1 .921 94.8

Self-Adv .785 95.3 .809 95.3 .948 95.9 .813 94.3 .938 95.0 .938 94.9

NSCaching .782− 94.6− .799− 95.2− .944 95.3 .831− 93.7− .936− 94.0− .942− 94.8−

ANS .475 94.7 .485 94.9 .947 95.6 .790 94.1 .931 94.9 .924 94.7

WN18RR ESNS .227 52.1 .225 50.9 .481 57.5 .424 48.8 .450 51.2 .442 49.0

Uniform .199 46.3 .203 47.5 .471 55.3 .412 46.3 .429 47.8 .426 48.1

Bernoulli .176 44.1 .174 45.1 .447 54.7 .396 43.7 .405 44.1 .433 48.1

NKSGAN .212 49.0 .214 49.9 .451 55.4 .392 42.8 .406 45.6 .432 47.8

KBGAN .213− 48.1− .215− 47.2− .467 56.0 .389 42.2 .402 44.9 .435 48.2

Self-Adv .217 51.2 .214 49.9 .472 55.8 .416 46.3 .435 49.3 .414 45.9

NSCaching .200− 47.8− .201− 48.4− .466 54.1 .413− 45.5− .446− 50.9− .436− 47.4−

ANS .206 46.5 .199 45.8 .456 53.3 .383 43.3 .402 44.4 .400 44.2

FB15K ESNS .655 82.8 .655 82.4 .765 86.4 .776 84.9 .808 86.4 .808 87.0

Uniform .508 76.3 .466 75.8 .634 85.0 .507 76.5 .612 79.8 .599 79.3

Bernoulli .481 73.5 .465 73.2 .596 80.2 .511 76.9 .615 80.9 .614 79.1

NKSGAN .459 70.2 .474 71.7 .726 85.1 .759 84.3 .758 84.2 .764 84.4

KBGAN .458 70.2 .434 70.4 .717 83.7 .666 80.9 .723 82.3 .729 82.8

Self-Adv .647 83.7 .633 84.1 .743 87.1 .726 84.1 .773 85.8 .768 86.0

NSCaching .639− 81.0− .641− 81.3− .705 84.1 .745− 83.9− .800− 86.3− .803− 86.9−

ANS .449 74.1 .372 72.3 .647 81.6 .244 45.5 .347 64.1 .420 66.8

FB15K237 ESNS .308 48.4 .314 49.4 .315 49.6 .296 46.5 .303 47.1 .297 46.7

Uniform .278 47.5 .253 45.0 .279 46.5 .213 38.3 .214 38.7 .225 38.0

Bernoulli .291 47.2 .286 47.4 .258 43.5 .262 43.0 .268 44.2 .225 37.3

NKSGAN .280 46.2 .281 46.7 .314 49.6 .267 43.0 .269 44.0 .276 44.3

KBGAN .278− 45.3− .278− 45.8− .306 48.1 .259 41.6 .247 40.8 .274 45.8

Self-Adv .307 49.9 .309 50.8 .314 50.8 .215 39.5 .211 39.5 .218 40.0

NSCaching .299− 47.6− .286− 47.9− .315 50.5 .288− 45.8− .302− 48.1− .272− 43.9−

ANS .219 40.4 .208 39.7 .284 47.7 .230 36.0 .232 35.5 .230 35.0
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4.3 SPL Loss Function

Visualization of PH’s Drawback. Recall that the PH loss function results
in overlaps between quality negative samples and positive samples’ scores. Here,
we visualize this problem. We analyze the score distribution of 2000 randomly
selected positive samples and their corresponding 2000 randomly selected quality
negative samples. They are trained by TransD model with PH and SPL, respec-
tively. Figure 4(a) shows the overlaps between distributions of positive samples’
scores and negative samples’ scores with PH. Within 2000 negative samples,
about 7% of quality negative samples (PH, blue dashed line) lie in the right of
the lowest value of positive scores (vertical blue dashed line). This means that
the distribution of negative samples overlaps with the distribution of positive
samples, and quality negative samples are mixed with positive samples. In prac-
tice, one positive sample has far larger than 1 quality negative samples, and the
number of quality negative samples mixed with positive samples can be quite
huge. PH cannot help the model clearly separate quality negative samples from
positive samples. By contrast, with the SLP, a clear distance between positive
triples and quality negative samples exists. The reason for this difference is the
distribution of positive samples’ scores in PH has a wider range, and quality neg-
ative samples are always mixed with those relatively low score positive samples.

False Negative Samples of Caching. NSCaching establishes head and tail
caches and mitigates the overlaps between quality negative samples and positive
samples, but it suffers the false negative sample problem. During training, the
ratio of false negatives (positive samples in the train, valid and test sets) in all
negatives keeps increasing in NSCaching due to using caches (Fig. 4(b)). Caches
preserve negative samples with high scores and some false negatives mixed with
them can be trapped and accumulated. In contrast, ESNS does not use caches
and explores new samples in each epoch. When a false negative sample is sam-
pled, it will be released immediately in the next epoch.

(a) ESNS(PH & SPL) (b) Ratio of false negatives

Fig. 4. The ratio of false negatives in NSCaching and ESNS in Fig. 4(b). PH and
SPL Loss function using TransD on YAGO3-10 in Fig. 4(a). The dash lines indicate
the minimum positive score in the corresponding distributions. {(hs, s, ts)} are quality
samples generated in ESNS and NSCaching.
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We also compared the results between NSCaching (SPL) and ESNS (SPL).
As shown in Table 3, NSCaching (SPL) could perform better than NSCaching
(PH) but still worse than ESNS (SPL). It is interesting that uniform, as a non-
quality sampling method, has inconsistent performance with SPL compared to
PH on different datasets. Hence, SPL is not always better than PH without
considering quality negative samples. The above results prove that ESNS (SPL)
achieves the best performance because the entity similarity sampling method is
effective, and SPL does not inhibit its strengths. Due to space limitations, we
only present results on three datasets, and similar results can be found on the
other datasets.

Table 3. Applying different loss functions using TransE and TransD on different
datasets

Dataset FB15K237 WN18RR YAGO3-10

model TransE TransD TransE TransD TransE TransD

metrics MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

Uniform(PH) .278 47.5 .253 45.0 .199 46.3 .203 47.5 .233 47.0 .202 46.3

Uniform(SPL) .243 41.3 .240 41.1 .220 51.5 .205 48.1 .187 34.5 .172 33.5

NSCaching(PH) .299− 47.6− .286− 47.9− .200− 47.8− .201− 48.4− .307− 50.7− .315− 52.7−

NSCaching(SPL) .301 48.0 .311 49.4 .221 52.0 .216 50.0 .434 62.4 .452 64.9

ESNS(SPL) .308 48.4 .314 49.4 .227 52.1 .225 50.9 .457 65.7 .466 66.3

5 Conclusion

In this paper, we investigate the characteristics of quality negative samples and
propose a simple ESNS framework. A shift-based pointwise logistic loss function
is designed to benefit the effectiveness of quality negative samples in training.
We perform a large-scale evaluation to comprehensively validate our method on
benchmark knowledge graphs, demonstrating that ESNS outperforms the state-
of-the-art. Future studies will focus on applying ESNS to neural network KGE
models.
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Abstract. Label distribution learning (LDL) to characterize the impor-
tance of different labels by label distribution has achieved good results in
many application fields. LDL can learn more semantic information from
the data than multi-label learning, however, most of the data in practical
applications are single-label annotated or multi-label annotated, lacking
the complete label distribution information suitable for label distribu-
tion learning. Thus, label enhancement (LE) is proposed to recover the
label distributions from the logical labels. In this paper, we propose a
new label enhancement method using inter-example correlation infor-
mation that can automatically learn label correlations from data and
jointly learn model and label correlations in a unified learning frame-
work. Moreover, we also exploit the feature correlations constraining the
model in the proposed method, which solves the problem that existing
label enhancement algorithms cannot fully utilize the label information
to improve the model performance. The experimental results on several
real-world data sets validate the effectiveness of our method.

Keywords: Label enhancement · Label distribution learning · Label
correlation · Feature correlation · Low rank

1 Introduction

In label distribution learning, a example is often associated with multiple seman-
tic labels at the same time, and each label has a different degree of description
of the example. Compared with the traditional multi-label learning framework,
which assumes that all labels related to the example are equally important, the
label distribution learning is more effective in handling the semantic information
of training examples, and thus has received more and more attention. It has been
successfully applied in various fields such as image and video annotation [12],
Facial Age Estimation [16], head pose estimation [6], facial expression recogni-
tion [3], and Crowd Counting [20]. However, the process of labeling examples
requires a lot of labor, material, and time, and it is difficult to standardize the
label classification criteria, which makes traditional labeled distribution learning
models fail to achieve good generalization performance.
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Fortunately, there are already a large number of logical label data sets in the
field of multi label learning, and Xu et al. [17] proposed a method that exploits
the topological information of the feature space and the correlation between the
labels aimed at recovering the hidden label distribution values from the logical
labels of the dataset, called the label enhancement (LE) learning paradigm. Xu
et al. [17] proposed the graph Laplacian (GLLE) label enhancement algorithm.
The method is based on the smoothness assumption [23] to construct a local
correlation matrix to mine the hidden topological information among examples.
Tang et al. [14] proposed Label Enhancement with example Correlations via
low-rank representation (LESC) algorithm. LESC first applies a low rank con-
straint to the training set to obtain the feature representation with the global
relationship of all examples,, and then smoothly transfers the constructed low-
rank representation of the examples into the label space, using the low-rank
representation of the feature space to represent the low-rank representation of
the label space. Both of the above methods mine the topological information
implied by the examples in the feature space, but neither of them exploits the
correlation information implied by the label space. Zhu et al. [22] proposed the
privileged label enhancement method with multi-label learning (PLEML). The
method is divided into two steps, first generating the auxiliary label distribu-
tion for label enhancement using the multi-label learning model, and then using
the RSVM+ model as the final prediction model, which is a support vector
machine discriminative model implementing the LUPI (learning with privileged
information) paradigm [15]. Although this method first generates the auxiliary
label distribution using the correlation of labels in the label space, the algorithm
is divided into two steps, which results in some loss of label information, and
PLEML does not take full advanlabele of the correlation between examples in
the feature space. Therefore, the effect of this method is suboptimal.

In view of this, this paper proposes a label enhancement method using inter-
example correlation information, Both feature correlation and label correlation
are used to enhance the generalization ability. Firstly, we construct a label corre-
lation matrix which generally captures richer information regarding label depen-
dence than the original label matrix to convert the existing logical labels into
auxiliary label distributions. Note that, In this paper, instead of specifying any
label correlation matrix, label correlation matrix S is learned directly, the matrix
S is integrated in the objective function to enhance the prediction of label assign-
ments. Secondly, in real-world tasks, label correlations are naturally local, where
a label correlation may be shared by only a subset of instances rather than
all the instances [9], so a low rank structure is adopted to capture the local
label correlations. Furthermore, like the previous work of Xu et al. [17]. We
construct a local correlation matrix to mine the correlations between examples.
With these components, we are able to expand the forms of label correlations
and achieve a novel Label Enhancement method that captures more complex
and flexible dependencies among labels. Extensive experiments have shown that
the proposed LEEC algorithm is stable to obtain remarkable performance as we
expect. In summary, The major contributions of this paper are:
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– A novel algorithm is proposed to exploit both feature correlation and label
correlation for label enhancement.

– By introducing a label correlation matrix in the label space while imposing
a low-rank constraint on it, richer label information than the original logical
label matrix is captured.

– Comprehensive experiments conducted on 12 real world datasets show excel-
lent power and generation compared with several state-of-the-art methods.

2 Related Work

label enhancement algorithms can be broadly classified into two categories: label
enhancement algorithms based on ‘fuzzy theory’ and label enhancement algo-
rithms based on ‘graph model’. Fuzzy theory-based label enhancement methods
are usually based on fuzzy mathematical ideas to construct fuzzy affiliation of
each class of label by fuzzy operations or fuzzy clustering to convert logical
label into numerical label. Such as the fuzzy clustering-based label enhance-
ment algorithm FCM [5] and the kernel-based label enhancement algorithm KM
[10]. label enhancement based on fuzzy clustering [5] transforms the affiliation
of each example xi to a cluster in the training set S by the fuzzy C-means
clustering algorithm (FCM) [5] The affiliation of the examples generated dur-
ing the clustering process to each cluster and the fuzzy operations, through the
association matrix of categories and clusters into the affiliation of each exam-
ple xi to the category Di, thus obtaining the labeled distribution training set
E = {(xi,Di)|1 ≤ i ≤ n}.

The graph model-based label enhancement algorithm uses a graph model
to represent the topological relationships between examples, and enhances log-
ical labels into label distributions by establishing the relationship between
instance correlations and label correlations. Typical graph-based label enhance-
ment methods include label propagation-based LE algorithm (LP) [11], manifold
learning-based LE algorithm (ML) [8], and graph laplacian-based label enhance-
ment algorithm (GLLE) [17].

2.1 Label Propagation Based LE Algorithm (LP)

LP first constructs a symmetric similairy matrix W = (wij)n×n based on the
inter-example correlation, whose elements can be calculated by the following
equation:

wij =

{
exp(− ||xi−xj ||2

2σ2 ) if i �= j
0 if i = j

, (1)

The label propagation matrix P is calculated from the similairy matrix W :

P = Q− 1
2WQ− 1

2 , (2)

where Q = diag(d1,d2, · · · ,dm) with the elements di =
∑n

j=1 wij . Assuming
that the descriptive degrees of all labels for all examples form a label distribution
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matrix F , LP uses an iterative method to continuously update F . The initial
value of F 0 = φ = [φij ]n×c consists of the logical labels for example xi, i.e.
∀n

i=1∀c
j=1 : φij = l

yj
xi . The label distribution matrix F is updated using the

following formula
F (t) = αPF (t−1) + (1 − α)Φ, (3)

where α is the balancing parameter that controls the initial logical label and the
degree of influence of label propagation on the final description. After iteration,
eventually F converges to F ∗ = (1−α)(I−αP )−1Φ. Since the label propagation
is influenced by the weights on the path, it will naturally form the difference
in the descriptive degree of different labels, and when the label propagation
converges, the original logical labels of each example can be enhanced to the
label distribution.

2.2 The LE Algorithm Based on Manifold Learning (ML)

The label enhancement algorithm based on manifold learning [8] assumes that
the data are distributed on some manifold space in both feature space and label
space. According to the smoothness assumption [23], the points close to each
other are more likely to share a label. Thus, the topological relationship of the
feature space manifold can be used to guide the construction of the label space
manifold, based on which the logical labels of the examples are enhanced to label
distributions. Specifically, assuming that any example xi can be reconstructed
by a linear combination of its k incoming neighbors, the reconstructed weight
matrix W can be obtained by minimizing the following equation:

Θ(W ) =
n∑

i=1

||xi −
∑
j �=i

wijxj ||2, (4)

where
∑n

j=1 wij = 1. If xj is not a k - nearest neighbor of xi, then wij = 0. By
the smoothness assumption [23], the topological structural information in the
feature space can be transferred to the label space. i.e., the local linear recon-
struction matrix obtained in the feature space is used to replace the unknown
linear reconstruction matrix in the label space. So the label distribution of the
example can be obtained by minimizing the following equation:

Ψ(d) =
n∑

i=1

||di −
∑
j �=i

wijdj ||2,

dyl
xi

lyl
xi

> λ,∀1 ≤ i ≤ n, 1 ≤ j ≤ c.

(5)

where λ > 0 . The label distributions are generated with the optimization by
using a constrained quadratic programming process. Finally, di can be normalize
via the softmax normalization.
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2.3 Privileged Label Enhancement Method with Multi-label
Learning (PLEML)

Zhu [22] propose a privileged label enhancement method with multi-label learn-
ing (PLEML). Firstly, author apply a multi-label learning model to generate
auxiliary information for LE. The auxiliary information Y ∗ = [y∗

1 ,y
∗
2 , · · · ,y∗

n]
can be obtained by the following formula:

Y ∗ = XW̄ , (6)

and W̄ can be obtained by:

W̄ = arg min
W̄

L(W̄ ) + λ1Ω(W̄ ) + λ2Z(W̄ ), (7)

where L(W̄ ) = 1
2 ||Y ∗ − Y ||2F is the loss function defined on the training data

and Y denote the logical value of the training set, Ω(W̄ ) = ||W̄ ||2F is a reg-
ularizer to control the complexity of the output model, Z(W̄ ) = ||Y ∗||tr is a
low-rank regularizer to implicitly exploit the correlation of the labels., and λ1

and λ2 are two parameters to balance the three terms. When the auxiliary label
distribution Y ∗ that can capture the injective relationship between the feature
space and the label space is obtained by the multi-label learning model, PLEML
use LUPI (learning with privileged information) paradigm [15] which is supplied
by a teacher about instances at the training stage to make reasonable use of
additional information. Finally, PLEML use the RSVM+ model as the final pre-
diction model, and use feature information and privileged information to obtain
the final label distribution value.

3 Methodology

3.1 Formulation of Label Enhancement

The main notations used in this paper are listed as follows. Let X =
[x1;x2; · · · ;xn] ∈ R

n×d denote the feature matrix and L = [l1; l2; · · · ; ln] ∈
R

n×c denote the logical label matric, where n denotes the number of instances,
d denotes the dimension of the feature and c is the number of all possible labels.
Let D = [d1;d2; · · · ;dn] ∈ R

n×c denotes the label distribution matrix, where
di =

[
dy1
xi

, dy2
xi

, · · · , dyc
xi

]
is the label distribution associated with xi , d

yj
xi is used

to indicate the importance of label yj to instance xi , which satisfies d
yj
xi ∈ [0, 1]

and
∑c

j=1 d
yj
xi = 1. Given the training set S = {(xi, li)|1 ≤ i ≤ n}, the label

enhancement is the process of transforming the logical label vector li of each
example xi into the corresponding label distribution di, thus obtaining the train-
ing set of label distribution E = {(xi,di)|1 ≤ i ≤ n}.

3.2 The LEEC Algorithm

To solve the problem we discussed Previously, consider the following label
enhancement framework:

Ŵ = min
Ŵ

L(Ŵ ) + Ω(Ŵ ), (8)
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where L(.) is a loss function, the regularization term Ω(Ŵ ) is used to capture
the specific structures of features and labels with various norms. Apparently, we
need to induce the minimization of the formula to get an optimal Ŵ . Assuming
that the feature space and the label space are linearly related, we consider using a
linear model for prediction, the output model can be represented by the following
equation:

D̂ = XW , (9)

where D̂ is the predicted label distribution, and W is the weight matrix. For easy
computation, We use the square of the Euclidean distance as the loss function
and constrain the parameter Ŵ at the same time:

L(Ŵ ) = min
Ŵ

1
2
||XŴ − Y ||2 + λ1||Ŵ ||2F . (10)

In the previously proposed label enhancement algorithms, the models directly
approximate the logical labels. Although this is simple, it loses some semantic
information to a certain extent. Motivated by the idea of [21], if we can restore
partial label information and let the model approach a certain auxiliary label
distribution instead of logical labels, there is no doubt that the representation
ability of the model can be greatly improved. For the above considerations, we
introduce the label correlation matrix S. In particular, given the observed logical
label matrix Y , the reconstructed label j-th of example i-th can be calculated
as a liner aggregation of the existing logical labels of example i-th, that is,
ŷj,i = liS:,j , where S:,j denotes the j-th column of label correlation matrix S.
The reconstructed labels of example xi can be built for all logical label with
ŷ:,i = liS. Considering all examples simultaneously, the final formulation can
be written as Ŷ = Y S, where S ∈ R

c×c is a linear aggregation coefficient
matrix reflecting the correlation of labels and it’s element sij represents the
correlation among the i-th label and j-th label. A simple example is shown in
Fig. 1, we assume that the face expression image in Fig. 1 has four labels, which
are ‘Sad’,‘Anger’,‘Disgust’ and ‘Fear’. Taking the label ‘Anger’ for example,
we can obtain that the relative importance of ‘Anger’ is changed from 0 to 0.8 (It
needs to be normalized) for the high correlation of label ‘Anger’ with the labels
‘Sad’ and ‘Disgust’ shown in matrix S, i.e., the reconstructed distribution liS
can provide more information and assign a new relevance of a label to a particular
instance based on the global label correlations. To exploit the dependence among
labels, Eq. (10) can be rewritten as Eq. (11):

min
Ŵ ,S

1
2
||XŴ − Y S||2 + λ1||Ŵ ||2F + λ2||Y − Y S||2F . (11)

In real-world tasks, label correlations are naturally local, where a label corre-
lation may be shared by only a subset of instances rather than all the instances
[9], so a low rank structure is adopted to capture the local label correlations
based on the intuition that a subset of labels can be closely related to each other
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Fig. 1. Illustration of label correlations. liS is the reconstructed label distribution
which is obtained by multiplying the logical label li with the label correlation matrix
S.

with similar semantic contexts, while being independent of the rest.

min
Ŵ ,S

1
2
||XŴ − Y S||2 + λ1||Ŵ ||2F + λ2||Y − Y S||2F

+ λ3||S||∗,
(12)

where λ1, λ2 and λ3 are balance factors. Considering that the low-rank function
is difficult to optimize, we use the nuclear norm || · ||∗ as a convex approximation
of the low-rank function.

Also, as in the GLLE [17] work, we introduce sample correlation and thus
further constrain the parameter Ŵ . Specifically, We constructs a local correla-
tion matrix A to exploit the topological information in the feature space, and
the elements of the local correlation matrix A can be calculated by the following
equation:

aij =

{
exp(− ||xi−xj ||2

2σ2 ) if xi ∈ N(i)
0 ohterwise

, (13)

where N(i) means the set of x′
is K-nearest neighbors, and σ ≥ 0 is the width

parameter for correlation calculation. Then under the assumption of smoothness
[23] the labels of the examples with similar features are also likely to correlation,
the topological information in the feature space is passed to the label space, i.e.,
the following equation needs to be minimized:

Ω(Ŵ ) =
∑
i,j

aij ||di − dj ||2

= tr(DGD�)

= tr(XŴGŴ�X�),

(14)

where G = A − Â is the graph Laplacian and Â is the diagonal matrix whose
elements are Âij =

∑n
j=1 aij . Formulating the LE problem into an optimization
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framework over Eq. (12) and Eq. (14), the following optimization problem is
obtained:

min
Ŵ ,S

1
2
||XŴ − Y S||2 + λ1||Ŵ ||2F + λ2||Y − Y S||2F

+ λ3||S||∗ + λ4tr(XŴGŴ�X�).
(15)

3.3 Optimization

Since the optimization problem in Eq. (15) is convex, it can be optimized by using
ADMM [1]. Here, we introduce an auxiliary variable Z to make the objective
function separable for the two non-smooth regularization terms in Eq. (15):

min
Ŵ ,S

1
2
||XŴ − Y S||2 + λ1||Ŵ ||2F + λ2||Y − Y S||2F

+ λ3||Z||∗ + λ4tr(XŴGŴ�X�),
s.t. S − Z = 0.

(16)

The augmented Lagrangian function of Eq. (16) is:

min
Ŵ ,S ,Z

1
2
||XŴ − Y S||2 + λ1||Ŵ ||2F + λ2||Y − Y S||2F

+ λ3||Z||∗ + λ4tr(XŴGŴ�X�)

+ < Λ,S − Z > +
ρ

2
||S − Z||2F ,

(17)

where Λ is the Lagrange multiplier, ρ is the penalty parameter, and < ·, · > is
the Frobenius dot-product. The optimization problem of Eq. (17) can be solved
using the alternating solution method.

To solve for Ŵ , Eq. (17) can be reduced to the following alternative methods:

Ŵ = arg min
Ŵ

1
2
||XŴ − Y S||2 + λ1||Ŵ ||2F

+ λ4tr(XŴGŴ�X�),
(18)

In the same way, S can be solved by optimizing the following sub-problem,

S = arg min
S

1
2
||XŴ − Y S||2 + λ2||Y − Y S||2F

+ < Λ,S − Z > +
ρ

2
||S − Z||2F ,

(19)

Both Eq. (18) and Eq. (19) can be solved by the limited-memory quasi-Newton
method effectively [19]. The basic idea is to avoid explicit calculation of the
inverse Hessian matrix, which is required in the Newton method. For the opti-
mization of Eq. (18) and Eq. (19), the computation of L-BFGS is mainly related
to the first-order gradient, which can be obtained by

∇Ŵ =X�(XŴ − Y S) + 2λ1Ŵ + λ4X
�XŴ (G + G�), (20)
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∇S = − Y �(XŴ − Y S) − 2λ2Y
�(Y − Y S) + Z

+ ρ(S − Z),
(21)

Similarly, Z can be obtained by solving the problems as follows:

Z = arg min
Z

||Z||∗+ < Λ,S − Z > +
ρ

2
||S − Z||2F , (22)

Equation (22) have a closed solution [2]. The multiplier Λ can be updated directly
by

Λ = Λ + ρ(S − Z). (23)

4 Experiments

4.1 DataSets

There are 12 real-world label distribution datasets in our experiments, including
two facial expression datasets SJAFFE [13] and SBU 3DFE [18], ten biological
experiments datasets Yeast [4]. Some basic statistics about these 12 datasets are
given in Table 1.

Table 1. 12 multi-label datasets with known ground-truth label distributions from
used in LDL experiments

No Dataset Examples Features Labels

1 SJAFFE 213 243 9

2 SBU 3DFE 2500 243 6

3 Yeast spoem 2465 24 2

4 Yeast alpha 2465 24 18

5 Yeast cdc 2465 24 15

6 Yeast cold 2465 24 4

7 Yeast diau 2465 24 7

8 Yeast dtt 2465 24 4

9 Yeast elu 2465 24 14

10 Yeast heat 2465 24 6

11 Yeast spo 2465 24 6

12 Yeast spo5 2465 24 3

4.2 Evaluation Measures

To measure the distance or similairy between the recovered label distributions
and the ground-truth label distributions, according to Geng’s suggestion [7],



Label Enhancement Using Inter-example Correlation Information 97

six LDL measures are adopted, i.e., Chebyshev distance (Cheb), Clark distance
(Clark), Canberra metric (Canber), Kullback-Leibler divergence (KL), Cosine
coefficient (Cosine) and Intersection similarity (Intersec). The former four are
distance measures and the last two are similarity measures. For Cheb, Clark,
Canberra and KL, the smaller the value, the better the generalization perfor-
mance. For Cosine and Intersec, the larger the value, the better the performance.

Table 2. Comparison results of label enhancement methods on real-world datasets.
The best performance on each measure is marked in bold.

Data Algorithm Yeast-alpha Yeast-cdc Yeast-cold Yeast-diau Yeast-dtt Yeast-elu Yeast-heat Yesat-spo Yeast-spo5 Yeast-spoem SBU 3DFE SJAFFE Avg Rank

Cheb↓ LP 0.0400(6) 0.0420(5) 0.1370(6) 0.0990(5) 0.1280(6) 0.0440(5) 0.0860(5) 0.0900(5) 0.1140(5) 0.1630(6) 0.1230(2.5) 0.1070(5) 5.1250

ML 0.0387(5) 0.0475(6) 0.1207(5) 0.2011(6) 0.1073(5) 0.0499(6) 0.0915(6) 0.0953(6) 0.1514(6) 0.1319(5) 0.1868(6) 0.2188(6) 5.6667

GLLE 0.0192(4) 0.0217(4) 0.0650(4) 0.0530(4) 0.0518(4) 0.0221(4) 0.0478(4) 0.0608(3) 0.0980(4) 0.0870(2.5) 0.1230(2.5) 0.0845(2) 3.5000

PLEML 0.0137(2) 0.0167(2) 0.0540(2) 0.0415(2) 0.0372(2) 0.0165(2) 0.0433(2) 0.0603(2) 0.0921(1) 0.1170(4) 0.1228(1) 0.0885(4) 2.1667

LESC 0.0169(3) 0.0198(3) 0.0572(3) 0.0419(3) 0.0466(3) 0.0208(3) 0.0466(3) 0.0609(4) 0.0933(3) 0.0870(2.5) 0.1231(4) 0.0692(1) 2.9583

LEEC 0.0135(1) 0.0163(1) 0.0514(1) 0.0383(1) 0.0361(1) 0.0162(1) 0.0425(1) 0.0587(1) 0.0923(2) 0.0856(1) 0.1265(5) 0.0869(3) 1.5833

Clark↓ LP 0.4322(5) 0.3803(5) 0.1805(5) 0.2841(4) 0.1902(5) 0.3642(5) 0.2144(5) 0.5585(6) 0.2741(5) 0.2718(6) 0.5810(5) 0.3140(3) 4.9167

ML 0.6025(6) 0.5593(6) 0.3224(6) 0.7276(6) 0.2953(6) 0.5340(6) 0.3823(6) 0.4030(5) 0.3015(6) 0.2036(5) 0.7861(6) 0.8055(6) 5.8333

GLLE 0.3304(4) 0.3018(4) 0.1738(4) 0.2964(5) 0.1413(4) 0.2845(4) 0.2082(4) 0.2618(4) 0.1943(4) 0.1321(3) 0.3818(4) 0.36334(4) 4.0000

PLEML 0.2147(2) 0.2191(2) 0.1465(2) 0.2222(2) 0.1012(2) 0.2042(2) 0.1871(2) 0.2558(2) 0.1855(2) 0.1757(4) 0.3689(2) 0.3775(5) 2.4167

LESC 0.2823(3) 0.2727(3) 0.1552(3) 0.2302(3) 0.1278(3) 0.2617(3) 0.2037(3) 0.2596(3) 0.1871(3) 0.1295(2) 0.3785(3) 0.2763(1) 2.7500

LEEC 0.2097(1) 0.2148(1) 0.1397(1) 0.2050(1) 0.0986(1) 0.1986(1) 0.1828(1) 0.2494(1) 0.1851(1) 0.1273(1) 0.3665(1) 0.2997(2) 1.0833

Canber↓ LP 1.7068(5) 1.3532(5) 0.3241(5) 0.6425(4) 0.3560(5) 1.2612(5) 0.4706(5) 1.2341(6) 0.4013(5) 0.3655(6) 1.2463(5) 1.0708(5) 5.0833

ML 2.0181(6) 1.7591(6) 0.5598(6) 1.6538(6) 0.5070(6) 1.6263(6) 0.7826(6) 0.8440(5) 0.4664(6) 0.2800(5) 1.6593(6) 1.6894(6) 5.8333

GLLE 1.1135(4) 0.9442(4) 0.3016(4) 0.6734(5) 0.2458(5) 0.8692(4) 0.4203(4) 0.5422(4) 0.3018(4) 0.1840(4) 0.8409(4) 0.7518(3) 4.0000

PLEML 0.6981(2) 0.6545(2) 0.2527(2) 0.4772(2) 0.1747(2) 0.6014(2) 0.3741(2) 0.5281(2) 0.2849(1) 0.1837(3) 0.7866(1) 0.7876(4) 2.0833

LESC 0.9514(3) 0.8405(3) 0.2680(3) 0.5021(3) 0.2229(3) 0.7906(3) 0.4110(3) 0.5329(3) 0.2884(3) 0.1801(2) 0.8039(3) 0.5606(1) 2.7500

LEEC 0.6780(1) 0.6393(1) 0.2403(1) 0.4363(1) 0.1696(1) 0.5808(1) 0.3637(1) 0.5137(1) 0.2857(2) 0.1772(1) 0.7953(2) 0.5996(2) 1.2500

KL↓ LP 0.1210(6) 0.1110(6) 0.1030(5) 0.1270(5) 0.1030(6) 0.1090(6) 0.0890(6) 0.0840(5) 0.0420(5) 0.0670(5) 0.1050(5) 0.0770(5) 5.4167

ML 0.0550(5) 0.0609(5) 0.5560(6) 0.1934(6) 0.0648(5) 0.0567(5) 0.0656(5) 0.5320(6) 0.0811(6) 0.5030(6) 0.2489(6) 0.2513(6) 5.5833

GLLE 0.0130(4) 0.0140(4) 0.0190(4) 0.0270(4) 0.0130(4) 0.0130(4) 0.0170(4) 0.0290(4) 0.0340(4) 0.0270(2.5) 0.0690(3) 0.0500(4) 3.7692

PLEML 0.0057(2) 0.0073(2) 0.0135(2) 0.0158(2) 0.0066(2) 0.0064(2) 0.0134(2) 0.0271(2) 0.0299(1.5) 0.0459(4) 0.0659(1) 0.0494(3) 2.1250

LESC 0.0080(3) 0.0100(3) 0.0150(3) 0.0170(3) 0.0100(3) 0.0090(3) 0.0155(3) 0.0280(3) 0.0310(3) 0.0270(2.5) 0.0692(4) 0.0290(1) 2.8750

LEEC 0.0055(1) 0.0070(1) 0.0122(1) 0.0136(1) 0.0063(1) 0.0061(1) 0.0128(1) 0.0253(1) 0.0299(1.5) 0.0246(1) 0.0682(2) 0.0354(2) 1.2083

Cosine↑ LP 0.9814(5) 0.9828(5) 0.9847(4) 0.9805(4) 0.9835(5) 0.9829(5) 0.9861(3) 0.9386(5) 0.9686(5) 0.9503(5) 0.9220(5) 0.9410(5) 4.6667

ML 0.9530(6) 0.9468(6) 0.9429(6) 0.8427(6) 0.9515(6) 0.9489(6) 0.9454(6) 0.8397(6) 0.9359(6) 0.8530(6) 0.8435(6) 0.8231(6) 6.0000

GLLE 0.9876(4) 0.9875(4) 0.9827(5) 0.9750(5) 0.9884(4) 0.9879(4) 0.9845(5) 0.9747(3) 0.9713(4) 0.9780(2.5) 0.9304(4) 0.9594(3) 3.9583

PLEML 0.9944(2) 0.9930(2) 0.9873(2) 0.9854(2) 0.9937(2) 0.9937(2) 0.9872(2) 0.9747(3) 0.9736(1) 0.9620(4) 0.9344(1) 0.9576(4) 2.2500

LESC 0.9905(3) 0.9896(3) 0.9859(3) 0.9844(3) 0.9901(3) 0.9896(3) 0.9851(4) 0.9747(3) 0.9732(3) 0.9780(2.5) 0.9319(3) 0.9731(1) 2.8750

LEEC 0.9946(1) 0.9933(1) 0.9885(1) 0.9876(1) 0.9940(1) 0.9941(1) 0.9878(1) 0.9763(1) 0.9735(2) 0.9791(1) 0.9327(2) 0.9656(2) 1.2500

Intersec↑ LP 0.9074(5) 0.9122(5) 0.9213(5) 0.9128(4) 0.9134(5) 0.9120(5) 0.9237(5) 0.8184(5) 0.8855(5) 0.8367(5) 0.8096(5) 0.8361(5) 4.9167

ML 0.8898(6) 0.8836(6) 0.8646(6) 0.7557(6) 0.8779(6) 0.8839(6) 0.8718(6) 0.7614(6) 0.7486(6) 0.7681(6) 0.7414(6) 0.7251(6) 6.0000

GLLE 0.9386(4) 0.9376(4) 0.9250(4) 0.9052(5) 0.9393(4) 0.9383(4) 0.9310(4) 0.9105(4) 0.9020(4) 0.9109(3.5) 0.8531(4) 0.8757(3) 3.9583

PLEML 0.9615(2) 0.9569(2) 0.9376(2) 0.9335(2) 0.9570(2) 0.9575(2) 0.9385(2) 0.9130(2) 0.9079(1) 0.9109(3.5) 0.8570(1) 0.8718(4) 2.1250

LESC 0.9473(3) 0.9445(3) 0.9338(3) 0.9301(3) 0.9448(3) 0.9439(3) 0.9324(3) 0.9121(3) 0.9067(3) 0.9130(2) 0.8542(3) 0.9050 (1) 2.7500

LEEC 0.9626(1) 0.9579(1) 0.9408(1) 0.9396(1) 0.9582(1) 0.9590(1) 0.9403(1) 0.9154(1) 0.9077(2) 0.9144(1) 0.8568(2) 0.8977(2) 1.2500

4.3 Experimental Setting

The experiment is divided into two parts. In the first part, we first recover the
label distribution from the logical labels by the LE algorithm, and then we com-
pare the recovered label distribution with the ground-truth label distribution. In
the second part, to further test the effectiveness of the LE algorithm, we trained
LDL models using the recovered label distributions from the first part of the
experiments, and then tested the trained LDL models on a new test dataset
and compared the label distribution predictions with those made by the models
trained directly on the ground-truth label distributions. Ten-fold cross-validation
was performed for each algorithm. Note that due to the lack of datasets with
both logical labels and label distributions, logical labels must be binarized from
the ground-truth label distribution in the LDL training set in order to implement
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the LE algorithm and measure the similarity between the recovered label distri-
bution and the ground-truth label distribution. To ensure consistent evaluation,
we uniformly binarized the logical labels by the way in GLLE.

The performance of LEEC is compared against five label enhancement learn-
ing algorithms, including ML [8], LP [11], GLLE [17], PLEML [22], and LESC
[14]. For the comparison algorithms, parameter configurations suggested in cor-
responding literatures are used, The number of neighbors K for ML is set to
c + 1. For GLLE, the parameter λ is chosen among {10−2, 10−1, · · · , 102} and
the number of neighbors k is set to c + 1. The kernel function in GLLE is
Gaussian kernel. The parameter α in LP is set to 0.5. In LESC algorithm, the
parameters λ1 and λ2 are selected among {10−4, 10−3, · · · , 10}. For PLEML,
the values of the parameters λ1 and λ2 are selected among {2−4, 2−3, · · · , 28},
and γ = 0.1, C = 0.1. In LEEC, the parameters λ1 and λ4 are selected among
{10−8, 10−3, 10−2}, {10−3, 10−2, 10−1} respectively, and λ2 = 10 , λ3 = 10−3.
Besides, ρ is simply set as 1.

Fig. 2. Comparison of the LDL after the LE pre-process against the direct LDL mea-
sured by Cheb ↓.

4.4 Experimental Results

Table 2 tabulate the results of the six LE algorithms on all the datasets, and the
best performance on each dataset is highlighted by boldface.To exhibit the mean
accuracy of the recovered label distribution, the average rank of every algorithm
among all datasets is also listed. For each evaluation metric, ↓ indicates the
smaller the better while ↑ indicates the larger the better. For the second step
of experiments, due to page limitation and refer to [17], we only show the effect
on the two evaluation measures of Chebyshev and Cosine in Fig. 2 and Fig. 3,
respectively. The results of other measures are similar.

From Table 2, we can see that LEEC significantly outperforms LP, ML,
GLLE, PLEML and LESC on the most measures. Compared with the PLEML
algorithm, LEEC performs slightly worse on the SBU 3DFE and Yeast-spo5
datasets on all the measures, and LEEC performed slightly worse on the SJAFFE
dataset comd with the LESC algorithm. However, in other cases, the LEEC algo-
rithm outperforms the rest of the LE algorithms. From Fig. 2 and Fig. 3, we can



Label Enhancement Using Inter-example Correlation Information 99

Fig. 3. Comparison of the LDL after the LE pre-process against the direct LDL mea-
sured by Cosine ↑ .

find that the LEEC algorithm achieves good performance on most of the datasets
and does not falling behind the existing state-of-the-art LE algorithms in terms
of Cheb and Cosine. It is worth mentioning that the effectiveness of LDL using
the label distributions recovered by the GLLE and PLEML algorithms is even
better than that of LDL using the Ground-Truth label distributions directly
after the LE pre-process. A reasonable explanation for this is that since the
Yeast-spoem dataset contains only two labels, a large amount of label informa-
tion is lost after the binarization operation, which makes it difficult for the LE
algorithm to recover a reasonable label distribution.

5 Conclusion

In this paper, we propose a new label enhancement algorithm LEEC, which
exploits both feature correlation and label correlation, mainly to solve the prob-
lem that existing label enhancement algorithms cannot make full use of label
information to improve model performance. Unlike existing methods, LEEC
mines the hidden label information simultaneously with the model training, mak-
ing the best possible use of the label information. Extensive experimental results
on 12 datasets show that the algorithm outperforms several existing algorithms
in recovering label distribution and LDL prediction after LE preprocessing of
logical labels.
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Abstract. Link prediction is an effective method to guarantee the
integrity of the knowledge graph, aiming to predict the missing part
of the triple. So far most of the existing researches have been proposeed
to embed entities and relations into a vector space or inferred the paths
between entities in a knowledge graph. However, most of the previous
works merely take account of the single path or first-order information,
ignoring the relation between the entities and their attributes. Moti-
vated by this, for a better representation of entities and relations, we
in this article exploit the characteristics of the attribute to enrich the
information of entities cooperated with a graph neural network. In our
method the edges connected by a node are regarded as its contextual
information, which will be extracted as an attribute feature. Then the
message propagation network is utilized to generate the node and edge
representions, after which an aggregation function is applied to inte-
grate node attributes, node representation as well as edge representation
to realize link prediction. Experiments on the same datasets show that
our model outperforms the baselines in multiple metrics including MRR
and Hits@N. At the same time, ablation experiments validate a strong
expandability of the node attribute feature learning method we propose,
which enables the model to accelerate the convergence of training and
improve the performance on the link prediction task.

Keywords: Knowledge graph · Graph convolutional neural network ·
Link prediction · Attribute activation · Node attribute characteristics

1 Introduction

The essence of knowledge graph (KG) is a semantic network, in which its nodes
represent the entities in reality and its edges imply various semantic relations
between entities. However, most of the existing knowledge graphs are incom-
plete. As for those incomplete KGs, it is necessary to complete their missing
knowledge to guarantee a better knowledge service for downstream tasks, such
as question answering systems [2], recommendation systems [5,24], and informa-
tion retrieval [10].
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Fig. 1. Node attribute examples

For the missing knowledge, early approaches usually apply a simple vector
operation in link prediction. In 2013, Bordes [1] proposed the TransE to obtain
the representation of entities and relations in a low-dimensional vector space,
with the assumption that the head entity plus the relation equals to the tail
entity. Owing to the limitations in dealing with complex relations, researchers
later proposed some variants based on TransE including TransH [21], TransR [12]
and TransD [8] to enhance the representation of relations and entities. Although
Trans models are easily extended to a large-scale multi-relational knowledge
graph, there still exists a weakness in feature learning and interpretability. In
order to solve the shortcomings mentioned above, researchers put forward a
deep learning model based on Convolutional Neural Networks [13]. ConvE [3]
stacks and splices the head entity and relation vector, and then converts them
into a two-dimensional tensor, which is finally applied to a convolution opera-
tion to predict the missing tail entity. Based on ConvE, ConvKB [15] proposes
converting the stacking and splicing of triples into one-dimensional vectors for
one-dimensional convolution, and distinguish whether the triples exist in the
knowledge graph based on the score.

Subsequently, scholars proposed Graph Neural Networks(GNN) based on
convolutional neural networks to specialize in graph data. RGCN [11] employs
GCN to deal with the impact of different relations on nodes in the graph struc-
ture. It applies an encoder model in the relation graph to accumulate information
in multiple steps for link prediction inferring. Vashishth [20] proposed a novel
graph convolutional framework CompGCN, which embeds nodes and relations
into a uniform vector space, and updates node information through a propaga-
tion mechanism. While methods based on graph convolutional neural network
have achieved remarkable improvement in link prediction, they merely explore
the vector representation of entities and relations themselves, and do not make
full use of other characteristics of the nodes.

In the task of relation classification [7,14], the type information of entities
has been proven to play an important role in improving the representation of an
entity. Inspired by their researches, we introduce attribute information to enrich
the representation of a node in KGs. We assume the attribute information of
any node is closely related to the edges it connects to. The attribute of a missing
link can be inferred from the existing links which connect to it. As shown in
Fig. 1, for the node “apple” with multiple meanings, its meaning is distinguished
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from the edges connected to it. Through the edge labeled as “releases”, the node
can be defined as a “tech company”; through the edge labeled as “likes eating”,
it can be defined as “fruit” instead. Similarly, for the node “?”, if the connected
edges including “studies in”, “majors in” and “obtains” has been known, we can
infer the type of “?” should be “student”.

To explore latent information and enhance the representation of nodes in
the knowledge graph, this paper proposes a link prediction model AAGCN
(Attribute Activate Graph Convolutional Network) based on a node attribute
activation. We define an attribute feature of a node by all edges it connects to.
AAGCN takes the edge connected by the node as a feature of itself, and then
puts it into a graph convolutional network for capturing the node attribute char-
acteristics. In the next step, it applies the message propagation neural network
[4] (MPNN) to aggregate neighbor information and obtains the characteristics
of a node and relation. Finally, it integrates the representations of node, rela-
tion and node attribute characteristics to realize link prediction, which solves
the weakness of an incomprehensive representation exposed to previous GNN
models.

The main contributions of this paper are as follows:

1. To enhance the expression of each node in the knowledge graph, an attribute
information learning method based on node attribute activation is proposed
in this article.

2. This paper proposes an AAGCN model that integrates multi-relation informa-
tion in graph convolutional networks and converts the connected relations of
the nodes into attribute characteristics. It employs the embedding technique
of the knowledge graph to embed nodes, relations, and node attributes into
a vector space, which learns the obtained vectors by a convolution operation
to predict the missing entities and relations.

3. Experiments on the benchmark datasets validate the effectivess of our pro-
posed model and show that our model is able to accelerate the convergence
of training and improve performance on the link prediction task.

2 Related Work

Knowledge representation learning is also known as knowledge graph embedding.
Its target is to embed the entities and relations in the knowledge graph to a low-
dimensional vector space. Knowledge graph is a network composed of relations
and entities, usually represented by triples (h,r,t), where h,t and r respectively
represents head entity, tail entity and relation. Knowledge representation learn-
ing is to explore the vector representation of triples (h,r,t).

Early knowledge representation methods mainly pay attention to the struc-
ture of triples for realizing the representation learning of entities and relations
in the knowledge graph, such as TransE [1], TransH [21] and TransR [12]. These
methods based on translational model explain a relation as a translation from
a head entity to a tail. However, weakness in multiple relations learning and a
poor interpretability of these methods restrain their performance on knowledge
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graph embedding. Later, DistMult [22] and ComplEx [19] are proposed based
on the semantics model. DistMult [22] uses a diagonal matrix to represent each
relation in KG but it fails to model antisymmetric relations. By contrast, Com-
plEx [19] introduces a complex space and utilizes complex vectors to represent
antisymmetric relations. In recent years, a great success in neural networks on
graph embedding has drawn much attention to KG embedding research. ConvE
[3] uses a convolutional neural network to exploit potential feature information
from entities and relations, and then applies these extracted features to estimate
the confidence of triples. WGCN [18] learns the information from neighbors in an
adaptive way for capturing the entity characteristics relevant to its relation, thus
the information of neighbors is shared with all nodes when they are embedded
in the same vector space.

The models mentioned above have made achievements in the task of knowl-
edge representation, but a node is composed of multiple attributes which exactly
help the model better understand the representation of the node. Aware of the
importance of node attributes, our model defines an attribute feature for a node
and activates it. We utilize GCN to learn the edges in KGs, which are defined
as attributes of nodes in our assumption.

3 AAGCN Model

In this section, we introduce our proposed AAGCN model. We will first define
the problem formulation of knowledge graph and then illustrate the component
of AAGCN in detail. The framework of AAGCN is shown in Fig. 2.

3.1 Problem Formulation

A knowledge graph can be defined as a directed graph G = (V,R, E ,X ,Z),
where V and R are the sets of nodes and edges in the graph. E denotes the sets
of triples in the form of (u, v, r), where u, v, r respectively represents the head
entity, tail entity and the relation between them. X ∈ R

|V|×d0 is the random
initialized characteristic of all nodes in V, where d0 is the initial dimension of
the feature. Z ∈ R

|R|×d0 denotes the characteristic of all relations in R. For
the triples (u, v, r) in the knowledge graph, there exists a reverse relation r−1

and a reverse triple (v, u,r−1), thus we extend R and E to R′ and E ′, where
R′ = R ∪ {r−1

∣
∣ r ∈ R} ∪ rself , rself denotes a self-loop relation of the nodes,

and E ′ = E ∪ { (v, u,r−1)
∣
∣ (u, v, r) ∈ E} ∪ { (u, u,rself )| u ∈ V}, then the Z is also

extended to Z ′ ∈ R
(|R|×2+1)×d0 .

3.2 Node Attribute Activation

In the knowledge graph, for any node, its representation is closely related to the
edges it connects with. AAGCN regards the edge connected with the node as a
context feature. For any edge j ∈ R in G, we regard j as a feature si[j] of the
node i ∈ V which it connects with. For all nodes in the knowledge graph, we
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define a feature matrix S = {s1, s2, ..., s|V|}, where si denotes the feature vector
of node i, |V| is the number of nodes in KG. The feature activation operation
of each node is shown in (1), where ∗ represents any node in the V set. si[j]
indicates whether the node i is connected to the relation j in the knowledge
graph. If connected, the features j of node i will be activated and si[j] = 1.

si[j] =
{
1, if(i, ∗, j) ∈ E ∧ i ∈ V ∧ j ∈ R′

0 other
(1)

After obtaining the feature matrix S, the initial feature is input into the graph
convolutional neural network for further learning to capture the attribute char-
acteristics of the node. It uses forward propagation as:

Y (k+1) = σ(D̃− 1
2 ÃD̃− 1

2Y (k)W (k)) (2)

where D̃− 1
2 ÃD̃− 1

2 uses the adjacency matrix of the graph to obtain the Lapla-
cian matrix. Y (l) is the feature vector of the k layer. When k = 0, Y (0) = S,
and W (l) represents the adjustable weight parameter of the k layer. σ(·) denotes
the sigmoid function. After learning an k-layer neural network, attribute charac-
teristics of all nodes are represented as Y (k+1) = {ak+1

1 ,ak+1
2 , ...,ak+1

|V| }, where
ak+1

v denotes the attribute characteristics of node v.

3.3 Relation Features

To prevent the overfitting in rare relations as the number of relations increases,
our model does not take a random initialization for all relation vectors, but uses
the basis-decomposition method [17] for relation initialization. All the relations
in the knowledge graph can be defined as a weighted summation of a set of
learnable basis vectors {v1,v2, ...,vB}. Each relation r ∈ R is defined as followed:

zr =
B∑

b=1

αbrvb, (3)

where αbr ∈ R refers to the weight of each basis vector vb for the relation r. After
obtaining the representation zr of the relation, zr is sent to a fully connected
layer to extract high-level features:

hl+1
r = W l

relh
l
r (4)

where W l
rel represents the learnable weight parameter of the lth layer, hl+1

r refers
to the relation feature after propagation in a l layer neural network and h0

r = zr.

3.4 Node Features

In our model, we use CompGCN [20] to update the embedding of the node, and
its aggregation function is defined as

hv = f

⎛

⎝
∑

(u,r)∈N (v)

Wλ(r)φ(xu,zr)

⎞

⎠ (5)
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Fig. 2. Link prediction model based on node attribute activation

For the node v, there are three kinds of relations related to it. When v is the
head node, it is interpreted as active relation rout; when v is the tail node,
it is called the passive relation rin. At the same time, v will also have a self-
relation rself with itself. Hence, when aggregating neighbor nodes, according
to the different kinds of relation with neighbor nodes, we have different weight
parameter matrices for relation as shown in (6).

Wλ(r) =

⎧

⎨

⎩

Wout, r = rout

Win, r = rin

Wself , r = rself

(6)

For any neighbor node of v, we integrate its neighbor node u and relation r
by utilizing the φ function, and then select different weight parameter matrices
Wλ(r) for different relations according to its type, and finally obtain the infor-
mation of neighbor node u after a matrix multiplication. Among them, φ denotes
the Circular- correlarion [16] operation. After the information aggregation of all
neighboring nodes, the vector of v represented as hv is obtained. After a learning
for an l-layer graph neural network, the v can be represented as hl+1

v and its
update equation is as follows in (7):

hl+1
v = f

⎛

⎝
∑

(u,r)∈N (v)

Wλ(r)φ(hl
u,hl

r)

⎞

⎠ (7)

3.5 Features Integration

In the stage of features integration, we have obtained the node representation
hl+1

v , edge representation hl+1
r and attribution representation ak+1

v . Our next
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step is to combine these features through a concatenation operation that gen-
erates a vector g for the final prediction task. Later, g would be applied in a
convolutional neural network that leverages entities and relations to predict the
missing entity in a triple. The concatenation and convolution operations proceed
as follows:

g = concat(hl+1
v ,hl+1

r ,ak+1
v ), (8)

ψu(g) = (vec(ḡ ∗ ω))W , (9)
where ḡ indicates a conversion before convolution operation that transforms a
vector from one-dimension to two-dimension. ω represents multiple filters for dif-
ferent characteristics extractions of the nodes. vec() is another transition opera-
tion that converts the output from three-dimension to one-dimension. The trans-
formed output would be sent to a fully connected layer for a linear transition
where it would map the one-dimensional input into a |V|-dimensional vector.
Finally, each missing entity for prediction is scored as:

p =σ(ψu(g)) (10)

σ(·) refers to the sigmoid function. In the training state, we utilize the cross-
entropy loss to optimize our model:

L(p, t) = − 1
N

∑

i

(ti · log(pi) + (1 − ti) · log(1 − pi)) (11)

where pi and ti respectively denotes the score and label of the node i.

4 Experiments

4.1 Experimental Settings

Table 1. Statistic of datasets.

Dataset Rels Ents Train Valid Test

WN18RR 1345 14,951 483,142 50,000 59,071
FB15K-237 237 14,541 272,115 17,535 20,466
NELL-955 200 75,492 149,678 543 3,992

Datasets and Evaluation Metrics. In this article, we choose FB15k-237 and
NELL-995 in the comparative experiment. As for ablation experiment, we choose
FB15k-237 with more complex relations and WN18RR composed of simple rela-
tions for comparison. The number of entities and relations in the datasets and
the number of triples in the training set, test set and validation set are shown in
Table 1. We adopt Mean Reciprocal Ranks(MRR) and Hits@1/3/10 to measure
the performance of AAGCN. For the facts in dataset, if entity h has a relation
r, the model will generate a reverse relation r−1 associated with h. Therefore,
the number of triples in the dataset after processing will be twice as the initial
data.
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Parameter Settings and Baselines. GCN Layerl is set to 1 and GCN Layerk
is set to 2. The batch size is set to 256. The dropout rate is set to 0.1. We use
the Adam optimizer to update the weights with a learning rate of 0.001. We
choose the following methods as baselines for comparison with AAGCN, includ-
ing DistMult [22], ComplEx [19], ConvE [3], ConvR [9], and CompGCN [20].

Table 2. Comparatie experiment results

FB15k-237 NELL-955
MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

DisMult 0.241 0.419 0.263 0.155 0.410 0.512 0.444 0.353
ComplEx 0.247 0.428 0.275 0.158 0.408 0.514 0.453 0.345
ConvE 0.318 0.493 0.349 0.230 0.415 0.527 0.461 0.346
ConvR 0.350 0.528 0.385 0.261 – – – –
CompGCN 0.355 0.535 0.390 0.264 0.429 0.542 0.477 0.361
AAGCN 0.357 0.538 0.391 0.267 0.431 0.542 0.467 0.367

4.2 Results and Discussion

Table 2 shows the overall experiments result of AAGCN against baseline meth-
ods. On FB15k-237, AAGCN outperforms all baseline methods in four met-
rics including MRR, H@10, H@3, and H@1. At the same time, on NELL-995,
AAGCN ranks first in three metrics referred to MRR, H@10, and H@1. Experi-
ments show that AAGCN effectively exploit the characteristics of multiple rela-
tions in the knowledge graph to learn attribute information. Combined with the
graph convolutional network for information update, the added attribute fea-
tures strengthen the representation of a node, thus improve the performance on
link prediction.

On the NELL-995 data set, the convergence process of the MRR metric on
validation sets in the first 150 epochs is shown in Fig. 3. It is clear that ComplEx
converges faster than other counterparts as it approximately converges in the
100th epoch. On the contrary, the MRR metric of ConvE increases slowly and
its convergence period exceeds 150 epochs. As for CompGCN and AAGCN, we
observe that their fitting process is similar with each other. But when the MMR
metric keeps the same in the validation sets, we find that in the test sets the
metric of AAGCN is higher than that of CompGCN, which illustrates AAGCN
has better performance on generalization than CompGCN.
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Fig. 3. MRR of different benchmark models in the learning process

4.3 Ablation Experiment

To evaluate the validity and extensibility of the node attribute features in
AAGCN model, we conduct an ablation experiment to explore the impact of
the node attribute features on the link prediction task.

Table 3. Ablation experiment results

FB15k-237 WN18RR
ConvE ConvE+Attr ConvE ConvE+Attr

MRR 0.318 0.321 0.423 0.435
H@10 0.493 0.494 0.488 0.504
H@3 0.349 0.355 0.431 0.445
H@1 0.230 0.234 0.393 0.402

In the experiment, node attribute characteristics are added to the ConvE model.
Considering the influence of the complexity of relations on attribute features
learning, we choose FB15k-237 and WN18RR for our ablation experiment. The
parameters of ConvE keep consistent during the experiment. As illustrated in
Table 3, compared to the original model, the variant model that adds attribute
features has improved on MRR and H@N metrics. Besides we conclude their
convergence performance on the two data sets as shown in Fig. 4. On WN18RR,
ConvE begins to learn quickly at the 50th epoch, then it becomes stable at the
100th epoch, and finally converges at the 400th epoch. As for the variant, it is
in a fast learning phase during the 25th epoch and the 50th epoch, after which
it becomes stable and finally converges at the 200th epoch. As for convergence
performance on FB15K-237, there is no significant difference between the two
models, but ConvE is slightly faster than the variant in learning.
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(a) MRR change process of FB15k-
237 dataset

(b) MRR change process of
WN18RR dataset

Fig. 4. MRR value change process in the ablation experiment

Therefore, in a knowledge graph with simple relations, the attribute informa-
tion of the node can quickly capture the attribute characteristics according to
the relations, thus promoting the representation learning for the entire model
and accelerating its convergence. But in a knowledge graph with more complex
relations, the variety of relations restrains the nodes from a quick learning for
their characteristics of attribute. Compared with the original model, the learning
speed of the variant decreases moderately, but they converge almost at the same
time. In general, the variant model adding attribute features performs better on
the link prediction task.

5 Conclusion

This paper proposes a knowledge graph embedding method AAGCN that inte-
grates the characteristics of node attributes with relations. The model exploits
the relations between nodes as their contextual information and utilizes an acti-
vation function to transform those contextual information into node attributes. It
combines the graph neural network to aggregate neighbor information and takes
a convolutional neural network as a feature extractor to perform the link predic-
tion task. Experiments show that the AAGCN model is superior to other existing
models in multiple metrics on the two benchmark datasets. At the same time,
through ablation experiments, node attribute features are proven to enhance
the representations of nodes. The attribute feature learning method has strong
extensibility, and is able to accelerate the learning of the model on simple rela-
tional datasets.
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Abstract. To effectively learn from different perspectives of a graph, we
propose a new pooling mechanism based on joint attention scores of dif-
ferent representation subspaces of the graph, which we refer to as multi-
head attention graph pooling. Instead of performing a single attention
function over a graph, we propose to perform multiple attention functions
that leverage information from different representation subspaces of both
node features and graph topology. Each attention function is trained to
attend to information from different representation subspaces, while the
aggregation of attentions can exchange information globally on the entire
graph. The results in graph classification experiments demonstrate that
our method is comparable and often surpasses current state-of-the-art
baselines on the benchmark datasets with fewer parameters (We release
our code at https://github.com/caoyu-noob/MAGPool).

Keywords: Graph pooling · Graph neural network · Multi-subspace ·
Graph classification · Attention

1 Introduction

Large amounts of structured data exist in the non-Euclidean domain, such as
social networks and biological networks, and these data can be represented by
nodes and edges within graphs [8,12]. Recently, with the rapid development
of graph neural networks (GNNs) [5,20], the recognition abilities of graph-
structured data have improved dramatically. The general approach to realize
this is regarding the underlying graph as a computation graph, learning neu-
ral network primitives that generate individual node embeddings by passing,
transforming, and aggregating node features across the graph [15]. The gener-
ated node embeddings can then be used as input to any differentiable prediction
layer for node classification [17] or link prediction [27], where the whole model
is trained in an end-to-end fashion.

One core challenge of GNNs is how to develop graph pooling (downsam-
pling) architectures. In CNNs, the pooling layers exploit the shift-invariance
(also known as stationary) property and compositionality of grid-structured
data, resulting in a satisfactory performance with fewer parameters. Thus recent
studies apply pooling operation to graphs to attain scaled-down ones via GNNs.
Defferrard et al. [9] and Rhee et al. [23] adopted the pooling methods considering
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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only the graph topology. Some improvements were proposed by utilizing node
features to obtain a smaller graph representation [7,15,36]. Recently, several
innovative methods learn hierarchical representations of graphs [2,6,14,35], or
introduce self-attention that involves both node features and graph topology [21].

Different feature sets may characterize independent information dissimilarly.
However, current graph pooling methods neglect such diverse representation sub-
spaces and only focus on the global feature, which cannot well characterize com-
plex linkage among graph nodes [18]. Since recent works already showed impres-
sive results using the subspace of features for natural language [29] and computer
vision tasks [13,37], leveraging information from different views. Therefore, it
also has a great potential for graph neural network modeling.

In this paper, we propose a new graph pooling method, referred to as Multi-
subspace Attention Graph Pooling (MAGPool), leveraging information from
different representation subspaces of both node features and graph topology.
Similar to SAGPool [21], the attention mechanism is exploited to distinguish
the nodes that should be retained from those being dropped. However, the key
difference is that multiple representation subspaces of a graph are considered
and the model learns various attention functions. Each attention function is
trained to attend to information from the corresponding subspace, obtaining
the attention score that is able to fully reflect the different perspectives of a
graph. Both node features and graph topology are considered in multi-subspace
attention since different graph convolutions are utilized to obtain the attention
scores. Moreover, we investigate a series of aggregation mechanisms of attention
that is able to exchange information globally across the entire graph.

Our main contribution is the multi-attention for graph pooling to drop and
retain nodes. We also introduce a refined attention aggregation mechanism to
generate node ranking scores. Experiments on 7 benchmark graph classification
datasets show that our model outperforms strong baselines under the global
pooling architecture, while it also works better for the hierarchical pooling archi-
tecture under most conditions and retains comparable under the rest. Besides,
our model requires fewer parameters than other trainable methods, benefiting
from the smaller cost of each sub-module from multiple subspaces.

2 Related Work

Graph Neural Networks. GNNs have been applied to a wide range of tasks,
such as link prediction [26], graph classification [7] and so on. A wide vari-
ety kinds of GNN models have been proposed to handle these tasks, including
models inspired by recurrent neural networks [16,22,25], convolutional neural
networks [3,5,9,20] and loopy belief propagation [7]. Graph Convolutional Net-
works (GCNs) are the most common ones, using central node to aggregate fea-
tures directly from adjacent nodes via sampling, aggregation or attention mech-
anism [1,17,30].

Feature Subspace. Multi-head attention is investigated in NLP [29,32], which
splits the input information into subspaces using linear transformation and each
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of them poses various importance to the input. A similar idea is also used in
multi-view clustering converting raw feature into multiple perspectives [13,37].

Graph Pooling. Similar to pooling layers in CNNs, graph pooling methods also
aim to obtain coarsened graph features as well as stacking deep layers, but both
node features and topology of the graph need to be considered. Graph pooling
methods can be defined as topology-based, global, or hierarchical.

In topology-based pooling, only the topological structure is considered
while node features are neglected. Related works include Graclus [10] that imple-
ments equivalent spectral clustering based on a weighted kernel k-means objec-
tive. Then the obtained graphs can be combined with GNNs [9,23].

Global pooling methods use summation or neural networks to pool all node
representations after information propagation. Gilmer et al. [15] and Set2Set [31]
utilize GNNs as message passing schemes to obtain the entire graph representa-
tions. SortPool [36] sorts node features based on their graph structural impor-
tance, where the sorted results are used for downstream tasks.

In hierarchical pooling, models capture multi-rank information from
feature- or topology-based node assignments. DiffPool [35] employs a learnable
soft assignment matrix in each layer along with GNN for clustering. MinCut-
Pool [2] further extends this as a K-way normalized MinCUT problem by intro-
ducing a new auxiliary objective. gPool [14] adaptively selects partial nodes to
form a smaller graph based on their ranking scores from on a trainable projection
vector without taking graph topology into account. SAGPool [21] makes up for
this deficiency through a node selection based on scores from GNN self-attention.

Different from previous works, we seek to learn different representation sub-
spaces of both nodes and the graph topology via multiple attention modules.

3 Methodology

In this section, we describe the multi-subspace attention graph pooling whose
framework is shown in Fig. 1. The most distinguishable property is that attention
weights on different perspectives of graphs attend to produce the mask. Addi-
tionally, instead of a fixed pooling operation, our method involves an aggregation
function, such as max and mean, to enable additional flexibility in designing a
method and can thus adapt to the problem at hand.

3.1 Preliminaries

Graph. We present a graph G as (X, Ã), where X ∈ R
n×d is the node features

with feature dimension d, and Ã ∈ {0, 1}n×n is the adjacency matrix.

Graph Neural Networks (GNNs). We consider GNNs that have the follow-
ing “message-passing” framework for node embeddings after after l iterations:

X l = m(Ã,X l−1; θ(l)), (1)
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Fig. 1. The framework of Multi-subspace Attention Graph Pooling (MAGPool). The
flow of MAGPool is indicated by yellow lines, while red lines for its variant, Asyn-
chronous MAGPool. The input will be split into feature subspaces during pooling.

where m is the message propagation function, which depends on the adjacency
matrix Ã), trainable parameters θ(l), and the node embeddings X l−1 from the
previous iteration. The function m can be implemented in different ways.

Attention. Following [21], self-attention score Z is based on the graph convo-
lution network (GCN) of [20] and can be calculated as follows,

Z = Att(X, Ã) = σ(D̃− 1
2 ÃD̃− 1

2 Xθ), (2)

where σ is an activation function (e.g. softmax), D̃ ∈ R
n×n is the graph degree

matrix, and θ ∈ R
d×1 is the trainable parameter of a single layer.

3.2 Pooling via Multi-subspace Attention

We define our attention pooling blocks based on exploiting node features of a
graph. Rather than treating the graph integrally, we use different parts of node
features and graph topology to concurrently affect the pooling process. , lever-
aging information from various representation subspaces. For this purpose, we
adopt independent attention modules to better reflect each subspace, whose fea-
tures are combined in node ranking to determine the retained nodes in pooling.
Finally, node embeddings are recovered for the following processing.

Multi-subspace Attention. Given a graph Gl = (X, Ã) obtained from the
lth layer, which presents a set of d-dimensional vectors from n nodes, we first
define two kinds of subspace splitting strategies as follows.

1) Raw Split (raw): Each feature subspace XSi
only contains partial of original

feature values between ai-th to bi-th dimension, while ÃSi
is the same as Ã.

X l
Si

= X l[:, ai : bi] ∈ R
n×(bi−ai) (0 ≤ ai < bi ≤ d), (3)
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where [:, ai : bi] means only values in the second dimension whose indices are
among the interval [ai, bi) are retained. Simply, a general way to determine ai

and bi is evenly splitting, where we can define ai as d/H ∗(i−1) and bi as d/H ∗i,
i ∈ {1, 2, · · · ,H}, and H is the total subspace number.

2) Transform Split (transform): A trainable matrix W t
i ∈ R

d×dSi can be
used to transform the original node features into corresponding subspace via
XSi

= XW t
i , where dSi

is the desired feature dimension of the i-th subspace.
And the adjacency matrix also remains unchanged for each subspace.

Based on each of above ways, we construct H subspace graphs {(XS1 , Ã), · · · ,
(XSH

, Ã)}, which cover the entire feature space. Each subspace graph shares the
same structure as G but has different feature subsets XSi

.
As shown in Fig. 1, each subspace graph is processed independently. For

(XSi
, Ã), we calculate its attention results Zi ∈ R

n×dSi by

Zi = Z ′
i � XSi

, Z ′
i = Atti(XSi

, Ã) ∈ R
n×1. (4)

Here � is broadcast element-wise product. Atti is the attention function that
takes a portion of node features and performs GCN-based self-attention to obtain
the weights. Therefore, we have a series of attention output results Zmulti =
{Z1, · · · , ZH} and each of them only contains partial information of X,

Node Ranking. In order to coarsen the graph, we need to retain some nodes
while abandoning the rest based on ranking scores from Zmulti. A common app-
roach to combine multiple values is applying an aggregation function fagg such
as dimension-wise average or maximization, which can be described as

Zagg = fagg(Zmulti) ∈ R
n×dSi . (5)

Then we can obtain the importance scores Zscore ∈ R
n×1 for all nodes via

another GCN-based attention Attscore from Zagg, based on both graph features
and topology. The indices of retained nodes in the graph can be determined by

idx = TOP-RANK(Zscore, �ρn�), Zscore = Attscore(Zagg, Ã). (6)

Here, TOP-RANK is the function that returns the indices of the top �ρn� values
in Zscore, denoting the related node indices. ρ is a parameter for pooling ratio.

Graph Pooling. It is straightforward to use the global ranking score Zscore as
the attention mask Zmask on each subspace, (yellow lines in Fig. 1). This offers
nodes with their importance as well as makes the procedure differentiable.

Zmask = Zscore[idx, :] ∈ R
ρn×1,X ′

Si
= XSi

[idx, :]�Zmask, Ã′ = Ã[idx, idx], (7)

where [idx, :] means row-wise (node-wise) indexing on the matrix using idx, while
[idx, idx] is indexing on both dimensions.
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Fig. 2. Applications of MAGPool: (a)hierarchical pooling, and (b)global pooling.

We also propose another pooling variant, Asynchronous MAGPool
(AMAGPool). The mask for each subspace is obtained independently based on
the corresponding sub-attention results in Eq. 4, indicated as the red lines in
Fig. 1.

Zi|mask = Zi[idx, :] ∈ R
ρn×dSi . (8)

Then the masking process is similar to Eq. 7, but it poses a fine-grained impor-
tance for each subspace than the former one.

Node Reconstruction. After getting the node features in different subspaces
of a coarsened graph, we need to recovered them into the original feature space
for the following procedures. In raw splitting, they can be simply concatenated
in the feature dimension, like X ′ = [X ′

S1
; · · · ;X ′

SH
]. While another linear trans-

formation is applied for each subspace under trans splitting, and then added
together X ′ =

∑H
i=1 X ′

Si
W r

i , where W r
i ∈ R

dSi
×d is learnable. Note that dSi

satisfy d =
∑H

i=1 dSi
to ensure that the reconstruction can be processed.

3.3 Deep Neural Networks with Pooling

We consider two common architectures for graph classification utilizing the pro-
posed pooling method: hierarchical pooling architecture and global pooling archi-
tecture.

Hierarchical Pooling Architecture. We implement the hierarchical pooling
architecture based on [6]. As shown in Fig. 2(a), there are three graph convolu-
tional network (GCN) layers and each one is followed by a multi-subspace atten-
tion graph pooling layer. The subspace splitting is applied before each GCN
layer, making it also in a multi-subspace pattern. Besides, there is a readout
layer for the node feature vector X ′

i of the ith node from each block to obtain a
fixed-dimension feature, which is defined as

F = concat(
1
ρn

ρn∑

i=1

X ′
i ,

ρn
max
i=1

X ′
i) ∈ R

2d, (9)
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Table 1. Statistics of all seven benchmark datasets in our experiments.

Dataset Graph num Range/Avg. node num Range/Avg. edge num |Class| Node label

DD 1178 30~5478/284.32 126~28.5k/715.66 2
√

PROTEINS 1113 4~620/39.06 10~2098/72.82 2
√

NCI1 4110 3~111/29.87 4~238/32.30 2
√

NCI109 4127 4~111/29.68 6~238/32.13 2
√

Mutagenicity 4337 4~417/30.32 6~224/30.77 2
√

COLLAB 5000 31~491/74.49 120~80.2k/2457.78 3 ×
Reddit-Binary 2000 5~3781/429.63 8~8142/497.75 2 ×

Finally, summation is applied over outputs of all readout layers to generate an
entire graph representation that is passed to the MLP for classification.

Global Pooling Architecture. We implement the global pooling architecture
based on [36]. As shown in Fig. 2(b), there are three GCN layers, with a multi-
subspace attention graph pooling layer at the end of them. The node embeddings
from three GCN layers are concatenated together into a new node representations
X ′ ∈ R

n×3d, and fed to the pooling layer. There is also a readout operation
employed as described in Eq. 9, resulting in the input of MLP with shape R

6d.

4 Experiments and Analysis

4.1 Datasets and Baselines

We focus on graph classification problems to validate the effectiveness of our pro-
posed approach. The following seven graph classification datasets are considered,
and their statistics are shown in Table 1.

DD [11,28] is made up of non-redundant protein structures, in which nodes
indicate types of amino acid while edges reflect whether the distances are within
6 Ångstorm. A graph label denotes whether it is enzymatic or non-enzymatic.

PROTEINS [4,11] is another protein structure dataset, where graphs are the
secondary structures from DD and labels still indicate enzyme or non-enzyme.

NCI1 and NCI109 [33] are datasets of chemical compounds for classifying the
activity against cancers. Nodes represent atoms, while edges for chemical bonds.

Mutagenicity [24] contains different molecular structure graphs for mutagenic-
ity classification. Nodes and edges have the same meaning as NCI1.

COLLAB and REDDIT-BINARY [34] are both social network datasets,
where the first one reflects collaboration of researchers and the second one for
comment relations between Reddit users. The graph labels reflect the research
areas or discussion subreddit, and no node label is provided.

Methods under two architectures, global and hierarchical, are included.
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AvgPool is a baseline global method that simply averages representation of all
nodes as the input of a classification MLP.

DGCNN [36] is a global method which stacks GNN for several layers and uses
the combined output from layers as the gist for final sorting to retain nodes.

DiffPool [35] is a hierarchical method. It maps the original nodes to a set of
clusters via a learnable assignment matrix. It stacks GNN layers and pooling lay-
ers iteratively to form multiple representations. In the reference implementation,
the cluster size is set to 25% of the maximum number of nodes.

gPool [14] is a hierarchical method. It adaptively selects some nodes to form
a smaller graph based on a trainable projection vector. But it does not take
graph topology into account. In the hierarchical pooling setting, MAGPool has
the same K number of output nodes as gPool.

SAGPool [21] can be used for both global and hierarchical pooling. It uses a
GCN self-attention to distinguish between the nodes that should be dropped or
retained, involving both node features and graph topology.

Table 2. The average accuracy and standard deviation of 10-fold validation experi-
ments with 20 random seeds on 7 datasets. (Upper/lower part: global/hierarchical pool-
ing architecture. The best two results of each architecture are in bold font. Subscript
g: global architecture, h: hierarchical architecture, ∗: transform subspace splitting.)

Models DD PROTEINS NCI1 NCI109 Mutagen COLLAB Reddit

AvgPool 71.8±3.4 71.3±3.1 71.1±3.2 69.2±2.9 78.7±2.6 67.6±2.1 79.1±6.9

DGCNN 73.4±3.7 72.7±2.9 74.0±3.1 73.6±2.3 74.5±2.8 65.7±2.4 77.9±4.4

SAGPoolg 75.9±3.1 73.0±2.9 73.2±3.3 73.1±2.1 76.1±2.2 67.7±2.0 82.6±4.0

MAGPoolg 77.6±3.1 75.2±2.8 73.8±3.0 71.7±2.4 79.2±2.2 69.6±1.9 84.8±3.6

AMAGPoolg 74.8±4.0 75.0±3.1 71.8±3.7 69.32±2.8 76.7±3.0 69.7±2.4 81.7±4.2

MAGPoolg* 78.8±2.9 75.3±3.0 70.9±4.2 66.5±5.2 76.3±3.4 68.5±2.0 83.1±4.2

AMAGPoolg* 72.7±3.8 73.9±3.4 63.3±2.1 64.6±2.0 70.2±5.4 66.3±2.2 80.4±5.0

DiffPool 78.3±3.0 70.7±3.2 65.2±2.9 64.5±2.4 77.2±2.9 73.5±1.6 85.9±2.9

gPool 74.3±3.9 72.7±3.5 68.0±4.1 67.1±3.6 71.9±3.1 72.3±2.0 80.4±4.9

SAGPoolh 76.8±3.2 73.7±3.1 70.3±3.6 69.8±2.8 74.5±2.5 69.1±1.7 84.9±3.4

MAGPoolh 77.7±3.2 75.4±2.9 71.4±4.0 67.5±5.4 77.7±2.5 71.9±1.7 86.7±3.2

AMAGPoolh 76.4±3.8 75.6±3.1 69.2±4.7 66.1±5.3 75.2±2.8 68.8±2.2 83.9±3.8

MAGPoolh* 74.6±4.0 75.3±3.3 63.6±2.3 64.5±1.5 74.2±4.2 72.6±1.9 85.8±4.1

AMAGPoolh* 72.7±3.6 75.2±3.0 63.4±2.3 64.6±1.9 72.5±3.7 69.5±1.9 80.9±4.5

4.2 Setup

We evaluate all methods on the above seven benchmark datasets. MAGPool and
its variant AMAGPool are applied in both global and hierarchical architecture.
Two subspace splitting methods, raw and transform are also applied.
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Similar to previous work, to better show the training stability of models, we
employ 10-fold cross-validation. And each 10-fold experiment is run 20 times
using different seeds. Adam optimizer [19] is used to train the model with batch
size as 128 for maximum 2k epochs. An early stopping strategy is also employed
on the validation set when loss does not decrease for 50 epochs. The hyperpa-
rameters were determined via grid search, where the learning rate is 5e-4, the
GCN has 3 layers whose hidden state size d is 128, the head number H is 4 and
the keep ratio ρ in pooling is 0.5, while the aggregation function fagg is Max.

4.3 Main Results

The average accuracy and standard deviation on 7 datasets are shown in Table 2.
Obviously, our proposed method outperforms baselines on most datasets using
the same architecture. Among the variants of our method, MAGPool is the most
stable one, using raw subspace split and single masks for different subspaces. It
means that the local subgraph masks are not as effective as overall scores, because
they obtain more comprehensive information about the entire graph. The trans-
form subspace splitting is weaker than raw unless it is used in graphs with dense
connections, e.g. COLLAB, as the extra trainable matrices may introduce more
uncertainty which cannot be well-trained via simple samples.

Table 3. Average accuracy of abla-
tion study on two datasets.

Variants DD PROTEINS
Global Hiera Global Hiera

MAGPool 77.54 77.71 75.16 75.38

-no-att 77.07 76.78 74.78 74.65

-mlp-att 76.43 76.75 74.50 74.44

-no-score 76.85 77.05 73.48 73.85

-mlp-score 77.12 77.28 73.93 73.63

-no-filter 76.82 76.37 75.05 75.42
-no-inter – 74.25 – 74.40

Table 4. The average accuracy of
global and hierarchical MAGPool on
two datasets when using different
aggregation functions.

Agg. DD PROTEINS
Variants Global Hiera Global Hiera

Max 77.54 77.71 75.16 75.38
Avg 77.90 77.52 75.27 75.12

Min 77.06 77.30 74.62 74.87

Linear 76.93 77.46 74.64 74.93

Despite being a powerful baseline, SAGPool does not consider subspaces
nor a refined approach for ranking scores, limiting its performance. DiffPool is
another competitive baseline for complicated graphs such as DD and COLLAB
as it realizes clustering via more parameters. But MAGPool shows comparable
performance under these conditions with significantly higher accuracy on simpler
graphs. Generally speaking, the global architecture tends to perform on smaller
graphs, like PROTEINS, NCI1, NCI109, even the most intuitive AvgPool.
As the average of a few nodes is efficient enough to represent the graph. On the
contrary, the hierarchical architecture is stronger on complicated samples from
DD, COLLAB, indicating more refined features are essential for such graphs.
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4.4 Ablation Study

In order to demonstrate the contribution of each component, ablation study is
conducted on DD and PROTEINS, involving both large-scale and small-scale
graphs. The results are shown in Table 3, where the base model is MAGPool
with global or hierarchical (Hiera) architectures. -no-att means no attention
nor mask will be applied in Eq. 4, -mlp-att means an MLP is used in function
Atti instead of GCN. Similarly, the score function is removed from Eq. 6 and Zagg

is directly used for ranking in -no-score, and -mlp-score denotes using an MLP
in Eq. 6. All nodes will be remained in pooling under -no-filter, and -no-inter
indicates that no intermediate readout layers is included and only the output
from the final layer is used for prediction (not applicable for global pooling).

According to the results, removing attention or scoring function both affect
performance. Using MLP to replace GCN also degenerates the accuracy since no
edge information is involved. -no-filter has a very slight influence on PROTEINS,
proving that coarsening small graphs is not so necessary as larger ones. Short-
cut connections from intermediate layers are also verified to be essential since
accuracy sees a noticeable drop under -no-inter (Figs. 3 and 4).

4.5 More Analysis

Effect of Aggregation Functions. We evaluate different aggregation func-
tions fagg used in Eq. 5, including Max (default), Avg, Min and Linear. Linear
means using a trainable linear function to fuse Zmulti. Based on Table 4, we
can found that Max is the best aggregation function for general usage. Avg is a
bit superior to Max under global architecture while a bit worse for hierarchical
pooling. Min and Linear result in performance degeneration compared to Max,
despite the latter one introduces extra parameters.

Fig. 3. The accuracy of hierarchi-
cal/global MAGPool/AMAGPool
varies with subspace number H on
two datasets (Upper: DD, lower:
PROTEINS)

Fig. 4. Parameter quantities of meth-
ods vary with input node numbers. (ρ:
the node preservation ratio.



124 Y. Guo and Y. Cao

Influence of Subspace Number H. We further test different subspace num-
bers with fixed whole hidden dimension d = 128, whose results are illustrated
in Fig. 4.4. Obviously, there is a noticeable promotion when increasing H from
1 to 2, proving that subspaces splitting benefits information extraction. But the
performance seems to be saturated when further increasing H after 4, even sees
drops when H = 16. It means more subspace may not result in a better effect
as smaller feature dimensions cannot ensure comprehensive representation.

Model Complexity Analysis. Our proposed MAGPool has relatively lower
complexity, benefiting from the subspace splitting. The parameter quantities of a
single pooling in different methods are shown in Fig. 4.4. Compared to DiffPool,
the scale of MAGPool are graph-invariant, while the assignment matrix Sl in
DiffPool is Rnl×nl+1 , depending on the node numbers. Although SAGPoolh also
has a constant parameter number, it still has more parameters than MAGPoolh.
In addition, MAGPool is also faster, as multi-subspace results in fewer matrix
operations and makes parallel computing possible. According to our experiments,
the speed of MAGPoolh is 3.08× the speed of SAGPool and 8.71× the speed
of DiffPool in average on 7 datasets using one P40 GPU.

5 Conclusion

In this paper, we proposed a novel graph pooling method, MAGPool. MAGPool
has multiple attention modules that are trained to leverage representations from
different subspaces of a graph, capturing complex linkage forming mechanisms,
and thereby improving performance. Experimental results demonstrate that our
method is comparable and often surpasses strong baselines on several graph
classification benchmarks, using fewer parameters and less computation time.
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Abstract. Temporal knowledge graphs store a large number of tempo-
ral facts that simulate the dynamic interactions of entities along the
timeline. Since existing temporal knowledge graphs often suffer from
incompleteness, it is crucial to build time-aware representation learn-
ing models that help to infer the missing temporal facts. However, most
of the existing models for temporal knowledge graph reasoning focus on
mining temporal associations between entities, and do not fully exploit
spatial information contained in entities. To this end, we propose spatial-
temporal network(ST-Net), a new representation learning model for tem-
poral knowledge graphs, which has both temporal and spatial awareness
capabilities. Specifically, ST-Net enriches the hidden features of entities
by simultaneously fusing their temporal and spatial information. At the
same time, we introduce the core idea of Copy-Generation Networks,
which predicts future facts based on either the historical vocabulary or
the whole entity vocabulary. We evaluate our proposed method via link
prediction at future times on three benchmark datasets. Through exten-
sive experiments, we demonstrate ST-Net has superior performance on
the future link prediction tasks.

Keywords: Temporal knowledge graph · Representation learning ·
Link prediction

1 Introduction

Knowledge graphs (KGs) is widely used in natural language processing applica-
tions due to its ability to represent structured knowledge. However, most KGs
suffers from incompleteness, which limits the performance and scope of KG appli-
cations to a certain extent. Therefore, it is an important task to predict the miss-
ing facts by KG reasoning. Recently, inference task has been expanded from KGs
to a more challenging field: Temporal Knowledge Graphs(TKGs). The inference
task on TKGs can be simply expressed as predicting missing object entity in
query (subject entity, relation, ?, timestamp). Most of their researches focus on
how to effectively integrate temporal information into the model. It’s suggested
by some researches that the traditional KG embedding method can be extended
to TKGs [1,2]. However, they only pay attention to learning the potential repre-
sentation of entity in a snapshot, while ignoring modeling the dynamic evolution
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 127–138, 2022.
https://doi.org/10.1007/978-3-031-20865-2_10
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Fig. 1. Illustrates the process of ST-Net leveraging spatial information to predict future
facts.

process of entity. Recently, some researchers have also conducted researches on
the dynamic evolution of entity and relation [3–6], which combine historical
information from previous snapshots.Another part of researchers try to enrich
the potential representations of entity by incorporating multiple information [7–
9], such as entity descriptions, event descriptions and uncertain information.

Inspired by this, we find that the above methods all ignore the importance
of the spatial information (country, city, organization) attached to the entity. In
fact, the occurrence of an event cannot be separated from spatial information,
and the interaction between two entities also means the interaction between
two spaces. Specifically, we found that the probability of entities in same event
located in same space is 41.13% according to ICEWS18 dataset, which shows
the importance of leveraging the spatial information contained in the entity to
predict future facts.

To this end, we propose a innovative TKG representation learning model with
both temporal and spatial perception. Mining the spatial information attached
to the entity would help in fine-grained modeling of entity representation, and
further strengthen the representation ability of entity embedding. At the same
time, we introduce two inference modes in the copy generation network [6] to pre-
dict future facts from the historical vocabulary and the whole entity vocabulary.
As shown in Fig. 1, after applying the spatial information, two nodes without
interaction, Farm Worker and Hindustan Times, can be connected in the same
space to pave the way for prediction.

We evaluated our proposed method on three benchmark datasets and the
experimental results show that ST-Net is superior to the baseline model in link
prediction task. The ablation experiment further proves that spatial information
can help the model predict future facts better.

The main contributions of this work are as follows:

1. We propose a innovative TKG representation learning model ST-Net, which
implements fine-grained modeling of entity representation by mining the spa-
tial information attached to entity.



Learning Temporal and Spatial Embedding 129

2. We introduce two inference modes in the Copy-Generation Networks [6],
which predict future facts from the historical vocabulary and the whole entity
vocabulary respectively.

3. We conduct extensive experiments on three public TKG datasets and demon-
strate the effectiveness of ST-Net in link prediction.

2 Related Work

We discuss three relevant research directions. Since there is massive work in each
direction, we can only select representative and closely related ones to elaborate.

2.1 Static Knowledge Graph Embeddings

Without considering temporal facts, researchers have made passable progress
in KG embedding, which Ji et al. [10] summarizes. A classic class of models is
translation model (TransE and its variants) [11–13], which leverages a distance-
based scoring function to measure the reasonableness of facts. The other is the
semantic matching model (such as ComplEx [14], DistMult [15], etc.), which
uses a similarity-based scoring function and measure the plausibility of facts
through semantic matching. Recently, some methods based on deep neural net-
works (such as R-GCN [16], ConvE [17], RSN [18], etc.) have emerged, which
utilize CNN, RNN, and graph neural networks (GCN, R-GCN, etc.) to help
models learn embedding of entity and relation. However, these methods cannot
capture temporal facts.

2.2 Temporal Knowledge Graph Embeddings

TKG embedding incorporates timestamp of facts into the learning process. Some
researchers attempt to extend the static KGs directly to the field of TKGs.
TTransE [1] is an extension of TransE, which simply integrates time information
into the scoring function; HyTE [2] replaces the unit normal vector of the hyper-
plane projection in TransH with a time-specific normal vector. Other researchers
focus on the dynamic evolution of entity and relation. Know-Evolve [3] models
the occurrence of facts as a temporal point process to learn non-linearly evolv-
ing entity representation over time; Goel et al. [4] provides the embedding of
an entity at any point in time by equipping the static model with a diachronic
entity embedding function. However, none of these methods correlate snapshots
that have occurred in history.

To solve the problem that the model cannot capture the long-term depen-
dency of facts, the autoregressive model is proposed. Jin et al. [5] modeled the
TKGs in the way of autoregressive, that is, the snapshot at T timestamp depends
on the historical snapshot before T; Han et al. [19] leverages continuous tem-
poral embedding to encode the temporal and structure information of historical
snapshots; Zhu et al. [6] utilizes the recurrence rule of facts and combines two
inferring modes to predict future facts from historical vocabulary and whole
entity vocabulary respectively.
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2.3 Embedding with Auxiliary Information

More recent attempts have been made to combine multimodal information with
structured information in KGs to promote more effective knowledge representa-
tion. SSP [8] provides more precise semantic embedding for entity and relation
by projecting triples and text descriptions into semantic subspaces. Glean [7]
leverages graph neural networks to fuse unstructured event descriptions and
structured data from TKGs to enrich the hidden features of event participants.
The uncertain KG embedding model proposed by Chen et al. [9] incorporates
the confidence scores of uncertain relation facts when learning embedding. Influ-
enced by this, we try to fuse the spatial information contained in the entity with
the structured information of the TKGs. As we know, this is the first work to
incorporate spatial information into TKG representation learning.

3 Spatial-Temporal Network

In this section, we start with the notations for building our model and problem
definition, and then introduce the model architecture as well as its training and
inference procedures in detail. Figure 2 illustrates an overview of ST-Net reason-
ing process. ST-Net can be decomposed into 3 sub-modules: Query Vectorization,
Capture History Vocabulary, and Copy-Generation Mode.

3.1 Notations

TKGs consists of temporal facts, each of which can be simply described as sub-
ject and object entity s ∈ E and o ∈ E have a relation r ∈ R at timestamp
t ∈ T , denoted as quadruple (s,r,o,t), where E , R represent the vocabularies
corresponding to the entities and relations respectively, and T is the set of times-
tamps. The boldface s,r,o,t represent the corresponding embedding vectors. A
TKG can be divided into a set of snapshots {G1, G2, · · · , Gtk} according to the
timestamps, where Gt is a snapshot of the TKG at time step t, containing all
temporal facts at time step t. For each subject entity and relation pair at times-
tamp tk, we define a delimited subset of E specific to (s, r, tk) as H(s,r)

tk
, namely

historical vocabulary for (s, r, tk), which contains all object entities in tempo-
ral facts with the subject entity s and the relation r in the known snapshots
G(t1,tk−1) = {Gt1 , Gt2 , · · · , Gtk−1} before tk, where the historical vocabulary
H(s,r)

tk
is an N -dimensional multi-hot indicator vector and N is the cardinality

of E , the value of entities in the historical vocabulary are masked 1 while others
are 0.
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Fig. 2. Overview of ST-Net. ST-Net implement fine-grained modeling of entity repre-
sentation by mining spatial information of entity, and conbines two inference modes to
predict missing entity in the query. In the figure, light purple nodes are the candidate
object entities in the historical vocabulary for query (s1, r2, ?, tq).

Prediction of a missing temporal fact aims to infer the quadruple (s, r, ?, tq) or
(?, r, o, tq) from the known snapshots G(t1,tq−1) = {G1, G2, · · · , Gtq−1}. Without
loss of generality, the task of the model is defined as predicting missing object
entity.

3.2 Model Components

Query Vectorization. In encoding phase, the information contained in query
needs to be converted into a continuous low-dimensional vector by the embedding
layer. ST-Net first randomly initializes entity feature si and relation feature ri for
all s ∈ E and all r ∈ R. In order for the model to be time-aware, the timestamp
in temporal facts need to be encoded. Define the embedding for a unit step of
time as tu and t1 = tu, so the embedding of timestamp tk is represented as
follows:

tk = tk−1 + tu (1)

ST-Net expands the spatial-aware based on time-aware. Due to the complex-
ity and uncertainty of data, the spatial information attached to entity is hard
to learn by neural networks. We found that the text for most entities in TKGs
already contains spatial information, like Citizen(India), Government(Pakistan).
This is becasue these information have been summarized and sorted out in the
process of temporal fact extraction, but they were not fully utilized. ST-Net
obtains spatial information by preprocessing the text of the entity and the text
in the raw data. After processing, for few of entities lacking spatial information,
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the entity itself can be directly used as its spatial information or use the existing
mature pretraining language model to generate these message by prompt learn-
ing. After acquiring the spatial information for all entities, ST-Net randomly
initializes them to get the spatial feature sp.

The discovered spatial information can support the model to carry out fine-
grained modeling of entity representation, so that the entity has a richer and
more favorable embedding to improve the effect of downstream tasks. After
query Vectorization, the model needs to capture historical vocabulary of the
query in advance to facilitate the next reasoning process.

Capture Historical Vocabulary. First, the training dataset can be divided
into a series of snapshots G1, G2, · · · , Gttrain

by timestamp. Then obtain the
historical vocabulary for each subject entity and relation combination (s, r, t)
in each snapshot, i.e. {h(s,r)

t1 ,h(s,r)
t2 , · · · ,h(s,r)

ttrain
}. During training process, ST-

Net is trained on each snapshot in timestamp order by incrementally maintain
the historical vocabulary for all the previous snapshots. When evaluating the
performance of our model on the validation set and test set, the maximum
historical vocabulary from the whole training set will be used.

Specifically, for each query quadruple (s, r, ?, tk) at time tk, during the train-
ing process, ST-Net will expand the historical vocabulary that specific to (s, r, tk)
from the snapshot before time tk, as formalized below:

H(s,r)
tk

= h(s,r)
t1 + h(s,r)

t2 + · · · + h(s,r)
tk−1

(2)

where H(s,r)
tk

is an N-dimensional multi-hot indicator vector where 1 is marked
for all entities in the current historical vocabulary. Next two modes of reasoning
will be introduced.

Copy-Generation Mode. The Copy mode aims to identify repeated facts and
predict future facts by down sampling known facts of the same type in history.
Given a query (s, r, ?, tk) and its corresponding historical vocabulary H(s,r)

tk
, the

copy mode will increase the probability estimated for the object entity that are
selected in the historical vocabulary. The Copy mode generates the query vector
vq with an MLP:

vq = tanh(Wc[s, sp, r, tk] + bc) (3)

where Wc ∈ R
4d×N and bc ∈ R

N are trainable parameters. The query vector
vq is an N-dimensional vector, where N is the cardinality of the whole entity
vocabulary E .

To minimize the probability of some entities that do not form known facts
with s and r in history, we first change the index value for an uninterested entity

in H(s,r)
tk

to a small negative number denoted ˙H(s,r)
tk

. Then, the Copy mode can

add the query vector and the changed multi-hot indicator vector ˙H(s,r)
tk

to limit
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the scope of candidate entities. After applying softmax function, the probability
of the uninterested entities will be minimized.

cq = vq +
˙H(s,r)
tk

(4)

p(c) = softmax(cq) (5)

where cq is an N-dimensional index vector. p(c) is an N-dimensional probability
distribution vector representing the prediction probabilities on the historical
vocabulary. Finally, we use the entity with the largest probability value in p(c)
to answer the query. The advantage of the Copy mode is that it enable to predict
from a more limited candidate entity space than the overall vocabulary. However,
facts can also appear in upcoming snapshot, therefore a Generation mode is
needed to predict such facts.

Given the same query (s, r, ?, tk) as the copy mode, the Generation mode is
responsible for selecting the object entity from the whole entity vocabulary E to
predict facts. The reasoning of Generation mode is that regards the predicted
fact as a completely new fact without reference to the facts that have happened
in history. The Generation mode also generates a query vector gq and is further
normalized using the softmax function for prediction:

gq = Wg[s, sp, r, tk] + bg (6)

p(g) = softmax(gq) (7)

where Wg ∈ R
4d×N and bg ∈ R

N are trainable parameters. Similar to p(c) in
the Copy mode, p(g) represents the predicted probability on the entire entity
vocabulary. The maximum value in pg denotes the object entity predicted by
Generation mode throughout the entity vocabulary. The Generation mode is
complementary to the Copy mode, with the ability to predict entirely new facts.

3.3 Parameter Learning and Inference

Given a query (s, r, ?, t) to predict the object entity can be viewed as a multi-
class classification task, where each class corresponds to each object entity. The
learning objective is to minimize the following cross-entropy loss L:

L = −
∑

t∈T

∑

i∈E

K∑

k=1

oitlnp(yik|s, r, t) (8)

where oit is the i-th ground truth object entity in the snapshot Gt, p(yik|s, r, t)
is the combined probability value of the k-th object entity in the snapshot Gt

when the i-th ground truth object entity is oi.
In order to ensure that the sum of the probability equals 1 for all entities in

E , we set a hyperparameter α to adjust the weight between the Copy mode and
the Generation mode, which is defined as follows:

p(o|s, r, t) = α ∗ p(c) + (1 − α) ∗ p(g) (9)
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ot = argmaxo∈Ep(o|s, r, t) (10)

where α ∈ [0, 1], p(o|s, r, t) is the final predicted probability vector, which con-
tains the probabilities of all entities under the current query.

