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Preface

These three-volume proceedings contain the papers presented at the 19th Pacific Rim
International Conference on Artificial Intelligence (PRICAI 2022), held as a hybrid
conference with both physical and online options during November 10–13, 2022, in
Shanghai, China.

PRICAI, which was inaugurated in Tokyo in 1990, started out as a biennial
international conference concentrating on artificial intelligence (AI) theories, technolo-
gies, and applications in the areas of social and economic importance for Pacific Rim
countries. It provides a common forum for researchers and practitioners in various
branches of AI to exchange new ideas and share experience and expertise. Since then,
the conference has grown, both in participation and scope, to be a premier international
AI event for all major Pacific Rim nations as well as countries from all around the world.
In 2018, the PRICAI Steering Committee decided to hold PRICAI on an annual basis
starting from 2019.

This year, we received an overwhelming number of valid submissions to the main
track (403 submissions), the special track (18 submissions), and the industry track
(11 submissions). This number was impressive considering the continuing COVID-19
pandemic situation around the globe. All submissions were reviewed and evaluated with
the same highest quality standard through a double-blind review process.

Each paper received at least two reviews, with over 90% receiving three or more.
During the review process, discussions among the Program Committee (PC) members
in charge were carried out before recommendations were made, and, when necessary,
additional reviews were sourced. Finally, the conference and program co-chairs read
the reviews and comments and made a final calibration for differences among individ-
ual reviewer scores in light of the overall decisions. The entire Program Committee
(including PC members, external reviewers, and co-chairs) expended tremendous effort
to ensure fairness and consistency in the paper selection process.

Eventually, we accepted 91 regular papers and 39 short papers for oral presentation.
This gives a regular paper acceptance rate of 21% and an overall acceptance rate of 30%.

The technical program consisted of three workshops and the main conference
program. The workshops included the “Principle and practice of data and Knowledge
AcquisitionWorkshop (PKAW2022),” the “DecodingModels ofHumanEmotionUsing
Brain Signals Workshop”, and the “The 1st International Workshop on Democracy and
AI (DemocrAI2022)”. The main program included an industry track and a special track
on “Strong and General AI.”

All regular and short papers were orally presented over four days in parallel and
in topical program sessions. We were honored to have keynote presentations by four
distinguished researchers in the field of AI whose contributions have crossed disci-
pline boundaries: Toby Walsh (University of New South Wales, Australia), Qing Li
(Hong Kong Polytechnic University, China), Jie Lu (University of Technology Sydney,
Australia), and Yu Zheng (JD Technology, China). We were grateful to them for sharing
their insights on their latest research with us.
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The success of PRICAI 2022 would not be possible without the effort and support of
numerous people from all over the world. First, we would like to thank the authors, PC
members, and external reviewers for their time and efforts spent in making PRICAI 2022
a successful and enjoyable conference. We are also thankful to various fellow members
of the conference committee, without whose support and hard work PRICAI 2021 could
not have been successful:

– Advisory Board: Abdul Sattar, Beyong Kang, Takayuki Ito, Zhihua Zhou, Chengqi
Zhang, and Fenrong Liu

– Special Track Chairs: Ji Zhang and Biao Wang
– Industry Chair: Hengshu Zhu
– Workshop Chairs: Ryuta Arisaka and Zehong Cao
– Tutorial Chairs: Weiwei Yuan and Rafik Hadfi
– Finance Chair: Shiyou Qian
– Local/Virtual Organizing Chairs: Shiyou Qian and Nengjun Zhu
– Publicity Chairs: Yi Yang and Mukesh Prasad
– Sponsorship Chairs: Dengji Zhao and Xiangfeng Luo
– Webmaster: Shiqing Wu

We gratefully acknowledge the organizational support of several institutions
including the University of Tasmania (Australia), the University of Technology
Sydney (Australia), Shanghai Jiao Tong University (China), CSIRO (Australia), Griffith
University (Australia), Kyoto University (Japan), ShanghaiTech University (China), the
University of South Australia (Australia), Nanjing University of Aeronautics and Astro-
nautics (China), Shanghai University (China), Hefei University of Technology (China),
the University of Southern Queensland (Australia), and the Shanghai Computer Soci-
ety (China). Finally, we thank the team at Springer for their assistance in publishing the
PRICAI 2022 proceedings as three volumes of its Lecture Notes in Artificial Intelligence
series.

November 2022 Sankalp Khanna
Jian Cao
Quan Bai

Guandong Xu
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Abstract. Most of the existing algorithms for fair division do not con-
sider externalities. Under externalities, the utility of an agent depends
not only on its allocation but also on other agents’ allocation. An agent
has a positive (negative) value for the assigned goods (chores). This work
studies a special case of externality which we refer to as 2-D. In 2-D, an
agent receives a positive or negative value for unassigned items indepen-
dent of who receives them. We propose a simple valuation transformation
and show that we can adapt existing algorithms using it to retain some
of the fairness and efficiency notions in 2-D. However, proportionality
doesn’t extend in 2-D. We redefine PROP and its relaxation and show
that we can adapt existing algorithms. Further, we prove that maximin
share (MMS) may not have any multiplicative approximation in this set-
ting. Studying this domain is a stepping stone towards full externalities
where ensuring fairness is much more challenging.

Keywords: Resource allocation · Fairness · Externalities

1 Introduction

We consider the problem of allocating m indivisible items fairly among n agents
who report their valuations for the items. These scenarios often arise in the divi-
sion of inheritance among family members, divorce settlements and distribution
of tasks among workers [12,33,38–40]. Economists have proposed many fairness
and efficiency notions widely applicable in such real-world settings. Researchers
also explore the computational aspects of some widely accepted fairness notions
[9,15,18,21,36]. Such endeavours have led to web-based applications like Splid-
dit, The Fair Proposals System, Coursematch, etc. However, most approaches
do not consider agents with externalities, which we believe is restrictive.

In the absence of externality, the utility corresponding to an unallocated
item is zero. Externality implies that the agent’s utility depends not only on
their bundle but also on the bundles allocated to other agents. Such a scenario
is relatively common, mainly in allocating necessary commodities. For example,
the COVID-19 pandemic resulted in a sudden and steep requirement for life-
supporting resources like hospital beds, ventilators, and vaccines. There has been

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-20862-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20862-1_1&domain=pdf
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a heavy disparity in handling resources across the globe. Even though there was
a decrease in GDP worldwide, low-income countries suffered more than high-
income countries. We can categorize externality into positive and negative; i.e.,
if it affects the agent positively, we refer to it as a positive externality and
vice versa. Getting a vaccination affects an agent positively. The agent values it
positively, possibly less, even if others get vaccinated instead of it. However, not
receiving a ventilator results in negative utility for the patient and family. While
there has been an increase in demand for pharmaceuticals, we see a steep decrease
in travel. Such a complex valuation structure is modeled via externalities.

Generally with externalities, the utility of not receiving an item depends
on which other agent receives it. That is, each agent’s valuation for an item is
an n-dimensional vector. The jth component corresponds to the value an agent
obtains if the item is allocated to agent j. In this work, we consider a special
case of externalities in which the agents incur a cost/benefit for not receiving
an item. Yet, the cost/benefit is independent of which other agent receives the
item. This setting is referred to as 2-D, i.e., value v for receiving an item and
v′ otherwise. When there are only two agents, the 2-D domain is equivalent to
the domain with general externalities. We refer to the agent valuations without
externalities as 1-D. For the 2-D domain, we consider both goods/chores with
positive/negative externality for the following fairness notions.
Fairness Notions. Envy-freeness (EF) is the most common fairness notion. It
ensures that no agent has higher utility for other agent’s allocation [20]. Consider
1-D setting with two agents - {1, 2} and two goods - {g1, g2}; agent 1 values g1
at 6 and g2 at 5, while agent 2 values g1 at 5 and g2 at 6. Allocating g1 and g2
to agent 1 and 2, respectively, is EF. However, if agent 1 receives a utility of −1
and −100 for not receiving g1 and g2. And agent 2 receives a utility of −100 and
−1 for not receiving g1 and g2; this allocation is no longer EF.

Externalities introduce complexity, so much that the definition of proportion-
ality cannot be adapted to the 2-D domain. Proportionality (PROP) ensures that
every agent receives at least 1/n of its complete bundle value [39]. In the above
example, each agent should receive goods worth at least 11/2. Guaranteeing
this amount is impossible in 2-D, as it does not consider the dis-utility of not
receiving goods. Moreover, it is known that EF implies PROP in the presence
of additive valuations. However, in the case of 2-D, it need not be true, i.e.,
assigning g2 to agent 1 and g1 to agent 2 is EF but not PROP.

We consider a relaxation of PROP, the maximin share (MMS) allocation.
Imagine asking an agent to divide the items into n bundles and take the mini-
mum valued bundle. The agent would divide the bundles to maximize the min-
imum utility, i.e., the MMS share of the agent. An MMS allocation guarantees
every agent its MMS share. Even for 1-D valuations, MMS allocation may not
exist; hence researchers find multiplicative approximation α-MMS. An α-MMS
allocation guarantees at least α fraction of MMS to every agent. [25] provides
an algorithm that guarantees 3/4 + 1/12n-MMS for goods and authors in [27]
guarantees 11/9-MMS for chores. In contrast, we prove that for 2-D valuation, it
is impossible to guarantee multiplicative approximation to MMS. Thus, in order
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to guarantee existence results, we propose relaxed multiplicative approximation
and also explore additive approximations of MMS guarantees.

In general, it is challenging to ensure fairness in the settings with full exter-
nality, hence the special case of 2-D proves promising. Moreover, in real-world
applications, the 2-D valuations helps model various situations (e.g., COVID-19
resource allocation mentioned above). Studying 2-D domain is especially signif-
icant for α-MMS. We prove that there cannot exist any multiplicative approxi-
mation for MMS in 2-D. Therefore, we define Shifted α-MMS that always exists
in 2-D. In summary our approach and contributions are as follows,

Our Approach. There is extensive literature available for fair allocations, and
we primarily focus on leveraging existing algorithms to 2-D. We demonstrate
in Sect. 3 that existing algorithms cannot directly be applied to 2-D. Towards
guaranteeing fairness notion in 2-D, we propose a property preserving transfor-
mation T that converts 2-D valuations to 1-D; i.e., an allocation that satisfies a
property in 2-D also satisfies it in transformed 1-D and vice-versa.
Contributions.

1. We demonstrate in Sect. 3 that studying fair allocation with externalities
is non-trivial and propose T to retain fairness notions such as EF, MMS,
and its additive relaxations and efficiency notions such as MUW and PO
(Theorem 1). Thus, we can adapt the existing algorithms for the same.

2. We introduce PROP-E for general valuations for full externalities (Sect. 2)
and derive relation with existing PROP extensions (Sect. 4).

3. We prove that α-MMS may not exist in 2-D (Theorem 2). We propose Shifted
α-MMS, a novel way of approximating MMS in 2-D (Sect. 5.3).

Related Work

While fair resource division has an extremely rich literature, externalities is less
explored. Velez [41] extended EF in externalities. [13] generalized PROP and
EF for divisible goods with positive externalities. Seddighin et al. [37] proposed
average-share, an extension of PROP, and studied MMS for goods with positive
externalities. Authors in [6] explored EF1/EFX for the specific setting of two
and three agents and provided PROP extension. For two agents, their setting is
equivalent to 2-D, hence existing algorithms [4,15,35] suffice. Beyond two agents,
the setting is more general and they proved the non-existence of EFX for three
agents. In contrast, EFX always exists for three agents in our setting.

Envy-freeness up to one item (EF1) [14,32] and Envy-freeness up to any
item(EFX) [15] are prominent relaxation of EF. EF may not exist for indi-
visible items. We consider two prominent relaxations of EF, Envy-freeness up
to one item (EF1) [14,32] and Envy-freeness up to any item(EFX) [15]. We
have poly-time algorithms to find EF1 in general monotone valuations for goods
[32] and chores [11]. For additive valuations, EF1 can be found using Round
Robin [15] in goods or chores, and Double Round Robin [2] in combination.
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[35] present an algorithm to find EFX allocation under identical general val-
uations for goods. [16] proved that an EFX allocation exists for three agents.
Researchers have also studied fair division in presence of strategic agents, i.e.,
designing truthful mechanisms [8,10,34]. A great deal of research has been done
on mechanism design [22,23]. PROP1 and PROPX are popular relaxation of
PROP. For additive valuations, EF1 implies PROP1, and EFX implies PROPX.
Unfortunately, in paper [4], the authors showed the PROPX for goods may not
always exists. [31] explored (weighted) PROPX and showed it exists in poly-
nomial time. MMS do not always exist [29,36]. The papers [1,7,24,36] showed
that 2/3-MMS for goods always exists. Paper [25,26] showed that 3/4-MMS
for goods always exists. Authors in [25] provides an algorithm that guarantees
3/4 + 1/12n-MMS for goods. Authors in [5] presented a polynomial-time algo-
rithm for 2-MMS for chores. The algorithm presented in [7] gives 4/3-MMS for
chores. Authors in [27] showed that 11/9-MMS for chores always exists. [28]
explored α−MMS for a combination of goods and chores. In [15] showed that
MNW is EF1 and PO for indivisible goods and [9] gave a pseudo-polynomial
time algorithm. [2] presented algorithm to find EF1 and PO for two agents. [4]
presented an algorithm to find PROP1 and fPO for combination. [3] proposed
a pseudo-polynomial time algorithm for finding utilitarian maximizing among
EF1 or PROP1 in goods.

2 Preliminaries

We consider a resource allocation problem (N,M,V) for determining an alloca-
tion A of M = [m] indivisible items among N = [n] interested agents, m,n ∈ N.
We only allow complete allocation and no two agents can receive the same item.
That is, A = (A1, . . . , An), s.t., ∀i, j ∈ N , i �= j;Ai ∩ Aj = ∅ and

⋃
i Ai = M .

A−i denotes the set M \ Ai.
2-D Valuations. The valuation function is denoted by V = {V1, V2, . . . , Vn};
∀i ∈ N , Vi : 2M → R

2, ∀S ⊆ M , Vi(S) = (vi(S), v′
i(S)), where vi(S) denotes the

value for receiving bundle S and v′
i(S) for not receiving S. The value of an agent

i for item k in 2-D is (vik, v′
ik). If k is a good (chore), then vik ≥ 0 (vik ≤ 0).

For positive (negative) externality v′
ik ≥ 0 (v′

ik ≤ 0).
The utility an agent i ∈ N obtains for a bundle S ⊆ M is, ui(S) =

vi(S) + v′
i(M \ S) Also, ui(∅) = 0 + v′

i(M) and utilities in 2-D are not normal-
ized1. When agents have additive valuations, ui(S) =

∑
k∈S vik+

∑
k/∈S v′

ik. We
assume monotonicity of utility for goods, i.e., ∀S ⊆ T ⊆ M , ui(S) ≤ ui(T )
and anti-monotonicity of utility for chores, i.e., ui(S) ≥ ui(T ). We use the
term full externalities to represent complete externalities, i.e., each agent has
n-dimensional vector for its valuation for an item. We next define fairness and
efficiency notions.

1 Utility is normalized when ui(∅) = 0, ∀i.
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Definition 1 (Envy-free (EF) and relaxations [2,14,15,20,41]). For the
items (chores or goods) an allocation A that satisfies ∀i, j ∈ N ,2

ui(Ai) ≥ ui(Aj) is EF

vik < 0, ui(Ai \ {k}) ≥ ui(Aj);∀k ∈ Ai

vik > 0, ui(Ai) ≥ ui(Aj \ {k});∀k ∈ Aj

}

is EFX

ui(Ai \ {k}) ≥ ui(Aj \ {k});∃k ∈ {Ai ∪ Aj} is EF1

Definition 2 (Proportionality (PROP) [39]). An allocation A is said to be
proportional, if ∀i ∈ N , ui(Ai) ≥ 1

n · ui(M).

For 2-D, achieving PROP is impossible as discussed in Sect. 1. To capture propor-
tional under externalities, we introduce Proportionality with externality (PROP-
E). Informally, while PROP guarantees 1/n share of the entire bundle, PROP-E
guarantees 1/n share of the sum of utilities for all bundles. Note that, PROP-E
is not limited to 2-D and applies to a full externalities. Formally,

Definition 3 (Proportionality with externality (PROP-E)). An alloca-
tion A satisfies PROP-E if, ∀i ∈ N ,ui(Ai) ≥ 1

n · ∑
j∈N ui(Aj)

Definition 4 (PROP-E relaxations). An allocation A ∀i,∀j ∈ N , satisfies
PROPX-E if it is PROP-E up to any item, i.e.,

vik > 0, ui(Ai ∪ {k}) ≥ 1
n

∑
j∈N ui(Aj);∀ k ∈ {M \ Ai}

vik < 0, ui(Ai \ {k}) ≥ 1
n

∑
j∈N ui(Aj);∀ k ∈ Ai

}

Next,Asatisfies PROP1-E if it is PROP-E up to an item, i.e.,

ui(Ai ∪ {k}) ≥ 1
n

∑
j∈N ui(Aj);∃ k ∈ {M \ Ai} or,

ui(Ai \ {k}) ≥ 1
n

∑
j∈N ui(Aj);∃ k ∈ Ai

}

Finally, we state the definition of MMS and its multiplicative approximation.

Definition 5 (Maxmin Share MMS [14]). An allocation A is said to be
MMS if ∀i ∈ N,ui(Ai) ≥ μi, where

μi = max
(A1,A2,...,An)∈

∏
n(M)

min
j∈N

ui(Aj)

An allocation A is said to be α-MMS if it guarantees ui(Ai) ≥ α · μi for
μi ≥ 0 and ui(Ai) ≥ 1

α · μi when μi ≤ 0, where α ∈ (0, 1].

Definition 6 (Pareto-Optimal (PO)). An allocation A is PO if � A′ s.t.,
∀i ∈ N , ui(A′

i) ≥ ui(Ai) and ∃i ∈ N , ui(A′
i) > ui(Ai).

We also consider efficiency notions like Maximum Utilitarian Welfare (MUW),
that maximizes the sum of agent utilities. Maximum Nash Welfare (MNW) max-
imizes the product of agent utilities and Maximum Egalitarian Welfare (MEW)
maximizes the minimum agent utility.

In the next section, we define a transformation from 2-D to 1-D that plays a
major role in adaptation of existing algorithms for ensuring desirable properties.
2 Beyond 2-D, one must include the concept of swapping bundles in EF [6,41].
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3 Reduction from 2-D to 1-D

We define a transformation T : V → W, where V is the valuations in 2-D, i.e.,
V = {V1, V2, . . . , Vn} and W is the valuations in 1-D, i.e., W = {w1, w2, . . . , wn}.

Definition 7 (Transformation T). Given a resource allocation problem
(N,M,V) we obtain the corresponding 1-D valuations denoted by W = T (V(·))
as follows,

∀i ∈ N,wi(Ai) = T(Vi(Ai)) = vi(Ai) + v′
i(A−i) − v′

i(M) (1)

When valuations are additive, we obtain wi(Ai) = vi(Ai)−v′
i(Ai). An agent’s

utility in 2-D is ui(Ai) and the corresponding utility in 1-D is wi(Ai).

Lemma 1. For goods (chores), under monotonicity (anti-monotonicity) of V,
W = T (V(·)) is normalized, monotonic (anti-monotonic), and non-negative
(negative).

Proof. We assume monotonicity of utility for goods in 2-D. Therefore, ∀S ⊆
M,wi(S) is also monotone. And wi(∅) = vi(∅)+v′

i(M)−v′
i(M) = 0 is normalized.

Since wi(·) is monotone and normalized, it is non negative for goods. Similarly we
can prove that wi(·) is normalized, anti-monotonic and non-negative for chores.

Theorem 1. An allocation A is F-Fair and E-Efficient in V iff A is F-Fair and
E-Efficient in the transformed 1-D, W, where F ∈ {EF, EF1, EFX, PROP-E,
PROP1-E, PROPX-E, MMS} and E ∈ {PO, MUW}.
Proof Sketch. We first consider F = EF. Let allocation A be EF in W then,

∀i, ∀j, wi(Ai) ≥ wi(Aj)
vi(Ai) + v′

i(A−i) − v′
i(M) ≥ vi(Aj) + v′

i(A−j) − v′
i(M)

ui(Ai) ≥ ui(Aj)

We can proof the rest in a similar manner.
From Lemma 1 and Theorem 1, we obtain the following.

Corollary 1. To determine {EF, EF1, EFX, MMS} fairness and {PO, MUW}
efficiency, we can apply existing algorithms to the transformed W = T (V (·)) for
general valuations.

Existing algorithms cannot be directly applied. Modified leximin algorithm gives
PROP1 and PO for chores for 3 or 4 agents in [17], but it is not PROP1-E
(or PROP1) and PO in 2-D when applied on utilities. The following example
demonstrates the same,

Example 1. Consider 3 agents {1, 2, 3} and 4 chores {c1, c2, c3, c4} with posi-
tive externality. The 2-D valuation profile is as follows, V1c1 = (−30, 1), V1c2 =
(−20, 1), V1c3 = (−30, 1), V1c4 = (−30, 1), V3c1 = (−1, 40), V3c2 = (−1, 40),
V3c3 = (−1, 40), and V3c4 = (−1, 40). The valuation profile of agent 2 is iden-
tical to agent 1. Allocation {∅, ∅, (c1, c2, c3, c4)} is leximin allocation, which is
not PROP1-E. However, allocation {c3, (c2, c4), (c1)} is leximin on transformed
valuations; it is PROP1 and PO in W and it is PROP1-E and PO in V.
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For chores, the authors in [31] showed that any PROPX allocation ensures 2-
MMS for symmetric agents. This result also doesn’t extend to 2-D. For e.g.,
consider two agents {1, 2} having additive identical valuations for six chores
{c1, c2, c3, c4, c5, c6}, given as V1c1 = (−9, 1), V1c2 = (−11, 1), V1c3 = (−12, 1),
V1c4 = (−13, 1), V1c5 = (−9, 1), and V1c6 = (−1, 38). Allocation A = {(c1, c2, c3,
c4, c5), (c6)} is PROPX-E, but is not 2-MMS in V. Further, adapting certain
fairness or efficiency criteria to 2-D is not straightforward. E.g., MNW cannot
be defined in 2-D because agents can have positive or negative utilities. Hence
MNW implies EF1 and PO doesn’t extend to 2-D. The authors proved that
MNW allocation gives at least 2

1+
√
4n−3

-MMS value to each agent in [15], which
doesn’t imply for 2-D. Similarly, we show that approximation to MMS, α-MMS,
does not exist in the presence of externalities (Sect. 5).

4 Proportionality in 2-D

We remark that PROP (Definition 2) is too strict in 2-D. As a result, we intro-
duce PROP-E and its additive relaxations in Definitions 3 and 4 for general
valuations.

Proposition 1. For additive 2-D, we can adapt the existing algorithms of
PROP and its relaxations to 2-D using T.

Proof. In the absence of externalities, for additive valuations, PROP-E is equiv-
alent to PROP. From Theorem 1, we know that T retains PROP-E and its
relaxations, and hence all existing algorithms of 1-D is applicable using T.

It is known that EF =⇒ PROP for sub-additive valuation in 1-D. In the case
of PROP-E, ∀i, j ∈ N , ui(Ai) ≥ ui(Aj) =⇒ ui(Ai) ≥ 1

n · ∑n
j=1 ui(Aj).

Corollary 2. EF =⇒ PROP-E for arbitrary valuations with full externalities.

We now compare PROP-E with existing PROP extensions for capturing
externalities. We consider two definitions stated in literature from [37] (Average
Share) and [6] (General Fair Share). Note that both these definitions are applica-
ble when agents have additive valuations, while PROP-E applies for any general
arbitrary valuations. In [6], the authors proved that Average Share =⇒ General
Fair Share, i.e., if an allocation guarantees all agents their average share value,
it also guarantees general fair share value. With that, we state the definition of
Average Share (in 2-D) and compare it with PROP-E.

Definition 8 (Average Share [37]). In V, the average value of item k for
agent i, denoted by avg[vik] = 1

n · [vik + (n − 1)v′
ik]. The average share of agent

i, vi(M) =
∑

k∈M avg[vik]. An allocation A is said to ensure average share if
∀i, ui(Ai) ≥ vi(M).

Proposition 2. PROP-E is equivalent to Average Share in 2-D, for additive
valuations.
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Proof Sketch. ∀i ∈ N,

ui(Ai) ≥ 1
n

·
∑

j∈N

ui(Aj) =
1
n

·
∑

j∈N

vi(Aj) − v′
i(M \ Aj)

=
1
n

·
∑

k∈M

vik − 1
n

·
∑

k∈M

(n − 1)v′
ik

Next, we briefly state the relation of EF, PROP-E, and Average Share beyond
2-D and omit the details due to space constraints.

Remark 1. In case of full externality, EF �=⇒ Average Share [6].

Proposition 3. Beyond 2-D, PROP-E �=⇒ Average Share and Average Share
�=⇒ PROP-E.

To conclude this section, we state that for the special case of 2-D externalities
with additive valuations, we can adapt existing algorithms to 2-D, and further
analysis is required for the general setting.

We now provide analysis of MMS for 2-D valuations in the next section.

5 Approximate MMS in 2-D

From Theorem 1, we showed that transformation T retains MMS property, i.e.,
an allocation A guarantees MMS in 1-D iff A guarantees MMS in 2-D. We draw
attention to the point that,

μi = μW
i + v′

i(M) (2)

where μW
i and μi are the MMS value of agent i in 1-D and 2-D, respectively.

[30] proved that MMS allocation may not exist even for additive valuations, but
α-MMS always exists in 1-D. The current best approximation results on MMS
allocation are 3/4 + 1/(12n)-MMS for goods [25] and 11/9-MMS for chores [27]
for additive valuations. We are interested in finding multiplicative approximation
to MMS in 2-D. Note that we only study α-MMS for complete goods or chores
in 2-D, as [28] proved the non-existence of α-MMS for combination of goods and
chores in 1-D. From Eq. 5 for α ∈ (0, 1], if μi is positive, we consider α-MMS,
and if it is negative, then 1/α-MMS.

We categorize externalities in two ways for better analysis 1) Correlated
Externality 2) Inverse Externality. In the correlated setting, we study goods
with positive externality and chores with negative externality. And in the inverse
externality, we study goods with negative externality and chores with positive
externality. Next, we investigate α-MMS guarantees for correlated externality.
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5.1 α-MMS for Correlated Externality

Proposition 4. For correlated externality, if an allocation A is α-MMS in W,
A is α-MMS in V, but need not vice versa.

Proof. Part-1. Let A be α-MMS in W,

∀i ∈ N,wi(Ai) ≥ αμW
i =⇒ ui(Ai) − v′

i(M) ≥ −αv′
i(M) + αμi for goods

∀i ∈ N,wi(Ai) ≥ 1
α

μW
i =⇒ ui(Ai) − v′

i(M) ≥ − 1
α

v′
i(M) +

1
α

μi for chores

For goods with positive externalities, μi > 0, α ∈ (0, 1], and ∀S ⊆ M , v′
i(S) ≥ 0.

We derive v′
i(M) ≥ αv′

i(M), and hence we can say ui(Ai) ≥ αμi. For chores
with negative externalities, μi < 0, 1/α ≥ 1, and ∀S ⊆ M,v′(S) ≤ 0. Similarly
to the previous point, we derive v′(M) ≥ 1

αv′(M) and thus ui(Ai) ≥ 1
αμi.

Part-2. We now prove A is α-MMS in V but not in W.
Example. Consider N = {1, 2} both have additive identical valuations for goods
{g1, g2, g3, g4, g5, g6}, Vig1 = (0.5, 0.1), Vig2 = (0.5, 0.1), Vig3 = (0.3, 0.1), Vig4 =
(0.5, 0.1), Vig5 = (0.5, 0.1), and Vig6 = (0.5, 0.1). After transformation, we get
μW

i = 1 and in 2-D μi = 1.6. Allocation, A = {{g1}, {g2, g3, g4, g5, g6}} is
1/2-MMS in V, but not in W. Similarly, it is easy to verify the same for chores.

Corollary 3. We can adapt the existing α-MMS algorithms using T for corre-
lated externality for general valuations.

Corollary 4. For correlated 2-D externality, we can always obtain 3/4 +
1/(12n)-MMS for goods and 11/9-MMS for chores for additive.

5.2 α-MMS for Inverse Externality

Motivated by the example given in [30] for non-existence of MMS allocation for
1-D valuations, we adapted it to construct the following instance in 2-D to prove
the impossibility of α-MMS in 2-D. We show that for any α ∈ (0, 1], an α-MMS
or 1/α-MMS allocation may not exist for inverse externality in this section. We
construct an instance V g such that α-MMS exists in V g only if MMS allocation
exists in W = T(V g). Note that W is exactly the instance of the example in [30].
Hence the contradiction.
Non-existence of α-MMS in Goods. Consider the following example.

Example 2. We consider a problem of allocating 12 goods among three agents,
and represent valuation profile as V g. The valuation profile V g is equivalent to
103 × V given in Table 1. We set ε1 = 10−4 and ε2 = 10−3. We transform
these valuations in 1-D using T, and the valuation profile T(V g) is the same
as the instance in [30] that proves the non-existence of MMS for goods. Note
that ∀i, v′

i(M) = −4055000 + 103ε1 The MMS value of every agent in T(V g) is
4055000 and from Eq. 2, the MMS value of every agent in V g is 103ε1.
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Table 1. Additive 2-D valuation profile (V )

Item Agent 1 (v1, v
′
1) Agent 2 (v2, v

′
2) Agent 3 (v3, v

′
3)

k1 (3ε2, -1017+3ε1-3ε2) (3ε2, -1017+3ε1-3ε2) (3ε2, -1017+3ε1-3ε2)

k2 (2ε1, -1025+2ε1+ε2) (2ε1, -1025+2ε1+ε2) (1025 − ε1, -ε1)

k3 (2ε1, -1012+2ε1+ε2) (1012 − ε1, -ε1) (2ε1, -1012+2ε1+ε2)

k4 (2ε1, -1001+2ε1+ε2) (1001 − ε1, -ε1) (1001 − ε1, -ε1)

k5 (1002 − ε1, -ε1) (2ε1, -1002+2ε1+ε2) (1002 − ε1, -ε1)

k6 (1022 − ε1, -ε1) (1022 − ε1, -ε1) (1022 − ε1, -ε1)

k7 (1003 − ε1, -ε1) (1003 − ε1, -ε1) (2ε1, -1003+2ε1+ε2)

k8 (1028 − ε1, -ε1) (1028 − ε1, -ε1) (1028 − ε1, -ε1)

k9 (1011 − ε1, -ε1) (2ε1, -1011+2ε1+ε2) (1011 − ε1, -ε1)

k10 (1000 − ε1, -ε1) (1000 − ε1, -ε1) (1000 − ε1, -ε1)

k11 (1021 − ε1, -ε1) (1021 − ε1, -ε1) (1021 − ε1, -ε1)

k12 (1023 − ε1, -ε1) (1023 − ε1, -ε1) (2ε1, -1023+2ε1+ε2)

Recall that T retains MMS property (Theorem 1) and thus we can say that
MMS allocation doesn’t exist in V g.

Lemma 2. There is no α-MMS allocation for the valuation profile V g of Exam-
ple 2 for any α ∈ [0, 1].

Proof. An allocation A is α-MMS for α ≥ 0 iff ∀i, ui(Ai) ≥ αμi ≥ 0 when
μi > 0. Note that the transformed valuations wi(Ai) = T(V g

i (Ai)). From Eq. 1,
ui(Ai) ≥ 0, iff wi(Ai) ≥ −v′

i(M), which gives us wi(Ai) ≥ 4055000 − 0.1. For
this to be true, we need wi(Ai) ≥ 4055000 since T(V g) has all integral values.
We know that such an allocation doesn’t exist [30]. Hence for any α ∈ [0, 1],
α-MMS does not exist for V g.

Non-existence of 1/α-MMS in Chores. Consider the following example.

Example 3. We consider a problem of allocating 12 chores among three agents.
The valuation profile V c is equivalent to −103V given in Table 1. We set
ε2 = −10−3. We transform these valuations in 1-D, and T(V c) is the same
as the instance in [5] that proves the non-existence of MMS for chores. Note
that v′

i(M) = 4055000− 103ε1. The MMS value of every agent in T(V c) and V c

is -4055000 and −103ε1, respectively.

Lemma 3. There is no 1/α-MMS allocation for the valuation profile V c of
Example 3 with ε1 ∈ (0, 10−4] for any α > 0.

Proof. An allocation A is 1/α-MMS for α > 0 iff ∀i, ui(Ai) ≥ 1
αμi when μi < 0.

We set ε1 ≤ 10−4 in V c. When α ≥ 103ε1 ∀i then ui(Ai) ≥ −1. From Eq. 1,
ui(Ai) ≥ −1 iff wi(Ai) ≥ −4055001+103ε1. Note that 0 < 103ε1 ≤ 0.1 and since
wi(Ai) has only integral values, we need ∀i, wi(Ai) ≥ −4055000. Such A does
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not exist [5]. As ε1 decreases, 1/ε1 increases, and even though approximation
guarantees weakens, it still does not exist for V c.

From Lemma 2 and 3 we conclude the following theorem,

Theorem 2. There may not exist α-MMS for any α ∈ [0, 1] for μi > 0 or 1/α-
MMS allocation for any α ∈ (0, 1] for μi < 0 in the presence of externalities.

Interestingly, in 1-D, α-MMS’s non-existence is known for α value close to
1 [19,30], while in 2-D, it need not exist even for α = 0. It follows because α-
MMS could not lead to any relaxation in the presence of inverse externalities.
Consider the situation of goods having negative externalities, where MMS share
μi comprises of the positive value from the assigned bundle Ai and negative
value from the unassigned bundles A−i. We re-write μi as follows, μi = μ+

i +μ−
i

where μ+
i corresponds to utility from assigned goods/unassigned chores and μ−

i

corresponds to utility from unassigned goods/assigned chores. When μi ≥ 0,
applying αμi is not only relaxing positive value αμ+

i , but also requires αμ−
i

which is stricter than μ−
i since μ−

i < 0. Hence, the impossibility of α-MMS in
2-D. Similar argument holds for chores. Next, we explore MMS relaxation such
that it exists in 2-D.

5.3 Re-defining Approximate MMS

In this section, we define Shifted α-MMS that guarantees a fraction of MMS
share shifted by certain value, such that it always exist in 2-D. We also considered
intuitive ways of approximating MMS in 2-D. These ways are based on relaxing
the positive value obtained from MMS allocation μ+ and the negative value μ−,
μ = μ+ + μ−. In other words, we look for allocations that guarantee αμ+ and
(1+α) or 1/α of μ−. Unfortunately, such approximations may not always exist.
We skip the details due to space constraints.

Definition 9 (Shifted α-MMS). An allocation A guarantees shifted α-MMS
if ∀i ∈ N,α ∈ (0, 1]

ui(Ai) ≥ αμi + (1 − α)v′
i(M)

}
for goods

ui(Ai) ≥ 1
αμi + α−1

α v′
i(M)

}
for chores

Proposition 5 An allocation A is α-MMS in W iff A is shifted α-MMS in V.

Proof For goods, if allocation A is shifted α-MMS, ∀i, ui(Ai) ≥ αμi + (1 −
α)v′

i(M). Applying T, we get wi(Ai) + v′
i(M) ≥ αμW

i + αv′
i(M) + (1 − α)v′

i(M)
which gives wi(Ai) ≥ αμW

i . For chores, if A is shifted 1/α-MMS, ∀i, ui(Ai) ≥
1
αμi+

(α−1)
α v′

i(M), which gives wi(Ai) ≥ 1
αμW

i . Similarly we can prove vice versa.

Corollary 5. We can adapt all the existing algorithms for α-MMS in W to get
shifted α-MMS in V.

We use T and apply the existing algorithms and obtain the corresponding
shifted multiplicative approximations. In the next section, we examine the addi-
tive relaxation of MMS since a multiplicative approximation need not exist in
the presence of externalities.



14 S. Mishra et al.

Additive Relaxation of MMS

Definition 10 (MMS relaxations). An allocation A that satisfies, ∀i, j ∈ N ,

∀ k ∈ {M \ Ai}, vik > 0, ui(Ai ∪ {k}) ≥ μi

∀ k ∈ Ai, vik < 0, ui(Ai \ {k}) ≥ μi

}

MMSX, MMS upto any item

(3)

∃ k ∈ {M \ Ai}, ui(Ai ∪ {k}) ≥ μi, or,
∃ k ∈ Ai, ui(Ai \ {k}) ≥ μi

}

MMS1, MMS upto an item

(4)

Proposition 6. From Lemma 1 and Theorem 1, we conclude that MMS1 and
MMSX are preserved after transformation.

EF1 is a stronger fairness notion than MMS1 and can be computed in polynomial
time. On the other hand, PROPX might not exist for goods [4]. Since PROPX
implies MMSX, it is interesting to settle the existence of MMSX for goods. Note
that MMSX and Shifted α-MMS are not related. It is interesting to study these
relaxations further, even in full externalities.

6 Conclusion

In this paper, we conducted a study on indivisible item allocation with special
externalities – 2-D externalities. We proposed a simple yet compelling transfor-
mation from 2-D to 1-D to employ existing algorithms to ensure many fairness
and efficiency notions. We can adapt existing fair division algorithms via the
transformation in such settings. We proposed proportionality extension in the
presence of externalities and studied its relation with other fairness notions. For
MMS fairness, we proved the impossibility of multiplicative approximation of
MMS in 2-D, and we proposed Shifted α-MMS instead. There are many exciting
questions here which we leave for future works. (i) It might be impossible to have
fairness-preserving valuation transformation for general externalities. However,
what are some interesting domains where such transformations exist? (ii) What
are interesting approximations to MMS in 2-D as well as in general externalities?
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Abstract. This paper introduces a new problem called the Robust Max-
imum Satisfiability problem (R-MaxSAT), as well as its extension called
the Robust weighted Partial MaxSAT (R-PMaxSAT). In R-MaxSAT (or
R-PMaxSAT), a problem solver called defender hopes to maximize the
number of satisfied clauses (or the sum of their weights) as the standard
MaxSAT/partial MaxSAT problem, although she must ensure that the
obtained solution is robust (In this paper, we use the pronoun “she” for
the defender and “he” for the attacker). We assume an adversary called
the attacker will flip some variables after the defender selects a solu-
tion. R-PMaxSAT can formalize the robust Clique Partitioning Prob-
lem (robust CPP), where CPP has many real-life applications. We first
demonstrate that the decision version of R-MaxSAT is ΣP

2 -complete.
Then, we develop two algorithms to solve R-PMaxSAT, by utilizing
a state-of-the-art SAT solver or a Quantified Boolean Formula (QBF)
solver as a subroutine. Our experimental results show that we can obtain
optimal solutions within a reasonable amount of time for randomly gen-
erated R-MaxSAT instances with 30 variables and 150 clauses (within
40 s) and R-PMaxSAT instances based on CPP benchmark problems
with 60 vertices (within 500 s).

Keywords: MaxSAT · Clique Partition Problem · Robust solution

1 Introduction

In the past few decades, research on the Boolean Satisfiability problem (SAT) has
significantly progressed. In particular, various practical SAT solvers have evolved
that can solve real-life problem instances reasonably well [1,7,10]. SAT solvers
have now become invaluable tools in artificial intelligence, circuit design, and
automatic theorem proving. At the same time, various extensions of the standard
SAT have been proposed, such as Satisfiability Modulo Theories (SMT) [4],
and the Maximum Satisfiability problem (MaxSAT) [2,23,25]. SMT enriches
a standard Conjunctive Normal Form (CNF) formula with some background
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theories, such as the theory of real numbers, the theory of finite trees, and so
on. MaxSAT maximizes the number of satisfied clauses instead of checking the
satisfiability of the given clauses.

In this paper, we introduce yet another SAT extension called the Robust Max-
imum Satisfiability problem (R-MaxSAT). In R-MaxSAT, the problem solver,
which we call the defender, hopes to maximize the number of satisfied clauses
(like standard MaxSAT), although it must ensure that the obtained solution is
robust against the attack of an adversary, called the attacker. After the defender
selects a solution (i.e., an assignment of all variables), the attacker can flip a
fixed number of variables to minimize the number of satisfied clauses.

Our R-MaxSAT model is inspired by a vast amount of literature on security
games [29] developed over the last decade. A typical security game is the Stack-
elberg type, where the defender commits to a mixed (randomized) strategy, and
then the attacker chooses his best response given a mixed strategy. Previous
studies assume the attacker needs to solve relatively easy problems, many of
which are solvable in polynomial time. In our model, the defender commits to a
pure strategy, but the attacker needs to solve an NP-hard optimization problem.
The decision version of the defender’s problem becomes ΣP

2 -complete, which is
one level higher than NP-complete problems in the polynomial hierarchy [28].

The Quantified Boolean Formula problem (QBF) allows universal or existen-
tial quantifiers to bind the Boolean variables [6,8,14]. Ignatiev et al. [18] propose
an optimization extension of QBF called the quantified MaxSAT (QMaxSAT).
Let us consider a two-level QBF instance ∃X∀Y φ, where φ is a formula repre-
sented in CNF and X and Y are sets of variables. If we assume that the existen-
tially quantified variables are assigned by the defender, and the universally quan-
tified variables are assigned by the attacker, this problem has the same structure
as R-MaxSAT. However, one fundamental difference is that the variables the
attacker can modify in R-MaxSAT are not predefined, as in QBF/QMaxSAT.
Actually, a QBF instance with the above structure is equivalent to a standard
SAT instance with φ′, where φ′ is obtained by simply removing all occurrences of
literals containing variables in Y , and its complexity is NP-complete. Research
on super-models/solutions [12,13] also considers robust solutions, where a solu-
tion must be repaired after the attack. R-MaxSAT’s goal is different from that
of a super-solution; it simply maximizes the satisfied clauses after the attack
without any repairs.

The basic formalization of R-MaxSAT has several limitations in modeling
real-life applications. We propose a further extended model called the Robust
weighted Partial MaxSAT (R-PMaxSAT) that introduces hard clauses and the
attacker’s decision/auxiliary variables.1 We show that R-PMaxSAT can formal-
ize the robust Clique Partitioning Problem (robust CPP), where CPP has many
real-life applications. Next, we show that the decision version of R-MaxSAT is
ΣP

2 -complete. Then, we develop two algorithms to solve R-PMaxSAT, by utiliz-
ing the state-of-the-art SAT/QBF solvers as a subroutine.

1 These variables can overlap with the defender’s decision/auxiliary variables.
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The rest of the paper is organized as follows. In Sect. 2, we first introduce the
model of R-MaxSAT and discuss its limitation. Then, we introduce R-PMaxSAT
as an extension of R-MaxSAT. We also introduce the robust CPP as a possible
application of R-PMaxSAT. Next, in Sect. 3, we show that the complexity of
the decision version of R-MaxSAT is ΣP

2 -complete. Then, in Sect. 4, we intro-
duce two new algorithms for solving R-PMaxSAT, which utilizes state-of-the-art
SAT/QBF solvers as a subroutine. In Sect. 5, we compare the performance of
these algorithms using randomly generated instances and robust CPP instances.
Finally, Sect. 6 concludes this paper.

2 Model

A Boolean Satisfiability problem (SAT) instance is represented as a propositional
formula in a Conjunctive Normal Form (CNF). A CNF formula is a conjunction
(∧) of clauses. A clause is a disjunction (∨) of literals. A literal is either a variable
or its negation (¬). We regard a clause as the set of the literals in it, and a CNF
formula as a set of clauses.

Let Σ denote a set of clauses, and let X = vars(Σ) denote the set of variables
in Σ. Assignment τ of variables X ′ ⊆ X maps X ′ �→ {0, 1}. Let T (X ′) denote
all possible assignments to X ′. Assignment τ is extended to literals, clauses, and
sets of clauses. For all x ∈ X, τ(¬x) = 1 (or 0) iff τ(x) = 0 (or 1). For clause α,
τ(α) = 1 (or 0) iff τ(�) = 1 for some � ∈ α (or otherwise). For set of clauses Σ,
τ(Σ) = 1 (or 0) iff τ(α) = 1 for all α ∈ Σ (or otherwise). Clause α is satisfied
(or falsified) by τ iff τ(α) = 1 (or 0). Let s(τ) denote the number of clauses
satisfied by τ .

The definition of the Maximum Satisfiability problem (MaxSAT) is given as
follows.

MaxSAT Problem:
Input: An instance 〈X,Σ〉 of the Maximum Satisfiability problem.
Goal: Find τ∗ = arg maxτ ′∈T (X) s(τ ′).

An instance of the Robust Maximum Satisfiability problem (R-MaxSAT) is
defined by tuple 〈X,Σ,m〉, where m ∈ N is the maximum number of variables
the attacker can flip.

For subsets of variables X ′ and X ′′, τ ′ ∈ T (X ′), τ ′′ ∈ T (X ′′), and Y ⊆
X ′ ∩ X ′′, let d(τ ′, τ ′′, Y ) denote the number of disagreements between τ ′ and
τ ′′ for variables in Y , i.e., |{y ∈ Y | τ ′(y) = τ ′′(y)}|. Furthermore, let s−m(τ)
denote the minimum number of satisfied clauses after the attacker flipped at
most m variables:

s−m(τ) = min
τ ′∈T (X),d(τ,τ ′,X)≤m

s(τ ′).

The definition of the R-MaxSAT problem is given as follows.

R-MaxSAT Problem:
Input: An instance 〈X,Σ,m〉 of the Robust Maximum Satisfiability problem.
Goal: Find τ∗ = arg maxτ ′∈T (X) s−m(τ ′).
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The decision version of this problem asks for given threshold value θ ∈ N,
whether τ exists s.t. s−m(τ) ≥ θ holds.

To model real-life applications, the R-MaxSAT formalization has the follow-
ing limitations.

Hard clauses: When we model a problem as a SAT instance, some clauses may
represent physical/mathematical laws, which govern not only the defender
but also the attacker. Furthermore, some rules/constraints might exist con-
cerning how the attacker can modify variable values. Such rules/clauses must
be obeyed/satisfied by the attacker.

Auxiliary variables: In a SAT formalization, some variables are directly related
to the choice/decision making of the problem solver, and other variables are
auxiliary, e.g., they are introduced to represent some constraints as CNF. The
values of such variables are automatically determined by the value assignment
of other variables and hard clauses. Thus, limiting the number of variables
that the attacker can flip only makes sense for decision variables; the values
of such auxiliary variables must be set appropriately based on the change of
the decision variables.

To overcome these limitations, we extend the R-MaxSAT formalization based on
the weighted Partial MaxSAT problem (PMaxSAT). PMaxSAT is an extension
of MaxSAT, where some clauses are declared to be soft, and the rest are declared
to be hard. The goal is to find an assignment that satisfies all the hard clauses
and maximizes the weighted sum of the satisfied soft clauses. Let ΣH denote the
set of hard clauses, and let ΣS denote the set of soft clauses. Each soft clause
α ∈ ΣS is associated with its weight w(α) ∈ N. Let w(τ) denote the weighted
sum of the soft clauses satisfied by τ , i.e.,

∑
α∈ΣS ,τ(α)=1 w(α). The definition

of the PMaxSAT problem is given as follows, where X = vars(ΣH) ∪ vars(ΣS)
denotes the set of variables in ΣH or ΣS .

PMaxSAT Problem:
Input: An instance 〈X,ΣH , ΣS , w〉 of the Partial Maximum Satisfiability prob-
lem.
Goal: Find τ∗ = arg maxτ ′∈T (X),τ ′(ΣH)=1 w(τ ′).

In the Robust weighted Partial Maximum Satisfiability problem (R-
PMaxSAT), which is a strict generalization of R-MaxSAT, we consider two
sets of hard clauses: ΣHD

is the set of hard clauses that the defender must
satisfy, and ΣHA

is the set of hard clauses that the attacker must satisfy.
We assume ΣHD

and ΣHA
can overlap. Let X denote all the variables, i.e.,

vars(ΣHD
)∪vars(ΣHA

)∪vars(ΣS). Furthermore, we assume the set of decision
variables for the attacker is explicitly specified as well as the auxiliary variables
related to him. More specifically, two sets of variables Y and Z are specified,
where Y ⊆ Z ⊆ vars(ΣHA

) ∪ vars(ΣS) holds. The attacker can flip at most m
variables in Y , and he can flip any number of variables in Z \ Y . For τ ∈ T (X)
and τZ ∈ T (Z), let τ |τZ denote the assignment based on τ , where the assignment
of variables in Z is replaced by τZ .
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Let w−m(τ) denote the minimum value of the weighted sum of the satisfied
clauses in ΣS after the attacker modified the assignment of Z:

w−m(τ) = min
τZ∈T (Z),d(τ,τZ ,Y )≤m,τ |τZ(ΣHA

)=1
w(τ |τZ).

The definition of the R-PMaxSAT problem is given as follows.

R-PMaxSAT Problem:
Input: An instance 〈X,Y,Z,ΣHD

, ΣHA
, ΣS , w,m〉 of the Robust weighted Partial

Maximum Satisfiability problem.
Goal: Find τ∗ = arg maxτ ′∈T (X),τ ′(ΣHD

)=1 w−m(τ ′).

Let us illustrate how a real-life application can be formalized as R-PMaxSAT.
First, we introduce the Clique Partition Problem (CPP) [17,24]. A CPP instance
is a complete edge-weighted undirected graph G = (V,E, c) where V is a set
of vertices, E is a set of edges, and c is a weight function c : E �→ Z (note
that a weight value can be negative). For simplicity, we denote ci,j = c({i, j}).
A ⊆ E is clique partitioning if partition {V1, V2, . . . , Vp} of V exists such that
A =

⋃p
�=1{{i, j} ∈ E | i, j ∈ V�}. We call each V� a cluster (� = 1, . . . , p). The

goal of CPP is to find clique partitioning A to maximize the sum of weights∑
{i,j}∈A ci,j . CPP can formalize various application domains, for example: (i)

correlation clustering [3,5], where each vertex represents an item (e.g., a doc-
ument), an edge weight represents the similarity between two documents, and
the goal is to cluster the documents into topics, (ii) coalition structure genera-
tion [27], where each vertex represents an agent, an edge weight represents the
positive/negative synergy between two agents, and the goal is to find a group-
ing of agents s.t. their total productivity is maximized. CPP can also formalize
group technology [16], community detection [11], and so on.

Next, let us introduce the robust CPP, where the attacker can remove at
most m vertices (as well as its adjacent edges) after the defender chooses clique
partitioning. For the coalition structure generation problem, we assume that the
attacker can prevent at most m agents from joining coalitions.2 For correlation
clustering of documents, we can assume that the original data include at most m
faked documents created by the attacker, and we optimize the solution quality
in the worst case.

We can formalize a CPP instance as PMaxSAT. For each (i, j) ∈ P (=
{(i, j) | 1 ≤ i < j ≤ |V |}), we introduce variable xi,j , which equals 1 if i, j ∈ V
are in the same cluster and 0 otherwise. Hard/soft clauses are given as follows.

Hard clauses ΣH :� �

¬xi,j ∨ ¬xj,k ∨ xi,k ∀(i, j, k) ∈ T,
¬xi,j ∨ xj,k ∨ ¬xi,k ∀(i, j, k) ∈ T,
xi,j ∨ ¬xj,k ∨ ¬xi,k ∀(i, j, k) ∈ T.

� �

2 A similar problem is considered in [26], while they assume a coalition’s value is
given as a black-box function called a characteristic function.



22 T. Sugahara et al.

Fig. 1. Robust CPP instance formalized as R-PMaxSAT

Soft clauses ΣS :� �

xi,j with weight ci,j ∀(i, j) ∈ P, ci,j > 0,
¬xi,j with weight − ci,j ∀(i, j) ∈ P, ci,j < 0.

� �

Here T = {(i, j, k) | 1 ≤ i < j < k ≤ |V |}. These hard clauses are called
transitivity constraints, which enforce that if i and j, as well as j and k are in
the same cluster, then i and k are also in the same cluster, etc. To handle edge
xi,j with negative weight ci,j , we assume −ci,j is obtained if xi,j is not selected.

Figure 1 illustrates how a robust CPP instance can be formalized as R-
PMaxSAT. Variable vi represents whether vertex i is present (vi = 1) or absent
(vi = 0) due to an attack. The attacker can remove at most m vertices. zi,j is
an auxiliary variable, which represents vi ∧ vj ∧ xi,j . If zi,j = 1, the associated
weight ci,j is counted. The defender hopes to make zi,j to 1 (or to 0) as much as
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possible if ci,j is positive (or negative). The defender’s hard clauses ensure that
she can set zi,j = 1 (or zi,j = 0) only if xi,j = 1 (or xi,j = 0). The attacker’s
goal is contrary. His hard clauses ensure that (i) he can flip zi,j from 1 to 0 only
when either vi = 0 or vj = 0 holds, (ii) he cannot flip zi,j from 0 to 1, and (iii)
if he makes vertex i (or j) absent, the weights of all edges related to i (or j) are
not counted.

3 Complexity of R-MaxSAT Problem

In this section, we examine the complexity of the decision version of R-MaxSAT.
First, we introduce the following verification problem called R-MaxSAT-Verif.
For X ′ ⊆ X and τ ∈ T (X), let τX′ denote the assignment obtained from τ by
flipping the variables in X ′.

R-MaxSAT-Verif :
Input: A Robust Maximum Satisfiability instance 〈X,Σ,m〉, threshold value
θ ∈ N, and assignment τ of X.
Question: Does X ′ ⊆ X, |X ′| ≤ m exist such that assignment τX′ satisfies at
most θ clauses?

Our proof utilizes a ΣP
2 -complete problem called co-MinMaxClique, which

is a complement of MinMaxClique [22]. These problems are based on the well-
known MaxClique problem.

co-MinMaxClique:
Input: Graph G = (V,E), two sets I and J that partition V into {Vi,j | i ∈
I, j ∈ J}, and integer k.
Question: Does function t : I → J exist such that subgraph G[∪i∈IVi,t(i)] does
not contain a clique of size k?

Intuitively, V is partitioned into |I| · |J | subsets Vi,j , and for each function t :
I → J , we consider a MaxClique problem in subgraph G[∪i∈IVi,t(i)]. Problem
co-MinMaxClique remains ΣP

2 -complete when J = {0, 1}.
We start by showing that R-MaxSAT-Verif is NP-complete.

Theorem 1. Problem R-MaxSAT-Verif is NP-complete.

Proof. First, R-MaxSAT-Verif is trivially in NP, since given a solution X ′, we can
compute the number of clauses satisfied by assignment τX′ in polynomial time.
We show that R-MaxSAT-Verif is NP-hard by reduction from MaxClique.

Given graph G = (V,E) and integer k, we construct an instance of R-
MaxSAT-Verif:

– For each v ∈ V , we create variable xv ∈ X.
– For each e = {v, w} ∈ E, we create clause σe : ¬xv ∨ ¬xw in Σ.
– Finally, we set m = k, θ = |Σ| − k(k − 1)/2, and τ such that all variables are

false.



24 T. Sugahara et al.

(⇒) Assume that a clique of size k exists in G, denoted by V ′. Consider
X ′ = {xv ∈ X | v ∈ V ′}. Since V ′ is a clique, for all xv, xw ∈ X ′, clause σ{v,w}
belongs to Σ and is false under assignment τX′ . Hence, assignment τX′ satisfies
at most θ = |Σ| − k(k − 1)/2.

(⇐) Assume there exists X ′ ⊆ X, |X ′| ≤ k such that at least k(k − 1)/2
clauses are not satisfied under τX′ . By the definition of τ , clause σ{v,w} is false
under τX′ if and only if both xv, xw ∈ X ′. This implies that |X ′| = k and for
all xv, xw ∈ X ′, clause σ{v,w} belongs to Σ. Hence, for all v, w ∈ V such that
xv, xw ∈ X ′, edge {v, w} belongs to E and thus V ′ = {v ∈ V | xv ∈ X ′} is a
clique of size k.

We can now show that R-MaxSAT is ΣP
2 -complete.

Theorem 2. The decision version of R-MaxSAT is ΣP
2 -complete.

Proof. First, R-MaxSAT is in ΣP
2 by Theorem 1. R-MaxSAT is proved ΣP

2 -hard
by reduction from co-MinMaxClique.

Given graph G = (V,E), set I that partitions V into {Vi,j | i ∈ I, j ∈ {0, 1}},
and integer k, we construct an instance of R-MaxSAT. Partition sets X and Σ:
X = XV ∪ Z ∪ Y and Σ = ΣE ∪ ΣZ ∪ ΣY .

– For each v ∈ V , we create variable xv ∈ XV .
– For each i ∈ I, we create two variables zi0, zi1 ∈ Z.
– We create a set of k dummy variables Y = (yi)i∈[1,...,k].
– For each e = {v, w} ∈ E, with v ∈ Vi,j and w ∈ Vi′,j′ , we create clause

σe : ¬xv ∨ ¬xw ∨ ¬zij ∨ ¬zi′j′ in ΣE .
– For each i ∈ I, we create two clauses σz

i1 : zi0∨zi1∨y1 and σz
i2 : ¬zi0∨¬zi1∨y1

in ΣZ .
– For each i ∈ [1, . . . , k−1] and j ∈ [i+1, . . . , k], except for arbitrary pair (i, j),

we create clause σy
ij : yi ∨ yj in ΣY .

Notice that |ΣE | = |E|, |ΣZ | = 2 · |I|, and |ΣY | = k(k − 1)/2 − 1.
– We set m = k and θ = |Σ|−k(k−1)/2+1, where |Σ| = |ΣE |+ |ΣZ |+ |ΣY | =

|E| + 2 · |I| + k(k − 1)/2 − 1.

(⇒) Assume that there exists function t∗ : I �→ {0, 1} such that no clique of
size k exists in the subgraph induced by

⋃
i∈I Vit∗(i). Consider assignment τ∗:

for all v ∈ V , variable xv is false; for all i ∈ I, zit∗(i) is true and zi(1−t∗(i)) is
false; and for all i ∈ [1, . . . , k], yi is true.

Toward a contradiction, assume that there exists X ′ ⊆ X, |X ′| ≤ k, such
that at least k(k − 1)/2 clauses are not satisfied in τ∗

X′ . Denote h1 = |X ′ ∩ XV |,
h2 = |X ′ ∩ Z|, and h3 = |X ′ ∩ Y |. Note that in τ∗, all clauses are satisfied.
Moreover, by construction of τ∗, the only way that k(k − 1)/2 clauses are not
satisfied in τ∗

X′ is when h1 = k, h2 = h3 = 0 and for all xv, xw ∈ X ′, (i) clause
σ{v,w} belongs to Σ and (ii) σ{v,w} is not satisfied under τ∗

X′ . For all xv, xw ∈ X ′,
condition (i) implies that edge {v, w} belongs to E and condition (ii) implies that
nodes v and w belong to

⋃
i∈I Vi,t∗(i).

Thus, V ′ = {v ∈ V : xv ∈ X ′} is a clique of size k in the subgraph induced
by

⋃
i∈I Vi,t∗(i), which is a contradiction.
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(⇐) Assume assignment τ∗ exists such that for all X ′ ⊆ X, |X ′| ≤ k, at
most k(k − 1)/2 − 1 clauses are not satisfied by τ∗

X′ .
First, we show that each yi ∈ Y is true in τ∗. Assume that yi ∈ Y exists

and is false in τ∗. Let Y ∗ = {yi ∈ Y : yi is true in τ∗}. By setting Y ∗ ⊆ X ′,
the k(k − 1)/2 − 1 clauses in ΣY are not satisfied by assignment τ∗

X′ . Then
if z10 and z11 are both true/false in τ∗, we set X ′ = Y ∗; otherwise, we set
X ′ = Y ∗ ∪{z10}. In both cases, one additional clause (σz

11 or σz
12) is false in τ∗

X′ ,
which is a contradiction.

We now show that for all i ∈ I, exactly one variable from {zi0, zi1} is true.
Assume that i′ ∈ I exists such that variables zi′0 and zi′1 are both true/false in
τ∗. By setting X ′ = Y , the k(k − 1)/2 − 1 clauses in ΣY are not satisfied and
at least one additional clause (σz

i′1 or σz
i′2) is not satisfied by assignment τ∗

X′ ,
which is a contradiction.

Hence, we can define function t∗ : I �→ {0, 1} such that t∗(i) = 0 if zi0 is
true, and t∗(i) = 1 if zi1 is true.

Finally, toward a contradiction, assume that a clique of size k exists in sub-
graph G[

⋃
i∈I Vi,t∗(i)]. Let V ∗ denote such a clique and consider X ′ = {xv ∈

XV | v ∈ V ∗ and xv is false in τ∗}. Then all xv ∈ XV such that v ∈ V ∗ are true
in τ∗

X′ . Since V ∗ is a clique, for all v, w ∈ V ∗, clause σ{v,w} belongs to ΣE and is
not satisfied in τ∗

X′ . Hence, at least k(k − 1)/2 clauses from ΣE are not satisfied
by assignment τ∗

X′ , which is a contradiction.

4 R-PMaxSAT Algorithms

4.1 Iterative Best Response (IBR) Algorithm

The outline of our newly developed Iterative Best Response (IBR) algorithm is
as follows. IBR first chooses an optimal solution of defender τ assuming there
is no attack. Then, it calculates the best attack τZ against τ and revises τ s.t.
it is optimal against τZ . Next, it revises τZ , so that it is the best attack against
the revised τ . It keeps all the attacks examined so far and revises the defender’s
best preparation. IBR can be considered as an optimization version of Counter
Example Guided Abstraction Refinement (CEGAR) for 2-level QBF [9,21].

Algorithm 1 shows the details of IBR. Here, Δ is the set of attacks
examined so far (which is initialized to an empty set at line 2). At line 4,
we select assignment τ that maximizes w−Δ(τ), where w−Δ(τ) denotes
minτZ∈Δ,τ |τZ(ΣHA

)=1 w(τ |τZ). That is, τ is the defender’s best assignment,
assuming the possible attacks are limited to Δ (here, we consider only valid
attacks s.t. attacker’s hard clauses are satisfied). If w−Δ(τ) < ub, we update ub
to w−Δ(τ) (line 6). At line 8, we select the attacker’s best attack against τ . Here,
for τ ∈ T (X), best-attack(τ) is defined:

arg min
τZ∈T (Z),d(τ,τZ ,Y )≤m,τ |τZ(ΣHA

)=1
w(τ |τZ).

If w(τ |τZ) ≥ lb holds, we update lb and best-assignment to w(τ |τZ) and τ
(line 10). At line 12, τZ is added to Δ.
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Algorithm 1: Iterative best response (IBR)
Input: ΣHD

, ΣHA
, ΣS , X, Y, Z, w, m

Output: lower bound lb, upper bound ub, and a defender’s optimal assignment τ∗
1: (lb, ub, best-assignment) ← (0,maxτ ′∈T (X),τ ′(ΣHD

)=1 w(τ ′), ∅)
2: Δ ← ∅ // a set of attacks examined so far
3: while true do

4: τ ← argmaxτ ′∈T (X),τ ′(ΣHD
)=1 w−Δ(τ ′)

5: if w−Δ(τ) < ub then
6: ub ← w−Δ(τ)

7: end if
8: τZ ← best-attack(τ)
9: if w(τ |τZ) ≥ lb then

10: (lb, best-assignment) ← (w(τ |τZ), τ)

11: end if
12: Δ ← Δ ∪ {τZ}
13: if lb = ub then
14: return (lb, ub, best-assignment)

15: end if

16: end while

At line 4, τ is obtained as follows. Let Σ(τZ) denote a set of clauses Σ, where
the variables in Z are instantiated as τZ . Furthermore, let W (Σ, θ) denote a
formula representing the fact that the weighted sum of satisfied clauses in Σ is
at least θ (where each α ∈ Σ is associated with its weight). First, we set θ = ub
and check whether there exists τ s.t. for each τZ ∈ Δ, ¬ΣHA

(τZ) ∨ (ΣHD
(τZ) ∧

W (ΣS(τZ), θ)) is satisfiable by using a SAT-solver. If so, τ maximizes w−Δ(τ).
Otherwise, we decrease θ one by one until the above condition is satisfied.

Next, let us describe how to obtain best-attack(τ) at line 8. Let Y ′ and Z ′

(Y ′ ⊆ Z ′) denote copies of the variables of Y and Z. Also, let Σ̂ denote a set of
clauses Σ, where each variable in Z is replaced by the corresponding variable in
Z ′. Furthermore, let D(Y, Y ′,m) denote a formula representing the fact that the
number of disagreements between Y and Y ′ is at most m, and let τX\Z denote
the assignment of variables X \ Z based on τ , i.e., τX\Z(x) = τ(x) holds for all
x ∈ X \ Z. Using these notations, τZ = best-attack(τ) is given as a solution of
the following minimization problem:
Hard clauses: Σ̂HA

(τX\Z) ∪ D(Y, Y ′,m),
Soft clauses: Σ̂S(τX\Z).

In our experiment, we translated the above minimization problem to a
PMaxSAT instance. Regarding the termination of IBR, lb and ub will eventu-
ally meet; in the worst case, Δ contains all possible attacks. IBR is an anytime
algorithm; it can be interrupted at any time, i.e., the following theorem holds.

Theorem 3. During the execution of IBR, lb ≤ w−m(τ∗) ≤ ub holds. Thus,
when IBR is interrupted during its execution, the absolute difference between the
optimal value and the value of the obtained solution is bounded by ub − lb.
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Proof. Since lb is equal to w(τ |τZ) = w−m(τ) for one particular assignment
τ , lb = w−m(τ) ≤ maxτ ′ w−m(τ ′) = w−m(τ∗) holds. Also, ub is equal to
w−Δ(τ), where τ is the best assignment for one particular Δ. By definition,
w−m(τ∗) ≤ w−Δ(τ∗) holds, since w−m(·) considers all possible attacks while
w−Δ(·) only considers attacks in Δ. Also, w−Δ(τ∗) ≤ w−Δ(τ) holds since τ is
the best assignment against Δ. Thus, w−m(τ∗) ≤ ub holds.

4.2 Ascending Linear Search in QBF (ALSQ) Algorithm

The decision version of an R-PMaxSAT instance with threshold value θ ∈ N

asks whether there exists τ s.t. w−m(τ) ≥ θ holds. It can be translated into a
QBF formula:

∃X∀Z ′[ΣHD
∧ Σ̂HD

∧ {(Σ̂HA
∧ D(Y, Y ′,m)) → W (Σ̂S , θ)}].

Using the above translation technique, we can construct another algorithm
for solving an R-PMaxSAT instance. We set lb (initialized to 0) and solve the
corresponding QBF with θ = lb using a QBF solver. This formula is an instance
of 2-level QBF, whose complexity is ΣP

2 -complete [8]. If the QBF formula is sat-
isfiable, then we continue to increment the value of lb by one until the QBF
formula becomes unsatisfiable. We call this algorithm the Ascending Linear
Search in QBF (ALSQ). A similar algorithm, called the Quantified Linear Search
UNSAT-SAT (QLSUS), is presented in [18].

Algorithm 2: Ascending linear search in QBF (ALSQ)
Input: ΣHD

, ΣHA
, ΣS , X, Y, Z, w, m

Output: lower bound lb, upper bound ub, and a defender’s optimal assignment τ∗
1: (lb, ub, best-assignment) ← (0,maxτ ′∈T (X),τ ′(ΣHD

)=1 w(τ ′), ∅)
2: for lb = 1 to ub do

3: (flag, τ) ← QBF(lb)
4: if flag = false then
5: return (lb, lb, best-assignment)

6: end if
7: (lb, best-assignment) ← (lb + 1, τ)

8: end for

Algorithm 2 shows the outline of ALSQ. Here QBF(θ) denotes the call of
a QBF solver for the above QBF formula with threshold θ, which returns true
(or false) when the QBF is satisfiable (or unsatisfiable) as well as τ (the assign-
ment of X) when the QBF is satisfiable. Unlike IBR, this algorithm cannot
obtain/update ub. Thus, we use maxτ ′∈T (X),τ ′(ΣHD

)=1 w(τ ′) as ub if the algo-
rithm is interrupted during its execution.

We have examined a seemingly more sophisticated search method, e.g., a
binary search, but its performance degraded significantly. This is because the
call of QBF(θ) for an unsatisfiable instance is much more expensive compared
to a call for a satisfiable instance.
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Table 1. Experimental data of random instances (n = 30)

ALSQ IBR

lb ub time [s] lb ub time [s]

� = 50 46.0 46.0 5.53 46.0 46.0 1.01

� = 75 69.0 69.0 530.73 69.0 69.0 2.28

� = 100 91.8 99.4 538.22 92.1 92.1 8.16

� = 125 114.4 125.0 >3600 114.7 114.7 20.61

� = 150 136.6 150.0 >3600 137.5 137.5 36.28

Table 2. Experimental data of R-CPP instances

ALSQ IBR

lb ub time [s] lb ub time [s]

p = 12 25 25 2.04 25 25 0.02

p = 18 66 66 13.51 66 66 0.05

p = 28 89 160 >3600 95 95 25.84

p = 38 297 336 >3600 299 299 3.60

p = 42 355 432 >3600 369 369 99.29

p = 59 571 688 >3600 593 593 461.90

p = 64 837 960 >3600 866 871 >3600

5 Experimental Evaluation

We experimentally evaluated the performance of our proposed algorithms with
both random R-MaxSAT and R-PMaxSAT instances based on CPP benchmark
problems. We ran our tests on the following hardware/software: an Intel Core
i7-6700X CPU 4.00-GHz processor with 32-GB RAM, Windows 10 Education 64
bit, and a Python toolkit, PySAT [19,20]. We used a SAT solver called CaDiCaL
[7] for IBR, and a QBF solver called QuAbS [30] for ALSQ. We also used pseudo-
Boolean and cardinality encodings provided by PySAT with the default settings
to generate formulas W (Σ, θ) and D(Y, Y ′,m) described in Sect. 4.

5.1 Random Instances

The experiments were based on synthetic 3-SAT instances, which we randomly
generated with n variables with � clauses. We set the number of variables n to
30 and the number of clauses � to [50, 150]. We set the maximum number of
attacked variables m to n/10. Table 1 shows the execution time, as well as lb/ub.
Each data is an average of 10 problem instances. We set the time limit to 3600 s.
For all the problem instances, IBR obtained an optimal solution. In Table 1,
“>3600” means that ALSQ fails to terminate for all 10 instances. When � = 100
(the shaded cell), ALSQ can solve just one instance in 538 s.
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For the largest problem instances (where � = 150), IBR’s running time to
obtain an optimal solution was less than 40 s. For these problem instances, we
ran ALSQ without a time limit; it did not terminate even after 24 h. ALSQ
requires a very long time in the last execution of line 3 in Algorithm 2, where
its return value is false, i.e., the given QBF formula is unsatisfiable.

5.2 Robust CPP Instances

We created robust CPP instances from CPP instances for group technology [24],
which were generated from manufacturing cell formation datasets on http://
mauricio.resende.info/data. The number of vertices p is 12, 18, 28, 38, 42, 59, or
64. A detailed description of the datasets can be found in [15].

We set the maximum number of attacked variables m to � p
10�, and the time

limit to 3600 s. After the translation, the obtained R-PMaxSAT instance has
O(p2) variables, O(p3) hard clauses, and O(p2) soft clauses.

Table 2 shows the upper/lower bounds and the execution times obtained by
these algorithms. Clearly, IBR is more efficient than ALSQ. IBR obtained an
optimal solution for all cases except p = 64, while ALSQ failed to obtain an
optimal solution within the time limit where p ≥ 28. The obtained lower/upper
bounds, in particular, the upper bounds, are rather far from optimal values.
When p = 64, both algorithms cannot obtain an optimal solution within the
time limit, while IBR obtains better lower/upper bounds compared to ALSQ.

IBR solves many NP-complete problem instances, while ALSQ solves fewer
ΣP

2 -complete problem instances. Our evaluation results imply that the former
approach seems more promising. We do not have a clear answer yet why this is
the case, but one possible reason is that IBR can utilize the information of ub
obtained during the search process.

6 Conclusions

We introduced new variations of MaxSAT called R-MaxSAT and R-PMaxSAT,
where the goal is to find a robust solution against an adversary’s attack. We
proved that the decision version of R-MaxSAT is ΣP

2 -complete. We then intro-
duced two algorithms for solving R-PMaxSAT: IBR/ALSQ, which utilize state-
of-the-art SAT/QBF solvers. Experimental evaluations showed that IBR is much
faster than ALSQ and can obtain optimal solutions within a reasonable amount
of time for fairly large problem instances. Our immediate future works include
examining how to model other application domains as R-PMaxSAT and extend-
ing/improving IBR, e.g., introducing an abstraction method similar to CEGAR
such that Δ becomes compact and we can solve related optimization problems
more efficiently.
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Abstract. A weighted graph extends a standard Kripke frame for modal
logic with a weight on each of its edges. Distance and similarity measures
can be imposed so that the edges stand for the dissimilairty/similarity
relation between nodes (in particular, we focus on the distance and simi-
larity metrics introduced in [5]). Models based on these types of weighted
graphs give a simple and flexible way of formally interpreting knowledge.
We study proof systems and computational complexity of the resulting
logics, partially by correspondence to normal modal logics interpreted in
Kripke semantics.

1 Introduction

Epistemic logic [11] is a classical discipline of modal logic that has been successful
especially by interpretation using Kprike semantics [6,8,15]. There have been
studies in a vast variety of topics in this area, e.g., those about modeling group
knowledge (such as common and distributed knowledge), modeling knowability
[1,2] and modeling knows-how [18]. In recent years there has been a strand that
builds a relationship to weighted models for modal logic [10,13]. For example,
[16] introduces a logic of confidence that uses a type of weighted models in which
the weight between two nodes (possible worlds) stands for the distance between
them, and a formula �c

aϕ expresses that “agent a knows ϕ under the degree c of
uncertainty” in the sense that ϕ is true in all possible worlds that are of distance
≤ c from the actual world (too dissimilar for the agent treat them the same). [7]
extends this to similarity models where �r

a expresses that “agent a knows with
capability r that ϕ is the case” in the sense that ϕ is true in all possible worlds
that are similar to the actual world in a degree ≥ r (too similar for the agent to
discern between).

In this paper we study epistemic logic interpreted over weighted models, with
some considerations in particular that make this work different from existing
literature. First of all, distance/dissimilarity and similarity are notions closely
related to each other, and we are interested in comparing the ways in which we
interpret knowledge using either of the notions. Second, we borrow the char-
acterizations of distance and similarity metrics from the area of data mining
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(see, e.g., [17]), but we are interested in more sophisticated characterizations of
distance and similarity rather than the basic ones. In particular, we adopt the
notion of a similarity metric introduced in [5] where five conditions are required
for the real-valued similarity measures. Finally, we choose to use the standard
epistemic language where only sentences like Kaϕ which reads “agent a knows
ϕ” – without an explicit degree of epistemic uncertainty/ability appearing in the
sentence – are allowed for expressing knowledge. This gives us a good perspec-
tive of comparing the formal interpretations of knowledge using standard Kripke
models and weighted models.

While a duality result can be expected between the basic logics interpreted
via distance and similarity (called ELD− and ELS−, respectively), the distance
and similarity models we will work on (which give us the logics ELD and ELS)
lead us to more properties as will be explained in later sections. Interesting results
also include a complexity result – weighted models do not increase computational
complexity for the model and satisfiability checking problems.

The structure of the paper is as follows. In the next section we introduce
the basic concepts of graphs, models and the epistemic language. In Sect. 3 four
different epistemic logics interpreted in distance and similarity models are intro-
duced. Then we work on sound and complete aximotizations for these logics
(Sect. 4) and the computation complexity of the model and satisfiability check-
ing problems (Sect. 5). We conclude and discuss in Sect. 6.

2 Preliminaries

In this section we introduce the models and the language of the logics that will
be introduced later.

We shall make use of a type of weighted graphs, in which weights are real
numbers, for the purpose of modeling epistemic abilities. A weighted graph
(for this purpose) is defined formally as a pair (W,E) where:

– W is a nonempty set of states, and
– The edge function E : W × W → R assigns to every pair of states a real

number, standing for the degree of (dis)similarity between the states.

We now introduce two special types of weighted graphs which will be the
bases for the epistemic logics to be introduced.

Definition 1 (distance graphs). A pair (W,E) is called a distance graph if
it is a weighted graph such that the following hold for all states s, t, u ∈ W :

1. E(s, t) ≥ 0 (non-negativity),
2. E(s, t) = E(t, s) (symmetry),
3. E(s, u) ≤ E(s, t) + E(t, u) (triangle inequality), and
4. E(s, t) = 0 if and only if s = t (identity of indiscernibles).
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The four conditions on the edge function in the above definition are standard
for forming a distance metric over the weights.

Unlike classical literature on similarity measures (say, those defined in [17,
Section 2.4.4] for similarities between data objects1), we are interested in a more
sophisticated definition of similarity metric introduced in [5], where five con-
ditions on the weights are enforced and explained in detail. We adopt these
conditions and introduce the following definition of similarity graphs.

Definition 2 (similarity graphs). A pair (W,E) is called a similarity graph
if it is a weighted graph such that the following hold for all states s, t, u ∈ W :

1. E(s, t) = E(t, s),
2. E(s, s) ≥ 0,
3. E(s, s) ≥ E(s, t),
4. E(s, t) + E(t, u) ≤ E(s, u) + E(t, t), and
5. E(s, s) = E(t, t) = E(s, t) if and only if s = t.

We assume Ag to be a finite nonempty set of agents and Prop a countable
set of propositional atoms.

Definition 3 (models). A model is a quadruple (W,E,C, ν) such that:

– (W,E) is a weighted graph,
– C : Ag → R assigns to every agent a degree of its epistemic ability, and
– ν : W → ℘(Prop) is a valuation assigning to every state a set of propositional

atoms that are true in it.

A model (W,E,C, ν) is called a distance model (resp. similarity model) if (W,E)
forms a distance graph (resp. similarity graph).

We shall work on the standard formal language of epistemic logic.

Definition 4 (language). The formulas of the default language is given induc-
tively as follows:

ϕ :: = p | ¬ϕ | (ϕ → ϕ) | Kaϕ

where p ∈ Prop and a ∈ Ag. Other boolean connectives, such as conjunction (∧),
disjunction (∨), equivalence (↔) and falsum (⊥) are treated as defined operators
in a usual way. Kaϕ is intended to stand for “agent a knows ϕ”.

3 Logics

We introduce four logics in this section: ELD (Epistemic Logic via Distance)
and its generalization ELD−, and ELS (Epistemic Logic via Similarity) and its
generalization ELS−.

1 A weighted epistemic logic over similarities defined as such is studied in [7].
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3.1 Epistemic Logic via Distance (ELD)

We can understand the knowledge of an agent as a kind of certainty or confidence
based on the agent’s epistemic abilities, in the sense that ϕ is known as long as
it is true in all possible worlds that are less different than that the agent is
capable to see. This interpretation is very similar to that introduced in the logic
of confidence [16], though we use a different language by which the exact degree
of confidence cannot be spoken out.

The logic we introduce here in accordance with the above understanding of
knowledge is called ELD, with its formal semantics given below.

Definition 5. Given a distance model M = (W,E,C, ν), a state s ∈ W and a
formula ϕ, we say ϕ is true (or satisfied) at s of M , denoted M, s |=d ϕ, if the
following recursive conditions are met:

M, s |=d p ⇐⇒ p ∈ ν(s)
M, s |=d ¬ψ ⇐⇒ not M, s |=d ψ
M, s |=d (ψ → χ) ⇐⇒ if M, s |=d ψ then M, s |=d χ
M, s |=d Kaψ ⇐⇒ for all t ∈ W, ifC(a) ≥ E(s, t) thenM, t |=d ψ.

We often write “M, s |= ϕ” instead of “M, s |=d ϕ” (i.e., omitting the superscript
d) where there is no confusion from the context.

In the formal interpretation of Kaψ in the above definition, there is a con-
dition “C(a) ≥ E(s, t)” which intuitively expresses that agent a is not capable
of discerning between the states s and t. So the formula Kaψ says that “ψ is
true in all states that a is uncertain of (to the best of its ability)”. Here C(a)
expresses the least distance that agent a is able to figure out.

