®

Check for
updates

Temporal Edge-Aware Hypergraph
Convolutional Network for Dynamic
Graph Embedding

Da Huang™2® and Fangyuan Lei2(=)
1 School of Electronic and Information, Guangdong Polytechnic Normal University,
Guangzhou 510665, China
leify@gpnu.edu.cn
2 Guangdong Provincial Key Laboratory of Intellectual Property & Big Data,
Guangzhou 510665, China

Abstract. Graph embedding is a critical aspect of network analysis that
helps to advance various real-world applications such as social recom-
mendation and protein structure prediction. Most of the existing graph
embedding methods are designed for static graphs while many real-world
graphs intrinsically behave as dynamic graphs. Recent works try to com-
bine graph neural networks(GNN) with recurrent neural networks to
address this issue. However, these methods can not independently uti-
lize GNN models to cope with dynamic graphs and they ignore the
inner edge-level correlations in dynamic graphs. To tackle these prob-
lems, we propose a novel dynamic graph embedding framework in this
paper, called DynHyper. Specifically, we introduce a temporal hyper-
graph construction to capture the local structure information and tem-
poral dynamics simultaneously. Then, we employ a hyperedge projection
to obtain edge-level correlations. Further, we propose a temporal edge-
aware hypergraph convolution to transmit and aggregate the messages
in the temporal hypergraph. We conduct our experiments on seven real-
world datasets to evaluate the effectiveness of DynHyper in both link
prediction and node classification tasks. Experimental results show that
DynHyper significantly outperforms all baselines, especially on the more
complex datasets.

Keywords: Graph convolutional networks - Dynamic graph
embedding - Hypergraph learning

1 Introduction

Graphs have a great capacity to model the relationship among entities, success-
fully applied in many fields, such as social network [10], finance analysis [15],
and biological network [24]. Many academics are attempting to extend neural
network models to graphs as a result of deep learning’s extraordinary perfor-
mance. These neural network models, also known as graph network embedding,
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have emerged as a prominent method for graphs. The key idea of graph network
embedding is to map node representation into a low-dimensional latent space,
which preserves the similarity of nodes based on their local structure. These
graph network embedding algorithms have been used by numerous academics
for a variety of applications, including node classification, link prediction, and
network visualization [1,3,5,7,22,23,27].

Although existing graph network embedding methods provide excellent per-
formance, they are primarily developed for static graphs where nodes and
edges remain unchanged over time. In most cases, however, networks behave
as dynamic graphs in the actual world. For example, as new friendship contacts
grow, new communication events such as emails and text messages are streamed
on social networks. In e-commerce networks, new goods and ratings arise daily.
In financial networks, transactions are streamed in computational finance, and
supply chain relationships are always changing. In these dynamic graphs, nodes
and edges are constantly evolving. The evolution trend of dynamic graphs can
be recorded by a temporal sequence made up of a series of graph snapshots.
Compared with static graphs, dynamic graphs have an additional dimension(i.e.,
the time dimension) that adds temporal dynamics to them. As a result, dynamic
graph embedding is presented as a solution to the major issue of dynamic graphs,
which is capturing temporal dynamics adequately.

Recently, several efforts, like DynmaicTraid [28], DynGEM [6], and TIMER
[26], use some smoothness regularization to capture temporal dynamics. The
premise behind these strategies is that dynamic graphs change slowly and
thus they are unable to address dynamic graphs with abrupt changes. More
recently, with the remarkable success of graph convolutional networks(GCN),
some researchers focus on extending the GNNs to dynamic graphs by combin-
ing GCN with RNN components(e.g., LSTM or GRU), such as WD-GCN [14],
EvolveGCN [17], and GANE [20]. However, these current GCN methods are
designed for simple graphs that only represent pair-wise relationships among
nodes. Thus, these GCN methods can not handle dynamic graphs composed of
a series of simple graph snapshots independently, forcing them to resort to RNN
components. Therefore, these approaches based on mixed architectures may
break the internal link between topological information and temporal dynamics.
Additionally, these methods only focus on capturing information from nodes and
ignore edge information of graphs which is also an essential component of graph
information.

