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Abstract. Deepfake detection attracts widespread attention in the com-
puter vision field. Existing efforts achieve outstanding progress, but there
are still significant unresolved issues. Coarse-grained local and global
features are insufficient to capture subtle forgery traces from various
inputs. Moreover, the detection efficiency is not powerful enough in
practical applications. In this paper, we propose a robust and efficient
transformer-based deepfake detection (TransDFD) network, which learns
more discriminative and general manipulation patterns in an end-to-
end manner. Specifically, a robust transformer module is designed to
study fine-grained local and global features based on intra-patch locally-
enhanced relations as well as inter-patch locally-enhanced global rela-
tionships in face images. A novel plug-and-play spatial attention scal-
ing (SAS) module is proposed to emphasize salient features while sup-
pressing less important representations, which can be integrated into any
transformer-based models without increasing computational complexity.
Extensive experiments on several public benchmarks demonstrate that
the proposed TransDFD model outperforms the state-of-the-art in terms
of robustness and computational efficiency.

Keywords: Deepfake detection · Spatial attention scaling ·
Transformer

1 Introduction

The threat of face manipulated videos has raised widespread attention, espe-
cially after the advent of the deepfake technique that adopts deep learning tools.
Deepfake can replace the face in the target video with the face in the source video
using deep learning-based technologies such as autoencoder [14] and generative
adversarial network (GAN) [8]. With these approaches, face generated videos are
exceedingly simple to be generated on the condition that one can access a large
amount of data spread widely on the Internet, which brings negative impacts on
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individuals, organizations, and governments while greatly threatening the social
stability [17]. Furthermore, with the sophistication and development of synthesis
techniques, deepfake videos have become more realistic and it is challenging for
human eyes to discern authenticity. The above challenges have driven the devel-
opment of deepfake detection using deep neural networks (DNNs) [4,9,18,30].
Most of the existing efforts in common exploit the powerful data fitting capabil-
ities of neural networks to mine discriminative features for deepfake detection.
Deep learning-based detection approaches usually regard deepfake detection as a
binary classification problem and employ convolutional neural networks (CNN)
to analyze local features. However, the learned representations using CNN are
not general enough since CNN seldomly focuses on global information. Further-
more, it is challenging to discern authenticity based on small local regions only.
Recent work recognizes this problem and attempts to utilize a transformer-based
model [28] to extract global emdeddings for capturing long-range manipulation
traces. However, it usually analyze global characteristics in a coarse-grained man-
ner, which may cause some image patches with weak artifacts to be rarely noticed
due to face pose transitions. Therefore, coarse-grained global feature learning
often serves as a suboptimal solution. In addition, the detection efficiency of the
model is increasingly important in practical applications. Recent work has made
significant advancements in deepfake detection performance, while state-of-the-
art deepfake detectors also become gradually more expensive. For example, the
advanced multi-attention (MAT) detector [29] requires 417.63M parameters and
224.38G floating-point operations per second (FLOPs) (20x more than Xception
[21]) to realize state-of-the-art performance. Many face forgery detection models
depend on on-device computation. Computational overhead is one of the main
factors limiting the deployment of current networks in practical applications due
to the inadequate computing power, large memory footprint, and severe battery
consumption of the device. Based on these real-world resource restrictions, the
model efficiency becomes increasingly important for face forgery detection. How-
ever, few approaches consider the computational complexity such as the number
of parameters and FLOPs. Although some studies utilize the lightweight model
Xception [3,16] to obtain remarkable results, their ability to study general repre-
sentations is limited due to the coarse-grained local feature learning. As a result,
these methods are insufficient to capture weak manipulated patterns owing to
the diversity of forgery techniques.