4 Experiments

In this section, we evaluate our proposed method on the link prediction task on
three public TKG datasets. We first introduce experimental settings in detail,
including details of datasets and baselines. After that, we compare and analyze
the experimental results and conduct an ablation study to evaluate the impor-
tance of spatial information.

4.1 Experimental Setup

Table 1. Statistics of the datasets.

Data Entities Relation Training Validation Test Granularity Time granules

ICEWS18 23,033 256 373,018 45,995 49,545 24 h 304
ICEWS14 7,128 230 74,845 8514 7371 24 h 365
ICEWS05-15 10,488 251 368,868 46,302 46,159 24 h 4,017

Datasets and Evaluation Metrics. We evaluate ST-Net on three benchmark
datasets for link prediction: ICEWS18 [20], ICEWS14 [21] and ICEWS05-15 [21].
Table 1 provides a summary of these datasets statistics. We divide each dataset
into training set, validation set and testing set into 80%/10%/10% splits in the
chronological order, and adopt a filited version of Mean Reciprocal Ranks(MRR)
and Hits@1/3/10 to measure the performance of ST-Net.

Baselines. We compare ST-Net with multiple static knowledge graph embed-
ding(SKGE) and temporal knowledge graph embedding(TKGE) models. The
former includes TransE [11], DistMult [15], ComplEx [14], RotatE [22], and
SimplE [23], while the latter includes TTransE [1], HyTE [2], TA-DistMult [21],
DE-DistMult [4], DE-SimplE [4], RE-Net [5], CyGNet [6], and ATiSE [24].

Parameter Settings. The value of the hyperparameter α used to tune the
weight of Copy mode and Generation mode is determined based on the MRR
performance on the validation set of the current dataset. After extensive experi-
ments, we found that the model works best when α is set to 0.8 on ICEWS14 and
ICEWS18 and 0.9 on ICEWS05-15. The parameters of the model are initialized
with Xavier initialization (Glorot and Bengio 2010) [25], and then optimized
using an AMSGrad optimizer with a learning rate of 0.001. The batch size is
set to 1024. The hidden layer embedding dimension is set to 200. The training
epoch is limited to 30, which is enough for the model to converge in most cases.
The baseline results are adopted from CyGNet [6] and ATiSE [24].
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4.2 Results

Table 2. Results on ICEWS18, ICEWS14 and ICEWS05-15. The best results are in
bold, and the second best ones are underlined.

Method ICEWS18 ICEWS14 ICEWS05-15
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 17.56 2.48 26.95 43.87 28.00 9.40 – 63.70 29.40 9.00 – 66.30
DistMult 22.16 12.13 26.00 42.18 43.90 32.30 – 67.20 45.60 33.70 – 69.10
ComplEx 30.09 21.88 34.15 45.96 46.70 34.70 52.70 71.60 48.10 36.20 53.50 72.90
RotatE 23.10 14.33 27.61 38.72 41.80 29.10 47.80 69.00 30.40 16.40 35.50 59.50
SimplE – – – – 45.80 34.10 51.60 68.70 47.80 35.90 53.90 70.80
TTransE 8.36 1.94 8.71 21.93 25.50 7.40 – 60.10 27.10 8.40 – 61.60
HyTE 7.31 3.10 7.50 14.95 29.70 10.80 41.60 65.50 31.60 11.60 44.50 68.10
TA-DistMult 28.53 20.30 31.57 44.96 47.70 36.30 – 68.60 47.40 34.60 – 72.80
DE-DistMult – – – – 50.10 39.20 56.90 70.80 48.40 36.60 54.60 71.80
DE-SimplE – – – – 52.60 41.80 59.20 72.50 51.30 39.20 57.80 74.80

RE-NET 42.93 36.19 45.47 55.80 45.71 38.42 49.06 59.12 – – – –
CyGNet 46.69 40.58 49.82 57.14 49.99 43.51 53.55 61.42 57.22 50.25 61.77 68.58
ATiSE – – – – 55.00 43.60 62.90 75.00 51.90 37.80 60.60 79.40
ST-Net 47.47 41.07 50.62 58.52 51.84 44.74 55.59 64.57 58.34 51.26 62.85 70.22

Table 2 report the link predition results of ST-Net and baseline methods on
three TKG datasets. We observe that all SKGE methods perfrom worse than
most TKGE methods, because they cannot capture temporal information in facts
and cannot model dynamic interactions of entities and relations. However, their
preformance generally outperform TTransE and HyTE. The reason we believe
is that TTransE and HyTE only learn the representation at this timestamp
for each snapshot separately, without linking entity representations at different
timestamp, so it lacks the ability to capture time sequence information.

Table 2 also show that significantly outperforms other baselines on ICEWS18
and ICEWS05-15. For further analysis, we calculated the probability of repeated
events in ICEWS18 to be 49.24%, which will improve the prediction effect of the
Copy mode to a certain extent. And in ICEWS18, as many as 41.3% of the
groups where the subject entity and the object entity are in the same space,
which also explains that the reasonable use of spatial information can improve
the prediction result. We argue that spatial message between entities in a fact
can also help the model learn the semantic information implied by the relation,
that is, the relation often occur between those spatial locations.

The experimental results indicate that ST-Net use the spatial information
attached to the entity to implement fine-grained modeling of entity representa-
tion, which can effectively enrich entity information and improve the effect for
link prediction.
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4.3 Ablation Study

Table 3. Results (in percentage) of ablation study on the ICEWS18.

Method ICEWS18
MRR Hits@1 Hits@3 Hits@10

ST-Net-No-Spatial-Information 46.68 40.72 49.67 56.82
ST-Net-Prompt(bert-base-cased) 47.03 40.86 50.12 57.60
ST-Net 47.47 41.07 50.62 58.52

In order to explore the impact of different acquisition of spatial information
on the model, we conducted an ablation study. To do this, we create variants
of ST-Net by adjusting how spatial information is obtained in the model, and
compare their performance gaps with ST-Net on the ICEWS18 dataset. From
the results in Table 3, we can observe the importance of spatial information.
After removing the spatial information, all metrics of the model have decreased,
which demonstrates that the spatial information contained in entity play a vital
part for predicting future facts. In addition, ST-Net-Prompt(bert-base-cased)
complete the missing spatial information of entity through the Fill-Mask task
in the pre-trained language model (bert-base-cased), where the template of the
Fill-Mask task is set to : [Entity text]’s country is [MASK]. Its performance
ranks between ST-Net and ST-Net-No-Spatial-Information, which further illus-
trates the importance of spatial information and reflects the shortcomings of the
method we designed to complete the spatial information through the pre-trained
model.

5 Conclusion

In this paper, we explore the spatial information attached to the entity and pre-
dict the future facts by combining the copy and generation reasoning mode. The
experimental results show that ST-Net has promising performance in predicting
the future facts in the temporal knowledge graph. In the future work, we plan to
mine more accurate and effective information in entity through prompt learning,
and combine them to help the model perform better. Meanwhile, further study
on the utilization of spatial information is also significant.
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of Guangdong Province (No.2018A030313934).
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Abstract. Medical Vision Question Answer (VQA) is a combination of
medical artificial intelligence and visual question answering, which is a
complex multimodal task. The purpose is to obtain accurate answers
based on images and questions to assist patients in understanding their
personal situations as well as to provide doctors with decision-making
options. Although CV and NLP have driven great progress in medi-
cal VQA, challenges still exist in medical VQA due to the character-
istics of the medical domain. First, the use of a meta-learning model
for image feature extraction can accelerate the convergence of medi-
cal VQA models, but it will contain different degrees of noise, which
will degrade the effectiveness of feature fusion in medical VQA, thereby
affecting the accuracy of the model. Second, the currently existing med-
ical VQA methods only mine the relation between medical images and
questions from a single granularity or focus on the relation within the
question, which leads to an inability to comprehensively understand the
relation between medical images and questions. Thus, we propose a novel
multi-granularity medical VQA model. On the one hand, we apply mul-
tiple meta-learning models and a convolutional denoising autoencoder
for image feature extraction, and then optimize it using an attention
mechanism. On the other hand, we propose to represent the question
features at three granularities of words, phrases, and sentences, while
a keyword filtering module is proposed to obtain keywords from word
granularity, and then the stacked attention module with different gran-
ularities is used to fuse the question features with the image features to
mine the relation from multiple granularities. Experimental results on
the VQA-RAD dataset demonstrate that the proposed method outper-
forms the currently existing meta-learning medical VQA methods, with
an overall accuracy improvement of 1.8% compared to MMQ, and it has
more advantages for long questions.

Keywords: Medical vision question answer · Multi-granularity ·
Attention mechanism · Meta-learning
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1 Introduction

Medical VQA focuses on answering questions related to the content of a given
medical image by fusing the image with question information. In practice, it
has a wide range of applications, such as improving patient engagement [12]
and supporting clinical decision-making [7]; therefore, it has recently become a
popular topic in the medical field. The Medical VQA model includes an image
feature extraction module, a question feature extraction module, a feature fusion
module, and an answer prediction module, each of which affects the performance
of the model to varying degrees.

Image feature extraction is the basic module of the Medical VQA model, and
it affects the convergence speed and accuracy of the model. Pretraining VGG
[19] or ResNet [8] feature extraction networks on natural image datasets such
as ImageNet [18] and then fine-tuning the medical VQA model on the medi-
cal VQA data can alleviate the training difficulties caused by the scarcity of
medical data; however, the above image feature extraction approach is not effec-
tive when used in medical VQA models [1,21] due to the content differences
between medical and natural images. A mixture of enhanced visual features
(MEVF) [16] combined model-agnostic meta-learning (MAML) [3] and convolu-
tional denoising autoencoder (CDAE) [15] to extract image features. MAML can
be quickly adapted to new tasks to accelerate model convergence, and CDAE
is robust to noisy images. Leveraging the advantages of both, MEVF improves
the accuracy of medical VQA tasks; however, the dataset used to train MAML
by manual annotation may have noisy labels. Multiple meta-model quantifying
(MMQ) [2] proposed a multiple meta-model quantifying method that is designed
to increase meta-data by auto-annotation, deal with noisy labels, and output
multiple meta-learning models that provide robust features for medical VQA.
The image features extracted by different meta-learning models should have dif-
ferent importance, but MMQ views each image feature equivalently and applies
it to the medical VQA directly. In addition, medical images such as MRI, CT,
and X-ray may carry noise during acquisition and transmission, which results in
image features that also contain varying degrees of noise, further affecting the
accuracy of the medical VQA model.

Solving the semantic gap between images and text is the key to multimodal
tasks; thus, image and question feature fusion is the core module of the medical
VQA task. SAN [22] proposed a stacked attention approach to fuse image and
question features. The question features are used as query vectors to find the
regions in the image that are relevant to the answer, and the answer is derived by
multiple reasoning. BAN [10] finds bilinear attention distributions to utilize given
image and question information seamlessly. The above feature fusion methods
improve the performance of general VQA tasks and are also widely used in
medical VQA. However, due to the high similarity of human tissues themselves,
medical images of the same part and the same body state are very similar,
which makes medical image processing more difficult than natural images and
thus requires stronger inference ability. Directly applying the above general VQA
model to medical VQA, only a single granularity of fusing image features with
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question features [2,5,16] leads to a lack of inference ability and unsatisfactory
performance.

To address the above problems, we propose the Multi-granularity Feature
Fusion Network(M2FNet), which consists of an image feature extraction mod-
ule, a multi-granularity question feature extraction module, an attention-based
multi-granularity fusion module, and an answer prediction module. The image
feature extraction module uses multiple meta-learning models to obtain image
features understood from different perspectives and introduces the squeeze-and-
excitation block (SE) [9] to assign weights to the image features extracted to
suppress redundant information and emphasize important information while
using CDAE to obtain the denoised high-level semantic features. The image
feature extraction module obtains image features with robustness by combin-
ing the meta-learning models, CDAE and SE. The multi-granularity question
feature extraction module represents question features at three granularities:
word, phrase, and sentences. Further keywords are obtained from word granu-
larity using the keyword filtering module. The attention-based multi-granularity
fusion module adopts three different granularity stacked attention modules to
fuse question features with image features to achieve multi-granularity mining of
the relation between images and questions. The answer prediction module com-
bines three granularities of fused features to answer questions related to medical
images more accurately.

2 Related Work

2.1 Vision Question Answer

VQA is a complex multimodal task and the fusion of image and question features
is the core of the VQA task. Early works applied simple concatenation, summa-
tion, or pixel-level multiplication for cross-modal feature fusion. Bilinear Fusion
[6] has been proposed to apply bilinear pooling to fuse the features of two modal-
ities to mine the high-level semantic relation between modalities. To overcome
the computationally intensive problem of bilinear pooling, [4] embeds image and
question features into a high-dimensional space and then performs convolution
operations in Fourier space to fuse image and question information, improving
performance with fewer parameters. Multimodal pooling is an important tech-
nique for fusing image features and question features, and there are some other
works apply this technique, such as [11,24,25]. Since attention mechanisms are
widely used in the field of CV and NLP, SAN [22] proposed a stacked attention
approach to fuse image and question features; it treats the question features as
query vectors to find the regions in the image that are relevant to the answer
and arrive at the answer by multiple queries. Attention-based methods are also
available in [5,14], and [23] further explores the application of attention in VQA
by fusing features using a transformer [20]. The attention mechanism has led
to the further development of VQA. However, currently existing medical VQA
methods only mine the relation between medical images and questions at a sin-
gle granularity [2,5,16] or focus on the relation within the question, failing to
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capture content in the images from multiple granularities to comprehensively
understand the relation between medical images and questions.

2.2 Meta Learning

MAML [3] proposed meta-learning methods to enable rapid convergence of the
model in new tasks using only small datasets. Due to data scarcity in med-
ical VQA tasks, feature extractors pretrained with natural images are usu-
ally required to optimize the training process; however, the content differences
between medical and natural images lead to unsatisfactory results of such meth-
ods. Therefore, MEVF [16] proposed a combination of MAML and CDAE; CDAE
is an encoder-decoder architecture trained with unlabeled data, which improves
the robustness of the model by adding noise to the image data, allowing the
encoder to extract valid information from the noisy image for downstream tasks.
It takes advantage of meta-learning and CDAE techniques to achieve better per-
formance on small datasets for medical VQA, proving that meta-learning and
CDAE are effective in medical VQA. MMQ [2] proposed a multiple meta-model
quantifying method that is designed to increase meta-data by auto-annotation,
deal with noisy labels, and output multiple meta-learning models that provide
robust features for medical VQA. Although the MMQ meta-learning approach
can alleviate the training difficulties associated with data scarcity in medical
VQA, it views equally the image features extracted by multiple meta-learning
models, and the extracted features may carry varying degrees of noise.

3 Method

3.1 Overview

In this paper, we propose the M2FNet model for medical VQA tasks, which
takes images as the core and mines the relation between images and questions
at multiple granularities. Figure 1 illustrates an overview of our framework.

Fig. 1. The framework of our proposed M2FNet.
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The M2FNet processes images and questions through two branches: image
feature extraction and multi-granularity question feature extraction, and then
the output of the branches is fused by the attention-based multi-granularity
fusion module to obtain fused features for answer prediction.Image feature
extraction consists of CDAE’s encoder, n meta-learning models, and the SE
module. The images are passed through n meta-learning models to obtain n fea-
ture maps V1 ∼ Vn with robustness, which are input to the SE module to learn
the importance of each channel after concatenation and then combine the impor-
tance weights with the feature maps to obtain the meta-learning feature map
Vmeta, while the CDAE’s encoder extracts high-level semantic features Va. The
final image features V are obtained by concatenating Vmeta and Va. To extract
question features from multiple granularities, we take the word embedding vec-
tor Qa as the input of LSTM, Phrase Embedding, and Keywords Filtering for
encoding questions to obtain sentence-granularity, phrase-granularity, and word-
granularity features Qs, Qp, and Qw, respectively. The question features Qs,
Qp, and Qw are input with the image features V to the attention-based multi-
granularity fusion module consisting of SANs, SANp, and SANw to obtain the
fused features Qs,a,Qp,a, Qw,a, achieving multiple granularities understanding of
the relation between images and questions. Finally, the three fusion features are
summed at the pixel level to jointly make answer predictions. The modules are
described in detail as follows.

3.2 Image Feature Extraction

We propose combining multiple meta-learning models and CDAE to extract
image features and introduce a SE module to optimize the feature extraction.
The meta-learning model can be quickly applied to other tasks, achieving fast
convergence even on small datasets of medical VQA. CDAE is robust to noisy
images and still extracts high-level semantic features from medical images such as
MRI, CT, and X-ray that may carry noise. The SE module learns the importance
weights of the input features for each channel, emphasizing important informa-
tion and suppressing redundant information, we apply it to assign weights to
the image features obtained from different meta-learning models to maximize
the effect of each image feature. There are n meta-learning models in Fig. 1,
and each meta-learning model consists of four 3*3 convolutional layers and a
mean pooling layer. N image features Vi with robustness are obtained by feed-
ing images to n meta-learning models,i ∈ (1, n), and then are concatenated at
the channel level to obtain V c

meta. The pink part represents the SE module,
including a pooling layer and two fully connected layers. V c

meta is input to the
SE module, the global feature representation of each channel is obtained by the
pooling layer, and then the importance weight of each channel is learned by the
fully connected layer, which is used to adjust the feature map to obtain Vmeta.
CDAE includes an encoder and a decoder. The encoder extracts the high-level
semantic features of the image, which consists of three 3*3 convolutional layers,
each of which is followed by a max-pooling layer. The decoder consisting of two
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3*3 deconvolutions and two 3*3 convolutions reconstructs the image using the
high-level semantic features.

We extract the image features Va using the encoder of the pretrained CDAE
and then concatenate Vmeta and Va to obtain the final image feature V . The
above process is expressed as the following equation.

V c
meta = [V1, . . . , Vn] (1)

Vmeta = SE (V c
meta) (2)

V = [Vmeta, Va] (3)

3.3 Multi-granularity Question Feature Extraction

When people understand complex statements, they often read multiple times
to understand the semantics precisely. Based on human thinking patterns, this
paper argues that semantic information should also be obtained at multiple
granularities in complex medical VQA tasks and therefore proposes a multi-
granularity question feature extraction module to represent question features
at three granularities of words, phrases, and sentences. The input question is
first unified to a 12-word sentence, which is zero-padded if the length of the
question is less than 12. Then, each word in the question is transformed into
a vector using 600-D GloVe [17], which results in a vector Qa ∈ Rn×dw , where
n = 12 denotes the number of words and dw = 600 denotes the word dimension.
Furthermore, we pass the vector Qa through keyword filtering (KF) to obtain
keywords pointing to the pathological regions and properties, which results in
word-granularity question features Qw ∈ Rn×dw . The filter is the intersection
of two lists, one of which contains words in the question of the medical VQA
dataset, and the other is a stop-words list based on NLTK [13]. Input Qa into
the phrase feature extraction module to obtain the phrase-granularity question
feature vector Qp ∈ Rdp , with dp = 1024 denoting the dimension of the ques-
tion feature. The phrase feature extraction module is shown in Fig. 2, which
consists of three 1-D convolutions with different kernel sizes to output feature

Fig. 2. Phrase feature extraction module.
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vectors Qunigram
p , Qbigram

p ,and Qtrigram
p , and then the phrase-granularity ques-

tion feature vector Qp is obtained after concatenation and max-pooling. The
above process is expressed as the following formulas.

Qunigram
p = tanh (W1Qa) (4)

Qbigram
p = tanh (W2Qa) (5)

Qtrigram
p = tanh (W3Qa) (6)

Qp = max
([

Qunigram
p , Qbigram

p , Qtrigram
p

])
(7)

We apply the 1024-D LSTM on the Qa vector to obtain the sentence-granularity
question features QS ∈ Rds , ds = 1024. Through the above process, the multi-
granularity question feature extraction module outputs three question feature
vectors of sentence-granularity, phrase-granularity and word-granularity.

Fig. 3. Attention-Based multi-granularity fusion module: The left and right sides rep-
resent two executions of query and fusion operations, and the three layers of depth
represent SANi of different granularities

3.4 Attention-Based Multi-granularity Fusion Module

In a complex task such as medical VQA, capturing key regions in an image based
on semantic information at different granularities to obtain fused features that
jointly participate in answer prediction helps improve model performance. In this
paper, we propose an attention-based multi-granularity fusion module that fuses



148 H. Wang et al.

question features with image features at different granularities using three SANi
modules, where i ∈ (w, p, s), V and Qi are the inputs to SANi, and the question
feature vector Qi queries image feature vector V to obtain attention vector Att1i .
The result is combined with Qi to obtain Qı̃ as a new question feature vector
querying the image feature V again, resulting in a high-level attention Att2i .
High-level attention will give a more accurate attention distribution to focus
on the region related to the answer, fuse it with the current question feature
Qı̃,and finally output the fusion feature Qi,a. The three granularity fused features
predict the answer together. Figure 3 shows the architecture of the fusion module.
The attention-based multi-granularity fusion module enables a comprehensive
understanding of the relation between images and questions to achieve deep
inference and improve model performance.

3.5 Answer Prediction and Model Training

Answer Prediction. In this paper, we treat the medical VQA task as a classi-
fication task based on answer sets. We use a 2-layer MLP as a classifier to predict
the category scores and obtain the final answers. The fused features Qw,a, Qp,a,
and Qs,a at the word, phrase, and sentence granularity output by the fusion mod-
ule are first summed at the pixel level and then fed into the classifier, resulting
in category score prediction ŷ, The classifier is trained using a cross-entropy loss
function. The prediction scores are calculated as follows.

ŷ = MLP

(
∑

i

qi,a

)

, i ∈ (w, p, s) (8)

Model Training. We first initialize the network parameters using the pre-
trained meta-learning models and CDAE weights and then optimize the model
on the medical VQA data, the training data used by different meta-learning
models are cross and different. To enhance the robustness of the model, we also
introduce a CDAE image reconstruction task to assist in the optimization of the
medical VQA task and train the model using a multi-task loss function. The loss
function L consists of two terms. Lvqa is the cross-entropy loss for the medical
VQA task, and La is the loss of the reconstruction task using MSE loss, with
the following equations.

L = Lvqa + αLa (9)

Lvqa = BCE(ŷ, y) (10)

La = MSE (x̂, xo) (11)

where α is a hyperparameter for balancing the two loss terms, ŷ and y denote
the predicted score and ground truth of the answer, x̂ denotes the reconstructed
image and xo is the original image.



M2FNet 149

4 Experiments

4.1 Datasets and Metrics

Datasets. We evaluate the proposed M2FNet on the VQA-RAD dataset, which
is a manually constructed radiology dataset, and the image set contains three
parts: head, chest and abdomen, MRI and CT for head, X-ray for chest and
CT for abdomen, with 315 images in total. There are 3515 question-answer
pairs, and each image corresponds to 10 questions on average, of which 3064 are
used as the training set and 315 as the test set. The question-answer pairs can
be divided into open questions and closed questions according to the responses,
where open questions are those where the responses are ’Yes/No’ or give options,
and closed questions are those where the responses are free-form questions. The
question-answer pairs can be categorized into 11 types, such as modal, organ,
and abnormal, according to the type of question. There are 458 answer types in
the dataset, and our model treats medical VQA as a classification task based
on the answer set. Although this dataset is small compared to other automat-
ically constructed datasets, it is more representative of how one should answer
questions as an AI radiologist due to its manual construction.

Metrics. The M2FNet is a classification-based medical VQA model, so the
accuracy is used as a metric to evaluate the model on the VQA-RAD dataset.
The accuracy rate is the percentage of the number of correctly predicted samples
to the total number of samples, and the formula is as follows.

PA =
NC

N
∗ 100% (12)

4.2 Experimental Setup

Our model is implemented with PyTorch, and we conduct experiments on a
GTX 1080ti GPU. The model is trained with a batch size of 32 and a learning
rate of 0.001 using the Adamax optimizer for 40 epochs. The hyperparameter α
in the loss function is set to 0.001.

4.3 Model Comparisons

The M2FNet proposed in this paper is compared with four existing meta-
learning methods MAML, MEVF, MMQ and MMQ+MEVF. MAML uses a
meta-learning model to initialize the weights of the image feature extraction
network for fast adaptation to medical VQA tasks, which enables medical VQA
models to achieve better performance even with small datasets. MEVF combines
meta-learning models with CDAE to extract image features and achieves fur-
ther performance improvements. MMQ proposes to mine the metadata of the
dataset itself, using the metadata to train the meta-learning model, and con-
tinuously updating the training data. It iterates this process to output multiple
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Table 1. Evaluation results by our proposed method and compared methods on the
VQA dataset.

Method Open-ended Close-ended Overall

MAML 40.1 72.4 59.6
MEVF 43.9 75.1 62.7
MMQ 53.7 75.8 67
MMQ+MEVF 56.9 75.7 68.2
M2FNet(ours) 56.9 76.8 68.8

meta-learning models that provide robust features for medical VQA. To achieve
better performance, MMQ is combined with MEVF.

As shown in Table 1, M2FNet achieves the highest accuracy on the dataset
VQA-RAD compared to the meta-learning methods in the table. Compared with
the advanced meta-learning method MMQ+MEVF, the overall accuracy and
close-ended accuracy improve by 0.6% and 1.1%, respectively.

4.4 Ablation Study

Effectiveness of SE and KF. We evaluate the effectiveness of SE and KF
in our proposed M2FNet by performing an ablation study. In Table 2, ‘baseline’
represents the base model proposed in this paper, ‘baseline+SE’ indicates the
model after introducing the SE module, and ‘baseline+SE+KF’ indicates the
introduction of the SE and KF modules, which is the M2FNet model proposed
in this paper.

Table 2. Evaluation results of the effectiveness of the SE and KF modules.

Open-ended Close-ended Overall

Ours baseline 50.4 76.8 66.2
Ours baseline +SE 51.2 77.3 66.9(+0.7)
Ours baseline +SE+KF 56.9 76.8 68.8(+2.6)

As seen from Table 2, the overall accuracy improves by 0.7% with close-ended
and open-ended accuracy increasing by 0.5% and 0.8% after the introduction of
the SE module, and further, the overall accuracy achieves a large improvement
of 2.6% after the introduction of the KF module. The results illustrate the effec-
tiveness of SE and KF in our model.
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Scheme of Using the SE Module. In this paper, we propose to optimize
feature extraction with the SE module. To maximize the effect of the SE module,
we compare the effect of the SE module acting on m meta-learning models and n
meta-learning models. In Table 3, ‘n’ refers to the MMQ+MEVF method directly
using n meta-learning models for image feature extraction, ‘m+SE’ means that
the image features are extracted using the unfiltered m meta-learning models and
the SE module acts on the m feature maps, while ‘n+SE’ utilizes the filtered n
meta-learning models.

Table 3. Evaluation results of different SE module usage strategies.

Open-ended Close-ended Overall

n 56.9 75.7 68.2
m +SE 56.1 76.8 68.5
n +SE 56.9 76.8 68.8

Table 3 shows that the accuracy of ‘n+SE’ is 0.3% higher than that of
‘m+SE’, which indicates that the best performance is obtained by adding the
SE module to the n meta-learning model; therefore, it is the design approach
ultimately adopted for our model. At the same time, the accuracy of ‘n+SE’
is 0.6% higher than that of ‘n’, which again shows the effectiveness of the SE
module.

4.5 Qualitative Evaluation

The visualization experiment in Table 4 compares the effect of our proposed
M2FNet and MMQ+MEVF based on the prediction confidence scores of the
Top 5 answers. The table covers three types of medical images with different
modalities and different organs, and the red and blue bars represent the confi-
dence scores of correct and incorrect answers, respectively. The first three data
show that the M2FNet model is more accurate in predicting answers compared
to MMQ+MEVF. The fourth data shows that the M2FNet model has more
advantages in dealing with long questions. This indicates that the proposed
multi-granularity question feature extraction module can effectively obtain the
semantic information of complex questions, thus enhancing the effect of the
fusion module, which effectively improves the accuracy of the answer prediction
of the medical VQA model.
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Table 4. Visualization of the predicted confidence scores of M2FNet and
MMQ+MEVF.

Question Image MMQ+MEVF M2FNet

Question: Which side of
the lungs are hyperinflated?
Ground-truth Answer:
Bilateral lungs

Question: Where are the
acute infarcts? Ground-
truth Answer: R frontal
lobe

Question: What is the
mass most likely? Ground-
truth Answer: kidney cyst

Question: Which sign do
you see in the aortopul-
monary window in this im-
age? Ground-truth An-
swer: middle mogul

5 Conclusion

In this paper, we propose a novel neural network model with multiple granulari-
ties to mine the relation between images and questions for the medical VQA task.
In addition, we introduce the SE module to optimize the image feature extrac-
tion process. To capture the key regions related to the answer in the image, a
KF module is proposed to further fine-grain the question features of word gran-
ularity. The above enables multi-granularity inference and thus improves the
model performance. Extensive experimental results on the VQA-RAD dataset
show that the M2FNet model proposed in this paper outperforms the currently
existing meta-learning medical VQA model. The visualization results of quali-
tative analyses intuitively reflect the performance of M2FNet while indicating
that M2FNet is more advantageous in dealing with long questions.
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Abstract. Recent unsupervised multi-modal machine translation meth-
ods have shown promising performance for capturing semantic relation-
ships in unannotated monolingual corpora by large-scale pretraining.
Empirical studies show that small accessible parallel corpora can achieve
comparable performance gains of large pretraining corpora in unsuper-
vised setting. Inspired by the observation, we think semi-supervised
learning can largely reduce the demand of pretraining corpora without
performance degradation in low-cost scenario. However, images of par-
allel corpora typically contain much irrelevant information, i.e., visual
noises. Such noises have a negative impact on the semantic alignment
between source and target languages in semi-supervised learning, thus
weakening the contribution of parallel corpora. To effectively utilize the
valuable and expensive parallel corpora, we propose a Noise-robust Semi-
supervised Multi-modal Machine Translation method (Semi-MMT). In
particular, a visual cross-attention sublayer is introduced into source
and target language decoders, respectively. And, the representations of
texts are used as a guideline to filter visual noises. Based on the visual
cross-attention, we further devise a hybrid training strategy by employ-
ing four unsupervised and two supervised tasks to reduce the mismatch
between the semantic representation spaces of source and target lan-
guages. Extensive experiments conducted on the Multi30k dataset show
that our method outperforms the state-of-the-art unsupervised meth-
ods with large-scale extra corpora for pretraining in terms of METEOR
metric, yet only requires 7% parallel corpora.

Keywords: Multimodal data · Neural machine translation ·
Semi-supervised learning · Noise

1 Introduction

Machine translation breaks the language barrier between people from different
countries, which is of great value to modern human communication. Among
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Fig. 1. An illustration of visual noises and parallel corpora in the mismatch between
source and target languages in UMMT. The phrase “bank” in the source sentence has
multiple meanings and the image can help the MMT model to capture the “river bank”
instead of the “financial bank”.

machine translation methods, multi-modal machine translation (MMT) [1,16,21]
makes use of multimedia contents (e.g., texts and images) where images are
treats as visual pivots [4,12] to reduce the semantic mismatch between source and
target languages. As shown in Fig. 1, images and texts co-occur and they together
provide a comprehensive semantics of the phrase “bank”. With the enhancement
of visual information, translators can understand it towards the “river bank”
instead of the “financial bank”. The goal of MMT is to model consistent semantic
representation relationship between source and target languages via combining
the visual information and derive accurate translation results.

Recently, neural machine translation methods have shown promising trans-
lation performance by modeling the relationships between different modal rep-
resentations. To reduce the mismatch between different representation spaces,
supervised multi-modal machine translation (SMMT) [8,10,11,26] and unsu-
pervised multi-modal machine translation (UMMT) [4,12,16,21] are commonly
training paradigms. Specifically, parallel corpora consist of two monolingual cor-
pora and they are the translations of each other, which inherently contains the
mapping relationship of two languages. SMMT is a straightforward approach to
learn the semantic patterns from parallel corpora. However, the acquisition of
large manually annotated parallel corpora is typically expensive. UMMT aims
to achieve decent performance without using any parallel corpora. And, to align
the semantic spaces from different language, UMMT typically needs large-scale
extra corpora for pretraining and the cost of computation is heavy.

On the premise that small parallel corpora is relatively accessible than large
monolingual pretraining corpora which incurs more resources, semi-supervised
learning is a compromise strategy to reduce the mismatch of semantic spaces
of different languages. And, a line of unimodal machine translation works are
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within this area [5,24,25]. It is intuitive to apply the semi-supervised setting for
MMT. However, as shown in Fig. 1, images generally contain much irrelevant
information and may introduce visual noises, such as sky, forest and river. It is
not informed to consider texts and images equally, since the interference caused
by visual noises may degrade performance and require more parallel corpora to
compensate. As such, MMT is more challenging than the unimodal translation in
semi-supervised learning, which motivates us to explore a noise-robust approach
to effectively make use of small parallel corpora.

Inspired by recent multi-modal work [18], texts provide more effective infor-
mation than images. This paper proposes a noise-robust semi-supervised multi-
modal machine translation method (Semi-MMT). The visual cross-attention
is introduced to balance visual and textual information in unsupervised and
supervised learning, respectively. For the unsupervised learning, denoising auto-
encoders [23] are employed to reconstruct source and target languages from
monolingual multi-modal corpora. Then, for the supervised learning, a small
set of parallel corpora is utilized to refine their representations and reduce the
mismatch between source and target caused by unsupervised training. Our semi-
supervised learning can achieve a trade-off between translation quality and cor-
pora quantity, which effectively reduces the dependence on parallel corpora and
monolingual pretraining corpora.

Overall, the contributions of this work are three fold:

– To our knowledge, it is the first work that focuses on the accessibility of small
parallel corpora for semi-supervised MMT.

– We develop a noise-robust semi-supervised multi-modal machine translation
method to balance translation quality and corpora quantity.

– Extensive experiments are conducted on the reorganized Multi30k dataset
and the results show the superiority of our Semi-MMT over state-of-the-art
unsupervised methods in terms of METEOR metric, yet only requires 2,014
parallel samples (30K in total), while the unsupervised methods require 10
million extra corpora for pretraining.

The remainder of this paper is organized as follows. Section 2 introduces
the related work. Section 3 introduces the definition of MMT and describes the
details of our proposed methodology. Section 4 introduces the experimental setup
and analysis. And, Sect. 5 is the conclusion the future work.

2 Related Work

2.1 Multi-modal Machine Translation

Supervised multi-modal machine translation has achieved success in recent
years [8–11,19,26]. These methods directly learn the paired source-target lan-
guage mapping relationship from parallel corpora. However, the acquisition of
sufficient parallel corpora is typically expensive, which relies on human annota-
tion.
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To reduce the reliance of parallel corpora, unsupervised multi-modal machine
translation [4,12,16,21] only utilizes monolingual corpora for training. However,
due to the absence of mapping relationship in monolingual data, the mismatch
between the semantic spaces of source and target languages becomes a vital
factor that affects translation quality. Su et al. propose a cycle-consistency loss
that employs back translation to switch the two decoders of source and target
languages [21]. Chen et al. propose a visual pivot based method to learn word-
level and sentence-level translation progressively [4]. Huang et al. utilize visual
information as an auxiliary hint for alignment [12]. Besides the visual informa-
tion, the alignment between different representation spaces can also benefit from
extra large-scale monolingual pretraining corpora [12,16,21]. The limitation lies
that large-scale pretraining incurs more computation resource.

In this work, we argue that the accessibility of small parallel corpora enables
semi-supervised training, which may not require additional monolingual corpora
for high-cost pretraining and still keep good translation performance.

2.2 Semi-supervised Machine Translation

A lot of semi-supervised learning methods is proposed in unimodal machine
translation [5,24,25]. Cheng et al. first propose to exploit monolingual corpora
in the limitation of parallel corpora, and they reconstruct the monolingual cor-
pora by autoencoders [5]. Inspired by the law of total probability, Wang et al.
explicitly exploit the connection between the probability of target-side sentences
and the conditional probability of translated sentences to improve the training
of monolingual corpora [24]. Xu et al. introduce a dual reconstruction objective
to incorporate monolingual training data in a unified way [25].

Despite the success of semi-supervised learning in unimodal machine trans-
lation, multi-modal corpora contains complex visual information. It is still a
challenging work to study the effect of visual noises on semi-supervised learning.
This paper is the first work to investigate semi-supervised multi-modal machine
translation.

2.3 Noise-Robust Alignment

The early multi-modal fusion work directly treats visual and textual features
equally, which ignores the irrelevant contents in images [2,3,13]. Subsequently,
a line of literatures has discussed the visual noises in images, and aims to align
visual information with textual information in multi-modal scenario [11,18,26].
Li et al. propose a bridge connection module that enables texts freely selecting
the relevant images via relevance distance [18]. Helcl et al. [11] and Yao et al. [26]
employs multi-modal self-attention to incorporate visual information in a graph
perspective of Transformer.

The above works study the effect of visual noises on supervised learning. In
this paper, we introduce the multi-modal self-attention to enhance our semi-
supervised learning, which achieves noise-robust alignment in source and target
language semantic representation spaces.
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Fig. 2. The framework of our Semi-MMT. We devise forward and back translation
models, i.e., (x, z) → y and (y, z) → x. Each model contains a encoder and a decoder,
and these encoders and decoders are designed into six combinations to compute loss
functions. In terms of forward translation model, its encoder and decoder are at the
left side, and its combinations are at the right side and defined in Eqs. (3), (6) and (9).
For back translation model, its combinations are similar and symmetry to the forward,
and defined in Eqs. (4), (8) and (9).

3 Methodology

In this section, we first formulate the definition of MMT, and introduce the
overall architecture of our proposed Noise-robust Semi-supervised Multi-modal
Machine Translation method (Semi-MMT). We then delve into the details of the
semi-supervised learning including four unsupervised and two supervised losses.

As shown in Fig. 2, for a sample (x, y, z) ∈ (X ,Y,Z), given an image z
annotated with its source sentence x = [x1, ..., xLx

], we aim to train a MMT
model that can translate x into target language y = [y1, ..., yLy

] in low resource
(i.e., the size of training corpora and computational cost), and vice versa. Here,
Lx and Ly are the length of x and y.

3.1 Noise-Robust Semantic Alignment

Inspired by the work [18], the information from textual modalities is purer than
that from visual modalities. We utilize texts as a guideline to filter irrelevant
visual information. As shown in the left of Fig. 2, a visual cross-attention [11]
sublayer is introduced into the decoder of vanilla Transformer [22] where the rele-
vance between texts and images is measured. Formally, the image representation
is a matrix Ei generated by the self-replicating output vector of a VGG16 [6]
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encoder, and the alignment is defined as follows:

Ec = softmax(
(EhW

Q)(EiW
K)T√

d
)(EiW

V ), (1)

where WQ,WK and WV are the trainable parameter matrices of query, key and
value, Eh is the output matrix of the second self-attention sublayer in vanilla
decoder, d is the dimension of hidden layer, i is the position of the next word.

Noting that in the visual cross-attention sublayer, the representations of texts
are used as queries, and a dot-product function is employed to compare each
query with a set of keys from image representations. The resulting similarities are
normalized and used as weights to incorporate visual information. This sublayer
is introduced into both supervised and unsupervised training to enhance the
contribution of parallel corpora in semi-supervised learning.

3.2 Semi-supervised Learning.

In this paper, we highlight the contribution of small accessible parallel corpora
and introduce supervised learning on the basis of unsupervised learning. In par-
ticular, to balance the corpora quantity and resource cost, we devise a hybrid
training strategy by employing four unsupervised [21] and two supervised losses.
During training, we randomly select several of them to learn the final mapping
relationship X × Z → Y and Y × Z → X . The cross-entropy is adopted to
calculate the distance between the ground-truth g and the output probability
distribution p of decoder. Formally, the objective function is defined as follows:

L(p, g) = −
|g|∑

i=1

|p|∑

j=1

gij log(pij), (2)

where gij and pij refer to the jth value of the ith word representation of the
ground-truth and probability distribution.

Unsupervised Auto-Encoding Loss. To learn a more informative encoding
representation, a denoising auto-encoder [23] is used to reconstruct the source
and target representations, respectively. As shown in the top right region of
Fig. 2, the auto-encoding pipline and loss functions [21] are defined as follows:

x̂ = Decx(Encx(x), Encz(z)),
Lx
auto = L(x̂, x), (3)

where x̂ represents the reconstructed representation of x, and Encx(·) and
Decx(·) refer to the encoder and decoder of source language x, respectively.
Note that Encz(·) is the VGG16 [6] model. Similarly, the auto-encoding of the
target language is defined as follows:

ŷ = Decy(Ency(y), Encz(z)),
Ly
auto = L(ŷ, y). (4)
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Cycle-Consistency Loss. The auto-encoding loss learns two mapping rela-
tionships, namely X × Z → X and Y × Z → Y. However, there still exists a
mismatch with our final task (X ×Z → Y). To address this, two cycle-consistency
loss functions are utilized to compensate such mismatch. As shown in the middle
right panel of Fig. 2, for source language x, the cycle-consistency loss [14,21] first
translate x into ỹ as follows:

ỹ = Decy(Encx(x), Encz(z)). (5)

However, in monolingual corpora, the ground truth y with respect to the
input x and z is unknown. Therefore, we further conduct a back translation by
employing a pseudo pair (x, ỹ, z). In this manner, we achieve a cycle-consistency
interaction between encoder and decoder from different language. Formally, for
source language x, the cycle-consistency loss is defined as:

Lx
cyc = L(x̂, x), (6)

given the back-translated task:

x̂ = Decx(Ency(ỹ), Encz(z)). (7)

Similarly, to model the mapping relationship Y × Z → X , the cycle-consistency
loss [21] of target language y is defined as follows:

Ly
cyc = L(ŷ, y), (8)

where ŷ represents the back-translated representation of y.

Supervised Loss. The cycle-consistency loss has limited ability to revise the
mismatch, since human language is diverse and the pseudo pairs may not be
precisely semantic matched. We notice that a small high-quality parallel corpora
is relatively easy to collect. Therefore, a supervised loss is further utilized to
refine the mapping relationship X × Z → Y and Y × Z → X . Note that only a
small set of high-quality parallel corpora is employed to calibrate the mismatch
caused by unsupervised learning. This effectively reduce the dependency on a
large-scale pretraining corpora. Formally, the supervised loss functions of the
forward and back translation are defined as follows:

Lx
sup = L(ỹ, y),

Ly
sup = L(x̃, x),

(9)

where

x̃ = Decx(Ency(y), Encz(z)) and
ỹ = Decy(Encx(x), Encz(z))

are the representation of translation results.
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Fig. 3. Explanation of reorganized Multi30k. White boxes denote the removal of the
paired language to form monolingual corpora in the source and target languages, respec-
tively.

4 Experiment

In this section, we conduct experiments on the reorganized Multik30k dataset
to reveal the effectiveness of Semi-MMT. In summary, we aim to analyze Semi-
MMT from the following perspectives:

– RQ1 How does Semi-MMT perform compared with the state-of-the-arts
unsupervised methods with or without pretraining?

– RQ2 What is the effect of different components of Semi-MMT, such as noise-
robust semantic alignment, supervised learning and the size of parallel cor-
pora?

– RQ3 How about the translation quality of Semi-MMT in a specific case?

4.1 Experimental Setup

Experiments were conducted on the Multik30k dataset [7]. The dataset contains
29,000 training samples, 1,014 validation samples, and respective 1,000 testing
samples for Test2016 and Test2017. For each sample, its image is annotated with
one English sentence and its German translation.

As shown in Fig. 3, we reorganized the Multi30k dataset for semi-supervised
experiment. In particular, we used the validation samples to form a parallel
corpora and training samples as non-parallel corpora in Para1014. Some adjust-
ments were conducted to generate Para514 and Para2014. To avoid paired sen-
tences information leakage, we randomly split half of the non-parallel corpora to
generate monolingual corpora.

We implemented the Semi-MMT on a machine equipped with a 12GB TITAN
Xp GPU. Following [16], 10% words are randomly masked and their displacement
within 2. We set the number of layers for the encoder and decoder as 4, the
number of heads in attention as 8, the hidden dimension as 2048. Moreover, we
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Table 1. Comparison with baselines on Test2016.“Image” means multi-modal model.
“Pretrain” refers to the model pretrained in extra large-scale corpora. The best results
are in bold and the suboptimal results are underlined

Model BLEU4 METEOR Image Pretrain

S-txt [21] 6.27 11.6

S-txt-img [21] 8.85 13.8 �
Progressive [4] 18.30 − �
3rd-Iteration [16] 22.74 − � �
P-txt-img [21] 23.52 26.1 � �
Base+Back Translation [12] 26.70 − � �
Semi-MMT(Para2014) 25.35 48.1 �

train the Semi-MMT with Adam optimizer [15]. The experiments have lasted for
5 h, and the results are evaluated by BLEU4 [20] and METEOR [17]. Note that
METEOR is a more comprehensive metric that considers precision and recall.
Following existing work [22], we use the average of checkpoints as the final result.

4.2 Baselines

As shown in Table 1, we trained the proposed Semi-MMT from scratch and
compare it with four unsupervised models.

– S-txt,S-txt-img and P-txt-img [21] are the unimodal model, multi-modal
model without pretraining and multi-modal model with pretraining, respec-
tively. Here, the prefix “S” means monolingual corpora and “P” means the
model is pretrained. These prefixes are as defined in [21].

– Progressive [4] only employs monolingual corpora in Multik30k without pre-
training.

– 3rd-Iteration [16] is a MMT model that iteratively improves the model based
on a reconstruction loss without any alignment.

– Base+Back Translation [12] is a MMT model that utilizes visual information
as image pivot in Transformer-based system.

Note that 3rd-Iteration [16], P-txt-img [21] and Base+Back Translation [12]
employs extra 10 millions textual corpora for pretraining, and then monolingual
corpora of Multik30k for fine-tuning. All baselines results are as reported in their
original papers.

4.3 Overall Comparison (RQ1)

To investigate the relationship between model performance and the demand of
pretraining monolingual corpora, our proposed Semi-MMT is compared with the
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Fig. 4. The results of different alignments and supervised part.

state-of-the-art unsupervised methods with or without pretraining. The obser-
vations are below:

Semi-MMT Consistently Outperforms the Baselines Without Pre-
training. As shown in Table 1, Semi-MMT achieves superior performance than
S-txt-img and Progressive. It indicates that Semi-MMT improves translation
quality by only employing about 2,000 parallel samples, yet the total number of
samples is the same as other methods.

Semi-MMT Achieves Competitive Performance Compared with the
Pretrained Baselines. Although it is unfair for us to directly compare with
the UMMT methods pretrained with extra large-scale corpora, it is undeniable
that Semi-MMT can still obtain comparable performance, and even outperforms
some of them. In particular, Semi-MMT achieves the best in the more com-
prehensive metric METEOR. Compared with the heavy computation with 10
million pretraining corpora, our proposed Semi-MMT is relatively light and low
cost in terms of computing resource.

The above results show that the proposed Semi-MMT can effectively utilize
small parallel corpora for semi-supervised learning and achieve comparable or
even better performance than unsupervised learning, which reduces the demand
of large-scale monolingual pretraining corpora.

4.4 Ablation Study (RQ2)

The Effect of Noise-Robust Semantic Alignment. To investigate the effect
of noises on semi-supervised learning, E&D Gate based semi-supervised method
is adapted from existing supervised task [9]. In this work, we adopt the visual
cross-attention layer [11] to filter noises in images. As shown in the left side of
Fig. 4, we observe that when inputting identical parallel corpora, the visual cross-
attention alignment [11] achieves relatively 0.9% and 4.2% absolute improvement
than E&D Gate [9] in terms of METEOR in Test2016 and Test2017 datasets,
respectively. In the right side of Fig. 4, the difference of performance in BLEU4
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is smaller than that in METEOR, which indicates that compared with variants,
Semi-MMT not only obtains high precision, but also keep good recall. The above
observations reveal that the visual cross-attention alignment in our proposed
Semi-MMT can effectively reduce the effect of irrelevant information from images
and enhance the contribution of parallel corpora in semi-supervised learning.

Fig. 5. The effect of gradual increment of parallel data.

The Effect of Supervised Part. Since the semi-supervised learning is a mid-
dle ground between the unsupervised and supervised learning, it will be well to
compare with supervised baselines and see how much supervised MEREOR the
semi-supervised model can cover with only 7% (2K/30K) parallel corpora. To
this end, we further remove the unsupervised part and only keep the network
architecture and supervised part. In particular, we repeatedly and randomly sam-
ple 2014 parallel corpora (S1 and S2) to conduct supervised experiments. The
experimental results are shown in Fig. 4. Compared with the proposed method
Semi-MMT, we observe that the performance of the best supervised baseline (S1)
degrades 8.8% and 8.1% absolute METEOR values in Test2016 and Test2017,
respectively. It shows that most performance gains come from the supervised
part in Semi-MMT.

The Effect of the Size of Parallel Corpora. To investigate the effect of
parallel corpora, we adjust the proportion of parallel corpora on the premise
of constant total samples in Fig. 3. As shown in Fig. 5, we observe that the
translation quality of Semi-MMT improves with the increment of the parallel
corpora size and the rising trend decreases gradually. For example, compared
with Para514, Semi-MMT in Para1014 achieves 12.1% absolute improvement in
term of METEOR. And the improvement reduces significantly when compar-
ing with Para2014. This shows that Semi-MMT can achieve a decent trade-off
between small high-quality parallel corpora and large-scale pretraining corpora,
which denotes the cost of manpower is reduced. For Test2017 dataset, the score
of METEOR in Para2014 decreases by 1.9% while the score of BLEU4 increases
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by 1.02%. This is because METEOR is a comprehensive metric. If the increment
of parallel corpora in Test2017 is unbalanced, it will lead to higher precision while
lower recall.

Fig. 6. Translation case. Red underlined words represent some of the improvements.
The blue sentences are the corresponding results in English translated from Google.
(Color figure online)

4.5 Case Study (RQ3)

Figure 6 depicts a translation cases in the test set. We can observe that the
indoor environment contains much irrelevant information and the important
information lies in the middle of the image. Compared with the Gate based
semi-supervised alignment adapted from supervised work [9], our proposed Semi-
MMT can effectively filter noises and capture some key information, that is two
males converse in front of a truck. The Gate alignment do not capture the gender
and the position relative to the truck. It indicates the effectiveness of Semi-MMT
that can reduce the interference of visual noises in semi-supervised learning.

5 Conclusion and Future Work

Semi-supervised MMT is low-cost for parallel or extra pretraining corpora. In
this paper, we devise a noise-robust semi-supervised learning method to reduce
the mismatch between source and target semantic space. Particularly, visual
cross-attention is adopted to enhance the tradeoff between translation quality
and corpora quantity. The experimental results show that our method outper-
forms the state-of-the-art unsupervised methods with a small number of parallel
corpora in terms of METEOR metric.
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In future work, we would like to evaluate the balance between small parallel
corpora and pretraining corpora, and explore more approaches to enhance the
contribution of small parallel corpora, such as noise-robust network architec-
tures and better training manners. Moreover, we will extent our semi-supervised
training strategy to a wide range of multi-modal tasks in other applications.
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Abstract. In the study of text understanding and knowledge graph con-
struction, the process of extracting entities and relations from unstruc-
tured text is crucial. Lately, joint extraction has achieved more sig-
nificance in this context. Among them, table filling based method has
attracted a lot of research in solving the problem of overlapping relation
in complex scenarios. However, most existing table filling works need to
deal with many invalid and redundant filling processes. At the same time,
some semantic information is not fully considered. For instance, a token
should have differentiated semantic representation when decoding triples
under different relations. Moreover, the global association information
between different relations is not fully utilized. In this paper, we propose
a joint extraction framework: SETFF, based on table filling. Firstly, the
proposed method filters out the possible relations in sentences through
a relation filtering module. Then following the attention mechanism, the
pre-trained relation embeddings are used to enhance the differential rep-
resentation of token semantics under specified relations and obtain the
mutual prompting information between different relations. In addition to
these, extensive experimental results show that SETFF can effectively
deal with the overlapping triples problem and achieve significant perfor-
mance on two public datasets.

Keywords: Joint extraction of entities and relations · Table filling ·
Differentiated semantic representation · Global association
information · Attention mechanism

1 Introduction

Triples are composed of two entities and the semantic relation between them,
in the form of (subject, relation, object). Joint entity and relation extraction is
to extract relation triples from unstructured text, which is very important for
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downstream tasks such as text retrieval and knowledge graph construction. The
traditional method [1,12,20] uses the pipeline manner to extract entities and
relations separately, which ignores the interactivity between entity recognition
and relation extraction task, and causes some error propagation. To alleviate
the above issues, some works based on joint extraction have achieved remark-
able results [9,14,18], which integrate the associations of two tasks by sharing
parameters or decoding process. Besides, some works based on table filling are
suitable for relation extraction task [7,10,16,23], which usually construct a table
to mark entities and relations. Each item in the table represents a token pair in
the sequence. In these methods, the table is updated by simultaneously learning
the token features, and the relational triples are obtained by decoding the filled
table.

However, in some complex scenarios, there exist cases where different rela-
tions share a single entity or entity pairs, as shown in Fig. 1. Considering the
SingleEntityOverlap (SEO) and EntityPairOverlap (EPO) overlapping patterns,
some previous studies handled overlapping triples via a two-phase relation-
weighted graph convolutional networks (GCNs) [5] or introduced a fresh per-
spective to treat relation extraction into a mapping function from subjects to
objects [17].

Nevertheless, some points are still not considered in the previous methods:
(1) Redundant relation processing. The previous table filling methods often need
to fill a table for each relation, and a dataset might contain multiple defined rela-
tion types. In fact, there are only a few reasonable relations in a sentence, and
the decoding of most other relations is redundant. (2) Differentiated semantic
representation of token. The previous works often use the same token features
rather than the customized token semantic features to decode the triples under
the specified relation. In general, even if the same token is in the sentence,
however, when used to decode different relational triples, its features should
also gets changed accordingly. For instance, consider the sentence, “Associ-
azione California Chievoverona is managed by Rolando Maran, who was born
in Italy and is in the Carrarese California club”. In the sentence, each token
for “Rolando Maran” should have different semantics when referring to a per-
son born in Italy and when defined as an administrator of a club because the
same token plays different roles in different relations. (3) Global associations
between relations. The semantics of different relations may be similar or contra-
dictory, so the decoding result of any one of the two relations has a certain degree
of prompting effect on the decoding of the other relation. For instance: “Que-
bec, Canada’s second most popular Province, after Ontario, has not decided to
go that far”. Here, triple (Ontario, /location/administrative division/country,
Canada) can lead us to another triple (Canada, /location/location/contains,
Ontario), and vice versa. This is because /location/location/contains and /loca-
tion/administrative division/country has very close semantics. However, most
existing methods did not consider the mutual prompt information between these
diverse relations.
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In order to solve all above issues, we propose a new table filling based frame-
work: SETFF. Firstly, SETFF uses a Relation Filtering Module to identify the
valid relations in a sentence. Then a Relation-specific Semantic Enhancement
Module is designed to decode the triples under a variety of relations. The rela-
tion embedding combined with the original representation of token is used to
perform additional self-attention calculations within the sentence to obtain the
differentiated token features under the specific relation. At the same time, a
cross-attention calculation is undertaken between the same token pairs in dif-
ferent table features to obtain prompt information from other tables. Therefore,
the customized features can be used when filling in each table and integrate
knowledge from other triples simultaneously. Moreover, a Relation Embeddings
Pre-train Module is proposed to obtain the vector representation of the relation
by designing a position prediction task.

The main contributions of this work are as follows:

– We propose a novel framework, SETFF, based on table filling for joint entity
relation extraction, which effectively deals with the overlapping triple prob-
lem.

– We design a novel semantic enhancement module based on attention mech-
anism which can obtain the differentiated token features adjusted with the
relations and integrate the global associations between the triples.

– To the best of our knowledge, we are the first to apply relation filtering to
table filling methods. In addition to this, we designed a position prediction
task to obtain the pre-trained relation embeddings.

– Experimental results show that SETFF achieves promising performance than
the baseline models on both NYT [11] and WebNLG [6] datasets.

Fig. 1. Examples of different overlapping patterns: Normal, SingleEntityOverlap(SEO)
and EntityPairOverlap(EPO).

2 Related Work

In relation extraction task, due to the lack of interaction between entities and
relations in the traditional pipeline manner, the method based on joint extraction
has attracted more attention [4,5,22]. Among them, two main representative
methods are based on sequence tagging or table filling.
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Sequence tagging based methods usually use linear or binary tagging to iden-
tify the position of entities in sentences. [24] proposes a new tagging scheme,
which include both entity and relation information in a unified label definition.
To solve the problem of overlapping triples, [22] propose an end2end model based
on sequence-to-sequence learning through a copy mechanism. [17] apply binary
tagging for each relation to distinguish the start and end position of entities,
which creatively treat relation classification as a mapping function from subject
to object. [18] decompose the task into multiple subtasks, and use span-based
tagging scheme to annotate entity boundaries and relation types. Besides, some
methods based on table filling allocate the token pairs in the sentence to an table
item, and decode the filled table to obtain all relation triples. For instance, the
diagonal of the table is filled with the BILOU label of the token itself, and the off-
diagnostic items are assigned the corresponding relation type of the token pair
[10]. Unlike previous works, [7] propose a novel table filling multi-task recurrent
neural network model to capture the interdependencies in entity and relation
extraction tasks. A novel method of table construction is presented to integrate
syntactic information to facilitate global learning [23] and a single-stage method
is proposed to eliminate the exposure bias between the training and inference
stages [16].

However, they ignore the differential semantic expression of tokens under
different relations. [19] uses attention mechanism for assigning higher weights
to the relation-related tokens in the sentence, which obtains the fine-grained
sentence representation to identify triples. Yet, it does not consider the global
associations between different relations, and redundant relations are not filtered
out in advance.

3 The Framework

This section mainly introduces our joint entity relation extraction framework
SETFF. The overall structure is shown in Fig. 2. At first, the definition of
table items in our table filling strategy is introduced and then the modules a, b
and c (a. Relation Embeddings Pre-train module, b. Relation Filter Module, c.
Relation-specific Semantic Enhancement Module) in our framework is described.
Finally, we describe the process of generating triples according to the filled table.

3.1 Table Item Definition

In order to identify a certain relation in the input sequence S = [w1, w2 . . . wn],
where wi represents a token in the sentence, we first need to expand the sequence
into a table according to the tokens. The position (i, j ) in the table corresponds
to the token pairs composed of wi and wj . And the table item label indicates
whether the token pairs at this position are involved in the composition of a
triple. The label set is defined as L = {N,BB,EE,BS,ES, SB, SE, SS} where
each label (except N) is composed of two characters. The first character indicates
whether the token wi belongs to a subject, ‘B’ means the head token of the
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Fig. 2. The overall structure of SETFF. We use different colours to represent different
relations, where blue dotted lines represent filling the corresponding table item with the
features of token pairs, purple dotted lines represent mining global prompt information
from different relations, and hr represents the pre-trained relation embeddings.

subject, ‘E’ means the tail token of the subject, and ‘S’ means that the subject
is composed of a single token. The second character is used to indicate the object
in the triple. ‘N ’ means none of the above. An example of the filling strategy
is shown in Fig. 3, where each of the label definition contains the location and
composition information of entities in triples. Therefore, it is more efficient when
decoding the triples because fewer table items are filled in each table.

3.2 Methodology

Encoder. The pre-trained language model based on large-scale corpus has
shown strong feature extraction ability and achieved substantial improvement
in many downstream NLP tasks. The Bert [3] with multi-layer transformer [15]
structure is used as the basic encoder. For the input sentence S = [w1, w2 . . . wn],
we can obtain the encoded representation H =

[
h1, h2 . . . hn|hi ∈ R

d×1
]
, where

n is the length of the sentence, and d is the embedding size.

Relation Embeddings Pre-train Module. This module aims to obtain the
vector representation of relations in low dimensional space. For a triple (subject,
relation, object), the relation describes the associations between two entities.
Thus, the subject or object can be predicted by combining one of them with the
associate relation.

Therefore, an entity location prediction task is designed to train effective
relation embeddings. It combines the representation of the subject with relation
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Fig. 3. A table filling example for sentence “The Bronx and Manhattan are two bor-
oughs of New York” under the contains relation. Here, N is the initialization value of
the table item, and the red label indicates the recognized entity. (Color figure online)

embedding to predict the position of the object in the sentence. Through con-
tinuous iterations, the relation embeddings are gradually optimized. It is worth
noting that the representation of [CLS] token is added to better integrate the
context of the whole sentence. This process is described as follows:

hr
sub = h[CLS] ⊕ Maxpool

(
hwi

, hwj
, . . . , hwi+k

) ⊕ hr

P r
obj = Sigmoid (Wph

r
sub + bp) ∈ R

n×1
(1)

where ⊕ indicates concatenate operation, k represents the span width of the
subject, hr represents the embedding of relation r, which is initialized randomly.
Wp is a parameter matrix and bp is a bias vector, hr

sub means the representation
of the subject, and P r

obj indicates the score that the token at each position in
the sentence belongs to the object. And those tokens belonging to the objects
are expected to get higher scores.

The loss function in this module is designed as follows:

Losspre = − 1
n

n∑

i=1

[
yr

obj (i) log pr
obj (i) +

(
1 − yr

obj (i)
)
log

(
1 − pr

obj (i)
)]

(2)

where yr
obj (i) represents the truth label of the predicted object position for

index i.

Relation Filter Module. A dataset contains the relation set R = {ri}u
i=1,

where u indicates the number of relation categories. In order to solve the over-
lapping triples problem, the previous table filling methods often need to fill a
table for each relation category. However, there are only several valid relations
in a sentence, and so most of the filled tables are redundant. It will introduce
unnecessary noise when the items in tables are very sparse.
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In this module, a hyper-parameter m is set to identify a relation subset
R̂ = {r̂i}m

i=1 for each sentence. It should be set to exceed the typical number of
possible relations in a sentence. Thus, only the tables of these m kinds of rela-
tions are maintained. And a binary tagging strategy is used to identify possible
relations in a sentence, as shown in Eq. 3:

hs = h[CLS] ⊕ Avg (h1, . . . , hn)

Pr = Sigmoid (Wrhs + br) ∈ R
u×1

{R̂i}m
i=1 = fm,t(Pr)

(3)

We use an average pool of the embeddings of n tokens in the sentence, where
hs means the representation of the whole sentence, and Pr represents the activa-
tion value predicted for different implicit relation categories. The function fm,t(·)
takes out the top m relations whose activation value is greater than the threshold
value t = 0.5. If not enough relations are activated, we will pad R̂ with relation
“None”. Wr and br are trainable parameters.

Relation-Specific Semantic Enhancement Module. This module enhances
the semantic features of tokens and token pairs in sentences.

Differentiated Semantic Representation. Even for the same token in a sentence,
it plays different roles when used to decode the triples of different relations.
That is why we filled tables with differentiated token features instead of fixed
token features. Therefore, it is necessary to obtain the corresponding semantic
representation of tokens under the specific relation.

We concatenate the embedding of the certain relation with the original fea-
ture of the token, which means that additional condition information is attached
to the token. However, its interaction within the context still needs to be con-
sidered. Therefore, we establish a self-attention operation between the fused
representations of all tokens in the sentence.

ρr
i = Wρ (hi ⊕ hr) + bρ

ρ̂r
i = SelfAtten(ρr

i )
(4)

where ρ̂r
i represents the enhancement feature of wi under relation r. Then we

build table features for different relations, and the element at (i, j) position can
be obtained by the following equation:

tri,j = σ
[
Wt

(
ρ̂r

i ◦ ρ̂r
j

)
+ bt

]
(5)

where ◦ represents dot product operation, and σ represents ELU activation func-
tion [2]. Wt and bt are trainable parameters.

Global Information Prompting. Different relations of triples in the same sentence
can prompt each other. Moreover, previous studies [15] show that an attention
function can be described as mapping a query and a set of key-value pairs to an
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output. Hence, we calculate the cross attention between elements at the same
position of different table features to mine the global associations. The semantic
relevance of any two relation categories is reflected by the matching degrees of
their embeddings in the low dimensional vector spaces.

Thus, the query vector is set as the relation embedding of the current table
and the key vector is set as the relation embedding of other tables. As a result,
the strength of semantic prompting from other relation triples can be determined
by the attention weight. The enhanced table feature at position (i, j) is:

t̂ri,j = Atten
(
hr, hr, t

r
i,j

)
, r ∈ R̂ (6)

The loss of training is defined as Eq. 7:

Loss =
R̂∑

r

n∑

i=1

n∑

j=1

− log P r
i,j

(
yr

i,j = ŷr
i,j

)
(7)

here yr
i,j represents the truth label of token pair at position (i, j).

Triple Decoding. After obtaining the enhanced table feature, each token pairs
is assigned with a corresponding label in the table, as shown in Eq. 8:

P r
i,j = Softmax

(
Wot̂

r
i,j + bo

)

yr
i,j = argmax

l∈L

(
P r

i,j → l
) (8)

where yr
i,j is the labeled result for the token pair wi and wj in the table of relation

r. Then all the triples in the sentence can be decoded according to Algorithm 1.

Table 1. Statistics of the data sets used in the experiment. The Details table column
shows the information of the test set. Note that a sentence may belong to the overlap-
ping pattern of SEO and EPO at the same time. N represents the number of triples in
a sentence, and 171∗ indicates that the number of relation categories in WebNLG∗ is
171.

Dataset Sentences Details

Train Valid Test Normal SEO EPO N=1 N>1 Relations

NYT 56195 5000 5000 3266 1297 978 3244 1756 24

WebNLG 5019 500 703 246 457 26 266 437 216/171∗
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Algorithm 1. Triple Decoding
Input:

The relation set R̂;
The label set L̂ without N ;
The sequence S = [w1, w2, . . . , wn];
The filled table Y r of relation r ∈ R̂;

Output:
The triple result set T ← ∅;

1: for r ∈ R̂ do
2: Define empty sets TPBB , TPEE , TPBS , TPES , TPSB , TPSE , TPSS which contain

the index (i, j) of token pairs whose table item are corresponding label.
3: for yr

i,j ∈ Y r do

4: if yr
i,j ∈ L̂ then

5: add (i, j) to TPl // l equals yr
i,j

6: end if
7: end for
8: for (i, j) ∈ TPBB do
9: find an element (p, q) from TPEE , // here i < p and j < q

add (wi...p, r, wj...q) to T
10: end for
11: for (i, j) ∈ TPBS do
12: find an element (p, q) from TPES , // here i < p and j = q

add (wi...p, r, wj) to T
13: end for
14: for (i, j) ∈ TPSB do
15: find an element (p, q) from TPSE , // here i = p and j < q

add (wi, r, wj...q) to T
16: end for
17: for (i, j) ∈ TPSS do
18: add (wi, r, wj) to T
19: end for
20: end for
21: return T

4 Experiments

4.1 Experimental Settings

We evaluate our method on two public datasets, NYT [11] and WebNLG [6].
Both datasets have two versions with different annotation standards. The first
version only annotates the last token of the entites named NYT* and WebNLG*.
The second version annotates the whole entity span and is referred to as NYT
and WebNLG. From this point of view, actually, we have four experimental
datasets. All of them contain multiple relation categories and sentences with
different overlapping patterns. Some statistics of these datasets are shown in
Table 1.

An extracted triple is considered correct only when all entities and relation
are correct. In order to make a fair comparison with previous work, we use
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Partial Match on NYT* and WebNLG*, and Exact Match on NYT and
WebNLG. Consequently, either the head token or all tokens of the entity need
to be predicted accurately.

We use Bert-base-cased [3] as our encoder and Adam [8] as optimizer. And
the learning rate of Bert is set to 5 × 10−5 and 1 × 10−4 for other parts of the
framework where the maximum length of sentences is set to 100. For relation fil-
tering, the hyper-parameter m is set to 5, 5, 7 and 7 on NYT*, NYT, WebNLG*,
and WebNLG, respectively. The size of relation embedding is set to 152/300 for
NYT/WebNLG. The batch size is set to 6 with 50 training epochs in the training
process.

We use standard micro Precision (Prec.), Recall (Rec.) and F1-score as eval-
uation metrics. Our proposed SETFF is compared with several strong baseline
models, which are NovelTagging [24], CopyRE [22], GraphRel [5], OrderCopyRE
[21], ETL-Span [18], RSAN [19], RIN [13], CasRel [17], PMEI [14].

Table 2. Main experimental results. Mark † indicates that the results are directly
quoted from [22], and all other experimental results of the baseline models are directly
quoted from the original papers. The highest experimental scores are marked in bold
for reference.

Method NYT* NYT WebNLG* WebNLG

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NovelTagging† – – – 32.8 30.6 31.7 – – – 52.5 19.3 28.3

CopyRE 61.0 56.6 58.7 – – – 37.7 36.4 37.1 – – –

GraphRel 63.9 60.0 61.9 – – – 44.7 41.1 42.9 – – –

OrderCopyRE 77.9 67.2 72.1 – – – 63.3 59.9 61.6 – – –

ETL-Span – – – 85.5 71.7 78.0 – – – 84.3 82.0 83.1

RSAN – – – 85.7 83.6 84.6 – – – 80.5 83.8 82.1

RIN 87.2 87.3 87.3 83.9 85.5 84.7 87.6 87.0 87.3 77.3 76.8 77.0

CasRel 89.7 89.5 89.6 – – – 93.4 90.1 91.8 – – –

PMEI 90.5 89.8 90.1 88.4 88.9 88.7 91.0 92.9 92.0 80.8 82.8 81.8

SETFF 91.7 90.8 91.2 91.6 90.4 91.0 92.9 91.9 92.4 90.9 88.6 89.7

4.2 Main Results

It is showed that SETFF exceeds the prior baseline models in almost all evalu-
ation metrics in Table 2. Moreover, the F1-socre on four data sets NYT*, NYT,
WebNLG*, and WebNLG improved 1.1%, 2.3%, 0.4%, and 7.9% respectively,
which proved the effectiveness of our semantic enhancement framework. In addi-
tion, SETFE performs better than RSAN[19] in the semantics tuning of sen-
tences under specified relations. This shows that our semantic enhancement is
more fine-grained and comprehensive. We also observed that SETFF improved
more significantly on the dataset with fully labeled entity span. There are two
reasons that might explain this. Firstly, for the location prediction task in rela-
tion embedding pre-training, the fully labeled entity can provide more complete
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information about entity span, so it can obtain more stronger relation embed-
dings. Secondly, the label of table items contain the character B representing the
beginning and the character E representing the end. This strategy is more suit-
able for identifying multi-token entities. It is also observed that SETFF improved
the most in WebNLG dataset. The WebNLG contains up to 216 relation cat-
egories, and the relation filtering module in this method can eliminate most
irrelevant relations in a sentence.

Table 3. The report of ablation study.

Method NYT* WebNLG*

Prec Rec F1 Prec Rec F1

SETFF 91.7 90.8 91.2 92.9 91.9 92.4

-Relation Embeddings Pre-train 90.2 90.0 90.1 90.8 91.3 91.1

-Relation Filter 89.2 90.3 89.8 88.6 89.8 89.2

-Relation-specific Semantic Enhancement 86.7 89.7 88.2 87.5 90.2 88.8

4.3 Ablation Study

In this section, the ablation experiments are conducted to verify the effec-
tiveness of each module in SETFF. Table 3 shows the experimental results of
SETFF on NYT* and WebNLG* after removing different modules. When we
use the relation embeddings of random initialization instead of pre-trained, the
precision on both datasets is declined. It implies that our position prediction
task is very suitable for this problem and can introduce some prior knowledge.
And when the Relation Filter Module is removed, it shows a more prominent
impact on WebNLG*, caused by different data distribution of the two data
sets. It should be noted that there are relatively more redundant relations on
WebNLG*, so it is more sensitive to the removal of this module. Finally, when
Relation-specific Semantic Enhancement Module is removed and simply concate-
nate token featrues and relation embeddings, the performance of SETFF on both
datasets decreases significantly, which proves that our semantic enhancement is
very effective for fine-grained extraction of triples under specified relations.

4.4 Analysis on Hyper Parameter m

The associations of F1-score and parameter m are evaluated where m represents
the size of the relation filtering subset. We try to search the optimal parameters in
{2, 4, 5, 7, 9}. As shown in Fig. 4, the optimal m values on NYT* and WebNLG*
are 5 and 7 respectively. The setting of this parameter is a trade-off result since
the size of m affects both the precision and recall, wherein, on the one hand,
too small m value will reduce the recall rate, and on the other hand, too large
m will affect the precision. In the mean time, We observed that a smaller value
of m is more harmful to the performance than a larger one. This is because the
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Relation Filter Module will add “None” relation when it believes that there are
not enough activated relation categories to select, and the latter modules can be
trained to avoid extracting triples of this relation.

Fig. 4. F1-score under different hyper-parameter m.

4.5 Analysis on Different Sentence Types

A further evaluation of SETFF is observed on complex sentence patterns. Table 4
shows F1-score on sentences with different overlapping patterns and different
numbers of triples on the NYT* dataset. We can see that in different scenarios,
SETFF has made a lot of improvement compared with the baseline models and
is even more obvious in harder sentences. All these improvement demonstrates
the advantages of our framework. The possible game-changer is the coordination
of different modules in SETFF, especially the attention-based semantic enhance-
ment that can capture deep information to extract triples under certain relation.

Table 4. F1-score on sentences with different overlapping patterns and different num-
bers of triples.

Method NYT*

Normal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5

CopyRE 66.0 48.6 55.0 67.1 58.6 52.0 53.6 30.0

GraphRel 69.6 51.2 58.2 71.0 61.5 57.4 55.1 41.1

OrderCopyRE 71.2 69.4 72.8 71.7 72.6 72.5 77.9 45.9

CasRel 87.3 91.4 92.0 88.2 90.3 91.9 94.2 83.7

SETFF 89.1 93.2 93.3 89.0 91.6 92.8 95.6 91.2
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5 Conclusion

This paper propose a semantic enhanced table filling framework to solve the joint
entity and relation extraction task. The proposed framework first completes the
pre-training of relation embeddings. Then, filtering out the redundant relations
of each sentence, the attention mechanism is used to achieve semantic enhance-
ment, which includes obtaining the differentiated semantic expression of token
under the specified relation and mining the global prompt information between
different relations. The comprehensive experimental results on two benchmarks
reveal the significant improvement of the proposed method, proving the abil-
ity to solve overlapping triple problem and the effectiveness in each module of
SETFF.
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Abstract. Pretrained language models(PLMs) and additional features
have been used in rumor detection with excellent performance. How-
ever, on the one hand, some recent studies find one of its critical chal-
lenges is the significant gap of objective forms in pretraining and fine-
tuning, which restricts taking full advantage of knowledge in PLMs. On
the other hand, text contents are condensed and full of knowledge enti-
ties, but existing methods usually focus on the textual contents and
social contexts, and ignore external knowledge of text entities. In this
paper, to address these limitations, we propose a Prompt-based Exter-
nal Knowledge Integration Network(PEKIN) for rumor detection, which
incorporates both prior knowledges of rumor detection tasks and external
knowledge of text entities. For one thing, unlike the conventional “pre-
train, finetune” paradigm, we propose a prompt-based method, which
brings prior knowledge to help PLMs understand the rumor detection
task and better stimulate the rich knowledge distributed in PLMs. For
another, we identify entities mentioned in the text and then get these
entities’ annotations from a knowledge base. After that, we use these
annotations contexts as external knowledge to provide complementary
information. Experiments on three datasets showed that PEKIN outper-
formed all compared models, significantly beating the old state-of-the-art
on Weibo dataset.

Keywords: Rumor detection · Prompt-based · External knowledge

1 Introduction

Social psychology literature defines a rumor as a story or a statement whose
truth value is unverified or deliberately false [1]. False rumors are damaging as
they cause public panic and social unrest. With the rapid growth of large-scale
social media platforms such as Twitter and Sina Weibo, rumors on social media
have become a significant concern. Rumors can propagate very fast and affect
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people’s choices because of the popularity of social media. However, it is com-
plicated for ordinary people to identify rumors from massive online information
due to limited professional knowledge, time, or space. Therefore, it is necessary
to develop automatic approaches to detect rumors.

For text classification tasks, including rumor detection, transformer-
based models like Bidirectional Encoder Representations from Transformers
(BERT) [2], which achieved impressive results, have a significant performance
variation when fine-tuned on small datasets [3]. Thus researchers proposed
ensembles of multiple BERT models to provide more robust predictions. How-
ever, some recent studies find one of its critical challenges is the significant gap of
objective forms in pretraining and fine-tuning, which restricts taking full advan-
tage of knowledge in PLMs [4].

Although the existing deep learning methods have succeeded in detecting
rumors based on the high-level feature representations of text contents, they
ignore the external knowledge by which people usually judge the authenticity of
the rumor. Rumor contents are highly condensed and comprised of a large num-
ber of entities mentioned. Generally, named entities could have rich annotated
meanings, but these messages are not fed into the model.For example, as shown
in (Fig. 1),a piece of rumor contains the following entity mentions:“interview”,
“bounty”,“child”, “millionaire”,“murder”,“family”,and “money”. People usually
know the annotations of these entities before reading, like we know “interview”
means “a meeting (often a public one) at which a journalist asks somebody ques-
tions to...”, “bounty” means ”money that is offered as a reward for doing some-
thing, especially...”, “murder” means ”the unlawful killing of another human
without justification or valid excuse, especially ...”, and so on. If we take these
annotations of entities as external knowledge, it can help evaluate the rumor’s
credibility. However, these contents cannot be provided directly based on the text
contents of rumors and comments. Thus, the introduction of external knowledge
is very important for rumor detection.

Fig. 1. A piece of rumor on Twitter

To alleviate these issues, in this paper, we propose a Prompt-based Exter-
nal Knowledge Integration Network(PEKIN) for rumor detection, which uses
BERT to incorporate both prior knowledges of rumor detection tasks and
external knowledge of text entities. For one thing, we propose a prompt-based
method, which can further stimulate the rich knowledge distributed in PLMs
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to serve downstream tasks better. Previous studies suggest that prompt-tuning
has remarkable superiority in the low-data scenario over the generic fine-tuning
methods with extra classifiers [5–7]. The prompt is designed with prior knowl-
edge of the rumor detection task, which brings prior knowledge to help PLMs
understand the rumor detection task. For another, we identify entities mentioned
in the text and then get these entities’ annotations from a knowledge base. After
that, we use these annotations contexts as external knowledge to provide com-
plementary information. Thus, our proposed model can incorporate both prior
knowledges of rumor detection tasks and external knowledge to detect rumors.
To the best of our knowledge, PEKIN is the first to adopt prompt-based learn-
ing for rumor detection and use annotations of entities as external knowledge
for this task. The main contributions of this work include:

(1) We propose a prompt-based rumor detection method, which brings prior
knowledge to the rumor detection task by the hand-crafted rapid method.

(2) We propose incorporating entities and their entity annotations distilled from
the knowledge base for rumor detection.

(3) We propose a Prompt-based External Knowledge Integration Net-
work(PEKIN)for rumor detection; this network integrates knowledge into
rumor content more reasonably and effectively.

Experimental results on three datasets show that PEKIN outperforms exist-
ing methods.PEKIN accuracy on Ma-Weibo [8] is higher than the old SOTA,
Ma-RvNN [9]. Furthermore, PEKIN is the best of all compared methods on
Twitter15 and Twitter16.

2 Related Works

In this section, we briefly revisit the following related topics: rumor detection,
prompt-tuning, and external knowledge integration.

2.1 Rumor Detection

A rumor is a statement whose authenticity is certified to be false or unveri-
fied [10]. Considering the tremendous number of Twitter and Weibo users, even
a little promotion of the rumor detecting accuracy is precious. Rumor detection,
framed as text detection tasks, can be cracked by either traditional machine
learning approaches [11] or deep neural networks [12], and comments or replies,
as additional features, are widely used.

Recent deep-learning-based studies include: Wang [13] embedded source
posts and comments with sentimental features and then inputted them into
a two-layer Gated Recurrent Unit (GRU) network; Kumar [14] applied a tree
LSTM to predict rumors with tree-structured replies; Bian [15] fed posts and
replies into a Graph Convolution Network (GCN) to take advantage of propaga-
tion features, and later extended GCN to be Bi-directional GCN (viz. Bi-GCN)



186 Z. Hu et al.

to explore the structures of wide dispersion on rumor detection; Zhang [16]
encoded replies in a temporal order through an LSTM component; Riedel [17]
profited from the cosine similarity of news content and comments while setting
a threshold of similarity to filter those irrelevant comments; Lu [18] put user
profiles into GCNs to extract propagation features.

2.2 Prompt-Tuning

Prompt-tuning is a new paradigm of fine-tuning inspired by GPT-3 [19], espe-
cially for language models in few-shot or zero-shot settings. It means prepending
instructions and demonstrations to the input and output predictions. Recent
prompt-tuning work focuses on the semi-supervised setting with many unla-
beled examples. Gao [20] explore their prompt tuning methods with demon-
strations of language models for some benchmark tasks, including Sentiment
Classification.Prompt-tuning can induce better performances for PLMs on
widespread of NLP tasks including text classification [20], relation extraction [4],
NER [21], and so on. To construct better prompt for downstream tasks, several
approaches [22] leverage knowledge injection to templates and fertilizer construc-
tion. Besides, there exist lots of works on prompting for mining knowledge from
PLMs [23,24].

2.3 External Knowledge Integration

Recently, there have been notable contributions toward integrating linguistic
knowledge into DNNs for various NLP tasks. For sentiment analysis, Teng [25]
integrates lexicon features to an RNN-based model with a custom weighted
sum calculation of word features. Shin [26] proposes three convolutional neural
network-specific methods of lexicon integration achieving state-of-the-art perfor-
mance on two datasets. Kumar [27] concatenate features from a knowledge base
to word representations in an attentive bidirectional LSTM architecture, also
reporting state-of-the-art results. For sarcasm detection, Yang [28] incorporate
psycholinguistic, stylistic, structural, and readability features by concatenating
them to paragraph and document level representations.

3 Method

We briefly overview the proposed Prompt-based External Knowledge Integra-
tion Network (PEKIN). The framework of PEKIN is depicted in (Fig. 2). We
select relatively valuable comments according to a sentimental intensity rank-
ing. Training data1 consists of source post, comment text, and prompt text,
The details of prompt learning are presented in the 3.1 subsection. Training
data1 utilizes an external knowledge integration module to obtain entities in
the text and then obtain annotations of the entities; those entities and asso-
ciated annotations consist of training data2; the details of external knowledge
extraction are described in the 3.2 subsection. In training, we use BERT model
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as the base learner. Firstly, Input training data1 into BERT model, Since we
want to predict whether the word in the [MASK] position is yes or no, and the
first token[CLS] summarizes the information from input tokens using a global
attention mechanism, we extract the embedding representation of [MASK] posi-
tion(viz. a 768-dimensional vector)and [CLS] position(viz. a 768-dimensional
vector) of training data1. Then, input training data2 into the BERT model, we
extract the embedding representation of [CLS] position(viz. a 768-dimensional
vector) of training data2 as external knowledge. Finally, concatenate the three
embedding representations above. The prediction layer is a dense network with
softmax activation that maps the concatenated vector to two outputs to predict
whether the [MASK] position word is yes or no.

Fig. 2. The overall structure of PEKIN
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3.1 Prompt Learning

Our work is based on the hand-crafted prompt learning method (HPL). We
should design templates by our prior knowledge of the rumor task, so we designed
4 Chinese templates for Weibo data and 4 English templates for Twitter data,
respectively, according to Social psychology’s definition of rumor [1], As shown
in Table 4.

The HPL model includes an input layer, hand-crafted prompt, pre-trained
language model, and output layer. The pre-trained model M is used to calculate
the probability values of [MASK] to select the best word in the verbalizer with
the maximum probability. For example, hand-crafted prompt ”Is this text real?
[MASK] ”, verbalizer”yes”, ”no”, and then the prompt model will construct
the template ”source posts” and ”related comments” and ”Is this text real?
[MASK]”.Finally, M will return the predictive value, ”no” indicating the source
post is a rumor. As shown in (Fig. 3).

Fig. 3. Hand-crafted prompt method

In this work,let S = {s1, s2, ..., sn} be a set of source posts.Each si ∈ S
is a short text composed of a word (in English) or character (in Chinese)
sequence X =< Xi

1,X
i
2, ...X

i
l >, Each si is associated with a set of comment

texts (viz. replies) Ci = {ci1, ci2, ...cin} Like si,each cij ∈ Ci is a word or charac-
ter sequence.We use a pre-trained model bert, verbalizer W:verbalizer{“yes”,
“no”},a hand-crafted prompt P = {p1, p2, ..., pn, [MASK]} ,where value of
[MASK] comes form W .The sequence input X and related comment C,and man-
ual prompt P are separated by [SEP ] form a template T = {t1, t2, ..., tn}.Then,
input template T into model BERT ,the template T representation learned by
BERT is P = {p1, p2, ..., pn}

Pi = BERT (templateT ) (1)

Then, we extract the first element and [MASK] position element of Pi respec-
tively, which is the embedding of [CLS] and [MASK] in the last layer. We get
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the prompt learning represented PMi derived by:

PMi = concate(Pi[0], Pi[MASK]) (2)

3.2 External Knowledge Extraction

Fig. 4. The process of knowledge extraction

The goal of this module is to identify entities mentions in texts contents
and then get these entities annotations in knowledge base.The process of knowl-
edge extraction is shown in (Fig. 4), which includes the following steps:(1)After
the 3.1 procedures, we get template T = {t1, t2, ..., tn},Through Named Entity
Recognition tool, we can acquire entities sequence E = {e1, e2, ..., en} from tem-
plate ti. (2)we can get annotations A = {a1, a2, ..., an} for those entities in the
knowledge base.For example, as shown in Fig. 1,a piece of news contains the fol-
lowing entity mentions: “interview”, “bounty”, “child”, “millionaire”, “murder”,
“family”, “money”. People usually know the annotations of these entities before
reading the content of the text, like we know an ”interview” means ”a meet-
ing (often a public one) at which a journalist asks sb questions to...”, “bounty”
means ”money that is offered as a reward for doing something, especially..”,
“murder” means ”the unlawful killing of another human without justification or
valid excuse, especially ..”, and so on.

After that, we use the BERT model to get external knowledge repre-
sented.input entity annotations A into model BERT ,the entity annotations A
representation learned by BERT is Ki = {k1, k2, ..., kn}

Ki = BERT (EntityAnnotationsA) (3)

Then, we extract the first element of Ki, which is the embedding of [CLS]
in the last layer. We get the external knowledge represented KEi derived by:

KEi = Ki[0] (4)
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3.3 Rumor Classification

After the above procedures, we get the prompt learning representation PMi and
the external knowledge representation KEi. Both representations are important
for rumor detection. Thus they are concatenated as final features for classifica-
tion. The final representation PKi is derived by:

PKi = concate(PMi,KEi) (5)

Finally, we feed PKi to a fully-connected network (FCN) and output the pre-
diction via softmax. The classification problem is thus reformulated to predict
the “[MASK]” as a category word (such as yes, no) with the help of a tex-
tual prompt “Is this text real? [MASK]”. It is similar to the masked language
modeling task in the pre-training phase.

4 Experiments

4.1 Datasets

The experiments were conducted on three datasets(Ma-Weibo, Twitter15, and
Twitter16). These three datasets are widely used in the research line of rumor
detection. Table 1 displays the basic statistics.Considering the average length of
items, we allow at most 128 tokens for the post area,359 tokens for the comment
area,25 tokens for the prompt area, and 330 tokens for the external knowledge
area on Weibo datasets. 64 tokens for the post area, and 312 tokens for the
comment area, and 25 tokens for the prompt area, and 330 tokens for the external
knowledge area on two Twitter datasets.

Table 1. Statistic of datasets

Statistic # of post # of true # of false # users # posts

Ma-weibo 4664 2351 2313 2,746,818 3,805,656

Twitter15 742 370 372 276,663 331,612

Twitter16 412 205 207 173,487 204,820

Ma-Weibo [8].Maetal. Collected 4664 Chinese posts published on sinaWeibo
before 2016, accompanied by user-profiles and comments.

Twitter15 and Twitter16 [29]. We also experimented on two Twitter datasets.
We choose only”true” and ”fake” labels as the ground truth. Since the original
data does not contain comments, we obtained user information and comments
via Twitter API.
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4.2 Experimental Setting and Data Preprocessing

We implemented PEKIN based on the pre-trained BERT base. The machine
learning platform employed in the experiments is TensorFlow 1.14 with Python
3.6.9. Exerting a Xeon E5-2682 v4 CPU and a Tesla V100-32GB GPU, PEKIN
ran fast on Ubuntu 16.04.6 LTS. The learning rate was set to 5e-5 on all datasets.
We ran 20 epochs on Weibo datasets and 30 epochs on Twitter datasets.

Same as the original papers [8] [29], we randomly select 10% instances as the
development data set and split the rest for the training and testing set with a
ratio of 3:1 in all three data sets.

For Twitter datasets, we use NLTK1 tool to identify the name entity.And
for the Weibo data set,we use LAC2 tool to identify the name entity. For all
datasets,we use Wikipedia3 knowledge base to get related entities annotations.

4.3 Compared Methods

We compared PEKIN with ten competitive methods on three datasets. We adopt
the same evaluation metrics used in the prior work for a fair comparison. Thus,
the accuracy, precision, recall, and F1 score are adopted for evaluation. We ran
the source code of all compared methods. We used the same setting presented
in the original papers for a fair comparison.

SVM-TS [30]. An SVM-based method.
Ma-RvNN [9]. They proposed a tree-structured model based on a Recursive

Neural Network (RvNN). This paper declared the recent SOTA on Ma-Weibo.
CNN [31]. A CNN-based model with joint text and propagation structure

learning.
Bi-GCN [15]. The Bi-Directional Graph Convolution Network (Bi-GCN) is

a new technique that beats five compared models, including SVM, CNN, and
RvNN.

BERT [2]. BERT is a multilayer bidirectional Transformer encoder. We exper-
imented on BERT-base (L = 12, H = 768, A = 12,Total Parameters = 110M).

RoBERTa [32]. Liu tested important BERT design choices and training
strategies to present a more robust variant of BERT.

Longformer [33]. Beltagy presented a combination of local windowed atten-
tion and task-motivated global attention, making it easy to process long
sequences.

PLAN [34]. A post-level attention model which learns long-distance interac-
tions between posts by Transformer.

Wu-Stacking [35]. Wu combined a stacking ensemble fused with feature engi-
neering.

Geng-Ensemble [36]. An ensemble network comprises three RNN-based learn-
ers, aggregating results by majority voting.

1 https://github.com/nltk/nltk.
2 https://github.com/baidu/lac.
3 https://github.com/goldsmith/Wikipedia.

https://github.com/nltk/nltk
https://github.com/baidu/lac
https://github.com/goldsmith/Wikipedia
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4.4 Primary Results

Table 2 and Table 3 show primary experimental results of all compared methods
on three datasets. Preliminary conclusions are:

PEKIN achieved the highest classification accuracy and F1 score on three
datasets among all tested methods.

Both BERT and RoBERTa are SOTA on general text classification tasks.
However, compared with BERT, PEKIN gained an up to 0.92% accuracy
improvement on Weibo datasets and more than 2% accuracy improvement on
Twitter datasets.

Table 2. Rumor detection results on the Twitter dataset

Twitter15 Twitter16

Method F1 Rec Prc Acc F1 Rec Prc Acc

SVM-TS 0.7372 0.7387 0.7437 0.7385 0.7589 0.7638 0.7901 0.7646

Ma-RvNN 0.9412 0.9730 0.9114 0.9392 0.9302 0.9756 0.8889 0.9268

CNN 0.8756 0.9103 0.8559 0.8721 0.9233 0.9408 0.9142 0.9214

Bi-GCN 0.9596 0.9595 0.9599 0.9596 0.9514 0.9514 0.9519 0.9515

BERT 0.9343 0.9397 0.9364 0.9367 0.9291 0.9274 0.9304 0.932

RoBERTa 0.9352 0.9354 0.9368 0.9353 0.9367 0.9371 0.94 0.9369

Longformer 0.9056 0.9056 0.9069 0.9057 0.9075 0.9076 0.911 0.9078

PLAN 0.9278 0.9133 0.951 0.9213 0.9431 0.9508 0.9336 0.9423

Wu-Stacking 0.9285 0.9285 0.9297 0.9286 0.9247 0.9246 0.9261 0.9248

Geng-Ensemble 0.9506 0.9528 0.9503 0.9512 0.9523 0.9537 0.9512 0.9518

PEKIN (best) 0.9651 0.9880 0.9431 0.9642 0.9574 0.9782 0.9375 0.9569

Table 3. Rumor detection results on the Weibo dataset

Ma-Weibo

Method F1 Rec Prc Acc

SVM-TS 0.8827 0.8858 0.9150 0.8846

Ma-RvNN 0.9481 0.9484 0.9495 0.9481

CNN 0.9515 0.9520 0.9515 0.9510

Bi-GCN 0.9612 0.9613 0.9616 0.9612

BERT 0.9603 0.9598 0.9634 0.9603

RoBERTa 0.9603 0.9605 0.9603 0.9603

Longformer 0.8998 0.8999 0.9108 0.9084

PLAN 0.9208 0.9271 0.9159 0.9226

Wu-Stacking 0.9347 0.9352 0.9391 0.9348

Geng-Ensemble 0.9565 0.9567 0.956 0.956

PEKIN(best) 0.9694 0.9750 0.9639 0.9695

Both PLAN and Longformer are good at processing long sequences. How-
ever, PEKIN performed better than any of them, which indicates that using all
comments is not the best option.
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Graph-structured models include Ma-RvNN, CNN, and Bi-GCN. Ma-RvNN,
the recent SOTA on Ma-Weibo, uses tree structures for propagation paths. CNN
jointly learns text and propagation structure representation. Bi-GCN trains
graph convolution networks. Bi-GCN performed best among these four mod-
els; however, PEKIN was superior to all of them.

We compared PEKIN with related ensemble models proposed in the recent
two years. PEKIN performed better than Wu-Stacking and Geng-Ensemble, indi-
cating the advantage of integrating BERT models and taking PEKIN.

4.5 Prompt Strategy Analysis

In this experiment, we designed 4 Chinese templates and 4 English templates,
respectively, according to Social psychology’s definition of rumor [1], and then we
tested the effect of these templates. The experiment result is shown in Table 4.
All templates are obtained from experiments on the validation set. Finally, we
selected the best template for the final experiment. It can be seen that different
prompts enhance the uncertainty of accuracy, but it does improve accuracy.

Table 4. Hand-prompts results

Chinese prompt Ma-Weibo English prompt Twitter15 Twitter16

这段文本是否为虚

假信息？（是/否）
0.9695

Is this text real?

(Yes/No)
0.9583 0.9355

虚假谣言是已经被

官方所辟谣的信息。

这段文本是否为虚假

谣言？（是/否）

0.9628

A false rumor is

information that has been

officially declared false.

Is this text a

false rumor? (Yes/No)

0.9643 0.9462

虚假谣言是已被确

证的不实信息。这

段文本是否为虚假

谣言？（是/否）

0.9580

A false rumor is

false information that

has been confirmed.

Is this text a false

rumor? (Yes/No)

0.9404 0.9462

虚假谣言是歪曲事

实并造成一定社会

影响的信息。这段

文本是否为虚假谣

言？（是/否）

0.9571

False rumors are information

that twist facts and has

a certain social impact.

Is this text

a false rumor? (Yes/No)

0.9642 0.9569

4.6 Ablation Study

A series of ablation experiments were conducted to illustrate the influence of
each module in the proposed method on the rumor detection task. We reported
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the average accuracy of each dataset. The experimental results are shown in
Table 5. PEKIN denotes a complete model that uses all modules. The ablation
experiments are organized as follows:

(1) PEKIN w/o prompt: In this experiment, the prompt module was removed,
and only the source text and its corresponding comments and entity knowl-
edge of the source text were considered.

(2) PEKIN w/o knowledge: In this experiment, the entity knowledge module
was removed, and only the source text and its corresponding comments and
prompt module were considered.

(3) PEKIN w/o comments: In this experiment, its corresponding comments were
removed, and the source text and the entity knowledge module, and the
prompt module were considered.

Table 5 shows the ablation experiment results on three datasets. There were
three findings. First, the overall performance degraded most when running
“PEKIN w/o knowledge,” revealing the importance of entity knowledge as aux-
iliary data. Take the Ma-Weibo dataset as an example. Given only source posts
and corresponding comments, this method only achieved an accuracy of 0.9628.
However, added by entity knowledge, this model got a much higher accuracy of
0.9695 s s, the performance of “PEKIN w/o prompt” was second to last, which
indicated the prompt strategy contribution to PEKIN Third, ”PEKIN w/o com-
ments ” degraded, which indicated that adopting corresponding comments is
effective.