To tackle the above issues, we propose a novel dynamic graph embedding
framework, called DynHyper. First, we design a temporal hypergraph to model
a dynamic graph that contains the characteristic of both local structure and
temporal dynamics. Compared with simple graphs, hypergraphs can describe
multiple relationships among nodes, and thereby we construct temporal hyper-
graphs to represent the correlation of nodes including local structure and tem-
poral dynamics. To be specific, the main difference between simple graphs and
hypergraphs lies in that hypergraphs contain hyperedges, which can connect an
arbitrary number of nodes. Hence, we employ a hyperedge to connect nodes in
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the same time step, which is enclosed with the local structure information. Inter-
actions between distinct hyperedges can indicate temporal interactions between
nodes, allowing us to capture temporal dynamics in our model. In addition,
edge information is an indispensable part of the graph. Therefore, we introduce
a hyperedge projection for temporal hypergraphs to capture edge-level corre-
lations of hypergraphs. The hyperedge projection aims to convert hyperedges
to nodes, which preserves edge-level relationships of temporal hypergraphs and
can integrate message-passing schemes for nodes. Finally, we propose the tem-
poral edge-aware hypergraph convolution to operate message aggregation and
transmission to update node embeddings on the temporal hypergraph. DynHy-
per’s effectiveness is demonstrated by experimental results on seven real-world
datasets in link prediction and node classification tasks.
In a nutshell, our key contributions can be summarized as follows:

— We introduce a temporal hypergraph construction to capture the local struc-
ture information and temporal dynamics simultaneously for dynamic graphs
and a hyperedge projection to obtain edge-level relationships for temporal
hypergraphs.

— We propose a temporal edge-aware hypergraph convolutional network that
can execute message passing in dynamic graphs autonomously and effectively
without the need for RNN components.

— We conduct our experiments on seven real-world datasets in link prediction
and node classification tasks to evaluate the effectiveness of DynHyper. Our
findings show superior predictive performance, compared to the state-of-the-
art methods in dynamic graph embedding.

2 Related Work

Dynamic graph embedding plays a crucial role in network analysis, which aids in
the advancement of many real-world applications such as social recommendation
and protein structure prediction. Roughly, we classify them into three streams:
random walk methods, autoencoder-based methods, and GNNs-based methods.

Random walk methods aim to apply random walks to generate node
sequences and incrementally update the node embedding affected by temporal
evolution [9,13,25]. For instance, dynnode2vec [13] employs the evolve random
walks that only generate the walks for the changed nodes and proposes a dynamic
skip-gram model, where the previous embedding is initialized as the weight for
the next graph snapshot. For autoencoder-based methods, one seeks to mini-
mize the reconstruct loss of a given graph snapshot. For example, DynGEM [6]
proposes an incremental fully-connected network that can share the parameters
between two consecutive networks to capture temporal evolution. The other aims
to minimize the reconstruct loss between the previous graph snapshots and the
future graph snapshot. For instance, dyngraph2vecAE [4] introduces the autoen-
coder network with the reconstruct loss between the adjacency mapped by the
previous graph embeddings and the adjacency in the next time step.
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Recently, the popular way to cope with dynamic graph embedding is to com-
bine the GNNs model with temporal components(e.g., LSTM). GCRN-M1 [19]
first employs graph convolution to obtain node embedding and then feed them
into an RNN to capture temporal dynamics. The distinction between WD-GCN
[14] and GCRM-M1 [19] lies in that WD-GCN utilizes the separate LSTM com-
ponents per node. EvolveGCN [17] aims to use an RNN to evolve the parameter
of the GNNs model, significantly reducing the mode size(i,e, the model param-
eters). DySAT [18] employs a self-attention mechanism with the GNNs model
to joint learn representation along the dimensions of both local structure and
temporal dynamics. GANE [20] utilizes tensor factorization to obtain temporal
pattern similarity of nodes and incorporates it into the graph attention network
for capturing temporal dynamics.