Based on the discussion above, our method mainly solves the following two
problems: (1) how to study more discriminative and general features for deepfake
detection; (2) how to achieve state-of-the-art detection performance as efficiently
as possible. In order to tackle these limitations, we propose a robust lightweight
transformer-based deepfake detection (TransDFD) model. In detail, our model
consists of two key components: the robust transformer module and the spatial
attention scaling (SAS) technique. Robust transformer restricts locally-enhanced
multi-head self-attention (LMSA) within each patch and boosts information flow
across image patches by the spatial shuffle, thus learning fine-grained local and
global representations. SAS flexibly refines spatial features to emphasize more
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significant manipulated artifacts, and vice versa. The main contributions of this
work are summarized as follows:

• We propose a robust and lightweight TransDFD network for deepfake detec-
tion, which captures discriminative and comprehensive forgery traces with
much fewer parameters and computational costs.

• The robust transformer is presented to learn fine-grained local and global
features via focusing on intra-patch locally-enhanced relations and inter-patch
locally-enhanced global relationships in face images.

• We design an innovative plug-and-play SAS technique to suppress less impor-
tant representations while emphasizing more critical features, via a learnable
diagonal matrix, which can be widely applied to boost the representation
ability of transformers.

• Extensive experiments on several challenging datasets demonstrate the effi-
ciency and robustness of our proposed model and feature visualizations show
the generalizability and interpretability of our method.

2 Related Work

Most existing deepfake detection models utilize CNNs or attention mechanisms
to capture local discriminative features. Rossler et al. [21] used the lightweight
Xception, a standard CNN pre-trained on ImageNet, and transferred to the deep-
fake detection task, to extract local features. The TwoStream framework [18]
applies two streams of Xception backbones which analyze the high-frequency
feature and RGB content, respectively, for generalized face forgery detection.
The representative forgery mining (RFM) [27], an attention-based data aug-
mentation framework, exploits the Xception backbone to guide the detector
to refine its attention for capturing local discriminative patterns. The multi-
attentional (MAT) architecture [29] establishes a multi-attentional module to
combine the low-level textural features and high-level semantic features. Kumar
et al. [15] adopted multi-streamed CNNs to learn fine-grained local features, con-
sidering intra-patch local relations and inter-patch partial relationships within
the face image. However, these models only extract local discriminative features
and hardly consider the global relations among image patches. To address this
problem, a convolutional vision transformer (CViT) framework [28] is proposed
to integrate CNN and vision transformer (ViT) [6] for deepfake detection. Specif-
ically, the CNN extracts local features while the ViT analyzes them to capture
the inter-patch global dependencies at a coarse-grained level. We noted that,
by contrast, our approach is capable of learning fine-grained local and global
representations with fewer parameters and computational costs.

3 Approach

3.1 Network Architecture

The framework of our proposed TransDFD is illustrated in Fig. 1. TransDFD
is composed of local feature extraction (LFE), robust transformer, and SAS.
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Fig. 1. The overall framework of TransDFD.

LFE adaptively filters the redundant information of a face image to obtain the
refined feature map. Robust transformer (Sect. 3.3) utilizes transformer blocks
to divide them into N2 square patches with size w ×w to encode feature vectors
from a patch, thereby capturing fine-grained local and global representations.
Meanwhile, the robust transformer employs the feature fusion block to analyze
the refined feature map for obtaining local embeddings and supplementing them
into fine-grained global representations. After that, SAS (Sect. 3.4) further refines
elaborate embeddings using a learnable diagonal matrix. Finally, we squeeze
the output of models and flatten them into feature vectors. The multiple layer
perceptron (MLP) and softmax generate final detection results.

Fig. 2. The structure of the transformer block.

3.2 Local Feature Extraction

In order to filter redundant information irrelevant to the detection task in face
images, LFE is designed to obtain fine feature maps in a simple and effective
manner. In detail, the LFE module consists of the first two sequence blocks of
VGG [24]. To save parameters and improve computation efficiency, the output
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channels of each convolutional layer in the first and second blocks in VGG are
adjusted to 32 and 64, respectively. LFE extracts the delicate feature map Ff ∈
R

C×H×W as shown in Fig. 1 by inputting a facial image Fi ∈ R
3×224×224, where

H, W, C denotes the height, width, and channel of the feature map, respectively,
and H = W = 56, C = 64. The Ff is then fed into the first transformer block and
the first feature fusion block in the robust transformer module, simultaneously.