Table 5. The ablation study results on the Weibo, Twitter15, and Twitter16 dataset

Model Ma-Weibo Twitter15 Twitter16

PEKIN 0.9695 0.9643 0.9569

PEKIN w/o knowleges 0.9628 0.9583 0.9462

PEKIN w/o prompt 0.9619 0.9619 0.9529

PEKIN w/o comments 0.9358 0.9439 0.9355

5 Conclusion and Future Works

Our work attempts to incorporate prior knowledge of rumor classification tasks
and external knowledge of text entities for rumor detection. We propose a
Prompt-based External Knowledge Integration Network that effectively inte-
grates the two kinds of knowledge with Prompt-based learning. We have demon-
strated the effectiveness of our proposed approach by conducting experiments
on three real-world datasets. We will search for a better representation form
of knowledge for future work to incorporate it into neural networks as explicit
features to boost rumor detection performance further.
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Abstract. Social media reading comprehension (SMRC) aims to answer
specific questions conditioned on short social media messages, such as
tweets. Sophisticated neural networks and pretrained language models
have been successfully leveraged in SMRC, accompanying with a series
of deliberately-designed data cleaning strategies. However, the exist-
ing SMRC techniques still suffer from unawareness of various entity
mentions, i.e., the successive tokens (words, sub-words or characters)
that fully or briefly describe named entities, such as abbreviated person
names. This unavoidably brings negative effects into question answer-
ing towards the questions of “who”, “where”, “which organization”, etc.
To address the issue, we propose to enhance the capacity of a SMRC
model in recognizing entity mentions and, more importantly, construct
an entity-aware encoder to incorporate latent information of entities
into the understanding of questions and tweets. In order to obtain a
self-contained entity-aware encoder, we build a two-channel encoder-
shareable neural network for multitask learning. The encoder is driven to
produce distributed representations that not only facilitate decoding of
entity mentions but prediction of answers. In our experiments, we employ
12-layer transformer encoders for multi-task learning. Experiments on
the benchmark dataset TweetQA show that our method achieves signif-
icant improvements. It is also proven that our method outperforms the
state-of-the-art model NUT-RC, yielding improvements of 2.5% BLEU-
1, 3% Meteor and 2.2% Rouge-L, respectively.

Keywords: Social media reading comprehension · Named entity
recognition · Multi-task learning

1 Introduction

Machine Reading Comprehension (MRC) is a task of question answering condi-
tioned on the semantic understanding of question and paragraph-level context.
A variety of MRC datasets have been constructed to support related research in
this field, including SQuAD [1], CoQA [2], NarrativeQA [3]), etc.
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Table 1. An example of unrecognized named entities in social media domain.

Tweet: This forecast is deflated as much as New England Patriots footballs! I

apologize.W NJ has the most to lose. Dave Curren(@DaveCurren)January 27,2015

Question: Who has the most to lose?

Gold Answer: W NJ

Predict Answer: New England Patriots

Recently, TweetQA1 [4] is released for the evaluation of MRC techniques,
which limits the available contexts to tweets. It raises an intensive interest in
exploring effective MRC solutions towards short and informal texts. The task
defined on this dataset is referred to Social Media Reading Comprehension
(abbr., SMRC). Table 1 illustrates an example, where a specific SMRC model is
required to predict the answer “W NJ” given the question “Who has the most
to lose?”. The clues that support the prediction can be merely mined from the
single tweet.

Neural networks have been utilized for SMRC, which produced substantial
improvements so far (Sect. 2). In particular, large pretrained language models
were used to strengthen encoders of current SMRC models, such as BERT [5],
UniLM [6] and T5 [7]. Due to extensive learning over large-scale data for semantic
representation, the pretrained models significantly improve the understanding of
questions and tweets, and therefore, boost SMRC performance. It is noteworthy
that such pretrained models need to be fine-tuned over TweetQA in the mode of
transfer learning, and necessarily accompanied with proper data cleaning strate-
gies [8]. Transfer learning is applied for enhancing adaptation to domain-specific
characteristics of tweets, such as that for the idiom where the stop words “Down
Under” actually serve as the alternative name of “Australia”. Data cleaning is
used to recover or filter grammatical errors, such as the removal of redundant
spaces “did n’t” into “didn’t”.

Briefly, the existing neural SMRC models achieve promising performance
when transferring pretrained models to tweets and coupling them with data
cleaning. However, our empirical findings show that entity-oriented SMRC fails
to perform perfectly, where the state-of-the-art model such as NUT-RC [8]
obtains an error rate of 40.94%2. Though, the most noticeable fact regarding
data distribution is that the proportion of entity-type answers is up to 29.13%3

in all SMRC instances in TweetQA dataset.

1 https://tweetqa.github.io/.
2 We reproduce NUT-RC [8] and evaluate it on the development set. On the basis, we

verify the error rate for entity-oriented SMRC.
3 We employ an off-the-shelf Named Entity Recognition (NER) toolkit Twitter-Stanza

to automatically determine whether gold SMRC answers are the ones containing
named entities. The toolkit has been well-trained on the TweeTbank-NER dataset
(https://github.com/social-machines/TweebankNLP).

https://tweetqa.github.io/
https://github.com/social-machines/TweebankNLP
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Entity-oriented SMRC instances refer to the ones whose ground-truth
answers are entity mentions, such as names of person (PER), organization (ORG)
and location-type (LOC) entities. The reason why SMRC models fall into the
misjudgement for some of them is because of the unawareness of entity knowl-
edge [9]. For example, the clue for reasoning in the case in Table 1 is evident
(i.e., the text “W NJ has the most to lose” which is even consistent with the
question in morphology and pragmatics), though SMRC models fail to identify
the entity “W NJ” (i.e., the abbreviated mention of “West New Jersey”) in it as
the answer. It reveals the possibility that, to the end, SMRC models are unaware
of what the mention “W NJ” is, or even regard it as a sequence of meaningless
characters instead of the closely related entity to the “Who”-type question.

To address the issue, we propose to enhance the awareness of entity men-
tions during encoding questions and tweet contexts. The two-channel multi-task
learning is utilized, where SMRC and NER tasks are considered. The share-
able encoder across the two learning channels is trained to perceive interaction
between question and tweet context, as well as the latent information of various
entity mentions. This contributes to the construction of a self-contained entity-
aware SMRC model. We experiment on the benchmark dataset TweetQA [4].
Experimental results show that our method yields substantial improvements,
and it outperforms the published state-of-the-art model NUT-RC [8].

2 Related Work

A variety of innovative approaches have been proposed for SMRC. Huang et al.
(2020) [8] design heuristic rules to standardize informal texts in tweets. More
importantly, Huang et al. (2020) bridge generative and extractive SMRC by
answer selection mechanisms. Tian et al. (2021) [10] enhance the representa-
tion learning of questions and tweets using concepts. Hashtags are used as con-
cepts. They are extracted from the closely-related tweets, the ones retrieved and
highly-ranked in terms of topic-level relevance. BERT-based pointer network is
utilized for extracting concepts. Xue et al. (2022) [11] demonstrate the effec-
tiveness of character-level models in dealing with noisy and informal datasets,
such as TweetQA [4]. Instead of using the limited vocabulary to tokenize words,
they directly take the UTF-8 bytes as the input. On the basis, a character-level
pre-trained model is developed based on T5 [7] architecture.

Our approach is different from aforementioned approaches. We capture the
exclusive characteristics that some of entity mentions play an important role for
reasoning answers in tweets, or even serve as answers themselves. Accordingly,
we intend to enhance the awareness of entity knowledge when encoding questions
and tweets. To pursue the goal, we utilize the entity recognition as an auxiliary
task, so as to drive the encoder to perceive and represent entity mentions.
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3 Approach

In this section, we present the components of our SMRC model step by step,
including preprocessing over tweets, entity-aware encoding by multi-task learn-
ing, as well as answer prediction.

Fig. 1. Architecture of our multi-task learning model, which is used to enhance the
awareness of entity information during encoding.

3.1 Text Preprocessing

We employ Huang et al. (2020)’s heuristic rules [8] to separate the mixed-tokens
in tweets. Specifically, we split both Hashtags and User-Ids into formal texts
(e.g., “#WhiteHouse”→“# White House”), so as to avoid the misunderstanding
or omission of entity mentions.

3.2 Entity-Aware Encoding Grounded on Multi-task Learning

We conduct two-channel multi-task learning, where shareable multi-layer trans-
former encoders are used. One learning channel aims to train the encoder for
generative SMRC (primary task), while the other performs for NER (auxiliary
task). Different attention masks are utilized in the two learning channels. The
neural network we used is constructed with embedding layer and transformer
encoders, as well as two separate decoding layers coupled with truncation and
dropout operations. Figure 1 shows the architecture of our learning model.
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Embedding Layer: Given an SMRC instance in the training set, we construct
two kinds of input sequences for SMRC and NER tasks respectively. For NER,
we concatenate the token sequence of question q and that of tweet p, where the
special tokens “[CLS]” and “[SEP]” are used (see the concatenation mode in
Fig. 1). The resultant input sequence is denoted as X. For generative SMRC, we
concatenate X with two additional sequences Y and M . Y comprises tokens of
the ground-truth answer y and “[SEP]”. M serves as the shuffled version of Y .
Specifically, the tokens in M are duplicated from Y , though at the initialization
stage, they are randomly masked by special character “[MASK]” or replaced
with other words in the vocabulary [12]. M is primarily used for pseudo-masked
fine-tuning, which contributes to the alleviation of exposure bias.

Following Devlin et al. (2019)’s practice [5], we obtain the input embed-
dings by conducting element-wise aggregation over token, segment and position
embeddings. It is noteworthy that the embedding layer is trainable.

Encoder Layers: We apply N-layer Transformer encoders of UniLM v2.0 to
convert the input embeddings to contextual semantic representations, no matter
whether the input is {X,Y,M} or {X} (“{∗}” denotes concatenation operation).

H l = Transformer(H l−1) (1)

where, l ∈ [1, N ] signals the l-th transformer layer which produces the hidden
states H l. H l contains the token-level hidden states of all tokens and special
characters in the input sequence. We use HN as the final hidden states, i.e.,
the distributed representations output by the last (N -th) transformer layer. For
generative SMRC, the final hidden states act as HN = {hN

1 , hN
2 , ..., hN

s+t+t},
where, s and t constrain the maximum length of HN which are numbers of tokens
in X and Y . For NER, the final hidden states act as ȞN = {ȟN

1 , ȟN
2 , ..., ȟN

s }.
Selective masking mechanism is required to perform during training due to

the different prediction modes (decoding modes) of generative SMRC and NER.
Specifically, generative SMRC serves as a generation model, and therefore needs
to possess the capacity of predicting the current token in terms of preceding pre-
dictions (and tweet context). In fact, this recursive prediction mode conforms
to the fundamental limitation that ground-truth answer Y is invisible in the
test process. In order to simulate the recursive prediction mode, we need to
impose masks on the hidden states of subsequent tokens in HN during training.
By contrast, NER serves as a sequence labeling task, which performs B/I/O
tag classification for each token separately and independently. Therefore, it is
unnecessary to impose masks over the hidden states ȞN . To facilitate the rep-
resentation learning of shareable encoders between the two tasks, we establish
a selective masking mechanism, where Bao et al. (2020)’s pseudo-masked atten-
tion learning [13] is used. The attention score ATTNl of the transformer l is
computed as follows:

ATTNl = (
QlK

T
l√

dk
+ MASK)vl (2)
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Table 2. An example of named entities for questions and tweets

Question+Tweet: [CLS] Who have the cavs released? [SEP] The Cavs have

released Edy Tavares . No surprise . He was on a non - guaranteed contract . Roster

stands at 19 . - Jason Lloyd ( @ Jason Lloyd NBA ) [SEP]

Named Entities: [CLS] O O O S-ORG O [SEP] O S-ORG O O B-PER I-PER O

O O O O O O O O O O O O S-ORG O O O O O B-PER I-PER O O O O O O [SEP]

MASKij =
{

0, Attention is allowed
−∞, Attention is not allowed (3)

where, Ql,Kl,Vl respectively denote the Query, Key and Value vectors that are
obtained by linearly converting HN or ȞN . MASK denotes the attention mask.
Figure 1 shows the diagrams of masked hidden states at a certain encoding step.

Decoding of SMRC and Loss Estimation: Given the pseudo-masked final
hidden states HN , we take the hidden states HN

M of M out of HN by truncation,
which contain latent information for predicting answers. We feed HN

M into the
linear layer G with Softmax to compute the probability distribution that every
token in the vocabulary serves as an answer or part of it:

{
HN

M = [hN
s+t+1, h

N
s+t+2, ..., h

N
s+t+t]

Yge = softmax(LinearG(HN
M )) (4)

During training, the loss of answer prediction is estimated with the probabil-
ity distribution Yge. It is the reliance for back propagation. Cross entropy fCE

is used to estimate the loss Lge (where Y denotes the ground-truth answer):

Lge = fCE(Yge, Y ) (5)

Decoding of NER and Loss Estimation: Given the final hidden states ȞN ,
we feed them into a dropout layer for purifying their latent information. This
helps to avoid overfitting. On the basis, we deliver the purified hidden states ȞN

to the linear layer D with Softmax, so as to predict the probability distributions
Yen over B/I/O tags for each token. Similarly, we utilize cross entropy fCE to
estimate the loss Lne. All computations of NER for decoding are as follows
(where Yen denotes the ground-truth B/I/O tags of NER):

⎧⎨
⎩

ȞN ′
= dropout(ȞN )

Y̌en = softmax(LinearD(ȞN ′
))

Lne = fCE(Y̌en, Yen)
(6)

The learning in the channel of NER, frankly, requires the ground-truth B/I/O
tags of entity mentions for supervision. However, TweetQA dataset doesn’t pos-
sess annotation results of named entities. Therefore, we use the existing NER
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toolkit Twitter-Stanza [14] to automatically annotate named entities of both
questions and tweets. Table 2 shows the example regarding B/I/O tags of enti-
ties towards a SMRC case in TweetQA.

Fig. 2. The data flow produced step by step during the decoding process.

Multi-task Learning: During training, we conduct supervised learning for
generative SMRC and NER tasks alternatively and iteratively in each epoch.
Both the losses produced in SMRC and NER are jointly used to optimize the
parameters in embedding layer, transformer encoders and predictors (i.e., gen-
erator G for SMRC while discriminator D for NER). We compute the joint loss
Lall as follows (where λ denotes a trade-off coefficient):

Lfinal = Lge + λLner (7)

3.3 Generating Answers

Instead of extracting answers from tweets (by pointer networks), we generate
answers, i.e., search the most possible tokens in the vocabulary to sequentially
constitute an answer, where the greedy algorithm is used.

Specifically, conditioned on the i-th hidden state hN
i in HN

M (see Eq. 4), we
predict the i-th token y′

i of the possible answer at the i-th time step. In order
to speed up decoding, we hold up emebeddings of {X, y′

1, ..., y
′
i} for each time

step at run time, and concatenate them with emebedding of {y′
i, [MASK]}. The

resultant representation will be fed into the encoder to produce (i+1)-th hidden
sate hN

i+1 in HN
M (See Fig. 2). In this way, we iteratively predict tokens in the

answer and produce the next hidden state until “[SEP]” is predicted.
In addition, we design an answer corrector to post-process the generated

answer. It is capable of dealing with the following informal text spans. The
major heuristic rules including 1) Word Recovery (e.g., “did n’t”→“didn’t”)
and 2) Removing Redundant Characters (e.g., removing “@” or “#”).
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4 Experimentation

4.1 Data, Evaluation and Hyperparameter Settings

• Dataset: We experiment on TweetQA [4]. Compared to other MRC datasets,
TweetQA [4] contain a large number of unusual entities. More importantly,
the answers in TweetQA [4] are free-form texts rather than the ones toughly
extracted from tweets. We follow the previous work to split TweetQA. The
training, validation and test sets contain 10,692, 1,086 and 1,979 instance,
respecitvely.

Table 3. Performance of the state-of-the-art SMRC models and ours.

Model BLEU-1 Meteor Rouge-L

Dev Test Dev Test Dev Test

BIDAF (Seo et al., 2016) [19] 48.3 48.7 31.6 31.4 38.9 38.6

Seq2Seq (Song et al., 2017) [18] 53.4 36.1 32.1 31.8 39.5 39.0

BERT-EX (Devlin et al., 2018) [5] 61.0 58.4 64.2 63.2 60.9 65.8

NUT-RC (Huang et al., 2020) [8] 78.2 76.1 73.3 72.1 79.6 77.9

TKR (Tian et al., 2021) [10] 68.7 69.0 64.7 65.6 70.6 71.2

EA-SMRC (Original) 79.1 78.5 74.5 74.7 80.6 80.0

EA-SMRC (Variant) 78.7 77.8 74.5 74.2 80.1 79.4

• Evaluation Metrics: For comparison, we follow the common practice to use
BLEU-1 [15], Meteor [16] and Rouge-L [17] to evaluate SMRC models. The
test set is not publicly available. Therefore, we submit the predicted answers
to the official website of TweetQA 1 for obtaining the test performance.

• Hyperparameter Settings: Our source code is based on s2s-ft [12]. We use
the Adam optimizer to train the MRC model. The learning rate for training is
2e-5. We set the maximum length of X to 128 and the maximum length of Y
to 24. We initialize our model using the parameters of UniLM v1.2 [12], and
fine-tune our model on TweetQA in 10 epochs. The batch size for training is
12. The opimal λ is set to 1. The dropout rate used for the NER task is set
to 0.1.

4.2 State-of-the-art SMRC Models for Comparison

We develop two versions of SMRC models, including the aforementioned entity-
aware SMRC grounded on multi-task learning (denoted as original EA-SMRC),
as well as its variant. The variant adopts the same learning architecture, though
the auxiliary task NER is implemented by Masked Language Modeling (MLM),
where MLM of BERT is transferred to the learning process.

We compare our models to the state-of-the-art models including 1) BIDAF
[4] which is an extractive MRC model based on Recurrent Neural Network
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(RNN), where bi-directional attention flow is used; 2) Seq2Seq [18] which acts
as a generative model within the RNN-based encoder-decoder framework, where
copy and coverage mechanisms are leveraged; 3) BERT-EX [5] which is obtained
by transferring the pretrained language model BERT to TweetQA and acts as
an extractive MRC model; 4) TKR [10] which incorporates concept knowledge
into the encoding process, so as to enhance the perception and representation
of unusual linguistic units, where external data is applied for retrieving concept
knowledge; and 5) NUT-RC [8] which possesses a two-channel multi-task learn-
ing architecture, where generative and extractive MRC are conducted in the two
channels, and answer selection is used.

Table 4. Ablation study on TweetQA

Model BLEU-1 Meteor Rouge-L

Dev Test Dev Test Dev Test

EA-SMRC (Original) 79.1 78.5 74.5 74.7 80.6 80.0

-NER 77.7 77.3 73.2 73.6 79.2 78.9

-NER&-CORR 75.6 76.6 71.4 72.6 77.5 78.2

-NER&-CORR&-SPLIT 74.0 75.5 69.8 71.4 75.9 77.3

4.3 Main Results

Table 3 shows the test results of our models (EA-SMRC) and the state of the
art. It can be observed that both original and variant EA-SMRC models produce
substantial performance gains, compared to previous work. Considering that
both the models utilize entity-aware multi-task learning framework, we suggest
that the proposed method is robust and capable of yielding steady improvements
to some extent. Experimental results reveal the fact that original EA-SMRC
achieves higher performance (BLEU-1, Meteor and Rouge-L scores) on TweetQA
[4]. It is because the original version accurately introduces entity knowledge into
the SMRC, while the variant one still requires to understand the semantics of
context to infer the entity types, which potentially brings a certain noise due to
the inadequate semantic understanding.

We concentrate on the previous work of NUT-RC [8] for advantage analysis,
which used to stand on the top of leader board for a long period of time and,
more importantly, it holds the same learning framework with our models (i.e.,
multi-task learning). From the perspective of effectiveness, our EA-SMRC mod-
els obtain better performance due to the incorporation of entity knowledge into
learning. From the perspective of efficiency, frankly, EA-SMRC is relatively vest-
pocket and less time-consuming because the kernel is constituted with a group
of transformer encoders and two independent linear layer. By contrast, NUT-RC



206 H. Liu et al.

possesses two groups of large transformer blocks in the learning channels, which
are initialized by UniLM v1.0 [6] and BERT-Large [5].

4.4 Ablation Study

We carry out ablation experiments to verify the effects of different components
in EA-SMRC. The components are progressively ablated, which include 1) “-
NER” denoting the ablation of the auxiliary task NER, which boils multi-task
learning down to entity-unaware single-task learning, 2) “-CORR” referring to
the condition that answer correction is disable, and 3) “-SPLIT” that refers to
the ablation of heuristic rules for text preprocessing.

Table 4 show the experimental results. It can be found that performance
constantly degrades when the components are progressively ablated. During test,
the largest performance reduction results from the ablation of NER. It proves
the dominant positive effect of entity-aware multi-task learning.

Table 5. Performance obtained when different pretrained models are used

Model Framework BLEU-1 Meteor Rouge-L

UniLM v1.0 [6] FT 72.5 67.5 74.5

MTL 73.6 68.4 75.1

UniLM v2.0 [13] FT 71.0 65.7 73.1

MTL 72.2 66.9 74.0

BERT [5] FT 69.7 65.4 71.5

MTL 70.3 65.6 72.0

Table 6. Performance of EA-SMRC (Variant) on TweetQA using different NER tools

NER tool BLEU-1 Meteor Rouge-L

CoreNLP [21] 77.6 63.7 79.5

Stanza [22] 78.2 74.0 79.6

Twitter-Stanza [14] 79.1 74.5 80.6

4.5 Effects of Different Pretrained Models for Transfer

We verified the performance of EA-SMRC on the validation set when different
pretrained models are used for initialization. Initialization is conducted by sub-
stituting off-the-shelf parameters and embeddings of pretrained models into EA-
SMRC. This enables transfer learning on TweetQA within multi-task learning
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framework. We consider three pretrained models, including UniLM v1.0, UniLM
v2.0 and BERT. The variant EA-SMRC is used due to its better performance
on the validation set. Besides, two learning frameworks are considered, includ-
ing our entity-aware multi-task learning (denoted as MTL) and entity-unaware
single-task learning. The latter is equivalent to the case that pretrained models
are directly transferred to TweetQA and fine-tuned there (denoted as FT).

Table 5 shows the performance of aforementioned pretrained models. It can
be observed that utilizing different pretrained models will result in significantly
performance. Nevertheless, all the models can achieve better performance when
the MTL framework is used, compared to the FT framework. It illustrates that
our entity-aware learning strategy generalizes well. Besides, it can be found that
both UniLM v1.0 and UniLM v2.0 fail to produce competitive performance,
compared to UniLM v1.2 in our EA-SMRC (see Table 3). It is because that
UniLM1.2 doesn’t apply relative position bias [20], and thus it is adaptive to the
stationary position embeddings in our input layer.

4.6 Utility of NER Toolkits

We verify the utility of different NER toolkits in our method. Note that NER
toolkits are used for obtain entity mentions in the training data, which support
the learning of a self-contained encoder for perceiving entities. We consider three
NER toolkits, including CoreNLP [21], Stanza [22] and Twitter-Stanza [14]. The
former two provide a larger number of entity types (23 in CoreNLP and 18 in
Stanza) and instances, compared to Twitter-Stanza. Nevertheless, the training
data of Twitter-Stanza derives from the same domain with TweetQA.

Table 6 shows the experimental results. It can be observed that Twitter-
Stanza yields relatively-substantial performance gains. It proves that domain
relevance is more important than both data size and versatility of entity types
for the adoption and utilization of NER toolkits.

Fig. 3. The proportion of different error types.
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Table 7. Examples of prediction errors produced by our SMRC models.

Type Example

LRC Question: Who are they replying to? Tweet: This looks like
blank space taken to a NEW.LEVEL. (@dunderswiftlin). Gold
Answer: Gma and Taylor Swift (Reasons behind errors: Be

unaware of exact names of “dunderswiftlin” and their
relationship to “NEW.LEVEL)

OCR Question: Who wouldn’t give a long-term deal? Tweet: The
Red Wings didn’t believe they would get Mike Green because
they wouldn’t give a long-term deal. Gold Answer: The Red
Wings. (Reasons behind errors: Fail to correspond the
co-reference “they” to the entity “Red Wings”)

4.7 Error Analysis

We conduct error analysis on the predictions of our models over the valida-
tion set. The errors are caused by six classes of drawbacks, including Lack of
Related Commonsense (LRC for short), Omission of Co-reference Resolution
(OCR), Incorrect Segmentation of Mixed-tokens (ISM), Answer Boundary Mis-
judgement (ABM), Grammar Errors of the generated Answers (GEA), as well
as Unanswerable Questions (UQ) caused by inexact or improper annotations.
Figure 3 shows the proportions of aforementioned error types in all the misjudged
answers. Table 7 gives two examples of prediction errors.

5 Conclusion

We propose an entity-aware encoding method to strengthen the current SMRC
models. Multi-task learning is leveraged to enable the perception and fusion of
latent information of entity mentions. Experiments on the benchmark dataset
TweetQA demonstrate the effectiveness of our method. Besides of superior per-
formance (higher BLEU-1, Meteor and Rouge-L scores), our SMRC model is
vest-pocket and less time-consuming. In the future, we will enhance the entity-
aware encoder from two aspects, including 1) introducing external knowledge
of entities into the representation learning process, where group-based neural
models will be used, and 2) conducting co-reference resolution.
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(No.62076174 and No. 61836007).

References

1. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions
for machine comprehension of text. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 2383–2392 (2016)



Entity-Aware Social Media Reading Comprehension 209

2. Reddy, S., Chen, D., Manning, C.D.: CoQA: a conversational question answering
challenge. Trans. Assoc. Comput. Linguist. 7, 249–266 (2019)
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Abstract. Aspect-based sentiment analysis (ABSA) refers to a fine-
grained sentiment analysis task aimed at detecting sentiment polarity
towards a given aspect. Recently, graph convolutional networks (GCN)
integrated with dependency trees have achieved related appealing results
in ABSA. Nevertheless, most existing models fail to preserve the infor-
mation of the whole graph although global information can often sig-
nificantly improve their performance. To address this problem, a novel
virtual node augmented graph convolutional network (ViGCN) is pro-
posed to further enhance the performance of GCNs in the ABSA task by
adding a virtual node to the graph. The virtual node can connect to all
the nodes in the graph to aggregate global information from the entire
graph and then propagate it to each node. In particular, we construct
edges between the virtual node and other nodes based on affective com-
monsense knowledge from SenticNet and the semantic-relative distances
between contextual words and the aspect, effectively enhancing the col-
lected global information towards the given aspect. Extensive experi-
ments on three benchmark datasets illustrate that the ViGCN model
can beat state-of-the-art models, proving its effectiveness.

Keywords: Sentiment analysis · Opinion mining · Aspect-based
sentiment analysis · Graph neural network

1 Introduction

For the past few years, aspect-based sentiment analysis (ABSA) has become
a popular research field in natural language processing [5,25]. Different from
sentence-level sentiment analysis, ABSA is a fine-grained task that aims at infer-
ring the sentiment polarity (e.g., positive, negative, neural) of one specific aspect
despite possible multiple aspects in a sentence. For example, in Fig. 1, the cor-
responding sentiment polarities of the two aspects “works” and “apple OS” are
both positive.

It is a key challenge for ABSA to learn the critical sentiment information con-
cerning the given aspect from the sentence [11,21,25]. In early works, attention
mechanism-based deep learning models are a promising paradigm due to their
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 211–223, 2022.
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Fig. 1. An example sentence. The words in blue and red are aspects and opinions,
respectively. The arrows above manifest the correspondence between aspects and opin-
ions. The arrows below suggest dependencies between words. (Color figure online)

ability to pay attention to important parts of a sentence regarding a specific
aspect [5,21]. However, these models lack a mechanism to account for sentiment
dependencies between long-range words and may focus on irrelevant sentiment
information to predict aspect sentiment. Recent research focuses on developing
graph convolutional networks (GCN) over syntactic dependency trees [5,19,25].
Dependency trees can clarify the connections between contextual words and
aspect words in a sentence. For example, in Fig. 1, there is a syntactic depen-
dency relationship between the aspect word “Works” and its corresponding opin-
ion word “well” as well as the other two words “am” and “and” in the sentence.

How to leverage the global structure of the graph to improve the model
performance is a widely studied problem in the field of graph neural networks
[1,3,12–14,23]. Most GCNs for the ABSA task, however, lack a mechanism to
effectively capture the global information of the graph. To our knowledge, the
GCN models in ABSA can only afford 2–3 layers [4,11,19,22,25], meaning that
each node in these models can only collect local information from neighborhood
nodes 2–3 hops away from it based on the message-passing scheme [14]. If a GCN
model goes deeper so that each node can have a larger receptive field of the graph
and learn more global information, the vanishing gradient problem will make the
model unstable [11]. The nodes in the GCNs often fail to capture the critical
sentiment clues due to the limitation of the receptive field. For example, in Fig. 1,
the nodes representing the aspect “apple OS” are 4–5 hops away from the nodes
representing the corresponding opinion word “happy”. Although the opinion
nodes contain significant sentiment information for determining the sentiment
polarity of the aspect, this information cannot be transmitted to the aspect
nodes.

To tackle the challenges mentioned above, a novel model, the virtual node
augmented graph convolutional network (ViGCN), is proposed in this paper,
whose architecture is shown in Fig. 2. In ViGCN, an artificial virtual node is
added to the graph over the dependency tree and connected to all the real nodes
to give them a global receptive field. Real nodes refer to all the nodes in the
graph before adding the virtual node. The virtual node was originally proposed to
represent the entire graph [9]. Recent research finds that it can be used for graph
augmentation [23], because it can aggregate global information from the whole
graph and propagate aggregated information to each real node. Considering that
the graphs in ABSA are generated from sentences [25], the global information
gathered from these graphs contains the sentiment expression of the sentences,
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which is crucial for the model to predict the sentiment polarities of aspects.
Moreover, under the inspiration of SenticNet [2] and previously successful LCF-
BERT model [24], weighted edges between the virtual node and real nodes are
established based on affective commonsense knowledge and the semantic-relative
distances between contextual words and the given aspect. With this approach,
the virtual node can focus more on the context containing critical sentiment
information in a sentence, making the preserved global information better reflect
the emotional expression of the sentence towards the given aspect.

Fig. 2. Overview of the proposed virtual node augmented graph convolutional network.

This paper mainly makes the following contributions: (1) The GCN models
applied to the ABSA task are reconsidered so as to exploit the global informa-
tion regarding the given aspect. (2) A novel ViGCN model for the ABSA task
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is proposed in this paper, which can effectively preserve global information via
a virtual node. Specifically, the proposed ViGCN model leverages affective com-
mensense knowledge and semantic-relative distance to augment the preserved
global information. (3) Extensive experiments on the SemEval 2014 and Twitter
datasets demonstrate the superiority of the proposed ViGCN model in ABSA.
The code of ViGCN is available at: https://github.com/code4scie/ViGCN.

2 Related Work

Aspect-based sentiment analysis is a fine-grained subtask for sentiment anal-
ysis. Early works in this field are feature engineering-based models like SVM
[10], which are time- and labor-intensive. Later, deep neural networks have been
widely used because of their ability to capture features automatically from the
sentences. In general, representative works are based on recursive neural network
(RNN) [7,16], long short-term memory (LSTM) [21], convolutional neural net-
work (CNN) [8] and deep memory network [5]. However, these neural networks
are generally lacking in a mechanism to leverage the syntax information that is
of crucial importance for ABSA [25].

Most of the current state-of-the-art methods are graph network-based mod-
els combined with syntactic dependency trees [4,11,19,20,22,25]. For instance,
Zhang et al. [25] applied GCNs over dependency trees to exploit word depen-
dencies. Wang et al. [20] proposed an R-GAT model based on an aspect-oriented
dependency tree. Chen et al. [4] developed a dotGCN model based on a discrete
latent opinion tree. Tang et al. [19] adopted a bidirectional GCN to consider
BERT outputs and graph-based representations jointly. Xiao et al. [22] utilized
grammatical sequential features from BERT and the syntactic knowledge from
dependency graphs to augment GCNs. Li et al. [11] put forward a DualGCN
model that contains two GCNs to preserve syntax structure information and
semantic correlation message, respectively. Despite exhibiting appealing power
in ABSA, the graph network-based models learn node representations mainly
based on aggregating features from the neighborhood of each node [14], over-
looking the preservation of the global information of the graph that is capable
of representing aspect-specific sentiment expression of the sentence. Therefore,
how to enhance the node representations of the graph network-based models
via effectively leveraging global information should be considered in the task of
ABSA.

3 Proposed Model

The overall architecture of the proposed virtual node augmented graph convo-
lutional network (ViGCN) is plotted in Fig. 2. In this section, the details of the
ViGCN are presented. In particular, the aspect-based sentiment analysis task is
first defined, and then how to initialize the node embeddings of a sentence is
illustrated. After that, an introduction is made on how to build a virtual node
augmented graph and feed the initial node embeddings and graph to ViGCN.
Finally, how to obtain the sentiment polarity and train the model is detailed.

https://github.com/code4scie/ViGCN.


Aspect-Based Sentiment Analysis via ViGCN 215

3.1 Task Definition

Given an n-word sentence S = {s1, ..., sa1 , ..., sak
, ..., sn} with a k-word aspect

A = {sa1 , ..., sak
} included, ABSA is aimed at predicting the sentiment polarity

p of the aspect A, where p ∈ {Negative,Neutral, Positive}. It is worth noting
that the aspect may contain a or several words and 1 ≤ k < n.

3.2 Node Embeddings Initialization

Bidirectional encoder representations from transformers (BERT) [6] is utilized
as the aspect-based encoder to learn the hidden contextual representations of
sentences. To be specific, under the inspiration of the model LCF-BERT [24], the
sentence-aspect pair G = [CLS]+S +[SEP ]+A+[SEP ] is first constructed as
input, so that BERT can capture the semantic relationship between the sentence
S and the aspect A through its next-sentence-prediction mechanism [6]. [CLS]
and [SEP ] are the special tokens of BERT. BERT first tokenizes each word in
G into subwords, and the sentence sequence S is tokenized into an m-subword
sequence St =

{
t1, ..., ta1 , ..., taj

, ..., tm
}
. Then BERT transforms each subword

in G into a hidden state vector, and St becomes Sh =
{
h1, ..., ha1 , ..., haj

, ..., hm

}
,

where hi ∈ R
dh is the hidden state vector of the i-th subword ti. We use Sh as

the initial real node set. Besides, the virtual node is initialized with a zero vector
0 ∈ R

dh . The initial node embeddings are V 0 =
{
h1, ..., ha1 , ..., haj

, ..., hm, 0
}
.

3.3 Construction of the Virtual Node Augmented Graph

For each sentence, a virtual node augmented graph G = (V,E) is constructed
to represent the syntactic relationship among subwords, and A ∈ R

(m+1)×(m+1)

is the adjacency matrix of the graph G. V =
{
x1, ..., xa1 , ..., xaj

, ..., xm, xm+1

}

is the set of nodes. The first part
{
x1, ..., xa1 , ..., xaj

, ..., xm

}
represents the real

nodes, and the latter part xm+1 indicates the added virtual node. E is the set
of edges.

To build the edges between real nodes, a syntactic dependency tree is first
constructed for each input sentence using the dependency parsing model LAL-
Parser [15]. To match the subword sequence generated by BERT, the syntactic
dependency of a word is expanded into all its subwords. Then, an edge is estab-
lished between two subwords if a dependency is contained in them. Specifically,
for i, j ∈ [1,m]:

Ai,j =

{
pe if ti, tj may contain dependency,

0 otherwise.
(1)

As suggested by [11], pe ∈ (0, 1] here is the probability of a dependency
between two subwords from a dependency parser. Its purpose is to reduce the
adverse impact of parsing errors on model performance.

Inspired by [23], a virtual node is then added to the graph to preserve global
information. Firstly, “naive connections” are constructed between the virtual
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node and real nodes. To be specific, following previous work [23], an undirectional
edge is established between the virtual node and each real node in the graph.
Therefore, for i ∈ [1,m]:

Ai,m+1 = Am+1,i = 1. (2)

Like previous work [23], a self-loop is not added to the virtual node, thereby
leading to Am+1,m+1 = 0.

To learn more global information from the words with stronger sentiment,
the representation of the adjacency matrix is enhanced by utilizing affective
commonsense knowledge from SenticNet. In particular, we use SenticNet 6, which
is a public commonsense knowledge base that provides a set of polarity scores
associated with 200,000 concepts [2]. Therefore, for i ∈ [1,m]:

Ai,m+1 = Am+1,i = |Sentics(ti)| + 1, (3)

where Sentics(ti) ∈ [−1, 1] represents the polarity score of the subword ti. The
value of the polarity score floats between −1 and +1. The polarity score of a
word is closer to +1 when it is more positive. Conversely, the polarity score
of a word is closer to −1 when it is more negative. The polarity score of each
word in SenticNet 6 is obtained first and then used as the polarity score of its
subwords. For those words excluded from SenticNet 6, their polarity scores are
set to be 0. Consideration is only given to the strengthening of the connections
between the virtual node and real nodes generated from words with an intense
sentiment, regardless of whether the sentiment is positive or negative. Therefore,
the absolute polarity value is taken.

In LCF-BERT [24], the semantic-relative distance (SRD) is proposed to focus
on the subword tokens generated by the local context, given that the local context
close to the aspect usually contains significant sentiment information. Under the
inspiration of the work of [24], the connections between the virtual node and
nodes representing the local context are further enhanced based on SRD:

Ai,m+1 = Am+1,i =

{
|Sentics(ti)| + 2 if SRDi < ϕ,

|Sentics(ti)| + 1 otherwise .
(4)

Here, i ∈ [1,m] and SRDi = |Pi − Pa| − ⌊
k
2

⌋
represents the SRD between

the i-th token and targeted aspect; Pa is the central position of the aspect and
Pi is the position of the context word generating the i-th token, respectively; k
refers to the length of the aspect sequence; ϕ stands for the SRD threshold.

3.4 Virtual Node Augmented Graph Convolutional Network

GCN is a special convolutional neural network working directly on graphs and
taking advantage of the graph-structured information. After the initialization of
node embeddings and the construction of the graph, they are fed into an L-layer
GCN to learn local and global information for the given aspect. In an L-layer

GCN, V l =
{

xl
1, ..., x

l
a1

, ..., xl
aj

, ..., xl
m, xl

m+1

}
(l ∈ [1, 2, ..., L]) is denoted as the
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node representations of the l-th layer, where
{

xl
1, ..., x

l
a1

, ..., xl
aj

, ..., xl
m

}
repre-

sents real nodes, and xl
m+1 is the virtual node. The output of the i-th node in

the l-th layer can be calculated as follows:

xl
i = σ

⎛

⎝

⎛

⎝
m+1∑

j=1

AijW
lxl−1

j

⎞

⎠ / (di + 1) + bl

⎞

⎠ , (5)

where W l is a trainable weight matrix and bl is a bias vector; di is the outdegree
of the i-th node; σ refers to an activation function and ReLU is used here. The
initial node set is V 0 obtained in Subsect. 3.2.

3.5 Model Training

The final output of the L-layer GCN is V L =
{

xL
1 , ..., xL

a1
, ..., xL

aj
, ..., xL

m, xL
m+1

}
.

Then, the final feature r is obtained through applying average pooling fa (·) over
aspect nodes:

r = fa

(
xL
a1

, ..., xL
aj

)
. (6)

Next, the final feature r is fed into a fully connected layer, followed by a softmax
layer to learn a sentiment polarity probability distribution p:

p = softmax(Wcr + bc), (7)

where Wc and bc are the trainable weight and bias, respectively.
The model is trained to minimize the objective function composed of a cross-

entropy loss function � and an L2 regularization:

L = � + λ ||Θ|| , (8)

where Θ represents all the trainable parameters, and λ is the coefficient of L2

regularization. In this paper, � is defined as follows:

� = −
D∑

i=1

C∑

j=1

p̂ji log pji , (9)

where D is the number of training samples, and C is the number of different
sentiment polarities. p̂ is the ground-truth sentiment polarity distribution.

4 Experiments

4.1 Datasets and Experiment Settings

We evaluate ViGCN on three public datasets. Restaurant and Laptop datasets
are from the SemEval-2014 Task4 [17]. Following [5], all the data samples with
the “conflict” label are removed. The Twitter dataset is provided by [7]. All
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three datasets contain three sentiment polarities: positive, neural and negative.
Table 1 shows the statistics of the datasets.

In this experiment, we use pre-trained BERT-base-uncased model [6] to ini-
tialize word embeddings. The dimension of word embeddings and hidden states
dh is 768. The depth of ViGCN layers L is set to be 2, and the dropout rate of
ViGCN is set to be 0.1 to avoid overfitting. The SRD threshold ϕ is set to be 3 on
Restaurant and Twitter datasets, and 6 on the Laptop dataset. The Adam opti-
mizer with a learning rate of 0.001 is utilized to optimize the model attributes.
The coefficient λ of the L2 regularization is 10−4. The model is trained in 15
epochs and the batch size is set to be 16. The experimental results are obtained
by averaging 10 runs with random initialization, where accuracy and macro F1
score are the evaluation metrics adopted to evaluate the model performance.

Table 1. Statistics of the experimental datasets.

Dataset Positive Neural Negative

Train Test Train Test Train Test

Restaurant 2164 727 637 196 807 196

Laptop 976 337 455 167 851 128

Twitter 1507 172 3016 336 1528 169

4.2 Comparison Baselines

We compare ViGCN with the following baselines: (1)ATAE-LSTM [21] is an
attention-based LSTM model for ABSA; (2)AEN [18] is an attentional encoder
network based on BERT; (3) RAM [5] uses a recurrent attention network on
memory to learn the sentence representation; (4) ASGCN [25] is an aspect-
specific GCN model over the dependency tree; (5) BERT4GCN [22] is a
GCN augmented with intermediate layers of BERT and positional informa-
tion between words for ABSA task; (6) R-GAT+BERT [20] proposes a rela-
tional graph attention network based on an aspect-oriented dependency tree;
(7) DualGCN + BERT [11] integrates syntactic knowledge and semantic
information simultaneously with dual GCNs, namely, SynGCN and SemGCN;
(8) DGEDT+BERT [19] is a dual-transformer model which jointly considers
graph-based representations and flat-representations; (9) dotGCN+BERT [4]
is a graph convolutional network based on a discrete opinion tree.

4.3 Comparison Results

The main experimental results can be seen in Table 2. On all the three experi-
mental datasets, the ViGCN model outperforms almost all compared attention-
based and graph neural network-based models with respect to both accuracy
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and macro F1 score. Compared to the remarkable DualGCN+BERT model, it
performs quite competitively as well. To be specific, ViGCN outperforms Dual-
GCN+BERT on Restaurant and Twitter datasets, although its accuracy score
on the Laptop dataset is slightly lower than DualGCN+BERT by 0.31. This
proves that the ability to effectively preserve global information enables ViGCN
to achieve significant gains in ABSA.

Compared with attention-based models such as ATAE-LSTM, AEN and
RAM, ViGCN exploits a syntactic dependency tree to explicitly model the con-
nections between the aspect and the context, which thus can avoid the noise
introduced by the attention mechanism. In comparison with previous state-of-
the-art graph neural network-based models like ASGCN, BERT4GCN and R-
GAT+BERT, the enhancement is mainly contributed by two factors. One is that
a virtual node is added to the graph because of being able to enhance node rep-
resentations through leveraging the global information of the whole graph. The
other is that effective weights are set for edges between the virtual node and
real nodes based on affective commonsense knowledge and semantic-relative dis-
tance, which refines the process of the virtual node aggregating and propagating
global information.

Table 2. Comparisons of ViGCN with baselines. Accuracy (ACC.) and macro F1
score (F1) are used for metrics. Best results are in bold and second best results are
underlined.

Models Restaurant Laptop Twitter

Acc. F1 Acc. F1 Acc. F1

ATAE-LSTM 77.20 – 68.70 – – –

AEN 84.29 77.22 76.96 73.67 75.14 74.15

RAM 80.23 70.80 74.49 71.35 69.36 67.30

ASGCN 80.77 72.02 75.55 71.05 72.15 70.40

BERT4GCN 84.75 77.11 77.49 73.01 74.73 73.76

R-GAT+BERT 86.60 81.35 78.21 74.07 76.15 74.88

DualGCN+BERT 87.13 81.16 81.80 78.10 77.40 76.02

DGEDT+BERT 86.30 80.00 79.80 75.60 77.90 75.40

dotGCN+BERT 86.16 80.49 81.03 78.10 78.11 77.00

ViGCN 87.31 82.27 81.49 78.29 78.14 77.04

4.4 Ablation Analysis

To further clarify the impact of each component of constructing virtual node
augmented graphs for the proposed ViGCN, ablation studies are conducted.
The results are demonstrated in Table 3. First, it can be observed that the
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model without a virtual node performs poorly on all datasets (ViGCN w/o
N+S+D) compared with the other models in Table 3. This indicates virtual
node can improve the performance of GCNs in ABSA. When we only construct
“naive connections” between the virtual node and real nodes (ViGCN w/o S+D),
the performance of the model, although improved, is still far below the best
performance. Comparatively, ViGCN w/o D and ViGCN w/o S evidently per-
form better. This proves the effectiveness of the SenticNet-based and SRD-based
optimization methods for “naive connection”. Also, the “naive connections” are
indispensable to the model, given that the removal of “naive connections” leads
to poorer performance (ViGCN w/o N). It is worth noting that ViGCN w/o D
does not outperform ViGCN w/o S on the Twitter dataset as on the Restaurant
and Laptop datasets, which may be because the data on the Twitter dataset is
biased towards colloquial expressions, less sensitive to sentiment information [7].
Finally, ViGCN outperforms all its ablation models, revealing that each compo-
nent of ViGCN is indispensable.

Table 3. Results of ablation analysis. “S” represents SenticNet, “D” represents SRD,
“N” represents “naive connections”.

Models Restaurant Laptop Twitter

Acc. F1 Acc. F1 Acc. F1

ViGCN w/o S+D+N 85.08 78.41 78.80 74.31 75.63 74.83

ViGCN w/o D+N 85.43 78.64 79.91 75.56 75.92 74.95

ViGCN w/o S+N 85.61 78.62 80.06 75.95 76.07 75.47

ViGCN w/o S+D 85.52 78.15 80.22 76.28 76.37 75.50

ViGCN w/o N 85.70 79.06 80.54 76.62 76.81 75.40

ViGCN w/o S 86.06 80.18 80.85 77.10 77.40 76.03

ViGCN w/o D 86.95 80.94 81.01 77.73 77.10 75.77

ViGCN 87.31 82.27 81.49 78.29 78.14 77.04

4.5 Parameter Sensitivity

Figure 3 illustrates the performance of ViGCN at different SRD thresholds ϕ
from 1 to 10. It can be seen that ViGCN performs best with an SRD threshold
of 3 on the Restaurant and Twitter datasets, and with an SRD threshold of 6 on
the laptop dataset. As the SRD threshold ϕ increases, the performance of the
model gradually improves until it reaches the best performance, and then the
performance of the model shows a drop trend. A possible reason is that when ϕ is
too small, the model cannot capture enough information from the local context.
On the opposite, while it is too large, noise may be introduced into the global
information preserved by the model.
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Fig. 3. Effect of the SRD threshold ϕ.

4.6 Case Study

ViGCN, RAM and ASGCN are compared on several sample cases. The results
are demonstrated in Table 4. For the first sample, the words “apple” and “OS”
in the aspect”apple OS” are five and four hops away, respectively, from the
opinion word ”happy” on the graph over the dependency tree. For a 2-layer
ASGCN, the information contains in the opinion word cannot be passed to the
aspect. In contrast, in ViGCN, information can be passed from the opinion
word to the aspect in 2 hops via the virtual node. Given this, ViGCN succeeds
while ASGCN fails. For the second sample, the attention-based model RAM
wrongly predicts the sentiment polarity of the aspect “Saketini”, which may
attend to the noise word “Disappointingly”. For the third sample, impacted by
the noise word “wonderful”, ASGCN and RAM mispredict the sentiment polarity
of the aspect “burger”. Nonetheless, ViGCN predicts it correctly because the
model combines global information preserved from the entire sentence to make
predictions, thereby significantly mitigating the interference of those noise words.

Table 4. Case study. The words in red denote the aspects. The symbols P, N and O
represent positive, negative and neural sentiment, respectively.

Sentence ViGCN RAM ASGCN

1. Works well, and I am extremely happy to be back to an apple OS. P✓, P✓ P✓, P✓ P✓, O✗

2. Disappointingly, their wonderful Saketinihas been taken off the bar menu. P✓ N✗ P✓

3. My friend had a burger and I had these wonderful blueberry pancakes. O✓, P✓ P✗, P✓ P✗, P✓

5 Conclusion

In this paper, the task of aspect-based sentiment analysis is investigated and a
virtual node augmented graph convolutional network called ViGCN is proposed.



222 R. Xu

Taking advantage of the virtual node, the proposed ViGCN can effectively pre-
serve global information to precisely predict the sentiment polarity towards a
given aspect. Empirical results on three public datasets demonstrate the effec-
tiveness of our model. Future work includes applying the virtual node to other
graph-based models in ABSA, e.g., graph attention network [20].
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Abstract. Most existing studies construct a discourse structure tree fol-
lowing two popular methods: top-down or bottom-up strategy. However,
they often suffered from cascading errors because they can not switch the
strategy of building a structure tree to avoid mistakes caused by uncer-
tain decision-making. Moreover, due to the different basis of top-down
and bottom-up methods in building discourse trees, thoroughly combin-
ing the advantages of the two methods is challenging. To alleviate these
issues, we propose a Bidirectional macro-level dIscourse Parser based on
OracLe selEction (BIPOLE), which combines the top-down and bottom-
up strategies by selecting the suitable decision-making strategy. BIPOLE
consists of a basic parsing module composed of top-down and bottom-up
sub-parsers and a decision-maker for selecting a prediction strategy by
considering each sub-parser state. Moreover, we propose a label-based
data-enhanced oracle training strategy to generate the training data of
the decision-maker. Experimental results on MCDTB and RST-DT show
that our model can effectively alleviate cascading errors and outperforms
the SOTA baselines significantly.

Keywords: Macro discourse parsing · Label embedding · Bidirectional
selection

1 Introduction

Discourse structure analysis aims to comprehend the structure and semantics of
an article, which provides powerful support for the downstream task such as ques-
tion answering [1], machine translation [2], automatic digesting [3], and informa-
tion extraction [4]. Generally, discourse structure analysis is mainly divided into
two levels: micro-level and macro-level. Micro-level discourse analysis focuses
on the organizational structure and semantic relationships between sentences,
whereas macro-level focuses on those between paragraphs, which reveals the
main idea and content of the document from a higher level and facilitates a
deeper understanding of the article. It is more challenging because it contains
more complex semantic information, such as the paragraph-level elementary dis-
course unit (PDU) is a paragraph rather than a sentence. Figure 1 shows an
example of a macro discourse tree.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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P1 P2 P3 P4 P5

Evaluation Sequence

Cause-Result

Elaboration

Fig. 1. A macro discourse tree with five paragraphs (leaf nodes).

Existing studies on discourse structure parsing are following two strategies:
top-down parsing [6–9] and bottom-up parsing [10–14]. The top-down parsing
usually splits a discourse unit (DU) into two smaller ones according to the seman-
tic relation between two DUs. The bottom-up parsing combines two adjacent
DUs into a larger one to build a discourse tree.

However, whatever the top-down or bottom-up method, these single-direction
discourse parsers have cascading errors in predicting the combination or split
action at each step. For example, in the top-down parser proposed by Fan et
al. [6], cascading errors cause a performance loss of up to 18.72% (see Sect. 4.5 for
specific evaluation methods). In the different contexts, the difficulty of predicting
combination and split is different. The top-down model sometimes makes the
wrong decision by choosing an uncertain split action, while a combination action
is easier to predict.

On the other hand, top-down and bottom-up methods have different biases.
The former focuses more on the global semantic information, while the latter
focuses more on the local semantic connection between adjacent DUs. There-
fore, how to combine these two unidirectional methods and gain each other’s
advantages becomes another challenge [22].

To address the above issues, we propose a Bidirectional dIscourse Parser
based on OracLe selEction (BIPOLE), which combines the top-down and
bottom-up strategies by selecting the suitable decision-making strategy. Firstly,
following previous work, we design two sub-parser (split-parser and combine-
parser) by pointer network as the basic parser module to construct the discourse
structure tree bidirectional. Split-parser can split a DU into two new DUs, build-
ing a discourse tree from top to down, while combine-parser can combine two
adjacent DUs into one new DU from bottom to up. Secondly, we propose a struc-
tured label embedding model as the decision-maker to select the current action
from two sub-parsers. It not only considers the hidden state of the two sub-
parsers but also obtains the basis of the switching parsing strategy from action
labels and structure labels. Finally, we propose a label-based data-enhanced ora-
cle training strategy to generate the training data of the decision-maker. We gen-
erate training data for selecting actions through the oracle strategy to enhance
the error correction capability of the Decision Maker. Experimental results on
the MCDTB [5] and RST-DT [18] show that our model BIPOLE is effective.
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2 Related Work

Since there are no attempts at bidirectional parsing methods in known work, we
have tried to divide influential work in the field into two categories: top-down
and bottom-up.

The bottom-up models on discourse structure parsing mainly used various
transition-based approaches to construct discourse structure trees. Mabona et
al. [19] proposed a generative model based on a beam search algorithm that
can track both structure and word-generating actions while avoiding the left-
branching bias [20] produced by earlier RNNGs beam search methods. The
beam search algorithm tries to improve the global confidence, but it does not
mitigate the error propagation problem, resulting in confidence levels in the lean-
ing back parsing steps that may not be true and reliable, and it also introduces
extremely high time complexity. Zhou et al. [10] applied the shift-reduce method
to build the discourse tree by extracting macro-level discourse semantic informa-
tion and presenting a word-pair similarity strategy to acquire interaction infor-
mation between PDUs, which enhances model performance by improving the
semantic representation of PDUs. Jiang et al. [11] used the shift-reduce method
leveraging the Chinese discourse structure’s left-branching bias and propose a
global and local reverse reading strategy to build a discourse structure tree. This
work explores a new construction approach for the first time and demonstrates
its effectiveness. Jiang et al. [12] introduced topic segmentation into the shift-
reduce method where the lengthy text is divided into multiple small texts. Then
each short text’s discourse parsing efficiently reduces error propagation among
the short texts, improving long text recognition. But the structure of the topics
he used for training was not really labeled but transformed with rules.

As for the top-down models, Lin et al. [8] first used a pointer network with
incorporating the sibling and parent node information in the decoding process.
The pointer network framework is very effective in capturing global information,
but the connection between neighboring PDUs is correspondingly weakened.
Then, Fan et al. [6] further proposed a pointer network integrating the global
and local information to strengthen the semantic interaction. Koto et al. [9]
applied sequence labeling to eliminate decoders and reduce the search space
for segmentation points, but ignore the possible “combine points”. Zhang et
al. [22] effectively improved the efficiency of the segmentation point sorting task
by encoding the segmentation points in the pointer network. Zhang et al. [23]
trained an adversarial robot to constraint the top-down parsing by exploiting
global information from the graph to convert the predicted tree and the gold
tree.

Furthermore, Kobayashi et al. [24] utilize two unsupervised parsing
approaches (top-down for split parsing and bottom-up for combination parsing)
based on dynamic planning and then compared and analyses them. However,
they did not propose a method to combine these two parsers.

The strength of the related work mentioned above is that they have explored
a lot in terms of semantic representations, semantic interactions, and parsing
processes, while their weakness is that no one has tried to parse in both direc-
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Fig. 2. Structure-building process for an article containing seven paragraphs.

tions, but only to propose conjectures. Whereas our work combines their ideas
(top-down and bottom-up).

3 Bidirectional Discourse Parser on Oracle Selection

BIPOLE contains a bi-directional parsing process and a selection method. First,
we introduce our bi-directional parsing process. We keep a stack to store the
state of parsing, where the initial state of the stack is a DU containing the
entire document. The top-of-stack unit is popped out at each decoding step and
considered as Span To be Parsed (STP). The length of an STP is the number of
subtrees it contains internally. Unlike the typical pointer network approach, we
may not only “split” STP at each parsing step, but also “combine” two subtrees
within STP, After each step of parsing, the new spans with a length greater
than 2 will be pushed into the stack. Figure 2 shows our special tree-building
procedure, in which spans of length 2 are combined directly without decoding
and selection. The gray parts pointed by the dotted lines are the decisions that
we discard, whereas the solid lines point to our chosen decision.

Each decoding step consists of two stages: 1) Basic Parser is used to obtain
two candidates, and the candidate prediction results include split or combine
operations and corresponding parsing positions; 2) Decision Maker selects one
of them for parsing. Figure 3 shows an overview of the architecture for each
decoding step.

3.1 Basic Parser

Basic Parser contains two components: split-parser and combine-parser, which
both consist of a Hierarchical Encoder and an Attention-based Decoder.
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Structured label embedding

Hierarchical encoding

Probability fusion

Basic
Parser

Text

P2 P3 P4P1

(b) Span To be Parsed

(c) Structured Label Embedding

P1 <sep><unused3>P2 P3<sep><unused4>
<unused1> <split><unused2>

<unused1><combine><unused2>P4<sep><cls>

Nuclearity - Relation
classifier

Nuclearity Relation

(a) BIPOLE

(d) Nuclearity-Relation Classifier

Decision
Maker

Fig. 3. (a) Our BIPOLE architecture and the decoding process at t = 3 in Fig. 2, with
Text as the full-text document. (b) STP at t = 3. Since P2 and P3 have been combined
in the previous steps, we use the representation of the last PDU (P3) in the subtree
to represent the whole subtree (P2-3) (c) Structured Label Embedding as described
in Sect. 3.2. (d) The two DUs after splitting or before combining will be fed into the
Nuclearity-Relation Classifiers.

Hierarchical Encoder: Given a document T = {t1, t2, . . . , tn} containing
n tokens, which contains the 〈sep〉 after each paragraph and the 〈cls〉 at
the end of the document. We first convert them all to semantic embeddings
R = {r1, r2, . . . , rn} by the popular pre-trained model XLNet [25]. To capture
the global information, the embedding R with an initialized zero vector h0 is
fed into the multilayer Bi-GRU, a full-text encoding with context-awareness
P = {p1, p2, . . . , pn} and the last hidden state hfinal of the Bi-GRU are obtained.
hfinal is considered as a document-level representation of the full text. Finally,
the representation of the 〈sep〉 position spliced after each PDU is used as the
compressed representation ˜P =

{

p̃1, p̃2, . . . , p̃m
}

of that PDU, where m is the
number of PDUs. It is worth noting that split-parser and combine-parser do not
share an encoder, and they have their own encoder to generate ˜P and hfinal for
their decoders separately, providing different parsing views.

Attention-Based Decoder: In each decoding step, we transport vector repre-
sentations of all PDUs in the STP to the two sub parsers. The positions of split-
ting and combining operations and the corresponding probabilities are obtained
respectively.

In the decoding step t, we first take the last PDU representation p̃tail in STP
as the overall representation of STP. The hidden layer state output ht−1 from the
previous step of the decoder and the p̃tail are transported to the GRU to obtain
the decoder state dt and the hidden layer state ht of the current STP, where the
initial hidden layer state h0 in the decoder is the document-level representation
hfinal of the full text of the hierarchically encoded output. ht contains not only
the document-level representation of the full text, but also all the decoding infor-
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mation in the previous decoding step, and is continuously updated and passed.
We use the representation of the n-th DU as the representation of the position
between the n-th DU and the (n+1)-th DU. To obtain the probability distribu-
tion αt, we calculate the attention score according to all the representations of
the position and the attention mechanism, as shown in Eq. 1.

αt = softmax(σ(dt, P̃position)) (1)

where ˜Pposition is the set of all position representations in STP, and σ is the
dot product operation. αt represents the semantic connection closeness scores
between adjacent DUs in STP, and its meaning is different between the split-
parser and combine-parser. In the split-parser, the higher the probability, the
loosely the semantic connection between DUs beside the split position is. On
the contrary, in the combine-parser, the higher the probability, the tighter the
connection. As a result, based on the probability distributions αs

t and αc
t of the

output of the split-parser and combine-parser in step t, we can obtain the split
and combination positions P s

t and P c
t from the Basic Parser in step t.

Training Loss: We use a joint learning training method for the split-parser, the
combine-parser, and the Nuclearity-Relation Classifier. Specifically, we use the
negative log-likelihood function for the two sub-parsers and the cross-entropy for
the Nuclearity-Relation Classifier. The total loss calculation is shown in Eq. 2,
where θs and θc are the parameters of the split-parser and the combine-parser.

Ltotal(θtotal) = Ls(θs) + Lc(θc) + Lnr(θnr) +
γ

2
‖θtotal‖22 (2)

In the training phase, for a document with n PDUs, split-parser keeps a stack
that splits the document top-down according to the depth-first principle, while
combine-parser keeps a sequence of PDUs and the sequence length is subtracted
by 1 after each combination. The nodes at the same layer take a left-to-right
combining order for learning. We apply L2 regularization to all parameters,
where γ is the regularization strength, and θtotal denotes the set of all parameters
in the process of joint learning.

3.2 Decision Maker

In each decoding step, Decision Maker picks between the candidates parsed by
Basic Parser. Decision Maker first reorganizes the flat STP text into structured
text by structured label embedding, then transports it to an additional Hierar-
chical Encoder for binary classification, and finally performs Probability Fusion
of the binary classification results with the output from Basic Parser.

Structured Label Embedding: Label embedding can help the model identify
discourse-level interactions between the text beside the labels [16], it also had a
good performance in generative-based discourse parsers [27]. To fuse the parsing
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information of the previous step and candidate information of the current step,
Decision Maker embeds two types of action labels 〈split〉 and 〈combine〉, and
four types of structured labels 〈unused1〉, 〈unused2〉, 〈unused3〉, and 〈unused4〉
in the text of STP.

As an example, in Fig. 3(b)(c), STP is P1-4, and there are three DUs with
two parsing positions(position1 and position2). Assuming that the Basic Parser
selects to split and combine at position2 at the same time. The steps are as
follows:1) Decision Maker splices the DU text in STP that was combined in the
previous decoding step. 2) Adding the 〈sep〉 labels after each DU, 〈cls〉 label
at the end of STP. And then nesting the 〈unused3〉 and 〈unused4〉 outside the
combined DU to bring in the structure parsing information obtained from the
previous steps. Note that in a more complex STP, 〈unused3〉 and 〈unused4〉 may
contain multiple layers of nesting. 3) Embedding 〈split〉 and 〈combine〉 in the
P s
t and P c

t positions respectively, and nesting the action labels with 〈unused1〉
and 〈unused2〉.

Finally, the restructured text is put into the Hierarchical Encoder, and the
representations of the two action label positions (p̃<split> and p̃<combine>) are
spliced for classification to create the structured label embedding model’s deci-
sion score distribution βt. Unlike the commonly used label embedding app-
roach [17], we not only naturally prevent the model from confusing label seman-
tic information with position information, but also allow the model to learn the
meaning of two abstract actions.

Probability Fusion: The final parsing strategy for the n-th step would be
chosen based on a Probability Fusion, which combines the output of the Basic
Parser and the Structured Label Embedding model as follows.

sst = λβs
t + (1 − λ)max(αs

t ) (3)

sct = λβc
t + (1 − λ)max(αc

t) (4)

At, Positiont =
{

Split, Positions
t sst > sct

Combine, Positionc
t sst < sct

(5)

where βs
t and βc

t are the scores of 〈split〉 label position and 〈combine〉 label
position in βt, respectively. λ is a hyperparameter to control the influence of
the Basic Parser and the Structured Label Embedding model. αs

t and αc
t are

the output of Basic Parser, sst and sct are the split and combine action scores of
the BIPOLE at step t, respectively. And Positiont is the position of the final
execution decision at step t.

Finally, according to the decision, the DUs after splitting or before combining
is input into the Nuclearity-Relation Classifier. Our Nuclearity-Relation Classi-
fier is consistent with [8], which uses Biaffine Attention for classification. The DU
is fed into an additional Hierarchical Encoder, and the output is subsequently
max-pooling as the representation of the DU. The Nuclearity-Relation Classifier
will output the binary group {Nuclearity,Relation} , and then go to step t+1.
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Training Loss: In the Structured Label Embedding model, we use Llabel (θlabel)
loss for training, which consists of cross-entropy loss Lce (θlabel) and supervised
contrast loss Lsc (θlabel) [30], as shown in Eq. 6. θlabel is the parameters of the
Structured Label Embedding model . We L2-regularize the two losses to get the
final loss.

Llabel (θlabel) = δ ∗ Lce (θlabel) + (1 − δ) ∗ Lsc (θlabel) +
γ

2
‖θlabel‖22 (6)

3.3 Oracle Selection

We propose an Oracle Selection mode to generate the training data for Deci-
sion Maker. Since there are no split and combined labels in the corpus, there is
no golden bidirectional tree-building process. To solve this problem, we use the
Basic Parser trained in Sect. 3.1 to construct the bidirectional building process.
In addition, we propose a new data augmentation method to avoid the weak vari-
ation that prevents the model from generalizing to similar contexts. In summary,
our Oracle Selection mode consists of two components: 1) the bi-directional tree
building principle, which determines our tree building process. 2) data enhance-
ment, in each step of the bi-directional tree building, we use data enhancement
methods to extract data for the training of decision makers.

Silver Standard Bi-direction Tree-Building Method. Hung et al. [15]
propose a teacher-student mode that allows a small number of errors to be
generated during training to improve the model’s ability to correct error states.
Inspired by this, we use the trained Basic Parser to generate separate split and
combine decisions at each step. And then we compare the subtrees produced
by these two decisions to the golden tree. If only one of the two decisions can
generate the golden structure, that decision will be chosen for parsing and go to
the next step. If both decisions can produce the correct structure or neither can,
the larger one will be chosen based on the softmax probability.

Data Enhancement. At each decoding step of the Oracle Selection, we insert
the 〈split〉 and 〈combine〉 labels by permutation and combination at all positions
to generate more scenes samples. Then we pick out the parsing cases where
only one decision in the split and combination is correct. Finally, we reorganize
the text of STP using the Structured Label Embedding method described in
Sect. 3.2 to generate train data for Decision Maker. Unlike common NLP data
enhancement methods, our approach does not change the context and semantics.
The data are chosen to focus on the critical decisions that the model can make
while ignoring cases in which both are correct or incorrect. Data enhancement
also eliminates the impact of data cropping due to the ignoring of non-critical
decisions.
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4 Experimentation

4.1 Dataset and Experimental Settings

In the past, MCDTB 1.0 was often criticized because the data set was too small.
To expand the size of the corpus, 480 additional articles are annotated based on
MCDTB 1.0, which constitutes MCDTB 2.0 with a total of 1200 articles (the
annotation process is highly consistent with MCDTB 1.0). MCDTB 2.0 has a
larger number of samples to test the generalization ability of the model. The
percentage of long documents with more than 6 paragraphs in MCDTB 1.0 is
24.3%, while it is 27.1% in MCDTB 2.0, which shows that the percentage of long
documents in MCDTB 2.0 is much larger and the discourse structure parsing task
is more difficult. In this paper, we partitioned MCDTB 2.0 using the paragraph
distribution dataset partitioning method followed by Jiang et al. [12], with 80%
of the training set (960 documents) and 20% of the test set (240 documents),
and 10% of the training set was randomly selected as the validation set (96
documents).

Table 1. Performance comparison of discourse tree construction (Micro-F1). ↑ and
↓ represent the bottom-up method and top-down method, respectively. BIPOLE was
significantly superior to AdverParser with a p-value < 0.05 (t-test).

Span Nuclearity Relation

UnifiedParser↓ 52.64 36.92 31.85

TDParser↓ 55.99 48.68 34.51

PNGL↓ 54.23 – –

GBLRR↑ 61.87 54.25 28.35

MDParser-TS↑ 59.68 45.76 27.95

DGCNParser↑ 61.98 49.95 28.97

AdverParser↓ 64.64 57.96 40.26

Combine-parser↑
ours 62.05 – –

Split-parser↓
ours 63.62 – –

BIPOLE
�
ours 67.19 56.21 39.34

We report the micro-averaged F1 score for predicting span attachments in
discourse tree construction (Span), span attachments with nuclearity (Nuclear-
ity), and span attachments with relation labels (Relation). Specifically, we use
three categories to assess nuclearity recognition and fifteen categories to assess
relational classification which is defined in [29].

The model parameters of split-parser and combine-parser used in this paper
are set the same. In Chinese, we use the XLNet-mid1 as our pretrained model,

1 https://github.com/ymcui/Chinese-XLNet.

https://github.com/ymcui/Chinese-XLNet
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while in English, we use XLNet-base2. And we did not fine-tune XLNet during
the training process. The hidden layer dimension of all Bi-GRU and GRU used
by Hierarchical Encoder and Attention-based Decoder are set to 64, and the
dropout rate of both coding and decoding layers are set to 0.2, λ set to 0.4, δ
set to 0.3, and τ set to 0.5. The Adam optimizer with a batch size of 2 is used,
the learning rate is 1e-4, and γ is 0.0005. Basic Parser and Decision Maker were
trained for 50 and 20 epochs respectively.

4.2 Experimental Results

We select two kinds of existing parsers, i.e., top-down parser and bottom-up
parser, as the baselines for comparison, where the first three baselines do not
use pre-trained models.

Top-Down parser. 1) UnifiedParser [8]: a parser incorporating information
from parent and sibling nodes; 2) TDParser [22]: a parser encoding segmen-
tation points; 3) PNGL [6]: a parser that fuses global information with local
information. 4) AdverParser [23]: a SOTA model on micro-level, which con-
verted predicted trees and gold trees into graphs and trains an adversarial bot
to exploit global information.

Bottom-Up Parser. 5) GBLRR [11]: a parser that inverts the order of pars-
ing to achieve reverse reading; 6) MDParser-TS [12]: a parser that uses the
topic segmentation method; 7) DGCNParser [28]: a SOTA model on macro-
level, which used topic graphs a to model the semantic relationships within and
between DUs;

In our approach, combine-parser denotes the parsing method that does
only take the combining decision into account, and split-parser denotes the
split-only parsing method. These two ablation experiments serve as a baseline
for unidirectional parsing methods that use XLNet as a pre-trained model.

In addition to comparing with the known macro discourse analysis work, we
tried to migrate some of the best models at the micro level (such as Unified-
Parser, TDParser, and DGCNParser) to the macro corpus. We found that these
models trained for micro discourse parsing also work well at the macro level, so
we included these models in the scope of assessment. Table 1 shows the perfor-
mance comparison between our models and the baselines. Among all baselines,
the micro-level SOTA model AdverParser also works well on the macro-level
and achieves the best performance. Our model only focuses on the discourse
structure parsing task and does not optimize the other nuclearity and relation
recognition tasks, while AdverParser incorporated NR channels in the graph-
building process for nuclearity and relation recognition. Hence, our BIPOLE
outperforms AdverParser in the task of discourse structure parsing (Span) and
performs comparable performance in terms of nuclearity (Nuc) and relation (Rel)

2 https://huggingface.co/xlnet-base-cased.

https://huggingface.co/xlnet-base-cased
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recognition. This result indicates the effectiveness of the bi-directional parsing
strategy on the discourse structure parsing task.

Compared with our unidirectional models combine-parser and split-parser
which use unidirectional parsing strategies, BIPOLE improves the F1 score of
discourse structure parsing by 5.14% and 3.57%, respectively. This result also
verifies the effectiveness of our bi-directional parsing strategy.

We observed the tree-building process in the testing phase, which contains
67.3% of the split decisions and 32.7% of the combination decisions. This result
indicates that our bi-directional parser prefers the split decision. Among those
split decisions, 69.3% can split into the correct positions, and 74.8% of the correct
split decisions to avoid incorrect combinations. Similarly, among those combina-
tion decisions, 64.3% can combine the correct nodes and 63.0% of correct com-
bination decisions effectively avoid incorrect split decisions. This demonstrates
the importance of selecting a reasonable parsing method and the advantage of
the bi-directional parser.

4.3 Analysis on Different Document Lengths

According to [12], existing methods perform better on short articles and worse
on long articles. So improving the parsing ability on long articles should be the
focus of discourse parsing research. We compared BIPOLE with the best models
on macro and micro, as well as our unidirectional model. Figure 4 shows the
Micro-F1 scores of all models in different length articles. In short articles of 2–
4 paragraphs, our method does not pull away from other models. However, it
achieves significant improvement on long articles larger than four paragraphs.
The lower overall performance for long articles is due to longer parsing steps
and more severe error propagation, and the results show that our model can
effectively mitigate this issue.

Fig. 4. Micro-F1 scores on different PDU numbers (Span).



Bidirectional Macro-level Discourse Parser Based on Oracle Selection 235

4.4 Results on English RST-DT

English RST-DT [18] is one of the popular discourse corpora that annotate the
discourse structure, nuclearity, and relationship for the whole document.

We also tested the generalization of our proposed model on English RST-DT,
using the same data partitioning as [12], and transforming the non-binary trees
in the original data into right binary trees. Table 2 compares the tree build-
ing performance on RST-DT. DGCNParser is the SOTA model at the macro
level on RST-DT. And the first three rows of the results we obtained from [11]
and [28]. Articles in Chinese MCDTB have an average length of 5.67 paragraphs,
while articles in English RST-DT have an average length of 11.69 paragraphs.
Our BIPOLE’s great parsing capacity for large articles contributed to its strong
English performance.

4.5 Error Analysis

We proposed two self-designed test modes in the testing phase: Simulation Gold
mode (SG) and Oracle Selection mode (OS). Where the SG mode does not
contain any error propagation, the OS mode does not contain any error selection.
Therefore, we can quantify the impact of error propagation by comparing the
performance results of the SG mode with the Standard Test mode (ST). Also,
we can analyze the performance results of OS and ST modes to classify the
performance loss into generating candidates stage loss and selection phase loss.

Specifically, in SG mode, whatever parse the model made of the STP in the
previous step, we automatically perform a correct parse into the current step,
eliminating the effect of error propagation (the results predicted by the model
are involved in the performance evaluation, but do not affect the next step). The
OS mode, uses the performance derived from the silver standard bi-directional
tree building method described in Sect. 3.3. It is no different from the ST mode
when both base parser choices are correct or both are incorrect, while a relatively
correct choice is made when one of them is correct. This mode guarantees the
absolute correctness of the choice.

We evaluated the models using our error analysis method, as shown in
Table 3. The performance difference between SG (without error propagation) and
ST (with error propagation) represents the extent to which the model is affected
by error propagation. The larger difference represents more serious error prop-
agation problems in the parsing process. In the three models, these differences
are 16.42, 16.01, and 13.92, respectively, which shows that BIPOLE can effec-
tively mitigate the error propagation problem. It is worth mentioning that our
SG method is able to evaluate all models that contain error propagation. Since
the OS mode does not contain wrong choices, then all the performance losses it
incurs are generated by the generate candidates stage. So the performance loss
caused by the generation candidate phase (basic parser parsing phase) is 20.17
(100%-79.83%). And the performance difference between OS (without incorrect
choices) and ST (with incorrect choices) represents the performance loss incurred
by BIPOLE in the selection phase, which is 12.64 (79.83%-67.19%). Meanwhile,
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the ST results for split-parser and combine-parser correspond to the performance
without selection. The overall result proves that our method must be effective.
However, as a preliminary attempt at the bi-direction parsing method, this study
still has much room for improvement and deserves further exploration.

Table 2. The performance comparison
on the RST-DT at the macro level.

Model Span

GBLRR 43.70

MDParser-TS 41.56

DGCNParser 43.37

AdverParser 45.71

BIPOLE 46.79

Table 3. The results of each model
in standard test mode(ST), simulated
gold mode(SG), and oracle selection
mode(OS) respectively.

Model ST SG OS

Combine-parser 62.05 78.06 –

Split-parser 63.62 79.63 –

BIPOLE 67.19 81.11 79.83

4.6 Ablation Analysis

We compared the following simplified methods to validate the effectiveness of dif-
ferent components of our bi-direction selection method with the Oracle Selection
training strategy and those simplified models are as follows: 1) -w/o Structured
Label Embedding: only using the Basic Parser for selection; 2) -w/o Structured
Labels: removing four types of structured labels in bi-direction selection; 3) -
w/o Oracle Selection Strategy: using the simulated golden mode in Sect. 4.5 for
training; 4) -w/o Data Enhancement: remove the data enhancement in Sect. 3.3.

Table 4. A comparison of ablation experiments.

Approach Span

BIPOLE 67.19

-w/o Structured Label Embedding −1.17

-w/o Structured Labels −0.82

-w/o Oracle Seletion Strategy −1.35

-w/o Data Enhancement −1.58

Table 4 shows the results on BIPOLE and its simplified versions. Notably,
when we do not use the Oracle training strategy, the performance is lower than
when we do not use the entire bi-direction selection method. It implies that our
training strategy and the bi-direction selection method reinforce each other.
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5 Conclusion

In this paper, we propose a bidirectional macro-level discourse parser BIPOLE,
which combines two mainstream parsing strategies, i.e., top-down and bottom-
up, and can select one of them according to different contexts. Especially, We
introduce a Basic Parser to parse out two candidates, and a Decision Maker to
select one of them according to the context. Moreover, we also design an oracle
selection strategy to improve the capability of the error correction for the model
BIPOLE. Experimental results on MCDTB and RST-DT show that our model
can effectively alleviate cascading errors and outperforms the SOTA baselines
significantly. In the future, we will focus on how to improve the parsing ability
of the basic parser and the selection ability of the decision maker to improve the
performance of macro-level discourse parsing.
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Abstract. The existing Document-Level Event Factuality Identification
(DEFI) work relies on the syntactic and semantic features of event trigger
and sentences. However, focusing only on the relevant features of event
trigger may omit the important information for event factuality identifi-
cation, while finding critical information from the whole document is still
challenging. In this paper, our motivation is that DEFI can be inferred
from a complete set of evidential sentences rather than the event trig-
ger. Hence, we construct a new Evidence-Based Document-Level Event
Factuality (EB-DLEF) corpus, and introduce a new evidential sentence
selection task for DEFI. Moreover, we propose a pipeline approach to
solve the two-step work of evidential sentence selection and event factu-
ality identification, which outperforms various baselines.

Keywords: Document-level event factuality identification · EB-DLEF
corpus · Evidential sentence selection

1 Introduction

Event factuality describes whether an event is a fact, a possibility, or an improb-
able scenario. Factuality categories can be classified into the following five cat-
egories based on the degree of certainty of the event occurrence [1,2]: CerTain
Positive (CT+), PoSsible Positive (PS+), CerTain Negative (CT−), PoSsible
Negative (PS−), Underspecified (Uu). Furthermore, event factuality identifica-
tion (EFI) can be further subdivided into sentence-level event factuality identi-
fication (SEFI) and document-level event factuality identification (DEFI), i.e.,
determining the factuality by a simple sentence or a complete document. EFI
is an essential basic task for many other NLP applications, such as sentiment
analysis [3], machine translation [4], and rumor detection [5].

EFI can be regarded as classifying the event trigger based on textual content.
The left side of Fig. 1 provides an example. For SEFI, we need to focus on the
negative and speculative information in the sentence, e.g., the event “reach”
in S2 is affected by the speculative cue “may”, so its sentence-level factuality
is PS+. For DEFI, the core event of the document may occur several times,
and its sentence-level factuality may have multiple values. However, from the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 240–254, 2022.
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Fig. 1. Annotation of DLEF (left) and EB-DLEF (right).

perspective of the overall semantics, its document-level event factuality can be
uniquely determined, e.g., the document-level factuality of event “reach” is CT−.

Previous work on DEFI at this stage is based on the Document-Level Event
Factuality (DLEF) corpus [2], an annotation example for DLEF is shown on the
left side of Fig. 1, including the event trigger and sentence-level factuality values.
Almost all existing studies focus on the event trigger to obtain some relevant
syntactic and semantic features [2,6,7], which have the following disadvantages:
(1) Since an event can be expressed in various ways, it is difficult to represent
it with an event trigger. This also leads to difficulties in annotation and affects
the work of DEFI, which relies heavily on the event trigger. (2) The information
needed to identify the factuality is not always contained in the sentence with the
event trigger. Hence, some essential information for identifying factuality may be
omitted. Meanwhile, the whole document is too long and contains much noise,
finding the critical information is inefficient and challenging.

To address the above issues, we construct a new evidence-based document-
level event factuality corpus (EB-DLEF) with the following features: (1) A com-
plete sentence is used instead of an event trigger as the expression of the core
event. (2) The document-level event factuality is annotated with a complete
set of evidential sentences containing all the information that can identify the
factuality. The right side of Fig. 1 shows an example of annotation.

EB-DLEF provides a new idea for DEFI and introduces a new evidential sen-
tence selection task, i.e., finding the complete set of evidence for an event before
judging its document-level event factuality. This task is inspired by the task of
evidence-based fact checking [8], which will be described in detail in Sect. 2.2.
For experimentation, we propose a pipeline approach that views evidential sen-
tence selection and event factuality identification as two independent tasks. The
results show that our model outperforms all baselines.
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2 Related Work

2.1 Event Factuality Identification

There are many models applied to the work on sentence-level event factuality
identification (SEFI) and have achieved good performance [9–12]. Compared to
SEFI, the document-level event factuality identification (DEFI) is still in its
infancy and exploratory stage. Qian et al. [2] used BiLSTM to encode sentences
and syntactic paths and proposed an attention mechanism to fuse semantic
and syntactic information. Zhang et al. [6] introduced negation and specula-
tion scope into DEFI work and got a significant improvement in performance.
Cao et al. [7] proposed an Uncertain Local-to-Global Network, which integrated
the local uncertainty as well as global structure, and achieved state-of-the-art
performance.

2.2 Evidence-Based Fact Checking

Evidence-based fact checking (claim verification) aims to verify the truthfulness
of a claim against evidence extracted from textual sources [13]. Usually, the
task can be defined as a three-step pipeline [8], i.e., document retrieval, sentence
retrieval, and claim verification. We mainly focus on sentence retrieval since this
part is relevant to our evidential sentence selection task. The most common
practice in sentence retrieval is to rank sentences and select top-k sentences
related to the claim as the evidence or set a threshold to further filter sentences,
e.g., TF-IDF [8], Logistic Regression [14], ESIM [15,16], NSMN [17].

The methods based on pre-trained models have also been widely used, e.g.,
BERT [18–21], XLNet [22], RoBERTa [23], ALBERT [24], T5 [25]. Unlike these
jobs that focus only on high recall, Yin et al. [26] and Ma et al. [27] have
conducted effective research on the work of obtaining precise evidence. In our
work, the potential evidential sentences are all in one document. Focusing only
on the recall may introduce too much noise for the next factuality identification
task, so we work on obtaining the precise evidential sentences.

3 Corpus Annotation

As with DLEF, we use China Daily1 and Sina Bilingual News2 as the sources of
the English corpus and Sina News3 as the source of the Chinese corpus. Finally,
3483 English documents and 4357 Chinese documents are selected in various
fields, including military, political, cultural, etc.

1 http://www.chinadaily.com.cn/.
2 https://english.sina.com/.
3 https://news.sina.com.cn/.

http://www.chinadaily.com.cn/
https://english.sina.com/
https://news.sina.com.cn/
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3.1 Event

We use a highly summarized sentence to represent the core event in a document
rather than the event trigger. If multiple events are discussed, we select the
event that is most frequently mentioned. To avoid the event being a simple
copy of a sentence, we ask the annotators to summarize the event from as many
sentences as possible and require that only the most critical information be
retained while deleting some irrelevant modifiers. The event should also be in
the form of an affirmative sentence without any words that contain a tendency
of factuality, such as negative or speculative cues. Finally, to ensure the difficulty
of the identification, we discard some simple structured documents.

Table 1. Factuality distribution in EB-DLEF.

Datasets Factuality values

CT+ CT− PS+ PS− Uu

English 2674 (76.77%) 456 (13.09%) 321 (9.22%) 20 (0.57%) 12 (0.34%)

Chinese 2548 (58.48%) 1145 (26.28%) 614 (14.09%) 33 (0.76%) 17 (0.39%)

Table 2. Evidential sentences distribution in EB-DLEF.

Datasets Evidential sentences

n = 1 n = 2 n = 3 n > 3

English 1949 (55.96%) 1375 (39.48%) 148 (4.25%) 11 (0.32%)

Chinese 893 (20.50%) 2396 (55.99%) 990 (22.72%) 78 (1.79%)

3.2 Document-Level Event Factuality

Consistent with [2], we use the following five factuality labels: (1) PoSsible Pos-
itive (PS+): Events are governed by speculative cues (e.g., “may”) (2) CerTain
Negative (CT−): Events are negated by negative cues (e.g., “not”). (3) PoSsible
Negative (PS−): Events are governed by both speculative and negative cues.
(4) Underspecified (Uu): Events can appear in questions (e.g., “Is...?”) and in
the intensional contexts with underspecified semantics (e.g., “if...”). (5) CerTain
Positive (CT+): Events are factual and do not meet the above conditions.

3.3 Evidential Sentences

Evidential sentences are the complete set of sentences that contains enough infor-
mation to identify the factuality. For example, on the right side of Fig. 1, the
evidential sentences of event “The bombing is linked to Bangladesh militants” are
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S0, S1, S3. When annotating evidential sentences, we have the following guide-
lines: (1) Semantic similarity between different evidential sentences is allowed,
as long as each sentence is strongly related to the event, i.e., the sentence can
directly affect the factuality of the labeled event. (2) Based on ensuring the
integrity of the evidential sentences, we do not allow the introduction of the use-
less noise, i.e., the sentence only mentions the entities in the event but does not
affect its factuality. Assuming that without the restriction of this rule, the whole
document can be considered evidence, which would make the work meaningless.

3.4 Statistics

Table 1 shows the distribution of factuality in the corpus. We can see that the
CT+ category has the largest share, followed by CT− and PS+, and the two
categories of PS− and Uu have a low probability of occurrence.

Fig. 2. The architecture of our proposed pipeline approach.

Table 2 shows the distribution of the number of evidential sentences. It can
be seen that a large proportion of the events have more than one evidential
sentence, which makes the selection task more difficult and practical.

The annotators are all undergraduate students familiar with both Chinese
and English and have undergone our systematic training. The Kappa [28] are
calculated to be 0.82 and 0.80 for the English and Chinese corpora, respectively,
demonstrating the high annotation consistency of EB-DLEF.
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4 Methodology

This section introduces a pipeline approach for solving the two tasks, i.e., eviden-
tial sentence selection and event factuality identification, and the overall model
structure is shown in Fig. 2.

4.1 Evidential Sentence Selection

We focus on the interactions between event and candidate sentence to determine
whether the candidate sentence is the evidence. Meanwhile, we design a gate
mechanism that incorporates the interactions of the event with global semantics
as a complement, where similarity is used for contribution assignment.

Input and Sentence Similarity. We treat evidential sentence selection as a
classification task, i.e., given an event e and a candidate sentence si as input,
the output set Ys = {0, 1}, where 1 means that si is the evidential sentence of
e; otherwise, 0.

The event is essentially a summary or generalization of a particular sentence
or several sentences. If si is the evidence of e, their expressions are relatively con-
sistent. After using stanza4 to tokenizer, we convert e and si into vectors e and
si to record whether a word occurs in a sentence. The cosine similarity as follows
is used to calculate the similarity of the two sequences as an important feature
to determine whether si is evidence or not, where the subscript j means the j-th
token.

similarity(e, si) = cos(θ) =
e · si

||e|| · ||si|| (1)

||e|| =

√
√
√
√

n∑

j=1

(ej)2, ||si|| =

√
√
√
√

n∑

j=1

(sij )2 (2)

Global Semantics and Encoding. We use Eq. 1 to calculate the similarity
between e and all sentences, taking the top 50% of sentences concatenated together
as a sequence gs that represents the global semantics and ensuring that the title is
in gs. When focusing only on e and si cannot be classified correctly, supplementing
some global semantics information will have a critical effect.

We concatenate e with si and gs, respectively, and put the results into
BERT [29], using the final hidden state vector of the [CLS] token to get vectors
hl,hg ∈ Rd, which denote the local and global interactions, respectively.

4 https://stanfordnlp.github.io/stanza/.

https://stanfordnlp.github.io/stanza/
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GateMechanism. Instead of concatenating or performing an element-wise oper-
ation for hl and hg. We use a gate mechanism to decide how much information is
needed in the two outputs and use the similarity between e and si for contribution
assignment. To avoid sentences with low similarity ignoring local interactions, we
map the similarity to a new interval as follows:

ce↔si = a +
b − a

smax − smin
· (se↔si − smin) (3)

where a = 0.5, b = 1, smax and smin are the maximum and minimum values
of similarity, and se↔si means the cosine similarity between e and si. Then the
process of gating is as follows:

hf = ce↔si � hl + (1 − ce↔si) � hg (4)

where hf ∈ Rd is a representation that incorporates local and global interactions.

Output. Finally, we use a softmax layer to compute the probability distribution:

ps(ŷ) = softmax(W1 · hf + b1) (5)

where W1 ∈ Rc1×d and b1 ∈ Rc1 are the weights and bias. Finally, the model
optimize with a cross-entropy loss function:

Ls = −
∑

y∈Ys

I{ŷ = y}logps(ŷ) (6)

4.2 Event Factuality Identification

We design a sentence-level interactions module that uses similarity as a prior to
better determine how the evidence should be integrated with other evidential sen-
tences as a complement. Then we use dot product for token-level interactions to
capture more fine-grained information while also making interactions not deviate
from the event’s focus. Finally, we use an attention mechanism to obtain a com-
prehensive representation for the final factuality classification.

Input andEncoding. Event factuality identification is treated as a 5-way classi-
fication task, the output set Yf = {CT+, CT−, PS+, PS−, Uu}. Our model defines
four inputs: (1) e: core event in document. (2) {evi}mi=1: set of evidential sentences.
(3) ev: a sequence that is the concatenation of all the evidential sentences. (4) gf :
a sequence representing the global semantics.

We use evidential sentences and their adjacent sentences, as well as sentences
containing negative and speculative cues concatenated together as gf , which
proved to be useful features in previous work. The negative and speculative cues
in English and Chinese come from BioScope [30] and CNeSp [31], respectively.

After unifying the inputs with length l, each sequence is encoded using BERT,
and the output corresponding to each input is: e ∈ Rd; {evi}mi=1,evi ∈ Rd; ev ∈
Rd; gf ∈ Rd. We also use the output of the last hidden layer of BERT as the word
embedding of each token.
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Sentence-Level Interactions. We adopt a multi-head self-attention [32] to cap-
ture the interactions between evidential sentences and use the computed weights to
selectively decide how much information from other evidential sentences to incor-
porate into the current evidence representation to enhance the expressiveness. For-
mally, weights in the i-th head can be calculated as follows:

scorei = softmax(
QiK

T
i√

dk
) (7)

Qi = QW q
i ,Ki = KW k

i (8)

where dk is the size of hidden units of BERT, which equals to d. Q and K refer to
the set {evi}mi=1, and they are multiplied by the parameters W q

i ,W k
i ∈ Rd×d1 , d1

is d/h. h is the number of heads in the self-attention.
The importance of each evidential sentence for identifying factuality is differ-

ent, with some of them being core while others being marginal. The expressions of
the core evidential sentences tend to be consistent with each other. At this point,
we use the similarity to predict the degree of their agreement, i.e., add a prior to
the scorei as follows:

scorenewi = softmax(
QiK

T
i√

dk
+ S) (9)

whereS is the similaritymatrix between {evi}mi=1. Note that the similarity between
the evidence and itself is 1, and we do not need to map the similarity to a new
interval as Eq. 3.

After calculating the attention weights, the process of the multi-head self-
attention can be expressed as follows:

headi = scorenewi · (V W v
i ) (10)

H = [head1; ...;headh] · W2 (11)

where V is the set {evi}mi=1, and W v
i ∈ Rd×d1 is the parameter. The “;” denotes

the concatenation operation and H is a matrix obtained by concatenating the
results from h headers, the parameter W2 ∈ Rd×d. For an evidential sentence evi

in H, we denote the result of sentence-level interactions as evsen
i .

Token-Level Interactions. For each evidential sentence evi, we perform token-
level interactions with ev to capture more fine-grained information. Moreover, to
avoid capturing information that deviates from the event’s focus, we also propose
to interact each token between evi and e. Formally, we use dot product for token-
level interactions as follows:

cji =
∑

z

softmax(evj
i · (xz)T ) · xz

(12)

where xz means the z-th token of e or ev. Depending on the different values of x,
we can obtain the results of two token-level interactions c1j

i and c2j
i , respectively.
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Then the new representation of the j-th token in evi is as follows:

evj
i = evj

i ⊕ c1j
i ⊕ c2j

i (13)

where ⊕ means element-wise addition. Then we use a max-pooling over {evj
i }lj=1

along with j, to get a representation of the whole sentence:

evtok
i = maxpool({ev1

i , ...,ev
l
i}) (14)

Then we concatenate the representations of each evidential sentence and resize the
dimensions with a linear layer:

evfin
i = W3 · [evi;evsen

i ;evtok
i ] + b3 (15)

where W3 ∈ Rd×3d and b3 ∈ Rd are trainable parameters, evfin
i is the final evi-

dence representation incorporating rich interactive information.

Factuality Classification. To predict the factuality value, we use an attention
mechanism to fuse the multiple evidential sentences to obtain a comprehensive
representation as follows:

bi = vT · tanh(W4 · evfin
i + U · e) (16)

si =
exp(bi)

∑m
i exp(bi)

(17)

hs =
m∑

i

si · evfin
i (18)

where v ∈ Rd, W4 ∈ Rd×d and U ∈ Rd×d and are trainable parameters. Then we
concatenate hs with the e and gf to get a representation, and use a softmax layer
to compute the probability distribution:

pf (ŷ) = softmax(W5 · [hs;e; gf ] + b5) (19)

where W5 ∈ Rc2×d, b5 ∈ Rc2 are the weights and bias. The loss function is as
follows:

Lf = −
∑

y∈Yf

I{ŷ = y}logpf (ŷ) (20)

5 Experimentation

5.1 Experimental Settings

Weperform5-fold cross-validation onEB-DLEF to reflect the faithful performance
of each model. Note that we mainly focus on the performance of CT+, CT− and
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PS+, since the proportion of PS− and Uu categories is too small. We use bert-
base-uncased and bert-base-chinese from the HuggingFace’s Transformer5 as the
instances of BERT for English and Chinese, respectively.

In terms of parameter settings, the values of c1 and c2 in softmax layer are 2 and
5, the number of heads h is 2, and the size of hidden units d of BERT is 768. The
learning rate is set to 1e−5, andAdamalgorithm is used to optimize the parameters
in both tasks.

In addition to using precision, recall, andF1-Score to evaluate the performance.
Inspired by [8], we add two additional metrics: (1) NoScoreEv: The accuracy of
identification for all factuality categories without considering the evidence. (2)
ScoreEv: In addition to the requirement of correct factuality identification, the
predicted evidential sentences are an exact match to the golden.

5.2 Baselines

Previous DEFI studies [2,6,7] are all based on the event trigger to obtain syntactic
or semantic features. However, the event trigger is not annotated in DB-DLEF, so
it is not feasible to compare our model with them.

We use the following evidence-based fact checking approaches as baselines: (1)
ESIM [33]: We use ESIM to infer the relationship between event and sentence,
then select the top-5 sentences as evidence. (2) BERT-Rank [20]: We use BERT
as a representative of the pre-trained models to select the top-5 sentences. (3)
BERT [13,16,20]: We use a pointwise loss function and find a threshold to trade-
off the recall against the precision. (4) HAN [27]: A hierarchical attention model
for validating claim and selecting precise evidence. (5) TwoWingOS [26]: A joint
model can identify appropriate evidence and determine whether or not the claim is
supported by the evidence. (6) MLA [13]: A multi-level attention model for claim
verification, which can also be used to select precise evidence.

Table 3. Experimental results of evidential sentence selection on English and Chinese
corpora.

Methods English Chinese

Precision (%) Recall (%) F1-Score Precision (%) Recall (%) F1-Score

ESIM 25.27 96.45 40.05 36.49 92.10 52.27

BERT-Rank 29.36 97.80 45.16 38.73 93.46 54.77

HAN 50.15 71.63 59.00 55.01 69.66 61.47

TwoWingOS 59.66 74.98 66.45 57.16 71.58 63.56

BERT 62.76 86.71 72.82 65.87 84.52 74.04

Ours 67.34 90.17 77.10 70.63 86.95 77.95

5 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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Table 4. Experimental results of event factuality identification, we use F1-Score to eval-
uate the performance of the five categories, i.e., CT+, CT−, PS+, Macro, Micro.

Datasets Methods CT+ CT− PS+ Macro Micro NoScoreEv ScoreEv

English HAN 85.97 62.55 58.63 69.26 77.73 77.15 36.22

TwoWingOS 88.43 61.47 62.22 71.02 79.46 78.97 37.78

MLA 91.06 72.01 68.15 77.32 86.24 85.82 39.73

Ours 92.71 78.72 67.72 80.00 88.52 87.95 41.46

Chinese HAN 80.82 69.97 65.53 72.49 74.97 74.31 30.61

TwoWingOS 82.22 72.89 64.10 73.57 76.51 75.89 31.37

MLA 85.80 75.11 73.76 78.35 81.04 80.39 33.26

Ours 87.49 80.34 74.42 80.83 83.58 82.91 35.17

5.3 Overall Results

Table 3 shows the performance of each model on the evidential sentence selection
task, and the conclusions are as follows: (1) Since all candidate sentences are in
only one document, ESIM and BERT-Rank achieve a high recall. However, they
achieve the lowest precision. (2) Chinese corpus has a larger proportion of events
with more than one evidential sentence, so the recall in all the methods is lower
than those in the English corpus. (3) The performance of the models using the pre-
training method has a considerable improvement compared to those that do not
use it. (4)Our method achieves a better balance between accuracy and recall. Com-
pared with the state-of-the-art model, our method achieves 4.28 and 3.91 improve-
ment of F1-Score on the English and Chinese corpus, respectively, which proves the
effectiveness of the gate mechanism and global semantics.