3 Preliminaries

Notations. A dynamic graph network is defined as a series of static graph
network snapshots collected at each time step t, i.e., G = {G', G?,...,GT},
where T denotes the total number of time steps. Each graph snapshot Gt =
(Vt, E') is a weight undirected graph network made of a node-set V¥, an edge
set B, and a weighted adjacency matrix A? at each time step t.

Problem Formulation. In this subsection, we formally define the problem of
dynamic graph embedding. Given a dynamic graph G, dynamic graph embedding
aims to learn mappings f* : {G!,G?,...,G'} — RIV'IXd g5 that they obtain
the latent representation Z! = f{(G',G?,...,G"), where Z! € RIV'IXd and 4
denotes the embedding dimensionality. Here, each row vector Z! € R? is the low
dimensional embedding of node v, which preserves local topological proximities
and temporal evolutionary pattern information up to time step ¢.

4 Methodology

In this section, we present our proposed framework for dynamic graph embed-
ding, as illustrated in Fig. 1. The proposed framework includes three major parts.
First, we introduce the temporal hypergraph to capture both local structure
information and temporal dynamics for dynamic graphs. Then, we use a hyper-
edge projection to obtain edge-level relationships. After that, we utilize the tem-
poral edge-aware hypergraph convolution to aggregate information and pass on
them among nodes to update nodes embedding, illustrated in the following sec-
tions.

4.1 Temporal Hypergraph Construction

In this subsection, we discuss temporal hypergraph construction. Note that, a
dynamic graph contains a series of graph snapshots. The major challenge for
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Fig. 1. An overview of our proposed framework. Given snapshot graphs {G*, G?, G*} as
input, we first generate the temporal hypergraph based on time steps. To be specific, the
temporal hypergraph contains all original nodes from input snapshots and hyperedges.
A hyperedge is composed of the nodes from the same time step, i.e., e1, e2,e3. Then,
those hyperedges in the temporal hypergraph are operated by a hyperedge projection.
After that, we utilize the temporal edge-aware hypergraph convolution to aggregate
information and pass on them among nodes to update nodes embedding.

dynamic graph embedding is to capture temporal evolution among these graph
snapshots. The prior works mainly focus on restoring to RNN or Transformer
to capture temporal dynamics indirectly, which splits the internal connection
between topological information and temporal dynamics. To address this issue,
we aim to directly capture both temporal dynamics and topological information
through the properties of the hypergraph.

For a given dynamic graph G = {V,E}, where V.= {V! V2 ... V'} denotes
a series of node sets and E = {E', E?, ... E'} denotes a series of edge sets. We
assume that historical observations start from time step 1 to time step 7. First,
note that V! C V2 C ... C V7, V™ contains all nodes in graph snapshots up to
time step 7, so we define V7 as a hypernode set of the temporal hypergraph. Sec-
ond, we aim to construct hyperedges of the temporal hypergraph. More specifi-
cally, a hyperedge e € E7 is formed by linking a centroid node and its first-order
neighbors at the same time step, where E™ = {e]'|m € {1,..,7},v; € V7} is
the hyperedge set of the temporal hypergraph and m denotes a certain time
step. For example, if a hyperedge connects vy,v2 and vs, it can be denoted
as €)' = {v1,v2,vslve,v3 € N(v1),v1,v2,v3 € G™}, where v; is assigned as
a centroid hypernode, and N(v;) is the first-order neighbors’ set of hypern-
ode v1. Based on the discussion above, we define the temporal hypergraph as
H™ = (V7,E™,W), where W denotes weight matrix for hyperedge, |V7| is the
number of hypernodes, and |E7| is the number of hyperedges. For simplicity, we
use |V and |E| to represent |V7| and |E7| respectively. Formally, the temporal
hypergraph can be represented by an incidence matrix H € RIVI*IPl;

1, ifv; € eg;
0, otherwise

(et = { 1)
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Fig. 2. An example of a hyperedge projection.