Fig. 3. The main workflow of the intra-patch feature extraction block.

3.3 Robust Transformer

Unlike the existing method [28] that utilizes the MSA mechanism to capture
coarse-grained global features, inspired by the shuffle transformer [11] architec-
ture with the novel window-based multi-head self-attention (WMSA) [10,16]
mechanism and low costs, we propose a robust transformer module to focus
on fine-grained local and global features learning. Figure 1 illustrates the archi-
tecture of the robust transformer module. Specifically, robust transformer con-
tains four stages. Except for the first stage with L transformer blocks, each
stage consists of a pooling layer, L transformer blocks, and a feature fusion
block. Figure 2 shows the structure of the transformer block. Each transformer
block includes two cascaded blocks: intra-patch feature extraction block and
inter-patch feature extraction block. In particular, the former captures patch-
level local enhancement relations by window-based locally-enhanced multi-head
self-attention (WLMSA) module, obtaining fine-grained local representations,
and the latter utilizes shuffle window-based locally-enhanced multi-head self-
attention (Shuffle WLMSA) module to gain the fine-grained global embeddings
via exploring patch-level locally-enhanced global relations. Through two cas-
caded blocks, transformer blocks analyze the local and global forgery patterns
for each patch. To combine the advantages of CNNs in extracting local features
and the benefits of transformer blocks in capturing long-range dependencies, the
feature fusion block in each stage studies an input feature map through a con-
volutional layer with a kernel size of 2 and a stride of 2 to obtain downsampling
and it is added element-wisely with the output of the last transformer block in
this stage.
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Transformer Block. Different from the traditional transformer block in ViT
[6], we perform LMSA computation on each image patch in parallel, and the lin-
ear layers are replaced by the convolutional layers, which reduces the number of
parameters and computational complexity. As Fig. 2 shows, the transformer block
includes two cascaded blocks. The intra-patch feature extraction block aims to
model patch-level locally-enhanced relations to obtain fine-grained local represen-
tations. The main workflow of the block is shown in Fig. 3. Without losing gen-
erality, given a feature map F ∈ R

C×H×W , we first divide it into N2 square
patches with size w × w, and each square patch is reshaped into a succession of
flattened 2D feature patches to get Fp ∈ R

N2×w2×C , where w is the width and
height of square patches, w2 is the number of feature patches in a square patch, and
N2 = (H/w)×(W/w) is the number of square patches. To study fine-grained local
representations and reduce computational costs, we introduce the WLMSA mod-
ule. In detail, we transform Fp into three different tensors, i.e., a query q = FpW

q,
a key k = FpW

k, and a value v = FpW
v, where query, key, and value ten-

sors are calculated for each square patch from the feature map Fp, and W q, W k,
and W v are parameters of the convolutional layer. We utilize LMSA to acquire
F ′
p ∈ R

N2×w2×C with fine-grained local embeddings, which implies that square
patches are captured variously locally-enhanced relations between the respective
internal characteristics in parallel. The LMSA is discussed in detail in the follow-
ing section. Thereafter, we rearrange the square patches to their original spatial
position to obtain Fs, i.e., F ′

p ∈ R
N2×w2×C is reshaped to Fs ∈ R

C×H×W . Finally,
we pass Fs into the neighbor-window connection (NWC) module and MLP module
sequentially to obtain V ∈ R

C×H×W . NWC consists of a convolutional layer with
a kernel size equal to the image patch size to enhance connections among neighbor-
ing patches. The linear layer in the conventional MLP module [6] is adjusted to a
convolutional layer with a kernel of 1× 1 for economizing parameters. Intra-patch
feature extraction block only analyzes patch-level local relationships without tak-
ing into account the global relations between image patches. To overcome the lim-
itation, we present the inter-patch feature extraction block whose main workflow
is similar to that shown in Fig. 3. In detail, we firstly split V ∈ R