In Definition 5, if we do not restrict ourselves to distance models, but rather
any models are considered, we achieve a more general satisfaction relation, and
the resulting more general – hence weaker – epistemic logic is denoted ELD−.

We say a formula ϕ is ELD − valid (resp. ELD− − valid), if M, s |=d ϕ for
all states s of all distance models (resp. models).

Example 1. Each state of a distance model can be treated as a set. In this
example, states s1, s2, s3, s4 are sets of numbers. s1 = {n ∈ N | 2 ≤ n ≤ 98};
s2 = {n ∈ N | 1 ≤ n ≤ 50}; s3 = s1 \ {25} and s4 = s2 \ {25}. The distance
function d between two sets A and B is defined to be d(A,B) = |A\B|+ |B \A|.
The pair ({s1, s2, s3, s4}, d) forms a distance graph, as the reader may check.
Let the agents a, b and c are such that their degrees of epistemic abilities are
C(a) = 96, C(b) = 0.5, C(c) = 49, respectively. Consider the propositional atoms
p1–p4, where p1 says “there are more than 49 elements”, p2 says “the number of
elements is a multiple of ten”, p3 says “the number of elements is odd” and p4
says “there is a gap in the numbers”. Figure 1 illustrates a distance model based
on the above setting, as well as some facts about the truth of several formulas
in the model.
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Fig. 1. Illustration of a distance model for Example 1. A node stands for a set, and the
label of a line between two nodes stands for the distance between them. Propositional
atoms (among p1–p4) are put in a node/set meaning that they are true for that set.
We omit the self loops since E(s, s) = 0 for any state s in a distance model.

Lemma 1. Given formulas ϕ and ψ, agents a, b, c1, . . . , cm, d1, . . . , dn, the fol-
lowing hold:

1. Kc1 · · · Kcm(Kbϕ → Kaϕ) ∨ Kd1 · · · Kdn
(Kaψ → Kbψ) is valid in ELD−;

2. ¬Ka⊥ → (Kaϕ → ϕ) is valid in ELD;
3. ¬ϕ → Ka¬Kaϕ is valid in ELD;
4. Kc1 · · · KcmKa⊥ ∨ Kd1 · · · Kdn

¬Ka⊥ is valid in ELD. �

3.2 Epistemic Logic via Similarity (ELS)

On the other hand, we can also understand an agent’s knowledge via the notion
of similarity. An agent’s certainty or confidence of a formula ϕ is now treated as
that ϕ is true in all possible worlds that are more alike than that the agent is
capable to discern between.

The formal semantics of the language is given as follows.

Definition 6. Given a similarity model M = (W,E,C, ν), a state s ∈ W and a
formula ϕ, we say ϕ is true (or satisfied) at state s of M , denoted M, s |=s ϕ
(the superscript s is often omitted when it is clear in the context), if the following
recursive conditions hold:

M, s |=s p ⇐⇒ p ∈ ν(s)
M, s |=s ¬ψ ⇐⇒ not M, s |=s ψ
M, s |=s (ψ → χ) ⇐⇒ if M, s |=s ψ then M, s |=s χ
M, s |=s Kaψ ⇐⇒ for all t ∈ W, ifC(a) ≤ E(s, t) thenM, t |=s ψ.

In the above definition, the condition “C(a) ≤ E(s, t)” intuitively expresses
that agent a is not capable of discerning between the states s and t. So the
formula Kaψ says that “ψ is true in all states that a is uncertain of (to the best
of its ability)”. By this type of interpretation, unlike in ELD, C(a) stands for the
highest degree of similarity that agent a is able to discern between two states.

The epistemic logic interpreted in the above way (Definition 6) is called ELS,
and its generalization to the interpretation by the class of all models is called
ELS−. We say a formula ϕ is ELS − valid (resp. ELS− − valid), if M, s |=s ϕ
for all states s of all similarity models (resp. models).
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Fig. 2. Illustration of a similarity model for Example 2.

Example 2. We treat states s1–s4 the same as in Example 1. A similarity func-
tion s is such that s(A,B) = |A ∩ B| − |A \ B| − |B \ A| which is known to make
a similarity metric [5]. Using the same setting as in Example 1, we can reach a
similarity model and some results of satisfaction illustrated in Fig. 2.

Lemma 2. Given formulas ϕ and ψ, agents a, b, c1, . . . , cm, d1, . . . , dn,

1. Kc1 · · · Kcm(Kbϕ → Kaϕ) ∨ Kd1 · · · Kdn
(Kaψ → Kbψ) is valid in ELS−;

2. ¬Ka⊥ → (Kaϕ → ϕ) is valid in ELS;
3. ¬ϕ → Ka¬Kaϕ is valid in ELS. �

4 Axiomatic Systems

We now axiomatize the logics introduced in the previous section. We first focus
on the axiomatizations for the epistemic logics via distance, and then move on
to those via similarity.

4.1 Axiomatizations for ELD and ELD−

The axiomatization KS is consisted of all the axioms and rules of the axiom-
atization K for classical modal logic together with an extra axiom (S). The
axiomatization KStBz consists of three more axioms (t) (B) and (z). See Fig. 3.

We now show that KS is sound and complete for the logic ELD−, and
KStBz is a sound and complete axiomatization for ELD. Soundness follows
from Lemma 1, with the validity of the classical axioms and rules (PC), (K),
(MP) and (N) easily verifiable. Here we focus on the completeness.

Theorem 1 (KS completeness). KS is strongly complete w.r.t. ELD−. I.e.,
for any set Φ of formulas, if Φ is KS-consistent, then Φ is ELD−-satisfiable.

Proof. Let Φ be a KS-consistent set of formulas. We first look at this from
viewpoint of the classical Kripke semantics for modal logic. Since KS is a normal
system, it is strongly complete with respect to its canonical model [3, Theorem
4.22]. A canonical model for KS is a tuple M = (W,R,V) such that (i) W is the
set of all maximal KS-consistent sets of formulas, (ii) R : Ag → ℘(W × W) is
such that for each agent a, (Γ,Δ) ∈ R(a) iff for all formulas ϕ, Kaϕ ∈ Γ implies
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Fig. 3. The axiomatizations KS and KStBz, where ϕ and ψ are formulas and
a, b, c1, . . . , cm, d1, . . . , dn are agents.

ϕ ∈ Δ, and (iii) V : Prop → ℘(W) is such that for all propositional atoms p,
V(p) = {Γ ∈ W | p ∈ Γ}. So there must be a Γ ∈ W such that Φ is true (in the
classical sense) in (M, Γ ).

Now we build a genuine model for Φ out of M. Let Φ+ ⊇ Φ be a maximal
consistent set, and M′ = (W′,R′,V′) be the submodel of M that is point generated
by Φ+ (namely to keep all the canonical states that are reachable from Φ+; cf. [3,
Definition 2.5]). We claim that M′ has the following property for all a, b ∈ Ag:

Either ∀Γ ∈ W′[R′(a)(Γ ) ⊆ R′(b)(Γ )] or ∀Γ ∈ W′[R′(b)(Γ ) ⊆ R′(a)(Γ )] (†)

where R′(a)(Γ ) = {Γ ′ | (Γ, Γ ′) ∈ R′(a)} and similarly for R′(b)(Γ ).
Define a binary relation � on Ag such that for any a, b ∈ Ag, a � b iff

∀Γ ∈ W′[R′(a)(Γ ) ⊆ R′(b)(Γ )]. The property (†) of M′ guarantees that for any
a, b ∈ Ag, either a � b or b � a. By the transitivity of ⊆, we can verify that
� is also transitive. In fact � is linear order on Ag. Therefore, there must be
a numbering f : Ag → Z

+ that assigns a positive integer to every agent a and
f(a) ≤ f(b) whenever a � b. Let l = sup{f(a) + 1 | a ∈ Ag}.

Now we translate M′ = (W′,R′,V′) to a model M = (W′, E,C, ν) such that:

– For all Γ,Δ ∈ W′, E(Γ,Δ) = inf({f(b) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {l});
– For all a ∈ Ag, C(a) = f(a), and
– For all Γ ∈ W′, ν(Γ ) = {p ∈ Prop | p ∈ Γ}.

and we show that for any ϕ and Γ ∈ W′, M,Γ |=d ϕ iff ϕ is true in (M′, Γ ).
By induction on ϕ. The atomic and boolean cases are easy to verify. Here we

only show the case for the knowledge operator:

M,Γ |=d Kaψ ⇐⇒for all Δ ∈ W′, ifC(a) ≥ E(Γ,Δ) then M,Δ |=d ψ
⇐⇒for all Δ ∈ W′, ifC(a) ≥ E(Γ,Δ) then ψ is true in (M′,Δ)
⇐⇒for all t ∈ W′, if (Γ,Δ) ∈ R′(a) then ψ is true in (M′,Δ)
⇐⇒Kaψ is true in (M′, Γ )
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where the equivalence between the second line to the third can be argued as
follows. Suppose (Γ,Δ) ∈ R′(a). We have C(a) = f(a) ≥ inf({f(b) | b ∈
Ag and (Γ,Δ) ∈ R′(b)} ∪ {l}) = E(Γ,Δ). For the other direction, suppose
C(a) ≥ E(Γ,Δ), we have f(a) ≥ inf({f(b) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {l}),
then there exists b ∈ Ag such that (Γ,Δ) ∈ R′(b) and f(a) ≥ f(b). So we have
b � a, and ∀Γ ∈ W′[R′(b)(Γ ) ⊆ R′(a)(Γ )], hence (Γ,Δ) ∈ R′(a).

We conclude that M,Φ+ |=d Φ, which entails that Φ is ELD− satisfiable. �
Theorem 2 (KStBz completeness). KStBz is strongly complete w.r.t.
ELD. I.e., for any set Φ of formulas, if Φ is KStBz-consistent, Φ is ELD-
satisfiable.

Proof. Let Φ be a KStBz-consistent set of formulas. Extend it to a maximal
consistent set Φ+. We achieve a model M′ just as in the proof of Theorem 1
(replacing the KS with KStBz of course). We define the binary relation � and
numbering f and the number l in the same way.

Let k = inf({f(a) | a ∈ Ag and (Φ+, Φ+) ∈ R′(a)} ∪ {l}). Define g : R → R

such that g(x) = arctan(2(x − k)). The model M = (W′, E,C, ν) is given as
follows:

– For all Γ,Δ ∈ W′, E(Γ,Δ) =
{

inf({g(f(b) + 0.5) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {g(l + 0.5)}), if Γ �= Δ,
inf({g(f(b)) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {g(l)}), if Γ = Δ.

– For all a ∈ Ag, C(a) = g(f(a) + 0.5), and
– For all Γ ∈ W′, ν(Γ ) = {p ∈ Prop | p ∈ Γ}.

To show by induction that for any ϕ and Γ ∈ W′, M,Γ |=d ϕ iff ϕ is true
in (M′, Γ ), the key step to achieve (Γ,Δ) ∈ R′(a) ⇐⇒ C(a) ≥ E(Γ,Δ) for
any Γ,Δ ∈ W′. Since the values of the numbering f are all integers, and g
is monotonically increasing, we can verify that g(f(a) + 0.5) ≥ g(f(b)) ⇐⇒
g(f(a) + 0.5) ≥ g(f(b) + 0.5) ⇐⇒ b � a for any a, b ∈ Ag. So we can get this
by a similar proof of this key step to that for Theorem 1.

What remains to show is that M is indeed a distance model, namely the four
conditions in Definition 1 hold.

– Symmetry. with the existence of the axiom (B), it is easy to see that the
submodel M′ of the canonical Kripke model is symmetric. The definition of
the edge function E preserves the symmetry.

– Non-negativity and identity of indiscernibles. Key steps are as follows:

E(Γ, Γ ) = inf({g(f(b)) | b ∈ Ag and (Γ, Γ ) ∈ R′(b)} ∪ {g(l)})
= inf({arctan(2(f(b) − k)) | b ∈ Ag and (Γ, Γ ) ∈ R′(b)} ∪ {g(l)})
= arctan(2(inf({f(b) | b ∈ Ag and (Γ, Γ ) ∈ R′(b)} ∪ {l}) − k))
= arctan(2(inf({f(b) | b ∈ Ag and (Φ+, Φ+) ∈ R′(b)} ∪ {l}) − k))
= arctan(2(k − k)) = 0;
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E(Γ,Δ)
= inf({g(f(b) + 0.5) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {g(l + 0.5)})
= inf({arctan(2(f(b) + 0.5 − k)) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {g(l + 0.5)})
= arctan(1 + 2(inf({f(b) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {l}) − k))
≥ arctan(1 + 2(inf({f(b) | b ∈ Ag and (Γ, Γ ) ∈ R′(b)} ∪ {l}) − k))
= arctan(1 + 2(k − k)) = π

4 > 0 (for Γ �= Δ).

– Triangle inequality. By the calculation above, for any Γ,Δ,Θ ∈ W′, if Γ = Δ
or Δ = Θ, we have E(Γ,Θ) ≤ E(Γ,Θ)+0 = E(Γ,Θ)+E(Δ,Δ) = E(Γ,Δ)+
E(Δ,Θ). If Γ �= Δ and Δ �= Θ, we have E(Γ,Δ) ≥ π

4 and E(Δ,Θ) ≥ π
4 , so

E(Γ,Θ) ≤ π
2 ≤ E(Γ,Δ) + E(Δ,Θ). �

4.2 Axiomatizations for ELS and ELS−

In this section we study the axiomatizations for ELS and ELS−. We show that
the axiomatic system KS is sound and complete for ELS−, and KStB is sound
and complete for ELS, where the axiomatization KStB contains all the axioms
and rules of KStBz but the axiom (z).

Soundness follows from Lemma 2, with the validity of the classical axioms
and rules easily verifiable. We focus on the completeness here.

First we show a lemma about the duality of |=d and |=s.

Lemma 3 (duality). Let M = (W,E,C, ν) and M ′ = (W ′, E′, C ′, ν′) be two
models. Suppose W = W ′, ν = ν′ and for any a ∈ Ag and s, t ∈ W , C(a) ≥
E(s, t) iff C ′(a) ≤ E′(s, t). Then, for all s ∈ W and all formulas ϕ, M, s |=d ϕ
iff M ′, s |=s ϕ. �
Theorem 3. KS is a strongly complete axiomatization for ELS−. Namely, for
any set Φ of formulas, if Φ is KS-consistent, then Φ is ELS−-satisfiable.

Proof. Since KS is a strongly complete with respect to ELD−. It suffice to show
that for any set Φ of formulas, Φ is ELS−-satisfiable iff Φ is ELD−-satisfiable.
Suppose Φ is ELD−-satisfiable, then there is a model M = (W,E,C, ν) and
s ∈ W such that M, s |=d Φ. Let M ′ = (W,E′, C ′, ν) be such that C ′(a) = −C(a)
for all a ∈ Ag and E′(s, t) = −E(s, t) for all s, t ∈ W . By Lemma 3 we have
M ′, s |=s Φ, so Φ is ELS−-satisfiable. The other direction can be shown similarly.

Theorem 4. KStB is strongly complete with respect to ELS. Namely, for any
set Φ of formulas, if Φ is KStB-consistent, then Φ is ELS-satisfiable.

Proof. A proof can be given in a similar way to that of Theorem 2 (but let f(a) ≥
f(b) whenever a � b). We omit all the details here except for the definition of a
translation of the pointed generated submodel M′ = (W′,R′,V′) of the canonical
Kripke model; that gives us the model M = (W′, E,C, ν) such that

– For all Γ,Δ ∈ W′,

E(Γ,Δ) =
{

sup({4f(b) | b ∈ Ag and (Γ,Δ) ∈ R′(b)} ∪ {1}), if Γ �= Δ,
sup({4f(b)+0.5 | b ∈ Ag and (Γ, Γ ) ∈ R′(b)} ∪ {2}), if Γ = Δ.

– For all a ∈ Ag, C(a) = 4f(a), and
– For all Γ ∈ W′, ν(Γ ) = {p ∈ Prop | p ∈ Γ}. �
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5 Computational Complexity

We study the complexity results of model and satisfiability checking problems of
the four logics introduced in this paper. As a quick summary, the model checking
problem for each of the logics is in polynomial time, and the satisfiability problem
for each of them is PSPACE complete. Now we proceed with the details.

5.1 Model Checking

Given a (distance, similarity) model M , a state s of M and a formula ϕ, the
model checking problem is to decide whether “M, s |= ϕ” (here the satisfaction
relation “|=” can be “|=d” or “|=s” depending on the logic) is true or not.

We can introduce a polynomial-time algorithm that is similar to that intro-
duced in [14] for the model checking problem for ELD−. In particular, Algo-
rithm 1 computes the truth set of a given formula ϕ in a given model M (i.e.,
the set {s ∈ W | M, s |= ϕ}), and the model checking problem is then reducible
to the membership checking of the truth set. As the reader may check, the func-
tion V al(M,ϕ) terminates in time polynomial in the size of the input, and the
time consumption for the membership checking of the truth set is linear to its
size – these in total lead to a polynomial-time algorithm for model checking in
ELD−.

Model checking in ELS− is very similar to that in ELD−: if we replace
“C(a) ≥ E(t, u)” in line 10 by “C(a) ≤ E(t, u)”, we obtain an algorithm for
computing the truth set of a formula in ELS−. So the model checking problem
for ELS− is also in P.

Algorithm 1. Computing the truth set of a formula in ELD−

Require: M = (W, E, C, ν) is a model, and ϕ is a formula
1: function V al(M, ϕ)
2: if ϕ = p then return {s ∈ W | p ∈ ν(s)}
3: else if ϕ = ¬ψ then return W \ V al(M, ψ)
4: else if ϕ = ψ → χ then return (W \ V al(M, ψ)) ∪ V al(M, χ)
5: else if ϕ = Kaψ then
6: initialize tmpV al = ∅
7: for all t ∈ W do
8: initialize n = true
9: for all u ∈ W do
10: if C(a) ≥ E(t, u) and u �∈ V al(M, ψ) then n ← false
11: end if
12: end for
13: if n = true then tmpV al ← tmpV al ∪ {t}
14: end if
15: end for
16: return tmpV al � {t ∈ W | ∀u ∈ W : C(a) ≥ E(t, u) ⇒ u ∈ V al(M, ψ)}
17: end if
18: end function
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Both distance and similarity models are special types of models, so the model
checking problem for ELD and ELS is, respectively, a subproblem of that for
ELD− and ELS−, and both problems are in P as a result.

Theorem 5. The model checking problems for all the four logics are in P. �

5.2 Satisfiability Checking

Given a formula ϕ, the satisfiability problem is to decide whether there is a
(distance, similarity) model M and a state s such that M, s |= ϕ. We show that
the satisfiability problem for the four logics are all PSPACE complete.

To get the lower bound of the satisfiability problem, we first show two lem-
mas. We assume acquaintance of the modal logics K and KTB (a.k.a. B) inter-
preted by the Kripke semantics, and their axiomatizations K and KTB.2

Lemma 4. Given an agent a, for any formula ϕ such that there is no other
agent occurring in it, if �KTB ϕ, then �KtB (¬Ka⊥ → ϕ). �
Lemma 5. Given an agent a, for any formula ϕ such that there is no other
agent occurring in it, the following hold:

1. ϕ is K satisfiable ⇐⇒ ϕ is ELD− satisfiable ⇐⇒ ϕ is ELS− satisfiable;
2. ϕ is KTB satisfiable ⇐⇒ ϕ∧¬Ka⊥ is ELD satisfiable ⇐⇒ ϕ∧¬Ka⊥ is ELS

satisfiable.

Proof. 1. Suppose ϕ is satisfied in a state s of a Kripke model N = (W,R, V ).
Let M = (W,E,C, ν) be a model such that:

– For all t, u ∈ W , E(t, u) =
{

0, if (t, u) ∈ R(a)
1, if (t, u) /∈ R(a)

– C(a) = 0.5, and
– For all t ∈ W , ν(t) = {p ∈ Prop | t ∈ V (p)}.

By the above, for any t, u ∈ W , C(a) ≥ E(t, u) iff (t, u) ∈ R(a), so by induction
on ψ we can show that for any formula ψ and t ∈ W , M, t |=d ψ iff ψ is true in
(N, t). Thus, ϕ is ELD− satisfiable.

If ϕ is not K satisfiable, then by the completeness of K with respect to K, we
have that ϕ is inconsistent in K, hence also inconsistent in KS. By the soundness
of KS with respect to ELD−, we get that ϕ is not ELD− satisfiable.

The equivalence to the satisfiability in ELS− follows from Lemma 3 (if we
swap the weights 0 and 1 in the model).

2. Suppose ϕ is KTB satisfiable, then there is a Kripke KTB model N =
(W,R, V ) and state s ∈ W such that ϕ is satisfied in (N, s). Let M = (W,E,C, ν)
be a model such that:

2 The axiomatic system K is KS without the axiom (S); see Fig. 3 for details. By
adding the axiom schemes (B) and (T), i.e., Kaϕ → ϕ for the latter, to the system
K, we get the axiomatic system KTB.
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– For all t, u ∈ W , E(t, u) =

⎧⎨
⎩

0.5, if (t, u) ∈ R(a) and t �= u
0, if t = u
1, otherwise

– C(a) = max({−0.5} ∪ {E(t, u) | (t, u) ∈ R(a)}), and
– For all t ∈ W , ν(t) = {p ∈ Prop | t ∈ V (p)}.

One can verify that M is indeed a distance model. We can show that for any
formula ψ and t ∈ W , M, t |=d ψ iff ψ is true in (N, t). Thus we have proved that
if ϕ is KTB satisfiable then it is also ELD satisfiable. Suppose ϕ is KTB satisfi-
able, since every model of KTB is reflexive, then ϕ ∧ ¬Ka⊥ is KTB satisfiable,
so ϕ ∧ ¬Ka⊥ is ELD satisfiable.

If ϕ is not KTB satisfiable, then ¬ϕ is valid in KTB. By the completeness
of KTB we have �KTB ¬ϕ. By Lemma 4 we have �KtB ¬Ka⊥ → ¬ϕ, and so
�KStBz ¬Ka⊥ → ¬ϕ. By the completeness of KStBz with respect to ELD, we
have ϕ ∧ ¬Ka⊥ is not ELD− satisfiable.

The equivalence to the satisfiability in ELS follows from Lemma 3 (we can
replace all the weights x in M with 1 − x, and C(a) with 1 − C(a) to get a
similarity model; in fact this similarity metric was mentioned in [5]). �

It is known that the satisfiability problem for the uni-modal logic K is
PSPACE complete [12], and that for the uni-modal logic KTB is also PSPACE
complete [4]. We can achieve the PSPACE hardness of our logics by polynomial-
time reduction from the satisfiability problems for these logics.

Theorem 6. The satisfiability problems for these logics are PSPACE hard.

Proof. By Lemma 5, uni-modal K satisfiability problem can be reduced to that
for ELD− and ELS−. The reductions can be made in polynomial time (see the
proof of that lemma). So the satisfiable problem for ELD− and ELS− are both
PSPACE hard, since that for K is known to be so [12].

Given a formula ϕ, by Lemma 5, to compute whether ϕ is (uni-modal) KTB
satisfiable can be reduced in polynomial time to compute whether ϕ ∧ ¬Ka⊥
(here a is the only agent appears in ϕ) is ELD/ELS satisfiable. Since the former
is known to be PSPACE complete [4], the satisfiable problems for ELD and ELS
are both PSPACE hard. �
Theorem 7. The satisfiability problems for all the four logics are in PSPACE.

Proof. Using a similar method as in the proof of Theorem 2, we can verify that
a formula ϕ is ELD satisfiable iff ϕ is satisfiable in a Kripke frame F = (W,R)
with the following properties:

(1) F is a point generated subframe (such as the fundamental frame of M′);
(2) ∀a, b ∈ Ag, either ∀s ∈ W [R(a)(s) ⊆ R(b)(s)] or ∀s ∈ W [R(b)(s) ⊆ R(a)(s)];
(3) For any s, t ∈ W and a ∈ Ag, (s, t) ∈ R(a) implies (s, s) ∈ R(a);
(4) For any s, t ∈ W and a ∈ Ag, (s, t) ∈ R(a) implies (t, s) ∈ R(a);
(5) For any s, t ∈ W and a ∈ Ag, (s, s) ∈ R(a) implies (t, t) ∈ R(a).
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From the proofs of Theorems 1 and 4, we conclude that: (i) ϕ is ELD−/ELS−

satisfiable iff ϕ is satisfiable in a frame satisfying the conditions (1–2), and (ii)
ϕ is ELS satisfiable iff ϕ is satisfiable in a frame satisfying the conditions (1–4).

We use the tableau method from [9] to show the theorem. An ELD tableau
is a K tableau (cf. [9]) that in addition satisfies the following conditions (which
corresponds to the above conditions (2–5) respectively):

– If (s, t) ∈ R(a) \ R(b), then for any u, v, (u, v) ∈ R(b) implies (u, v) ∈ R(a);
– If (s, t) ∈ R(a), then (s, s) ∈ R(a);
– If (s, t) ∈ R(a), then (t, s) ∈ R(a);
– If (s, s) ∈ R(a), then for all t, (t, t) ∈ R(a).

During the process we need to make sure that the constructed tableau satisfies
the above conditions. The last two are easy to be enforced:

– Whenever (s, t) is added to R(a), also add (s, s) and (t, s) to R(a);
– Whenever (s, s) is added to R(a), also add (t, t) for all existing nodes t.

The first condition is slightly involved. When (s, t) is added to R(a) and
R(a) = R(b), it is not certain whether we should add (s, t) to R(b). We do
the construction for all possible cases one by one. For each linear order � on
agents appearing in ϕ, we make sure to add (s, t) to R(b) whenever (s, t) is
added to R(a) and a � b. The construction uses polynomial space, and we carry
this on for all linear orders. ϕ is satisfiable iff one of constructions returns “ϕ
is satisfiable”. We need to mark the recently examined linear order, and total
space cost is still polynomial. An ELD−/ELS−tableau only need to enforce the
first tableau condition, and an ELS tableau needs to meet the first three. �

6 Conclusion

We studied epistemic logics interpreted over distance and similarity models,
leading to four different – yet closely related – logics. We axiomatized the logics
and achieved the computational complexity results of the model and satisfiability
checking problems for them. We found interesting links between these logics
from both proof-theoretical and computational aspects. We have presented a
quite thorough picture of this work. Via the notions of distance and similarity,
weighted models give us the flexibility of capturing scenarios more meticulously.
Yet we do not get overloaded. One of the most interesting results is that the
resulting logics are simple. Not only that the complexity results do not go higher
than standard epistemic logics, but the axiomatizations are also arguably easy
to comprehend. This may show an advantage of adopting weighted model in
epistemic logic. As we have mentioned in the very beginning, topics such as
group knowledge, dynamics of knowability, knows-how modeling have attracted
much attention in the area of epistemic logic. For future work we are interested
in examining these topics on top of our framework.
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Abstract. We present an encoding of some NP-Complete problems in
Abstract Argumentation to Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problems. A solution for a QUBO problem corresponds to
minimize a quadratic function over binary variables (0/1), whose coef-
ficients can be represented by a symmetric square matrix. Being this
problem NP-Complete as well, there exist approximate solvers: from
the D-Wave Ocean SDK we test a simulated annealing algorithm and a
real quantum annelaer provided by the LeapTM Quantum Cloud Service.
Hence, we propose a new encoding for Abstract Argumentation problems,
which will benefit from the future development of quantum computation.

Keywords: Abstract argumentation · Computational model ·
Quadratic unconstrained binary optimization · Simulated annealing

1 Introduction

Computational Argumentation is an interdisciplinary field that brings together
philosophy, AI, linguistics, psychology, and a variety of different application
fields. An Abstract Argumentation Framework (AF for short) [12] is one of
the formalisms used in Argumentation: it can be represented as a simple pair
F = (A,→), composed of respectively a set of arguments and an attack rela-
tionship between them. Such a simple representation can be condensed into a
directed graph with nodes (arguments) and directed edges (attacks). Despite the
simplicity of the model, several problems in Abstract Argumentation are hard to
solve [14,22], and this consequently stimulated the design and implementation
of solvers in order to tackle such a complexity.

A Quadratic Unconstrained Binary Optimization problem (QUBO),1 is a
mathematical formulation that encompass a wide range of critical Combinatorial
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Optimization problems: QUBO has been surveyed in [1,21], and the first work
dates back to 1960 [20]. A solution for a QUBO problem simply corresponds
to minimize a quadratic function over binary variables (0/1), whose coefficients
can be represented with a symmetric square matrix. QUBO problems are NP-
Complete: therefore, a vast literature is dedicated to approximate solvers based
on heuristics or meta-heuristics, such as simulated annealing approaches (SA),
tabu-serch, genetic algorithms or evolutionary computing [21]. There exist also
exact methods that are capable of solving QUBO problems with 100–500 vari-
ables [21]. Also quantum annealers and Fujitsu’s digital annealers2 can be used
to find global minima by using quantum fluctuations. QUBO models are at the
heart of experimentation with quantum computers built by D-Wave Systems.3

QUBO has been intensively investigated and is used to characterize and solve
a wide range of optimization problems: for example, it encompasses SAT Prob-
lems, Constraint Satisfaction Problems, Maximum Cut Problems, Graph Color-
ing Problems, Maximum Clique Problems, General 0/1 Programming Problems
and many more [18]. There exist QUBO embeddings also for Support Vector
Machines, Clustering algorithms, Markov Random Fields and Probabilistic Rea-
soning [2,23].

In this paper, we propose an encoding to QUBO of some hard problems in
Abstract Argumentation, such as the credulous acceptance of a given argument
and the existence of a non-empty extension. We focus on these problems because
for some semantics in Abstract Argumentation they are NP-Complete, exactly
as the solution of QUBO problems. We then use a SA algorithm to compute a
solution to these problems: SA is a meta-heuristic to approximate global opti-
mization in a large search space for an optimization problem. Hence, our solver
is approximate as other proposals participating in the recent ICCMA21 com-
petition (see Sect. 3): for this reason, we compare our accuracy with the best
approximate solver of the competition if we consider the complete semantics
(i.e., Harper++),4 as we do in our tests in this paper. We finally show how
to solve a small problem by using a real quantum annealer provided by the
LeapTM Quantum Cloud Service. Future (expected) improvements of quantum-
computing platforms will lead to better capabilities for solving our model.

The paper is structured as follows: in Sect. 2 we report the introductory
notions about Abstract Argumentation and QUBO. Section 3 reports some of
the most related work, while Sect. 4 presents the QUBO encoding of some NP-
Complete problems in Abstract Argumentation. Section 5 presents an empirical
validation of the model by executing tests and comparing the results against i)
an exact and ii) an approximate solver. This section also introduces how to use
real quantum annealers. Finally, Sect. 6 wraps up the paper with final thoughts
and future work.

2 Fujitsu’s digital annealer: https://bit.ly/3ySnkrq.
3 D-Wave webiste: https://www.dwavesys.com.
4 Results of ICCMA21, slide 18/26: http://argumentationcompetition.org/2021/

downloads/iccma results ijcai.pdf.
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http://argumentationcompetition.org/2021/downloads/iccma_results_ijcai.pdf
http://argumentationcompetition.org/2021/downloads/iccma_results_ijcai.pdf
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2 Background

2.1 Abstract Argumentation Problems

An Abstract Argumentation Framework (AF, for short) [12] is a tuple F =
(A,→) where A is a set of arguments and → is a relation →⊆ A × A. For two
arguments a, b ∈ A the relation a → b means that argument a attacks argument
b. An argument a ∈ A is defended by S ⊆ A (in F ) if for each b ∈ A such that
b → a there is some c ∈ S such that c → b. A set E ⊆ A is conflict-free (cf in
F ) if and only if there are no a, b ∈ E with a → b. E is admissible (ad in F )
if and only if it is cf and each a ∈ E is defended by E. Finally, the range of
E in F , i.e., E+

F , collects the same E and the set of arguments attacked by E:
E+

F = E ∪ {a ∈ A | ∃b ∈ E : b → a}. A directed graph can straightforwardly
represent an AF: an example with five arguments is given in Fig. 1 (e.g., both
arguments a and c attacks b, but not vice-versa).

The collective acceptability of arguments depends on the definition of different
semantics. Four of them are proposed by Dung in his seminal paper [12], namely
the complete (co), preferred (pr), stable (st), and grounded (gr) semantics.

Semantics determine sets of jointly acceptable arguments, called extensions,
by mapping each F = (A,→) to a set σ(F ) ⊆ 2A, where 2A is the power
set of A, and σ parametrically stands for any of the considered semantics. The
extensions under complete, preferred, stable, semi-stable, stage, grounded, and
ideal semantics are defined as follows. Given F = (A,→) and a set E ⊆ A,

– E ∈ co(F ) iff E is admissible in F and if a ∈ A is defended by E in F then
a ∈ E,

– E ∈ pr(F ) iff E ∈ co(F ) and there is no E′ ∈ co(F ) s.t. E′ ⊃ E,
– E ∈ sst(F ) iff E ∈ co(F ) and there is no E′ ∈ co(F ) s.t. E′+

F ⊃ E+
F ,

– E ∈ st(F ) iff E ∈ co(F ) and E+
F = A,

– E ∈ stg(F ) iff E is conflict-free in F and there is no E′ that is conflict-free
in F s.t. E′+

F ⊃ E+
F ,

– E ∈ gr(F ) iff E ∈ co(F ) and there is no E′ ∈ co(F ) s.t. E′ ⊂ E,
– E ∈ id(F ) if and only if E is admissible, E ⊆ ⋂

pr(F ) and there is no
admissible E′ ⊆ ⋂

pr(F ) s.t. E′ ⊃ E.

For a more detailed view on these semantics please refer to [3]. Note that
both grounded and ideal extensions are uniquely determined [12,13]. Thus, they
are also called single-status semantics. The other semantics introduced are multi-
status semantics, where several extensions may exist. The stable semantics is the
only case where st(F ) might be empty, while the other semantics always return
one extension at least.

As an example, if we consider the framework F in Fig. 1 we have that
co(F ) = {{a}, {a, d}, {a, c, e}}, pr(F ) and st(F ) = {{a, d}, {a, c, e}}, and
gr(F ) = {{a}}.

We now report below the definition of seven well-known problems in Abstract
Argumentation, where the first six are decisional (yes/no answer):

– Credulous acceptance DC-σ: given F = (A,→) and an argument a ∈ A, is a
contained in some E ∈ σ(F )?
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a b c d e

Fig. 1. An example of an AF represented as a directed graph.

– Skeptical acceptance DS-σ: given F = (A,→) and an argument a ∈ A, is a
contained in all E ∈ σ(F )?

– Verification of an extension Ver-σ: given F = (A,→) and a set of arguments
E ⊆ A, is E ∈ σ(F )?

– Existence of an extension Exists-σ: given F = (A,→), is σ(F ) 	= ∅?
– Existence of non-empty extension Exists-σ¬∅: given F = (A,→), does there

exist E 	= ∅ such that E ∈ σ(F )?
– Uniqueness of the solution Unique-σ: given F = (A,→), is σ(F ) = {E}?
– Enumeration of extensions Enum-σ: given F = (A,→), return all E ∈ σ(F ).

For example, DC-co for the AF in Fig. 1 returns “YES” for argument c and
“NO” for argument b; DS-co returns “YES” for argument a only; Exists-st¬∅

returns “YES”.
Table 1 summarises the complexity classes the aforementioned problems [14,

22]. As we can see, most of the problems need efficient solvers. As a reminder,
intractable complexity classes are NP , coNP ,DP ⊆ Θp

2 ⊆ ∑P
2 ,

∏P
2 ⊆ Dp

2 , while
all the other classes in Table 1 are tractable: L ⊆ P . The nOP class (not con-
tained in the class OutputP) means that the enumeration problem is not solvable
in polynomial time in the size of the input and the output. Class DelayP means
that the extensions can be enumerated with a delay which is polynomial in
the size of the input, while DelayPP also requires the use of polynomial space.
DelayP and DelayPP are tractable while nOP is intractable [22].

2.2 QUBO

Quadratic Unconstrained Binary Optimization (in short, QUBO) is an impor-
tant form of optimization problems which has recently gained a great popularity
because of fast solvers and dedicated computing devices, such as quantum and
digital annealers. Hence, several optimization problems, in a large range of appli-
cation domains, have been formulated as QUBO problems, in order to be solved
by these new methods [18,19].

A QUBO problem is defined in terms of n binary variables x1, . . . , xn and a
n × n upper triangular matrix and consists in minimizing the function

f(x) =
n∑

i=1

Qi,ixi +
n∑

i<j

Qi,jxixj
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Table 1. The complexity of some problems in Abstract Argumentation [14,22].

Ver-σ DC-σ DS-σ Exists-σ Exists-σ¬∅ Unique-σ Enum-σ

Conflict-free in L in L triv. triv. in L in L DelayPP

Admissible in L NP-c triv. triv. NP-c coNP-c nOP

Complete in L NP-c P-c triv. NP-c coNP-c nOP

Preferred coNP-c NP-c
∏P

2 -c triv. NP-c coNP-c nOP

Semi-stable coNP-c
∑P

2 -c
∏P

2 -c triv. NP-c in Θp
2 nOP

Stable in L NP-c coNP-c NP-c NP-c DP-c nOP

Stage coNP-c
∑P

2 -c
∏P

2 -c triv. in L in Θp
2 nOP

Grounded P-c P-c P-c triv. P-c triv. DelayP

Ideal Θp
2 Θp

2 Θp
2 triv. Θp

2 triv. nOP

The diagonal terms Qi,i are the linear coefficients and the non-zero off-
diagonal terms Qi,j are the quadratic coefficients. This can be expressed more
concisely as

min
x∈{0,1}n

xT Qx

where xT denotes the transpose of the vector x.
The formulation of a discrete constrained optimization problem as QUBO

requires the following steps (i) find a binary representation for the solutions (ii)
define a penalization function, which penalizes unfeasible solutions (i.e., violating
a constraint).

3 Related Work

In the literature we can find large plethora of general computational techniques
and practical implementations for solving problems related to formal argumen-
tation in AI. It is possible to distinguish between i) approaches to Abstract
Argumentation frameworks, ii) approaches to structured argumentation frame-
works (such as ASPIC+ and Defeasible Logic Programming), iii) other alter-
natives, such as semi-formal systems for visualizing argumentation processes or
web-based argument exchange, as stated in [4, Ch. 14] and [10]. In this section
we focus on i, which in turn differentiates between reduction-based and direct
approaches, which are the two types of solver implementations for Abstract AFs.
The former reduces the considered problem into a different formalism in order
to take advantage of existing solvers from that formalism. The latter consists in
designing ad-hoc algorithms to directly solve the problem.

The International Competition on Computational Models of Argumentation
(ICCMA for short)5 is the reference biennial-competition dedicated to Abstract

5 ICCMA Website: http://argumentationcompetition.org.

http://argumentationcompetition.org
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Argumentation, whose objectives are to provide a forum for the empirical com-
parison of solvers, with the purpose to highlight challenges to the community,
to propose new directions for research, and to provide a core of common bench-
mark instances and a representation formalism that can aid in the comparison
and evaluation of solvers.

We point the interested reader to the survey of participants and results
achieved in ICCMA15 [25], ICCMA17 [17], and ICCMA19 [5]. ICCMA21 saw
the participation of nine solvers, and it confirmed a third class of solvers besides
reduction-based and direct techniques: approximate approaches. An exploratory
track dedicated to such algorithms was included for the first time: the decision
problems DC-σ and DS-σ were considered for six different semantics, such as
σ ∈ {co,pr, st, sst, stg, id} (DC-id is equivalent to DS-id). Solvers were evalu-
ated with respect to their accuracy, i.e. the ratio of instances that were correctly
solved. The main motivation behind approximate solutions was their (potential)
faster execution than exact solvers: for this reason, the timeout was reduced to
60 s, instead of the 600 s allowed in ICCMA21 for exact solvers.

Two approximate tools participated in ICCMA21; one is Harper++ by M.
Thimm:6 such a solver first computes the grounded extension of an input frame-
work and then use that to approximate the results of DC-σ and DS-σ tasks
with σ ∈ {co, st,pr, sst, stg, id}. A positive answer to DS-gr implies a positive
answer to DC and DS for the other semantics. On the contrary, if an argu-
ment is attacked by an argument contained in the grounded extension, then the
answer to DC and DS is negative. According to [11], sceptical reasoning with
any semantics generally overlaps with reasoning with the grounded semantics on
many practical cases of AFs.

AFGCN, by Lars Malmqvist, competed in ICCMA21 as well. It exploits a
Graph Convolutional Network [26] to compute approximate solutions to DC-σ
and DS-σ tasks with σ ∈ {co, st,pr, sst, stg, id}, exactly as Harper++. The
model is trained by using a randomized training process using a dataset of AFs
from previous ICCMA competitions in order to maximize generalization from the
input AFs. In addition, to speed up calculation and somewhat improve accuracy,
the solver uses the pre-computed grounded extension as an input feature to the
neural network.

4 Encoding

In this section we encode some of the Abstract Argumentation problems and
semantics presented in Sect. 2. We focus only on some of the NP-Complete com-
binations presented in Table 1 because solving QUBO is NP-Complete as well.
More specifically, the encoded problems are DC-σ and Exists-σ¬∅, while the
considered semantics is co.

Without loss of generality, we assign to each argument an index, hence A =
{a1, . . . , an}, where n is the number of arguments. The encoding of problems in

6 GitHub repository of Harper++: https://github.com/aig-hagen/taas-harper.

https://github.com/aig-hagen/taas-harper
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Abstract Argumentation uses a set of n binary variables x1, . . . , xn to represent
a set E of arguments. The meaning is that the argument ai ∈ E if and only if
xi = 1. We denote by x the tuple (x1, . . . , xn) and by x ∈ {0, 1}n a vector of
possible values for x1, . . . , xn.

Each semantics σ will be associated to a quadratic penalty function Pσ such
that Pσ assumes its minimum value at x if and only if the corresponding set
E = {ai ∈ A : xi = 1} is an extension valid for σ.

Each step in the encoding process will be explained with an example applied
to the AF shown in Fig. 1, where the arguments are numbered as a1 = a, a2 =
b, a3 = c, a4 = d, and a5 = e.

Most of the argumentation semantics require admissible sets. Therefore, we
define a penalty function Pad which enforces this property. Pad is the sum of
four terms and contains new additional variables. The first term forces the set
E to be conflict-free:

Pcf =
∑

i→j or j→i

xixj

In fact, the value of Pcf corresponds to the number of self attacks in E and
its value is 0 if and only if E is conflict-free.

The term Pcf for the example is

Pcf = x1x2 + x3x2 + x3x4 + x4x5.

The constraints to model the notion of defense are more complicated: we
use a first set of additional variables t1, . . . , tn, denoting which arguments are
attacked by E: ti = 1 if and only if ai is attacked by some argument of E. The
variables d1, . . . , dn of the second set denote which arguments are defended by
E: di = 1 if and only if ai is defended (from all the possible attacks) by some
arguments of E.

For each argument ai, the penalty function P i
t forces ti to be 1 if and only if

ai is attacked by E, i.e., ti =
∨

j→i xj .
Let hi be the number of attackers of ai and let i1, . . . , ihi

be their indices. If
hi = 0, then ti is simply 0, while if hi = 1, then ti = xi1 : in these cases, we set
P i

t = 0. If hi = 2, then P i
t = OR(ti, x[i1], x[i2]), where

OR(Z,X, Y ) = Z + X + Y + XY − 2Z(X + Y )

is the way of expressing as a quadratic function the constraint that the binary
variable Z is the disjunction of the binary variables X and Y , as shown in [24].
Finally, if hi > 2

P i
t = OR(ti, x[i1], α1

i ) + OR(α1
i , x[i2], α2

i ) + . . .

+OR(αhi−3
i , x[ihi−2], αhi−2

i ) + OR(αhi−2
i , x[ihi−1], x[ihi

]),

where α1
i , . . . , α

hi−2
i are hi − 2 auxiliary binary variables.

The variables ti associated to the example are t1 = 0, t2, t3 = x4, t4 = x3, t5 =
x4 where t2 is constrained by the term P 2

t = OR(t2, x1, x3). No other term P i
t

is needed and consequently no auxiliary variable is used.
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The other penalty function P i
d forces di to be 1 if and only if ai is defended

by E, i.e., di =
∧

j→i tj . If hi = 0, then di is simply 1, while if hi = 1, then
di = ti1 : in these cases, P i

d = 0. If hi = 2, then P i
d = AND(di, t[i1], t[i2]), where

AND(Z,X, Y ) = 3Z + XY − 2Z(X + Y )

is the way of expressing the conjunction Z = X and Y as a quadratic function
[24].

Otherwise, if hi > 2 then

P i
d = AND(di, t[i1], δ1i ) + AND(δ1i , t[i2], δ2i ) + . . .

+AND(δhi−3
i , t[ihi−2], δhi−2

i ) + AND(δhi−2
i , t[ihi−1], t[ihi

])

where δ1i , . . . , δhi−2
i are new hi − 2 auxiliary binary variables.

The variables di associated to the example are d1 = 1, d2 = 0, d3 = x3, d4 =
x4, d5 = x3 and no term P i

d is needed. Note that d2 = 0 because a attacks b but
it is not attacked by any argument.

The number of auxiliary variables needed for this encoding is hence N =
2n + 2

∑n
i=1 max(hi − 2, 0), excluding the n variables x1, . . . , xn. Note that, if

h = max hi, then N = O(nh).
The final term

Pdef =
n∑

i=1

xi(1 − di)

forces each argument in E to be defended by E.
The term Pdef for the example is

Pdef = x2 + x3(1 − x3) + x4(1 − x4) + x5(1 − x3)

which can be simplified as Pdef = x2 +x5(1−x3) because for any binary variable
b the term b(1 − b) is always 0.

Summing up, the penalty function for admissible sets is

Pad = Pcf +
n∑

i=1

P i
t +

n∑

i=1

P i
d + Pdef .

In the example the penalty function is

Pad = x1x2 + x3x2 + x3x4 + x4x5 + OR(t2, x1, x3) + x2 + x5(1 − x3)

However, the term OR(t2, x1, x3) can be neglected because t2 does not appear
elsewhere.

It is easy to prove that the minimum value of Pad is 0 and the related values
for x correspond to admissible sets.

Considering the complete semantics, we simply need to add an additional
term to Pad which forces all the arguments defended by E to be elements of E:

Pco = Pad +
n∑

i=1

(1 − xi)di
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The additional term for the complete semantics corresponding to the example
is

(1 − x1) + (1 − x3)x3 + (1 − x4)x4 + (1 − x5)x3

which reduces to (1 − x1) + (1 − x5)x3. Hence,

Pco = x1x2 + x3x2 + x3x4 + x4x5 + x2 + x5(1 − x3) + (1 − x1) + (1 − x5)x3.

To express that E is not empty (task Exists¬∅) in a given semantics σ, it is
enough to add the following term to the corresponding penalty function Pσ:

Pne = (1− x1)(1− ξ1) + OR(ξ1, x2, ξ2) + · · ·+ OR(ξn−3, xn−2, ξn−2) + OR(ξn−2, xn−1, xn)

where ξ1, . . . , ξn−2 are new n − 2 auxiliary variables. This additional term cor-

responds to the constraint
n∨

i=1

xi = 1. Hence, the minimum value of Pσ + Pne is

0 if and only if there exists a not empty extension.
The additional term to express the non-emptiness in the example is

(1 − x1)(1 − ξ1) + OR(ξ1, x2, ξ2) + OR(ξ2, x3, ξ3) + OR(ξ3, x4, x5).

To express that a given argument ai must appear in E (i.e., the DC task) it
is sufficient to replace xi with 1 and propagate this setting on all the encoding,
obtaining thus a simplified quadratic function, with a reduced number of binary
variables. It is easy to see that the minimum value of this function is 0 if and
only if ai is credulously accepted.

Suppose that we want to solve the DC task for the argument a3 in the example
for the complete semantics. Hence, we replace x3 with 1 in the corresponding Pco

thus oobtaining the simplified penalty function

x1x2 + x2 + x4 + x4x5 + x2 + (1 − x1) + (1 − x5).

5 Implementation and Tests

The Ocean SDK includes a suite of open source Python tools7 for solving hard
problems with local solvers, such as SA algorithms, but also quantum annealers
by using the LeapTM Quantum Cloud Service.8

The software stack implements the computations needed to transform an
arbitrarily posed problem to a form suitable for a quantum solver. First the prob-
lem needs to be encoded as an expression H representing the constraints among
variables, by using the encoding shown in Sect. 4; then the expression needs to be
compiled (model = H.compile()) in order to obtain the QUBO matrix. Finally,
the model can be directly solved by using local or quantum annealers.
7 D-Wave Ocean SDK: https://github.com/dwavesystems/dwave-ocean-sdk.
8 LeapTM Cloud Quantum: https://cloud.dwavesys.com/leap/login/?next=/leap/.

https://github.com/dwavesystems/dwave-ocean-sdk
https://cloud.dwavesys.com/leap/login/?next=/leap/
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5.1 Tests and Comparison

The tests in this section have the primary goal to prove the correctness of the
encoding: we compared all the results with ConArg [6,8], a reduction-based
(exact) solver using Constraint Programming, which has been also used to vali-
date the results in ICCMA19. Moreover, to have a first comparison with a differ-
ent approximate solver we run the same problems with Harper++, an approx-
imate solver by M. Thimm (see the related work in Sect. 3). This solver was
chosen because it ranked at the first position in the co track at ICCMA21, and
for this reason it represents the best baseline to test DC-co.

All the tests in this section were performed on a 2 GHz Quad-Core Intel
Core i5 with 16 GB of RAM. We set a timeout of 60 s, as applied in ICCMA21
when considering approximate solvers. Moreover, all the tests in this section
were executed locally by using the SA algorithm provided by the Ocean SDK
package in the Python SimulatedAnnealingSampler class. We set the number
of reads parameter of the algorithm to nArguments × 2 (nArguments is the
number of arguments in the considered instance): each read is generated by
one run of the SA algorithm. We set number of sweeps used in annealing to
min(nArguments × 50, 1000). In case no solution with energy 0 is found after
a run, the initial random seed is changed and a successive iteration of SA is
executed, until a zero-energy solution is found or the timeout is met, with an
upper limit of 100 iterations for each AF.

In Table 2 we detail the results on 104 “Small” instances that are part of
the benchmark selected in ICCMA19.9 The 104 instances have from 5 to 191
arguments (median 28.5) and from 8 to 8192 attacks (median 296). We test the
credulous acceptance of the same argument used in ICCMA19, and we focus
on the complete semantics: we test DC-co. The columns of Table 2 respectively
show the instance name, the number of arguments in the considered AF instance
(#nArgs), the number of executed iterations of the SA algorithm (#iter), the
answer provided by the solver (“YES” the argument is credulously accepted,
“NO” it is not) and the time taken in seconds, respectively for the QUBO encod-
ing and Harper++: rQUBO/tQUBO and rHarp/tHarp.

To summarize Table 2, SA provided the right answer 85/104 times, while
Harper++ always proved to be correct (104/104) when compared to ConArg.
SA reached the timeout 19 times; the frameworks on which SA timed-out have
103, 49, 95, 99, 30, 48, 85, 47, 191, 191, 95, 95, 71, 85, 99, 103, 99, 43, and

9 The original “Small” benchmark included 108 instances: in our tests we use 104
instances because we discarded 4 AFs with more than 200 arguments, which we
considered as too large for these tests w.r.t. the other instances, which have a median
of 28.5 arguments.
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96 arguments. About successful instances instead, the average number of SA
iterations is 2.96, with a median of 1.0, and a maximum number of 37 iterations.
The median times to create a QUBO expression, compile it, and solve it with
SA are respectively 0.017, 0.058, and 0.203 s.

Therefore, with these tests we empirically validate the encoding provided in
Sect. 4 (no wrong answer was returned), and we show that, even if Harper++
always performs better in terms of time, SA proves to be quite fast most of the
times, even if on some instances it fails to provide a positive answer before the
timeout.

The second round of tests concerns the accuracy of SA in case of “NO”
answers, compared to Harper++. As it is possible to see from Table 2, all the tests
were performed on pairs of 〈AF , argument〉 in which the argument is credulously
accepted. Since from internal tests we noticed that all the possible arguments in
those AFs are always credulously accepted, we were forced to completely change
the benchmark: we now use 100 frameworks with 80 arguments each, generated
as Erdős-Rényi (ER) graphs [15]. Such AFs were used in previous works [7] as
a dataset to compare different solvers.

In the ER model, a graph is constructed by randomly connecting n nodes.
Each edge is included in the graph with probability p independent from any
other edge. Clearly, as p increases from 0 to 1, the model becomes more and
more likely to include graphs with more edges. In this dataset p = c · log(n)/n
(with n the number of nodes and c empirically set to 2.5), ensuring the connect-
edness of such graphs. The ER model has been also used as part of the bench-
mark in the ICCMA competitions, since ICCMA17. On these 100 frameworks
we first randomly selected one argument each that is not credulously accepted.
We did this by using ConArg, being an exact solver. On this new benchmark,
SA returns 100/100 timeouts (still set to 60 s), while Harper++ returns 4/100
correct (“NO”) answers and 96/100 incorrect (“YES”) answers.

We finally switched to a third benchmark by selecting one credulously
accepted argument for each ER graph; because of this, we discarded 10 frame-
works for which it was not possible to find such an argument. By using the
same parameters as the previous experiment, SA provided the correct (“YES”)
answer for 64/90 and 26 timeouts, while Harper++ answered 90/90 correct
answers. Considering successful instances, SA has an average number of itera-
tions of 3.15, with a median of 2.0 and a maximum number of 25. If we consider
our timeouts as “NO”, SA has an overall accuracy of 84% on the ER dataset,
while Harper++ has an accuracy of 49%.

We noticed a general tendency of Harper++ to return a positive answer,
while clearly SA returns “NO” not only if there is no solution, but also in case
the timeout is reached.
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Table 2. The correctness and performance in time (seconds) of QArg and Harper++,
measured on “Small” instances from the ICCMA19 benchmark (DC-co task). TOUT
stands for “timeout”.

instance #nArgs #iter rQUBO rHarper tQUBO tHarper

Small-result-b87 24 4 YES YES 0.732 0.005

Small-result-b93 103 2 TOUT YES – 0.019

Small-result-b44 27 1 YES YES 0.242 0.011

Small-result-b50 51 1 YES YES 2.214 0.010

Small-result-b78 25 3 YES YES 1.230 0.010

Small-result-b79 25 15 YES YES 6.180 0.011

Small-result-b51 49 28 TOUT YES – 0.018

Small-result-b6 95 3 TOUT YES – 0.018

Small-result-b45 25 1 YES YES 0.240 0.012

Small-result-b92 99 2 TOUT YES – 0.017

Small-result-b86 24 1 YES YES 0.139 0.013

Small-result-b90 85 1 YES YES 6.941 0.013

Small-result-b84 12 1 YES YES 0.038 0.013

Small-result-b53 49 1 YES YES 1.976 0.014

Small-result-b47 22 3 YES YES 0.676 0.014

Small-result-b4 23 1 YES YES 0.186 0.013

Small-result-b5 47 1 YES YES 1.693 0.016

Small-result-b46 24 1 YES YES 0.250 0.013

Small-result-b52 48 24 TOUT YES – 0.018

Small-result-b85 24 4 YES YES 0.640 0.015

Small-result-b91 99 2 YES YES 56.193 0.019

Small-result-b108 78 1 YES YES 10.581 0.019

Small-result-b95 85 6 TOUT YES – 0.019

Small-result-b81 22 1 YES YES 0.236 0.017

Small-result-b56 46 1 YES YES 1.960 0.013

Small-result-b42 13 1 YES YES 0.028 0.011

Small-result-b43 12 1 YES YES 0.024 0.010

Small-result-b57 8 1 YES YES 0.008 0.010

Small-result-b80 25 1 YES YES 0.447 0.011

Small-result-b94 85 1 YES YES 10.988 0.014

Small-result-b82 25 2 YES YES 0.771 0.014

Small-result-b96 85 1 YES YES 9.776 0.015

Small-result-b69 25 5 YES YES 1.890 0.014

Small-result-b41 6 1 YES YES 0.008 0.013

Small-result-b2 5 1 YES YES 0.004 0.010

Small-result-b55 45 2 YES YES 4.668 0.015

Small-result-b54 47 35 TOUT YES – 0.018

Small-result-b3 11 1 YES YES 0.028 0.014

Small-result-b40 15 2 YES YES 0.146 0.012

Small-result-b68 25 4 YES YES 1.746 0.012

Small-result-b97 85 4 YES YES 53.101 0.018

Small-result-b83 12 1 YES YES 0.035 0.014

Small-result-b27 191 1 TOUT YES – 0.010

Small-result-b33 9 1 YES YES 0.072 0.010

Small-result-b26 191 1 TOUT YES – 0.012

Small-result-b30 16 1 YES YES 0.070 0.011

Small-result-b24 95 3 TOUT YES – 0.028

Small-result-b18 30 100 TOUT YES – 0.018

Small-result-b19 11 1 YES YES 0.028 0.017

Small-result-b25 95 3 TOUT YES – 0.021

Small-result-b31 16 1 YES YES 0.043 0.014

Small-result-b35 7 1 YES YES 0.013 0.017

instance nArgs #iter rQarg rHrper tQarg tHarper

Small-result-b21 23 1 YES YES 0.192 0.017

Small-result-b20 23 2 YES YES 0.344 0.022

Small-result-b34 8 1 YES YES 0.036 0.020

Small-result-b22 47 1 YES YES 1.883 0.021

Small-result-b36 19 1 YES YES 0.127 0.018

Small-result-b37 17 2 YES YES 0.224 0.019

Small-result-b23 47 1 YES YES 1.771 0.018

Small-result-b12 30 2 YES YES 0.861 0.016

Small-result-b13 6 1 YES YES 0.012 0.016

Small-result-b11 14 1 YES YES 0.053 0.018

Small-result-b39 17 1 YES YES 0.063 0.018

Small-result-b38 14 3 YES YES 0.185 0.015

Small-result-b10 6 1 YES YES 0.009 0.014

Small-result-b14 13 2 YES YES 0.135 0.023

Small-result-b15 30 1 YES YES 1.230 0.024

Small-result-b29 16 1 YES YES 0.045 0.024

Small-result-b17 14 1 YES YES 0.095 0.026

Small-result-b16 6 1 YES YES 0.015 0.020

Small-result-b107 78 1 YES YES 9.379 0.019

Small-result-b65 71 14 TOUT YES – 0.026

Small-result-b71 26 2 YES YES 0.740 0.028

Small-result-b59 67 1 YES YES 1.991 0.022

Small-result-b58 8 1 YES YES 0.016 0.020

Small-result-b70 25 8 YES YES 3.604 0.018

Small-result-b64 32 1 YES YES 1.039 0.016

Small-result-b106 78 1 YES YES 7.270 0.020

Small-result-b104 78 1 YES YES 8.133 0.026

Small-result-b99 96 1 YES YES 15.142 0.020

Small-result-b72 25 1 YES YES 0.432 0.019

Small-result-b66 67 1 YES YES 2.083 0.019

Small-result-b67 25 1 YES YES 0.422 0.019

Small-result-b73 64 10 YES YES 4.626 0.015

Small-result-b98 85 3 TOUT YES – 0.022

Small-result-b105 78 1 YES YES 8.492 0.018

Small-result-b101 99 1 YES YES 30.632 0.024

Small-result-b88 99 6 TOUT YES – 0.022

Small-result-b8 8 1 YES YES 0.019 0.017

Small-result-b77 25 5 YES YES 2.123 0.019

Small-result-b63 32 4 YES YES 4.136 0.018

Small-result-b62 32 1 YES YES 1.109 0.017

Small-result-b76 43 1 YES YES 1.971 0.018

Small-result-b9 16 1 YES YES 0.027 0.015

Small-result-b89 103 5 TOUT YES – 0.020

Small-result-b100 78 1 YES YES 5.461 0.022

Small-result-b102 99 2 TOUT YES – 0.023

Small-result-b48 23 37 YES YES 7.033 0.019

Small-result-b60 32 8 YES YES 6.558 0.015

Small-result-b74 64 13 YES YES 5.709 0.016

Small-result-b75 43 43 TOUT YES – 0.022

Small-result-b61 32 2 YES YES 1.792 0.017

Small-result-b49 55 1 YES 2 2.173 0.018

Small-result-b103 96 4 TOUT – – 0.022

5.2 Execution on the LeapTM Quantum Cloud Service

To use a D-Wave machine to solve a given problem, the logical graph representing
the corresponding QUBO or Ising model must be embedded into the physical
graph of D-Wave’s hardware. In Listing 1.1 we present the Python code to
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translate the model into QUBO and then execute it in the LeapTM Quantum
Cloud Service; MYSOLVER = “Advantage system6.1”, while the API key is
generated for each use to access the service and monitor the consumption of
resource.
1 def dwave sol (model ) :
2 qubo , qubo o f f s e t = model . to qubo ( )
3 sampler kwargs = {”num reads” : 50 , ” annea l ing t ime ” : 50 , ”

num sp in r eve r sa l t r an s f o rms ” : 4 , ” au t o s c a l e ” : True , ”
cha in s t r eng th ” : 2 . 0 , ” c h a i n b r e ak f r a c t i o n ” : True}

4 dw sampler = DWaveSampler ( endpoint=” https :// cloud . dwavesys . com/ sap i
” , token=MYTOKEN, s o l v e r=MYSOLVER)

5 sampler = EmbeddingComposite ( dw sampler )
6 sampleset = sampler . sample qubo ( qubo )
7 decoded samples = model . decode sampleset ( sampleset )
8 best sample = min ( decoded samples , key=lambda x : x . energy )
9 return best sample

Listing 1.1. The Python code to execute the QUBO model in the LeapTM Quantum
Cloud Service.

This function returns the solution with the best (i.e., lowest) energy
(best sample). In case the requested problem is the existence of a non-empty
complete extension, which is an NP-Complete problem (see Table 1), the result
if we create the model of the framework in Fig. 1 is a zero-energy solution. If we
print the labels of zero-energy variables in best sample we can also directly obtain
the arguments of the returned non-empty complete extension, e.g., {a, c, e}. The
parameters at line 3 guide the mapping of the model to the architecture of D-
Wave’s quantum hardware: they need further exploration in order to optimize
the execution of the quantum annealer, as suggested in Sect. 6.

6 Conclusions and Future Work

This paper presents the first approximate computational-approach to well-known
Abstract Argumentation problems by using a QUBO encoding and a solver based
on simulated/quantum annealing. Approximate methods are not totally new to
the Argumentation community (e.g., in ICCMA21, see Sect. 3), but indeed the
use of quantum machines is so. After presenting the QUBO encoding for some
of the NP-Complete problems in Abstract Argumentation, we have validated
it by empirically proving its correctness with tests. Moreover, we have com-
pared the accuracy and performance against a different approximate solver, i.e.,
Harper++. Clearly the goal is to exploit the future development and availability
of quantum machines to fully take advantage of the presented encoding in terms
of time performance.

The future work that appears in front of us follows many different paths, as
the paper is seminal with respect to the topic. First, we need to define a QUBO
encoding of further semantics for which related taska are NP-Complete. Then,
we would like to better study ad-hoc SA algorithms with respect to Abstract
Argumentation problems: we believe performance can be further improved with
“simple” non-quantum annealers.



Abstract Argumentation Goes Quantum 59

In addition, the optimization behind mapping QUBO models derived from an
Argumentation problem to the architecture of quantum machines is still unex-
plored and challenging: several parameters need further investigation to better
exploit the hardware and the connections among qubits, which are limited on
D-Wave’s architectures.

Finally, we will extend the QUBO encoding to weighted problems in Argu-
mentation [9][16, Chapter 6], with the purpose to represent weights (or proba-
bilities) associated with arguments or attacks: this is allowed by the use of linear
or quadratic coefficients that encode a weight in the expression modelling the
problem.
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22. Kröll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the exten-
sions of abstract argumentation frameworks. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI, pp. 1145–1152.
ijcai.org (2017)
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Abstract. Parallelization is essential for the acceleration of SAT solvers,
and for this purpose, the portfolio approach is a key technique. As the
diversity of search is an important factor that affects the performance
of portfolio-type parallel SAT solvers, several methods have been pro-
posed to diversify their searches. This paper proposes the use of the
Search Similarity Index (SSI)—a metric that quantifies the degree of
diversity by measuring the similarity between searches performed by
parallel workers—to develop a method to change the solver’s activity
when the value of SSI indicates that the searches of parallel workers are
similar. The implementation of SSI and the proposed method increases
the diversity between parallel workers by preventing the performance of
similar searches. Experimental results indicate that the proposed met-
ric significantly contributes to the acceleration of solver performance,
with the number of solved benchmark instances increasing by +4.3% in
the case of 32 parallel workers compared to the state-of-the-art portfolio
parallel solver. The result implies that similar searching of the portfolio-
type parallel SAT solver degrades its performance and that increasing
the degree of search diversity can improve their performance.

Keywords: Parallel SAT solver · Portfolio approach · Diversification

1 Introduction

The propositional satisfiability problem (SAT problem) is one of the most fun-
damental problems in computer science. SAT solvers, which are used to solve the
SAT problem, have been applied to several real-world problems [8,11,19] Such
solvers search a set of Boolean value assignments to variables that satisfy the
problem, called a solution, or a proof of “unsatisfiability”. Many methods have
been proposed to accelerate SAT solvers, including ones based on paralleliza-
tion. The divide-and-conquer and portfolio [7] approaches are the two primary
methods to achieve parallelization. In the parallel category of recent annual SAT
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 61–74, 2022.
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competitions [16], portfolio-type parallel solvers have exhibited relatively better
results than divide-and-conquer-type ones. Unlike divide-and-conquer type par-
allelization, which divides the problem into sub-problems and each of which is
assigned to parallel workers, portfolio solvers do not divide the problem. Instead,
every worker in the portfolio-type parallel solvers searches for a solution to the
same problem and attempts to search in different ways. The searches performed
by workers are considered to be competitive because the first result obtained
by a worker is adopted as the result of the solver. Hence, if each worker in a
portfolio-type solver searches in the same way, the benefits of parallelization are
not obtained. Therefore, diversity of search, i.e., different searches performed
by different workers, is essential for the performance of portfolio-type paral-
lel solvers. Although various diversification methods have improved solver per-
formance, few studies have quantitatively evaluated whether they achieve the
desired search diversity. This study hypothesizes that the performance of SAT
solvers can be improved by ensuring search diversity based on its quantitative
evaluation.

Upon the consideration of the precise parameters of “search diversity”
required by portfolio-type parallel solvers, the simplest method is to divide the
search space into a set of sub-spaces, and to search each sub-space uniformly, e.g.,
with the same probability. However, the practical searches for the SAT problems
related to real-world problems are not uniform. SAT solvers utilize depth-first
and intensive search algorithms to select the assignments that are most likely
to yield a solution based on heuristic techniques. Incorporating such a biased
search algorithm has improved the performance of SAT solvers. Similarly, the
searches for practical parallel solvers are also biased. This study advocates that
the measurement of the similarity between the searches of different workers rep-
resents the measurement of search diversity of the parallel solvers. When searches
between workers are similar, the diversity is low, and vice versa. Reducing the
degree of similarity between searches increases the diversity and improves the
performance of parallel solvers.

This paper proposes the Search Similarity Index (SSI)—a metric that quanti-
fies the degree of similarity between searches performed by parallel workers—to
develop a method to change the solver’s activity when the value of SSI indicates
that the searches of parallel workers are similar. In this context, the search is
defined as the solver’s activity of assigning Boolean values to variables, which is
primarily characterized by two parameters regarding the variables—the polar-
ity of Boolean values (True or False) and the selection order of variables while
assigning Boolean values. SSI compares these two parameters corresponding to
parallel workers and calculates their similarity. In addition, this study proposes a
method to enhance search diversity based on SSI. When the SSI value indicates
higher similarity than a threshold, the activity of the solver is appropriately
changed to avoid similar searches. This study implements SSI and the aforemen-
tioned method on P-MCOMSPS [18], the state-of-the-art parallel SAT solver,
and conducts experiments to assess the performance improvement induced by
the proposed method.
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The remainder of this paper is structured as follows: Sect. 2 introduces tech-
niques related to SAT solvers, Sect. 3 introduces the design of SSI and defines a
method based on such to enhance search diversity, Sect. 4 describes the exper-
imental verification of the proposed method. Finally, Sect. 5 summarizes this
paper and outlines prospective directions for future research.

2 Preliminaries

2.1 The SAT Problem and SAT Solvers

The satisfiability problem (SAT problem) is a fundamental research topic in
computational science, and it was in this context that NP-completeness was
first demonstrated. It is formulated as a propositional logic formula (henceforth
referred to as an instance) in which Boolean variables are combined using logical
operators. The problem is usually presented in the conjunctive normal form, in
which variables are combined into clauses using disjunctions, which are, in turn,
combined using conjunctions. It considers the existence of a set of assignments
of Boolean values to variables that satisfy the instance, i.e., evaluate it as True.
Assignments that satisfy an instance are called solutions.

SAT solvers are applications used to solve SAT problems and are also applied
to real-world industrial problems. Thus, the study of SAT solvers is highly impor-
tant. Operationally, SAT solvers conduct searches to derive solutions. A search
is a repetitive procedure comprising the assignment of Boolean values to vari-
ables and subsequent verification of whether or not the assignment satisfies the
instance. SAT solvers continue the search until they derive a solution (called
satisfiable state or SAT) or they prove that there is no assignment that satisfies
the instance (unsatisfiable, UNSAT). Usually, solvers are constrained by a few
criteria, such as a time limit to finish their search. In case this constraint is not
satisfied, e.g., runtime exceeds the limit, the UNKNOWN state is returned as
the output. The entire set of assignment combination is called the whole search
space. A search space is a subset of the whole search space where some Boolean
variables exhibit fixed or assigned.

2.2 Techniques Employed by SAT Solvers

To solve real-world SAT problems, SAT solvers are primarily Conflict-Driven
Clause Learning (CDCL) solvers based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [2], which consists of three phases—decision, prop-
agation, and conflict and backtrack. In the decision phase, a variable is selected,
and a Boolean value is assigned to it as an assumption. The variable and its
polarity (True or False) of the Boolean value are usually selected by heuristic
methods. In the propagation phase, the solver assigns Boolean values to other
variables whose polarities are uniquely determined as logical consequences of the
decision. If it detects a logical inconsistency (called conflict) during the propa-
gation, it moves to the conflict and backtrack phase. Otherwise, it repeats the
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decision and propagation phases until an SAT or UNSAT state is identified. In
the conflict and backtrack phase, the solver cancels the previous decision, ana-
lyzes the root cause of the conflict, and derives a new clause (called a learnt clause
[1]) to avoid the same conflict in future searches. Subsequently, it returns to the
decision phase and initiates another assumption. Restart [3] is a type of back-
tracking operation, which cancels all decisions and initiates another assumption
from scratch.

Variable state independent decaying sum (VSIDS) [13], learning rate based
branching heuristic (LRB) [10], and phase-saving [14] are the major heuristic
techniques used during the decision phases. VSIDS and LRB are used to select
variables during the decision phase. Both heuristics manage the sequence of vari-
ables and the variable with the highest score is selected for the assignment. The
phase-saving technique determines the polarities of Boolean values assigned to
the variables. In addition to these methods, several techniques have contributed
to the acceleration of SAT solvers. Two-watch literals [13] and trail saving tech-
niques [6] reduce the time required during the propagation phase.

2.3 Parallelization

Parallelization is a key technique for the acceleration of SAT solvers, of which the
divide-and-conquer and the portfolio are two primary approaches. The divide-
and-conquer approach divides an instance into sub-instances. This is usually
accomplished by selecting some of the instance’s Boolean variables and assigning
either true or false values to them. Therefore, each sub-instance exhibits an
independent search space. The solver assigns each sub-instance to a parallel
worker, ensuring that there are no overlapping searches among the workers.

Conversely, all workers of a portfolio-type parallel solver search the same
instance in different ways without division into sub-instances, and the result of
the fastest worker is adopted as the output of the entire solver. Little difference in
searches among workers, i.e., similar assignments, results in little difference in the
duration to complete their searches, making it difficult to derive the benefits of
parallelization to improve performance. Therefore, search diversity is essential
to optimize the performance of the portfolio approach. Several methods have
been proposed to this end. ppfolio [15] executes multiple excelled solvers in the
past SAT competitions, assigning these solvers as its parallel workers where each
performs the search individually. As each solver is developed based on different
methods, parameters, etc., their searches can also be expected to be reasonably
different. ManySAT [5] utilizes a single solver, but it is parallelized using different
configurations. For example, it imposes different rules on the heuristic decision
method, such as the polarity selection of Boolean values. Block Branching [17]
changes the priority of variable selection, i.e., it groups variables into certain
sets based on the connections between the variables in the instance, and each
parallel worker selects a distinct group of variables during the decision phase.
This technique forces workers to focus the decision on sets of variables with
strong connections to resolve.
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2.4 Related Works: Measurement of Distances Between Solvers

Some studies have attempted to measure distances between pairs of searches,
especially between parallel workers. Guo and Lagniez [4] proposed the calcu-
lation of the distance between parallel workers using the information of actual
assignment of Boolean values. To this end, they counted the number of variables
with identical polarity in both workers and deemed them to be similar if the
ratio of this number to the number of all variables was high. However, their
study focused only on polarity, and their objective was to improve the polarity
selection heuristic. Thus, they did not consider the sequence of variable assump-
tions. This study hypothesizes that the priority of variables is also an important
factor as the search duration is significantly dependent on the sequence.

Moon and Inaba [12] also attempted to define similarity based on Boolean
values. First, they divided the variables into a few groups. Variables in the same
clauses of instance were regarded as connected, and strongly connected variables
were categorized into the same group. The authors calculated the percentage of
Boolean values in each group and if the ranges of percentages corresponding to
two workers were similar, the searches performed by those workers were regarded
to be similar. This study also uses only polarity but did not consider the sequence
of variable assumptions.

Kanbara and Nabeshima [9] used the information of shared learnt clauses
among parallel workers to define similarity. They measured the degree of overlap
and usage ratios of the learnt clauses between workers. If the overlap exceeded
a certain threshold, one of the workers’ activity was altered randomly by the
inversion of the polarity of variables.

3 Methods: Search Similarity Index (SSI)

This section introduces the definition of the Search Similarity Index (SSI). SSI
is a metric that quantifies the similarity between searches. Given a set of N
parallel workers as W = {w1, w2, ..., wN}, the state of the search Statewk

i
can

be modeled with learnt clauses, search history, and search direction. wk
i denotes

the i-th parallel worker at k-th step of the search, e.g., the number of decisions,
conflicts, and restarts, where k ∈ N. learnt clauses are the learnt clauses in the
solver’s database at wk

i . search history denotes the assignment of Boolean value
to variables by decisions and propagations by the k-th step, and search direction
denotes the assignment plan of Boolean value to the unassigned variables from
k-th step.

This study defines the similarity of search to be represented by the similarity
between search directions and we utilize neither learnt clauses nor search history
for the reasons below. Regarding learnt clauses, their size increases fast, and
comparing them between workers is expensive. In addition, learnt clauses include
noise—useless clauses to find solutions or UNSAT proof. Therefore, it is essential
to extract good clauses to represent the search appropriately but difficult to
identify the good clauses for the worker. For search history, this information can
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be ignored because we utilize the similarity that is obtained at the restart and
before any decisions made after the restart. Using SSI at restart enables accurate
simulation of subsequent searches sufficiently and saves enough resources in order
to manage search history information.

3.1 Definition of Current Search Direction (CSD)

In the DPLL algorithm, assignment is performed during the decision phase and
the plan of assignment is managed in a table of decisions commonly main-
tained by SAT solvers. The assignment procedure can be decomposed into two
subprocesses—determination of the “polarity” of Boolean value and the deter-
mination of the variable to which it is assigned. The latter subprocess can be
restated as the order of variables in terms of assignment (henceforth referred to
as “priority”). This study denotes the information of search direction at current
step as the Current Search Direction (CSD). The CSDs of two parallel work-
ers are compared to calculate the similarity of search and the value of the SSI.
CSDwk

i
is the CSD at the k-th step (in this paper k-th restart) of the i-th par-

allel worker. CSDwk
i

comprises polaritywk
i
(v) and prioritywk

i
(v) s.t. v ∈ V (the

whole variables).
First, polarity(v) is defined as the Boolean value assigned to v. In most polar-

ity decision methods, such as the phase-saving method, subsequent assignments
are stored in a table in the method. The value of polaritywk

i
(v) is a Boolean

value of variable v in the table at the k-th step.

polaritywk
i
(v) := {True, False | v ∈ V } (1)

Second, for the variable selection in the decision, all variables are sorted by
their scores (e.g., VSIDS score). The order of the variable selection is represented
by the priority(v). If all variables in two searches exhibit identical polarities in
the same order, then the two searches are identical. We define priority(v) as
having a value between 0 and 1. The order of the first variable vfirst is 1, i.e.,
the vfirst is firstly selected for decision before any assignment is conducted; thus,
the value of prioritywk

i
(vfirst) is close to 0. The order of the last variable vlast

in the selection sequence is |Vwk
i
|; thus the value of prioritywk

i
(vlast) is 1.

prioritywk
i
(v) :=

order of variable v
|Vwk

i
| (2)

Note that |Vwk
i
| stands for the set of effective variables in the i-th worker at

the k-th step. In practice, variables near the end of the selection sequence are
rarely selected for decision. Therefore, this study establishes a score threshold
to reduce the computational load of SSI. Variables with scores less than the
threshold are excluded from CSD and others are included in Vwk

i
. In the case of

VSIDS, the threshold is taken as 1.0.
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3.2 Definition of Search Similarity Index (SSI)

SSI represents the similarity between two searches, where each search is repre-
sented by a CSD. In this paper, the two searches correspond to those performed
by two parallel workers. SSI is defined as the weighted sum of the similarity of
each variable corresponding to the two workers. When the two CSDs—polarities
and priorities of all variables—are similar, their searches are considered to be
similar. The similarity between a variable’s polarities is denoted by PolaritySim-
ilarity and that between its priorities by PrioritySimilarity. PolaritySimilarity
between wk

i and wl
j is defined as follows:

PolaritySimilaritywk
i ,w

l
j
(v) :=

{
1 if polaritywk

i
(v) = polaritywl

j
(v)

0 otherwise
(3)

Regarding the priority, by the definition of PrioritySimilarity, a variable with
similar priorities in two CSDs is considered to exhibit high similarity—higher
agreements between the priorities in the two CSDs correspond to higher degrees
of similarity. Further, it takes values between zero and one, with identical prior-
ities corresponding to one, and completely opposite priorities corresponding to
zero. PrioritySimilaritywk

i ,w
l
j
(v) is defined as follows.

PrioritySimilaritywk
i ,w

l
j
(v) := 1 −

∣∣∣prioritywk
i
(v) − prioritywl

j
(v)

∣∣∣ (4)

The similarity of a variable similaritywk
i ,w

l
j
(v) is defined by the multiplica-

tion of PolaritySimilarity and PrioritySimilarity.

similaritywk
i ,w

l
j
(v) := PrioritySimilaritywk

i ,w
l
j
(v)×PolaritySimilaritywk

i ,w
l
j
(v)
(5)

A weight factor for the similarity of each variable is the importance(v).
Higher importance scores are assigned to variables with higher priorities because
higher-priority variables are selected at earlier decision points than lower-priority
ones. In general, variables selected at earlier decision points affect the search more
than those selected at later points. Virtually, the degree of similarity between
important variables significantly influences the process of determining the degree
of similarity between the searches. The importance(v) is defined as follows: C
denotes a constant representing the slope to the importance of variables; in this
paper, the value of C is set at 0.1.

importancewk
i ,w

l
j
(v) := 2

−priority
wk

i
×C

+ 2
−priority

wl
j
×C

(6)

To use SSI as a similarity metric, its value is normalized to lie between
zero and one—zero represents zero similarity, whereas one represents identical
searches. Since both PolaritySimilarity and PrioritySimilarity lie between zero
to one, the maximum value of the multiplication of importance and similarity
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is equal to the sum of the importance of all variables. Thus, we normalize SSI
by the division of the sum of importance. The Algorithm 1 presents the overall
steps of SSI calculation.