Table 4 shows the performance of each model on the event factuality identifi-
cation task, where we can draw the following conclusions: (1) In general, all the
models perform better on the English corpus than the Chinese corpus, especially

Table 5. Ablation study results, the arrow ↓ represents the decrease, Task1 and Task2
represent the evidential sentence selection and the event factuality identification, respec-
tively.

Methods English corpus Chinese corpus

Task1 Task2 Task1 Task2

F1-Score Macro ScoreEv F1-Score Macro ScoreEv

w/o gm ↓2.21 ↓1.03 ↓0.31 ↓1.69 ↓0.79 ↓0.34

w/o gs ↓4.38 ↓1.45 ↓0.50 ↓3.16 ↓1.20 ↓0.44

w/o si – ↓2.88 ↓0.71 – ↓1.95 ↓0.45

w/o ti – ↓3.05 ↓1.14 – ↓1.76 ↓0.38

w/o am – ↓1.93 ↓0.62 – ↓1.23 ↓0.40
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on the NoScoreEv and ScoreEv metrics. This is due to the annotation differences
between the corpora. (2) The CT+ category performs better than CT− and PS+
due to its greater number, which leads to a distance between the Macro-F1 and
Micro-F1 performance as well. (3) Compared to the state-of-the-art model MLA
which also uses multiple interactions between evidential sentences, our model still
leads in most metrics, demonstrating that the sentence-level and token-level inter-
actions we designed are more effective.

5.4 Ablation Study

We conduct the following ablation studies to verify the validity of our proposed
components: 1) w/o gm: removing the gate mechanism and replacing it with an
element-wise addition. 2) w/o gs: removing the global semantics input gs. 3) w/o
si: removing the sentence-level interactions. 4) w/o ti: removing the token-level
interactions. 5) w/o am: removing the attention mechanism and replacing it with
a max-pooling approach. The ablation study results are shown in Table 5.

From the results, we can observe that removing any components causes a degra-
dation in performance, especially in the English corpus, which proves that each
component has a positive effect on the experimental results.

5.5 Robustness Study

To verify whether our model can automatically filter the noise in the evidential
sentences and capture the critical information for factuality identification, we add
randomly sampled sentences to the evidential sentences of each sample to simulate
noise. The results are shown in Fig. 3.

We can draw the following conclusions from the figure: (1) The model performs
significantly better on the English corpus than on the Chinese corpus, mainly due
to the higher complexity of the Chinese corpus. (2) The Macro-F1 and Micro-F1
tend to decrease as the noise increases. However, when the amount of noise reaches
a threshold, more increased noise does not significantly affect the performance and
even makes a slight increase within a reasonable range. (3) Two metrics gradually
level off and reach a high level after decreasing, proving that the model has strong
robustness and can handle the noise well.

5.6 Error Analysis

Evidential Sentence Selection. We summarize two types of errors: (1) The
model incorrectly selects sentences that are not relevant to the event factuality as
evidence, which directly leads to a decrease in accuracy. We also found that these
sentences have some similarities to the event, which is an important reason for
misclassification. (2) There are omissions in the selection of evidential sentences,
which is a factor that affects the recall. Most of these omitted sentences have low
similarity to the event in expression but can directly affect the event factuality.
Correctly selecting this type of evidence is challenging.
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Fig. 3. Model performance with varying amounts of noise in the evidential sentences.

Event Factuality Identification. By observing instances where factuality val-
ues are misclassified, we summarize three common error cases: (1) In the eviden-
tial sentence selection task, some sentences are incorrectly classified as evidence,
introducing some noise that can affect the factuality, such as negative and spec-
ulative information. (2) There are cases where some critical evidential sentences
are omitted in the evidential sentence selection task, and the missing information
can impact the factuality identification, especially in CT− and PS+ categories.
(3) The information in evidential sentences is sometimes obscure and cannot be
captured correctly by the model, resulting in misclassification.

6 Conclusion

In this paper, we construct an evidence-based document-level factuality (EB-
DLEF) corpus and propose a new evidential sentence selection task, which broad-
ens the research direction for the work of DEFI. Based on the new corpus, we pro-
pose a pipeline approach for evidential sentence selection and event factuality iden-
tification that performs better than all previous baseline models. The experimen-
tal results also demonstrate the feasibility and complexity of the task for future
studies.
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Abstract. Extracting useful information from a large number of text
files in the power field is of great significance to power informatization,
and the identification of power equipment entities is a key part. Aim-
ing at the difficulties of entity recognition of power equipment in the
field of Chinese electric power, such as complex entity names and diffi-
cult identification of rare entities, this paper proposes a Chinese named
entity recognition model based on multi-feature fusion. From the knowl-
edge of the electric power field (concise dictionary of electric technical
terms, English dictionary of electric power terms, etc.), a large number of
electric power professional terms are sorted out to construct the electric
power field dictionary, and then text segmentation and part-of-speech
tagging are carried out under the guidance of it. Integrate various fea-
tures of characters, words and word categories into input vectors and
input them into the BiLSTM-CRF model for sequence labeling. The
experimental results show that the entity recognition model proposed in
this paper improves the recognition effect of Chinese named entities in
the field of power equipment.

Keywords: Power equipment · Chinese named entity recognition ·
Domain dictionary · Deep learning

1 Introduction

In recent years, the professional knowledge service platform in the field of electric
power and energy [1] has been one of the key construction projects of enterprises
and institutions in the domestic electric power industry such as State Grid. Chi-
nese Power Equipment Entity Recognition (CPEER) [2] is one of the key tasks.
At the same time, CPEER is also a key task for many smart grid systems [3,4],
such as building a knowledge graph of the power industry [5], a knowledge rec-
ommendation system in the power field [6] and other smart grid dispatching
decision-making assistance systems [7].
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Chinese Power Equipment Entity Recognition (CPEER) aims to identify the
boundaries and types of specific power equipment entities from unstructured
text, that is, to identify and classify power equipment in power industry cor-
pora. But the identification of Chinese power equipment entities is not easy. At
present, Chinese power equipment entity recognition [8] still faces major chal-
lenges for the following reasons: First, as a professional field, power equipment
names contain many complex and domain-specific words, and some equipment
names are long and rare. For example, “电磁式电压互感器 (electromagnetic
type voltage transformer)” . Second, there is a lack of public Chinese power
text datasets due to the difficulty in obtaining and labeling power domain texts.
Finally, Chinese is complex: on the one hand, Chinese does not have the spaces
of English text as natural boundaries; on the other hand, Chinese has a complex
structure with many nested and omitted sentences.

In order to improve the effect of deep learning model on power equipment
entities, we introduce more feature information and perform text processing
under the guidance of domain dictionaries.

The main contributions of our work can be summarized as follows:
A dataset of Chinese power equipment is constructed and the training set

is augmented by the method of entity replacement of the same type to improve
the entity recognition effect.

This paper proposes a Chinese power equipment entity recognition method
based on character-word-word category multi-feature fusion. It gives the model
more semantic information and domain information by combining multiple fea-
tures of characters, words, parts of speech and word types to improve the entity
recognition effect of the model.

The evaluation results show that compared with the traditional deep learning
model based on character vector or word vector, this model has better perfor-
mance on the power equipment data set.

2 Related Work

2.1 Named Entity Recognition in Electric Power Domain

In the early days of Chinese Named Entity Recognition (CNER), researchers
used a rule-based approach, mainly applying rule templates constructed by lan-
guage experts. However, this method is time-consuming and labor-intensive, and
has poor portability in different fields. After this, machine learning have been
applied to named entity recognition tasks, mainly using Hidden Markov Models
(HMM) [9] and Conditional Random Fields (CRF) [10]. Machine learning-based
methods have better adaptability and higher performance than rule-based and
dictionary-based methods. But machine learning-based methods [9,10] rely on
extensive feature engineering, which is too cumbersome and time-consuming.

In recent years, deep learning methods have been widely used to perform
NER tasks. Deng et al. used convolutional neural network to solve the prob-
lem of event element extraction in the power field [11], to solve the problem
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that there is very little labeled data in the professional field, and the end-to-end
learning method is difficult to achieve results. Tian et al. proposed a new entity
recognition method I-BRC (integrated algorithm of BERT based BiRNN with
CRF). The sequence feature information of text is extracted by iterative recur-
rent neural network and CRF model [12]. In 2015, Huang et al., proposed a neural
network model based on bidirectional LSTM and CRF to achieve state-of-the-
art performance in multiple NER tasks [13], long short-term memory network
(LSTM) can automatically extract deep semantics in text sequences informa-
tion, CRF considers the dependencies between tags. Yang et al., adopted the
BiLSTM-CRF method to more accurately and efficiently identify power entities
in power text [14]. Jia et al. used BiLSTM-CRF to improve the entity recogni-
tion accuracy of speech transcribed text in the power field, while reducing the
cost of speech recognition technology in the power field [15]. Jiang et al. used the
pre-training method to initialize the parameters of the general Bert to form a
power Bert (PowerBert), and used Bert-BiLSTM-CRF to perform entity recog-
nition on the power equipment troubleshooting text [16]. Although the above
methods have achieved good results, they do not fully utilize the existing power
knowledge and the characteristics of entity names in the power field. Deeper uti-
lization of power domain knowledge and research on fusion methods combining
multiple features have positive effects on power domain NLP tasks.

2.2 Data Augmentation

Deep learning to deal with CNER problems is based on sequence labeling meth-
ods, which require a sufficient amount of high-quality labeled corpus. However,
the high cost of labeling datasets leads to the small size of named entity recog-
nition training sets, which severely limits the final performance of named entity
recognition models.

Wu et al. found that if an entity name is replaced by another entity of the
same type, the new sentence is usually grammatically and semantically correct,
and then proposed a method to generate pseudo-labeled data [17], which can be
used as a general strategy for enhancing corpora and improving performance.
In order to expand the training set size of named entity recognition without
increasing labor cost, Ma et al. proposed data augmentation for named entity
recognition based on EDA (Easy Data Augmentation), based on remote super-
vision, and based on Bootstrap (bootstrap method) technique [18] to increase
the size of the training set at low cost, thereby significantly improving the per-
formance of named entity recognition models.

3 Methods

The overall structure of the Chinese power equipment named entity recognition
model constructed in this paper is shown in Fig. 1.

The model is divided into three layers, namely joint embedding layer, BiL-
STM layer and CRF layer. The first layer is a joint embedding layer of character
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Fig. 1. Named entity recognition model of power equipment based on multi-feature
fusion.

vectors, word vectors, and word category vectors. The characters and words in
the dataset are replaced with pre-trained character vectors and word vectors
respectively, and then the character vectors, word vectors and the initialized
word category vectors are concatenated as the representation of the characters
to form the final input vector. The second layer is the BiLSTM layer, which aims
to automatically extract semantic and temporal features from the context. The
third layer is the CRF layer, which aims to solve the dependencies between the
output labels and obtain the global optimal label sequence of the text.

3.1 Data Augmentation Using Domain Dictionary

Power equipment datasets with high-quality annotations are extremely rare, so
this paper draws on the research of Wu et al. and finds that the same type of
entities in the domain dictionary are used to replace the original entities in the
training set to form new training data to expand the dataset.

First, the words in the dictionary of electric power field are classified accord-
ing to the types of power equipment entities to form several power equipment
word bags. Because the electrical equipment entities in the marked corpus are
divided into six categories, namely domestic electrical equipment, power genera-
tion and transmission equipment, instrumentation equipment, fire early warning
equipment, electrical equipment accessories and safety protection equipment, so
the domain dictionary entity nouns are classified into these six electrical equip-
ment classes to correspond to the six types of entities marked. Then, use the jieba
word segmentation tool [19] combined with the domain dictionary to segment the
training set, and randomly select an entity noun from the corresponding power
equipment class to replace the power equipment entity noun in a sentence after
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the segmentation, thereby forming a new training corpus sentence. As shown in
Fig. 2 below.

Fig. 2. Generating new corpus with synonym replacement.

Eventually a pseudo-artificially labeled training set appears. The two training
sets are combined to form a data-augmented training set.

3.2 Fusion Embedding Layer

In order to improve the performance of the entity recognition model, this paper
uses the vector representation of multi-feature fusion to provide more semantic
information to the model. First, under the guidance of the dictionary of elec-
tric power field, the jieba word segmentation tool [19] is used to segment the
corpus at the word level to improve the accuracy of the corpus segmentation.
The Word2Vec model is used to train the corpus in two ways: character as the
segmentation granularity and word as the segmentation granularity, to obtain a
dictionary of one-to-one correspondence between characters and character vec-
tors and a dictionary of one-to-one correspondence between words and word vec-
tors. For the same sentence, the word segmentation methods of character and
word granularity will cause different corpus lengths after word segmentation. In
this paper, the word-granularity corpus length is extended to be the same as the
character-granularity corpus length through word segmentation placeholders.

In order to give the segmented words more domain information and semantic
information, the feature of the word category of the word in which the charac-
ter is located is added to the semantic representation of the character in this
paper. Class matching is performed on the words formed after word segmenta-
tion through the power equipment class word bag. For unpaired words, the jieba
word segmentation tool is used to determine the part of speech, and the part of
speech is used as the word category, and the parts that have a negligible impact
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on the sentence structure or are too few in number are merged to form other
categories. Finally, a word category dictionary with 21 categories in one-to-one
correspondence between words and word categories is formed.

Figure 3 shows a specific example of three vector fusions of characters, words
and word categories. Through placeholder processing, the characters, words, and
word categories in the corpus correspond one-to-one. In the embedding layer, the
training corpus is converted into a vector through the character dictionary, the
word dictionary and the word category dictionary, and the three vectors are fused
as the input vector of the model by means of vector connection. This method
can ensure that the same character has different vectors in different words, for
example, “电缆 (electric cable)” and “电流表 (current meter)” belong to power
generation and transmission equipment and instrumentation, respectively. Since
the “电 (electricity)” in the two words has different semantics, after the character
vector,the word vector where the character is located, and the word category
vector are fused, the semantic information of the word where the character is
located will not only be ignored, but will also refine the semantic information of
word categories. The fused vector is expressed as.

e = ec + ew + et (1)

where ec, ew, et represents the character vector, the vector of the word where the
character is located, and the word category vector, respectively.

4 BiLSTM Layer

Long Short-Term Memory Network (LSTM) is a variant of Recurrent Neural
Network (RNN) that has been widely used in many natural language processing
(NLP) tasks such as named entity recognition, text classification, and sentiment
analysis. In traditional recurrent neural network (RNN) training, the problem
of vanishing or exploding gradients often occurs. To this end, LSTM introduces
the cell state and utilizes input gates, forget gates, and output gates to maintain
and control information to solve this problem. The mathematical expression of
the LSTM model is as follows:

it = σ(Wi[ht−1, xt] + bi) (2)

ft = σ(Wf [ht−1, xt] + bf ) (3)

ot = σ(Wo[ht+1, xt] + bo) (4)

c̃t = tanh(Wc[ht+1, xt] + bc) (5)

ct = it ∗ c̃t + ft ∗ ct−1 (6)
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Fig. 3. Fuse character, word and word category vectors.

ht = ot ∗ tanh(ct) (7)

where σ represents the sigmod activation function. tanh represents the hyper-
bolic tangent function. xt represents unit input. it, ft, ot represent the output
of the input gate, forget gate and output gate at the time, respectively, and
Wi,Wf ,Wo and bi, bf , bo represent the weight and bias of the input gate, forget
gate and output gate, respectively. c̃t represents the current state of the input,
Wc and bc are the weight and bias of the updated state value, respectively. ct
represents the update state at t, which can be used for the state update operation
of the next LSTM cell. ht is the output at t.

In order to use character context information at the same time, the model in
this paper uses BiLSTM to obtain the context vector of each character, which
is a combination of forward LSTM and reverse LSTM. For a given sentence,
x = (x1, x2, ..., xn) denote the hidden state of the forward LSTM at t by

−→
ht ,

and denote the hidden state of the reverse LSTM by
←−
ht . The final context vector

ht = [
−→
ht ;

←−
ht ] is obtained by linking the corresponding forward and reverse LSTM

states.

4.1 CRF Layer

Compared with HMM, CRF does not have the strict requirements of HMM
independence assumption, can effectively utilize the internal information and
external observation information of the sequence, avoid the problem of labeling
bias, and directly assume the possibility of labeling and execution differential
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modeling. CRF can capture more dependencies: for example, “I-LOC” tags can-
not follow “B-PER”. In CNER, the input to CRF is the contextual feature vector
learned from BiLSTM layers. For the input text sentence x = (x1, x2, ..., xn), let
Pi,j denote the probability score of the jth label of the ith Chinese character in
the sentence. For the predicted sequence y = (y1, y2, ...yn), the CRF score can
be defined as follows:

f(x, y) =
n+1∑

n=0

Myi,yi+1 +
n∑

i=1

Pi,yi
(8)

where M is the transition matrix and Mi,j represents the transition score from
label i to j. y0 and yn+1 represent the start and end tags, respectively. Finally,
use the softmax function to calculate the probability of the sequence y, the
formula is as follows:

P (y | x) =
ef(x,y)

∑ef(x,y)

ỹ∈Yx

(9)

During training, maximize the log probability of the correct label sequence:

log (P (x, y)) = f(x, y) − log
∑

ỹ∈Yx

ef(x,ỹ) (10)

In the decoding stage, the maximum score obtained by predicting the output
sequence is as follows:

y∗ = arg max
ỹ∈Yx

f(x, ỹ) (11)

In the prediction stage, the optimal sequence is solved using the Viterbi
dynamic programming algorithm [10].

5 Experiments and Results

5.1 Dataset

The experimental corpus of this paper is selected from the China State Grid
Power Equipment Maintenance Standard Document. There are a large number
of various types of power equipment entities in this standard document, which
is helpful for the model to learn more information about power equipment. The
original corpus selects 8000 sentences after removing useless special symbols,
noise data and low-quality sentences with too short length to form a data set
and ensure that all data types are covered, which can effectively reduce the
risk of overfitting. The dataset covers a total of 414 power equipment entities,
both primary and secondary equipment, and is labeled by Colabeler [20] by
professionals with a background in electrical power. In this paper, the data set
is divided into training set and test set according to the ratio of 8:2.
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In this study, the BIO (begin, inside, and output) labeling method is selected
to label the training and testing data, and the specific format is B-X, I-X, O. B
represents the character of the starting position of the power equipment entity,
I represents the character of the remaining part of the power equipment entity,
and O represents the character of the non-power equipment entity. The details
of the entities in the dataset are shown in Fig. 4.

Fig. 4. The number of entities of each type in the dataset.

5.2 Evaluation Indicators

Precision, Recall, and F1-score are metrics used in named entity recognition.
P (Positive) represents the positive samples among all samples. N (Negative)
represents the negative sample among all samples. TP (True Positives) is the
number of positive samples predicted to be positive. FN (False Negatives) is the
number of positive samples predicted to be negative. FP (False Positives) is the
number of negative samples predicted to be positive. TN (True Negatives) is the
number of negative samples predicted to be negative. Precision is the proportion
of positive samples in all predicted positive samples, defined as:

precision =
TP

TP + FP
× 100% (12)

Recall is the proportion of positive samples predicted to be positive among
all positive samples, given by:

recall =
TP

TP + FN
× 100% (13)
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F1-score is the weighted harmonic mean of precision and recall. The definition
of F1-score is:

F1 − score =
2 × precision × recall

precision + recall
(14)

5.3 Experimental Design and Parameters

The performance of the CPEER model was tested from the following three
aspects:

(1) Test the effectiveness of the data augmentation method by comparing the
effect of using the original data and the augmented data

(2) Comparing the effect of the embedding method of word vector fusion with
and without the power domain dictionary

(3) Comparing the model effects of not adding and adding features, an ablation
experiment using the embedding method combining three vector fusions of
characters, words and word categories of the power domain dictionary is used.

First, the performance is tested using the original and augmented datasets.
Then, compare the effect of the character-word vector fusion embedding model
with and without the use of the power domain dictionary to determine whether
the domain dictionary is effective for correct word segmentation and the improve-
ment of the performance of the CPEER model. Finally, try to increase the word
category information to improve the model performance.

Using the deep learning framework with Pytorch, the model runs on a sin-
gle NVIDIA GeForce GTX 1660 Ti GPU. Hyperparameters are set based on
trial and error. Character embedding and word embedding are pre-trained by
Word2Vec, the word category is randomly initialized embedding, and the embed-
ding size is set to 100, 80, and 20, respectively. The hidden layer size of LSTM
is 100. The model is trained by the Adam optimization algorithm [21] with a
learning rate of 0.005, a batch size of 64, and an epochs of 15.

5.4 Experimental Results

In order to make the experimental results have statistical significance, the exper-
imental results in the paper are the average of 5 experiments. First, in order to
judge the effectiveness of the data augmentation method used, an experimental
model (BiLSTM-CRF) based on the original dataset and the augmented dataset
is used for testing in this paper. The results are shown in Table 1.

Table 1. Comparison of experimental results with or without data augmentation.

Model Augment Precision Recall F1-score

BiLSTM-CRF No 0.9216 0.8067 0.8603

BiLSTM-CRF Yes 0.9324 0.8159 0.8703
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The experimental results show that using the augmented dataset can improve
the performance of CPEER, and the F1-score can be improved by about 1% on
average. Subsequent experiments are based on the augmented dataset.

Then, this paper compares the effect of using the BiLSTM-CRF Model of
Character-Word Vector Fusion (CWVF-BiLSTM-CRF) [22] that do not use the
power domain dictionary to determine whether the domain knowledge of the
domain dictionary is helpful for the improvement of the performance of the
CPEER model. The results are shown in Table 2.

Table 2. Comparing the experimental results with and without domain dictionary.

Model Domain dictionary Precision Recall F1-score

CWVF-BiLSTM-CRF No 0.9317 0.8219 0.8733

CWVF-BiLSTM-CRF Yes 0.9458 0.8272 0.8783

It can be seen from Table 2 that the power domain dictionary is used for word
segmentation, and the accuracy, recall and F1-score of the BiLSTM-CRF model
based on word vector fusion have been improved to a certain extent. Therefore,
combining with the power domain dictionary can improve the performance of
CPEER by improving the word segmentation effect.

Finally, the word category information is added to the embedding vector, that
is, the combination of the part of speech and the domain dictionary, to give the
character-based vector more semantic information to improve the effect of the
CPEER model. This paper selects several models (CRF, BiGRU [23], BiGRU-
CRF [24], BiLSTM, CWVF-BiLSTM-CRF) commonly used in entity recognition
in the Chinese power field and compares them with the model proposed in this
paper. The results are shown in Table 3.

Table 3. Comparison experiment with other model.

Model Precision Recall F1-score

CRF 0.9358 0.7602 0.8389

BiGRU 0.9407 0.7542 0.8309

BiGRU-CRF 0.9584 0.7721 0.8501

BiLSTM 0.9539 0.7839 0.8556

BiLSTM-CRF 0.9324 0.8159 0.8703

CWVF-BiLSTM-CRF 0.9458 0.8272 0.8783

Ours 0.9468 0.8424 0.8884

As can be seen from Table 3, the BiLSTM-CRF based on character-word-
word category vector fusion proposed in this paper achieves the highest value in
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F1-score. In contrast, several traditional models have satisfactory performance
in precision, but poor performance in recall, which makes their F1-score too
low. Compared with the CWVF-BiLSTM-CRF model that lacks word category
information, the model in this paper has a better performance on the recall
rate, which also makes the F1-score of this paper higher, with a nearly 1%
improvement.

6 Conclusions

Aiming at the problems of Chinese named entity recognition in the field of
power equipment, there are many complex entities and difficult to identify rare
entities. This paper proposes a BiLSTM-CRF model based on character-word-
word category multi-feature fusion. By making full use of the domain knowledge
in the power domain to give the model more semantic information to improve the
effect of the CPEER model, and using a data augmentation method to enhance
the training set to solve the problem of scarce training data.

Compared with the traditional BiLSTM-CRF model that only uses character-
level features, the method of adding word and word category information to the
feature representation proposed in this paper can make the same Chinese char-
acter in different words have different vector representations. The experimental
results show that, compared with the entity recognition model based on a sin-
gle feature, the entity recognition model based on character-word-word category
multi-feature fusion has superiority in the entity recognition of power equipment
(CPEER).

For future work, we will try to explore the performance improvement of entity
recognition tasks in the Chinese power field from two directions: (1) use more
advanced and refined models, such as BERT, attention mechanism; (2) provide
more domain information or features to the model.
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Abstract. Multi-Document Summarization (MDS) aims to generate a
concise summary for a collection of documents on the same topic. How-
ever, the fixed input length and a large number of redundancies in
source documents make the pre-trained models less effective in MDS.
In this paper, we propose a two-stage abstractive MDS model based
on Predicate-Argument Structure (PAS). In the first stage, we divide
the redundancy of documents into intra-sentence redundancy and inter-
sentence redundancy. For intra-sentence redundancy, our model utilizes
Semantic Role Labeling (SRL) to covert each sentence to a PAS. Benefit-
ing from PAS, we can filter out redundant contents while preserving the
salient information. For inter-sentence redundancy, we introduce a novel
similarity calculation method that incorporates semantic and syntac-
tic knowledge to identify and remove duplicate information. The above
two steps significantly shorten the input length and eliminate documents
redundancies, which is crucial for MDS. In the second stage, we sort the
filtered PASs to ensure important contents appear at the beginning and
concatenate them into a new document. We employ a pre-trained model
ProphetNet to generate an abstractive summary from the new docu-
ment. Our model combines the advantages of ProphetNet and PAS on
global information to generate comprehensive summaries. We conduct
extensive experiments on three standard MDS datasets. All experiments
demonstrate that our model outperforms the abstractive MDS baselines
measured by ROUGE scores. Furthermore, the first stage of our model
can improve the performance of other pre-trained models in abstractive
MDS.

Keywords: Multi-document summarization · Predicate-argument
structure · Semantic role labeling · Pre-trained model

1 Introduction

Multi-Document Summarization (MDS) is the task of condensing a document
collection on the same topic to a short summary while retaining its most impor-
tant information [12]. The task can be divided into two paradigms, extractive
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MDS and abstractive MDS. Extractive MDS assembles summaries exclusively
from spans taken from the source documents, while abstractive MDS may gen-
erate novel words and phrases not featured in the source documents [30]. MDS
has a wide range of real-world applications, such as Wikipedia articles generation
[22], summarizing product reviews [11], and news [9].

Recent works on large-scale Pre-Trained Models (PTMs) have shown great
success when fine-tuned on downstream Natural Language Processing (NLP)
tasks, including text summarization [35,36]. However, the progress on abstrac-
tive MDS with pre-trained models is limited. The reasons are as follows: (1)
The large input length of documents. Due to the memory limitations of current
hardware, training a model that encodes all data into vectors is practically not
achievable [23]. Abstractive MDS systems usually truncate the documents at the
maximum input length, and the excess is discarded, which would miss lots of
summary-worthy content [9,18]. (2) The duplicate content of source documents.
The documents on the same topic contain semantically similar or even repeti-
tive content [20], which leads to the summary generation to be biased towards
duplicate contents and produce a verbose and repetitive summary [18].

In this paper, we propose a two-stage abstractive MDS model based on
Predicate-Argument Structure (PAS). PAS is the result of syntactic analysis,
using predicates and arguments to express “who did what to whom” in a sentence
[13]. Our model uses PAS to filter redundant information in the original sentence
and significantly shorten the sentence length. Instead of selecting certain sen-
tences or paragraphs as the compression result [23,37], our model extracts PAS
from source documents to compress documents. Using sentences or paragraphs as
the extraction granularity will lose the information of the unselected parts. Our
model takes semantic arguments as granularity to preserve the salient content
of each sentence. Specifically, we employ a Semantic Role Labeling (SRL) [13]
model to parse each sentence in a document and get Predicate-Argument Struc-
tures (PASs). There may be multiple PASs in a sentence, and reserving them all
leads to redundancy within the sentence. The previous model selects the longest
PAS, which makes the argument too long and contains useless content [1,15].
So we design a PAS score based on TextRank [25] to measure the importance
of predicate-argument structure. For each sentence, we select the PAS whose
score is the highest as the correct result of the SRL parsing. Although intra-
sentence redundancy is eliminated, inter-sentence redundancy still exists. We
identify semantically repeated PASs by computing similarity. Existing similarity
calculation methods only consider the whole sentence semantics while ignoring
syntactic information. We introduce a novel computational similarity method to
measure the similarity of every two predicate-argument structures. Our model
computes the similarity of PAS across multiple semantic role dimensions, com-
bining semantic similarity and unigram overlap. The predicate-argument struc-
ture with the lower PAS score is discarded when two PASs’ similarity is higher
than the threshold. In the second stage, we generate a new document from the fil-
tered PASs, then employ ProphetNet [27] to generate a fluent summary from the
new document. Since PAS extraction is based on semantic arguments, the PAS
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document lacks more local information than the source documents. ProphetNet
is a sequence-to-sequence (Seq2Seq) pre-training model with a future n-gram
prediction, which can prevent the model from overfitting on strong local cor-
relations [27]. Benefitting from the n-gram prediction mechanism, ProphetNet
allows for better generation of coherent and comprehensive summary from the
PAS document.

The contributions of our paper are as follows:

• We propose a two-stage abstractive MDS model, which can process much
longer inputs and remove consistent information using predicate-argument
structure.

• Extensive experiments demonstrate predicate-argument structure extraction
is beneficial in improving other pre-trained models on abstractive MDS tasks.

• We introduce a novel similarity calculation which computes the similarity
of PAS across multiple semantic role dimensions incorporating semantic and
syntactic knowledge to evaluate PAS similarity in multi-document.

• Our summarization model outperforms the abstract MDS baselines by a large
margin on three public datasets, including DUC-2003, DUC-2004 [26], and
WCEP [12], measured by ROUGE [21] scores.

2 Preliminaries

This section introduces semantic role labeling and its advantages in document
extraction.

Table 1. Common semantic roles and the corresponding semantic role labels

Semantic roles Labels

Agent ARG0
Patient ARG1
Instrument, benefactive, attribute ARG2
Locatives ARGM-LOC
Temporal ARGM-TMP
Adverbials ARGM-ADV

Semantic Role Labeling. SRL systems aim to find out all the predicate-
argument structures of a sentence and to determine essentially “who did what to
whom,” “when” and “where” [13]. SRL is a shallow semantic analysis technique
that centers on the sentence’s predicate. A sentence predicate typically indicates
a particular action, and the predicate’s syntactic arguments are associated with
the participants in that action. For example, in the sentence “Mike lost the



Improving Abstractive MDS with PAS Extraction 271

book ”, the action is a loss action, with Mike as the agent and a lost book as
the patient. Semantic roles are defined as the relationships between syntactic
arguments and the predicates [1]. As shown in Table 1, the arguments of the
predicates are labeled as numbered arguments: ARG0, ARG1, ARG2 and so
on [5], where ARG0 is the label of an agent, AGR1 is the label of a patient,
ARG2 can be the label of instrument, benefactive, attribute. The labels prefixed
with AGRM represent the modifier. For the example above, Mike will be labeled
AGR0, and the book will be labeled AGR1. SRL is believed to be a crucial step
toward natural language understanding and has been widely employed in many
NLP applications such as Information Extraction [4], Question Answering [31],
Machine Translation [34].

Table 2. Comparison of different extraction granularity. Words marked in red are the
words that appear in the gold summary.

Original Text: newspapers reported wednesday that three top libyan officials
have been tried and jailed in the Lockerbie case, but libyan dissidents said the
reports appeared to be a political ploy by libya’s leader, col.moammar
Gadhafi. Libyan leader moammar Gadhafi said the suspects in the lockerbie
bombing are “very happy” to be tried in the netherlands, and he hoped the
trial would lead to a better relationship with the U.S.
Paragraph Extraction: newspapers reported wednesday that three top
libyan officials have been tried and jailed in the lockerbie case, but libyan
dissidents said the reports appeared to be a political ploy by libya’s leader,
col.moammar Gadhafi. Libyan leader moammar Gadhafi said the suspects in
the lockerbie bombing are “very happy” to be tried in the netherlands, and he
hoped the trial would lead to a better relationship with the U.S.
Sentence Extraction: newspapers reported wednesday that three top libyan
officials have been tried and jailed in the lockerbie case, but libyan dissidents
said the reports appeared to be a political ploy by libya’s leader, col.moammar
Gadhafi.
PAS Extraction: Three top Libyan officials jailed in the Lockerbie case. the
trial would lead to a better relationship with the U.S.
Gold Summary: Three top Libyan officials reported jailed in Lockerbie case.
Gadhafi sees better U.S.-Libyan relations after trial of Lockerbie suspects

SRL parses sentences to predicate-argument structures whose granularity is
semantic arguments. Compared to the methods that extract sentences or para-
graphs to compress documents [23,37], using semantic arguments as extraction
granularity makes the compression result more concise and detailed. We select a
text from DUC-2003 as an example to illustrate the advantages of PAS extrac-
tion. We can see from Table 2 that when the extraction granularity is paragraph
or sentence, the extraction results contain lots of redundant contents. The result
of PAS extraction is the most concise and close to the gold summary.
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3 Proposed Model

Our MDS model is illustrated in Fig. 1. Details of each section are as follows.

3.1 PAS Extraction

SRL Parsing. Given the source document collection that needs to be sum-
marized, we process each document individually. Since SRL parsing processing
is based on sentences, the documents is split into sentences by periods. Differ-
ent from traditional SRL model [7], we leverage pretrained model BERT [14] to
achieve semantic role labeling without relying on lexical or syntactic features.
We employ a BERT based SRL model [32] to parse sentences. The SRL parsing
processing is two steps. The first is predicate identification. We feed the sentence
into the BERT encoder to obtain the contextual representation, then use a one-
hidden-layer Multilayer Perceptron (MLP) to predict the predicates. The second
step is Argument identification and classification, which detects the argument
spans or argument syntactic heads and assign them the correct semantic role
labels. Compared with the network structure in the first step, a one-layer Bidi-
rectional Long Short-Term Memory (BiLSTM) is added to obtain hidden states
before the MLP.

Source 
Documents

PAS 
Document 
Generation

ProphetNet Target 
Summary

Duplicate 
Removal

PAS 
Selection

PAS Extraction Summary Generation

SRL
Parsing

Fig. 1. Pipeline of our multi-document summarization system.

Table 3. The result of the SRL parsing for a sample sentence, the PASs containing
only predicate but no other arguments are not displayed

Original Sentence: U.S. officials who toured some of the hardest-hit regions of North
Korea this summer said 2 million people may have died because of famine

PAS1: [ARG0: U.S. officials] [R-ARG0: who] [V: toured] [ARG1: some of the hardest - hit
regions of North Korea] [ARGM-TMP: this summer]

PAS2: [ARGM-MNR: hardest] - [V: hit] [ARG1: regions]

PAS3: [ARG0: U.S. officials who toured some of the hardest - hit regions of North Korea
this summer] [V: said] [ARG1: 2 million people may have died because of famine]

PAS4: [ARG1: 2 million people] [ARGM-MOD: may] have [V: died] [ARGM-CAU: because
of famine]



Improving Abstractive MDS with PAS Extraction 273

PAS Selection. For each sentence, one or more predicate-argument structures
are produced as the result of SRL parsing. As shown in Table 3, the sample
sentence gets four PASs. Since the PASs from the same sentence have lots of
duplicate content, reserving them all leads to semantic duplication within the
sentence. So it is necessary to choose a summary-worthy PAS for each sentence.
Aksoy et al. and Khan et al. consider the predicate-argument structure that
leaves the least number of terms unlabeled as the correct parse of the sentence [1,
15]. Namely, they select the PAS whose spliced length is most extended. In
this case, the chosen predicate-argument structure will be the complete original
sentence. This causes arguments to include redundant information, making it
impractical to analyze semantic arguments between different PASs. For example,
we can see from Table 3 that PAS3 is the longest PAS. PAS3 is the original
sentence and contains worthless content, while PAS4 contains salient information
and is more concise than PAS3. However, selecting the shortest PASs is also not
reasonable, which leads to losing lots of information in the sentence, such as
PAS2.

To solve this problem, we use the PAS Score based on TextRank. TextRank
is essentially a way of deciding the importance of a vertex within a graph, based
on global information recursively drawn from the entire graph, which helps select
the summary-worthy PAS. First, for each document sentence, we perform word
segmentation and part-of-speech tagging, filter out stop words and retain only
words with specified parts of speech, such as nouns, verbs, and adjectives. Next,
we construct an undirected graph G = (V,E) with the set of vertexes V and set
of edges E. The vertexes of the graph are words that pass the syntactic filter.
And an edge is added between those lexical units co-occurring within a window
of words [25]. The score of vertexes is set to an initial value of 1. The score of a
vertex Vi is defined as follows:

S(Vi) = (1 − d) + d ∗
∑

j∈In(Vi)

1
|Out(Vj)|S(Vj) (1)

where d is a damping factor that can be set between 0 and 1. For a given vertex
Vi, let In(Vi) be the set of vertices that point to it (predecessors), and Out(Vj) let
be the set of vertices that vertex i ∈ V points to successors. According to formula
(1), iteratively calculate the weight of each vertex on the graph until convergence.
So far, we have built a dictionary D, whose key is the words corresponding to
the vertexes, and the value is the score of the vertex. We add words not in the
current graph to D and set their values to 0.

Next, we calculate the PAS score based on the dictionary D. Its calculation
formula is as follows:

PAS score(p) =
∑

w∈p

D(w)/N(p) (2)

where p is a predicate-argument structure, and PAS score(p) is the score of
p.w is the word in p, D(w) is the value of w in D, and N(p) is the number of
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words in p. To make the results less inclined to select more extended predicate-
argument structures, we divide the final sum of D(w) by N(p). It means the
PAS’s importance depends on the proportion of keywords contained in the PAS,
regardless of length. In each sentence, we select the PAS whose score is the
highest. So far, we have converted source documents to a collection of predicate-
argument structures.

Duplicate Removal. The source documents are topic-related, so multi-
document has more duplicate contents than single-document. Although intra-
sentence redundancy is removed by PAS selection, semantic repetition between
PASs still exists, which leads to repeated texts in summary and makes the sum-
mary less concise. Also, eliminating duplicate contents can further compress the
document. To identify semantically repetitive PASs, we propose the PAS simi-
larity in multi-document conditions to measure predicate-argument structures’
similarity. Our similarity calculation method incorporates syntactic and semantic
information, which can compare across multiple semantic argument dimensions.
The formula is defined as follows:

PAS_SIM(a, b) =
∑

i∈S

(cos_sim(ai, bi) +ROUGE-1 (ai, bi))/(2 ∗ |S|) (3)

cos_sim(ai, bi) = cosine(BERT (ai), BERT (bi)) (4)

where PAS_SIM(a, b) is the PAS similarity of two predicate-argument struc-
tures, a, and b, S is the set of semantic roles. As shown in Table 1, this set
contains ARG0, ARG1, ARG2, ARG−LOC, ARG−TMP , and ARG−ADV ,
respectively, and i is a semantic role in set S. In addition, we added the predi-
cate as a special semantic role to S. ai is the semantic argument corresponding
to semantic role i. cos_sim(ai, bi) is the cosine similarity of ai and bi, their
representations are obtained from the BERT encoder. ROUGE-1(ai, bi) is the
ROUGE-1 F1 score of ai and bi. We multiply the result by 1/2 so that the final
result is between 0 and 1, which matches our intuition that similarity ranges
from 0 to 1.

We use the above formulas to calculate the similarity between two PASs. If
the similarity exceeds the threshold, the one with the lower PAS score will be
deleted from the collection of PASs.

3.2 Summary Generation

PAS Document Generation. In this section, we generate a PAS Document
with the collection of predicate-argument structures obtained in the last step.
For each PAS, we splice all the semantic arguments in the order of original places
in the sentence. The PASs from the same document is arranged in the original
sentence order. Because source documents are disordered, we rank documents
by the PAS scores to ensure the important contents appear at the beginning.
If arranged in random order, more informative documents may be lost due to
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exceeding the input length limit. We add up the PAS scores in the same doc-
ument and use this score as the document’s score. Finally, we concatenate the
documents in descending order of scores.

Summary Generation. ProphetNet is a sequence-to-sequence (Seq2Seq) pre-
training model, which is based on Transformer encoder-decoder architecture. In
addition to the traditional Seq2Seq model that optimizes one-step-ahead predic-
tion, the ProphetNet learns n-step ahead prediction [27]. This n-gram prediction
is served as extra guidance that prevents overfitting on strong local correlations
such as the bigram combination. The model achieves better global coherence
and long-term dependency, which is helpful for our model. The reasons are as
follows. First, PAS selection is based on TextRank, a graph ranking algorithm
that considers global information. Second, compared to sentences or paragraphs
as the extraction granularity, our model takes semantic arguments as granularity
to preserve the main content of each sentence. This means the PAS document
has more comprehensive information but lacks more local related information
than source documents. Therefore, in the last step, we feed the PAS Document
obtained in the previous step into ProphetNet and generate an abstractive sum-
mary with the fine-tuned ProphetNet model.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on three public datasets, as described below. DUC-
2003 and DUC-2004 [26] are standard MDS datasets containing 30/50 topics, and
each topic includes ten documents with four different human-generated reference
summaries. We follow Fabbri et al. [9] to truncate input articles to 500 tokens
in the following way. For each example with X source input documents, we take
the first 500/X tokens from each source document. We iteratively determine the
number of tokens to take from each document until the 500 token quotas are
reached. WCEP [12] dataset consists of 10,200 clusters with one human-written
summary and 235 articles per cluster on average. We follow [12] to use WCEP-
10, which refers to a truncated version with a maximum cluster size of 10. We
truncate WCEP-10 to 500 tokens, which uses the same process as DUC-2004.

We evaluated summarization quality using Recall-Oriented Understudy for
Gisting Evaluation (ROUGE) F1 [21]. We report unigram and bigram overlap
(ROUGE-1 and ROUGE-2) as a means of assessing informativeness and the
longest common subsequence (ROUGE-L) as a means of assessing fluency.

4.2 Baselines

We compare our model against a broad spectrum of strong baselines. They are
described below.
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Fig. 2. Comparison of different similarity thresholds on the WCEP, DUC-2003, DUC-
2004 validation set using ROUGE F1.

• LEAD: We concatenate the first sentence of each article in a document clus-
ter as the system summary. For the WCEP dataset, we follow Ghalandar et
al. [12] to use the lead of an individual article with the best ROUGE-1 F1
score within a document collection as the system summary.

• TextRank: It is an unsupervised graph-based ranking model. TextRank
regards sentences in the text as nodes and uses the similarity between sen-
tences as the weights of edges, and calculates the importance scores of sen-
tences according to the voting mechanism.

• BART: BART is a pre-trained model which combines Bidirectional and
Auto-Regressive Transformers. It is a denoising autoencoder built with a
sequence-to-sequence model [19].

• T5: The basic idea underlying T5 is to treat every text processing problem
as a “text-to-text” problem, taking the text as input and producing new text
as output [29].

• ProphetNet: ProphetNet is a sequence-to-sequence pre-training model,
which is based on Transformer encoder-decoder architecture. It learns to pre-
dict future n-gram at each time step to prevent overfitting on strong local
correlations [27].

4.3 Experimental Setup

All models are trained on the GPU (NVIDIA 3090) for 6 epoches. Weight decay
is set to 0.001. The optimizer is Adam [16] with learning rate 0.00001, beta1 =
0.9 and beta2 = 0.999. Label smoothing [33] with smoothing factor 0.1 is also
used. The warmup steps are set as 2000 for WCEP, while 50 for DUC-2003
and DUC-2004. During decoding, we use beam search with beam size 5. Other
model configurations are in line with the corresponding pre-trained models. We
choose the base version of ProphetNet, BART, and T5 in our experiments. In
the similarity calculation, we use the base version of BERT. The maximum co-
occurrence window in keywords extraction is set to 6, and the damping factor d
is set to 0.85.
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4.4 Results

Tuning for Similarity Threshold. Figure 2 shows the broken lines of ROUGE
scores at different thresholds on three datasets. The similarity threshold is taken
from 0.1 to 0.9. For each threshold experiment on a dataset, we determine the
final parameters based on the model’s ROUGE-L score on the validation set as
the evaluation criterion. Due to the different sources of documents in the three
datasets, the proportion of sentences with semantic repetition is different. It can
be found that the similarity threshold for our model to achieve the best per-
formance on the three datasets is different. We set the similarity thresholds of
WCEP, DUC-2003, and DUC-2004 to be 0.5, 0.4, and 0.6, respectively, in the
following experiments. At smaller thresholds such as 0.1 and 0.2, the model’s
ROUGE scores on all datasets are significantly lower than other thresholds.
This is because a too low similarity threshold removes a lot of semantically
non-repetitive information contents, preventing the model from generating com-
prehensive summaries. As the threshold increases, the ROUGE score falls after
reaching the highest, which is formally consistent with the performance of the
ideal similarity calculation method.

Table 4. Evaluation results on the WCEP, DUC-2003, DUC-2004 test set.

Model WCEP DUC-2003 DUC-2004
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD 32.90 13.10 23.30 22.85 4.13 19.0 23.46 4.86 18.29
TextRank 34.10 13.11 25.01 24.32 3.27 18.45 25.20 4.57 19.77
T5 34.74 14.09 30.16 26.49 6.61 23.48 27.19 8.24 24.75
BART 38.30 17.83 33.93 26.32 6.70 24.30 28.74 6.68 23.04
ProphetNet 39.45 19.31 34.23 30.81 8.85 29.71 28.19 7.13 26.03
PAS+T5 35.24 15.03 30.41 27.26 6.63 23.74 29.47 5.99 29.24
PAS+BART 40.80 18.59 34.34 27.13 6.68 24.69 29.91 6.43 27.40
PAS+ProphetNet 42.36 20.88 36.70 34.79 9.96 32.45 32.88 7.97 29.88

Results on WCEP. Table 4 summarizes the evaluation results on
WCEP, DUC-2003, and DUC-2004, respectively. Our model is named as
PAS+ProphetNet where PAS is the first stage of our model. The PAS+T5 model
and the PAS+BART model are named in the same way. Our model outperforms
the comparative models by a large margin on all ROUGE F1 metrics, reach-
ing 42.36, 20.88, and 36.70 on ROUGE-1, ROUGE-2, and ROUGE-L, respec-
tively. Our model uses predicate-argument structure to reduce the lengths of
documents and eliminates intra-sentence and inter-sentence redundancy. These
allow our model to contain more valuable information in a much shorter doc-
ument. In addition, the performances of the PAS+T5 model and PAS+BART
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model are also better than their origin model, which demonstrates the potential
of predicate-argument structure in improving the performances of other Trans-
former based pre-trained models in abstractive MDS.

Results on DUC-2003 and DUC-2004. Compared with the WCEP dataset,
the DUC-2003 and DUC-2004 datasets contain little training data, while the
model still greatly improves ROUGE scores. This shows that our model can
effectively improve abstractive MDS with a small number of training data, which
benefits from both the large-scale pre-training for ProphetNet and the compres-
sion by using PAS. It can be found from Table 4 that the PAS extraction barely
improves the ROUGE-2 score for PAS+T5 and PAS+BART, and even reduces it
on the DUC-2004 dataset. Similar to the case of the WCEP dataset, the improve-
ment of PAS+ProphetNet brought by PAS extraction is more significant than
PAS+BART and PAS+T5. Since in addition to the traditional Seq2Seq model
that optimizes one-step-ahead prediction, ProphetNet also learns n-step ahead
to prevent overfitting on strong local correlations. Therefore, ProphetNet can
generate better summaries from a PAS document.

Table 5. Ablation study on the WCEP, DUC-2003, DUC-2004 test set.

Model WCEP DUC-2003 DUC-2004
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

w/o document rank 41.89 20.26 35.93 33.87 9.24 31.91 32.05 7.21 29.66
w/o duplicate removal 39.67 19.27 34.65 33.02 9.82 30.26 31.33 7.25 29.02
w/o PAS extraction 40.28 19.21 34.87 31.33 8.25 29.02 28.19 7.13 26.03
PAS+ProphetNet 42.36 20.88 36.70 34.79 9.96 32.45 32.88 7.97 29.88

Ablation Study. Table 5 summarizes the results of ablation studies aiming
to validate the effectiveness of individual components. The w/o document rank
model doesn’t rank documents in the section of PAS document generation. The
w/o duplicate removal model doesn’t remove duplicate contents. The w/o PAS
extraction model doesn’t extract PASs. The ablation study demonstrates the
positive effect of removing duplicate information and ranking documents. The
ablation study also shows the feasibility of our similarity calculation method in
evaluating sentence similarity for MDS.

5 Related Work

Non-neural Methods. Traditional methods are mainly extractive summariza-
tion. Carbonell et al. present the Maximal Marginal Relevance (MMR) criterion
to reduce redundancy, and the clear advantage is demonstrated in constructing
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non-redundant multi-document [6]. Radev et al. generate summaries for multi-
document using cluster centroids produced by a topic detection and tracking
system [28]. Erkan et al. introduce a stochastic graph-based method for com-
puting the relative importance of textual units [8]. There are also traditional
abstractive methods. Barzilay et al. present a method to automatically gener-
ate a concise summary by identifying and synthesizing similar elements across
a related text from a set of multiple documents [3]. Ganesan et al. present a
novel graph-based summarization framework [10]. Unlike these models, we use
predicate-argument structure to compress documents and generate final sum-
maries using a pre-trained language model.

Neural Methods. Li Wei et al. develop a neural abstractive MDS model which
can leverage graph representations of documents [20]. Yang et al. propose a
model that augments a previously proposed Transformer architecture with the
ability to encode documents in a hierarchical manner [23]. Several two-stage
summarization systems have emerged from recent work [2,35]. Lebanoff et al.
and Xu et al. [17,24] follow an extract-then-compress architecture, which extracts
some fragments of the original text first, then compresses them. Our model can
be viewed as a compress-then-rewrite framework, which uses PAS to compress
documents and employs ProphetNet to rewrite summaries.

6 Conclusion

In this paper, we explore the potential of predicate-argument structure in MDS
and propose to use predicate-argument structure to improve the performance of
abstractive MDS. Our model extract PAS to reduce document length and elimi-
nate consistent information to process longer inputs. Our model preserves more
global information by taking semantic argument as extraction unit, which can
combine with ProphetNet’s future n-gram prediction to generate comprehen-
sive and concise summaries. We also propose an effective similarity calculation
method to evaluate PAS similarity in multi-document. Experimental results show
that our model outperforms several strong baselines by a wide margin and has
extensive reference value for abstractive MDS based on pre-trained models.
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Abstract. Cross-domain text classification utilizes the labeled source
domain to train a well-performing classifier for the unlabeled target
domain. It is an important task in natural language processing. Owing to
the outstanding performance for representations learning, deep learning
models are introduced into cross-domain classification to learn domain
invariant representations. However, existing methods assume that fea-
tures in text are independent, ignoring the correlation between features.
To this end, we propose a structure-aware method for cross-domain text
classification, which uses both the feature semantics and the structure
among features to learn the invariant representations. Firstly, a knowl-
edge graph is introduced as an additional resource to capture the struc-
ture among features, and the text in both domains is mapped into
two sub-graphs. Then, the invariant structure representations between
two sub-graphs are learned based on Graph Attention Network (GAT)
and correlation alignment. Lastly, the invariant structure representa-
tions and the invariant feature representations are combined together
to learn higher-level invariant representations for cross-domain classi-
fication. Extensive experiments demonstrate that our method achieves
better classification accuracy compared with state-of-the-art methods.

Keywords: Cross-domain · Text classification · Knowledge graph

1 Introduction

Cross-domain text classification [12] is one of the important tasks in natural
language processing. It aims to train a classifier for the unlabeled target domain
with the labeled source domain, where the source and target domain follow
different but similar distributions. The cross-domain text classification has been
widely concerned in applications.
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The recent advances in cross-domain text classification reveal that deep learn-
ing models can learn more transferable representations. Existing methods can
be divided into two categories. One is with feature independence assumption,
and the other is with graphs. The former methods learn the invariant represen-
tations with bags-of-word (BOW) or word embedding, where the features are
independent. And deep neural networks with distance metrics, such as MMD
[18], COARL [16], or Generative Adversarial Network (GAN) [9] are used to
learn domain-invariant representations. These methods have achieved good per-
formance on text classification. However, these methods have some limitations, as
shown in case 1 of Fig. 1. There exist semantic gaps between features for methods
with BOW representations. Although word embedding can measure the semantic
similarity between features, it is not easy to explicitly express the structure rela-
tions among features. The latter methods have begun to focus on the structure
relations among features for cross-domain text classification, as shown in case
2 of Fig. 1. Its main idea is to construct a homogeneous graph based on word
co-occurrence [22] and word similarity [21], and then some models for graph rep-
resentations, such as Graph Convolutional Networks (GCN) [27], GAT [19], are
used to address cross-domain classification [25]. These methods only represent
the correlation among features with the homogeneous similar or co-occurrence
relations. However, the correlation of features is varied in application. As shown
in case 3 of Fig. 1, Kobe and USA are connected by nationality−of , while Kobe
and Lakers are connected by play −for, where nationality −of and play −for
are two relations with different semantics. This kind of graph structure contain-
ing different types of nodes and rich relations is also called the Heterogeneous
Information Network (HIN) [15]. Obviously, the heterogeneous relations included
in HIN are beneficial to the learning of semantic representations of text, thereby
improving the performance of cross-domain classification.

Fig. 1. The illustration for our motivation. Case 1 shows the limitation of methods
with feature independence assumption, case 2 show the limitation of methods with
homogeneous graph, and case 3 shows our method with heterogeneous graph.
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To this end, we introduce the knowledge graph (KG) as external information
to capture the heterogeneous relations and propose a structure-aware method for
cross-domain text classification. Specifically, two sub-graphs of source and tar-
get are obtained from the external KG, and two embedding spaces are learned
with GAT. Then, the invariant structure representations of the two sub-graphs
are solved based on covariance alignment. Lastly, the invariant structure repre-
sentations and the invariant feature representations are further fused to address
cross-domain classification. Our contributions are summarized as follows:

• With the help of knowledge graph, two heterogeneous sub-graphs are con-
structed to learn the invariant structure representations. Compared with
existing methods with graphs, our heterogeneous graphs contain rich semantic
structure information, which benefits cross-domain text classification.

• Existing methods learn the invariant representations in view of either features
or structure, while our method combines features and structure together, and
both structure-invariant and feature-invariant representations are used for
cross-domain classification.

2 Related Works

Domain adaptation methods based on deep models have become the mainstream,
and these methods can be divided into the following two categories.

2.1 Cross-domain Text Classification with Independence
Assumption

Most of the cross-domain text classification methods use BOW or word embed-
ding as the representations of features with the independence assumption.
These models are mainly divided into two sub-categories: discrepancy-based
[10,11,16,18] and adversarial-based [6,17,24]. The former methods learn the
invariant representations by minimizing the distance between two domains. DDC
[18] uses MMD as the measure for distance to reduce the discrepancy. DAN
[10] proposes MK-MMD to measure the distance. In addition, to minimize the
marginal distribution difference, JAN [11] proposes the joint MMD, which com-
bines the marginal and conditional distribution. In addition, Deep Coral [16] is
proposed to align the features of two domains by using the second-order statis-
tic covariance. And the latter methods have attracted extensive attention due to
their excellent performance. The generator generates features to confuse the dis-
criminator while the discriminator distinguishes which domain the features come
from. RevGrad [6] incorporates the adversarial learning into domain adaptation
for the first time, which extracts domain-invariant features in an adversarial way.
DM-ADA [24] guarantees domain-invariance in a more continuous latent space
and guides the domain discriminator in judging samples’ difference relative to
source and target domains. DADA [17] encourages a mutually inhibitory relation
between category and domain predictions for any input instance.
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2.2 Cross-domain Text Classification Methods with Graphs

In applications, the feature independence assumption does not usually hold,
and there do exist correlations among features. Thus, some studies have begun
to focus on graph-based methods. Most methods construct the graph based on
the similarity between features and then use the graph neural network (GNN) to
learn the representations of graph. DAGNN [22] constructs a graph for each doc-
ument to be classified according to word similarity, then uses GCN to learn the
representations of graph, and finally, the adversarial network is used to learn the
invariant representations for cross-domain classification. CLHG [21] constructs
the document graph and word graph, respectively, according to the semantic rel-
evance, and then uses Hetero-GCN to aggregate two-hop neighbors. There are
only a few studies focusing on the heterogeneous graph. Kingdom [8] enriches
the semantic information of original documents by obtaining domain aggregation
subgraphs containing source and target domains from the ConceptNet. However,
Kingdom only aggregates the features connected by the same relation, ignoring
the influence of relational representations on domain alignment.

3 Preliminary Knowledge

Many excellent GNN models, such as GCN, GAT, have been proposed to rep-
resent graphs with low-dimensional vectors, in which more similar nodes will be
closer. Regarding that the neighbors and relations are similar in semantics to
the central nodes, GCN and GAT represent the nodes with rich semantics by
aggregating their neighbors or relations of nodes. GCN makes the node’s embed-
ding representations retain its structural information by aggregating the node’s
k-hop neighbors, And in the aggregation, the propagation rules from the i-th
hop to the (i + 1)-th hop are as follows:

X(l+1) = ReLU(D̃
− 1

2 ÃD̃
− 1

2 X(l)) (1)

where Ã = A + I, A is the adjacency matrix of KG, I is an identity matrix, D̃
is the diagonal matrix of Ã, X is a vector matrix of nodes in the graph.

To reduce the influence of noise accumulated by layers, RDGCN [23] further
uses a two-layer highway network to balance node and its neighbors, adjusts the
weight of neighbors at the highway network layer. The final node representations
are obtained through the weighted summation of nodes and neighbors.

T
(
X(l)

)
= σ

(
X(l)W (l) + b(l)

)
(2)

X(l+1) = T
(
X(l)

)
· X(l+1) +

(
1 − T

(
X(l)

))
· X(l) (3)
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4 Our Method

4.1 Problem Definition

Given a labeled source domain XS =
{(

xS
i , yS

i

)}ns

i=1
, an unlabeled target domain

XT =
{(

xT
j

)}nt

j=1
, and an external knowledge graph KG = (E,R), the feature

spaces of source and target domains can be denoted as WS and WT , ns and nt

are the number of features in two domains respectively, our task is to train a
classifier for target domain with the labeled source domain and external KG.

Fig. 2. The Framework of our method. The blue nodes and green nodes represent
the feature nodes in source data and target data respectively. The orange lines and
black lines represent the structural and semantics representations. The blue dotted
line represents the loss, the solid line represents structure forward, dotted lines in
other colors represent feature forward. (Color figure online)

Figure 2 shows the framework of our proposed method, which consists of four
parts. (1) Representations learning for invariant features. With BOW features,
the adversarial methods are used to learn inter-domain invariant feature rep-
resentations XBOW . In this paper, DANN [7] with the adversarial loss LD is
used to learn the feature invariant representations. Thus it will not be described
in detail later. (2) The construction of heterogeneous graphs. According to the
features in two domains, two subgraphs GS and GT are constructed from the
external KG, where the features are treated as nodes. (3) Representations learn-
ing for invariant structure. GAT is used to learn the embedding for two graphs
XS

graph and XT
graph, respectively, and the invariant structure representations of

the two subgraphs are solved by covariance alignment. (4) Classifier training with
features and structure. Both feature and structure invariant representations are
used to train cross-domain classifiers.
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4.2 The Construction of Heterogeneous Graphs

In this paper, ConceptNet [15] is introduced as an external resource to describe
the heterogeneous correlations among textual features. With the textual features
from the source domain as nodes, their 1-hop neighbors and relations are also
divided from ConceptNet to construct the source heterogeneous graph. In a
similar way, the target graph is constructed. As for a triple in the heterogeneous
graph, (novacor, IsA, controlled−vocabulary−types), novacor and controlled−
vocabulary − types are two features from text, IsA is the corresponding relation
coming from knowledge graph. The process of heterogeneous graph division is
shown as follows:

(1) GS = {ES , RS} and GT = {ET , RT } are initialized to empty;
(2) Each feature wS

i ∈ WS or wT
j ∈ WT is searched in ConceptNet, and the

found nodes and their one-hop neighbors are put into ES or ET , the corre-
sponding relations are put into RS and RT .

Based on this, the source graph GS = {ES , RS} and the target
graph GT = {ET , RT } can be obtained, in which,

(
wS

i ∈ ES , rSh ∈ RS

)
and(

wT
j ∈ ET , rTh ∈ RT

)
.

4.3 Representations Learning for Invariant Structure

In this subsection, the representations of each graph are learned with GAT firstly,
and then the correlation alignment is used to learn the invariant structure rep-
resentations for cross-domain classification.

The Representations for Each Graph. GCN is a popular model for graph
representations. In this paper, we initialize the vectors of the graph with glove
[14] and then use GCN to learn the representations, as other methods do [28]. The
vectors of nodes can be represented wS =

{
wS

1 , wS
2 , wS

3 , . . . , wS
ns

| wS
i ∈ Rde

}
, in

which, de is the dimension of the feature vectors, wS
i denote the embedding of

feature nodes in source network.
Since there are heterogeneous relations in our graphs, we try to optimize

the representations of graphs with these heterogeneous relations to enrich the
semantic representations. Generally speaking, the types of relations are much
smaller than that of nodes, and it is difficult to effectively improve the node
representations based on GAT only aggregating the relations. Thus, we propose
to enrich the representations by aggregating the triple (wS

i

∥∥rSh
∥∥ wS

k ) as a unit,
instead of aggregating the independent features (wS

i and wS
k ) and their relation

(rSh ), in which, wS
i is the vector of nodes in source network and wS

k is the vector
for one of the neighbors of wS

i . Therefore, given a relation rSh , the attention of
its corresponding triple (wS

i

∥∥rSh
∥∥ wS

k ) to the feature wS
i is calculated as follows:

αt
ihk =

exp
(
αT

[
wS

i

∥∥rSh
∥∥wS

k

])
∑

w
k

′ ∈Ni

∑
rS
h′∈RS

wS
i

wS
k′

exp
(
αT

[
wS

i

∥∥rSh′
∥∥ wS

k′
]) (4)
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where Ni is the neighbor set of node wS
i , RS

wS
i wS

k′
is the set of all relationships

between node wS
i and its neighbor wS

k′ , k′ is the index for set.
By aggregating the triples with attentions, the representations of the feature

nodes can be expressed as following.

wS
i−rel = ReLU

⎛
⎜⎝

∑
wk∈Ni

∑

rSh∈RS

wS
i

wS
k

αS
ihk

[
wS

i

∥∥rSh
∥∥ wS

k

]
⎞
⎟⎠ (5)

where || is the concatenation operation. Ni is the neighbor set of the wS
i , RS

wS
i wS

k′
is the set of all relationships.

In the aggregating of neighborhoods, we adopt one-layer graph attention
to ensure that the dimension of the embedded representations are controllable,
owing to that stacking multiple-layer relation will lead to the explosion of phys-
ical dimensions. The calculation process is as follows:

αS
ik =

exp
(
LeakyRELU

(
αTwS

i−rel + βTwS
k−rel

))
∑

k′−rel∈Ni

exp
(
LeakyRELU

(
αTwS

i−rel + βTwS
k′−rel

) (6)

xS
graph =

[
(
wS

i−rel ⊗ c
) ⊕

(( ∑
k∈Ni

αS
ikw

S
i−rel

)
⊗ (1 − c)

]
(7)

where α and β are learnable parameter vectors. ⊕ means the addition of vectors,
⊗ means the multiplication of vectors, the trad-off parameter c = 0.5.

Finally, we get source graph feature representations XS
graph after graph

embedding. Similarly, we can get target graph feature representations XT
graph.

The Learning for Invariant Structure Representations. To address cross-
domain classification, the invariant representations need to be learned. In this
paper, the correlation alignment [16] is used to match the second-order statistics
represented in two graphs. The correlation loss is defined as the difference of
structure feature representations between two graphs.

LCORAL =
1
4d2

‖CS − CT ‖2F (8)

where d is the feature dimension, ‖ · ‖2F represents the square matrix of the
Frobenius norm, CS and CT are the covariance matrix of source KG and target
KG respectively, and they are computed as follows.

CS =
1

NS − 1

((
XS

graph

)T
XS

graph − 1
NS

(
1TXS

graph

)T (
1TXS

graph

))
(9)

CT =
1

NT − 1

((
XT

graph

)T
XT

graph − 1
NT

(
1TXT

graph

)T (
1TXT

graph

))
(10)

where NS , NT are the sizes of the two graphs respectively, and 1 denotes an
all-one column vector.
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4.4 Classifier Training with Features and Structure

Both the learned invariant structure representations Xgraph and the feature
invariant representations XBOW are used together to train the classifier. Two
encoders are designed to combine the invariant structure representations and fea-
ture invariant representations to obtain higher invariant representations, which
are used as the input to train the classifier.

The reconstruction loss of the encoder is added to minimize the domain
invariance, and it is shown as follows:

Lrecon (Xgraph) = −EXgraph

(
‖Drecon (Xgraph) − Xgraph‖22

)
(11)

And the cross entropy is used as loss function to train the classifier.

Lcls =
1
ns

ns∑
i=1

L
(
Fs

[
Eword

(
XS

BOW

) ‖Egraph

(
XS

graph

)])
(12)

where L is the cross-entropy loss, Fs is the classifier, Egraph is the graph feature
encoder, and Eword is the bag-of-words feature encoder.

In summary, the overall objective function and the optimization are shown
respectively as following:

L (θcls, θrecon, θCORAL, θD) = Lcls + Lrecon + LCORAL + LD (13)
(
θ̂cls, θ̂recon, θ̂CORAL, θ̂D

)
= argmin

θcls,θrecon ,θCoRAL

max
θD

L (θcls, θrecon, θCORAL, θD) (14)

5 Experiment

5.1 Setup

Datasets. Two popular datasets are used in this paper to validate the effec-
tiveness of our method. Amazon review [3] consists of four domains, including
Books(B), DVDs(D), Electronics(E), and kitchens(K), and 12 cross-domain tasks
can be constructed. Each domain contains 2k labeled training samples and 3k-6k
samples for testing. With TF-IDF, the top-5000 features are selected for each
domain. SemEval Corpora [2] is provided by the organizer of SemEval2013,
which we call S13. These tweets contain positive, negative, and neutral senti-
ments. In order to address the cross-domain classification from Semeval to Ama-
zon, we also remove the neutral tweets as Barnes et al. (2018) [2] did. For the
comparative experiments on SemEval Corpora, we use the source code provided
by the author.
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Baselines. Three categories of baselines are compared in this paper. 1) Methods
based on independent assumption include three adversarial-based methods and
four discrepancy-based methods. The former includes DANN [7], MADAOT [5],
F-domain [1], and the latter includes CMD [26], CoCMD [13], DDC [18] and
Deep coral [16]. 2) Methods based on homogeneous graph include DAGNN [22]
and GAC [20]. Owing to that the source codes are unavailable, we reproduce
the methods proposed in the original papers. Specially, we simulate the edges
of graphs with the relations from KG, ignoring the type difference of edges, and
the subsequent processing is the same as the original paper. At the same time,
in order to apply the single-domain method GAC to cross-domain, we put the
features processed by GAC into DANN for domain adaptation. 3) Methods based
on the heterogeneous graph include KINGDOM [8] and our method.

Table 1. Performance (accuracy %) on Amazon datasets. * is a semi-supervised
method. c means the results are from their original paper, and r means the results
are gotten by re-implemented codes.

Tasks B->D B->E B->K D->B D->E D->K E->B E->D E->K K->B K->D K-E AVG

CMDc [26] 80.50 78.70 81.30 79.50 79.70 83.00 74.40 76.30 86.00 75.60 77.50 85.40 79.80
CoCMDc* [13] 83.10 83.00 85.30 81.80 83.40 85.50 76.90 78.30 87.30 77.20 79.60 87.20 82.40
DANNc [7] 78.40 73.30 77.90 72.30 75.40 78.30 71.30 73.80 85.40 70.90 74.00 84.30 76.30
MADAOTc [5] 82.40 75.00 80.40 80.90 73.50 81.50 77.20 78.10 88.10 75.60 75.90 87.10 79.60
F-DALc [1] 84.00 80.90 81.40 80.60 81.80 83.9 76.70 78.30 87.90 76.50 79.50 87.5 81.60
DAGNNr [22] 82.05 80.95 84.22 81.16 80.80 84.05 75.55 77.86 88.36 76.90 79.39 87.10 81.54
GACr [20] 82.07 80.85 84.10 81.16 81.12 84.36 75.80 78.00 88.19 77.07 80.93 87.20 81.73
KINGDOMc [8] 83.10 82.20 85.00 81.40 81.70 84.6 76.90 78.80 88.40 78.20 80.70 87.40 82.30
Ours 83.38 82.64 85.28 81.97 83.00 85.28 78.03 80.26 88.71 78.97 82.00 87.80 83.10

5.2 Results and Analysis

Table 2. Performance (accuracy %) on Semeval datasets. s means the results are from
their shared codes, and r means the results are gotten by re-implemented codes.

Tasks S13->B S13->E S13->D S13->K AVG

DDCs [18] 50.82 50.52 50.39 50.45 50.54
Deep Corals [16] 50.84 50.39 51.00 50.53 50.69
DANNs [7] 50.77 52.35 51.09 50.31 51.13
DAGNNr [22] 53.59 52.12 50.70 50.34 51.68
GACr [20] 52.95 52.30 50.75 51.64 51.91
KINGDOMs [8] 53.75 53.18 50.73 52.09 52.43
Ours 53.91 54.59 51.31 54.33 53.53
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Fig. 3. Comparison of ours and baselines with the Nemenyi test

The Overall Classification Performance. We compare our model with base-
lines on two datasets, as shown in Tables 1 and 2. Owing to the unavailability
of source codes and the difference of datasets, the baselines in Tables 1 and 2
are different. Some baselines, including CMD, CoCMD, MADAOT and F-DAL,
are not compared in Table 2, and baselines including DDC, Deep Coral are not
compared in Table 1. Some observations can be gotten. 1) Compared with the
methods with independence assumption, the methods with graphs perform bet-
ter on average. This shows that the introduction of structure representations
between features can rich the semantics of features and benefit the classification.
2) Compared with homogeneous graph methods, including DAGNN and GAC,
heterogeneous graph-based methods, including KINGDOM and Ours, generally
outperform. It indicates that the heterogeneous relations among features can
enrich the semantic representations of features and benefit the cross-domain
classification. 3) As for the two methods with heterogeneous graphs, our method
performs significantly better. It indicates that combining both the structure and
feature representations is better than using only the invariant feature representa-
tions for cross-domain classification. 4) It is worthy to note that the performance
of five tasks in Table 1 is not the best. Firstly, CoCMD is a semi-supervised
method, while our method does not use the semi-supervised learning. Compared
with CMD, which is the variant of CoCMD ignoring the semi-supervised learn-
ing, our method perform best in 11 tasks. In addition, the improvement of our
method on some tasks (such as K-D) is more obvious than other tasks (such as
B-K). It is because that there are some features that do not exist in graph, which
makes the number of nodes in subgraphs for B domain and K domain small.

Statistical Test. To validate whether the improvement of our method is signif-
icant, we perform Nemenyi test [4], which is widely used to statistically compare
different algorithms. The critical difference (CD) diagram of the Nemenyi test is
plotted in Fig. 3 (a) and (b), where the average rank of each baseline is marked
along the axis (lower ranks to the right). It can be seen from Fig. 3 that our model
performs best on both datasets. We notice that ours performs significantly better
than baselines on Amazon datasets.
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5.3 Ablation Experiment

In this subsection, we design several variants of our method to validate the con-
tribution of each step in our method, as shown in Tables 3 and 4. Only-BOW
ignores the graph structure representations and only trains classifier with BOW
features. Only-HoG ignores the BOW and replaces the heterogeneous relations
in ConceptNet with the homogeneous relations. Only-HeG means ignoring BOW
and only using the heterogeneous graph to train classifier. BOW+HoG means
that both BOW and the homogeneous graph are considered. Bow+HeG means
that only relations, not the corresponding triples, are aggregated in the repre-
sentations of heterogeneous graph.

The experimental results show that the performance of each variant
decreases, which shows the effectiveness of each component in our method. 1)
The combination of BOW and graph representations are more effective than
single representations. Compared with Only-BOW, the performances of the
BOW+HoG and BOW+HeG improves by 1.0% and 1.4% on average. It indi-
cates that the introduction of the relation among features is effective. Compared
with Only-HoG and Only-HeG, BOW+HoG and Bow+HeG improve the perfor-
mance by 28% and 2.3% on two datasets. It indicates that traditional BOW are
also useful for cross-domain classification. 2) Heterogeneous graph is more effec-
tive than homogeneous graph. Only-HeG achieves higher performance by 1.1%
than the Only-HoG. And Our performance achieves 1% higher than Bow+HoG
on average. It shows that heterogeneous relations contain richer semantic infor-
mation and are more conducive to cross-domain classification. 3) Aggregating
the triples is better than aggregating the independent neighbors and relations
in the representations of the heterogeneous graph. Compared with BOW+HeG,
the performance of our method improves by 0.4% and 0.7% respectively, which
shows that our aggregation of triples can learn richer semantics and benefit the
classification. 4) It can be noted that BOW contributes more than the graph for
cross-domain adaptation. Compared with our method, Only-BOW decreases by
3%, while Only-HeG and Only-HoG both decrease about 28% on Amazon. But
it does not work on Semeval. This is mainly because some features in Amazon
do not occur in the ConceptNet. It leads to that the number of nodes in the
source and target graph is much smaller than the number of features. Then the
heterogeneous graph is sparse, which may lead to the performance difference
between the two datasets.

Table 3. Performance (accuracy %) on Amazon datasets.

Methods B->D B->E B->K D->B D->E D->K E->B E->D E->K K->B K->D K-E AVG

Only-Bow 82.60 79.90 81.80 80.30 79.90 83.00 74.90 78.60 88.60 75.90 79.20 86.90 80.90
Only-HoG 52.09 51.84 54.57 52.34 51.06 54.03 50.87 50.81 54.55 51.04 51.73 56.82 52.64
Only-HeG 53.35 58.83 56.84 51.76 52.77 50.55 53.21 53.54 53.37 52.30 51.59 56.29 53.70
Bow+HoG 82.93 81.94 84.24 81.52 81.98 84.81 77.78 79.00 88.43 78.01 81.09 87.19 82.40
Bow+HeG 83.32 81.99 84.88 81.61 82.01 85.08 78.01 79.81 88.61 78.30 81.32 87.47 82.70
Ours (Bow+HeG-Tri) 83.38 82.64 85.28 81.97 83.00 85.28 78.03 80.26 88.71 78.97 82.00 87.80 83.10
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Table 4. Performance (accuracy %) on Semeval datasets.

Methods S13->B S13->E S13->D S13->K AVG
Only-Bow 53.26 52.91 50.47 50.68 51.83
Only-HoG 50.54 50.29 50.19 49.79 50.20
Only-HeG 50.97 50.29 50.5 50.31 50.51
Bow+HoG 53.30 52.83 50.73 52.62 52.37
Bow+HeG 53.82 54.22 50.67 52.65 52.84
Ours (Bow+HeG-Tri) 53.91 54.59 51.31 54.33 53.53

5.4 Parameter Discussion

Figure 4 shows the performance changing with different neighbor scopes includ-
ing one-hop, two hops and three hops. We can see that the performance of
one-hop and three-hop both drop by 1% and 1.5%. This shows that two-hops
neighbors can enrich the semantic of nodes by aggregating their similar neigh-
bors, while one-hop ignores these similar information, three-hops will cover more
noise, although it may cover similar information.

Fig. 4. the performance changing with different neighbor scopes on two datasets

6 Conclusions

In this paper, we explore the role of heterogeneous relations among features
for cross-domain classification and propose a structure-aware method for cross-
domain text classification. A KG is introduced to obtain the relations among
features. With heterogeneous relations, the structure invariant representations
are learned, which is combined with the feature representations together to train
the cross-domain classifier. Extensive experiments show that the effectiveness of
our method. In addition, the mis-matching between features and graphs is one
of the limitations for our method, which is our focus in the near future.
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Abstract. In recent years, cybercriminals in darknet markets are
becoming increasingly rampant and they usually converse in jargons
to avoid surveillance. These jargons distort the original meaning of
innocent-looking words, which makes it difficult for network regulators
to understand the true meaning of dialogues content. Existing stud-
ies mainly explored jargon detection based on unsupervised methods.
However, those solutions generally face significant challenges in setting
appropriate jargon evaluation thresholds. To the best of our knowledge,
we are the first to propose a Supervised-based jargon Identification and
Classification Model (SICM). Specifically, we transform jargon detection
into a sequence labeling problem. In order to better represent the unique
characteristics of Chinese jargon and facilitate more effective feature
fusion, we innovatively propose a Chinese jargon identification and clas-
sification model based on Feature Adapter enhanced BERT, which uses
attention mechanism to integrate phonetic, glyph and lexical features
into the lower layers of BERT. The experimental results demonstrate
that our model outperforms existing state-of-the-art jargon detection
methods, with an F1-score of 91.99%. This study provides a brand-new
research idea for the Chinese jargon detection in the darknet market-
place.

Keywords: Chinese jargons · BERT adapter · Supervised learning ·
Sequence labeling · Feature fusion

1 Introduction

Background. Due to the anonymity of the dark web, cybercriminals in dark-
net markets are becoming increasingly rampant [5]. They usually conduct illegal
transactions in underground markets, such as spreading gambling information,
leaking personal private data through hacking, selling firearms and drugs in reg-
ulated areas. These activities seriously endanger the normal order of cyberspace
and real society.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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However, because of the obscurity of information in the darknet underground
markets [5], it is a significant challenge for its regulation. Cybercriminals often
use jargons to disguise transactions and avoid surveillance. Jargons distort the
original meaning of innocent-looking words. It is not easy to discover the harmful
implications of jargons, which makes cybercrime monitoring and investigation
very difficult. For example, “猪肉” (pork) is a word that is common in real life,
but it may refer to “冰毒” (methamphetamine) in the underground market; “
道料” (rail material) actually refers to the bank card information obtained by
modifying the POS (Point of Sale) machine. Due to these characteristics of jar-
gons, it is quite difficult for network regulators to grasp what the cybercriminals
are saying. The research work on automatic jargons identification and classifica-
tion is of significant importance for network regulators to better understand the
various types of cybercrime.

There have been several studies using unsupervised methods to detect jargons
[4,12,13,15,17,20–22]. The main idea of their works is to compare the similarity
of word embeddings of the same word in different corpora. Usually, for a specific
word, its word embeddings are generated not only in a normal corpus, but also
in a malicious corpus in which words may have hidden harmful meanings. Then,
the similarity of the same word’s two different embeddings will be calculated.
The value of the similarity is the key indicator to determine whether the word
is a jargon [4,12,13,17]. Besides, there are also some unsupervised methods that
use BERT-based MLM (Masked Language Model) to predict jargons [21,22].

Challenges. All the existing research works of jargon detection use unsuper-
vised methods, and they generally face the following significant challenges.

Firstly, in their algorithms, it is challenging to set the appropriate threshold
for determining the jargons. Existing unsupervised approaches set a threshold
for the result of similarity calculation [4,12,13,17] or the result predicted by the
Masked Language Model [21,22] to obtain the jargon candidates. Nevertheless,
the threshold value is usually set subjectively based on experience, and mean-
while the results of jargon prediction are extremely sensitive to the threshold
value. If the threshold value is not set properly, it can easily cause normal words
to be incorrectly recognized as jargons. Although this problem can be avoided
by using the supervised approach, there is no precedent research on jargon iden-
tification based on supervised methods, to the best of our knowledge.

Secondly, for Chinese jargon detection, previous methods also have some
other problems: most of them only consider the textual information and do not
extract the linguistic features of Chinese jargons [4,13,15,20]. Actually, there are
many Chinese jargons created based on the similarity of character pronunciation
or morphology. For instance, members of gambling websites use the word “菠
菜” (spinach) instead of “博彩” (Gambling), which are completely different
words but very similar in their Chinese pronunciations. Another example is that
people often use the word “果” (fruit) instead of “裸” (nude) when it comes to
pornography. The two words are pronounced differently but have similar Chinese
character roots. Therefore, we believe that using an appropriate way to intro-
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duce information about the similarity of pronunciation and morphology between
different Chinese characters can be of great help in Chinese jargon detection.

Contributions. To address the above challenges, the main contributions of this
paper are summarized as follows:

• We design and publish the first Chinese jargon identification and classification
model based on a supervised approach (SICM1), to the best of our knowledge.
We transform the jargon detection into a sequence labeling problem. For an
input sentence, the location of the jargons in the sentence and the crime
category they belong to can be identified.

• We extract brand-new features based on the unique characteristics of Chinese
jargons. Considering the characteristics of pronunciation and morphology of
Chinese jargons, we extract phonetic features and glyph features for each
Chinese character. Meanwhile, lexical features are added to the model in
order to learn the boundary information related to jargons. The experimental
results show that these features can significantly improve the effect of jargon
detection.

2 Related Work

Until now, jargon detection is a relatively new research area. Existing researches
mainly focus on Chinese [4,13,15,20], English [17,21,22] and Japanese [12].

In 2016, Zhao et al. [20] proposed the first Chinese jargon detection method.
The authors used Word2Vec model to generate word embeddings and clustered
jargons in underground market QQ groups by LDA (Latent Dirichlet Allocation)
model. In another study on the detection of Chinese jargons by Yang et al. [15],
the authors investigated the underground business promoted through blackhat
SEO (Search Engine Optimization), and then built KDES (Keyword Detection
and Expansion System) to find Chinese jargons in Baidu search engine. These
two methods achieve the clustering of jargons, but do not take into account
the differences between words when used as jargons and when used as normal
semantics.

In subsequent studies [4,12,13,17], researchers tried to introduce the cross-
corpus information into the model to detect jargons. Yuan et al. [17] proposed a
new technique called Cantreader, which is able to recognize and understand the
English jargons in darknet marketplace. The authors modified the Word2Vec
model to perform model training in dark corpora containing jargons and benign
corpora in normal contexts simultaneously. Similarly, Takuro et al. [12] used
Word2Vec for each of the two corpora and detected Japanese jargons in Twitter.
Wang et al. [13] designed the CJI-Framework to identify Chinese jargons in
Telegram by extracting seven novel features. Ke et al. [4] constructed a word-
based pre-training language model called DC-BERT to generate high-quality

1 https://github.com/yiyepianzhounc/SICM.

https://github.com/yiyepianzhounc/SICM
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contextual word embeddings for the corpus of darknet Chinese forums, and then
perform cross-corpora jargon detection by computing the cosine similarity. Zhu
et al. [22] took a different idea and used the Masked Language Model to self-
supervisedly analyze the context to detect English euphemism and its hidden
meanings. In addition, Zhu et al. [21] used a similar method which focuses on
English euphemistic phrases detection.

In conclusion, existing studies have some common limitations: (1) Most of
them obtain jargon candidates by setting a threshold. However, the threshold
value is usually sensitive, and if the threshold value is not set properly, it can
easily cause normal words to be incorrectly identified as jargons. (2) They did not
consider the pronunciation and morphology characteristics of Chinese jargons.

3 Methodology

In this section, we give a detailed introduction of the proposed SICM model,
which is shown in Fig. 1.

Fig. 1. Model structure of SICM

3.1 Character Feature Extraction Module

Phonetic Feature Extraction. Inspired by the ‘Trans-pinyin’ system pro-
posed by Li et al. [6], we use a similar approach to extract the phonetic features
of Chinese characters. The approach of ‘Trans-pinyin’ is to combine Chinese
Pinyin with the IPA (International Phonetic Alphabet) system2. Specifically, for

2 https://www.internationalphoneticassociation.org.

https://www.internationalphoneticassociation.org
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each Chinese character in the input sequence, we first use the ‘pypinyin’ library3

to get its Pinyin representation. Then, we divide the Pinyin representation into
two parts: the initial and the final, and map them to the representations in
the IPA system respectively, according to the conversion table4. Therefore, each
part will be represented by a one-hot encoding. There is also a one-dimensional
phonetic weight for each character. If two initials are similar in pronunciation,
they will be represented as the same one-hot encoding with different phonetic
weights. At last, we concatenate two one-hot encodings of the character and its
phonetic weight to obtain its phonetic embedding representation.

Glyph Feature Extraction. We use the Five-stroke (or Wubi) encoding5 of
Chinese characters to generate glyph features, so that characters with similar
morphology have similar vector representations. The Five-stroke encoding cre-
ates mappings between different Chinese character roots and 25 English letters,
with each Chinese character represented by no more than five English letters.
For each character, we represent each bit of the Five-stroke encoding with a 25-
dimensional one-hot encoding, and then concatenate them together to get the
final glyph embedding.

Lexical Feature Extraction. Unlike English, Chinese words are not separated
by spaces and lack distinct lexical boundaries, which makes Chinese sequence
labeling a challenging task. There have been some works attempting to integrate
lexical information into Chinese sequence labeling model to learn the boundary
information related to Chinese words [2,7–9,19]. To allow our model to learn
the boundary information related to Chinese jargons, we use a popular pre-
trained embedding corpus from Tencent AI Lab6, which is pre-trained on large-
scale high-quality data using directional skip-gram model [10] and contains over
12 million words and phrases. More importantly, the corpus has advantages in
coverage and freshness, including a large number of domain-specific words.

We use the method proposed by Liu et al. [8] to obtain lexical features.
Specifically, a Trie is first constructed based on the pre-trained lexicon D. Then,
for an input sentence sequence X = {x1, x2, x3, ..., xn}, all its character subse-
quences are traversed and matched with the Trie, such that each character xi

is given a word list Wi =
{
w1

i , w
2
i , w

3
i , ..., w

m
i

}
. The m indicates the maximum

number of words matched by a character. If the number of words is less than
m, the remaining positions will be filled with ‘<PAD>’. Finally, based on Wi,
we get the Character lexical feature li =

{
v1
i , v

2
i , v

3
i , ..., v

m
i

}
, which is a set of

3 https://github.com/mozillazg/python-pinyin.
4 https://github.com/untunt/PhonoCollection/blob/master/Standard%20Chinese.

md.
5 https://en.wikipedia.org/wiki/Wubi method.
6 https://ai.tencent.com/ailab/nlp/en/embedding.html.

https://github.com/mozillazg/python-pinyin
https://github.com/untunt/PhonoCollection/blob/master/Standard%20Chinese.md
https://github.com/untunt/PhonoCollection/blob/master/Standard%20Chinese.md
https://en.wikipedia.org/wiki/Wubi_method
https://ai.tencent.com/ailab/nlp/en/embedding.html
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word embeddings. The vj
i is the word embedding of wj

i and is obtained by the
following equation:

vj
i = E

(
wj

i

)
(1)

where E denotes the lookup table of the pre-trained lexicon D. We treat the
lexical feature li as a m-by-dw matrix, where dw denotes the dimension of the
word embedding in D.

3.2 Feature Adapter Enhanced BERT Module

We use the Chinese BERT pre-trained model [1] to extract text features. The
traditional feature fusion is usually performed after the output of BERT model.
However, such approaches do not take full advantage of the powerful representa-
tion capability of BERT. To make our feature fusion more effective, we modify
the structure of BERT. Inspired by studies [8] and [14], we design the Feature
Adapter to integrate Chinese character features (including phonetic features and
glyph features) and lexical features into the lower layers of BERT directly. Specif-
ically, we place the Feature Adapter between the first and second Transformer
layers of BERT.

Feature Adapter accepts four inputs, which are text features, phonetic fea-
tures, glyph features and lexical features of characters. For the i-th character
xi in the input sentence sequence X = {x1, x2, x3, ..., xn}, the input of Feature
Adapter can be represented as (hi, pi, gi, li), where hi ∈ R

dh denotes the char-
acter vector output by the previous Transformer layer; and pi ∈ R

dp , gi ∈ R
dg

denote the phonetic features and glyph features obtained by the Chinese charac-
ter feature extractor, respectively; and li ∈ R

m×dw denotes the lexical features.
To align the different feature representations, we apply the following transfor-
mations to the phonetic features and glyph features:

p̂i = tanh (Wppi + bp) (2)

ĝi = tanh (Wggi + bg) (3)

where Wp is a dh-by-dp matrix, Wg is a dh-by-dg matrix, bp and bg are bias.
The lexical feature li =

{
v1
i , v

2
i , v

3
i , ..., v

m
i

}
of each character is an m-by-dw

matrix. Here, we use the method of [8] to further process the lexical features.
First, a nonlinear transformation is applied to li that maps the lexical features
to the same dimensions as the text features:

l
′
i = W2

(
tanh

(
W1l

T
i + b1

))
+ b2 (4)

where W1 is a dh-by-dw matrix, W2 is a dh-by-dh matrix, b1 and b2 are bias.
In our approach, each character is matched to up to m words. However, not
all of these words are useful. To be able to allow the model to select the most
appropriate words and thus learn the correct boundary information, a bilinear
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attention mechanism is used here to calculate the weights of different words
under the same character:

αi = softmax
(
hiWattl

′
i

)
(5)

l̂i =
m∑

j=1

αj
iv

j
i (6)

where Watt is a dh-by-dh matrix, which is a learnable parameter and represents
the weight matrix of the bilinear attention mechanism; αi is the attention weight
distribution representing the relevance between the current character xi and the
words it matches (i.e. words in Wi). Finally, we obtain the final lexical embedding
l̂i by attention-weighted summation.

As mentioned above, the transformed phonetic embedding p̂i, glyph embed-
ding ĝi and lexical embedding l̂i are all dh-dimensional vectors. Let fi ={

p̂i, ĝi, l̂i

}
, representing the 3-by-h feature matrix of character xi. Different jar-

gons have different sensitivities to various features, so we design the following
attention-based feature fusion strategy:

h
′
i = tanh (Whhi + bh) (7)

βt =
exp

(
h

′
i(f

t
i )

T
)

3∑

k=1

exp
(
h

′
i(f

k
i )T

) (8)

f̂i =
3∑

t=1

βtf
t
i (9)

where Wh is a dh-by-dh matrix and f t
i denotes the t-th row in the feature matrix

fi. The βt denotes the attention weights of different features. Then, we add the
final character features f̂i with hi to obtain the character vector fused with the
character features:

ĥi = hi + f̂i (10)

Finally, ĥi is output as Feature Adapter after a dropout layer and layer normal-
ization, and input to the next Transformer layer.

3.3 Global Attention Layer

In the Chinese jargon corpus, it is usually possible to recognize the category
of crime present in the sentence by observing the contextual background of the
whole sentence. Therefore, we believe that introducing global information of
sentences for the model is beneficial to the identification and classification of
jargons. It should be noted that words in a sentence contribute differently to
the global information. Referring to [18], we designed a global attention layer
to introduce weighted global contextual information for each character in the
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sentence sequence. We denote the output of the last Transformer layer by Z =
{z1, z2, z3, ..., zn}, and then calculate the attention score using the following:

zg = avg {z1, z2, z3, ..., zn} (11)

ei = VT tanh (Wgzg + Wzzi) (12)

γi =
exp (ei)

n∑

k=1

exp (ek)
(13)

where zg denotes the global representation of the whole sentence; V ∈ R
dh ,

Wg ∈ R
dh×dh and Wz ∈ R

dh×dh are all trainable parameters; γi denotes the
attention score of the i-th character in the sentence sequence, reflecting the
importance of that character in the global information of the whole sentence.
Then, the sentence representation is generated by weighted summation:

s =
n∑

i=1

γizi (14)

Finally, the global attention layer combines the generated sentence representa-
tion with the output of the last Transformer layer as the input to the following
CRF (Conditional Random Field) decoding layer:

ẑi = zi + s (15)

4 Experiments

4.1 Dataset Construction

First, we adopt the raw data of the darknet which has been published by Ke
et al. [4]. The data comes from multiple popular Chinese darknet websites7,
covering most types of cybercrimes. Then, In order to balance the amount of
data in different crime categories, we supplement data from additional Chinese
darknet forums8. All these raw data are not annotated.

We refer to the existing classification rules of Chinese jargons [4] and fine tune
it, classifying jargons into seven categories: ‘Drugs’, ‘Gambling’, ‘Pornography’,
‘Violence’, ‘Fraud’, ‘Hacking’ and ‘Others’, which covers most types of cyber-
crime in darknet markets. In the end, our dataset contains 33,668 sentences,
including 19,675 sentences containing jargons and 13,993 normal sentences. A
total of 45,079 jargons were labeled, including 1,796 unduplicated jargons. We
randomly divide our dataset into training, validation and test sets in the ratio
of 6:2:2. The specific information is shown in Table 1.

7 https://github.com/KL4MVP/Chinese-Jargon-Detection/tree/master/dataset.
8 https://github.com/yiyepianzhounc/CJC.

https://github.com/KL4MVP/Chinese-Jargon-Detection/tree/master/dataset
https://github.com/yiyepianzhounc/CJC
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Table 1. Dataset statistics

Category #Sentences #Jargons #Unduplicated jargons Example of jargons

Drug 1,936 3,920 225 叶子 (leaf), 猪肉 (pork)

Gambling 1,831 3,713 239 菠菜 (spinach), 搏彩 (fight color)

Pornography 4,132 10,560 362 果体 (fruit body), 狼友 (wolf friend)

Violence 1,456 3,469 203 气狗 (air dog), (bald eagle)

Fraud 4,284 10,320 381 道料 (rail material), 裸条 (bare strip)

Hacking 4,138 8,147 341 蜜 (Mellivora capensis), 炸机 (bomber)

Others 2,998 4,860 47 梯子 (ladder), 洋葱 (onion)

4.2 Sequence Labeling Baseline Model Comparison Experiment

To demonstrate the effectiveness of the proposed model SICM, we tested the
performance of the model against seven baseline methods on our dataset CJC.
These baselines are all sequence labeling models because no supervised jargon
detection method has been proposed before. In particular, BERT-FeatureLSTM-
CRF is a traditional feature fusion method, which concatenates the output of the
last Transformer layer with the phonetic embedding, the glyph embedding and
the weighted lexical embedding, and then uses BiLSTM as the fusion layer. This
baseline can be used as a comparative experiment for feature fusion methods.
In this experiment, we use Precision, Recall and F1-score as evaluation metrics.
The results are shown in Table 2.

Table 2. Results for sequence labeling baseline model comparison experiment

Models Precision Recall F1-score

BiLSTM-CRF [3] 87.91 87.42 87.66

IDCNN-CRF [11] 87.44 87.19 87.31

LatticeLSTM [19] 89.82 88.03 88.92

BERT-CRF 89.68 90.43 90.06

BERT-BiLSTM-CRF 90.05 90.87 90.46

LEBERT [8] 90.43 90.93 90.68

BERT-FeatureLSTM-CRF 90.28 90.99 90.64

SICM (our model) 91.73 92.25 91.99

Among all eight models, our model SICM shows the best results in each metric.
The results of LEBERT outperformed the first five baselines, probably because
it uses a more advanced lexicon feature extraction method and is able to inject
it into the lower layers of BERT, thus allowing the model to better capture the
boundary information between words. In addition, SICM outperforms BERT-
FeatureLSTM-CRF because the use of Feature Adapter for feature fusion takes
full advantage of the powerful representation capabilities of BERT.
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Experimental results show that our model SICM outperforms various
advanced sequence labeling models for jargon detection, and our feature fusion
approach is more effective than the traditional method.

4.3 Unsupervised Methods Comparison Experiment

In this experiment, we apply four existing unsupervised jargon detection methods
to our dataset CJC and compare their results with our model SICM.

Each unsupervised method generates a jargon list. Considering that these
are unsupervised methods, we rank the jargon lists generated by each method
and then use Precision at k (P@k) as the evaluation metric, which is often used
in the field of information retrieval to assess the relevance of search results to a
query [16]. The criterion for judging jargons here are those labeled in our dataset
CJC.

Table 3. Results for unsupervised methods comparison experiment

Methods Language P@10 P@20 P@30 P@40 P@50 P@60 P@80 P@100

CantReader [17] English 0.00 0.00 0.07 0.05 0.04 0.07 0.10 0.10

CJI-Framework [13] Chinese 0.70 0.40 0.30 0.30 0.28 0.30 0.33 0.33

DC-BERT [4] Chinese 0.50 0.35 0.40 0.38 0.36 0.33 0.29 0.27

MLM [22] English 0.10 0.20 0.17 0.18 0.16 0.15 0.13 0.12

The results are shown in Table 3. It can be observed that CJI-Frameworks
and DC-BERT, the two detection methods for Chinese jargons, can achieve
relatively good results. However, even for the P@10 metric, CJI-Frameworks,
the best performer among the unsupervised methods, can only reach 0.70, i.e.,
only 7 of the top 10 most likely words are jargons. In contrast, the Precision,
Recall and F1-score of SICM can all reach above 0.90, which achieves better
results. CantReader performs poorly on our dataset, whose conclusion is similar
to the research work [22]. We infer that this is because the method requires an
additional benign corpus and it is difficult for us to guarantee that the selected
Chinese corpus9 is appropriate. MLM also does not work well, the method uses
a native BERT model and cannot predict multiple tokens at the same time, so
it is not well suited for Chinese jargon detection.

Experiments show that our method is significantly better than existing state-
of-the-art unsupervised methods and can better detect jargons in the dark web.