C×H×W into w2

square patches with size N × N to get Vp ∈ R
w2×N2×C . To achieve spatial shuffle

and inter-patch information communication, each new square patch with size w×w
is composed of the feature patches at the same position in w2 square patches with
size of N × N , carrying information for the overall patches with size of N × N .
That is to say, we rearrange Vp ∈ R

w2×N2×C to Vf ∈ R
N2×w2×C . We introduce

the Shuffle WLMSA module which has a similar pipeline to WLMSA and con-
siders locally-enhanced global relations for each image patch in parallel to obtain
V ′
f ∈ R

N2×w2×C with fine-grained global features by inputting Vf ∈ R
N2×w2×C .

Afterward, we adjust the feature patches to the original positions for spatial align-
ment. i.e., V ′

f ∈ R
N2×w2×C is rearranged to Vs ∈ R

w2×N2×C . Thereafter, we align
image content spatially to obtain the feature map I. That is, Vs ∈ R

w2×N2×C is
reshaped to I ∈ R

C×H×W . Finally, we transfer I through the NWC and MLP mod-
ules to get T ∈ R

C×H×W which is then fed into the intra-patch feature extraction
block in the subsequent transformer block.
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LMSA. Inspired by [7], we find it beneficial to model locally-enhanced rela-
tions between adjacent signals within image patches when given the query, key,
and value tensors. Since in the traditional MSA, each feature patch is equally
accessible to any other ones and feature patches not in the neighborhood may
also attend to each other with relatively large scores, as Fan et al. [7] proves
mathematically, which potentially introduces noises to semantic modeling and
overlooks the link among the surrounding signals. Therefore, a PAAS [20] tech-
nique is introduced to remove noise and study the relationships between adjacent
feature patches within an image patch. Specifically, the MSA [11] produces the
attention maps by formula qkT /

√
r+B, and each value of attention maps denotes

the correlation for any two feature patches in a square patch. We introduce a
learnable position importance matrix Wp ∈ R

w2×w2
to act as a soft attention

mask. That is to say, we assign a learnable weight for each element of attention
maps to learn the correlations between feature patches, adaptively, thereby elim-
inating the noises, which is defined as Eq. 1. A locally-enhanced self-attention
(LSA), i.e., a feature map with locally-enhanced information, is calculated by
Eq. 1. Formally, the LMSA is computed as follows:

LSA = softmax((
qkT

√
r
+ B) � Wp)v, (1)

LMSA = [LSA1;LSA2; ...;LSAj ]Wlmsa, (2)

where q, k, v ∈ R
N2×j×w2×r are the query, key, and value tensors, respectively.

w2 is the number of feature patches in a square patch. j denotes the number of
attention heads and r = C/j denotes the dimension of the feature patch in head
space. B ∈ R

w2×w2
[23] is the relative position matrix. � is the element-wise

product. Wlmsa ∈ R
jr×C is the learned parameter.

3.4 Spatial Attention Scaling

In order to learn detailed features, we devise the robust transformer module.
However, the fine-grained embeddings obtained by Eq. 1 may contain noises as
demonstrated by [7], we propose a SAS mechanism to further refine the repre-
sentations. Specifically, our SAS method denotes that a diagonal matrix right-
multiplies the output of LSA, which means that we assign a learnable weight
to each spatial feature, and the spatial features of the same position in differ-
ent channels share the weight. The LMSA in the robust transformer module is
modified as follows:

F = diag(λ1, . . . , λw2)LSA, (3)
LMSA = [F1;F2; ...;Fj ]Wlmsa, (4)

where the parameters λi are learnable weights for i = 1, ..., w2. Diagonal matrix
is initialized to follow a standard normal distribution. F ∈ R

N2×j×w2×r is the
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feature map with refined characteristics. Formally, SAS does not alter the com-
putational overhead of the network by adding these weights since they can be
combined into the prior tensor of the LMSA as Eq. 3 demonstrates.