SSIwk
i ,w

l
j
:=

∑
v(similaritywk

i ,w
l
j
(v) × importancewk

i ,w
l
j
(v))∑

v(importancewk
i ,w

l
j
(v))

(7)

Algorithm 1. Calculation of Search Similarity Index between wk
i and wl

j

Require: CSDwk
i
, CSDwl

j

1: for v ∈ variables do
2: Get PolaritySimilarity(v) by (3)
3: Get PrioritySimilarity(v) by (4)
4: similarity(v) = PrioritySimilarity(v) × PolaritySimilarity(v) by (5)
5: Calculate importance(v) by (6)
6: end for
7: SSIwk

i ,wl
j
=

∑
v(similarity(v) × importance(v))/

∑
v importance(v)

3.3 Method to Change Solver’s Activity

This subsection discusses the procedure to change a solver’s activity when the
value of SSI indicates that the searches of parallel workers are similar.

A typical distribution of SSI values of an instance is depicted in Fig. 1 as
an example. Preliminary experiments were conducted using the parallel solver,
P-MCOMSPS, in its default configuration on 400 instances from the SAT com-
petition 2021. Every SSI value was rounded up to three decimal places. The
example illustrates the bell-shaped curve of the SSI value distribution. The other
instances also exhibit similar shapes; only the position of the peak of the distri-
bution depends on the instance.

Fig. 1. Distribution of SSI values in the case of instance ‘20-100-frag12-0_sat.cnf’ and
the criterion to judge the degree of similarity
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Next, a criterion is defined to judge whether or not the obtained SSI value
indicates similarity based on the shape of the SSI distribution. Higher SSI values
correspond to searches that are similar to a greater degree. SSI values satisfying
the defined criterion are adjudged to be highly similar; otherwise, standard or
low similarity is assumed. We assume the SSI follows a Gaussian distribution
due to its bell-shaped curve. This study uses the upper probability of statistics,
i.e., threshold := m + σ × c where m and σ are the mean and the standard
deviation of the distribution of SSI values, respectively. The value of constant
c was set to two in this study based on the results of preliminary experiments.
Each parallel worker obtains the CSDs of other workers at restart. The worker
calculates SSI values between its latest CSD and the shared CSD from each of
the other workers. For example, in an eight-workers environment, each worker
derives seven SSI values at every restart. A certain number of recent SSI values
are stored—in this paper, the most recent 1000 SSI values are used for this
purpose—and the mean and standard deviation are calculated from the data. If
at least one of the SSI values at the restart exceeds the threshold, the search is
adjudged to be similar. Subsequently, the activity of the solver is altered.

Finally, we introduces a function to alter the activity of the solver, which
is achieved by changing the decision priority by assigning higher priority to
low-priority variables. During variable selection in the decision phase, the vari-
ables are arranged in terms of their scores. A certain percentage of variables are
selected from the bottom of the queue—in this paper, it is considered to be the
bottom 10%. Then, incremental scores are added to push them to the top of the
queue to be selected preferentially.

4 Experiments

In this study, we experimentally assessed the impact of the proposed method—
the search diversification using SSI in parallel SAT solvers. Experiments were
conducted on a computer with an AMD Threadripper Pro 3995WX processor
and 512GB (128GB 4 slots, DDR4-3200MHz) RAM. The benchmark instance
sets from the SAT Race 2019 and SAT competition 2020 and 2021 were used.
A total of 1200 instances were selected—400 instances of the main track bench-
mark per year. The base solver used was P-MCOMSPS [18], a state-of-the-art
parallel solver as of 2021 and winner of the parallel track category of the SAT
competition 2021 that utilizes a decision variable scoring table and a Boolean
polarity table. These tables are not unique to P-MCOMSPS; they are common in
almost all CDCL SAT solvers. The necessary functions were implemented onto
the base solver. P-MCOMSPS uses a master/worker structure, and its compo-
nent types are named the sharer and worker, respectively. Each worker submits
its CSD to the sharer at restart, after which the sharer distributes them to the
workers during the import or export of the learnt clauses. For other configura-
tions, the default configuration of P-MCOMSPS was used. This study compared
the performance of the base solver with that of the solver equipped with the
proposed method. The performance was then evaluated in terms of the number
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of instances solved within a time limit—1200 s on a wall clock—and the PAR-2
score, defined as the total time required to solve all instances with a penalty (an
additional 1200 s) for each unsolved instance.

Table 1 summarizes the results where the first column lists the number of
parallel workers employed by the solver, and the second column presents the
method used. “Base” denotes the base solver, P-MCOMSPS, and “the proposed
method” denotes the solver equipped with the proposed method. The next three
columns present the number of instances identified as SAT, UNSAT, and their
sum, i.e., SAT+UNSAT, respectively. The final column presents the PAR-2 score
rounded off to the nearest thousand. Figure 2 shows the same result in a cactus-
plot.

Table 1. Experimental result of the performances comparison between the base solver
and the solver equipped with the proposed method corresponding to 8, 16, 32, and 48
parallel workers respectively

# of workers Method SAT UNSAT Total PAR-2 (K)

8 Base 214 265 479 1892
Proposal 232 269 501 1839

16 Base 241 286 527 1779
Proposal 266 288 554 1709

32 Base 250 293 543 1736
Proposal 295 300 595 1630

48 Base 274 319 593 1606
Proposal 279 305 584 1634

The results indicate that the proposed method is superior to the base solver
corresponding to the cases involving 8, 16, and 32 parallel workers. Greater
improvement is observed in cases involving more parallel workers—the number
of solved instances increased by +21, +27, and +52 corresponding to 8-, 16-,
and 32-worker environments, respectively. The results indicate that the proposed
method is more effective, corresponding to a larger number of parallel workers.
This is attributed to the higher possibility of similar searches that can occur
between more parallel workers than between fewer. Thus, the proposed method,
which is aimed at avoiding similar searches, is more effective in the case of more
parallel workers. Similarly, the PAR-2 score improved by 53,038, 69,540, and
106,750 compared to those of the base solver corresponding to 8, 16, and 32
parallel workers, respectively.

The results also indicate that most of the improvements correspond to SAT
instances, which is consistent with intuition. A satisfiable instance sometimes has
many solutions, and these solutions are distributed in the whole search space.
The proposed method distributes the searches for diversification, and this helps
our solver to encounter at least one of the solutions with a higher probability than
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Fig. 2. Experimental result of the performances comparison in the Cactus-plot corre-
sponding to 16, 32, and 48 parallel workers’ cases. The vertical axis represents the search
runtime with a 1200-s time limit. Horizontal axis represents the number of instances
that are sorted according to their runtime. 500 instances which were unsolved by any
solvers within the time limit are excluded for visibility

the base solver. On the other hand, UNSAT proof is achieved by the resolution
of an empty clause, and it is said to require good learning. Diversification of the
search by our method necessarily does not contribute to it.

Conversely, in the case of 48 parallel workers, the performance deteriorates.
We assume that this is due to the computational load due to the increase in
parallel workers. We conducted an additional experiment with 48 parallel work-
ers and the same benchmarks as the above experiments. A time-tracking func-
tion was added to measure the duration spent by the proposed method. Table 2
represents the ratio of duration to the total runtime of the worker and sharer,
respectively. In the case of workers, we observed that the proposed method spent
an average of 18% of its runtime on tasks such as calculating SSI and assembling
CSD from tables. Computational load for unsolved instances was about twice
that for solved instances: 23% and 12%, respectively. Furthermore, 35% of the
runtime was spent in the instances which were unsolved by our proposal solver
but solved by the base solver. In the same way, for the sharer, 28% of total
runtime was spent for the proposed method, 35% in unsolved instances, and
47% in instances unsolved by the proposed method but solved by the base. This
implies that the computational load affects the proposed method’s performance.
The complexity of SSI calculations is proportional to the number of variables
and parallel workers. Therefore, performance deteriorates with 48 workers com-
pared to 32 workers. Corresponding to 32 workers, the performance improvement
affected by the proposed method exceeded the effect of increased time consump-
tion owing to the proposed method; however, corresponding to 48 workers, the
effect was reversed.
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Table 2. The percentage of the average time consumption in workers and sharer respec-
tively, spent for the proposed method in the total runtime in the 48 parallel worker’s
environment. Solved indicates that of the instances which the solver found SAT or
UNSAT result. Unsolved indicates that of UNKNOWN instances, which the solver
reaches its time limit before finding a result.

Solved by proposal Unsolved by proposal Total
Solved by base Unsolved by base Subtotal

Worker 12% 35% 21% 23% 18%
Sharer 19% 47% 32% 35% 28%

5 Concluding Remarks

This paper proposed the Search Similarity Index (SSI) and developed a method
to enhance the search diversify of solvers. Experimental results confirmed that
the proposed method improves the performance of the parallel SAT solver, with
the number of solved instances increasing by +1.8%, +2.3%, and +4.3% in the
case of 8, 16, and 32 parallel workers, respectively, compared to the current
state-of-the-art solver. The results indicate that similar searches in portfolio
solvers lose their parallel efficiency, and the performance improvement achieved
by increasing their degree of diversification is significant. Conversely, the perfor-
mance is observed to deteriorate with 48 parallel workers due to increased time
consumption by the proposed method. The approach of managing the diversifi-
cation of search is presumed to be beneficial to the other methods of sequential
SAT solvers, e.g., restart and decision.

There is still scope for future research. First, reducing the computational
load is essential for further performance improvement in environments with
more than 48 workers. Further investigations about the computational load are
required by the types of instances, e.g., satisfiability (SAT or UNSAT) of the
instance, variable clause ratio, and the graph structure of the instance. Second,
the method of changing solver activity when the diversity is low can be improved.
Third, the application of our proposed method to other portfolio solvers or using
other parameter settings has room for improving performance. In addition, it
is expected that SSI can be utilized for other purposes. For instance, as SSI
measures the degree of diversity, it can be used to evaluate existing portfolio
diversification methods and improve them by combining them dynamically or
selectively choosing parameters. In addition to portfolio-type parallel solvers,
the restart and decision methods can be improved as they are also essential to
control the diversity of the search.
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Abstract. We describe Dagster, a system that implements a new
approach to scheduling interdependent (Boolean) SAT search activi-
ties in high-performance computing (HPC) environments. This system
allows practitioners to solve challenging problems by efficiently distribut-
ing search effort across computing cores in a customizable way. Our
solver takes as input a set of disjunctive clauses (i.e., DIMACS CNF)
and a labelled directed acyclic graph (DAG) structure describing how
the clauses are decomposed into a set of interrelated search problems.
Component problems are solved using standard systematic backtrack-
ing search, which may optionally be coupled to (stochastic dynamic)
local search and/or clause-strengthening processes. We show the perfor-
mance of Dagster in combinatorial case study examples, particularly
the model counting of Costas arrays, and in finding solutions to large
Pentomino tiling problems. We also use Dagster to exhibit a novel
workflow for Bounded Model Checking of network protocols where we
perform independent searches at different problem fidelities, in parallel.
Low fidelity solutions trigger further independent searches for refined
solutions in higher fidelity models.

Keywords: SAT · High-performance computing · Decomposition

1 Introduction

We present a tool for solving problems by scheduling search activities on dis-
tributed and high-performance computing (HPC) systems. Our tool, Dagster,
can solve large and/or challenging problems by distributing search effort across
processing elements. Our design aims to minimize synchronization and com-
munication effects and efficiently use local memory hierarchies. Dagster takes
as input a set of clauses in conjunctive normal form (CNF) and a graphical
structure. The CNF gives the available constraints/clauses, and the graphical
structure is used to represent how those constraints are grouped into interde-
pendent subproblems, which together form a distinct SAT problem to be solved.
Dagster uses available processing elements (e.g., CPU cores) to solve subprob-
lems in parallel, such that the answer to the underlying problem is derived via
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 75–89, 2022.
https://doi.org/10.1007/978-3-031-20862-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20862-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-20862-1_6


76 M. A. Burgess et al.

the combination of subproblem solutions. Dagster search tasks can be made to
enumerate satisfying assignments; thus, the tool directly supports solving both
decision (SAT) problems and counting (#SAT) problems.

2 Related Work

A range of sound and complete frameworks and systems have been developed
for solving SAT problems by distributing the computation performed by (a
systematic) search. Portfolio approaches run multiple algorithms on the same
formula, often in parallel, and typically have a mechanism for sharing learnt
clauses. A wide range of architectures have been proposed, showcased in tools
such as SATZilla [38]1, PLingeLing [4], HordeSat and its cloud-ready coun-
terpart [3,35], the multi-core Syrup and its hybrid counterpart D-Syrup [1].

Divide-and-conquer and cube-and-conquer approaches contrast against port-
folio approaches because they do not work on the same formula in parallel;
rather, they break the search space into disjoint subspaces by resolving with
an array of partial assignments. These approaches use parallel computation by
distributing what would otherwise be a monolithic proof exercise to a pool of
independent search processes working on disjoint problems. There is a communi-
cations trade-off between solving all subproblems independently in parallel and
having them solve interdependently, with learnt clause communication between
them. Conquering approaches are exhibited in systems such as DPLL-TD [22],
PMSat [21], TLingeLing [5], and Paracooba [24]. Search space breaking
can be static, or dynamic - such as featured in the top-down cube-and-conquer
model counter DMC [30]. Additionally, there exist intermediary solvers, such
as the Painless framework by Le Frioux et al. [19], which employ a range of
parallel solver architectures, seamlessly mixing portfolio and conquering ideas.

Hamadi and Wintersteiger [23] provide a characterization of challenges to
derive benefit using parallel computing in the SAT context. Our contributions are
aligned with Challenges C3, and C6 - specifically: (C3) developing new parallel
processing techniques that leverage SAT problem decompositional structure, and
(C6) deriving new encodings of SAT problems specific for parallel computation.
For C3 and C6, we considered that the scientist, engineer, or AI tool2, in formu-
lating a problem in propositional logic, would have explicit succinct represented
knowledge about how to decompose the problem for distributed search. Thus, we
are left to develop a flexible way for that knowledge to be represented for scheduling
the specified interdependent search activities. As with many conquering systems,
we support distributing search for subproblems in HPC environments, but unlike
existing conquering tools, we have left the problem of determining the decompo-
sition and the relationship between subproblems to the domain expert. The case
studies presented in this paper are representative of the motivating problems we
1 A serial portfolio with ‘pre-solving’ and ‘solving’ stages amenable to paral-

lel/distributed computing.
2 For example, in AI planning, automatic problem decomposition is available using fac-

toring techniques [9], and also using obligation approaches in [8].
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have developed, which can be tackled using SAT-based search in HPC environ-
ments. Finally, regarding portfolio techniques, although our tool supports invok-
ing multiple solver processes—of the same type and otherwise—on the same input
formula, our focus is not on the portfolio effect.

3 System Description

Dagster
3 takes as input a CNF formula and a labelled graphical structure as a

directed acyclic graph (DAG). Each node of the DAG represents a subset of the
clauses of the original formula, and finding solutions to these subsets of clauses
constitutes a subproblem (see Fig. 1). Nodes are connected by edges labelled with
a subset of shared variables present in the clauses of both nodes. The directed
nature of the graph means that the variable valuations in satisfying solutions
found for each node are passed along the edges to constrain the solutions of sub-
sequent node(s). Given an edge between nodes, each satisfying assignment found
by the destination node must be consistent with the shared variable valuations
emitted as solutions to the source node/s.

Dagster uses a Master-Worker architecture, coded in C++ using MPI [31]
to conduct the solution process. The master process is responsible for issuing and
processing the work to and from the worker processes, where each worker solves
its issued subproblems using a complete SAT solver. Dagster currently supports
using both: (i) the lightweight CDCL procedure based on TiniSAT [26,27], and
(ii) MiniSAT [17]. A worker process executes the CDCL solving procedure until
it finds a satisfying assignment, or proves unsatisfiability. The worker reports
each satisfying assignment to the master and adds its negation as a “no-good”
constraint to produce a further-constrained subproblem for further generating
distinct solutions. This process continues until the worker finds UNSAT, at which
point the subproblem is complete. The master uses the shared variable assign-
ments from each subproblem solution to seed computation on further nodes in
the DAG.

We designed Dagster to be modular and agnostic about the underlying
CDCL solver. However, along with a CDCL solver, each worker may also be
configured to collaborate with one or more helper processes, to form a worker
group. Helper processes may include: a strengthener performing concurrent
clause strengthening [37] to accelerate search; and/or many stochastic local search
(SLS) processes, which use the gNovelty+ dynamic local search algorithm [33]
to find satisfying solutions to the subproblem. The SLS processes may also sug-
gest which variables/values that CDCL worker should assign next; in this way the
SLS functions to find solutions and also functions as a variable selection heuristic
mechanism. We note that SLS has been investigated in the context of systematic
search previously, such as in the context of rephasing heuristics [7,12], for com-
pleting promising partial assignments and for frequency based search guidance
in [12].

3 Sourcecode: Zenodo [11], and GitHub, https://github.com/ANU-HPC/dagster.

https://github.com/ANU-HPC/dagster
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Fig. 1. Example Dagster inputs. The graph (left) is described in the “DAG file”
(right). The “CLAUSES” block in that file identifies subproblems at graph nodes, by a
list of indexes of clauses in the “CNF file” (centre). The “GRAPH” block indicates what
variables are shared over a directed arc between nodes/subproblems. “REPORTING”
identifies variables of interest in resulting solution/s

The Dagster architecture can be understood as an interaction between the
master process and a collection of worker groups, as illustrated in Fig. 2. Dag-

ster supports different modes of operation depending on what helper processes
are in each worker group: CDCL only (mode ‘C’), CDCL + local search (mode
‘CL’), CDCL + strengthener (mode ‘CS’), and CDCL + strengthener + local
search (mode ‘CSL’).

Fig. 2. Relationship and messages between the master and worker groups.

For modes where there are local search processes interracting with CDCL
modules, such as shown in Fig. 2, the variable suggestions given to the CDCL
search by the various SLSs are based on variables the SLS has most recently
flipped. If a variable is flipped frequently, it will likely be early in a queue of
suggestions for the CDCL to select. Additionally, each SLS is assigned to work
at a given depth and point in the CDCL’s search tree by a prefix of partial
assignments, which the CDCL issues to the SLS. This dynamic is illustrated in
Fig. 3, where a trace of the CDCL search is depicted, showing the prefix of partial
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Fig. 3. Illustration of worker backtracking search with SLS suggestion processes set to
work constrained from partial assignments at various depths in the search branch (blue
dashed lines), shown are previously explored branches (gray) and prohibited decisions
arising from conflicts (red crosses). (Color figure online)

assignments (at various depths) given to the SLS processes to constrain their
searches. In this way, the CDCL communicates with a series of SLS processes
that work at various points in the search near where the CDCL search is working,
to find solutions and return the most appropriate variable suggestions to the
CDCL search.

4 Case Study: Costas Arrays

In our first case study we consider the Costas array model counting problem,
where we evaluate the performance of Dagster’s different operational modes.

A Costas array is a set of n points in an n × n array such that each column
and row contains exactly one point, and each of the n(n − 1)/2 displacement
vectors between the points are distinct. An example of a Costas array is shown
in Fig. 4a. Using search to solve for Costas arrays is known to be challenging,
and searching processes have been conducted at least up to size n = 29 [15,16].
However, whether arrays exist at n ∈ {32, 33} are open problems. As a number of
Costas array subclasses of those sizes have been eliminated [10], it is conjectured
(but not confirmed) that Costas arrays of those sizes do not exist [34].

Fig. 4. Costas array problem example and suggested decomposition method of first
solving the first m columns.
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For each size n, we can directly synthesize a CNF formula whose models are
in one-to-one correspondence with the set of Costas arrays of size n. Lex-leader
constraints can be added to break the dihedral group symmetries (reflection and

Fig. 5. Runtime performance of Dagster against model counting with TiniSAT and
DMC on Costas problems with different number of columns in the decomposition
and processor cores. C = CDCL only; CL = CDCL + local search; CS = CDCL +
strengthener; CSL = CDCL + strengthener + local search; Dagster running with
TiniSAT CDCL processes
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rotation) [36]. For the purpose of using SAT-search to count unique arrays for
values of n using Dagster, we employ a simple DAG structure (see Fig. 4b,
showing two connected nodes) where the first node is the placing of the first
m columns of the Costas array, and the second part is the placement of the
remainder.

The performance of Dagster at solving Costas problems for different sized
Costas arrays n, and for different numbers of columns m solved in the first
node, for different numbers of computing cores and Dagster modes, is given in
Fig. 5. In our evaluations here, the CDCL workers are instances of TiniSAT pro-
cesses. We compare Dagster against the distributed model counter DMC [30],
and against the performance of model counting by repeatedly calling TiniSAT.
Figure 5 demonstrates the benefits of helper processes with clause strengthening
and/or local search, by presenting runtimes for configuration modes: C, CL, CS,
and CSL, with one SLS and/or Strengthener process per worker group.

Examining the time it takes systems to enumerate Costas arrays, for smaller
and easier Costas problems (of size n ≤ 12), we can see that the parallel overhead
of using Dagster is the primary determinant of the solution time. Dagster

systems perform worse compared to TiniSAT, which has minimal overhead; this
overhead is most pronounced with the more granular decompositions that include
more columns (e.g. for Costas-10, 3-column is worse than 2-column). However, for
larger and harder Costas problems (n > 12), Dagster consistently outperforms
TiniSAT - the CDCL procedure which Dagster workers are employing here; as
well as outperforming the DMC model counter. Additionally, for large problems,
having one local search (modes denoted with ‘L’) and/or clause strengthening
process (modes denoted with ‘S’) per worker group complements workers and
yielding improved runtime performance.

A compelling feature of Dagster is that it allows easy experimentation
regarding the decomposition employed. In our results thus far, we have only
considered decompositions into contiguous blocks of columns (where the first
node/subproblem has the first m columns, and the second node has the remain-
der), but we can also consider decompositions with interleaved columns. There
are also many configurable Dagster settings, related to restarting policy and
variable selection heuristics. With workers using the VSIDS heuristic [32] and
Dagster’s geometric restart policy, in Table 1 we see how changing the index of
the columns and the allocated/type-of computing resources in a bi-level decom-
position can affect the runtime performance.

5 Case Study: Pentominoes

In this second case study we considered larger problems—i.e., with many more
clauses—exhibiting clear compositional structure, with unique solutions, to eval-
uate Dagster comparing it to a wide range of approaches.

Particularly, we considered pentomino tiling problems where different tiling
regions correspond to different subproblems. The problems are to fill a grid
area with pentominoes such that no pentomino crosses a bolded wall and no two
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Table 1. Dagster runtime in seconds using bi-level Costas decompositions with
“Columns” determined in the first DAG node. Evaluation also considers strengthen-
ers (S) - i.e. modes C and CS (w/ TiniSAT processes), number of computing “Cores”,
and array “Size (n)”.

Size (n) Cores Columns S Runtimes
9 48 {4} 5.527
10 2 {2,4} 1.356
10 48 {2,4} 5.191
11 2 {2,4} 4.155
11 48 {2,4} 5.642
12 48 {2,4} 21.234
12 48 {2,4} 7.267
12 48 {2,4} � 7.419
13 2 {2,4,6} 91.22

Size (n) Cores Columns S Runtimes
13 48 {2,4,6} 8.427
13 48 {2,4,6} � 10.242
14 2 {5,7,9} 524.414
14 384 {5,7,9} 16.562
14 383 {5,7,9} � 12.118
15 384 {5,7,9,11} 118.133
15 383 {5,7,9,11} � 86.125
16 528 {5,7,9,11} 275.127
16 527 {5,7,9,11} � 235.25

Fig. 6. An example Pentomino puzzle, and two DAG arrangements for solving a cas-
caded grid of connected sub-problems (youtube.com/watch?v=S2aN-s3hG6Y)

pentominoes of the same shape (counting reflections/rotations) touch each other.
An example problem is shown in Fig. 6a. We created a program to randomly
generate hard 15×15 pentomino subproblems by: 1) randomly fill a 15×15 grid
with pentominoes, 2) outlining those pentominoes with walls, and 3) iteratively
remove a random wall segment so that the puzzle is still uniquely solvable, until
no further removals are possible.

We use our program to generate large pentomino superproblems, by cas-
cading 15 × 15 compatible subproblems side-by-side in a grid pattern. In this
way, the grid of pentomino problems constitutes a larger superproblem with
logically distinct parts, where each subproblem is only constrained by its imme-

http://youtube.com/watch?v=S2aN-s3hG6Y
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diate neighbours. As every pentomino subproblem is uniquely solvable, the larger
pentomino superproblem is also uniquely solvable.

We considered two DAG structures (A and B, in Figs. 6b and 6c) as process
schemata for solving pentomino superproblems: (A) from the top left diagonally
through to the bottom right, and (B) solving the subproblems in parallel by
rows, and a final verification node.

We measured the performance of Dagster (with TiniSAT and MiniSAT

workers, and both decompositions) against a range of solvers, including Tin-

iSAT, Lingeling and MiniSAT baselines, and some parallel baselines including
Painless-Mcomsps [19], Paracooba [24], DMC [30] and D-Syrup [1] (note
that, with the exception of DMC, these solvers are not configured as model
counting tools, and thus not reasonably used in the Costas results in Sect. 4). The
results for different sized pentomino problems are shown in Fig. 7 where we see
a range of different performances, with Dagster (Decomposition B using Min-

iSAT workers) outperforming other solvers. Dagster demonstrates a speedup
due to parallelization by solving a larger structured problem with coupled sub-
problems and the runtime performance depends on the decomposition and the
number and type of CDCL workers used.

The coupling between subproblems creates leverage which Dagster exploits
to provide the witnessed speedup, and the structure and arrangement of the
solving process between the subproblem elements (between Decompositions A
and B) can create a large difference in the resulting performance.

6 Case Study: Bounded Model Checking with Abstraction
Invariants

In our third case study we show that the workload for software model checking
can be reduced via an abstraction hierarchy that is amenable to distributed
search using Dagster. We show how Dagster can be used with existing tools to
interrogate the functioning of finite-state-machines and circuits, and in particular
to verify that particular error states of such machine cannot be reached. Our
checking processes will be based on search performed by SAT reasoning, as
exemplified in [6]. A survey of approaches to model checking software systems
is in [2], and we note a wide range of systems exist in this setting, including
CBMC [13,29], F-Soft [28], ESBMC [14], LLBMC [18], and ESBMC [20].
In our case study, we shall be using CBMC as a basis for generating structured
SAT queries for Dagster.

Our case study considers the wireless security protocol for communication
with an implantable low-power medical device described in [25]. Alwen Tiu deter-
mined a priori, and by manual inspection, that this protocol has a potential
issue. The protocol is based on encrypted communication using a 32-bit secret
key K, shared between an implantable medical device (IMD) and a base-station
(BASE). The IMD has a 32-bit serial number S that uniquely identifies it among
other devices. Both the IMD and BASE have a 32-bit message counter, A for
the device, and B for BASE, with both counters initially set at zero. Messages
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Fig. 7. Runtime model counting performance (medians across 86 samples) of Dagster
(w/ decompositions A and B, w/ TiniSAT (T) and Minisat (M) cores) against Tin-
iSAT, Lingeling, Minisat, Painless-Mcomsps, Paracooba, DMC and Dsyrup
solvers, for n× n superproblem arrays of 15× 15 pentomino subproblems. All parallel
algorithms use 17 cores.
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communicated are 64-bits. We use notation X‖Y to denote bit string concate-
nation, and Split(A) to denote splitting a bit string A into two halves, and
Interleave(A,B) to denote the result of interleaving A and B bit strings. We
also write {A}K to denote the bit string A encrypted with K. For a message
transmitted from the BASE to the IMD, and be accepted (i.e., not “dropped”),
the following is required:

1. BASE has a 64-bit message X (larger messages chunked/padded into 64 bits)
2. BASE adds one to its message counter B
3. BASE produces a message M1,M2 = Split(Interleave(X,S‖B))
4. BASE sends the message {M1}K‖{M2}K to IMD
5. IMD receives {M1}K‖{M2}K and decrypts each part with K, then joins and

de-interleaves to find X,S,B
6. IMD checks compatible S, dropping the message if S is not recognised. It then

checks message counter B against its own counter A. If B > A it accepts the
message and sets A to be equal to B, otherwise it drops the message

Examining this protocol, we note there is an issue, particularly, an adversary
can witnesses a message {M1}K‖{M2}K from the BASE to the IMD, and sub-
sequently send a message {M1}K‖{M1}K to the IMD. This message from the
adversary will then cause the IMD’s message counter A to be incremented to
S, potentially causing the IMD to cease accepting legitimate messages from the
BASE, and thereby causing catastrophic failure. This error state in the protocol
is subject to model checking, which can be done using Dagster.

We approach model checking this protocol compositionally, using Dagster,
by appealing to a notion of process abstraction. Specifically, intending to proceed
with CBMC, we faithfully describe the protocol in the C programming language.
State variables describing the evolution of the protocol–e.g., whether an attacker
or BASE is sending a message at timestep i—are of a fixed type. Variables
encoding protocol registers, such as A, B, X, etc., being of a range of types,
depending on where we are in an abstraction hierarchy. State variables of a
fixed type we call abstraction invariant (AI). Our abstraction hierarchy then
considers the other variables at a range of fidelities, with 8-bit registers modelling
protocol instructions at the highest level of abstraction (lowest fidelity) and 64-
bit registers at the lowest level (highest fidelity). We see that the protocol is
much easier to model check, in practice, at a high abstraction level, and so our
approach takes assignments to AI variables from satisfying assignments to highly
abstract models, and uses those to inform search at lower levels of abstraction. A
simulated run of the bidirectional communication from between the base-station
(BASE) and the medical-device (IMD) is described in C, multiple-times, with
variables having different fidelities in different representations. Such models are
passed to the CBMC software to generate corresponding SAT instance problems
with annotations for AI variables’ bit values.4

We augment those formulae and annotations, by graphically representing
the identity relationship of the AI variables between those different fidelity SAT
4 https://github.com/ThomWillingham/bmc-summer2122.

https://github.com/ThomWillingham/bmc-summer2122
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models of the protocol. Using the graphical structure Dagster automates the
search workflow, solving the lower fidelity problem/s and then carrying across
the AI variable values as constraints to the higher fidelity models (as indicated
in the DAG shown in Fig. 8). Here, we document the observed improvement in
performance of this process, over running the higher fidelity models directly in
a SAT solver. Our results are in Fig. 9, where we can see that solving the 64 bit
model using AI solutions from lower fidelity models results in a improvement in
search performance. Particularly, we can see that using AI variable information
saves an order of magnitude on the number of conflicts encountered as well as
a reduction of ∼5 times fewer variable assignments. In this way AI information
can be used to accelerate bounded model checking. The results presented here
were achieved using Dagster in mode C, with one CDCL TiniSAT process.

Fig. 8. A DAG for the IMD case study, with AI variables being communicated from
low fidelity models to higher fidelity models

Fig. 9. Dagster performance measurements of IMD model checking with commu-
nication of AI valuations between searches at different fidelities; specifically between
8/16/32 bit and the 64 bit, with a monolithic 64 bit run plotted for comparison.
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7 Conclusions and Future Work

We have outlined our new tool, Dagster, summarising some capabilities using
three case studies: Costas arrays, Pentomino tiling problems, and also bounded
model checking of an implantable medical device. Dagster operates by solving
large and/or hard problems via a user-provided decomposition, according to a
DAG which delineates different subproblems, and dictates the order in which
they are to be solved together. Dagster has other features which are not pre-
sented in this paper. We plan to continue working on Dagster, implementing
subproblem scheduling and allocation algorithms to further enhance Dagster’s
utilization of HPC resources, and adding snapshotting and incrementality fea-
tures.
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Abstract. Online Mirror Descent (OMD) is a kind of regret minimiza-
tion algorithms for Online Convex Optimization (OCO). Recently, they
are applied to solve Extensive-Form Games (EFGs) for approximating
Nash equilibrium. Especially, optimistic variants of OMD are developed,
which have a better theoretical convergence rate compared to common
regret minimization algorithms, e.g., Counterfactual Regret Minimiza-
tion (CFR), for EFGs. However, despite the theoretical advantage, exist-
ing OMD and their optimistic variants have been shown to converge to
a Nash equilibrium slower than the state-of-the-art (SOTA) CFR vari-
ants in practice. The reason for the inferior performance may be that
they usually use constant regularizers whose parameters have to be cho-
sen at the beginning. Inspired by the adaptive nature of CFRs, in this
paper, an adaptive method is presented to speed up the optimistic vari-
ants of OMD. Based on this method, Adaptive Optimistic OMD (Ada-
OOMD) for EFGs is proposed. In this algorithm, the regularizers can
adapt to real-time regrets, thus the algorithm may converge faster in
practice. Experimental results show that Ada-OOMD is at least two
orders of magnitude faster than existing optimistic OMD algorithms. In
some extensive-form games, such as Kuhn poker and Goofspiel, the con-
vergence speed of Ada-OOMD even exceeds the SOTA CFRs. https://
github.com/github-jhc/ada-oomd

Keywords: Adaptive optimistic online mirror descent ·
Extensive-form games · Nash equilibrium · Counterfactual regret
minimization

1 Introduction

An imperfect information game is one in which only partial or no information
about the opponent is known by each player. It can be used to model many real-
istic problems, such as negotiation, auctions, physical security, and so on. Among
these games, there is a broad class of games, characterized by sequential inter-
action and stochastic outcomes, which can be modeled as extensive-form games

The work is supported by the National Natural Science Foundation of China under
Grants No. U19B2044 and No. 61836011.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 90–103, 2022.
https://doi.org/10.1007/978-3-031-20862-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20862-1_7&domain=pdf
https://github.com/github-jhc/ada-oomd
https://github.com/github-jhc/ada-oomd
https://doi.org/10.1007/978-3-031-20862-1_7


Adaptive Optimistic Online Mirror Descent Algorithm 91

(EFGs). In an EFG, multiple players can make multiple moves sequentially. At
the end of the game, each player will receive a payoff (a loss). In common set-
tings, the goal for each player is to maximize its expected payoff (minimize its
expected loss) by carefully tweaking its strategy for making moves. One of the
possible strategy solutions is known as Nash equilibrium [1], especially for two-
player zero-sum games. Nash equilibrium is a profile of strategies that no player
can improve his expected payoff by unilaterally deviating to a different strategy.
It is known that the complexity of finding an exact Nash equilibrium in a game
is (PPAD) hard [2], therefore, people usually use iterative algorithms to approx-
imate a Nash equilibrium. In this paper, we mainly focus on regret minimization
algorithms, exactly, Online Mirror Descent (OMD) algorithm.

By using the dilated distance-generating function, one can apply OMD, and
their optimistic variants to approximate Nash equilibrium of extensive-form
games. Although these online optimization algorithms have better theoretical
convergence guarantee, they converge slower than the SOTA CFRs [3] in prac-
tice. CFR is a kind of efficient algorithm for finding Nash equilibrium, an agent
trained with this algorithm once beat the top human players in the field of
Heads-Up Limit Hold’em poker. The inconsistency between theory and practice
shows that there is still a large room for improvement in the convergence speed
of OMD algorithms in solving two-player zero-sum extensive-form games.

In previous works, such as [20], they usually use constant regularizers whose
parameters have to be chosen at the beginning, which may limit the convergence
speed of the algorithm. In order to reduce the limitation of fixed parameters on
the convergence speed. Inspired by the adaptive nature of CFRs, by using the
dilated Euclidean distance-generation function, we propose an adaptive method
to speed up the convergence speed of the optimistic variants of OMD, resulting a
new algorithm, Adaptive Optimistic OMD (Ada-OOMD) for EFGs. We theoret-
ically prove that this new algorithm is convergent and give a specific theoretical
minimum convergence rate of O(T−0.5). We also experiment with six extensive-
form games, and the experimental results verify that our algorithm has greatly
improved the convergence speed compared with the fixed regularization func-
tion. In some games, such as Kuhn poker and Goofspiel, the adaptive optimistic
OMD even has a faster convergence speed than CFR+.

2 Related Work

Extensive-form games (EFGs) are an important class of games in game
theory and artificial intelligence which can model imperfect information and
sequential interactions. EFGs are typically solved by finding or approximating
a Nash equilibrium. A great successful application of calculating Nash equilib-
rium is poker, such as Kuhn poker, Leduc poker, and Heads-Up Limit Hold’em
poker. Among them, Texas hold’em has always been a very challenging problem
due to its large number of nodes, until [4] computed a near-optimal Nash equi-
librium for Heads-Up Limit Hold’em poker, and [5] beat top human specialist
professionals. The core of solving this large-scale game is to quickly calculate its
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Nash equilibrium. There are many game-solving algorithms, such as, abstraction
[6,7], endgame solving [8,9], depth-limited sub-game solving [10], fictitious play
[11], and CFRs. Counterfactual Regret Minimization (CFR) [3,12] has been the
most popular method in computing Nash equilibrium, which minimizes the total
regrets of the players, by minimizing the counterfactual regrets of each decision
point. In recent years, there are many variants of CFR, such as Discounted CFR
[13], Deep CFR [14], and predictive CFR [15].

Online optimization algorithms have been shown to have appealing theo-
retical properties. Online Mirror Descent (OMD) [17] in Online Convex Opti-
mization (OCO) [18] have been applied to EFGs. In this paper, we only consider
two-player zero-sum imperfect information games, so at each time step t, these
first-order methods receive some loss vector lt (inner product of the opponent’s
strategy and payoff matrix), and must then recommend a strategy from some
convex set based on the series of past strategies and losses. However, the theoret-
ical convergence rate of these algorithms is O(T−0.5). A recent series of papers
[19] showed that by adding the estimate of the next loss faced, the rate of conver-
gence to Nash equilibrium increases. [20] proposes the dilated Euclidean DGF,
which applies the l2 norm as a DGF at each information set. They show the first
explicit bounds on the strong-convexity parameter for the dilated Euclidean
DGF when applied to the strategy space of an EFG, the algorithm converges to
Nash equilibrium at the improved rate O(T−1).

In this work, we propose an adaptive method to speed up the optimistic Online
Mirror Descent algorithms suitable for extensive-form games. The method can
change the regularization function of each information set in real-time, so as to
accelerate the convergence speed of the algorithm. In some games, the conver-
gence speed of Ada-OOMD is even much faster than CFR+.

3 Notation and Background

Two-player zero-sum extensive-form games with perfect recall, exactly, every
player will not forget the previous historical information, can be described as a
sequence of decision-making processes, in which two players make decisions, in
turn. The problem of computing its Nash equilibrium can be formulated as a
bilinear saddle-point problem (BSPP) [22],

min
x∈X

max
y∈Y

x�Ay = max
y∈Y

min
x∈X

y�Ax. (1)

In the EFG literature, this is known as the sequence-form formulation [23],
where x and y represent the strategy vectors of player one and player two
respectively, and matrix A represents the loss matrix for player one, which is
also the payoff matrix for player two, X and Y are the players’ sequence-form
strategy spaces, which are convex polytopes. A best response BR(y) of player
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one is a strategy that BR(y) = argminx′∈X x′�Ay, exactly, when player two
adopts strategy y, the strategy that player one adopts to minimize the loss is
the best response strategy. A Nash equilibrium (x∗,y∗) is a strategy profile
that every player plays a best response. For any strategy profile (x,y), the dis-
tance to a Nash equilibrium is measured by the exploitability which is defined
as ε(x,y) = maxy ′∈Y x�Ay′ − minx′∈X x′�Ay. In solving two-player zero-sum
extensive-form games, the average strategy of CFRs and OMD algorithms con-
verge to Nash equilibrium as the number of iterations increases, so, when mea-
suring the quality of the strategy, what we need to calculate is the distance
between the average strategy profile and Nash equilibrium:

ε(x,y) =
RT

X + RT
Y

T
, (2)

where x and y are the average strategy of the two players during minimiza-
tion, and RT

X and RT
Y are the total regrets of the two players, defined as

RT
X = maxx′∈X

∑T
t=1 (〈lt,xt〉 − 〈lt,x′〉), where lt = Ayt is determined by the

loss matrix and the strategy of the opponent. Formula (2) shows that the average
strategy is a (RT

X + RT
Y)/T Nash equilibrium, therefore, as long as the player’s

cumulative regret grows sub-linearly, the exploitability of average strategies con-
verges to zero. For example, if both RT

X and RT
Y are bounded by O(T 0.5), then

ε(x,y) will convergence to zero at a rate of O(T−0.5).

3.1 Treeplex

Two-player zero-sum extensive-form games can be represented as a sequential
decision process, so, we can assume that each player has a set of decision points
denoted by J and a set of observation points denoted by K which is also the
opponent’s decision points. In this subsection, we adopt some definitions similar
to [20,24]. For each decision node j ∈ J , the actions that can be taken at the
current node constitute the action set Aj of size nj . Given a specific action
a ∈ Aj , the set of possible observation points that the player may next face is
denoted by Kj,a, at each observation point, the opponent makes a decision, and
the player receives a signal s ∈ Sk, after observing the signal, the player reaches
another decision point j′ ∈ J , so the set of all the next decision nodes represented
as Cj,a, which can be thought as representing all of the different decision points
that the player may arrive after taking action a, if no more actions are taken after
j, a, it can be an empty set. For all other convex sets and action choices j′, a′, we
assume that Cj,a ∩Cj′,a′ = ∅ which is equivalent to the perfect-recall assumption
in extensive-form games. If j′ ∈ Cj,a, we call that j′ is the child decision point of
j, written as p(j′) = j. Moreover, define C↓j = {j}∪{j′ ∈ J |p(j′) ∈ C↓j} as the
set of all descending decision points of j (including j). To simplify the analysis,
we can assume that the root node, denoted as o, is a decision point. Otherwise,
we can always add a virtual root node with only one action pointing to the root
node, as a result, we have C↓o = J . In order to visualize the tree structure of the
player’s action space, in Fig. 1, we use Kuhn poker as an example. Kuhn poker
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consists of a three-card deck: king, queen, and jack. Figure 1 has shown the action
space of the first player. Combining the diagram with the relevant definitions
for treeplex we can get: J = {0, 1, 2, 3, 4, 5, 6}; n0 = 1; nj = 2 for all j ∈ J \{0};
A0 = {start}, A1 = A2 = A3 = {check, raise}, A4 = A5 = A6 = {fold, call};
C0,start = {1, 2, 3}; C1,check = {4}; C2,raise = ∅.

Fig. 1. player’s sequential action space in the game of Kuhn poker, � represents the
end of the decision process, © denotes an observation point, and � represents decision
points.

3.2 Sequence Form

Let l = Ay = (lj0 , ..., lj|J |) be the loss vector and let x = (x̂j0 , ..., x̂j|J |) be the
strategy vector, where {j0, . . . , j|J |} = J . The expected loss

∑
j∈J πj〈lj , x̂j〉

is non-linear in the strategy x. This non-linearity is due to πj , which is the
probability of reaching each decision node j and is computed as the probabil-
ity product of all actions taken on the path from the root to node j. We now
introduce a well-known alternative representation of the strategy that preserves
linearity which is called the sequence form [23]. In the sequence form representa-
tion, for a common decision point j ∈ J , its simplex strategy space is scaled by
the decision variable associated with the last action in the path from the root of
the process to j. In this formulation, the value of any action represents the proba-
bility product of the entire sequence of actions from the root to that action. This
causes each item in the expected loss to be weighted only by the sequence ending
with the corresponding action. The sequence form has been used to instantiate
many methods for computing Nash equilibrium of zero-sum EFGs, such as lin-
ear programming [18] and first-order methods [3,16,18]. Formally, based on the
characteristics of the tree structure, the sequence-form representation X of a
sequential decision process can be obtained recursively. At every observation
point k ∈ K, Xk = Xj1 × Xj2 × · · · Xjnk

, where {j1, j2, · · · , jnk
} = Ck, the set of

feasible decision points at observation point k. At every decision point j ∈ J ,

Xj = {(x̂j , x̂ja1xk1 . . . , x̂janj
xknj

) :

x̂j ∈ Δnj ,xk1 ∈ Xk1 , . . . ,xknj
∈ Xknj

},
(3)
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where {k1, . . . , knj
} = Cj , the set of feasible observation points at decision point

j, and
(
x̂ja1 , . . . , x̂janj

)
= x̂j ∈ Δnj is the probability distribution of actions at

decision node j. Denote the strategy in space Xj as xj ∈ Xj , the whole sequence-
form strategy space is X = Xo. Sometimes, we may have to “slice” (i.e., select
some adjacent elements from a vector to form a new vector) a sub-vector related
to a decision point j from a vector z ∈ R

∑
nj (z can be a strategy x ∈ X or a

loss vector l ∈ R

∑
nj ). We use [z]j to represent the nj entries related to j, and

[z]ja to represent the entry corresponding to action a in [z]j . Besides, let [z]↓j

denote the entries related to C↓j . Let xpj
be the variable that scales xj , i.e.,

xpj
= πpj

. If decision point j does not have parent decision point, we simply set
xpj

= 1. So, there is a simple mapping between a sequence-form strategy and
the local decision: x̂j = [xj ]j = [x]j/xpj

for each j ∈ J . Then, the expected
loss for the whole process is 〈l,x〉, where l satisfies [l]j = lj . In the rest of the
paper, we use normal symbols, e.g., x and l, to represent the variables related
to the sequence-form strategy space, and use symbols with hats, e.g., x̂j and l̂j ,
to represent the variables related to local decision points.

3.3 Dilate Euclidean Distance Generate Function

Because the player’s strategy has a sequential form, for the regularization func-
tion that computes the next strategy, a particular type of distance-generate
function which is suitable for sequential decision-making problems is needed.
[25] has proposed dilated DGF, which is defined as dt(x) =

∑
j∈J xpj

ϕt−1
j (x̂j),

where x̂j = xj

xpj
∈ Δnj , ϕt−1

j : Rnj → R is any strongly convex function suitable
for Δnj .

Definition 1. A directionally differentiable function f: X 	→ R is η-strongly
convex with respect to norm ‖ · ‖, if and only if:

f(x) − f(y) − 〈∇f(y), x − y〉 ≥ η

2
‖x − y‖2. (4)

In this paper, the local dilated DGFs we used for simplexes is the Euclidean DGF,
defined as ϕt

j(b) = 1
2βt

j‖b‖22 , which is βt
j-strongly convex with respect to the

l2 norm, where b is a vector in the n-dimensional simplex Δn. The coefficients
in front of our regularization function are not fixed, exactly, we let dt(x) =∑

j∈J xpj
βt−1

j ‖x̂t
j‖2, where βt−1

j is an adaptive parameters.

3.4 Counterfactual Regret Minimization

CFR and its variants are a classical algorithm in two-player zero-sum games with
imperfect information, it has been proven that the exploitability of the average
strategies of the players is bounded by O(T−0.5) after T iterations. [15,24] have
pointed out that under certain conditions, CFR algorithm is equivalent to OMD
algorithm. Inspired by this, we introduce the related concepts of CFR algorithm
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into our algorithm setting. Given a sequence-form strategy xt ∈ X and a loss
vector lt ∈ R

∑
nj , CFR constructs a kind of local loss l̂tj for every j ∈ J , with

l̂tj = 〈l̂tj , x̂j〉, where [l̂tj ]a = [lt]ja +
∑

j′∈Cja

l̂tj′ , (5)

[l̂tj ] is called the counterfactual loss, so the instantaneous counterfactual regret is
defined as r̂t

j = l̂tje− l̂tj , where e is a vector that is all 1. A more straightforward
explanation for r̂t

j is that when the current loss is lt, the virtual regret value
that the player obtained when taking strategy xt at decision point j.

3.5 Regret Minimization Algorithms

One’s ability to learn and make decisions rests heavily on the availability of feed-
back. Indeed, a player may improve himself when he can reflect on the outcomes
of his own taken actions. In many environments, feedback is readily available,
and many online convex optimization algorithms [25] are proposed based on it,
such as regret minimization algorithms. In regret minimization algorithms, the
decision maker is constantly making decisions x1,x2, · · · ,xt ∈ X without know-
ing the environment, X is a convex compact set. After a decision xt is made
at time t, the environment feeds back a linear loss xt 	→ 〈lt,xt〉 to the decision
maker, where lt ∈ R

∑
nj . Summarizing, when it comes to the next iteration, the

decision maker can use past strategies x1,x2, . . . ,xt and corresponding losses
l1, l2, . . . , lt to develop strategies xt+1 for the next step to increase payoff.

In the process of interaction with the unknown environment, the difference
between the loss of the current strategy and the loss of the best strategy is defined
as the regret value, the quality metric for a regret minimizer is its cumulative
regret, and the cumulative regret up to time T is:

RT :=
T∑

t=1

〈lt,xt〉 − min
x̂∈X

T∑

t=1

〈lt, x̂〉. (6)

If the cumulative regret grows sublinearly in T, then we say the regret minimizer
is “good”. Now, we present a classical regret minimization algorithm, The online
mirror descent (OMD) algorithm:

xt+1 = argmin
x∈X

{〈lt,x〉 +
1
η
Bd(x‖xt)}, (7)

where Bd(x‖xt) := d(x) − d(x′) − 〈∇d(x′),x − x′〉 is defined as
Bregman divergence constructed by dilated DGF d(x). When calculating the
strategy of the next round, the prediction of the loss function at the next moment
mt+1 was added to the optimization function, thus obtaining the optimistic vari-
ant of the regret minimization algorithm. Now, we present a optimistic variant
of classical regret minimization algorithms, Optimistic Online Mirror Descent
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(OOMD) algorithm and its policy update form:

xt+1 = argmin
x∈X

{〈mt+1,x〉 +
1
η
Bd(x‖zt)},

zt+1 = argmin
z∈X

{〈lt+1,z〉 +
1
η
Bd(z‖zt)}.

(8)

Pay attention to that xt+1 is selected before observing loss lt+1 while zt+1 is
selected after.

4 Adaptive Methods and Analysis

One can see that the regularization function of the above optimization algo-
rithm is fixed when updating the strategy. However, the regularization function
with fixed constant limits the convergence speed of the algorithm. As mentioned
earlier, inspired by the adaptive nature of the CFRs algorithms, we propose an
adaptive method and apply it to the OOMD algorithm to make the regulariza-
tion function change in real-time with the accumulated regret, and obtain a new
algorithm Ada-OOMD. In this section, we will give the specific form of the algo-
rithm and prove that our algorithm converges to a Nash equilibrium at a speed
of O(T−0.5). The proof details of all theorems and corollaries in this section can
be found in the appendix.1

4.1 Adaptive Regularization Function

This subsection presents the application of our adaptive method to the OOMD
algorithm. The specific flow of the algorithm is as follows.

Algorithm 1. Adaptive Optimistic Online Mirror Descent
Input: z0 = 0
1: for iteration t = 0 to T do
2: if t=0 then
3: mt+1 ← 0.
4: else
5: mt+1 ← Estimate(l1, . . . , lt,x1, . . . ,xt).
6: end if
7: xt+1 ← Update(mt+1, zt).
8: lt+1 ← Obverseloss(xt+1).
9: zt+1 ← Intermediate-variable(lt+1, zt).

10: end for

Take a list of regularization functions q0, q1, · · · , qt, satisfy q0(x) =∑
j∈J

1
2η xpj

β0
j ‖x̂j‖2, and

∑t
i=0 qi(x) =

∑
j∈J

1
2η xpj

βt
j‖x̂j‖2, then policy xt+1

1 https://tinyurl.com/5yj7ndnz.

https://tinyurl.com/5yj7ndnz
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and intermediate variable zt+1 are obtained by the following equations.

xt = argmin
x∈X

{〈mt,x〉 + qt(x) + Bq0:t−1(x‖zt)
}
,

zt+1 = argmin
x∈X

{〈lt,x〉 + qt(x) + Bq0:t−1(x‖zt)
}
,

(9)

where q0:t−1 =
∑t−1

i=0 qi. In the process of iteration, the parameter βt
j is con-

stantly changing, and we’ll talk more about it in later chapters. For example, in
Sect. 4.2, it can be seen that the cumulative regret upper bound of the algorithm
is related to βt

j , so, by setting βt
j to some specific value, the algorithm can be

proved to be convergent.

4.2 Convergence Analysis

In the process of deriving the upper bound on regret for the Ada-OOMD algo-
rithm, we decompose the accumulated regret into the following three parts.

T∑

t=1

〈lt,xt − x′〉 =

T∑

t=1

〈mt,xt − zt+1〉 +
T∑

t=1

〈lt, zt+1 − x′〉 +
T∑

t=1

〈lt − mt,xt − zt+1〉. (10)

Calculating the upper bound on the regret value of each part separately, we
get the following theorem.

Theorem 1. For Ada-OOMD, if q0:t, t ≥ 0 is strongly convex and differentiable
in X , then,

T∑

t=1

〈lt,xt − x′〉 ≤q0:T (x′) −
T∑

t=0

qt(xt) + 〈lt − mt,xt − zt+1〉

−
T∑

t=1

(Bq0:t−1(xt‖zt) + Bq0:t(zt+1‖xt)
)
.

(11)

As defined earlier, by bring the definition
∑t

i=0 qi(x) =
∑

j∈J
1
2η xpj

βt
j‖x̂j‖2

into Theorem 1, one can get a more explicit upper bound on regret as follows.

Theorem 2. For Ada-OOMD, if βt
j ≥ βt−1

j > 0,∀j ∈ J , t > 0, then,

T∑

t=1

〈lt,xt − x′〉 ≤ 1
2

∑

j∈J

(
βT

j

η
+

T∑

t=1

η‖r̂t
j − r̂′t

j ‖22
βt

j

)

, (12)

where r̂′t is instantaneous counterfactual regret when loss vector is mt and cur-
rent strategy is x′.

Corollary 1. If βt
j =

√∑t
k=1 ‖r̂k

j − r̂′k
j ‖22 and βt

j ≥ βt−1
j > 0, ∀j ∈ J , t > 0,

then, the total regret of T iterations of Ada-OOMD is

T∑

t=1

〈lt,xt − x′〉 ≤ 1
2

(

2η +
1
η

) ∑

j∈J

√
√
√
√

T∑

t=1

‖r̂t
j − r̂′t

j ‖22. (13)
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According to the lemma 1 of [27], we can get that,

T∑

t=1

‖r̂t
j‖2 ≤ yT

j |Aj |U2 T, (14)

where yT
j denotes the opponent’s average strategy at decision point j in the T-th

iteration, U is the range of the current player’s revenue, and |Aj | is the number

of available actions at node j. So, if we set βt
j =

√∑t
k=1 ‖r̂k

j − r̂′k
j ‖22, then

RT (x′) = O(T 0.5) for any strategy x′, therefore, the theoretical convergence rate
of our method is O(T−0.5). As we mentioned earlier, although the theoretical
convergence rate of CFR+ is O(T−0.5), its actual convergence rate can reach
O(T−1) in practice. Similarly, though the theoretical convergence rate of our
method is O(T−0.5), the experimental results show that our method is much
faster than fixed parameters which is proposed in [20] with a convergence rate
of O(T−1), what’s more, in some games, the convergence rate of our method is
even faster than CFR+.

4.3 Dilated Distance Generating Function and Local Minimization

The update applied at each iteration of several OCO algorithms which run on
the sequence-form polytope of X can be described as an instantiation of a prox
mapping, exactly, our algorithm can be described as follow:

Prox(mt+1,zt) = argmin
x∈X

{〈mt+1,x〉 + qt(x) + Bq0:t−1(x‖zt)
}
. (15)

A prox mapping on a treeplex constructed from a dilated DGF can be decom-
posed into local prox mappings at each decision point, therefore, we can solve
the minimization problem through the method of Prox mapping to get the strat-
egy of the next iteration recursively, we give an example below for the recur-
sive updating rule. Let q0:tj (xj) =

∑
j′∈C↓j

xp
j
′ /xpj

q0:tj′ (x̂j′) be a regularizer
defined in the space of Xj . Note that q0:tj (xj) is equivalent to q0:t(x) under the
assumption that xpj

= 1. Let F t+1(x) = 〈mt+1,x〉+qt(x)+Bq0:t−1(x‖zt), then
the next strategy is computed by xt+1 = argminx∈X F t+1(x), and F t+1

j (xj) =
〈[mt+1]↓j ,xj〉+q0:tj (xj)+Bq0:t−1

j
(xj‖zt

j) accordingly. Then, F (x) = Fo(xo), and

we have q0:t(x) = q0:to (xo). Based on these and [24], we can get the calculation
expression of the next iteration strategy:

x̂t+1
j =

η

βt
j

[αt
je − [mt+1]j − βt−1

j

η
ẑt

j ]
+, (16)

where αt
j ∈ R satisfies ‖x̂t+1

j ‖1 = 1, i.e., αt
j fulfills ‖[αt

je−[mt+1]j− βt−1
j

η ẑt
j ]
+‖1 =

βt
j . The policy update formula mainly leverages the linearity of the loss in the

strategy space and the recursive property of the dilated DGF.
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5 Experiment Results and Analysis

From the theoretical analysis in the previous section, we can find that the theo-
retical convergence rate of the Ada-OOMD algorithm is O(T−0.5). Compared to
the OOMD algorithm which has a fixed regularization function, our algorithm
has similar adaptive properties to the CFR algorithm. Next, we will test the
performance of our algorithms on different games.

5.1 Experimental Setup

We experimentally evaluate the performance of adaptive optimistic regret min-
imization methods instantiated with dilated distance-generating functions. A
total of six games were used to test the algorithm’s performance, such as,
Kuhn poker, Leduc poker, Liars-dice, Goofspiel and its variants. According
to the results given by Corollary 1 above, in the experiment, it’s better to

set βt
j =

√∑t
k=1 ‖r̂k

j − r̂′k
j ‖22. However,

√∑t
k=1 ‖r̂k

j − r̂′k
j ‖22 is complicated to

calculate, and as mentioned before, the l2-norm of the cumulative counterfac-
tual regret of each decision point is bounded by U

√
ȳt

j |Aj |t [27], so, we set

βt
j = U

√
ȳt

j |Aj |t instead, and this parameter setting can still ensure that the

algorithm has a convergence speed of O(T−0.5). From the expression we can see
that βt

j is related to the average strategy of the opponent, however, the cal-
culation method of the average strategy is not unique. In this paper, we tried
three methods separately. Uniform Averaging (UA), i.e., yT = 1

T

∑T
t=1 y

t, Lin-
ear Averaging (LA), i.e., yT = 2

T (T+1)

∑T
t=1 tyt and Square average (SA), i.e.,

yT = 6
T (T+1)(2T+1)

∑T
t=1 t2yt. We found the calculation method of linear aver-

age (LA) has a faster convergence speed than other settings. Therefore, we use
this parameter setting to experiment on the six games mentioned earlier. As
for the learning rate η, it’s a hyper-parameter, in different games, the setting
of hyper-parameter η is different, for example, in Kuhn poker, we set η = 2, in
Leduc poker, we set η = 200, and so on. The experimental results will be shown
in the next section.

5.2 Experimental Results

The experimental results of OOMD, Ada-OOMD, CFR, and CFRPLUS are
reported below, all the algorithms tested here use alternating updating, which
is a standard method widely used in CFRs [12].

From the experimental results, we can see that our method does acceler-
ate the convergence speed than that of the fixed parameters in all test games.
Figure 2 shows the performance of the Ada-OOMD algorithm on Goofspiel-5,
leduc poker and liars-dice. One can see that the convergence speed of the Ada-
OOMD algorithm is at least two orders of magnitude faster than that of the
fixed-parameter OOMD algorithm. Although it is still not as good as the CFR+
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Fig. 2. Performance curve of each algorithm in the game. The x-axis is the number
of iterations. The y-axis is the Exploitability. Our adaptive algorithm surpasses the
algorithm of the fixed regularization function and is closer to the CFRPLUS algorithm.

Fig. 3. Performance curve of each algorithm in the game. The x-axis is the number
of iterations. The y-axis is the Exploitability. Our adaptive algorithm outperforms
algorithms with fixed regularization functions and even the CFRPLUS algorithm.

algorithm, it is very close. In Fig. 3, One can see that the convergence speed of
the Ada-OOMD algorithm is not only at least two orders of magnitude faster
than that of the fixed-parameter OOMD algorithm, but even exceeds the CFR+
algorithm. We have reason to believe that the online optimization algorithm has
great potential in solving two-player zero-sum extensive-form games. One can
continue to improve its theoretical and practical convergence speed in future
research, and solve imperfect information games better and faster.

6 Conclusions

We propose an adaptive method, and apply it to the optimistic variants of OMD
that accelerates the convergence to Nash equilibrium in two-player zero-sum
extensive-form games. In this method, the regularization function is changed
in real-time according to the accumulated regret. We have proved that this
adaptive approach is convergent on the optimistic variants of OMD, and give
a specific minimum convergence rate O(T−0.5). Although our method does not
theoretically give a better upper bound on regret value than O(T−1), its actual
experimental convergence speed is faster than the optimistic online convex opti-
mization algorithms with fixed parameter, which has the convergence rate of
O(T−1) in theory. In addition, our method has the same theoretical convergence
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rate as SOTA CFRs, and in experiments, we find that our adaptive method
converges close to CFR+ in some games, and in other games, such as Kuhn
poker and Goofspiel, our method outperforms it, which is encouraging. Later,
the proof method can be further adjusted to obtain a better theoretical bound,
and the performance of the algorithm can be further improved by setting better
adaptive parameters.
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Abstract. The high complexity of planning with partial observability
has motivated to find compact representations of belief state (sets of
states) that reduce their size exponentially, including the 3-valued literal-
based approximations by Baral et al. and tag-based approximations by
Palacios and Geffner.

We present a generalization of 3-valued literal-based approximations,
and an algorithm that analyzes a succinctly represented planning prob-
lem to derive a set of formulas the truth of which accurately represents
any reachable belief state. This set is not limited to literals and can con-
tain arbitrary formulas. We demonstrate that a factored representation
of belief states based on this analysis enables fully automated reduction
of conformant planning problems to classical planning, bypassing some
of the limitations of earlier approaches.

1 Introduction

In comparison to classical planning, which has a single known initial state and
deterministic actions and thus a completely predictable and observable future,
more general forms of planning with multiple initial states and incomplete
observability require considering sets of possible current states, leading to the
notion of belief states. In this setting, the knowledge state of an agent is initially
incomplete, consisting of multiple states (and not just one), and each action
maps the current belief state to a new one, consisting of the new possible cur-
rent states. This is the reason why limited observability increases the complexity
by an exponential in comparison to the fully observable case.

Earlier works have used propositional logic and related NP-complete lan-
guages for compact belief space representations in planning under partial observ-
ability [2,19] and full observability [7]. The representations of state sets in these
works use sets of literals, that is propositional variables and negated propo-
sitional variables, which is equivalent to 3-valued valuations in which a state
variable can have the value true, false, or unknown. Sets of literals cannot rep-
resent arbitrary state sets. For example, the set {01, 10, 11} is not representable
as a set of literals, and, more generally, any set with dependencies between state
variables, which is the typical case, cannot be.

Our goal is to provide a method for determining cases in which all relevant
state sets can indeed be accurately represented as sets of literals, and when
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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this is not possible, to determine which type of more general representation
is sufficient. Our representation is with sets T = {φ1, . . . , φn} of propositional
formulas so that any belief state B (state set) is characterized by some R ⊆ T
as B = {v|v |= ∧

R}. The component formulas φ1, . . . , φn could be limited to
clauses, but also unlimited propositional formulas can be used instead. The 3-
valued representations [2,19] can be viewed as a special case, as we could choose
the set T to consist of literals x and ¬x for all state variables x.

Hence, belief states can be represented as vectors (b1, . . . , bn), indicating
which of the formulas in T = {φ1, . . . , φn} hold in the belief state. As this
is a bit-vector, different actions are mappings from bit-vectors to bit-vectors,
and it is straightforward to turn the conformant planning problem to a standard
state-space search problem, solvable for example by classical planners.

The plan of this work is as follows. We will first introduce planning without
observability (often known as conformant planning), and a novel representation
of belief states in terms of subsets of a fixed set of formulas (that we call a
base). We show how actions can be understood as mappings from valuations of
the base to valuations to the base, and we give an algorithm for identifying a
base for an arbitrary conformant planning problem. Then we propose a reduc-
tion from conformant planning to classical planning, in which each formula in
the base is identified with a state variable in classical planning. Both finding a
base and deriving the classical planning problem involve worst-case exponential
operations, but we show that simple approximation schemes still allow solving
many hard conformant planning problems efficiently. We conclude the paper by
discussing possible extensions of our work.

2 Preliminaries

Define a problem instance in conformant planning as a tuple 〈X, I,A,G〉 where

– X is a finite set of state variables,
– I is a formula for the initial states,
– A is a finite set of formulas over X ∪ {x′|x ∈ X} representing actions, and
– G is a formula for the goal states.

The action representation is the one well known from OBDD and SAT-based
planning methods [5], in which the relation between a state and its possible
successor states is represented as arbitrary Boolean functions over the state
variables X = {x1, . . . , xn} and the next state variables X ′ = {x′

1, . . . , x
′
n}. This

is a general representation, to which deterministic and non-deterministic variants
of PDDL can be translated.

In Sect. 5.1 we will also use a representation of actions close to standard
modelling languages, in which actions are pairs (p, e) where p is a formula and e
(the effect) is a set of rules φ�l, where the literals in l are made true conditional on
the formula φ being true. If φ = �, then the literals become true unconditionally
(which is the case in the simplest so-called STRIPS actions.)
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Example 1 (Sorting Networks). Consider a sorting network problem, in which
the initial belief state is the set of all possible states over the state variables
x1, x2, x3, and the three actions are (�, (x1 ∧ ¬x2) � (¬x1;x2)), (�, (x2 ∧ ¬x3) �
(¬x2;x3)), and (�, (x1 ∧ ¬x3) � (¬x1;x3)), or equivalently, Φ12 = (x′

1 ↔ (x1 ∧
x2))∧ (x′

2 ↔ (x1 ∨x2))∧ (x′
3 ↔ x3), Φ23 = (x′

1 ↔ x1)∧ (x′
2 ↔ (x2 ∧x3))∧ (x′

3 ↔
(x2 ∨ x3)). and Φ13 = (x′

1 ↔ (x1 ∧ x3)) ∧ (x′
2 ↔ x2) ∧ (x′

3 ↔ (x1 ∨ x3)). The
actions swap the values of two state variables if they are not in increasing order.

Since the initial state is not known and the actions just reorder the unknown
values of the state variables, the value of no state variable ever becomes known.
The only known thing is the orderings of some state variables.

3 Theory

Given actions and a formula for the initial belief state, our objective is to identify
T = {φ1, . . . , φn} so that every reachable belief state can be represented as a
conjunction of some R ⊆ T . We call such a set T a base. When a literal-based
approximation [2] is sufficient, T is a set of literals. More generally, T consists
of arbitrary formulas. For example, we will see that the 3-input sorting network
problem can be represented in terms of T = {x1 → x2, x1 → x3, x2 → x3}.

Definition 1. Let X be the set of state variables. Then a transition relation
formula is any formula over X ∪ X ′, where X ′ consists of “primed” versions x′

of state variables x ∈ X which represent the values of x in the successor state.

Definition 2. A transition relation formula Φ is deterministic iff there is a
logically equivalent formula Φd = χ ∧ ∧

x∈X x′ ↔ φx where χ is a propositional
formula over X and each φx, x ∈ X is a propositional formula over X.

As is known from BDD-based reachability [5], a formula representing the
successors of a given set of states with respect to a transition relation, when the
latter two are represented as formulas, can be obtained by using the existential
abstraction operation ∃ and renaming of variables in X ′ to the corresponding
ones in X, expressed as [X/X ′].

Definition 3 (Successors). Given a transition relation formula Φ and a for-
mula φ, the successor of φ w.r.t. Φ (denoted by succΦ(φ)) is (∃X.(φ∧Φ))[X/X ′].
For sequences Φ1, . . . , Φm we define succΦ1;··· ;Φm

(φ) = succΦm
(· · · succΦ1(φ) · · · ).

If the number of formulas in the base T is n, then it would seem that we would
have to consider all 2n different subsets when looking at the possible successor
belief states with respect to a given action. We can, however, incompletely and
with a complexity reduction from 2n to n, analyze possible successor belief states
for every member of T separately.

Theorem 1. succΦ(α ∧β) |= succΦ(α)∧ succΦ(β) for any transition relation Φ.
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Proof. We apply the following sequence of equivalences and consequences to each
of the variables in X in ∃X.(α ∧ β ∧ Φ), starting from the innermost one, and
resulting in ∃X.(α ∧ Φ) ∧ ∃X.(β ∧ Φ).

∃x.(α ∧ β ∧ Φ) ≡ (α ∧ β ∧ Φ)[�/x] ∨ (α ∧ β ∧ Φ)[⊥/x]
≡ (α[�/x] ∧ β[�/x] ∧ Φ[�/x]) ∨ (α[⊥/x] ∧ β[⊥/x] ∧ Φ[⊥/x])
|= ((α[�/x] ∧ Φ[�/x]) ∨ (α[⊥/x] ∧ Φ[⊥/x]))

∧((β[�/x] ∧ Φ[�/x]) ∨ (β[⊥/x] ∧ Φ[⊥/x]))
≡ (∃x.(α ∧ Φ)) ∧ (∃x.(β ∧ Φ))

So considering every base formula separately gives correct information about
successor belief states. But not all information is obtained this way, as the con-
verse of the logical consequence in Theorem 1 does not hold.

Example 2. Consider φ1 that represents the set {s1} and φ2 that represents the
set {s2}, and Φ that represents the transition relation {(s1, s3), (s2, s3)}. Since
φ1 ∧ φ2 ≡ ⊥, also succΦ(φ1 ∧ φ2) ≡ ⊥. But succΦ(φ1) ∧ succΦ(φ2) represents s3.

A relation R is injective if for all z, whenever xRz and yRz, x = y . This
means that an action and a successor state determine the predecessor state
uniquely. For injective relations the image of conjunction coincides with the
conjunction of the images.

Lemma 1. Let Φ be a transition relation formula that represents an injective
relation. Then succΦ(φ ∧ φ′) ≡ succΦ(φ) ∧ succΦ(φ′),

Many actions in standard benchmark problems for classical planning are
injective as required in Lemma 1, when restricted to the part of the state space
reachable from the initial states, but partially observable problems typically are
not. Hence an important problem is the identification of actions and formulas φ1

and φ2 that satisfy succΦ(φ∧φ′) ≡ succΦ(φ)∧ succΦ(φ′) even without the action
being injective. This is critical for being able to analyze problems efficiently
without having to look at all possible combinations of component beliefs.

Nevertheless, in many interesting problems, reasoning about actions is pos-
sible even without exhaustive analysis of all combinations of component beliefs.

Example 3. Consider Sorting Networks with three inputs. The shortest plan does
compare&swaps for the input pairs (1, 3), (1, 2) and (2, 3), generating the belief
states (x3 → x1), (x2 → x1)∧(x3 → x1), and (x2 → x1)∧(x3 → x1)∧(x3 → x2).

Example 4. Consider Sorting Networks with four inputs. The shortest plan con-
sists of compare&swap operations for the input pairs (1, 3), (2, 4), (1, 2), (3, 4)
and (2, 3). The first two actions produce the belief state (x3 → x1)∧ (x4 → x2).
After that, the third action, swapping 1 and 2, turns the belief state to

(x3 → x1) ∧ (x2 → x1) ∧ (x4 → x1) ∧ ((x3 ∧ x4) → x2)

that contains ((x3 ∧ x4) → x2). This implication is only obtained as the image
of (x3 → x1) ∧ (x4 → x2), and is not obtained from any one xi → xj alone.
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More generally, for the sorting network problems, swap actions create new
beliefs from complex combinations of prior beliefs.

While relatively good plans can be found with these implications xi → xj

as the beliefs in a conjunctive belief representation, also for larger numbers of
inputs, the smallest plans require increasingly complex beliefs. For example,
the sorting network with 20 inputs that has the smallest number of layers has
(x3 ∧ x7 ∧ x10 ∧ x11) → (x8 ∨ x9 ∨ x12) as one of the intermediate beliefs.

Below we list the maximum clause lengths encountered in the best known
(smallest number of layers) sorting networks for up to 20 inputs. Here n is the
number of inputs and s is the length of the longest clause in the CNF beliefs.

n s n s n s n s n s n s n s n s n s

3 2 4 3 5 3 6 3 7 3 8 3 9 4 10 4 11 4
12 5 13 6 14 5 15 6 16 5 17 5 18 6 19 6 20 7

Many other problems have a far simpler belief space, and it is often enough
to look at the components of beliefs one at a time.

Example 5. Consider a rectangular grid, where a robot’s position in the East-
West direction is indicated by state variables x0, . . . , x9, and the location in the
North-South direction by state variables y0, . . . , y9. The “move north” action is

9∧

i=0

(x′
i ↔ xi) ∧

8∧

j=1

(y′
j ↔ yj−1) ∧ (y′

9 ↔ (y9 ∨ y8)) ∧ ¬y′
0

with movement at the north wall having no effect. Moves to the other three
cardinal directions are analogous. There is a unique initial location for the robot.

(
9∨

i=0

xi) ∧ (
9∨

i=0

yi) ∧
8∧

i=0

9∧

j=i+1

¬(xi ∧ xj)
8∧

i=0

9∧

j=i+1

¬(yi ∧ yj)

The beliefs in this problem are the conjuncts of the formula for the initial belief
state, as well as all sub-intervals of [0, 9] for positions on both X and the Y axes.

{
k∨

i=j

xi|0 ≤ j ≤ k ≤ 9} ∪ {
k∨

i=j

yi|0 ≤ j ≤ k ≤ 9}

Reasoning about location can be done independently for X and Y coordinates,
one formula at a time.

4 Algorithm for Identifying a Base

We give an algorithm for finding a base T for a conformant planning problem.
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1. We start from the initial state description φ1 ∧ · · · ∧ φn, where the minimal
conjuncts φ1, . . . , φn are taken to be the tentative base T .

2. Pick some action a and a consistent subset P ⊆ T , and do the following.
a) Compute σ = succΦa

(
∧

φ∈P φ).
b) Make the minimal conjuncts of σ explicit as σ = ψ1 ∧ · · · ∧ ψm.
c) Add ψ1, · · · , ψm to T , while eliminating duplicates modulo equivalence.

3. Repeat the previous step until T does not change.

Here we need the existential abstraction operation and the logical equivalence
test. In our implementation – which is discussed later – we have used Ordered
Binary Decision Diagrams (OBDD) [4]. Other representations of Boolean func-
tions could be used instead, with different trade-offs between efficiency and size.

The mapping of images σ to conjuncts determines the formulas in the base.
The most general solution is to take the conjuncts to be all the prime implicates
of σ, that is, the minimal clauses logically entailed by σ, but as we will see,
something far simpler often works very well in practice.

The number of subsets P of T is exponential in |T |, and therefore this com-
putation is in general not feasible. This is exactly as expected, as not all parts
of a reduction from the EXPSPACE-complete conformant planning [8,12] to the
PSPACE-complete classical planning [6] can be polynomial time.

However, it turns out that it is often sufficient to limit to subsets P ⊆ T
of small cardinality. Often |P | ≤ 1 is sufficient, so only the empty set and all
1-element subsets of T need to be considered.

The next theorem shows that the general form of our base construction is
sufficient to identify a conjunctive decompositions of the belief space in the sense
that no matter which action sequence is taken starting in the initial belief state,
any reachable belief state can be represented as a conjunction of some subset of
formulas in the base.

Theorem 2. For a formula I and a sequence Φ1, . . . , Φm of transition relation
formulas, succΦ1,...,Φm

(I) ≡ ∧
B for some B ⊆ T .

Proof. The proof is by induction on the length of the action sequence m, with
the claim of the theorem as the induction hypothesis.

Base case m = 0: The initial value of T is the conjuncts of the initial state
formula, exactly corresponding to the only belief state reachable by not taking
any action at all. Hence succε(I) for the empty sequence ε is representable in
terms of T .

Inductive case i ≥ 1: By the induction hypothesis, succΦ1;··· ;Φi−1(I) ≡ ∧
B

for some B ⊆ T . The algorithm goes through all actions, including one with
transition relation formula Φi, and through all subsets of T , including B. Hence
it will compute σ = succ∧

B(Φi), and the conjuncts of σ, however they are
identified, will be included in T . Hence succΦ1;··· ;Φi

(I) ≡ ∧
B for some B ⊆ T .

Interestingly, the proof shows that – from the completeness point of view
– it is not important how the formula σ is split into conjuncts at step (2b) of
the algorithm for finding a base. Essentially, splitting σ to a single conjunct as
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σ = φ1 would simply mean that we enumerate all possible beliefs (formulas)
reachable from the initial belief state. In this light, Theorem 2 is not surprising.

The important thing in the algorithm – from the scalability point of view
– is the splitting of σ to small conjuncts, so that not every belief state needs
to be generated explicitly. Instead, the space of all belief states is conjunctively
decomposed to smaller formulas, contained in T , so that any belief state can be
represented by some subset B ⊆ T . The base T may therefore be exponentially
smaller than the set of all belief states reachable from the initial belief state.

Finally, we point out that the algorithm does in general not determine reacha-
bility of belief states exactly: actions are considered in belief states (conjunctions
of subsets of T ) that are not actually reachable from the initial belief state. Hence
T may contain formulas that could never be true in a reachable state. This is an
obvious source of inefficiency. We comment more on this in Sect. 6.1.

5 Reduction from Conformant to Classical Planning

We will represent the conformant planning problem as a full-information classical
planning problem, with each formula φ ∈ T represented by a single state variable
xφ. When solving the full-information planning problem, a state s represents the
belief state that corresponds to the formula

∧{φ ∈ T |s |= xφ}. The set of state
variables in the classical planning problem is XT = {xφ|φ ∈ T}.

Additionally, we define the actions, the initial state, and the goal formula.
For every action a of the original (conformant) problem, we define a new

action a′ that changes the belief state encoded with the state variables in XT in
a way that corresponds to how a changes the belief state.

5.1 Effects

We define causesφ1,...φn
a (φ) as holding if φ is one of the conjuncts in succΦa

(φ1 ∧
· · · ∧ φn). We define minCausesφ1,...φn

a (φ) as holding if

– φ is one of the conjuncts in succΦa
(φ1 ∧ · · · ∧ φn), and

– φ is not a conjunct of succΦa
(φi1 ∧ · · · ∧φij ) for any {i1, . . . , ij} ⊂ {1, . . . , n}.

We iterate over all subsets {φ1, . . . , φn} of T and all φ ∈ T , and add the
following effects to the action we are constructing.

– If minCausesφ1,...,φn
a (φ) and φi �|= φ for all i ∈ {1, . . . , n} then a′ has effect

xφ1 ∧ · · · ∧ xφn
� xφ.

– If not causesφ
a(φ), then a′ has effect (xφ ∧C)�¬xφ where C is the conjunction

of all ¬(φi1 ∧ · · · ∧ φik) such that minCausesφi1 ,...,φik
a (φ).1

1 The left-hand side of this conditional effect can be simplified by replacing all occur-
rences of φ by �, as the effect does something only if φ is true when the action is
taken. This modification is is needed to maximize Graphplan-style [3] parallelism.
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Again, this computation takes exponential time in the cardinality of T . And,
similarly to the computation of a base, this computation can be limited to “small”
subsets S of T . For the sorting network problems, for example, classical planning
instances that have non-optimal solutions can be produced with |S| ≤ 2, but for
higher number of inputs larger sets S are needed to find optimal solutions.

5.2 Preconditions

An action can be taken only if its precondition must be true. For this we need
all minimal consistent subsets of T from which the precondition follows.

Definition 4. A set D ⊆ T is relevant for a formula χ, if D is consistent,
D |= χ, and there is no D′ such that D ⊂ D′, D′ is consistent, D′ |= χ.