9 https://github.com/brightmart/nlp chinese corpus.

https://github.com/brightmart/nlp_chinese_corpus
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5 Conclusion

In this paper, we propose the first supervised-based Chinese jargon identification
and classification model, to the best of our knowledge. We transform jargon
detection into a sequence labeling problem and propose our brand-new model
based on Feature Adapter enhanced BERT, which uses attention mechanism to
integrate phonetic, glyph and lexical features into the lower layers of BERT.
Experiments show that our model outperforms existing state-of-the-art jargon
detection methods.
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Abstract. Event factuality identification (EFI) aims to assess the verac-
ity degree to which an event mentioned in a document has happened,
and both semantic and syntactic features are crucial for this task. Most
of the previous studies only focused on sentence-level event factuality,
which may lead to conflicts among mentions of a specific event in a doc-
ument. Existing studies on document-level EFI (DEFI) are still scarce
and mainly focus on semantic features. To address the above issues, we
propose a novel Heterogeneous Semantics-Syntax-fused Network (HS2N)
for DEFI, which not only integrates both semantic and syntactic infor-
mation in an efficient way using Biaffine Attention and differentiated
alignment method, but also considers both inter-and-intra sentence inter-
action. Experimental results on the English and Chinese datasets show
that our proposed HS2N outperforms the state-of-the-art model.

Keywords: Document-level event factuality identification · Feature
fusion · Graph convolutional network

1 Introduction

Event factuality is defined as the level of information expressing the veracity of
relevant sources towards the factual nature of events mentioned in a certain dis-
course [1], which is essential and crucial for many natural language understanding
(NLU) applications, e.g., rumor detection [2–4]. In general, event factuality iden-
tification (EFI) is a five-class classification task that can be classified into five
categories: Certain Positive (CT+), Certain Negative (CT−), Possible Positive
(PS+), Possible Negative (PS−) and Underspecified (Uu).

Most existing studies on EFI have mainly focused on sentence level, where
various state-of-the-art models have emerged in the last few years [1,5,7–10].
When a sentence is given, a sentence-level EFI (SEFI) task is supposed to assess
the veracity of the event mentioned in it. Nevertheless, events reported in the
real world is always annotated with an authenticated factuality value. Conse-
quently, this will lead to an unavoidable scene in performing SEFI trials, where
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 309–320, 2022.
https://doi.org/10.1007/978-3-031-20865-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20865-2_23&domain=pdf
https://doi.org/10.1007/978-3-031-20865-2_23
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Fig. 1. An example of document-level event factuality, where event factualities vary
from sentences to document.

the predicted event factuality may be contrary to the actual situation according
to the whole document as Fig. 1 shows, i.e., though the event truth of sentences
is mainly CT+, the document-level event factuality is PS−.

Generally, the factuality of an event should be uniquely determined by its
whole passage, rather than having multiple truth values from a sentence per-
spective. However, document-level event factuality identification (DEFI) is non-
trivial. When assessing document-level event factuality, in addition to the incon-
sistencies of event factuality between sentences and document, there are often
conflicts between truth values of the sentences, as S6 and S7 shown in Fig. 1.
Such inter-sentence conflicts can increase the complexity and difficulty of DEFI
task. Qian et al. [11] proposed an adversarial neural network to embark on
DEFI. Cao et al. [12] proposed a graph-based model by using graph convolu-
tional networks [15] with Gaussian distribution (ULGN), which mainly focused
on semantics, while previous work [2,7–10] has demonstrated the importance of
both semantic and syntactic information when considering EFI task. Besides, the
redundant fully-connected graph structure of ULGN will reduce intra-sentence
interaction and lead to perturbation of inter-semantics.

According to the above analysis, document-level EFI is mainly challenged
by: 1) the insufficient interaction from both inter-sentence and intra-sentence; 2)
the lack of use of syntactic dependency information altogether with semantics.

To address the above issues, we propose a novel Heterogeneous Semantics-
Syntax-fused Network (HS2N) to identify document-level event factuality.
Specifically, we first construct a heterogeneous graph containing rich inter-/intra-
sentence information with various nodes and edges to process the complicated
interaction between sentences and encode event at the document level. To further
improve the graph structure, we devise a fine-grained fusion module at the lexical
level to combine syntactic dependency information with semantics to initialize
sentence nodes by using a differentiated alignment method and Biaffine Atten-
tion mechanism. To verify the effectiveness of our model, we conduct extensive
experiments on two widely used datasets, and the results show that our model
achieves state-of-the-art performances. In summary, our contributions are as fol-
lows.

1. We propose a novel HS2N for document-level event factuality identification.
To our best knowledge, this is the first method that considers both semantic
and syntactic information for document-level EFI task by using a heteroge-
neous graph structure hierarchically.
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2. We design an information fusion mechanism for better learning the interac-
tions between a document’s semantic and syntactic dependency information.
By adequately utilizing the interactions, both semantics and syntactic depen-
dency information can be mutually improved to enhance model performance.

3. Extensive experiments are conducted to verify the effectiveness of our model.
The experimental results demonstrate that our model achieves state-of-the-
art performances.

2 Related Work

Event factuality identification (EFI) is a very challenging task in event extrac-
tion, which is crucial and helpful for many NLU applications, e.g., rumor detec-
tion [2–4], fake news detection [16,17] and knowledge base construction [6]. Stud-
ies on EFI are mostly limited to sentence-level due to its relative simplicity.

Sauŕı et al. [1,5] constructed a widely-used sentence-level EFI corpus–
FactBank, and proposed a rule-based model in the early phase of SEFI studying.
On the basis of FactBank, Qian et al. [7,8] first proposed a two-step framework
combining rule-based approaches and machine learning, and further devised a
generative adversarial network with auxiliary classification for SEFI. Current
deep learning models have demonstrated the importance of syntactic and seman-
tic structures of sentences to identify important context words for EFI tasks.
Based on this, Veyseh et al. [9] proposed a graph-based neural network for
SEFI. Le et al. [10] devised a novel model that explicitly considers multi-hop
paths with both syntax-based and semantic-based edges among words to obtain
sentence structures for representation learning in SEFI.

Existing studies on document-level event factuality are still scarce. Qian et
al. [11] constructed the first and only document-level event factuality dataset–
DLEF with two widely used English and Chinese subcorpus, and proposed an
LSTM-based adversarial neural network (Att 2+AT) for DEFI. Zhang et al. [13]
used a gated convolutional network and self-attention layer to capture the fea-
ture representation of the overall information for DEFI task, which outperforms
Att 2+AT. Recently, Cao et al. [12] proposed a state-of-the-art graph-based
method (ULGN) by utilizing Gaussian distribution to aggregate uncertain local
information into a global document structure to assess document-level event
factuality.

3 Methodology

We propose a heterogeneous semantics-syntax fusion network (HS2N) for
document-level EFI. Our approach is schematically illustrated in Fig. 2, which
consists of three major components: (1) Graph Construction and Initialization,
which construct a heterogeneous graph and aggregate enriched information into
sentence nodes; (2) Semantic and Syntactic Information Fusion, which fuse the
semantic and syntactic information by a differentiated alignment we devised and
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Fig. 2. The architecture of our proposed HS2N network for document-level event fac-
tuality identification. Lines with an arrow indicate the flow direction of vectors, dashed
lines with an arrow represent the initialization of graph/node.

Biaffine Attention mechanism; (3) Graph Inferring for Identification, which uti-
lizes the graph structure we proposed for event factuality identification. Each
component will be illustrated in detail.

3.1 Semantics-Syntax Fusion

Previous studies [2,7–10] have demonstrated the importance of both semantic
and syntactic information for EFI task. As the early stage of document-level EFI
study, existing DEFI studies mainly focus on utilizing semantics. To synthesize
richer intra-sentence information, we devise a fusion module of both semantic
and syntactic information. Specially, we categorized sentences of a document
into two types: Event-related Sentences (ES) and Plain Sentences (PS).

– ES is defined as sentences with the corresponding event in a document. Sen-
tence of this kind is crucial to the DEFI task, yet existing state-of-the-art
models [12] haven’t taken syntactic information into consideration. To obtain
richer latent text information, we use spaCy for dependency parsing of its
related event’s shortest dependency path. Precisely, we devise a differenti-
ated alignment method and use Biaffine Attention for data fusion.

– PS refers to sentences with no event in a document, which mainly contribute
to the inter-sentence interaction.

BERT [14] has been demonstrated as the state-of-the-art pre-trained model
for many natural language processing applications, including EFI task. We adopt
BERT to embed each sentence of a document as input of the fusion module and
that is defined as follows:

Si = [w1, w2, . . . , wn], i = 1, 2, . . . , N (1)
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Ei = BERT([w1, w2, . . . , wn]) (2)

Ees
i,j = BERT(s path(eS

es
i

j )) (3)

where Si denotes the i-th sentence of a document with a sentence type, i.e.,
Ses
i or Sps

i , and N , n denote the length of document and sentence, respectively.
Ei denotes the corresponding embedding of the i-th sentence, i.e., Ees

i or Eps
i .

Additionally, Eps
i is directly used to initialize PS-type sentence nodes, and Ees

i

will be put into the fusion module to integrate with syntax information. s path(·)
denotes the shortest dependency path of e

Ses
i

j , i.e., the j-th event of Ses
i , obtained

by spaCy dependency parser, and the related embedding is denoted as Ees
i,j .

Differentiated Alignment. We expect that two types of embedding learned
from BERT model can represent distinct information contained within the syn-
tactic shortest dependency paths and semantic correlations. Therefore, we adopt
a differentiated alignment between the embedding of semantic and syntactic
information. The differentiated alignment is defined as:

DA(Ees
i ,Ees

ij ) =
1

||Ees
i − Ees

ij ||F (4)

where the subscript F denotes the Frobenius norm [19].

Biaffine Attention. Inspired by studies in Dependency Parsing [20] and Named
Entity Recognition [21], we introduce a biaffine module for information fusion
after getting embedded from BERT and being aligned. Dozat and Manning [21]
demonstrated that the biaffine mapping performs significantly better than just
the concatenation of pairs. The biaffine fusion module is defined as follows:

fes
i =

[
Ees

i

1

]�
WbiaffineE

es
ij + b (5)

where Wbiaffine ∈ R
d×d denotes the Biaffine Attention matrix, b denotes bias,

fes
i denotes the semantics-syntax fusion feature obtained by biaffine fusion mod-

ule.

3.2 Heterogeneous Graph

Previous work [12] mainly focuses on the semantic information of document, and
its fully-connected graph structure will perturb model for a better prediction.
To synthesize the enriched intra-sentence information obtained by our fusion
module and learn the representation of document event as global contexts, we
propose a heterogeneous graph with multiple nodes and edges.
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Graph Construction. An event factuality document has different properties
for DEFI, i.e., document structure, sentences, and sentence-level event factual-
ity. Thus, we devise a heterogeneous graph [22] to handle these attributes for
factuality identification as shown in Fig. 2. Specifically, there are three types of
nodes to encode information of different semantics:

– document node, which captures the global semantics of a document. We ini-
tialize this node with the output of BERT, which takes the entire document
text as input.

– sentence node, which is initialized by fes
i or Eps

i according to its sentence
type.

– mention node, which encodes the event of a sentence by BERT.

Therefore, the types of edges can be defined as follows:

– document-mention edge: Document node is connected with all mention nodes.
– sentence-mention edge: ES-type sentence node is connected with its corre-

sponding mention node.
– sentence-sentence edge: A sentence node is connected with its previous and

next sentence nodes if there are.

Compared with Cao et al. [12], which uses a fully-connected graph, our HS2N
graph structure is more rational because we only connect document node, which
is the final identification node for EFI, with mention node. Such connection
excludes the perturbations that come from global document node. Besides, it
allows nodes of all kinds to interact with each other by using mention nodes as
a hub.

Graph Inferring. We apply an l-layer GCN [15] to convolute the graph.
The optimal l is set to be 2 after extensive experiments on the performance
of GCN [15]. The (l + 1)-th GCN-layer-wise inference is defined as:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (6)

where Ã = A + I, A and I denotes the adjacency matrix of the constructed
graph and identity matrix, respectively. σ(·) denotes an activation function, such
as ReLU(·) = max(0, ·). W (l) denotes a layer-specific trainable weight matrix.

To be precise, the i-th element of the (l + 1)-th GCN-layer-wise inference
matrix is defined as:

h
(l+1)
i = σ(

∑
j∈ne(i)

1√
D̃i,iD̃j,j

h
(l)
j W (l)) (7)

where ne(i) denotes the neighbor nodes set of the i-th node. D̃i,i =
∑

j∈ne(i)

Ãj,j .

Following Qian et al. [11], we use cross-entropy as the loss function below:

LD(θ) = − 1
M

M−1∑
i=0

log p(y(i)
j |x(i); θ) (8)
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where M is the number of instances, p(y(i)
j |x(i); θ) denotes the probability of

instance xi being predicted as the golden label y(i). θ is a hyper-parameter.

4 Experimentation

4.1 Datasets

To verify the effectiveness of our model, we conduct experiments on two widely
used English and Chinese datasets constructed by Qian et al. [11]. The statistics
of these two datasets are shown in Table 1.

Table 1. Statistics of the documents in DLEF dataset. DEFC denotes document-level
event factuality class, and SEFC denotes the number of sentence-level event factuality
categories within a document.

Dataset DEFC SEFC = 1 SEFC= 2 SEFC ≥ 3

DLEF en CT+ 1022 119 9

CT− 162 97 20

PS+ 93 157 24

PS− 2 6 4

Uu 5 6 1

Total 1284 385 58

DLEF zh CT+ 2061 290 52

CT− 491 612 239

PS+ 321 425 102

PS− 9 11 16

Uu 8 5 7

Total 2890 1343 416

4.2 Experimental Settings

We use AdamW algorithm [18] to optimize model parameters. The optimal
dropout rate and learning rate is set to 0.7 and 2e−5, respectively. The num-
ber of HS2-graph convolution layers is set to 2. The size of hidden states of the
HS2-graph convolution layer is 768. In our implementations, our method uses
the HuggingFace’s Transformers library1 to implement the BERT Base model.

The PS− and Uu documents cover only 1.39% and 1.20% in DLEF English
and Chinese corpus, respectively. To be fairly compared with previous stud-
ies [11–13], we mainly focus on the performance of CT+, CT−, and PS+ and

1 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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conduct 10-fold cross-validation on both English and Chinese dataset. F1 score
is adopted to evaluate each category of event factuality, micro-/macro-averaged
F1 score is also adopted for overall performance evaluation of event factuality
categories.

4.3 Baselines

To verify the effectiveness of our HS2N, we conduct the following strong baselines
for comparison.

– BERT Base [14], which utilizes the BERT-base to encode the document,
and uses the [CLS] token for prediction.

– Att 2+LSTM [11], which utilizes an intra-sentence attention to capture the
most important information in sentences, and employs the long short-term
memory network (LSTM) for DEFI.

– Att 2+AT [11], which leverages the intra-sentence and inter-sentence atten-
tion to learn the document representation. Adversarial training is adopted to
improve the robustness.

– MaxEntVote [11], which uses maximum entropy model to identify sentence-
level event factuality, and considers voting mechanism, i.e., choose the value
committed by the most sentences as the document-level factuality value.

– SentVote [11], which is similar to MaxEntVote model, voting mechanism is
used to identify document-level event factuality. Inter-sentence is not consid-
ered in it.

– GCNN [13], which uses a gated convolution network and self-attention layer
to capture the feature representation of the overall information to identify
the document-level event factuality.

– ULGN [12]2, which proposes a graph-based model [15] by using Gaussian
distribution to aggregate local uncertainty into global structure to capture
document feature for DEFI. The original results of ULGN somewhat are far
to reach in practice, so we adopt the best implementation results via its
publicly available code instead.

4.4 Result and Analysis

Experimental results on the document-level event factuality datasets are shown
in Table 2, and we can observe from the experimental results that:

1. Our model performs the best and outperforms all baseline models on
both English and Chinese DLEF dataset. Notably, on the English dataset,
our model’s micro-/macro-F1 score outperforms the current state-of-the-art
model ULGN by 3.13/5.18, and outperforms the previous state-of-the-art
model Att 2+AT by 7.4/12.46, which showcases the robustness and effective-
ness of our proposed method for document-level event factuality identifica-
tion. Though spaCy achieved the state-of-the-art performance for parsing,

2 https://github.com/CPF-NLPR/ULGN4DocEFI.

https://github.com/CPF-NLPR/ULGN4DocEFI
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Table 2. Experimental results on the document-level event factuality datasets (English
and Chinese respetively). The best performance is in bold.

Dataset Methods CT+ CT− PS+ Micro-F1 Macro-F1

DLEF en MaxEntVote 75.14 58.17 35.89 68.42 56.40

Att 2+LSTM 79.18 65.25 53.65 73.23 66.03

SentVote 83.98 70.22 57.85 78.06 70.68

Att 2+AT 89.84 76.87 62.14 83.56 76.28

BERT 89.38 71.82 69.09 83.53 76.76

GCNN 91.19 80.28 70.76 86.37 80.74

ULGN 92.25 85.53 74.01 87.83 83.26

HS2N(Ours) 93.39 88.46 84.37 90.96 88.74

DLEF zh MaxEntVote 72.22 62.44 58.29 67.72 64.32

Att 2+LSTM 81.89 68.82 49.78 71.12 67.28

SentVote 80.68 72.66 58.39 74.70 70.58

Att 2+AT 87.52 83.35 74.06 84.03 81.64

BERT 84.79 88.71 79.33 85.83 84.28

GCNN 89.60 85.38 76.81 86.03 83.93

ULGN 93.16 94.12 86.78 92.48 91.35

HS2N(Ours) 92.89 94.42 88.93 92.95 92.08

its parsing result in Chinese is still unsatisfactory, which leads to the slight
improvement of micro-/macro-F1 score of 0.47/0.73 and 8.92/10.44 compared
with ULGN and ATT 2+AT on Chinese dataset, respectively.

2. According to the experimental gap between graph-based models, i.e., HS2N
and ULGN, and traditional deep learning models, i.e., Att 2+AT and GCNN,
it can be inferred that graph structure is more suitable for processing
document-level tasks. This is due to the fact that traditional models are
limited by their structure, which is more linear in processing the input doc-
ument text, while the graph structure can better encapsulate document and
its corresponding data, and better utilizes documents for global prediction.

3. BERT has been proved to be one of the best models that can obtain deeper
semantic information. Our model outperforms BERT on both English and
Chinese datasets. We attribute the performance to the effectiveness of our
semantics-syntax fusion method and the simplicity and efficiency of our
proposed graph structure that can guarantee a deep and profound interac-
tion from both inter-sentence and intra-sentence perspectives, which can dig
deeper for enriched semantic information.
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Table 3. Experimental results on ablation study. DA refers to the differentiated align-
ment method for information fusion. SF means syntactic information fusion module.
That is, without SF means to experiment only with the heterogeneous graph. The best
performance is in bold.

Dataset Methods CT+ CT− PS+ Micro-F1 Macro-F1

DLEF en HS2N(Ours) 93.39 88.46 84.37 90.96 88.74

w/o DA 93.16 88.19 77.55 90.58 86.97

w/o SF 92.31 85.71 74.07 88.37 84.03

ULGN 92.25 85.53 74.01 87.83 83.26

DLEF zh HS2N(Ours) 92.89 94.42 88.93 92.95 92.08

w/o DA 93.27 94.27 88.21 92.82 91.84

w/o SF 90.91 95.08 87.50 91.16 92.52

ULGN 93.16 94.12 86.78 92.48 91.35

4.5 Ablation Study

To verify the effectiveness of our proposed model, we design an ablation test to
investigate the effectiveness of these modules separately. As shown in Table 3,
we can observe that:

1. After removing the differentiated alignment (DA) method from fusion mod-
ule, the macro-F1 score of HS2N dropped by 1.77 on DLEF English dataset,
which demonstrated the effectiveness of our pre-fusion processing.

2. After removing the syntax fusion module (SF), the macro-F1 score of HS2N
dropped by 4.71 on DLEF English dataset. Such experimental results demon-
strate that dependency syntax and semantic information are equally impor-
tant for this task.

3. To be precise, there is only a heterogeneous graph remained after removing
the SF module, only considering semantics as ULGN did. However, the macro-
F1 score of HS2N still outperforms ULGN by 0.77 and 1.17 on both English
and Chinese datasets, respectively. We attribute this success to the rational
and straightforward structure of our HS2-graph, which considering mention
nodes as a hub for interaction within a document, reducing perturbation from
redundant information as in the fully-connected graph structure of ULGN.

5 Conclusion

In this paper, we propose a novel fusion graph neural network–HS2N for
document-level event factuality identification, which not only integrates both
semantic and syntactic information efficiently by using Biaffine Attention and a
differentiated alignment method but also considers both inter and intra sentence
interaction of a specific document more carefully. Extensive experiments showed
that our model achieves state-of-the-art performances.
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Abstract. Aspect Category Detection (ACD), which belongs to the
research of fine-grained sentiment analysis, aims to identify the aspect
categories mentioned in given sentences. However, the distribution of
data from the real world is imbalanced or even long-tailed. This fact poses
significant challenges for ACD because it is hard to fully extract the fea-
tures of tail classes. Since a sentence usually contains one or more aspect
categories, we model ACD as a multi-label text classification task. Under
the long-tailed setting, this paper proposes a novel Aspect-Fusion model
for Long-Tailed Aspect Category Detection (AFLoT-ACD). AFLoT-
ACD first extracts the fine-grained aspect features from sentence vectors
by the mechanism of Interactive Attention Network with characteris-
tics of Long-Tailed distribution (IAN-LoT). A long-tailed distribution-
based attention mechanism is also incorporated, which integrates con-
textual aspect-level semantic information. Additionally, an Advanced
Distribution-Balanced loss (A-DB) is introduced to overcome the prob-
lems of label co-occurrence and the dominance of negative classes in
training a long-tailed multi-label text classifier. We conduct experi-
ments on three datasets and compare AFLoT-ACD with eight base-
lines. AFLoT-ACD outperforms the SOTA with over 7% improvements
in Macro F1 score for tail classes and also achieves higher detection per-
formance in general.

Keywords: Aspect category detection · Fine-grained sentiment
analysis · Long-tailed distribution · Multi-label classification

1 Introduction

Aspect-based sentiment analysis (ABSA) [1,4,23] is a fine-grained sentiment
analysis task, which has a wide range of applications, such as public opinion anal-
ysis and information retrieval. As a major subtask of ABSA, Aspect Category
Detection (ACD) plays a significant role in ABSA which affects sentiment classi-
fication tasks [26]. Given a set of predefined aspect categories, ACD attempts to
identify all aspect categories in a sentence. Figure 1 illustrates a simple example:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 321–334, 2022.
https://doi.org/10.1007/978-3-031-20865-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20865-2_24&domain=pdf
https://doi.org/10.1007/978-3-031-20865-2_24
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Fig. 1. An example of the ACD task. The underlined words are the aspect categories to
be detected. The corresponding label is 1 if the sentence contains the aspect category.

food and service are two aspect categories to be identified in the given sentence.
The aspect categories, which are words or phrases in the given sentence, can be
expressed as explicit ones (e.g. service) or implicit ones (e.g. bread).

Since a sentence may contain one or more aspect categories, the ACD task
needs to consider information of different aspect categories. Some existing works
apply deep learning-based methods to address the ACD task [7]. Recently, Hu et
al. [9] discovered that the datasets used for ACD show the long-tailed tendency.
For example, as seen from Fig. 2, two public ACD datasets present approximately
long-tailed distributions, in which the number of training instances per aspect
varies significantly from thousands for food to as few for price. Long-tailed dis-
tribution has brought huge challenges for machine learning tasks [11,20], which
may cause bias for classification to head classes. Therefore, a critical problem
arises: how to improve the detection of tail classes in ACD under the
long-tailed distribution settings?

Fig. 2. The distributions of aspect categories on MAMS (left) and SemEval2014 (right).

In this paper, we model ACD as a multi-label classification task and propose a
novel Aspect-Fusion model for Long-Tailed Aspect Category Detection (AFLoT-
ACD). It can be effectively applied to long-tailed data. This model introduces the
Interactive Attention Network with characteristics of Long-Tailed distribution,
namely IAN-LoT mechanism. Besides, AFLoT-ACD incorporates an attention
mechanism based on the long-tailed distribution. We also propose an Advanced
Distribution-Balanced (A-DB) loss function to improve the prediction of tail
classes. The main contributions include:
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1. We consider the long-tail phenomenon in ACD task, which is rarely discussed
previously. We propose an AFLoT-ACD model which can effectively improve
the detection of tail classes, and achieve strong performance in general.

2. We adopt an A-DB loss function for ACD to address the problems of label
co-occurrence and dominance of negative classes in long-tailed scenarios.

3. To extract the fine-grained aspect features and additional context-level
semantics, we propose an IAN-LoT mechanism that combines the long-tailed
characteristics. Additionally, we introduce a fused attention mechanism to
capture the most relevant aspect category information.

2 Related Work

2.1 Aspect Category Detection

The previous works on ACD mainly include two categories: lexicon-based meth-
ods and machine learning-based methods. The lexicon-based methods primarily
integrate a dictionary of opinion words and certain grammatical rules [24]. Com-
pared with the lexicon-based methods, the most recent machine learning-based
methods have better performance. Ghadery et al. [7] addressed the ACD task
in multiple languages by using different fully connected layers to detect aspect
categories. Huang et al. [12] fused the sentence and the aspect category atten-
tion feature representation by multi-head attention. In addition, some works had
developed joint models ecuting ACD and sentiment classification tasks simulta-
neously [17,25,26]. Li et al. [17] proposed a multi-instance multi-label learning
network for aspect-category sentiment analysis, in which attention-based ACD
generates effective attention weights for different aspect categories. However, the
above methods neglect the fact that aspect categories generally show the char-
acteristics of long-tailed distribution. Recently, Hu et al. [9] formulated the ACD
task in the few-shot learning scenario to solute the long-tailed challenge.

2.2 Long-Tailed Distribution in Multi-label Classification

Re-sampling is a common strategy that includes oversampling of minority classes
[30] and undersampling of majority classes [3]. However, re-sampling methods are
ineffective in the multi-label scenario, since re-sampling samples may not lead
to a balance when majority classes co-occur with minority classes. Recently,
loss function manipulation has been explored to solve long-tailed multi-label
classification. For example, Lin et al. [18] presented focal loss function based on
the standard cross entropy loss. It allowed the model to focus on hard samples
while reducing the weight of easy samples. Wu et al. [27] provided a distribution-
balanced loss function aiming at the co-occurrence of labels and the dominance of
negative labels in the computer vision (CV) domain. Huang et al. [11] introduced
the distribution-balanced loss function to the natural language processing (NLP)
domain for multi-label text classification tasks. This paper incorporates long-
tailed distribution information and aspect category information. Meanwhile, we
present an A-DB loss inspired by [27]. It effectively improves the identification
effect in long-tailed ACD.
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3 Methodology

3.1 Problem Formulation

There are m predefined aspect categories A = {a1, a2, . . . , am}, where aj is a

word or phrase that describes the j -th aspect. D =
{{

Sl, Âl

}∣∣∣ 1 ≤ l ≤ N
}

is the

dataset composed of N sentences along with their aspect categories Âl, where
Âl ⊆ A. Given a sentence Sl = {w1, w2, . . . , wn} , we can represent the aspect
categories Âl as Yl =

{
yl
1, y

l
2, . . . , y

l
m

}
, where yl

j ∈ {0, 1}, and yl
j = 1 if and only

if the l -th sentence contains the j -th aspect category aj . ACD aims to detect
all of the aspect categories in a sentence Sl. Therefore, it can be modeled as a
multi-label classification problem. In long-tailed settings, there are around 80%
of instances that appear in less than 20% of classes, called head classes, and
the remaining classes with a low frequency called tail classes [29].

3.2 Proposed Model

This section describes the proposed AFLoT-ACD. Figure 3 illustrates the archi-
tecture of AFLoT-ACD, which contains six layers: input layer, embedding layer,
LSTM layer, IAN-LoT layer, fused attention layer, and prediction layer.

Input Layer. The inputs of AFLoT-ACD are m predefined aspect categories
A = {a1, a2, . . . , am}, and a sentence Sl = {w1, w2, . . . , wn} in the dataset.

Embedding Layer. For each word wi, we can get a vector wi
e ∈ Rd from E1 ∈

R|V |×d, where |V | is the vocabulary size and d is the embedding dimension.
Meanwhile, for each aspect ai, we can get a vector ai

e ∈ Rd from E2 ∈ Rm×d.
The l-th sentence Sl and the predefined aspect categories A are respectively
converted to word embeddings of the sentence Sl =

{
w1

e , w2
e , . . . , wn

e

} ∈ Rn×d

and word embeddings of aspect categories Al =
{
a1

e, a
2
e, . . . , a

m
e

} ∈ Rm×d, where
n is the number of words, m is the number of aspect categories.

Fig. 3. The architecture of AFLoT-ACD.
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LSTM Layer. To better perceive contextual semantic, word embeddings of the
sentence and aspect categories are fed into a LSTM network [8], which can output
hidden states Hw =

{
h1

w, h2
w, . . . , hn

w

}
and Ha =

{
h1

a, h2
a, . . . , hm

a

}
. The hidden

states of LSTM hi
w and hj

a are computed by Eq. 1:

hi
w = LSTM

(
hi−1

w , wi

)
, hj

a = LSTM
(
hj−1

a , aj

)
, (1)

where the sizes of the hidden state is set to be d.

IAN-LoT Layer. This layer applies the proposed IAN-LoT mechanism. Inspired
by the use of attention-over-attention (AOA) in sentiment classification [10],
we introduce a fine-grained interactive attention matrix to learn better repre-
sentations of aspect categories and the sentence. The entire aspect vector that
incorporates long-tailed characteristics is obtained. Specifically, we first calculate
the interactive attention matrix I ∈ Rn×m with the hidden states Hw and Ha.
The process is as follows:

I = Hw · HT
a . (2)

Then, the softmax function is applied to each row of the attention matrix I,
which is calculated by Eq. 3:

kij =
exp (Iij)∑
i exp (Iij)

, (3)

where kij is the i-th row and j-th column of k ∈ Rn×m. k represents the attention
weight of the sentence to aspect categories. Given k, we introduce long-tailed
characteristics as follows:

Î = β · k, (4)

where the weight parameters β = {β1, β2, . . . , βm}, which are calculated as βj =
1

Naj
, Naj

is the number of instances for aspect category aj in the training dataset.
For example, a tail class aj can achieve more attention when training by a larger
weight βj . And Î ∈ Rn×m represents weight information for each aspect category.

The finer-grained weight information IL of aspect categories based on the
long-tailed distribution can be obtained through the max-pooling of Î. The
weight information is then multiplied by Al to generate the entire aspect cate-
gory vector representation s, s ∈ R1×d. The process is as follows:

s = IL × Al . (5)

Fused Attention Layer. This layer takes the output s of the IAN-LoT layer and
Hw =

{
h1

w, h2
w, . . . , hn

w

}
as inputs, the fused vetor ĥ is computed by:

ĥ = W · s + Hw, (6)

where W ∈ Rn×1 is a learnable weight parameter, and ĥ ∈ Rn×d is a vector
that fuses contextual aspect level semantic information. Fine-grained learnable
weights allow for better integration of aspect information with context. ĥ is fed
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into an attentional mechanism to generate attention weight for each predefined
aspect category [28]. For the j-th aspect category:

αj = softmax
(
uT

j · β · tanh
(
Wj · ĥj + bj

))
, j = 1, 2, . . . ,m, (7)

where Wj ∈ Rd×d, bj ∈ Rd, uj ∈ Rd are learnable parameters, and αj ∈ Rn is
the attention weight vector.

Prediction Layer. We use the ĥ as the sentence representation for prediction.
For the j-th aspect category:

ŷj = sigmoid
(
Wj · ĥ · αT

j + bj

)
, j = 1, 2, . . . ,m, (8)

where Wj ∈ Rd×1, bj is a scalar, ŷj is the prediction of the j-th aspect category.

3.3 Loss Function

In this section, we introduce the A-DB loss function. Binary cross entropy (BCE)
loss is commonly used for multi-label classification problems [2]. However, BCE
may focus on learning features from negative samples because positive and neg-
ative classes are uniformly processed in BCE. In Fig. 4, it can be seen intuitively
that the head class food has a high possibility of occurring simultaneously with
other aspect categories. Inspired by [27], we introduce A-DB loss function aim-
ing at the co-occurrence of labels and the dominance of negative labels in ACD.
We improve the weight of the rebalance calculation method to ensure that the
weights of head and tail classes are more appropriate for ACD and modify the
smoothing function to further improve the performance of the model.

Fig. 4. The label co-occurrence on MAMS-LT (left) and SemEval2014-LT (right) (refer
to Sect. 4.1). The color coding of the co-occurence matrix is based on the conditional
probability p (i |j ) of class in the i-th column on class in the j-th row.

Specifically, nj =
|N |∑
l=1

yl
j is the number of instances contained the j-th aspect

category in the dataset. Without considering classes co-occurrence, the sam-
pling frequency expectation is calculated by Pj (Sl) = 1

m
1

nj
for the j-th aspect
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category. The instance sampling frequency is calculated based on the repeated
sampling of each positive class in the instance, and the process is as follows:

P I (Sl) =
1
m

·
m∑

j=1

1
nj

· yl
j . (9)

Rebalanced weight rl
j is calculated by:

rl
j =

[
Pj(Sl)
P I(Sl)

]γ−1

, (10)

where γ is a hyper-parameter. The modified smoothing function is used to map
rl
j into a suitable value as follows:

r̂l
j = ω + log

(
1 + exp

(−ϕ × (
rl
j − μ

)))
, (11)

where ω, ϕ and μ are scalars. In order to avoid the advantage of negative classes,
A-DB introduces a hyper-parameter λ and a specifical bias τj as follows:

τj = η · log
(

1
ρj

− 1
)

, (12)

where ρj is the proportion of the number of j-th aspect category to the total
number of samples, and η is a hyper-parameter. The proposed A-DB loss function
is as follows:

L = 1
m ·

m∑
j=0

r̂l
j ·

[
yl

j · log
(
1 + e−(zl

j−τj)
)

+ 1
λ · (

1 − yl
j

) · log
(
1 + eλ(zl

j−τj)
)]

.
(13)

4 Experiments

4.1 Datasets

We conduct experiments on three datasets, including original MAMS [13],
MAMS-LT and SemEval2014-LT. First, we compare the performance of AFLoT-
ACD on original MAMS, which is a widely used and public dataset for ACD
tasks [16,17]. In addition, to better show the advantages of AFLoT-ACD under
long-tailed distributions, we use MAMS-LT and SemEval2014-LT, which fit the
standard long-tailed distribution. This kind of experiment follows the previ-
ously long-tailed practice [27]. SemEval2014-LT and MAMS-LT come from the
SemEval2014 dataset [23] and MAMS dataset [13] respectively. The procedure
includes: we first sort all aspect categories based on the original data and deter-
mine the head and tail classes; then, instances are added or removed based on
the Pareto Distribution [19].

SemEval2014-LT training set contains 1422 sentences. We randomly cut
out 12.5% to be validation set and the rest to be the training set. Experiments are
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evaluated on original SemEval2014 testing set. MAMS-LT training set contains
1502 sentences. We evaluate experiments on original MAMS testing set.

Figure 5 shows the distribution of MAMS-LT and SemEval2014-LT datasets.
It can be seen that a few aspect categories occupy the majority of the samples
while the majority of aspect categories have few samples on MAMS-LT and
SemEval2014-LT.

(a) MAMS-LT. (b) SemEval2014-LT.

Fig. 5. The distributions on MAMS-LT and SemEval2014-LT.

4.2 Implementation Details

We implement AFLoT-ACD in PyTorch 1.2 [21]. The word embedding vectors
are initialized using 300-dimensional word vectors pre-trained by GloVe [22],
and the aspect embedding vectors are randomly initialized. The batch sizes are
set to 64. AFLoT-ACD is optimized by the Adam optimizer [15]. The learning
rate is set to 0.001.We set d = 300, λ = 5, η = 0.05, ω = 10, ϕ = 0.2, and
μ = 0.1. In order to adjust the weight of the head classes and the tail classes
appropriately, the experiment is used to confirm the hyperparameter γ. Figure 6
depicts the effect of γ for the head classes, tail classes and total classes respec-
tively. Synthetically, the results reveal that γ = 2 is the optimal solution to the
problem.

Fig. 6. The effect of γ on the Macro F1 scores of the head classes, tail classes, and
total classes.
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We compare AFLoT-ACD with the following six baselines: four ACD models:
TextCNN [14], LSTM [8], SVR [6], SCAN [16]; two joint models that perform
the ACD and ACSC simultaneously: AS-Capsules [26], AC-MIMLLN [17].
We also design the AFLoT-ACD-BERT model which combines BERT [5] and
AFLoT-ACD. We replace the embedding layer and the LSTM in AFLoT-ACD
with the uncased basic pre-trained BERT. AFLoT-ACD-BERT takes “[CLS]
sentence [SEP] aspect category [SEP]” as input like ACMIMLLN-BERT [17].

4.3 Experimental Results and Analysis

Comparisons with Baseline Methods. To evaluate the performance of AFLoT-
ACD, we first compare the AFLoT-ACD with baseline methods on MAMS-LT
and SemEval2014-LT. The following conclusions can be taken based on the
experimental results in Table 1. First, AFLoT-ACD outperforms all baseline
methods on MAMS-LT and SemEval2014-LT, and AFLoT-ACD can obtain bet-
ter improvement by using more powerful sentence encoders. Experimental results
show that AFLoT-ACD has a greater capacity for long-tailed ACD. Second,
AFLoT-ACD has a distinct advantage in Macro F1 scores on MAMS-LT, indi-
cating that AFLoT-ACD performs better for sentences with multiple aspect cat-
egories. Third, AFLoT-ACD outperforms on MAMS-LT than on SemEval2014-
LT, which could be owing to the SemEval2014-LT containing more sentences
with only one aspect category. It weakens the effect of the re-balancing weight
we designed for the label co-occurrence problem. But it can be seen that the
effect is greatly improved on MAMS-LT.

Table 1. Macro F1 scores by baseline methods and AFLoT-ACD on MAMS-LT and
SemEval2014-LT with the best results represented by boldface.

Methods MAMS-LT SemEval2014-LT

(1) SVR 74.13% 63.20%

(2) LSTM 77.27% 76.55%

(3) TextCNN 80.04% 77.48%

(4) SCAN 76.18% 79.55%

(5) AC-MIMLLN 76.18% 78.87%

(6) AS-Capsules 80.76% 80.18%

(7) AFLoT-ACD (ours) 83.04% 82.10%

(8) BERT 84.19% 82.11%

(9) AC-MIMLLN-BERT 83.08% 81.23%

(10) AFLoT-ACD-BERT (ours) 86.79% 84.44%
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Table 2. The results of comparisons for tail classes on the Semeval2014-LT.

Methods Anecdotes/

miscellaneous

Service Ambience price Macro F1

AC-MIMLLN 73.62% 85.99% 72.16% 78.83% 78.87%

AS-Capsules 72.37% 89.17% 70.1% 79.72% 80.18%

AFLoT-ACD (ours) 74.6% 88.0% 77.98% 85.71% 82.10%

BERT 68.94% 88.82% 73.96% 87.58% 82.11%

AC-MIMLLN-BERT 71.09% 89.38% 73.68% 84.56% 81.23%

AFLoT-ACD-BERT (ours) 75.05% 86.23% 79.41% 92.02% 83.44%

Effectiveness of AFLoT-ACD on Tail Classes. We conduct experiments to show
the performance of tail classes in Table 2. Comparing the best baseline AS-
Capsules and recent work AC-MIMLLN on Semeval2014-LT, we can observe
that AFLoT-ACD achieves 5.99% and 5.82% higher F1 scores than AS-Capsules
respectively for tail classes price and ambience, and AFLoT-ACD performs
slightly than AS-capsules for service. Besides, AFLoT-ACD-BERT surpasses all
BERT-based models for most aspect categories, especially for ambience and
price. We can observe that AFLoT-ACD effectively enhances the effect of tail
classes.

Performance Comparisons the Original Dataset. In order to show the perfor-
mance of our AFLoT-ACD on original MAMS dataset, we compare the results
of AC-MIMLLN and AFLoT-ACD for each aspect category. As seen in Table 3,
AFLoT-ACD outperforms AC-MIMLLN for most aspect categories. Especially
for tail classes price, the result of AFLoT-ACD is 11.25% higher than AC-
MIMLLN. Besides, we can observe that significant increases for tail classes can

Table 3. F1 scores of AC-MIMLLN and AFLoT-ACD for each aspect category on the
MAMS and the best results are represented by boldface.

Classes Aspects Methods

AC-MIMLLN AFLoT-ACD (ours)

head food 94.42% 93.76%

Staff 94.52% 95.07%

tail miscellaneous 70.45% 73.0%

place 83.71% 83.71%

Ambience 85.25% 88.89%

price 68.75% 80.0%

menu 95.0% 94.34%

Service 81.0% 83.87%

Macro F1 scores 84.14% 86.58%
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compensate slight decreases for head classes, which makes up for the perfor-
mance of total results. The experimental results indicate that AFLoT-ACD is
also effective on the original dataset in the ACD task.

Table 4. F1 scores of AFLoT-ACD with different loss functions for long-tailed tasks.

Loss Function MAMS-LT SemEval2014-LT

BCE Loss 82.68% 79.92%

DB Loss 81.04% 80.10%

DB-Focal Loss 82.10% 81.60%

A-DB Loss (ours) 83.04% 82.10%

Effectiveness of the Proposed Loss Function. Table 4 compares performances
of AFLoT-ACD with various long-tailed loss functions, including BCE [2],
DB [27], DB-Focal [27] and A-DB (our proposed). For MAMS-LT and
SemEval2014-LT dataset, we can observe that A-DB loss outperforms the pre-
vious long-tailed loss functions in the ACD task.

4.4 Ablation Study

We conduct an ablation study to better assess the effects of components of
AFLoT-ACD. Table 5 shows the experimental results of Macro F1 scores of each
part of AFLoT-ACD. Note that Table 5(1) is compared to Table 5(4) using stan-
dard BCE loss; for Table 5(2) and Table 5(3), we apply deletion to compare with
Table 5(4). We can observe that removing any one of the three components will
result in a decrease for the performance of AFLoT-ACD.

Table 5. Experimental results of Macro F1 scores of each component of AFLoT-ACD.

IAN-LoT A-DB loss Fused attention MAMS-LT SemEval2014-LT

(1)
√ √

82.68% 79.92%

(2)
√ √

80.79% 81.22%

(3)
√ √

81.6% 81.21%

(4)
√ √ √

83.04% 82.10%

5 Conclusion

In this study, we propose an AFLoT-ACD model for ACD tasks in the long-
tailed scenario. Specifically, we design an A-DB loss function to focus on the
problems of label co-occurrence and dominance of negative classes. Besides, to
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better learn long-tailed information and aspect information, we propose the IAN-
LoT mechanism and the fused attention. Experimental results on three datasets
show that AFLoT-ACD outperforms eight baselines in general. Additionally,
to exhibit the effectiveness of the proposed A-DB loss function, we compare the
performance by using different loss functions. We also conduct the ablation study
to further show the effectiveness of AFLoT-ACD.
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Abstract. The task of question answering is to find the most appropri-
ate answer for an input question in natural language from a given cus-
tom knowledge base of information. While the performance of question
answering systems has been significantly improved, they still struggle to
answer questions that require commonsense reasoning. To capture com-
mon sense beyond associations, a challenging dataset CommonsenseQA
for commonsense question answering is proposed. As a result, several
models have been developed for tackling this challenge. But existing
approaches are still limited in handling contextual representation and
reasoning. In this paper, we propose a model for commonsense question
answering by implementing a form of choice-driven contextual reasoning
through novel encoding strategies and choice differentiation mechanisms.
We have conducted experiments on major baselines for commonsense
question answering and our experimental results show that the proposed
model significantly outperforms strong baselines.

Keywords: Commonsense question answering · Multiple choice
questions · Contextual reasoning

1 Introduction

A key component in many practical AI systems, such as chatbots, virtual assis-
tants, and exam robots [3,5] is to answer complex questions that require spe-
cialised knowledge with a level of accuracy, but existing models for question
answering are still limited in reasoning about commonsense knowledge. Thus
commonsense question answering (QA) has been proposed as an initiative for
answering questions in natural language by understanding the contextual infor-
mation of a given question and performing commonsense reasoning to select the
best answer from a set of candidate answers [2,22]. Figure 1 shows an exam-
ple, where five choices (candidate answers) are provided and sometimes they
are indistinguishable if certain subtle contextual information is missing. In par-
ticular, without establishing the connection between “business restaurant” and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 335–346, 2022.
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Fig. 1. An example from the CommonsenseQA dataset.

“business sector”, pre-trained language models alone, such as Albert [10], may
not be able to select the correct answer.

As pre-trained language models for QA [6,10,14,17] do not explicitly process
knowledge and commonsense reasoning, much research effort has been made in
developing QA models that are both accurate and interpretable by modelling
human commonsense reasoning. In particular, knowledge graphs such as Con-
ceptNet [13] have been used as a source of external knowledge, and there are
several approaches that model commonsense reasoning through the graph con-
nectedness of concepts [11,23]. Some proposals have been reported along this
line, e.g., [15,22], but it still remains a challenge to effectively model common-
sense reasoning into QA systems in the purpose of obtaining interpretable and
better accurate QA models.

While existing QA models are still limited in commonsense reasoning, human
beings are good at building semantic connections between concepts through
background knowledge and cognitive strategies. For instance, to refine the
semantic connections established and to eliminate distractor choices that are
semantically close to the answers, a human may compare the choices to under-
stand their subtle differences. For example, while “hotel”, “mall” and “business
sector” are all buildings that may have a “business restaurant”, a “business sec-
tor” stands out with the features of its business activities. Hence, a comparison
among the choices can help to focus their differences and highlight those dif-
ferentiable features of each choice. Some attempts have been made to simulate
contextual reasoning using deep neural networks [20,24]. However, the accu-
racy of these models needs to be further improved. Moreover, the two different
semantic representations produced from two reading strategies in [20] are aggre-
gated in a naive way by only merging their confidence degree in the last stage.
It would be interesting to directly aggregate the semantic representations. A
two-way matching strategy for reading comprehension is introduced in [24] and
thus the correlations between choices are used in their model. The strategy tar-
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gets five reading comprehension datasets, but it doesn’t illustrate its role in the
commonsense question answering. Meanwhile, it is unclear whether correlations
between choices can be reduced to increase differences by reducing correlations.

In this paper, we aim to model some aspects of contextual reasoning in nat-
ural language processing (NLP) and thus propose a method of commonsense
reasoning for better accuracy (we call it Choice-driven Contextual Reasoning or
CCR). Given a question-choice pair, by employing a pre-trained language model,
such as Albert [10], we simulate human beings’ cognitive strategies, including
contextual information extraction from the question to the choice, as well as from
the choices to the question, and from external knowledge bases. The proposed
approach is able to compare choices w.r.t. the question and integrate contex-
tual information using attention mechanisms. Evaluation shows that our model
outperforms major models that do not use heavyweight language models (like
T5 [17]), ConceptNet [13], or its source corpus OMCS [19]. This is not a restric-
tion since the use of ConceptNet or OMCS will make the commonsense question
answering much less challenging. Also, some cognitive strategies we propose can
further enhance the performance of other QA models such as Albert [10], KCR1

and XLNET+GR [15]. Our model through case study shows our strategies are
able to help intuitively rank the choices in some tricky cases.

Codes and data for our model can be found at https://www.dropbox.com/
sh/dryl2c00vh612fg/AABXg0FmU5OAB6ltByQUHgqia?dl=0.

2 Our Approach

Our approach focuses on the task of commonsense QA. Formally, given a nat-
ural language question q and m choices (or candidate answers) a1, a2, . . . , am,
the goal is to find the most plausible answer by employing commonsense knowl-
edge and reasoning. In datasets like CommonsenseQA [21], some key concepts
{c

(1)
q , c

(2)
q , . . . , c

(n)
q } in the question q are also annotated.

An overview of our model Albert+CCR for commonsense QA is shown in
Fig. 2. The new model has four major modules, namely, Context Retrieval, Con-
textualized Encoding, Similarity-based Differentiation, and Confidence Aggre-
gation. In what follows, we introduce the design of our model.

2.1 Context Retrieval

In this module, we aim to retrieve textual descriptions of the key concepts in the
question and the choices from Wiki knowledge that can provide most relevant
and concise contextual information for the QA. As discussed in the Introduction,
this is essential for contextual reasoning.

For each concept in the questions or the choices, we retrieve several descrip-
tions through the MediaWiki API. Since the descriptions returned by the Medi-
aWiki API are sorted according to the degrees of matching, we can often adopt

1 https://github.com/jessionlin/csqa/blob/master/Model details.md.

https://www.dropbox.com/sh/dryl2c00vh612fg/AABXg0FmU5OAB6ltByQUHgqia?dl=0
https://www.dropbox.com/sh/dryl2c00vh612fg/AABXg0FmU5OAB6ltByQUHgqia?dl=0
https://github.com/jessionlin/csqa/blob/master/Model_details.md
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Fig. 2. A framework overview.

the first description as the description of the concept. To form the queries or the
search keywords, we process the words in the concept into the following three
forms: i) the original form without any change; ii) the lemma form produced by
Spacy [7]; and iii) the basic word, which is the last noun by default. For instance,
for the concept “raise children”, its original form and its lemma form are both
“raise children”, whereas the basic word is “children”.

For each key concept c
(i)
q in the question and each choice a, we obtain their

descriptions d
(i)
q and da respectively.

2.2 Contextualized Encoding

When human beings answer a multiple choice question, one can first read the
question and then the choices, and/or first read the choices and then the ques-
tion. To simulate such cognition strategies in QA, we encode both forward (i.e.,
from questions to choices) and backward (i.e., from choices to questions) reading
sequences.

For each pair of a question q and a choice a, the forward QA input sf is
obtained by concatenating the question q, the key concepts c

(i)
q ’s, and the choice

a, whereas the backward QA input sb is in the reverse order, by concatenating a,
q, and c

(i)
q ’s. Note that we include the key concepts to establish connection with

the knowledge retrieved in the Context Retrieval module. Existing models often
only encode the forward reading, which cannot capture the connection building
process from choices to questions, whereas our backward encoding simulate the
case when the choice a is read before the question q. Note that this is differ-
ent from a bidirectional encoding, where the same forward reading sequence is
encoded forth and back word by word.

The language encodings for the forward and backward QA inputs can be
obtained from pre-trained language model like Albert [10], denoted Sf and Sb,
which are k × h matrices with k being the number of tokens in sf (same for sd)
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and h being the dimension of the encoding for each token. Inspired by [1], we
integrate Sf and Sb into a single embedding S = fuse(Sf , Sb) as follows.

λs =σ(Ws[Sf − Sb;Sf ◦ Sb]) (1)
fuse(Sf , Sb) =λs · Sf + (1 − λs) · Sb (2)

where σ is the sigmoid activation function, Ws is a parameter matrix, X − Y is
subtraction of two matrices X and Y , X ◦Y is their element-wise multiplication,
and [X;Y ] is matrix concatenation in the second dimension.

Similarly, we encode the retrieved contextual information in a bi-directional
manner, to obtain the forward and backward context inputs tf and tb. We use a
separate Albert encoder to encode the forward and backward context inputs,
denoted Sf and Sb, which are l×h matrices with l being the number of tokens in
tf (same for td). This is different from existing methods that combine the back-
ground knowledge in the same input to the language encoder, where the encoding
fuses q and a with their contexts. Separately encoding the QA inputs and con-
texts allow us to apply attention-based mechanisms to focus on most relevant
parts of the contexts. And Cf and Cb are integrated into a single embedding
C = fuse(Cf , Cb) with a different parameter matrix from above.

2.3 Similarity-Based Differentiation

When solving multi-choice questions, a human often compares the differences of
all the choices to find some differentiable features of the correct answer. Such
a strategy is particularly effective in eliminating distractor choices. In order
to compare choices and highlight their subtle differences, we use an attention
mechanism to obtain a refined embedding for each choice.

For each choice a, it may contain p words x1, x2, . . . , xp. We obtain the lan-
guage encoding of each word xi (1 ≤ i ≤ p), denoted xi from sf . As p is often
small (averagely 1.5), we assume each word xi has the same weight. And we
aggregates the encodings of all the words in the choice a to obtain an embed-
ding a =

∑
1≤i≤p xi. Then, we calculate the correlation score γa,a′ between each

pair of choices a and a′, and the correlation vector of a with the other choices,
denoted aΔ. Intuitively, aΔ captures the parts in the features of a that have
interaction with the other choices. Hence, we subtract aΔ from a to focus on the
differences and obtain a refined embedding â for a as follows.

γa,a′ = softmax(aT Waa′) (3)

aΔ =
∑

a′∈A,a′ �=a

γa,a′ · a (4)

â = a − aΔ (5)

where A consists of all the choices to the question and Wa is a parameter matrix.
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2.4 Confidence Aggregation

The embedding S contains semantic information of the question and the choice,
whereas C provides useful contextual information which helps to establish
semantic connections between the question and the choice. Also, the embedding
â contains the differentiable features of the choice that are distinct from other
choices. In this module, we aggregate the information in S, C and â through
attention mechanisms to generate a confidence score for the choice.

There is a naive method that sums the each token encoding in S[i] (0 ≤ i < k)
and C[j] (0 ≤ j < l) respectively, and uses simple gate mechanisms to combine
the two resulting vectors. However, we note that tokens in the external context
information may have contribute differently to the semantic connections, and
these tokens should have different weights. Therefore, our aggregation method
applies dual-attention to obtain an intergrated embedding Ŝ at the token-level,
which is based on the weights from each token to selectively incorporate the
contextual information C to the embedding S. Then, we use a merge-attention
to give the higher weights to the more important tokens in Ŝ. Therefore, we will
divide the section into two parts: dual-attention and merge-attention.

Dual-Attention. We use a dual-attention layer to capture the interaction
between the QC statement and the context description. In particular, the inter-
action between the i-th token in S and the j-th token in C is put into the
weight αi,j , and Ĉ[i] captures the contribution of the i-th token in the context
description to the establishment of contextual connections.

αi,j = softmax(S[i]T WαC[j]) (6)

Ĉ[i] =
∑

0≤j<l

αi,j · C[j] (7)

where Wα and Wc are parameter matrices, 0 ≤ i < k and 0 ≤ j < l.
Unlike the dual-attention in model GenMc [8], our model not only uses

the contextual information Ĉ, we also incorporate it into the QC statement
embedding S to generate a new statement embedding Ŝ = fuse(S, Ĉ) with its
unique parameter matrix.

Merge-Attention. After combining the statement and context embeddings
through the improved dual-attention layer, we aggregate the embeddings of
tokens in Ŝ via a merge-attention layer. Similarly, the contribution of the i-
th token in Ŝ is captured by the weight βi, and by aggregating the weighted
token-level contributions, we obtain the embedding s as follows:

βi = softmax(wT Ŝ[i]) (8)

s =
∑

0≤i<k

βi · Ŝ[i] (9)
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where w is a parameter vector and 0 ≤ i < k.
Finally, the confidence score of the answer choice a w.r.t. the question q can be

computed through a MLP and softmax layer as score(q, a) = softmax (MLP [s, â]).

3 Experiments

We evaluated our model Albert+CCR (Choice-driven Contextual Reasoning)
on the CommonsenseQA dataset [21].

3.1 Comparison on CommonsenseQA

Our Albert+CCR model was compared with ten baselines, which fall into
three groups: the pre-trained language models, models that can use both Wiki
knowledge and ConceptNet/OMCS (but ConceptNet/OMCS is not used for a
fair comparison), and models that use external knowledge but not (directly use)
ConceptNet or OMCS.

Table 1. Comparison on CommonsenseQA. ∗ indicates the Wiki-only results from the
ablation studies of the corresponding papers or technical reports on the leaderboard.
The Dev results are from the corresponding papers or technical reports, and the Test
results are from the leaderboard.

Group Model Dev Test

Pre-trained language models Albert 80.5 73.5

FreeLB-RoBERTa 78.8 72.2

RoBERTa 78.5 72.1

Support both Wiki and ConceptNet/OMCS
with ConceptNet/OMCS turned off

Albert+MSKF∗ 80.6 –

Albert+DESC-KCR∗ 80.1 –

XLNet+GR∗ 73.5 –

Support external knowledge other than Con-
ceptNet/OMCS

KEDGN 80.8 72.5

RoBERTa+IR 78.9 72.1

RoBERTa+KE 78.7 73.3

DREAM 73.0 66.9

Ours Albert+CCR 81.9 75.3

In our first set of evaluations, we have included major models on the Com-
monsenseQA leaderboard2 that are comparable to ours, that is, we exclude those
models that use ConceptNet or Open Mind Common Sense (OMCS) corpus [19]
2 https://www.tau-nlp.org/csqa-leaderboard. We consider models that are ranked

among top 25 by September 2021.

https://www.tau-nlp.org/csqa-leaderboard
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as their external knowledge, and those ensemble models. In particular, as the
CommonsenseQA dataset is constructed from ConceptNet, it is concerned that
using ConceptNet may help to eliminate human provided distractor choices.
Indeed, models based on ConceptNet are no long accepted by the Common-
senseQA leaderboard. And ConceptNet originates from the Open Mind Com-
mon Sense (OMCS) project [19]. In addition, following other approaches in the
literature [4], a few heavyweight models such as T53 and UnifiedQA [9], which
is based on T5, were not included in the comparison.

As shown in Table 1, our model Albert+CCR outperforms the baselines in
terms of the accuracy on both the Dev and Test data, and achieves state-of-the-
art performance among models that do not use ConceptNet/OMCS as external
knowledge and are not based on heavyweight language models. In particular, our
model improves the language model Albert by 1.8% on Test. Compared with
the strong baselines Albert+MSKF∗ and Albert+DESC-KCR∗ in Group
2, which use the same language model Albert and (only) Wiki knowledge,
our model achieves 1.3% and 1.8% improvement on Dev. This demonstrates the
advantage of our model over other comparable models.

3.2 Ablation Study

To understand the individual contributions of each component in our model, we
carried out various ablation studies on the Dev data.

Table 2. Ablation study on CommonsenseQA.

Variants Dev (%)

Albert+CCR 81.9

w/o Wiki knowledge 80.8

w/o dual-attention 81.2

w/o merge-attention 80.0

two-layered attention → GateCat 80.3

w/o forward and backward encoding strategy 80.9

w/ a single Albert encoder, both forward encoding 80.9

w/ a single Albert encoder, both backward encoding 81.4

w/ two Albert encoders, both forward encoding 80.5

w/ two Albert encoders, both backward encoding 81.6

w/o similarity-based differentiation 81.1

From Table 2, if without Wiki knowledge, the performance dropped by 1.1%,
which shows the importance of external knowledge in providing necessary con-
textual information. Yet incorporating Wiki knowledge is not straightforward as
3 It is reported that the number of parameters in T5 is about 30 times more than

other models [4].
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it may introduce noise, and the confidence aggregation is shown to be necessary
for effective knowledge integration. In particular, if the improved dual-attention
was not used to integrate more relevant contextual information, the performance
would drop by 0.7%; and if without the merge-attention mechanism to help focus-
ing on more relevant parts of information, the performance with Wiki knowledge
(-1.9%) would be lower. It is a similar case when the Confidence Aggregation
module is replaced with a simple gate mechanism GateCat (-1.6%), which shows
the vital role of this module in incorporating contextual information. Finally, it
also establishes that the modules Contextualized Encoding and Similarity-based
Differentiation are effective in guiding the contextual reasoning, as without them
will cause 0.8% to 1.0% decrease of accuracy. To show that the encoding strat-
egy is not simply information enhancement, we included four variants, with a
single or two separate Albert encoders with both forward or both backward
encoding, which establishes the advantages of our bi-directional encodings.

3.3 The Effectiveness of Choice-Driven Strategy

Table 3. The performance gain of existing models with the Contextualized Encoding
and Similarity-based Differentiation modules. All results are from our evaluations.

Model Albert KCR XLNET+GR

Original 79.4 81.5 78.8

+ encoding strategy 80.6 82.2 79.4

+ similarity-based differentiation 79.7 82.2 79.8

+ both 80.8 82.6 81.1

We explore the benefit of our contextual reasoning strategies in
Albert+CCR to some other existing models for CommonsenseQA. In particu-
lar, we added the Contextualized Encoding and Similarity-based Differentiation
modules to the language model Albert, KCR1 and XLNET+GR [15], which
utilises ConceptNet as external knowledge, and we evaluated their performance
gain on the official Dev data.

From Table 3, by adding Contextualized Encoding and Similarity-based Dif-
ferentiation respectively to Albert, its performance is improved by 1.2% and
0.3%, and is improved by 1.4% when both modules are added. Note that the
enhanced performance is still lower than our model Albert+CCR. Similarly, by
adding Contextualized Encoding and Similarity-based Differentiation to KCR,
we observed a 0.7% and a 0.7% performance gain respectively, and a 1.1%
performance gain when both are added. In addition, when adding Contextu-
alized Encoding and Similarity-based Differentiation modules to XLNET+GR,
we obtained the improvements of 0.8% and 1.0% respectively. The highest
boost(2.3%) was obtained when they were added at the same time. These results
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show that major reasoning strategies introduced in our Albert+CCR are not
only effective for Albert+CCR itself, they are also effective for some other
models for commonsense QA.

4 Related Work

CommonsenseQA Models. There are several works on commonsense ques-
tion answering, which differ in the form of external knowledge they apply and
how they perform commonse reasoning. Approaches using ConceptNet as the
external knowledge base typically explore relationship between the questions
and answer choices based on the graph structure, which often involves extract-
ing paths connection the key concepts from the question and those from the
answer choices [11,23].

Some other approaches introduce unstructured knowledge bases. Besides
extracting knowledge from ConceptNet, the approach in [15] enriches the
extracted graph with Wikipedia. The method in [22] uses a pre-trained lan-
guage model to simultaneously encode the triples from ConceptNet and concept
definitions from Wikitionary. We use only concept descriptions extracted using
MediaWiki API as contextual knowledge. Different from the existing approaches,
we apply a choice-driven approach and attention-based confidence aggregation
to focus on most relevant parts of the retrieved Wiki knowledge and perform
effective contextual reasoning.

Commonsense Reasoning Approaches. There have been an increasing
interest in incorporating commonsense reasoning into reading comprehension
tasks. Most models use neural networks to incorporate commonsense knowledge
and perform reasoning [16,18], whereas some approaches [12] mine the reasoning
rules of different knowledge types, and then use the rules for reasoning. What’s
more, GenMc [8] model does not rely on any external knowledge, and it generates
relevant clues from questions to help reasoning.

5 Conclusions

In this work, we have developed a novel choice-driven contextual reasoning
approach for commonsense question answering. The contextual information is
retrieved from Wiki knowledge as plain text, and the contextual reasoning is per-
formed by simulating human cognitive behaviour, including forward and back-
ward reading of questions/choices and context descriptions, similarity-based dif-
ferentiation among choices, and confidence aggregation. Evaluation on the Com-
monsenseQA dataset shows the superior accuracy of our model over comparable
models on the leaderboard. Ablation studies establish the significance of each
modules in our model, and case study also shows how each module contributes
to the contextual reasoning on tricky cases. We also show that our strategies
can be applied to existing QA models. Our base encoder is Alberta, and in the
future we expect to experiment with other base encoder, such as Deberta [6].
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Abstract. Implicit discourse relation recognition is a NLP task that
identifies the semantic relation between arguments without explicit con-
nectives. Existing studies are mostly based on interactive attention. How-
ever, if arguments have incomplete semantics, it will be difficult for the
model to deeply understand the argument, which negatively impacts
the information interaction. In addition, although there is valid infor-
mation in the context that can mitigate the negative effects caused by
the semantic loss, the unfiltered context usually contains much distract-
ing information. We propose a multi-granularity context fusion method
for the above problems. Specifically, we first reduce contextual interfer-
ence by constructing an information extraction mechanism. Then, we
fuse the denoised context with the arguments for better learning the
semantics. The experiment results in the Penn Discourse Treebank cor-
pus show that, compared with the baseline, our method increases F1
score by 4.11%, 5.46%, 3.26%, and 7.03% in the scenarios of binary clas-
sification. For 4-way F1 and 4-way accuracy, we get 65.34% and 71.18%
performances. Most of them surpass state-of-the-art systems.

Keywords: Discourse relation recognition · Multi-granularity context
fusion · Information extraction

1 Introduction

Discourse relation recognition is an essential subtask in discourse structure anal-
ysis, which aims to judge the semantic relation between two arguments (e.g.,
sub-sentences, clauses, and text blocks). It is fundamental research in Natural
Language Processing (NLP) and has been applied to many downstream tasks,
such as machine translation [15], sentiment analysis [21], automatic summariza-
tion [24], and question answering systems [18].

Every sample of discourse relation recognition is a triple (Arg1; R; Arg2).
The former argument in the sentence is Arg1, the next argument is Arg2, and
R is the relation. The Penn Discourse Treebank (PDTB) [17] is currently the
largest and most authoritative discourse relation recognition corpus. Its defined

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 347–358, 2022.
https://doi.org/10.1007/978-3-031-20865-2_26
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argument relation consists of three layers. The first layer includes four coarse-
grained discourse relations: Comparison, Contingency, Expansion, and Tempo-
ral. The second and third layers are subdivided based on the previous layer.
Consistent with the previous works, we conduct binary and 4-way classification
for the first layer.

In addition, PDTB corpus divide discourse relations into explicit and implicit
relation types. The connective can be directly used as a relation discrimination
feature in explicit type. In contrast, the implicit discourse relation recognition
is still challenging due to the lack of connectives. It has been found that pro-
foundly understanding the semantics of the argument promotes the model to
make correct relation predictions. Therefore, fully mining the semantic infor-
mation of arguments is crucial in the Implicit Discourse Relation Recognition
(abbr., IDRR) task. Existing interactive attention-based neural networks [14]
help two arguments fully exchange identifiable information through the atten-
tion mechanism and have achieved considerable performance improvements in
the task. However, we find that many samples in the PDTB corpus have the
problem of missing or incomplete semantics in a single argument. These prob-
lems can be the interference items, affecting the model’s determination of the
real discourse relation.

We propose a method based on a multi-granularity context fusion mecha-
nism to address the above problems. First, the method is based on a word-
level interactive attention mechanism and obtains the preliminary encoding of
the argument. In addition, the method introduces a context vital information
extractor to denoise the context information. Ultimately, we use a sentence-level
interactive attention mechanism to interact the two arguments with the denoised
context and finally obtain the argument encoding. It provides compelling relation
judgment clues for the relation recognition decoder model.

Overall, the main contributions of this paper include the following two
aspects:

• We propose a multi-granularity context interaction attention mechanism,
which uses the word-level information in the context to make up for the
semantic lack of the arguments. Further, the information extraction mech-
anism is employed to reduce the influence of the noisy information in the
context. The optimized context interacts with the argument to obtain the
argument encoding with advanced contextual information.

• Compare a variety of context fusion mechanisms to extract context informa-
tion and get the best method to encode context semantics more accurately.

2 Related Work

Reliable argument encoding is a crucial inference clue in IDRR. In the early
years, traditional machine learning was widely used. For example, Pitler et al.
[16] construct classification features with the help of elements of the sentence
(e.g., word pairs, verb types). Lin et al. [10] exploit the syntactic and dependency
structures to mine the semantic features.
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A large number of researches have shown that fully mining the interactive
semantic information between arguments can improve the relation recognition
ability of the model. For instance, Chen et al. [2] adopt the gating mechanism
to obtain the semantic information between the two arguments at the word
and phrase levels. With the assistance of this information, the performance has
made a breakthrough. In addition, methods based on attention mechanism are
shown to assist the information interaction within arguments. Liu and Li [12]
design a neural network based on multi-layer attention. With the help of external
memory vectors, the argument representation under each layer of the attention
mechanism is gradually updated. Shi and Demberg [20] migrate the BERT model
proposed by Devlin et al. [4], which utilizes the NSP (Next Sentence Prediction)
task in BERT to assist in IDRR. He et al. [6] use a multi-level encoder to mine the
underlying geometric structure information in the discourse relation instances
to assist the model in representing the semantics of arguments.

In addition, attention-based methods have made progress in the information
interaction process of arguments. Guo et al. [5] mine key information from the
two arguments and feed it into the attention mechanism to obtain the better
semantic representation. What is more, Ruan et al. [19] combine self-attention
and interactive attention to construct a propagative attention learning model.
Further, due to the problem that the weight distribution of the attention learning
model is too smooth, Li et al. [8] propose a penalty-based loss re-evaluation
method, thereby optimizing the IDRR methods. In particular, Zhang et al. [25]
extract the semantic interaction between argument pairs based on a semantic
graph convolutional network. This work constructs an information graph on the
arguments.

Contextual features have become a relatively reliable breakthrough point for
the problems of ambiguity and lack of semantics in discourse-related corpora.
Therefore, Dai and Huang [3] conduct a paragraph-level method to search the
interdependence between chapter units and the continuity of chapter relation-
ships. Liu et al. [11] use multi-view cosine similarity to match the contextual
information of arguments. Further, Zhang et al. [26] capture the contextual
information of the current argument by constructing a paragraph association
graph.

3 Method

We propose a method based on multi-granularity context fusion to improve the
performance of IDRR. The overall model framework of the method is shown in
Fig. 1, which is divided into the following four parts: (1) Splice the argument
pair (Arg1, Arg2) and its context sentences (context sentence1 and context sen-
tence2) and feed them to the pre-trained model [22] (BERT or RoBERTa) for
encoding. Through the multi-head self-attention in the Transformer architecture,
the argument pair interacts with its contexts at the word granularity. Then, we
truncate the context encoding and argument encoding (Rθ1 and Rθ2). (2) The
context encoding H will be sent to the information extraction mechanism for
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Fig. 1. Overall model frame diagram

denoising the contextual information and obtaining a more reliable contextual
encoding Hf . (3) Employing the sentence-level interactive attention mechanism,
the encoding of the two arguments (Rθ1 and Rθ2) interacts with Hf respectively
and obtain the enhanced argument encoding (Rϕ1 and Rϕ2) with contextual
information. (4) Our method conducts residual connections in the training phase.
Specifically, we fuse the enhanced argument encoding (Rϕ1 and Rϕ2) with the
original argument encoding (Rθ1 and Rθ2) to obtain more semantically informa-
tive argument encoding (Rβ1 and Rβ2). Finally, we concatenate the encoding
and send it (R∗) to the softmax layer for classification.

3.1 Word Interaction Between Argument and Context (WIBAC)

Input Layer. In order to track the semantics information of the arguments
and the context, we use BPE (Byte-Pair Encoding) to divide the input text
into subword sequences. Specifically, the representations of Arg1 and Arg2 are
R1 = (x1

1, x
1
2, ..., x

1
L) and R2 = (x2

1, x
2
2, ..., x

2
L) respectively. Besides, we describe

the two critical statements with argument pairs as C1 = (c11, c
1
2, . . . , c

1
L) and

C2 = (c21, c
2
2, . . . , c

2
L). The context information used here consists of C1, R1, R2,

and C2. In order to truncate the encoded representation of arguments from the
whole last-layer hidden state, we set the maximum sequence length of arguments
to L. Therefore, the composition of the model input I is shown in Eq. (1).

I = {[CLS], C1, [SEP ], R1, [SEP ], R2, [SEP ], C2, [SEP ]} (1)

where C1 refers to the former n sentences adjacent to R1, and C2 refers to the
following n sentences adjacent to R2.
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Word-Level Attention Mechanism. We use the argument pair and crit-
ical sentence splicing as the pre-trained model’s input. Then, we employ the
multi-head self-attention integrated into Transformer [22] to achieve word-level
information. The input I is constructed as a set composed of query and key-value
pair for calculation. The multi-head attention fuses the semantic information of
the arguments and the context information in the word granularity to assist the
model in understanding the incomplete arguments. Further, in order to capture
the features in different sub-spaces, the multi-head attention performs h linear
transformations on IQ, IK , and IV . Then, it feeds the transformed vectors into
the scaled dot product attention mechanism and obtains h attention vectors.
Finally, the mechanism splices these vectors and sends them to a linear layer to
obtain the fusion of word information in different sub-spaces.

Context Information Extraction Mechanism. In order to alleviate the
uncertainty caused by the noise of the context, we propose to build a con-
text information extraction mechanism (Extraction Attention). In this way, the
model’s attention to the interference information is reduced, and the reliability
of the context representation is improved. As shown in Fig. 2, the extraction
mechanism is constructed by the self-attention proposed by Lin et al. [9]. It
calculates the attention weight matrix α ∈ RL by the context-based encoding
H. As shown in Eq. (2), the weight matrix assigns a higher attention value to
the context keywords, and relatively, the noise information is assigned a lower
value. Finally, the Extraction Attention conducts a weighted summation of the
α and the H to obtain the context encoding Hf = (e1, e2, . . . , eL), ei ∈ R(dh) as
shown in Eq. (3). It is worth noting that the context covers the original semantic
information of the argument pair. Therefore, the critical information extracted
from this context can better assist the model in understanding the argument’s
deep semantics.

α = softmax
(
W 2

α tanh
(
W 1

αH
))

(2)

Hf = αH (3)

where W 1
α ∈ Rd∂×dmodel and W 2

α ∈ Rd∂ are trainable weight parameters, and
d∂ is the dimension size set when performing dimension transformation on the
encoded representation of the input vector.

3.2 Sentence Interaction Between Argument and Context (SIBAC)

Although the argument pair has interacted with its context at the word level,
some noisy information is also introduced. Therefore, if the above method uses
the information of the unfiltered context, it will be difficult for the useful infor-
mation to be fused with the two arguments.

Thus, we have to fuse the denoised context with the argument for effective
information. Specifically, under the action of sentence-granular interactive atten-
tion (as shown in Fig. 3), we combine the word-granular context-enhanced argu-
ment encoding (Rθ1 and Rθ2) with the key information highlighted in Sect. 3.2.
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The interactive attention mechanism used in this work is the multi-head atten-
tion. The encoding of the arguments (Rθ1 or Rθ2) as query, and Hf as key
and value. The sentence-level interactive attention mechanism conducts h lin-
ear transformations on Rθ1 (Rθ2), Hf , and calculates the interactive attention
based on the transformation results of each Rθ1 (query) and Hf (key) weight
matrix. We perform a weighted summation of the transformation result of Hf .
On h different sub-spaces, we obtain h argument features fused with context
information. In addition, we concatenate h and conduct a linear transformation
to obtain the argument representation R∂1(R∂2) enhanced by the contextual key
information.

3.3 Residual Network

The semantic encoding of argument pairs is a crucial inference clue in the task
of IDRR. Under the multi-granularity context fusion, the model understands the
deep semantic information of the argument with the help of the vital informa-
tion of the context. However, this mechanism often leads the model to bias the
semantic of context information, diluting the semantic of the original arguments.

Therefore, we employ the residual network during training. Specifically, we
fuse the encoding of the argument after the fusion of multi-granularity informa-
tion with the encoding of the original argument to reduce the loss of the original
semantic information. As shown in Fig. 1, we add the argument encoding R∂1
(R∂2) and Rθ1 (Rθ2) produced by the fine-tuned pre-trained model (BERT [4]
or RoBERTa [13]) to obtain the jointly encoding.
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Table 1. Performance (%) comparison to state of the art. Our method based on BERT
and RoBERTa is considered for comparison, respectively.

Model COM. CON. EXP. TEM. 4-way F1 4-way Acc.

Chen [2] 40.17 54.76 – 31.32 44.61 57.84

Bai and Zhao [1] 47.85 54.47 70.60 36.97 51.06 –

Guo et al. [5] 40.35 56.81 72.11 38.65 47.59 59.06

Ruan et al. [19] 46.75 59.56 75.83 39.35 – –

Zhang et al. [26] 46.86 55.63 73.71 45.90 53.11 –

Ours (BERT) 49.15 58.03 76.19 40.13 55.92 64.96

Liu et al. [11] 59.44 60.98 77.66 50.26 63.39 69.06

Ours (RoBERTa) 57.67 64.81 79.16 41.93 65.34 71.18

4 Experiments

4.1 Dataset and Evaluation Metrics

In order to be consistent with predecessors, we use the PDTB [17] dataset for
IDRR task. We use Section 02–20 in the PDTB corpus as the training set, Section
00–01 as the development set, and Section 21–22 as the test set. Among them,
the category of all samples is one of the four relations: Comparison (COM.),
Contingency (CON.), Expansion (EXP.), and Temporal (TEM.). In evaluating
the binary classifier, the F1 value (F1-score) is used as the evaluation metric. The
macro F1 value (Macro-F1) and the accuracy rate (Acc.) are used as evaluation
metrics when evaluating the quaternary classification model.

4.2 Hyperparameter Setting

The benchmark model is BERT-base and RoBERTa-base. The maximum
sequence length L of an argument is 100. The context includes the argument
and two adjacent sentences in the document, and its maximum sequence length
is 4L. The weight matrix dimension dmodel in all attention mechanisms is 128.
The h of the multi-head attention in the sentence-level context fusion mechanism
is set to 6, and the word-level fusion mechanism h is set to 12. Furthermore, the
batch size is set to 8, the learning rate is 5e-6, and the model parameters are
updated using the Adam [7] optimizer. In particular, to alleviate the problem of
overfitting, the model uses dropout after each layer of modules, where the ratio
of random dropout is set to 0.2.

4.3 Results

We compare our methods with the existing state-of-the-art IDRR models. Table 1
shows the comparison results.
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Table 2. Ablation experiment results (%), our method based on BERT and RoBERTa
is constructed by expanding the baseline step by step.

Method COM. CON. EXP. TEM.

Baseline (BERT) 43.33 56.64 73.33 35.63

+WIBAC 45.24 55.87 74.58 35.90

+WIBAC&SIBAC 45.15 57.70 75.07 38.35

+WIBAC&SIBAC&Residual 49.15 58.03 76.19 40.13

Baseline (RoBERTa) 53.56 59.34 75.90 33.42

+WIBAC 55.03 62.12 77.68 34.90

+WIBAC&SIBAC 54.27 64.36 79.59 38.92

+WIBAC&SIBAC&Residual 57.67 64.80 79.16 41.93

Bai and Zhao [1] employ different text granularities to obtain rich impli-
cations. Guo et al. [5] used bidirectional LSTM to mine the critical informa-
tion in the two arguments. In contrast, Ruan et al. [19] used the self-attention
mechanism to extract critical information from the argument. Zhang et al. [26]
transformed the context into a paragraph association to obtain a context-fused
argument encoding. Compared with Zhang et al. [26], our method based on
BERT has advantages in Comparison, Contingency, and Expansion relations.
However, its performance on Temporal relation is lower than Zhang et al. [26].
The analysis shows that the method of Zhang et al. [26] can regularize the context
information and reduce the interference in the context. Nevertheless, it ignores
the information interaction between arguments and context to some extent.

In order to examine the performance of the pr oposed method on different
pre-trained models, we further compare the state-of-the-art models, which use
RoBERTa [13] as the benchmark system. Specifically, Liu et al. [11] used multi-
view cosine similarity to match the critical information of arguments, which
significantly improved performance compared with previous works. Using the
same baseline model, our performance is better than Liu et al. [11] in Contin-
gency, Expansion. Furthermore, our method gets the best performance of all in
the 4-way classification. It shows the effectiveness of the method proposed in this
paper and proves that it has strong generality on different pre-trained models.

4.4 Ablation Experiments

We conduct ablation experiments to examine the influence of each module in the
multi-granularity context fusion mechanism on the experimental results. Analy-
sis of Table 2 shows that the trend results under different pre-trained models is
consistent. Therefore, we will focus on the experimental results under the BERT
benchmark.

BERT/RoBERTa (baseline). Two arguments are concatenated as the
pre-trained model’s input in our method. Then, we feed the splicing results (r1
and r2) into the fully connected layer for relation classification. WIBAC We
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Fig. 4. Action analysis of critical text
sequence length n

Fig. 5. Effect for the results with dif-
ferent context extraction methods

concatenate two arguments and their adjacent sentences as the input for the first
time and jointly feed them into a pre-trained model for encoding. This exper-
iments truncate the context-enhanced argument encoding from the last hidden
state of the model’s output and concatenate them as the input of the fully con-
nected layer for classification. According to the experimental results, the word-
level context fusion mechanism achieves better results than the baseline model.
SIBAC The experiment uses the context information extraction mechanism in
Sect. 3.1 to obtain the context encoding after noise reduction. Further, we fuse
the argument encoding with the context encoding based on the sentence-level
context fusion mechanism. After, we obtain the enhanced argument representa-
tion encoding. We will use it as a clue to infer the category of relations. Finally,
we concatenate the enhanced argument representations and send them into the
classifier. At this time, the performance of the 4-way classification has been fur-
ther improved, while the results of the Comparison have slightly decreased. The
reason is that the Comparison samples in PDTB can usually be inferred from
a keyword pair. Too much attention to the context information will interfere
with the model’s judgment when we introduce the context. Residual Network
(Residual) Besides, after employing the residual connection in the experiment,
compared with before, the performance of the four relation types has been dra-
matically improved.

4.5 Effects and Analysis of Different Context Fusion Mechanisms

In order to extract more critical information from the context and reduce the
attention of irrelevant words, various information extraction mechanisms are
tried in the experiments. The experimental results are shown in Table 5 (taking
RoBERTa as the benchmark system). In the experiment, RoBERTa encodes the
input context and obtain the context encoding H. We adopt four information
extraction mechanisms to obtain the context encoding: 1) All token: use H as
the context representation; 2) CLS: use the first token in H as the context
representation; 3) Fast-former [23]: Use the additive attention mechanism to
extract critical information for H; 4) Extraction-attention: Use the information
extraction mechanism introduced in Sect. 3.2.
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According to Fig. 4, our method achieves the best experimental performance
compared with the other three fusion mechanisms. We can conclude that the
first two information extraction methods (All token and CLS) do not distinguish
the key and non-key information in the context, resulting in a lot of disturbing
semantic information in the representation of the argument. Furthermore, the
third method (Fastformer) is an efficient version of Transformer, which incorpo-
rates a multi-layer attention mechanism. Therefore, if the Fastformer is stacked
into the model constructed by the multi-granularity context fusion mechanism,
the entire model will be too complicated. There will be problems of overfit-
ting and network degradation. Therefore, this section finally uses the context
information extraction mechanism (Extraction-attention), which assigns higher
weight values to keywords in the context than non-keywords, thereby reducing
the contextual representation of non-critical information.

4.6 Selection of Critical Text Sequence Length

The context information used in our method consists of input argument pairs
and their critical sentences. The critical sentences of Arg1 and Arg2 are selected
from their most adjacent n sentences. As shown in Fig. 5, it analyzes the changes
caused by different values of n in the final classification. Expressly, we set n to
1 and 2, respectively, and analyze the impact of changes in the value of n on
performance. This experiment uses RoBERTa as the benchmark system, and
the evaluation metric is the F1 value. According to the experimental results in
Fig. 5, when the n is increased from 1 to 2, the F1 value significantly decreases
in the three categories of Comparison, Expansion, and Temporal. At the same
time, in terms of Contingency relation, the increase of n also leads to a small
decrease in the performance. Thus, when the length of the sequence is too long,
a large amount of noise information may be introduced, which will negatively
affect the context information fusion process.

5 Conclusion

In the research of implicit discourse relation recognition based on argument infor-
mation interaction, this paper proposes a method based on multi-granularity con-
text fusion to alleviate the negative impact of argument fragmentation semantic
missing problem in argument semantic representation. At the same time, this
paper verifies the effectiveness of the proposed method based on multiple sets
of controlled experiments and employs a key information extraction mechanism
when characterizing contextual semantics. This mechanism highlights the crit-
ical information in the context. It reduces the model’s over-attention to unim-
portant or even disturbing information. Compared with the model without an
information extraction mechanism, the enhanced model based on the informa-
tion extraction method used in this paper has achieved noticeable performance
improvement in implicit discourse relation recognition.
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Abstract. Chinese medical named entity recognition (NER) task usu-
ally lacks sufficient annotation data, and it contains many medical pro-
fessional terms and abbreviations, making the NER task more difficult.
In addition, compared with English NER, Chinese NER is more chal-
lenging because it lacks standard feature symbols to determine named
entity boundaries. Therefore, Chinese NER needs to perform word seg-
mentation. In this paper, we are inspired by lexicon-based BERT and
propose a novel method for Chinese medical NER task. Besides, We
design a template-based strategy to enrich the words’ information and
improve the model’s ability to distinguish medical professional terms and
abbreviations. Our method enhances the word segmentation accuracy by
introducing the external medical lexicon. To verify the effectiveness of
our method, we carry out experiments on three medical datasets and our
method improves them by 0.92%, 1.18% and 1.55% F1-score compared
to baseline.

Keywords: Chinese medical NER · External knowledge · Prompt

1 Introduction

Nowadays, medical information systems have accumulated many medical data,
including electronic medical records, physical examination reports, and medical
reports. The widespread use of information technology in the medical field has
contributed to a dramatic increase in medical data. With the continuous accu-
mulation of data, using natural language processing (NLP) technology and deep
learning methods to mine valuable data has become hot research in medicine
and artificial intelligence.

NER is a fundamental task in information extraction for the NLP task. It
is a fine-grained sequence labeling task where entity boundaries and class labels
are jointly predicted. Chinese NER is divided into character-based and lexicon-
based methods. The lack of lexicon, grammar, domain knowledge, and other
types of information in character-based NER makes it difficult for the model to
understand the correct meaning, significantly affecting its performance. Lexicon-
based methods suffer from the inaccuracy of word segmentation. However, we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 359–371, 2022.
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can improve model’s ability to understand the lexicon by introducing external
knowledge, so as to improve the accuracy of word segmentation.

With the explosion of Chinese medical data, using Chinese medical NER to
extract medical entities from electronic medical records and physical examination
reports can help decrease the time spent in manually annotating medical enti-
ties. Chinese medical NER has become increasingly important in recent years.
However, existing Chinese medical datasets have the following problems. First,
the high cost of manual labeling makes the existing medical datasets have less
labeled data, making large-scale model training impossible. Secondly, it contains
many medical professional terms and abbreviations rarely used daily. And the
Chinese NER boundary problem is always the main problem in the NER task.
Because of the complexity of Chinese grammar, word segmentation becomes
difficult. Therefore, Chinese medical NER is a challenging task.

In this paper, we propose a novel Chinese medical NER method based on
lexicon enhancement. Besides, We design a template-based strategy that uses
a pre-trained language model (PLM) to stimulate the model’s ability to rec-
ognize Chinese medical entities. The experimental results based on the CCKS
and CDD datasets prove the validity of introducing external medical knowledge
and demonstrate the performance of the proposed method. We also perform
experimental validation on the FN medical examination dataset. To sum up,
our contributions are as follows:

– We propose a structure by using external knowledge to improve the accuracy
of Chinese word segmentation.

– We design a template-based strategy to enrich the words’ information and
improve the model’s sensitivity to medical professional terms and abbrevia-
tions.

– Experimental results show that the proposed method achieves good state-of-
the-art performance on three datasets.

2 Related Work

In recent years, the research on NER has developed continuously. In the early
stage, the primary methods are based on rules [7,24] and dictionaries [19,21,25].
Later, researchers have proposed many handcrafted feature-based NER models,
such as hidden markov model (HMM) [1], decision tree [20], support vector
machine (SVM) [23] and conditional random field (CRF) [18].

With the development of deep learning, many deep learning models have been
applied to NER task and achieved excellent results. For example, convolutional
neural networks (CNN), long short term memory (LSTM) and bidirectional long
short term memory (BiLSTM) have proven effective. It also brings breakthroughs
for medical NER. Kuru [12] describes a character-level tagger employing a deep
bidirectional LSTM architecture. He and Sun [11] propose a semi-supervised
learning model based on a BiLSTM neural network to take advantage of tradi-
tional methods in NER such as CRF and combine transition probability with
deep learning. After the pre-trained models like BERT [5] were proposed, the
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accuracy of the NER task was significantly improved. However, in the Chinese
NER task, BERT cannot effectively utilize the lexicon information.

To solve the impact caused by the lack of clear separators in Chinese NER.
More and more lexicon-based methods are proposed. Zhang and Yang [27] intro-
duced a lattice LSTM to encode both characters and words for Chinese NER. Gui
and Ma [9] introduced a Lexicon-Based CNNs (LR-CNN) model that fusion lexi-
cal information using an attention mechanism and used CNN to encode potential
words at different window sizes. Lexicon-based Graph Networks [10] and Collab-
orative Graph Networks [22] convert lattices into graphs and use Graph Neural
Networks (GNN) to its encoding them. Lattice LSTM and LR-CNN have the
problem of not capturing long-distance dependencies, and Li and Yan [13] pro-
posed using Transformer to solve this problem. Liu proposed LEBERT [14] to
integrate lexicon knowledge into BERT layers and achieved state-of-the-art per-
formance in multiple Chinese NER datasets. However, the above Chinese NER
models cannot fully exert their performance in special domains including medical
domain.

With the emergence of GPT-3, prompt tuning has become more and more
popular. By choosing an appropriate template and manipulating the model’s
input during pre-training, PLM can be used to predict the desired output.
Cui and Wu [3] investigated template-based few-shot NER using BART as the
backbone model. When there are new entity categories, they can be fine-tuned
directly for the target domain. Chen and Zhang [2] propose a novel genera-
tive framework with prompt-guided attention (LightNER), which can recognize
unseen entities using a few examples. By constructing semantic-aware answer
space of entity types for prompt- tuning, LightNER can maintain consistent
pre-trained and fine-tuning procedures.

Fig. 1. Training of template-based method.
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3 Methods

In this paper, we propose a template-based method. We use a PLM and train
the model by designing a template, as shown in Fig. 1.

And we propose a lexicon-based Chinese medical NER model. The overall
architecture of our model is shown in Fig. 2. Specifically, our model is comprised
of a multi-feature layer, transformer layers and a BiLSTM-CRF layer.

Fig. 2. The overall architecture of our model.

3.1 Template-Based Method

We manually design the template as (candidate is [M]) and leave one slot for
candidate characters, where [M] represents the label with the maximum amount
of Chinese words. Meanwhile, we use non-entity characters to fill in the template
for pre-training, and each template is concatenated with a comma, as shown
in Fig. 1. We use BERT as the PLM. Then we converte each input sentence
X = {x1, x2, ..., xn} into a prompt sequence T = {t1, t2, ..., tm}, where xi

represents the i-th character in the sentence, and ti represents the i-th character
filled in the template, and combine the original sentence X and the prompt
sequence T.

Xprompt = [CLS]X[SEP ]T (1)

[CLS] and [SEP] are the special token of BERT. Then we feed the new sequence
Xprompt into the PLM for pre-training and compute the loss as follow:

L = −
∑

i

ỹilog (P (ỹi|X)) (2)
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where ỹ represented the predicted label. In pre-training, the model can learn the
information contained in words.

We set maximum input sentence length for pre-training is 512. When the
length of Xprompt is greater than the maximum length, we will discard the
prompt sequence that is greater than maximum length. And when the length
of Xprompt is less than the length we set, we use [PAD] to pad to the maxi-
mum length, [PAD] is a special token of BERT. We set a threshold and stop
pre-training when the loss falls below 10−3. Then we use the pre-trained BERT
model for our proposed Chinese medical NER model.

Fig. 3. The architecture of the multi-feature layer.

3.2 Multi-feature Layer

The architecture of the multi-feature layer is shown in Fig. 3; it receives charac-
ter features, word features, and external knowledge features. A Chinese medical
sentence with n characters sc = {c1, c2, ..., cn}, a Chinese Lexicon D1 for match-
ing words, and a Chinese Medical Lexicon D2 are given to provide external
knowledge features. Then, find all the words that the characters in the sentence
can form by matching the sequence of characters against D1 and D2. We con-
struct the lexicon tree on the D1 and D2 , then iterate over the subsentence
containing the current character and match the lexicon tree to get all poten-
tial words. In this way, we get word features and external knowledge features.
After that, we combine the embedding of character, word, and external lexicon
into a character-word pair and a character-lexicon pair, respectively. We con-
struct scw = {(c1, ws1), (c2, ws2), ..., (cn, wsn)} character-word pair and sck =
{(c1, ks1), (c2, ks2), ..., (cn, ksn)} character-lexicon pair, where wsi and ksi repre-
sent matched words assigned to ci.
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We send the sequence of character, character-word pair and character-lexicon
pair to the model. In this way, the model can directly fuse medical lexicon
information into the multi-feature layer. And denote the input as (hc

i , x
w
i , k

w
i ),

where hc
i is a character vector, xw

i is a set of word embeddings, and kwi is a set
of medical lexicon embeddings. The j-th word in xw

i and kwi is represented as
follows:

xw
ij = ew(wx

ij) (3)

kwij = ew(wk
ij) (4)

where ew is a pre-trained word embedding lookup table and wx
ij is the j-th of

wsi, wk
ij is the j-th of ksi.

We use a non-linear transformer to transform the word vectors into vxij and
vkij , align word feature with character feature, and calculate the attention score
as follows:

axi = softmax(hc
iW

x
attnV

T
xi) (5)

aki = softmax(hc
iW

k
attnV

T
ki ) (6)

Zw
i =

u∑

j=1

axijv
x
ij +

l∑

j=1

akijv
k
ij (7)

where V T
xi = {vxi1, vxi2, . . . , vxim} represents the vectors of i-th character in word

vectors and the same to the V T
ki = {vki1, vki2, . . . , vkil} about medical lexicon vec-

tors, W x
attn and W k

attn is the attention weight matrix, u is the total number
of words, and l is the total number of medical lexicon. Then, we use a bilin-
ear attention layer to combine the three inputs separately to get Zw

i and then
combine hc

i and the feature vector to send to the transform layer.

h̃i = Zw
i + hc

i (8)

3.3 Label Prediction

This part contains BiLSTM layer and CRF layer. BiLSTM has a strong non-
linear fitting ability and can more accurately capture long-distance dependencies.
The outputs of BiLSTM are independent, and each step outputs the label with
the maximum probability value, which may lead to unreasonable label connec-
tions. To avoid this problem, we add a CRF layer after BiLSTM.

To train the CRF layer [26], we minimize a negative log-likelihood function
consisting of real path score and total score of all possible paths where a path
means a candidate label sequence of the input sentences. The real path is the
gold label sequence and we denote Preal as the real path score. Suppose there
are M kinds of labels and n characters in the sentence. There will be Mn paths.
We denote Ptotal = P1 +P2 + ...+PMn as the total path score. The loss function
of the CRF layer is defined as follows:

LossFunction = − log
Preal

Ptotal
(9)
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Pt is the path score of path t, and we define Pt as exp(St). St is defined as
follows:

St =
n∑

i=1

Ei,labeli +
n∑

i=2

Tlabeli−1,labeli (10)

where labeli denotes the i-th label of path t. E is the emission score, the score
represents the fact that j is the label of i. T is the transition score, the score
represents the fact that label i transitions to label j. The emission score comes
from the BiLSTM layer. It is a matrix of size n by M , and Ei,j , 1 ≤ i ≤ n, 1 ≤
j ≤ M . The transition score is a square matrix T of size M by M , and Ti,j , 1 ≤
i, j ≤ M . The transition score is trainable parameter of the CRF layer.

In order to find the best label sequence for an input sentence, we used the
Viterbi algorithm [6], one of dynamic programming algorithms.

4 Experiments

In this section, we conduct a series of experiments on three Chinese medical
NER datasets to prove the effectiveness of our method.

4.1 Dataset

There are three datasets, all of which are Chinses medical NER datasets. The
statistical details of the three datasets are shown in Table 1.

The first dataset is the CCKS2019, all samples of which are clinical text.
This dataset contains six categories. The second dataset, named CDD, is from
the China Disease Resource Database’s laboratory examination text and other
auxiliary examination text. Zhang et al. [8] constructed this dataset. It contains
only one category. The third dataset, named FN, is from the hospital examina-
tion text; 500 samples are annotated according to the Medical Named Entity
Recognition labeling standard. It contains only one category.

4.2 Setting

The lexicon D1 is from Tencent AI Lab1 and the lexicon D2 consists of Chinese
medical thesaurus words organized by THUOCL2 (THU Open Chinese Lexicon),
and medical examination summary words obtained from hospitals.

Character Embedding: In our experiments, our model is constructed based
on BERTwwm ext [4], with 12 layers of transformers.

1 https://ai.tencent.com/ailab/nlp/en/embedding.html.
2 https://github.com/thunlp/THUOCL.

https://ai.tencent.com/ailab/nlp/en/embedding.html
https://github.com/thunlp/THUOCL


366 L. Zhang et al.

Table 1. The statistical details of the datasets.

Dataset Type Train Dev Test

CCKS Sentence 1.0k 0.4k

Char 418.4k 132.7k

CDD Sentence 5.6k 0.9k 0.9k

Char 527.7k 83.0k 90.3k

FN Sentence 0.4k 0.1k

Char 400.4k 100.5k

Hyper-parameter Setting: the Multi-feature Layer and the Transformer
Layer are trained for 30 epochs with the learning rate of 2e–5 using the AdamW
[16] optimizer and the BiLSTM-CRF Layer with the learning rate of 1e–2. The
number of hidden units is 300. The batch size is 8 in all datasets. The max length
of the sequence of FN is set to 512, CCKS and CDD is set to 150. And for each
experiment, we record the best result of 5 runs.