4 Experiments

4.1 Experiments Setting

Datasets. We carried out research on three benchmark databases, i.e., Face-
Forensics++ (FF++) [21], Deepfake Detection Challenge (DFDC) [5], Deepfake
Detection (DFD). FF++ includes 1,000 original videos from YouTube and 4,000
fake videos. The fake videos are generated by four algorithms: DeepFakes (DF)
[1], Face2Face (F2F) [26], FaceSwap (FS) [2], and NeuralTextures (NT) [25].
FF++ has three qualities with distinct compression degrees, i.e., raw, high qual-
ity (HQ), and low quality (LQ). We applied the HQ-type videos and the official
splits, using 740 videos for training, 140 videos for validation, and 140 videos for
testing. DFDC is a wide-scale deepfake dataset with a large number of clips and
different quality levels. DFD is a deepfake detection dataset that utilizes publicly
available deepfake generation methods to create over 3,000 manipulated videos
from 28 actors in various scenes. The performance on the test set is reported.

Evaluation Metrics. We adopted the accuracy (ACC) and area under the
receiver operating characteristic curve (AUC) as our evaluation criteria. Since
most previous work rarely presents the metric of computation complexity, as a
result, we computed the number of parameters and FLOPs of the models using
the same setting.

Implementation Details. We used dlib [12] to crop the face regions as input
facial images with size 224 × 224. The size w of square patches in the robust
transformer module is set to 7. The depth L of the robust transformer is set to 6
with four phases with 1, 1, 3, and 1 transformer blocks and the attention heads
j are set to 2, 4, 8, and 16, respectively. Furthermore, our model is trained with
Adam optimizer [13] with learning rate 1e-4 and weight decay 1e-5. We utilized
the scheduler to drop the learning rate by ten times every 15 epochs.

4.2 Comparison with the State of the Art

Within-Dataset Evaluation. We used FF++ for training and conducted the
within-dataset evaluation. Results are displayed in Table 1. Our method consis-
tently outperforms the recent mainstream models on four manipulation meth-
ods. In particular, our model outperforms the state-of-the-art, Xception, by 4.7%
AUC, on the most difficult NT forgery technology that barely creates visible fab-
ricated artifacts, illustrating the effectiveness of our proposed model. Further-
more, our method possesses the minimum number of parameters and FLOPs
among all compared approaches as shown in Table 2. That is to say, our method
is superior in terms of both computing efficiency and detection accuracy.
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Table 1. Comparison with state-of-the-art methods on within-dataset. We trained on
FF++ which consists of four manipulation techniques.

Method DF F2F FS NT FF++
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

MAT [29] 90.70 97.43 90.64 97.75 90.82 97.02 77.65 85.56 87.50 94.85

CViT [28] 86.59 96.17 87.75 97.85 92.28 98.71 74.99 82.78 84.86 92.36

TwoStream [18] 91.08 97.39 91.54 97.96 90.82 96.39 79.12 86.65 88.17 94.93

Xception [21] 90.54 97.34 91.93 98.12 95.61 99.28 82.18 90.07 90.08 96.51

TransDFD(Ours) 93.94 98.87 95.24 99.25 97.51 99.70 87.65 94.73 93.60 98.40

Table 2. Comparison with state-of-the-art methods on cross-dataset evaluation.