4.2 Hyperedge Projection

In this subsection, we further explore the edge-level correlations in hypergraphs.
The temporal hypergraph is designed to obtain temporal dynamics of dynamic
graphs, but it cannot well reflect the edge-level correlations in dynamic graphs.
Thus, we introduce a hyperedge projection to extract edge-level correlations for
dynamic graphs. The key idea of hyperedge projection is to capture edge-edge
correlations of the temporal hypergraph. Figure 2 shows an example of a hyper-
edge projection. Specifically, the hypernodes connected to the same hyperedge
are uniformly mapped into an edge that is defined as a node in the new graph.
The hypernode projection can be formally written as follows:

P=D'HTX (2)

where P € RIVI*M is the hyperedge projection embedding of the original hyper-
node representation X, H”T is the transpose matrix of the incidence matrix H,
and D, € RIEIXIEl denotes the hyperedge degree matrix. Then, these new nodes
are connected if they contain the same hypernode. For example, in Fig.2, es
connects eg by the green line with the number 5, denoting that they contain
the same hypernode v5. In other words, these nodes connected are neighbors if
they share the same hypernodes. Compared to hyperedges, edges only connect
two nodes in this new graph. In a way, we convert the temporal hypergraph to
a simple graph by the hyperedge projection and can easily integrate message-
passing schemes for nodes, which preserves the original edge-level correlations of
the temporal hypergraph.
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4.3 Temporal Edge-Aware Hypergraph Convolution

In this section, we introduce the details of the message passing process via tem-
poral edge-aware hypergraph convolution. In our work, if nodes have not initial
feature, each node v is initialized by a one-hot vector z, € RM, where M is
the number of nodes in G7. Then, an update operation for each node v is con-
ducted in the temporal hypergraph, which contains intra-hyperedge aggregation
and inter-hyperedge aggregation. The intra-hyperedge aggregation can be for-

mulated as:
Ty

veEe

Ze

where z. is the hyperedge representation through the intra-hyperedge aggrega-
tion, x, is the initial representation of the node v, and d(e) denotes the degree of
the hyperedge |e|. Afterward, the inter-hyperedge aggregation can be expressed

| (4)

eeS d(v)

where z, is the embedding of the node v through the inter-hyperedge aggregation,
S'is the set of hyperedges containing the node v, and d(v) denotes the number of
hyperedges containing the node v. These two steps can merge and be rewritten
as:

2y

Z=D;'H'"D'HX (5)

where Z € RIFIXM g the embedding of hypernodes, H € RIVI*IEl denotes
the incident matrix, the original hypernode representation X € RIVI*M and
D, € RIVIXIEl denotes hypernode degree matrix. We observe that this update
operation is equal to the simplified hypergraph convolution [2]. Then, we fur-
ther extend this operation to capture the edge-level correlations in the temporal
hypergraph. According to the hypernode projection mentioned in Sect. 4.2, we
utilize the hypernode projection to replace the original hypernode representation
X with P in the convolution rule as follows:

Zeoqge = D;'H'D,'HP (6)

where Z.gge € RIFI*M is the edge-level embedding of hypernodes. After cap-
turing the edge-level correlations of the temporal hypergraph, we remap the
edge-level embedding into the node-level embedding which is assigned to each
node in the dynamic graph:

Znode - HZedge (7)

where Z,04e € RIVI*M is the node-level embedding of hypernodes. Then, we uti-
lize the renormalization trick introduced by [11] and employ a learnbale matrix.
The complete temporal hypergraph propagation rule can be written as follows:

Z=0 (D;l/ZZnodeDv—l/?@)

(8)
_ (D;l/ZHDngTDngPD;W@)
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where Z € RIFI*4 ig the final embedding of hypernodes, @ € RIFI*4 denotes
the model parameters matrix, d denotes the embedding dimensionality, and o(-)
denotes the activation function (e.g. ELU).