4.3 Evaluation

We use F1-score to evaluate all methods and report precision (PRE) and recall
(REC) to ensure fairness in model comparisons.

4.4 Results

Lexicon Enhancement Methods: To illustrate the effectiveness of our
method, we compare it with others in Table 2. We set the BERT+BiLSTM+CRF
and LEBERT methods as our baselines, and we also compare them with six other
lexicon-based methods, as can be seen from the table. Our method obtains good
performance, with the F1-score of 83.24% for the CCKS, 62.22% for the CDD
and 69.55% for the FN. And our method with a template-based pre-trained
model achieves 83.84%, 62.35% and 70.23%, respectively.

Compared with LEBERT, our method with a template-based pre-trained
model improves by 0.92%, 1.18% and 1.55%, respectively. And the effects of other
models do not achieve good results. We believe that this reflects the particularity
of the Chinese medical NER dataset: a small amount of data and a large number
of professional terms and abbreviations. Therefore, these NER models cannot
achieve the expected results. Our model improves the model’s word segmentation
accuracy for medical named entities by fusing medical lexicon information to
address the impact of professional terms and abbreviations.
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Table 2. The main results of Chinese medical NER.

Methods CCKS CDD FN

Pre Rec F1 Pre Rec F1 Pre Rec F1

Lattice LSTM [27] 67.19 60.14 63.47 73.71 48.68 58.64 64.21 57.39 60.61

LR-CNN [9] 59.38 53.15 56.09 68.04 52.56 59.31 65.94 63.13 64.50

CCW [15] 82.66 81.91 82.28 72.19 50.78 59.62 62.89 58.97 60.87

LGN [10] 79.77 81.54 80.65 58.06 43.13 49.49 63.2 56.41 59.61

Sample-Lattice [17] 54.88 35.16 42.86 71.82 51.37 59.90 – – –

FLAT [13] 77.56 74.24 75.87 70.30 53.79 60.95 47.63 45.13 46.34

BERT+BiLSTM+CRF 83.36 81.95 82.65 59.98 63.91 61.88 67.41 70.04 68.70

+ prompt 84.34 82.19 83.25 68.73 56.30 61.90 73.06 66.61 69.69

LEBERT [14] 82.70 83.14 82.92 71.86 53.24 61.17 69.23 68.14 68.68

+ prompt 83.50 83.35 83.43 70.94 54.24 61.48 71.58 66.68 69.04

Our method 84.66 81.87 83.24 65.41 59.32 62.22 67.89 71.30 69.55

+ prompt 83.66 84.03 83.84 66.55 58.65 62.35 72.14 68.43 70.23

Low-Resource: To prove that our method can still maintain good performance
in the case of low resources, similar to the experiments above, we evaluate 0.5k
sentences randomly sampled from the CCKS dataset and 0.5k, 1k and 2k sen-
tences randomly sampled from the CDD dataset. We report the F1 of CCKS
and CDD in Tables 3 and 4. As can be seen from Tables 3 and 4, our method
maintains good results in low-resource scenarios. When there are only 500 train-
ing data, the effect of BERT+BiLSTM+CRF exceeds our method, and as the
training data increases, our method surpasses it.

Table 3. The effectiveness of Low-Resource on the CCKS.

Method 0.5k 1k (All)

Pre Rec F1 Pre Rec F1

Lattice LSTM [27] 56.00 48.95 52.24 67.19 60.14 63.47

LR-CNN [9] 43.65 38.46 40.89 59.38 53.15 56.09

CCW [15] 82.39 79.30 80.82 82.66 81.91 82.28

LGN [10] 77.62 77.37 77.50 79.77 81.54 80.65

FLAT [13] 65.08 67.36 66.20 77.56 74.24 75.87

BERT+BiLSTM+CRF 82.30 81.49 81.90 83.36 81.95 82.65

+ prompt 81.92 82.20 82.06 84.34 82.19 83.25

LEBERT [14] 79.86 81.15 80.5 82.70 83.14 82.92

+ prompt 81.48 83.37 82.41 83.50 83.35 83.43

Our method 80.53 81.91 81.21 84.66 81.87 83.24

+ prompt 82.35 83.12 82.73 83.66 84.03 83.84
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Table 4. The effectiveness of Low-Resource on the CDD.

Method 0.5k 1k 2k

Pre Rec F1 Pre Rec F1 Pre Rec F1

Lattice LSTM [27] 58.25 38.81 46.59 58.19 47.49 52.30 68.19 45.61 54.66

LR-CNN [9] – – – – – – 21.42 0.16 0.32

CCW [15] 61.38 37.98 46.92 63.68 48.01 54.74 66.67 49.64 47.69

LGN [10] 44.24 31.05 36.49 53.46 38.71 44.90 55.73 41.67 47.69

FLAT [13] 14.78 6.59 9.11 40.80 26.42 32.07 50.03 39.57 44.19

BERT+BiLSTM+CRF 58.97 54.40 56.59 60.17 59.13 59.65 64.81 55.75 59.94

+ prompt 56.79 56.78 56.79 62.90 57.42 60.03 64.73 56.31 60.23

LEBERT [14] 57.92 52.53 55.09 60.05 58.86 59.45 60.81 57.88 59.31

+ prompt 57.43 53.03 55.15 65.13 55.17 59.73 62.79 57.04 59.78

Our method 64.13 49.88 56.11 65.32 55.97 60.28 66.86 54.57 60.09

+ prompt 56.19 57.42 56.80 63.82 57.13 60.29 66.94 55.21 60.52

Word Segmentation: Figure 4 shows the results predicted by LEBERT and
our model. As can be seen from the figure, the introduction of external medical
knowledge improves the model’s ability to recognize medical professional terms,
and our model can effectively predict professional terms in external knowledge.
When these professional terms contain nouns for body parts, LEBERT can only
predict body parts as entities, and other characters as non-entities.

Fig. 4. The effect of word segmentation.

4.5 Ablation Study

We designed an ablation experiment to verify whether various modules of our
model would affect the performance. The added modules are checked by remov-
ing BiLSTM and the external medical knowledge feature. Therefore, we conduct
three experiments: (1) Remove external medical knowledge feature: we use the
Lexicon Adapter layer of LEBERT and connect the Transformer and BiLSTM-
CRF layers. In this case, the external medical knowledge feature is removed from



Chinese Medical Named Entity Recognition Using External Knowledge 369

the entire model. (2) Remove BiLSTM: the model cannot capture bidirectional
semantic information after the removal of BiLSTM. Add the CRF layer directly
after the Transformer layer. (3) Proposed model: Models (1) and (2) are com-
pared with our proposed model. The experimental results are shown in Table 5.
We can see from the results that removing any one of these two modules will
affect the overall effect of the model.

Table 5. Ablation experiment on the dataset.

Dataset Method Pre Rec F1

CCKS – External medical knowledge 83.40 82.33 82.86

– BiLSTM 82.34 82.80 82.57

Our method 84.66 81.87 83.24

CDD – External medical knowledge 67.39 56.98 61.75

– BiLSTM 66.83 57.75 61.96

Our method 65.41 59.32 62.22

FN – External medical knowledge 71.70 67.43 69.50

– BiLSTM 68.84 68.38 68.61

Our method 69.34 72.40 70.84

5 Conclusion

We propose a novel Chinese medical NER model. The core of our model is the
lexicon-based method, which integrates the external medical lexicon information
into the model, and improves the ability of word segmentation. We also design
a template-based strategy to enrich the words’ information and improve the
model’s sensitivity to medical professional terms and abbreviations. The perfor-
mance of the proposed method is validated on three Chinese medical datasets.
Experimental results show that our model is feasible and outperforms other
lexicon-based NER models in performance and efficiency. And our method main-
tains good performance in the case of low resources. In addition, we conduct
ablation experiments to verify the effect of each module.
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Abstract. Trajectory prediction with dense traffic is a challenging task.
The heterogeneity caused by multi-type of road agents complicates the
mutual and dynamic relationship between agents. Besides, scene context
will affect the trajectory of agents. To address the aforementioned chal-
lenges, we present a novel model named HTFNet. Specifically, we use a
heterogeneous graph network to model multi-type of agents in traffic. In
order to handle varying influence between nodes, interactions between
nodes are modelled by a heterogeneous transformer neural network,
which uses mate-relation-dependent parameters to distinguish heteroge-
neous attention over each edge. In addition, scene contexts are considered
in multi-model destinations prediction. Through extensive experiments
on Stanford Drone Dataset, the results show that our model achieves
superior performance on the heterogeneous traffic dataset and produces
more reasonable trajectories for different types of road agents.

Keywords: Trajectory prediction · Heterogeneous graph transformer ·
Multi-type agents

1 Introduction

Predicting trajectory is an essential component for many applications. For exam-
ple, autonomous driving needs accurate trajectory prediction to avoid collisions
and ensure safety. When robots deliver goods in a complex environment, trajec-
tory forecasting can help them take appropriate strategies to improve efficiency.

In a traffic scenario, there are multi-type road agents, such as cars, buses,
pedestrians and bicycles. Different types of road agents increase the uncertainty
of interaction effects between them. Most existing trajectory prediction works
focus on one type of road agents such as pedestrians [1,3,6,26] or vehicles [10,25].
However, these methods ignore the difference in social interaction and dynamic
patterns between multi-type road agents. For example, people will pay more
attention to motor vehicles with greater speed and inertia than pedestrians.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 375–387, 2022.
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Hence, learning different interaction patterns is required to predict trajectories
in dense traffic.

Many models divide the prediction into two steps [2,8,28], which predict
destinations firstly, then predict the final trajectory based on a generated desti-
nation. Generative Adversarial Networks (GANs) and Variational Autoencoders
are used to predict the destination distribution [9,21]. Static scene feature need
to be added in destination prediction, which prevents unrealistic predictions.

This work aims to develop a trajectory prediction model suitable for dense
traffic with multi-type road agents. We follow the target-driven trajectory predic-
tion framework and use conditional variational autoencoders (CVAEs) to predict
the destination distribution. With the success of graph neural networks in pro-
cessing graph-structured data, road agents can be modelled as a graph with rich
relation information. We propose HTFNet, which uses a heterogeneous graph
transformer network to model interactions between road agents. Meta-relation-
based parameters are used to get adaptive scaling attention. We add scene infor-
mation in the process of destinations and trajectories prediction, which increases
the accuracy and reality of trajectories. We empirically validate our model on
Stanford Drone Datasets. Experimental results show that our model significantly
improves trajectory prediction tasks compared to baselines.

The contributions of this paper are summarized as follows:

• We model multi-type of agents as a dynamic heterogeneous graph and propose
HFTNet to learn heterogeneous message transmission between nodes.

• In the destination and trajectory prediction process, we consider scene infor-
mation and the dynamic pattern of the agents.

• Our model is evaluated in the short-term and long-term trajectory prediction
tasks. The result shows that our model can produce more reasonable and
accurate trajectories in complex traffic.

2 Related Work

There are considerable works on trajectory prediction for moving agents. Many
approaches rely on recurrent neural networks (LSTMs or GRUs) to exploit tem-
poral dependencies of time series. Many models take into account the inter-
action between road agents. Alahi et al. [1] introduces social pooling to pool
nearby pedestrians’ hidden features. Deo et al. [10] use convolutional social
pooling to improve the pooling process. Another relevant work is STGAT by
Huang et al. [15]. STGAT treats each agent as a graph node and exploits the
graph attention network to share information across different pedestrians. Some
algorithms consider heterogeneous data: Trajectron++ by Salzmann et al. [24]
accounts for multiple interacting agents from heterogeneous input data and pro-
duces dynamically-feasible trajectory forecasts. TraPHic by Chandra et al. [7]
uses a hybrid network LSTM-CNN to predict trajectories and take into account
heterogeneous interactions. The dynamics of a bus-pedestrian interaction differ
significantly from a pedestrian-pedestrian or a car-pedestrian. In order to process
dense, heterogeneous traffic scenarios in-depth, we model the interactions among
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different types of agents by using a dynamic heterogeneous graph. Some meth-
ods also use reinforcement learning to model the interaction and communication
between agents [17,20].

Graph Neural Networks (GNNs) are aimed to process graph structured data
and use message passing between the nodes to capture information from its
neighbourhood with arbitrary depth. GNN has been used in many fields such
as biology [12], traffic forecasting [19] and mobile networks [18]. The graph con-
volutional neural network can be divided into two categories: spectral domain
and non-spectral domain. Spectral approaches represent the graph as spectral
embedding based on adjacency matrices, while non-spectral approaches use con-
volutions directly on the graph based on groups of spatial neighbours. A het-
erogeneous graph is defined as a graph have several kinds of nodes and edges.
The heterogeneous graph embedding mainly focuses on meta-relation, which uti-
lizes the nodes’ paths to model the context of a node. Meta-relation can group
the neighbours according to their node types and distances. HAN by Wang et
al. [27] proposed the heterogeneous graph attention network, which utilizes meta-
relation to model node level and semantic attention and learns the weights of
different neighbours. HGT by Hu et al. [14] uses transformer-like self-attention
architecture for learning node representation.

3 Model Design

In this section, we introduce our HTFNet for trajectory prediction with multiple
types of agents. Our approach is visualized in Fig. 1. There are three key com-
ponents 1) Feature Encoder, 2) Destination Generator, and 3) Interaction and
Prediction Module. We begin the section by describing the problem definition.
Then we present details on how the proposed components are adapted to the
task.

3.1 Problem Formulation

Problem Setup. Multi-agent trajectory prediction is a task of forecasting the
future states of agents. The inputs of model are the historical state of N agents
X = [x−th , ...,x−1,x0] and scene context S in the time period [−th, 0], where
xt = (xt

1, x
t
2, ...x

t
N ) is the joint state of N agents at time t. The goal of model

is predicting the position of N agents Y = (Y 1,Y 2, ...Y tp) in the future time
period [1, tp].

This paper is focused on a complex traffic scenario involving multi-type road
agents, such as cars, pedestrians and bicycles. The scenario can be modeled by
dynamic heterogeneous graph denoted as a series of snapshots {G}tp

−th
, where

nodes represent road agents and edges represent their interactions. The graph G
at each time t represented as Gt = (Vt, Et,A,R), where the nodes Vt and edges
Et change when the dynamic graph evolving. A and R are node and edge type
sets respectively. Each node v ∈ Vt and each edge e ∈ Et are associated with
their type by mapping functions γ(v) : Vt → A and λ(e) : Et → R.
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Fig. 1. Overview of the model architecture. Our model consists of three components:
1) Feature Encoder, 2) Destination Generator, and 3) Interaction and Prediction Mod-
ule. The Destination Generator Module combines the motion feature of the historical
trajectories and scene context to infer the destination distribution. The Interaction and
Prediction Module uses the HGT network to exchange features between nodes.

3.2 Feature Extraction Module

The input of the model includes 2D location series of agents. We use a fully
connected layer (FCL) with Relu activation as the motion encoder to extract
temporal information of history state Fx:

Fx = MLPx({xk}0−th
), (1)

where {xk}0−th
is the 2D location series of agent k. We follow target-driven

framework that predicts the destination distribution firstly. Therefore we need
to extract the trajectory endpoint for destination generative module. We also
use a FCL and Relu activation as the destination encoder:

Fd = MLPd(Dk). (2)

where Dk = x
tp

k is the ground-truth destination of agent k. Trajectories are
significantly oriented by scene context. The objective of the scene encoder is
to detect the scene edge information (e.g., sidewalk, boundaries and buildings).
We use the hand-designed convolutional neural network (CNN) to extract visual
features Fs:

Fs = CNN(St). (3)

where St is the image of traffic environment at time t.

3.3 Scene Context Aware Destinations Prediction

In this model, CAVE is used to learn the destination distribution. The goal of des-
tination generator module is to model the destination distribution pθ(D|X,S)
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conditioned on history motion X and contextual information S. To consider the
stochasticity of destination in complex traffic scenarios, latent variables Z are
introduced. The future destination distribution of agents can be represented as:

p(Dk|Xk,Sk) =
∫

pθ(Dk|Zk,Xk,Sk)pν(Zk|Xk,S)dZk (4)

where Dk is the ground-truth destination of agent k. Zk,Xk is the latent intent
and historical trajectory of agent k, respectively. Sk is the scene context in this
period of time. Deep neural network are used to approximate prior network
pν(Zk|Xk,S) and decoder network pθ(Dk|Zk,Xk,Sk), where ν and θ denote
the parameters of corresponding networks. The generative process of Dk is:

1. Sample a latent variable z from the prior network pν(Zk|Xk,Sk).
2. Generate destinations D̂k through the response decoder pθ(Dk|Zk,Xk,Sk).

The goal of CVAE is maximizing the conditional log likelihood
log p(Dk|Xk,Sk), which can be trained by maximizing the variational lower
bound of the conditional log likelihood. Finally, the loss function of the destina-
tion generator can be represented as:

Ld(θ, ν;D,X,S) = KL
(
qν(Z|D,X,S)||pθ(S|X,S)

)
− Eqν(Z |D ,X ,S )[log pθ(D|Z,X,S)].

(5)

3.4 Heterogeneous Graph Message Exchange

In a dense and complex traffic scene, different types of road agents have var-
ious types of interactions. In order to transmit information between them, we
consider each road agent as a node of the graph and use a heterogeneous graph
transformer network (HGTNet) to exchange messages. Our HGTNet is based on
Heterogeneour Graph Transformer architecture [14]. HGTNet allows for aggre-
gating information from neighbours by assigning different attention to different
types of nodes. It also puts different attention within the same type. For exam-
ple, vehicles and bicycles extract different information from the road agent in
front and sides of them to avoid collisions.

There are two stages in the HGTNet. Firstly, the heterogeneous multi-head
attention mechanism is used to calculate attention and messages. Then we use
the heterogeneous message passing framework to exchange information between
nodes. HGTNet is constructed by stacking HGT layers. The structure of a single
HGT layer is shown in Fig. 2. We concatenate motion feature Fx, scene feature
Fs and generated destination feature Fgd as the input of the Heterogeneous
Message Exchange Module:

H = ⊕(Fx,Fgd,Fs), (6)

We map trajectory hidden feature of target node k and source node s into
Query vector and Key vector, respectively. Then calculate their dot product as
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attention. For a meta relation < γ(s), λ(e), γ(k) >, the influence from source
node s to the target node k are calculated by a meta-relation-based attention
network:

Ki(s) = Ki
γ(s)(H

l−1[s]), (7)

Qi(k) = Qi
γ(k)(H

l−1[k]), (8)

Atthi(s, e, k) = Ki(s)Qi(k)T ϕatt
<γ(s),λ(e),γ(k)>, (9)

where Atthi(s, e, k) means one of multi-head attention. H l means the output
of l-th HGT layer, which is also the input of the (l + 1)-th layer. In order to
distinguish different meta relation between attention, a matrix ϕatt

<γ(s),λ(e),γ(k)>

for meta relation is used to donate the difference. Then we concatenate different
representations of attention and make them through the softmax procedure:

ATTHGT (s, e, k) = Softmax
∀s∈N(k)

( ‖
i∈[1,h]

Atthi(s, e, k)). (10)

Heterogeneous 
Dot-product 

attention

Heterogeneous 
Dot-product 

attention

Heterogeneous 
Dot-product 

attention

k

Edge scaled
Softmax

Attention

Message

head

linear

Concat

Input

Fig. 2. Overview of architecture of heterogeneous graph transformer

After we get the multi-head attention, the message passing process can be
computed in a similar way. We use a matrix ϕmsg

<γ(s),λ(e),γ(k)> to distinguish
different mate relation. Then all heads of message are aggregated:

Msghi(s, e, k) = M i
γ(s)(H

l−1[s])ϕmsg
<γ(s),λ(e),γ(k)>, (11)

MSGHGT (s, e, k) = ‖
i∈[1,h]

Msghi(s, e, k). (12)
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As show in Fig. 2, ϕatt
r and ϕmsg

r denote the meta-relation-based attention
and message. After getting heterogeneous multi-head attention and message, we
need to aggregate them to get the final target node feature representation:

H̃ l[k] =
∑

∀s∈N(k)

(ATTHGT (s, e, k) · MSGHGT (s, e, k)), (13)

following the residual connection, the output of the l-th layer is

H l+1
[k] = σ(Aγ(k)H̃

l
[k]) + H l

[k], (14)

Aγ(k) is a linear function mapping target note’s vector back to its node type-
specific distribution.

3.5 Trajectory Prediction

The final trajectory feature H of each node is passed through the prediction
decoder to get the future trajectory. We use a FCL as the trajectory generator:

{Yk}tf

1 = MLPy(Hk). (15)

To train the full model HTFNet, we use the following losses:

L = Ld(θ, ν;D,X,S) + ‖Ŷ − Y ‖2, (16)

where Ld(θ, ν;D,X,S) measures destination error and ‖Ŷ −Y ‖2 measures how
far the generated trajectories from the ground truth.

4 Experiments

4.1 Dataset

We conduct experiments on Stanford Drone Datasets (SDD) [22]. SDD is a
heterogeneous dataset which consists of the following road agents categories:
pedestrians, skateboarders, bikers, cars, carts and buses. To make the category
more general, we combine car, cart and bus into one type and denote as the
vehicle. In total, there are eight unique top view scenes recorded by drone, 60
videos and 10300 unique trajectories. We follow the dataset split defined in
TrajNet benchmark [4] which used in prior work [5,23].

4.2 Experimental Settings

We use the Average Displacement Error (ADE) and Final Displacement Error
(FDE) as performance metrics. The error is measured in the pixel space. We
conduct the trajectory prediction task in three different time steps. In detail,
We sample the data at 25 fps. The length of input sequence is tp = 8 (3.2 s)
while the length of output sequence is tf = 12, 24, 36 (4.8, 9.6, 14.4 s). For the
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adjacent matrix, we build a binary adjacency matrix, which based on spatial
and temporal correlation. Ei,j = 1 if the spatial and temporal correlations are
satisfied between agent i and agent j:

√
(xi − xj)2 ≤ δd,

min(min |tibegin − tjk|,min|tiend − tjk|) ≤ δt,
(17)

where δt and δd is the spatial and temporal threshold values, respectively.
The scene images are downsampled and resized to the same size. The entire

network are trained end to end by ADAM optimizer and we use 2 layers HGT
network to handle interaction between road agents.

4.3 Baselines

We compare the performance of our proposed model with the following baselines.
Social GAN [13]: In this approach SeqtoSeq model are used to encode motion
histories and predict future trajectories. The outputs of LSTM are the generator
of GAN. The diverse predictions are evaluated against with ground truth by the
discriminator.
DESIRE [16]: This model use CAVE to generate diverse set of hypothetical
future trajectories. Then use a scoring-regression module rank every prediction.
A feedback mechanism further increases the prediction accuracy.
SoPhie [23]: This model predicts future trajectories based on GAN and consider
two sources of information, which are history trajectories and scene context infor-
mation. This model proposes physical attention and social attention to model
interaction between agents.
CF-VAE [5]: This model use Conditional Flow Variational Autoencoder(CF-
VAE) to learning multi-modal trajectories distributions. And it also proposed
posterior regularization and condition regularization to stabilize training.
P2TIRL [11]: This model use MaxEnt IRL to infer goals and paths by learning
rewards and it also defined coarse 2-D grid over the scene to predict trajectories.
PECNET [21]: This model first use CVAE to predict multi-modality destination
of road agents. Then predict trajectories based on these destinations.

4.4 Quantitative Evaluation

We conduct trajectory prediction with different future time steps form 12 to
36. Table 1 shows the ADE and FDE values of our proposed method against
the baselines on SDD. Our proposed HTFNet shows consistent lowest errors for
different future time periods compared to the prior approaches. HTFNet outper-
forms PECNet by 1.2%, 3.4% and 3.8% on ADE in three time steps, respectively.
This can be reasonably expected, since we add heterogeneous interaction between
different types of road agents and static scene context, which help to find the
reasonable destination.
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Table 1. Different time steps comparison of recent methods on SDD. We report two
metrics: minADE and minFDE of the trajectory with least error among K = 20 pre-
dicted trajectories. The units of ADE/FDE are pixels.

Methods 12-step 24-step 36-step

min ADE min FDE min ADE min FDE min ADE min FDE

Social-GAN(k = 20) 27.25 41.44 56.28 123.39 114.87 267.40

DESIRE(k =5) 19.25 34.05 49.25 111.78 99.82 233.45

SoPhie(k = 20) 16.27 29.38 36.05 81.14 79.09 172.47

CF-VAE(k = 20) 12.60 26.30 33.89 68.66 73.09 138.47

P2TIRL(k = 20) 12.58 22.07 24.07 42.40 53.47 93.05

PECNET(k = 20) 9.96 15.88 24.88 43.51 53.71 94.71

HTFNet(ours)(k = 20) 9.84 15.76 24.01 42.46 52.80 89.46

We show the results of different types of agents in Table 2. Our method
outperforms Social-GAN in all types of agents. Furthermore, our model has
better performance in pedestrian, bicycle and vehicle categories compared to
PECNet. This is because these categories have more complex interaction with
scene context and other road agents. Our model can predict more reasonable
trajectories through the heterogeneous transformer network.

Table 2. Performance of different types of road agents. minADE and minFDE are the
least error among K = 20 predicted trajectories.

Metric Type Social-GAN PECNet HTFNet (ours)

minADE Pedestrian 24.66 9.57 9.03

Bicycle 312.33 311.34 303

Vehicle 204.26 177.72 160.89

Skater 69.75 39.25 51.34

Average 27.25 9.96 9.84

minFDE Pedestrian 36.69 15.02 14.72

Bicycle 589.77 578.82 569.53

Vehicle 254.51 264.36 167.67

Skater 92.55 70.04 83

Average 41.44 15.88 15.76

4.5 Ablation Study

We further conduct ablation studies to investigate the contribution of key techni-
cal components in our method. The ablation results are summarized in Table 3.
We investigate the role of (1) heterogeneous interaction, (2) scene context and
(3) destination prediction, and we denote the corresponding variants as “w/o
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HI”, “w/o SC” and “w/o DP”. We can see that three variants lead to worse
performance compared to our proposed method. After removing this heteroge-
neous interaction learning, the performance of the model has dropped since the
different interactions between road agents are not considered. After removing
the scene context feature in destination and trajectories prediction, the model
achieves 14.72 on ADE metric and 25.22 on FDE metric. This shows that extract-
ing scene context has a certain effect on the accuracy of the model. The multi-
model destination prediction also improves the performance of ADE and FDE
metrics.

Table 3. Ablation study on effectiveness of heterogeneous interaction (HI), scene con-
text (SC) and destination prediction (DP).

w/o HT w/o SC w/o DP Ours (HTFNet)

ADE 16.22 14.72 13.04 9.84

FDE 30.90 25.22 26.84 15.76

Fig. 3. Trajectory visualization of our HTFNet and PECNet
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Fig. 4. Destination visualization of HTFNet

4.6 Qualitative Evaluation

Trajectory Visualization. In Fig. 3, we visualize predicted trajectories of our
method and PECNet. We can see that our model provides significant improve-
ment especially in long-range trajectory prediction. In Fig. 3(a, b), The distri-
bution of trajectories and destination points of our model will avoid obstacles
and buildings. In Fig. 3 (c, d), our model can extract the contour of the scene,
and then follow the interaction with the scene and other road agents.

Destination Visualization. Figure 4 show the predicted destination results
obtained by our model. We use blue and red points to denote the sampled
destination by CVAE. We can see that our model captures the multi-modality
of the trajectory by destination distribution. In Fig. 4a, we can see that the
distribution of destination depends on the scene context and history trajectory.
In Fig. 4b, the prediction shows the pedestrians choose to cross the road.

5 Conclusion

In this work, we propose a model for motion prediction. This model first gener-
ates possible future destinations and then predicts trajectories based on multi-
model destinations. We add scene information and dynamic pattern in the fore-
casting process. In order to model different interactions between different types
of road agents, we use HGT to model their interactions with each other. We
evaluate our model on a heterogeneous traffic dataset and prove that our model
can predict a reasonable and accurate future trajectory.
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Abstract. Our goal is to allocate items to maximize efficiency while
ensuring fairness. Since Envy-freeness may not always exist, we consider
the relaxed notion, Envy-freeness up to one item (EF1) that is guaran-
teed to exist. We add the further constraint of maximizing efficiency, util-
itarian social welfare (USW) among fair allocations. In general, finding
USW allocations among EF1, i.e., EEF1, is an NP-Hard problem even for
additive valuations. Neural networks (NNs) have shown state-of-the-art
performance in designing optimal auctions as well as in learning algo-
rithms. We design a NN inspired by U-Net for learning EEE1 allocations
which we refer to as EEF1-NN. EEF1-NN is generic and scales to any
number of agents and items once trained. We empirically demonstrate
that EEF1-NN finds allocation with higher USW and ensures EF1 with
a high probability for different distributions over input valuations.

Keywords: Resource allocation · Neural networks · EEF1

1 Introduction

Consider a situation where a social planner needs to allocate a set of indivisible
items (goods or/and chores) among interested agents. Agents have valuations for
the items, i.e., an item might be a good – positive valuation for one while it might
be a chore – negative valuation for the other. The agents reveal their valuations
upfront to the social planner. The social planner is responsible for the fair and
efficient allocation of these items among the agents. For example, a Government
needs to distribute resources and delegate tasks amongst its subdivisions. The
subdivisions should not feel mistreated in the system. While ensuring this, the
Government would like to optimally allocate items for the system’s growth.

Fair division is well-explored in literature [10,30,34]. Economists have pro-
posed various fairness and efficiency notions applicable in real-world settings,
such as division of investments and inheritance, vaccines, tasks, etc. There are
web-based applications such as Spliddit, The Fair Proposals System, Course-
match, Divide Your Rent Fairly, etc., used for credit assignment, land alloca-
tion, division of property, course allocation, and even task allotment. All these
applications assure certain fairness and efficiency guarantees.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 388–401, 2022.
https://doi.org/10.1007/978-3-031-20865-2_29
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One of the most popular fairness criteria is envy-freeness (EF) [17]. An allo-
cation is envy-free if each agent values its share at least as much as they value
any other agent’s share. EF is also trivially satisfied by allocating empty bundles
to every agent. Hence we must also have efficiency guarantees. When we con-
sider a complete allocation of indivisible items, EF may not exist (two agents,
one good). Finding whether EF exists or not is known to be Δp

2complete [9], let
alone finding an efficient allocation among EF. To overcome this limitation, we
consider a prominent relaxation of EF - EF1 (Envy-freeness up to one item) [12].
Unlike EF, EF1 always exists and can be computed in polynomial time [25].

In this work, we focus on utilitarian social welfare (USW), i.e., the sum of
utilities of individual agents. When valuations are additive, finding allocation
that maximize USW (MUW) is polynomial-time solvable. While finding EF1 or
MUW allocations are polynomial-time solvable, maximizing USW within EF1
allocations, i.e., EEF1 ; efficient and envy-free up to one item, is an NP-hard
problem, even when valuations are additive for two agents [4,6]. There is no
known approximation algorithm for EEF1. With these theoretical limitations,
we propose a data-driven learning approach, i.e., given the agents’ valuations, we
aim to learn EEF1. It is widely known that neural networks (NNs) outperform
existing approaches in finding an optimal mapping between the given input and
output data. NNs can learn algorithms [22], mechanisms [16] or solve Mixed Inte-
ger Programs [31]. Motivated by the success of NNs, we aim to learn algorithm
for EEF1 using NN. We list our major challenges as follows,

Challenges. (i) In the existing integration of NNs and mechanism design, pay-
ments are at their disposal. In our work, there are no payments, and we learn
discrete allocations, i.e., our solution space is binary. Whereas the output of NNs
is real numbers, it can easily learn optimal fractional allocations. If we convert
fractional solutions to integral, fairness guarantees no longer hold. (ii) Further,
we aim to design a generalized network for any number of agents or items,
even for configurations not seen during training. Most of the existing NN based
approaches in EconCS train the models separately for each configuration [16,27].
We overcome the above challenges as described below.

Contributions. To the best of our knowledge, this is the first study that inte-
grates deep learning and fair resource allocation. In particular,

– We propose a neural network EEF1-NN inspired by U-Net to learn EEF1.
– We transform our valuations and augment them with additional channels to

enhance the network’s performance.
– We use a series of convolutional and up-convolutional layers to learn EEF1;

EEF1-NN is generalized for any number of agents and items.
– We sample valuations from various distributions and report the expected fair-

ness and efficiency achieved. Even for large instances, our network performs
well. Moreover,1 the network quickly computes the output; hence we can
improvise this approach to be adept in practical real-time applications.

– We show that, for our setting, bagging of networks improves performance.
1

We evaluated IP solver to solve maximizing USW w.r.t. EF1 constraints, and for 10 × 100, it was
taking several minutes.
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2 Related Work

Fair resource allocation is well studied in the literature across various fairness
and efficient notions [10,30,34]. When a definition of fairness is too strong or may
not exist, we always look for its relaxation/approximation. There is existing work
that provides approximate efficiency and fairness guarantees in [1,7,11,24]. In
this paper, we majorly focus on EEF1. Authors in [11] presents a framework
to compute ε-Efficient and F-Fair allocation, using parametric integer linear
programming, which is double exponential in terms of n and m. They explored
group Pareto Efficiency, which is equivalent to USW. Authors in [4] provides a
pseudopolynomial-time algorithm to find MUW within EF1, which is exponential
in n and polynomial in m and V , where V bounds the valuation per item.

EF1 allocations always exist and can be found in polynomial time even for
general valuations [2,14,25]. Finding MUW allocations is also polynomial-time
solvable for additive valuations, i.e., we iterate over items assign the item to the
agent who values it the most. However, finding MUW allocation amongst EF1
allocations is NP-hard even for two agents with additive valuations. Also finding
a truthful way for allocating EF1 is also challenging [33].

There is always a trade-off between fairness and efficiency, corresponding to
the study of the price of fairness [5,8]. Researchers have also studied how likely a
fairness notion will not exist [15,28,29]. When agents’ valuations are additive and
drawn randomly from a uniform distribution, EF exists with a high probability
when m is at least Ω(n log n) and can be obtained by MUW allocations proved
by [15]. However, the hidden constants might be high2, and it leaves scope to
explore. [29] show that RR is envy-free when m ≥ Ω(n log n/ log log n).

Recently the EconCS community has been interested in learning mecha-
nisms/algorithms using NN, especially in a setting of theoretical limitations [16,
21,22,27,37–39]. Researchers have studied mechanism design widely [18,19]. [16]
and [21] learns optimal auctions and multi-facility mechanism using NN. [40]
uses NN in the combinatorial auction for preference elicitation. [26,27,38] learns
optimal redistribution mechanisms and MAB through NN. [39] uses NN to max-
imize the expected number of consumers and the expected social welfare for pub-
lic projects. Additionally, [31] solves MIP on large-scale real-world application
datasets and MIPLIB using a neural network that performs significantly better
than the MIP solver. [32] proposed a neural network-based solution to achieve
fairness in classification. Given enough data, hyper-parameter tuning, and proper
training, the networks are adept at learning effective transformations. Another
line of work is Reinforcement Mechanism Design, such as learning dynamic price
in sponsored search auctions [13,36].

3 Preliminaries

We consider the problem of allocating M = [m] indivisible items among N = [n]
interested agents, where m,n ∈ N. We only allow complete allocation and no
2

Our experiments show that in the case of uniform distribution, even for 10 agents, 150 items, the
probability of MUW allocation being EF1 is less than 0.5.
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two agents can receive the same item. That is, A = (A1, . . . , An), A ∈ Πn(M)
s.t., ∀i, j ∈ N , i �= j;Ai ∩ Aj = ∅ and

⋃
i Ai = M . Each agent i ∈ N has a

valuation function vi : 2M → R and vi(S) is its valuation for a S ⊆ M s.t.
vi(∅) = 0. We represent valuation profile v = (v1, v2, . . . , vn). We only consider
additive valuations. The valuation of an agent i ∈ N for bundle Ai is vi(Ai) =∑

j∈Ai
vi({j}). For an agent i, an item j ∈ M is a good if, vi({j}) ≥ 0, and a

chore if, vi({j}) < 0. We consider three settings - pure goods, pure chores, and
a combination of goods and chores. With this notation, we now define fairness
and efficiency properties as follows.

Definition 1 (Envy-free (EF) and relaxations). An allocation A that sat-
isfies ∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) is EF
vi(Ai\{k}) ≥ vi(Aj\{k});∃k ∈ {Ai ∪ Aj} is EF1

Definition 2 (Maximum Utilitarian Welfare (MUW)). An allocation A∗

is said to be efficient or MUW if it maximizes the USW, sw(A, v) =
∑

i∈N vi(Ai)

A∗ ∈ arg max
A∈Πn(M)

sw(A, v)

Definition 3 (EEF1 Allocation). We say an allocation is EEF1 if it satisfies
EF1 fairness and maximizes USW amongst EF1 allocations.

Given agents’ valuation profile v = (v1, v2, . . . , vn), we learn EEF1 allocations
using a data-driven approach. We randomly draw vi ∼ Fi and assume F =
F1 × F2, . . . ,×Fn to be a known prior distribution over agents’ valuations. We
use the notation n ⊗ m to represent a setting with n agents and m items.

4 Our Approach: EEF1-NN

We construct the optimization problem for EEF1 Sect. 4.1; we then formulate the
Lagrangian loss function Sect. 4.2 and provide the detail of EEF1-NN Sects. 4.3
and 4.4.

4.1 Optimization Problem

We are given a set of valuation profile v = (v1, v2, . . . , vn), where vi is drawn
randomly from a distribution Fi. Among all possible allocations, we need to find
an optimal A∗ that maximizes USW sw(A, v) and satisfies a fairness constraint.
We formulate two (generalized) fairness constraints - EF and EF1 as follows.

efi(A, v) =
∑

k∈N

max

{

0, (vi(Ak) − vi(Ai))

}

(1)
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ef1i(A, v) =
∑

k∈N

max

{
0, (vi(Ak) − vi(Ai))+ min

{
− max

j∈Ak

vi({j}), min
j∈Ai

vi({j})
} }

(2)

Our goal is to maximize the expected welfare w.r.t. to the expected fairness.

minimize − Ev [sw(A, v)] = Ev[
∑

i∈N

vi(Ai)]

subject to Ev

[
∑

i∈N

efi(A, v)

]

= 0 or, Ev

[
∑

i∈N

ef1i(A, v)

]

= 0
(3)

In the above optimization problem, we have ‘OR’ among fairness constraints,
which we elaborate more on this in the Ablation Study in Sect. 5.1.

4.2 EEF1-NN: Lagrangian Loss Function

EEF1-NN represents a mapping from valuation to allocation space, i.e., Aw :
R

{n×m} → {0, 1}n×m, where w represents the network’s parameters. To learn
w, we formulate our problem to optimize welfare w.r.t. to fairness constraints
in Eq. 3 and formulate Lagrangian loss function (λ ∈ R≥0). Given L samples of
valuation profiles (v1, . . . , vL) drawn from F , the loss per sample (I l

v) is,

Loss(I l
v, w, λ) =

[

− sw(Aw(I l
v), vl) + λ

∑
i∈N envyi(Aw(I l

v), vl)
n

]

(4)

We minimize the following loss w.r.t w, LEEF1(I l
v, w, λ) = 1

L
∑

l Loss(vl, w).

4.3 Network Details

We describe EEF1-NNś various components, including the input, architecture,
and other training details in this section. EEF1-NN is a fully convolutional net-
work (FCN) and processes input of varied sizes (i.e., height × width).

EEF1-NN: Input. We transform our valuations and augment with additional
channels to enhance performance. We construct an input tensor of size n×m×6,
i.e., Iv ∈ R

n×m×6. The first channel is an n × m matrix of given valuations, i.e.,
∀i, j; Iv[i, j, 1] = vi({j}). We take a matrix X of size n×m that contains valuation
for items only corresponding to the agent who values it the most, and the rest
are zero. We break ties arbitrarily and expand X into five channels.

∀j ∈ M ; X[i.j, 1] =

{
vi({j}) if i ∈ argmaxivi({j})
0 otherwise

The next channel contains information about items indexed as 0, 5, . . . , �m/5�,

I[i.j, 2] =

{
X[i, j, 1] if j ∈ {0, 5, 10, . . . , �m/5�}
0 otherwise
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The next channel contains data from the previous channel along with items
indexed as 1, 6, . . . , 1 + �m/5�. And so on. The last channel Iv[i, j, 6] is X. We
observe that single channeled input performs sub-optimal. We study the effect
of input complexity on the performance in Sect. 5.1.
EEF1-NN: Architecture. Our architecture is inspired by U-Net architecture
[35]. U-Net is a fully convolutional network built to segment bio-medical images;
it also requires assigning labels to image patches and not just classifying the
image as a whole. While we are working on valuation profiles rather than images,
one of the primary motivations to use U-Net is to process arbitrary size images.
If we use a feed-forward fully functional neural network to learn fair and effi-
cient allocations, we need a different network for each n ⊗ m. Moreover, just
using a feed-forward functional network (multi-layer perceptron) learns EEF1
allocations for smaller values of n, but cannot learn as n increases.

EEF1-NN contains series of convolution and up-convolution layers, as given
by Fig. 1. EEF1-NN has three series of Conv-UpConv layers. The convolutional
layers consist of 4 repeated 3× 3 convolution, each followed by a non-linear
activation function, tanh. The up-convolution layers consist of 4 repeated 3× 3
up-convolution, each followed by a tanh activation. Note that we are not using
maxpool or skip connections as we found that they degraded the performance.
We apply softmax activation function across all agents for every item to ensure
each item is allocated exactly once, i.e., ∀j ∈ M

∑
i∈N Aw

i ({j}) = 1. The final
output represents the probability with which agent i receives item j. Using an
FCN, we have a generalized network for n ⊗ m; however, learning EEF1 is not
easy. We need to learn integral variables, while NNs are known for learning
continuous output. We describe these challenges next.

Fig. 1. EEF1-NN Architecture

4.4 Training Details

Integral Allocations. The global optima of the optimization problem in Eq. 3
might lie in a continuous allocation setting, i.e., similar to allocating divisible
items. If a network learns to distribute an item equally among all agents, then
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the gradient vanishes. Assigning an equal partition of each item is indeed an opti-
mum. Converting these non-integral allocation to integral is non-trivial. Hence
we set a temperature parameter T in the softmax layer of the network to pre-
vent getting stuck at such optima. Let oj = {oj1 , . . . , ojn} denote the output
of our network before the final layer. The final allocation for agent i is given
by, Aw

i ({j}) = softmax(oji) = e
oji

/T

∑n
k=1 e

ojk
/T which represents the probability of

assigning item j to all the agents. It is common to start with a large T for initial
exploration and gradually reduce T to reach the global optima. While training,
when we set T to 1, we get fractional allocations. As we decrease the value of T ,
the network outputs allocation close to discrete. The approach we want is while
training, allocation output is almost discrete, but not exactly discrete. When we
keep the value too low, the output is exact discrete allocations, and there is no
learning because of the vanishing gradients. We appropriately choose T based
on our experiments. Once the network learns, we set the parameter low enough
to ensure discrete allocations.

Inefficient Local Optima. Due to the low T value, the training of EEF1-NN
is highly unstable and often gets stuck at inefficient local optima. To overcome
this, we use the technique of Bootstrap Aggregation or Bagging. It combines
the predictions from multiple classifiers to produce a single classifier. We train
multiple weak networks with varied hyper-parameters on the same data set,
capturing different sets of local optima. While testing, the final allocation is
aggregated from these networks. We pass a test sample through all networks
and select the allocation that is EF1 with maximum USW. In total, we bag
seven networks with varied λ ∈ [0.1, 2] for increased performance. We further
analyze how Bagging affects our results in the ablation study.

We implement EEF1-NN using PyTorch. We initialize the network weights
using Xavier Initialization [20]. To train, we use Adam Optimizer [23] with learn-
ing rate 0.001 for 1000 epochs with T = 0.01. We use a batch size of 256 samples.
We sample valuations from U [0, 1] (goods), U [−1, 0] (chores) and U [−1, 1] (com-
bination). We sample 150k training data for both 10⊗ 20 and 13⊗ 26 for goods,
chores, and combinations, so in total, we have 300k training samples, and we
sample 10k testing samples for each setting. We train seven networks with varied
λ ∈ [0.1, 2] and bag them for enhanced performance. The training process takes
5–6 h to train a single network using GPU. We are training the network for
10 ⊗ 20 and 13 ⊗ 26. however, we show our test results for various n ⊗ m. We
test for network performance for n ∈ [7, 15]. We also train an individual network
over different distributions such as Gaussian, Log-normal, and Exponential. We
validate EEF1-NN efficacy in the next section.

5 Experiments and Results

In this section, we conduct an ablation study to set appropriate hyper-parameters
and 3 types of experiments showcasing performances across different item types,
distributions, and scalability. To report the network performance, we define the
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following two metrics: the measure of fairness (probability of an allocation to be
EF1) and the other of efficiency (how close our social welfare is to optimal).

Evaluation Metrics

1. αALG
EF1 - It measures the probability with which an algorithm ALG outputs

EF1 allocation. αEF1 is the ratio of the number of samples that are EF1 to
the total number of samples.

2. βALG
SW - It measures the ratio of expected USW of an algorithm ALG by

expected USW of MUW allocation. βALG
SW = E(swALG)/E(swMUW ).

Note that βALG
SW ∈ [0, 1] for goods, βALG

SW ≥ 1 for chores, and will depend
on the overall social welfare (positive/negative) for a combination of goods and
chores. We will use that notation (αEF1, βsw) to report performance.

5.1 Ablation Study

Fig. 2. Ablation Study over varied hyper-parameters (Color figure online)

We illustrate the effect of specific hyper-parameters in the performance of
EEF1-NN in Fig. 2. We set n = 10 goods for all the experiments. In the plots,
the red line with the label EEF1-NN denotes the αEF1 for optimal parameters.
Corresponding to EEF1-NN, a single network from this bagged network is labeled
as Single Network. This Single Network trained with six-channeled input, λ = 1,
and T = 0.01 is the baseline to compare across this ablation study. Only one
parameter is changed w.r.t. the Single Network for the study.
(i) Effect of Temperature T . In Fig. 2(left), when T = 1, it converges to fractional
allocation represented by the blue line at the bottom of the plot. When T =
0.001 (violet line), it is too low, and performs sub-optimally compared to single
network. We also noticed that the performance for T = 0.01 and T = 0.1 are
close to each other. We set T = 0.01 for all the bagged networks in EEF1-NN.
(ii) Effect of Series of Conv-UpConv layers. We select three series of Conv-
UpConv for EEF1-NN as illustrated in Fig. 2(left). As seen from Fig. 2(left),
a performance increase between 1-series (green dashed line) and 2-series (red
dotted line) is significant compared to 2-series and 3-series (single network).
The complexity of the network having 4-series is far more than the performance
improvement.
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(iii) Effect of Loss Function We empirically analyze how different envy defini-
tions (Eq. 3) affects the training of EEF1-NN. As shown in Fig. 2(left), when we
train our network using EF, i.e., Eq. 1 (Single Network, the network performs
significantly better than when trained using EF1, i.e., Eq. 2 (orange dashed line).
For example, for 10⊗20, the performance of Single Network is (0.3358,17.9611),
whereas the performance of the EF1 trained network is (0.1530,17.8708).
iv) Number of Input Channels. To enhance our network performance, we exper-
imented with different channel inputs. For 2-channeled input, we set the first
channel of input tensor as the valuation and the second to X. Like 6-channeled
input, we expand X to 11 channels. As shown in Fig. 2(right), the perfor-
mance of a 1-channeled network is (0.2113, 17.8976), 2-channeled network is
(0.2365, 17.8991), Single Network is (0.3358, 17.9611), and 11-channeled network
is (0.3925, 17.9395). The network cannot be generalized for 11-channeled.
v) Effect of Bagging. We bag different combination of networks, each trained for
varied λ in Fig. 2(right). More the λ, more penalty is given to envy. When λ
is too small, the network learns a more efficient but less fair allocation. As we
increase λ up to a certain value, the network learns less efficient but more fair
allocations. We observed that varying λ results in converging to the different
optimum. We bagged seven networks trained with λ ∈ [0.1, 2]. Bagging (EEF1-
NN) outperforms the performance of a single network.

Fig. 3. Exp1 (n = 10, Uniform Distribution)

5.2 Experiment Details and Observations

We conduct three types of experiments, Exp1: Different kinds of resources,
Exp2: Input distributions, and Exp3: Scalability. Since approaches in [4,11]
are exponential, we cannot report results on our experimentation configuration.
We compare EEF1-NN with the following existing methods,

– MUW- We compare our results with MUW since we don’t have EEF1. Note
that EEF1-NN welfare is close to MUW; we can say it is also close to EEF1.
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– Round Robin (RR)- [14] finds EF1 for goods or chores. Double Round Robin
(D-RR) [2] finds EF1 for the combination of goods and chores.

– Constrained Round Robin (CRR)- We implement CRR [3] to find RB
sequences to increase efficiency. An RB sequence for goods.

EXP1: Performance Across Differed Resources for Uniform Distribu-
tion. For n = 10, we compare αEF1 in Fig. 3 (a1, b1, c1) and βSW in Fig. 3 (a2,
b2, c2). As m increases, all the approaches move closer to EEF1. We observe
that MUW (blue dotted line) converges towards EEF1 much faster for chores or
combinations than goods. While RR converges to EEF1 much faster in goods
compared to chores or combinations. We discuss this convergence in detail in
Table 1. We observe that EEF1-NN consistently has better αEF1 than MUW
and βsw than RR/CRR. We observe that αEEF1−NN

EF1 is close to 1 after a certain
m. At the same time, EEF1-NN is far more efficient than RR. (Fig 3 (a2, b2,
c2)). Note that the CRR is only for goods. We observe that compared to CRR,
EEF1-NN obtains marginally better βSW , in Fig. 3(a2).
EXP2: Performance Across Different Distributions. We provide the per-
formance of EEF1-NN when the valuations are sampled from different distribu-
tions such as Gaussian (μ = 0.5, σ = 1) in Fig. 4(a1, a2), Log-normal (μ = 0.5,
σ = 1) in Fig. 4(b1, b2), and Exponential (λ = 1) in Fig. 4(c1, c2). We observe
that in all three αEEF1−NN

EF1 > 0.99 and βEEF1−NN
SW > 0.99 for m ≥ 40 in Fig. 4.

EXP3: Scalability to Larger Number of Agents. EEF1-NN is trained
only for 10 ⊗ 20 and 13 ⊗ 26. As we have seen in the previous results and in
Fig. 5, the performance scales across varying m and n seamlessly. We provide
the performance of EEF1-NN when n = 7, 12, 14 in Fig. 53.
Analysis of Convergence to EEF1 Allocations (Uniform Distribution)

Definition 4 (m�(n)). For a given n, we say an algorithm converges to EEF1
allocation at m�(n) if ∀m > m�(n),

(i) For goods: αALG
EF1 ≥ 0.99 and βALG

sw ≥ 0.99.
(ii) For chores: αALG

EF1 ≥ 0.99, and βALG
sw ≤ 1.02.

We empirically study m�(n) value after which EEF1-NN, RR, and MUW start
converging towards EEF1 for uniform distribution in Table 1. We don’t report
CRR in this; as we see fluctuations in βsw, it doesn’t increase smoothly in Fig.
[35]; For goods, EEF1-NN reaches close to EEF1 faster than MUW and RR,
and RR reaches close to EEF1 faster than MUW. EEF1-NN converges first,
then MUW, and finally RR for chores in Table 1. For chores, we report the value
of m� for RR when βsw ≤ 1.064 since m is significantly higher than MUW and
RR, concluding that RR converges after a considerably larger m. As m increases,
αEF1, αEFX , and αEF of MUW gets closer. Note that we do not experiment with
all possible m; the actual value of m�(n) may be slightly different from Table 1.
We aim to observe a pattern among approaches to achieve EEF1.

3
To report performance for n ∈ [7, 9], we reduce a Conv-UpConv layer and train accordingly with
7 ⊗ 14 and 10 ⊗ 20 valuation profiles.
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Fig. 4. Exp2 (n = 10, different distributions)

Fig. 5. Exp3 (n = 7, 12, 14 goods, Uniform Distribution)

Table 1. Value of m�(n) as different approaches converge to EEF1 allocations

n (m) Goods (m) Chores

EEF1-NN R MUW EEF1-NN R MUW

7 38 159 380 44 195 112

8 46 172 450 44 240 120

9 57 186 530 53 295 130

10 70 196 610 60 340 148

11 82 206 660 68 400 160

12 94 214 740 75 455 167

13 110 220 840 83 505 180

14 134 228 940 87 565 190

Discussion. αEEF1−NN
EF1 reaches 1 much faster than αMUW

EF1 , and βEEF1−NN
sw

reaches close to βMUW
sw much faster than RR, D-RR, CRR. EEF1-NN shows

a better trade-off between EF1 and efficiency than the existing approaches for
different input distributions. We trained our network with fixed n⊗m for goods
or/and chores, it is interesting that the performance scales for any m and a large
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n. We conclude that EEF1-NN effectively learns and provides a better trade-off
when m is not too large or small compared to n but is in a specific range.

6 Conclusion

In this paper, we proposed a neural network EEF1-NN to find EEF1, an NP-hard
problem. We designed architecture and input representation combined with other
training heuristics to learn approximate EEF1 on average. We studied the effect
of each proposed constituent on performance. Our experiments demonstrated
the efficacy of EEF1-NN for different input distributions across various n and m
over existing approaches. With theoretical limitations and the success of neural
networks, we believe that the path of amalgamating deep learning and resource
allocation is worth exploring further with more complex objective functions.
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Abstract. Adversarial Training (AT) is one of the most effective defense
methods against adversarial examples, in which a model is trained
on both clean and adversarial examples. Although AT improves the
robustness by smoothing the small neighborhood, it reduces accuracy on
clean examples. We propose Weighted Adaptive Perturbation Adversar-
ial Training (WAPAT) to reduce the loss of clean accuracy and improve
robustness, which is motivated by the adaptive learning rate of the
model optimizer. In the adversarial examples generation stage of adver-
sarial training, We introduce weights based on feature changes to adap-
tively adjust the perturbation step size for different features. In itera-
tive attacks, if a feature is frequently attacked, we increase the attack
strength of this area, otherwise, we weaken the attack strength of this
area. WAPAT is a data augmentation method that shortens the distance
of adversarial examples to the classification boundary. The generated
adversarial examples maintain good adversarial effects while retaining
more clean examples information. Therefore, such adversarial examples
can help us to obtain a more robust model while reducing the loss of
recognition accuracy for clean examples. To demonstrate our method,
we implement WAPAT in three adversarial training frameworks. Experi-
mental results on CIFAR-10 and MNIST show that WAPAT significantly
improves adversarial robustness with less sacrifice of accuracy.

Keywords: Adversarial examples · Adversarial training · Weighted
perturbations

1 Introduction

In recent years deep learning has enjoyed tremendous success in solving a variety
of machine learning tasks such as computer vision [6], speech recognition [19] and
natural language processing [22], even achieving or surpassing human-level per-
formance in certain cases [8,17]. However, deep neural networks (DNNs) could be
vulnerable to adversarial perturbations: carefully computed small perturbations
added to clean examples to get adversarial examples can cause misclassification
on machine learning models [2,5,16,21]. This vulnerability of DNNs raises seri-
ous concerns in security-critical applications [3,4,12]. Recent research focuses
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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on improving their robustness mainly by two defense approaches, i.e., certified
defense and empirical defense. Certified defense tries to learn provably robust
DNNs against adversarial perturbations. Empirical defense incorporates adver-
sarial examples into the training process. For instance, adversarial training (AT)
[5,13,24] is an empirical defense, which is recognized as the current best defense
method to adversarial attack [1,11].

Adversarial training is formulated as a minimax optimization problem
[13,25]. To conduct this minimax optimization, project gradient descent (PGD)
is a common method to generate the most adversarial data that maximizes
the loss, updating the current model. The adversarial training seeks to train
an adversarial robust deep network whose predictions are locally invariant to a
small neighborhood of its inputs. Although adversarial training can improve the
robustness against adversarial examples by smoothing the small neighborhood,
it sometimes hurts accuracy on clean examples [15,18,24]. And it is impossible
to introduce all unknown attack examples into the adversarial training. Among
substantial works of adversarial training, there still is a big robust generalization
gap between the training data and the testing data. Adversarial perturbations in
practice are typically defined to be imperceptible to humans (e.g. small perturba-
tions in vision). Hence by definition, the human is a classifier that is both robust
and accurate with no trade-off in the clean data and adversarial data [23]. Fur-
thermore, deep neural networks are expressive enough to fit not only adversarial
but also clean data perfectly. Unfortunately, the model obtained through adver-
sarial training does not reach the capabilities of human being. Model robustness
is obtained at the cost of accuracy. Is this phenomenon caused by the unrea-
sonable generation of adversarial examples? Motivated by the above, the core
problem we raise and address in this paper is:

For adversarial training, how to generate adversarial examples closer to
human vision, which can make the model have better robustness and less sac-
rifice in accuracy?

We propose a novel Weighted Adaptive Perturbations Adversarial Training
(WAPAT) framework that tries to solve the problem. WAPAT is established on
top of adversarial training, yet augmenting adversarial data with a new app-
roach. It changes the adversarial attack module with a fixed step length in
adversarial training and further refines the perturbation step size of different
features during the attack process. We call this method as Weighted Adaptive
Perturbations Attack (WAP-Attack). WAP-attack divide perturbation into the
perturbation step size and perturbation direction. WAP-Attack implements per-
turbation weighting when iteratively adding adversarial perturbations on clean
data, which is used to control the perturb granularity of different features in an
iteration. The improvement of this method is mainly inspired by the adaptive
learning rate of the model training optimizer. The adversarial examples gener-
ated by this method not only retain the features of the weak attack areas but also
enhance the attack strength in the strong attack areas. WAP-Attack will make
the perturbations at different features better discriminated, but this method will
reduce the attack strength. To solve this problem, we give a basic attack when
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weighting the perturbation of the example. On this basis, different features will
have different perturbations. The WAP-Attack gives the adversarial attack pro-
cess feature-level adaptability using weighted adversarial perturbations. Figure 1
shows clean examples from the MNIST dataset, as well as adversarial examples
from PGD and WAP attacks. Compared with figure (b), the shaded part of figure
(c) is more fragmented and retains more clean examples’ information. The WAP-
Attack examples have fewer perturbation areas, but Table 1 shows that the same
level of attack effect is achieved with shorter perturbation distances.

Fig. 1. On the MNIST dataset, (a) are clean examples, (b) are adversarial examples
generated using PGD, and (c) are adversarial examples generated using WAP-Attack

Our contributions can be briefly summarized as below:

– We propose a novel method to get more powerful adversarial examples,
which is called Weighted Adaptive Perturbations Attack (WAP-Attack). This
method adjusts the examples’ perturbation step size based on the change
value of different features to generate adversarial examples for training.

– We propose a variant of adversarial training called WAPAT, which uses
adversarial examples generated by WAP-Attack for adversarial training. The
WAPAT framework improves the robustness of the model while less impairing
clean accuracy.

– Experimental results show that compared with other adversarial training
results, WAPAT trades more robustness gains with less accuracy reduction.
Our thoughts are more effective in the defense of iterative attacks. We provide
the process of evaluating experimental results.

2 Related Work

2.1 Adversarial Attacks

Let F(x) be a probabilistic classifier based on a neural network with the logits
function f(x) and the probability distribution P(x). Let L(F(x),y) be the cross
entropy loss for image classfication.The goal of Adversarial attacks is to get
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an example xadv ∈ Bε(x) = {xadv :=‖ xadv − x ‖p≤ ε} in the �p norm bounded
perturbations, where ε denotes the perturbation budget. In the paper, we use p =
∞ to align with previous work. Adversarial attacks can be divided into single-step
attacks and iterative attacks according to the number of attacks. Fast Gradient
Sign Method (FGSM) [5] is the most commonly used single-step attack method.
Projected Gradient Descent (PGD) [13] is a stronger iterative variant of FGSM,
which iteratively solves the optimization problem maxxadv∈Bε(x)L(F (xadv), y)
with a step size α:

xt+1 = Πxadv∈Bε(x)(x
t − α · sign(∇xL(F (xt), y))) (1)

where Πxadv∈Bε(x) indicates the projection of set Bε(x). Carlini-Wagner attack
(CW) [2] is a sophisticated method to directly solve for the adversarial example
xadv by using an auxiliary variable w:

xadv =
1
2

· (tanh(w) + 1) (2)

The objective function to optimize the auxiliary variable w is defined as:

min
w

‖ xadv − x ‖ +c · F (xadv) (3)

where F (xadv) = max(fy(xadv) − max{fi(xadv) : i �= y},−k). The constant k
controls the confidence gap between the adversarial class and the true class.

2.2 Standard Adversarial Training

Despite a wide range of defense methods, adversarial training is considered the
most effective way to defend against adversarial examples. The idea of adversarial
training is to solve the min-max optimization problem, as show in Eq. (4):

min
F (•)

1
n

n∑

i=1

{ max
xadv

i ∈B(xi)
L(F (xadv

i ), yi)} (4)

where xadv
i is the adversarial example within the ε-ball centered at xi, F (•) :

X → R
c is a classifier, and the loss function L : Rc × y → R is a composition

of a base loss lB :Δc−1 × y → R (e.g. the cross-entropy loss) and an inverse
link function lL:Rc → Δc−1 (e.g. the soft-max activation), in which Δc−1 is the
corresponding probability simplex-in other words, L(F (x), y) = lB(lL(F (x), y)).

Here we introduce two adversarial training frameworks.

PGDAT. PGD Adversarial Training (PGDAT) [13] leverages the PGD attack
to generate adversarial examples, and trains only with the adversarial examples.
The objective function is formalized as follows:

L(F (x), y) = L(F (xadv), y) (5)

where xadv obtained by the PGD attack in Eq. (1).
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GAIRAT. Geometry-Aware Instance-Reweighted Adversarial Training
(GAIRAT) [26] considered the unequal importance of adversarial data. A natu-
ral data point closer to/farther from the class boundary is less/more robust, and
the corresponding adversarial data point should be assigned with larger/smaller
weight. The objective function is shown in Eq. (6):

L(F (x), y) = w(x, y) · L(F (xadv), y) (6)

where w(x, y) is the weight of the current example, which can indicate how
important the current example is to robustness. w(x, y) = f(t), is a function of
the minimum number of steps t used to generate adversarial examples, t is used
to measure the distance from the classification boundary.

After adversarial training, the network learns a new decision boundary to
incorporate both clean and adversarial examples.

3 Weighted Adaptive Perturbation Adversarial Training

3.1 Motivations of WAPAT

In the standard training, the model has more than enough model capacity, which
can easily fit the natural training data entirely [23,26]. However, according to
the existing research, it is difficult for the model to fit both clean examples
and adversarial examples. Why is there such a problem? We think that the
generation process of adversarial examples needs improvement. Our motivation
comes from the optimizer in the model training process. We can simplify the
process of image classification by the model to a feature map. As shown in Eq. 7,
we call this feature map a scoring function.

F (x) = Wx + b (7)

When we fix x, the training process is realized by adjusting the model parame-
ters W and b through the loss function. The optimization of parameters mainly
depends on optimization direction and optimization step size. The optimiza-
tion direction is determined by the gradient of the loss function to the model
parameters. The optimization step size is called the learning rate, which is an
important hyperparameter used to control the parameter update process. Adam
[7] is a representative of adaptive learning rate optimizer. It adaptively selects
the learning rate according to the different parameters in the training process.
If we fix the parameters of the model and update the examples in the oppo-
site direction of the gradient, adversarial examples will be generated. Existing
research on the iterative generation methods of adversarial examples, such as
PGD, BIM [9], etc., ignores the adaptability of the perturbation step size. We
believe that the different features in examples and parameters in the model have
the same properties. When performing an iterative adversarial attack, the per-
turbation step size should be adaptively selected considering the difference of
examples’ features.
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Fig. 2. WAP-Attack uses a more refined iteration adversarial perturbations to push
clean examples across the decision boundary. The generation process of these adver-
sarial examples takes into account the difference based on the feature position

Table 1. On the MNIST dataset and CIFAR-10 dataset, we present the distances
of adversarial examples generated with PGD and WAP from clean examples and the
attack success rates of the two methods. We use the test data of the two datasets
separately for experiments, and the distances are averaged

Dataset Method Distance(l2) Accuracy

MNIST PGD 5.8703 0.01%
MNIST WAP 5.4097 0.09%
CIFAR-10 PGD 1.1842 0.01%
CIFAR-10 WAP 0.9856 0.02%

WAPAT achieves adaptability using a feature-based weighting of the per-
turbation step size. If the feature of a certain area changes greatly from the
original feature, it means that the feature contributes greatly to the generation
of adversarial examples; otherwise, the contribution is small. Therefore, different
features should be treated differently when weighting and the attack strength
should be increased if the contribution is large, and the attack strength should
be weakened if the contribution is small. This method is different from other
methods in the following two points:

1. In other iterative attacks, there are only two changes to the examples’ fea-
tures in each iteration, +α or −α, where α is the perturbation step size of
the iterative attacks. WAP-Attack makes the change of each features more
diverse. Through the iterative attack, the algorithm adaptively selects the
perturbation step size according to the contribution of features to adversarial
examples.
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2. From the perspective of examples distribution, the process of moving from
clean examples to adversarial examples (see Fig. 2) is refined. Compared with
early stopping [25] with a fixed feature perturbation step size, the adversarial
examples generated by WAP-attack are closer to the classification boundary
and have better adversarial properties. We present the data of two attack
methods on the classification models of the two datasets in Table 1. We fix
the perturbation direction and attack clean examples. WAP-Attack achieves
the same level of attack success rate using a shorter distance from the original
example. Because the attack direction is the same, the shorter the distance
from the original example, the shorter the distance classification boundary.

3.2 Learning Objective of WAPAT

WAPAT’s objective function implies the optimization of adversarial robust net-
works, with one step generating adversarial examples and one step minimizing
loss on the generated adversarial data w.r.t the model parameter θ. The outer
optimization for the minimization problem still follows Eq. (4). The inner opti-
mization for generating xadv is

xadv
i = argmax

xadv∈B(xi)

L(F (xadv), y) (8)

xadv is obtained through the iterative attack. We refer to the idea of attention
mechanism and increase the weight when the adversarial perturbation is added.
As shown in Fig. 3, WEI is the perturbation weight assignment function when
generating the adversarial example xadv.

xt+1 = xt + w(s(t), b) · α · sign(�xtL(Fθ(xt), y)), t ∈ n (9)

where w(s(t), b) is the core of weighted perturbations module (WEI). s(t) is
the sum of gradient sign multiple iterative attacks, which is used to represent
the size of the example change. b is the basic adversarial perturbation. w(s(t), b)
shows the feature changes on examples’ different areas. If the change value of the
features increases with the number of iterations, it means that these features are
located in the strong attack areas, and the attack strength should be increased;
otherwise, they are located in the weak attack area, and the attack strength
should be reduced. We introduce the hyperparameter b to control the size of
basic perturbations.

3.3 Realization of WAPAT

When generating adversarial examples, as shown in Fig. 3, we divide the adver-
sarial perturbation into a perturbation direction and a perturbation size. The
perturbation direction provides the change direction of features to generate
adversarial examples. The perturbation size is the core improvement part of
the WAPAT framework, which gives an adaptive weight to distinguish strong
and weak attack areas. According to the number of iterations and the sum of
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Fig. 3. The illustration of weighted adaptive perturbations adversarial attack frame-
work. The weighted perturbations module (WEI) is the improvement on the generation
of adversarial examples. The weight matrix and the perturbation step size α are used to
generate the weighted adversarial perturbations, and it is combined with the gradient
direction to obtain the final adversarial perturbations

gradient signs, the WEI module helps examples get the perturbation weight
based on different features. We introduce a hyperparameter b as the basis of
the perturbation, which is the minimum change value of the perturbation at the
feature level. On this basis, the perturbations step size when generating adver-
sarial examples is different for the different features. As the core of the weighted
adaptive perturbations module, WEI is very simple to implement (Algorithm1).
It is based on an iterative process. In the completed iteration, if the accumu-
lated attack is large, this feature is important for adversarial examples. This
means that we should increase the perturbation step size for this feature. If the
cumulative attack of a feature is small, which indicates that the feature has a
limited impact on adversarial examples, we should reduce the perturbation step
size. Extending to the entire examples, a weighted adaptive perturbation size is
calculated. This is like the dynamic adaptation of learning rate in model train-
ing, which adds the attention mechanism to adversarial perturbation according
to features.

We combine these two parts to generate adversarial perturbations.We call this
iterative attack method which distinguishes different characteristics as weighted
adaptive perturbation attack. It is summarized in Algorithm 1. Model training
through these adversarial examples is the process of WAPAT.
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Algorithm 1. WAP-Attack Algorithm
Input: data x ∈ X, label y ∈ Y , loss function L, weight w, attack step K, perturbation
bound ε, perturbation step size α, base perturbation b.
Output: xadv

1: Let xadv ← x + 0.001 · N (0, I); i, t ← 0; s0, w0 ← 0.
2: for t=1,...,K do
3: st ← st−1 + sign(�xadv L(F (xadv), y)).
4: wt ← abs(st)/K
5: base ← b/K
6: if The value of wt is 0 in a area then
7: In this area: wt = base
8: else
9: In this area: wt = wt + base

10: end if
11: xadv

t ← xadv
t−1 + wt · α · sign(�xadv

t
L(F (xadv

t ), y))
12: end for
13: return xadv

4 Experiments

In this section, we conduct a set of experiments to verify the effectiveness of
WAPAT and then evaluate its robustness on benchmark datasets.

4.1 Experimental Setup

Baselines. Standard Training;AT(use PGD attack) [13]; TRADES [24]; MART
[20]. We compare with adversarial training variants, since they are recognized as
the most effective defense.

Architecture and Datasets. We used two benchmark datasets (CIFAR-10
[6] and MNIST [10]), which are commomly used in the adversarial robustness
literature. The CIFAR-10 dataset consists of 60000 color images each of size 32 ×
32, split between 50K training and 10K test images. The MNIST dataset consists
of 70000 handwritten digits each of size 28 × 28, split between 60K training and
10K test images. For CIFAR-10, we use the same neural network architecture
as [6] i.e., the ResNet18. We set perturbation ε = 0.031, perturbation step size
α = 0.007, number of iterations K = 10, learning rate lr = 0.1, batch size
m = 128, and run 80 epochs on the training dataset. For MNIST, We use the
Small_CNN architecture with four convolutional layers, followed by three fully-
connected layers. We set perturbation ε = 0.3, perturbation step size α = 0.075,
number of iterations K = 10, learning rate lr = 0.01, batch size m = 128,
and run 50 epochs on the training dataset. For TRADES, we set λ = 6.0. For
MART, we set λ = 5.0. Hyperparameters of the baselines are configured as per
their original papers. Hyperparameter of WAPAT is set b = 3.0.
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Table 2. On the MNIST and CIFAR-10 datasets, we attack the standard trained
models with PGD and WAP-PGD. We explore the role of hyperparameter b using the
distance between adversarial and clean examples and recognize accuracy as evaluation
criteria

Attack DataSet CIFAR-10 MNIST
Eval Distance(l2) Accuracy Distance(l2) Accuracy

PGD Unweighted 1.1845 0.02% 5.0984 1.10%

WAP+PGD b = 0 0.7209 0.20% 2.6075 43.91%
b = 1 0.8297 0.08% 3.1058 21.27%
b = 2 0.9090 0.03% 3.6056 9.26%
b = 3 0.9855 0.01% 4.4037 4.25%
b = 4 1.0449 0.01% 4.6040 2.13%
b = 5 1.0900 0.02% 4.9163 1.43%
b = 6 1.1288 0.01% 5.0528 1.23%
b = 7 1.1652 0.01% 5.1762 1.05%
b = 8 1.1945 0.01% 5.2864 1.01%
b = 9 1.2092 0.01% 5.3569 0.87%
b = 10 1.2201 0.01% 5.4290 0.77%

4.2 Effectiveness of WAP-Attack

We evaluated the effectiveness of adversarial examples obtained using WAP-
Attack. We train the standard classification model on CIFAR-10 and MNIST,
and then tested the PGD attack and WAP+PGD attack on standard classifica-
tion models. The experimental results are shown in Table 2, where Distance =
‖ xadv − x ‖. We use the l2 distance to measure the distance between adversarial
examples and clean examples. On the premise that the perturbation direction
remains unchanged, this distance can indirectly represent the distance of the
adversarial example from the classification boundary. The specific value of this
distance is the average of all the data in the test set. For the CIFAR-10 dataset,
the l2 distance of the adversarial examples obtained by the PGD attack from
the clean examples is 1.1845, and the accuracy is 0.02%. WAP+PGD uses a
perturbation distance of 0.9090 to achieve almost the same attack effect. For
the MNIST dataset, the l2 distance of the adversarial examples obtained by the
PGD attack from the clean examples is 5.0984, and the accuracy is 1.10%. While
WAP+PGD uses a perturbation distance of 4.9163 to achieve a similar attack
effect. At the same time, we found that the basic attack b affects the distance.
When b = 5, a balance can be achieved, which is the perturbation distance is
smaller and the attack effect is similar. At this point, we can say that the adver-
sarial examples generated by WAP-Attack are more powerful. Therefore, a more
robust classification model can also be obtained through adversarial training.
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Table 3. Experimental results on the CIFAR10 dataset

Defense methods No-attack FGSM PGD(7) PGD(10) PGD(20) DeepFool

Standard training 93.49% 16.59% 0.00% 0.00% 0.00% 5.29%
AT(PGD) 83.66% 55.19% 49.92% 46.88% 44.97% 61.32%
WAPAT 83.40% 56.11% 51.25% 48.10% 46.29% 62.42%
TRADES 81.65% 57.32% 54.08% 51.49% 50.60% 63.51%
WAP+TRADES 83.68% 59.35% 55.51% 53.21% 52.08% 64.50%
MART 80.08% 57.37% 53.37% 53.76% 51.68% 61.58%
WAP+MART 80.13% 59.58% 56.89% 54.86% 53.87% 63.73%

Table 4. Experimental results on the MNIST dataset

Defense methods No-attack FGSM PGD(7) PGD(10) PGD(20) DeepFool

Standard training 99.43% 48.13% 22.84% 10.80% 1.88% 2.55%
AT(PGD) 99.00% 96.72% 97.22% 96.39% 94.59% 96.90%
WAPAT 99.32% 97.48% 98.00% 97.40% 96.17% 97.52%
TRADES 99.26% 97.15% 97.58% 96.82% 95.30% 96.92%
WAP+TRADES 99.16% 97.90% 97.85% 97.47% 96.67% 97.92%
MART 99.13% 98.07% 97.71% 97.06% 96.34% 97.51%
WAP+MART 99.33% 98.26% 98.25% 97.86% 97.07% 98.06%

4.3 Evaluation Results for WAPAT

The above three methods(AT, TRADES, MART) are chosen as the baselines
because they all generate adversarial examples iteratively, and none of their
improvements involve the process of generating adversarial examples. This allows
us to easily add the WAP-Attack module to these methods. We evaluate the
robustness and clean accuracy of three methods against three types of attacks for
both MNIST and CIFAR-10: FGSM, PGD, DeepFool [14]. We used three kinds of
PGD attacks with the different numbers of iterations. For the CIFAR-10 dataset,
we applied the WAP-Attack module to AT(PGD), TRADES and MART. For
the setting of the adversarial attack method of the test model, we have made the
following settings. For FGSM, we set perturbation ε = 0.031. For a series of PGD
adversarial attacks, we set perturbation ε = 0.031, perturbation step size α =
0.007, number of iterations includes 7, 10, and 20 steps. For DeepFool attack, we
set perturbation ε = 0.031. The perturbations of the above three methods are all
limited to the infinity norm l∞. The experiment results of CIFAR-10 and MNIST
are reported in Table 3 and Table 4, where “No-Attack” denotes the accuracy on
clean test images. The results show that the accuracy of the clean examples of
the three methods has been improved. Compared with the accuracy of standard
training, the downward trend has been alleviated to a certain extent. While
ensuring the accuracy of clean examples, the model’s robustness to adversarial
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examples has also been improved. Before and after adding the WAP-Attack
module, the accuracy and robustness changes of the three adversarial training
methods are shown in Table 5 and Table 6. Taking PGD (20) as an example,
the accuracy of adversarial examples in the AT(PGD) method has increased
by 1.32%, from 44.97% to 46.29%; the accuracy of adversarial examples in the
TRADES method has increased by 1.48%, from 50.60% to 52.08%; The accuracy
of adversarial examples in the MART method is increased by 2.19%, from 51.68%
to 53.87%.

Table 5. The robustness change value of the three methods before and after adding
the WAP module on the CIFAR-10 dataset.

Defense AT TRADES MART

No-attack –0.26% +2.03% +0.05%
FGSM +0.92% +2.03% +2.21%
PGD(20) +1.32% +1.48% +2.19%
DeepFool +1.10% +1.01% +2.15%

Table 6. The robustness change value of the three methods before and after adding
the WAP module on the MNIST dataset.

Defense AT TRADES MART

No-attack +0.32% –0.10% +0.20%
FGSM +0.76% +0.75% +0.19%
PGD(20) +1.58% +1.37% +0.73%
DeepFool +0.62% +1.00% +0.55%

For the MNIST dataset, we also do the same change to the three methods.
However, the setting of the adversarial attack methods is different from the
CIFAR-10 dataset. For FGSM, we set perturbation ε = 0.3. For a series of PGD
adversarial attacks, we set perturbation ε = 0.3, perturbation step size α = 0.03,
the number of iterations includes 7, 10, and 20 steps. For the DeepFool attack,
we set perturbation ε = 0.3. The MNIST dataset and CIFAR-10 dataset do not
perform well in the accuracy of clean examples. This may be the examples in
the MNIST dataset are relatively simple. But after introducing the WAP-Attack
module and adversarial training, the robustness of the model is improved. We
still take PGD (20) as an example. The robustness of the models trained by the
three methods is improved by 1.58%, 1.37%, and 0.73% respectively.
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5 Conclusion and Future Work

In this paper, we are motivated by the model optimizer’s adaptive learning rate
to investigate the impact of adaptive adversarial perturbations on adversarial
training defense. Based on this idea, we designed a method for weighting adver-
sarial perturbations in the process of attacking and used the adversarial exam-
ples generated by this method to complete adversarial training, which is called
Weighted Adaptive Perturbations Adversarial Training (WAPAT). Experimental
results show that compared with standard training, WAPAT reduces the accu-
racy loss of clean examples to a certain extent, and also improves the model’s
robustness to different adversarial attacks.

In the future, we plan to investigate the influence of different weighted adap-
tive perturbation methods such as attention mechanism on the process of gen-
erating adversarial examples and study the influence on the defense effect of
adversarial training using this kind of adversarial examples.
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Abstract. Network pruning has been shown as an effective technique
for compressing neural networks by removing weights directly. Although
the pruned network consumes less training and inference costs, it tends
to suffer from accuracy loss. Some recent works have proposed several
norm-based regularization terms to improve the generalization ability
of pruned networks. However, their penalty weights are usually set to
a small value since improper regularization hurts performance, which
limits their efficacy. In this work, we design a similarity-based regu-
larization term named focus coefficient. Differing from previous regu-
larization methods of directly pushing network weights towards zero,
the focus coefficient encourages them to be statistically similar to zero.
The loss produced by our method does not increase with the number of
network parameters, which allows it easy to tune and compatible with
large penalty weights. We empirically investigate the effectiveness of our
proposed method with experiments on CIFAR-10/100, Tiny-ImageNet,
and ImageNet. Results indicate that focus coefficient can improve model
generalization performance and significantly reduce the accuracy loss
encountered by ultra sparse networks.

Keywords: Regularization · Network pruning · Deep learning

1 Introduction

Neural networks with an enormous number of parameters have achieved remark-
able practical success. In recent years, the capacity of networks has increased
substantially, from 100 million parameters [23], to 340 million parameters [4],
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Before Training Trained On MNIST Trained On Fashion-MNIST

One-Layer Classifier

Fig. 1. The heatmap of a neuron’s weights. We reshape values into 28× 28 for a more
intuitive demonstration, and attach some training samples above. Normalization scales
the range in [0, 1]. Blue means that the input pixel is positively correlated with the
neuron’s assigned label, while red means the opposite. Consequently, one can see a fuzzy
green ‘3’ from the weights trained on MNIST, and an ankle boot on Fashion-MNIST.
(Color figure online)

and finally 530 billion parameters [25]. An arms race of training large networks
has begun.

Although these over-parameterized models usually exhibit remarkable gen-
eralization performance, they come at a hefty cost in terms of computing and
storage. Therefore, some model compression methods [1,11,14] have been pro-
posed to trim neural networks. Network pruning [8] is one of these methods that
is known for achieving improved compression rates by directly removing unim-
portant weights. It typically has a minor impact on test performance, but can
vastly enhance computational and memory efficiency. In particular, ultra sparse
networks [16,30] could potentially enable real-time inference on edge devices
with single-core CPUs.

When it comes to identifying unimportant weights, there are two types of
algorithms: importance-based and regularization-based. The former is consti-
tuted of importance criteria, such as norm [8], gradient [15], etc. The algorithm,
given a sparsity, removes all weights with low scores in the dense network at
once to produce a sparse network. While the latter generally imposes an addi-
tional regularization term to identify unimportant weights or channels by push-
ing parameters towards zero [18,19,28]. However, existing studies are limited
to small penalty weight regime to avoid downgrading the model. Therefore, the
effect of regularization-based approaches is restricted. To demonstrate the prin-
ciple of pruning, we train a single-layer network, apply Min-Max normalization
to the weights, and then display the weights of one of the neurons in Fig. 1.

One can see that the optimization has tuned these random values into a
certain distribution, which enables a model to determine whether the neuron
should be activated. For inputs (elements of a sample) that substantially corre-
late with the neuron’s delegated class, the weights are boosted to large values,
resulting in a high activation value. However, most weights are tuned near 0
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(that is 0.5 after normalization), making their inputs slightly affect the activa-
tion value. Intuitively, the neuron ignores most inputs and infers using only a
few pixels. This interesting mechanism allows us to observe some training sample
characteristics from weights.

Apparently, only some dimensions in the sample contribute to the classifica-
tion, while the rest can be safely pruned. It is a widely held view that focusing
on certain inputs is key to the success of ReLU [7] and attention [27]. Thus,
network pruning can be improved by adding a regularization term to drive more
weights to zero. Nevertheless, is lowering most weights numerically close to zero
a necessary condition to produce sparse representations? Intuitively, raising the
remaining weights away from zero could achieve the same effect of making a
few inputs dominate the activation values. Obviously, the order relation within
weights plays a more crucial role in generalization and pruning.

In this work, we propose a similarity-based regularization term named focus
coefficient (FC). Differing from previous norm-based regularization components,
our term measures the statistical similarity of the neural network weights to
zero, which theoretically indicates the importance that weights attach to inputs.
Therefore, FC motivates the neural network to focus on fewer inputs when serv-
ing as a proximal term. Furthermore, FC is easily tunable since it regularizes
layer-wise and independent of the number of weights.

We first empirically evaluate the effect of regularization on generalization.
Results show that FC manages to regularize the network and therefore slightly
improve generalization behavior as expected. Most notably, it does not signifi-
cantly reduce accuracy even trained with large penalty weights.

Then we investigate its improvement on network pruning. It has commonly
been assumed that model compression can benefit from incorporating proper
regularization [20]. However, our experiments show that even the dense network
performance has increased, data augmentation downgrades the generalization
of sparse networks. The output-based regularizers (confidence penalty [22] and
label smoothing [26]) have a minor impact on network pruning. FC, in contrast,
can improve the performance of ultra sparse networks dramatically. More exper-
iments on ViT [6] show that our approach is also applicable to the Transformer
architecture [27].

Contributions: our contributions in this paper are as follows.

– We discuss the relationship between regularization and pruning, and argue
that the traditional wisdom of letting the weights be close to zero numerically
is unnecessary.

– We propose a similarity-based regularization term called focus coefficient,
which encourages the neural network to focus on fewer inputs. Our approach
can introduce strong regularization to improve network pruning.

– The experiments in Sect. 4 verify that our method could regularize the net-
work and slightly improves the generalization. Besides, it is compatible with
large penalty weights without seriously hurting accuracy. More experiments in
Sect. 5 demonstrate that FC can be used to obtain well-behaved ultra sparse
networks.
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2 Related Work

A typical pruning involves three stages: (1) pre-training a dense network (2)
pruning unimportant weights to obtain a sparse network (3) fine-tuning the
sparse network to recover accuracy.

Regularization. Regularization-based pruning mainly aimed to push the weight
values towards zero by introducing norm regularization in the pre-training pro-
cess. Among them, the most applied ones were L0 and L1 [18,19], which could
implement pruning in training. Regularization methods could also be used to
estimate sparsity [8]. The majority of the early work focused on unstructured
pruning. Although higher sparsity could be achieved, it had limited effectiveness
for acceleration. Therefore, some regularization-based structured pruning meth-
ods had been presented [29]. The penalty weights of these approaches could
typically only be set to a moderate value because unduly strong regulariza-
tion interfered with training. In order to introduce strong regularization, some
works [5] proposed to apply different penalty weights to various weights. While
other studies [28] suggested gradually increasing the strength of regularization.

Our suggested similarity-based regularization, unlike other techniques, is
inherently compatible with large penalty weights and does not require additional
settings to strongly regularize the neural network.

Importance. Some importance-based methods were proposed for application
in the pruning stage. Specifically, these methods designed algorithms that could
identify and removed unimportant weights from the trained network. The ini-
tial group of works [9,14] was to use the Hessian matrix, but it involved huge
computational effort. As a result, the most applied are simple magnitude-based
schemes. Both the L1 [18] and L2 norm [8] of the weights could be used for
unstructured or structured pruning.

3 Method

3.1 Notations

We consider an n-layer neural network using fixed nonlinearity ρ. For the i-
th layer with input dimension di and output dimension ci, its weight tensor is
denoted as wi, so i ∈ {1, . . . , n} and wi ∈ R

ci×di . While the output of the neural
network is as follows1:

f(x;w) := ρ(wnρ(wn−1 · · · ρ(w1x) · · · ))
For wi, let wmin

i and wmax
i correspond to tensors filled with minimum wmin

i

and maximum wmax
i respectively. Both tensors have the same shape as wi. When

wi is full of 0.5, it is denoted as w0.5
i . The l1 norm | · | and l2 norm ‖ · ‖ are

always computed entry-wise. Thus, the l2 norm corresponds to the Frobenius
norm ‖ · ‖F for a matrix.
1 Since weights account for most of the neural network parameters, we do not consider

other parameters, such as bias.
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3.2 Focus Coefficient

We use cosine similarity to derive focus coefficient. First, we bring the weights
onto the same range [0, 1] to obtain the dimensionless version. For wi, we apply
Min-Max normalization for simplicity as follows:

wN
i =

wi − wmin
i

wmax
i − wmin

i

(1)

As mentioned in Sect. 1, 0 in the weights can be roughly considered as 0.5
after normalization. Therefore, we compute the cosine of wN

i and w0.5 to obtain
the statistical similarity of wi to 0.

γ(wi) =1 − cos(wN
i ,w0.5) = 1 − wN

i · w0.5

‖wN
i ‖ × ‖w0.5‖

=1 − 1√
ci × di

· |wi − wmin
i |

‖wi − wmin
i ‖ (2)

The above derivation is just plain algebra. After obtaining γ(wi) of each
layer, we further define the FC of a neural network Γ (w) as follows:

Γ (w) =
1
n

·
n∑

i=1

γ(wi) (3)

A linear layer with a smaller γ(wi) tends to allow fewer inputs to affect its
output. Correspondingly, the simpler the model becomes. Therefore, we next
work on reducing Γ (w) to regularize the neural network.

3.3 Regularization

For a given dataset, consisting of m i.i.d tuples {(x1, y1), . . . , (xm, ym)}, we let
xi ∈ R

d×1 denotes the input data and yi denotes the corresponding class label.
We regularize the neural network f trained on it by applying the following loss
function:

�(f(x;w)) =
1
m

m∑

i=1

CE(fw (xi), y) + λ · Γ (w) (4)

where CE(·) indicates the cross-entropy loss and λ denotes the focus penalty.
For a neural network trained using gradient descent scheme, the j-th weight

of its i-th layer iterates the following equation at time t:

w
(t+1)
i [j] = w

(t)
i [j] − α · ∂�(f(x;w))

∂wi[j]

∣∣∣∣
wi[j]=w

(t)
i [j]

(5)
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where α is the learning rate. Next we obtain the gradient of �(f(x;w)) on wi[j]:

∂�(f(x;w))
∂wi[j]

=
∂L

∂wi[j]
− λ√

ci × di
·
∂

|wi−wmin
i |

‖wi−wmin
i ‖

∂wi[j]
(6)

where L =
∂ 1

m

∑m
i=1 CE(fw (xi), y)

∂wi[j]
.

Since FC is computed layer-wise, we only consider the current i-th layer when
computing the gradient. Specifically, we have:

∂
|wi−wmin

i |
‖wi−wmin

i ‖
∂wi[j]

=
1

‖wi − wmin
i ‖ − |wi − wmin

i |
‖wi − wmin

i ‖3 (wi[j] − wmin
i ) (7)

Next, we substitute Eq. (6) and (7) into Eq. (5) to obtain the following
formula:

w
(t+1)
i [j] =(

1 − α · λ√
ci × di

· |wi − wmin
i |

‖wi − wmin
i ‖3

︸ ︷︷ ︸
A1

)wi[j]

+

α · λ√
ci × di

· (
1

‖wi − wmin
i ‖ +

|wi − wmin
i |

‖wi − wmin
i ‖3 · wmin

i )
︸ ︷︷ ︸

A2

− α · ∂L
∂wi[j]

(8)

We see that FC, when serving as a regular term, imposes the following two
transforms on the weights: (1) Shrinking to A1 times; (2) Adding A2. Note that
the weights in the same layer share the same A1 and A2 values. In this way, our
method makes each input to be labeled with similar weights. Therefore, FC can
be considered as an adaptive version of weight decay.

4 Improvements to Dense Networks

In this section, we investigate the impact of FC on dense network generalization.
Specifically, we first perform vanilla training on models as baselines. Then we
apply Eq. (4) as the optimization objective and gradually increased λ from 0.
Note that λ is raised to an unreasonably high value, such as 50 for AlexNet.
Figure 2 presents the test accuracy of these networks. We also report the value
of Γ (w) to demonstrate the effect of λ on regularization.

The FC curve (orange) indicates that our method manages to regularize
the network as expected. At first, the network generalization improves with FC
integration. The suitable value of λ is affected by the task difficulty and the num-
ber of parameters. In our setting, focus coefficient can improve large networks
(AlexNet and VGG-16) when λ equals 0.01. For a small network (ResNet-20)
or challenging task (ImageNet), a smaller value such as 5e-4 could be a better
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Fig. 2. Accuracy (%) and FC of the network with various regularizers.

choice. On the other hand, we note that there is only a slight performance loss
from continuing to boost λ rather than making learning fail like L1 and L2 [21].
We next demonstrate that this compatibility with large weight penalties leads
to stronger regularization, resulting in higher sparsity.

5 Improvements to Sparse Networks

Regularization is generally considered to enable neural networks to achieve low-
complexity solutions, which require less network capacity. In this section, we
explore the impact of FC on sparse networks and compare it with other regular-
ization techniques. We employ the two-step process proposed by [17] to construct
sparse networks. An additional regularizer is enabled when first pre-training the
dense network. After pruning the low-magnitude weights, we perform normal
training to fine-tune the sparse network for fairness.

Table 1. Test accuracy (%) of sparse network with various data augmentation strate-
gies on CIFAR-10.

Sparsity (%) AlexNet ResNet-20

None Mixup Rand augment None Mixup Rand augment

0 78.18 78.51 79.57 92.04 92.46 93.29

50 77.76 76.67 76.75 92.12 92.50 93.22

90 79.84 77.97 78.65 89.72 90.38 90.52

99 74.22 73.47 73.04 72.39 70.46 72.07

99.5 59.45 59.09 55.89 64.77 61.04 63.44
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Table 2. Test accuracy (%) of sparse network with various data augmentation strate-
gies on CIFAR-100.

Sparsity (%) AlexNet ResNet-20

None Mixup Rand augment None Mixup Rand augment

0 46.21 48.65 50.82 67.63 68.71 68.80

50 47.42 47.44 48.62 67.98 68.12 68.58

90 49.15 49.77 46.28 62.67 62.50 62.90

99 46.48 42.14 40.11 40.69 40.02 39.42

99.5 40.56 39.24 38.33 31.28 30.24 28.84

5.1 Data Augmentation Hurts Network Pruning

We begin by adding more data augmentation methods to the pre-training pro-
cess. In practice, mixup [31] and RandAugmentation [2] are considered to intro-
duce large data perturbation and thus regularize the network. The former intro-
duces linear behavior by synthesizing a new sample by randomly overlaying
another one on each image in the dataset. While the latter is an automated
augmentation strategy. While both are thought to help dense networks by incor-
porating strong regularization, can sparse networks also benefit from it?

We train AlexNet [13] and ResNet-20 [10] on CIFAR-10 [12] and CIFAR-100,
respectively. The test accuracy is shown in Table 1 and Table 2. Results show
that dense neural networks trained with data augmentation perform better as
claimed by the authors. The following pruning, on the other hand, would not gain
improvement. Surprisingly, providing additional data augmentation to the pre-
training process actually degrades the performance of the ultra sparse network.
RandAugment, for example, improves AlexNet by 4.6% on CIFAR-100, yet at a
sparsity of 99%, it leads to a 6.4% accuracy loss instead. Our results show that
data augmentation during the pre-training period can impede network pruning.
Furthermore, the relationship between data augmentation and regularization is
called into question.

5.2 Explicit Regularizers

Next we turn to compare the following explicit regularizers with our proposed
FC for network pruning.

– L1 Regularization is also known as LASSO. It is often used to improve
network pruning due to its sparsity-inducing property.

– Confidence Penalty [22] is a penalty term based on the maximum entropy
principle. It prevents peaked distributions by regularizing the output distri-
bution of the network.

– Label Smoothing [26] is a widely-used regularization term based on output
restrictions. It penalizes overfitting by replacing hard labels in the dataset
with soft ones. Its regularization strength is controlled by the smoothing
factor.
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Fig. 3. Left: Accuracy (%) of sparse AlexNet with explicit regularizers. Right: Param-
eter remaining ratio per layer of AlexNet with extreme sparsity (99.8%). Points not
drawn in the dashed line indicate that a layer collapse has occurred.
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Fig. 4. Left: Accuracy (%) of sparse VGG-16 with explicit regularizers. Right: Param-
eter remaining ratio per layer of VGG-16 with extreme sparsity (99.5%). Points not
drawn in the dashed line indicate that a layer collapse has occurred.

Table 3. Test accuracy (%) of networks with various sparsity. (a): ResNet-18 on Tiny-
ImageNet. (b):EfficientNet-B2 on ImageNet.

(a)

λ 95% 99% 99.9% 99.95%

0 60.03 52.14 30.44 18.85

0.1 60.54 53.02 30.43 25.69

0.5 61.02 55.19 36.90 30.96

(b)

λ 90% 95% 99% 99.95%

0 71.03 66.95 25.82 18.85

0.001 72.03 66.81 27.05 25.69

0.01 70.86 66.99 28.19 30.96
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PlainNets. We start by training AlexNet and VGG-16 [24] on CIFAR-10. The
hyperparameter of the regularization are gradually increased until the accuracy
of the dense network drop to random guessing. Interestingly, VGG-16 is incom-
patible with the confidence penalty and cannot be trained even when the penalty
weight is reduced to 1e–8. Figure 3 and Fig. 4 report the performance of AlexNet
and VGG-16, respectively.

By and large, the sparse network performs better with stronger regulariza-
tion. However, label smoothing and confidence penalty are ineffective in achiev-
ing high sparsity. FC surpasses conventional regularizers in sparse networks. As
we mentioned in Sect. 4, our proposed method is compatible with large penalty
weights, which allows it to provide stronger regularization without disturbing the
neural network. Therefore, the network regularized by FC still predicts properly
even at very high sparsity (99.8% for AlexNet and 99.5% for VGG-16).

One might speculate that this is due to the fact that the parameters of
a certain layer are pruned entirely (layer-collapse), and that serious accuracy
degradation can be avoided by simply restricting the sparsity of each layer. We
demonstrate the percentage of parameters remaining at each layer on the right
side of the figures. Indeed, layer collapse happens from time to time in networks
that are not regularized by FC. Although this conjecture can partially explain
the failure of the sparse network, there exists networks without layer collapse
(solid line) that are no more accurate the random guessing. Therefore, we believe
that layer collapse is a sufficient and unnecessary condition for pruning failure,
and proper regularization remains an effective way to improve pruning.

Fig. 5. Accuracy (%) of ResNet-20 on CIFAR-10 with various regularizers.
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Modern Networks with Shortcut Connections. We next validate our method on
ResNet. Differing from PlainNets above, the collapsed layer in the ResNet can
be bypassed by shortcuts, resulting in higher sparsity. However, the accuracy
still decreases because of the network shortening caused by the disappearance
of some convolutional layers. As shown in Fig. 5, the accuracy of the sparse
network improves with the increase of the regularization strength, while FC
presents better results. Table 3 then shows that our method is still applicable on
the more challenging Tiny-ImageNet and ImageNet [3].