Method DFDC DFD
ACC AUC ACC AUC Params(M) GFLOPs

MAT [29] 63.16 69.56 77.63 85.18 417.63 224.38
CViT [28] 62.79 67.86 72.93 83.24 89.02 6.69
TwoStream [18] 59.93 64.80 75.77 83.79 53.24 13.79
Xception [21] 58.77 66.95 76.84 85.20 20.81 4.59
TransDFD(Ours) 64.12 71.97 84.12 92.23 13.78 4.25

Cross-Dataset Evaluation. To evaluate cross-dataset generalization, we
trained the networks on FF++ and tested the models on DFDC and DFD.
We can see that our proposed model constantly surpasses all of the compared
opponents by a significant margin in Table 2. For instance, our method separately
exceeds the state-of-the-art Xception which has few parameters and FLOPs by
5.0% and 7.0% AUC on DFDC and DFD, respectively. Different from Xception
which merely employs the local information, our model considers the intra-patch
relations and inter-patch global relations for fine-grained local and global rep-
resentation, allowing various artifacts of the manipulated face can be noticed.
Furthermore, compared to Xception, the computational costs and the number
of parameters are also reduced by 0.3 G and 7.1 M, respectively. In comparison
to CViT which also considers both local and global knowledge with transformer,
our method confirms excellent performance both in computation overheads and
AUC, validating the effectiveness of the fine-grained extraction of global features.
Meanwhile, the gains are primarily due to our method’s ability to learn richer
forgery traces than compared opponents. Especially for the DFDC dataset, it is
a more challenging benchmark since diverse generation technologies are applied
to DFDC to achieve larger scale and higher diversity. The AUC of our method
is 2.4%, 6.8%, 7.2%, and 5.0% higher than MAT, CViT, Two Stream, and Xcep-
tion, respectively, on DFDC, which demonstrates the superior robustness of our
model.



284 Y. Zhang et al.

Table 3. Evaluation of each component in TransDFD on FF++. The models are
trained from scratch on FF++. ST and RT denote shuffle transformer and robust
transformer, respectively.

Datasets Methods Params(M) GFLOPs ACC AUC

DF ST 27.26 4.56 86.78 95.15
RT 30.42 4.81 87.70 97.73
LFE+RT 13.75 4.25 93.90 98.76
LFE+RT+SAS 13.78 4.25 93.94 98.87

F2F ST 27.26 4.56 83.46 92.98
RT 30.42 4.81 88.96 97.44
LFE+RT 13.75 4.25 94.38 99.17
LFE+RT+SAS 13.78 4.25 95.24 99.25

FS ST 27.26 4.56 84.80 92.73
RT 30.42 4.81 93.19 98.10
LFE+RT 13.75 4.25 96.79 99.48
LFE+RT+SAS 13.78 4.25 97.51 99.70

NT ST 27.26 4.56 72.57 78.10
RT 30.42 4.81 77.61 86.00
LFE+RT 13.75 4.25 84.92 92.90
LFE+RT+SAS 13.78 4.25 87.65 94.73

FF++ ST 27.26 4.56 81.93 89.98
RT 30.42 4.81 87.70 95.25
LFE+RT 13.75 4.25 92.51 97.87
LFE+RT+SAS 13.78 4.25 93.60 98.40

4.3 Ablation Study

To study the contribution of TransDFD components to learning ability, Table 3
shows the results of our ablation study, which investigates the effect of incre-
mentally adding robust transformer, LFE, and SAS training components.

Effectiveness of Robust Transformer. We performed the experiments on
FF++ to demonstrate that the robust transformer module is necessary. The
results are listed in Table 3. It is should be noted that the introduction of the
robust transformer module consistently improves the ACC and AUC. We believe
that the robust transformer module focuses on fine-grained local and global
feature learning while paying attention to the local enhancement relationship
between fine-grained features, guiding our model to explore more identifiable
and comprehensive forgery areas.

Effectiveness of SAS. To confirm the effectiveness of our SAS method, our
TransDFD model is trained with SAS and without SAS on FF++ and other



A Robust Lightweight Deepfake Detection Network Using Transformers 285

Table 4. Ablation results of transformer-based models. We trained on FF++ and
tested on FF++, DFDC, and DFD.