Table 1. The statistics of datasets

Dataset #nodes | #edges | #features | #labels | #time steps
UCI 1,809 16,822 | — - 13
Enron 143 2,347 |- - 12
Yelp 6,569 95,361 | — 12
ML-10M 20,537 43,760 |- - 13
Alibaba 5640 53,049 |19 - 11
Epinions 9,368 | 231,537 |44 - 9
Primary School | 242 20,009 |— 11 40

4.4 Loss Function

In this subsection, we introduce the objective function that enables node repre-
sentations to capture dynamic topological evolution during training our model.
Inspired by DySAT [18], our model encourages nodes sampled in the fixed-length
random walk to obtain similar representations. Formally, we use a binary cross-
entropy loss to optimize the model parameters as follows:

L:Z( Z —log (0 (< Zuw, 2o >))
vEV UENyaik (V)

-8 Z log (1 — 0 (< Zur, 2y >)))

u’' € Py (v)

9)

where Z, is the final embedding of a node v, o(-) denotes the sigmoid function,
< - > denotes the inner product. Ny,qi;(v) is the positive nodes’ set of a node v
sampled by the random walk, and P, (v) is the negative nodes’ set of a node v
sampled by a negative sampling function based on the degree of nodes. § is the
negative sample value to balance positive and negative samples.

5 Experiments and Analysis

5.1 Experimental Setup

Datasets. To evaluate the performance of our model, we use seven public real-
world datasets in our experiments. The datasets are summarized in Table1.
UCI [16]is an online social network. Links of this network denote the massage
sent between peer users, i.e., nodes. Enron [12] contains a set of email messages
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concerning the Enron corporation, which is represented as an email communica-
tion network. Nodes of network denote the addresses and links denote there’s an
interaction between these email addresses. Yelp': is a rating network of users and
businesses where links connect users and businesses if users score the businesses.
ML-10M [8] consists of users and tags that users applied to certain movies. The
links of this network denote there’s an interaction between users and movies.
Alibaba? is an e-commerce network, consisting of users and items. The edge
between user and item denotes the click interaction. Epinions® denotes a trusted
network between users. The edge of the network indicates the trust correlation
between users. Primary School [21] represents the contact network. The link of
this network is constructed from the interactions between teachers and students.

Baselines. We compare our proposed model with the following state-of-the-
art dynamic graph embedding methods: (1) DynAE [4] utilizes an autoencoder
framework based on dense layers; (2) DynAERNN [4] is based on DynAE, which
uses recurrent neural networks to capture temporal dynamics of dynamic graphs;
(3) DynGEM [6] adopts an incremental autoencoder framework for a dynamic
graph based on the last graph snapshot; (4) DySAT [18]: DySAT aims to simul-
taneously capture the local structure information and temporal dynamics based
on the self-attention mechanism; (5) EvolveGCN [17] uses the GCN to learn local
structure information for each graph snapshot and employs the GRU or LSTM
to update parameters of GCN to capture temporal evolution based on different
graph snapshots; (6) GAEN [20] incorporates node temporal pattern similarities
based on the tensor factorization technique and neighborhood attention to learn
the node embedding for dynamic graphs.

Settings. In our experiments, we evaluate the performance of our model in
both link prediction and node classification tasks. For link prediction, we train
a logistic regression classifier to predict the existence of links at the time step
t + 1 based on the embeddings learned from previous networks up to time step
t. We randomly sample 60% of nodes for training. We utilize 20% of nodes to
tune hyperparameters of our model and the remaining 20% of nodes for testing.
We utilize the Mean Accuracy(ACC) and the Mean Area Under the ROC Curve
(AUCQC) as our evaluation metrics of link prediction. For node classification, we
randomly sample 20% of nodes as a validation set. Then, we use 30%, 50%, and
70% of nodes as train sets respectively, the corresponding remaining nodes are
used as test sets. We also train a logistic regression classifier to map nodes into
different categories based on the embeddings learned from previous networks up
to time step t. We employ the Mean Accuracy(ACC) as our evaluation metrics of
node classification. We use mini-batch gradient descent with Adam. For hyper-
parameters, we set batch size as 512, the embedding dimensionality d as 128, the

! https://www.yelp.com/dataset/.
2 https://tianchi.aliyun.com/competition /entrance/231719/information/.
3 https://cse.msu.edu/~tangjili/trust.html.
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learning rate as 1073, the weight decay as 5 x 107, the max epoch as 20, and
negative sample ratio 3 as 0.01. We conduct our experiments on a machine with
the Intel Core i9-9960X (3.10GHz) CPU, 128 Gb of RAM, and four NVIDIA
2080Ti GPU cards, which are implemented in Python 3.6 with Tensorflow.