5.3 Transformer Architecture

We extend our discussion from CNN to Vision Transformer (ViT) [6]. We train
ViT on CIFAR-10 and prune its linear layers in multi-head self-attention [32].

As shown in Fig. 6, ViT can clearly gain performance from pruning. We
speculate that this is due to the high redundancy of the linear layer used by the
original self-attentation module. As a result, the regularization brought by FC
slightly improves the effectiveness of ViT. As the sparsity and penalty weights
increase, the performance improvement becomes larger.

(a) ViT(patch=4) (b) ViT(patch=8)

Fig. 6. Test accuracy (%) of Vision Transformer with FC.

6 Conclusion

In this work, we proposed the focus coefficient, a regularization term that drives
the weights to be statistically equal to zero. Our proposed regularizer improved
the pruning process by focusing the network on fewer inputs via layer-wise regu-
larization. FC was compatible with large penalty weights, which allows us to
bring stronger regularization to the neural network. Preliminary evaluations
revealed that FC could simplify the model and enhance accuracy slightly. We
also compare FC with existing regularizers in sparse convolutional neural net-
works and ViT. The results show that network pruning tends to benefit from
strong regularization, and FC usually produces better results.
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Abstract. Graph Transformer Networks (GTN) use an attention mech-
anism to learn the node representation in a static graph and achieves
state-of-the-art results on several graph learning tasks. However, due to
the computation complexity of the attention operation, GTNs are not
applicable to dynamic graphs. In this paper, we propose the Dynamic-
GTN model which is designed to learn the node embedding in a
continous-time dynamic graph. The Dynamic-GTN extends the atten-
tion mechanism in a standard GTN to include temporal information of
recent node interactions. Based on temporal patterns interaction between
nodes, the Dynamic-GTN employs an node sampling step to reduce the
number of attention operations in the dynamic graph. We evaluate our
model on three benchmark datasets for learning node embedding in
dynamic graphs. The results show that the Dynamic-GTN has better
accuracy than the state-of-the-art of Graph Neural Networks on both
transductive and inductive graph learning tasks.

Keywords: Graph Transformer Network · Dynamic graph · Node
sampling

1 Introduction

In recent years, Graph Neural Networks (GNN) have gained a lot of attention
for learning in graph-based data such as social networks [1,2], author-papers in
citation networks [3,4], user-item interactions in e-commerce [2,5,6] and protein-
protein interactions [7,8]. The main idea of GNN is to find a mapping of the
nodes in the graph to a latent space, which preserves several key properties of
the graphs. Given that every single node has a certain influence on its neigh-
bors, node embedding is created by GNN based on a message passing mechanism
to aggregate information from the neighborhood nodes, which can be used for
downstream tasks such as node classification, edge prediction, or graph classifi-
cation.

The embedding learned by traditional GNN methods can describe the local
and global structures on a static graph with the constraint that the graph’s nodes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 430–443, 2022.
https://doi.org/10.1007/978-3-031-20865-2_32
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and edges do not change over time. For online systems such as social networks
or e-commerce, this assumption usually does not hold. In order to deal with
dynamic graphs, one could employ a snapshot-based approach. More specifically,
a GNN model such as Graph Convolution Network (GCN) [3], Graph Attention
Network (GAT) [4], or Graph Transformer [9] is trained to learn the graph
representation at a specific timestamp. The drawback of this approach is that
the learned representation at each snapshot ignores the temporal interactions
because each models is trained separately. The trained embedding model in this
case can only capture the graph specific structures at the end of a time interval. In
addition to that, the snapshot-based approach is a time-consuming one because
it has to retrain the model from scratch.

Dynamic-based graph learning methods overcome these issues by learning
both temporal and structural properties of the dynamic graph. Recent works
can be classified into discrete-time approaches and continuous-time approaches.
Discrete-time methods improve the snapshot-based approach by adding the tem-
poral relations to the node representation. Several architectures are proposed
such as DynGEM [10] with regularized weights or DySAT [11] with structural
attention layers. Discrete-time methods have issues in learning the fine-grained
temporal structure of the dynamic graph. Continuous-time methods avoid the
issues by seeing the dynamic graph as a sequence of nodes’ interaction with a
timestamp. Then, a sequence learning network is employed to extract the tem-
poral pattern of interactions. For example, RNN [12] is used in DeepCoevolve
[6] and LSTM [13] is used in Temporal Dependency Interaction Graph [14].

Although continuous-time approaches are more natural in learning temporal
information in dynamic graphs than the discrete ones, they still have significant
drawbacks. The usage of RNN-like architectures to aggregate information from
temporal neighbors are unable to capture long-term dependencies. When the
temporal information spreads over a long period of time, the learnt dynamic
representations usually degrade. Secondly, these approaches usually compute
dynamic embeddings of the two target interactions nodes independently without
taking into account the semantic relatedness between their temporal regions (i.e.
historical behaviors), which could be a causal element for the target interactions.

To address the above limitations, in this work, we extend the Graph Trans-
former network to capture the long-term dependencies of temporal interactions
between nodes in the dynamic graphs. We introduce a Time Projection layer
which is added after the standard transformer layer. Firstly, the multi-head
attention layer is used to aggregate both time-based node interactions and local
structures of the graph. Then, the projection layer uses node embedding with
temporal interactions to predict the future node representation of the graph.
In order to reduce the computing complexity of the multi-head attention layer,
a node sampling component is added based on the dynamic embedding of the
projection layer. The attention operation only includes similar nodes which are
defined by a clustering process on the node embedding. We evaluate our model
on three time-dynamic graph datasets: Wikipedia, Reddit, and MOOC [15]. The
experiments show that our proposed Dynamic-GTN could improve the overall
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accuracy of downstream tasks, and also reduce the computational time of the
model.

2 Related Works

The existing modeling approaches are roughly divided into two categories based
on how the dynamic graph is constructed: discrete-time methods and continuous-
time methods.

Discrete-Time Methods: This category of methods deals with a sequence of
discretized graph snapshots that coarsely approximate a time-evolving graph.
DynGEM [10] is an auto-encoding method that minimizes reconstruction loss
and learns incremental node embeddings from previous time steps. DySAT [11]
computes dynamic embeddings by employing structural attention layers on each
snapshot, followed by temporal attention layers to capture temporal variations
among snapshots, as inspired by the self-attention mechanism. EvolveGCN [16]
recently leverages RNNs to regulate the GCN model (i.e., network parameters) at
each time step in order to capture the dynamism in the evolving network param-
eters. Regardless of progress, snapshot-based methods will always fail to capture
fine-grained temporal and structural information due to the coarse approxima-
tion of continuous-time graphs. It is also difficult to specify an appropriate aggre-
gation granularity.

Continuous-Time Methods: Methods in this category operate directly on
time-evolving graphs without time discretization and focus on designing various
temporal aggregators to extract information. The dynamic graphs are repre-
sented as a series of chronological interactions with precise timestamps. DyRep
[17] is based on a temporal point process to capture immediate information and
long-term information at the same time by consider both association events and
communication events. DeepCoevolve [6] and it’s variant JODIE [15] see two
coupled RNNs to update dynamic node embeddings based on each interaction.
They provide an implicit way to construct the dynamic graph in which only the
historical interaction information of the two involved nodes of the interactions
at time t is used. TDIG-MPNN [14] provides a graph creation approach called
Temporal Dependency Interaction Graph (TDIG), which generalizes the above
implicit construction and is formed from a sequence of cascaded interactions
to explicitly leverage the topology structure of the temporal graph. To acquire
the dynamic embeddings, they use a graph-informed Long Short Term Memory
(LSTM) [13] based on the topology of TDIG.

Recent work such as TGAT [18] and TGNs [19] use a different graph creation
technique, namely a time-recorded multi-graph, which allows for more than one
interaction (edge) between two nodes. A single TGAT layer is used to collect
one-hop neighborhoods, similar to the encoding process in static models (e.g..
GraphSAGE [20]). By stacking numerous layers, the TGAT model can capture
high-order topological information. TGNs generalize TGAT’s aggregation and
use a node-wise memory to keep track of long-term dependencies.
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Node Sampling: Node sampling or graph pooling in GNN is often used to
reduce the computing complexity in the aggregate. The idea to connect between
graph learning and local node structures is not new. In [21], they arrange the
nodes into a binary tree to fast pool adjacent nodes. The GraphSAGE [20]
framework defines a neighborhood set with a fixed number of nodes to reduce
the computational footprint. By exploiting the graph clustering structure, the
authors propose a novel GCN training algorithm, namely Cluster GCN [22].
The Cluster GCN restricts the neighborhood search into a sub-graph in each
learning batch. The sub-graphs are split from the original graph by a graph
clustering algorithm. Our work is motivated by the work of Cluster GCN. Instead
of defining the learning batches for updating the graph cluster, we utilize the
time step in a time-dynamic graph to define a learning batch.

3 Continuous-Time Dynamic Graph

We define a dynamic continuous graph as Gt = (Vt, Et) consists of a node set
Vt and an set of edges Et ordered by time t ∈ R

+ and described chronological
interactions up to time t. An interaction appearing at time t is denoted as eu,v,t,
where nodes u, v ∈ Vt are two nodes involved in this interaction, eu,v,t has
features extract from the interaction between two nodes. One node can have
multiple interactions at different time points, we let u(t) represent the node u
at time t.

Since t can also indicate the order of interactions between two nodes, by
recording the time or order of each edge, a dynamic graph can capture the
evolution of the relationship between nodes. Given the topology of a graph Gt,
dynamic graph embedding aims to learn mapping function at time t:

ft : Vt → R
d, (1)

where d is the number of node embedding dimensions. As long as the correctness
of node representation in latent space, the downstream tasks such as node clas-
sification, and link prediction will more benefit from it. With interaction nodes
u(t) and v(t), i.e., hu(t), hv(t) are node embedding of u, v at time t.

For example, Fig. 1 shows a graph evolve with time, which describes inter-
actions between users and items. Given an ordered sequence of temporal node
interactions at time 0 < t1 < t2 < t3 < t, the target is learning embedding of
node u at time t: u(t) (square symbol). And uses the previous observed state
u(t) and the elapsed time Δt to predict the future embedding of the node at
t + Δt. For each node, its dynamic associated nodes and their neighbor from a
graph structure, which includes more time/order information than conventional
static graphs. It is not trivial to encode the preference of each user from this
dynamic graph.
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Fig. 1. Illustration of the temporal graph aggregation and label prediction with con-
tinuous time event

4 Graph Transformer Network for Continuous-time
Dynamic Graph

Our proposed model, Dynamic-GTN, works on the chronological interactions
between two nodes in the continuous-time dynamic graph. It includes three
major components as illustrated in Fig. 2:

– Node sampling : A sampled subgraph of an original graph G should obtain a
good sample quality. The goal of this component is to find a better way to
evaluate the entire sample clustering process which integrates node sampling
with clustering. Node sampling base on cluster can remove the edges with
high similarity centrality and then optimize the calculation of multi-head
attention steps in Graph Transformer.

– Graph Transformer Network and Time Projection layer : the Graph Trans-
former Network (GTN) layer based on GT [9] is used to aggregate both
continuous-time embedding and structural information of the graph. Output
embedding from the GTN layer is used to project the self-node to the future
embedding by the Time Projection layer. The resulting embedding are used
to improve the node sampling and representing as dynamic embedding for
the Prediction Layer.

– Output layer : it utilizes output embedding from the Time Projection layer
to calculate the target values. In Fig. 2, the link prediction task is computed
by concatenating the output of two related nodes. In the node classification
task, we could omit the Concatenation layer and feed the embedding into the
feed-forward layer directly.

4.1 Node Sampling

At the first block, we employ a node sampling method based on cluster with
dynamic information to extract relevant nodes based on the latent space of the
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Fig. 2. Illustration of the architecture of the proposed model

graph. This component allows the Graph Transformer to learn different graph
attention kernels for different regions based on a gradient-based self-clustering
assignment such that different regions are treated differently in spatial depen-
dency modeling.

First, a vertex-level soft-assignment to M clusters is learnt from the tempo-
ral pattern of each vertex. To partition the graph, we employ graph clustering
methods. Node sampling component try to build partitions over the vertices
in the graph such that within-cluster ties are significantly more than between-
cluster links in order to better represent the graph’s clustering and community
structure. This is precisely what we require because: As previously stated, the
embedding usage for each batch is equal to within-cluster linkages. Intuitively,
each node and its neighbors are usually in the same cluster, hence neighborhood
nodes with a high chance of being in the same cluster after a few hops are still
in the same cluster.

C = σs

(
σr

(
hi(t)Wf

)
t
Wt

)
, (2)

where C is the cluster assignment score for each vertex to M clusters. hi(t)

represent embedding of node i at time t and Wt is parameters for linear layers
on the feature mode and temporal mode, respectively, and σr and σs represent
the relu and softmax activation functions. The feature dimension of input tensor
hi(t) is first squeezed to 1 using Wf , in order to provide a summarized temporal
pattern at each vertex. The Wt is further applied to the temporal pattern to
calculate a M -dimensional cluster assignment score.
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At the beginning, i.e at time t = 0, the output embedding from the Time
Projection layer is not available. Therefore, the Dynamic-GTN uses the default
node embedding PE for clustering the nodes as the initial clusters.

4.2 Graph Transformer Network

Observing the benefits of the Transformer in capturing long-term dependencies
and in computational effort, we propose to extract temporal and structural infor-
mation of dynamic graph by Transformer type of architecture. Thus, We use the
Graph Transformer to aggregate information from neighbor nodes, and it will
derive information from both spatial as well as temporal features. An importance
of using Transformer in graph is that we need to have position encoding (PE)
to feed as an input in Transformer Encoder layer. Several works introduce PE
to Transformer-based GNNs to help model capture the node position informa-
tion. We use Laplacian PE is employed in [9], the authors prove that it performs
better than other PE. To enhance node’s positional information, we also employ
time intervals that usually convey important behavior information.

Dynamic Node Embedding: Firstly, we update the hidden feature h of the i
t́h node in a graph from layer l to layer l+1 at time t when there is a interaction
of node i as follows:

h�+1
i (t) =

∑

j∈N (i)

wij

(
V �h�

j

)
(3)

where

wij = softmaxj

(
Q�h�

i · K�h�
j√

d

)

(4)

and j ∈ N (i) denotes the set of neighbor nodes of node i in graph and Q�,K�, V �

are learnable linear weights (denoting the Query, Key and Value for the attention
computation, respectively). N (i) is neighborhood of node i evolve by time and
after node or edge event such as create a new node, delete/edit edge N (i) can
be change, also have many version of interactions, thus we formulate neighbor
of node i at time t as Nt(i), which describes in Fig 2. The method uses for sam-
pling neighborhoods is cluster-based sampling as we introduced in the previous
section. The attention mechanism is performed parallelly for each node in the
neighbor nodes to obtain their updated features in one shot-another plus point
for Transformers over RNNs, which update features node-by-node.

Multi-head Attention: Getting this straightforward dot-product attention
mechanism to work proves to be tricky. Bad random initializations of the learn-
able weights can destabilize the training process. We can overcome this by paral-
lelly performing multiple ’heads’ of attention and concatenating the result (with
each head now having separate learnable weights):

ĥ�+1
i (t) = O�

h‖H
k=1

⎛

⎝
∑

j∈Ni

wk,�
ij V k,�h�

j

⎞

⎠ , (5)
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where,

wk,�
ij = softmaxj

(
Qk,�h�

i · Kk,�h�
j√

dk

)

, (6)

and Qk,�,Kk,�, V k,� are the learnable weights of the kth attention head and O�

is a down-projection to match the dimensions of h�+1
i and h�

i across layers. The
attention outputs ĥ�+1

i (t) are then passed to a Feed Forward Network (FFN)
preceded and succeeded by residual connections and normalization layers, as:

z�+1
i (t) = Norm

(
h�

i(t) + ĥ�+1
i (t)

)
, (7)

ẑ�+1
i (t) = W �

2 ReLU
(
W �

1z�+1
i (t)

)
, (8)

h�+1
i (t) = Norm

(
z�+1
i (t) + ẑ�+1

i (t)
)
, (9)

where W �
1 ,W �

2 , z�+1
i (t), ẑ�+1

i (t) denote intermediate representations, and Norm
can either be LayerNorm or BatchNorm.

Time Projection: Our proposed model projects the embedding to capture
temporal information, and predicts the future embedding at a time. After a
short duration Δt the node i’s projected embedding is update to as follow:

hi(t+Δt) = (1 + w) ∗ hi(t) (10)

where w is time-context vector is converted from Δt by using a linear layer:
w = WpΔt. The vector (1+w) works as a temporal attention vector to scale the
past node embedding.

4.3 Output Layer

In the link prediction task, The interaction of two nodes u and v at time t + Δt
for link prediction task represent by:

ŷu,v(t + Δt) = W ∗ (hu(t+Δt) ‖ hv(t+Δt)) + b (11)

To learn model parameters, we optimize the cross entropy loss. The objective
function L is defined follows:

L = −
∑

S
yu,v log (ŷu,v) + (1 − yu,v) log (1 − ŷu,v) + λ‖Θ‖2 (12)

where S denotes the training samples, yu,v is input interaction of node u and
node v and ŷu,v is the predicted interaction of node u and node v from the
classification layer of the model.

In the node classification task, we could directly use the embedding in Eq.
10 without the concatenation layer for predicting the label of a specific node at
time t + Δt.
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5 Experiments

5.1 Datasets

For testing our proposed Dynamic-GTN model, we use three popular time-
continous dynamic graph datasets: Wikipedia, Reddit, and MOOC, these
datasets public in [15]. These datasets consist of one month of interaction
between user and item (i.e., MOOC: MOOC online course, Reddit: post,
Wekipedia: page). The detail statistics of each dataset is described in Table 1. We
evaluate the efficiency of our model output embedding on both transductive and
inductive settings. Our experiments follow the setting in [19] in continuous-time
graph learning.

More specifically, we split the data by time for training, validating and test-
ing. We use the first 70% interaction to train, next 15% to evaluate, and the
final 15% to test. For example, on Reddit dataset consist of four weeks of posts
created by users on subreddits, in a week the models take the first 5 days data
of week to train, the next day to evaluate, and the last day to test. The fixed
evaluation period is selected at one week duration. Because our proposed model
can learn continuously, the duration could be changed freely.

Table 1. Statistics of the datasets used in our experiments

Information MOOC Reddit Wikipedia

#Nodes 7,144 10,984 9,227

#Edges 411,749 672,447 157,474

#Dynamic Nodes 4,066 366 217

Nodes’ Label Type Course dropout Posting ban Editing ban

5.2 Baseline

In the transductive edge prediction and inductive node classification, we
use the state-of-the-art algorithms for representation learning on temporal
graphs as baselines: Discrete-Time Methods: EvolveGCN [16] and DySAT [11];
Continuous-Time Methods: JODIE [15] , TGAT [18], DyRep [17], and TGN [19]
for comparison.

Evaluation Metric: With future link prediction task, given an interaction eu,v,t

each method outputs calculate the node u’s preference score over node v at time t
in test set. This score is used to classify if there is a connection between two nodes
at time t. To evaluate the performance of the proposed method and baseline we
use average precision for future edge prediction task in transductive setting. In
the node classification task, we aim to represent a node u at time t as u(t), and
base on this representation these model prediction status of node u at time t.
Accuracy is used to measure the achievement of methods.



Dynamic-GTN 439

5.3 Performance

We implement our method in PyTorch. For the other methods, we use all the
original papers’ code from their github pages. For all the methods we use the
Adam optimizer with learning rate as 0.01, dropout rate as 20%, weight decay
as zero. The mean aggregator proposed by TGN is adopted and the number
of hidden units is the same for all methods. All the results were averaged over
10 runs. For Dynamic-GTN, the number of partitions and clusters per batch
for each dataset are listed in Table 5 and we show that graph clustering only
takes a small portion of preprocessing time. Note that clustering is seen as a
preprocessing step and its running time is not taken into account in training.

Table 2 and Table 3 shows the performance results on dynamic node clas-
sification task and future link prediction task, respectively. In general, the
continuous-time methods perform better than the discrete-time methods. This
can be explained by the fact that continuous-time methods can access to a
more fine-gained temporal and structural information. Built on continuous-time
approach, our model Dynamic-GTN outperforms all the competitors on all the
datasets. The improvements are stable across the two down stream tasks. The
nearest competitor to our model is the TGN architecture. By combining the
time-based embedding with the self-attention operation, our model likely cap-
tures more interaction information than the compared baselines without the need
to retrain the models.

Table 2. The performance of our model and base line on node classification task

Method Model MOOC Wikipedia Reddit

Discrete-time EvolveGCN 70.26 ± 0.5 63.41 ± 0.3 81.77 ± 1.2

DySAT 72.11 ± 0.5 61.79 ± 0.3 74.82 ± 1.2

Continuous-time Jodie 73.39 ± 2.1 61.23 ± 2.5 84.35 ± 1.2

TGAT 74.23 ± 1.2 65.43 ± 0.7 83.12 ± 0.7

DyRep 75.12 ± 0.7 62.79 ± 2.3 84.82 ± 2.2

TGN 77.47 ± 0.8 67.11 ± 0.9 87.41 ± 0.3

Dynamic-GTN (ours) 78.13 ± 0.9 69.74 ± 1.3 89.03 ± 0.3

5.4 Discussion

We perform further experiments to highlight different components of our propose
Dynamic-GTN for learning an efficient node representation in dynamic graphs.

Impact of Dynamic-GTN in Long Period: We test the accuracy of our
proposed model by varying the time projecting window Δt. The node classifica-
tion task results on Reddit dataset of our model and other baselines are shown
in Table 4. In general, it is more difficult to predict for a long period updating
time Δt than the short one. While all of the tested models drop accuracy, our
model still achieve the best accuracies. At the longest Δt = 7, the proposed
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Table 3. The performance of our model and base line on link prediction task

Method Model MOOC Wikipedia Reddit

Discrete-time EvolveGCN 78.33 ± 0.3 89.71 ± 0.5 80.79 ± 0.4

DySAT 74.05 ± 0.4 88.13 ± 0.5 87.23 ± 0.4

Continuous-time Jodie 76.34 ± 0.5 90.74 ± 0.3 79.11 ± 0.4

TGAT 75.36 ± 0.5 92.87 ± 0.3 87.42 ± 0.2

DyRep 73.45 ± 0.4 92.21 ± 0.3 86.89 ± 0.4

TGN 81.20 ± 0.6 92.37 ± 0.2 88.17 ± 0.2

Dynamic-GTN (ours) 84.42 ± 0.5 93.71 ± 0.3 89.69 ± 0.2

Dynamic-GTN achieves around 85.36% accuracy. The second highest accuracy
is the TGN with 82.53% accuracy. This demonstrates that our architectures is
more stable on learning node representation in dynamic graphs.

Table 4. The accuracy of node classification task on Reddit dataset by varying the
time projection Δt(days) of different models

Model Δt = 1 Δt = 3 Δt = 5 Δt = 7

EvolveGCN 81.77 ± 1.2 70.39 ± 0.7 71.22 ± 0.5 74.07 ± 0.5

DySAT 82.32 ± 0.7 75.13 ± 0.5 74.05 ± 0.4 71.39 ± 0.5

Jodie 84.35 ± 1.2 81.71 ± 0.8 81.13 ± 0.5 79.38 ± 0.7

TGAT 83.12 ± 0.7 84.46 ± 0.5 83.18 ± 0.7 78.59 ± 1.2

DyRep 84.82 ± 2.2 80.33 ± 0.5 81.05 ± 0.5 79.77 ± 1.1

TGN 87.41 ± 0.3 87.58 ± 0.5 86.11 ± 0.3 82.53 ± 0.5

Dynamic-GTN (ours) 89.03 ± 0.3 88.11 ± 0.2 86.43 ± 0.5 85.36 ± 0.7

Impact of Node Sampling: To evaluate the effects of node sampling step with
temporal information, we iterate the number of clustering components and com-
pare the accuracy and run time performance against the baseline architecture.
Table 5 compares three different node partitioning and model without clustering.
The usage of clustering could improve both accuracy and training time. From
our experimental results, the optimal number of clusters depend heavily on the
temporal and local structures of the graph. More investigation should be done
in future works to have a more accurate estimation of the number.

Impact of the Number of Attention Head Number: As the number of
attention head plays an important role in projecting between consecutive latent
spaces, we perform further experiments to test how it affects the performance
on down stream tasks. We plot the test accuracy on MOOC dataset with dif-
ferent number of heads in Fig 3. The model’s performance improves when the
head number increases from 1–5, reaching highest accuracy at 5 attention heads,
which demonstrates the effectiveness of multi-head attention in learning node
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Table 5. The training time and the Accuracy (%) of node sampling component in
Dynamic-GTN, testing on node classification task with Reddit dataset. The average
time is reported per epoch with lower is better.

Model Avg. time (s) Accuracy

Dynamic-GTN (10 cluster) 50.23 90.67

Dynamic-GTN (15 clusters) 52.37 90.81

Dynamic-GTN (20 clusters) 52.58 90.08

Dynamic-GTN (w/o node sampling) 75.83 89.72

relationship in dynamic graph. Our results relate to the works in [23] that the
best performance can be achieved with 3 layers and 2 heads (6 effective heads).

Fig. 3. The comparison of number head attention in Dynamic-GTN on MOOC’s node
classification

6 Conclusion

In this paper, we propose a continuous-time dynamic graph representation learn-
ing method, called Dynamic-GTN. Dynamic-GTN generalizes the Graph Trans-
former Network (GTN) to extract temporal-based local structure information
on dynamic graphs via node embedding projection. Due to the cost computa-
tion in sampling graph in the temporal network, we utilize a cluster-based sam-
pling to help model to train faster both in inductive and transductive learning.
Several experiments are made to evaluate the characteristics of our proposed
architecture. The overall results on three benchmark datasets show that our
model achieves better performance than previous state-of-the-art GNN models
on continuous-time graphs.
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Abstract. Image Captioning is a task to generate descriptions for given
images. Most encoder-decoder methods suffer from lacking the ability
to correct the mistakes in predicted word. Though current deliberation
motivated models can refine the generated text, they use single level
image features throughout two stages. Due to the insufficient image
information provided for the second-pass, deliberation action is inef-
fective in some cases. In this paper, we propose Incremental Context
Guided Deliberation Transformer, namely ICDT, which consists of
three modules, including: 1) Incremental Context Encoder, 2) Raw Cap-
tion Decoder and 3) Deliberation Decoder. Motivated by human writing
habits in daily life, we treat the process of generating a caption as a delib-
eration procedure. The Raw Caption Decoder in first-pass constructs a
draft sentence and then the Deliberation Decoder in second-pass polishes
it to a better high-quality caption. In particular, for image encoding pro-
cess, we design an Incremental Context Encoder that can provide cumu-
lative encoded context based on different levels of image features for the
deliberation procedure. Our encoder makes image features at different
levels play specific roles in each decoding pass, instead of being simply
fused and fed into the model for training. To validate the performance
of the ICDT model, we evaluate it on the MSCOCO dataset. Compared
with both Transformer-based models and deliberation-motivated mod-
els, our ICDT improves the state-of-the-art results and reaches 81.7%
BLEU-1, 40.6% BLEU-4, 29.6% METEOR, 59.7% ROUGE and 134.6%
CIDEr.
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1 Introduction

Image captioning task aims to generate a descriptive sentence for a given image,
and its challenges lie not only in comprehensive image understanding but also in
generating a sentence that matches the visual semantics of the image. The major-
ity of proposed image captioning models following the encoder-decoder frame-
work [2,4,10,13,25,31,32] has achieved promising progress on public datasets.

Fig. 1. An illustration of incremental context guided deliberation process. The left
part shows how attention works to obtain incremental representation, and the right
part summarizes the deliberation results. The blue arrow indicates attention operation
and the blue mask denotes the attended area in original image (Color figure online).

Despite the great success, such single-pass decoding process suffer from lack-
ing the ability to correct the mistakes in predicted words. To overcome this
limitation, deliberation motivated models are introduced to image captioning
[6–8,14,28,30] for better decoding. Motivated by human writing behaviours,
deliberation models should firstly generate a rough caption of the image from a
global perspective, and then use the details to modify the rough caption. How-
ever, most of deliberated-based models are especially focus on text refinement,
but use single level image features throughout two stages. These methods suffer
from a drawback: the visual features from the first stage is insufficient for fixing
the wrong words in the deliberation process. To utilize more diverse image fea-
tures, Some works are proposed to fusion or interact of grid and region features to
complement each other’s advantages by using attention modules [5,10,18,19,27].
However, the direct use of two sources of features is prone to produce seman-
tic noise. e.g. A grid containing a horse’s leg may interact with the incorrect
region containing a branch just because they have similar appearances. There-
fore, merits of the two features should be leveraged separately with different
functions instead of being used equally, and that can be well applied through
two processes of deliberation.

To tackle the above problems and effectively combine two different stages, we
try to design a method to utilize grid and region features in an incremental way
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to guide the deliberation procedure. As shown in Fig. 1, the grid level features
attend to semantically related regions to get the incremental image representa-
tion. With the condition of grid attentive regions, the missing details of objects
in the image can be captured, which guides the deliberation decoder to modify
the word person to the correct detailed word women. Besides, unpredicted words
in the raw caption like sidewalk can also be decoded by the incremental con-
text. To this end, the introduction of the deliberation decoder and the rational
use of the two features are organically combined, which inspires us to design a
comprehensive end-to-end model.

Fig. 2. Overview of our incremental context guide deliberation transformer model.

In this paper, we propose Incremental Context Guided Deliberation Trans-
former, namely ICDT. As shown in Fig 2, ICDT is a two-pass decoding model,
consisting of three modules:1) Incremental Context Encoder: encode grid level
features as global first-pass context while adding local region level features to it as
incremental second-pass context, 2) Raw Caption Decoder: a non-autoregressive
Transformer decoder use the global information provided by first-pass context
to generate a raw caption, 3) Deliberation Decoder: polish the raw caption to a
fine caption under the guidance of incremental second-pass context.

The major contributions of our paper can be summarized as follows:

– We propose a novel two-pass decoding model ICDT to achieve polishing gen-
erated sentence guided by two different level image features in an incremental
way.

– We design an Incremental Context Encoder to obtain both global image fea-
tures and incremental image features. With the Incremental Context Encoder,
the second decoder of ICDT can be guided correctly to modify and detail the
raw caption in the deliberation procedure.

– Experiments on MS-COCO dataset demonstrate that our model achieve new
state-of-art performance for image captioning, i.e., 134.6% CIDEr scores on
Karpathy [12] test set.
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2 Related Work

2.1 Image Encoding Over Different Features

With the advantage of covering the information of the entire image without over-
compressing the information, grid features were used in many image captioning
models [17,21,29]. Compared with grid features, region features can provide
object-level information of the image. By introduing region features [2,5,9,10],
the quantitative performance of image captioning was significantly improved.
Nevertheless, the above works predicted sentences by using only one kind of
features and lack full utilization of image information.

In order to integrate the advantages of both grid and region features, Wang
et al. [26] proposed a hierarchical attention network to combine text, grid, and
region features and explore the intrinsic relationship between different features.
Luo et al. [18] proposed a cross-attention module with a graph to exploit com-
plementary advantages of region and grid features.

2.2 Deliberation-Motivated Methods

Motivated by human behaviour in the process of describing an image, delibera-
tion aims to polish the existing caption results for further improvement. Wang
et al. [30] proposed Review Net as a rudiment of the deliberation network for
image captioning, which outputs a thought vector after each review step to
capture the global properties in a compact vector representation. Sammani et
al. [22] introduced a Modification Network to modify existing captions from a
given framework by modeling the residual information. Latterly, [23] proposed
a caption-editing model to perform iterative adaptive refinement of an exist-
ing caption. Related to ruminant decoder [8,14] introduced a two-pass decoding
framework, where a Cross Modification Attention is used to enhance the seman-
tic expression of the image features and filter out error information from the
draft caption to get better image captions. Although the above methods involve
the deliberation process, they still focus only on the relationship between orig-
inal image features and the draft caption, ignoring the effect of using different
granularity image features throughout the process of generation.

3 Methodology

3.1 Problem Statement

In order to obtain a precise caption, we define the image captioning task as
generating a refined sentence based on a raw caption. Formally, give an image
I, we first need to generate a sequence Y ∗′

= {y∗′
1 , y∗′

2 , ..., y∗′
T }, where y∗′

T ∈ D
is the predicted word in the raw caption, D is the dictionary, and T denotes
the sequence length. In the deliberation procedure, we polish the raw caption
guided by the extra image information, and finally get a fine caption Y ∗ =
{y∗

1 , y
∗
2 , ..., y

∗
T }, y∗

T ∈ D.
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Fig. 3. The architecture of Encoder and Decoder modules.

3.2 Incremental Context Encoder

Efficient encoding of visual features of images is a prerequisite for generating
high-quality captions. The deliberation-motivated methods usually encode single
features like grids or regions, and then use the same encoded context when
generating raw captions and final captions. This makes the deliberation process
can not acquire additional information to modify the generated text and only
focus on optimizing the language model. In this paper, we try to design an
Incremental Context Encoder (ICE) that can provide incremental context for
the two-pass decoder, so that it can provide extra information to guide the
generation of final captions when deliberating raw captions. As shown in Fig. 3a,
the grid features are encoded as first-pass context while integrating the region
features through incremental attention as the second-pass context.

Basic Encoding. The ICE employs a vanilla Transformer encoder module for
basic encoding. Since Grid features can cover the full content of a given image
to describe the global scenes, we utilize it as input for basic encoding to obtain
a first-pass context for generating a raw caption. The input grid features are
directly extracted from the RCNN model. Considering the positional information
of grids, we introduce a learnable embedding layer and combine them:

Vg = Eg + Epos (1)

where Epos indicates the positional embedding and Eg stands for the extracted
encoding grid features.

After that, we feed the combined feature Vg to the Transformer encoder
module. Each encoder layer contains two sub-layers, including a multi-head self-
attention (MHA) layer and a feed-forward network (FFN) layer:

H
′(l)
g = MHA(H(l)

g ,H(l)
g ,H(l)

g ) (2)
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H(l+1)
g = FFN(H

′(l)
g ) (3)

where H
(0)
g = Vg and l is the number of encoder layer. The hidden states of grids

H
(l)
g are fed into the (l+1)-th MHA layer. Specifically, the FFN is a position-wise

fully connected layer consisting two linear projections with a ReLU activation
in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Through the Transformer encoder, we get the encoded hidden state from
N -th layer HN

g as the first-pass context C1.

Incremental Attention Encoding. Once the first-pass context was obtained
through basic encoding, we need to add extra information to it to guide the
deliberation pass. Although grids can provide information covering the entire
image, it still lacks attention to the salient objects. So we take region features as
object-level information to improve the capability of understanding the objects.
In order to achieve the purpose of integrating region features on the basis of the
grid, we design an Incremental Attention Encoding mechanism.

Same as basic encoding, we first feed the extracted region features to the
MHA and FFN component to get the middle encoded context C

(l)
r :

H
′(l)
r = MHA(H(l)

r ,H(l)
r ,H(l)

r ) (5)

C(l)
r = FFN(H

′(l)
r ) (6)

where H
(0)
r = Vr, which denotes region feature vector extracted from object

detection model.
Then we use the encoded first-pass context C1 as the query matrix and C

(l)
r

as the key and value matrix. The scale-dot product between grids and regions
stands for attentive relationships, which can be leveraged as a weight matrix
applying to region features. For each grid, the weighted context contains region
information at the corresponding location. The incremental attention can be
stated recursively as follows:

H
′(l)
inc = softmax

⎛
⎜⎝

(C1)
(
C

(l)
r

)T

√
d

C
(l)
r

⎞
⎟⎠ C(l)

r (7)

After incremental attention, an FFN layer is also applied to H
′
inc:

H
(l)
inc = FFN(H

′(l)
inc ) (8)

Notice that the incremental attention encoding and basic encoding are com-
puted in the same layer. Finally, we directly add N -th incremental encoded
context HN

inc to C1 and get the second-pass context C2:
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C2 = C1 + HN
inc (9)

With the first-pass context C1, the Raw Caption Decoder (RCD) generates
a sequence of raw caption Y ∗′

= {y∗′
1 , y∗′

2 , ..., y∗′
T }, where T is the length of the

raw caption. Different from other deliberation-motivated models, we use a non-
autoregressive decoder as RCD. The non-autoregressive decoder enables parallel
prediction during inference decoding. As shown in Fig 3b, the RCD removes the
softmax layer during prediction, and directly use the vector output by the linear
layer as the raw caption embedding feeding to the deliberation decoder.

Therefore, we remove the Masked Multi-head Self-attention layer of the
vanilla Transformer decoder, and use the first-pass context from ICE directly
to the MHA layer:

H
′(l)
raw = MHA(H(l)

1 ,H
(l)
1 ,H

(l)
1 ) (10)

where H
(0)
1 = C1. After that, A Feed-forward layer also is introduced:

H(l)
raw = FFN(H

′(l)
raw) (11)

And then we add a projection linear layer and a softmax layer for the training
stage.

Y ∗′
= softmax(proj(HN

raw)) (12)

Due to the non-autoregressive design, the RCD executes in parallel for both
training and inference stages. However, this makes RCD unable to directly gen-
erate coherent sentences.

3.3 Deliberation Decoder

The deliberation decoder (DD) aims to polish the preliminary caption guided
by the second-pass context. To achieve the deliberation procedure, we design a
Transformer-like autoregressive decoder. Fig 3b illustrates the detailed structure
of DD. As the same as vanilla Transformer, the output embedding of target
sentence Es is fed into a Masked Multi-head self-attention (MMHA) layer during
the training state:

H
′(l)
s = MMHA(H(l)

s ,H(l)
s ,H(l)

s ) (13)

where H
(0)
s = Es. After that, DD incorporates the second-pass context which

contains the attentive region features by grids. Since the ICE can leverage the
extra region features to enhance the detailed information of objects, we use
the Multi-head attention layer to stress the relationship between caption and
attentive regions:

H
′(l)
deli = softmax

⎛
⎝

(
H

′(l)
s

)
(C2)

T

√
dC2

⎞
⎠ C2 (14)
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Then we add an additional multi-head attention layer and take the embed-
ding of the raw caption as input:

H
(l)
deli = softmax

⎛
⎝

(
H

′(l)
deli

)
(Hraw)T

√
dHraw

⎞
⎠ Hraw (15)

where H
(l)
deli and Hraw are treated as query and key matrix respectively, which

contributes to learning a weight for refining the raw caption. Notice that the
projection layer of RCD and output embedding layer of DD shares the same
parameter weights which are used to embed the vocabulary of the caption. And
Hraw is extracted from the projection layer of RCD to avoid the extra embedding
layer breaking the end-to-end structure of ICDT.

Finally, the DD also uses a FNN layer before the projection linear layer:

Y ∗ = softmax
(
FFN(HN

deli)
)

(16)

3.4 Training Details

Following standard practice of image captioning, we first calculate the cross-
entropy loss for each decoder:

Li
XE (θ) = −

T−1∑
t=0

log
(
pθ

(
Y ∗

t | Y ∗
0:t−1, I

))
(17)

where Y ∗
t is the ground-truth word, and θ is the parameter of i-th decoder.

We obtain the overall learning objective by adding the losses of Raw Caption
Decoder and Deliberation Decoder:

LXE = Lraw
XE + Ldelib

XE (18)

Following Cornia et al. [5], we also introduce reinforcement learning for fur-
ther finetune to make up the difference between cross-entropy loss and evalua-
tion metrics between cross-entropy loss and evaluation metrics. When training
with reinforcement learning, we use the CIDEr-D score as a reward through Self-
Critical Sequence Training (SCST) [21]. At prediction time, we simplify the Raw
Caption Decoder as an inner decoder layer instead of generating sentences. After
that, the Deliberation Decoder can generate the final caption directly through
beam search, and the highest scored sequence has been kept as the best caption.

4 Experiments

4.1 Experimental Settings

Dataset and Evaluation Metrics. Microsoft COCO 2014 dataset [16] is the
widely used benchmark for image captioning. Each image is annotated with 5
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caption sentences. We follow the setting of Karpathy and Fei-Fei [12] for the
offline evaluation, where 113,287 images are used for training, 5,000 images for
validation and 5,000 images for testing. To evaluate the quality of generated
captions, we use COCO caption evaluation tool1 to calculate the standard eval-
uation metrics, including BLEU-1/4 [20], METEOR [3], ROUGE [15], CIDEr
[24] and SPICE [1]. All metrics can reflect the quality of the generated caption
text from different aspects.

Implementation Details. Since our ICDT model needs to use both grid and
region features, we adopt the same data preprocessing method as Luo et al. [18].
The pre-trained Faster R-CNN provided by Jiang et al. [11] was used to extract
features from both levels simultaneously. For extracting features, it removes the
delation and uses a normal C5 layer to extract grid features. For grid features,
an additional average-pool was applied to get 7× 7 grid size vectors. Meanwhile,
the 2048-d output vector from the first FC-layer of the detection head was used
as region features.

In our implementation, we set the dimension of each layer in encoder and
decoders to 512, the number of heads to 8. The number of layers for both encoder
and decoder is set to 4. We set the dimension df of FFN to 2048. We employ
dropout with keep probability 0.9 after each attention and feed-forward layer. In
the XE pre-training stage, we warm up our model for 4 epochs with the learning
rate linearly increased to 1e−4, and then decays by rate 0.8 every 3 epochs. When
training with SCST, the learning rate starts from 5e−5 and decays by rate 0.1
every 50 epochs. We train all models using the Adam optimizer with momentum
of 0.9 and 0.999, a batch size of 128. We use beam search with a beam size of 5
to generate captions when validating and testing.

4.2 Quantitative Analysis

Compared with Transformer-based Methods. As shown in Table 1, we
compare ICDT with other Transformer-based model for image captioning. Since
ICDT considers both image grid and region granularity features, the models
selected for comparison are divided into three groups, including:

– Grid Only: The model only takes the grid features to generate the image
caption, where RSTNet [33] is the original model, and AoA, M2 and X-
Transformer are the experimental models used to compare with region fea-
tures in the original paper.

– Region Only: Models that only use region features, Because R-CNN model is
the mainstream way of the region feature extraction in image captioning, all
the baselines in this group take the official results of the original model.

– Grid and Region: Models that utilize both grid and region features at the
same time,

1 https://github.com/tylin/coco-caption.

https://github.com/tylin/coco-caption
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Table 1. Comparison results on Transformer-based models. For fair comparison, all
‘Grid Only’ models takes the result based on features extracted from ResNext-101
backbone, and all ‘Region Only’ models use ResNet-101 backbone.

Feature Model BLEU-1 BLEU-4 METOR ROUGE CIDEr SPICE

Grid only AoA 80.7 39.0 28.9 58.7 129.5 22.6

M2 80.8 38.9 29.1 58.5 131.7 22.6

X-Transformer 81.0 39.7 29.4 58.9 132.5 23.1

RSTNet 81.1 39.3 29.4 58.8 133.3 23.0

Region only ETA 81.5 39.9 28.9 59.0 127.6 22.6

ORT 80.5 38.6 28.7 58.4 128.3 22.6

CPTR 81.7 40.0 29.1 59.4 129.4 –

AoA 80.2 38.9 29.2 58.8 129.8 22.4

M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6

X-Transformer 80.9 39.7 29.5 59.1 132.8 23.4

DRT 81.7 40.4 29.5 59.3 133.2 23.3

Grid and Region I2RT 80.9 39.2 29.3 58.9 130.9 22.9

DLCT 81.4 39.8 29.5 59.1 133.8 23.0

ICDT(Our model) 81.7 40.6 29.6 59.7 134.6 23.2

From the results of the model on different evaluation metrics, our method
fully surpasses the previous Transformer-based methods in terms of BLEU-1,
BLEU-4, METOR, ROUGE and CIDEr. The CIDEr score of our DLCT reaches
134.6%, wich advances DLCT 0.8%. The boost of performance demonstrate the
advantages of our ICDT which use incremental context encoder instead of cross
fusion of region and grid features. In addition, according to the evaluation results,
the model using two features achieves higher scores on CIDEr and SPICE met-
rics than the model using only single feature. In particular, compared with the
Transformer-based SOTA model DLCT, our method achieves better performance
in all indicators, reflecting the advantages of introducing a deliberation decoder.
Next we will compare ICDT with all deliberation-motivated models.

Table 2. Comparison results on deliberation-motivated models

Model BLEU-1 BLEU-4 METOR ROUGE CIDEr SPICE

Review net – 29.0 23.7 – 88.6 –

Skeleton key 74.2 33.6 26.8 55.2 107.3 19.6

Stack-Captioning 78.6 36.1 27.4 56.9 120.4 20.9

Deliberate attention 79.9 37.5 28.5 58.2 125.6 22.3

Ruminant decoding 80.5 38.6 28.7 58.7 128.3 22.3

ETN 80.6 39.2 – 58.9 128.9 22.6

CMA-DM 80.6 39.2 29.0 58.9 129.0 22.6

ICDT(Our model) 81.7 40.6 29.6 59.7 134.6 23.2
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Compared with Deliberation-motivated Methods. Table 2 summaries all
models designed with deliberation actions. As shown in Table 2, our ICDT
model consistently exhibits better performance than the others. Since all of the
deliberation-motivated models use LSTM instead of Transformer, their feature
encoding and sequence generation capabilities are not as good as our proposed
Transformer-based Model. However, the deliberation idea still shows its capabil-
ity on image captioning task and deserves to be generalized more widely.

4.3 Ablation Study

In order to verify the effectiveness of each module in ICDT, we design abla-
tion experiments based on the vanilla Transformer. As shown in Table 3, we
separately use different visual features to validate the impact of Incremental
Context Encoder. Further, all models are extended to two-pass decoders that we
can evaluate the influence of Deliberation Decoder.

Table 3. Performance comparison of Incremental Context Encoder (ICE) and Raw
Caption Decoder & Deliberation Decoder (R&D) for grids (G) and regions (R). E+D
denotes traditional encoder-decoder framework which is based on vanilla Transformer.

Feature BLEU-1 BLEU-4 METOR ROUGE CIDEr SPICE

E+D(G) 81.2 39.0 29.0 58.6 131.2 22.4

E+D(R) 80.1 39.0 28.9 58.6 130.1 22.4

E+D(G + R) 80.9 38.9 29.2 58.6 131.6 22.7

ICE+D(G + R) 81.1 39.3 29.5 58.9 132.8 22.9

E+R&D(G) 81.2 39.2 29.0 59.0 131.5 22.4

E+R&D(R) 80.8 39.1 29.1 58.9 130.1 22.3

E+R&D(G + R) 81.3 39.4 29.8 58.9 132.4 22.8

ICE+R&D(G + R) 81.7 40.6 29.6 59.7 134.6 23.2

Impact of Incremental Context Encoder. To better understand the effect
of our Incremental Context Encoder, we conduct four experiments on differ-
ent features. The ICE+D model surpasses both single feature and fusion fea-
ture encoded models, which illustrates the effectiveness of Incremental Context
Encoder. By integrating the attentive region feature and adding it to grid feature,
the captioning model can better understand the corresponding region informa-
tion and enrich the final encoded context. In sum, ICE+D outperforms E+D in
most of the metrics and performs slightly worse in BLUE-1. We believe this is
due to the fact that the Grid feature tends to highlight individual words rather
than object entities in the raw image after self-attention.
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Impact of Deliberation Decoder. As shown in the lower part of Table 3, we
also conduct several experiments to demonstrate the effectiveness of our Deliber-
ation Decoder. After adding the deliberation decoder, the performance of experi-
mental models can be further improved whether using the ordinary Transformer
encoder or our proposed ICE. Specifically, the BLEU-4, ROUGE and CIDEr
scores have the most significant improvements. The results also show that after
the introduction of Deliberation Decoder, the fluency and correctness of the final
generated caption can be significantly improved through the polishing.

In addition, we analyzed the experimental results of E+R&D(G+R) and
ICE+R&D(G+R). ICE+R&D surpassed E+R&D by nearly 2% on the CIDEr
metric. Owing to the ICE we designed can guide two decoding passes, although
ordinary E+R&D can perform second-pass polishing, same encoded context from
single encoder leads the difficulty to perform effective refinement on the raw cap-
tion generated in the first-pass. However, ICE+R&D adds incremental image
representations to deliberation decoder, which allows to obtain additional infor-
mation to correct and polish the raw caption.

Fig. 4. Examples of image captioning results by vanilla Transformer and our ICDT
with ground truth sentences.

4.4 Qualitative Analysis

We show several example image captions generated by vanilla Transformer and
ICDT in Fig. 4. In genegral, our ICDT can generate more detailed and correct
captions. For two examples in the first column, both Transformer and ICDT
can provide accurate descriptions. For examples in the middle column, we can
see that our ICDT is able to capture more contextual information from the
image to generate richer and more correct descriptions in some cases. The third
column shows that both Transformer and ICDT fail to provide a high-quality
caption which contains some specific information in the ground truth sentences.
One possible reason is that human can get the information such as “conference
room” and “brave” based on their background knowledge or associations about
this scene, while Transformer and ICDT do not currently have such capabilities.
This can propose a valuable direction for future research in image captioning.
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5 Conclusion

In this paper, we propose a novel comprehensive two-pass decoding based model,
Incremental Context Guided Deliberation Transformer (ICDT) for image cap-
tioning. In the first-pass a Raw Caption Decoder uses grid features alone to
obtain a raw description for the image, and in the second-pass a Deliberation
Decoder guided by rich image feature representations to polish the raw descrip-
tion to a high-quality caption . In order to cooperate with deliberation decoding
procedure, we propose an Incremental Context Encoder to encode more accurate
and detailed image information incrementally. As far as we know, ICDT is the
only model that comprehensively considers different level features to guide the
deliberation process. Results show that our approach outperforms the state-of-
the-art methods.
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Abstract. Traditional cross-modal retrieval (CMR) methods assume
that training data holds all the categories appearing in retrieval stage.
However, when some multimodal data of new categories come, the
learned model may achieve disappointing performance. Based on the
theory of zero-shot learning, zero-shot cross-modal retrieval (ZS-CMR)
emerges to solve this problem and becomes a new research topic. Exist-
ing ZS-CMR methods have the following limitations. (1) The seman-
tic association between seen and unseen categories is important but
ignored. Therefore, the semantic knowledge cannot be fully transferred
from seen classes to unseen classes. (2) The cross-modal representa-
tions are not semantically aligned. Thus, samples of new categories
cannot obtain semantic representations, further leading to unsatisfac-
tory retrieval results. To tackle the above problems, this paper proposed
the semantic-adversarial graph convolutional network (SAGCN) for ZS-
CMR. Specifically, graph convolutional network is introduced to mine
the potential relationship between categories. Besides, the techniques of
adversarial learning and semantic similarity reconstruction are utilized to
learn a common space, where multimodal embedding and class embed-
ding are semantically fused. Finally, a shared classifier is adopted to
enhance the discriminant ability of the common space. Experiments on
three data sets illustrated the effectiveness of SAGCN on both traditional
CMR and ZS-CMR tasks.

Keywords: Cross-modal retrieval · Zero-shot learning · Graph
convolutional network · Adversarial learning

1 Introduction

In recent decades, the rapid development of information technology, especially
the development of social media, makes people obtain information more timely
and diversified. With this development, single-modal retrieval, such as text
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 459–472, 2022.
https://doi.org/10.1007/978-3-031-20865-2_34
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retrieval, can no longer meet people’s needs. Cross mode retrieval (CMR), which
utilizes one modality as the query to retrieve other semantically related modali-
ties, has attracted more and more attention [16], such as image-text retrieval [7].

However, CMR faces a serious challenge of “heterogeneous gap”. It comes
from the distribution difference among multimodal data, which makes it diffi-
cult to measure cross-modal similarity. In order to eliminate the “heterogeneous
gap”, various methods have been proposed [6]. There are also some hasing-based
methods [29] and attention-based methods [8]. The key of these work is to con-
struct a common space, where cross-modal representations can be aligned.

Although the CMR methods have made remarkable success in eliminating the
“heterogeneous gap”, they are still limited in practical application. Traditional
CMR assumes that training data embodies all the categories that may appear
during retrieval stage. However, in practical scenarios, people often face the
problem that the information they are looking for comes from a new emerging
category. In other words, the model has some unseen categories during training,
thus it cannot appropriately deal with the data of unseen categories. For example,
a robot is trained with multimodal data of “cutting potatoes” and “cutting
tomatoes”. When it is required to cut beans, the performance is disappointing.

Fig. 1. The scenario of ZS-CMR. Only seen class data are used during training.

Zero-shot learning [11,24] transfers knowledge from known categories to
unknown categories. Based on this theory, zero-shot cross-modal retrieval (ZS-
CMR) emerges, which makes it possible to deal with multimodal samples of new
categories. Figure 1 shows the scenario of ZS-CMR. Recently, scholars consider
that a pretrained natural language processing (NLP) model contains human
knowledge, because it was trained on a large amount of text information. There-
fore, some methods are put forward by utilizing the pretrained model to extract
semantic embedding for categories [3]. Some researches [26] further introduce
the generative adversarial network (GAN) [10] to construct a common semantic
space for multimodal data. Differently, Xu et al [25] adopted GAN to enhance
training data, so as to expand the knowledge storage. Consequently, the model
can learn more knowledge from synthetic samples.
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In spite of the achievements, existing ZS-CMR methods still have the fol-
lowing limitations. (1) The semantic embedding of categories is often simply
used to align multimodal embedding. However, the important semantic associ-
ation between seen and unseen categories is ignored. Therefore, the semantic
knowledge cannot be fully transferred from seen classes to unseen classes. (2)
Multimodal embedding and category embedding lack semantic interaction, which
makes cross-modal representations unable to be semantically aligned. Thus, sam-
ples of new categories cannot obtain semantic representations, further leading
to unsatisfactory retrieval results.

In this paper, we proposed the semantic-adversarial graph convolutional net-
work (SAGCN) for ZS-CMR. Firstly, to acquire semantic embedding of cat-
egories, SAGCN integrates pretrained NLP model with GCN, and mines the
potential relationship between seen and unseen categories. Besides, to obtain the
semantic-aligned space, SAGCN introduces the adversarial learning and seman-
tic similarity reconstruction, which brings in the semantic interaction between
multimodal embedding and category embedding. In addition, a shared classifier
is adopted to enhance the discriminant ability of the space. The contributions
of this paper are as follows:

– A novel ZS-CMR approach, named SAGCN, is proposed in this paper. To the
best of our knowledge, it firstly utilizes GCN to mine the semantic association
between seen and unseen categories.

– SAGCN introduces the techniques of adversarial learning and semantic sim-
ilarity reconstruction, so as to realize the semantic interaction between mul-
timodal embedding and category embedding.

– Extensive experiments and analyses on three data sets illustrate the effective-
ness of SAGCN on both traditional CMR and ZS-CMR tasks.

2 Related Work

The main problem in CMR is how to eliminate the “semantic gap” and the
“heterogeneous gap” among multimodal data. The widely adopted manner is to
utilize the correlation between cross-modal data and learn their common pre-
sentations. For example, canonical correlation analysis (CCA) [20] introduces
linear transformation matrices to correlate cross-modal data. Cross-modal fac-
tor analysis (CFA) [15] minimizes the Frobenius norm of the correlated cross-
modal data. Beyond that, joint representation learning (JRL) [31] learns the
common representation by taking advantage of the semantic information, and
extends the CMR on five kinds of modalities. Along with the development of
deep neural networks (DNN), the DNN-based methods become popular. Deep
canonical correlation analysis (DCCA) [28] improves the linear CCA by utilizing
neural networks. Adversarial cross-modal retrieval (ACMR) [22] uses generative
adversarial networks to fuse heterogeneous cross-modal data.

Although these methods can eliminate the “heterogeneous gap” to some
extent, they still have some limitations in practical applications. To be specific,
when multimodal data of new categories come, the approaches cannot learn
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appropriate representations for them. That is to say, these methods is not appli-
cable to unseen categories. To tackle this problem, some zero-shot CMR tech-
niques were proposed. Felix et al [9] utilized the attribute information as addi-
tional knowledge for zero-shot single-modal and cross-modal retrieval, which can
transfer semantic knowledge from seen categories to unseen categories. Then,
dual adversarial networks for zero-shot cross-media retrieval (DANZCR) [3]
and dual adversarial distribution network (DADN) [4] were proposed. They
adopted the category attribute to generate class embedding that was used to
learn common semantic space. Xu et al [27] proposed the generative adversarial
network (AAEGAN) to construct class embedding. Furthermore, Chakraborty
et al [2] applied the attention mechanism to multimodal fusion, thereby solving
the ZS-CMR problem. Differently, prototype-based adaptive network (PAN) [30]
takes the advantages of prototype learning and adaptive network for this prob-
lem. Deep multimodal transfer learning (DMTL) [32] employs a joint learning
paradigm to transfer knowledge by assigning a pseudo label to each target sam-
ple.

However, they all ignore the semantic associations between seen and unseen
categories. Therefore, the semantic knowledge cannot be fully transferred from
seen classes to unseen classes. Besides, the semantic interaction between multi-
modal embedding and category embedding is insufficient, which leads to unsatis-
factory representation learning for new-category samples. In this work, we intro-
duce the graph convolution network, adversarial learning, and semantic similar-
ity reconstruction to solve these problems.

3 Proposed Method

3.1 Problem Definition

The goal of ZS-CMR is to learn a semantic space from the multimodal data of
seen classes, and appropriately express multimodal data of unseen classes. With-
out loss of generality, this paper focuses on two modalities, i.e., image and text.
Suppose we have the multimodal dataset O with N samples, i.e., O = {oi}Ni=1.
oi = {vi, ti, li, yi} is the i-th object in O, where vi, ti, li and yi denote its image
feature, text feature, class feature and the class label (category), respectively. It
should be noted that the feature vectors are obtained by using the pre-trained
CNN model and NLP model. In addition, yi ∈ R

K is the one-hot encoding of
category, where K represents the number of categories.

For the traditional CMR task, we divide the whole dataset O into a retrieval
set Or and a query set Oq, i.e., O = {Or, Oq}. In addition, for the ZS-CMR
task, we further divide the categories into seen categories and unseen categories.
Assume the category set is Y = {Ys,Yu}, where Ys is the seen-class set, Yu is the
unseen-class set, and Ys ∩ Yu = ∅. Accordingly, the data partition for ZS-CMR
is as follows: O =

{
Os

r , O
u
r , Os

q , O
u
q

}
, which respectively represent the seen-class

retrieval set, unseen-class retrieval set, seen-class query set and unseen-class
query set. Os

r and Os
q only contain the categories in Ys, while Ou

r and Ou
q only

contain the categories in Yu.
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One step further, all image features in Os
r are represented as V s

r = [vj ]
ns

r

j=1,
where ns

r is the number of samples in Os
r . Similarly, all text features are rep-

resented as T s
r = [tj ]

ns
r

j=1, all label features are represented as Ls
r = [lj ]

ns
r

j=1, and

all classes are represented as Y s
r = [yj ]

ns
r

j=1. It should be noted that we only use
Os

r for training. For the traditional CMR task in the test phase, we view Os
q as

queries to retrieve semantically relevant cross-modal instances in Os
r , symbolized

as Os
q → Os

r . While for the ZS-CMR task, we view Ou
q as queries to retrieve Ou

r ,
symbolized as Ou

q → Ou
r .

3.2 SAGCN

Fig. 2. The framework of SAGCN. For the upper and the lower branches, image and
text have their encoders respectively, and the shared classifier ensures the discrim-
inability of multimodal embedding. For the middle branch, GCN is utilized to extract
semantic embedding of the classes. Discriminator D determines whether the embed-
ding is the semantic class embedding. Semantic similarity reconstruction further fuses
the multimodal embedding with the semantic class embedding.

Model Architecture. The whole framework of SAGCN is illustrated in Fig. 2.
As shown, we introduce the class attributes that help the model learn semantic
representations. Specifically, there are three branches respectively for images,
texts, and class attributes. Pre-trained models are utilized to extract their fea-
tures. Then after that, two encoders are designed to transform image and text
features into the common semantic space. To enhance the discriminant abil-
ity of the space, a shared classifier C is designed. For the class features, GCN
is brought in to mine category relationships and learn semantic class embed-
ding. Besides, a shared discriminator is adversarial to the encoders. Finally, it
makes the model difficult to distinguish the multimodal embedding and the class
embedding. Furthermore, enhanced by the semantic similarity reconstruction
among three branches, SAGCN can acquire aligned semantic representations.
Next, we will describe each module in detail.
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Discriminant Regularization. Cross-modal data have different feature rep-
resentation and distribution. We design two encoders, Encv and Enct, to trans-
form images V and texts T into the shared space, respectively. Then after the
batch normalization operation (BN), we can obtain the corresponding image
embedding Fv and the text embedding Ft. The process is formulated as:

{
Fv = BN(Encv(V, θv));
Ft = BN(Enct(T, θt)),

(1)

where θv and θt represent the parameters of the image encoder and the text
encoder respectively. To enhance the discriminant ability of the space, we intro-
duce a shared classifier C that classifies Fv and Ft to correct categories. The
cross-entropy term is utilized in this module, and the loss function is as follows:

Lce = − 1
ns
r

{v,t}∑

m

ns
r∑

i=1

K∑

k=1

yik log ((C(Fm, θc))ik), (2)

where θc denotes the network parameters of the shared classifier C.

Semantic Extraction by GCN. Considering the semantic relationship
between categories, we construct the GCN to extract semantic representation
for each category. In detail, we construct the adjacency matrix A for all cate-
gories according to their attribute features Z(0) = [(Ls

r)
T , (Ls

q)
T , (Lu

r )T , (Lu
q )T ]T ,

i.e.,

Aij =
z
(0)
i · z

(0)
j

|z(0)i ||z(0)j |
, (3)

where z
(0)
i is the i-th row of Z(0). Aij represents the cosine similarity between

the i-th class feature and the j-th class feature. After this, the semantic repre-
sentations of the categories can be calculated by:

Z(h+1) = σ(D̃− 1
2 ÃD̃− 1

2 Z(h)W (h)), (4)

where Ã = A + I, and I is the identity matrix. D̃ is the degree matrix of A,
that is, D̃ii =

∑
j Ãij . Z(h) is the input class feature matrix of the h-th layer in

GCN, and it is initialized as Z(0). W (h) and Z(h+1) are the parameter matrix and
the output matrix respectively of the h-th layer. σ is the nonlinear activation
function like Relu(·) = max(0, ·). By taking the first ns

r rows of Z(h+1), we
obtain the corresponding semantic embedding of categories, denoted as Fl:

Fl = Z(h+1)[0 : ns
r, :]. (5)

Adversarial Learning. To fuse heterogeneous multimodal data in the common
space, we add a discriminator D, which can be combined with Encv and Enct to
form adversarial relationship. Specifically, image embedding Fv, text embedding
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Ft and semantic class embedding Fl are taken as the input of the discriminator
D, and it determines whether they are class embedding. During the adversarial
learning, discriminator D is trained to distinguish the embedding as much as
possible, while the encoders Encv and Enct are trained to confuse D as much
as possible. Therefore, multimodal data can learn semantic embedding that is
similar to the class embedding. The adversarial loss function is defined as follows:

Ladv(θv, θt, θl, θD) = Ep∼PFl(p,θl)
[log D(p, θD)]

+
{v,t}∑

m

Eq∼PFm(q,θm) [log (1 − D(q, θD))], (6)

where θv, θt, and θl are the parameters of Encv, Enct, and the GCN, respectively.
To optimize θD, we fix other parameters, and maximize Ladv (i.e., miniming
−Ladv), which enables D to distinguish semantic class embedding from image
and text embedding. To optimize θv, θt, and θl, θD is fixed, and Ladv is minimized
to make the encoders deceive the discriminator as much as possible. Finally, the
discriminator can hardly distinguish the embedding. Therefore, the multimodal
embedding is fused with the semantic class embedding in the common space.

Semantic Similarity Reconstruction. To further fuse the multimodal data
in the common space, and preserve the semantic similarity relationship between
samples, we propose the cross-modal semantic similarity reconstruction. Accord-
ing to the samples’ categories, we construct their similarity matrix S by the
following formula.

Sij =

{
1, if li = lj ;
0, otherwise ,

(7)

where li = lj means that the i-th object and j-th object have the same category.
The similarity matrix is used as supervisory information. It guides the similarity
relationship learning among different modalities, i.e., image-text, image-class and
text-class. Given the embedding matrices Fm1 and Fm2 of two modalities, where
m1,m2 ∈ {v, t, l}, and m1 �= m2, we would like the cross-modal embedding to
reconstruct the similarity matrix. Since Cosine similarity can well describe the
similarity of high dimensional vectors, we calculate the similarities between Fm1

and Fm2 as cos(Fm1 , Fm2):

(cos (Fm1 , Fm2))ij =
Fm1i · Fm2j

|Fm1i||Fm2j |
, (8)

where Fm1i means the i-th sample embedding of Fm1 , and Fm2j means the j-th
sample embedding of Fm2 . The loss function of this part is formulated as follows:

Lrec =
v,t,l∑

m1,m2,m1 �=m2

‖cos (Fm1 , Fm2) − S‖F , (9)

where ‖·‖F is the Frobenius norm.
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Overall Objective. After defining the loss function of each module, we get the
overall objective function as follows:

Lobj = Lce ± αLadv + βLrec, (10)

where “±” becomes “−” when optimizing the discriminator, and becomes “+”
when optimizing other network parameters. α and β are the trade-off parameters.
The training procedure of SAGCN is summarized in Algorithm 1.

Algorithm 1: SAGCN
Input: Seen-class images, seen-class texts, all classes and the corresponding

attributes, batch size n, the number of epochs T .
1 Initialize the network parameters θv, θt, θl, θc, and θD;
2 Extract features by pre-trained models, and get V s

r , T s
r , L, and Y ;

3 for epoch = 1 to T do
4 for i = 1 to N/n do
5 Forward-propagate to calculate the overall loss through equation (10);
6 Back-propagate to update parameters θv, θt, θc, θl, and θD;

7 end

8 end
Output: The acquired θv, θt, θc, θl, and θD in SAGCN.

4 Experiment

4.1 Experimental Setting

Dataset. To validate the effectiveness of our proposed method, we do experi-
ments on three public datasets, including Wikipedia [20], Pascal Sentences [19]
and NUS-WIDE [5]). For fair comparison, the way of data preprocessing and
data partition follows the reference [3]. Specifically, we extract the 4, 096-d image
features that are the output from the 7th layer of VGG19 [21]. Besides, the
Doc2Vec [14] model is utilized to extract the 300-d text features, and the pre-
trained Word2Vec [17] model is utilized to extract class attribute features.

Implemental Details. For our network architecture, the image encoder and
the text encoder contain three fully-connected layers with dimensions [4096,
4096, K∗], where K∗ is the dimension of the common space. Each-fully con-
nected layer is activated by Relu. Batch normalization (BN) and dropout are
adopted after Relu except the last layer. The GCN module is a three-layer graph
convolutional network with dimensions [1024, 1024, K∗]. Similar to the encoders,
each layer is activated by Relu, followed by BN and dropout except the last layer.
The discriminator includes three fully-connected layers with dimensions [4096,
2048, 1], and all layers are activated by Relu. The fc1 and fc2 in discriminator
are followed by BN and dropout. As for the classifier, we built it with three
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fully-connected layers with dimensions [4096, 4096, Km], where Km is the num-
ber of seen categories. Note that only fc1 and fc2 are activated by Relu followed
by BN, while fc3 is activated by the softmax function. The Adam optimizer is
applied to each module for back-propagation. The initial learning rate is set to
0.0001, and “MultiStepLR” is selected as the learning rate decay strategy. The
batch size is set to 64, and the model is implemented on Pytorch [18].

Evaluation Details. In this paper, we evaluate SAGCN on two kinds of tasks,
i.e., traditional CMR and ZS-CMR. Traditional CMR includes two subtasks of
image-to-text retrieval (I2T) on seen classes and text-to-image retrieval (T2I)
on seen classes. Similarly, ZS-CMR also includes two subtasks of image-to-text
retrieval on unseen classes and text-to-image retrieval on unseen classes, as men-
tioned in Sect. 3.1.

We select twelve methods as baselines, and among the comparison methods,
DANZCR [3], DADN [4], and DMTL [32] were proposed for ZS-CMR, and others
were proposed for traditional CMR. Besides, CCA [20], JRL [31], CFA [15],
KCCA [1] and LGCFL [12] are shallow methods, while others are deep methods.

As for the evaluation metric, we adopt the mean average precision (MAP),
because it takes into account not only the precision, but also the ranking infor-
mation. Concretely, the average precision (AP) scores of all queries w.r.t. all
returned results are firstly calculated. Then, MAP is the mean of the APs.

4.2 Overall Results

Zero-Shot CMR. Table 1 shows the ZS-CMR results of the proposed SAGCN
and other methods. From the table, we have the following observations.

– Compared with shallow methods, deep ones usually obtain better results,
showing that deep models have stronger learning ability than shallow ones.

– Different from the traditional methods, DANZCR, DADN, DMTL, and
SAGCN are particularly designed for ZS-CMR with obviously higher results.

– SAGCN acquires the best MAP scores on the two small data sets. Specifically,
it increases the second best results by 18.8% and 3.7% on the Pascal Sentence
dataset and the Wikipedia dataset respectively. The advantage comes from its
full use of the semantic information, i.e., mining the semantic relationship by
GCN, adversarial learning, and cross-modal semantic similarity reconstruc-
tion. It enables knowledge to be transfered from known categories to unknown
categories.

– SAGCN does not obtain the best retrieval performance on the NUS-WIDE
dataset. Because NUS-WIDE is a huge multi-label dataset, the large amount
of categories and the multi-label property make SAGCN excessively construct
the semantic relationship.
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Table 1. The MAP results of SAGCN and other methods for zero-shot cross-modal
retrieval. Best results are highlighted in bold.

Methods Pascal sentences Wikipedia NUS-WIDE

I2T T2I Avg. I2T T2I Avg. I2T T2I Avg.

CCA [20] 0.207 0.183 0.195 0.238 0.236 0.237 0.400 0.397 0.399

CFA [15] 0.270 0.294 0.282 0.275 0.285 0.280 0.410 0.355 0.383

KCCA [1] 0.310 0.321 0.316 0.279 0.288 0.284 0.402 0.413 0.408

DCCA [28] 0.297 0.264 0.281 0.282 0.266 0.274 0.406 0.407 0.407

JRL [31] 0.298 0.283 0.291 0.264 0.266 0.265 0.401 0.449 0.425

LGCFL [12] 0.273 0.258 0.266 0.261 0.258 0.260 0.396 0.422 0.409

SAE [13] 0.302 0.220 0.261 0.301 0.234 0.268 0.400 0.464 0.432

ACMR [22] 0.306 0.291 0.299 0.276 0.262 0.269 0.407 0.425 0.416

Deep-SM [23] 0.276 0.251 0.264 0.265 0.258 0.262 0.401 0.414 0.408

DANZCR [3] 0.334 0.338 0.336 0.297 0.287 0.292 0.416 0.469 0.443

DADN [4] 0.359 0.353 0.356 0.305 0.291 0.298 0.423 0.472 0.448

DMTL [32] 0.359 0.363 0.361 0.306 0.297 0.301 0.572 0.576 0.574

SAGCN 0.421 0.436 0.429 0.322 0.302 0.312 0.423 0.447 0.435

Table 2. The MAP results of SAGCN and other methods for traditional cross-modal
retrieval. Best results are highlighted in bold.

Methods Pascal sentences Wikipedia NUS-WIDE

I2T T2I Avg. I2T T2I Avg. I2T T2I Avg.

CCA [20] 0.214 0.183 0.199 0.261 0.267 0.264 0.432 0.438 0.435

CFA [15] 0.594 0.590 0.592 0.464 0.457 0.461 0.466 0.475 0.471

KCCA [1] 0.493 0.497 0.495 0.421 0.520 0.471 0.423 0.482 0.453

DCCA [28] 0.511 0.507 0.509 0.448 0.446 0.447 0.428 0.430 0.429

JRL [31] 0.636 0.677 0.657 0.522 0.604 0.563 0.480 0.616 0.548

LGCFL [12] 0.592 0.638 0.615 0.510 0.586 0.548 0.459 0.529 0.494

SAE [13] 0.670 0.827 0.749 0.574 0.841 0.708 0.483 0.600 0.542

ACMR [22] 0.726 0.756 0.741 0.674 0.863 0.769 0.604 0.702 0.653

Deep-SM [23] 0.728 0.841 0.785 0.674 0.872 0.773 0.680 0.667 0.674

DANZCR [3] 0.737 0.868 0.803 0.672 0.887 0.780 0.727 0.709 0.718

DADN [4] 0.748 0.878 0.813 0.677 0.892 0.785 0.732 0.712 0.722

DMTL [32] – – – – – – – – –

SAGCN 0.840 0.880 0.860 0.687 0.895 0.791 0.846 0.833 0.840
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Table 3. Ablation study of SAGCN on the Pascal Sentences and Wikipedia data sets.

Methods Pascal sentences Wikipedia

I2T T2I Ave. I2T T2I Ave.

SAGCN (without Lce) 0.427 0.399 0.413 0.324 0.293 0.309

SAGCN (without Lrec) 0.327 0.305 0.316 0.267 0.266 0.267

SAGCN (without Ladv) 0.422 0.418 0.415 0.323 0.298 0.311

SAGCN 0.421 0.436 0.429 0.322 0.302 0.312

Traditional CMR. To more comprehensively evaluate the performance of our
proposed model, we also tested the model on traditional CMR tasks, and the
comparison results are shown in Table 2. From the results shown in the table,
we have the following findings.

– Compared with the ZS-CMR tasks, traditional CMR tasks obtain significantly
higher retrieval results. This indicates the difficulty of ZS-CMR.

– On traditional CMR tasks, the ZS-CMR methods still achieve higher MAP
scores than the traditional CMR methods, which is beyond our expectation.
The reason may be that ZS-CMR methods further consider the semantic
information based on the traditional ones.

– SAGCN gets the best results on all data sets. Specifically, it exceeds the
second best method (DADN) by 5.8%, 0.8%, and 16.3% respectively on the
Pascal Sentence dataset, Wikipedia dataset, and the NUS-WIDE dataset.

4.3 Further Analysis

Ablation Study. To study the effect of each module in SAGCN, we designed
three variants of the model by discarding each module separately, and compared
SAGCN with its variations. The comparison results on the Pascal Sentences and
Wikipedia data sets are shown in Table 3. According to Table 3, we can see that:

– When the semantic similarity reconstruction module is discarded (i.e.,
SAGCN without Lrec), the performance significantly decreases. This mod-
ule is used for cross-modal semantic similarity reconstruction, which not only
enables embedding to preserve semantic information, but also fuses multi-
modal data in the common space. Therefore, this part plays a necessary role.

– Giving up the discriminator or the adversarial learning (i.e., SAGCN with-
out Ladv), the performance is also negatively affected because of the loss of
multimodal fusion. However, the effect is not remarkable since the Lrec term
also tries to achieve this goal, and they have some overlap.

– Abandoning the discrimination regularization (i.e., SAGCN without Lce)
causes a slight decline of the performance. It indicates that the discrimination
regularization module also plays an important role, since it is responsible to
enhance the discriminant ability of the embedding.
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Fig. 3. MAP scores versus the parameters on the Pascal Sentence dataset.

Parameter Sensitivity. There are two trade-off parameters in the final objec-
tive of SAGCN, i.e., α and β. In this part, we discuss the sensitivity to these
parameters. Figure 3 shows the MAP variation along with the parameters on the
Pascal Sentence dataset. The range of the two parameters are set to [0.001,10].
To be fair, when discussing one, the other one is fixed. From the figure, we find
that the MAP score does not vary a lot with the change of α, which means
SAGCN is not sensitive to α. Comparatively, the change of β brings in obvious
difference of the MAP score. On one hand, this phenomenon illustrates that
SAGCN is sensitive to β. On the other hand, β controls the semantic similarity
reconstruction term. When β varys from a small value to a high value, the MAP
score rises, which shows the significance of this term.

5 Conclusion

In this paper, we proposed a novel ZS-CMR method, named SAGCN. It is
composed of an image encoder, a text encoder, a GCN, a discriminator, and
a classifier. The GCN mines the potential relationship between seen and unseen
categories, thus learning more appropriate class embedding. Besides, we consider
the image encoder, text encoder, and the GCN as a whole encoder. Based on
adversarial learning, we semantically fused the multimodal embedding and the
class embedding. Additionally, the proposed semantic similarity reconstruction
term can further fuse these embedding. Finally, the shared classifier enhanced the
discriminant ability of the embedding space. Extensive experiments illustrated
the effectiveness of SAGCN on both traditional CMR and ZS-CMR tasks.
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Abstract. The introduction and popularity of depth maps have brought
new vitality and growth into salient object detection (SOD), and plen-
tiful RGB-D SOD methods have been proposed, which mainly focus on
how to utilize and integrate the depth map. Although existing meth-
ods have achieved promising performance, the negative effects of low-
quality depth maps have not been effectively addressed. In this paper,
we solve the problem with a strategy of judging low-quality depth maps
and assigning low factors to low-quality depth maps. To this end, we pro-
posed a novel Transformer-based SOD framework, namely Depth-aware
Assessment and Synthesis Transformer (DAST), to further improve the
performance of RGB-D SOD. The proposed DAST involves two primary
designs: 1) a Swin Transformer-based encoder is employed instead of a
convolutional neural network for more effective feature extraction and
long-range dependencies capture; 2) a Depth Assessment and Synthe-
sis (DAS) module is proposed to judge the quality of depth maps and
fuse the multi-modality salient features by computing the difference of
saliency maps from RGB and depth streams in a coarse-to-fine manner.
Extensive experiments on five benchmark datasets demonstrate that the
proposed DAST achieves favorable performance as compared with other
state-of-the-art (SOTA) methods.

Keywords: Salient object detection · Swin transformer ·
Low-quality · Depth map · Assessment and synthesis

1 Introduction

Salient object detection (SOD) is a fundamental and important task in computer
vision. The purpose of SOD is to highlight and segment the most distinctive
objects or regions in a given scene. It has been applied to many other computer
vision tasks, such as image retrieval [6] and visual tracking [32].
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In the past, most SOD methods only focus on RGB images. Although RGB-
based SOD methods have achieved significant results due to the advance of
Convolutional Neural Network (CNN), challenges still remain in dealing with
complex scenes, for instance, low-contrast, confused background, transparent
objects, and multi-object scenes. With the popularity of depth sensors, such as
smartphones and digital cameras, the acquisition and collection of depth maps
have become growing convenient. In this situation, depth maps are introduced
into the field of SOD, known as RGB-D SOD. Different from RGB images, depth
maps can offer additional cues to obtain the spatial structure and 3D layout. The
participation of depth maps for the SOD task is hopeful of salving some thorny
issues. As shown in Fig. 1, RGB-D methods achieve better performance than
RGB methods in terms of a complex scene, where the salient objects and their
surroundings are low-contrasts.

Unfortunately, low-quality depth maps are usually mixed with noise and
redundancy information, which may lead to negative interference for detecting
salient objects. It is a pity that most early algorithms ignore the quality of depth
maps, leading to suboptimal performance.

Fig. 1. Visual comparison of RGB-D methods and RGB methods for SOD, which can
reflect the role of depth cues. The compared methods are SwinNet [19] and our method
for RGB-D methods while DCN [30] and CPD [29] for RGB methods.

Recently, some works [13,27,31] have started paying attention to the qualities
of the input for saliency detection, especially the quality of depth maps. These
methods mainly adopt two strategies to tackle low-quality depth issues: 1) depth
estimation techniques are employed to generate pseudo depth maps; 2) adaptive
or dynamic mechanisms are adopted to selectively fuse multi-modality features.
However, the two strategies have several problems. On the one hand, the depth
estimation process is time-consuming and may not produce a high-quality depth
map, which may be inferior to the original depth map. Meanwhile, the adaptive
or dynamic fusion mechanisms mainly focus on the complementarity among
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different modalities, resulting in the inability to effectively confirm the quality
of depth maps.

To address the aforementioned issues, we proposed a novel and concise
RGB-D SOD method, namely depth-aware assessment and synthesis trans-
former (DAST). The core of our method contains two key units: 1) pure Swin
Transformer-based backbone for extracting multi-modality features; 2) depth-
aware assessment and synthesis (DAS) module for fusing RGB and depth fea-
tures through computing weights of depth maps. Unlike most existing RGB-D
SOD methods that used CNN (e.g., VGG16, ResNet, and Inception) to capture
RGB and depth features, we leverage the Swin Transformer as the encoder to
extract the multi-modality features from RGB and depth images. There are two
reasons to use the Swin Transformer: (1) Swin Transformer is able to capture
long-range dependencies for better saliency reasoning; (2) Swin Transformer is
specially designed Transformer architecture for image processing field, which
can be well migrated to the SOD task. To assess the role of the depth maps, we
instinctively intend to compute a weighting factor, which is used to measure the
degree of importance for depth maps. To this end, we compute the difference
of the two-modality features in multiple scales to generate the weighting factor,
then generate an attention mask by the weighting factor to tell which regions to
pay attention to. Finally, to integrate multi-scale features, we design a feature
aggregation (FA) module to fuse two-scale features by an up-sample operation.

Overall, the main contributions of our work include:

• We propose a novel depth-aware assessment and synthesis transformer
(DAST), which adopts two Swin Transformers as backbones to extract multi-
modality features due to the capture ability of long-range dependencies.

• We present a depth-aware assessment and synthesis (DAS) module to assess
the quality of depth maps by formulating a weighting factor and an attention
mask. The former measures whether the quality of the depth map is good
while the latter tells the model which regions to pay attention to in features.

• We conduct comprehensive experiments on five RGB-D SOD datasets, includ-
ing quantitative analysis and visual comparison, proving that the proposed
DAST outperforms other state-of-the-art RGB-D SOD methods.

2 Related Work

Our method designs a Depth-aware Assessment and Synthesis Network based
on Transformer for RGB-D SOD, which mainly contains three aspects of works:
RGB-D SOD, Depth-aware RGB-D SOD, and Transformer. Next, we introduce
the related work from the three aspects.

RGB-D Salient Object Detection: Early RGB-D SOD methods mainly
focused on the fusion of multi-modality features, and a massive of algorithms
and models [3,10,15,16,37] were designed to implement the fusion. Chen et al.
[3] proposed a disentangled cross-modal fusion network to explore structural and



476 C. Xia et al.

content representations of both modalities by cross-modal reconstruction. Li et
al. [15] designed an information conversion mechanism to capture the complex
correlation between the RGB and depth images via a siamese network structure
with shared weights. Huang et al. [10] exploited the cross-modal features from the
RGB-D images and the unimodal features from the input RGB and depth images
for saliency detection. Zhao et al. [37] proposed a Bilateral attention network
(BiANet) for RGB-D SOD via exploring salient information from the background
and foreground. In recent years, thanks to advances in deep learning, a crowd of
significant technologies, like attention mechanism [16], neural architecture search
[24], and 3D convolutional neural networks [4] have been applied to saliency
detection and achieved remarkable performance.

Depth-Aware RGB-D Salient Object Detection: Since depth quality usu-
ally affects the performance of the RGB-D SOD model, some researchers have
considered the depth quality issue in RGB-D SOD, devoting to alleviating the
negative impact of low-quality depth. As an attempt, some works proposed to
conduct depth estimation from RGB images and obtain a pseudo depth map.
Xiao et al. [31] firstly adopted the depth estimation method to generate a pseudo
depth map, which was used to take place the original depth maps. Jin et al. [13]
adaptively fused the original depth maps and estimation depth maps obtained
by depth estimation technology to generate depth features. In recent years, some
researchers adopted an adoptive or dynamic manner to selectively fusion RGB
and depth modalities. Wen et al. [27] designed a dynamic selective module (DSM)
to dynamically mine the cross-modal complementary information between RGB
images and depth maps. Different from the above existing two strategies, our
method adopts a depth quality assessment manner to solve the low-quality issue
by measuring multi-modality differences, which is more efficient and suitable to
reduce the effect of low-quality depth maps.

Transformer: Due to the emergence and advance of the self-attention mecha-
nism [25], Transformer can effectively capture the long-range dependencies and
extract global context information. In recent years, Transformer has shown pow-
erful advantages over the convolutional neural network (CNN) in various com-
puter vision downstream tasks, like image classification, object detection, image
segmentation, and visual tracking. For instance, DETR [2] employed Transformer
to the field of object detection and achieved SOTA performance. ViT [7] first
use the patch embedding technology to achieve efficient classification results
on computer vision. SETR [39] adopted a pure Transformer as the encoder,
combined with a simple decoder, to achieve a powerful semantic segmentation
model. To effective feature extraction, Swin Transformer [18] proposed a shifted
window-based multi-head attention to reduce the computational complexity, and
obtained marvelous performance for dense prediction tasks. Due to its significant
superiority, Swin Transformer is used as the backbone network of our method.
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Fig. 2. Overview architecture of the proposed method.

3 Methodology

3.1 Overview

The overview architecture of the proposed DAST is illustrated in Fig. 2, which
consists of a two-stream Swin Transformer encoder, depth-aware assessment and
synthesis (DAS), and decoder with feature aggregation (FA). Overall, the pro-
posed DAST adopts an end-to-end structure for saliency reasoning. On the
encoder stage, we adopt Swin Transformer [18] to extract the RGB features
{F i

r}4i=1 and depth features {F i
d}4i=1, where r and d present the RGB and depth

branches, and i indicates the ith level on the encoder. On the decoder stage, DAS
fuses the multi-modality features ({F i

r}4i=1 and {F i
d}4i=1) through the calculated

weighting factor and attention mask to achieve the fused feature {F i
f}4i=1. Next,

the fused features {F i
f}4i=1 are embedded into the FA module to integrate multi-

scale features. The details can be seen in the following sections.

3.2 Two-Stream Swin Transformer Encoder

We adopt the Swin Transformer [18] to generate multi-scale features with hierar-
chical scales at four stages, starting with small-sized image patches and gradually
merging neighboring patches in deeper layers. In the first stage, the shape of the
input is H × W × 3, which is partitioned into non-overlapping patches of size
4 × 4. A linear embedding layer is then employed to project this raw-valued
feature into an arbitrary dimension (denoted as C), respectively. Then, forming
features in a shape of (H/4×W/4×C), where H and W indicate the height and
width of the input. Similar to the first stage, a sequence of Swin Transformer
blocks is applied to the merged patches at each following stage, while keeping
the number of tokens unchanged. As a result, the following three features are
produced by Swin Transformer with the hierarchical shapes (H/8 × W/8 × 2C),
(H/16 × W/16 × 4C), and (H/32 × W/32 × 8C).
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Fig. 3. The structure of the DAS. GAP means global average pooling operation; ⊗ and
⊕ are element-wise addition and element-wise multiplication, respectively. The right is
the visualization of attention masks {βi}4

i=1 in our method.

3.3 Depth-Aware Assessment and Synthesis (DAS)

As shown in Fig. 3, the core of the DAS is to evaluate the quality of depth map
and synthesis of the attention mask to further improve the performance of the
SOD model. The former tells whether the depth quality is good or not while the
latter highlights which regions to pay attention to. Concretely, the DAS con-
tains three key stages, including channel-spatial attention feature enhancement,
depth-aware assessment and synthesis, and quality-aware multi-modality fusion.

Channel-Spatial Attention Feature Enhancement: Considering the differ-
ence in information representation between RGB and depth features, we elab-
orate on the enhancement process for RGB and depth features by leveraging
channel-spatial attention [28]. As we all know, RGB image shows more appear-
ance, color, and texture cues while depth map usually exhibits spatial informa-
tion and 3D layout. The existing difference between the two modalities demands
the SOD model to distinguish the importance of channels and emphasize their
respective salient content. Therefore, spatial attention and channel attention are
jointly adopted to implement this purpose.

Specifically, given the RGB feature F i
r and depth feature F i

d at ith level, we
compute the spatial and channel attention maps, which can be defined as follows:

CAi
t = Sigmoid(GAP (F i

t )), (1)

SAi
t = Sigmoid(Convs(F i

t )), (2)

where t ∈ {r, d}, i ∈ {1, 2, 3, 4}, CAi
t and SAi

t present the channel and spatial
attention maps at ith level. GAP means global average pooling operation and
Convs indicates a 1 × 1 convolution operation.

Different from previous works [19,28], our method adopts a parallel manner
to integrate the outputs of the two attention modules instead of a serial way.
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The rationale behind this is that the parallel channel-spatial attention can focus
on channel and spatial significant cues at the same time, which bring new per-
formance gains for SOD. Next, we combine the original features and attention
maps to obtain the enhanced features, which can be described as follows:

f i
t = F i

t × (CAi
t × SAi

t), (3)

where t ∈ {r, d}, f i
t is the feature enhanced by channel-spatial attention.

Fig. 4. The architecture of the Assessment and Synthesis. “1−” means 1 subtract the
input of the equation.

Depth-Aware Assessment and Synthesis: As shown in Fig. 4, we design an
Assessment and Synthesis (A&S) mechanism to compute a weighting factor and
an attention mask, which is used to judge whether the depth quality is positive
or negative and decide which regions to pay attention to, respectively.

Firstly, we introduce an assessment process. To effectively compute the
weighting factor, we adopt a simple subtraction operation to calculate the differ-
ence between enhanced RGB and depth features. The motivation of this opera-
tion is that high-quality RGB images and depth maps should be consistent and
possess similar salient features [12,16,36]. Hence, we use a simple subtraction
operation to generate the absolute discrepancy of the two-modality features at
the pixel level. Then, the weighting factor αi can be achieved by dividing the
obtained discrepancy by the absolute sum of pixel values from the multi-modality
features, which can be formulated as:

Si
rd = Convt(f i

r) − Convt(f i
d), (4)

αi = 1 − SUM(Si
rd)

SUM(f i
r) + SUM(f i

d)
, (5)
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where SUM(f) =
∑W

i=1

∑H
j=1(|f(i, j)|), | · | means the absolute value operation,

H and W are the height and width of feature f, respectively. Convt indicates
the 3 × 3 convolution operation. The αi means the generated weighting factor
in ith level.

Secondly, we leverage the αi to generate the attention mask. In the processing
of synthesis, we use the max-pooling operation to capture the salient information,
which can be defined as:

{
Attik = f i

r + αi × f i
d, k = 1

Attik = MPk(f i
r) + αi × MPk(f i

d), k ∈ {2, 4} (6)

where MPk is a max-pooling operation with a k × k window; k ∈ {1, 2, 4};
Attik presents obtained fused features, which is used to generate an attention
mask. Then, the attention mask βi at ith level can be achieved by concatenating
the three fused features and activating the concatenated features by a sigmoid
function, which can be described as:

βi = Sigmoid(Conv1(cat(Atti1, UP2(Atti2), UP4(Atti4)))), (7)

where cat, Conv1, and Sigmoid indicate the concatenation operation, 1 × 1 con-
volution operation with a single channel, and a sigmoid activate function, respec-
tively; UP2 and UP4 present the two and four times of upsampling operation.

Quality-Aware Multi-Modality Fusion: Next, we fuse RGB and depth fea-
tures in a quality-aware manner through the weighting factor αi and the atten-
tion mask βi. A residual connection is adopted to integrate the original features.
The fusion can be formulated as:

fi = f i
r + αi × f i

d, (8)

F i
f = fi + βi × fi, (9)

where αi and βi mean the weighting factor and attention mask, respectively. F i
f

is the fused feature in a quality-aware manner. As shown in the right part of
Fig. 3, we display some visualization graphic of the attention mask βi, which can
observably highlight the salient objects of the scene from visual view.

3.4 Decoder with Feature Aggregation (FA)

In the decoder section, we employ a top-down progressive aggregation way to
integrate the multi-scale features for saliency prediction. First, the fused feature
F 4

f from the top-level is embedded into the next level. Note that the fused fea-
tures with multi-modality information flow to RGB and depth branches, respec-
tively. Then, a feature aggregation (FA) module is designed to integrate the
two-scale features, which can be described as:

{
Di

t = F i
t , i = 4

Di
t = cat(F i

t , UP (Convs(F i
f )), F i

t × UP (Convs(F i
f ))), i ∈ {1, 2, 3} (10)
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where t ∈ {r, d}, UP is the up-sample operation, Di
r and Di

d are encoder features
from RGB and depth branches, respectively. At the top-level, the RGB F 4

r and
depth feature F 4

d are directly deemed as decoder feature D4
r and D4

d without
multi-scale feature integration. In the remaining layers, the multi-modality fused
features are integrated in a top-down progressive manner. Finally, we activate
the F 1

f by a sigmoid function to generate the saliency prediction P.

3.5 Loss Function

Similar to works [33,36], we adopt the binary cross-entropy (BCE) to train our
network, which is a universal loss function in the SOD tasks, defined as:

Lbce =
1

H × W

H∑

h

W∑

w

[g log p + (1 − g) log (1 − p)], (11)

where P = {p|0 < p < 1} ∈ R1×H×W and G = {g|0, 1} ∈ R1×H×W represent
the predicted value and the corresponding ground truth, respectively. H and
W represent the height and width of the input, respectively. Lbce calculates the
error between the ground truth G and the predicted P for each pixel.

Table 1. Quantitative comparisons of the proposed method against the other 19 state-
of-the-art RGB-D SOD methods. ↑/↓ indicates that a larger/smaller is better. The top
three results are highlighted in red, blue, and green, respectively.

Dataset Metric SSF UCNet CoNet DANet D3Net SMEG BiANet CCAF DSNet DCFNet DSA2F CDINet DFMNet RD3D SwinNet VST DAST

2020 2020 2020 2020 2020 2021 2021 2021 2021 2021 2021 2021 2021 2021 2022 2021 Ours

CVPR CVPR ECCV ECCV TNNLS NP TIP TMM TMM CVPR CVPR MM MM AAAI TCSVT ICCV

CNN-based Transformer-based Swin

NLPR Eadp
ξ ↑ 0.951 0.955 0.934 0.944 0.945 0.953 0.939 0.954 0.957 0.956 0.952 0.955 0.954 0.959 0.969 0.956 0.973

F adp
β ↑ 0.875 0.089 0.848 0.865 0.861 0.878 0.849 0.882 0.886 0.893 0.896 0.883 0.880 0.892 0.908 0.886 0.928

WF ↑ 0.874 0.878 0.849 0.849 0.848 0.873 0.833 0.885 0.881 0.892 0.889 0.882 0.877 0.889 0.908 0.887 0.921

MAE ↓ 0.026 0.025 0.031 0.031 0.029 0.025 0.032 0.026 0.024 0.023 0.024 0.024 0.024 0.022 0.018 0.023 0.016

NJU2K Eadp
ξ ↑ 0.935 0.934 0.924 0.926 0.915 0.933 0.907 0.942 0.947 0.941 0.937 0.945 0.937 0.942 0.954 0.943 0.957

F adp
β ↑ 0.886 0.889 0.872 0.876 0.865 0.893 0.848 0.898 0.907 0.898 0.901 0.907 0.894 0.901 0.922 0.900 0.928

WF ↑ 0.871 0.867 0.856 0.852 0.854 0.875 0.811 0.885 0.893 0.884 0.889 0.892 0.879 0.886 0.913 0.888 0.917

MAE ↓ 0.042 0.043 0.046 0.046 0.046 0.040 0.056 0.037 0.034 0.038 0.039 0.035 0.039 0.037 0.027 0.034 0.026

SSD Eadp
ξ ↑ 0.873 0.909 0.898 0.909 0.904 – 0.888 – 0.923 0.906 0.912 0.906 – – 0.924 0.922 0.925

F adp
β ↑ 0.761 0.847 0.806 0.831 0.813 – 0.772 – 0.853 0.829 0.852 0.827 – – 0.863 0.842 0.871

WF ↑ 0.692 0.814 0.791 0.797 0.776 – 0.725 – 0.829 0.800 0.835 0.795 – – 0.844 0.829 0.849

MAE ↓ 0.084 0.049 0.059 0.049 0.058 – 0.071 – 0.045 0.053 0.047 0.056 – – 0.040 0.044 0.038

STERE Eadp
ξ ↑ 0.935 0.941 0.941 0.926 0.923 0.934 0.925 0.933 0.947 0.945 0.949 0.942 0.939 0.944 0.950 0.942 0.955

F adp
β ↑ 0.880 0.884 0.885 0.858 0.859 0.866 0.869 0.870 0.894 0.897 0.898 0.890 0.875 0.886 0.893 0.878 0.915

WF ↑ 0.862 0.866 0.871 0.829 0.837 0.852 0.833 0.855 0.876 0.886 0.887 0.866 0.860 0.871 0.882 0.866 0.903

MAE ↓ 0.044 0.039 0.040 0.047 0.046 0.043 0.050 0.044 0.036 0.037 0.036 0.041 0.040 0.037 0.033 0.038 0.029

RGBD135 Eadp
ξ ↑ 0.948 0.974 0.945 0.960 0.951 0.959 0.925 0.976 0.970 0.960 0.957 0.972 0.972 0.975 0.980 0.979 0.976

F adp
β ↑ 0.876 0.917 0.861 0.891 0.870 0.895 0.830 0.916 0.910 0.895 0.898 0.913 0.907 0.917 0.926 0.917 0.935

WF ↑ 0.860 0.908 0.856 0.848 0.828 0.884 0.774 0.915 0.893 0.884 0.890 0.901 0.902 0.904 0.919 0.912 0.919

MAE ↓ 0.025 0.019 0.027 0.028 0.031 0.022 0.038 0.018 0.021 0.022 0.021 0.020 0.019 0.019 0.016 0.017 0.016
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4 Experiments

4.1 Experimental Setting

Datasets: To verify the effectiveness of the proposed DAST, we conduct a com-
prehensive comparison on five RGB-D benchmark datasets, including RGBD135
[5], NLPR [23], NJU2K [14], SSD [41], and STERE [22]. RGBD135 [5] is a small-
scale dataset captured by the Kinect camera, which includes 135 pairs of indoor
images. SSD [41] contains 80 images picked up from three stereo movies. NLPR
[23] contains 1000 RGB images and corresponding depth maps. Moreover, there
is a mass of multi-objective scenarios in this dataset. NJU2K [14] contains 1985
pairs of RGB images and depth maps, where the depth maps are estimated from
stereo images. STERE [22] is the first proposed dataset containing 1000 pairs
totally with low-quality depth maps.