Let a = 〈χ,E〉 be an action. Let P be all the sets D ⊆ T relevant for χ. Now
the precondition of a′ is

∨
p∈P (

∧{xφ|φ ∈ p}).
Clearly, for actions a with the trivial precondition �, the precondition of a′

is similarly �. More generally, there may be an exponential number of relevant
subsets D ⊆ T , so there is no guarantee that this computation is always feasible.

Relevant subsets of T for χ are closely related to minimal unsatisfiable sets
(MUS) [1,10]: a relevant subset for φ is a MUS of T ∪ {¬φ} that contains ¬φ.

Lemma 2. Assume ¬φ �∈ P . Then P ⊆ T is a relevant set for φ if and only if
P ∪ {¬φ} is a minimal unsatisfiable set of T ∪ {¬φ}.
Proof. Since P ∪{¬φ} is unsatisfiable, P |= φ. Since P ∪{¬φ} is minimal unsat-
isfiable, we have P0 ∪ {¬φ} satisfiable and hence P0 �|= φ for all P0 ⊂ P . Since
P ∪ {¬φ} is minimal unsatisfiable, P is satisfiable. Hence by the definition of
relevance, P is a relevant set for φ.

The computation of minimal inconsistent subsets is expensive, and as before,
can be limited to “small” subsets.

5.3 Goals

The goal formula is computed similarly to the preconditions as a disjunction of
conjunctions of minimal consistent subsets of T that logically entail the original
goal formula G. For goals of the form G = γ1 ∧ · · · ∧ γn we can determine the
entailing subsets of T separately for each γi.

6 Implementation

We have implemented all steps for translating conformant planning to classical
planning. The logical operations could be implemented with any class of formulas
that can represent any Boolean function, but we chose to use ordered binary
decision diagrams OBDDs for three reasons: simplicity, logical simplifications
provided by OBDDs canonicity, and constant time equivalence tests.
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In our reduction from conformant planning to classical planning there are
the three exponential components, which we have approximated by not going
through all subsets of formulas, but instead only all “small” subsets of cardinality
≤ n for some small n. These three parameters, which limits the cardinalities of
these subsets, are used in

1. identifying the base (Sect. 4),
2. synthesizing the effects of actions (Sect. 5.1), and
3. synthesizing the formulas for the preconditions and the goal (Sect. 5.2).

When we use the values 1, 2 and 1 for these three parameters, respectively,
we indicate this as the configuration (1, 2, 1).

We first experimented with Sorting Networks, due to their difficulty for exist-
ing planners. They are parameterized by the number i of inputs, have i state
variables, and yield a base of quadratic size with configuration (1, 2, 1), and a
base of cubic size with (2, 2, 1). With (1, 2, 1) we can find non-optimal and not
very good solutions until 20 inputs, and better non-optimal solutions not quite
as far. This problem is not solvable with the (1, 1, 1) configuration.

Many other benchmark problems are harder than sorting networks in terms
of having a far higher number of state variables. However, in many cases this
is balanced by them being solvable (even optimally) with the easiest (1, 1, 1)
configuration. The number of base formulas is in many cases several hundreds
or thousands, and brute force generation of the base in configuration (2, 1, 1) as
well as synthesis of actions in configuration (1, 2, 1) become infeasible.

An important part of future work is to utilize structural properties of the
problem instances to perform these computations far more efficiently, without
having to blindly go through all or most N -element subsets of the base.

6.1 Use of Invariants to Reduce the Base

The use of invariants, formulas that hold in all reachable states of a transition
system, is common in planning methods that work with partial state represen-
tation. In the algorithm in Sect. 4, invariants help ignore those formulas that are
never true in any reachable state, or that are true in all reachable states. This
leads to a smaller base. We use a basic algorithm for finding 2-literal invariant
clauses [13]. For instance, the formulas ¬(xi ∧xj) in Example 5 are part of every
belief state, and therefore the possibility of them being false can be ignored.

7 Experiments

We have done experiments with a collection of standard benchmark problems.
Of special interest is Sorting Networks, with complex belief space and complex
interactions between beliefs. Results are given in Table 1. We list runtimes, the
numbers of actions as well as the number of state variables in the original con-
formant and in the classical instances. The latter number equals the number of
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Table 1. Results for SORTNET. C: Configuration; X: variables in the problem; Xc:
variables in the translated problem; A: actions; MpC: Madagascar runtime ; FF: FF
runtime ; PG: T0 runtime with FF ; OOM: out of memory

Instance C X Xc A MpC FF PG

sort4 (2,2,1) 4 17 6 0.00 0.00 0.07
sort5 (2,2,1) 5 68 10 0.12 0.02 0.53
sort6 (2,2,1) 6 239 15 7.64 2.57 5.73
sort7 (2,2,1) 7 790 21 3006.24 OOM 21.26
sort6 (1,2,1) 6 15 15 0.01 0.00 5.73
sort7 (1,2,1) 7 21 21 0.02 0.00 21.26
sort8 (1,2,1) 8 28 28 0.06 0.00 0.21(K0)

sort9 (1,2,1) 9 36 36 0.12 0.00 0.38(K0)

sort10 (1,2,1) 10 45 45 0.26 0.00 0.73(K0)

sort15 (1,2,1) 15 105 105 2.47 0.04 15.92(K0)

sort18 (1,2,1) 18 153 153 7.94 0.17 121.71(K0)

formulas in the base. Palacios & Geffner’s [11] T0 planner uses the K1 trans-
lation by default, but in cases where it does not yield any solutions, we have
switched to the K0 translation, as indicated in the table. We have used the
FF [9] and Madagascar [14] planners to solve our PDDL instances. Madagascar
constructs parallel plans, and an optimality criterion for sorting networks is the
number of layers of the sorting network, with each layer containing one or more
compare&swap actions so that each input is only sorted by at most one of the
actions. However, it turned out that although pairs of compare&swaps like on
(1, 3) and on (2, 4) do not interfere when the state variables are the input values,
the actions after our translation do interfere, as they impact and depend on the
same beliefs xi → xj , and hence Madagascar cannot benefit from the parallelism.

All sorting network problems are solvable with the configuration (1, 2, 1),
by looking at the joint images of pairs of beliefs of the form xi → xj , but
this is insufficient to find optimal solutions (see Example 4). The generation
of the PDDL in these cases is fast, less than 10 s even for large instances. On
these problems we are quite competitive with T0. As pointed out earlier, optimal
solutions e.g. with 20 inputs seem to require the configuration (7, 7, 1), which
leads to quite large PDDL representations.

With the configuration (2, 2, 1) also formulas xi ∧xj → xk are included in the
base, and this allows (in principle) optimal solutions to be found until at least 8
inputs, as discussed earlier. While our experiments did not use optimal planners,
the configuration (2, 2, 1) still allows us to find better sub-optimal plans than
what can be found with configuration (1, 2, 1). But, as the number of formulas
in the base is cubic in the number of inputs, and not quadratic, the PDDL
translation is far bigger, and the planners do not scale up as far as with the
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Table 2. Runtimes of a number of benchmark problems

Instance X Xc A MpC FF PG

corners-square-p40 80 1722 4 1.69 0.30 0.53
corners-square-p84 168 7310 4 51.67 5.60 11.71
corners-square-p100 200 10302 4 115.85 11.32 25.14
corners-square-p120 240 14762 4 283.96 27.06 57.05
corners-square-p140 280 29375 4 1492.39 159.50 90.33
corners-square-p200 400 40602 4 3285.06 380.47 485.10
corners-cube-p27 81 1218 6 0.70 0.13 3.80
corners-cube-p52 156 4293 6 13.11 2.31 147.62
corners-cube-p55 165 4788 6 17.37 2.71 226.28
corners-cube-p60 180 5673 6 27.00 4.82 366.48
corners-cube-p75 225 8778 6 75.20 15.01 1463.35
square-center-p24 48 1200 4 0.53 0.11 0.15
square-center-p92 184 17112 4 320.81 80.09 8.99
cube-center-p19 57 1140 6 0.47 0.09 0.15
cube-center-p63 189 12096 6 137.50 25.35 6.33
cube-center-p67 201 13668 6 193.58 38.12 8.01

(1, 2, 1) configuration. Also, the runtimes for generating the PDDL grows very
quickly with the increasing number of inputs.

For the rest of the benchmark problems the situation is quite different, as the
configuration (1, 1, 1) is always sufficient. The scalability of our approach is only
limited by the size of the base, as we only have to look at each formula in the
base in isolation at each stage of the translation process. Data on a collection of
standard benchmarks similar to that used by Palacios and Geffner [11] are given
in Tables 2 and 3. Our runtimes in comparison to Palacios & Geffner’s T0 [11]
are in some cases comparable, and in many cases clearly behind, for example
in ring, safe and blocksword. For the latter two producing the PDDL is slow
due to high number of actions and a large base. Notice that the listed runtimes
do not include the generation of the PDDL. This time is often substantial. For
example, bomb100-100 took 636.9 s (10100 actions), bomb20-20 took 0.65 s (420
actions), while Sortnet with 9 inputs and configuration (1,2,1) took 0.24 s (36
actions). The time is dominated by image computation, which we believe can be
substantially sped up, especially when actions are simple. Planner by To et al.
[18] is often comparable to that of Palacios and Geffner, but in many cases scale
up further in the benchmark series.

8 Related Work

Baral, Kreinovich and Trejo [2] investigate 3-valued belief state representations,
in which state variables are true, false, or unknown. This form of incompleteness
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is equivalent to representing belief states as sets (conjunctions) of literals. Baral
et al. demonstrate how many types of interesting problems are efficiently solvable
with this type of representation, and that the complexity is substantially reduced,
down to PSPACE, which is the same as with classical planning.

Table 3. Results from a number of benchmark problems

Instance X Xc A MpC FF PG

comm-p10 69 314 59 0.11 0.00 0.05
comm-p15 99 454 84 0.26 0.00 0.05
comm-p20 245 1130 208 11.94 0.02 0.16
bomb20-20 40 60 420 0.00 0.00 0.05
bomb100-5 105 110 505 0.06 0.00 0.21
bomb100-60 160 220 6060 0.12 0.05 1.04
bomb100-100 200 300 10100 0.24 1.39 2.40
coins-p10 34 200 40 0.41 0.00 0.1
coins-p12 76 1866 88 10340.96 0.09 0.1
coins-p16 86 2020 110 TO 0.19 0.09
coins-p18 86 2020 110 TO 0.18 0.06
coins-p20 86 2020 110 TO 0.17 0.07
uts-p1 5 41 4 0.00 0.00 0.01
uts-p2 9 892 16 2.65 0.10 0.01
uts-p3 13 11354 36 5004.71 104.45 0.03
logistics-p2-2-2 20 48 30 0.00 0.00 0.02
logistics-p4-3-3 69 201 156 0.03 0.00 0.03
uts-l01 5 41 4 0.00 0.00 0.01
uts-l02 9 882 10 1.52 0.08 0.02
safe-p5 6 78 5 0.00 0.00 0.00
safe-p10 11 2102 10 29.09 0.70 0.01

Palacios and Geffner [11] propose an approach to conformant planning that is
based on dependencies of state variable values on the initial values of some other
state variables. Their literals KL/t could be viewed as implications t → KL, and
the merges, inferring KL from

∧
t∈T KL/t → KL as, as a form of logical deduc-

tion, analysis by cases. Their planner can in general solve more of the standard
benchmark problems on conformant planning than ours, but our planner out-
performs it with the sorting network problems, because Palacios and Geffner’s
method leads to exponentially large classical planning problems in this case. Fur-
ther, Palacios&Geffner limit to deterministic actions, whereas our work covers
arbitrary actions, including non-deterministic ones.
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To et al. [15] used DNF as a belief state representation, then turned to prime
implicates [16] and CNF [17], demonstrating different trade-offs. In these works,
belief states are sets of formulas, not valuations of propositional variables like in
our work, and no reduction to the classical planning problem is considered.

9 Conclusion

We have investigated the representation of belief states as vectors of truth values.
This representation attempts to lower the complexity of belief space planning by
replacing the combinatorially far harder notion of formulas by much easier states.
We have shown our methods to be useful even when strict limits are imposed on
how thoroughly an approximate belief space representation is created. These lim-
its risk losing completeness. An important topic for further research is obtaining
completeness guarantees even under these size limits. Future work also includes
generalizing the results to partial observability. Observations help increase the
accuracy of the beliefs. In this case we would expect to be able to similarly often
achieve an exponential complexity reduction.
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Abstract. To infer the underlying diffusion network, most existing
approaches are almost based on an initial potential edge set constructed
according to the observed data (i.e., the infection times of nodes) to infer
the diffusion edges. Nevertheless, there are relatively few studies that
combine the infection times and infection statuses of nodes to prepro-
cess the edge set so as to improve the accuracy and efficiency of network
inference. To bridge the gap, this paper proposes a two-stage inference
algorithm, namely, Clustering-based Network Inference with Submodu-
lar Maximization (CNISM). In the first stage, based on a well-designed
metric that fuses the infection times and infection statuses of nodes, we
firstly fast infer effective candidate edges from the initial candidate edge
set by clustering, then capture the cluster structures of nodes accord-
ing to the effective candidate edges, which is helpful for the inference
of subsequent algorithm. In the second stage, the cluster structures of
nodes are integrated into MulTree, which is a submodular maximization
algorithm based on multiple trees, to infer the topology of the diffusion
network. Experimental results on both synthetic and real-world networks
show that compared with the comparative algorithms, our framework is
generally superior to them in terms of inference accuracy with a low
computational cost.

Keywords: Diffusion network inference · Cluster structure ·
Submodular maximization

1 Introduction

Nowadays, the diffusion of information and propagation of diseases are becoming
more and more ubiquitous and prompt on the information networks and social
networks. Meanwhile, the dynamics of propagation process over the network have
attracted extensive attention in many areas, such as viral marketing [6], influence
maximization [13], propagation source localization [2] and so on. However, the
underlying network over which the diffusions and propagations spread is always
unobserved and unavailable in reality. Therefore, the diffusion network inference
is of great importance for characterizing the propagation process.
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To infer the structure of the latent diffusion network, the main premise is that
we can observe many different contagions (information, disease) spreading over
the network. The spreading of a contagion will leave a trace, called a cascade.
Generally, the details of diffusion process are difficult to observe, but the infection
times of nodes can be easily acquired [8]. For example, we can note when fellow
around is talking about a popular topic, but we do not know who told him/her
about it in information diffusion.

Most existing methods are mainly divided into two categories, one is to infer
the edges of the diffusion network (such as NetInf [8], MulTree [9]), the other is
to infer not only the edges but also edge weights (such as ConNIe [18], NetRate
[7]). Among them, the main idea of the first type is to establish the likelihood
of observed data from the view that the contagion spreads as a directed tree
through the network, then solve it by greedy algorithm. While the second type
takes the conditional propagation probabilities or transmission rates between
nodes as variables to establish the occurrence likelihood of cascades, then solve
it by convex optimization. Although these methods can work well on small scale
network datasets, their performance on slightly larger network datasets can be
further improved. One of the reasons is that they usually only consider the
infection times of nodes, and rarely combine the infection times with the infection
statuses of the nodes for efficient inference. In addition, although individual
literature (such as Dani [19]) jointly takes the information contained in the
infection times and infection statuses of nodes into consideration, they can only
infer the edges according to the ranking of specific metric of their design that
lacks further judgment on the inferred edges, so it is difficult to ensure the
accuracy of network inference.

To address the above problems, we make the first attempt to propose a clus-
tering fast inference model based on a well-designed metric to preprocess the
initial candidate edges. Specifically, we first design the clustering fast inference
model to infer the effective candidate edges from all initial candidate edges, and
further capture the cluster structures of nodes according to the effective candi-
date edges. Next, the cluster structures of nodes are input into a submodular
maximization inference method to infer the topology of the diffusion network.

The contributions of this paper are summarized as follows.

• We investigate a relatively little-studied but important issue, i.e., how to
preprocess all initial candidate edges by combining the infection times and
infection statuses of nodes.

• We propose a novel two-stage inference framework CNISM to capture the
cluster structures of nodes by preprocessing the initial candidate edges, and
incorporate the cluster structures of nodes into a submodular function that
is equivalent to the network inference problem.

• We design a novel computation way to calculate the transmission likelihood
of each candidate edge in the first stage of the proposed method, which is
first normalized inside the cascade and then normalized outside the cascade.

• We perform extensive experiments on both synthetic and real-world datasets,
showing the effectiveness of the proposed framework.
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2 Related Work

The inference of diffusion network is an inverse problem of propagation, i.e., the
structure of a latent diffusion network supporting the diffusion process is inferred
according to the partial observation results generated by the diffusion process.
Existing methods of network inference can be classified into two main groups:

Inferring the Edges of Diffusion Network. The earlier classical methods are
based on submodular maximization. Assuming that the contagion propagates
as a directed tree, they built the observed cascades’ likelihood, the logarithm of
which has submodular property. Considering the most probable directed prop-
agation tree of each cascade, i.e., the most possible way in which a diffusion
process spreading over the network can create the cascade, NetInf [8] was pro-
posed. MulTree [9] was developed to achieve higher accuracy by considering all
possible directed propagation trees of each cascade. Later, many methods related
to network structure property emerged [11,19,20]. To address the data scarcity
issue in real-world, MCM [11] built a hierarchical graphical model, where all the
diffusion networks share the same network prior, for effective network inference.
Dani [19] was proposed to infer the network by preserving the community struc-
ture feature of the original network as much as possible. Further, considering
that observed cascades are incomplete, NIIC [4] used a Monte-Carlo simulation
method to complete the incomplete cascades.

Inferring the Edges and Edge Weights of Diffusion Network. The earlier clas-
sical methods are based on the convex optimization in that the log-likelihood
of observed cascades to be maximized is a convex function. Assuming that the
transmission probability between nodes is heterogeneous in a network, Con-
NIe [18] inferred the conditional propagation probability between nodes. Taking
transmission rates between nodes as variables, NetRate [7] built the likelihood of
observed data according to the survival analysis theory. Due to the high compu-
tational complexity of this method, as far as we know, CENI [12] captured the
cluster structures of nodes by the clustering embedding method for the first time
before the formal inference step, which improves the efficiency of this method.

In conclusion, due to the high computational complexity of the second group,
most existing methods belong to the first group. However, most works in the
first group only consider the infection times of nodes, and few works study the
influence of the combination of the infection times and infection statuses of
nodes. In this work, inspired by CENI [12], we develop a general clustering fast
inference model to preprocess the initial potential edges according to a well-
designed metric that fuses the infection times and infection statuses of nodes.

3 Methodology

3.1 Problem Formulation

Problem Statement. Given a latent directed diffusion network G∗ = (V,E),
where V = {v1, v2, . . . , vn} denotes the set of nodes, E refers the set of
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edges, e.g., (vi, vj) ∈ E indicates that the contagion once spread along this
edge (vi, vj). Now, we only know the node set V and a set of informa-
tion cascades observed over it, denoted by C = {c1, c2, . . . , cm}, where cr =
{(v1, tr1), (v2, tr2), . . . , (vn, trn)} is the r-th cascade, (vj , trj) means that the r-th
cascade infected node vj at time trj , and 0 < trj < +∞. If the r-th cascade did
not infect node vj , then trj = +∞. Therefore, our aim is to infer the edge set E
of the unobserved directed network G∗ according to the observed data C, and
we refer to the reconstucted or inferred diffusion network as Ĝ.

Model Formulation. (1) Cluster structures of nodes. For each node in the
network, we assume that there is an associated subset of nodes, which contains
potential parent members that are very likely to infect this node. We denote these
subsets by CS = {CS1, CS2, . . . , CSN}, where CSj is the set of cluster members
associated with the node vj . (2) Propagation model. In this article, we use a
variant of the independent cascade model [14] to simulate the spreading process
of information. In this model, each node can only be infected by one parent node,
and each infected node has only one chance to independently infect its uninfected
neighbor nodes with transmission probability β. Now, considering that node vi
gets infected at time ti and successfully infects node vj at time tj (ti < tj),
then we assume that their infection time difference (i.e., Δt = tj − ti) follows a
pairwise transmission likelihood f(tj |ti;αij), where αij represents the contagion
transmission rate from node vi to node vj . Although in some scenarios it may
be possible to estimate a non-parametric likelihood empirically, for the sake of
simplicity, we consider three well-known parametric models (i.e., transmission
time distributions) as in the previous literature [7–9,18](as shown in Table 1).

Table 1. Pairwise transmission likelihood.

Model Transmission likelihood f(tj |ti;αij) Applicable scenarios

Exponential (Exp)

{
αij · e−αij(tj−ti) if ti < tj

0 otherwise
Information diffusion between users

Power-law (Pow)

⎧⎨
⎩

αij

δ
·
(

tj−ti
δ

)−1−αij

if ti + δ < tj

0 otherwise
Information diffusion between users

Rayleigh (Ray)

{
αij(tj − ti)e

− 1
2 αij(tj−ti)

2
if ti < tj

0 otherwise
Diseases propagation among people

3.2 Proposed Method: CNISM

To accurately and efficiently infer the topology of an underlying slightly larger
scale diffusion network, we develop a novel two-stage method, Clustering-based
Network Inference with Submodular Maximization (CNISM). Figure 1 shows the
whole framework of our method.



122 L. Kong et al.

Fig. 1. An overview of the proposed approach. (a) the observed cascades. Two key
inference models, i.e., (b) the clustering fast inference model: (1) fast inferring the
effective candidate edges by clustering, (2) capturing the cluster structures of nodes,
and (c) the submodular maximization inference model based on multiple trees. (d) the
inferred edges: (i) the black solid edge indicates the correct inferred edge, (ii) the black
dashed edge indicates the true edge that has not been inferred, (iii) the red solid edge
indicates the incorrect inferred edge. (Color figure online)

Clustering Fast Inference Based on Final Normalized Transmission
Likelihood and Infection Mutual Information

Definition 1. Candidate edge. If the infection time of node vi is less than the
infection time of node vj in any cascades, there might exist a directed edge
going from node vi point to node vj , i.e., called a candidate edge or potential
edge.

In the first stage, we aim to capture the cluster structures of nodes from
all possible candidate edges. Firstly, constructing an initial candidate edge set
E-initial = {(vi, vj)|∀cr ∈ C, tri < trj}. Secondly, building a cluster metric that
incorporates the infection times and infection statuses of nodes to identify the
cluster members of each node. According to the above, when we know the infec-
tion times of nodes, the transmission likelihood f(tj |ti;αij) can quantify the
transmission possibility between nodes to a certain extent. However, we find
that this computation way only considers the infection time difference between
two nodes, and does not address the influence of other infected nodes.

For example, in Fig. 2 the infection time of node vi is less than that of the
node vj in these three cascades, so there is a directed candidate edge going
from node vi to node vj , so does (vi → vk) and (vk → vj). Among them, the
infection time differences between node vi and node vj are 4, 6 and 4, respectively.
According to Table 1, the transmission likelihood of candidate edge (vi, vj) in the
r1-th cascade is larger than that in the r2-th cascade and is equal to that in the
r3-th cascade. Moreover, in the r3-th cascade, there is another node vk whose
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infection time is greater than that of node vi, and their time difference(=2) is
less than the time difference(=4) of candidate edge (vi, vj). Thus, in the r3-th
cascade, the transmission likelihood of candidate edge (vi, vk) is greater than
that of candidate edge (vi, vj). Therefore, we can see that the role candidate
edge (vi, vj) play in the r1-th cascade should be different from that in the r3-th
cascade, and its contribution in the r1-th cascade is greater.

Fig. 2. An example of candidate edges of three cascades.

To recognize the different roles of candidate edges in different cascades, we
design a new way to calculate the transmission likelihood of candidate edges,
i.e., normalized transmission likelihood. The normalized transmission likelihood
fncr (vi, vj) of candidate edge (vi, vj) in the r-th cascade is shown in Eq. (1).

fncr (vi, vj) =
f(trj |tri ;αij)
fcr (vi, ∗)

(1)

fcr (vi, ∗) =
∑

(vl,trl )∈cr:tri<trl

f(trl |tri ;αil) (2)

where fcr (vi, ∗) is the sum of the transmission likelihood of all candidate edges
starting from node vi in the r-th cascade. Thus, the total transmission likelihood
fs(vi, vj) of each candidate edge (vi, vj) is calculated as:

fs(vi, vj) =
∑

cr∈C

fncr (vi, vj) (3)

Because the sum of the transmission possibilities that a node infects all its
neighbors is 1, we normalized the total propagation likelihood of each potential
edge again. Therefore, the final normalized propagation likelihood fn(vi, vj) of
each potential edge (vi, vj) is shown in Eq. (4).

fn(vi, vj) =
fs(vi, vj)
fs(vi, ∗) (4)

where fs(vi, ∗) is the sum of the total transmission likelihoods of all candidate
edges starting from node vi. Moreover, due to most existing studies only consider
the infection times of nodes, and few studies consider the influence of infection
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statuses of nodes, we utilize mutual information (MI) to quantify the correlation
between two infection status variables. It is calculated by such an Eq. (5):

MI(Xi,Xj) =
∑

Xi

∑

Xj

P (Xi,Xj)log
P (Xi,Xj)

P (Xi)P (Xj)
(5)

where Xi(Xi ∈ {0, 1}) and Xj(Xj ∈ {0, 1}) are infection status variables of
node vi and node vj respectively, and Xi = 0 means that node vi is not infected,
Xi = 1 means that node vi is infected, so does Xj . It can be seen that all infection
status combinations of the two nodes are considered in Eq. (5). A higher MI
value indicates that variable Xi and Xj have a greater correlation. However,
the correlation evaluated by MI is not equivalent to the positive correlation of
infections (when Xi ∪ Xj = 1 and Xi ∩ Xj = 0). Because a higher MI value can
also indicate variable Xi and Xj have a greater negative correlation. Therefore,
we use a modified MI as in literature [10], called infection MI, to measure the
infection correlation. The corresponding infection MI can be given as Eq. (6):

IMI(Xi,Xj) =MI(Xi = 1,Xj = 1) + MI(Xi = 0,Xj = 0)
− |MI(Xi = 1,Xj = 0)| − |MI(Xi = 0,Xj = 1)| (6)

To sum up, we use the multiplication principle to fuse the final normalized
transmission likelihood derived from the infection times of nodes and infection
MI derived from the infection statuses of nodes as the cluster metric of any
candidate edges (vi, vj) (as shown in Eq. (7)). Obviously, the larger the cluster
metric value is, the more likely the corresponding potential edge is to be an
effective candidate edge.

Cluster-Metric(vi, vj) = fn(vi, vj) · IMI(Xi,Xj) (7)

Finally, clustering the cluster metric Cluster-Metric(vi, vj) of each candi-
date edge (vi, vj) to fast infer the cluster structures of nodes. Specifically, after
performing the 2-means algorithm on all these values, the average value of the
class with smaller clustering metric value is selected as the threshold τ , then
the candidate edges whose cluster metric value is greater than or equal to the
threshold τ are inferred as the effective candidate edges and are retained. At
last, we capture the cluster structure of each node vj as follows:

CSj = {vi|(vi, vj) ∈ E-initial ∩ Cluster-Metric(vi, vj) ≥ τ} (8)

Submodular Maximization Inference Based on Multiple Trees. In
the second stage, we aim to further accurately and efficiently infer the diffu-
sion edges with the help of the cluster structures of nodes. Firstly, we should
solve the likelihood of observed data. Assuming that the observed cascades are
conditionally independent for the given network G∗, thus the joint likelihood
f(c1, c2, . . . , cm|G∗) of a set C of cascades occurring in the network G∗ is calcu-
lated as:

f(c1, c2, . . . , cm|G∗) =
∏

cr∈C

f(cr|G∗) (9)
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where f(cr|G∗) is the likelihood of the r-th cascade propagated over the net-
work G∗. By considering all possible directed propagation trees of each cascade,
f(cr|G∗) can be expressed as:

f(cr|G∗) =
∑

T∈Tcr (G
∗)

f(cr|T )P (T |G∗) (10)

where Tcr (G
∗) is the set of all possible propagation trees of the r-th cascade

given the network G∗, P (T |G∗) is the probability of a tree in the given network
G∗. Similar to the MulTree [9], we assume that the prior propagation probability
on each edge of the tree are the same, then f(cr|G∗) can be simplified into:

f(cr|G∗) ∝
∑

T∈Tcr (G
∗)

∏

(vi,vj)∈ET

f(trj |tri ;αij) (11)

where ET is the set of possible candidate edges in the tree T . According to
Kirchhoff’s matrix tree theorem for directed weighted graphs [21], a directed
weighted graph consisting of all possible propagation trees derived by a cascade
corresponds to a Laplacian matrix, and the right side of Eq. (11) is equal to
the product of the diagonal elements of the matrix after removing the row and
column where the root node is located. Thus, Eq. (11) can reformulate as:

f(cr|G∗) ∝
∏

(vj ,trj )∈cr

∑

(vi,tri )∈cr:tri<trj

f(trj |tri ;αij) (12)

Secondly, considering the role of external source o, i.e., assuming that every
node u can get infected by the external source o with an arbitrarily small prob-
ability ε, and we maximize the logarithm of Eq. (9) to acquire the Ĝ:

Ĝ = arg max
|G∗|≤k

FC(c1, c2, . . . , cm|G∗) = arg max
|G∗|≤k

∑

cr∈C

log

(
ε−1f(cr|G∗)

)
(13)

where the maximization is over all directed networks G∗ of at most k edges.
In MulTree [9], although the diffusion network inference problem defined by

Eq. (13) is NP-hard, the Eq. (13) is a submodular function. At this point, we
integrate the cluster structures of nodes obtained in the previous section into
this submodular function, that is, the cluster structures of nodes are concretely
integrated into the propagation likelihood function of each cascade f(cr|G∗),
thus Eq. (12) can further reformulate as:

f(cr|G∗) ∝
∏

(vj ,trj )∈cr

∑

(vi,tri )∈cr:tri<trj∩(vi∈CSj)

f(trj |tri ;αij) (14)

We see that the addition of the cluster structures of nodes can reduce the
number of subitems in the sum part of Eq. (14), i.e., can cut down the number of
propagation trees considered for some cascades, thus reducing the overall running
time of the algorithm. In addition, adding the cluster structures of nodes does not
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affect the overall structure of the whole formula, so when the Eq. (13) contains
the cluster structures of nodes, it still has submodular property. Likewise, we can
still optimize it by using the greedy algorithm to find a near-optimal solution,
that means, at iteration i we choose the edge ei:

ei = arg max
e∈G∗\G∗

i−1

(
FC(G∗

i−1 ∪ {e}) − FC(G∗
i−1)

)
(15)

Finally, the proposed two-stage inference algorithm also stops once it has
selected k edges, and returns the near-optimal solution Ĝ = {e1, e2, . . . , ek}.

4 Experimental Evaluation

4.1 Experimental Setup

Datasets. For synthetic networks, we use the well-known model of social
network, called the Kronecker graph model [15], to generate three different
slightly larger scale Kronecker networks: a random network [5] (parameter matrix
[0.5,0.5;0.5,0.5]), a hierarchical network [3] ([0.9,0.1;0.1,0.9]) and a core-periphery
network [16] ([0.9,0.5;0.5,0.3]). For real networks, we adopt two directed real-
world networks, i.e., polblogs [1], which is a political blogosphere network, and
adolescent health [17], which is a friendship network. Some basic statistics of the
five network datasets are summarized in Table 2.

Table 2. Statistics of Datasets.

Network |V | |E|
G1 Kronecker random network 2048 8189

G2 Kronecker hierarchical network 2048 6545

G3 Kronecker core-periphery network 2048 8182

G4 Polblogs 1490 19025

G5 Adolescent health 2539 12969

For cascades data C, the generated details are described as follows: we first
set the transmission rates of the edges in the network by drawing samples from
αij ∼ U(0.5, 1.5) (for adolescent health network, the transmission rates of the
edges are set to edge weights, which come from the dataset itself), the prior
probability of transmission β = 0.3, then simulate and record a relatively small
set of information cascades spreading over each network by using the propa-
gation model mentioned in Model Formulation section and the three different
transmission time models shown in Table 1. Specifically, we record 200 cascades
for each network to accommodate the reality of less observational data.



Clustering-Based Network Inference with Submodular Maximization 127

Performance Criteria. To evaluate the accuracy of the CNISM algorithm on
the inference of diffusion network topologies, we report the F-score of its inferred
directed edges, which can be calculated as

F -score =
2 · Precision · Recall

Precision + Recall
(16)

Recall =
NTP

NTP + NFN
, P recision =

NTP

NTP + NFP
(17)

where NTP denotes the number of correct edges in the inferred network, i.e.,
the edges in the real network that are inferred correctly by the algorithm; NFP

denotes the number of incorrect edges in the inferred network, i.e., the edges
in the inferred network that are not in the real network; and NFN denotes the
number of true edges in the real network that are not inferred by the algorithm.

Baseline Algorithms. To demonstrate the effectiveness of our proposed
method, three kinds of competitive baselines are adopted for comparison. The
first kind includes two classic high-performance algorithms based on submodu-
lar maximization: NetInf [8] and MulTree [9], which need to specify the number
of edges k to be inferred. The second one is NetRate [7], the state-of-the-art
method based on convex optimization. The third one is the Dani [19] algorithm
based on edges ranking, which is relatively close to our first stage in spirit. We
use the publicly available source codes of NetInf [8] and NetRate [7] algorithms,
while MulTree [9], Dani [19] and our method are implemented in Python.

4.2 Experimental Results on Synthetic Networks

Due to our proposed method also belongs to the algorithm based on submodular
maximization, we set the number of edges k to be inferred as 8500, 7000 and
8500 for the first three artificial networks in Table 2, respectively.

From Tables 3 and 4, we can observe that (1) in most combinations of the
three synthetic networks and the three transmission time models, our method
almost achieves the highest accuracy compared with other methods, especially

Table 3. The F-score comparison of five algorithms on the synthetic networks.

Network Transmission time model NetInf [8] MulTree [9] NetRate [7] Dani [19] CNISM

G1 Exp 0.573106 0.576068 0.185185 0.512793 0.587692

Pow 0.556567 0.555216 0.001654 0.348613 0.568638

Ray 0.668385 0.670741 0.003025 0.263407 0.677572

G2 Exp 0.234341 0.242304 0.152710 0.239646 0.244371

Pow 0.196541 0.199631 0.002376 0.215873 0.198154

Ray 0.232901 0.236102 0.102478 0.220746 0.238464

G3 Exp 0.484264 0.483515 0.077180 0.227191 0.485314

Pow 0.425154 0.419014 0.020116 0.199257 0.38017

Ray 0.504766 0.536147 0.002418 0.110059 0.537705
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Table 4. The running time comparison of five algorithms on the synthetic networks.

Network Transmission time model NetInf [8] MulTree [9] NetRate [7] Dani [19] CNISM

G1 Exp 1440m 23 s 419m 0 s 506m 3 s 1m 20 s 155m 28 s

Pow 1105m 0 s 406m 6 s 458m 52 s 1m 6 s 58m 10 s

Ray 1804m 0 s 367m 45 s 478m 33 s 1m 8 s 135m 58 s

G2 Exp 1m 30 s 5m 51 s 116m 34 s 0m 1 s 1m 30 s

Pow 0m 21 s 3m 30 s 135m 39 s 0m 1 s 0m 29 s

Ray 3m 28 s 5m 22 s 117m 8 s 0m 2 s 1m 59 s

G3 Exp 500m 10 s 727m 25 s 504m 35 s 3m 15 s 354m 17 s

Pow 237m 0 s 745m 48 s 515m 46 s 3m 13 s 177m 18 s

Ray 391m 0 s 749m 11 s 478m 46 s 3m 12 s 370m 42 s

when the transmission time model follows the Exponential distribution or the
Rayleigh distribution. (2) the running time (m is minute, s is second) of Dani
[19] is the lowest in this three synthetic networks, while our method is the second
lowest. The reason is that the Dani [19] algorithm only infers the edges by rank-
ing the metrics related to the edges. In addition, our running time is reduced by
50.52% at least (‘G3 and Ray’) and 86.19% at most (‘G2 and Pow’), compared
with the original algorithm MulTree [9]. The above confirms that the prepro-
cessing of the initial candidate edge set and the fusion of the cluster structures
of nodes do reduce the number of propagation trees to be considered, especially
those that are highly unlikely or have a lower likelihood, thus improvements can
be observed.

Further, the results also show that almost all methods have low accuracy on
the network with hierarchical structure compared with the random network and
the core-periphery network, and the highest F-score is only around 24.4%.

4.3 Experimental Results on Real-World Networks

For the last two real-world networks in Table 2, we set the number of edges k to
be inferred as 20000 and 13000, respectively.

Tables 5 and 6 illustrate the F-score and running time of each algortihm on
the last two real-world networks respectively, from which we can observe that

Table 5. The F-score comparison of five algorithms on real-world networks.

Network Transmission time model NetInf [8] MulTree [9] NetRate [7] Dani [19] CNISM

G4 Exp 0.187064 0.243895 0.014757 0.183831 0.245330

Pow 0.152675 0.154567 0.020476 0.165279 0.138885

Ray 0.203823 0.226163 0.014815 0.147393 0.227239

G5 Exp 0.539510 0.547268 0.007473 0.461627 0.561901

Pow 0.401571 0.390388 0.004579 0.253456 0.37745

Ray 0.601433 0.602333 0.003865 0.297894 0.596557
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Table 6. The running time comparison of four algorithms on the real-world networks.

Network Transmission time model NetInf [8] MulTree [9] NetRate [7] Dani [19] CNISM

G4 Exp 63m 0 s 681m 1 s 175m 2 s 1m 42 s 460m 35 s

Pow 45m 22 s 633m 20 s 225m 12 s 1m 40 s 256m 30 s

Ray 72m 0 s 562m 34 s 195m 36 s 1m 41 s 385m 31 s

G5 Exp 1875m 0 s 865m 21 s 864m 26 s 3m 6 s 321m 4 s

Pow 1137m 0 s 895m 37 s 686m 58 s 3m 17 s 200m 4 s

Ray 1595m 0 s 698m 43 s 841m 40 s 3m 3 s 313m50 s

(1) with the same number of cascades, our method achieves a higher accuracy
in most combinations of the two real-world networks and the three transmission
time models. (2) Dani [19] still executes the fastest. In particular, on the G4

network, NetInf [8] is the second-fastest, while on the G5 network, our method
is the second-fastest, and our total running time on these two networks is the
second-lowest (ours: 1937m34s, NetRate [7]: 2988m54s, MulTree [9]: 4336m36s,
NetInf [8]:4787m22s), so our method is the second-fastest on the whole. More-
over, our running time is reduced by 31.47% at least (‘G4 and Ray’) and 77.66%
at most (‘G5 and Pow’), compared with the original algorithm MulTree [9].

5 Conclusion

This paper proposed a two-stage inference algorithm for the problem of recon-
structing diffusion network topology and proved the effectiveness of the method
in both synthetic and real-world network experiments. In the first stage, we
preprocessed all initial candidate edges by combining the infection times and
infection statuses of nodes and captured the cluster structures of nodes, which
can improve the accuracy and efficiency of the final network inference. In the
second stage, the cluster structures of nodes were integrated into the submod-
ular maximization network inference algorithm based on multiple propagation
trees of the cascade to infer the final diffusion edges. In the future, we plan to
combine more characteristics into the first stage to capture the cluster structures
of nodes more accurately, such as node degree and betweenness centrality.
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Abstract. Autonomous driving has been quite promising in recent
years. While autonomous driving vehicles certainly have a bright future,
we have to admit that it is still challenging in complex interactive sce-
narios. On the other hand, while humans are good at interactive tasks,
they are often less competent for tasks with strict precision demands.
In this paper, we introduced a real-world, industrial scenario in which
autonomous driving system provides a solution to a parking task that
human drivers are not capable. This task required ego vehicle to keep a
strict lateral distance (i.e. 3σ ≤ 5 cm) to a reference. To address this chal-
lenge, we redesigned the control module from Baidu Apollo open-source
autonomous driving system. A specific (3σ ≤ 2 cm) Error Feedback Sys-
tem was first built to enhance the original localization module. Then
we investigated the control module thoroughly and added an extra real-
time calibration algorithm to guarantee precision. After all those efforts,
the results are encouraging, showing that a lateral precision with 3σ ≤
5 cm has been achieved, better than any specially trained and highly
experienced human test drivers and original Apollo solution.

Keywords: Autonomous driving · High precision parking ·
Localization · Control

1 Introduction

In the past a few years, autonomous driving has been intensively studied and
discussed. The community has seen tremendous progress made on perception [6,
7,14,22,25], prediction [4,8,20,23,26], simulation [5,9,10,13], etc. Interestingly,
there are relatively less literature focused on control in autonomous driving,
although it is a very mature topic developed over one hundred years. One reason
is that control is usually designed to track planned trajectory, and unfortunately
there are plenty unsolved problems in planning [19]. That said, control module
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 135–147, 2022.
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can indeed contribute to autonomous driving on its own. In 2020, researchers
showed that a control module with longitudinal calibration algorithm improves
tracking ability considerably [28]. In this paper, we introduce a redesigned control
module, based on an open-source autonomous driving platform (Baidu Apollo
[1]), with improved lateral control algorithms at a level of lateral precision down
to 5 cm (cm). That is, the ego vehicle is able to keep a lateral distance within ±
5cm, with respect to a reference.

Generally, a system’s precision depends on various factors, such as localiza-
tion, HD (High-Definition) map, control, sensor, actuator, system delay, and even
weather and road surface, not to mention that different factors often interact.
Hence, it would be very difficult to inspect all factors individually and thor-
oughly. To address this issue, in this paper, we roughly split factors into two
groups, namely controllable factors and uncontrollable factors. Controllable fac-
tors mainly include software parts, i.e., localization, HD map, control, system
delay, whereas uncontrollable factors include factors such as actuator, sensor,
weather, and road condition. Of course, with more resources one could transfer
uncontrollable factors into controllable ones, for example, to build a new actu-
ator and/or a new sensor. Nevertheless, we aimed to provide a solution that
best suits most autonomous platforms with an affordable cost and minimum
modifications. As a result, this paper will focus on software part, and we will
show that the lateral precision was indeed improved significantly with modified
software, with other conditions remained the same (same sensor, same vehicle,
same weather condition, same road, etc.). Further, we divided controllable parts
into external and internal factors from a control module’s perspective. External
factors are signals sent to control module, such as localization, HD map, and
system delay. Internal factors are signals processed within control module, such
as steering-wheel offset (a vehicle’s intrinsic property), heading offset caused by
IMU (Inertial measurement unit) mounting error. Based on this concept, this
paper will show how we addressed external and internal factors individually and
integrated them to eventually achieve an extra high lateral precision.

Taken altogether, in this paper we present an algorithmic architecture that
integrates existing work with Baidu Apollo autonomous driving system [1] to
solve a real-world problem. Yet, we show that the results were far better than
human drivers, bringing the community an example that autonomous driving
system outperforms human drivers in real-world, industrial scenarios.

2 Method

2.1 Workflow

Figure 1 shows the architecture of this solution. The architecture can be elabo-
rated from two aspects. First, the external factors, i.e., HD map, localization,
and system delay. Figure 1 shows that HD map only provides final heading state,
i.e., the heading state the ego vehicle should achieve upon full stop, and local-
ization only provides real time heading feedback. Neither the HD map tells the
system where the reference is, nor the localization module tells the system how
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Fig. 1. This figure shows the workflow of proposed method. Every Block represents a
function module, whereas arrow lines connecting blocks represent signals.

far away it is from that reference. Some may wonder why not build references
into HD map and then use localization module in the most common way [11,12].
The reasons are less intuitive, one can think of that during map collection there
is only GNSS-based localization available, which is easily affected by the quality
of GNSS signals and the distance between ego vehicle and base station. Fur-
thermore, errors on LiDAR put another burden on map production in terms of
accuracy and precision. Thus, HD map’s precision and accuracy are affected by
both localization and LiDAR performance, and localization performance (with
HD map), in turn, is affected by map’s accuracy and precision. An example
can be seen in a paper published by Apollo localization team in 2018 [24], in
which the team showed the best performance of the Apollo localization (with
point-cloud HD map) was lateral RMS (root mean square error) around 4cm,
with 3σ around 30cm. Obviously, current localization and HD map technology
are likely not fully ready for a system with precision within 3σ ≤ 5cm. It is
therefore that this paper only used HD map as a heading reference, instead of
a reference with an absolute position. Correspondingly, localization module in
this paper only measured ego vehicle’s heading, instead of its absolute position.
Notice that the system needs heading feedback as an input (see Fig. 1), and
we did not find a better of providing heading estimation other than localiza-
tion module. Simultaneously, lateral error between ego vehicle and its target-
ing reference was estimated by LiDAR directly, which not only increased preci-
sion (only 1–2 cm measurement error) but also reduced system delay (reduced
around 100 ms), see later sections for details. Reduction on time delay played an
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important role in maintaining precision, since a vehicle running at 10 km/h can
travel around 3 cm every 100 ms. As to the internal factors, i.e., the steering
wheel offset and heading offset, this paper used RLS (recursive least square esti-
mator) [18] to estimate them in a real-time fashion.

2.2 External Factors: Error Feedback System

In order to achieve an end-to-end precision of 3σ ≤ 5cm, the error feedback
should be even more precise, e.g. 3σ ≤ 2cm. In this paper, the key was to use
LiDAR to do the measurement on lateral error. LiDAR is a piece of standard
equipment used in almost all Level-4 autonomous driving vehicles for perception
and localization [16]. The LiDAR we used has the capacity of 1 to 2cm precision
(according to Hesai Pander40P LiDAR specs [2]), way better than that of a typ-
ical localization and/or HD map solution [17,24,27]. The reason we did not use
HD map based on this LiDAR is that errors in map production does not only
come from LiDAR but also localization during data collection. That is, a LiDAR
with 1 to 2cm precision leads to a HD map with larger error. On the other hand,
heading feedback still came from localization and HD map modules, because a
single LiDAR is simply not capable of providing heading estimation. One may
wonder whether the relatively less precise heading estimation (from localization)
would affect the overall performance. In fact, since we improved the lateral pre-
cision by an order of a magnitude (i.e. from 1σ ≤ 10cm in localization (with HD
map) to 3σ ≤ 2cm), the overall precision should benefit significantly just from
this. Through direct LiDAR measurement, we also reduced system delay around
100ms, since there was no other modules processing between LiDAR and control
algorithm. By contrast, previously lateral error was successively processed by
HD map, localization, and planner, resulting to a time delay when eventually
passed to control module. Although a compensation to such delay is possible,
error was still unnecessarily introduced.

Fig. 2. This figure illustrates distance measurement relative to a reference from LiDAR,
with ego vehicle either static (left) or moving parallel to that reference (right). Note
that data mainly clustered in a zone about 1cm wide (see vertical axis). The orange
line represents the estimated line using Least Square. With the vehicle static, std. of
the lateral error is 0.34 cm. With the vehicle moving (as parallel to the reference as
possible and as less steering as possible, manual driving), std. of that is 0.42 cm (Color
figure online)
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Field tests on lateral error feedback from LiDAR, with ego vehicle either
static or moving, proved the measurement was sufficiently precise (i.e. 3σ ≤
2cm), see Fig. 2. We should mention that Fig. 2 only shows the standard deviation
of this LiDAR was indeed around 1cm during either static or moving, it by no
means verify the accuracy of its measurement. In practice, it would require a
device with 10 times more precise than the origin one to verify the measurement
of the origin one. In this case, if one doubts the ground truth of the lateral error
measured by this LiDAR, one should acquire a device with 1 to 2 mm precision
to do the verification. In this paper, we took the official manual provided by
Hesai as a guarantee and verified its standard deviation.

2.3 Internal Factors: Control Algorithm, Modeling, and Simulation

The control algorithm (Linear-Quadratic Regulator, [15]) was designed under
the assumption that ego vehicle often drives at a low to medium speed (i.e. 0 to
40 KM/H). This assumption is valid due to that for parking scenarios the ego
vehicle often spends a large amount of time cruising at low speed and eventually
reach to a stop. Figure 3 illustrates the kinematics model under such assumption,
which can be described mathematically as below,

⎧
⎨

⎩

xk+1 = xk + vk · cos(ψk) · Δt,
yk+1 = yk + vk · sin(ψk) · Δt,

ψk+1 = ψk + vk · tan(δk)
L · Δt

(1)

where (x, y), ψ, v, δ, and L refers to the position, heading, linear speed, front-
wheel angle, and the wheelbase of the ego vehicle, respectively. Position and
heading was obtained in a way described in the section of Error Feedback System
(also see Fig. 1), while linear speed was provided directly by IMU. The front-
wheel angle, on the other hand, maps to the steering wheel angle through a

Fig. 3. Kinematics model of the control algorithm
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transfer function below.
G(s) =

1
τs + 1

(2)

The time constant τ in Eq. (2) was fine-tuned in simulation and field tests, and
was set to 0.1668 as a result.

With this model, one can build a decent LQR controller but not the precise
one as this paper purposed. The reason is that there are some subtle gaps between
the model and the actual vehicle, although in most cases they are ignorable. This
model implies that one can get variables such as front-wheel angle and heading
estimation ideally, which is incorrect due to errors such as steering-wheel offset
and IMU mounting issue. Those errors are only negligible when they are small
and extra precision is not desired. A steering-wheel offset may be caused by
installation problem in factory, while heading offset in this case is from an askew
mounted IMU. Figure 5 presents an example, showing how an askew mounted
IMU influences the heading feedback. Note that position O represents the desired
mounting point, while O’ (xoffset, yoffset) represents the actual mounting point.
ho is the resulting heading offset.

In order to calibrate those offsets, the follow equations were deduced from
the kinematic model (1) and Fig. 4.

⎧
⎨

⎩

tan(δ + δo) = L·ω
v1

,

v1 = v2 · cos(h − ho) − ω · yoffset

v2 · sin(h − ho) = ω · xoffset,
(3)

Fig. 4. Heading offset due to incorrect mounting of IMU
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where δo represents the steering-wheel offset, and ho, yoffset, and xoffset rep-
resent the heading error, lateral error, and longitudinal error, respectively, due
to incorrect mounting of IMU. It should be emphasized that the calculation of
v1 adds complication on offset estimation. In principle, v1 is the linear speed
of the ego vehicle while v2 is the linear speed read from IMU. If the IMU is
perfectly mounted or the vehicle goes perfectly straight (with no yaw rate at
all), the two values match. In reality, however, v1 is not observable and one can
only estimate it from v2. Now, both ho and yoffset are involved in calculating v1
from v2, but we are only estimating ho, which means we should acquire yoffset

from somewhere else. Of course, one solution is to estimate yoffset as well, but
it would make the estimation non-linear and hence difficult to solve online in
a real-time manner using RLS. Therefore, we set yoffset to 0.2 m via carefully
checking the mounting point and CAD (computer-aided design) model of the ego
vehicle. Some may wonder whether a (reasonable) guess on yoffset, instead of a
mathematical estimation, affects the precision or not. It can be proven that, for
a typical mounting error with ho at 0.01 rad and yoffset at 0.2m, the difference
between v1 and v2 is less than 1% on ω ≤ 0.05 rad/s and v2 ≥ 1m/s, further
leading to a calibration error on steering-wheel offset less than 0.01%. From this
calculation, it is clear that even with yoffset set to zero, the calibration error
is negligible, not to mention a reasonable measurement on yoffset. Notice that
it is not recommended to estimate xoffset and/or ho from the CAD model too,
because too many rough estimations rapidly increase the risk of breaking the
system’s precision. We should always precisely estimate as many variables as
possible. Further, it can be proven that a (un-calibrated) ho at 1 degree will lead
to an lateral offset between front wheel and rear wheel around 7 cm. One should
always estimate ho as accurate as possible. As to estimate ho and δo, Eq. 3 can
be transformed to

{
L·ω
v1

− tan(δ) = (1 + L·ω
v1

) · tan(δo),
atan( vy′

vx′ ) = ω·xoffset

v2
+ ho,

(4)

where v′
x and v′

y refer to linear speed along x-axis and y-axis, respectively, of the
IMU body frame. Obviously, this is a standard form of a least square problem:

y = φ · θ (5)

where ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y = [L·ω
v1

− tan(δ), atan( v′
y

v′
x
)]T ,

θ = [tan(δo), xoffset, ho]T ,

φ =
[

(1 + L·ω
v1

) 0 0
0 ω

v2
1

] (6)

Directly, we can get estimations from the standard least square form, which
is set to minimize the following loss function:

V (θ̂, n) =
1
2

·
n∑

i=1

(y(i) − φT (i) · θ̂)2
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Fig. 5. Calibration process and simulation process

Nevertheless, during driving we need to update estimations every frame as new
data keep coming in. Fortunately, we can indeed use least square in a recur-
sive form (Recursive Least Square, RLS for short). Through RLS, one can get
estimations, i.e. θ̂, in the following form:

θ̂(k) = θ̂(k − 1) + L(k) · [y(k) − φT (k) · θ̂(k − 1)] (7)

where
L(k) = P (k − 1) · φ(k) · [1 + φT (k) · P (k − 1) · φ(k)]−1 (8)

and
P (k) = P (k − 1) · [1 − L(k) · φT (k)] (9)

An initial value of P (0) is needed to get RLS started. In fact, P (0) is related to
the confidence of the initial guess of θ̂(0). One can simply set P (0) to a large
value (such as 1e6) and initial guess of θ̂(0) to zero to get RLS started. Figures 5
(a) and (b) show calibration results for steering and heading offset, respectively.
Figure 5 (c) presents a simulation result, in which one can see that the models
built in this section (i.e. simulated lateral/heading error) matches reasonably
well with the actual vehicle data (i.e. actual lateral/heading error).

3 Result

3.1 Apparatus and Testing Scenario

For the field tests, we used an electronic vehicle with a dimension of 5 m (length)
* 2 m (width) * 2.2 m (height) with a drive-by-wire system, and an X86 com-
puter running Apollo autonomous driving system with an architecture shown in
Fig. 1, and multiple sensors that are designed for Level 4 autonomous driving
systems. The Error Feedback System uses an existing Hesai Pandar40P LiDAR
[2] equipped on top of the vehicle. Other sensors are mainly used by other parts
(such as the perception module) of the Apollo system [1]. Figure 6 illustrates the
testing scenario. As described in previous sections, this paper focuses on lateral
precision (with respect to a reference). We hence tested the system through a
typical bus-stop scenario. Note that it is a real-world, everyday bus platform
built years ago, with no additional design except the grey board (the red rect-
angle in Fig. 6). The board was added by the testing team to provide a flat and
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Fig. 6. Landmark example (Color figure online)

Fig. 7. Measurement method

smooth surface for the LiDAR. The board was approximately 14.6 m long, 0.6 m
wide, and in parallel with the road. During driving, the 12th ray from the top
LiDAR, which is horizontal according to the Pandar40P manual, was used to
measure the lateral distance between the ego vehicle and the board.

3.2 Experiment and Measurement

As long as the ego vehicle was close to the bus stop, i.e. LiDAR detects the board,
the proposed method would be triggered (Fig. 1). The system then continually
adjusted its steering wheel according to the lateral and heading error feedback
(see Method Section). For convenience, we used the existing (not drawn by the
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Table 1. Precision of proposed control module

Longitudinal Lateral error (cm) Heading error

error (cm) Front Rear LiDAR (rad)

Mean 0.2 −0.7 1.7 0.3 0.0061

STD 10.1 0.7 0.9 0.9 0.0013

Table 2. Precision of human drivers

Longitudinal Lateral error (cm) Heading error

error (cm) Front Rear LiDAR (rad)

Mean N/A −0.5 −0.3 N/A 0.0005

STD N/A 4.2 4.0 N/A 0.0005

Table 3. Precision of original control module

Longitudinal Lateral error (cm) Heading error

error (cm) Front Rear LiDAR (rad)

Mean N/A −3.7 −4.0 N/A −0.0007

STD N/A 3.1 3.9 N/A 0.0072

testing team), middle, long, white, solid lane line in Fig. 6 as the reference for the
control module. That means, the lateral error from LiDAR was first subtracted
by a constant offset, i.e. the lateral distance between the board and that lane
line, before it was fed into the control module. Consequently, the ego vehicle
drove towards the lane line, rather than crashing with the board. The lateral and
heading errors were then measured with respect to the lane line. Figure 7 shows
how results were measured. We first recorded the lateral error (with respect to
the lane line) from LiDAR after the ego vehicle fully stopped. We also measured
the lateral error of front and rear wheels through an L-ruler (Fig. 7), hence
small human error on measurement, i.e. ± 0.5cm, is expected. The longitudinal
error was measured with respect to a horizontal line drawn by the testing team.
Heading error was calculated in a way that:

Headingerror = arctan(
Lat errorback − Lat errorfront

wheelbase
) (10)

Experiments were primarily carried out under standard condition, in which
all of below should be satisfied:

– Half load.
– Typical weather with no rain or snow or fog.
– Typical city road with dry and cement surface.
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3.3 Results

We expected lateral and heading error to be around zero with small means and
standard deviations (std. for short). The lateral error measured by LiDAR was
set to align with that of the rear wheel, which means those two values should
match in principle. That said, one should consider that both measurement, i.e.
LiDAR and L-ruler, have accuracy around 1 to 2 cm. Forty consecutive trials
were carried out with the proposed method under standard conditions. Table 1
shows the mean and std. for both lateral error and heading error. Both the
front wheel and rear wheel were in the zone of the target ± 5 cm. The std.
of lateral error is even less than 1 cm. The lateral error measured by LiDAR
is close to that by L-ruler, given the measurement accuracy. Heading error is
about 0.006 rad with std. around 0.001 rad. The results suggest that the control
module was able to provide an end-to-end lateral precision well within 3σ ≤ 5 cm.
Interestingly, the results also imply that a steady heading error has occurred.
The front-wheel was always biased to one side (in this case, right to the target)
while the rear wheel biased to the opposite, leading to a 0.006 rad heading error.
It is possible the performance on heading correction was limited by the capacity
of localization module, and/or the system delay occurred in passing heading
error from HD map, localization, and planner, to control module (see Fig 1).
Another possibility, on the contrary, is that lateral error and heading error was
fed into control directly, other than passing to a planning module beforehand.
A planning module can help the control module achieve better precision. For
example, a planning module can calculate a trajectory that best describes how
to eliminate heading error and lateral error simultaneously upon the ego vehicle
fully stops. For this, one can refer to literature related to planning and model
predicted control [3,21].

By comparison, we inspected whether human drivers can reach the same
level of control precision with the same test vehicle in the same testing scenario.
Four test drivers were involved, all of whom were specially trained for this task.
They all spent 2 to 3 years in autonomous driving test and around 1 year on this
specific test vehicle. The drivers were provided a full 360-degree view, thanks
to the cameras mounted all around the test vehicle. To help drivers perform at
their best, we relaxed the requirement on longitudinal precision. Hence drivers
only needed to focus on the lateral control, as the longitudinal target was not set
for them. Thus, human drivers had an advantage over the proposed automated
control module in this test. An overall of thirty trials has been conducted with
them. Results (Table 2) show that the lateral error (cm) is around −0.5 ± 4.2
(mean ± std.) for front wheel, and −0.3 ± 4.0 for rear wheel. The heading error
(rad) is around 0.0005 ± 0.0005. To conclude, with intensive training and help
from the 360-degree surrounding view, human drivers were able to maintain a
sound accuracy but not precision. Finally, we also conducted fifteen trials using
the original Apollo solution (LQR controller) for comparison. Table 3 shows that
the original control module (with original localization module) performed even
worse than the human drivers, with −3.7 ± 3.1 for the front wheel, −4.0 ± 3.9
for the rear wheel, and −0.0007 ± 0.0072 for heading.
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4 Conclusion

In this study, we integrated both localization and LiDAR techniques to achieve a
precise Error Feedback System. We also implemented a lateral calibration algo-
rithm that is able to calibrate a vehicle’s steering wheel offset and heading offset
in a few seconds. A simulation was built on top of this control module to fine-
tune parameters. The results show that, through combining all those techniques,
the lateral precision of the control module reaches a new level. A small lateral
error (cm) around −0.7 ± 0.7 (front wheel) and 1.7 ± 0.9 (rear wheel), has
been achieved, which outperforms existing autonomous driving solutions and
experienced human drivers.
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Abstract. Multi-purpose Messaging Mobile App (MMMA) combines
several functionalities in a single APP to provide integrated service that
brings tremendous convenience to users. Therefore, MMMAs become
more and more popular. However, the prevalence of MMMAs also makes
them a hotbed for cybercrime. Among them, “Click Farming” fraud
requires special attention, as it causes substantial pecuniary losses and
is challenging to detect. In this paper, we describe Multi-view Hetero-
geneous Temporal Graph Neural Network (MHT-GNN), a framework
for detecting “Click Farming” fraudsters in a popular MMMA called
WeChat. We first adopt a Heterogeneous Temporal Graph (HTG) to
model spatial, heterogeneous and temporal information contained in
MM-MA data. We then extract two different types of user history
sequences as two “views” of user behavior patterns from HTG. MHT-
GNN contains a pretraining phase and a detection phase. The main com-
ponents in MHT-GNN include Inductive Heterogeneous GNN Encoder,
Temporal Snapshot Sequence Encoder, and User Relation Sequence
Encoder. The first encoder aims to capture spatial information and the
heterogeneity in each snapshot of HTG. The later two encoders are
designed to incorporate temporal information to better reveal user’s
behavior patterns and MHT-GNN leverages them to capture the two
different views of user history behavior data. We conduct experiments
on a real-world, million-scale dynamic graph extracted from WeChat.
Experimental results demonstrate the effectiveness of MHT-GNN: it sig-
nificantly exceeds existing detection methods, and it is able to block
“Click Farming” fraud activities.
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1 Introduction

Smart phones have become an essential tool in our everyday life and they pro-
vide different functionalities (e.g., socializing, online games, online shopping and
mobile payment) via installed apps. Nowadays, one single app is no longer limited
to one application scenario. Several functionalities can be assembled in one app
to provide integrated service that helps users handle their daily demands. Such
apps are often referred to as Multi-purpose Messaging Mobile Apps (MMMAs).
WeChat, with over a billion users, is a representative app in this category. Users
can easily chat with their friends using texts, voice messages or voice/video calls
provided by WeChat. Moreover, the digital payment service of WeChat has rev-
olutionized people’s daily life: we can simply use QR code to replace wallet and
transfer money, which is more convenient and safer.

Fig. 1. An illustration of “Click Farming” in WeChat.

The great convenience brought by MMMAs attracts more and more users.
On the other hand, the prevalence of MMMAs like WeChat makes them a hotbed
for cybercrime [19]. This paper studies the detection task of “Click Farming” in
WeChat: a type of deception that recently emerges. As depicted in Fig. 1, in
“Click Farming” frauds, fraudsters first use illegally acquired personal informa-
tion (e.g., phone number) and send “add friend” requests to victims (i.e., ADD in
Fig. 1 - Step 1). Additionally, certain chat groups are created where cybercrimi-
nals enter and disguise as normal users (i.e., ENTER and CREATE in Fig. 1 - Step
1). Then, fraudsters will invite victims (i.e., PULL in Fig. 1 - Step 2) to join these
groups (i.e., ENTER in Fig. 1 - Step 2) by using high reward as bait. After that,
group members are encouraged to complete some tasks (i.e., FINISH in Fig. 1 -
Step 3) posted in the group (i.e., POST in Fig. 1 - Step 3). Typical tasks include
buying a number of products or topping up online shopping cards. The first a
few tasks are easy. Victims do not need to pay too much (i.e., TRANSFER in Fig. 1
- Step 3) and fraudsters pay the commission as promised to gain the trust of
victims. With victims’ guard down, fraudsters raise the request of new tasks and
ask victims to pay much more money. Victims may see that other group mem-
bers (they are conspirators) complete new tasks and get reward. Hence, they
decide to pay the money to complete new tasks. However, after victims transfer
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money, fraudsters disappear and do not response anymore (i.e., DISAPPEAR in
Fig. 1- Step 4).

Due to the pecuniary losses that “Click Farming” frauds cause, the “Click
Farming” fraudsters detection task (the CFD task) requests our attention. The
social nature of WeChat makes it a natural choice to model WeChat user rela-
tionships as a user-user interaction graph. This way, the CFD task is closely
related to Graph-based Anomaly Detection (GBAD) [1]. However, the CFD
task in WeChat has unique properties and therefore is more challenging. The
data of WeChat is dynamic and diverse. A fraudster may appear to be normal
in each individual snapshot. But he/she becomes suspicious when considering
all his/her different behaviors at each snapshot together.

In the literature, only few works [17,21] study the GBAD task in the dynamic
setting. But they cannot handle both dynamics and diversity of WeChat data
well. Particularly, all previous works leverage only one view of dynamic data
(e.g., viewing states of a node in different snapshots of the dynamic graph as
a sequence [21]), which is not sufficient to model the dynamic and diverse user
behaviors in the CFD task. We propose a framework Multi-View Heterogeneous
Temporal Graph Neural Network (MHT-GNN) for the CFD task in WeChat.
We extract two types of user history sequences from our designed Heteroge-
neous Temporal Graph (HTG) as two “views”. Then, MHT-GNN captures both
temporal dependencies (dynamics) and behavior patterns (diversity) from user
history sequences and the HTG through multi-view learning and graph repre-
sentation learning. To our best knowledge, we are the first to study the “Click
Farming” detection problem in MMMAs. The contributions of this work can be
summarized as follows:

– We analyze and design features used in the CFD task of WeChat. We further
propose a Heterogeneous Temporal Graph to model diverse MMMA data.

– We adopt an Inductive Heterogeneous graph encoder to capture spatial depen-
dencies and heterogeneity in WeChat. It provides better representation learn-
ing for the WeChat graph compared to other GNN-based methods and it can
generalize to unseen nodes.

– We construct two types of user history sequences for each node as two “views”
of the dynamic data. We further design two encoders to encode two views
to capture the temporal dependencies and behavior patterns, which helps
generate better node representations in the CFD task.

– We conduct evaluations on a million-scale real-world graph extracted from
the CFD task in WeChat. Results show that MHT-GNN exceeds existing
methods by a large margin.

2 Related Work

2.1 Graph-Based Anomaly Detection (GBAD)

Anomaly detection identifies the abnormal patterns that deviate from the
majorities [8]. Graph-based Anomaly Detection (GBAD) extends it to the graph



MHT-GNN for “Click Farming” Detection 151

data. Earlier methods for GBAD are mainly based on handcrafted feature engi-
neering [6]. Recent works are mostly inspired by the deep learning techniques.
DOMINANT [4] leverages the graph embeddings from GCN to reconstruct the
original adjacent matrix for anomaly detection. ALARM [12] further employs
multiple attributed views to describe different perspectives of the objects for
anomalies detection. Different from previous methods that jointly learn the node
representation and the classifier, DCI [18], inspired by the recent advances of self-
supervised learning, decouples these two phases for node representation learning.

Fig. 2. Overview of MHT-GNN.

2.2 Anomaly Detection in Dynamic Graphs

Anomaly detection in dynamic graphs attracts increasing interest since many
real-world networks can be generally represented in the form of dynamic
graphs. Earlier methods such as CAD [15] detect node relationships respon-
sible for abnormal changes in graph structure by tacking a measure that com-
bines information regarding changes in both graph structure and edge weights.
StreamSpot [10] is a clustering based approach that introduces a new similar-
ity function for heterogeneous graph comparison. Another branch of approaches
employs deep learning. [21] first utilizes temporal GCN and attention mech-
anism to model short-term and long-term patterns. Then a GRU network is
introduced to process such patterns and encode temporal features. NetWalk [20]
adopts a random walk based encoder to learn the network representations and
employs a clustering-based anomaly detector to score the abnormality of each
edge. StrGNN [2] extracts the h-hop enclosing subgraph of edges and labels each
node to identify its corresponding role in the subgraph. Then it leverages GCN
and GRU to capture the spatial and temporal information for anomaly detection.
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3 Our Framework MHT-GNN

3.1 Overview

Figure 2 provides an overview of MHT-GNN. It consists of two phases: pretrain-
ing and detection. We first extract node features (Sect. 3.2) and construct a
Heterogeneous Temporal Graph (Sect. 3.3) for WeChat data. Then, in the pre-
training phase (Sect. 3.4), we construct two types of history sequence for each
node in the constructed graph, namely temporal snapshot sequence and user
relation sequence. These two types of sequences can be regarded as two “views”
of user history sequence for each user. MHT-GNN generates embeddings for
each node in each snapshot using an Inductive Heterogeneous GNN Encoder
(IHG-Encoder).

Based on the graph representations generated by IHG-Encoder, tempo-
ral snapshot sequences and user relation sequences are passed through our
designed Temporal Snapshot Sequence Encoder (TSS-Encoder) and User Rela-
tion Sequence Encoder (URS-Encoder) to generate more informative represen-
tations, respectively.

In the detection phase (Sect. 3.5), MHT-GNN uses pretrained encoders to
generate sequence representations for predicting the suspicious score of a user.

3.2 Feature Extraction

For each user, we pre-extract six features from WeChat data based on the knowl-
edge of human experts. Note that the detection of “Click Farming” fraudsters
should not violate users’ privacy. Hence, private information like chat content
(text, video or speech) in WeChat is unaccessible. The data used for the CFD
task is chosen through a strict investigation process in order to protect users’
privacy.

3.3 Graph Construction

To capture the diverse behavior patterns in the WeChat graph, we construct
a heterogeneous graph [14] capable of modeling heterogeneous spatial depen-
dencies among different types of node entities and relations. Among different
nodes and behaviors in WeChat, we consider two key node types (i.e., users and
chat groups) and three important relation types: “join a group” (ENTER), “invite
someone to join a group” (PULL) and “become WeChat friends” (ADD). The het-
erogeneous graph not only depicts the graph structure of WeChat graph, but
also provides a higher-level abstraction of the user association. For example, a
pattern of fraudulent user PULL−−−→normal user ENTER−−−→group ENTER←−−−fraudulent user in
the heterogeneous graph can characterize a “Click Farming” fraud case: a fraud-
ster invites a victim to join a chat group and another fraudster is also a member
of this group.

Based on the above designed heterogeneous graph, we propose to further
consider temporal dependencies (i.g., evolving user states and behaviors) and
build a Heterogeneous Temporal Graph (HTG) for the CFD task:
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Definition 1. Heterogeneous Temporal Graph (HTG). We model a HTG as a
graph stream consists of discrete snapshots. Let the latest timestamp be T . A
graph stream can be denoted as G = {Gt}Tt=1, where each Gt = (Vt, Et) is a
heterogeneous graph at timestamp t. We use nt = |Vt| and mt = |Et| to denote
the number of nodes and edges at timestamp t, respectively.

HTG is the combination of several basic heterogeneous graphs from different
time points. And each basic heterogeneous graph of the HTG is a snapshot of
the HTG at the corresponding time point.

3.4 Pretraining Phase

Inductive Heterogeneous GNN Encoder (IHG-Encoder). We adopt an
IHG-Encoder as the backbone of MHT-GNN for encoding graph data.

In the following, we only consider one snapshot of the WeChat graph to
illustrate IHG-Encoder. We first project the raw user features pv ∈ R

6 of a
user u to a feature space and utilize projected features as the initial user node
embedding for u. For the initial embeddings of a group node g, we aggregate all
its members’ initial embeddings:

h(0)
v = Whpv, h(0)

g = mean({hv′ ,∀v′ ∈ Ng}) (1)

where h(0)
v and h(0)

g are initial embeddings for the user node v and the group
node g, respectively. Ng denotes users in g, and Wh is a learnable matrix.

The messaging passing mechanism in IHG-Encoder is relation-wise. Repre-
sentations of neighboring nodes connected to a user u by the same relation r are
aggregated by three different pooling methods. Results are concatenated and
passed to a single-layer feedforward neural network:
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where the superscript (k) indicates the k-th iteration, ⊕ is the concatenation
operation, Nr

i denotes the relation-r-based neighbors of node i and j∗ ∈ Nr
i .

h(k)
r,j∗ is the representation of node j∗ for relation r, and h(0)

r,j∗ is equivalent to
h(0)
j∗ . mean(·),max(·) and sum(·) are average pooling, max pooling and sum

pooling, respectively. Wr and br are learnable weights for relation type r.
IHG-Encoder adds a self-connection to each node so that the original node

attributes extracted based on human knowledge can be retained in message
passing:
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r,i = Wr,sh

(0)
r,i + br,s, g(k+1)

r,i = RELU(m(k+1)
Nr

i
⊕ s(k+1)

r,i ) (3)
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where Wr,s and br,s are learnable parameters and RELU(·) is the Rectified
Linear Unit. The acquired gr,i is then passed to a feedforward neural network
with an L2 normalization:

q(k+1)
r,i = RELU(Wr,qg

(k+1)
r,i + br,q), h(k+1)

r,i = q(k+1)
r,i

/∥∥∥q(k+1)
r,i

∥∥∥ (4)

where Wr,q and br,q are learnable weights, and hr,i indicates the final generated
representation of i w.r.t. the relation r.

The output representations of node i for all relations will go through an
inter-relation aggregation module and the result is the representation for node
i:

h(k+1)
i = AGG({h(k+1)

r,i ,∀r ∈ R}) (5)

where AGG is the aggregation function and we adopt mean pooling. IHG-
Encoder stacks two of the above GNN layers (i.e., Eqs. 2, 3, 4 and 5) to generate
the final representation of node i. Note that some user nodes may only exist in
certain view of the constructed heterogeneous graph, e.g., a user only has ADD
actions in the considered time period. For other views the users are absent, their
corresponding passing messages will be set to zero.

IHG-Encoder can be optimized with a standard binary cross entropy loss
over labeled nodes. IHG-Encoder does not maintain node embeddings which are
bounded by specific nodes. Instead, learnable weights W and b are updated
during optimization. In detection, the trained model can be used to produce
representations for new nodes based on their structural and raw attribute infor-
mation. Hence, IHG-Encoder is indeed inductive (i.e., the trained model can
be used over unseen nodes), which is essential for representation learning in
WeChat as new users emerge every day. MHT-GNN, which uses IHG-Encoder
as its backbone, is therefore also able to generate representations for unseen
nodes.

Temporal Snapshot Sequence Encoder (TSS-Encoder). We observed
that, in “Click Farming”, a fraudster’s fraud actions may spread across mul-
tiple timestamps. A fraudster Alice adds many potential victims as friends at
time t1. Alice spends a few days using high reward as bait to convince them to
join a “Click Farming” group. Then, at time t2, Alice will invite baited users to
the group. Alice may continue to be active in the group performing actions like
sending bonus packages for encouragement at time t3. On the contrary, a normal
user Bob typically does not have so many behaviors within a relatedly short time
window. Hence, we concatenate the presentations of a user in different snapshots
as its temporal snapshot sequence to capture temporal patterns in the HTG.

Given a series of historical snapshots {Gt}Tt=1 as inputs, we apply IHG-
Encoder over each snapshot to obtain the representations for all the nodes in
each snapshot. By doing so, we collect a sequence of representations for each
user u at different time steps. Specifically, for each node u, we define its tem-
poral snapshot sequence as seqtemp

u = [h1
u,h2

u, . . . ,hT
u ]. Note that the WeChat

graph can easily scale to millions or even tens of millions due to its massive
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users. We can utilize an efficient database (e.g., a key-value pair database) to
store previous feature representations generated by IHG-Encoder for each user.
When checking a user’s anomalousness in current timestamp t, we can easily
retrieve his/her historical representations from the database and construct the
temporal snapshot sequence in a blink. Only the current representations requires
the generation of the IHG-Encoder.

Next, we aggregate the retrieved temporal snapshot sequence to a represen-
tation that captures user behavior patterns. We adopt the Long Short-Term
Memory (LSTM) as TSS-Encoder to model the input sequence seqtemp

u and cap-
ture the dynamic of user activities. LSTM fits perfectly in this scenario for the
reason that it recognizes temporal dependencies. Each layer of the LSTM com-
putes the following transformations:

ft = σ(Wf [ht−1, et] + bf ), ct = ft � ct−1 + it � c̃t
it = σ(Wi[ht−1, et] + bi), ot = σ(Wo[ht−1, et] + bo)
c̃t = tanh(Wc[ht−1, et] + bc), ht = ot � tanh(ct)

(6)

where t is the time step, ht, ct, et are hidden state, cell state and previous layer
hidden state at time t, respectively. ft, it, ot are respectively the forget gate,
input gate and output gate, and � indicates the Hadamard product.

The last hidden state output by TSS-Encoder is used as the representation
hseqtemp

u
of temporal snapshot sequences for a user u.

User Relation Sequence Encoder (URS-Encoder). In social networks,
a user’s direct actions explicitly reveal his/her characteristics. In the HTG, a
user’s direct actions manifest in edges between itself and its 1-hop out-neighbors.
Observed from the “Click Farming” fraud example we discussed in Fig. 1, we can
conclude that this type of fraud typically involves several direct actions (e.g., ADD
and PULL) of fraudsters appearing in different stages of “Click Farming” frauds
(i.e., searching, gain trust and deceive). Hence, we believe it is beneficial to
consider a special type of sequence called user relation sequence. Such sequences
are composed of edges in all the 1-hop neighboring subgraphs of a user node
from different snapshot and these edges are sorted in chronological order.

Given a node v and its 1-hop out-degree neighboring node set
Nv = [u1, . . . , um] associated with corresponding edge set Ev =
{(v, u1, t1), . . . , (v, um, tm)} where |Nv| = m and a tuple (v, ui, ti) indicates that
there is an edge from v to ui at time step ti, we sort Nv in a chronological
manner and sample nodes from each time step to form a user relation sequence
{u1, u2, . . . , uT }v for user v. For any two nodes ui and uj in the sequence with
i < j, their associated edges (v, ui, ti) and (v, uj , tj) satisfy that ti < tj . An
example is provided in the bottom left of Fig. 2.

When constructing user relation sequences, some issues require extra atten-
tion and we handle them as follows:

– The number of 1-hop neighbors is uneven across the graph, meaning that
some users are relatively active in the recorded time period while some are
not. Active users have much more user relation sequences than inactive users,
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which may lead to model bias. Therefore, we sample up to a predefined max-
imum number of sequences for each user to avoid model bias as well as speed
up model training.

– For users with few or no out-degree neighbors during the recorded time period,
we take the sub-sequence from other users as sequences. For instance, node
v2 in the bottom left of Fig. 2 has no out-degree neighbors. But v2 exists in
the out-degree neighborhood of v1. Hence, we extract the sub-sequence from
v1 that starts with v2 as the user relation sequence for v2.

User relation sequence describes a user’s behavior over time, which remedies
the limitation of temporal snapshot sequence that solely contains the hidden state
of the same user over time. Given the user relation sequence of node u: seqrel

u =
[v(u)

1 , v
(u)
2 , . . . , v

(u)
T ], where v

(u)
t (1 ≤ t ≤ T ) denotes the user/group node with

which u interacts at t-th time step, we first generate initial embeddings for nodes
in the sequence using the same projection shown in Eq. 1. Then, similar to TSS-
Encoder, the embeddings sequence [h

v
(u)
1

,h
v
(u)
2

, . . . ,h
v
(u)
T

] is fed intoURS-Encoder
composed of a LSTM to produce the representation hseqrel

u
of the user relation

sequences for the user u.

Optimization of Pretraining Phase. We train TSS-Encoder, URS-Encoder
and IHG-Encoderdetect independently on the training data with limited labels
using binary cross-entropy loss and Adam optimizer. IHG-Encoderdetect adopts
the same encoder design as IHG-Encoder. As shown in Fig. 2, IHG-Encoderdetect
is later used in the detection phase. During training, each of TSS-Encoder, URS-
Encoder and IHG-Encoderdetect is connected to its own score module, which is
a linear mapping layer followed by a sigmoid function, for predicting suspicious
scores. If the predicted score of an input node is larger than 0.5, it is labeled as
a “Click Farming” fraudster.

3.5 Detection Phase

During the detection phase, for a user node v, we generated temporal snap-
shot sequence representation hseqtemp

v
and user relation sequence representation

hseqrel
v

using pretrained TSS-Encoder and URS-Encoder. Then, hseqtemp
v

, hseqrel
v

and initial representation h(0)
v are concatenated and the result is fed into IHG-

Encoderdetect followed by its scoring module to estimate the suspicious score of v.
If the output value for v is larger than 0.5, v will be predicted as a “Click Farming”
fraudster.