Table 2. The predictive performance of link prediction task in terms of AUC and ACC
on UCI, Enron, Yelp, ML-10M, Alibaba, and Epinions. The results are the mean and
standard deviation of 5 different runs. OOM denotes running out of memory on our

machine.
Method Metric | UCI Enron Yelp ML-10M Alibaba Epinion
DynAE ACC [69.05+0.08 |68.224+1.09 |60.00+£0.07 | 64.75+£0.31 |75.84+£0.03 | 74.53+0.21
AUC [85.94+0.26 |72.644+0.16 |64.17+£0.16 1 91.14+0.21 |87.51£0.20 |94.174+0.03
DynAERNN ACC [68.92+1.34 |67.36+£0.40 | 54.77+0.67 | 74.55+0.32 |76.21+£0.39 |74.71+0.94
AUC |82.734+0.58 |75.56+0.14 |56.74+0.87 | 76.57+0.86 |82.74+0.28 |82.03+1.52
DynGEM ACC |71.01£1.19 [66.994+0.34 | 60.98+0.06 OOM 75.42£0.60 |83.82+0.61
AUC [84.29+1.88 |72.90+1.36 |67.33+0.04 H OOM 87.314+0.43 |91.88+1.04
EvolveGCN ACC [72.26+0.45 [66.144+1.09 |61.03+0.29 | 79.35+0.32 |72.63+0.08 |81.01+0.57
AUC |79.584+0.28 |72.12+1.08 |64.944+0.23 |87.28+0.79 |79.56+0.11 |89.07+0.38
DynSAT ACC |68.47+0.05 |74.17+1.03 |65.76+0.23 | 82.40+£0.66 |67.52+£0.15 |89.134+0.14
AUC [82.77+£0.08 |82.97+1.03 |71.84+0.65 92.86+0.15 |75.34£0.15 | 96.144+0.52
GANE ACC |72.86+0.94 |78.9940.66 62.38+0.11 | OOM 77.00£0.02 | 74.85+£0.55
AUC [80.5940.74 1 86.08+£0.50 |65.76+0.18 | OOM 85.454+0.23 | 82.20£2.09
DynHyper(ours) | ACC | 75.04+0.16 | 76.21+0.38 | 69.9040.71 | 82.86+0.61 | 83.08+0.04 | 91.584+0.29
AUC |87.811+0.13|87.26+0.39 | 76.61+£0.04 | 94.14+40.15 | 90.584+0.03 | 99.104+0.01

(d) ML-10M

AuC

Time steps

(e) Alibaba

(f) Epinions

Fig. 3. The results of six datasets in link prediction task in terms of AUC at various

time steps.
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Table 3. The predictive performance of the node prediction task in terms of ACC
on Primary School at different train ratios. The results are the mean and standard
deviation of 5 different runs.