Evalution Metrics: To quantitatively evaluate the results of our network and
other comparison methods, we adopt widely used evaluation metrics to analyze
the performance of different methods, including F-measure [1], E-measure [8],
and Mean Absolute Error (MAE) [26]. F-measure is proposed to balance the
precision and recall scores. Weighted F-measure (WF) [21], a weighted precision,
is designed to improve F-measure. E-measure is utilized to compute the similarity
of characterizes both image-level statistics and local pixel matching. We employ
adaptive E-measure (Eadp

ξ ) to evaluation. MAE computes the pixel-level mean
absolute errors between the predicted saliency map S and ground truth G.

Implementation Details: Following [35,40], we randomly select 650 samples
from NLPR, 1400 samples from NJU2K, and 800 samples from DUT as the
training set, the remaining samples are classified as testing set. We implement
the proposed network with PyTorch framework on a PC with an NVIDIA GTX
2080Ti GPU. All training and testing samples are resized to 384×384. We deploy
the Adam optimizer to train our model. Parameters of the backbone network are
initialized with a pre-trained Swin-B network [18]. Besides, the batch size and
initial learning rate are set to 4 and 5e−5, and the learning rate will be divided
by 10 every 50 epochs. The proposed DAST converges within 120 epochs.

4.2 Comparison with SOTA Methods

To evaluate the performance of the proposed DAST, we compare our network
with other 16 SOTA RGB-D SOD methods, including SSF [35], UC-Net [34],
CoNet [12], DANet [38], D3Net [9], ICNet [15], SMEG [20], BiANet [37], CCAF
[40], DSNet [27], DCFNet [11], DSA2F [24], CDINet [33], DFMNet [36], RD3D
[4], SwinNet [19], and VST [17]. Saliency maps of these methods are generated
by the original code under default parameters, or provided by the authors.
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Fig. 5. Visual comparisons of our method and other SOTA RGB-D SOD methods.

Quantitative Comparisons: Table 1 lists the comparison results in metrics
of Eadp

ξ , F adp
β , WF , and MAE on all the five benchmarks datasets. As can

be seen, our method consistently outperforms all the SOTA methods in terms
of all evaluation metrics, which indicates the superior overall performance of
the proposed method. Take the challenging STERE for example, our method
can obtain a percentage gain of 0.5%, 2.5%, 2.4%, and 12.1% in metrics of Eadp

ξ ,
F adp

β , WF , and MAE over the second best method SwinNet. Compared with the
model using Swin Transformer (like, SwinNet [19]), our algorithm still achieves
superior performance.

Visual Comparisons: To qualitative comparison results of the proposed
DAST, various challenging scenarios are visualized in Fig. 5, including complex
background, foreground similar to background, low contrast, obscured objects,
and multiple objects. It can be observed that the proposed DAST are closer to
the ground truth, which validates the strong potential of the proposed method
in handling various challenging scenarios.

4.3 Ablation Studies

The Importance of Each Component in the DAST: We intend to investi-
gate the contribution of each component of the proposed DAST. To this end, we
conduct several ablation studies. Specifically, the whole DAS module is removed
from the DAST to prove its effectiveness, denoted as w/o DAS; Further, we
omit the assessment and synthesis (A & S) of DAS, denoted as w/o AS; Delet-
ing the assessment procedure from DAS, denoted as w/o A; similar with w/o A,
removing the synthesis procedure from DAS, denoted as w/o S.
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Table 2. Results of ablation studies. The best results are highlighted in red.

Nomber Variants SIP NJU2K SSD STERE

Eadp
ξ ↑ F adp

β ↑ WF ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ WF ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ WF ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ WF ↑ MAE ↓
No.1 w/o A 0.930 0.883 0.852 0.042 0.946 0.909 0.894 0.029 0.923 0.841 0.829 0.042 0.951 0.904 0.887 0.033

No.2 w/0 S 0.921 0.863 0.830 0.050 0.939 0.893 0.883 0.0344 0.917 0.835 0.816 0.042 0.941 0.884 0.864 0.042

No.3 w/o AS 0.931 0.884 0.853 0.047 0.944 0.905 0.893 0.033 0.916 0.833 0.808 0.049 0.948 0.900 0.882 0.035

No.4 w/o DAS 0.929 0.878 0.845 0.051 0.939 0.896 0.883 0.035 0.907 0.826 0.803 0.050 0.947 0.897 0.878 0.037

No.5 w/o MP-0 0.928 0.875 0.844 0.048 0.941 0.901 0.888 0.035 0.912 0.829 0.801 0.053 0.946 0.896 0.879 0.036

No.6 w/o MP-1 0.935 0.891 0.859 0.045 0.943 0.906 0.890 0.031 0.919 0.842 0.816 0.048 0.953 0.908 0.889 0.034

No.7 w/o MP-3 0.926 0.885 0.848 0.050 0.950 0.914 0.900 0.032 0.921 0.842 0.820 0.045 0.952 0.907 0.889 0.033

No.8 VGG16 0.922 0.875 0.843 0.049 0.942 0.908 0.890 0.037 0.909 0.842 0.806 0.048 0.940 0.889 0.865 0.040

No.9 VGG19 0.934 0.871 0.862 0.046 0.943 0.903 0.890 0.037 0.917 0.848 0.827 0.043 0.942 0.889 0.867 0.040

No.10 ResNet50 0.933 0.887 0.860 0.043 0.938 0.896 0.876 0.035 0.922 0.853 0.830 0.042 0.946 0.894 0.871 0.037

No.11 Ours(MP-2) 0.940 0.910 0.885 0.038 0.957 0.928 0.917 0.026 0.925 0.871 0.849 0.038 0.955 0.915 0.903 0.029

The results of the four variants are presented in Table 2, the performance of
w/o DAS has a significant decline (e.g.,MAE: 0.051→0.038 on SIP, 0.035→0.026
on NJU2K, 0.049→0.038 on SSD, and 0.037→0.029 on STERE) compared with
the proposed DAST, which confirms that the DAS module is extremely ben-
eficial to SOD tasks. Besides, the results of ablation studies of the used inner
mechanisms (assessment and synthesis) in DAS indicate the rationality and effec-
tiveness of the assessment and synthesis.

The Effectiveness of Attention Mask from Feature Synthesis: In DAS,
we adopt two max-pooling operations to capture the significant information
of features. To confirm the rationality of our design, we design four variants,
denoted as MP-0, MP-1, MP-2, and MP-3, which indicate the times of max-
pooling operation are 0, 1, 2, and 3, respectively. As reported in Table 2, com-
pared with MP-0, MP-1 can significantly improve the performance of saliency
detection, which proves the positive role of adopted max-pooling operation. Fur-
thermore, compared with MP-1, we can observer that MP-2 (Ours) can further
improve the accuracy of SOD task while MP-3 with three max-pooling opera-
tions cannot keep up the performance growth, which confirms our method with
two max-pooling operations is reasonable.

The Effectiveness of the Swin Transformer: we adopted the Swin Trans-
former as our encoder to extract multi-modality features due to its good ability
to capture long-range dependencies. To certify the advance of the Swin Trans-
former, we replace the Swin Transformer with VGG and ResNet, denoted as
VGG16, VGG19, and ResNet50, respectively. From Table 2, we can find that
the use of the Swin Transformer significantly improves the detection perfor-
mance. This may result from the integration of the locality merit of CNN and
the global-aware ability of transformer.
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5 Conclusion

In this article, we propose a pure Transformer-based RGB-D SOD model, namely
DAST. To handle the issue of low-quality depth maps, we propose a depth-aware
assessment and synthesis (DAS) module to judge the quality of depth maps and
fuse the multi-modality salient features by computing the difference between
RGB and depth modalities in a coarse-to-fine manner. In DAS, a weighted fac-
tor and an attention mask can be generated to tell whether the depth quality
is good or not, resulting in deciding which regions in features need attention.
Furthermore, a feature aggregation (FA) module is proposed to integrate the
multi-scale features for better saliency reasoning. Comprehensive experiments
prove that the proposed DAST achieves SOTA performance on five benchmark
datasets.
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Abstract. Recently, the rapid development of vehicle re-identification
(ReID) technology has facilitated the construction of intelligent trans-
port systems. Mainstream ReID methods rely on the fusion of global
and local features. In the global feature extraction, the channel attention
modules are usually exploited in the network, most of which only focus on
the channels’ importance and ignore the interactions among channels. In
the local feature extraction, the additional annotation-based local fea-
ture extraction methods can focus on local information and improve
the model’s performance but increase the workload of the data annota-
tion and reduce the generalizability of the model. In this article, we put
forward a new ReID Algorithm called CCSAM-LL. Firstly, a plug-and-
play module based on channel correlation self-attention called CCSAM
is introduced, which focuses on channel relevance and improves the char-
acterization of global features. Secondly, we propose an Lstm-based loss,
named LstmLocal loss, which takes into account local features without
additional annotation. LstmLocal loss is trained with Triplet Hard loss
and ID loss to improve the model’s ability to capture detailed features
and accuracy in the retrieval task. Experimental results demonstrate that
our approach outperforms the state-of-the-art methods on the challeng-
ing dataset VeRi776. Specifically, our approach achieves 83.18% mAP,
98.79% Rank5, and 48.83% mINP. The model is available at https://
gitee.com/qitiantian128/ccsam-ll.
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1 Introduction

Vehicle ReID is an image retrieval technology aiming to identify specific vehicles
from images or video sequences across shots using computer vision technology.
Currently, vehicle re-identification technology based on license plate recognition
is the most reliable method. However license plate information is not always valid
due to factors such as lighting, camera angle, masking, and smudging. There-
fore, the research of vehicle re-identification algorithms for unlicensed vehicles is
essential.

In the article, we concentrate on deep learning-based approaches in the
research on vehicle re-identification technology based on unlicensed vehicles.
These re-recognition algorithms face a significant challenge in practical appli-
cations. Different camera positions can produce light variations, viewpoint vari-
ations, and resolution differences, resulting in small differences between classes
and large differences within classes, as shown in Fig. 1. The addition of attention
mechanisms is one way to address this problem by enhancing the importance of
critical features and suppressing useless features. Moreover, the success of many
recent re-recognition tasks has shown that it is also important to combine other
mechanisms to mine local information from images, such as view segmentation
[17], key point detection [12], and viewpoint estimation [12,30]. These methods
use local information such as critical points and vehicle orientation to provide
supplementary information for global features. Some methods require additional
annotation of the dataset, such as crucial point marking, which limits the gen-
eralisability of these methods.

Fig. 1. (a) and (b) are the front and rear views of the same ID vehicle, (c) and (d) are
front views of a different vehicle.

Therefore, designing efficient attention mechanisms and mining local and
detailed information are the keys to improving the re-recognition accuracy. Based
on this, we propose a vehicle re-recognition algorithm based on channel corre-
lation self-attention and lstm local information loss, which named CCSAM-LL.
Two main contributions are included in the proposed algorithm. One is a chan-
nel correlation self-attention module called CCSAM for capturing the corre-
lation between channels, with higher correlation channels being given greater
weight, thus enhancing the global representation of features. The other is an
lstm-based loss, named LstmLocal loss, which takes into account local features
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without additional annotation. It has the advantage that image regions can be
processed sequentially, thus making full use of contextual information to enhance
the model’s ability to differentiate between individuals. Through extensive exper-
iments, the combined performance of the newly proposed structure on the chal-
lenging dataset VeRi776 exceeds the state-of-the-art.

2 Related Work

Deep learning-based vehicle re-identification methods have become a hot research
topic recently. In this section, we briefly review the recent work related to vehicle
ReID in the direction of deep learning. Liu et al. [15] designed a Couple Cluster
Loss to improve triplet loss, which is the first metric-based learning method for
vehicle ReID. Hermans A et al. [9] proposed Triplet Hard loss to improve the
robust representation of appearance. At the same time, the idea of multi-task
learning is applied. Classification loss and triplet loss are used to jointly train
the network, making the different loss functions constrain each other. To solve
the problem of intra-class differences and inter-class similarities caused by per-
spective changes, Bai et al. [28] proposed a Group-Sensitive-Triplet Embedding
method and considered inter-group differences as well as differences between
vehicles in the loss function. Varior et al. [24] proposed an LSTM-based network
to model the spatial contextual information. Khorramshahi et al. [12] and Guo
et al. [5] used an attention mechanism to extract features with discriminative
power through vehicle essential part localization and critical point detection.
Chen et al. [3] proposed a new 3D segmentation strategy to extract more local
features from each image dimension.

However, the correlation between channel information is not effectively
exploited in the above-mentioned attention-based mechanism network. And in
numerous local feature extraction-based methods, feature representations are
required additional annotations. Hence this article puts forward a vehicle ReID
algorithm based on channel correlation self-attention and lstm local information
loss, facilitating the model to learn more global significant features and local
detail features.

3 Proposed Method

We first present the baseline model and the general architecture of our proposed
methods (CCSAM-LL). Next, more details about the channel correlation self-
attention module (CCSAM) are discussed in Sect. 3.2. In Sect. 3.3, we focus on
the LstmLocal loss.

3.1 Architecture of Our Proposed Method

Baseline. Taking inspiration from the literature [7], we choose ResNet50 for
global feature extraction. We insert the IBN [18] structure into ResNet50 to
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learn more discriminative structures. Then we change the stride of the last stage
to 1, remove the fully connected layers(FC) and add the pooling layer and the
batch normalization layer(BN). The network is trained using Triplet Hard loss
(TriHard loss) [9] and label smooth-based Cross-Entropy loss (ID loss). In the
testing phase, the 2048-dimensional vector of all images is obtained and then
the cosine similarity is calculated as a basis for ranking.

2048
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Gem pooling

and BN FC

TriHard 
loss

ID loss
1x2048

split
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Fig. 2. Overview of our framework. ResNet50-ibn is our backbone, CCSAM block
is our proposed channel correlation self-attention module, and LstmLocal loss is our
added loss module. In the figure, Avgpoolng denotes average pooling, BN denotes batch
normalization, FC denotes fully connected layer, concat denotes concatenation, Gem
pooling denotes Generalized Mean Pooling.

Our Proposed Method (CCSAM-LL). Our approach is based on the base-
line, firstly inserting the proposed channel correlation self-attention module
(CCSAM) into the stage of ResNet50-ibn. We use the idea of self-attention
[25] to extract correlation features between channels, enhancing the feature rep-
resentation capability of important channels and improving the global feature
representation ability. Secondly, based on TriHard loss and ID loss, LstmLocal
loss is proposed to enhance the model’s discriminative capability of local feature
representation. The idea of multi-task and joint learning is used to reduce net-
work overfitting and enhance the model’s generalization ability. The framework
of our proposed method is shown in Fig. 2.

3.2 CCSAM

Attention allows the model to learn to pay attention autonomously, suppressing
irrelevant information and focusing on critical information. SEnet [10] is the
more popular plug-and-play channel attention, which reduces the redundancy of
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channel information by giving channel weights through the Squeeze-Excitation
operation. It plays an active role in many downstream tasks in computer vision.
Meanwhile, with the popularity of self-attention, attention based on this idea,
such as nonlocal [27], has also been proposed to optimize the feature extraction
ability of the network from the perspective of contextual relevance, primarily
used in the direction of NLP.

Based on this, we innovatively propose a channel correlation self-attention
module named CCSAM. It makes the weight coefficient of each channel is related
to its correlation with the rest of the channels and each position of the feature
map combines the relevant information for all channels. The SEnet is used to
obtain the weights of the channels directly through global average pooling and
FC layers. It is not related to the mutuality among channels, which is different
from CCSAM. The structure of the CCSAM is shown in Fig. 3.

Fig. 3. Channel correlation self-attention module(CCSAM block). In the figure, N
equals H multiplied by W divided by 16 Avgpoolng denotes average pooling, BN
denotes batch normalization, HW equals H by W, Multiply denotes each element of
the matrix multiplied by the learnable variable w.

First, features are extracted from the feature map X using a 1× 1 convo-
lutional layer (Conv), and then the length and width dimensions are stitched
together to obtain the channel matrix A. At the same time, the feature map X
is average-pooled to produce the channel feature vectors. The channel feature
vectors are multiplied with their transposed results to obtain a matrix of size
CXC. Each element of the matrix represents the correlation among the different
channels. Normalized this matrix to obtain the channel weight matrix B. The
normalization method can be softmax. Our module divides the number of chan-
nels directly to normalize. Multiply B with the channel matrix A to obtain the
interaction among all channels at each position in the feature map. Reshape the
result to the original feature map size, and use 1× 1 Conv and batch normal-
ization to get the new feature map. Finally, we multiply the new feature map
with the learnable variable w and add it to feature map X. The presence of w
allows the model to continuously learn the proportional relationship between the
original feature map and the new feature map, facilitating network optimization.
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The above-mentioned channel correlation self-attention module can also be
summarised by the following equation:

out = X + wx′ (1)

x′ =
1
Nc

∑

j

f(xi, xj)g(xj) (2)

where X denotes the input feature map, w denotes the learnable weight, and
the add operation indicates a residual connection structure that can be plugged
into the backbone easily. Nc denotes normalization factor, f(xi, xj) denotes the
interaction relationship between any two channels and g(xj) denotes the value
of the features of the input feature map at position j.

3.3 LstmLocal Loss

Many methods have shown that methods based on local features [3,5] are bene-
ficial for vehicle identification. However, these methods increase the complexity
and training difficulty of the network and some methods require additional anno-
tation of the dataset, such as crucial point marking, which limits the generalis-
ability of these methods. To overcome these problems, our method proposes the
LstmLocal loss. The vehicle can be thought of as a sequence from top to bottom,
including structures such as roof, windows, doors, wheels, etc. We use lstm to
model the serialization of local features and capture the correlation between local
features. Benefiting from the gate unit within lstm, lstm can selectively retain
the more relevant information and filter the less relevant information. The seri-
alized feature vectors output by lstm are stitched together and computed the
classification loss, prompting the network to focus on locally important detail
information. During re-identification task, attention to important detail infor-
mation can contribute to retrieval accuracy.

Loss = TriHard loss + ID loss + LstmLocal loss (3)

LstmLocal loss = Lstm loss + 0.25 ∗ (LstmH loss + LstmW loss) (4)

As shown in Fig. 2, we input the feature map from ResNet50-ibn to the
lstm branches(the red dashed box in Fig. 2) to calculate the LstmLocal loss.
The first branch is to downscale the feature map by 1× 1 Conv to obtain a
1× 16× 16 feature map. Each row vector of the feature map is considered as
a representation of the local feature and input to the LSTM in top-to-bottom
order. The last feature vector of the output sequence of the LSTM is calculated
as the Cross-Entropy loss, named Lstm loss. The second branch is to make the
feature map average pooled by row or column to obtain 16 row or column vectors
of 2048 dimension. They are treated as representations of local features and
input to the BiLSTM to extract serialized features in the horizontal or vertical
direction, respectively. The first half of the serialized features is added to the
second half. Then the result is concatenated and, after FC layer, to calculate the
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Cross-Entropy loss, called LstmH loss and LstmW loss. The last branch in Fig. 2
applies the Generalized Mean Pooling and BN of the feature map to obtain the
2048-dimensional feature vector, which is used for the calculation of the TriHard
loss; the 2048-dimensional feature vector after FC layer is used to calculate the
Cross-Entropy loss, also known as the ID loss. The loss of the model can be
expressed by Eq. 3 and 4.

4 Experiments

4.1 Datasets

We trained and tested our method on the challenging dataset VeRi776 [16].
The VeRi776 dataset is one of the more commonly used vehicle re-identification
datasets, where each vehicle is captured by at least two and at most 18 cam-
eras. The vehicle images have different viewing angles, lighting, resolutions, and
occlusions, constituting a highly reproducible dataset in realistic scenarios. The
VeRi776 dataset contains 49,360 images of 776 vehicles.

4.2 Implementation Details

We randomly cropped, flipped, and padded the input images, uniformly resized
them to a size of 256 × 256, and finally normalized them by the mean and vari-
ance of the dataset. The pre-training weights were chosen from the ResNet50-ibn
model pre-trained at imagenet dataset. The Batch size was set to 160, including
40 classes with four samples per class. The optimizer used SGD with a learning
rate starting at 0.01, utilizing a warm-up strategy and a CosineAnnealingLR
strategy. The total training numbers were set to 60 epochs. The w in CCSAM
was initialized to 1. The LSTM was set to two layers, and the hidden nodes were
256. The BiLSTM was set to one layer, and the hidden nodes were 256.

4.3 Evaluation

We follow the standard evaluation protocol. Rank1, Rank5, mAP, and mINP are
standard evaluation metrics used in Reid tasks. Rank-k indicates the percentage
of correct matches for the first k graphs; The mAP indicates the accuracy rate
of all search results; The mINP [29] is used to evaluate the ability of the model
to search for the most difficult-to-find samples. The experimental results of the
method in this paper are all the average of five experiments.

4.4 Comparison with Related Methods

We compare the proposed method with state-of-the-art methods, and as shown
in Table 1, the proposed method achieves compelling results on the VeRi776
dataset.

Specifically, we compare the metrics of state-of-the-art methods on mAP,
Rank1, Rank5 and mINP. As seen from the table, our method has the highest
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Table 1. Comparison with state-of-the-art results(%) on VeRi776.The 1st best result
is bolded. CCSAM-LL is the name of our model.

Method Publication mAP Rank1 Rank5 mINP

AAVER [12] ICCV19 61.18 88.97 94.70 –

DMML [2] ICCV19 70.1 91.2 96.3 –

PART [6] CVPR19 74.3 94.3 98.7 –

GLAMOR [23] – 80.3 96.5 98.6 –

PGAN [31] IEEE TITS20 79.3 96.5 98.3 –

CFVMNet [22] ACM MM’20 77.1 95.3 – –

SAN [19] MST20 72.5 93.3 97.1 –

UMTS [11] AAAI20 75.9 95.8 – –

SPAN [4] ECCV20 68.9 94.0 97.6 –

PVEN [17] CVPR20 79.5 95.6 98.4 –

DFLNet [1] IJCAI20 73.2 93.2 97.5 –

SAVER [13] ECCV20 79.6 96.4 98.6 –

GB+AB+SB [14] ICCV21 81.0 96.7 98.6 –

TBE-Net [21] IEEE TITS21 79.5 96 98.5 –

Transreid [8] ICCV21 81.7 97.1 98.7 –

Fastreid [7] – 81.9 97.0 98.51 44.79

Baseline 81.93 96.50 98.35 47.24

Ours(CCSAM-LL) 83.18 96.80 98.79 48.83

ours 

baseline

0.913/cam

0.929/cam

0.924/cam

0.965/cam

Vehicle A 

Vehicle B 

Vehicle B 

Vehicle A 

False 

False 

True True True True True True True True True

True True True True True True True True True 

True True True True True True True True True

True True True True True True True True True True 

True 

baseline

ours 

Fig. 4. Comparison of the results of our proposed method with the baseline model.
The left-most column shows the test image and the right-hand side shows the top ten
matches images in terms of similarity to the test image. The red box indicates a correct
match and the blue box indicates an incorrect match. The indicators at the top of the
Vehicle A and Vehicle B represent the mAP and cam ID respectively. (Color figure
online)
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metrics on mAP, Rank5, and mINP, achieving improvements of 1.25, 0.44, and
1.59, respectively. This demonstrates that our proposed method can enhance the
ability of the model to match complex samples and strengthen the robustness of
the model. We visualize the matching results for vehicle A and vehicle B in the
test set. In Fig. 4, the left column shows the test image(vehicle A and vehicle B),
and the right column shows the top ten matches images. It is evident that the
mAP of our proposed method is higher than the mAP of the baseline model, with
an improvement of 1.6 for sample A’s mAP and 4.11 for sample B’mAP. The
Baseline model makes an error of judgment on the 7th matched image of sample
B, but our model is correct. Although the Rank1 metric does not outperform
existing methods, in a real-world vehicle image retrieval application, not only one
image will be matched, but in most cases, multiple images with high similarity
rankings will be retrieved.

To demonstrate the effectiveness of our proposed method more directly, we
use Gradcam [20] for heat map visualization. Figure 5(b) and (e) clearly show
that the baseline can already focus on the preliminary information about the
vehicle, but the presence of the background distracts the model’s attention.
It is not easy to find important feature information in the view. Hence, our
proposed model uses the relevance of the channels to learn the essential features
in the view, reducing the distraction of the background and focusing the vast
majority of attention on the vehicle itself, which is relevant to the task, as in
Fig. 5(c). Meanwhile, Fig. 5(f) show that the presence of LstmLocal loss improves
model’s attention to detailed information such as vehicle logos, reflectors and
light outlines.

(a) Vehicle image  (b) baseline  (c)  ours

(d) Vehicle image (e) baseline (f)  ours

Fig. 5. (b)(e) show the visualisation of the baseline model using Gradcam; (c)(f) show
the visualisation of our method using Gradcam. The red circles in the diagram indicate
the detailed features that the model focuses on. (Color figure online)
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4.5 Ablation Study

To further evaluate the effectiveness and robustness of the CCSAM module and
LstmLocal loss proposed in this paper, we conduct ablation experiments on the
VeRi776 dataset.

Effectiveness of CCSAM. CCSAM is a plug-and-play channel correlation
self-attention module that can be easily inserted at any position in the backbone.
we compare CCSAM with the popular plug-and-play components in recent years,
such as SEnet [10] and ECAnet [26]. Compared to them, CCSAM removes the
dimensionality reduction operation to reduce information loss and enhances the
interaction between channels using a channel weight matrix. As shown in Table 2,
the mAP of our method improves by 1.09 and 0.49 over SEnet and ECAnet,
which has certain advantages. In terms of number of parameters, CCSAM has
139.7MB parameters, which is higher than the other two. This is mainly because
using all channels for convolution operations increases model accuracy at the cost
of computational effort.

Table 2. Performance comparison(%) of CCSAM added at different locations in
ResNet50-ibn on VeRi776. The 1st best result is bolded.

Method mAP Rank1 Rank5 mINP

Baseline 81.93 96.50 98.35 47.24

+SEnet 81.63 96.77 98.70 46.98

+ECAnet 82.23 96.61 98.69 46.97

+CCSAM(stage2,3,4) 82.59 96.96 98.69 48.17

+CCSAM(stage3,4) 82.61 96.78 98.67 48.15

+CCSAM(stage2,3) 82.72 96.98 98.62 48.43

Furthermore, we conduct experimental comparisons by inserting attention
into different positions of ResNet50-ibn. Attention is not inserted at stage1
because the feature map size of stage1 is 64 × 64, which would introduce more
extensive parameters when computing channel attention. Table 2 compares the
performance of CCSAM added to ResNet50-ibn at different locations. It can be
seen that mAP, Rank1, and mINP are highest when CCSAM is inserted at stage2
and stage3. The model with CCSAM inserted at stage2, stage3, and stage4 not
only has an increased number of parameters and a lower mAP. Therefore, the
CCSAM in this paper is inserted in stage2 and stage3.

Effectiveness of LstmLocal Loss. The addition of LstmLocal loss is another
important innovation in our approach. We put LstmLocal loss on the baseline
and combine TriHard loss and ID loss. LstmLocal loss consists of Lstm loss,
LstmH loss, and LstmW loss. Lstm loss is calculated by taking each row of the
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feature map as a local feature, thus learning the association information between
contexts. LstmH loss and LstmW loss are calculated by 16× 2048 dimensional
vectors, which are obtained via average pooling by row or column of the feature
map. We conduct separation and weight scaling experiments for these two kinds
of loss. As shown in Table 3, the different coefficients can affect the experimental
results and thus reduce the validity of the method. However, our method is still
more accurate than the baseline method. The most significant improvement is
achieved when the coefficient of Lstm loss is one, and the coefficient of LstmH
loss and LstmW loss is 0.25. MAP improved by 1.0 to 82.93, and Rank1, Rank5,
and mINP improved by 0.44, 0.35, and 1.12, respectively. It indicates that con-
textual association information can further constrain the classification loss of
the model, thus improving the model’s ability to extract detailed feature and
the discriminate detailed information.

Table 3. Performance comparison(%) with different weighting factors of LstmH loss
and LstmW loss on VeRi776. The 1st best result is bolded.

Method mAP Rank1 Rank5 mINP

Baseline 81.93 96.50 98.35 47.24

+Lstm loss 82.25 96.73 98.64 47.65

+0.25*(LstmH loss+LstmW loss) 82.55 96.83 98.72 48.11

+Lstm loss+1*(LstmH loss+LstmW loss) 82.33 96.73 98.58 47.96

+Lstm loss+0.5*(LstmH loss+LstmW loss) 82.59 96.71 98.59 48.45

+Lstm loss+0.25*(LstmH loss+LstmW loss) 82.93 96.94 98.73 48.36

5 Conclusion

In this paper, we first propose the channel correlation self-attention module
(CCSAM), where each position of the feature map combines the relevant infor-
mation for all channels. Secondly, LstmLocal loss is proposed to be trained in
collaboration with TriHard loss and ID loss. Based on these losses, the network is
able to capture local detailed features and improve the model’s accuracy without
additional annotation. But the coefficients among these loss functions need to be
chosen carefully, as it affects the final effect of the method. Through extensive
experiments, it has been shown that our proposed algorithm named CCSAM-
LL improves the re-identification accuracy of the VeRi776 dataset, ranking top
among the latest methods in recent years, with 83.18% mAP, 98.79% Rank5, and
48.83% mINP. In the future, we plan to optimize the structure of CCSAM to
reduce the amount of computation and explore in depth the scaling relationship
between various loss functions to achieve improved network accuracy.
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Abstract. Self-supervised graph learning has attracted significant inter-
est, especially graph contrastive learning. However, graph contrastive
learning heavily relies on the choices of negative samples and the elabo-
rate designs of architectures. Motivated by Barlow Twins, a method in
computer vision, we propose a novel graph autoencoder named Core Bar-
low Graph Auto-Encoder(CBGAE) which does not rely on any special
techniques, like predictor networks or momentum encoders. Meanwhile,
we set a core view to make maximize agreement between the learned
feature information. In contrast to the most existing graph contrastive
learning models, it is negative-sample-free.

Keywords: Graph autoencoder · Graph representation learning ·
Self-supervised learning · Barlow Twins

1 Introduction

In recent years, graph representation learning has become increasingly popular
in deep learning, especially in social networks, knowledge graphs, chemistry pro-
tein molecular domains, and so on. In these domains, original data is graph-
structured data rather than Euclidean data. Therefore, convolutional neural
networks(CNNs) [3] and recurrent neural networks (RNNs) [30] can not tackle
well with graph-structured data. Graph representation learning can map graph-
structured data into low-dimensional space and preserve graph topology and
node feature information as much as possible. Previous works studying graph
representation learning always need many well-annotated manual labels, namely,
they are based on supervised learning or semi-supervised learning. Although pre-
vious works have achieved great success in many tasks of representation learning,
there are several shortcomings. Firstly, collecting and annotating labels cost too
much time during the experimental period. Secondly, however, labels are usually
sparse in real-world scenarios and extracted from complex interaction systems
so it is difficult to collect. Thirdly, relying on labels can cause an over-fitting
problem, which runs in the opposite direction of our research goals.

To tackle the above shortcomings, a series of graph representation learning
methods based on self-supervised learning have been proposed. They have no
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 501–512, 2022.
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reliance on manual labels and solve several auxiliary tasks with signals acquired
from the data itself [18]. In self-supervised graph representation learning, con-
trastive learning has become a mainstream method, especially for node and
graph classification tasks. The keys to graph contrastive learning are generat-
ing data augmentations and then using the additional mutual information(MI)
[20] estimator to score positive and negative pairs. For example, DGI [29] and
MVGRL [9] utilize an estimator to score local-global representations and repre-
sentations from augmentation views, taking about 10%-30% of the training time
[19]. However, graph contrastive learning still suffers some limitations. Firstly,
the MI estimator occupies expensive memory during the training process and the
proposed model is sensitive to the choice of the MI estimator [28]. Secondly, the
proposed method is also sensitive to the choice of negative pairs. The negative
pairs can be generated by node-level, graph-level, edge-level, or feature-level.
Thirdly, the proposed method usually relies on data augmentations in order to
generate both input contents and their related contents [19].

Not the same as graph contrastive learning became a dominant approach,
what is easy to be ignored in self-supervised graph learning is graph autoencoder
which is an end-to-end approach, with no label required. Most existing models
based on graph autoencoder or graph variational autoencoder just focus on link
prediction and graph clustering based on single-view and have not explored
deeply contrastive learning. Besides, major graph models based on contrastive
learning focus on node classification and graph classification rather than link
prediction or graph clustering. So, how do apply contrastive learning to graph
autoencoder for link prediction or graph clustering? And how do we avoid the
above shortcomings of contrastive learning?

To address the above issues, we propose a novel self-supervised graph autoen-
coder. Inspired by Barlow Twins [31], a self-supervised approach for computer
vision by constructing two data augmentation views and trying to maximize the
agreement between two learned representations from the above views. Therefore,
feature information between two learned representations can resemble deeply to
each other and minimize the feature redundancy. Notice that this is a negative-
sample-free contrastive method, which just we need. Not just apply simply
Barlow Twins to graph autoencoder, we propose Core Barlow Graph Auto-
Encoder(CBGAE) which utilizes three views to learn the graph representation
with comprehensive network topology and node feature information. Specifically,
there will be three graph representations learned from the original input data,
data augmentation based on global topology information, and data augmenta-
tion based on feature information. The original input data as the core view to
maximize the feature agreement with the global topology view and feature sim-
ilarity view, respectively. And the final graph representation is obtained by the
attention mechanism.

The main contributions of this paper are summarized as follows:

– We propose a novel graph autoencoder optimized by Barlow Twins. We set
the original data as the core view to promise the learned embeddings that
can contain the most critical information.
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– Not only do we obtain data augmentation on the graph structure, but also
we get feature data augmentation simultaneously. Through the above process,
the proposed method can aggregate comprehensive information and does not
rely on any special techniques, like predictor networks or momentum encoders.

– The experimental results on four graph datasets demonstrate that the pro-
posed model obtains solid competitive performance on link prediction tasks.

2 Related Work

2.1 Graph Autoencoder Models

Normally, a graph autoencoder contains two parts: an encoder that maps the
graph-structured data into low-dimensional space and a decoder that recon-
structs the adjacency matrix or node feature matrix through the hidden emded-
dings obtained from the encoder. Kipf et al. [14] first proposed graph autoen-
coder(GAE) and graph variational autoencoder(GVAE) stacked by two GCN
[15] layers as the encoder and an inner product decoder to reconstruct the adja-
cency matrix.

Following GAE and GVAE, an increasing number of models based on them
have been proposed. ARGA [22] combined generative adversarial network(GAN)
[6] with GAE and improved GAE with adversarial regularization. ARVGA [22] is
the variant of ARGA, like GVAE. TVGA [25] used a triad decoder to replace the
inner product decoder, which can predict the three edges involved in a local triad.
DGVAE [16] replaced normal distribution with the Dirichlet distributions as
priors on the latent variables. GNAE and VGNAE [2] utilized L2-normalization
to derive better embeddings for isloated nodes. MaskGAE [17] pre-masked a
portion of edges and aimed to reconstruct the missing part. Different from the
above models reconstructing the adjacency matrix, GALA [23] reconstructed the
node feature matrix with a Laplacian smoothing-sharpening graph autoencoder.
GraphMAE [10] focused on reconstructing node feature matrix with re-masking
the hidden embeddings of masked nodes before the decoding process.

2.2 Graph Contrastive Learning

The graph contrastive learning takes inspiration from contrastive learning in
computer vision which builds on maximizing mutual information between two
augmentation views of the same image. However, unlike images, augmentation
views of the graph-structured data can not been obtain simply. Augmentations
on graphs can been categorized into two types: feature-space augmentations
and structure-space augmentations. For feature-space augmentations, it can be
masking or shuffling node features. For structure-space augmentations, it can be
adding or removing some edges, sub-sampling, or generating global views.

Recently, there are more and more graph contrastive models proposed.
MVGRL [9] achieved great performance on both node and graph classifica-
tion tasks by maximizing MI between node representations of one view and
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graph representations of another view. GRACE [32] utilized node feature mask-
ing and edge dropping to obtian two augmented views, then focused on con-
trasting embeddings at node level. BGRL [27] was inspired from BYOL [7] and
alleviated the reliance on negative sampling strategies. MERIT [11] deployed a
self-distillation framework to enrich the supervision signals with multi-scale con-
trastive learning. AD-GCL [26] enabled GNNs avoid capturing redundant node
features and allowed the encoder to capture the minimal sufficient feature infor-
mation. There is no diffcult to find that the above models almost are trained for
node and graph classification tasks and they are either sensitive to the choice
of negative samples or need expensive memory. Moreover, they always just have
two views to contrast with each other.

2.3 Barlow Twins

Contrast to previous self-supervised learning methods, Barlow Twins [31] uti-
lized a symmetric framework without momentum, predictor, or stop-grad blocks.
Meanwhile, Barlow Twins proposed a novel loss function having an invariance
term and a redundancy reduction term. The invariance term can encourage the
learned representations of the distorted versions of a sample to be similar, while
the redundancy reduction term can encourage the diversity of learned represen-
tations. The key to the loss function is calculating the cross-correlation matrix
between two learned representations of a pair of distorted inputs. Actually, Bar-
low Twins can be part of contrastive learning just contrasting on feature aspect
to make the cross-correlation matrix close to the identity.

3 The Proposed Model

Let assume an undirected graph G = (V, E), with | V | = n nodes and | E | = m
edges, and denote A ∈ R

n×n as the adjacency matrix of G, X ∈ R
n×d is the node

features matrix. Specifically, Aij = 1 represents there is an edge between nodes
i and j, otherwise, Aij = 0. D is the diagonal degree matrix of A. Meanwhile,
we define the latent variables zi, which is summarized in the matrix Z ∈ R

n×d′
.

3.1 Overall Framework

We propose a novel graph autoencoder named Core Barlow Graph Autoen-
coder(CBGAE). As illustrated in Fig. 1, our proposed model mainly consists
of three components: data augmentations, a graph convolutional encoder, and
an inner product decoder. And the original data (A, X) as core view, two aug-
mented views as auxiliary views.

3.2 Data Augmentations

We consider two data augmentations on graph: feature augmentation and struc-
tural augmentation. For structural augmentation, considering that edge infor-
mation plays an important role in link prediction, so we do not make edge mod-
ification, e.g. dropping and inserting a portion of edges. We acquire the diffusion
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Fig. 1. The framework of CBGAE. (A, X) is the orginal data, A is the adjacency
matrix, X is the node feature matrix. (Sppr, X) and (Sfeat, X) are augmented from
the original view. The final embedding Z is fused by three specific embeddings from
the above views.

matrix by PPR [21] to supply global topological information:

Sppr = α(In − (1 − α)˜D− 1
2 ˜A˜D− 1

2 )−1 (1)

where α denotes the probability of random walk, In ∈ R
n×n is an identity matrix

and ˜A = ˜D− 1
2 Â˜D− 1

2 , Â = A + In. For feature augmentation, we construct a
k-nearest neighbor(KNN) graph based on node feature matrix X:

Sfeat
ij =

exp(cos(xi, xj))
∑n

k=1 exp(cos(xi, xk))
(2)

where cos(xi, xj) measures the cosine similarity between two nodes.

3.3 Multi-view Graph Auto-Encoder

Now, we have obtained three views: (A, X), (Sppr, X), and (Sfeat, X). Then,
we feed them into a GCN encoder stacked two layers separately, as follows:

ZA = ReLu(˜AReLu(˜AXW0)W1) (3)

Zfeat = ReLu(SfeatReLu(SfeatXW0)W1) (4)

Zppr = ReLu(SpprReLu(SpprXW0)W1) (5)

where ˜A = ˜D− 1
2 Â˜D− 1

2 , Â = A + In, W0 and W1 are weight matrices. Next,
considering the importance of each specific learned embeddings from each view,
we utilize the attention mechanism to fuse the above embeddings to obtain the
final embeddings. For example, for the original view (A, X):

wi
A = qT · tanh(W · (ziA)T + b) (6)



506 J. Li et al.

where W ∈ R
h′×h is the weight matrix and b ∈ R

h′×1 is the bias vector. We get
the attention values wi

feat and wi
ppr through the same way. Then we get the last

attention weight:

aiA = softmax(aiA) (7)

=
exp(wi

A)
exp(wi

ppr) + exp(wi
feat) + exp(wi

A)
(8)

The attention weight aiA implies the importance for relative learned represen-
tation. Similarly, aifeat = softmax(aifeat) and aippr = softmax(aippr). Finally, we
fuse the above representation to obtain the final learned Z:

Z = aA · ZA + appr · Zppr + afeat · Zfeat (9)

Finally, we feed the final embeddings into the inner product decoder to recon-
struct the original adjacency matrix:

Â = σ(ZZT), (10)

where Z = q(Z|X,A) is the final graph representation, σ(·) is a logistc sigmoid
function.

3.4 Loss Function

Barlow Twins Loss Function Barlow Twins [31] loss function includes two
terms: an invariance term and a redundancy reduction term. Details as follows:

Lbt
Δ=

n
∑

i=1

(1 − Cii)
2 + λ

n
∑

i=1

n
∑

j�=i

Cij
2 (11)

where λ is a positive constant trading off the importance of the first and second
terms of the loss, and where C is the cross-correlation matrix calculated between
the embeddings of two augmented views:

Cij
Δ=

∑

b

zAb,iz
B
b,j

√

∑

b

(zAb,i)
2
√

∑

b

(zBb,j)
2

(12)

where b indexes batch samples and i, j index the vector dimension of the net-
works’ outputs. C is a square matrix with size the dimensionality of the network’s
output. We hope that the on diagonal elements Cii to be equal to 1 and the off-
diagonal elements Cij to be equal to 0. Instead of setting batch size, we directly
feed full size into the proposed model for link prediction.

In our model, we set the original data as the core view, so we can obtain
two cross-correlation matrices. One is calculated by ZA and Zfeat, another one
is calculated by ZA and Zppr. Details as follows:
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LA,ppr
bt

Δ=
n

∑

i=1

(1 − CA,ppr
ii )

2
+ λA,ppr

n
∑

i=1

n
∑

j �=i

CA,ppr2

ij (13)

LA,feat
bt

Δ=
n

∑

i=1

(1 − CA,feat
ii )

2
+ λA,feat

n
∑

i=1

n
∑

j �=i

CA,feat2

ij (14)

Therefore, the total loss function can be presented as follows:

L = Eq(Z|X,A)[log p(A | Z)] + LA,ppr
bt + LA,feat

bt (15)

where the first term is the reconstruction loss and the left terms are Barlow
Twins loss function.

4 Experiment

4.1 Datasets

To verify the performance of the proposed method on link prediction task, we
carry on experiments on four popular citation datasets. In citation datasets, a
publication as a node and a connection as an edge, meanwhile, the unique words
in each publication as node feature. Each dataset has been summaried in Table 1.

Table 1. Dataset Statistics

Dataset Nodes Edges Features Labels T/V/T

Cora 2708 5429 1433 7 140/500/1000

Citeseer 3327 4732 3703 6 120/500/1000

Pubmed 19717 44338 500 3 60/500/1000

Acm 3025 13128 1870 3 200/300/700

4.2 Implementation

All experiments are implemented in Tensorflow [1] and all parameters are ini-
tialized by Glorot scheme [5] and optimized with the Adam algorithm [13]. For
Cora, for the optimizer, we set the learning rate as 0.001. What is more, the
dropout rate equals 0.5 and epoch equals 200. Besides, the number of neurons
in each GCNs is set to ”1433-256-128–1433”. Like Cora, for other datasets, the
number of neurons in hidden GCN layers is set to ”256-128”. And λA,ppr and
λA,feat are trade-off parameter, and we find that for Cora and Citeseer λA,ppr =
λA,feat = 0.5 works the best. For Pubmed, epoch equals 300, λA,ppr = λA,feat =
0.5. For Acm, epoch equals 500, λA,ppr = λA,feat = 0.1.

4.3 Comparison Methods

The following state-of-the-art baseline methods are chosen for comparison.

– GAE and GVAE [14] contain an encoder and a decoder. GAE reconstructs
directly the adjacency matrix while GVAE can learn an embedding whose
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distribution can match the distribution of samples by learning mean and
standard deviation.

– ARGE and ARVGE [22] use an adversarial mechanism during the training
process to keep the original graph topology information and node feature
information as much as possible.

– sGraphite-VAE [4] can enlarge the normal neighborhood in the aggregation
of GNNs, which aims at maximizing mutual information.

– SIGVAE [8] expands the flexibility of VGAE and replaces the inner product
decoder with a Bernoulli-Poisson relative decoder.

– EVGAE [12] consists of multiple sparse GVAE models, which can aid in
mitigating the over-pruning problem and boosting the generative ability of
GVAE.

– FastGAE [24] can scale GAE and GVAE to large graphs with millions of
nodes and edges based on an effective stochastic subgraph decoding scheme.

4.4 Experimental Results

Link Prediction Table 2 summarises AUC and AP scores on four graph bench-
mark datasets. As shown in Table 2, it is clear that for Cora, Citeseer, and
Pubmed, CBGAE outperforms other models based on graph autoencoder, and
all AUC and AP scores on four datasets are higher than 97%, especially the
AUC and AP scores on Citeseer are 99.1% and 98.9%, which have increased the
AUC and AP scores from 9.6% and 9% compared with GAE. Compared with
GVAE, CBGAE improves by 8.3% and 6.9%, respectively. For Cora, CBGAE has
increased AUC and AP scores from 7.8% and 6.7% compared with GAE. Mean-
while, compared with FastGAE, CBGAE has increased the AUC and AP scores
from 7.1% and 6.4%. For Acm, we can see that each method can achieve good
performance and ARGE’s performance is the best. The performance of CBGAE
is second only to ARGE. We think that the reason why the above methods can
obtain good performance on Acm maybe is that there are a great number of
edges in this data, which supplied rich connection information. Totally, we think
that CBGAE aggregates comprehensive topology and node feature information
by optimizing the Barlow Twins loss function by setting a core view way that can
maximize the agreement feature information between different views. To easy to
read, all the highest results of each following table are in bold.

Furthermore, to verify the effectiveness of core Barlow Twins loss function,
we compared the proposed model with its variant called Full Barlow Graph
Auto-Encoder(FBGAE). For CBGAE, the original data as the core view. Two
augmented views calculate their specific cross-correlation matrices with the core
view, individually. For FBGAE, there is no core view and each view will obtain
its specific cross-correlation matrices calculated with each other, individually.
At the bottom of Table 2 shows that setting the core view rather than the full
view can achieve better performance on each dataset. For Pubmed, FBGAE even
obtains the worst performance.
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Table 2. AUC and AP for Link Prediction

Dataset Cora Pubmed Citeseer Acm

Method AUC AP AUC AP AUC AP AUC AP

GAE [14] 0.910 0.920 0.964 0.965 0.895 0.899 0.955 0.955

GVAE [14] 0.914 0.926 0.944 0.947 0.908 0.920 0.960 0.960

ARGE [22] 0.924 0.932 0.968 0.971 0.919 0.930 0.982 0.985

ARVGE [22] 0.924 0.926 0.965 0.968 0.924 0.930 0.974 0.978

EVGAE [12] 0.929 0.938 0.968 0.969 0.915 0.932 – –

FastGAE [24] 0.917 0.923 0.961 0.963 0.902 0.901 – –

sGraphite-VAE [4] 0.937 0.935 0.948 0.963 0.941 0.954 – –

SIGVAE [8] 0.960 0.968 0.970 0.971 0.964 0.963 – –

CBGAE(ours) 0.988 0.987 0.974 0.971 0.991 0.989 0.978 0.972

FBGAE(ours) 0.978 0.975 0.903 0.899 0.957 0.948 0.957 0.948

4.5 Random Attacks on Edges

To investigate the robustness of our proposed model, we carry on experiments
about random attacks on edges. We reduce the total number of edge sets in the
training set on Cora and Citeseer: 85%, 75%, 65%, 55%, and 45%. Figures 2a
and 2b show that as the number of edges in the training set decreases, CBGAE

Fig. 2. Random attack on four datasets.
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can always keep the best performance and the overall trend of CBGAE keep a
slight downward trend, while trends of other baselines keep always a stronger
downward. For Citeseer, the same case happens illustrated in Figs. 2c and 2d.
The other models’ performance is significantly affected by the number of edge
sets in the training set, however, CBGAE has hardly been affected by reducing
the edges of the training set.

5 Conclusion

In this paper, we propose a novel graph autoencoder with a core view to optimize
the Barlow Twins and reconstruction loss functions together. First, we obtain
two auxiliary views through data augmentations. Then, we feed all views into the
graph convolutional encoder and obtain three specific hidden embeddings. Mean-
while, we calculate cross-correlation matrices between them to reduce the feature
redundancy and promise feature agreement between different views. Experiment
results that CBGAE can achieve competitive performance. Especially, CBGAE
achieves the best performance in link prediction compared with some state-of-
the-art models on three datasets.
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Abstract. At present, most few-shot learning faces some difficulties. On
the one hand, during feature extraction, the feature information extrac-
tion is insufficient due to the single extraction scale. Another problem is
that it is difficult to accurately extract the important information con-
tent in the image. To this end, a few-shot learning method-MSIFA is
proposed. In general, this strategy mainly utilizes the designed multi-
scale feature generation module MSFGM to generate feature informa-
tion about samples at multiple scales, so as to enrich the feature rep-
resentation of samples. Next, the SAFAM module constructed by the
self-attention mechanism extracts the important feature information of
the samples at various scales. Afterwards, these important feature infor-
mation is spliced and combined as a more accurate feature expression
of the sample. Extensive experiments are performed on multiple stan-
dard datasets. Experimental results show that our method can not only
greatly improve the classification performance of baseline methods, but
also surpass most advanced few-shot learning methods.

Keywords: Few-shot learning · Multi-scale features · Feature
representation enhancement · Self-attention mechanism

1 Introduction

In recent years, with the continuous development of technology, especially with
the support of many constantly upgraded basic computing hardware. Many fields
of deep learning [1,2] have made great progress. In general, the success of deep
learning is partly due to the collection of large datasets (such as Pascal VOC [3],
ImageNet [4], etc.) and computationally powerful computing devices. A large
amount of data helps the algorithm learn a high-performance model, because a
large amount of data can cover most real-world sample distributions. However,
not all deep learning tasks can obtain a large amount of data for model training.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 513–524, 2022.
https://doi.org/10.1007/978-3-031-20865-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20865-2_38&domain=pdf
https://doi.org/10.1007/978-3-031-20865-2_38


514 W. Zeng et al.

In most convolutional neural networks [5] (CNN) tasks, the smaller the number
of training samples, the greater the risk of model overfitting. In contrast, humans
can learn some important characteristics of new things with only a small number
of samples. For example, a person only needs to see a few pictures of a giraffe,
and then go to the zoo to quickly recognize that this animal with a long neck is
a giraffe. Inspired by this, researchers propose few-shot learning (FSL) [6], which
can achieve a high-performance classification model with only a small amount
of data.

Currently, researchers propose a variety of methods to improve the difficulties
encountered in few-shot learning. It can be mainly divided into two categories,
one is metric learning [7], and the other is meta-learning [8]. Metric learning
mainly completes few-shot classification by comparing the similarity between
labeled samples and unknown samples. Meta-learning is suitable for cross-task
learning. Depending on the task, the initial parameters suitable for the current
task are given to start training. It only takes a few iterations to obtain a model
with high classification accuracy [9]. To this end, Korch et al. [10] proposed a
similarity measurement model called Siamese Neural Networks. The model has
two identical CNN networks, and will perform feature extraction on the two
incoming samples respectively. Then compare the similarity between them, so
as to realize the classification of unknown samples. Snell et al. [7] proposed the
Prototypical Network (ProtoNet). This method first obtains the feature vectors
of all samples in each category of the query set, and then finds a class center point
in each category. Then, the distance between the unknown sample and the center
point of each class of the known sample is calculated by Euclidean distance. The
smaller the distance difference, the closer the categories are, thus realizing the
classification of images. The above methods have achieved certain results, but
there are still some shortcomings. On the one hand, the feature scale extracted
by such methods is relatively single, so the feature information contained is not
rich enough. On the other hand, such methods simply perform indiscriminate
global feature extraction on images. It does not give different weights to different
regions according to the different regions. In an image, in addition to the target
object representing the label, it will also be disturbed by its background clutter,
the size of the target object and its different poses. For example, in an image
labeled panda, there may be different distractors in the background of the panda
and it may have different poses in different images. The undifferentiated feature
information extraction will include these interfering information content. The
feature information of these distractors is not only unnecessary, but also affects
the calculation of the similarity between samples, resulting in bias.

In order to improve the above problems, this paper learns the important
feature information of multiple scales in the image, rather than focusing on the
feature information at a single scale. The feature information obtained by a
single scale has a certain one-sidedness, while the features of different scales can
contain richer and more detailed feature information. The feature resolution of
the lower layer is higher, so it has more location and detail information (such
as edge feature information and color feature information, etc.). However, due
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to the insufficient number of convolutional layers, it lacks semantic information
and thus contains more noise. The high-level features have stronger semantic
information, but the resolution is also relatively low, so the perception of local
details is weak. Therefore, the feature information of different scales may form
a good complementarity.

The contributions of this paper are: (1) In view of the one-sidedness of single-
scale feature information, this paper designs a multi-scale feature generator to
generate feature vectors of samples at different scales. (2) In order to express
the information content of the samples more accurately, a self-attention feature
aggregation module is designed. The important information content of samples
at different scales is obtained through the self-attention feature aggregation mod-
ule mainly constructed by the self-attention mechanism. And these features are
spliced and aggregated in order to serve as a more accurate feature representa-
tion of the sample image at different scales. (3) Conduct a large number of image
classification experiments on multiple datasets. Experimental results show that
our method can not only effectively improve the classification performance of
baseline methods, but also surpass most advanced few-shot learning methods.

2 Related Work

In the exploration of the few-shot learning method, the main purpose is to
obtain a model that can achieve high classification accuracy using only a small
amount of data. In recent years, most methods using convolutional networks have
achieved good results in few-shot learning. The methods mainly include few-shot
learning methods based on metric learning and few-shot learning methods based
on meta-learning.

The method based on metric learning is to measure the similarity between the
query set samples and the support set samples, so as to complete the classification
of unknown samples. Vinyals et al. [11] proposed a matching network, whose
main method is to add a long short term memory network (LSTM)to the metric
learning model. The extracted features are further processed by the memory
network, and then the similarity between samples is calculated through metric
learning. The relation network proposed by Sung et al. [12]. Its strategy is to
give a model that can determine the relationship between objects by building
a completely end-to-end network. The main role of relational networks is to
provide a learnable nonlinear classifier. Chen et al. [13] proposed a multi-scale
adaptive task attention network (MATANet) for few-shot learning.

The main method based on meta-learning is to guide the training of new tasks
from a better starting point by transferring existing knowledge or experience.
With only a few iterations, the model can achieve good classification accuracy.
Santoro et al. [14] proposed a memory-augmented neural network (MANN) archi-
tecture. It mainly uses the LSTM module to realize the combination of neural
network with long-term memory ability, so as to realize small sample learning.
Finn et al. [15] propose a model-agnostic meta-learning method that can help
other methods to train from a good starting point. Ravi [16] et al. used an LSTM-
based learner to train an additional optimizer, enabling the search for a starting
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point for better initial parameters. Zhang et al. [17] proposed the Episode-level
Pretext Task (IEPT) framework, which more closely integrates self-supervised
learning (SSL) into few-shot learning to improve the performance of small-shot
learning. Shyam et al. [18] proposed a recurrent network based on attention
mechanism for few-shot learning, and achieved good results.

Most of the above methods only perform feature extraction on a single scale.
Compared with multi-scale feature information, the feature information obtained
through a single scale will inevitably be one-sided. On the other hand, most
methods in metric learning are indiscriminate extraction of global feature infor-
mation. It is not considered that some important information in the image is
the key to reflect the image label, so the important information about the target
object in the image cannot be obtained well. Different from most methods, this
paper designs a multi-scale generation module to generate feature information
about samples at multiple scales. And use the self-attention module to aggre-
gate important feature information in different scales, so as to complete the more
accurate expression of image information.

Fig. 1. Schematic diagram of the running process of the MSIFA model.

3 MSIFA Method

This section will introduce the MSIFA model architecture in detail. The overall
architecture is shown in Fig. 1.

3.1 Problem Definition

Specifically, each meta-task T contains a support set S and a query set Q. N -way
K-shot is expressed as extracting N categories from the training data set, and
randomly extracting K samples from each category as the support set. Then
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continue to randomly select q samples from the remaining samples as the query
set. Then there are:

S = {(xi, yi) |i = 1, 2..., N × K} (1)

Q = {(xi, yi) |i = 1, 2..., N × q} (2)

T = {(Si, Qi)}m
i=1 (3)

where xi and yi represent samples and their labels, respectively, and m represents
the number of meta-learning tasks.

3.2 Feature Extraction Module

Fig. 2. Basic feature extractor based on 4-layer convolutional network.

In this paper, we choose ProtoNet [7] as the baseline model. And a CNN network
with 4 layers of convolutional blocks is selected as the basic feature extraction
network. The main structure of the network is shown in Fig. 2, in which each
convolution block contains: 1 convolution layer (where the convolution kernel size
is 3 × 3 and the number of channels is 64, BatchNorm layer, ReLU nonlinearity
activation layer and max pooling layer of size 2 × 2. There is a non-parametric
classifier in ProtoNet, whose main role is to update the parameters of the model
through learning. Finally, a feature processor is used to calculate the feature
embedding of each category, and the prototype vk of the category is searched by
the embedding function fφ (·):

vk =
1
K

∑

(xi,yi)∈S

fφ(xi) (4)

Among them, φ represents the learned parameters, and xi and yi represent the
samples and their labels, respectively.
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Fig. 3. Schematic diagram of the operation flow of the MSFGM module.

3.3 Multi-scale Feature Generation Module

In order to obtain feature information about samples at different scales, to over-
come the problem of insufficient feature information extracted from a single
scale. We design a multi-scale generative module (MSFGM). As shown in Fig. 3,
there are 4 branches in this module. Branch 1 directly outputs the features of
the feature extractor without processing, as multi-scale feature 1. Branch 2 pro-
cesses the output of the feature extractor through a convolution block with a
convolution kernel size of 3× 3 and a channel number of 64, and then outputs it
as multi-scale feature 2. Branch 3 processes the output of the feature processor
with 2 convolutional layers (the kernel size is 3× 3 and the number of channels
is 64) as multi-scale feature 3. Through the convolution cascade of two 3 × 3
convolution kernels, the same receptive field as one 5 × 5 convolution kernel can
be obtained, which improves the perception ability of global information, while
the number of parameters is less. In the last branch, a 7 × 7 convolution kernel
is added to obtain multi-scale feature 4. After each sample is processed by the
multi-scale feature generation module, four sets of feature vectors at different
scales can be obtained.

Fig. 4. Self-attention feature aggregation module.
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3.4 Self-attention Feature Aggregation Module

The feature extractor only extracts the global feature information in the image
indiscriminately, which may be affected by various image background interferers,
and the size and posture of the target object. In order to better represent the
important feature information in the image. As shown in Fig. 4, a Self-attention
Feature Aggregation Module (SAFAM) is designed to extract important feature
information in different scales. Then, through the self-attention feature aggrega-
tion module, four groups of important feature information in different scales are
extracted respectively. Finally, these feature vectors are spliced and aggregated
in order to generate a more accurate feature representation about the image.
The fused feature representation enhances the details of the samples and the
connection of the global features. Self-attention can not only obtain a larger
receptive field and contextual information by capturing global information, but
also reduce the dependence on external information and be better at capturing
the internal correlation of data or features. Therefore, the self-attention mech-
anism can be used to better obtain important feature information in different
scales. In general, based on Tr = {(xi, yi, r), r = 1, ..., R, i = 1, ..., lk+lq}, Where,
lk is the number of support samples, lq is the number of query set samples, and
r is the feature maps of different scales. For example, (x1, y1, 4) represents the
feature map of the fourth scale of the first sample. Construct feature tensor
F ∈ R(lk+lq)×R×d, where d is the feature dimension and R is the multiscale
quantity. Then use the Transformer [19] to obtain the important feature codes.
Multi-head attention in Transformer helps the model to capture rich feature
information. The Transformer will receive a set of triples of input (F, F, F ) as
(Q,K, V ), Among them, Q, K, and V are respectively represented as query, key,
and value. F (i) and the attention module are defined as:

(F (i)
Q , F

(i)
K , F

(i)
V ) = (F (i)WQ, F (i)WK , F (i)WV ) (5)

F
(i)
attn = F (i) + softmax(

F
(i)
Q (F (i)

K )T

√
dK

)F (i)
V (6)

where d represents the feature dimension, and dK = d. WQ, WK and WV rep-
resent the parameters of the three fully connected layers, respectively. First,
the features of the same image sample are generated by the multi-scale genera-
tion module to generate 4-scale feature maps. Then, the Transformer is used to
extract the features of these four scales, and finally the key features of different
scales are spliced and aggregated in order. And use this as the feature informa-
tion representation of the sample, and the features of the splicing aggregation
are represented as:

Fall = [FS , FQ] ∈ R(lk+lq)×R×d (7)

Fall = flatten(Fattn) (8)

Among them, FS and FQ represent support set aggregation features and query
set aggregation features, respectively. flatten(·) represents a flattening operation
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on the last two dimensions of Fattn. The loss of few-shot classification is shown
in the following formula, where h(·) is the distance metric function.

Ltotal = − 1
lq

lq∑

i=1

log
exp(−h(FQ

i , FS
i ))

∑
n∈N exp(−h(FQ

i , FS
i ))

(9)

4 Experimental Analysis

4.1 Dataset and Evaluation Metrics

The experiments in this paper use four public datasets to verify the method
proposed in this paper. The main indicators of the dataset are: the number of
images in miniImageNet [11] is 60,000, the number of categories is 100, and the
number of each category is 600. Among them, the number of training set classes
is 64, the number of validation set classes is 16, and the number of test set classes
is 20. There are 608 categories in tieredImageNet [20], with an average of 1282
images per category, where the number of training, validation, and test classes
are 351, 97, and 160, respectively. The Stanford Dogs [21] dataset is a subclass
of the large dataset ImageNet [4], which has 120 dog images, with 70, 20, and 30
training, validation, and test classes, respectively. CUB-200-2011 [22] contains
200 bird images, and the training set, validation set and test set have 130, 20
and 50 categories respectively. The experiment uses the Top-1 average accuracy
to measure the performance of the model.

4.2 Experimental Setup and Comparison Methods

The MSIFA method is performed on the Pytorch framework and experiments
are performed on 2 T-A100 (80G). The initial learning rate is 0.001, the weight
decay is 0.00001, the momentum is 0.95, and the confidence interval is set to
95%. The backbone network selected for the experiment is conv4-64. In order
to verify the effectiveness of the method in this paper, it is compared with
a variety of advanced few-shot learning methods, namely: MatchingNet [11],
RelationNet [12], ProtoNet [7], MAML [15], IMP [23], DN4 [24], DN PARN [25],
DSN-MR [26], Neg-Cosine [27], BOIL [28].

4.3 Experimental Results and Analysis

Table 1 presents the experimental results on four datasets, miniImageNet, tiered-
ImageNet, CUB-200-2011, and Standford Dogs. The experiments are mainly car-
ried out under the settings of 5-way 1-shot and 5-way 5-shot. From Table 1, we
can intuitively see that compared with other methods in the table, the method
in this paper has achieved the best classification accuracy under various settings
in the four datasets. In these datasets, in the experimental setting of 5-way 5-
shot, compared to the baseline method ProtoNet, the classification accuracy is
improved by 6.43%, 1.94%, 20.26% and 11.92%, respectively. Not only are they
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Table 1. The experimental results on miniImageNet, tieredImageNet , Standford Dogs
and CUB-200-2011(%).Among them, the bold font indicates the optimal result, and
“-” indicates that the original paper did not give the experimental results.

Method miniImageNet tieredImageNet Standford dogs CUB-200-2011

5-way1-shot 5-way5-shot 5-way 1-shot 5-way5-shot 5-way1-shot 5-way5-shot 5-way1-shot 5-way5-shot

MatchingNet 43.56± 0.84 55.31± 0.73 – – 35.80± 0.99 47.50± 1.03 55.92± 0.95 72.09± 0.76

ProtoNet 49.42± 0.78 68.20± 0.66 53.31± 0.89 72.69± 0.74 37.59± 1.00 48.19± 1.03 51.31± 0.91 70.77± 0.69

MAML 48.70± 1.84 63.10± 0.92 51.64± 1.81 70.30± 1.75 44.81± 0.34 58.68± 0.31 48.70± 1.84 63.11± 0.92

RelationNet 50.04± 0.80 65.30± 0.70 54.48± 0.93 71.32± 0.78 43.33± 0.42 55.23± 0.41 62.45± 0.98 76.11± 0.69

IMP 49.60± 0.80 68.10± 0.80 53.63± 0.51 71.89± 0.44 – – – –

DN4 51.24± 0.74 71.02± 0.64 – 45.41± 0.76 63.51± 0.62 52.79± 0.86 81.45± 0.70

DN PARN 55.22± 0.84 71.55± 0.66 – – – – – –

DSN-MR 55.88± 0.90 70.50± 0.68 – – – – – –

Neg-Cosine 52.84± 0.76 70.41± 0.66 – – – – – –

BOIL 49.61± 0.16 66.45± 0.37 – – – – – –

MSIFA(ours) 56.63±0.80 74.63±0.67 56.96±0.94 74.63±0.98 49.32±0.91 68.45±0.80 62.72±0.78 82.69±0.66

improved, but the improvement is very obvious on individual datasets. The rea-
son is that ProtoNet only performs feature extraction on images at a single scale,
and the feature information contained is not sufficient. And it performs global
feature extraction on the incoming image, and then outputs it directly. However,
in an image sample with a label, the information representing the label of the
image may only be a part of the area (target object area) in the image, and
the feature information content of this part of the area is the key content of the
image. Therefore, the feature information extracted by this method cannot better
express the important feature information in the image. In order to improve the
above problems, this paper designs a multi-scale generation module (MSFGM)
to obtain rich image feature information about the original image. Then, the
important feature information of the image at different scales is obtained by
designing a module with a self-attention mechanism. This enhances the model’s
ability to capture important feature information in the image. Outperforming
the baseline methods on multiple datasets not only proves the effectiveness of
our method, but also shows that our method has good generalization.

Compared with the DN4 method which focuses on comparing the local details
of the image for classification, the classification accuracy of this method on the
Standford Dogs and CUB-200-2011 datasets exceeds that of the DN4 algorithm.
Among them, there are 120 kinds of dog image samples in the Standford Dogs
dataset, and 200 categories of bird data in the CUB-200-2011 dataset. What
they have in common is that because the gap between categories is not only
small, but also has many similar local details. This also just shows that the
classification model that only focuses on the comparison between details may
produce bias when the local details between categories are close. Moreover, the
acquired feature information based only on a single scale is not comprehensive
enough. The method in this paper relies on the multi-scale generation module to
generate multiple sets of feature information about the sample. Then use the self-
attention feature aggregation module to obtain important feature information
at different scales, so as to complete the comprehensive feature learning.



522 W. Zeng et al.

Table 2. Experimental results of the impact of feature scale quantity classification
performance.

Method 5-way 1-shot 5-way 5-shot

MSIFA1(MS = 1) 54.71± 0.86 71.83± 0.73

MSIFA2(MS = 2) 55.75± 0.87 73.45± 0.73

MSIFA3(MS = 3) 56.38± 0.81 74.15± 0.66

MSIFA4(MS = 4) 56.63± 0.80 74.63± 0.67

4.4 Ablation Experiment

In this section, four variant experiments are designed to verify the influence of
the number of multi-scale features in the multi-scale generation module MSIFA
on the model performance. In the miniImageNet dataset, the backbone network
used is Conv4-64, and the experimental results are shown in Table 2. From the
experimental results, we can know that: 1) The method MSIFA using 4 feature
scales achieves the best classification accuracy. Compared with a single scale
(MS = 1), four scales (MS = 4) have a more obvious performance improvement.
The classification accuracy improves by 2.13% and 2.80% in the 5-way 1-shot
and 5-way 5-shot settings, respectively. The reason is that a single-scale feature
can only obtain feature information about an image at a single level, which is
relatively one-sided. The features generated at multiple scales not only have more
detailed image features, but also have global feature information of the image.
Thus, more accurate information representation of images in multiple scales is
achieved. 2) With the increasing number of scales, the classification accuracy is
also increasing. But at the same time, we also found that with the continuous
increase of the number of scales, the improvement of the classification accuracy
is also smaller and smaller. In the final analysis, although features of different
scales can enrich the feature expression of samples, the more scales, the more
redundancy. In order to take into account the computational consumption of the
model and the classification accuracy, this paper selects four scale features with
high cost performance for experiments.

5 Conclusion

In this paper, we propose a few-shot learning method based on multi-scale impor-
tant feature fusion MSIFA. The method firstly uses the multi-scale generation
module MSFGM to generate the feature information of an image sample on 4
scales, so as to obtain the rich feature information of the sample. The feature
information obtained in most few-shot learning strategies is relatively single.
Then, the self-attention aggregation module SAFAM constructed by the self-
attention mechanism extracts the important features of the same sample at four
scales respectively. After that, they are spliced and aggregated together, and used
as a more accurate feature information representation of the sample. Extensive
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experiments are carried out on 4 datasets for verification, and the experimental
results show that the proposed method can significantly improve the classifica-
tion accuracy of the baseline method.
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Abstract. In this paper, we propose a novel key-point detector with
only one-level feature with the stride of 8, which is 75.0% less than meth-
ods with the stride of 4. Due to the reduction of the feature layers, firstly
we adopt a new key-point labeling method, which can make full use of the
detection points on the feature map. Secondly, we propose a U-shaped
feature fusion module with group residual dense blocks, which works
together with grouped convolutional and re-parameterization methods
to bring significant improvements while reducing parameters. Thirdly,
we use a soft non-key-point branch to re-weight the classification score.
Using NVIDIA GeForce 3060 GPU and based on the VOC dataset, the
proposed model with RepVGG-A0 runs about 51.4% faster than Center-
Net with ResNet-18, runs 261.3% faster, and achieves higher accuracy
than CenterNet with ResNet-101 under the resolution of 512 × 512.

Keywords: Object detection · Key-point detector · One-level
feature · Residual dense block · Re-parameterization

1 Introduction

Since deep learning has shaken up the traditional methods, convolutional neural
networks (CNN) have indelible significance for object detection and show excel-
lent performance. However, when considering precision, speed, and parameters,
it is still an extremely complicated and challenging mission, due to the variety
of shapes of objects and the complexity of the natural scene.

Anchor-free detectors address the problem of pre-defined anchor boxes, which
are usually divided into two categories: pixel-wise prediction and key-point pre-
diction. Pixel-wise detectors like FCOS [19] and FoveaBox [8] place positive
samples in the ground truth, which are essentially a dense prediction. For one
thing, some pixel-wise detectors use the re-weighting method to improve the
detection quality. For another, the divide-and-conquer solution of feature pyra-
mid networks (FPN) [12] using scales to manually specify that a bounding box
falls in, can indeed help the detector to separate objects that are overlapped.
During training, objects are designated to a certain layer, which is another form
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13630, pp. 525–539, 2022.
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of anchor box, and every detection point of each layer has a fixed-size square
anchor box. Although FSAF [26] dynamically assigns each object to the most
suitable feature level, the detection heads at each layer bring heavy memory
burden.

Key-point detectors such as CornerNet [11] and CenterNet [25] predict
objects by using several key points or just one key point in the bounding box.
These methods use feature map with stride of 2 or 4 because large feature map
is not to have ambiguous samples. But such a large feature map also causes large
memory burden, long training and inference time. For instance, the number of
detection points in one feature map with stride of 4 is 4 times that with stride
of 8. Besides, in the area where small targets gather, if only the center point
is considered, it may lead to miss samples. In addition, since there are no pre-
defined anchor boxes, anchor-free methods have higher requirements for feature
ability especially in lightweight model.

Nowadays, most state-of-the-art models depend on the computer with
extremely computation power. Complicated models need to be trained in power-
ful GPUs or distributed computing. Meanwhile, it is challenging to run a complex
model in real-time. Therefore, it is difficult to be equipped in the industrial field
and greatly limits the application and promotion. What if we propose a model
that balances the precision, parameters, and runs on popularized GPU? This
paper provides an idea. We propose a simple and lightweight anchor-free detec-
tor using the key-point method, a single-level feature map and group residual
dense blocks. The main contributions of this paper are summarized as follows:

1. To avoid the limiting effect caused by invisible anchor boxes, we only use one
feature map with the stride of 8 to predict all objects, and propose a new
labeling method for key points. The number of detection points is reduced
by 75% compared to the key-point method with the stride of 4, and 24.9%
compared to multi-scale method which uses a feature pyramid with 6 levels.

2. We propose a novel U-shaped feature fusion module embedded group residual
dense block (shorted as g-RDB) and use re-parameterization to merge the
parameters, which can meet the satisfying performance and speed with only
a few parameters.

3. We propose a soft non-key-point suppression (shorted as soft-NKS) branch
to re-weight the classification scores of points which are far from key points.

The rest of this paper is arranged as follows. Section 2 describes the structure
and missions of our proposed detector. In Sect. 3, we conduct experiments on
the VOC and COCO datasets to verify the advantage of the proposed method.
Finally, the conclusion of the paper is given in Sect. 4.

2 The Proposed Method

2.1 Backbone Network and Detection Head

The backbone of this paper uses the modified RepVGG-A0 [3] as the baseline. A
two-layer image pyramid containing C3 and C4 with different sizes and channels
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from the backbone network is preserved, and the strides of each layer are 8 and
16, which is shown in Fig. 1.

For the detection head, we use several RepVGG blocks for P3 layer. Then we
decouple the network into two sub-networks, as independent branches can learn
more features to suppress non-objects. Corresponding to the training missions,
one sub-network is used for the classification branch, and another provides the
share parameters for the localization branch and soft-NKS branch. Finally, we
use a RepVGG block without BN [7] layer and ReLU [5] function to adjust the
number of convolutional channels according to different tasks.

Fig. 1. The architecture of the proposed g-RDB for the key-point detector with one-
level feature. 8 and 16 are the down-sampling ratios for each feature map layer. The
detection head can be superimposed continuously, we only use one in our experiments
unless specified otherwise.

2.2 U-Fusion Module with Proposed g-RDB

U-Shaped Feature Fusion Module. As shown in Fig. 2, we construct a four-
layer structure in the fusion stage and make the original two-layer feature layer
have a stronger expressive ability. we set the output channel number N to 128
as an example. First, we use two 3 × 3 RepVGG blocks with the stride of 2 to
down-sample C4 twice which are denoted as D5 and D6 respectively, and the
channel number of D5 and D6 is half of N . The channel number of C4 is reduced
to half of N through a 1×1 convolution (denoted as D4). If the channel number
of C3 is not the same as half of N , we add 1 × 1 convolution (denoted as D3) to
reduce the channels as well.

Secondly, D6 is sent into g-RDB to generate P6 for integrating and utilizing
its internal feature information. Thirdly, we use bilinear interpolation to up-
sample the feature map to the same size as the previous layer. If the channel
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number of feature layer that needs to be up-sampled is inconsistent with the
previous one, we add a 1×1 convolution to adjust before up-sampling. Fourthly,
the up-sampled map is merged with the corresponding feature map with the
same size by concatenating operation. Finally, repeat the second to fourth steps
until the four-layer features which generated in the first step. As a result, the
feature layers P3, P4, P5, and P6 have strides 8, 16, 32, and 64, respectively. We
use concatenation instead of element-wise addition. The element-wise addition
focuses on reusing features, while the concatenation operation benefits from the
discovery of new features [23].

Fig. 2. The structure of the U-shaped feature fusion module with the proposed g-RDB.
The detection head of the P4 layer is represented by a dotted line, which means that
it is deleted during the inference phase. We set N to 128 as the baseline. The 3 × 3 is
composed of a RepVGG block, and 1 × 1 is composed of 1 × 1 convolution, residual,
ReLU function, and BN layer.

However, when training, we only save the results of P3 and P4 as the input
features for the next step. We retain the feature fusion and predict all targets
on a feature map as much as possible. In inference, the branch of P4 is deleted
(as shown in Fig. 2), and all prediction results are obtained by P3. We keep P4

in training because the object in the P4 layer can still be constrained by the loss
function. Therefore, the part of information can be flowed from P4 to P3 and
used when P3 is fused, which further helps P3 predict the correct object.

Proposed g-RDB. Figure 3 exhibits the structure of the proposed g-RDB.
We first use three RepVGG blocks to preserve the information to access all the
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subsequent layers and pass on information [24]. Since the number of channels
in the first three layers of convolution is the same, we add the original residual
information and output from the previous convolutional layer (see the blue lines
in Fig. 3) which can easily flow layer by layer. Each data after the three-branch
block is skip-connected with the original input to minimize gradient explosion
and gradient disappearance. Next, we concatenate the original input and all
outputs from three convolution layers (see the green lines in Fig. 3), and the
channel of the output feature is 4 times the original input. Then, we use a 1 × 1
convolutional layer to reduce the number of channels and add the original input
for local feature fusion. To further reduce the number of parameters, we use
grouped convolution [9] instead of the 3 × 3 convolution. The group residual
dense block is defined as follows:

⎧
⎨

⎩

F11 = δ (ϕ3×3 (F0) + ϕ1×1 (F0) + F0) ,
F12 = δ (ϕ3×3 (F11) + ϕ1×1 (F11) + F11 + F0) ,
F13 = δ (ϕ3×3 (F12) + ϕ1×1 (F12) + F12 + F0) ,

(1)

F2 = concat (F0, F11 , F12 , F13) , (2)

F3 = δ (ϕ1×1 (F2) + F0) , (3)

Here F0 is the original input, F11–F13 are outputs of g-RDB, ϕ1×1 is 1 × 1
convolution, ϕ3×3 is 3 × 3 convolution, δ is ReLU function, and “concat” is
concatenating operation.

Fig. 3. The structure of proposed g-RDB [10]. (Color figure online)

However, grouped convolution brings another problem. Each group only con-
volutes on the feature map in its own group. In the residual dense block, informa-
tion is continuously transmitted one by one. If the information is limited in each
group, it could block the interaction between channels. Therefore, we appro-
priately use the method of disrupting the channel to help it carry out more
information fusion. Grouped convolution allows the filter to learn in a sparse
diagonal structure in the channel dimension, so parameters that do not need to
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be learned are no longer parameterized. In addition, grouped convolution can
significantly reduce the number of network parameters while reducing the occur-
rence of network overfitting [21]. According to [16], in the g-RDB module, the
feature information is shuffled and used as the input of the next convolution. In
the meanwhile, the shuffled features are concatenated up and used as the input of
the 1×1 convolution. Finally, we add original input features and output features
together for another long local fusion. Our proposed g-RDB can also work well
with attention modules, the attention modules can be used to further increase
the feature extraction after long local fusion when necessary (see gray dotted
line in Fig. 3). The attention modules are not used unless otherwise specified.

2.3 Detection Missions

Classification. The goal of the classification task is to predict the probability
of the pixels on the feature map of each class. Since our purpose is to predict
on a single feature map, we put the object on the P3 layer as much as possible.
The rules of labeling the key point of an object are listed as follows. Firstly, sort
the area of the object from small to large. Secondly, mark the center point as
a positive sample and ensure that the smallest object is placed on P3. Thirdly,
look for the second position if there is a conflict between the center point of
the new object and the previous one. Expand outward from the center point to
find the first non-conflicting position. The IoU value between this position and
the ground truth bounding box must be greater than 0.7. Fourthly, look for the
object on the P4 layer by using steps 2–3 if still cannot find a position on the P3

layer for the new object. Finally, give up labeling if there is still no position.
For any object which satisfies the conditions mentioned above, we calculate

the position of a bounding box which is the only positive sample marked as
(x+, y+), and other points in the bounding box become negative samples natu-
rally marked as (x−, y−). We put the positive samples on the heat-map of each
category, and let the positive sample prediction value Y gt

x,y,c = 1. Following [25],
we use a Gaussian kernel as background to soften the prediction value for neg-
ative samples. If two Gaussian values of the same class conflict in the same
feature layer, the element-wise maximum is taken. Similar to [13], we train C
binary classifiers instead of training a multi-class classifier, where C is the num-
ber of categories of natural scenes, which is 20 for the Pascal VOC dataset [4]
and 80 for the COCO dataset [14].

Localization. For each positive sample, we use a 4-dimension vector vgt =
(dl, dt, dr, db) for location regression. Here dl, dt, dr, and db are the original
image distances from the positive point to the four sides of the bounding box.
Since we only use one feature map for detection, using the exponential function
to map the distance may cause an overflow. We use ReLU function to map the
point-to-boundary distances to (0,+∞).

Proposed Soft Non-Key-Point Suppression. Aggregated objects may
cause a large number of prediction points with high scores to appear near the real
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key points, which is more obvious in lightweight detectors. It leads to redundant
bounding boxes around the target and cannot be eliminated by NMS [17]. We
proposed a simple and effective soft-NKS branch to predict the values for each
point and soften the detected classification score of bounding boxes that are far
away from the key point. We put the positive samples on a heat-map and let the
soft-NKS prediction value Qgt

x,y = 1. Then put a box with the same size as the
ground truth bounding box in a negative position, and calculate the IoU value
as the softened value for the negative sample. The score of the soft-NKS branch
ranges from 0 to 1. The final classification score with soft-NKS is defined as:

pcls nks = (pcls)
(2−pnks)×α

, (4)

where pcls nks is score after suppression, pcls is classification score, pnks is soft-
NKS score, and α is the inhibition ratio.

Loss Function. The loss for whole network defined as:

L =
λ1

N+

∑

x,y,c

FL(Y gt
x,y,c, Y

pred
x,y,c ) +

λ2

N+

∑

x,y

IoU(vgt,vpred)

+
λ3

N

∑

x,y

BCE(Qgt
x,y, Qpred

x,y ).
(5)

Here N+ is the number of positive points and N denotes all detection points.
Y pred

x,y,c , vpred, and Qpred
x,y are the predicted values obtained from the network. We

set “FL” denotes upgraded focal loss [25] for classification branch, “IoU” is IoU
loss [22] for localization branch, and “BCE” denotes binary cross entropy loss
for soft-NKS branch.

3 Experiments and Results

3.1 Training Details

In this paper, we build our experimental environments under Windows Server
2019 operating system, Intel(R) Core(TM) i7-10700 CPU, one NVIDIA GeForce
3060 GPU, PyTorch 1.9, CUDA 11.3.109, and cuDNN 8.2.1.32.

We train our model on the VOC 2007 and 2012 [4] which contains 16,551
training images and evaluate our performance on VOC 2007 test set which con-
tains 4,952 testing images. All models are trained for 250 epochs. We use learning
rate 10−5 to warm up at the first epoch [15], then go back to learning rate 10−3

and continue training for 99 epochs. Then we decay the learning rate to 10−4

with a cosine annealing for 100 epochs [6]. Finally, we decay the learning rate to
5−6 with a cosine annealing for 50 epochs.

We also train our model on COCO 2017 dataset [14], which contains 118k
training images, and test on the test-dev set which contains 20k testing images.
All models are trained for 110 epochs. We train 24 epochs with a learning rate
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10−3, then decay the learning rate to 10−4 with a cosine annealing for 64 epochs.
Finally, we decay the learning rate to 5−6 with a cosine annealing for 22 epochs.

We use one GPU with 16 images per batch and initialize our backbone with
the weights pre-trained on ImageNet. All models are trained with Adam opti-
mizer. Data augmentation includes random expanding, random horizontal flip-
ping, random cropping [18], and mosiac [1]. The mosiac is only used with a 50%
probability for the VOC dataset when the learning rate is greater than 10−4.

For the VOC dataset, we set the confidence threshold to 0.05, NMS with a
threshold of 0.5, and report the mean average precision (mAP) at IoU thresholds
0.5 (AP50) and balanced F1 score with at IoU thresholds 0.5. We use the down-
loaded code1 to evaluate the results of VOC2007. For the COCO 2017 dataset,
we set the same confidence and NMS threshold, and report average precision
(AP) overall IoU thresholds, AP at IoU thresholds 0.5 (AP50), and 0.75 (AP75).
Frames per second (FPS) is tested on NVIDIA GeForce 3060 GPU with a batch
size of 1 for each model on the same machine. The detection time includes the
time-consuming of CPU and GPU, excluding the time when image data is trans-
ferred from CPU to GPU. Among them, the network inference and the soft-NKS
are calculated by the GPU, and the NMS process is calculated by the CPU.

3.2 One-Level vs. Multi-Scale

Table 1 shows the effect of our proposed one-level method and the multi-scale
method. Following other multi-scale key-point detector [10], we use the way
of assigning the target samples to the corresponding feature layers. When the
resolution is 384 × 384, the scale ranges of m3 to m6 are set to 48, 96, 192, and
384, respectively. When the resolution is 512 × 512, the scale ranges of m3 to
m7 are set to 48, 96, 192, 384, and 768, respectively. So there are two models
of different parameters for the multi-scale method. Since each layer requires a
detection head, the parameters of the model at a resolution of 384 × 384 and
512 × 512 are 18.0% and 21.1% higher than the one-level method. Besides, the
speed is reduced by 22.6% and 23.7%, respectively.

When the resolution is 512×512, the accuracy of the one-level and the multi-
scale method is 84.47% and 87.51%, respectively. For the one-level method, the
highest proportion of false positives occurs when the IoU threshold is lower
than 0.5. The reason for this phenomenon is that multi-scale detection has more
detection points than the one-level method. In addition, with soft-NKS, more
detection points for suppression can be provided, so it is possible to eliminate
duplicate objects and eliminate objects with lower IoU thresholds. The recall
rates of the one-level and the multi-scale method is 73.93% and 62.59%, respec-
tively, because the features richness increases from top to bottom in multi-scale
prediction. Since the multi-scale method uses manually specifying a size for train-
ing, the semantic and spatial information required by different objects of the
same size cannot be treated equally (such as a cat near and a tree far away).

1 https://github.com/Cartucho/mAP/.

https://github.com/Cartucho/mAP/
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In the one-level method, all objects are predicted by the bottom feature map
with the most abundant features, so the recall rate is higher than the multi-scale
method.

The precision and recall have their own merits under those two methods, and
the result of the F1 score can better reflect the overall detection results of the
model. Although the gap between the AP50 of the whole category is within 1%,
the difference of the F1 score is 6.2%. Therefore, the use of one-level method
and multi-scale method needs to consider the actual application scenarios. If
detecting scenes with pretty dramatic scale changes or pursuing a high recall,
the one-level method is superior to the multi-scale method.

3.3 Grouped Convolution vs. Depth-Wise Separable Convolution

Table 2 compares our proposed g-RDB with a series of group numbers for normal
2D convolutions and depth-wise separable convolutions. When the group number
is set to be 1, it means there is no grouping in g-RDB, but we still shuffle
features for time-consuming. According to [16], the larger the number of groups,
the slower the calculation. The group number is set to 4 and can still maintain
a higher performance, and the parameters of inference are reduced by 58.7%
compared to 1. When it is set to 8, the accuracy and speed decline.

Table 1. Ablation study for one-level and multi-scale method. “Params(M)” is param-
eters of the model when inference. We use RepVGG-A0 as the backbone and proposed
a U-shaped feature fusion model. The output channels of all methods are set to 128.

Methods Params(M) Resolution AP50 F1 FPS

Multi-scale methods 6.95 384 × 384 78.2 71.9 89.9

7.13 512 × 512 79.0 72.5 85.3

Proposed one-level method 5.89 384 × 384 78.8 77.0 115.8

512 × 512 81.1 78.7 111.8

While the depth-wise separable convolution method reduces the speed by
35.6% compared to the normal 2D convolution. For models that are run and
tested on GPUs, using depth-wise separable convolutions which are designed for
CPUs may cause less effectiveness. If the ordinary convolutions are replaced by
depth-wise separable convolutions, the model size will indeed be significantly
reduced, but the calculation speed of the model will be reduced because the
original one-time calculation becomes two times.
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Table 2. Ablation study for grouped convolution and depth-wise separable convo-
lution. “DW Separable” is depth-wise separable convolution, and “Params(M)” is
the parameters of the U-shaped module in millions after re-parameterized. We use
RepVGG-A0 as the backbone, the output channel of g-RDB is set to 128. We observed
up to 0.5 mAP jitter due to randomness in training.

Convolution type Group numbers Params(M) AP50 F1 FPS

DW Separable – 0.45 79.3 76.9 82.4

Grouped 1 1.84 80.7 77.8 114.6

2 1.12 80.5 78.0 113.6

4 0.76 81.1 78.7 111.8

8 0.58 80.1 77.1 105.9

3.4 With or Without Soft-NKS

As shown in Fig. 4, we compare the proposed methods with and without soft-
NKS. We set the NMS threshold as 0.5, and the confidence threshold as 0.2.
Figure 4(b) displays two bounding boxes classified as car (vs. an extra bounding
box with a confidence to 0.21 in Fig. 4(a)), and does not wrongly detect the
graffiti as potted plants and a bicycle which are detected by Fig. 4(a). This is
because the classification score is suppressed by the soft-NKS branch (i.e., (4)),
and the score cannot reach the confidence threshold.

In addition, it can be observed that the car on the left side of the image is
partially occluded. After the soft-NKS suppression, the score is reduced from
0.51 in Fig. 4.7a to 0.31 in Fig. 4.7b, which may be due to the small edge target

Fig. 4. Qualitative comparison results of the proposed methods without soft-NKS (a)
and with soft-NKS (b).
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Table 3. Ablation study for inhibitory factor in soft-NKS. We use RepVGG-A0 as the
backbone. F1 score takes into account the accuracy and recall of the model.

NKS α AP50 F1 FPS

– – 80.9 77.7 115.3√
1 79.4 75.6 111.9√
0.9 79.9 76.5 111.2√
0.75 80.6 77.7 111.8√
0.6 81.1 78.6 111.8

leading to deviations in the prediction of key points. However, it can still be
kept above the threshold. The person and bicycle in the center of the image can
be maintained before and after using soft-NKS, indicating that the key point
prediction is accurate.

To verify the influence as well as to find a proper value for the inhibitory
factor, we set up some experiments on the VOC2007 test. The mAP, F1 score,
and FPS results with and without soft-NKS are detailed in Table 3. It can be
concluded from Table 3 that the F1 score of the proposed method with α = 0.6
is 0.85 higher than without using soft-NKS. Meanwhile, only about 4 FPS are
additionally calculated by soft-NKS (115.3 vs. 111.8).

3.5 Comparison Results on VOC2007

We compare our proposed detector with other state-of-the-art anchor-free detec-
tors in the VOC2007 test in Table 4. We experiment proposed method with our
modified RepVGG-A0, RepVGG-B0 [3], ResNet-18, and ResNet-50 [6] which
only contains two layers. Therefore, the proposed method is much fewer param-
eters than other same backbone networks. Note that, the original FCOS [19]
use the input images which are resized to have their shorter side being 384 or
512 and their longer side is scaled proportionally. In order to make the same
comparison, we resize images to the same length and width.

Our proposed method with modified ResNet-18 achieves higher AP and FPS
values than CenterNet with the same backbone, and parameters down by as
much as 71.5%. Besides, our proposed detector with the modified ResNet-50
surpasses the CenterNet with ResNet-101 and obtains higher AP and FPS values,
and cut its parameters by nearly 67.0%. Compared to FCOS with ResNet-50,
the modified ResNet-50 achieves higher accuracy and shows 2.66 times higher
FPS. Moreover, our proposed method with RepVGG-A0 reports better AP and
FPS values than MSKPD [10] with ResNet-18 and about 48.9% drops in the
number of parameters. In addition, our proposed method with RepVGG-B0 at a
resolution of 512×512 achieves AP and FPS at 83.1 and 107 respectively, which
is 0.9% higher and 1.37 times faster than MSKPD with ResNet-50.
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Table 4. All models are tested in our experimental environments. “AP50” with super-
script * is copied from the original publications. Backbone with superscript † is the
modified network that only contains two layers.

Methods Backbone Params(M) Size AP50 FPS

CenterNet [25] ResNet-18 13.78 384 × 384 72.6∗ 86

512 × 512 75.7∗ 74

ResNet-101 30.86 384 × 384 77.6∗ 34

512 × 512 78.7∗ 31

MSKPD [10] ResNet-18 11.37 384 × 384 77.3∗ 87

11.52 512 × 512 79.3∗ 77

ResNet-50 23.45 384 × 384 80.5∗ 65

23.60 512 × 512 82.2∗ 60

FCOS [19] ResNet-50 30.86 384 × 384 74.6 27

512 × 512 76.6 25

ResNet-101 48.31 384 × 384 81.1 17

512 × 512 82.4 14

Proposed ResNet-18† 3.93 384 × 384 76.2 99

512 × 512 77.1 96

ResNet-50† 10.18 384 × 384 80.9 82

512 × 512 81.4 78

RepVGG-A0† 5.89 384 × 384 78.8 115

512 × 512 81.1 112

RepVGG-B0† 11.23 384 × 384 81.6 109

512 × 512 83.1 107

3.6 Comparison Results on COCO2017

We compare our proposed method with other anchor-based and anchor-free
detectors on COCO val2017 in Table 5. We experiment proposed method with
our modified RepVGG-A0 [3] which contains two layers. The CBAM [20] mod-
ule is embedded in the end of the g-RDB of P3 layer. Note that, RetinaNet [13],
FCOS [19], YOLOF [2] use the input images which are resized to have their
shorter side being 512 and their longer side is scaled proportionally. In order to
make the same comparison, we resize images to the same length and width.

The proposed method with modified RepVGG-A0 and four-layer detection
head has the highest AP over all IoU thresholds, AP at IoU thresholds 0.5 and
0.75. Compared to the CenterNet with ResNet-18 obtains an improvement of
2.8% AP over all IoU thresholds, 4.7% AP at IoU threshold 0.5, and 3.1% AP at
IoU threshold 0.75. It even reduces the number of parameters by about 42.7%.
Through experiments, our proposed method has advantages in small object
detection (see APS). We speculate that this is because the g-RDB enhances
the network’s ability to retain detailed information and integrates the location
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information of shallow features. The proposed model with RepVGG-A0 and a
four-convolution-layer head achieves real-time detection in natural scenes.

Table 5. The proposed method vs. other detectors on COCO val2017. Backbone with
superscript † is the modified network which only contains two layers. Proposed method
with superscript “h1” means that we use one convolution layer for detection head and
“h4” means four. All models are tested under GeForce 3060 with a batch-size of 1.

Methods Backbone Params(M) FPS AP AP50 AP75 APS APM APL

RetinaNet [13] ResNet-18 18.91 38 24.8 40.6 26.0 8.5 26.4 39.6

FCOS [19] ResNet-18 36.62 43 27.6 43.4 29.1 9.5 30.0 43.7

CenterNet [25] ResNet-18 13.78 67 27.8 44.8 28.7 8.5 29.2 45.5

CenterNet [25] ResNet-101 47.50 31 33.2 51.6 35 11.6 36.8 52.9

YOLO-Tiny [1] CSPDarkNet-Tiny 7.53 79 28.0 47.8 28.5 12.7 32.6 37.5

YOLOF [2] ResNet-18 29.64 87 25.9 41.6 27.0 5.8 27.4 45.3

Proposedh1 RepVGG-A0† 7.44 88 29.5 48.5 30.2 12.4 31.1 43.8

Proposedh4 RepVGG-A0† 7.89 86 30.6 49.5 31.8 13.2 32.5 45.3

4 Conclusion

In this paper, we proposed a novel key-point detector that relies on only one fea-
ture layer with g-RDB. First of all, we use grouped convolutions, multi-branch
structures, and the shuffle method to obtain a powerful g-RDB module, which
significantly improved feature extraction capability and reduced the number
of parameters. Secondly, for avoiding the occurrence of ambiguous detection
points due to the reduction of feature layers, we proposed a new sample labeling
method. Thirdly, we proposed a soft-NKS branch to re-weight the classification
score for points that are far away from the key point. We only use the regular
image augmentation and the mosiac method as tricks, and experiment results
demonstrate the advantage of our proposed method. Our proposed methods with
RepVGG-A0 achieve 81.1 mAP and run at 112 FPS on NVIDIA GeForce 3060
which is about 51.4% faster than CenterNet with ResNet-18 and 261.3% faster
than CenterNet with ResNet-101 on the VOC2007 test under the resolution of
512 × 512. Code is available at https://github.com/Tao-JiaJun/g-RDB.
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