4 Experiments

4.1 Experiment Setting

Data. We extract a 14 day-period dataset from WeChat and construct a million-
scale HTG as defined in Sect. 3.3. The graph contains nearly 4.6 million user
nodes and 190 thousand WeChat chat group nodes. The number of edges are



MHT-GNN for “Click Farming” Detection 157

approximately 15 million covering three relations: ADD, PULL and ENTER. We use
one day as the interval between two timestamps. Thus, for a 14 days observation
period we derive 14 separate graph snapshots. We set the maximum number
of sampled user relation sequence for each user to be 10. 85,000 user nodes are
manually labeled by human experts: 25,000 are fraudsters and 60,000 are normal
users. The labels for other 4.5 million user nodes are unknown. We randomly
divide the labeled users by a ratio of 8:1:1 for training, validation and testing.

Baseline. We compare MHT-GNN with several competitive baselines:

– Non-GNN classification methods. XGBoost [3] and MLP. XGBoost is a
gradient boosting algorithm that shows promising results in numerous predic-
tion tasks and MLP is a feedfoward neural network with three hidden layers
to predict the suspicious score of a node. The two methods only relies on data
attributes for prediction.

– Homogeneous graph based methods. Graph Convolutional Network
(GCN) [5] averages neighbor’s embeddings with a linear projection, and
Graph Attention Network (GAT) [16] utilizes attention mechanism to aggre-
gate information of neighbors.

– Heterogeneous graph based methods. Relational Graph Convolutional
Network (RGCN) [13] designs different linear projections for different types
of relations for information aggregation, and Simple Heterogeneous Graph
Neural Network (Simple-HGN) [7] enhances GAT with the redesign of three
techniques: learnable edge-type embedding, residual connections, and L2 nor-
malization on the output embeddings.

– Temporal graph anomaly detection method. AddGraph [21] is an
dynamic graph anomaly detection method. It leverages a GCN module to
capture spatial information, and employs a GRU-attention module to extract
short- and long- term dynamic evolving patterns. Furthermore, we modify
the base graph encoder of AddGraph from GCN to RGCN in order to model
the heterogeneous information and name this variant as AddGraph-H.

To verify the contribution of each component in MHT-GNN, we design sev-
eral versions of MHT-GNN as follows:

– IHG-Encoder: It only contains the inductive heterogeneous GNN encoder.
– MHT-GNN-T: It is a variant of MHT-GNN that removes URS Encoder.
– MHT-GNN-R: It is a variant of MHT-GNN that removes TSS Encoder.

We adopt the same score module design (i.e., a linear mapping layer followed
by a sigmoid function) as MHT-GNN for baselines without a score module. All
methods adopt Adam optimizer if possible. We set initial learning rate to be
0.001 and use 128 as the dimension of representations. We use a batch size of
256. All methods will terminate optimization when they converge.

Evaluation Metrics. We use five widely adopted evaluation metrics:
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– AUC: It signifies the probability that the positive sample’s score is higher
than the negative sample’s score.

– KS: It is a measure of the degree of separation between the positive and
negative distributions [11].

– Precision, Recall and F1-score: Precision is a measure of how many posi-
tive predictions are correct while Recall measures how many positive cases the
classifier correctly predicted over all the positive cases in the data. F1-score
is the harmonic mean of Precision and Recall.

Table 1. Overall detec-
tion performance.

Method AUC KS Precision Recall F1-score

XGBoost 0.7452 0.3385 0.5783 0.3224 0.4140

MLP 0.7248 0.3375 0.5809 0.3287 0.4193

GCN 0.7946 0.4560 0.6488 0.4670 0.5431

GAT 0.8060 0.4801 0.6443 0.4869 0.5547

RGCN 0.8483 0.5308 0.7063 0.5373 0.6097

Simple-HGN 0.8498 0.5452 0.6972 0.5556 0.6183

IHG-Encoder 0.8623 0.5642 0.6907 0.5990 0.6415

AddGraph 0.8239 0.4949 0.6505 0.5716 0.6085

AddGraph-H 0.8416 0.5499 0.6467 0.6078 0.6251

MHT-GNN 0.8969 0.6397 0.7297 0.6943 0.7115

Table 2. Results of abla-
tion study.

Method AUC KS Precision Recall F1-score

IHG-Encoder 0.8623 0.5642 0.6907 0.5990 0.6415

MHT-GNN-R 0.8853 0.6169 0.7222 0.6853 0.7031

MHT-GNN-T 0.8856 0.6239 0.7300 0.6622 0.6944

MHT-GNN 0.8969 0.6397 0.7297 0.6943 0.7115

Table 3. t-SNE Projection of User
Node Representations Generated
by MHT-GNN: (1) Red Nodes:
Fraudsters. (2) Blue Nodes: Nor-
mal users. (Color figure online)

Overall Detection Results. Table 1 presents the overall results of each
method. The best performance are denoted in bold. From the results, we can
see:

1. GNN-based approaches GCN and GAT generally exceed non-GNN methods
XGBoost and MLP, indicating the spatial dependencies depicted by graph
structure in WeChat contain rich information that can improve model per-
formance in the CFD task.

2. Both dynamic and heterogeneous graph based models could achieve satisfac-
tory results, and heterogeneous graph based methods generally outperform
homogeneous graph based approaches. This observation shows that tempo-
ral dependencies and multi-relation information help model a user’s behavior
pattern better and boost the detection accuracy.
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3. IHG-Encoder significantly outperforms other GNN-based methods. This
observation has supported our decision of using IHG-Encoder as the back-
bone of MHT-GNN.

4. MHT-GNN achieves much better performance than other baselines including
state-of-the-art dynamic graph anomaly detection methods AddGraph and its
multi-relation version AddGraph-H. MHT-GNN consistently outperforms all
baselines on all measures. The results demonstrate the superiority of MHT-
GNN over existing methods for the CFD task.

Ablation Study. Table 2 lists the results of different variations of MHT-GNN.
From Table 2, we can observe that:

1. The incorporation of either TSS Encoder or URS Encoder brings performance
gain, as both MHT-GNN-T and MHT-GNN-R outperform IHG-Encoder.

2. The complete MHT-GNN shows the best result, indicating that modeling
two views of historical data in HTG together can remedy the limitation of
capturing only one view.

Overall, we can conclude that each module in MHT-GNN indeed contributes to
the superior performance of MHT-GNN over existing detection methods in the
CFD task of WeChat.

Visualization of Representation. To investigate the qualities of node repre-
sentations generated by MHT-GNN, we adopt t-SNE [9] to project representa-
tions of nodes in the test set into a 2-dimensional space. The projection result is
visualized in Fig. 3. From the result, we can see that representations of fraudsters
and normal users have a clear distinction, showing that MHT-GNN is able to
produce high-quality representations for the CFD task of WeChat.

5 Conclusion

In this paper, we illustrate MHT-GNN for the CFD task in WeChat. MHT-GNN
can capture dynamics and diversity of MMMA data through multi-view learning
and graph representation learning. Experiments on a real-world graph extracted
from the CFD task in WeChat demonstrate the effectiveness of MHT-GNN. In
the future, we will introduce attention mechanism for both intra-relation and
inter-relation aggregation to adaptively assign weights for modeling the impor-
tance of information and further improve detection results. We also plan to
enhance the interpretability of detection results so that fewer normal users will
be wrongly labeled as fraudsters.
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Abstract. As a novel non-neural network style deep learning method,
the deep forest can perform effective feature learning without relying
on a large amount of training data, thus brings us some opportunities
to accurately classify brain networks (BNs) on limited fMRI data. Cur-
rently, preliminary attempts to use deep forest to classify BNs are already
emerging. However, these studies simply adopted the sliding windows to
scan the inputted BNs and failed to consider the inherent sparsity of
BNs, which makes them susceptible to those redundant edges in BNs
with little weight. In this paper, we propose a deep forest framework with
sparse topological feature extraction and hash mapping (DF-STFEHM)
for BN classification. Specifically, we first design an extremely random
forest guided by a weighted random walk (ERF-WRW) to extract sparse
topological features from BNs, where the random walk strategy is used
to capture their topological structures and the weighted strategy is used
to reduce the influence of redundant edges with little weight. Then, we
map these sparse topological features into a compact hashing space by a
kernel hashing, which can better preserve topological similarities of brain
networks in the hashing space. Finally, the obtained hash codes are fed
into the casForest to perform deeper feature learning and classification.
Experimental results on ABIDE I and ADHD-200 datasets show that
the DF-STFEHM outperforms several state-of-the-art methods on clas-
sification performance and accurately identifies abnormal brain regions.

Keywords: Brain network classification · Deep forest · Sparse
topological feature · Kernel hashing · Random walk

1 Introduction

The human brain is currently the most complex system known. It performs
various complex cognitive tasks through interactions and coordination between
distributed brain regions [11]. Currently, a lot of studies have shown that when
a person suffers from a neuropsychiatric disorder like autism spectrum disorder
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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(ASD), many interactions between these brain regions will be affected to a certain
extent [19]. Advances in functional magnetic resonance imaging (fMRI) enabled
us to map these patterns of functional interactions in a non-invasive way, and
further construct functional brain network (BN) of the whole brain [7]. Therefore,
more and more researchers are trying to diagnose neuropsychiatric disorders by
classifying the BNs [26].

At present, there are a large amount of machine learning (ML) methods have
been employed to classify the BNs. Among them, the early researches were mainly
based on traditional ML methods. E.g., Jie et al. [11] employed the multi-kernel
support vector machine (SVM) on brain networks for diagnose of Alzheimer’ dis-
ease. Zhu et al. [31] adopted the weighted least absolute shrinkage and selection
operator (LASSO) to boost the classification performance of multiple interna-
tional BN data sites. Gareth et al. [2] used random forest (RF) to perform robust
classification of preterm and term-born neonates. In addition to these traditional
ML methods, deep neural network (NN) methods, which achieved great success in
many fields in recent years, have also been successfully applied to brain network
classification. For example, Kawahara et al. [12] proposed a BrainNetCNN frame-
workwhich is the first convolutional neural network (CNN) framework designed for
BNs. On this basis, Ji et al. [10] proposed another CNN framework with a CKEW
kernel (CNN-CKEW) to extract hierarchical topological features for BNs. Simi-
larly, the graph convolutional neural network (GCNN) [14,16], deep belief network
(DBN) [9], graph variational auto-encoder [3], and other methods are also used for
brain network classification. Due to their excellent layer-wise feature extraction
ability and high-dimensional data processing capacity, these methods can gener-
ally achieve better performance than that of the traditional ML-based methods.
However, these NN-style methods usually need massive training samples to deter-
mine their numerous parameters, and the datasets encountered in neuroimaging
are often high-dimensional but small sample-size. Such contradiction between the
demand of massive training samples and the objective reality of small-scale brain
networks, seriously limits the further applications of these NN methods in brain
network classification.

As a newly developed non-NN style deep learning (DL) method, the deep for-
est (DF) [30] performs layer-wise feature learning and classification by construct-
ing cascade forest (casForest) structure. Moreover, as the number of its cascade
layers is automatically determined according to available training samples, the
deep forest performs well on many small-scale datasets, providing us with new
opportunity for accurately classifying BNs on limited fMRI data. Currently, pre-
liminary attempts to use deep forest to classify BNs are already emerging. For
example, Li et al. [13] proposed a deep forest framework with cross-shaped win-
dow scanning mechanism (DF-CWSM) for the diagnosis of ASD and achieved
better performance than a lot of NN methods. It designed a cross-shaped win-
dow scanning mechanism to extract node-level and edge-level topological features
respectively, and then input these local topological features into the casForest for
layer-wise feature learning and classification. Shao et al. [22] proposed a revised
deep forest model which can accurately identify patients with attention deficit
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hyperactivity disorder (ADHD) from healthy controls. Specifically, it adopted
the 1-D and 3-D sliding windows to extract spatial adjacent relationships from
the original inputs, and further used casForest to carry out layer-wise feature
learning. All excellent performance of these researches proves the effectiveness
of the DF method in the field of brain network classification. However, the slid-
ing window scanning mechanisms adopted by these methods treats all features
in BNs equally and fails to consider the inherent sparsity of BNs, which makes
them susceptible to those redundant edges in BNs with little weight.

In this paper, we propose a deep forest framework with sparse topological
feature extraction and hash mapping (DF-STFEHM) for brain network classi-
fication. Specifically, we first design an extremely random forest guided by a
weighted random walk (ERF-WRW) to extract sparse topological features from
BNs, where the random walk strategy is used to capture the topological struc-
tures and the weighted strategy is used to reduce the influence of redundant
edges with little weight. Then, we design a novel kernel to measure the similari-
ties of the extracted topological features, and map these features into a compact
hashing space by a kernel hashing. Finally, the obtained hash codes are fed into
the casForest to perform deeper feature learning and classification. Experimen-
tal results on ABIDE I and ADHD-200 datasets show that the DF-STFEHM
outperforms several state-of-the-art methods on classification performance and
accurately identifies abnormal brain regions.

The main contributions of this paper are summarized as follows:

– To take the inherent sparsity of brain networks into account in the classi-
fication procedure of our DF-STFEHM framework, this paper proposes an
extremely random forest guided by a weighted random walk (ERF-WRW),
which combines the weighted walk procedure on BNs (graphs) and the top-
down decision making procedure of decision trees to effectively extract sparse
topological features from BNs.

– To represent these sparse topological features extracted by ERF-WRW in a
more compact way, the paper designs a novel kernel to measure the similarity
of these features and employs a kernel hashing to map them into a compact
hashing space.

– Systematic experiments on two datasets have been conducted to verify the
effectiveness of the proposed DF-STFEHM. Experimental results show that
the proposed framework can achieve competitive classification performance.

2 Related Work

2.1 Random Walk-Based Graph Embedding Methods

Graph embedding (or node embedding) is a technique of converting the high-
dimensional sparse graphs into low-dimensional, dense vector spaces. Its main
task is to encode nodes or edges to lower dimensional vector representations and
preserve network structure properties. Motivated by the “word2vec” method [17]
to learn word representations by leveraging the contextual information of words



164 J. Li and J. Ji

in sentences, perozzi et al. [20] proposed the first random walk-based graph
embedding method, i.e., DeepWalk. It treats the local topological context infor-
mation obtained from truncated random walks as the equivalent of sentences
and learn latent representations for nodes in graph. In the years that followed,
various variations of DeepWalk such as Node2Vec [6], Role2Vec [1], and biased
random walk graph embedding [29], were proposed. These methods generally
follow a similar flow [25]: Firstly, as shown in Fig. 1, the random walk methods
are applied to generate a set of node context. For example, wv0 in the figure
represents a random walk starting from node v0. Secondly, each obtained node
context information wvi

is embed to low-dimensional vectors (ri) by an encoder
(e.g., SkipGram). Generally, these learned node embedding vectors can be read-
ily and efficiently used for different downstream tasks, such as link prediction,
node classification, and community detection.

Fig. 1. Schematic diagram of random walk-based graph embedding methods.

2.2 Learning to Hashing

The core idea of hashing learning method is to compress high-dimensional data
vector into compact binary code, so as to retrieve and store high-dimensional
samples more efficiently [23]. According to the different design ideas of the hash
function, hashing methods can be divided into data-independence methods and
data-dependence methods. The data-independent hashing method is also called
Local Sensitive Hash (LSH), which uses random projections to construct random
hash functions. While the data-dependent hashing method (also called learning
to hashing) to learn a specific hash function according to a given training sample
set. The kernel hashing [8] used in this paper is a kind of data-dependent hashing,
which can create efficient hash codes for large scale data of general formats with
any kernel function, including kernels on vectors, graphs, sequences, sets and so
on.

2.3 Extremely Random Forest

Extremely random forest (ERF) [5], also known as extremely randomized trees, is
a classical tree-based ensemble learning method that builds multiple unpruned
decision trees according to a top-down procedure and combines their results
through a voting process. There are two main characteristics of the decision
trees in ERF: a) Each tree in ERF is grown on the whole learning samples. b)
The splitting attribute and cut-point of each tree node are randomly selected.
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3 Deep Forest with Sparse Topological Feature
Extraction and Hash Mapping

Fig. 2. The overall framework of our proposed DF-STFEHM.

3.1 Overview of DF-STFEHM

In order to classify BNs more effectively by considering their sparsity, this paper
propose a deep forest framework with sparse topological feature extraction and
hash mapping (DF-STFEHM). It mainly contains three modules: sparse topo-
logical feature extraction by ERF-WRW, sparse topological feature mapping by
kernel hashing, and casForest prediction. Suppose G = (V,E) represents a brain
network. V is the node set of G, where vi is the ith node (brain region) in it.
E ∈ R

|V |×|V | is the adjacency matrix of G, where each edge ei,j represents the
connection strength between vi and vj . Let SG = {(Gk, yk)|yk ∈ {0, 1}, k =
1, 2, ...,K} represent a BN dataset, Gk is the kth sample in it, yk is the label of
Gk. Considering that the brain regions of BN are pre-defined and fixed, the Gk

can also be simply represented by Ek, i.e., SG = {(Ek, yk)|k = 1, 2, ...,K}. As
shown in Fig. 2, the learning samples SG are first inputted into the ERF-WRW
to train |V | decision trees, in which the growing procedure of the ith tree ti
is guided by the weighted random walk procedure starting from node vi. D is
the depth of the decision trees in ERF-WRW. Accordingly, a topological feature
matrix ωk ∈ R

|V |×D can be obtained for each Ek. Then, ωk is mapped into a
compact hashing space by a kernel hashing. Let Zk denote the hash code of ωk,
samples with high similar topological features will have similar hash codes in the
hashing space. Finally, the obtained hash codes are used to train the casForest
and produce the predicted results.

3.2 Sparse Topological Feature Extraction by ERF-WRW

In this algorithm, we first propose an extremely random forest guided by a
weighted random walk (ERF-WRW) to extract sparse topological features from
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the brain networks. Compared with the classical ERF algorithm, the modifica-
tions of our ERF-WRW is mainly reflected in the generation of splitting attribute
and the output of forest. Here are some details:

a) Instead of selecting splitting attributes and cut-points at random, the
ERF-WRW chooses splitting attributes for its tree nodes according to the guid-
ance of a weighted random walk procedure. Specifically, suppose that T (E)
denotes a ERF-WRW forest with |V | decision trees. It adopts the adjacency
matrix of brain network as input. ti(E) denotes the ith tree in T , D denotes the
maximum depth of the decision trees in T (E). For the sake of understanding,
we assume that each tree in T (E) can be represented as a full binary decision
tree of depth D. To distinguish, BN nodes (i.e., vi) represent the nodes in brain
network, and tree nodes represent the nodes in ERF-WRW trees. The splitting
attribute for a given tree node φ is determined by the following procedure:

Firstly, it generates a set of candidate splitting attributes for φ. Let Sφ =
{(Ek′

, yk′
)|k′ = 1, 2, ...,K ′, 1 < K ′ ≤ K} correspond to the local learning sam-

ples of φ, the candidate splitting attribute set ϕ(φ) can be obtained by

ϕ(φ) = {eb,l|Parent(φ) = ea,b, 0 ≤ l < |V |, vl ∈ N (vb)} (1)

where Parent(φ) is a function of φ that returns the split attribute of its parent
node. When φ is the root node of ti, it returns ei,i. N (vb) denotes the neighbours
of node vb in BNs. That is to say ϕ(φ) is a set of adjacent edges of Parent(φ).

Fig. 3. An example of ERF-WRW tree t0(E) and the walk path corresponding to leaf 14.

Secondly, it selects an attribute from the candidate set ϕ(φ) as the splitting
attribute through weighted random sampling and randomly generate a corre-
sponding cut-point for splitting. Let pφ(eb,l) denote the probability of eb,l ∈ ϕ(φ)
being selected as the splitting attribute, it can be calculated by

pφ(eb,l) =
1

K ′ ·
K′∑

k′=1

ek′
b,l∑

vk′
m∈N (vk′

b )

ek′
b,m

(2)

As ∀eb,l ∈ ϕ(φ) is a adjacent edge of Parent(φ), each decision path in ti(E)
can be regarded as a weighted random walk procedure on G starting from BN
node vi. Figure 3 shows an example of ERF-WRW tree t0 and the walk path
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corresponding to leaf node 14. Here, the process of selecting a splitting attribute
eb,l from ϕ(φ) can be regarded as a random walk (single step) from vb to its
neighbor node vl, and pφ(eb,l) can be regarded as the transition probability.

Based on the above splitting attribute selecting procedure, ti can be con-
structed by a top-down inductive splitting procedure. The detail construction
procedure of ERF-WRW trees is summarized in Algorithm 1.

Algorithm 1. Construction procedure of ERF-WRW tree (ERF-WRW-TREE).
Input: Local training data S′, initially S′ = Sφ. Maximum depth of ERF-WRW tree
D and current depth d, initially d = 1. Minimum samples for splitting a node Mmin.
Output: The root node of the decision tree.

1: if d < D and len(S′) ≥ Mmin then
2: Construct a internal node φ
3: Generate the candidate set ϕ(φ) for φ according to Eq. 1.
4: Calculate the probability pφ(eb,l) of each attribute in ϕ(φ) according to Eq. 2.
5: Randomly select a attribute from ϕ(φ) as the splitting attribute according to

the selected probabilities pφ(eb,l).
6: Randomly generate a cut-point for the splitting attribute.
7: Split the learning set S′ into two sub learning set (S′

1 and S′
2) according to the

splitting attribute and cut-point.
8: Construct the left and the right subtree of φ according to algorithm 1, i.e., ERF-

WRW-TREE(S′
1, d+1, D, Mmin) and ERF-WRW-TREE(S′

2, d+1, D, Mmin).
9: else

10: Construct a leaf node τ .
11: end if
12: Return the constructed node φ or τ .

b) Since each decision path in ERF-WRW can be regarded as a weighted
random walk procedure on brain networks, the ERF-WRW encodes all the pre-
diction decision paths to represent the sparse topological features of BNs. Specif-
ically, the ERF-WRW T (E) takes the adjacency matrix of a BN as input, and
sends this data to each root node of trees in it. Once the data traverse down to
the leaf nodes for all trees, the ERF-WRW will return a |V | × D dimensional
local topological feature matrix for E. Let ω = T (E) ∈ R

|V |×D denote the out
put of ERF-WRW. ωi ∈ R

1×D is the output of ti(E), where the dth element of
ωi denote the index of dth tree node on the prediction decision path of ti(E). As
shown in Fig. 3, suppose that a given BN Ek is inputted t0, and Ek is traversed
down to leaf node 14, ωk

0 will be [0, 2, 6, 14]. The ERF-WRW can output such
an sparse topological feature matrix ω for each brain network.

3.3 Sparse Topological Feature Mapping by Kernel Hashing

In order to represent these sparse topological features extracted by ERF-WRW
in a more compact way, we adopt the optimized kernel hashing algorithm [8] to
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map ω into a compact hashing space. Suppose Z ∈ R
1×U denotes a U -dim hash

code, where the uth element of Z is generate by a hashing function fu(ω). For
a given ωk, a hash code Zk can be obtained, where Zk

u is its uth element. The
efficient hash codes can be obtained by the following optimization problem:

min
A,β

1
2

K∑

k1,k2=1

Ψ(ωk1 , ωk2)||Zk1 − Zk2 ||2 + λ

U∑

u=1

||Qu||2

s.t.
K∑

k=1

Zk = 0

1
K

K∑

k=1

Zk(Zk)T = I

Zk ∈ {−1, 1}U

Zk
u = fu(ωk) = sign(QT

u · ξ(ωk) − βu)

Qu =
N∑

n=1

An,uξ(ωn)

k = 1, · · · ,K, u = 1, · · · , U, n = 1, · · · , N, 1 ≤ N ≤ K

(3)

Here are U hash functions {fu(ω), u = 1, · · · , U} in total, each of which is for
one hash bit. Each function fu(ω) = sign(QT

u · ξ(ω) − βu) is represented in the
kernel form, as in most kernel learning method, where Qu is the hyperplane
vector in the kernel space, ξ is the function for embedding samples to the kernel
space and usually is not computable. β is a U × 1 vector, where βu is the uth
element in β representing threshold scalar. Since it is infeasible to define the
hyperplane vector Qu directly in the kernel space, we represent Qu as a linear
combination of landmarks in the kernel space with combination weights denoted
as An,u. {ωn, n = 1, · · · , N, 1 ≤ N ≤ K} are landmark samples, which is a
subset randomly chosen from the original samples, i.e., {ωk, k = 1, · · · ,K}. The

term
U∑

u=1
||Qu||2 is utilized to a regularized term to control the smoothness of the

kernel function Ψ(ωk1 , ωk2). Given two samples ωk1 and ωk2 , the kernel function
Ψ(ωk1 , ωk2) denotes the similarity of these two samples. It can be calculated by

Ψ(ωk1 , ωk2) =
|V |∑

i=1

ψ(ωk1
i , ωk2

i ) (4)

where ψ(ωk1
i , ωk2

i ) is the similarity of the output of ti for ωk1 and ωk2 , i.e.,

ψ(ωk1
i , ωk2

i ) =
1

2D−η(ω
k1
i ,ω

k2
i )

(5)

η(ωk1
i , ωk2

i ) is the index of the last same element of ωk1
i and ωk2

i . For example, if
ωk1
0 = [0, 2, 6, 13] and ωk2

0 = [0, 2, 6, 14], η(ωk1
0 , ωk2

0 ) = 3. That is to say, as shown
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in Fig. 3, samples Ek1 and Ek2 reach the leaf 13 and leaf 14 of t0, respectively.
The last same element of their decision path is node 6, and 2D−η(ω

k1
i ,ω

k2
i ) is the

number of leaf nodes under node 6.

Fig. 4. The schematic diagram of casForest

3.4 CasForest Prediction

CasForest classify the inputted hash codes by automatically extracting high-
level features from them. As shown in Fig. 4, the casForest is a multi-layer struc-
ture composed of ensembles of decision forests. Suppose there are W forests
(extremely random forest or random forest) in each layer, the concatenation
of the prediction possibilities of these forests can be considered as augmented
feature vector, i.e., Z ′ ∈ R

1×|y|·W . The forests in the 1st layer are trained on
{(Zk, yk), k = 1, · · · ,K} and output the augmented feature vectors to the 2nd
layer. For the forests in the 2nd layer, they are trained on the concatenation
of Z and Z ′, i.e., {([Z ′k, Zk], yk), k = 1, · · · ,K}. In a similar fashion, the layer
expanding will automatically terminate if there is no significant improvement in
accuracy, and the results of the last layer are averaged to make a final prediction.

4 Experiments

4.1 Datasets and Experimental Settings

In this study, we adopted the ABIDE I [4] and ADHD-200 [18] datasets to val-
idate the classification ability of our proposed algorithm. Specifically, there are
1112 subjects with 539 ASD patients and 573 typical controls in ABIDE I, and
876 subjects with 362 ADHD patients and 514 typically controls in ADHD-200.
After removing the subjects with erroneous time-series or missing data, 1096
and 850 subjects are retained. Firstly, we adopt the DPARSF to preprocess the
raw rs-fMRI images. Then, we parcele the whole brain into 90 regions of interest
(ROIs) according to the automated anatomical labeling (AAL) template [24],
and extract the mean time-series of each ROI. Finally, the Pearson correlations
between each pair of ROIs are calculated to generate the functional connec-
tivity network for each subject. All experiments in this paper are validated by
the 5-fold cross-validation. The performances of all methods are evaluated by
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Fig. 5. The feature extraction capability of DF-STFEGHM with different parameters.

computing the classification accuracy, precision, recall and f1 on 10 times inde-
pendent experiments.

Parameters for ERF-WRW: There are two parameter for ERF-WRW, the
maximum depth of decision tree in ERF-WRW D and the minimum sample size
for splitting a tree node of decision trees Mmin. Firstly, we fixed the value of
Mmin at 2 to verify the feature extraction capability of ERF-WRW with different
D. As shown in Fig. 5a), when D is small, the accuracy of DF-STFEHM increases
rapidly with its increase. And when D reaches 10, it gradually stabilizes. Then,
we fixed the value of D at 10 and varied Mmin from 2 to 30. As shown in Fig. 5b),
with the constant change of Mmin, the accuracy of DF-STFEHM fluctuates
slightly. Finally, we applied the grid search to determine the optimal values of
D and Mmin. As shown in Fig. 5c), the corresponding accuracy achieved the
highest value when D = 15 and Mmin = 12.

Parameters for Optimized Kernel Hashing: There are three parameters
in the optimized kernel hashing algorithm [8], i.e., the length of hash codes U ,
the number of landmark samples N and λ. For N and λ, we use the values
recommended in [8], i.e., λ = 0 and N = 200. Moreover, we tested the classi-
fication performance of DF-STFEGHM with different U . As shown in Fig. 5d),
DF-STFEGHM obtained the hightest accuracy when U = 36.

Parameters for casForest: For the casForest, we use the standard cascade
structure described in [30], where each cascade layer contains two random forests
and two extremely random forests, and each forest contains 500 decision trees.

4.2 Classification Performance of DF-STFEHM

To evaluate our proposed BN classification algorithm DF-STFEHM, we compare
it with some typical algorithms, including the traditional ML methods SVM and
RF; the NN style methods BrainnetCNN [12], GCNN [16], CNN-CKEW [10],
DBN [9], and E-HI-GCN [14]; and non-NN style methods DF [30] and DF-
CWSM [13]. Parameters for the comparison methods are selected according to
the corresponding references. Classification results of all methods on the two
datasets are summarized in Table 1. We can see that our algorithm achieved the
highest accuracy and recall rate on the two datasets. Especially in ADHD-200,
the DF-STFEHM was almost 1% percent more accurate than other comparison
algorithms. The recall rates of DF-STFEHM are at least 5% higher than that
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Table 1. Comparison results of different methods

Datasets Methods Acc(std)(%) Pre(std)(%) Rec(std)(%) F1(std)

SVM 63.42 62.34 62.38 0.6236

RF 63.87 64.74 54.59 0.5923

BrainnetCNN 65.36(0.48) 64.35(1.36) 67.60(1.78) 0.6593(0.27)

ABIDE I GCNN 64.00(0.51) 65.41(1.0) 67.41(0.83) 0.6650(0.45)

CNN-CKEW 67.61(0.39) 65.74(0.48) 63.27(0.68) 0.6448(0.33)

DBN 67.24(0.75) 73.10(0.69) 62.50(0.45) 0.6738(0.59)

E-HI-GCN 67.64(0.13) 69.51(0.21) 71.76(0.25) 0.7061(0.94)

DF 66.09(0.38) 63.31(0.58) 71.80(0.73) 0.6706(0.11)

DF-CWSM 66.25(0.14) 63.57(0.78) 71.10(0.27) 0.6709(0.12)

DF-STFEHM 68.35(0.4) 64.06(0.34) 78.1(0.11) 0.7039(0.22)

SVM 60.4 59.1 70.1 0.6413

RF 62.68 59.58 61.86 0.576

ADHD-200 BrainnetCNN 63.4(0.36) 61.68(0.54) 78.8(0.89) 0.6919(0.35)

GCNN 67.08(0.56) 73.08(0.93) 74.66(0.95) 0.7386(0.49)

CNN-CKEW 65.9(0.43) 68.02(0.82) 74.3(0.56) 0.7102(0.37)

DBN 66.03(0.23) 79.28(0.87) 53.37(0.72) 0.6379(0.056)

E-HI-GCN 65.14(0.59) 65.76(0.72) 68.54(0.13) 0.6712(0.56)

DF 63.16(0.70) 60.32(1.13) 63.13(0.08) 0.5675(0.13)

DF-CWSM 66.97(0.54) 66.97(0.63) 72.3(0.55) 0.6779(0.57)

DF-STFEHM 67.89(0.35) 62.59(0.47) 82.86(0.28) 0.7131(0.53)

of other comparison algorithms. As the precision and recall are a pair of contra-
dictory measures, the precision of DF-STFEHM is inferior to that of the other
models. The precision reflects the probability that a predicted patient actually
has a brain disease, and the recall represents the probability that a patient can
be identified. For disease diagnosis, the cost of misdiagnosing a normal person
as a patient is much lower than that of missing a patient. Moreover, its f1 (the
comprehensive measure of precision and recall) values are only slightly below
the highest values achieved by E-HI-GCN and GCNN. Therefore, our algorithm
still performs better than the other comparing algorithms.

4.3 Important Brain Regions

In this section, we investigate the importance of brain regions associated with
ASD and ADHD by analysing the feature importance of casForest. The experi-
ment result is shown in Fig. 6, which is consistent with the conclusions of some
previous studies. Specifically, authors in reference [28] found lower entropy of
PreCG, SMG, and MOG in ASD group than that of typical control. Especially,
PreCG is related to motor functions, the reduced ApEu in it may be contribute to
the motor function impairments in ASD patients. The reduced entropy in MOG
may result in the loss of visual information processing function. Authors in [15]
found that the connectivity of SFGdor decreased in ASD group, where SFG-
dor.L is correlated with the two core symptoms of autism Repetitive Behavior
and Communication. SFGdor.R is correlated with the severity of ASD’s clinical
core symptoms. Results in reference [27] pointed that ASD patients selectively
showed enhanced Hilbert weight frequency in PCUN and SFGdor. Reference [21]
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found abnormal connection between PreCG.L, MFG.L, SFGdor.L, and MOG.L
in both ASD and ADHD patients. In a word, our algorithm can not only accu-
rately classify brain networks but also identify abnormal brain regions.

Fig. 6. Top 10 important brain regions for classification.

5 Conclusions

Deep forest is a novel and effective non-NN style DL method that brings us
new hope in accurately classifying BNs on small-scale fMRI datasets. One of the
most challenging issues is how to use domain knowledge of BNs to improve the
performance for existing DF-based BN classification methods. In this paper, a
deep forest framework with sparse topological feature extraction and hash map-
ping (DF-STFEHM) is proposed for BN classification. Main innovation of DF-
STFEHM is that we make full use of the inherent sparsity of BNs and design an
extremely random forest guided by a weighted random walk (ERF-WRW), which
effectively extracts sparse topological features from BNs. Experimental results
on ABIDE I and ADHD-200 have validated the superiority of DF-STFEHM. In
future work, we will continue to explore how to utilize other domain knowledge
to improve the accuracy of deep forest on brain network classification.
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Abstract. Since the outbreak of coronavirus disease 2019 (COVID-19)
has resulted in a dramatic loss of human life and economic disruption
worldwide from early 2020, numerous studies focusing on COVID-19
forecasting were presented to yield accurate predicting results. However,
most existing methods could not provide satisfying forecasting perfor-
mance due to tons of assumptions, poor capability to learn appropriate
parameters, etc. Therefore, in this paper, we combine a traditional time
series decomposition: local mean decomposition (LMD) with temporal
convolutional network (TCN) as a general framework to overcome these
shortcomings. Based on the particular architecture, it can solve weekly
new confirmed cases forecasting problem perfectly. Extensive experi-
ments show that the proposed model significantly outperforms lots of
state-of-the-art forecasting methods, and achieves desirable performance
in terms of root mean squared log error (RMSLE), mean absolute per-
centage error (MAPE), Pearson correlation (PCORR), and coefficient of
determination (R2). To be specific, it could reach 0.9739, 0.8908, and
0.7461 on R2 when horizon is 1, 2, and 3 respectively, which proves the
effectiveness and robustness of our LMD-TCN model.

Keywords: COVID-19 forecasting · Local mean decomposition ·
Temporal convolutional network

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has brought about a devas-
tating effect on human life, public health, daily working and social economy. Until
23 June 2022, there have been 539,893,858 confirmed cases of COVID-19 globally,
including 6,324,112 deaths, reported to WHO1. As a consequence, timely and
accurate COVID-19 forecasting methods play a significant role in instructing the
authorities to implement containment measures. In the last 20 years, machine
learning, especially deep learning based models have shown tremendous success
1 https://covid19.who.int.
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S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 175–187, 2022.
https://doi.org/10.1007/978-3-031-20862-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20862-1_13&domain=pdf
https://covid19.who.int
https://doi.org/10.1007/978-3-031-20862-1_13


176 L. Sun et al.

in lots of application areas, including computer vision, natural language pro-
cessing, time series, medicine, games, robots, and education. Throughout all the
methods involving COVID-19 forecasting, we could classify them into two types:
machine-learning and non-machine-learning based methods.

Machine-Learning Based Models. Machine learning (ML) based algorithms
usually learn from historical data or information, build mathematical models,
and make predictions. On one hand, classic ML models including support vector
machine (SVM) [24], Bayesian analysis [29], k-nearest neighbor (KNN) classi-
fier [22], and XGBoost classifier [20] have been applied widely in COVID-19
forecasting. On the other hand, recent popular deep learning (DL) techniques,
like multiple layer perceptron (MLP) [21], recurrent neural network (RNN) [12],
gated recurrent unit (GRU) [11], long short-term memory (LSTM) [14,32,33]
and transformer [27] make a positive contribution to this field as well. Never-
theless, the accuracy of predicted output depends upon the amount of data, the
structure of models, and the training skills. Hence, there is still much chance to
explore competitive methods with the intention of providing reliable and repeat-
able results.

Non-machine-Learning Based Models. Generally, traditional studies focus
on propagation dynamics and statistical analyses. The former algorithm
contains susceptible-infected-recovered (SIR) model [13], susceptible-infected-
dead-recovered (SIDR) model [4], susceptible-exposed-infected-recovered (SEIR)
model [3] and so forth. This kind of methods are usually based on tons of
assumptions, such as infection rate, average latent time, recovery rate, and death
rate, which is hard to determine with regard to the complexity of COVID-19.
The latter statistical methods pay attention to calculate short-term predictions
from investigating time series of historical data. A typical of this class is auto-
regressive integrated moving average (ARIMA) [8], which has been utilized to
forecast the spread of COVID-19 in many countries [2]. Unfortunately, the pre-
dicting performance of ARIMA needs to be improved, due to the powerlessness
of learning non-linear patterns from historical time series.

In fact, COVID-19 series is considered as a nonlinear and nonstationary time
series. A beneficial skill to analyze such signals is conducting effective decom-
position in advance. Local mean decomposition (LMD) has been introduced to
decompose signals since 2005. By the LMD process, any signal with nonlinear
tendency and oscillation can be decomposed into a finite and often small number
of product functions (PFs) and a residue. PFs have simpler frequency compo-
nents and stronger correlations, thus are easier and more accurate to forecast.
In addition, given that temporal convolutional network (TCN) [5] could outper-
form canonical recurrent networks across a wide range of situations, we hope to
adopt such a TCN architecture in this paper.

Inspired by the above analyses, we propose a hybrid LMD based neural net-
work paradigm for COVID-19 forecasting. Our main contributions could be sum-
marized as follows:
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1) We firstly introduce LMD technique to deal with COVID-19 forecasting,
which helps to produce accurate results and handle the problem of overfitting
when training neural networks.

2) We put forward an LMD-TCN framework for predicting weekly new con-
firmed cases in the field of COVID-19, combing LMD with the specific TCN
architecture to generate a better prediction. It can simultaneously provide
accurate predicting results from short-term to long-term.

3) We conduct a comprehensive comparison among existing state-of-the-art
models to evaluate their forecasting performances. The results show that our
hybrid model outperforms any individual model, and achieves desirable per-
formance in terms of all evaluation metrics.

2 Related Work

2.1 Local Mean Decomposition (LMD)

The local mean decomposition (LMD), developed by the author [25] in 2005, aims
to demodulate amplitude and frequency modulated signals. It could decompose
original signals into a small set of product functions (PFs) and a residue. A
PF is the product of an amplitude envelope signal and a frequency-modulated
(FM). Accordingly, we could also derive a time-varying instantaneous frequency.
The algorithm of LMD for decomposing the signal x(t) into PFs can be broadly
described as follows:

(i): Given the original signal x(t), identify all the extrema points ni, and next
calculate the i th mean value mi of each two successive extrema ni and ni+1

using the following formula:

mi =
ni + ni+1

2
. (1)

Plot these local means as straight lines extending between successive extrema,
and then use moving average to form a smoothly varying continuous local mean
function m11(t).

(ii): The local envelope estimate function a11(t) could be calculated, and then
local magnitude of each half-wave oscillation could be obtained by

ai =
|ni − ni+1|

2
. (2)

Similarly, make up a smoothly varying continuous envelope function a11(t) by
smoothing the local means.

(iii): Subtract the local mean function m11(t) from the original data x(t),

h11(t) = x(t) − m11(t). (3)

h11(t) is then amplitude demodulated by dividing it by a11(t),

s11(t) =
h11(t)
a11(t)

. (4)
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Calculate the envelope function a12(t) of s11(t), which should satisfy a12(t) = 1.
If not, think of s11(t) as a new signal and iterate the above steps until envelope
function a1(n+1)(t) of the s1n(t) satisfies a1(n+1)(t) = 1.

(iv): Calculate the corresponding envelope by

a1(t) = a11(t)a12(t)..a1n(t) =
n∏

q=1

a1q(t), (5)

where limn→∞ a1n(t) = 1 and n is the number of iterations.
(v): Multiply the envelope function a1(t) by s1n(t), and then yield a product

function (PF),
PF1(t) = a1(t)s1n(t). (6)

Repeatedly, derive PF2(t) by subtracting PF1(t) from the original signal x(t)
and replicating all the above steps progressively, until the final signal becomes
monotonic or unchanging which is a residue. As a whole, the original signal x(t)
can be decomposed with regard to

k∑

p=1

PFp(t) + uk(t), (7)

where PFp(t) is the product of the envelope function and frequency modulated
signal, and uk(t) is the residue.

2.2 Temporal Convolutional Network (TCN)

The generic temporal convolutional network (TCN) architecture was introduced
to solve sequence modeling tasks, where canonical recurrent networks occupy the
main force before. As illustrated in [5], a TCN has two obvious differences: (1)
the convolutions in the network should be causal, indicating it can only use the
information from past time; (2) the input and output of the architecture should
have the same length.

Causal Convolutions. For meeting the first principle above, causal convolu-
tions are utilized, which means an output at time step t depends only on histor-
ical and current time step t, not on any future time t+ i (i ∈ N∗). To fulfill the
second principle, TCNs employ a 1-D fully-convolutional network architecture,
aiming to ensure higher layers have the same length as previous ones.

Dilated Convolutions. Apart from the aforementioned causal convolution,
dilated convolutions are normally used within TCN to address the limitation of
receptive field sizes. By increasing the receptive field at a faster rate, it helps to
build networks for sequential tasks.

Residual Connections. Generally, a TCN model is made up of a 1-D fully-
convolutional network and multiple residual blocks, which contains a branch
leading out to a series of transformations F , whose outputs are added to the
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input x of the block. Besides, rectified linear unit (ReLU), batch normalization,
and dropout are also applied in the block. Moreover, an additional 1×1 convolu-
tion is used to ensure unanimous input-output widths. Relying on such residual
modules, training deep and larger TCNs becomes much easier.

3 Methodology

3.1 Problem Formulation

In essence, COVID-19 forecasting is a time series forecasting problem. The key
to solve this problem is utilizing past observations to build a model that could
capture the latent relationship and patterns well.

First, we denote a n driving series during time T as

X =
(
x1,x2, · · · ,xn

)�
= (x1,x2, · · · ,xT ) ∈ R

n×T , (8)

where xk =
(
xk
1 , x

k
2 , · · · , xk

T

)� ∈ R
T represents a driving series of length T , and

xt =
(
x1
t , x

2
t , · · · , xn

t

)� ∈ R
n denotes a vector of n exogenous input series at

time t.
Generally, assuming the previous values of the target series as

y = (y1, . . . , yT ) ∈ R
T , (9)

and the past values of n exogenous series as (x1,x2, · · · ,xT ) ∈ R
n×T .

The goal is to predict the future values yT+H ∈ R at a time point T + H
(H refers to the horizon of the prediction), which is fundamentally a one-step-
ahead forecasting problem. Supposing ŷT+H as the forecast of yT+H , our model
attempts to learn a nonlinear mapping function F from the past values to the
future ones:

ŷT+H = F (y1, · · · , yT ,x1,x2, · · · ,xT ) (10)

3.2 Overview of Our Method

In this section, we demonstrate the general picture of our LMD-TCN model,
which integrates LMD technique and TCN model in a framework. The flowchart
of our model is as illustrated in Fig. 1. Firstly, apply LMD to decompose the
original COVID-19 series into several sub-series, which have simpler frequency
components and are relatively easy to model. Then, concatenate these PFs and
one residue with the original COVID-19 series as the input sequences. Lastly,
train the particular TCN network continuously, whereby the parameters of all
neurons of the network are determined until achieving the desirable predictions.
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Fig. 1. The overview framework of our LMD-TCN model.

3.3 Time Series Decomposition

We apply LMD technique as the time series decomposition to extract the hid-
den features of the nonstationary and nonlinear COVID-19 signals. LMD could
decompose the original COVID-19 series into two PFs and a residue, which rep-
resents a range of frequencies, revealing various periodic patterns of COVID-19.
PFs offer an insight into the modulated characteristics, bringing about a more
appropriate representation for the given modulated signal.

Figure 2 shows the LMD results of the original weekly new confirmed cases,
which is decomposed into two PFs and one residue. PFs exhibit more high fre-
quency components compared to original signals. Clearly, through the employ-
ment of time series decomposition, more beneficial characteristics hidden in the
original data have been found, improving the training complexity greatly.

Fig. 2. LMD for weekly new confirmed cases.
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3.4 Architecture Details

As shown in Fig. 3, we construct a simple LMD-TCN framework to solve the
COVID-19 forecasting problem. Our current model only includes one TCN block,
which is sufficient to learn ideal mappings from input to output. Actually, the
quantity of blocks could increase according to the complexity of given signals.
One block is made up of two 1 × 2 convolutional layers, each of which following
a weight norm layer and a ReLU activation layer separately. Parallelly, one 1×1
convolution is added while the input and output of TCN block have different
dimensions. The upcoming is two ReLU activation layers, between which is a skip
connection layer going from the original input. In the end, we use a linear layer to
decrease the high-dimensional features to one-dimensional vectors. In summary,
we could obtain accurate predictions in the future ranging through one-step-
ahead method by combining the given COVID-19 series with the corresponding
LMD decomposition results as input.

Fig. 3. The overall architecture of our LMD-TCN model.

4 Experiments

4.1 Dataset and Preprocessing

Worldwide daily new confirmed cases data was downloaded from the COVID-19
surveillance2, including United States of America, India, Brazil, France, Ger-
many, the United Kingdom, Russian Federation, Republic of Korean, etc. To
obtain better performance, we collected as many data points as possible, span-
ning from the birth of COVID-19 pandemic to nowadays. In addition, referring
to several similar COVID-19 forecasting methods [1,28], daily case counts are
aggregated to weekly dimension (see Fig. 4).

The data sources are weekly and ends on Saturday, beginning from Week
ending February 8, 2020 to Week ending April 16, 2022 (115 weeks). First, the
window size T is subtracted from the total data points as (115− T ). Then, it is

2 https://ourworldindata.org/coronavirus.

https://ourworldindata.org/coronavirus
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Fig. 4. Weekly new confirmed cases.

split into training set and testing set. The former set has 85% of the total sample
points and the remaining 15% points belong to the latter set. For example, if
we set T = 21 and forecasting horizon H = 1, the training duration spans from
Week ending February 8, 2020 to Week ending January 8, 2022 (total 80 points),
and the remaining time between Week ending January 15, 2022 and Week end-
ing April 16, 2022 (total 14 points) is selected as the testing period. Before
carrying out LMD decomposition, we firstly adopt min-max normalization as
pre-processing method. Min-max normalization performs a linear transforma-
tion on the original data, which is needed in order to prevent inaccuracy of
results.

4.2 Implementation Details

It should be noted that one-step-ahead prediction is performed in the experi-
ments. We set training window size T = 21 and forecasting horizon H = 1, 2, and
3 weeks ahead at each time point. H = 1, 2, and 3 represents the short, medium
and long term separately. According to Eq. 10, yT+H is the target need to be
predicted, and (x1,x2, · · · ,xT ) ∈ R

T represents the LMD results. Additionally,
as shown in Fig. 3, our model contains one TCN block and one linear layer with
512 hidden units correspondingly. Moreover, we set batch size as 16, epoch num-
ber as 300, and learning rate as 0.3. Besides, mean squared error (MSE) loss,
Adam optimizer and stochastic initialization with 0 as mean and 1 as variance
are utilized when training.

4.3 Evaluation Metrics

We employ four criteria: root mean squared log error (RMSLE) [30], mean abso-
lute percentage error (MAPE) [18], Pearson correlation (PCORR) [7], and coef-
ficient of determination (R2) [6] to evaluate the forecasting performance. For
convenience, ŷ denotes the predicted values, ŷ denotes the average values of ŷ,
y denotes the real values, and ȳ denotes the average values of y.
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RMSLE value only considers the relative error between the predicted and
the actual value while neglecting the scale of data. This is mainly used when
predictions have large deviations, which is the case with COVID-19 forecasting.
MAPE measures a relative error by using absolute values to keep the positive
and negative errors from canceling one another out. PCORR assigns a value
between −1 and 1, where 0 is no correlation, 1 is total positive correlation, and
−1 is total negative correlation. R2 assesses how strong the linear relationship
is between two variables. It usually takes any values between 0.0 to 1.0, where
a value of 1.0 indicates a perfect fit, and a value of 0.0 indicates that the model
fails to accurately model the data at all.

RMSLE =

√
√
√
√

1

n

n∑

i=1

(log (ŷi + 1) − log (yi + 1))2 (11)

MAPE =
100

n

n∑

i=1

|yi − ŷi|
|yi| (12)

PCORR =

∑n
i=1

(

ŷi − ŷ
)

(yi − ȳ)
√

∑n
i=1

(

ŷi − ŷ
)2

√
∑n

i=1 (yi − ȳ)2
(13)

R2 = 1 −
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳ)2

(14)

4.4 Experimental Results

Our LMD-TCN model3 can handle weekly new confirmed cases forecasting prob-
lem in the field of COVID-19. We only use the previous values of the target series
(y1, . . . , yT ) ∈ R

T and their corresponding LMD components (x1,x2, · · · ,xT ) ∈ R
T as

inputs to train each model. To evaluate the forecasting performance of different meth-
ods, we make comparisons in terms of RMSLE, MAPE, PCORR, and R2 with H = 1,
2, and 3.

From Table 1, one could conclude that our LMD-TCN model has a huge advan-
tage over the other methods in all measures regardless of any horizon. Specifically,
considering the value of RMSLE with H = 1, our method is ranked first, whereas,
LogTrans is ranked second, followed by the TCN, LSTM, GRU, RNN, ARIMA, MLP,
then XGBoost. RMSLE results reveal that our model has the smallest relative error
between the predicted and ground truth. Focusing on the R2 indicator, which refers
to the correlation between prediction and the original COVID-19 series, our model is
0.9739 on horizon 1, while the second best result is 0.9687 obtained by LogTrans. It is
noteworthy that the gap in R2 between our model to the second best method becomes
larger as horizon increases, and the gap is 0.0052, 0.0268, 0.2198 corresponding to H
= 1, 2, and 3. We could draw the similar conclusion when comparing other criteria,
which reflects the reliability and robustness of our LMD-TCN model.
3 The source code of our method will be available after this paper is published.
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Table 1. RMSLE, MAPE, PCORR and R2 performance of different methods on weekly
new confirmed cases data with horizon H = 1, 2, and 3. The best result for each row
is highlighted. The second best result for each row is underlined.

H = 1

Metric Method
ARIMA XGBoost MLP RNN LSTM GRU LogTrans TCN Ours

RMSLE 0.1001 0.2125 0.1251 0.0972 0.0898 0.0931 0.0641 0.0816 0.0615
MAPE 9.0300 20.3900 9.8745 8.1680 7.7225 7.6332 5.5838 6.9327 5.5223
PCORR 0.9828 0.8705 0.9683 0.9756 0.9792 0.9774 0.9872 0.9802 0.9873
R2 0.9159 0.7024 0.9272 0.9472 0.9548 0.9514 0.9687 0.9593 0.9739

H = 2

Metric Method
ARIMA XGBoost MLP RNN LSTM GRU LogTrans TCN Ours

RMSLE 0.2604 0.3220 0.3851 0.2227 0.3067 0.1767 0.1667 0.1897 0.1309
MAPE 26.0900 29.4300 24.8227 16.8576 19.7741 14.4121 13.1123 15.7061 11.6827
PCORR 0.9319 0.7186 0.8409 0.9113 0.8986 0.9336 0.9125 0.9045 0.9451
R2 0.4274 0.3158 0.5695 0.7984 0.7008 0.8640 0.7642 0.8094 0.8908

H = 3

Metric Method
ARIMA XGBoost MLP RNN LSTM GRU LogTrans TCN Ours

RMSLE 0.4657 0.3888 0.7195 0.3559 0.3737 0.4000 0.2433 0.3026 0.2278
MAPE 46.7600 33.3400 35.8315 23.6393 28.5128 29.5333 18.8598 21.3641 17.6551
PCORR 0.8329 0.5414 0.6843 0.7521 0.7769 0.7668 0.7580 0.7831 0.8872
R2 −1.3772 −0.2868 −0.1219 0.4289 0.4208 0.3034 0.4943 0.5263 0.7461

Furthermore, we also depict the global curves of original and predicted weekly new
confirmed cases with H = 1 in Fig. 5. Ground true means the original COVID-19 series.
Prediction indicates the forecasting results by the corresponding method that only
uses the previous y as input, neglecting other variables. LMD prediction is achieved by
combing y with LMD decomposition results as inputs to train models. In fact, we have
applied LMD technique to the other five deep learning methods, including MLP, RNN,
LSTM, GRU, and LogTrans. Among which, the former four could train successfully
but without improving accuracy significantly, the last one is unable to converge in this
situation. Obviously, our model could produce the most visually pleasant fitting curves,
which works in concert with the numerical results on Table 1.

In summary, our LMD-TCN can learn the precise mappings from given COVID-19
series to the future ones owing to the introduction of LMD technique into our network.
Our model shows arrogant superiority to the other methods regardless of numerical
results or visual performance. The results reveal that based on such time decomposition
technique, a simple temporal convolutional architecture is more effective on COVID-19
forecasting tasks than recurrent and transformer architectures in some situations.
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Fig. 5. Predicted results on weekly new confirmed cases with state-of-the-art methods
(H = 1). Ground True means the original COVID-19 series. Prediction indicates the
forecasting results by the corresponding method that only uses the previous y as input,
neglecting other variables. LMD Prediction is achieved by combing y with LMD decom-
position as input to train models. We only show methods suitable for LMD technique,
ignoring those that fail to train if introducing LMD.

5 Conclusion

LMD decomposition can produce simpler frequency components and stronger correla-
tions from original series which is an important cue for COVID-19 forecasting. To better
explore these latent but effective components, we present an LMD-TCN model by com-
bining LMD technique with the specific TCN architecture. The proposed method can
explicitly model the precise mappings from given COVID-19 series to the future ones.
It can thus provide accurate predicting results from short-term to long-term simulta-
neously. Experimental results show that our method outperforms the state-of-the-art
methods on weekly new confirmed cases data. Numerical and visualization results also
show the contribution of the proposed method. In the future, we plan to investigate
how to handle more time series forecasting problems with our framework.
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Abstract. The main purpose of the medical report generation task is to
generate a medical report corresponding to a given medical image, which
contains detailed information of body parts and diagnostic results from
radiologists. The task not only greatly reduces the workload of radiol-
ogists, but also helps patients get medical treatment in time. However,
there are still many limitations in this task. First, the gap between image
semantic features and text semantic features hinders the accuracy of the
generated medical reports. Second, there are a large number of similar
features in different medical images, which are not utilized efficiently
and adequately. In order to solve the problems mentioned above, we pro-
pose a medical report generation model VMEKNet that integrates visual
memory and external knowledge into the task. Specifically, we propose
two novel modules and introduce them into medical report generation.
Among them, the TF-IDF Embedding (TIE) module incorporates exter-
nal knowledge into the feature extraction stage via the TF-IDF algo-
rithm, and the Visual Memory (VIM) module makes full use of previous
image features to help the model extract more accurate medical image
features. After that, a standard Transformer processes the image fea-
tures and text features then generates full medical reports. Experimental
results on benchmark datasets, IU X-Ray, have demonstrated that our
proposed model outperforms previous works on both natural language
generation metrics and practical clinical diagnosis.

Keywords: Medical report generation · Transformer · TF-IDF
algorithm · Visual memory

1 Introduction

Medical images, such as radiology and pathology images, are important for med-
ical diagnosis and treatment [15]. For example, chest X-rays are often used to
diagnose pneumonia, emphysema, heart disease, etc. A medical report, on the
other hand, is a textual description of the information presented in a medical
image, which includes detailed information about different body organs and the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 188–201, 2022.
https://doi.org/10.1007/978-3-031-20862-1_14
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Fig. 1. Examples of medical report. Two different medical reports contain many simi-
larities, which are indicated by the same color highlight. (Color figure online)

radiologist’s diagnosis from medical images. Therefore, medical reports play an
important role in the diagnosis of diseases and the treatment of patients. Figure 1
is an example of a chest X-ray report. A medical report often includes “Find-
ings” and “Impression”, “Findings” describes normal and abnormal features of
organs in medical images, “Impression” indicates the clinical diagnosis inferred
by the radiologist through “Finding”. However, medical report writing is a time-
consuming and error-prone task, especially for inexperienced radiologists, which
may delay medical treatment for patients [20]. To reduce the burden on radi-
ologists and improve the quality of medical report, automated medical report
generation has become an urgent and attractive research direction in the field
of artificial intelligence and clinical medicine. Given a medical image, the main
purpose of the task is to generate a medical report, which contains detailed
information and diagnostic results from the medical image.

The task most relevant to medical report generation is image captioning
[1,6,7,10,11,16,18,24–26], which aims at generating a description of the input
image automatically. However, medical report generation task is different from
traditional image captioning in many ways. First, image captioning aims to
describe visual scenes briefly in short sentences, while medical report genera-
tion task aims to generate long texts with professional medical terms. Second,
feature extraction of medical images is difficult, hence the traditional image cap-
tion models cannot guarantee the accuracy and fluency of the generated medical
reports. As a result, a number of novel methods are proposed for this task. In
2018, Jing et al. [14] proposed a co-attention approach that combines visual
information with semantic information as input to decoder. The decoder adopts
a hierarchical LSTM structure. In order to address the highly patterned nature
of medical report, Chen et al. [5] proposed to introduce a Relational Memory
(RM) and Memory-driven Conditional Layer Normalization (MCLN) into the
standard Transformer [23].
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Most recently, there has been a research trend to incorporate external knowl-
edge in medical report generation tasks. Zhang et al. [28] incorporated knowledge
at the architectural level using knowledge graph. CLARA [3] utilized a database
to retrieve all sentences in the training set, followed by a decoder to generate
reports. At the same time, models containing memory networks or memory-guide
modules are another line of related research. For medical report generation task,
there are also methods containing memory module. Banino et al. [2] proposed
MEMO, an adaptive memory module for generating long texts. To make full use
of similar patterns during the report generation process, Chen et al. [5] proposed
a relational memory to enhance Transformer learning from previous patterns.

In this paper, our works focus on two main difficulties in medical report gen-
eration task: (1) due to the huge gap between image semantic features and text
semantic features, the generated report is incomplete and inaccurate, (2) similar
visual features present in different medical images are underutilized. In detail, in
order to reduce the large gap between image semantic features and text seman-
tic features, the TF-IDF Embedding (TIE) module is proposed to incorporate
external knowledge into the feature extraction stage via the TF-IDF algorithm.
The Visual Memory (VIM) module makes full use of previous image features, as
a result, similar features in different medical images can be memorized during
feature extraction, which assists in the encoding stage and guides the decoder
to generate fluent and accurate medical reports. We implement quantitative and
qualitative experiments to evaluate the performance of the model on the IU X-
ray dataset. Overall, the main contributions in this paper can be summarized
as:

(1) We propose a medical report generation model VMEKNet that integrates
visual memory and external knowledge into the task.

(2) We propose a TF-IDF Embedding (TIE) module which incorporates exter-
nal knowledge into the feature extraction process via the TF-IDF algorithm.
And we propose a Visual Memory (VIM) module to record and make full
use of previous image features.

(3) Quantitative and qualitative experiments results on benchmark dataset IU
X-Ray show that our model outperforms previous works on both natural
language generation metrics and practical clinical diagnosis.

2 Methodology

In this section, we present our proposed methodology. Like many previous image-
to-text tasks, our model follows the standard Transformer [23] paradigm. Specif-
ically, we obtain the patch features P = {p1, p2, . . . , pN} , pi ∈ R

d and attention
features A = {a1, a2, . . . , aN} , ai ∈ R

d , where both pi and ai are extracted
from visual extractors and d is the size of the feature vector. After that, patch
features processed by Visual Memory (VIM) module and attention features pro-
cessed by TF-IDF Embedding (TIE) module are treated as inputs of the two
encoders. The output of the decoder Y = {y1, y2, . . . , yT } , yt ∈ V is the sequence
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of generated words, where yt is t-th word in the generated sequence, T is the
length of the whole words and V is the vocabulary of all possible words. The
framework of our proposed model is shown in Fig. 2, where the details are illus-
trated in the following sections.

2.1 The Model Structure

Our model is similar to most medical report generation models with Transformer
[23], which contains three major modules, i.e., the visual extractor, the encoder
and the decoder, where the proposed VIM and TIE modules are mainly per-
formed before the encoder. The descriptions for three modules are explained
below.

Visual Extractor. Given a medical image Img, using a pre-trained Convolu-
tional Neural Network (CNN) like VGG [22] or ResNet [12] could extract its
visual features. CNN contains a series of feature extractors, and extractors of
different network layers can capture unique visual features of different image
levels, which represent different image information. This process is modeled as:

{p1, p2, . . . , pN} = flayer1(Img) (1)

{a1, a2, . . . , aN} = flayer2(Img) (2)

where flayeri(·) represents different layers of network mentioned above. After
that, visual features will be used as input to subsequent modules.

Encoder. In our model, we apply two standard encoder modules from the origin
Transformer [23], of which their inputs are patch features processed by VIM
module and attention features processed by TIE module, respectively. After that,
the hidden states encoded from two encoders are concatenated as the input for
the subsequent decoder. The encoding process is modeled as:

{h1, h2, . . . , hN} = fe−1 (VIM (p1, p2, . . . , pN )) ⊕ fe−2 (TIE (a1, a2, . . . , aN ))
(3)

where fe−i(·) represents i-th encoder.

Decoder. The backbone decoder in our model is from R2g [5], where they
introduce Relational Memory (RM) module to improve the memory ability of
the decoder and adjust the original Layer Normalization module with a Memory-
driven Conditional Layer Normalization (MCLN) module. Therefore, the decod-
ing process is as follows:

yt = fd ((h1, h2, . . . , hN ) ,MCLN(RM (y1, y2, . . . , yt−1))) (4)

where fd(·) represents the decoder with RM and MCLN modules.
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2.2 TF-IDF Embedding Module

The TF-IDF [21] algorithm (term frequency-inverse document frequency) is an
effective method to evaluate how important certain words are to a document
or corpus. The TF-IDF algorithm consists of TF and IDF, the former extracts
high-frequency words from the input text as candidate keywords, while the latter
applies weights to the former to extract the most important words.

Fig. 2. The overall framework of our proposed model, with details of the visual extrac-
tor and decoder omitted. TF-IDF Embedding (TIE) module is indicated by the orange
dash lines. Visual Memory (VIM) module is indicated by the yellow dash lines. In
addition, the decoder in our model is from R2g [5] (Color figure online).

Inspired by TriNet [27], for medical report generation tasks, the corpus is the
collection of all Medical Reports (MeRP), for each medical report there are some
important keywords for summarizing the full report. In the meantime, Medical
Subject Headings (MeSH) records the most important labels in medical images.
Therefore, we set the semantic information from the Medical Reports (MeRP)
and Medical Subject Headings (MeSH) as external knowledge for generating
reports.

In doing so, we propose the TF-IDF Embedding (TIE) module to combine
the TF-IDF algorithm with the feature extraction of model, an overview of TIE
module is shown in Fig. 2. The module consists of two branches, the upper and
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lower branches utilize attention feature A from visual extractor to predict MeSH
semantic feature and MeRP semantic feature, respectively. In order to leverage
external knowledge, we minimize the loss between predicted MeSH & MeRP TF-
IDF features and ground-truth TF-IDF features. The outputs of two branches
are concatenated and then fed into the encoder as text semantic features.

For the upper branch, we utilize attention feature A to predict MeSH semantic
feature ˜Sm . We first construct a MeSH vocabulary containing medical terms
which summarize medical images. After that, for each MeSH we calculate TF-
IDF values for all medical labels in MeSH corpus to build a ground-truth TF-IDF
vector Sm . Among them the TF-IDF value Sm

i,j of i-th tag gi in j-th MeSH mj

is formulated as:
Sm
i,j =

ni,j∑
k nk,j

× log |M |
|{j:gi∈mj}| (5)

where ni,j represents the frequency of tag gi in MeSH mj and |M| denotes the
total number of MeSH in the whole MeSH corpus. |{j : gi ∈ mj}| is the number
of MeSH containing tag gi . After that, the process of predicting MeSH semantic
features can be formalized as:

˜Sm = Wm · A (6)

where A represents the attention feature and Wm is parameters for MeSH
semantic feature embedding.

For the lower branch, we utilize attention feature A to predict MeRP seman-
tic feature ˜Sr . We first define the corpus of medical reports (MeRP). After
that, we construct a ground-truth TF-IDF vector Sr for each medical report.
Among them the TF-IDF value Sr

i,j of i-th word wi in j-th medical report rj
is formulated as:

Sr
i,j =

ni,j∑
k nk,j

× log |R|
|{j:wi∈rj}| (7)

where ni,j represents the frequency of word wi in report rj and |R| denotes
the number of reports in the whole medical report corpus. |{j : wi ∈ rj}| is the
number of reports containing word wi . After that, the process of predicting
MeRP semantic features can be formalized as:

˜Sr = Wr · A (8)

where A represents the attention feature and Wr is parameters for MeRP seman-
tic feature embedding.

After that, ˜Sm and ˜Sr are concatenated as text semantic features then fed
into encoder.

2.3 Visual Memory Module

An obvious characteristic in the medical report generation task is high similar-
ity. As shown in the Fig. 1, the two reports are similar since their features in
the images are similar, too. For example, both two reports contain “the lungs
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are clear”. Similar to practical medical diagnosis, doctors usually refer to sim-
ilar medical images based on their experience to write a medical report more
accurately and quickly. In order to utilize the similar features in different medi-
cal images, inspired by R2g [5], we propose the Visual Memory (VIM) module,
which makes the model refer to previous features when extracting the features of
current medical image, enhancing the feature-extraction capability of the model,
an overview of VIM module is shown in Fig. 2.

For this purpose, we use a memory matrix M to record the previous image
information in the process of feature extraction, which preserves important
visual features. In the process of feature extraction for different images, infor-
mation in M is gradually updated. For the patch features P extracted from
visual extractor, the previous memory matrix Mpre will be combined with it as
the query vector Q to form vector K and vector V, then all three vectors will
be put into the Multi-Head Attention module together. For each head, vector
query, key and value are formulated as:Q = Mpre · Wq , K = (Mpre ⊕ P ) · Wk ,
V = (Mpre ⊕ P ) · Wv where Mpre ⊕ P is concatenation of Mpre and P, Wq,Wk,
Wv are parameters metrics. Multi-Head Attention module utilizes Q, K and V
vectors to model the relationship between different visual features:

Z = softmax
(

Q·KT

√
dk

)

· V (9)

where dk is the dimension of K and Z represents the output of Multi-Head
Attention module. In order to prevent gradient vanishing or gradient exploding
caused by deep network, we introduce residual connections to generate current
memory matrix M̃now :

M̃now = fmlp (Z + Mpre) + (Z + Mpre) (10)

where fmlp(·) is the multi-layer perceptron(MLP).
Then we use a gate mechanism to generate memory matrix Mnow , which

consists of input gate, forget gate and output gate. In order to balance P and
Mpre , the input gate preserves important features of the current image and
forget gate discards the information which is irrelevant to current image in the
memory matrix. Input gate and forget gate are formalized as:

GI
now = P · W I + tanh (Mpre ) · U I (11)

GF
now = P · WF + tanh (Mpre ) · UF (12)

where W I and WF denote parameters for patch features in input gate and
forget gate, respectively. U I and UF denote parameters for Mpre in input gate
and forget gate, respectively. The output gate controls the generation of the
memory matrix Mnow for current image, which can be formalized as:

GO
now = M̃now · WO (13)

where WO denotes parameters for output gate.
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The final output of VIM module is formalized as:

Mnow = σ
(

GI
now

) � P + σ
(

GF
now

) � Mpre + σ
(

GO
now

) � M̃now (14)

where � is Hadamard product and σ is the sigmoid function and Mnow repre-
sents memory matrix containing features of the current image. After that, Mnow
is fed into encoder as the image semantic features.

2.4 Parameter Training

In our model, each training sample is a tuple (I, S, R) consists of the image I,
the ground-truth TF-IDF semantic feature vector S = [Sr;Sm] and the ground-
truth report R. Each report in corpus contains M sentences, and each sentence
consists of N words. Given a training sample, we obtain the patch features P and
attention features A from visual extractors. After that, patch features processed
by the VIM module and attention features processed by the TIE module are
treated as inputs for two encoders, then the outputs of encoders are concatenated
as hidden state ht . For the decoder, given the hidden state ht and a special
START token, it will unroll for T times to generate word distribution P̃word until
the special token END appears. We train our model in an end-to-end manner,
the loss function consists of three parts, namely the MeSH semantic feature loss
�MeSH , the MeRP semantic feature loss �MeRP and the word generation loss
�word . The loss function L for training is formalized as:

L = λMeSH�MeSH

(

Sm, ˜Sm
)

+ λMeRP�MeRP

(

Sr, ˜Sr
)

+λword

M
∑

i=1

N
∑

j=1

�word

(

Pword , P̃word

)

(15)

where the word generation loss is the cross-entropy (CE) loss function, the MeSH
semantic feature loss and the MeRP semantic feature loss are the mean square
error (MSE) loss functions. λMeSH, λMeRP, λword are loss weights.

3 Experiment Settings

3.1 Dataset

We conduct our experiments on the Indiana University Chest X-Ray (IU X-Ray)
[8] which is a commonly used dataset for medical report generation tasks. It
includes 7,470 images and 3,955 reports. The MeSH in this dataset is annotated
by radiologists. For all medical reports, we follow the same procedure as Chen et
al. [5] that we select reports containing two medical images and exclude reports
without a “Findings” or “Impression” section. Then we divide the dataset into
train/validation/test set by 7:1:2, set all letters to lower cases and remove all
non-alpha tokens. After that, we obtain the top 30 medical labels as the MeSH
vocabulary and the top 760 words occurring frequently as the MeRP vocabulary.
For medical images in the dataset, we transform their size to 224 × 224 to fit
the visual extractor as the input.
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3.2 Baseline and Evaluation Metrics

In order to show the performance of our model, we leverage two approaches, (1)
comparing our model with the baseline model and (2) evaluating the model with
conventional natural language generation (NLG) metrics. First, we compare the
performance of our model “VMEKNet” with the following medical report genera-
tion methods: R2g [5], CoAtt [14], CMN [4], CMAS-RL [13], SentSAT+KG [28].
Second, we evaluate the models mentioned above and VMEKNet with NLG met-
rics, which include BLEU [19], METEOR [9] and ROUGE-L [17]. The essence
of BLEU is to examine the similarity between generated reports and ground-
truth reports, METEOR considers the influence of synonyms on semantics, and
ROUGE-L measures the fluency of generated reports.

3.3 Implementation Details

We train our model with PyTorch 1.10.0 on a single NVIDIA GeForce RTX 3090
GPU for experiments on the IU X-Ray dataset. During the training process, we
train our model for 200 epochs with the batch size of 16. We adopt the Adam
optimizer with gamma of 0.1 in an end-to-end method and set the learning rates
to 5e−5 and 1e−4 for the visual extractor and other parameters, respectively. We
adopt the ResNet101 [12] as visual extractor to extract features with the dimen-
sion set to 2048. For the TIE module, the dimensions of MeSH Embedding layer
and MeRP Embedding layer are set to 30 and 760, respectively. For the VIM
module, the number of heads in multi-head attention is set to 8, and the param-
eters in the input gate, forget gate and output gate are initialized randomly.
For the decoder, we keep the parameters of the decoder and all details of RM
and MCLN unchanged from R2g [5] for comparison. The loss weights λMeSH ,
λMeRP , λword are set to 1, 1 and 1, respectively. In order to prevent over-fitting,
we adopt early-stopping and drop-out strategies. Note that the hyperparameters
mentioned above are determined by validating the performance of the model on
the validation set.

4 Experiment Results and Analyses

4.1 Comparison with Previous Studies

In this section, we compare the performance of our model (denoted as “Ours”)
with previous models mentioned in Sect. 3.2 on the same dataset IU X-Ray. The
performance comparisons are shown in Table 1 on NLG metrics. According to
Table 1, our model achieves the best performance in NLG metrics.

There are several findings concluded from different aspects. First, for medi-
cal report generation tasks, the Transformer-based model performs better than
conventional Encoder-Decoder models, which can be illustrated by the compar-
ison between “Ours” and “CoAtt”. This may be attributed to the fact that the
Transformer [23] is expert in handling long-text generation. Second, it is noticed
that our model performs better than other models like “CMN” on NLG metrics,
which demonstrates that VIM and TIE modules show excellent capability.
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Table 1. Comparison results of our model (VMEKNet) with previous studies on the
IU X-Ray dataset. The best results are highlighted.

Method Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

CoAtt [14] 2018 0.455 0.288 0.205 0.154 0.191 0.369

CMAS-RL [13] 2019 0.463 0.301 0.210 0.154 – 0.362

SentSAT+KG [28] 2020 0.441 0.291 0.203 0.147 – 0.367

R2g [5] 2020 0.467 0.303 0.210 0.155 0.195 0.371

CMN [4] 2021 0.501 0.316 0.217 0.158 0.194 0.380

VMEKNet (ours) 2022 0.505 0.319 0.219 0.159 0.195 0.383

4.2 Qualitative Results and Analyses

To further investigate the effectiveness of our model, we implement qualitative
experiments on the IU X-Ray dataset. Figure 3 shows some examples of the
generated reports and ground-truth reports associated with the input medical
image. There are some findings concluded from different aspects.

Fig. 3. Examples of generated reports given images in the IU X-Ray dataset. (a) and
(b) are normal examples, while (c) and (d) are abnormal examples. In order to better
show the quality of generated reports and compare with ground-truth reports, we mark
different contents in the report with different colors highlight. (Color figure online)

First, it is observed that our model generates accurate medical reports for
associated medical images. For example, as we can see from example (a), our
model describes the image with “The heart is normal in size. The mediastinum is
unremarkable. The lungs are clear”, which is similar to the ground-truth “Lungs
are clear without focal consolidation, effusion, or pneumothorax. Normal heart
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size. Bony thorax and soft tissues grossly unremarkable”. This also provides a
visual reference for the model performance obtained from Sect. 4.1 with NLG
metrics.

Second, our model can generate similar medical reports for medical images
containing similar features. For example, the medical images in example (a) and
(b) both represent normal medical images, hence the two generated reports are
extremely similar which consist of “Lungs are clear”, “Normal heart size”. It is
believed that the addition of the memory network improves the performance of
the model, further validating the effectiveness of the VIM module.

Third, note that for different medical images, our model generates accurate
MeSH which summarizes the characteristics of disease in the image, thus gener-
ating a medical diagnosis. For example, in example (b) our model describes the
image with “pleural effusion” and “pneumothorax”, in example (c), our model pre-
dicts the disease “atelectasis”. The reason behind this might be that we integrate
external knowledge into the feature extraction process with the TIE module,
which reduces the gap between image semantic features and text semantic fea-
tures. Therefore, external knowledge provides an important reference for medical
report generation.

Fourth, compared with the normal reports in example (a) and (b), the reports
generated in example (c) and (d) are incomplete and inaccurate, in which some
diseases are ignored. For example, in example(d), “active tuberculosis” and “large
hiatal hernia” are decisive for the diagnosis of the patient, while they are ignored
in generated reports. This may be attributed to the long-tailed distribution of
training samples, which means that the number of normal medical reports in
the dataset exceeds far more than the number of abnormal medical reports.
Therefore, it is insufficient for model to learn enough about abnormalities.

4.3 Ablation Studies

To illustrate the effectiveness of the proposed TF-IDF Embedding (TIE) module
and Visual Memory (VIM) module, we perform ablation studies with baseline
model on the same dataset IU X-Ray. We conducted the experiments by setting
the R2g [5] as baseline, because it is a highly scalable model and any changes to
the model can be clearly reflected in the results. “Ours-no-VIM” means that we
only add TIE module to the R2g model, on the contrary, “Ours-no-TIE” means
that we only add VIM module to the R2g model. “Ours” denotes the complete
model we propose, which includes both the TIE module and VIM module. The
NLG metrics of ablation studies are shown in Table 2. At the same time, we
implement qualitative experiments to verify the results.

There are several findings concluded from Fig. 4. First, both “Ours-no-TIE”
and “Ours-no-VIM” models outperform R2g [5], which confirms that TIE module
and VIM module are positive for improving the performance of the model. It is
further shown that adding external knowledge to the model and making full use
of the visual features of previous images helps the model learn sufficient visual
features in the encoding stage, which guides the model to generate more accurate
and comprehensive medical reports in the decoding stage. Second, compared
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Table 2. Ablations studies results of our model on IU X-Ray dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

R2g [5] 0.467 0.303 0.210 0.155 0.195 0.371
Ours-no-VIM 0.489 0.313 0.217 0.158 0.190 0.375
Ours-no-TIE 0.478 0.310 0.211 0.156 0.188 0.372
VMEKNet (Ours) 0.505 0.319 0.219 0.159 0.195 0.383

Fig. 4. Examples of generated reports from ablation studies.

with “Ours-no-TIE”, “Ours-no-VIM” performs better, which demonstrates that
TIE module shows more effectiveness than VIM module. The reason behind this
might be that for the medical report generation task, the previous image features
provided by VIM module need further mining, while external knowledge is easier
for encoder to understand.

5 Conclusion and Future Work

In this paper, we propose a medical report generation model VMEKNet that
integrates visual memory and external knowledge into the task. For this rea-
son, we propose the TF-IDF Embedding (TIE) module to incorporate external
knowledge via the TF-IDF algorithm and the Visual Memory (VIM) module to
make full use of previous image features. Experimental results on the IU X-Ray
dataset demonstrate that our model outperforms previous works, results of abla-
tion studies show the effectiveness of TIE module and VIM module. As for the
future work, first we would try to combine other external knowledge, such as
knowledge graphs, with the model. Second, we aim to explore how the combina-
tion of external knowledge with image features affects the decoding stage. Third,
we will evaluate the performance of our model on other datasets and practical
clinical diagnosis.
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Abstract. Detecting video anomalous events is vital for human moni-
toring. Anomalous events usually contain abnormal actions with exag-
gerated motion and little motion. We define the former and the latter
as dynamic anomalies and static anomalies, respectively. We define the
video data of events where a few persons perform diverse actions indoors
as Indoor Event Data (IED). Many frame prediction approaches have
succeeded in detecting dynamic anomalies. However, they are prone to
overlooking static anomalies in IED. To solve this problem, we propose
an Enhanced Abnormality Score (EAS), which is a combination of pre-
diction, dynamic, appearance, and motion scores. To specifically target
static anomalies, we calculate a score to evaluate the dynamic degrees of
actions. We use an appearance score of a frame to detect static anoma-
lies from appearance. This score is generated from a clustering-based
distance of a pre-trained CNN feature. We also use a motion score based
on flow reconstruction to balance the appearance score. We conduct
extensive experiments on two datasets involving indoor human activities.
Quantitative and qualitative experimental results show that our proposal
achieves the best performance among its variants and the state-of-the-art
methods.