Dataset Primary School

Train ratios 30% 50% 70%

DynAE 47.194+0.02 |47.25+0.05 |46.05+0.04

DynAERNN 46.85+0.14 46.99+0.18 |46.99+£0.04

DynGEM 50.014+0.08 |51.05£0.11 | 50.84+0.26

EvolveGCN 42.754+0.30 |45.16+0.23 |46.20+0.24

DySAT 60.724+0.38 |63.724+0.24 | 64.85+0.39

GANE 55.174+0.19 |57.824+0.09 |59.26+0.10

DynHyper(ours) | 63.3940.09 | 65.86+0.17 | 67.014+0.13

5.2 Experimental Results

Link Prediction. In this subsection, we discuss the performance of our model
in the link prediction task compared with state-of-the-art methods. Experimen-
tal results are illustrated in Table 2. Table 2 shows that DynHyper consistently
outperforms baselines in all datasets except that GANE outperforms DynHy-
per on the Enron dataset under ACC. These results indicate the effectiveness of
DynHyper in link prediction. For example, as compared to the best approach of
baselines(i.e., DySAT) on the Yelp dataset, we get roughly a 5% improvement in
both AUC and ACC. Note that GANE gains better performance than DynHyper
on the Enron dataset. GANE obtains node temporal patterns via tensor factor-
ization to improve performance, which may be more successful on tiny datasets
like Enron having only 143 nodes. However, DynHyper tries to capture the edge-
level correlations on datasets, which may perform better in large datasets rather
than small ones. As the result shows, DynHyper obtains about 94% AUC and
99% AUC on ML-10M and Epinions datasets respectively, which are much larger
datasets than the Enron dataset. Based on the abovementioned, this might be
the reason why our approach on Enron is inferior to GANE. Besides, DynGEM
employs the smoothness regularization to capture temporal dynamics that can
not address the network with abrupt change. Users’ communications on UCI typ-
ically span longer periods, showing that the network is smooth. However, rating
behaviors on Yelp, tend to be erratic and connected with events like restaurant
openings and discounted promotions, indicating a network with abrupt change.
Thus, we observe that DynGEM obtain a relatively better performance on UCI
than the performance on Yelp. The predictive results of DynHyper are consis-
tently superior to DynGEM on all the datasets, especially Yelp, demonstrating
that DynHyper performs well in both smooth and abrupt networks.
Furthermore, we seek to analyze the detailed performance of these methods at
each time step. The results are reported in Fig. 3. First, we note that DynHyper
is inferior to some baselines at the initial time step on some datasets, such as
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Enron and Alibaba. The potential reason is that these datasets do not form
a lot of edge-level relationships at the initial time step. Additionally, we find
that as the time step is increased, DynHyper’s performance improves. Moreover,
DyperHyper is consistently superior to all baselines at each time step on some
datasets, such as Yelp and Epinions. This finding might be caused by these
datasets containing more edge-level correlations. It is worth noticing that Yelp
and Epinions have more links than other datasets.

A A / S
V

L=
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AUC

w0 P
A
w //\\/ /
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P rimeses ) Y Tmeseps . P Timeses |
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Fig. 4. Experimental results for ablations

Node Classification. In this subsection, we compare DynHyper’s performance
to that of state-of-the-art approaches in the node classification task. Due to the
lack of dynamic graphs datasets with node labels, we use the Primary School
dataset with different train ratios to fully use this dataset for evaluation. Table 3
shows the results of the experiments. DynHyper achieves a consistent 2%~3%
ACC improvement on Primary School at different train ratios, demonstrating
DynHyper’s effectiveness in node classification. In addition, approaches with the
RNN component, such as DynAERNN and EvolveGCN, perform poorly in node
classification. DynAERNN is even superior to DynAE, suggesting that Combi-
nation with the RNN component is ineffective at capturing temporal dynamics
in the node classification task.

Ablation Study. In this subsection, we conduct ablation studies to evaluate
the contribution of the hyperedge projection(HP) of our model. HP aims to
capture edge-level relationships of datasets to improve performance. To better
demonstrate this, we compare the performance between our model with HP and
our model without HP at various time steps. The compared results are shown in
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Fig. 4. According to Fig. 4, DynHyper with HP outperforms DynHyper without
HP on most datasets. As discussed above, the Enron dataset is a small dataset
having 143 nodes while HP is much more effective with big datasets. As a result,
we note that DynHyper without HP is superior to DynHyper without HP on
the Enron dataset.

6 Conclusion

In this paper, we propose a dynamic embedding framework to address dynamic
graphs, named DynHyper. We introduce temporal hypergraph construction to
capture effectively temporal dynamics for dynamic graphs. Additionally, we pro-
pose a hyperedge projection to obtain edge-level relationships of temporal hyper-
graphs. Furthermore, We propose a temporal edge-aware hypergraph convolu-
tional network to independently and effectively conduct the message passing in
dynamic graphs without any RNN components. Experimental results confirm
that DynHyper has great performance in both link prediction and node classifi-
cation tasks, especially on the more complex datasets. Our future work aims to
extend our work to address more complex dynamic graphs, such as those with
changeable attributed nodes.
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