Method FF++ DFDC DFD
ACC AUC ACC AUC ACC AUC Params(M) GFLOPs

CViT w/o SAS 85.47 94.72 62.79 67.86 72.92 83.24 89.02 6.69

CViT w/ SAS 89.77 96.35 63.64 70.68 80.11 87.96 89.02 6.69

TransDFD w/o SAS 92.51 97.87 62.19 69.95 79.33 87.91 13.75 4.25

TransDFD w/ SAS 93.60 98.40 64.12 71.97 84.12 92.23 13.78 4.25

hyperparameters remain the same. In Table 3, we noticed that due to the intro-
duction of SAS, the AUC of the model is increased by 2.7% on NT. From our
perspective, SAS supervises the TransDFD model to concentrate on extensive
facial forgery details as shown in Fig. 4. Besides, the parameters of TransDFD
with SAS are only increased by 0.03M and the computational complexity is not
changed, which lies in our SAS approach can be combined into the prior ten-
sor of the LMSA as the Eq. 3 demonstrates. In order to prove that SAS can
boost the performance of transformer-based models, we also conducted ablation
experiments on within-dataset and cross-dataset. We show the quantitive results
in Table 4, respectively. As we can see, SAS enhances the performance with
few parameters and low computational overheads. Assuming that transformer-
based models capture diverse global relationships without extra supervision, the
SAS approach achieves this by assigning learnable parameters to global fea-
tures, steering the model to highlight the most important representations and
suppress less important ones. As a result, our SAS method boosts the attention
of transformer-based models so as to improve their performance.

Fig. 4. The heatmap visualizations. Fig. 5. The t-SNE visualizations.
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4.4 Visualization

Visualization of Heatmap. We visualized the forgery traces captured by dif-
ferent settings using the Grad-CAM [22] on the FF ++ dataset, as Fig. 4 illus-
trates. Each row displays one manipulation approach. From top to bottom, the
forgery types are DF, F2F, FS, and NT. The second to fifth columns display
the results of four training schemes that have been listed in Table 3. Firstly,
we compared the heatmap among different columns (training strategies): robust
transformer (II) boosts the ability to capture long-range traces compared to the
baseline (I). (III) compared with (II), the LFE module can push the model to
locate more potential manipulation areas. In particular, (IV) relative to (III),
our SAS technique enhances these candidate regions by exploring more regions
of interest. Secondly, in comparison to various rows: It is commonly assumed
that the most useful portions to discern are the mouth, nose, and eyes.

Cluster Visualization of Feature Map. We visualized the features gener-
ated by different models on the same FF++ test set by using the t-SNE [19].
As Fig. 5 shows, each color corresponds to a specific type of synthetic technique.
We observe that the features learned by the shuffle transformer for each forgery
method are concentrated in their respective regions and are not tightly grouped
together. This phenomenon, on the one hand, indicates that different manipu-
lations have various characteristic distributions, and on the other hand, shows
that the shuffle transformer will separate fake data created by different forgery
types even if we treated all fake samples as one class in the training stage. It
clearly reveals that the features which shuffle transformer extracts contain the
unique artifacts of each forgery algorithm, affecting its generalization ability.
The feature distribution of different manipulations becomes rather compact due
to the establishment of robust transformer and LFE. Moreover, owing to the
introduction of our SAS mechanism, the fake sample are more mixed together,
which proves that the TransDFD network can learn more general representations
for each forgery type.

5 Conclusion

In this paper, we design a lightweight and robust network using transformers,
namely, TransDFD, which applies fine-grained local and global feature learning
for deepfake detection. We propose a robust transformer to extract the patch-
level local and global embeddings via exploring intra-patch locally-enhanced
relations and inter-patch locally-enhanced global relationships. We build a plug-
and-play SAS method to identify salient forgery representations without increas-
ing computational complexity, which enhances the performance of transformer-
based models. The experiments on FF++, DFDC, and DFD demonstrate that
we achieve state-of-the-art performance with few parameters and computational
costs. The limitation of our model is that generalization ability needs to be fur-
ther strengthened. In the future, we intend to explore self-supervised learning to
extract critical information from complex datasets containing multiple manipu-
lation techniques.
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