Keywords: Video anomalous event detection · Frame prediction ·
Clustering · Flow reconstruction · Dynamic degree

1 Introduction

Human monitoring, especially human activities or events, has been drawing
attention in recent years [8,31]. As a fundamental task for human monitoring,
video anomalous event detection [39] is valuable due to its real-world applications
such as surveillance [34] and healthcare [5]. A model for video anomalous event
detection usually takes a single frame or sequence of frames as its input, then out-
puts frame-level labels [22,23,30], i.e., judging frames which describe whether an
event are normal or abnormal. Anomalous events are generally defined as events
which occur infrequently and largely deviate from expectations, e.g., “riding a
bike” is abnormal in an indoor environment [9,16]. Their detection is challenging
since gathering all kinds of rare yet diverse anomalous events is almost infeasi-
ble [2,22,29]. Therefore, the general idea is to train a one-class classifier which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 202–217, 2022.
https://doi.org/10.1007/978-3-031-20862-1_15
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Fig. 1. A comparison between predicted frames and their ground truth. The two abnor-
mal actions, i.e., “falling down” and “lying on the ground”, and a normal action, i.e.,
“stepping”, are components of the event. The frame of the static anomaly can be pre-
dicted as well as the frame of normal action, which is much better than that of the
dynamic anomaly (see the face and arms).

can model frequently occurring behaviors using only normal, unlabeled training
examples [2,36,39], and use it to detect anomalies in the test data.

Anomalous events usually include abnormal actions with exaggerated motion,
e.g., “a person is falling”, or little motion, e.g., “a person is lying on the ground”.
We call them “dynamic anomalies” and “static anomalies”, respectively. To
effectively detect an anomalous event, a model needs to be able to detect both
dynamic and static anomalies from motion and appearance information. Many
events in indoor scenarios, e.g., those in a student room and laboratory, usually
involve fewer persons than in outdoor scenarios, e.g., those in an avenue and a
subway station. We define the video data of indoor events involving a few persons
as Indoor Event Data (IED). To detect anomalous events in IED, a model needs
to handle features at fine-grained levels since appearance differences between
frames are relatively small.

In video anomalous event detection, the frame prediction approach [22,25,30]
has succeeded in detecting dynamic anomalies. This approach learns a CNN with
an Auto-Encoder (AE) to model frames of normal events. Significant prediction
errors between the prediction results and their corresponding ground truth indi-
cate abnormalities. However, differences between consecutive frames are smaller
in relatively static actions than in dynamic actions. Prediction errors between
predicted frames and their ground truth in static anomalies are smaller than in
dynamic anomalies. Thus, frames of static anomalies can be predicted almost
as perfectly as normal cases, making the prediction model wrongly judge static
anomalies as normal (Fig. 1). A recent method, Memory-guided Normality for
Anomaly Detection (MNAD) [30], introduces a memory module to enhance dis-
criminating anomalies from appearance, e.g., adding a score to the frame pre-
diction model, which improves the model’s ability to detect static anomalies.
However, the scores are too small to detect static anomalies in IED. MNAD [30]
makes most of the L2 distances between appearance features of testing data and
trained memory items recording normal appearance prototypes extremely small,
resulting in being insensitive to static anomalies.



204 L. Shen et al.

To solve this problem, we propose an Enhanced Abnormality Score (EAS),
which is sensitive to static anomalies in IED. EAS is a score consisting of predic-
tion, dynamic, appearance, and motion scores. It enhances a score output by a
prediction model on relatively static actions to avoid overlooking static anoma-
lies. We calculate the dynamic degrees of frames to determine the relatively
static actions and the weights for the enhancement. We perform Balanced Iter-
ative Reducing and Clustering using Hierarchies (BIRCH) [41] on pre-trained
CNN features to generate appearance scores for checking abnormalities [15].
Since BIRCH can generate micro clusters, the distances between the appearance
features of testing data and trained cluster centroids, i.e., normal prototypes,
are at fine-grained levels, which makes the score sensitive to static anomalies in
IED. We also conduct flow reconstruction to obtain motion scores to alleviate
outputting too high abnormality scores for the normal data not included in the
training set.

In summary, the contributions of our paper are as follows.

– We selectively enhance the abnormality scores of the frame prediction model
for the frames containing relatively static actions. We also design weights in
the abnormality score calculation to better use the components.

– We introduce a clustering based appearance score and a flow reconstruction
based motion score for the enhancement.

– We perform extensive experiments which show that our proposal achieves
better performance than its variants and the state-of-the-art methods.

2 Related Work

We review the literature on methods of AE-based video anomalous event detec-
tion. There are two main groups, i.e., reconstruction and prediction. Similar to
our proposal, several methods also perform clustering. Many methods cope with
events equally in calculating abnormality scores.

Reconstruction and Prediction. With the powerful feature extraction
capability of DNNs, AE-based methods have been blooming in recent years.
Reconstruction-based AEs [3,14,26,27] use reconstruction errors to indicate
anomalies from the assumption that anomalous data cannot be reconstructed as
well as normal data. They use 3D ConvNet [14], CNN + RNN [3,26], or stacked
RNN [27]. However, due to the high capacity of DNNs, AEs sometimes recon-
struct abnormal frames well. Prediction-based AEs [22,25,38,42] compare pre-
dicted frames with their ground truth, where larger differences indicate anoma-
lies. They are proposed to avoid a DNN reconstructing abnormal data as well as
reconstructing normal data, enhancing anomaly detection performance [22]. Nev-
ertheless, it is relatively straightforward for prediction-based AEs to predict the
frame from consecutive frames with minor differences, resulting in overlooking
static anomalies. MNAD [30] develops a memory module for an AE to enhance
discriminating anomalies from appearance information. The memory module,
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which handles appearance information, improves the model’s performance in
detecting static anomalies. However, it is defective in processing IED.

Besides, some works perform AE-based prediction and reconstruction jointly
[29,35,37]. However, they cannot avoid the aforementioned problems in dealing
with IED.

Clustering. Several AE-based methods introduce clustering to exploit the
advantages of both discriminative clustering methods and deep embedding mod-
els. They generally cluster intermidiate features of an AE [2,7,11,18]. Different
from them, we cluster features extracted by a pre-trained CNN, which is inde-
pendent of the AE’s training.

Abnormality Score Calculation. Several methods apply parameter-based
linear [1,9,12,30] and non-linear combinations [2,23,29,38] of different scores to
calculate abnormality scores. However, these methods handle all the frames of
events equally, rather than distinguishing them by their dynamic degree. Dif-
ferent from these methods, ours applies a different strategy to better target
at relatively static and dynamic actions in video frames, improving the perfor-
mance.

3 Proposal

We tackle video anomalous event detection, which takes frames as the input and
outputs the label of each frame, i.e., normal or abnormal. We design our method
based on the Frame Prediction (Frame-Pred) model [22]. We show an overview
of our proposal in Fig. 2.

3.1 Frame Prediction Model

Let I and Iijc both stand for an image, i.e., I = {Iijc} ∈ R
H×W×3, where

the indices i, j show spatial coordinate and H,W are image height and width
respectively, and c indicates one of the 3 color channels (RGB)1. Given a video
with consecutive t frames I1, I2, ..., It, the model predicts a future frame It+1.
Suppose Ît+1 denotes the predicted image at time t+1, while It+1 is the ground
truth. We use the frame prediction-based abnormality score Sp(It+1), which is
defined as follows [22]:

Sp(It+1) = 1 − Fn

(
Fpsnr(It+1, Ît+1)

)
, (1)

where Fpsnr(·, ·) is Peak Signal to Noise Ratio (PSNR) defined as,

Fpsnr(I, Î) =
1
3

3∑
c=1

⎛
⎜⎝10 log10

(
maxi,j Î

ijc
)2

1
HW

∑H
i=1

∑W
j=1(I

ijc − Î
ijc

)2

⎞
⎟⎠ . (2)

1 We rescale the pixel values in the range [−1, 1].



206 L. Shen et al.

Fig. 2. Overview of our proposal. (a) A frame prediction model provides an abnormal-
ity score given previous frames. (b) Threshold-based abnormality score calculation. A
dynamic score evaluates dynamic degree of the action in a frame. It also adjusts the
degree of the enhancement on an abnormality score of a relatively static action. (c)
A pre-trained CNN and clustering provide an abnormality score from an appearance
view. A flow reconstruction model provides a motion score from a motion view.

A higher PSNR indicates high similarity between the predicted and ground-truth
frames, indicating higher normality. Fn(·) is a normalization function that fits a
score in the range [0, 1] by the min-max normalization defined as follows:

Fn(xt) =
xt − mint xt

maxt xt − mint xt
, (3)

where maxt xt and mint xt are the maximum and minimum values of x ∈ R
1

among all videos, respectively.

3.2 Appearance Score

To enhance detecting anomalies from the appearance aspect of a frame, we intro-
duce an extra CNN. We regard a set of feature vectors extracted by the CNN on a
training data set including only normal actions as normal appearance prototypes
(Sect. 1). Inspired by Anomalous Image Region Detection (AIRD) [15], we train
a clustering model independently from the AE’s training via BIRCH [41]. BIRCH
clusters image features efficiently and generates micro clusters. This model pro-
vides another object-level semantics which is independent of AE’s training set,
and serves as an appearance detector.



Detecting Video Anomalous Events with an Enhanced Abnormality Score 207

We define the appearance abnormality score Sa(It) based on the L2-distance
as follows:

Sa(It) = Fn

(
‖V t − Ct‖22

)
. (4)

On the training data, we input consecutive frames to the CNN frame by
frame, and extract their feature vectors. BIRCH clusters those feature vectors
and assigns the leaf nodes as the clusters’ centroids C1,C2, ...,Ct.

On the test data, we input frames I1, I2, ..., It and extract their features
V 1,V 2, ...,V t. We calculate L2 distances between the features and cluster cen-
troids, and normalize those distances via Eq. (3) as the appearance abnormality
score.

3.3 Motion Score

We use a flow reconstruction model to check the motion abnormality. A flow
reconstruction model takes the input of optical flow (Y ) and reconstructs it. Fol-
lowing [23], we use FlowNet2.0 [17] to extract optical flow. We use Multi-Level
Memory-augmented Autoencoder with Skip Connections (ML-MemAE-SC) [23]
due to its high performance in detecting motion anomalies from temporal infor-
mation.

We define the motion abnormality score Sm(It) as follows [23]:

Sm(It) = Fn

(
‖Y t − Ŷ t‖22

)
, (5)

where Ŷ t is the reconstructed optical flow at time t, and Y t is the ground truth.

3.4 Dynamic Score and Threshold-Based Integration

To measure the dynamic degree of video frames, we use the dynamic score D(It)
based on a difference of frames defined as follows:

D(It) = Fn

⎛
⎜⎝

⎛
⎝

H∑
i=1

W∑
j=1

3∑
c=1

f(Iijc
t+1 − Iijc

t )2

⎞
⎠

1
2
⎞
⎟⎠ f(x) =

{
1, x > α,

x, x ≤ α.
(6)

The changed pixels indicate movement, e.g., an exaggerated motion usually
causes many changed pixels. To eliminate the effect of a person’s cloth color
on the dynamic degree, we use the function f(·) to unify the changed pixel val-
ues. To counter the impact of the image noise and illumination variance, we
introduce a threshold α. The larger the value of D(·) is, the more dynamic the
action in the frame t is.

When the dynamic score is relatively high, i.e., the action is dynamic, we
directly use the frame prediction score Sp(It). Otherwise, i.e., when the action
is relatively static, we take a weighted combination of Sp(It) and a score of
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appearance and motion of the frame Sam(It). This combination is the Enhanced
Abnormality Score (EAS), represented by Spam(It).

Both abnormal actions and “unseen” normal actions contain “unfamiliar”
appearances. Sa(·) shows a higher score for an abnormal action or a normal
action that is largely different from the training set. The former case is desirable
while the latter case brings destructive effects. For the same category of actions,
the appearance may be very different, but the motion should be similar [13].
Thus, we take advantage of ML-MemAE-SC [23] to check motion abnormality
to compensate for the destructive effects. We use the following score for the
enhancement:

Sam(It) = γSa(It) + (1 − γ)Sm(It), (7)

where γ ∈ [0, 1] is a weight introduced for flexibility.
The (unnormalized) integrated abnormality score S∗

inte(It) is defined as fol-
lows.

S∗
inte(It) =

{
Sp(It), D(It) > σ,

Spam(It) = D(It)Sp(It) + (1 − D(It))Sam(It), D(It) ≤ σ,

(8)

where σ is a threshold to determine whether the actions in the input video frames
are relatively static or dynamic.

As we explained in Sect. 1, the more static the action is, the more likely
that the prediction model neglects static anomalies. We set D(It) as a weight
for the prediction score to handle this tendency. At last, we apply Eq. (3) as
Sinte(It) = Fn (S∗

inte(It)).

4 Experiments

We extensively evaluate our proposed method by quantitative and qualitative
analyses on two datasets, including a comparison with its variants and the state-
of-the-art methods. We also check the parameter dependency.

4.1 Datasets and Evaluation Metric

Different from widely used public Video Anomaly Detection (VAD) datasets,
e.g., UCSD Ped2 [28], CUHK Avenue [24], and ShanghaiTech [22], we use action
recognition datasets (NTU RGB+D [32] and NTU RGB+D 120 [21]) which
contain a larger number of categories of indoor human actions to constitute
our benchmark. Those three VAD datasets lack indoor human activities, lim-
iting their significance. On the other hand, detecting abnormal indoor human
activities is vital for human monitoring [19,20].

NTU RGB+D [32] dataset includes 60 actions and NTU RGB+D 120 [21] is
an extended dataset of the former dataset, which includes 120 actions. We reserve
only the last 60 actions in NTU RGB+D 120 [21] to avoid repeating the NTU
RGB+D [32] dataset. Each video clip in the original datasets includes the whole
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Fig. 3. Labeling the action recognition datasets [21,32] to constitute a frame-level VAD
benchmark.

process of a main action, e.g., falling to the ground. To constitute a frame-level
VAD benchmark, we label the corresponding frames of the abnormal actions
in each video as “abnormal frames”, and other frames as “normal frames”. We
regard the whole process of exaggerated, surprising, offensive, or severe actions
as anomalous events (Fig. 3).

Dataset 1 is generated from NTU RGB-D [32]. We regard 9 actions2 as abnor-
mal and the remaining 51 actions as normal. Its training and test sets consist of
255 videos (24,917 normal frames) and 64 videos (5,509 normal and 771 abnor-
mal frames), respectively.

Dataset 2 is generated from NTU RGB-D 120 [21]. We regard 11 actions3 as
abnormal and the remaining 49 actions as normal. Its training and test sets
consist of 245 videos (17,193 normal frames) and 70 videos (3,982 normal and
701 abnormal frames), respectively.

We use the Area Under the ROC Curve (AUROC) and PR Curve (AUPRC)
as evaluation metrics for frame-level video anomalous event detection since ROC
and PR have their advantages and cannot be replaced by each other [4].

4.2 Implemtation Details

We implement the proposed method with Pytorch on a PC equipped with two
RTX TITAN GPUs and an i9-10900KF CPU. We use the public codes of the

2 The 9 actions are “throwing”, “kicking something”, “hopping”, “jumping up”,
“falling down”, “vomiting”, “punching someone”, “kicking someone”, and “push-
ing someone”.

3 The 11 actions are “shooting at basket”, “tennis bat swing”, “running on the spot”,
“throwing up hat”, “hitting with object”, “grabbing stuff”, “wielding knife”, “knock-
ing over”, “shooting with gun”, “stepping on foot”, and “supporting somebody”.
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Table 1. Comparison with the state-of-the-art methods.

Type Method Ref Dataset 1 Dataset 2

AUROC AUPRC AUROC AUPRC

Appearance only MNAD (recon) CVPR’20 [30] 0.202 0.076 0.714 0.256

QMem-L2 CVPR’20 [30] 0.574 0.265 0.861 0.466

RIAD PR’21 [40] 0.457 0.108 0.640 0.251

VGG-19+BIRCH Ours 0.706 0.228 0.705 0.336

Appearance and
motion

Frame-Pred CVPR’18 [22] 0.860 0.555 0.840 0.430

MemAE ICCV’19 [10] 0.422 0.140 0.857 0.366

VEC MM’20 [38] 0.895 0.592 0.816 0.434

MNAD (pred) CVPR’20 [30] 0.849 0.496 0.834 0.435

HF2-VAD ICCV’21 [23] 0.891 0.593 0.853 0.465

Proposed Ours 0.895 0.611 0.884 0.496

prediction4 and flow reconstruction models5. The structures and the training
parameters remain the same as in the original paper [22,23].

We use the VGG-19 [33] pre-trained on the ImageNet dataset [6] due to
its high capability in extracting object-level semantics. For each frame I, we
extract vector (4096 dimension) of the second FC-Layer (FC2) as the feature
vector V ∈ R

4096.
We set threshold α in D(·) to 0.08 via pre-experiments and keep the param-

eters in BIRCH as its default. We manually set the threshold σ for D(·) to 0.2
and the weight γ for Sa(·) to 0.4.

4.3 Comparison with the State-of-the-Art

Table 1 compares our method with the state-of-the-art methods, for which we
run the public codes6 on our datasets with the default parameters. The bold
figures indicate the best two scores.

Our proposal considers both spatial and temporal information and thus it
easily surpasses the best baseline method at the top block. It also outperforms
the relatively stronger methods, e.g., [23,38], at the bottom block as it better
detects static anomalies. Thus, our proposal performs the best.

4 Frame-Pred [22]: https://github.com/feiyuhuahuo/Anomaly Prediction.
5 HF2-VAD (Flow Recon, ML-MemAE-SC) [23]: https://github.com/LiUzHiAn/

hf2vad.
6 MNAD [30]: https://github.com/cvlab-yonsei/MNAD

MemAE [10]: https://github.com/lyn1874/memAE
VEC [38]: https://github.com/yuguangnudt/VEC VAD
RIAD [40]: https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-
visual-anomaly-detection.

https://github.com/feiyuhuahuo/Anomaly_Prediction
https://github.com/LiUzHiAn/hf2vad
https://github.com/LiUzHiAn/hf2vad
https://github.com/cvlab-yonsei/MNAD
https://github.com/lyn1874/memAE
https://github.com/yuguangnudt/VEC_VAD
https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-visual-anomaly-detection
https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-visual-anomaly-detection
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Table 2. Ablation study of our proposal.

Sp(·) Sa(·) Sm(·) seg. wt. Dataset 1 Dataset 2

AUROC AUPRC AUROC AUPRC

✓ 0.860 0.555 0.840 0.430

✓ 0.706 0.228 0.705 0.336

✓ 0.875 0.546 0.847 0.442

✓ ✓ ✓ 0.847 0.459 0.849 0.442

✓ ✓ ✓ ✓ 0.861 0.535 0.882 0.496

✓ ✓ ✓ ✓ 0.890 0.608 0.880 0.493

✓ ✓ ✓ ✓ ✓ 0.895 0.611 0.884 0.496

At the top block, most methods show much lower scores in Dataset 1 than
in Dataset 2. “QMem-L2” shows the best scores in Dataset 2. Meanwhile, its
performance in Dataset 1 is low. We speculate the reason for the decrease of
“QMem-L2” in Dataset 1 is that the training dataset largely affects the feature
extraction ability of its encoder. Compared with the “QMem-L2”, the perfor-
mance of “VGG-19 + BIRCH” (Sa(·)) is stable. Since CNN is pre-trained on the
ImageNet dataset, it has a solid ability to identify object-level semantics

At the bottom block, most of the methods perform much better than those
in the first block except for MemAE [10]. In MemAE [10], the normal exam-
ples which are not included in the training set are given too high abnormality
scores due to the mechanism and are falsely detected as abnormal. Among those
baseline methods except ours, HF2-VAD [23] performs the best, as its integrated
model based on flow reconstruction and frame prediction has a solid capability
in extracting and inferring spatial and temporal information.

4.4 Ablation Study

To analyze the effect of each component in our proposal, we conduct an ablation
study. We evaluate the combination of Sp(·), Sa(·), Sm(·), and the threshold-
based calculation. We verify two parts independently for our threshold-based
calculation: the threshold-based segmentation (seg.) and the dynamic score based
weights (wt.). In the case when the former is not used, we only reserve Spam(·).
When the latter is not used, we take the average scores of Sp(·), Sa(·), and Sm(·)
as Spam(·).

Table 2 shows the results, where bold figures indicate the best two scores.
We see that simply averaging the three components Sp(·), Sa(·), and Sm(·) per-
forms no better than the baseline frame prediction model Sp(·). After adding
dynamic score based weights (wt.) or threshold-based segmentation (seg.), the
performance becomes better than Sp(·), which proves the significance of D(·).
Our complete model achieves the best performance.
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Fig. 4. Effect of Sp(·), Sa(·) and Sm(·). The green and red bounding boxes stand for
normal and abnormal classes, respectively. The abnormality scores of each method are
plotted in different colors. The numbers in brackets indicate methods’ AUROCs in
the event. Vertical red dotted lines denote the abnormal interval, while the rest is the
normal interval. (Color figure online)

4.5 Qualitative Analysis

Superiority of our proposal. A model should give higher abnormality scores
for abnormal data than normal data to avoid false detection. In Fig. 4 (left),
Frame-Pred [22] and MNAD (pred) [30] detect dynamic anomalies effectively
from frame #363–379, while detecting static anomalies poorly from frames
#380–409. Their scores in frames #380–409 are lower than those in the normal
interval, causing false detection. VEC [38] and HF2-VAD [23] show a similar
trend but better performance. Although our model gives lower values for static
anomalies than [22,30], its performance is the best. Note that these abnormality
scores are normalized with Eq. (3). Since the abnormality scores for the abnor-
mal interval are higher than those for the normal interval, the number of false
detections is decreased.
Effect of Sp(·), Sa(·) and Sm(·). In Fig. 4 (left), the prediction model (Sp(·))
shows the same curve as Frame-Pred [22]. “VGG-19 + BIRCH” (Sa(·)) clearly
detects the static anomalies, while “ML-MemAE-SC” (Sm(·)) only detects the
significant abnormal motion. With Sa(·), our model successfully discriminates
anomalies among relatively static actions. It gives higher abnormality scores for
the abnormal interval that corresponds to relatively static actions than those for
the normal.

Sa(·) is sensitive to the diversity of the normal data, generating high abnor-
mality scores for those normalities that do not appear during the training, as
shown in the event “drinking water” (Fig. 4 (right)). Sm(·) in the event “drinking
water” stably keeps low values. The motion information of this action is similar
to the same category of actions in the training data. After combining Sa(·) and
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Fig. 5. Effect of threshold-based calculation. The figure’s configuration is the same as
Fig. 4. Note that methods’ AUROCs shown on the left are for the event of “hitting
with object”.

Sm(·), our model’s output shows lower abnormality scores in the normal interval
than those in the abnormal interval, i.e., it exhibits a better performance.

Effect of Threshold-Based Calculation. In Fig. 5, “VGG-19 + BIRCH”
(Sa(·)) exhibits much lower performance on the two events. Our proposal with-
out threshold-based calculation (represented as “Ours (no seg. + avg.wt.)”) is
thereby largely affected. Our proposal avoids such a problem via the threshold-
based calculation. The threshold eliminates the impact of Sa(·) when the action
is relatively dynamic, and the performance of our model is thereby retained.
Compared to our complete model, “Ours (no seg. + avg.wt.)” achieves lower
AUROC, and many of its abnormality scores in the abnormal interval are lower
than the scores in the normal interval. Thus, our complete model is better than
“Ours (no seg. + avg.wt.)”, which proves the effect of the threshold-based cal-
culation.

4.6 Parameter Dependencies

We investigate the dependency of the performance on the two parameters. In
Fig. 6 (left), when the value of σ is set from 0 to 0.3, AUROC fluctuates. When
σ is set to 0, our proposal’s performance is the same as Frame-Pred [22]. To
achieve the best overall performance in both Dataset 1 and Dataset 2, σ should
be set from about 0.15 to 0.25, respectively. In this interval, our proposal out-
performs HF2-VAD [23], which achieves the best performance among all other
baseline methods except ours (see Table 1). When the value of σ is larger than
0.3, AUROC keeps stable. We observe that our proposal still performs compet-
itively among all other baseline methods.
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Fig. 6. Effect of the manually set parameters, i.e., the threshold (σ) for the dynamic
score (D(·)), and the weight (γ) of the appearance score (Sa(·)).

In Fig. 6 (right), when the values of γ is set from 0 to 0.2, the AUROCs show a
slight increase in both Dataset 1 and Dataset 2 since appearance scores improve
the performance of detecting static anomalies. However, in our datasets, the
normal data are much larger in volume than abnormal data. Some appearance
scores (Sa(·)) are too high for the normal data, which is not included in the
training set. If γ is set lower than 0.7, our proposal reaches the best performance
among all other baseline methods when considering both the results in Dataset 1
and Dataset 2 (see Table 1). It proves that without specifically assigning a value
of γ, i.e., simply conducting an average fusion (γ = 0.5) of the appearance and
motion score, our proposal still performs better than the rest baseline methods.
We find γ brings the potential to achieve higher performance of our proposal.

5 Conclusion

We have proposed a prediction-based model for video anomalous event detec-
tion. By introducing an extra appearance score calculated by CNN and BIRCH,
our model enhances discriminating anomalies from appearance information to
detect static anomalies better. Our model checks the abnormality of motion
with flow reconstruction to compensate for overly discriminating the diversity
of normal data caused by the appearance score. We also design a dynamic score
to denote the dynamic degree of actions and a threshold-based calculation to
specifically target relatively static and dynamic actions with different strategies.
Extensive experiments on two datasets show the superiority of our proposed
method compared with other baselines.

We will improve the calculation of the dynamic score since it may contradict
our intuition under the influence of the sizes of human bodies and the number
of people. Also, we will develop a module to replace the appearance and motion
scores for better performance and less computation cost. We expect our model
can be used by an autonomous mobile robot for significant practical value.
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Abstract. Underwater images restoration is a corrective procedure aim-
ing to eliminate the variations caused by the scattering and severe
absorption of light when propagating in water. Holistic approaches dom-
inate underwater image restoration by considering colour compensation
on the blue channel through CNNs. In this paper, we discard the previ-
ous CNN-based network by employing Vision Transformer as the strong
baseline for Underwater Image Restoration. To further boost the restora-
tion, we investigate the impact of the frequency domain where higher
frequencies represent more detailed information corresponding to the
image, which hasn’t been widely studied in this field. To this end, a
novel loss function is adopted as the regularization defined in the spec-
tral domain. By learning more detailed frequency information of the
whole image, our proposed pipeline further enhances the accuracy of the
baseline model achieving state-of-art performance on EUVP, UIEB and
UFO-120 datasets.

Keywords: Under water Image Restoration · Frequency domain ·
Vision transformer

1 Introduction

Underwater images differ greatly from natural images in many ways. The images
are extremely varied from what is seen in real scenes due to the scattering, diffrac-
tion and colour absorption when light propagates underwater. It is an influential
topic in computer vision and ocean science with applications like robotics [12],
rescue missions, artificial building inspection and ecological monitoring. With
the advent of CNNs [15], the research undertaken for underwater has gained sig-
nificant performance over the past prior-based methods. Several works [18,20,22]
simply utilized the networks designed on top of other vision tasks, which ignore
the properties of underwater images such as low contrast, blur and haze [28]. To
better counter the characteristics of the underwater images, some efforts [17,32]
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Fig. 1. Visualization of the learned images and their corresponding Spectrogram. The
first column is the input degraded images, the second column is the result of WaveNet.
The third column learned from without our FDL, the forth column is learned by adding
FDL, the last column is the clean images.

proposed to process colour channels of the degraded images which proved to be
effective. This work mostly keeps the eye on developing a new architecture and
loss from the aspect of frequency domain for underwater image restoration.

Our focus first is to modify the CNN backbone with the recently introduced
Vision Transformers [3,25] which have gained competitive results over CNNs [6]
on other tasks. It is proven that the combination of CNN and Transformer
would further boost the performance on other vision tasks [23,43], Thus, our
first contribution is to investigate how Transformer would be of contribution
for underwater restoration when simply employing the same loss function with
CNN [32]. Despite the efforts on the color channels [17,32], we observed that
there is little work focusing on learning more generalized images on the fre-
quency domain [5]. An image with a very sharp overall variation in colour space
will show a lot of high-frequency components in the frequency domain, and low-
frequency components are often used to extract overall information [35]. Hence,
our second motivation in this paper is to learn more realistic images via spec-
tral regularization. Specifically, we designed the novel loss that minimizes the
distance between the transformed output image and ground-truth image on the
frequency domain. Fig 1 shows the degraded images obtained underwater, the
output of our baseline model, the output after training on the frequency domain
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and the ground truth. As it can be observed, the degraded images are of less
values on the high frequency domain compared to the clean images, and the
model without frequency regularization will result in a circle of low value.

In summary, the contributions in this paper are as following:

1. We propose a novel Transformer-based block named URTB which, together
with the convolutional layer, is utilized for the property of color degradation
especially on different channels.

2. We aim to learn more realistic clear images via frequency domain where
constraints are added on both detailed and overall information. Consequently,
a new loss coined as Frequency Domain Loss (FDL) is added to the overall
loss learning.

3. We conduct several experiments and prove that our model achieves much
more competitive performance over previous state-of-the-art methods on sev-
eral recent benchmarks.

Our paper is organized as follows. Section 2 provides brief reviews of related
works in underwater image restoration. In Sect. 3, we describe the proposed
network architecture with the proposed Underwater Residual Transformer
Block(URTB), and the frequency domain loss function. In Sect. 4, we conduct
experiments to demonstrate the effectiveness of our methods both qualitatively
and quantitatively.

2 Related Work

This section gives a brief introduction about the methods of underwater image
restoration which mainly focus on data-based methods, as well as the efforts on
spectral-domain and the development of Vision Transformer.

2.1 Deep Learning for Underwater Image Restoration

Since the emergence of deep learning, data-driven approaches have been becom-
ing the main trend to work on underwater images. There are several attempts
proposed to adopt deep learning methods for underwater images [1,7,24,32,40].
In [40], the authors propose an end to end framework for underwater image
enhancement, where a CNN-based network called UIE-Net is presented to con-
duct color-correction and haze removal. For fully exploiting the feature extracted,
[7] develop a novel framework to aggregate the transmission and images domains
via residual learning. In [24], the authors propose an underwater image enhance-
ment solution through a deep residual framework consisting of CycleGAN, which
generates synthetic underwater images for training purposes. In addition, Edge
Difference Loss is proposed to learn more detailed edge information. Li [17] pro-
posed a Transmission-Guided framework to enrich the feature representation
which incorporates multi-colour characteristics. By learning diverse informa-
tion about underwater images, the reverse medium transmission (RMT) map is
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adopted associated with the original image for being forwarded in the neural net-
work. In [32], Sharma adopt the Convolutional Block Attention Module (CBAM)
[42] to weigh the channel features extracted by the CNN with different recep-
tive field sizes, and aggregate these features for obtaining the multi-contextual
information with residual structure. However, these methods are designed based
on shallow convolutional neural networks which sacrifice the superior perfor-
mance offered by deep neural networks. Our contribution is to apply the vision
transformer with booster performance to learn more generalization features.

2.2 Vision Transformer

As a pioneering work, Transformer which mainly consists of multi-head self-
attention and linear layers was first introduced for natural language tasks in [38].
Later in [3], In vastly contrast to CNNs, Vision Transformer (ViT) offers superior
performance by dividing the image into non-overlapping patches before process-
ing the image. Compared to CNNs, ViT is proven to be sensitive to hyper-
parameters and training strategy [36,37]. A lot of efforts have been proposed
to train transformer more effective and efficient [25,43,45,46]. In SwinIR [23],
The Swin transformer is employed for the task of image restoration due to its
exceptional performance. And a residual Swin Transformer block(RSTB) is pro-
posed with residual connection. In this paper, we follow [23] to adopt RSTB to
see how Transformer works in underwater image restoration. To the best of our
knowledge, this is the first work that applies the vision transformer to the task
of underwater image restoration.

Fig. 2. The overview of our proposed network, where the input to the model is a
degraded image and the output is a clean image. We use URTB, which will describe its
basic structure in Sect. 3.2. Our model is trained on two domains: spatial and frequency

2.3 Frequency Domain

The above works for underwater image restoration focus mainly on the colour
space of the degraded images in order to eliminate the blurriness and light
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absorption caused by propagation through the water. Those works more or
less add regulations to learn more realistic clear images such as perceptual loss
via a pre-trained VGG network [34] or an advanced network. This work [24]
also proposed to learn more detailed edge through Edge Difference Loss. These
approaches work in the spatial domain while ignoring the frequency domain,
which includes overall and detailed information. Gupta [5] was the very prelim-
inary approach to incorporating Fast Fourier Transformation (FFT) [27] with
dark channels for underwater images. However, this approach simply adopts FFT
on the Hazzard removed image but does not take advantage of the irresistible per-
formance of deep learning. Besides, the authors of [31] added frequency domain
to the network design and used attention mechanisms to obtain more general-
ized features. In this paper, we aim to add frequency regularization as the loss
function to the learning process in an end-to-end manner.

3 Methodology

We first introduce our baseline in Sects. 3.1 and 3.2 and explain the difference
between Underwater Residual Transformer Block(URTB) and RSTB [23]. Then
in Sect. 3.3, we describe the proposed Frequency Domain Loss(FDL) defined in
the spectral domain.

3.1 Network Architecture

Figure 2 shows our encoder-decoder model in which the encoder is a three-stage
URTB block and the decoder is intended to enhance the reconstruction image.
Let D ∈ RH×W×C (C = 3) be the degraded image obtained underwater and
Dgt ∈ RH×W×C (C = 3) to be the corresponding clean ground truth image,
where H and W represent the height and width. DR, DG and DB are the red,
green and blue channels of the input image D which are then fed into 3 different
branches of the neural network where the only difference is the kernel size and
the patch size for the convolution layer and transformer layer respectively.

Encoder. As for every channel in each stage, we adopt an Underwater Residual
Transformer Block(URTB) to process the feature with different kernel size:

F ′
Mi = HDF (FMi−1)u (1)

where HDF (·)u is the URTB whose details will be explained in Sect. 3.2, M
represent RGB channels, u is the patch size, i is the index of stages. When it
refers to first stage, DR,DG,DB are equal to FR0, FG0, FB0. Then we obtain the
enhanced feature from the 3 branches of feature as:

Fi+1 = F ′
Ri � F ′

Gi � F ′
Bi (2)

where � is the concatenation operation. Fi is the multi-channel contextual fea-
ture after stage i. We replicate the URTB for three times to get further enhanced
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feature. One exception is stage 2 where CBAM [42] is adopted to generate the
refined feature at the end of URTB for incorporating the channel information.

For the decoder part, we follow WaveNet [32] consisting of de-convolution
layers and CBAM to reconstruct the high-quality clear output image.

Fig. 3. The structure of the Underwater Residual Transformer Block (URTB). The
feature is firstly processed through a convolution layer before it is sent to residual Swin
Transformers

3.2 Underwater Residual Transformer Block (URTB)

As shown in Fig. 3, the Underwater Residual Transformer Block(URTB) is a
block incorporating L a convolution layer and Swin Transformer layers (STL)
[25] with the residual connection. Before sending features to transformer layers,
we first use a s × s convolutional layer HSF (·)s×s (s is receptive field size) to
extract shallow feature as:

UMi,0 = HSF (FMi−1)s∗s (3)

Using convolution before transformer to process the feature in vision task
will result in more stable, generalized performance when training which has been
proven in [43]. Given the output feature UMi,0,M = R,G,B of the Convolution
layer, the intermediate feature UMi,1, UMi,2, ..., UMi,L of URTB is calculated as
the following equation:

UMi,j = HSTL1(UMi,j−1), j = 1, 2, ..., L (4)

where HSTLj
is the j-th STL contained in URTB. Finally, the output of URTB

is formulated by adding residual connections:

F
′
Mi = UMi,j + UMi,0 (5)

Skip connection provides integration of low-level and high-level features,
which benefits training stability and performance. The URTB does not con-
tain the convolution layer in comparison to the RSTB [23] due to a loss of
performance which will be discussed in the ablation study 4.2.
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Swin Transformer Layer. In this paper, we opt for the Swin Transformer
Layer as the basic unit in UTRB which is famous for its effectiveness on other
vision tasks e.g., classification [25], image restoration [23], self-supervised learn-
ing [44]. For the given image, we first split the image into non-overlapped win-
dows where the window size is p, thus the feature dimension for each window
is p × p × C and the number of windows is HW

p×p . Then multi-head self-attention
which is the same as ViT [3] is adopted for each local window, the query Q, key
K and value V matrices are computed respectively:

Ql,j = Xl,jWQ, Kl,j = Xl,jWK , Vl,j = Xl,jWV (6)

where Xl ∈ Rp2C is the input feature of a local window at l-th layer, WQ, WK

and WV are the projection matrix. S is the number of heads, j = 0, 1, 2, ..., S −1
is the index of the head. Then self-attention is given by:

Att(Ql,j ,Kl,j , Vl,j) = SoftMax(Ql,jK
T
l,j)/

√
d + B)V (7)

d is a scale factor, B is the relative positional encoding to preserve spatial
location. Finally, the output of multi-head attention is the concatenation of the
S heads. Next, a multi-layer perceptron (MLP) which contains two linear layers
with GELU activation is adopted for feature projection. The layer Norm and
residual connections are adopted for modules which can be formulated as:

X = MSA(LN(X)) + X,X = MLP (LN(X)) + X (8)

Swin Transformer also proposed to shift the window from layer to layer,
allowing the spatial location of the feature in each layer to vary and interact
with other features via MSA and MLP.

3.3 Frequency Domain Loss

The frequency domain is a vital domain in image process applications such as
medical image reconstruction and de-noising. To our best knowledge, the appli-
cation of frequency domain with deep learning has not been explored in the
task of underwater image restoration. In the previous works, the reconstructed
images are mainly optimized in the spatial domain where the loss is minimized
on the distance between the output image Dout and the ground truth image Dgt.
Normally the spatial loss function in our paper is L2 loss defined as:

Lsp =
1
n

1∑

n

‖Dout − Dgt‖22 (9)

n is the number of samples in a batch. To further enhance the learning
quality of the generated image, we follow [32] to incorporate Perceptual loss
LV GG [11] which feeds the Dout and Dgt into a pre-trained VGG-16 [34] to get
the embedding.
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As Perceptual loss is just one aspect of training realistic images, we propose to
convert the image into a spectrogram by using FFT and then constrain the con-
verted image. When the image is converted into a spectrum, the low-frequency
components correspond to the overall contour of the original image, while the
high-frequency components represent the sharp and detailed texture informa-
tion. Consequently, we require that the distance between the spectrogram of the
generated image and the ground truth image in the frequency domain be closed
such that the generated image is consistent with the ground truth in terms of
overall contour and texture details. The function is written as:

LFDL =
1
n

1∑

n

|FFT (Dout) − FFT (Dgt)| (10)

The overall loss in our works is the combination of the above losses:

L = α1 ∗ Lsp + α2 ∗ LV GG + α3 ∗ LFDL (11)

where α1, α2 and α3 are the scaling factors to adjust the respective loss compo-
nents, contributing differently to the final loss.

4 Experiment

We begin by explaining the details of our experimental settings in this section,
then present the results of our proposed method on several famous benchmarks,
and then provide a series of ablation studies in order to illustrate the effectiveness
of the proposed method. At last, the comparison with the state-of-art results is
also conducted.

4.1 Implementation Details

Datasets. To fairly compare with other methods, we choose the publicly avail-
able benchmarks for training and evaluation, which are UIEB [19], EUVP [10]
and UFO-120 [9] respectively. The UIEB dataset is comprised of 890 pairs of
images with the resolution of which are obtained underwater while the reference
images are generated by 12 image enhancement methods. EUVP dataset is a
large scale dataset containing 11435 underwater degraded training pairs and 515
test pairs. For the UFO-120 dataset, the training samples are 1500 pairs and
the test samples are 120 images. For the EUVP and UFO-120 datasets, PSNR,
SSIM [41] and UIQM [29] are adopted as objective metrics for quantitative eval-
uation. As for EUVP, we report PSNR, SSIM, UIQM, NIQE [26], PCQI [39],
UISM [29], VIF [33] and E [14].

Training Details. For training our network in association with our proposed
loss, we choose AdamW [13] as our optimizer. The batch size is 5, the initial
learning rate is 0.001 with Cosine learning rate decay, weight decay is 0.05.
Number of heads in URTB is 2. We use 2 STL in the URTB. The number of
total training epochs is 20. Our implementation is based on Pytorch [30] on a
single Nvidia 3090 card. The kernel size in different branches are 3 × 3, 5 × 5
and 7 × 7, for patch size they are 6,8,10 respectively.
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Table 1. The performance on EUVP datasets in terms of Network sizes and FLOPS

Param Flops SSIM PSNR UIQM

WaveNet [32] 278.61k 18.13G 0.835 28.654 3.042

URTB 861.85k 55.46G 0.840 29.017 2.982

RSTB 945.08k 60.91G 0.803 27.626 3.013

WaveNet+CNN 895.83k 58.27G 0.806 27.614 3.062

Table 2. The results of FDL on EUVP datasets in terms of the numbers of STL block

Param Flops SSIM PSNR UIQM

STL= 2 861.85k 55.46G 0.849 29.377 3.025

STL= 4 950.03k 60.37G 0.854 29.322 3.067

STL= 6 1.04M 65.27G 0.771 24.613 2.727

4.2 Ablation Study

We opt for a series of ablation experiments to illustrate the effectiveness of our
choices for the proposed methods. The comparison are mainly conducted on
EUVP datasets unless specified.

Impact of URTB over Baseline. Our first experiment is to validate the
performance of the URTB over convolution neural networks(CNNs). In contrast
to the Wavenet [32], our method adds a series of STLs after the convolutional
layer as an image enhancement module. However, it introduces an extra number
of parameters, which is unfair for comparing models with the same number
of parameters. Due to this, we have added an extra convolutional layer in the
WaveNet to construct the model of the same size as the URTB. As shown in
Tab 1, we list the parameters of the WaveNet, URTB, RSTB and Wavenet+
CNN as well as their performance on the datasets. As it can be observed, with
similar parameters and Flops, the URTB model outperforms the Wavenet+ CNN
which demonstrates the effectiveness of the Transformer compared with CNNs.

Impact of Convolution in URTB. The difference between RSTB and URTB
is that URTB removes the convolution layer at the end of RSTB. This is due
to the fact that this layer of convolution is redundant, which results in a perfor-
mance loss. For URTB the number of parameters are 861.85k and the flops are
55.46G, and it is 945.07k and 60.91G for RSTB, but more parameters does not
result in a better performance, which also can be concluded in the Table 1.

Impact of Number of STL. We validate the choice of the number of STL in
table 2 where the number is set to be 2,4,6 respectively. As shown, there is no
significant difference between 2 and 4 layers of STL, however, when the number
of layers reaches 6, performance deteriorates.
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Table 3. The influence of hyper-parameters of losses on UFO-120 2X protocol

α1 : α2 : α3 SSIM PSNR UIQM

0.6: 0.35: 0.02 0.810± 0.06 27.40± 2.84 3.07± 0.49

0.6: 0.40: 0.02 0.819± 0.06 28.18± 3.08 3.06± 0.47

0.6: 0.45: 0.02 0.822± 0.06 28.30± 3.07 3.10± 0.48

0.6:0:0.02 (w/o FDL) 0.780± 0.07 26.49± 2.64 3.06± 0.45

0.6:0.45:0 (w/o Perceptual) 0.818± 0.06 28.18± 3.00 3.03± 0.48

0.1:0:0.02 (WaveNet [32] hyper-parameter) 0.774± 0.06 26.27± 3.00 3.00± 0.46

Impact of Frequency Domain. Herein, we experimented with the enhance-
ment of the proposed FDL and with the impact of different choices of hyper-
parameters on our task. As shown in Tab 3, for each of the three parameters α1,
α2, α3, we mainly change α2 and devised 6 groups of combinations which are
(1) 0.6:0.35:0.02, (2) 0.6:0.4:0.02, (3) 0.6:0.45:0.02, (4) the learning loss without
FDL, (5) loss without Perceptual loss and (6) default loss in WaveNet [32]to
explore the impact of FDL on the UFO-120-2X protocol. Comparison from the
table shows that the (3) configuration yields the best results and learning on
frequency domain really improves the accuracy.

4.3 Comparison with the SOTA

We chose two models with and without FDL to compare with the SOTA papers
proposed recently on UIR.

Fig. 4. Comparison of the proposed methods with WaveNet visually on EUVP dataset
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Quantitative Results. We report the results trained and tested on various
datasets including UIEB, EUVP and UFO-120 which are listed in Table 4,
Table 5 and Table 6 respectively. On the EUVP dataset containing the most
number of training samples of the task of image enhancement, compared with
Deep WaveNet [32] which is the best published underwater image enhance-
ment work, the baseline URTB has increased by 1.29% and 0.59% on PSNR
and SSIM respectively. The URTB+FDL has improved by 2.54% and 1.55%
on PSNR and SSIM respectively. Meanwhile, comparing our methods to other
competitors, ours achieves the best results in terms of VIF and PCQI. On UIEB
dataset which can be verified in Table 4, our proposed methods achieve the opti-
mal results(0.8483) on SSIM, competitive results on PSNR evaluation (21.8088)
which are better than CNN-based methods(WaveNet [32], Water-Net [19]). On
the UFO-120 dataset, the results for underwater image super-resolution has been
presented in Table 6. As observed, in 3 types of configuration 2x, 3x, 4x, not
only our URTB+FDL module outperform other results than large margin, but
also our baseline URTB has gained secondary performance. The only exception
is the 2x configuration on UIQM, our models obtain 3.10(URTB+FDL) and
3.06(URTB) which is worse than Deep SESR [9].

Table 4. Evaluation results on UIEB dataset

Methods SSIM PSNR UIQM

Water-Net [19] 0.68 20.14 2.55

UGAN [4] 0.67 23.67 2.70

Fusion-GAN [21] 0.68 23.77 2.58

Deep SESR [9] 0.57 16.65 2.98

Deep WaveNet [32] 0.80 21.57 -

URTB, ours 0.8253 21.7074 3.0498

URTB+FDL, ours 0.8483 21.8088 2.7641

Table 5. comparison with the SOTA results on EUVP datasets.

Methods PSNR SSIM UIQM NIQE PCQI UISM VIF E

UGAN-P [4] 26.54 .80 2.93 50.17 .704 6.83 .400 7.54

Funie-GAN-UP [10] 25.22 .78 2.93 52.87 .702 6.86 .394 7.50

Deep SESR [9] 27.08 .80 3.09 55.68 .679 7.06 .384 7.40

Deep WaveNet [32] 28.62 .83 3.04 44.89 .694 7.06 .438 7.38

URTB, ours 29.02 .84 2.98 43.75 .849 6.57 .651 7.14

URTB+FDL, ours 29.38 .85 3.03 50.40 .843 6.70 .633 7.15
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Table 6. The comparison against the best results on UFO-120 dataset

Methods PSNR SSIM UIQM

2X 3X 4X 2X 3X 4X 2X 3X 4X

SRCNN [2] 24.75± 3.7 22.22± 3.9 19.05± 2.3 .72± .7 .65± .9 .56±.12 2.39± .35 2.24± .17 2.02± .47

SRGAN [16] 26.11± 3.9 23.87± 4.2 21.08± 2.3 .75± .6 .70± .5 .58± .9 2.44± .28 2.39± .25 2.26± .17

SRDRM-GAN [8] 24.61± 2.8 - 23.26± 2.8 .72± .17 - .67± .19 2.59± .64 - 2.57± .63

Deep SESR [9] 25.70± 3.2 26.86± 4.1 24.75± 2.8 .75± .8 .75± .6 .66± .5 3.15± .48 2.87± .39 2.55± .35

WaveNet [32] 25.71± 3.0 25.23± 2.7 25.08± 2.9 .77± .7 .76± .7 .74± .7 2.99± .57 2.96± .60 2.97± .59

URTB, Ours 26.49± 2.6 26.27± 2.7 25.23± 2.5 .78± .07 .77± .07 .75± .08 3.06± .45 2.95± .51 3.01± .42

FDL, Ours 28.30± 3.1 27.54± 3.0 27.35± 3.0 .82± .06 .80± .07 .79± .07 3.10± .48 3.07± .44 3.10± .45

Qualitative Results. We first visualise the results obtained from the train-
ing of our model on EUVP, showing in Fig. 4. We show the original images,
the URTB baseline images, the URTB+FDL images, the ground truth images
and the images obtained by Deep WaveNet [32]. Compared the URTB and Deep
WaveNet [32], Our FDL training model tends to produce images with less colour
distortion, especially in the background which can be observed from column 5
in Fig 4 where the output of WaveNet produces more dark results. Addition-
ally, we can observe from Fig. 1 a certain high response to high frequencies in
the spectrum generated by the URTB baseline and WaveNet [32] (highlighting
near the edges of the image), which is not apparent in the original and ground
truth images. By comparison, we find that our URTB+FDL model successfully
removes the high response than the baseline. As for the UFO-120 dataset, we
can observe from the comparison between URTB and WaveNet in Fig. 5 that
WaveNet [32] trends to generate to more yellowish images while ours are more
closer to the groundtruth images in terms of the overall color. We can conclude
that training with the FDL, the colour shift has been relieved compared to with-
out FDL.

Fig. 5. Qualitative results on UFO-120 dataset
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5 Conclusion

In this paper, we propose a novel framework that incorporates a model using the
transformer as the baseline, and we propose a frequency domain-based loss func-
tion for reconstructing more realistic images. In particular, our baseline model
uses the URTB module to further construct a deeper network, which consists of
a series of Swin transformer layers and discards convolution compared to RSTB.
And to our best knowledge, it is the first time of using Transformer in UIR.
In addition, we employ the FFT to transform the output and reference images
into the frequency domain, and then add an l1 loss to reduce the discrepancy
between the reconstructed image and the real image. Extensive experiments have
demonstrated numerically and visually the effectiveness of our proposed model
and loss for underwater image enhancement and reconstruction tasks, achieving
optimal results. Our future work will continue to explore the integration of the
frequency domain with light-weight deep learning architectures.
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Abstract. Since the task of annotating medical image labels is pixel-
level and needs to be depicted by trained experts, there are few large-
scale medical image datasets with annotations. Semi-Supervised Learn-
ing (SSL) has become the focus of research for medical image segmenta-
tion tasks. The key techniques for our Segmentation method are Mixup
and Mutual Information (MMISeg), which involve consistency-based reg-
ularization and unsupervised representation learning. On the one hand,
we utilize an interpolation-based method to mix unlabeled data, and
minimize consistency regularization. On the other hand, by taking the
feature of the encoder stage as global feature and the feature of the
decoder stage as local feature, we maximize mutual information of global
and local features which are from two different transformations of the
same image, respectively. Experimental results show that MMISeg out-
performs existing semi-supervised methods.

Keywords: Semi-supervised learning · Medical image segmentation ·
Mutual information · Mixup

1 Introduction

Deep learning gradually replaced the original method and became the main-
stream image segmentation method. Especially in recent years, the proposal of
Fully Convolutional Networks (FCN) [18] has greatly advanced the state-of-the-
art in semantic image segmentation. Image segmentation is an important pro-
cessing step for both natural images and medical images. Generally, such network
contains a large number of trainable parameters and requires a large amount of
labeled data for training. In the medical image segmentation domain, these data
need to be large-scale pixel-wise annotated, but it is difficult to obtain a large
labeled dataset due to pixel-wise annotation must made by trained experts,
which is a time-consuming and tedious process. However, abundant unlabeled
data is available. Semi-Supervised Learning (SSL) emerges as the times require.
SSL-based methods utilize only few labeled data and compensating for the large
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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portion of unlabeled data by generating pseudo labels. Surprisingly, the produced
segmentation results are accurate and close to those fully supervised methods.

Mainstream SSL medical image segmentation frameworks are roughly divided
into two categories. One of them employ consistency-based regularization [2,17,
22,23], and the other utilize unsupervised representation learning [7,21]. They
have show a great potential at exploiting unlabeled data. The former approach
based on consistency regularization,which leverages the principle transformation
equivariant, i.e. f(T (x)) = T (f(x)) for a geometrical transformation T , which
forces the unlabeled data x and its different transformed version T (x) to produce
similar prediction on the segmentation network f . The latter approach based on
representation learning [4], which uses unlabeled data in a pre-training step to
find an internal representation of images which is useful to the downstream
analysis tasks [21].

Recently, a popular technique based on representation learning is contrastive
learning [19,29]. Contrastive learning is a simple framework that learning pos-
itive/negative representations from data organized into positive/negative pairs.
The positive pairs are usually consist of unlabeled data and its augmented ver-
sion, and the negative pairs are usually consist of two different unlabeled data.
This technique maximizes the similarity between the representation of positive
pairs while minimizes the similarity among the representation of negative pairs
[32]. However, the use of a continuous-variable representation that makes the
estimation of the joint distribution of samples or their mutual information more
difficult [21].

Deep clustering is a plausible solution, which based on a discrete represen-
tation [6,13]. In deep clustering, a network is trained with unlabeled data to
map examples with similar semantic meaning to the same cluster label. Same
as Generative Adversarial Networks (GANs), it also suffers from mode collapse
which is possible that all samples are mapped to the same cluster. To alleviate
this issue, [13] proposed an Information Invariant Clustering (IIC) algorithm
based on Mutual Information (MI). The MI is used to measure the strength of
the relationship between two variables X and Y , and is defined as:

MI(X;Y ) = DKL(p(X,Y )|p(X)p(Y )) (1)

Here KL is the KL divergence, p(.) is the distribution of variable, p(., .) is the
joint distribution of two variables. [20] applied the IIC algorithm to SSL segmen-
tation. This IIC-based approach makes the framework more robust and increases
the local smoothness of the segmentation and avoids mode collapse to a single
class. Yet, only the output of the network is calculated IIC, and features from
other layer are available.

MMISeg combines consistency-based regularization and unsupervised repre-
sentation learning. On the one hand, we adapt interpolation-based consistency
regularization [2], which mixes two unlabeled image and regularizes them. This
idea was proposed by [2], which extended to an unsupervised setting by [5]. On
the other hand, we utilize IIC-based representation learning to make the local
features and global features between positive paris as close as possible. Our con-
tribution can be summarized as follows:
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1. We propose a novel and effective SSL strategy for medical images, such as
cardiac Magnetic Resonance Imaging (MRI) images.

2. The proposed method in this paper combines consistency-based regularization
and unsupervised representation learning, which can fully mine information
from the abundant unlabeled data and improve the effectiveness and robust-
ness of the model.

3. In this paper, we achieve Dice Similarity Coefficient (DSC) of 90.04% in
ACDC dataset, 87.09% in MMWHS dataset, and the labeling rate is only
10% and 20% for each other.

2 Related Work

Semi-supervised Segmentation aims to utilize SSL to learn a model, which
only employs a small amount of labeled data and a large amount of unlabeled
data. In recent years, semi-supervised learning is applied to semantic segmenta-
tion widely. [1] is the first literature to introduce SSL framework into medical
image segmentation, which adapted from the VGG-16 Net [25] and similar to the
DeepLab architecture used in [10]. The framework generates pseudo labels after
every iteration, which are refined using Conditional Random Field (CRF) [16].
Besides, there are methods based on data distillation [24]. It generates annota-
tions on the unlabeled data using a model trained on a large amount of labeled
data, and then all the annotations(existing or generated) are used to retrain the
model. Adversarial learning [27] expands the training set by generating unlabeled
or weakly labeled images through Generative Adversarial Networks (GANs).
Thus it can obtain better image segmentation results with limited labeled data.
Entropy minimization [31] reduces the difference between the original domain
and the target domain by reducing the entropy value of the prediction result of
the target domain image. Consistency regularization [23,28] enforces the model
generates similar output for similar input, i.e. inject noise into the input data,
and the output is as close as possible. Data augmentation [8,9] proposes an
effective method for automatic data augmentation to synthesize labeled medical
images by learning transformations to address the lack of labeled images.

Mixup [34] is a simple and data-agnostic way of data augmentation. By
performing a simple linear transformation on the input data, the generalization
ability of the model can be increased, and the robustness of the model to adver-
sarial attacks can be improved. As a result, more approaches have been proposed.
cutMix [33] considers the space of the image, and cuts a random rectangular area
on one image to another to generate a new one. Manifold Mixup [30] extends
input data mixing to output mixing of intermediate hidden layers. puzzleMix
[15] adds saliency analysis to cutMix, calculates the saliency area of each sam-
ple, and only cuts the saliency region. patchUp [11] is based on the Manifold
Mixup, and draws on the idea of cutMix cutting in the spatial dimension. It also
cuts the output of the middle hidden layer, and exchanges or interpolates the
middle hidden layer clipping blocks of two different samples. Co-Mixup [14] is
based on puzzleMix, changing from mixing two samples to extracting saliency
regions from multiple samples and mixing them.
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Mutual Information (MI) is a concept in information theory used to
measure the degree of interdependence between two random variables and is
applied in deep learning widely. But MI has historically been difficult to calcu-
late. Especially for high-dimensional spaces, the marginal distribution is ines-
timable. MINE [3] proposed a mutual information estimator, which achieves the
estimation of mutual information between high-dimensional continuous random
variables through gradient descent on neural networks. DIM [12] is based on
MINE, which can simultaneously estimate and maximize the MI between global
and local representations. Since the high estimation variance of MINE, several
methods have been proposed to mitigate the drawback. [36] utilizes Jensen-
Shannon (JS) divergence to maximize the mutual information between the input
image and its latent representation. [26] clips the density ratios when estimating
the partition function. To address the difficulty of directly estimating mutual
information (MI) between high-dimensional variables and significant additional
computational overhead, Information Invariant Clustering (IIC) [13] uses a clus-
tering algorithm to cluster high-dimensional features into low-dimensional fea-
tures and then maximize their mutual information.

3 Method

MMISeg consists of a fully supervised part and an unsupervised part. The main
idea for fully supervised part is to enforce the output of the model as consistent
as possible with the ground truth. Our unsupervised part combines consistency-
based regularization and unsupervised representation learning. Which aims to
mine information from the large amount of available unlabeled data. We then
introduce our method through these two parts in greater detail.

3.1 Problem Definition

Image segmentation is a special classification task, the difference from traditional
classification tasks is that it requires classification pixel by pixel. We split the
dataset into a labeled part Dl = (Xl, Yl) of image-label samples (x, y) ∼ (Xl, Yl),
and a larger unlabeled part Du = (Xu, Yu), where Xl = {xi|i = 1, 2, ..., N},Xu =
{xi|i = N +1, N +2, ...N +M}, Yl = {yi|i = 1, 2, ...N}, xi ∈ R

Ω , yi ∈ {1, ...C}Ω

and i denotes the image index. The ground truth Yl are manually pixel-wise
marked on the images Xl by experts, whereas the ground truth Yu are unknown.
Here, Ω = {1, ...W} × {1, ...,H} is the image space and C is the number of
segmentation classes. Our purpose is to train a model f parameterized by θ to
predict the pixel-wise label map y from input image x.

3.2 Supervised Segmentation

For the fully supervised part, the most commonly used loss function for image
segmentation task is the pixel-wise cross-entropy (CE) loss Eq. 2, which enforces
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Fig. 1. The overall network architecture of our proposed method. Given a batch size
unlabeled images X and their transformations Xtf , Mixing X as interpolated images
Xmix, Mixing Xtf as interpolated images Xtf_mix. We maximize the MI between X
and Xtf , Xmix and Xtf_mix to learn transformation-Invariant representation. The MI
is obtained by multiple auxiliary clustering heads. At the same time, we utilize Lcons

to enforce the consistency among different transformations. Naturally, Lmix ensures
the consistency of the interpolated outputs, which help the model learn more robust
features.

the output of model f to be consistent with y.

CE(pi, yi) = −
C−1∑

j=0

yij log(pij) (2)

where yi is the one-hot representation of the ground truth of sample i, when
sample i belongs to class j, yij = 1, otherwise yij = 0, pi is a predicted probabil-
ity distribution for label yi, pij denotes the predicted probability of the sample
i belongs to class j, Specifically, the supervised part CE loss function can be
written as:

Lsup_ce = − 1
|Dl||Ω|

∑

(x,y)∈Dl

∑

(i,j)∈Ω

yij log fij(x; θ) (3)

However, since there is a lot of noise in medical images, the target region may
only occupy a small part and the categories are extremely unbalanced, and we
may not achieve good performance using only CE loss. The Dice Coefficient is
an ensemble similarity measure function usually used to calculate the similarity
of two samples which is equivalent to the F1 score. This measure ranges from 0
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to 1, with higher value corresponding to better segmentation.

DICE(X,Y ) =
2TP

2TP + FP + FN
=

2|X ∪ Y |
|X| + |Y | (4)

Consequently, we should maximize the Dice Coefficient. The other part super-
vised dice loss function can be written as:

Lsup_dice = − 1
|Dl||Ω|

∑

(x,y)∈Dl

C−1∑

j=0

2〈fj(x; θ), yj〉
‖fj(x; θ)‖1 + ‖yj‖1 (5)

where j denotes the class j, fj(x; θ) ∈ {0, 1}Ω represents the predicted region
of class j, yj ∈ {0, 1}Ω represents the ground truth of class j, 〈., .〉 denotes dot
product, and ‖.‖1 means L1 norm.

3.3 Unsupervised Segmentation

Consistency Regularization. Consistency Regularization is easily designed
for classification tasks. For instance, the input image and its transformation and
perturbation (rotation, flipping and cropping) should belong to the same class,
i.e. classification task is transformation invariant. While in the segmentation
task, once we transform or perturb the input image, the expected output for
ground truth should have the same transformation or perturbation, i.e. segmen-
tation task is transformation equivariant. Yet, convolutions are not transforma-
tion equivariant, meaning that if one rotates or flips the input, then the feature
map does not necessarily rotate in a meaningful or easy to predict the man-
ner [17]. Generally the transformations between input images T1 and outputs
T2 are associated, so we introduce a transformation consistent scheme, which
utilizes the same transformation T1 = T2 between input images and outputs,
and enforces the ground truth and outputs as similar as possible. We use mean-
squared (MSE) loss Eq. 6 to measure the distance between ground truth and
output. The loss function can be expressed as:

MSE =
n∑

i

(yi − ŷi)2 (6)

Another form of expression for MSE loss is L2 norm. We deploy MSE loss on u
and utf , umix and utf_mix. Therefore, the loss function of consistency regular-
ization can be written as:

Lcons =
1

|Xu|
∑

u∈Xu

∑

x∈Λ

‖f(xtf ; θ) − T (f(x; θ))‖2 (7)

where Λ = {u, umix}, u means the input image, xtf means the transformation
of input image, xmix is obtained by interpolating and mixing input image, the
same is true for xtf_mix. ‖.‖2 denotes L2 norm. How to interpolate and mix
images will be explained in Sect. 3.3.
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Consistency-Based Regularization with Interpolation. In literature [5],
the authors proposed that encouraging interpolated data-points to be more real-
istic, which improved the performance for feature learning and unsupervised
clustering. It has also been demonstrated in [2] that the interpolation-based mix-
ing technique improves unsupervised learning. Driven by this speculation and
the aforementioned success, we adapt the interpolation-based mixing technique
in our medical image segmentation method. Considering two unlabeled image
(u1, u2) ∈ Xu, and then we can obtain another unlabeled image by interpola-
tion Mα(u1, u2), where Mα(u1, u2) = αu1 + (1 − α)u2, and the hyperparameter
α ∼ Beta(0.2, 0.2). This takes advantage of the fact that the network learns
to predict a pixel-level segmentation mask for the input image, in addition to
maintaining consistency between the output of the interpolated input and the
interpolated output of the original input. Based on this idea, the Consistency-
based Regularization with Interpolation technique can be summarized as:

Mα(f(u1; θ), f(u2; θ)) � f(Mα(u1, u2); θ) (8)

Similarly, we use MSE loss Eq. 6 to measure the distance between them. There-
fore, the loss function can be written as:

Lmix =
1

|Xu||Λ|
∑

(u1,u2)∈Xu

∑

(x1,x2)∈Λ

‖Mα(f(x1; θ), f(x2; θ)) − f(Mα(x1, x2); θ)‖2

(9)
Here, Λ = {(u1, u2), (utf1, utf2)} . We can enforce the consistency of the inter-
polated output and the output of interpolated input.

Global Mutual Information Loss. Considering unlabeled image u ∈ Xu,
and its transformation version utf = T (u), we assume that u and utf have
similar contextual information. Transformation T is usually a simple geometrical
transformation(rotation, flipping and cropping). For our baseline model UNet,
we can divide it into two parts the encoder φenc and the decoder φdec. The high-
level semantic features (global feature) φenc(u) and φenc(utf ) should be similar.
We expect a high MI between them. Consequently, we maximize their mutual
information:

max
θenc

MI(φenc(u);φenc(utf )) (10)

where MI(.; .) denotes the mutual information, and θenc is the learnable param-
eters of the encoder. While it is difficult to optimize directly Eq. 10 as the two
variables are high-dimensional. Consequently, we utilize a clustering head and
project the features into cluster probability distributions. According to the infor-
mation bottleneck theory, we can obtain:

MI(g(φenc(u)); g(φenc(utf ))) ≤ MI(φenc(u);φenc(utf )) (11)

where g(φenc(.)) ∈ [0, 1]K is the cluster probability distributions, g is the aux-
iliary clustering head, and K denotes the number of clusters. We use P (z|u) to
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represent the cluster distributions of u, and P (ztf |utf ) to represent the cluster
distributions of utf . The conditional joint distribution can be expressed as:

P (z, ztf |u, utf ) = g(φenc(u)) · g(φenc(utf ))T (12)

For all u ∈ Xu, the K × K joint probability distribution P = P (z, ztf ) can be
approximately estimated as P (z, ztf |u, utf ). Meanwhile, according to Eq. 1, the
global MI loss can be expressed as:

Lglobal
MI = − 1

|Xu||Λ|
∑

u∈Xu

∑

x∈Λ

MI(P (z, ztf ))

= − 1
|Xu||Λ|

∑

u∈Xu

∑

x∈Λ

P (z, ztf ) log
P (z, ztf )

P (z) · P (ztf )

(13)

Here, Λ = {u, umix}, z = g(φenc(x)), ztf = g(φenc(xtf )). By optimizing the loss
function, we can guarantee the contextual information similarity between input
image and its transformation.

Local Mutual Information Loss. The features from the decoder are called
the local features. Considering ϕ(b)(u) = φ

(b)
dec(φenc(u)) ∈ R

Cb×Hb×Wb as the fea-
ture map of the b-th decoder block for an unlabeled image u ∈ Xu. For each
position (i, j) of the local feature map, the feature vectors can be read off as
[ϕ(b)(u)]i,j ∈ R

Cb . The adjacent vectors can be defined as [ϕ(b)(u)]i+p,j+q, some
small displacement (p, q) ∈ Δ(b) ⊂ Z

2 The local features contain more spatial
and structural information, i.e. it is regional. Therefore, we can assume that a
patch in the input image shares information with its adjacent. By applying the
same transformation T to ϕ(b)(u), the features can be paired and aligned at once.
Based on this idea, our Mutual Information should be applied in ϕ(b)(utf ) and
T (ϕ(b)(u)). However, since the feature obtained directly from the decoder block
is high-dimensional, we deploy linear projection head h for dimensionality reduc-
tion. It is worth noting that, in order not to destroy the spatial and structural
information, h is 1 × 1 convolution and softmax. Therefore, we aim to maxi-
mize the MI between h([ϕ(b)(utf )]) and h([T (ϕ(b)(u))]) The joint distribution
for displacement (p, q) ∈ Δ(b) can be estimated as:

P (b)
p,q ≈ 1

|Xu||Λ||Ω|
∑

u∈Xu

∑

x∈Λ

∑

(i,j)∈Ω

h([ϕ(b)(xtf )]i,j) · h([T (ϕ(b)(x))]i+p,j+q) (14)

where Λ = {u, umix}. Thus, for all decoder layers, the Local Mutual Information
loss can be written as:

Llocal
MI = − 1

|B|
B∑

b=1

1
|Δ(b)|

∑

(p,q)∈Δ(b)

MI(P (b)
p,q ) (15)

Here, MI(.) can be computed as Eq. 13.
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3.4 Objective Function

For MMISeg, combining supervised part and unsupervised part, joint Eq. 3,
Eq. 5, Eq. 7, Eq. 9, Eq. 13, and Eq. 15, the objective function can be expressed
as:

L(θ) = Lsup + Lunsup

= λ1(Lsup_ce+sup_dice) + λ2Lcons + λ3Lmix + λ4(L
global
MI + Llocal

MI )
(16)

where λ1, λ2 λ3, and λ4 are all hyperparameters that control the weights of each
part of the loss respectively. We will discuss the effect of these hyperparameters
on the experimental results later. By optimizing the loss, we can mine informa-
tion from the abundance of unlabeled data, and then reach great performance.
The overall network architecture of our proposed method is shown in Fig. 1.

4 Experiments and Results

4.1 Dataset and Evaluation Metrics

ACDC Dataset. Automated Cardiac Diagnosis Challenge (ACDC) provides
short-axis cardiac MRI volumes of 100 patients, which can be divided into
five subgroups: normal, previous myocardial infarction, dilated cardiomyopa-
thy and abnormal right ventricle. For the entire cardiac cycle, there were only
end-diastolic (ED) and end-systolic (ES) slices and corresponding manual refer-
ences based on analysis by one clinical expert. The mutual reference annotations
consist of three structures: left and right ventricle and myocardium. The dataset
was split into train, validation, and test sets, and the 3D volumes were sliced
into 2D slices. After eliminating invalid slices (i.e., slices that do not contain the
target region), there are 1912 valid slices. Data augmentation includes cropping
to 224 × 224 pixels, random horizontal flip, and random rotation.

MMWHS Dataset. Multi-Modality Whole Heart Segmentation Challenge pro-
vides 20 3D cardiac MRI volumes. The annotations consist of seven structures:
left and right ventricle, left and right atrium, myocardium, ascending aorta and
pulmonary artery. Same as the ACDC dataset, we can obtain 2898 slices. For
data augmentation, we employ the same strategy as the ACDC dataset.

To evaluate the performance of MMISeg, we employ two broadly applicable
metrics: Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). We
will report the average of all the metric scores over all the classes for the ACDC
dataset. Since the MMWHS dataset has seven structures, each slice may contain
only a few of them, so we merely report these metrics for the whole heart.

4.2 Setup and Results

Driven by the excellent performance of U-Net in medical image segmentation, we
employ U-Net as the baseline for MMISeg, which consists of five down-sampling
layers and five up-sampling layers, implemented multi-scale feature fusion by skip
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connection. We use an ADAM optimizer with an initial learning rate of 0.001
to optimize the network learnable parameters. Following the existing works in
literature [21], we apply global and local MI loss to three different layers: the
last layer of the encoder (conv_5) for global MI loss, and the last two layers
from the decoder (upconv_3 and upconv_2) for local MI loss. While calculating
MI loss, the weights of each layer are 0.5, 1.0, and 1.0 respectively, and remain
unchanged throughout the experiment. We set the neighborhood size Δ to 3× 3
for upconv_3 and 7× 7 for upconv_2. Meanwhile, we fix the number of clusters
of the decoder and encoder to K = 10, and deploy five clustering heads rather
than a single head. To balance the different loss term in Eq. 16, we adapt the
weights of λ1 = 1.0, λ2 = 5.0, λ3 = 1.0, and λ4 = 0.1. The labeling rates of the
ACDC dataset and MMWHS dataset are 10% and 20% respectively.

The efficacy of MMISeg can be verified by comparison with other methods as
shown in Table 1. By running with different random seeds, MMISeg obtains the
highest mean DSC of 90.04% on the ACDC dataset and 87.09% on the MMWHS
dataset. As shown in the Table 1, our method utilizes small labeled data and
produces state-of-the-art performance in terms of DSC and HD. Although the
improvement on the ACDC dataset is not obvious, the performance is boosted
by 7.26% on the MMWHS dataset. Compared with our results, the labeling rate
which is higher than our method [22] and lower than our method [21] achieve
inferior performance. The impact of labeling rate and various hyperparameters
on our experimental results will be introduced in Sect. 4.3.

Table 1. Comparison with other methods on the ACDC dataset and MMWHS dataset.

Method ACDC MMWHS
labeling rate (%) DSC (%) HD (mm) labeling rate (%) DSC (%) HD (mm)

Entropy Min. [31] 5 72.32 – 13.3 49.44 –
Mean Teacher. [22] 5 84.10 – 13.3 55.57 –
Peng et al. [21] 5 85.76 - 13.3 55.75 -
Chaitanya et al. [7] 10 88.6 – 50 79.4 –
Adversarial Training. [35] 20 79.1 5.16 50 77.9 3.20
Basak et al. [2] 10 89.8 4.47 40 79.83 3.05
MMISeg. 10 90.04 1.45 20 87.09 3.24

4.3 Analysis of Our Method

Impact of Labeling Rate. Generally, higher labeling rate means greater per-
formance, but the cost of obtaining annotated data is high. Therefore, it is
critical to find a balance between labeling rate and performance. We conduct
experiments on the ACDC dataset and MMWHS dataset respectively, and use
DSC to measure the performance. As shown in Table 2, with only 5% labeling
rate, we can get 86.72% DSC, far exceeding the performance of 1% labeling rate
on the ACDC dataset. The improvement in labeling rate from 5% to 10% is also
acceptable. However, the performance of 20% labeling rate did not improve sig-
nificantly compared to 10% labeling rate. The difference is that as the labeling
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rate increases, the improvement in performance is considerable on the MMWHS
dataset. We additionally explore the effect of larger labeling rate on the results,
but as with the ACDC dataset, the improvement is inconsiderable at labeling
rate 40%. We consider that it is worth sacrificing this little accuracy, but we
only need less labeled data. Therefore, we choose 10% and 20% labeling rate on
the ACDC dataset and MMWHS dataset, respectively.

Table 2. The validated DSC of different labeling rates on the ACDC dataset and
MMWHS dataset. For ACDC dataset, RV, Myo and LV correspond to right ventricle,
myocardium and right ventricle, respectively.

ACDC MMWHS
RV Myo LV Mean

1% 16.21 40.36 54.45 43.25 57.61
5% 78.44 83.83 89.91 84.06 80.70
10% 88.70 88.00 93.44 90.04 84.17
20% 87.63 89.99 94.04 90.55 87.09

Impact of Hyperparameters. Experiences show that the choice of hyperpa-
rameters has a great influence on the experimental results. We carried out exper-
iments on the ACDC dataset to explore the effect of hyperparameters λ1, λ2, λ3,
and λ4 on performance. Following the existing works in literature [21], we find
that the hyperparameter λ4 which controls the local and global mutual infor-
mation, should not be too large, and we fix it to 0.1. Since the hyperparameter
λ1 controls the weight of the supervised part, but our focus is on the unsuper-
vised part, we keep λ1 = 1 and only change the other hyperparameters. The
results in Table 3 manifest there is little change in the performance when λ2

is varied from 2.0 to 8.0. s λ3 is more sensitive to segmentation performance,
which reflects the importance of Lmix to our results from the side, as shown
in Sect. 4.4. We can achieve the best performance when λ2 = 5.0 and λ3 = 1.0.
These hyperparameters will be the basis of our subsequent ablation experiments.

Table 3. The validated mean DSC of different hyperparameters on the ACDC dataset.
λ2 controls the weight of Lcons, and λ3 controls the weight of Lmix.

λ2 λ3

0.1 1.0 2.0

1.0 88.25 87.95 87.28
2.0 88.53 89.69 89.03
5.0 86.68 90.04 88.87
8.0 87.39 89.67 88.40
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4.4 Ablation Experiment

For the unsupervised part, we have three items Lcons, Lmix and LMI . According
to Sect. 4.3, we fix λ1 = 1.0, λ2 = 5.0, λ3 = 1.0, and λ4 = 0.1. We ablate the use
of Lcons, Lmix and LMI by removing either. Results of the ablation experiments
are summarized in Table 4. It can be seen that removing any part leads to a 1%
to 2% drop in results, with the largest drop occurring when Lmix is removed.
Therefore, Lmix is the most important part of our method, Lcons second and
LMI third.

Table 4. The validated DSC of ablation results on the ACDC dataset.

Lcons Lmix LMI ACDC
RV Myo LV Mean

� � 87.67 85.91 91.87 88.48
� � 87.36 85.03 91.29 87.89

� � 86.35 86.25 92.02 88.21
� � � 88.70 88.00 93.44 90.04

5 Conclusion

In this paper, we proposed a novel SSL medical image segmentation method,
MMISeg, which combines consistency-based regularization and unsupervised
representation learning, and validated the effectiveness of our proposed method
on the ACDC dataset and MMWHS dataset. Therefore, it is believed that our
proposed method can fully mine information from the abundant unlabeled data
and improve the robustness of the model. Currently, we only apply our proposed
method to cardiac MRI image segmentation, and our method is easily extended
to other SSL problems in the medical image domain. Since MMISeg currently
only supports 2D images, if you want to use it for 3D images for other medical
domain, you need to slice the 3D images into 2D images first.
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Abstract. Multi-object Tracking (MOT) focuses on associating detec-
tion boxes with previous results from the same detector using motion
and appearance features. Recently, the Joint detection and embedding
(JDE) paradigm is showing its efficiency to explore the potentially shared
information between the tasks of detection and re-identification (ReID).
However, formulating the tasks of detection and ReID into a shared fea-
ture fusion network may bring inevitable competition during training.
To tackle this problem, we propose a novel dual-stream feature fusion
network (DSFFN) to alleviate the competition between the two tasks
and obtain better task-dependent feature expression. It forms the detec-
tion and ReID feature fusion tasks into a parallel network, and they only
share the low-level feature information. Further, to solve the inconsis-
tency across different scales of ReID embeddings and improve the aware-
ness of important information, we propose a multi-scale cross-connected
attention network (MSCCAN) for ReID feature fusion. At last, we mod-
ify the prediction head to be decoupled design to tackle the conflicts
between multi-task. Our method obtains 78.8% MOTA and 74.3% IDF1
on MOT16 test sets, which outperforms the previous works and achieves
state-of-the-art performance.

Keywords: Multi-object tracking · Dual-stream network · Feature
fusion · Re-identification

1 Introduction

Multi-Object Tracking (MOT) plays a crucial role in computer vision soci-
ety, with various practical applications ranging from video surveillance to
autonomous driving. The goal of MOT is to connect the detection boxes between
adjacent frames to form smooth trajectories. Since object detection [7,9,15,33]
benefits a lot from the advances of deep learning and large-scale datasets [12,22],
the most widely investigated MOT methods [3,16,28,30] usually follow the
tracking-by-detection (TBD) paradigm, which divides MOT into two separate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 247–260, 2022.
https://doi.org/10.1007/978-3-031-20862-1_18
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components: a detection model and an appearance embeddings model. How-
ever, the connection between detection and appearance feature extraction in
TBD is not always elegant enough. Bochinski et al. [4] first obtained detec-
tion results from the object detector and then simply computed the IoU value
between new detection boxes and the position of tracklets to achieve real-time
association. Bewley et al. [3] introduced the Kalman filter to predict the cur-
rent position using the previous states for smoother matching. There are also
several works [6,30] following the tracking-by-detection paradigm that achieved
good performance without appearance features. Though these methods using a
weak matching strategy can achieve a high updating rate during tracking, their
good performances seriously depend on perfect detection without uncertainties
of the complex environment. Therefore, some researchers [16,28] began to focus
on adding an extra network for appearance feature extraction to achieve a more
robust association. Wojke et al. [26] adopted a simple CNN to extract ReID
feature embedding after detection, and then used them for the data association.
These methods proved that the appearance features are helpful in long-term
tracking. But they have to crop the detection boxes after the detection step and
perform forward inference in a separate model again to obtain ReID embeddings,
which may lead to a massive computational redundancy. Thus, these two-step
methods are difficult to realize real-time application in practical scenes.

Recently, with the development of multi-task learning, the one-shot meth-
ods [10,25,31] attract more attention due to their efficiency in localizing the
objects and obtaining ReID features simultaneously in a unified network. The
one-shot methods usually modify the prediction head to add extra output chan-
nels to indicate the ReID embeddings. However, the combination of the two
different tasks of detection and ReID brings inevitable inherent competition
and hurts the accuracy of detection. In the widely used one-shot methods, e.g.
JDE [25], they usually distinguish the two tasks only in their prediction head.
This means that detection and ReID share all features extracted by the same
backbone and feature fusion network. However, detection expects the model has
a high sensitivity for all valid objects whereas ReID tends to focus on the specific
object. Thus, the different usages of these features by different tasks bring con-
flicts during learning. Zhang et al. [31] comprehensively analyzed the unfairness
learning of the two tasks during training. They adopted an anchor-free detector
to reduce ambiguous learning but the two tasks still shared the whole back-
bone and feature fusion network, which failed to tackle the competition between
different tasks and still decreased the performance of its detector.

To solve the problem mentioned above, in this work, we first analyze the
intrinsic reasons for the advantages and disadvantages of the one-shot method
and conduct our research based on the widely used one-shot methods. We first
propose a dual-stream feature fusion network (DSFFN) to separate the feature
fusion operations of the tasks of detection and embedding. DSFFN allows both
tasks to simultaneously obtain the desired task-dependent feature maps from
their respective feature fusion networks. Meanwhile, we introduce a multi-scale
cross-connected attention network (MSCCAN) to enhance the response value on
the specific object. It consists of a cross-connected structure and several spatial
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attention and channel attention modules to improve the learning of important
information. Further, we introduce the decoupled prediction head to alleviate
the negative effects caused by the conflicts between multi-task. Moreover, our
method still belongs to the one-shot method which can achieve end-to-end learn-
ing and output detection results and embeddings at the same time. In summary,
the main contributions of our work are as follows:

1. A novel dual-stream feature fusion network (DSFFN) is proposed to finish
the task-wise feature fusion for detection and ReID. Meanwhile, the predic-
tion head is modified from coupled design to decoupled. These improvements
reduce the competition between tasks and strengthen the representation capa-
bility of features.

2. A multi-scale cross-connected attention network (MSCCAN) is introduced in
the ReID branch. It helps the network become more sensitive to the features
of the specific target, which improves the reliability of the online association
during long-term tracking.

3. Through extensive experiments, we verify the effectiveness of the proposed
method and make considerable improvements to the one-shot method. Fur-
ther, our method outperforms the state-of-the-art methods by a large margin
on MOT16.

2 Method

Our goal is to leverage the efficiency of the joint detection and embedding
paradigm and alleviate the competition between two tasks in a unified network.
In this section, we present the details of our proposed framework, named dual-
stream feature fusion network (DSFFN), including two parallel feature fusion
networks for the tasks of detection and ReID respectively. Then, we introduce the
multi-scale cross-connected attention network (MSCCAN) in the ReID branch
to refine the ReID feature fusion and improve the awareness ability of the impor-
tant information. Further, we modify the prediction head from coupled design
to decoupled design.

2.1 Overview of JDE

JDE [25] employs YOLOv3 [20] as its object detector and then redesigns the
prediction head to obtain detection results and the feature embeddings of each
valid detection in a single network. After the input frames are processed by a
backbone network, the feature maps are fed into a shared feature pyramid net-
work (FPN) [11] to obtain multi-resolution features. This feature fusion process
consists of a bottom-up pathway, a top-down pathway, and lateral connections.
Then, the modified prediction head processes the extracted features and then
outputs the detection results and ReID embeddings simultaneously.
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2.2 Dual-stream Feature Fusion Network

Improvements of JDE are limited to adding an extra output branch in the pre-
diction head to obtain detection results and ReID embeddings simultaneously.
The main advantage is that it can use a unified network to finish the two tasks.
However, these two different tasks share the same feature fusion network. Due to
the large gap between the detection task and the ReID feature extraction task,
during the back-propagation, the update of the weight parameters is always
biased to one of the tasks. These limitations may directly lead to suboptimal
learning during training and seriously hurt the performance of detection.

Fig. 1. Overview of the structure of our proposed method DSFFN. The input image is
first fed into the backbone to extract multi-resolution features. Then the features are
performed feature fusion operations in two separate networks to obtain task-dependent
features. The obtained feature maps are processed by the decoupled prediction head
to output detection results and ReID embeddings simultaneously.

To solve the problem and alleviate the competition between the two tasks, we
propose a dual-stream feature fusion network (DSFFN), which can learn more
representative features for detection and ReID, as can be seen in Fig. 1. It splits
the original feature fusion network into two independent branches, which enables
the detection task and the ReID task to obtain multi-scale fused features from
the corresponding networks. We first replace the object detector in JDE from
YOLOv3 [20] to YOLOX [9], which uses a stronger feature extraction backbone,
CSP-Darknet, thus bringing better feature extraction performance. As shown in
Figure 1, given an input video frame ft, it undergoes a forward inference through
the backbone network to yield feature maps of three different scales with 1/8,
1/16, and 1/32 down-sampling rates, which are denoted as F i|i=1,2,3. Then, we
start from the backbone and extend two separate branches for extracting and
detection and ReID features. These features are fed into DSFFN, including the
fusion network Ψ and Φ for detection and ReID, respectively. Then, the features
F i from the same backbone are fused by separate feature fusion networks to
obtain multi-scale detection features Di and ReID features Ei, as shown in
Eq. 1.

[Di,Ei] = [Ψ(F i), Φ(F i)], i = 1, 2, 3 (1)
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2.3 Multi-scale Cross-Connected Attention Network

FPN [11] in JDE [25] performs up-sampling operations to resize the feature
maps in the top-down pathway and then fuses multi-level features simply using
channel concatenation. However, due to the inconsistency across different feature
scales, the fused features may retain redundant features but make important
information invisible. Thus, we introduce a multi-scale cross-connected attention
network (MSCCAN) to tackle the problem. For the detection branch, we adopt
the same structure as YOLOX [9] with the PA-FPN feature fusion network for
simplicity.

Fig. 2. Diagram of MSCCAN. We input multi-resolution features to it and then obtain
the fused multi-scale feature map for ReID embeddings.

For the ReID branch, we use MSCCAN to aggregate multi-level features from
different resolutions as shown in Fig. 2. The multi-scale structure is designed to
provide exclusive ReID feature embeddings with different scale objects. In the
network, the spatial attention module (SAM) and channel attention modules
(CAM) are designed to learn more representative features. In other words, the
combination of SAM and CAM in this network makes the trained model more
sensitive to the features of specific objects.

In particular, as shown in Fig. 2, the MSCCAN branch obtains the input
features F i|i=1,2,3 shared with the detection branch from the same backbone.
Firstly, the SAM modules are adopted to aware of the position of the important
information in the feature maps. The SAM operations are shown in Eq. 2.

Si = σ(f7×7([AvgPool(F i);MaxPool(F i)])), i = 1, 2, 3 (2)

where σ represents the Sigmoid activation, f7×7 is the convolution layer with
7 × 7 kernel size. Specifically, we first perform avg-pooling and max-pooling on
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channel dimension to obtain a feature map with size H × W × 2, which are
processed by a 7 × 7 convolution layer and a sigmoid activation to yield the
spatial attention map Si. Note that the original feature map are performed a
1×1 convolution to reduce the number of channels and followed an element-wise
multiplication with the spatial attention map Si, as shown in Eq. 3.

F ′
i = f1×1(F i) ⊗ Si, i = 1, 2, 3 (3)

Then, we introduce the cross-connected concatenation to enhance information
interaction between feature maps with different resolutions. We first resize the
feature maps to the shape of the other level with up-sampling and down-sampling
operations. For up-sampling, we apply the nearest interpolation to upscale the
resolution and 1 × 1 convolution to reduce the number of channels. For down-
sampling, we use 3 × 3 convolution with stride 2 to downscale and reduce the
number of channels. After that, the operations of CAM are followed for each
scale of feature maps to aggregate different information from different levels, the
operations of the CAM are illustrated in Eq. 4.

Ci = σ(MLP (AvgPool(F i)) + MLP (MaxPool(F i))), i = 1, 2, 3 (4)

The outputs of avg-pooling and max-pooling are first processed by a shared
1 × 1 convolution layer and then fused by element-wise addition and Sigmoid
activation to obtain channel attention maps Ci. The channel attention maps
are performed element-wise multiplications to finish the feature fusion task, as
shown in Eq. 5.

F ′
i = F i ⊗ Ci, i = 1, 2, 3 (5)

2.4 Decoupled Prediction Head and Training Details

Further, the prediction head of JDE follows the coupled design of YOLOv3 [20],
which leads to the existence of competition between classification and regression
tasks. Therefore, we modify the coupled prediction head to a decoupled head,
as shown in Fig. 3. In general, the design of the decoupled head is similar to
YOLOX, but we add an extra branch for classification to predict the ID indexes
of pedestrian objects corresponding to the extracted ReID feature. The learning
of each decoupled prediction head is modeled as a multi-task learning problem.
Note that the process of the classification is only performed during training.

To train the detection and ReID tasks in a unified network, we adopt a
weighted sum of detection loss and ReID loss during training. Moreover, we set
an additional learnable parameter s = {sdet, sid} for each part of the overall loss
function, which can automatically adjust the weights and brings task-dependent
uncertainty. The cost can be formulated as:

L =
1

esdet
Lcls +

λ

esdet
Lreg +

1
esid

Lid (6)

where λ is a balancing parameter. Specifically, we input a video frame fi with
its ground-truth labels Lk, where Lk = (xk, yk, wk, hk, ck). (xk, yk) represents
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Fig. 3. The comparison of the coupled head of JDE and the decoupled head of our
proposed method. The outputs are divided into two separate branches for detection
and ReID to alleviate the conflict between multi-task. An additional IoU branch is
added in regression branch for better localization capability.

the center position in the image and the (wk, hk) represents the size of the k-th
bounding boxes. ck indicates the ID index of the object in its bounding box.
After processing the forward inference of the network, the decoupled prediction
head outputs a 5-dimension vector p = (x′, y′, w′, h′, s), where s indicates the
confidence score of the existence of objects. Given a prediction box bi, we calcu-
late the intersection-over-union (IoU) value with the ground-truth box bgt, and
adopt IoU loss for bounding box regression, which can be defined as Eqs. (8–9).
The α is set to 0.25 and γ is set to 0.

Lreg(bi) =

{
1 − IoU(bi, bgt) if y=1
0 otherwise

(7)

Though the class of objects is set to 1 (only pedestrians), we keep the classifi-
cation branch in the prediction head for the extension of future work. Focal loss
is adopted to calculate the classification errors:

Lcls = −α(1 − pt)γ log(pt) (8)

pi =

{
p if y=1
1 − p otherwise

(9)
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2.5 Online Association

In this section, we briefly introduce how the proposed method is applied to MOT
in this work. Specifically, we follow the same cascade matching strategy as JDE.
We first initialize a tracklet with motion state mi = (x, y, γ, h, ẋ, ẏ, γ̇, ḣ) and a
ReID embedding ei, where (x, y) represents the center position of the object, γ
is the aspect ratio, and h indicates the height of the bounding box. For a new
coming frame, we first calculate the appearance similarity Se and the motion
similarity Sm between the tracklet pool and the new detections using cosine
distance and Mahalanobis distance. Then we adopt the Hungarian algorithm
to solve the linear assignment problem with the cost matrix C, which can be
defined as:

C = λSm + (1 − λ)Se (10)

where λ is a hyper parameter to control the importance of the two similarity
metrics. When a certain tracklet is matched with new detection, its motion state
is updated by the Kalman filter, while its ReID embedding is updated as Eq. 11,
where α represents the momentum term, f t

i indicates the appearance feature of
the frame t.

et
i = αet−1

i + (1 − α)f t
i (11)

3 Experiments

3.1 Implementation Details and Settings

Training. In this work, the training is performed in two steps. Specifically, we
first mix multiple datasets and use them to train the detection branch, including
CrowdHuman [23], MOT16 [17], and Cityperson [29]. The parameters of the
backbone and feature fusion network are initialized with the COCO [12] pre-
trained model. The batch size is set to 48 and the initial learning rate is set to
1×10−4. After the first step of training, we freeze the parameters of the backbone
and the feature fusion network of the detection branch. In other words, we only
train MSCCAN and the decoupled prediction head in the second step. For data
augmentation, we adopt mosaic, mix-up operations, and random-scale during
training. We train our model with these augmentations for 70 epochs and add
L1 loss for extra 10 epochs to obtain more accurate localization performance.

Evaluation and Metrics. We conduct the evaluation of our proposed method
and the other methods on MOT16 and MOT17. To comprehensively evaluate the
proposed method, we use multi-metrics to evaluate various aspects of trackers,
including the CLEAR [2] metric and IDF1 [21] scores. CLEAR consists of basic
metrics on MOT, including MOTA (Muti-Object Tracking Accuracy), MT (Most
Tracked Objects Ratio), ML (Most Untracked Objects Ratio), FP (False Posi-
tive), FN (False Negative), IDsw (ID Switches), etc., while IDF1 score focuses
on association performance.
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Table 1. Component-wise ablation results on MOT16 train sets. (D+F) indicates
combining DSFFN into the baseline and adopting FPN for the feature fusion in ReID
branch. (D+F) indicates combining DSFFN into the baseline and adopting our pro-
posed MSCCAN for the feature fusion in ReID branch. The results with the best
performance are shown in bold.

Method Backbone MOTA ↑ IDF1↑ IDR↑ IDTP ↑ IDSw↓
JDE YOLOv3 74.5 69.2 64.1 71963 1373

JDE YOLOX 83.9 77.0 72.9 81850 494

Ours(D+F) YOLOX 90.7 80.8 79.1 88866 492

Ours(D+M) YOLOX 91.4 83.1 82.1 92133 392

3.2 Ablation Studies

To understand how these additional modules affect the tracking performance, we
perform a series of experiments involving backbone, DSFFN, and MSCCAN on
the MOT16 dataset. To avoid the influence of other factors, we adopt the same
training settings and tracking strategy for all experiments in this section. We
adopt JDE as our baseline method and then we compare its performance with
our proposed method. The experimental results of ablation studies are listed in
Table 1. IDR indicates identity recall rate, IDTP indicates the number of identity
true positive, and IDsw is the number of identity switches during tracking.

For a fair comparison with JDE, we first replace the same object detector
as ours. When equipped with a stronger detector, we can observe remarkable
improvements in all aspects. Further, when the original feature fusion network
is modified to the proposed DSFFN, we notice the improvements of +6.8%
MOTA, +3.8% IDF1, and +6.2% IDR. At the same time, the number of ID
switches is reduced sharply from 1373 to 494. These results verify the effective-
ness of the dual-stream feature fusion network in alleviating the competition
between the tasks of detection and ReID. Meanwhile, it can help to learn better
task-dependent feature representations. Finally, when the proposed MSCCAN
is combined with DSFFN, it yields +0.7% MOTA, +2.3% IDF1, and +3.0%
IDR improvements, while further reducing the number of ID switches. It helps
the network become more sensitive to the features of the specific target, which
improves the reliability of the online association during long-term tracking.

3.3 Comparison with State-of-the-Art MOT Methods

In this section, we report our results on the testing sets of MOT16 and MOT17
using the “private detector” protocol since we use the same additional data
as Fair [31] for training. We compare our proposed method with state-of-the-art
MOT methods in recent years, and the results are shown in Table 2. Note that all
results are evaluated by the official test server of the MOT challenge. Specifically,
the compared MOT methods can be described in three classes: one-shot method,
two-stage method, joint detection, and tracking method.
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Table 2. Comparison with state-of-the-art multi-object tracking methods on the
MOT16 benchmark. � indicates one-shot methods which integrate detection and
embedding into a single network. � indicates joint detection and tracking method
without ReID embeddings. The other entries without special sign indicate two-stage
methods. The results with the best performance are shown in bold.

Method Year MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDsw↓
IOU [4] 2016 57.1 46.9 23.6 32.9 5702 70278 2167

SORT [3] 2016 59.8 53.8 25.4 22.7 8698 63245 1423

DeepSORT [26] 2017 61.4 62.2 32.8 18.2 12852 56668 781

TAP [32] 2017 64.8 73.5 38.5 21.6 12980 50635 571

RAN [8] 2018 63.0 63.8 39.9 22.1 13663 53248 482

�Tracktor++ [1] 2019 56.2 54.9 20.7 35.8 2394 76884 617

�Tube TK [18] 2020 66.9 62.2 39.0 16.1 11544 47502 1236

�CTracker [19] 2020 67.6 57.2 32.9 23.1 8934 48305 1897

�JDE [25] 2020 64.4 55.8 35.4 20.0 10642 52523 1544

�Fair [31] 2020 69.3 72.3 40.3 16.7 13501 41653 815

HTA [13] 2021 62.4 64.2 37.5 12.1 19071 47839 1619

TraDeS [27] 2021 70.1 64.7 37.3 20.0 8091 45210 1144

�GSDT [24] 2021 66.7 69.2 38.6 19.0 14754 45057 959

�MeMOT [5] 2022 72.6 69.7 44.9 16.6 14595 34595 845

OUTrack [14] 2022 74.2 71.1 44.8 13.8 13207 32584 1328

�CSTrack [10] 2022 75.6 73.3 42.8 16.5 9646 33777 1121

�DSFFN OURS 78.8 74.3 56.9 11.6 14041 23878 763

Comparing with Joint Detection and Tracking Methods. Compared
to these joint detection and tracking methods as shown in Table 2, our pro-
posed method shows its superiority in long-term tracking. In summary, we obtain
+11.2%–22.6% MOTA, +12.1–19.4% IDF1, and +17.9–36.2% MT improvements
over these joint detection and tracking methods. Since they only focus on the
association between adjacent frames and do not adopt any ReID module, which
leads to fragmented trajectories. Thus, the two-stage methods usually perform
better than the joint detection and tracking methods.

Table 3. Comparison with state-of-the-art one-shot methods on the MOT17 bench-
mark. The results with the best performance are shown in bold.

Method Year MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDsw↓
JDE [25] 2020 63.0 59.5 35.7 17.3 39888 162927 6171

Fair [31] 2020 73.7 72.3 43.2 17.3 27507 117477 3303

CSTrack [10] 2022 74.9 72.6 41.5 17.5 23847 114303 3567

DSFFN OURS 79.4 73.9 55.2 12.2 32616 81385 2529
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Comparing with Two-Stage Methods. The two-stage methods have been
widely investigated in recent years and we can find the obvious trend that they
usually can achieve great performance. However, the difference in their tracking

Fig. 4. Visualization results of our proposed method on the test sets of MOT16. Each
row indicates a set of the sample frames of a video sequence. Different colors of bounding
boxes indicate different identities. Best viewed in color and zoomed in.
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performance depends on the capabilities to extract ReID features. As shown
in Table 2, on MOT16, we can observe that our proposed method remarkably
outperforms all prior works based on the two-stage strategy. For example, when
comparing with the latest state-of-the-art two-stage method, we outperform it by
+4.6% MOTA and +3.2% IDF1. The improvement in the IDF1 score indicates
that our proposed method has better learning capability on specific objects.

Comparing with One-Shot Methods. Since our research is performed based
on the one-shot methods, we mainly focus on the improvements on them. As can
be seen in Table 2, when evaluating on MOT16 test sets, our method achieves
78.8% MOTA, 74.3% IDF1, and 56.9% MT, which significantly outperforms
+14.4% MOTA, +18.5% IDF1 over the baseline method JDE. Compared with
Fair which adopts the same training data as our method, we also observe the
improvements on +9.5% MOTA and +2.0% IDF1. Further, we extend our exper-
iments to MOT17, as shown in Table 3. We observe a consistent trend with the
results on MOT16. We obtain remarkable +5.7%–16.4% MOTA and +1.6%–
14.4% IDF1 improvements over JDE and Fair. Thus, we conclude that the
improvements are benefited from the design of our network, which indicates
that the DSFFN and MSCCAN are helpful for the learning of task-dependent
feature representation.

3.4 Qualitative Results

In this section, we visualize the qualitative result on MOT16 test sets as shown
in Fig. 4. As can be seen in MOT16-01, MOT16-06, and MOT16-12, we observe
the great capability of our method to tackle occlusion and assigning the correct
identities with the help of reliable feature representation. At the same time,
our method maintains great detection performance of tiny objects, as shown in
MOT16-07 and MOT16-14. The results of MOT16-03 and MOT16-08 show the
considerable performance under crowded scenes.

4 Conclusion

In this work, we propose a novel dual-stream feature fusion network (DSFFN)
and adopt the decoupled design to the prediction head, which not only allevi-
ates the competition between the tasks of detection and ReID but also improves
the capabilities of better task-dependent feature expression. Further, we pro-
pose a multi-scale cross-connected attention network (MSCCAN) to reduce the
inconsistency between different scales of feature maps and enhance the learn-
ing for specific identities. In summary, experiments on several datasets verify
the superiority of our method, which outperforms the previous state-of-the-art
methods. We believe that our research could further promote the development
of the multi-object tracking society.
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Abstract. Medication mistaking is one of the risks that can result
in unpredictable consequences for patients. To mitigate this risk, we
develop an automatic system that correctly identifies pill-prescription
from mobile images. Specifically, we define a so-called pill-prescription
matching task, which attempts to match the images of the pills taken
with the pills’ names in the prescription. We then propose PIMA, a novel
approach using Graph Neural Network (GNN) and contrastive learning
to address the targeted problem. In particular, GNN is used to learn the
spatial correlation between the text boxes in the prescription and thereby
highlight the text boxes carrying the pill names. In addition, contrastive
learning is employed to facilitate the modeling of cross-modal similar-
ity between textual representations of pill names and visual representa-
tions of pill images. We conducted extensive experiments and demon-
strated that PIMA outperforms baseline models on a real-world dataset
of pill and prescription images that we constructed. Specifically, PIMA
improves the accuracy from 19.09% to 46.95% compared to other base-
lines. We believe our work can open up new opportunities to build new
clinical applications and improve medication safety and patient care.

Keywords: Pill-prescription matching · Text-image matching · GNN ·
GCN · Contrastive learning

1 Introduction

A WHO report states that drug abuse, rather than illness, accounts for one-
third of all deaths [1]. Additionally, roughly 6,000–8,000 persons per year pass
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away due to drug errors, according to Yaniv et al. [19]. Medical errors could
seriously damage the treatment effectiveness, cause unfavorable side effects, or
even lead to death. WHO has picked the theme Medication Without Harm for
World Patient Safety Day 2022 to highlight the significance of taking medication
properly. Drug abuse can be brought on by various factors, including using pills
other than those prescribed. To this end, this study concentrates on the issue of
matching the pill names in a prescription to the corresponding pills in an image,
thereby detecting missing or mistaken pills. We call this the pill-prescription
matching problem. The problem’s context can be described as follows. The user
has a prescription image and an image capturing pills that will be taken. We
want to match each pill in the pill image with the corresponding name in the
prescription.

The pill-prescription matching task is analogous to the well-known text-image
matching task. In the text-image matching task, an input consists of an image
containing numerous objects and a short paragraph of sentences. The text-image
matching task aims to identify the keywords in the sentences and match them
with the related objects in the image. The key issue in text-image matching is
measuring the visual-semantic similarity between a text and an image. Frome et
al. [5] proposed a feature embedding framework that uses Skip-Gram and Convo-
lutional Neural Network (CNN) to extract cross-modal feature representations.
Then, the ranking loss is applied so that the distance between mismatched text-
image pairs is greater than that between matched pairs. Kiros et al. [12] utilized
a similar approach that leverages the Long Short-Term Memory (LSTM) [10]
to generate text representations. With the recent success of pre-training and
self-supervised learning, text-image matching has profited from the rich visual
and linguistic representation of pre-trained models on large-scale datasets for
downstream tasks. Radford et al. [14] proposed a Contrastive Language-Image
Pre-Training (CLIP) model to learn visual concepts under language supervision.
It is trained using 400 million (text, image) pairs collected from the Web. Gao et
al. [6] examined the text-image matching in cross-modal retrieval of the fashion
industry. They used the pre-trained Bidirectional Encoder Representations from
Transformers (BERT) [3] as the backbone network to learn high-level represen-
tations of texts and images.

However, the pill-prescription matching task differs from the general text-
image matching task in the following aspects. First, unlike the common text-
image matching task, pill names are typically lengthy phrases (instead of words
like in the general text-image matching problem). Notably, the pill’s name
has almost no semantic meaning. Additionally, the same pill name might be
expressed in a variety of ways (depending on the doctors). Moreover, many text
boxes in the prescription (e.g., quantities, diagnostic, etc.) do not relate to the
pill name. Therefore, the conventional text-image matching approaches are inad-
equate for the pill-prescription matching issue. To this end, we propose a novel
approach for dealing with the pill-prescription matching problem. Our main idea
is to leverage a Graph Neural Network (GNN) for capturing the spatial relation-
ship of text boxes in the prescription, thereby highlighting text boxes that con-



Pill-Prescription Matching with GNN Assistance and Contrastive Learning 263

Fig. 1. The left side represents a graph, whereas the right side depicts the aggregation
process of GraphSAGE (with two convolution layers) to generate the embedding vector
for vertex A.

tain pill names. Moreover, we propose a cross-modal matching mechanism that
employs a contrastive loss to encourage the distance between the mismatched
pill image and pill name pairs while minimizing that of the matched pairs.

In summary, this work makes the following contributions:

1. We propose PIMA, a novel deep learning framework based on GNN and
contrastive learning for the pill-prescription matching problem. To the best
of our knowledge, we are the first to define and address this challenging task
on a real-world dataset. The method is applicable for real-world scenarios in
clinical practice to improve medication safety.

2. We conduct comprehensive experiments to demonstrate the effectiveness of
the proposed approach on a real-world pill-prescription dataset. The pro-
posed PIMA outperforms baseline methods with significant improvements in
performance.

The remainder of the paper is organized as follows. We briefly introduce
GraphSAGE, a GNN used in our proposed model in Sect. 2. The details of our
proposed method are described in Sect. 3. We perform experiment to evaluate
the proposal in Sect. 4 and conclude the paper in Sect. 5.

2 Preliminaries

This section introduces Graph SAmple and aggreGatE (GraphSAGE), which is
one of the most well-known Graph Neural Network (GNN) developed by Hamil-
ton et al. [7]. Similar to the convolution operation in Convolutional Neural Net-
work (CNN), in the GraphSAGE, information relating to the local neighborhood
of a node is collected and used to compute the node embeddings. For each node,
the algorithm iteratively aggregates information from its neighbors. At each
iteration, the neighborhood of the node is initially sampled, and the information
from the sampled nodes is aggregated into a single vector. Specifically, at the
k-th layer, the aggregated information hk

N(v) at a node v, based on the sampled
neighborhood N(v), can be expressed as:

hk
N(v) = AGGk

({
hk−1
u ,∀u ∈ N(v)

})
,
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Fig. 2. Overview of PIMA, which consists of three modules: Pill Detector, Prescrip-
tion Recognizer, and Pill-Prescription Alignment. The Pill Detector is responsible for
extracting visual features from pill images. The Prescription Recognizer is responsible
for embedding each text box on the prescription and highlighting those with pill names.
Finally, the textual and visual data are fed into Pill-Prescription Alignment to produce
a matching result.

where hk−1
u is the embedding of node u in the previous layer. The aggregated

embeddings of the sampled neighborhood hk
N(v) then is concatenated with the

node’s embedding at the previous layer hk−1
v to form its embedding at the current

layer as follows.

hk
v = σ

(
W k · CONCAT

(
hk−1
v , hk

N(v)

))
,

where W k is a trainable weight matrix and σ is a non-linear activation function.
Figure 1 illustrates the aggregation process of GraphSAGE. GraphSAGE offers
several aggregation methods, including mean, pooling, or neural networks (e.g.
Long Short-Term Memory (LSTM) [10]).

3 Proposed Method

This section describes our proposed method named PIMA for the PIll-
prescription MAtching problem. We start by providing an overview of our solu-
tion in Sect. 3.1. We then describe the Pill Detector and Prescription Recognizer
modules in Sects. 3.2 and 3.3, respectively. Finally, we explain the proposed loss
function in Sect. 3.4.
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3.1 Overview

Figure 2 illustrates the overview of our proposed model, which consists of three
modules. The first module, named Pill Detector, uses Convolutional Neural
Network (CNN) to create representations of pills. The second module, named
Prescription Recognizer, is responsible for extracting the textual information.
Specifically, this module utilizes a transformer model to create embedding of the
text boxes. Moreover, we leverage a Graph Neural Network (GNN) to capture
spatial information among the text boxes, thereby highlighting boxes represent-
ing the pill names. Finally, the textual and visual features are projected into a
shared space before being fed into a Pill-Prescription Alignment module. In the
Pill-Prescription Alignment module, we employ two loss functions. The first
loss, a Binary Cross-entropy loss, is responsible for classifying the text boxes
containing the pill name, while the second loss, a Contrastive loss, is responsible
for matching the pill names with the associated pill images.

3.2 Pill Detector

The Pill Detector consists of two main components: Pill Localization and Fea-
ture Extraction. Firstly, an object detection model is applied to determine the
location of every pill. Assuming that there are M pills cropped from an image,
let’s denote them as {p1, ..., pM}. We then leverage a CNN to extract visual
features of the pills and obtain M feature vectors {ie1, ..., ieM}. These feature
vectors are then projected onto the same hyper-plane with their counterpart in
the prescription via an Image projection module. Consequently, we come up with
the final representation of the pills as IP = [ip1, ..., ipM ].

3.3 Prescription Recognizer

The Prescription Recognizer comprises three sub-modules: Text Recognition,
Text Embedding, and Pseudo-Classification. Initially, the text recognition model
is utilized to identify and localize each text box in the prescription. Suppose the
prescription contains N text boxes, denoted as {s1, ..., sN}, then they are put
through a Transformer-based text embedding module [18] to produce embedding
vectors of the text boxes. On the one hand, these embedding vectors, along with
the coordinates of the text boxes, are utilized to construct a graph representing
the spatial relationship between the text boxes. This graph is used as the pseudo-
classifier’s input to highlight the boxes containing the pill names. On the other
hand, these embedding vectors capture contextual information of the text boxes,
which is used for matching with pill images.

Transformer-Based Text Embedding. Given a text box si = [w(i)
1 , ..., w

(i)
li
],

where w
(i)
t (t = 1, ..., li) represents the token embedding of the t-th word of si,

the text embedding of si, denoted by tei, is obtained by feeding [w(i)
1 , ..., w

(i)
li
]

into a Transformer encoder. These text embeddings are then projected to the
same hyper-plane as their counterparts in the pill images with the aid of a text
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projection module. Consequently, we get the final representations of the N text
boxes as TP = [tp1, · · · , tpN ].

Graph-Based Pseudo Classifier. We noticed that a prescription contains
numerous text boxes without pill names. Therefore, to improve the pill-
prescription matching accuracy, a preprocessing step is required to highlight the
boxes that are likely to contain pill names. For this, we create a binary classifier
based on a GNN. Specifically, we first construct a graph G representing the spa-
tial relationship between the text boxes, i.e., G = {V,E}, where V = {v1, ..., vN},
with vi the i-th text box. The attribute of vi is the text embedding tei. Two
vertices, vi and vj , are connected if either vi or vj is the box with the shortest
horizontal (or vertical) distance to the other. Any network can be used for this
purpose, and investigating GNN is out of the scope of this paper. In this work,
we utilize one of the most prominent GNN, namely GraphSAGE [7], to convert
from graph space to vector space. Consequently, for every vertex vi, we obtain a
graph embedding vector hi, which represents the relationship between vi and its
K-hop neighbors. Finally, these graph embedding vectors will then be input to
a sigmoid layer to produce the classification results. In particular, the output of
the pseudo-classifier is a vector g = 〈g1, ...gN 〉, where gi represents the likelihood
that the i-th textbox has the pill name. This pseudo-classifier will be trained via
classification loss (see Sect. 3.4).

Finally, the pseudo classification result is multiplied with the text embedding
to obtain the weighted version, TP′ = [g1 × tp1, ..., gN × tpN ]. It is worth noting
that as gi quantifies the likelihood that the i-th text box includes the pill name,
the embedding vectors of the boxes having the pill name will be highlighted in
the TP′, while the remainder will be grayed out.

3.4 Pill-Prescription Alignment

This module receives visual representations of pill images from the Pill Detector
and textual representations of text boxes from the Prescription Recognizer. It
matches pill names and pill images to generate the final result. For this, we design
an objective function consisting of two losses: classification loss and matching
loss.

Classification Loss. We adopt Binary cross-entropy loss to identify whether
or not a text box contains a pill name. We observe that the number of pill name
boxes is significantly smaller than that of boxes without pill names. For this
reason, we employ the following weighted cross-entropy loss to mitigate the bias.

LClassification = − 1
N

N∑

i=1

wi [yilog(gi) + (1 − yi)log(1 − gi)] ,

where yi and gi indicate the ground-truth label and the predicted result concern-
ing a text box si, respectively; wi represents the ratio of boxes with the label of
1− yi. To be more specific, let n1 be the number of text boxes containing a pill
name, and N be the total number of the text boxes, then we have
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wi =
{
1 − n1

N , if the text boxsicontains a pill name,
n1
N , otherwise.

Matching Loss. This loss aims to model the cross-modal similarity of pill name
boxes and pill images’ representations. The principle is to encourage the distance
between the representations of mismatched pill names and pill image pairs while
minimizing the gap between that of matched pairs. Specifically, let ipi and tpj

be the representations of a pill image pi and a text box sj , respectively, then
their similarity is defined by the cosine similarity as follows.

S(ipi, tpj) =
ipi · tpj

max(‖ipi‖2 · ∥
∥tpj

∥
∥
2
, ε)

,

where ε is a small value which is responsible for avoiding division by zero. The
matching loss is then defined as the sum of dis-similarities over all the matched
pairs and similarities over all the mismatched pairs as follows.

LMatching =
1
M

M∑

i=1

⎡

⎣1
2

∑

j /∈Pi

S(ipi, tpj)
2 +

1
2

∑

k∈Pi

max (0,m − S (ipi, tpk))
2

⎤

⎦ ,

where Pi is the set of all text boxes containing the pill name corresponding to the
pill pi, and m is a positive margin specifying the radius surrounding S (ipi, tpk).
In our method, we set m to 1 as the similarity values range from −1 to 1.

The total loss then is defined by the sum of the classification loss and the
matching loss as follows.

LTotal = LMatching + λLClassification, (1)

where λ is a hyper parameter that balances these two losses.

4 Experiments

In this section, we conduct comprehensive experiments to evaluate the proposed
approach, PIMA. We carefully compare it to the state-of-the-art (SOTA) text-
image matching methods under the same experimental settings. Moreover, we
perform extensive ablation studies to provide a deeper understanding of some
key properties of PIMA.

4.1 Dataset and Experimental Setup

To the best of our knowledge, there is currently no dataset publicly available for
the pill-prescription matching task. This motivates us to build an open large-
scale dataset containing pill images and the corresponding prescriptions1. In
1 The dataset can be downloaded from our project Web-page at https://vaipe.org/#

resource.

https://vaipe.org/#resource
https://vaipe.org/#resource
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Fig. 3. Representative examples from the pill image dataset. It was collected in real-
world scenarios, where samples are taken in unconstrained environments.

Table 1. Details of the data partition.

Experimental scenario Prescription images Pill images
Train (%) Test (%) Train (%) Test (%)

Scenario 1-1 69.55 30.45 70.58 29.42
Scenario 1-2 38.89 61.11 45.04 54.96
Scenario 1-3 3.86 96.14 6.12 93.88
Scenario 2-1, 2-2 69.55 30.45 72.40 27.60

particular, we collected 1, 527 prescriptions from anonymous patients in major
hospitals between 2021 and 2022. After carefully checking data against the pri-
vacy concern, we performed the annotation process in which each pill image was
assigned and annotated by a human annotator. We then separated the medi-
cation intakes for each prescription into morning, noon, and evening parts. For
each pill intake, we took about 5 pictures of the pills. Consequently, we collected
6, 366 pictures of pills, and the unique number of pills was 107. Figure 3 shows
several representative examples from our pill dataset. For algorithm development
and evaluation, we divided the prescriptions and the corresponding pills into two
subsets for training and testing. Details are described in Table 1.

Experimental Scenarios. We evaluate the performance of the proposed PIMA
in two distinct circumstances. In the first scenario, we consider settings where
medications are taken exactly as prescribed. We assess the precision with which
our algorithm could assist users in matching the pills they have taken with
their prescription names. The second scenario refers to circumstances in which
the pills consumed do not correspond to the prescription. In such a scenario,
we examine the accuracy with which our algorithm can identify pills that have
been improperly used. Specifically, the percentage of pills incorrectly taken in
the second scenario is set to 50%. To better investigate the performance of the
proposed approach on different data distributions, we divide the two scenarios
into sub-scenarios 1-1, 1-2, 1-3, 2-1, and 2-2, which are described in detail in the
following.
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Fig. 4. Visualization of several changes in experimental Scenarios 2-1 and 2-2.

Scenario 1:

• Scenario 1-1. To split the prescription dataset where each prescription has
multiple pill names, we use the stratified sampling method proposed by
Sechidis et al. [17] into two datasets for training and testing.

• Scenario 1-2. The prescription data is split so that the training set only has
prescriptions that do not overlap, and the test set has all the remaining data.

• Scenario 1-3. The prescription data is split so that a pill name only appears
once in the training set, and the test set has all the remaining data.

Scenario 2: The training dataset is identical to the train set in Scenario 1-1;
however, the test set in Scenario 2-1 contains 50% of random pill images that are
very similar to the pills in the prescription (in terms of both color and shape);
and the test set in Scenario 2-2 contains 50% of random pill images that have
the same shape but a different color than the pills in the prescription. Figure 4
illustrates some examples.

Evaluation Metrics. To evaluate the effectiveness of PIMA, we report the
final test accuracy using F1-score as the main metric, which is widely used in
recognition tasks.

Training Details. In our implementation, the projection modules consist of two
fully connected layers with the Gaussian Error Linear Units (GELU) activation
[9]. The output dimension is set to 256. We use AdamW [13] as the optimizer
and set the initial learning rate to 0.001. The factor λ (Eq. 1) is set as 1 for
simplicity. We train the model with the batch size of 4 and the input image size
of 224 × 224 pixels. The random rotation of 10o and horizontal flip are used
as data augmentation techniques. All implementations are performed using the
PyTorch framework, and the training process is conducted on a machine with
an NVIDIA GeForce RTX 3080 GPU.

4.2 Experimental Results

We provide in this section our experimental results and the comparison between
our approach and baseline methods. Because there is no other end-to-end method
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Table 2. Experimental results on the test set of our pill image dataset with different
CNN models. The best results are highlighted in bold.

CNN model Number of parameters Pretrained Non-pretrained

Train (%) Test (%) Train (%) Test (%)

Resnet-18 [8] 11.7M 99.87 86.06 67.39 67.27

Resnet-34 [8] 21.8M 96.28 82.27 68.01 66.68

Resnet-50 [8] 25.6M 86.08 77.04 68.39 67.27

ViT-Small/16 [4] 22.1M 99.44 66.47 61.07 56.59

MobileNet-V2 [16] 3.5M 99.39 89.48 75.96 70.63

MobileNet-V3-small [11] 2.5M 99.98 90.18 74.78 71.65

MobileNet-V3-large [11] 5.5M 99.93 90.01 70.31 70.30

Table 3. Experimental results on our pill dataset for the text-image matching task
using CLIP model with different BERT pretrained models. Here, CNN model is
MobileNet-V3-small. Best results are highlighted in bold.

BERT Model Task CNN Non-pretrained
Train (%) Test (%)

BERT-base-uncased [3] Fill-Mask 97.57 76.16
BERT-base-uncased-multilingual [3] 97.78 75.95
MiniLM-L12-v2 [15] Sentence Similarity 98.14 76.52
MiniLM-L12-v2-multilingual [15] 97.76 79.79

like ours, the baselines are performed independently in a two-step process. A deep
learning-based pill detector is firstly trained to recognize pills from images. The
predicted pills are then compared with the correctly identified pill name in the
prescription.

Baseline Performance. In this experiment, we train a set of SOTA Convo-
lutional Neural Network (CNN) architectures (see Table 2) on our pill image
dataset, in which the information from the prescription is not taken into account.
Our experiments follow the Scenario 1-1 setting. During the training process,
each learning model is initialized with pre-trained weights on the ImageNet
dataset [2]. We also investigate the learning performance of CNN models on
the pill image dataset when training from scratch. We obtain the highest perfor-
mance with Mobilenet-V3-small model. It reports an F1-score of 90.18% when
using ImageNet-trained deep features and an F1-score of 71.65% when trained
from scratch, respectively.

CLIP Model. We use the SOTA model in text-image matching called Con-
trastive Language-Image Pre-training (CLIP) [14] as the second baseline model
in this research. It has been proposed to learn visual concepts with language
supervision. We train CLIP model on the pill image dataset with different
pre-trained language models (e.g., BERT [3]), while the vision model is the
MobileNet-V3-small, which has the best results on baseline classification. The
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Table 4. Experiment results concerning Scenario 1 on our pill image dataset. PIMA
significantly outperforms other SOTA methods. Best results are highlighted in bold.

Model F1-score (%)
Scenario 1-1 Scenario 1-2 Scenario 1-3

Baseline 71.65 66.07 42.82
CLIP 79.79 72.63 48.17
PIMA w/o Graph 95.59 95.17 76.83
PIMA (our proposal) 98.88 98.41 89.77

Table 5. Matching accuracy concerning Scenario 2.

Model Scenario 2-1 Scenario 2-2

F1(Cor) (%) F1(Mis) (%) F1(Avg) (%) F1(Cor) (%) F1(Mis) (%) F1(Avg) (%)

CLIP 77.47 31.42 54.46 82.81 54.84 68.83

PIMA w/o
Graph

96.11 30.06 63.09 97.24 55.45 76.35

PIMA (our
proposal)

96.85 62.10 79.48 97.99 94.35 96.17

results for Scenario 1–1 are shown in Table 3. The results indicate that the pre-
trained language models in different tasks (e.g., Fill-Mask, Sentence Similarity)
are almost similar. The best test set result for the CNN model trained from
scratch is 79.79%.

Based on the experimental results reported in Tables 2 and 3, we chose to use
the trained from scratch CNN model MobileNet-V3-small and the pre-trained
language model MiniLM-L12-v2-multilingual for our following experiments
and comparisons.

Comparison with Baseline Approaches Scenario 1. Table 4 summarizes
the results of the proposal PIMA and the baseline models concerning Scenarios 1-
1, 1-2, and 1-3. For all scenarios, PIMA achieves the highest F1-score of 98.88%,
98.41%, and 89.77%, respectively. Even without using a GNN, PIMA w/o Graph
still outperforms the others. Specifically, it outperforms the baseline classification
by 23.94%, 29.10%, and 34.01%, respectively. In comparison with CLIP, PIMA
improves the F1-scores by 19.09%, 25.78% and 41, 60% concerning Scenarios 1-
1, 1-2, and 1-3, respectively. We observe that the proposed model achieves a
high level of performance even when the number of pill images and prescription
samples in Scenarios 1-2 and 1-3 are very limited.

Scenario 2. In this experiment, we set the threshold to consider an image and
text pair matching correctly as α (with α = 0.8 for all experimental scenarios).
To ease the presentation, we denote F1(Cor) as the F1-score for matching pills
that correctly taken with theirs corresponding names in the prescription. Besides,
we use F1(Mis) to indicate the F1-score for detecting pills that are not in the
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prescription, and F1(Avg) to represent the mean of F1(Cor) and F1(Mis). The
results of Scenarios 2-1 and 2-2 are shown in Table 5. As shown, PIMA achieves
the highest average accuracy in both scenarios, 79.48% and 96.17%, respectively.
Specifically, PIMA’s F1(Cor) is higher than that of CLIP by 19.38% and 15.18%,
respectively. In addition, PIMA improves the accuracy of detecting the use of
wrong pills by 30.68% in Scenario 2-1 and 39.51% in Scenario 2-2 compared to
PIMA. In comparison between F1(Cor) in the two scenarios, it can be seen that
F1(Cor) in Scenario 2-1 is lower than that in Scenario 2-2 because the mistaken
pills in Scenario 2-1 is much more similar to the prescribed pills. Finally, it can be
observed that PIMA w/o Graph achieves a higher F1(Cor) than CLIP. However,
the F1(Mis) of PIMA w/o Graph is similar to that of CLIP’s.

4.3 Discussion

According to the experimental results, PIMA outperforms all other approaches
in terms of both accuracy and convergence speed. As stated in the previous
section, PIMA enhanced the F1 score in terms of accuracy from 19.05% to 46.95%
compared to comparison benchmarks. These results are the consequence of con-
trastive learning’s impacts. In fact, the baseline model separates pill and text
box recognition into two distinct phases. The error in pill-prescription matching
is then accumulated by the sum of the errors generated by the two phases. For
the CLIP model, the matching loss only considers matched pairs. Specifically, it
only intends to minimize the distance between pill images and pill names. This
technique creates a paradox in the circumstance of pills with extremely similar
appearances but significantly different names. Specifically, in such a case, the
two similar visual representations are pulled back to nearly two completely dif-
ferent textual representations. In contrast to baseline and CLIP, PIMA employs
contrastive loss, which takes into account both matched and mismatched pairs of
pill names and images; additionally, we use weights while computing contrastive
loss to balance the contribution of matched and mismatched pairs. This weighted
contrastive loss increases the model’s generalizability and avoids it from being
skewed toward the mismatched cases. Thus, PIMA achieves higher precision.

Regarding convergence speed, Fig. 5a demonstrates that after only 50 epochs,
PIMA has converged to an accuracy of about 97% for matching correctly
taken pills. In contrast, CLIP only achieves an accuracy of approximately 80%.
Although PIMA w/o Graph achieves significantly better performance than CLIP,
its accuracy after 10 epochs is only about 88%, whereas that of PIMA is about
95%. Figure 5b depicts the convergence rate for the detection of mistaken pills.
It is apparent that PIMA outperforms the other two significantly. In particu-
lar, after 50 epochs, PIMA achieves an accuracy of approximately 90%, whereas
CLIP and PIMA w/o Graph only reach 50%. This can be explained by the
GNN-based pseudo classifier’s contribution. By having this classifier highlight
text boxes containing medicine names, we have narrowed the search space for
the matching issue, allowing PIMA to converge significantly more quickly than
comparison benchmarks.



Pill-Prescription Matching with GNN Assistance and Contrastive Learning 273

Fig. 5. Convergence speed on Scenario 2-2.

5 Conclusion

We presented PIMA, a novel method to solve the pill-prescription matching
task. The key idea behind the PIMA learning framework is the use of a Graph
Neural Network (GNN) architecture and contrastive learning to jointly learn
text and image representations in order to enhance pill-prescription matching
performance. Our extensive experiments on a real-world pill dataset, including
pill and prescription images, show that the proposed approach significantly out-
performs baseline approaches, enhancing the matching F1-score from 19.05% to
46.95%. Additionally, we also demonstrated that the proposed PIMA is able to
achieve a high level of performance while requiring less training costs compared
to other benchmarks. We release our code at https://github.com/AIoT-Lab-
BKAI/PIMA.
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Abstract. Deepfake detection attracts widespread attention in the com-
puter vision field. Existing efforts achieve outstanding progress, but there
are still significant unresolved issues. Coarse-grained local and global
features are insufficient to capture subtle forgery traces from various
inputs. Moreover, the detection efficiency is not powerful enough in
practical applications. In this paper, we propose a robust and efficient
transformer-based deepfake detection (TransDFD) network, which learns
more discriminative and general manipulation patterns in an end-to-
end manner. Specifically, a robust transformer module is designed to
study fine-grained local and global features based on intra-patch locally-
enhanced relations as well as inter-patch locally-enhanced global rela-
tionships in face images. A novel plug-and-play spatial attention scal-
ing (SAS) module is proposed to emphasize salient features while sup-
pressing less important representations, which can be integrated into any
transformer-based models without increasing computational complexity.
Extensive experiments on several public benchmarks demonstrate that
the proposed TransDFD model outperforms the state-of-the-art in terms
of robustness and computational efficiency.

Keywords: Deepfake detection · Spatial attention scaling ·
Transformer

1 Introduction

The threat of face manipulated videos has raised widespread attention, espe-
cially after the advent of the deepfake technique that adopts deep learning tools.
Deepfake can replace the face in the target video with the face in the source video
using deep learning-based technologies such as autoencoder [14] and generative
adversarial network (GAN) [8]. With these approaches, face generated videos are
exceedingly simple to be generated on the condition that one can access a large
amount of data spread widely on the Internet, which brings negative impacts on
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individuals, organizations, and governments while greatly threatening the social
stability [17]. Furthermore, with the sophistication and development of synthesis
techniques, deepfake videos have become more realistic and it is challenging for
human eyes to discern authenticity. The above challenges have driven the devel-
opment of deepfake detection using deep neural networks (DNNs) [4,9,18,30].
Most of the existing efforts in common exploit the powerful data fitting capabil-
ities of neural networks to mine discriminative features for deepfake detection.
Deep learning-based detection approaches usually regard deepfake detection as a
binary classification problem and employ convolutional neural networks (CNN)
to analyze local features. However, the learned representations using CNN are
not general enough since CNN seldomly focuses on global information. Further-
more, it is challenging to discern authenticity based on small local regions only.
Recent work recognizes this problem and attempts to utilize a transformer-based
model [28] to extract global emdeddings for capturing long-range manipulation
traces. However, it usually analyze global characteristics in a coarse-grained man-
ner, which may cause some image patches with weak artifacts to be rarely noticed
due to face pose transitions. Therefore, coarse-grained global feature learning
often serves as a suboptimal solution. In addition, the detection efficiency of the
model is increasingly important in practical applications. Recent work has made
significant advancements in deepfake detection performance, while state-of-the-
art deepfake detectors also become gradually more expensive. For example, the
advanced multi-attention (MAT) detector [29] requires 417.63M parameters and
224.38G floating-point operations per second (FLOPs) (20x more than Xception
[21]) to realize state-of-the-art performance. Many face forgery detection models
depend on on-device computation. Computational overhead is one of the main
factors limiting the deployment of current networks in practical applications due
to the inadequate computing power, large memory footprint, and severe battery
consumption of the device. Based on these real-world resource restrictions, the
model efficiency becomes increasingly important for face forgery detection. How-
ever, few approaches consider the computational complexity such as the number
of parameters and FLOPs. Although some studies utilize the lightweight model
Xception [3,16] to obtain remarkable results, their ability to study general repre-
sentations is limited due to the coarse-grained local feature learning. As a result,
these methods are insufficient to capture weak manipulated patterns owing to
the diversity of forgery techniques.

Based on the discussion above, our method mainly solves the following two
problems: (1) how to study more discriminative and general features for deepfake
detection; (2) how to achieve state-of-the-art detection performance as efficiently
as possible. In order to tackle these limitations, we propose a robust lightweight
transformer-based deepfake detection (TransDFD) model. In detail, our model
consists of two key components: the robust transformer module and the spatial
attention scaling (SAS) technique. Robust transformer restricts locally-enhanced
multi-head self-attention (LMSA) within each patch and boosts information flow
across image patches by the spatial shuffle, thus learning fine-grained local and
global representations. SAS flexibly refines spatial features to emphasize more
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significant manipulated artifacts, and vice versa. The main contributions of this
work are summarized as follows:

• We propose a robust and lightweight TransDFD network for deepfake detec-
tion, which captures discriminative and comprehensive forgery traces with
much fewer parameters and computational costs.

• The robust transformer is presented to learn fine-grained local and global
features via focusing on intra-patch locally-enhanced relations and inter-patch
locally-enhanced global relationships in face images.

• We design an innovative plug-and-play SAS technique to suppress less impor-
tant representations while emphasizing more critical features, via a learnable
diagonal matrix, which can be widely applied to boost the representation
ability of transformers.

• Extensive experiments on several challenging datasets demonstrate the effi-
ciency and robustness of our proposed model and feature visualizations show
the generalizability and interpretability of our method.

2 Related Work

Most existing deepfake detection models utilize CNNs or attention mechanisms
to capture local discriminative features. Rossler et al. [21] used the lightweight
Xception, a standard CNN pre-trained on ImageNet, and transferred to the deep-
fake detection task, to extract local features. The TwoStream framework [18]
applies two streams of Xception backbones which analyze the high-frequency
feature and RGB content, respectively, for generalized face forgery detection.
The representative forgery mining (RFM) [27], an attention-based data aug-
mentation framework, exploits the Xception backbone to guide the detector
to refine its attention for capturing local discriminative patterns. The multi-
attentional (MAT) architecture [29] establishes a multi-attentional module to
combine the low-level textural features and high-level semantic features. Kumar
et al. [15] adopted multi-streamed CNNs to learn fine-grained local features, con-
sidering intra-patch local relations and inter-patch partial relationships within
the face image. However, these models only extract local discriminative features
and hardly consider the global relations among image patches. To address this
problem, a convolutional vision transformer (CViT) framework [28] is proposed
to integrate CNN and vision transformer (ViT) [6] for deepfake detection. Specif-
ically, the CNN extracts local features while the ViT analyzes them to capture
the inter-patch global dependencies at a coarse-grained level. We noted that,
by contrast, our approach is capable of learning fine-grained local and global
representations with fewer parameters and computational costs.

3 Approach

3.1 Network Architecture

The framework of our proposed TransDFD is illustrated in Fig. 1. TransDFD
is composed of local feature extraction (LFE), robust transformer, and SAS.



278 Y. Zhang et al.

Fig. 1. The overall framework of TransDFD.

LFE adaptively filters the redundant information of a face image to obtain the
refined feature map. Robust transformer (Sect. 3.3) utilizes transformer blocks
to divide them into N2 square patches with size w ×w to encode feature vectors
from a patch, thereby capturing fine-grained local and global representations.
Meanwhile, the robust transformer employs the feature fusion block to analyze
the refined feature map for obtaining local embeddings and supplementing them
into fine-grained global representations. After that, SAS (Sect. 3.4) further refines
elaborate embeddings using a learnable diagonal matrix. Finally, we squeeze
the output of models and flatten them into feature vectors. The multiple layer
perceptron (MLP) and softmax generate final detection results.

Fig. 2. The structure of the transformer block.

3.2 Local Feature Extraction

In order to filter redundant information irrelevant to the detection task in face
images, LFE is designed to obtain fine feature maps in a simple and effective
manner. In detail, the LFE module consists of the first two sequence blocks of
VGG [24]. To save parameters and improve computation efficiency, the output
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channels of each convolutional layer in the first and second blocks in VGG are
adjusted to 32 and 64, respectively. LFE extracts the delicate feature map Ff ∈
R

C×H×W as shown in Fig. 1 by inputting a facial image Fi ∈ R
3×224×224, where

H, W, C denotes the height, width, and channel of the feature map, respectively,
and H = W = 56, C = 64. The Ff is then fed into the first transformer block and
the first feature fusion block in the robust transformer module, simultaneously.

Fig. 3. The main workflow of the intra-patch feature extraction block.

3.3 Robust Transformer

Unlike the existing method [28] that utilizes the MSA mechanism to capture
coarse-grained global features, inspired by the shuffle transformer [11] architec-
ture with the novel window-based multi-head self-attention (WMSA) [10,16]
mechanism and low costs, we propose a robust transformer module to focus
on fine-grained local and global features learning. Figure 1 illustrates the archi-
tecture of the robust transformer module. Specifically, robust transformer con-
tains four stages. Except for the first stage with L transformer blocks, each
stage consists of a pooling layer, L transformer blocks, and a feature fusion
block. Figure 2 shows the structure of the transformer block. Each transformer
block includes two cascaded blocks: intra-patch feature extraction block and
inter-patch feature extraction block. In particular, the former captures patch-
level local enhancement relations by window-based locally-enhanced multi-head
self-attention (WLMSA) module, obtaining fine-grained local representations,
and the latter utilizes shuffle window-based locally-enhanced multi-head self-
attention (Shuffle WLMSA) module to gain the fine-grained global embeddings
via exploring patch-level locally-enhanced global relations. Through two cas-
caded blocks, transformer blocks analyze the local and global forgery patterns
for each patch. To combine the advantages of CNNs in extracting local features
and the benefits of transformer blocks in capturing long-range dependencies, the
feature fusion block in each stage studies an input feature map through a con-
volutional layer with a kernel size of 2 and a stride of 2 to obtain downsampling
and it is added element-wisely with the output of the last transformer block in
this stage.
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Transformer Block. Different from the traditional transformer block in ViT
[6], we perform LMSA computation on each image patch in parallel, and the lin-
ear layers are replaced by the convolutional layers, which reduces the number of
parameters and computational complexity. As Fig. 2 shows, the transformer block
includes two cascaded blocks. The intra-patch feature extraction block aims to
model patch-level locally-enhanced relations to obtain fine-grained local represen-
tations. The main workflow of the block is shown in Fig. 3. Without losing gen-
erality, given a feature map F ∈ R

C×H×W , we first divide it into N2 square
patches with size w × w, and each square patch is reshaped into a succession of
flattened 2D feature patches to get Fp ∈ R

N2×w2×C , where w is the width and
height of square patches, w2 is the number of feature patches in a square patch, and
N2 = (H/w)×(W/w) is the number of square patches. To study fine-grained local
representations and reduce computational costs, we introduce the WLMSA mod-
ule. In detail, we transform Fp into three different tensors, i.e., a query q = FpW

q,
a key k = FpW

k, and a value v = FpW
v, where query, key, and value ten-

sors are calculated for each square patch from the feature map Fp, and W q, W k,
and W v are parameters of the convolutional layer. We utilize LMSA to acquire
F ′
p ∈ R

N2×w2×C with fine-grained local embeddings, which implies that square
patches are captured variously locally-enhanced relations between the respective
internal characteristics in parallel. The LMSA is discussed in detail in the follow-
ing section. Thereafter, we rearrange the square patches to their original spatial
position to obtain Fs, i.e., F ′

p ∈ R
N2×w2×C is reshaped to Fs ∈ R

C×H×W . Finally,
we pass Fs into the neighbor-window connection (NWC) module and MLP module
sequentially to obtain V ∈ R

C×H×W . NWC consists of a convolutional layer with
a kernel size equal to the image patch size to enhance connections among neighbor-
ing patches. The linear layer in the conventional MLP module [6] is adjusted to a
convolutional layer with a kernel of 1× 1 for economizing parameters. Intra-patch
feature extraction block only analyzes patch-level local relationships without tak-
ing into account the global relations between image patches. To overcome the lim-
itation, we present the inter-patch feature extraction block whose main workflow
is similar to that shown in Fig. 3. In detail, we firstly split V ∈ R

C×H×W into w2

square patches with size N × N to get Vp ∈ R
w2×N2×C . To achieve spatial shuffle

and inter-patch information communication, each new square patch with size w×w
is composed of the feature patches at the same position in w2 square patches with
size of N × N , carrying information for the overall patches with size of N × N .
That is to say, we rearrange Vp ∈ R

w2×N2×C to Vf ∈ R
N2×w2×C . We introduce

the Shuffle WLMSA module which has a similar pipeline to WLMSA and con-
siders locally-enhanced global relations for each image patch in parallel to obtain
V ′
f ∈ R

N2×w2×C with fine-grained global features by inputting Vf ∈ R
N2×w2×C .

Afterward, we adjust the feature patches to the original positions for spatial align-
ment. i.e., V ′

f ∈ R
N2×w2×C is rearranged to Vs ∈ R

w2×N2×C . Thereafter, we align
image content spatially to obtain the feature map I. That is, Vs ∈ R

w2×N2×C is
reshaped to I ∈ R

C×H×W . Finally, we transfer I through the NWC and MLP mod-
ules to get T ∈ R

C×H×W which is then fed into the intra-patch feature extraction
block in the subsequent transformer block.
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LMSA. Inspired by [7], we find it beneficial to model locally-enhanced rela-
tions between adjacent signals within image patches when given the query, key,
and value tensors. Since in the traditional MSA, each feature patch is equally
accessible to any other ones and feature patches not in the neighborhood may
also attend to each other with relatively large scores, as Fan et al. [7] proves
mathematically, which potentially introduces noises to semantic modeling and
overlooks the link among the surrounding signals. Therefore, a PAAS [20] tech-
nique is introduced to remove noise and study the relationships between adjacent
feature patches within an image patch. Specifically, the MSA [11] produces the
attention maps by formula qkT /

√
r+B, and each value of attention maps denotes

the correlation for any two feature patches in a square patch. We introduce a
learnable position importance matrix Wp ∈ R

w2×w2
to act as a soft attention

mask. That is to say, we assign a learnable weight for each element of attention
maps to learn the correlations between feature patches, adaptively, thereby elim-
inating the noises, which is defined as Eq. 1. A locally-enhanced self-attention
(LSA), i.e., a feature map with locally-enhanced information, is calculated by
Eq. 1. Formally, the LMSA is computed as follows:

LSA = softmax((
qkT

√
r
+ B) � Wp)v, (1)

LMSA = [LSA1;LSA2; ...;LSAj ]Wlmsa, (2)

where q, k, v ∈ R
N2×j×w2×r are the query, key, and value tensors, respectively.

w2 is the number of feature patches in a square patch. j denotes the number of
attention heads and r = C/j denotes the dimension of the feature patch in head
space. B ∈ R

w2×w2
[23] is the relative position matrix. � is the element-wise

product. Wlmsa ∈ R
jr×C is the learned parameter.

3.4 Spatial Attention Scaling

In order to learn detailed features, we devise the robust transformer module.
However, the fine-grained embeddings obtained by Eq. 1 may contain noises as
demonstrated by [7], we propose a SAS mechanism to further refine the repre-
sentations. Specifically, our SAS method denotes that a diagonal matrix right-
multiplies the output of LSA, which means that we assign a learnable weight
to each spatial feature, and the spatial features of the same position in differ-
ent channels share the weight. The LMSA in the robust transformer module is
modified as follows:

F = diag(λ1, . . . , λw2)LSA, (3)
LMSA = [F1;F2; ...;Fj ]Wlmsa, (4)

where the parameters λi are learnable weights for i = 1, ..., w2. Diagonal matrix
is initialized to follow a standard normal distribution. F ∈ R

N2×j×w2×r is the
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feature map with refined characteristics. Formally, SAS does not alter the com-
putational overhead of the network by adding these weights since they can be
combined into the prior tensor of the LMSA as Eq. 3 demonstrates.

4 Experiments

4.1 Experiments Setting

Datasets. We carried out research on three benchmark databases, i.e., Face-
Forensics++ (FF++) [21], Deepfake Detection Challenge (DFDC) [5], Deepfake
Detection (DFD). FF++ includes 1,000 original videos from YouTube and 4,000
fake videos. The fake videos are generated by four algorithms: DeepFakes (DF)
[1], Face2Face (F2F) [26], FaceSwap (FS) [2], and NeuralTextures (NT) [25].
FF++ has three qualities with distinct compression degrees, i.e., raw, high qual-
ity (HQ), and low quality (LQ). We applied the HQ-type videos and the official
splits, using 740 videos for training, 140 videos for validation, and 140 videos for
testing. DFDC is a wide-scale deepfake dataset with a large number of clips and
different quality levels. DFD is a deepfake detection dataset that utilizes publicly
available deepfake generation methods to create over 3,000 manipulated videos
from 28 actors in various scenes. The performance on the test set is reported.

Evaluation Metrics. We adopted the accuracy (ACC) and area under the
receiver operating characteristic curve (AUC) as our evaluation criteria. Since
most previous work rarely presents the metric of computation complexity, as a
result, we computed the number of parameters and FLOPs of the models using
the same setting.

Implementation Details. We used dlib [12] to crop the face regions as input
facial images with size 224 × 224. The size w of square patches in the robust
transformer module is set to 7. The depth L of the robust transformer is set to 6
with four phases with 1, 1, 3, and 1 transformer blocks and the attention heads
j are set to 2, 4, 8, and 16, respectively. Furthermore, our model is trained with
Adam optimizer [13] with learning rate 1e-4 and weight decay 1e-5. We utilized
the scheduler to drop the learning rate by ten times every 15 epochs.

4.2 Comparison with the State of the Art

Within-Dataset Evaluation. We used FF++ for training and conducted the
within-dataset evaluation. Results are displayed in Table 1. Our method consis-
tently outperforms the recent mainstream models on four manipulation meth-
ods. In particular, our model outperforms the state-of-the-art, Xception, by 4.7%
AUC, on the most difficult NT forgery technology that barely creates visible fab-
ricated artifacts, illustrating the effectiveness of our proposed model. Further-
more, our method possesses the minimum number of parameters and FLOPs
among all compared approaches as shown in Table 2. That is to say, our method
is superior in terms of both computing efficiency and detection accuracy.
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Table 1. Comparison with state-of-the-art methods on within-dataset. We trained on
FF++ which consists of four manipulation techniques.

Method DF F2F FS NT FF++
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

MAT [29] 90.70 97.43 90.64 97.75 90.82 97.02 77.65 85.56 87.50 94.85

CViT [28] 86.59 96.17 87.75 97.85 92.28 98.71 74.99 82.78 84.86 92.36

TwoStream [18] 91.08 97.39 91.54 97.96 90.82 96.39 79.12 86.65 88.17 94.93

Xception [21] 90.54 97.34 91.93 98.12 95.61 99.28 82.18 90.07 90.08 96.51

TransDFD(Ours) 93.94 98.87 95.24 99.25 97.51 99.70 87.65 94.73 93.60 98.40

Table 2. Comparison with state-of-the-art methods on cross-dataset evaluation.

Method DFDC DFD
ACC AUC ACC AUC Params(M) GFLOPs

MAT [29] 63.16 69.56 77.63 85.18 417.63 224.38
CViT [28] 62.79 67.86 72.93 83.24 89.02 6.69
TwoStream [18] 59.93 64.80 75.77 83.79 53.24 13.79
Xception [21] 58.77 66.95 76.84 85.20 20.81 4.59
TransDFD(Ours) 64.12 71.97 84.12 92.23 13.78 4.25

Cross-Dataset Evaluation. To evaluate cross-dataset generalization, we
trained the networks on FF++ and tested the models on DFDC and DFD.
We can see that our proposed model constantly surpasses all of the compared
opponents by a significant margin in Table 2. For instance, our method separately
exceeds the state-of-the-art Xception which has few parameters and FLOPs by
5.0% and 7.0% AUC on DFDC and DFD, respectively. Different from Xception
which merely employs the local information, our model considers the intra-patch
relations and inter-patch global relations for fine-grained local and global rep-
resentation, allowing various artifacts of the manipulated face can be noticed.
Furthermore, compared to Xception, the computational costs and the number
of parameters are also reduced by 0.3 G and 7.1 M, respectively. In comparison
to CViT which also considers both local and global knowledge with transformer,
our method confirms excellent performance both in computation overheads and
AUC, validating the effectiveness of the fine-grained extraction of global features.
Meanwhile, the gains are primarily due to our method’s ability to learn richer
forgery traces than compared opponents. Especially for the DFDC dataset, it is
a more challenging benchmark since diverse generation technologies are applied
to DFDC to achieve larger scale and higher diversity. The AUC of our method
is 2.4%, 6.8%, 7.2%, and 5.0% higher than MAT, CViT, Two Stream, and Xcep-
tion, respectively, on DFDC, which demonstrates the superior robustness of our
model.
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Table 3. Evaluation of each component in TransDFD on FF++. The models are
trained from scratch on FF++. ST and RT denote shuffle transformer and robust
transformer, respectively.

Datasets Methods Params(M) GFLOPs ACC AUC

DF ST 27.26 4.56 86.78 95.15
RT 30.42 4.81 87.70 97.73
LFE+RT 13.75 4.25 93.90 98.76
LFE+RT+SAS 13.78 4.25 93.94 98.87

F2F ST 27.26 4.56 83.46 92.98
RT 30.42 4.81 88.96 97.44
LFE+RT 13.75 4.25 94.38 99.17
LFE+RT+SAS 13.78 4.25 95.24 99.25

FS ST 27.26 4.56 84.80 92.73
RT 30.42 4.81 93.19 98.10
LFE+RT 13.75 4.25 96.79 99.48
LFE+RT+SAS 13.78 4.25 97.51 99.70

NT ST 27.26 4.56 72.57 78.10
RT 30.42 4.81 77.61 86.00
LFE+RT 13.75 4.25 84.92 92.90
LFE+RT+SAS 13.78 4.25 87.65 94.73

FF++ ST 27.26 4.56 81.93 89.98
RT 30.42 4.81 87.70 95.25
LFE+RT 13.75 4.25 92.51 97.87
LFE+RT+SAS 13.78 4.25 93.60 98.40

4.3 Ablation Study

To study the contribution of TransDFD components to learning ability, Table 3
shows the results of our ablation study, which investigates the effect of incre-
mentally adding robust transformer, LFE, and SAS training components.

Effectiveness of Robust Transformer. We performed the experiments on
FF++ to demonstrate that the robust transformer module is necessary. The
results are listed in Table 3. It is should be noted that the introduction of the
robust transformer module consistently improves the ACC and AUC. We believe
that the robust transformer module focuses on fine-grained local and global
feature learning while paying attention to the local enhancement relationship
between fine-grained features, guiding our model to explore more identifiable
and comprehensive forgery areas.

Effectiveness of SAS. To confirm the effectiveness of our SAS method, our
TransDFD model is trained with SAS and without SAS on FF++ and other
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Table 4. Ablation results of transformer-based models. We trained on FF++ and
tested on FF++, DFDC, and DFD.

Method FF++ DFDC DFD
ACC AUC ACC AUC ACC AUC Params(M) GFLOPs

CViT w/o SAS 85.47 94.72 62.79 67.86 72.92 83.24 89.02 6.69

CViT w/ SAS 89.77 96.35 63.64 70.68 80.11 87.96 89.02 6.69

TransDFD w/o SAS 92.51 97.87 62.19 69.95 79.33 87.91 13.75 4.25

TransDFD w/ SAS 93.60 98.40 64.12 71.97 84.12 92.23 13.78 4.25

hyperparameters remain the same. In Table 3, we noticed that due to the intro-
duction of SAS, the AUC of the model is increased by 2.7% on NT. From our
perspective, SAS supervises the TransDFD model to concentrate on extensive
facial forgery details as shown in Fig. 4. Besides, the parameters of TransDFD
with SAS are only increased by 0.03M and the computational complexity is not
changed, which lies in our SAS approach can be combined into the prior ten-
sor of the LMSA as the Eq. 3 demonstrates. In order to prove that SAS can
boost the performance of transformer-based models, we also conducted ablation
experiments on within-dataset and cross-dataset. We show the quantitive results
in Table 4, respectively. As we can see, SAS enhances the performance with
few parameters and low computational overheads. Assuming that transformer-
based models capture diverse global relationships without extra supervision, the
SAS approach achieves this by assigning learnable parameters to global fea-
tures, steering the model to highlight the most important representations and
suppress less important ones. As a result, our SAS method boosts the attention
of transformer-based models so as to improve their performance.

Fig. 4. The heatmap visualizations. Fig. 5. The t-SNE visualizations.
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4.4 Visualization

Visualization of Heatmap. We visualized the forgery traces captured by dif-
ferent settings using the Grad-CAM [22] on the FF ++ dataset, as Fig. 4 illus-
trates. Each row displays one manipulation approach. From top to bottom, the
forgery types are DF, F2F, FS, and NT. The second to fifth columns display
the results of four training schemes that have been listed in Table 3. Firstly,
we compared the heatmap among different columns (training strategies): robust
transformer (II) boosts the ability to capture long-range traces compared to the
baseline (I). (III) compared with (II), the LFE module can push the model to
locate more potential manipulation areas. In particular, (IV) relative to (III),
our SAS technique enhances these candidate regions by exploring more regions
of interest. Secondly, in comparison to various rows: It is commonly assumed
that the most useful portions to discern are the mouth, nose, and eyes.

Cluster Visualization of Feature Map. We visualized the features gener-
ated by different models on the same FF++ test set by using the t-SNE [19].
As Fig. 5 shows, each color corresponds to a specific type of synthetic technique.
We observe that the features learned by the shuffle transformer for each forgery
method are concentrated in their respective regions and are not tightly grouped
together. This phenomenon, on the one hand, indicates that different manipu-
lations have various characteristic distributions, and on the other hand, shows
that the shuffle transformer will separate fake data created by different forgery
types even if we treated all fake samples as one class in the training stage. It
clearly reveals that the features which shuffle transformer extracts contain the
unique artifacts of each forgery algorithm, affecting its generalization ability.
The feature distribution of different manipulations becomes rather compact due
to the establishment of robust transformer and LFE. Moreover, owing to the
introduction of our SAS mechanism, the fake sample are more mixed together,
which proves that the TransDFD network can learn more general representations
for each forgery type.

5 Conclusion

In this paper, we design a lightweight and robust network using transformers,
namely, TransDFD, which applies fine-grained local and global feature learning
for deepfake detection. We propose a robust transformer to extract the patch-
level local and global embeddings via exploring intra-patch locally-enhanced
relations and inter-patch locally-enhanced global relationships. We build a plug-
and-play SAS method to identify salient forgery representations without increas-
ing computational complexity, which enhances the performance of transformer-
based models. The experiments on FF++, DFDC, and DFD demonstrate that
we achieve state-of-the-art performance with few parameters and computational
costs. The limitation of our model is that generalization ability needs to be fur-
ther strengthened. In the future, we intend to explore self-supervised learning to
extract critical information from complex datasets containing multiple manipu-
lation techniques.
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Abstract. Personality plays a vital role in psychological feature anal-
ysis, product recommendation, and mental health assessment. Analyz-
ing personality based on social networks is becoming mainstream since
it allows collecting user behaviors and continuously output personality
prediction results in a non-intrusive manner. However, existing methods
face either over-fitting problems due to the small-sized training datasets
or inaccurate feature representation due to the limited information of the
testee. This paper proposes a general personality analysis model based
on posts and links in social networks, called GPAM. To solve the problem
of insufficient training data, we use a user linkage technique to collect
large-scale and high-quality labeled personality data in a short time. By
introducing posts from high-influence friends, we propose a unified per-
sonality feature extraction model to represent the users without enough
information. Under various parameter settings, the experimental results
demonstrate that importing moderate posts from high-influence friends
benefits state-of-the-art models. The average f1-scores of predicting both
MBTI and Big Five in GPAM are higher than the latest model Trignet.
Compared to without introducing extra posts, the average f1-scores of in
GPAM improve at least 4% for wordless users and 51% for silent users.

Keywords: Personality analysis · Big five · MBTI · User linkage ·
Personality feature extraction

1 Introduction

Personality is the characteristic sets of behaviors, cognitions, and emotional pat-
terns that evolve from biological and environmental factors [1]. Since personality
is relatively stable, it plays a vital role in diverse fields, such as recruitment, coun-
seling, personalized advertising, recommendation, mental health assessment, etc.
For instance, Personality tests have become a recruitment trend in recent years.
Data source from the Society for Industrial and Organizational Psychology [2]
displays that 29% of employers use one or more forms of psychological mea-
surement or assessment, and 13% of employers use personality tests. According
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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to Psychology Today [3], around 80% of Fortune 500 companies use personal-
ity tests to assess their employees. Another example is the recommendation.
Compared with content filtering or collaborative filtering, personality-aware rec-
ommendation systems solve the problems of the cold start and data sparsity [4]
and have been applied to the recommendation of musics [5], books [6], etc.

Psychologists propose various models to describe the individual personality.
Currently, two personality measurement models are considered to be reliable
and operable. One is the Big Five model. It describes the personality trait using
five dimensions: Openness, Conscientiousness, Extraversion, Agreeablenes, and
Neuroticism. The adjective definers of these dimensions can be found in [7]. The
other is Myers Briggs Type Indicator (MBTI) [8]. It describes the personality
from four dimensions of how a person interacts with the world (Extraversion
versus Introversion), gathers information (Sensing versus iNtuition), processes
information (Thinking versus Feeling), and makes decisions (Judging versus
Perception).

To evaluate individual personality, psychologists provide well-designed ques-
tionnaires to testees. This method has two disadvantages. Firstly, the answers
to questionnaires are probably untruthful since testees tend to conceal their per-
sonality defects because of privacy protection. Secondly, it is difficult to expand
to a large scale since the costs of time, human resources and money significantly
increase with the growing number of testees.

Analyzing personality based on social networks has become a prevailing trend
in recent years. However, most existing methods face the following two chal-
lenges. The first is the lack of labeled training data. Although several datasets
[9–12] have been published on Internet, their sizes are small and the labels are
doubtable, which leads to inadequate training and over-fitting problem. The
second is that many users neither fill out their profiles nor frequently express
themselves on social networks. It is hard to extract features from these users,
which leads to inaccurate personality prediction.

To this end, we propose a general personality analysis model based on posts
and links in social networks called GPAM. Generally speaking, we provide the
following contributions: (1) We adopt a user linkage method to correlate the same
person on different websites to collect labeled data. It allows to collect large-scale
and high-quality trainging data quickly. (2) We propose a unified personality
extraction model to extract features from users without enough posts. (3) We
implement extensive experiments to verify the performance of GPAM under
various parameter settings.

2 Related Works

Social networks encompass a large number of user information, such as age,
gender, emotional state, address, education, posts, comments, friends, etc. Many
researchers try to build a connection between social networks and personalities.

The first category is based on user expression. Pennebaker et al. [13] develop
LIWC, a computerized text analysis program that outputs the percentage of words
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in a given text that falls into different psychological categories [14]. LIWC enlight-
ens researchers to establish a linkage between linguistic patterns and personal-
ity or psychological state. Yang et al. [15] propose a recommending algorithm to
players according to their identified personality traits. They compute the Pear-
son’s Correlation Coefficients between the OCEAN personality traits and LIWC.
Thus, the algorithm recommends games based on both user-user personality sim-
ilarity and game-user personality similarity. SIMPA [16] detects self-referencing
descriptions of personality in a target’s text and utilizes these descriptions for
personality assessment. Because of the ability to automatically extract features
from texts, many researchers adopt deep learning methods to predict personality
traits. HIE [17] first integrates heterogeneous information, including self-language
usage, avatar, emoticon, and responsive patterns, then extracts semantic features
through LIWC and Text-CNN. 2CLSTM [18] extracts user personality features by
using LSTM concatenating with CNN. To avoid the post-order bias, Transformer-
MD [19] proposes a post-order-agnostic encoder to put together the posts of a
user to depict an overall personality profile. To exploit psycholinguistic knowledge,
Trignet [20] constructs a heterogeneous tripartite graph by injecting structural
psycholinguistic knowledge from LIWC, and proposes a flow graph attention net-
work to obtain the embedding of posts. To alleviate the impact of polysemy in the
personality detection tasks, SEPRNN [21] combines word embedding with contex-
tual information to obtain precise semantics for words.

The second category is based on user profiles. Golbeck et al. [22] collect per-
sonal profiles of 279 Facebook users. The authors build a correlation between
user attributes and the Big Five personality. Gu et al. [23] collect over six thou-
sand profiles on Weibo in China. The results show that with the growth of age,
the scores of conscientiousness and agreeableness increased, and openness and
extroversion decreased. Besides, Wald et al. [24] analyzed the Big Five personal-
ity traits of Facebook users by using 31 profile attributes and 80 post attributes.

The third category is based on user behavior. Chittaranjan et al. [25] collects
the usage data of 117 Nokia N95 smartphone users for 17months. By extracting
features from the logs of calls, short messages, Apps, Bluetooth, and profiles, they
adopt multiple regression analysis techniques to analyze the correlation between
the terminal data and personality. TECLA et al. [26] predicts temperaments and
psychological types based on linguistic and behavioral analysis of Twitter data.

In conclusion, most existing methods do not consider two important issues
that impact the perfomance of personality models. One is the small-sized training
datasets. The other is the limited posts of testees. In GPAM, we propose a user
linkage method and a unified personality extraction model to solve these issues.

3 Data Collection

The quantity and quality of labeled training data significantly affect the training
and prediction of the personality model. As far as we know, there are mainly
three data collection methods in existing works.
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– The first is inviting social network users to answer questionnaires online and
then crawling the social data of these users. Similar to the offline question-
naires, it is hard to extend to a large scale because of the privacy protection.

– The second is crawling the social data of the user who provides his/her Big
Five score or MBTI type in the profile or posts [11]. Since the crawler has to
search for users from the whole social network, the searching process leads to
much time and resource costs.

– The third is crawling the user comments from personality forums like Person-
alityCafe [27]. Users in these forums mainly talk about the behaviors or feel-
ings of their personalities. Even if well-behaved personality prediction models
are trained based on these discussions, they are not applicable to daily talking,
including topics of economy, politics, society, living, etc.

To obtain a large-scale and high-quality labeled personality dataset, our basic
idea is to link the same person from both personality websites and social net-
works. To increase the accuracy of user linkage, we choose famous persons as
our targets. There are two reasons. The first is the personality types of famous
persons easy to be collected from their funs or personality websites. The second
is most famous persons ensure the authenticity of their social accounts through
the real-name authentication system.

We firstly crawl the personality types of the Big Five and MBTI of famous
persons from Personality-Database [28]. Note that ordinary people vote for these
personality types. To avoid the wrong labeled personality type, we check the vote
count over the threshold value. Secondly, since the famous person’s nickname
is the same as the real name, we can search for the real name and get the
corresponding social network account from Facebook or Twitter with a high
probability. Following the policy of Twitter API or Facebook API, it is easy to
obtain each famous person’s profile, posts, and links. Thus, we can collect both
personality labels and social data from famous persons within a short time.

4 Personality Representation

As mentioned in Sect. 2, existing works extract personality features from user
profile, expression, behavior, etc. However, a report from Twopcharts [29] shows
that 44% of Twitter accounts have never sent a tweet, 30% of the accounts have
sent 1–10 tweets, and only 13% of the accounts have written at least 100 tweets.
Therefore, it is hard to collect enough data from most users, which leads to
inaccurate feature representation.

Based on existing researches [30], personality type compatibility exists among
individuals. Thus, we believe that introducing extra posts from high-influence
friends to the users without enough posts is reasonable. There are two problems
we need to solve. The first is how to measure the influence of each friend in
the view of personalities. To this end, we propose an interaction-based influence
sorting algorithm in Sect. 4.1. The second is how to fuse the personalities of high-
influence friends into the testee’s personality. To this end, we propose a unified
feature extraction model in Sect. 4.2. Table 1 shows key notations used in this
section.
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Table 1. Key notations in GPAM

Parameters Meanings

Nv The number of feature vectors sampled from a user
Nsp The number of sampled posts at a time
Nxh The maximum number of high-influence friends
Nnh The minimum post number of a high-influence friend publishes
Nnp The maximum post number a silent or wordless user publishes
Nnr The maximum post number a silent or wordless user reserves
Np The post number of a user published

4.1 Interaction-based Influence Sorting

To select high-influence friends, we propose an interaction-based influence sorting
algorithm (IISA) in this section. In specific, this algorithm follows three rules:

– Rule 1: Selecting following but not followers. For a testee, his/her following
have much more influence than followers.

– Rule 2: Selecting the following who is mentioned in the posts of the testee.
One may argue that why do not select the following whose post is given a
like or commented by the testee. Theoretically, we are able to collect all posts
from the following of the testee. However, it costs much time and resources
in practice.

– Rule 3: Selecting the following with a large number of posts. Since the testee
receives posts from the following, we suppose the influence of the following is
in direct proportion to the number of posts.

Algorithm 1: Interaction-based Influence Sorting
Input : FOWL: the following list.
Output: HIFL: the high-influence friend list.
; /*Nm: the mentioned times by the testee. */

1 for each i in [0,FOWL.size()-1] do

2 if mentioned(testee, FOWL[i]) and (FOWL[i].Np ≥ Nmin) then

3 HIFL.append(FOWL[i])

4 if HIFL.size() ≥ Nxh then

5 sort HIFL by Nm of each item;
6 HIFL.remove(Nxh, HIFL.size()-1);
7 else

8 sort FOWL by Nm of each item;
9 for each i in [0,FOWL.size()-1] do

10 if (HIFL.size() ≤ Nxh and FOWL[i].Np ≥ Nmin and
11 FOWL[i] /∈ HIFL) then

12 HIFL.append(FOWL[i])

The detailed process of IISA is shown in Algorithm 1. Firstly, if one following
is mentioned by the testee, and his/her post number is bigger than the threshold
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Nmin, the following is appended to the high-influence friend list (Line 1–3). Note
that we filter out the following with low activity, whose features are hard to be
extracted, as mentioned at the beginning of this section. Secondly, if the size
of the high-influence list is bigger than the threshold Nxh, we sort the list by
the mentioned times and only keep the top Nxh items (Line 4–6). Thirdly, if
the size of the high-influence list is less than Nxh, we sort the following by the
number of posts and append the following with a bigger number of posts into
the high-influence list (Line 7–12).

Take Fig. 1 as an example. Alice follows four friends, publishes three posts,
and mentions Bob two times and Denise one time. Suppose Nmin = 100 and
Nxh = 2 in Algorithm 1, Bob and Denise are picked based on Rule 2. Suppose
Nxh = 3, Bob, Denise and Eva are picked based on Rule 2 and 3.

Fig. 1. Case of sorting friend influence Fig. 2. Case of unified feature extrac-
tion

4.2 Unified Feature Extraction

In this section, we propose a unified feature extraction model. The basic idea
is to fuse the personalities of high-influence friends into users without enough
posts. We classify all users into three types. The first is the silent user, who does
not publish any posts. The second is the wordless user, whose post number is
between 1 to Nnp, where Nnp is a fixed threshold value. The third is the active
user, whose post number is bigger than Nnp.

The detailed process is shown in Algorithm 2. For each silent user, we pick
posts from his/her high-influence friends based on their number of posts (Line
1–6). For a wordless user, we use the Bert model [31] to extract features (Line
8–10). Note that posts of each user are sampled into multiple groups, and a
fixed-length vector represents each group. It brings two advantages. One is to
avoid the vanishing gradient problem of long text, and the other is to increase
the training samples. Next, the similarity weight between the wordless user and
each high-influence friend is computed based on the maximum cosine distance
among their feature vectors (Line 11–13). Each high-influence friend contributes
a part of the posts to the testee based on the similarity until the total number



A General Personality Analysis Model Based on Social Posts and Links 295

of posts reaches the threshold Nnr (Line 14–17). Finally, the feature vectors of
the testee are updated based on the new post list (Line 18). Note that active
users do not append extra posts from friends in IISA.

Algorithm 2: Unified Feature Extraction
Input : HIFL: the high-influence friend list of the testee.
Output: testee.vec: the list of feature vectors.

1 if (testee.Np == 0) then

2 for each i in [0,HIFL.size()-1] do

3 TotalPosts += HIFL[i].Np;

4 for each i in [0,HIFL.size()-1] do

5 posts = pickPosts(HIFL[i].posts, HIFL[i].Np / TotalPosts * Nnr);
6 testee.posts = testee.posts

⋃
posts;

7 if (testee.Np > 0 and testee.Np < Nnp) then

8 testee.vec = sample(testee.posts, Nsp);
9 for each i in [0,HIFL.size()-1] do

10 HIFL[i].vec = sample(HIFL[i].posts, Nsp);

11 for each i in [0,HIFL.size()-1] do

12 Sim[i] = cos(HIFL[i].vec, testee.vec);
13 TotalSim += Sim[i];

14 NeedPostNum = Nnr - testee.Np;
15 for each i in [0,HIFL.size()-1] do

16 posts = pickPosts(HIFL[i].posts, Sim[i] / TotalSim * NeedPostNum);
17 testee.posts = testee.posts

⋃
posts;

18 testee.vec = sample(testee.posts, Nsp);

Take Fig. 2 as an example. Suppose Alice is a wordless user, and her high-
influence friends are Denise and Bob. Firstly, each user’s posts are transformed
into a group of feature vectors through the Bert model. Secondly, we compute
the similarities between Alice and her friends based on their feature vectors.
Thirdly, based on their similarities, two posts from Denise and one post from
Bob are appended to the post list of Alice. Finally, updated posts of Alice are
transformed into new feature vectors through the Bert model.

5 Personality Model Training and Testing

The quantity of the labeled data greatly affects the training accuracy. According
to the Algorithm 2, posts of each user are sampled and extracted as a group
of fixed-length vectors, each of which is treated as a training or testing sample.
By default, the sampling frequency of each user is in direct proportion to the
number of posts.

We use multiple classifiers like SVM, XGBoost and Random Forest to train
Big Five and MBTI models. Since the prediction results of different testing items
may represent the same user, we use these prediction results to vote for the final
label. As shown in Fig. 3, Denise has three testing vectors, each of which is
classified into a personality type. Take MBTI for instance. These three vectors
are classified into INFP, INTP, and INTJ types. After voting on each dimension,
INTP is treated as the MBTI type of Denise.
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Fig. 3. Personality model training and testing

6 Experiment

6.1 Datasets

According to the user linkage method in Sect. 3, we collect 2007 users from
Personality Database and Twitter. Although there are 16 personality labels in
MBTI, we can build four binary classfiers rather than a multiple classifier with
16 labels, which brings higher classifying accuracy. Similarly, we build five binary
classifiers for Big Five predication. Besides, the maximum gap of the label counts
under the same dimension in MBTI and Big Five is not significant, which is
propitious to build the classifiers.

Since we select high-influence friends through IISA in Sect. 4.1, it is critical
to know the distributions of posts, following, and mentioned following in our
dataset. According to the statistics, the post counts of 1.3% of users are zero,
8.3% of users are less than 50, and over 74% users are larger than 1000. The
following counts of 3.7% of users are zero, 12.7% of users are less than 25, and
over 73% users are larger than 100. The mentioned user counts of 15.8% of users
are zero, 22.1% of users are less than 25, and over 60% users are larger than 100.
In general, the distributions of numbers of post, following, and mentioned users
are wide enough to verify the effectiveness of the feature extraction in Sect. 4.

6.2 Implemention

We deploy GPAM in a private server equipped with 24 processor cores, 64 GB
memory, and a NVIDIA V100 GPU to reduce the training latency. For feature
representation, we implement Doc2Vec and Bert. Both of them can transform
texts into fixed-length vectors. For classification, we implement SVM, Random-
Forest(RF), and XGBoost, which have been widely applied in the research and
industry fields.

For the users with a large number of posts, we sample and transform these
posts into multiple feature vectors as mentioned in Sect. 4.2. In the implemen-
tation, the sampling frequency is proportional to the number of posts for each
user, and the detailed parameters are described in Sect. 6.3.
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Remember that we propose an interaction-based influence sorting algorithm
(IISA) in Sect. 4.1. In comparison, we implement another two strategies. One is
the following with most posts first (MPF), and the other is the following with
most followers first (MFF).

6.3 Parameters and Metrics

We measure GPAM under various parameter settings. To extract features from
users, the number of sampled posts from a user at a time Nsp is set to 10,
and the number of feature vectors sampled from a user Nv ranges from 1 to
20. One may argue that why do not increase Nv linearly with the number of
posts. This is because it probably leads to unbalanced labels during training.
For silent and wordless users mentioned in Sect. 4.2, the maximum number of
posts they published Nnp is set to 50. To append posts, the maximum number of
high-influence friends of each user Nxh ranges from 5 to 20, the minimum post
number of a high-influence friend publishes Nnh is set to 100. The maximum
post number a silent or wordless user reserves Nnr is set to 100.

To evaluate the performance of GPAM, we compute average accuracy
(AvgAcc), average precision (AvgPre), average recall (AvgRecall), and average
f1-score (AvgF1) of all dimensions of MBTI and Big Five in each experiment.

6.4 Baseline Performance

This section tests the baseline performance of both MBTI and Big Five under
various feature representation models and classification models. Our testees are
users whose vote counts are larger than five and post counts are larger than 50.
We train their posts and evaluate the performance of GPAM as the baseline.
Besides, the state-of-the-art method Trignet [20] is also evaluated as a compar-
ison. Specifically, we sample posts of users based on the parameters of Nv and
Nsp in Sect. 6.3.

Table 2. Baseline performance of MBTI

Model Avg. Acc Avg. Pre Avg. Recall Avg. F1

Doc2Vec-SVM 61.88% 64.57% 64.57% 63.46%
Doc2Vec-RF 59.64% 62.20% 59.34% 56.91%
Doc2Vec-XGBoost 60.48% 63.07% 63.10% 62.22%
Bert-SVM 63.31% 66.80% 62.88% 60.94%
Bert-RF 62.50% 65.85% 63.91% 63.49%
Bert-XGBoost 62.39% 65.32% 65.34% 64.53%
Trignet 61.82% 59.91% 60.82% 59.95%
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In the experiment of MBTI models, there are 10427 items for training, and
2075 items for testing. As shown in Table 2, the Bert-SVM model has the best
AvgAcc (63.31%) and AvgPre (66.80%), and the Bert-XGBoost model has the
best AVGRecall (66.55%) and AvgF1 (64.53%). For Doc2Vec and Bert, their
average values of AvgF1 are 60.92% and 62.99%, respectively. For SVM, RF,
and XGBoost, their average values of AvgF1 are 62.20%, 60.20%, and 63.38%,
respectively.

In the experiment of the Big Five models, there are 6556 items for training
and 992 items for testing. As shown in Table 3, the Bert-SVM model has the best
AvgAcc (64.80%), AvgRecall (91.19%), and AvgF1 (75.23%), and the Bert-RF
model has best AccPre (65.96%). For Doc2Vec and Bert, their average values
of AvgF1 are 73.67% and 73.47%, which is 4% higher than Trignet on average.
For SVM, RF, and XGBoost, their average values of AvgF1 are 74.39%, 73.51%,
and 72.82%, respectively.

In general, GPAM show better performance than Trignet under different
parameters. Bert shows slightly better performance than Doc2Vec on average since
users the bidirectional transformer to solve the problem of polyseme. Besides, SVM
and XGBoost offer marginally better performance than RF on average.

Table 3. Baseline performance of big five

Model Avg. Acc Avg. Pre Avg. Recall Avg. F1

Doc2Vec-SVM 64.26% 65.02% 85.47% 73.55%
Doc2Vec-RF 63.71% 64.04% 89.27% 74.25%
Doc2Vec-XGBoost 63.79% 64.91% 84.87% 73.22%
Bert-SVM 64.80% 65.06% 91.19% 75.23%
Bert-RF 64.06% 65.96% 81.95% 72.77%
Bert-XGBoost 63.68% 65.72% 81.30% 72.42%
Trignet 61.52% 65.60% 74.40% 69.52%

6.5 Impact of High-influence Friend Selection Strategies

In this section, we test the performance of both MBTI and Big Five models
under three high-influence friend selection strategies, MFF, MPF, and IISA,
mentioned in Sect. 6.2.
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Table 4. Impact of high-influence friend selection strategies in MBTI

Strategy Model Avg. Acc Avg. Pre Avg. Recall Avg. F1

MFF Bert-SVM 63.89% 64.66% 58.66% 59.57%
Bert-RF 62.70% 62.79% 60.17% 60.62%
Bert-XGBoost 62.32% 61.96% 62.12% 61.73%
Trignet 61.86% 60.02% 59.53% 59.50%

MPF Bert-SVM 63.89% 64.42% 58.36% 59.48%
Bert-RF 62.42% 62.75% 59.56% 60.34%
Bert-XGBoost 62.13% 61.91% 61.90% 61.55%
Trignet 60.43% 59.97% 58.04% 58.70%

IISA Bert-SVM 63.93% 65.55% 60.11% 62.98%
Bert-RF 63.20% 63.68% 60.50% 61.14%
Bert-XGBoost 63.17% 63.22% 67.18% 65.29%
Trignet 60.92% 59.34% 66.55% 62.42%

Table 5. Impact of high-influence friend selection strategies in big five

Strategy Model Avg. Acc Avg. Pre Avg. Recall Avg. F1

MFF Bert-SVM 64.93% 66.24% 90.81% 75.89%
Bert-RF 64.45% 67.27% 82.18% 73.69%
Bert-XGBoost 63.09% 67.03% 78.56% 72.11%
Trignet 62.99% 66.95% 78.17% 72.02%

MPF Bert-SVM 64.91% 66.02% 91.29% 76.01%
Bert-RF 64.19% 67.18% 82.25% 73.62%
Bert-XGBoost 62.93% 66.81% 78.83% 72.15%
Trignet 62.00% 67.97% 74.83% 70.41%

IISA Bert-SVM 65.02% 65.77% 91.78% 76.18%
Bert-RF 65.05% 67.59% 83.08% 74.31%
Bert-XGBoost 63.95% 67.23% 80.52% 73.15%
Trignet 63.33% 68.68% 74.58% 71.40%

In the experiment of MBTI models, there are 1397 users in total, containing
396 wordless users. After introducing posts from high-influence friends, the train-
ing item sizes of MFF, MPF and IISA are 10090, 10105, and 8662, respectively,
and the testing item sizes of MFF, MPF, and IISA are 3637, 3635, and 2325
respectively. As shown in Table 4, the Bert-SVM model using IISA has the best
AvgAcc (63.93%) and AvgPre (65.55%), and the Bert-XGBoost using IISA has
the best AvgRecall (62.18%) and AvgF1 (62.29%). Compared with the baseline
in Table 2, the average AvgF1 of IISA in Table 4 increases slightly (62.98% vs.
63.13%, and 59.95% vs. 62.42%).
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In the Big Five models experiment, there are 829 users in total and 177 users
whose post numbers are less than 50. After post-transfer, the training item sizes
of MFF, MPF, and IISA are 5942, 5932, and 6035, respectively, and the testing
item sizes of MFF, MPF, and IISA are 2279, 2283, and 2281, respectively. As
shown in Table 5, the Bert-RF model using IISA has the best AvgAcc (65.05%),
Trignet using IISA has the best AvgPre (68.68%), and the Bert-SVM using IISA
has the best AvgRecall (91.78%) and AvgF1 (76.18%). Compared with Table 3,
the average AvgF1 of IISA and Trignet in Table 5 increases slightly (73.47% vs.
74.55%, and 69.52% vs. 71.40%)

In general, our strategy IISA has the best performance than MPF and MFF
under different metrics. Besides, importing moderate posts from high-influence
friends does not hurt and even benefits the state-of-the-art models.

6.6 Importing Posts for Users with Limited Posts

To evaluate the influence of introduced posts, we design three scenarios. In sce-
nario 1, silent users import posts. In scenario 2, wordless users import posts. In
scenario 3, both silent and wordless users import posts.

Table 6 shows the AvgF1 of MBTI models in different scenarios. In scenario
1, there are 1202 users in total, containing 95 silent users. The best AvgF1
for testing silent users reaches 54.64%, which is lower than the best AvgF1 of
testing active users (61.31%). Nevertheless, this result is still remarkable since
the personality of silent users can not be predicted in existing works. In scenario
2, there are 1413 users in total, containing 358 wordless users. The best AvgF1 for
testing wordless users is 66.65%, which is better than the value of testing active
users (62.29%). Because of IISA, wordless users are able to replenish posts from
their mentioned following. In scenario 3, there are 1202 users in total, containing
391 wordless users and 61 silent users. Compared to the result of best AvgF1
values, it shows similar conclusions to the first and second scenarios.

Table 6. AvgF1 of MBTI models in different scenarios

Model Scenario 1 Scenario 2 Scenario 3

Active users Silent users Active usersWordless users Active users Silent usersWordless users

Bert-SVM 55.61% 51.76% 56.98% 61.88% 57.33% 53.73% 57.23%

Bert-RF 59.37% 53.00% 61.14% 65.72% 60.68% 55.61% 60.45%

Bert-XGBoost 61.31% 54.64% 62.29% 66.65% 61.86% 63.07% 65.91%

Trignet 59.94% 53.82% 59.40% 59.14% 61.30% 61.24% 54.36%

Table 7 shows the Average F1 of Big Five models in different scenarios. In
scenario 1, there are 717 users in total, containing 49 silent users. The best AvgF1
for testing silent users reaches 53.89%. In scenario 2, there are 837 users in total,
containing 205 wordless users. Note that the best AvgF1 for testing wordless
users is 79.62%, which is better than the value of testing active users (75.18%).
In scenario 3, there are 862 users in total, containing 182 wordless users and 35
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Table 7. Avg F1 of big five models in different scenarios

Model Scenario 1 Scenario 2 Scenario 3

Active users Silent users Active usersWordless users Active users Silent usersWordless users

Bert-SVM 75.73% 53.89% 75.18% 79.62% 74.52% 59.10% 78.77%

Bert-RF 73.48% 53.51% 74.31% 76.34% 74.35% 53.09% 67.48%

Bert-XGBoost 72.64% 51.53% 73.15% 75.18% 73.03% 54.14% 66.62%

Trignet 67.90% 49.36% 70.72% 62.87% 71.78% 67.20% 49.86%

silent users. The best AvgF1 for testing silent users reaches 59.10%. Besides, the
best AvgF1 for testing wordless users is over 4% than active users.

In general, GPAM shows better performance than Trignet in different scenar-
ios. The imported posts from high-influence friends bring great gains for silent
users.

7 Conclusion

This paper proposes GPAM, a general personality analysis model based on posts
and links in social networks. GPAM proposes a user linkage technique to collect
large-scale and high-quality labeled personality data shortly, and an unified fea-
ture extraction model to tackle the problem of inaccurate representation of users
without enough posts. The experimental results demonstrate that importing
moderate posts from high-influence friends greatly benefits silent and wordless
users, and brings better performance than state-of-the-art model Trignet.

In the future, we plan to design various strategies for selecting posts from
high-influence friends and extract personality features based on both LIWC and
pretrain models. Besides, we plan to further extend our approach to predicting
other personality models like Enneagram, Temperaments, Socionics, etc.
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Abstract. Deception occurring in multi-turn question answering (QA) circum-
stances such as interviews, court depositions, and online marketplaces, can cause
serious consequences. Due to the lack of proper datasets and difficulty of find-
ing deceptive signals, existing deception detection methods haven’t utilized the
QA contexts to detect deception. Previous methods that mainly focus on context-
free deception detection cannot be applied to text-based QA contexts. Therefore,
we design a novel Context Selector Network (CSN) to address the challenge of
modeling the context-sensitive dependencies implied in multi-turn QA. We uti-
lize BERT to obtain sentence embeddings first and then design a context selector
to explore crucial deceptive signals implied in the QA contexts automatically.
Towards real-life scenarios, we collect a high-quality dataset containing multi-
turn QAs that consist of sequential dependent QA pairs. Compared with several
state-of-the-art baselines, experimental results show the impressive effectiveness
of the proposed model.

Keywords: Deception detection · Multi-turn QA · Context selector network ·
Text classification

1 Introduction

Deception often occurs in certain contexts of daily life, which can cause severe conse-
quences and losses to individuals and society. Automatic deception detection methods
towards multi-turn QA can benefit many applications, such as criminal interrogation,
court depositions, interviews, and online marketplaces. However, text-based context
deception detection has not been explored sufficiently [29] mainly due to the lack of
proper datasets and difficulty of finding deceptive signals. To alleviate this problem, we
focus on deception detection in a multi-turn QA which aims at classifying each QA pair
as deception or not, through the analysis of the context.

Existing deception detection methods heavily rely on hand-crafted features includ-
ing verbal [7,11,19,21,22,27,31,32] and non-verbal [6,18,25,28] cues explored from
different modals, ignoring the use of semantic information implied in contexts and could
not be applied to multi-turn QA data. Some tasks such as dialogue system [15] and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 304–315, 2022.
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Table 1. Part of a multi-turn QA example in the dataset. Qi means the ith question; Ai means
the ith answer. “T” means the QA pair is truthful and “F” means deceptive.

Turns Theme: Sports

Turn-1 Q1 What kind of ball sports do you like?

A1 Football. (F)

Turn-2 Q2 Do you usually play ball? When and where do you play ball?
How long does it take each time?

A2 I don’t play football in my spare time. (T)

Turn-3 Q3 Have you participated in any competition related to this sport?

A3 I have never taken part in a football match. (T)

Turn-4 Q4 How well do you play? Have you received professional training?

A4 I play football very well. When I was in elementary school,
I received two years of training in an amateur sports school. (F)

Turn-5 Q5 Which star do you like in this sport? When did you like him/her?

A5 I like Ma Long. I liked him when I watched him play table tennis. (T)

multi-turn question answering [14,30] seem to be similar to our task. However, they
cannot be regarded as classification tasks, and cannot be directly applied to our task
which is formed as a sentence-pair classification task. Thus, it is necessary to propose
a novel approach for deceptive QA pairs recognition.

Intuitively, information implied in contexts is needed to understand the subjective
beliefs of a speaker, which is an essential step to detect deceit [13]. For example, we
cannot judge which QA pairs in Table 1 are deceptive or not without the given contexts.
Furthermore, the features of deception are implicit and difficult to be detected. Due
to the sparsity and complexity of latent deceptive signals, treating all of the context
information equally will obstruct the model performance. As shown in Table 1, Turn-5
is relatively less relevant to Turn-2 while Turn-1, 3, and 4 are closely related to Turn-2.
Taking all of the contexts into account probably hurt the model’s ability to recognize
deception.

We propose two hypotheses: (1) QA context is conducive to detect deceit. (2) Noises
implied in QA context hinder the accurate identification of deception. To address these
two assumptions, we use BERT [5] to get context-independent sentence embeddings
and BiGRU [3] to get context-aware sentence embeddings. More importantly, a novel
context selector is proposed to filter out noise in the contexts. Due to the lack of a proper
dataset, we construct a multi-turn QA dataset containing sequential dependent QA pairs
for the experiments. We design different questionnaires covering six daily life topics to
collect deceptive and non-deceptive data. Our contributions are:

(1) We make the first attempt to tackle the multi-turn QA-style deception detection
problem, and design a novel Context Selection Network (CSN) to explore deceptive
signals implied in the contexts effectively.
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(2) To fill the gap of deception detection in multi-turn QA, a newly collected dataset
Deception QA is presented for the target task.

(3) Comparing with several deep learning-based baselines, our model achieves the
best performance on the collected dataset, showing its effectiveness.

2 Related Work

2.1 Deception Detection

To address the problem of automatic deception detection, researchers have carried out
a series of studies in different scenarios such as the social network scenario and daily
life scenario.

Social network-based deception detection has been studied for a long period in the
research community. Most of them utilize propagation pattern of deceptive informa-
tion [2] and interactions between multiple users [17] to detect deception. However,
these features don’t exist in a multi-turn QA under the daily life situation. As a result,
these methods cannot be applied to this new kind of task directly.

In addition, deception often occurs in the daily life scenario. Researchers have ana-
lyzed the features that can be used to detect deception. These features can be classified
as linguistic features and interactions between individuals.

Linguistic Features: Some researches have shown the effectiveness of features derived
from text analysis, which includes basic linguistic representations such as n-grams and
Linguistic Inquiry and Word Count (LIWC) [19,22], and more complex linguistic fea-
tures derived from syntactic CFG trees and part of speech tags [7,31]. Based on these
research findings, many studies focused on text-based methods, recognizing deceptive
languages in games [1,27], online reviews [20], news articles [26], and interviews [12].

Interactions Between Individuals: Apart from linguistic features implied in texts,
interactions between individuals can also have a beneficial effect on detecting deceit.
Tsunomori et al. [29] examined the effect of question types and individuals’ behaviors
on participants. Findings of the study show that specific questions led to more salient
deceptive behavior patterns in participants which resulted in better deception detection
performance.

These studies show that linguistic features and interaction between individuals in
contexts contribute to deception detection. Therefore, deception detection in a text-
based multi-turn QA is significant and reasonable. Although deceptive behavior often
occurs in a multi-turn QA under daily life situation, due to the difficulty of finding
deceptive signals and deception data collection and annotation, no work has been done
on cues of deception drawing from text-based QA contexts. Unlike all the prior studies,
this paper focuses on a novel task, that is, deception detection in a multi-turn QA. To
the best of our knowledge, our work is the first attempt to perform deception detection
in multi-turn QA.
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2.2 Datasets Comparison

There have been a few of datasets based on different modalities developed for deception
detection, such as text-based datasets [19,21,27,32], audio-based datasets [9,11] and
multimodal-based datasets [24,25,28].

Some researchers proposed text-based datasets for deception detection. Ott et
al. [21] developed the Ott Deceptive Opinion Spam corpus, which consists of 800 true
reviews and 800 deceptive reviews. Mihalces et al. [19] collected data from three writ-
ten deception tasks. Zhou and Sung [32] collected 1192 Mafia games from a popular
Chinese website. de Ruiter and Kachergis [27] proposed the Mafiascum dataset, a col-
lection of over 700 games of Mafia.

In addition to text-based datasets, some studies have developed audio-based
datasets. Hirschberg et al. [9] were the first to propose audio-based corpus, which con-
sists of 32 interviews averaging 30min. Levitan et al. [11] collected a much larger cor-
pus than it. However, these two datasets are not public available and free. Furthermore,
it is hard to model the contextual semantics only based on the audio modality.

The multimodal datasets were all collected from public multimedia sources, such
as public court trials [24], street interviews aired in television shows [25], and the Box
of Lies game in a TV show [28]. The data cannot be annotated by the people who
express deception or non-deception. The researchers labeled the data themselves after
data collection, which may introduce human bias. Existing public multimedia sources
also cannot provide adequate labeled samples for deep learning based deception detec-
tion methods. Moreover, compared with text data, processing multimodal data requires
more computing resource.

Fig. 1. Overview of the CSN. The red dashed box in the sequence indicates the target QA pair
to be predicted. The black arrow in the context selector means obtaining a mask matrix after
the cosine similarity module and blue arrows pointing to the mask matrix mean inputs to it. The
dotted arrows pointing from mask matrix mean mask value is 0 and the corresponding contexts
are masked, while solid arrows mean mask value is 1. (Color figure online)



308 Y. Bao et al.

3 Model

3.1 Problem Formalization

Suppose that we have a dataset D = {Ui, Yi}Ni=1, where Ui = {qil, ail}Ll=1 represents
a multi-turn QA with L QA pairs and every sentence in a multi-turn QA contains T
words. N is the number of multi-turn QAs in the dataset. Yi = {yil}Ll=1 where yil ∈
{0, 1} denotes the label of a QA pair. yil = 1 means {qil, ail} is deceptive, otherwise
yil = 0. Given the dataset, the goal of deception detection is to learn a classifier f :
U → Y , where U and Y are the sets of QA pairs and labels respectively, to predict the
label of QA pairs based on the context information in a multi-turn QA.

3.2 Model Overview

We propose CSN that generates context-independent sentence embeddings first, and
then selects contexts for the target question and answer respectively to filter out the
noise, and then utilizes the context encoder to get context-aware sentence embeddings.
As illustrated in Fig. 1, the proposed model consists of Word Encoder, Context Selector,
Context Encoder, and Question Answer Pair Classifier.

3.3 Word Encoder

Since the form of data collection is to design questions first and then collect corre-
sponding answers, we treat a multi-turn QA as a combination of one question sequence
and one answer sequence. The lth question and answer with T words in the ith multi-
turn QA are defined as {wQ

l1, ..., w
Q
lT } and {wA

l1, ..., w
A
lT } respectively. We feed both

sentences into the pre-trained BERT and obtain context-independent sentence embed-
dings, which are defined as gQl , gAl for the question and answer respectively. In the
experiments, we also replace BERT with BiGRU which proves the effectiveness of
BERT.

3.4 Context Selector

Given a multi-turn QA and its sentence representations, we treat the questions and
answers as two contexts: Q = {gQl }Ll=1,A = {gAl }Ll=1. We design a context selec-
tor to select contexts for target question and answer respectively in order to eliminate
the influence of noise in the context.

We treat the answer of the QA pair to be predicted as key: gAl , to select the corre-
sponding answer contexts. We use cosine similarity to measure text similarity between
the answer key gAl and the answer context A, which is formulated as:

sAl
=

AgA�
l

||A||2||gAl ||2 , (1)

where sAl
is the relevance score.
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Then we use the score to form a mask matrix for each answer and assign the same
mask matrix to the question contexts, aiming to retain the consistency of the masked
answer sequence and question sequence, which is formulated as:

s̃Al
= (σ(sAl

) ≥ γ), s̃Ql
= s̃Al

, (2)

Ql = s̃Ql
� Q, Al = s̃Al

� A, (3)

where � is element-wise multiplication; σ is the sigmoid function; γ is the threshold
and will be tuned according to the dataset. The sentences whose scores are below γ will
be filtered out. Ql and Al are the final contexts for ql and al.

The context selector can make the model focus on the more relevant contexts
through filtering out the noise contexts and thus benefits the model of exploring context-
sensitive dependencies implied in the multi-turn QA.

3.5 Context Encoder

Given the selected contexts of the target question and answer, we feed them to two
BiGRUs respectively:

Q̃l =
←−−−→
GRUQ(Q(l(+,−)1), g

Q
l ), (4)

Ãl =
←−−→
GRUA(A(l(+,−)1), g

A
l ), (5)

where Q̃l and Ãl represent the outputs of the ql and al at the corresponding position in
the two bidirectional GRUs. Q̃l and Ãl denote the context-aware embeddings of ql and
al respectively.

We use the two context encoders to model context dependencies between multiple
answers and questions respectively. In this way, we can make full use of deceptive
signals implied in the contexts to recognize deceptive QA pairs.

3.6 Question Answer Pair Classifier

Then, the context-aware embeddings of the target question and answer are concatenated
to obtain the final QA pair representation:

hl = [Q̃l, Ãl]. (6)

Finally, the representation of the QA pair is fed into a softmax classifier:

zl = softmax(Whl + b), (7)

where W and b are trainable parameters.
The loss function is defined as the cross-entropy error over all labeled QA pairs:

L = −
N∑

i=1

L∑

l=1

yil ln zil, (8)

where N is the number of multi-turn QAs; L is the number of QA pairs in a multi-turn
QA and yil is the ground-truth label of the QA pair.
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4 Deception QA Dataset Design

Our goal is to build a Chinese text-based collection of deception and non-deception
data in the form of multi-turn QA, which allows us to analyze contextual dependencies
between QA pairs concerning deception. We design questionnaires related to different
topics about daily life and then recruit subjects to answer these questions.

4.1 Questionnaires Design

To collect deceptive and non-deceptive data, we design six different questionnaires
covering six topics related to daily life. These six themes are sports, music, tourism,
film and television, school, and occupation. For each questionnaire, we design differ-
ent questions. The number of questions in each questionnaire varies from seven to ten.
Specially, the first question in the questionnaire is directly related to the corresponding
theme as shown in Table 1. The following questions are designed subtly so that they
can be viewed as follow-up questions for the first question. There are also progressive
dependencies between these questions.

4.2 Answers Collection

To obtain deceptive and non-deceptive data, we recruit 318 subjects from universities
and companies to fill in the six questionnaires. The numbers of collected multi-turn
QAs for each theme are 337, 97, 49, 53, 51, and 49 respectively.

Each subject is asked to answer the same questionnaire twice to make the distri-
bution of deceptive and non-deceptive data as balanced as possible. For the first time,
subjects need to tell the truth to the first question. For the second time, they need to tell
lies to the same first question. Subjects are allowed to tell the truth or lies to the follow-
ing questions casually, but the final goal is to convince others that the subjects’ answers
are all true. Questions in a questionnaire have sequential dependence, forcing the sub-
jects to change their answers to the first question instead of other questions helps them
better organize their expression to answer the following questions. In order to motivate
subjects to produce high-quality deceptive and non-deceptive answers, we give them
certain monetary rewards.

Similar to previous work [11], we ask the subjects to label their own answers. Sub-
jects are asked to label their answers with “T” or “F”. “T” means what they say is truth
and “F” means deceptive.

4.3 Train/Dev/Test Split

We obtain 636 multi-turn QAs and 6113 QA pairs finally. After shuffling all of the
multi-turn QAs, we divide the data into train set, development set, and test set randomly
according to the ratio of 8:1:1. Table 2 shows dataset statistics.
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Table 2. Statistics of train, dev and test sets of Deception QA.

Train Dev Test All

# QA Pairs (Multi-turn QAs) 4932 (512) 595 (62) 595 (62) 6113 (636)

Ave./Max. # QA Pairs/Multi-turn QA 9.61/10 9.60/10 9.60/10 9.61/10

Ave./Max. # Words/Question 9.44/18 9.45/18 9.45/18 9.45/18

Ave./Max. # Words/Answer 7.94/142 7.05/52 7.71/60 7.83/142

Truthful QA pairs 3172 353 419 3944

Deceptive QA pairs 1751 242 176 2169

5 Experiments

5.1 Experimental Settings

Deception QA dataset is a Chinese dataset. Jieba1 is employed to segment text into Chi-
nese words and Glove [23] is employed to get pre-trained word embeddings. Moreover,
we use Chinese BERT and RoBERTa with whole word masking2 [4]. For the context
selector, γ is set to 0.63 according to the valid data. The performance is evaluated using
standard Macro-Precision, Macro-Recall, and Macro-F1.

5.2 Baselines

The baselines are divided into two parts, according to whether take the context into
consideration or not. Without considering the context, we compare our model with
general text classification approaches: BiGRU [3], TextCNN [10], BERT [5] and
RoBERTa [16]. Considering the context, we use BiGRU-CC, attBiGRU-CC, TextCNN-
BiGRU, DialogueGCN [8], where CC means considering all the contexts and Dia-
logueGCN is the state-of-the-art model of emotion recognition in conversation task.
We propose CSN and CSN-BERT/-RoBERTa which have a subtlety-designed context
selector to filter noise in the context.

5.3 Results and Analysis

Results in Table 3 can be divided into three parts. From top to the bottom, it shows the
results that do not consider the contexts, consider all the contexts and perform contexts
selection.

From the first part, we find that methods based on pre-trained language models
(PLMs) are almost better than general text classification models. From the second part,
we find that approaches considering the contexts perform much better than those who
don’t consider the contexts. This proves the effectiveness of the QA context to detect
deception.

1 https://github.com/fxsjy/jieba.
2 https://github.com/ymcui/Chinese-BERT-wwm.

https://github.com/fxsjy/jieba
https://github.com/ymcui/Chinese-BERT-wwm
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Table 3. Comparison of varying approaches.

Model Macro-P Macro-R Macro-F1

BiGRU 56.47 50.96 45.11

TextCNN 60.64 51.98 47.11

BERT 57.06 58.41 56.11

RoBERTa 58.62 59.74 58.68

attBiGRU-CC 54.32 55.13 53.29

TextCNN-BiGRU 58.33 54.15 52.86

DialogueGCN 59.46 61.36 57.72

CSN-BERT 63.93 66.64 63.34

CSN-RoBERTa 63.96 65.03 64.33

Table 4. Ablation study on deception QA dataset.

Model Macro-P Macro-R Macro-F1

CSN 63.09 58.43 58.67

BiGRU-CC 58.83 56.57 56.69

CSN-BERT 63.93 66.64 63.34

BERT-BiGRU-CC 59.18 59.99 59.38

CSN-RoBERTa 63.96 65.03 64.33

RoBERTa-BiGRU-CC 60.93 61.85 61.20

The model proposed by us achieves the best performance among all of the strong
baselines. The Macro-F1 score of CSN-RoBERTa is 5.65% higher than that of
RoBERTa and 6.61% higher than that of DialogueGCN. For other sequence-based
approaches without the context selector, the Macro-F1 score of CSN-RoBERTa is
11.26% higher than them on average. It indicates that taking all of the contexts includ-
ing noise can hurt the model performance. Besides context information, noise is another
key factor that affects the ability of the model to recognize deception. The results indi-
cate the effectiveness of our model.

From experimental results in Table 4, we can observe that removing the context
selector results in performance degradation. The results of the ablation study on three
models show that the Macro-F1 values of the models using the context selector is 3.02%
higher than those of the models without context selector on average. This proves that
the proposed context selector does help to improve the model’s ability to recognize
deceptive and non-deceptive QA pairs in a multi-turn QA.

5.4 Case Study

Table 5 shows an example that CSN-RoBERTa successfully predicted Turn-5 as decep-
tion by masking Turn-2, Turn-8, and Turn-9 while RoBERTa-BiGRU-CC which takes
all of the contexts into consideration misclassified Turn-5.
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Table 5. An example that CSN-RoBERTa successfully identified Turn-5 as deception but
RoBERTa-BiGRU-CC failed. CSN-RoBERTa chose to mask the QA pairs written in blue in order
to predict the label of Turn-5.

Turns Theme: Sports

Turn-1 Q1 What kind of ball sports do you like?

A1 Billiards. (F)

Turn-2 Q2 When did you like this sport?

A2 I liked billiards when I was in college.(T)

Turn-3 Q3 Why do you like this sport?

A3 Billiards is a very elegant sport. Girls who can play billiards are
very cool. (T)

Turn-4 Q4 Do you usually play ball? When and where do you play ball?
How long does it take each time?

A4 When I was in college, I often went to the billiard hall near the
school gate to play billiards for about an hour at a time. (F)

Turn-5 Q5 Have you participated in any competition related to this sport?

A5 Yes, but I have never won any awards. (F)

Turn-6 Q6 How well do you play? Have you received professional training?

A6 My level of billiards is average, not bad. (F)

Turn-7 Q7 Which star do you like in this sport? When did you like him?

A7 Ding Junhui. He is a champion and plays billiards well. (F)

Turn-8 Q8 Please introduce this star player.

A8 I don’t know him very well, all I know is that he won the
championship. (T)

Turn-9 Q9 Please introduce some famous competitions and other famous
star players related to this sport.

A9 Ding Junhui and snooker. Although I like playing billiards,
I don’t pay attention to the competitions. (F)

According to the example, we can find that the masked contexts can be regarded as
noise which is less relevant to Turn-5. Turn-2 talked about the time when the subject
liked billiards that is relatively irrelevant to the subject’s experience in the game. Turn-
7, Turn-8, and Turn-9 all talked about star players which could not provide effective
information for judging whether Turn-5 is deceptive. Due to the inaccuracies of the
model, only Turn-2, Turn-8, and Turn-9 are masked. This kind of noisy context can
confuse the model and make it unable to classify Turn-5 correctly.

6 Conclusion

In this paper, we propose a novel task: deception detection in a multi-turn QA and
a context selector network to model context-sensitive dependence. In addition, we
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build a high-quality dataset for the experiment. Empirical evaluation on the collected
dataset indicates that our approach significantly outperforms several strong baseline
approaches, showing that the QA contexts and the context selector do help the model
effectively explore deceptive features. In the future, we would like to integrate user
information to explore deeper deceptive signals in the multi-turn QA.
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Abstract. Magnetic resonance imaging (MRI) has been widely applied
to the medical imaging diagnosis of various human body systems. Deep
network-based medical image segmentation techniques for MRI can help
patients receive more accurate and effective diagnoses. However, mul-
tiple consecutive two-dimensional MRIs have sequence information in
reality. Different organs may appear specifically in a sequence of MRI
data for the body part. Therefore, MRI sequence information is the key
to improving the segmentation effect in deep network architecture design.
In this paper, we propose the SIA-Unet, an improved Unet network that
incorporates MRI sequence information. SIA-Unet also has an attention
mechanism to filter the feature map’s spatial data to extract valuable
data. Extensive experiments on the UW-Madison dataset have been con-
ducted to evaluate the performance of SIA-Unet. Experimental results
have shown that with a coherent end-to-end training pipeline, SIA-Unet
significantly outperforms other baselines. Our implementation is avail-
able at https://github.com/min121101/SIA-Unet.

Keywords: Magnetic resonance imaging · Medical image
segmentation · Deep neural network

1 Introduction

In detecting gastrointestinal (GI) cancer using MRI, oncologists usually man-
ually delineate the location of the intestinal and stomach, which is a labor-
intensive and time-consuming process. With deep learning methods, it is possible
to segment the intestinal and stomach to allow for faster treatment automati-
cally [8,22], and therefore more patients can be treated effectively in a short
period [5,13,14,23]. Automatic medical image segmentation can achieve results
comparable to highly experienced radiologists [1,7]. Image segmentation has
developed rapidly in recent years. Long et al. first used fully convolutional net-
works (FCNs) [9] for image segmentation. At the same time, Ronneberger et al.
proposed a U-shaped network U-net [12] that uses channel dimension splicing
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Fig. 1. The location of the small bowel, large bowel, and stomach in the human body.

in the feature fusion method. Unet has achieved accurate segmentation results
in medical image segmentation problems [3,6]. Since the skip connection of the
Unet model will bring too much redundant information, Zongwei et al. improved
the skip connection of Unet and proposed Unet++ [24]. Subsequently, Atten-
tion Unet [11] and scSE-Unet [15] added different types of Attention to Unet
to extract key information from the feature map. In particular, in the field of
gastrointestinal tract segmentation, a number of deep learning-based detectors
have been proposed in [4,19,20]. However, much of the gastrointestinal image
data is in the format of MRIs, and these detectors do not exploit the seriality in
MRIs.

Most MRI scans are sequence images [10]. Specific organs exist only in par-
ticular locations (Fig. 1), and there are also some scanned images without target
organs, which affects neural network training. The main reason for this phe-
nomenon is that the early images of MRI have not yet scanned the position of
the organ. Most organs are located in the middle and late stages of the scan.
For example, an MRI scan of a patient is shown in Fig. 2. The intestine appears
in the middle stage, and the stomach only appears in the later scan stage. For
the detection task of GI cancer, MRI’s sequence information is crucial [2,21].
Although current image segmentation technology has been extensively studied,
few studies in traditional 2D MRI scans can combine the sequence information
of the scanned slices. To consider sequence information in 2D images, a feasible
solution is to process the MRIs ourselves to obtain 3D data. However, rashly
adding sequence information will inevitably generate redundant data. Thus, a
specialized mechanism is needed to filter irrelevant information.

In this paper, we propose a simple yet effective model SIA-Unet by combin-
ing sequence information in MRI images. In SIA-Unet, multiple sequence images
are first fused into the channel dimension, such that the original two-dimensional
image has short-term sequence information. Furthermore, to efficiently extract
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Fig. 2. Multiple slice images of an MRI scan. We found that the MRI scan results are
from the abdomen to the chest of the human body. Red, grey, and blue represent the
small bowel, large bowel, and stomach, respectively. The small and large bowel appear
mid-scan, while the stomach appears late in the scan. (Color figure online)

information on the channel and spatial dimensions, scSE (The Spatial and Chan-
nel Squeeze & Excitation Block) attention mechanism [15] is used at the end of
the skip connection and upsampling process, enabling the neural network to
focus on segmentation regions while learning sequence information. Finally, we
apply SIA-Unet to MRI images for GI segmentation to verify its performance.

The contributions of this work are summarized as follows:

1. We propose the SIA-Unet, a simple yet effective method to learn sequence
MRI images. It enables images to have 3D information by combining multiple
images of an MRI scan into the channel dimension.

2. Based on the sequence information extraction strategy, an attention mecha-
nism is introduced; both of them synergistically extract, process, and filter
channel and spatial information from GI scans.

3. Extensive experiments show that SIA-Unet outperforms four baselines by
1.5% on the UW-Madison dataset, achieving the highest performance.

2 Methodology

In this section, we propose a network called SIA-Unet for gastrointestinal tract
segmentation. First, we describe how to exploit the sequence information from
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Fig. 3. The general framework of SIA-Unet. We first fuse multiple images of MRI scans
into the channel dimension. In addition, grey and blue attention mechanisms are also
added to the Unet. They function differently, but the main components are the same.
Specific details are shown in Fig. 4. The grey attention mechanism in Unet’s skip con-
nections (scA) removes redundant information from previous data. The blue attention
mechanism in up-sampling (usA) is used to complete the information calibration of the
channel and spatial dimensions. (Color figure online)

MRI images. Second, we present an attention mechanism in Unet to further uti-
lize channel and spatial data. An overview of SIA-Unet is shown in Fig. 3, where
images are regenerated from MRI sequences before model training. After that,
we add multiple attention mechanisms to Unet (their different colors indicate
different effects).

2.1 Sequence Information Processing (SIP)

Since the results of an MRI scan are from the abdomen to the chest, different
parts of the body will show different organs or even no organs. Therefore, the
appearance of organs has a specific order and regularity, and it is crucial to use
this prior information to improve the performance of GI tract segmentation. To
allow the neural network to distinguish the position of the image on the human
body, we plan to add sequence information to each image.

The data of a patient on MRI scan is Slice = [Slice1, Slice2, ... , Slicen],
where Slicen represents a scanned slice, and its dimension is [1,H, W ]. A scan
slice does not contain any sequence information. As shown in Fig. 3, our app-
roach preprocesses images before model training. Specifically, multiple serial slice
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Fig. 4. Components of the attention mechanism. For x with input dimension C×H×W ,
it calculates the attention scores of the channels and spaces through the upper and lower
branches, respectively. Then, multiply (

⊗
) these two attention scores by x and add

(
⊕

) them to get the final x̂. Ψ1, Ψ2, and Ψ3 are all 1×1 convolution kernels. Relu and
Sigmoid are two activation functions.

images are stacked on one channel, so that each image contains the MRI sequence
data. Considering that consecutive slice data have almost the same information,
we take an interval of j slices to extract a scan slice. After transformation, The
ith MRI image is:

Slicei =
{

[Slicei, Slicei+j , . . . , Slicei+Nj ] if i + Nj < n,
[Slicei, Slicei+j , . . . , Slicen] otherwise. (1)

where Slicei means that an image is extracted for every j MRI slice, and a total
of N images is merged in the channel dimension. In this paper, we set N to
2, which means that each scan slice is processed into an RGB image (contains
short-term sequence images), which is beneficial for the neural network to learn
the sequence information of the MRI scan.

2.2 Attention Mechanism in U-Net

In order for the neural network to ignore unnecessary features and thus focus
on segmenting organs, we introduce an attention mechanism [15] to exploit the
channel and spatial information more deeply. As shown in Fig. 4, it is divided
into two branches: (1) Spatial Squeeze and Channel Excitation ; (2) Channel
Squeeze and Spatial Excitation.

Spatial Squeeze and Channel Excitation (cSE). It first passes the feature
map x through the global average pooling layer, and the dimension of the feature
map changes from [C,H,W ] to [C, 1, 1]. Then, a 1×1 convolutional layer is used
to process the information with the Relu function1 σ1 to obtain a C-dimensional
vector. Afterwards, a 1×1 convolutional layer and the Sigmoid function2 σ2 are

1 σ1(x) = 1/(1 + e−x).
2 σ2(x) = max(0, x).
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Table 1. Split train and Validation sets in the UW-Madison dataset. Empty means
that there is no target organs in the slice image.

Set Cases Total image #Empty Divided by #image

small bowel large bowel stomach

Train 69 30128 17009 9014 11227 6743

Validation 16 8080 4706 2187 2858 1884

used to finalize the normalization of the information to obtain the attention
score. Finally, multiply with the first x to complete the attention mechanism
of the channel dimension. cSE can process channel dimension information to
provide a feature map that is more conducive to neural network training.

Channel Squeeze and Spatial Excitation (sSE). The design of sSE is
simple yet effective. The feature map first passes through the 1×1 convolutional
layer, and the dimension of the feature map changes from [C,H,W ] to [1,H,W ].
Then, a sigmoid function σ2 is used to obtain the attention score of the spatial
dimension. Finally, multiply the original x to complete the attention mechanism
of the spatial dimension. sSE can filter the information of the spatial dimension,
such that the neural network can focus more on cutting the target rather than
the background.

In particular, in the initial Unet framework, the down-sampled feature
maps are skip-connected with up-sampling, stacking in the channel dimension.
Although the up-sampled feature map has a certain amount of information, it
also carries too much redundant information. To filter the redundant informa-
tion, as shown in Fig. 3, we incorporate two types of attention mechanisms into
the Unet. Unlike scSE-Unet [15], we add a grey attention mechanism (usA) to
the process of skip connection. usA suppresses the irrelevant features brought
by the skip connection process. On the other hand, to enhance the neural net-
work’s perception of spatial and channel dimensions, we also added multiple
blue attention mechanisms (scA). The pseudo-code of SIA-Unet is presented in
Algorithm 1.

3 Experiment

3.1 Experimental Settings

Dataset. The dataset we used is a collection of MRI scans from multiple
patients at the Carbone Cancer Center at the University of Wisconsin-Madison.
We call it the UW-Madison dataset, which is divided as the training set and
validation set. A scan of a patient is shown in Fig. 2. The summary informa-
tion is shown in Table 1, in which 69 cases in the training set and 16 cases in
the training set. The training set contains 30,128 scan slices (17,009 without GI
organs), and the Validation set includes 8,080 scans (2,187 without GI organs).
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Algorithm 1. SIA-Unet
1: Input: Dataset D, model φ, mini-batch of image M, channels C, Stride S, Sigmoid

σ1, Relu σ1, Convolutional Layer Conv and Encoder E .
2: for each epoch i = 0, 1, 2 . . . n do
3: for M in D do
4: TRANSFORM(M, C,S) � Combine multiple sequence images

5: M′
= E(M′

) � The encoder extracts features

6: M′
= Unsample(M′

, ATTENTION) � Add attention to Unet
7: L = 0.5 × LBCE + 0.5 × LTversky � Define the loss function
8: Optimizing L using Adam algorithm to update φ
9: end for

10: end for

11: function transform(M, C, S)
12: for c = 0, 1, 2 . . . C do
13: M [c, :, :] = M .groupby([’case’,’day’]).shift(-c*S).fillna(method=”ffill”)
14: end for
15: end function

16: function Attention(M′
, H, W)

17: Z = 1
H×W

∑H
i

∑W
j M ′(i, j) � After passing through the global pooling layer

18: UcsE = M′ × σ1(Conv(σ2(Conv(Z)))) � Channel attention mechanism

19: UsSE = M′ × σ2(Conv(M′
)) � Spatial attention mechanism

20: UscSE = UcsE + UssE

21: return UscSE

22: end function

Evaluation Metrics. We evaluate the performance of all methods with the
Jaccard coefficient and Dice coefficient, two of the most commonly used metrics
in medical image segmentation. Their equations can be expressed as:

Jaccard =
A ∩ B

A ∪ B
(2)

Dice =
2(A ∩ B)
A + B

(3)

where A and B are binary matrices representing the ground-truth annotation
and the predicted annotation, respectively.

Implementation Details. We use Unet as the architecture and use multiple
backbones (i.e., VGG, EfficientNet) to verify the stability of SIA-Unet. We train
the network for 20 epochs using the Adaptive Momentum Estimation (Adam)
algorithm with a weight decay of 0.000001. The initial learning rate is 0.002,
and the weights are changed with the cosine annealing learning rate; the ini-
tial temperature is 25, and the maximum temperature is 96.875. We use the
Pytorch framework for training. And use data augmentation methods such as
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HorizontalFlip, ShiftScaleRotate, and CoarseDropout. The loss function uni-
formly adopts the average of Binary Cross-Entropy (LBCE) and Tversky Loss
(LTversky) [16], LTversky is a classification Loss function used to solve the imbal-
ance. The LBCE is expressed as:

LBCE = −
C∑

j=1

log (p̂j) , with p̂j =
{

pj if yj = 1,
1 − pj otherwis. (4)

where C is the total number of categories, i.e., stomach, large bowel and small
bowel, yj is a binary distribution for each class j, pj is the probability that the
classifier estimates each class j.

We use one NVIDIA GeForce RTX 3090 GPU with 24G memory for train-
ing. Three sequence MRI images are fused into the channel dimension in our
experiments.

Baseline. We use four baselines, including (I) Unet, (II) Unet++, (III) Atten-
tion Unet, and (IV) scSE-Unet.

(I) Unet [12]: One of the most widely used models in medical image segmen-
tation. It adopts an encoder-decoder structure and skips connections to
quickly train a high-accuracy network with only a small number of anno-
tated images.

(II) Unet++ [24]: An intensely supervised network that achieves a trade-off
between the network training speed and accuracy in practical applications
through pruning.

(III) Attention Unet [11]: An Attention Gate structure is added at the end of
the skip connection, which suppresses irrelevant regions of the input image
while highlighting the features of specific local areas.

(IV) scSE-Unet [15]: Adding attention to the channel and spatial dimensions
can improve fine-grained semantic segmentation and smooth the segmen-
tation boundary.

3.2 Main Result

To show the effectiveness of SIA-Unet, we conduct extensive experiments with
two different backbones, i.e., VGG-16 [17] and EfficientNet-B0 [18]. As shown
in Table 2, the Jaccard coefficient and Dice coefficient of SIA-Unet in Backbone
as VGG are significantly higher than Unet by 2.2%. The Jaccard coefficient and
Dice coefficient of LB, SB and ST are improved by around 1% to 3%, reveal-
ing that SIA-Unet promotes the detection of different organs. In addition to
Unet, we also compare SIA-Unet with several other methods shown in Table 2,
i.e., Unet++, Attention Unet, and scSE-Unet. The Jaccard coefficient and Dice
coefficient of SIA-Unet are about 1.4% higher than the best model, Attention
UnFet, and the LB lead is about 2.5% higher at most. SIA-Unet also achieves
the best performance in EfficientNet-B0. As a result, SIA-Unet has good gener-
alization ability on different backbones.
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Table 2. Performance comparison of Unet [12], Unet++ [24], Attention Unet [11],
scSE-Unet [15] and SIA-Unet in the UW-Madison dataset under different backbones
(i.e. VGG-16 [17], EfficientNet-b0 [18]). LB, SB and ST denote the large bowel, small
bowel and stomach, respectively.

Backbone Method Jaccard Dice

Total LB SB ST Total LB SB ST

VGG[17] Unet 0.8604 0.8421 0.8211 0.9182 0.8894 0.8770 0.8536 0.9378

Unet++ 0.8642 0.8475 0.8309 0.9172 0.8931 0.8816 0.8635 0.9363

Attention Unet 0.8691 0.8497 0.8366 0.9228 0.8974 0.8847 0.8690 0.9410

scSE-Unet 0.8672 0.8500 0.8348 0.9179 0.8958 0.8841 0.8670 0.9373

SIA-Unet 0.8828 0.8752 0.8465 0.9295 0.9113 0.9080 0.8800 0.9491

EfficientNet[18] Unet 0.8536 0.8320 0.9170 0.8675 0.8886 0.8650 0.9369 0.8968

Unet++ 0.8505 0.8248 0.9166 0.8628 0.8849 0.8570 0.9363 0.8917

Attention Unet 0.8500 0.8337 0.9211 0.8680 0.8839 0.8660 0.9404 0.8964

scSE-Unet 0.8489 0.8199 0.9145 0.8604 0.8835 0.8533 0.9346 0.8900

SIA-Unet 0.8593 0.8383 0.9210 0.8729 0.8943 0.8721 0.9416 0.9025

Table 3. The ablation study of each component of SIA-Unet, SIP indicates adding
depth information to the original image (processing as a multi-channel image). scA and
usA refer to the attention mechanisms at different positions in Fig. 3. The backbone
used is VGG-16.

SIP scA usA Jaccard Dice

Total LB SB ST Total LB SB ST

✕ ✕ ✕ 0.8604 0.8421 0.8211 0.9182 0.8894 0.8770 0.8536 0.9378

� ✕ ✕ 0.8748 0.8603 0.8382 0.9281 0.9035 0.8945 0.8699 0.9482

� � ✕ 0.8814 0.8714 0.8457 0.9300 0.9101 0.9051 0.8796 0.9497

� � � 0.8828 0.8752 0.8465 0.9295 0.9113 0.9080 0.8800 0.9491

3.3 Ablation Study

We perform an ablation study to validate the effectiveness of each component
in the method. SIA-Unet includes three components: SIP, scA, and usA. Table 3
shows the evaluation results of each component. It can be seen that when SIP is
added, the Jaccard coefficient and the Dice coefficient increase by approximately
1.5% and 1.1%, respectively. Therefore, the sequence information of the MRI
scan slices is crucial for the model. Especially for the organ with a large span such
as LB (Jaccard coefficient increased by 2.2%). With scA and usA for information
filtering, scA and usA can have approximately 0.6% and 0.1% improvement
to the model. As a result, SIA-Unet combines three components to achieve a
Jaccard coefficient of 0.8828 and a Dice coefficient of 0.9113.
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4 Conclusion

This paper proposes SIA-Unet, a model dedicated to extracting and filtering
channel and spatial dimension information. SIP integrates the MRIs of sequence
scanned slices into the channel dimension, such that the original 2D images
can have sequence features. Since SIP preprocessing will inevitably introduce
redundant features, we add an attention mechanism (usA) to the end of Unet’s
skip connection to effectively filter the useless features of skip merge. At the same
time, scA in the upsampling process can also filter redundant features due to
convolution. The experimental results show that SIA-Unet has a more accurate
segmentation effect.
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Abstract. Prediction of drug-disease associations (DDAs), which aims
to identify new therapeutic opportunities for existing drugs, is becom-
ing a promising proposition for drug discovery. Graph neural networks
(GNNs) as an emerging technique have shown superior capacity of deal-
ing with drug-disease association prediction. However, existing GNNs-
based DDA prediction methods suffer from sparse supervised signals.
Inspired by the success of graph contrastive learning (GCL) in allevi-
ating sparse supervised signals, we seek to leverage GCL to enhance
the prediction of DDAs. Unfortunately, most conventional GCL-based
models corrupt the raw data graph to augment data, which are unsuit-
able for DDA prediction. Meanwhile, these models may be ineffective
to capture the interactions between nodes, thus impairing the quality of
association prediction. To address the above issues, we propose a novel
Co-contrastive Self-supervised Learning (CSL) framework to tap poten-
tial candidate drugs for diseases. Technically, our framework first con-
structs three views. Then, two graph encoders are performed over the
three views, so as to capture both local and global structures simul-
taneously. Finally, we introduce a co-contrastive learning method and
co-train representations of the nodes to maximize agreement between
them, thus generating high-quality prediction results. What is more, we
integrate contrastive learning into the training, serving as an auxiliary
task to improve the prediction task. Evaluated by cross-validations, CSL
outperforms the baseline methods and the state-of-the-art methods on
three benchmark datasets.

Keywords: Drug-disease association prediction · Drug repositioning ·
Contrastive learning · Graph neural network

1 Introduction

Rapid advances in drug research and development over the past few decades,
as well as public health emergencies such as the outbreak of COVID-19, have
forced researchers to explore effective ways to counter these risks. Computer-
aided prediction of drug-disease associations (DDAs, a.k.a. drug repositioning)
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is becoming more appealing as it involves de-risked compounds, which could lead
to lower total development expenses and shorter development schedules.

The earliest methods in this field formulate drug repositioning as a binary
classification problem, where the drug-disease pairs are treated as instances, and
the information about drugs and diseases is treated as features [1,2]. Then, clas-
sical classification models can be available to exploit drug repositioning methods.
Afterward, the boom of deep learning provides alternatives, which employ mul-
tilayer perceptron (MLP) to learn the representations of data[3,4]. In recent
years, graph convolutional networks (GCNs) [5] have attracted increasing atten-
tion and have been applied to DDA prediction tasks to learn the representation
of drugs and diseases [6,7]. While promising, these approaches are still com-
promised by the same challe nge – sparsely labeled data, as wet experiment
annotation is expensive and time-wasting. These data are insufficient to induce
accurate representations of drugs and diseases in most cases, leading to sub-
optimal performance.

A contrastive learning paradigm from the computer vision domain is one
approach to addressing these difficulties [8,9], which aims to construct simi-
lar and dissimilar view pairs via data augmentations, including cutout [10] and
color distortion (including color dropping, brightness, contrast, saturation, hue)
[11,12]. Some researchers have made a preliminary attempt at graph data [13,14].
However, contrastive learning on drug repositioning has its unique challenges:
(1)In comparison to social or e-commerce networks with hundreds of millions of
nodes, the graph of drug-disease associations has fewer nodes and more sparse
edges (a number of diseases might only be treated by one drug). Therefore,
techniques with node/edge dropout are completely unavailable for drug-disease
association prediction. (2)When creating self-supervision signals, most existing
methods generally assume that the neighbors are independent of each other,
considering the global structure of the graph and ignoring the possible interac-
tions between neighbor nodes. In some circumstances, the interactions between
neighbor nodes could strengthen the properties of the target node in the graph.
Modeling such interactions between neighbors reveals the potential correlation
between them, which may be beneficial for the representation of the target node
in a graph.

To overcome the mentioned limitations, we enrich the drug-disease associa-
tion graph contrastive learning by incorporating the drug-drug similarity graph
and disease-disease similarity graph, motivated by the fact that similar drugs
tend to target similar diseases. On top of that, we propose a novel co-contrastive
self-supervised learning (CSL) framework for drug-disease association predic-
tion with three modules. The first module, multi-source contrast view construc-
tion, builds the known drug-disease association view, the drug-similarity, and
disease-similarity views (applying the nearest neighbors) by using three sources
of data. The second module, context-aware neighborhood aggregation, uses a bilin-
ear graph neural network to encode complex local information in the drug-disease
association view, and a global-aware attention mechanism to compensate for the
receptive field issue in bilinear aggregation. The last module is contrastive objec-
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tive, where we introduce a sampling mechanism to radically mine supervised sig-
nals for efficient co-contrastive learning. Furthermore, the prediction task and
the contrastive learning task are unified under a primary&auxiliary learning
paradigm.

Overall, the main contributions of this work are summarized as follows:

• We propose a novel co-contrastive self-supervised learning framework for
drug-disease association prediction. By unifying the prediction task and the
contrastive learning under this framework, the prediction performance can
achieve significant gains.

• We consider the interaction between neighbor nodes (local) while creating
self-supervision signals, and design a global-aware attention mechanism to
capture high-order information in the other view. Moreover, the generated two
distinct representations can improve contrastive performance even further.

• Extensive experiments show that our proposed model outperforms the SOTA
methods and baseline methods and provides statistically significant gains on
three benchmark datasets by conducting cross-validation.

2 The Proposed Method

We denote vectors by lowercase boldface, matrices by uppercase boldface, and
sets by uppercase calligraphic font. Thus, let R = {r1, r2, ..., rN} denotes the
set of drugs, where N is the number of drugs; D = {d1, d2, ..., dM} denotes the
set of diseases, where M is the number of diseases. We embed each drug ri ∈ R
and disease dj ∈ D into the same space. Our goal of DDA prediction is to learn
a mapping function f((r, d)|ω) : E → [0, 1] from edges to scores, where ω is
parameter, such that we can obtain the probability of a given drug treating a
specific disease. Figure 1 displays the architecture of the proposed method.

2.1 Multi-source Contrast View Construction

DDA View. The drug-disease association view can be seen as an undirected
graph G = {V, E} , where V represents the set of nodes that correspond to drugs
and diseases, E ⊆ V × V denotes the set of edges indicating the existence of
interaction between two kinds of nodes in V. Furthermore, the graph G can be
represented as an incidence matrix A ∈ {0, 1}N×M , where Aij = 1 if drug ri

can treat disease dj , otherwise Aij = 0.

Similarity View. Taking the construction of drug-similarity view as an exam-
ple, with the similarity of drugs, for a certain drug node ri, we can select drugs
with the top-K highest similarity as the neighbor nodes which are the most simi-
lar to this drug. In this way, the drug-similarity view is denoted as GR ∈ {VR, ER}
with N drugs, and its adjacency matrix AR ∈ {0, 1}N×N , where AR

ij = 1 if drug
rj is the top-K nearest neighbor of drug ri; otherwise AR

ij = 0. In the same way,
the disease-similarity view is denoted as GD ∈ {VD, ED} with M diseases, and
its adjacency matrix AD ∈ {0, 1}M×M , where AD

ij = 1 if disease dj is the top-K
nearest neighbor of disease di; otherwise AD

ij = 0.
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Fig. 1. An overview of the proposed CSL.

2.2 Context-Aware Neighborhood Aggregation

Node Feature Extraction. Each row of adjacency matrices of similarity
views can act as the feature vector, but they may not sufficiently capture the
graph structure, especially non-neighboring, higher-order connectivity. On this
account, we run Random Walk with Restart[15] separately on drug similarity
matrix AR and disease similarity matrix AD to introduce the topological context
of each node into their initial vector representations. Specificlly, we follow [16] to
extract node feature. After obtaining the steady-state, we set the feature vector
ev = MLP(x∞

v ) on AV (V ∈ {R,D}) for drugs and diseases, where ev ∈ R
t

denotes the updated node representation with t dimensions and MLP contains
single hidden layer.

DDA View Encoder. GCN [5] is a neural network architecture which assumes
that neighbouring nodes are independent of each other and utilizes the weighted
sum to learn low-dimensional representations of nodes. Therefore, we first define
a GA aggregetor for target node v (drug r or disease d) as:

h(GA)
v = GA({ei}i∈N̂ (v)) = σ

⎛
⎝ ∑

i∈N̂ (v)

aviWgei

⎞
⎠ , (1)

where GA(·) is the linear aggregator, N̂ (v) = {v} ∪ {i|Avi = 1} denotes the
extended neighbors of node v which contains the node v itself. σ is a non-linear
activation function. avi is the weight of neighbor i and is defined as 1√

d̂v d̂i

,

where d̂v = |N̂ (v)| and d̂i = |N̂ (i)|. Wg is the weight matrix to do feature
trasformation and σ is a non-linear activation function.
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Nevertheless, GCN ignores the possible interactions between neighbor nodes
and may fail to capture the signal when such interactions exist. At the same time,
the multiplication of two vectors is an effective means to model the interaction
[17], and it can emphasize the common properties and dilute the discrepant
information. Thus, we define a BA aggregator for target node v as:

h(BA)
v = BA({hi}i∈N̂ (v)) = σ

⎛
⎝ 1

bv

∑

i∈N̂ (v)

∑

j∈N̂ (v)&i<j

eiWb � ejWb

⎞
⎠ , (2)

where bv = 1
2 d̂v(d̂v − 1) denote the number of interactions for the target node

v, which normalizes the obtained representation to remove the bias of node
degree. � is element-wise product and Wb is the weight matrix to do feature
trasformation.

Then, the encoder which is built on the DDA view for message passing
between drugs and diseases extracts indirect interactions in the local structure.
Specifically, for target node v, the DDA view encoder is defined as:

hv = β × h(GA)
v + (1 − β) × h(BA)

v , (3)

where β is a hyper-parameter to trade off the strengths of the GA aggregator
and BA aggregator.

Similarity View Encoder. Previous drug repositioning research assumed that
similar drugs would treat the same disease, but dissimilar drugs might also treat
the same disease. To fully exploit this potential correlation, we design a global-
aware strategy based on an attention architecture, to obtain node representa-
tions considering various perspectives. The following two aspects are taken into
account by the attention mechanism.

Firstly, we calculate the average representation of all nodes’ embedding in the
drug similarity view or disease similarity view, ev represents the average node
information by average pooling. In order to explore the potential of drug treat-
ment for non-indications, the node embedding and average information embed-
ding are used to calculate the following attention score:

εv = att1(W1ev � ev), (4)

where W1 is a transformation matrix and att1 is a single-layer feedforward neural
network with the LeakyReLU as activation function.

Apart from the above, we extend the message passing process by the attention
mechanism.

ζvi = att2(W2ev||W2ei), (5)

where W2 is a transformation matrix, || denotes the concatenation operation,
ei is the neighbor node representation of the node v and att2 is a single-layer
feedforward neural network applying the LeakyReLU nonlinearity.
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Then, following the additive attention mechanism [18], we sum the node’s
global score and its local score to consider the factors of global and local simul-
taneously. To make coefficients easily comparable across different nodes, we
employed the softmax function to normalize them across all choices of i. The
attention coefficients δvi between node v and node i is computed as:

δvi = softmaxv (εv + ζvi) =
exp (εv + ζvi)∑

j∈N (v) exp (εv + ζvj)
, (6)

where εv controls how much information the target node v can receive, and ζvi

controls how much information the neighbor node i to v. In this way, we can get
another representation of drugs and diseases. The calculation is define as:

qv = σ(
∑

i∈N (v)

δviW3hi), (7)

where W3 is the weight matrix.

2.3 Generating Prediction and Model Optimization

To reconstruct the associations between drugs and diseases, our decoder
f(eri

, edj
) is formulated as follows:

ŷri,dj
= MLP(eri

� edj
,hri

,hdj
), (8)

where ŷri,dj
is the predicted probability score.

Owing to the known DDAs have been validated manually, they are highly
reliable and important for improving prediction performance. However, the num-
ber of known drug-disease associations is far less than the number of unknown
or unobserved drug-disease pairs. Hence, our proposed CSL learns parameters
by minimizing the weighted binary cross-entropy loss as follows:

Lbce = − 1
N × M

⎛
⎝η ×

∑

(i,j)∈S+
rd

log ŷri,dj
+

∑

(i,j)∈S−
rd

(
1 − log ŷri,dj

)
⎞
⎠ , (9)

where (i, j) indicates the pair of drug ri and disease dj , S+
rd denotes the set of all

known drug-disease association pairs and S−
rd represents the set of all unknown or

unobserved drug-disease association pairs. The balance factor η = |S−
rd|

|S+
rd| imposes

the importance of observed associations to reduce the impact of data imbalance,
where |S−

rd| and |S+
rd| are the number of pairs in S−

rd and S+
rd.
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2.4 Contrastive Objective

Mining Self-Supervision Signals. In this section, we show how our frame-
work mines informative self-supervision signals to enhance DDA prediction.
Given a drug ri and disease dj in the DDA view, we choose their positive and
negative drug samples within the same minibatch using its representation learned
over the similarity view:

scorer = softmax(Qdqr), (10)

where scorer ∈ R
M denotes the predicted probability of each disease being

cured to the drug r in the similarity view.
With the computed probabilities, we can pick diseases with the top-K highest

confidence as the positive samples. Formally, the positive sample selection is as
follows:

Sd+

ri
= PK

d (scoreri
) , (11)

where PK
d denotes picking the corresponding diseases d which are according to

the top K probability scores with the highest confidence.
Then, we randomly select K negative samples from the diseases ranked in

top 50% in scoreri
excluding the positives to contruct Sd−

r . These diseases can
be viewed as hard negatives. In the same way, the information samples used for
disease embeddings are selected to get Sr+

di
and Sr−

di
.

Co-contrastive Learning. With the generated pseudo-labels, the self-super-
vised task used to refine encoders can be conducted through a contrastive object.
We utilize NT-Xent [19] as our objective function to maximize the mutual infor-
mation between the two views. The training objective for drug hri

is defined as:

Lri
= − log

∑
dj∈Sd+

ri

(
esim((hri

,hdj
))/τ

)

∑
dj∈Sd+

ri

(
esim(hri

,hdj )/τ
)

+
∑

dk∈Sd−
ri

(
esim(hri

,hdk)/τ
) , (12)

where τ denotes the temperature parameter and sim(u, v) is the cosine similarity.
In the same way, the training objective for disease hdi

is defined as:

Ldi
= − log

∑
rj∈Sr+

di

(
esim((hdi

,hrj
))/τ

)

∑
rj∈Sr+

di

(
esim(hdi

,hrj )/τ
)

+
∑

rk∈Sr−
di

(
esim(hdi

,hrk)/τ
) , (13)

Finally, we unify the prediction task with the auxiliary SSL task. The total
loss L is defined as:

L = Lbce + λ(Lr + Ld), (14)

where λ is hyperparameter to control the scale of the self-supervised graph co-
training.
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We optimize the model through the Adam optimizer [20] and initialize
weights as described in [21]. To generalize effectively to the unobserved data,
we trained the model in a denoising setup by randomly dropping out edges with
a fixed probability. We also applied regular dropout [22] to the graph convolution
layers.

3 Experiments

3.1 Experimental Settings

Datasets. We evaluate our model on three benchmark datasets: Fdataset [2],
Cdataset [23] and LRSSL [24], which are often used in drug-disease association
prediction. The basic statistics of the three datasets are shown in Table 1.

Table 1. Statistical details of the benchmark datasets.

Dataset #Drugs #Diseases #Associations Sparse ratio

Fdataset 593 313 1,933 0.0104

Cdataset 663 409 2,352 0.0087

LRSSL 763 681 3,051 0.0058

Baseline Methods. We compare our proposed CSL with various representative
methods: (1) Matrix factorization and completion models including SCMFDD
[25], BNNR [26], DRIMC [27]; (2) Deep learning-based models including NIM-
CGCN [6], LAGCN [7], DRWBNCF [28].

Evaluation Metrics. We used the area under the receiver operating charac-
teristic curve (AUROC) and the area under the exact recall curve (AUPR) as
the main metrics because they allow measuring the performance of the method
without any specific threshold.

Parameters Settings. Our proposed CSL model uses the Adam optimizer
with an initial learning rate of 0.001 and batch size of 64. For pre-training, the
restart probability α is set as 0.1. The temperature τ in contrastive object is set
as 0.1. The hyperparameters of baseline methods are chosen as their optimal
values provided by their publications.

3.2 Overall Performance

Following [6,26,27], we adopted 10-fold cross-validation (10-CV) to evaluate the
performance of prediction methods. Table 2 reports the performance comparison
results. We have the following observations:
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• The methods based on matrix factorization and completion models has
achieved better performance than expected on three datasets. Such perfor-
mance might be attributed to a smaller number of nodes in DDA data com-
pared to e-commerce and social recommendation data, which allows for the
promising performance of matrix factorization and completion methods.

• Compared to NIMCGCN and LAGCN, the performance of DRWBNCF ver-
ifies that modeling neighbor interactions can improve representation learn-
ing. Surprisingly, in some cases, NIMCGCN and LAGCN achieve worse per-
formance than BNNR and DRIMC. The reason might be that NIMCGCN
ignores the interaction of nodes in heterogeneous networks, and LAGCN
indiscriminately mixes the network topology information of different domains.
Besides, both NIMCGCN and LAGCN are impacted by the long-tail distri-
bution of data.

• The performance of our model on AUPR shows great improvement. CSL
obtains the best average AUPR of 0.5215, which is 12.95% higher than
DRWBNCF (the average AUPR is 0.4617). Benchmarking comparison results
on three datasets show that CSL improves the prediction performance thanks
to combining the information of the known drug-disease association with the
neighborhood and neighborhood interaction information of drugs and diseases
under the framework of contrastive learning.

Table 2. The average metrics of compared methods obtained in 10-CV.

Datast Fdataset Cdataset LRSSL

AUROC AUPR AUROC AUPR AUROC AUPR

SCMFDD 0.7748 0.0510 0.7921 0.0514 0.7783 0.0358

BNNR 0.9298 0.4372 0.9338 0.4702 0.9267 0.3152

DRIMC 0.9091 0.3096 0.9333 0.3894 0.9314 0.2661

NIMCGCN 0.8281 0.3385 0.8508 0.4326 0.8294 0.2670

LAGCN 0.8586 0.1188 0.9144 0.1849 0.9336 0.1109

DRWBNCF 0.9245 0.4845 0.9404 0.5589 0.9345 0.3416

CSL 0.9352 0.5486 0.9468 0.6256 0.9262 0.3904

3.3 Model Ablation

To evaluate the rationality of design sub-modules in our CSL framework, we
consider three model variants as follows: (1) CSL without DDA view encoder
(w/o-DE): We only use the similarity views to model drugs and diseases, remov-
ing the co-contrastive self-supervised learning. (2) CSL without similarity view
encoder (w/o-AE): We only use the DDA view to model drugs and diseases,
removing the drug-&disease-similarity view, interaction-aware similarity views
and the co-contrastive self-supervised learning. (3) CSL without co-contrastive
learning task (w/o-CL): We remove the co-contrastive self-supervised learning
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Fig. 2. The Recalls of all compared approaches obtained in 10-fold CV.

task and only use simple summing of drug/disease embeddings on two views to
get the final embedding.

As can be observed in Fig. 2, each component contributes to the final perfor-
mance. The DDA view encoder contributes the most. When only using the DDA
view encoder, the model achieves a suboptimal performance which is much higher
than the performance of the CSL without co-contrastive learning task on both the
three datasets. This can demonstrate the effectiveness of modeling the interaction
between neighbor nodes. By contrast, only using the similarity view encoder would
lead to a huge performance degradation on three datasets. Surprisingly, removing
the co-contrastive learning task and using the sum of drug/disease embeddings on
two views to obtain the final embedding do not achieve suboptimal performance.
This proves that contrastive learning can automatically mine labels, so as to max-
imize agreement between nodes in different view.

4 Conclusion

In this work, we recognize the limitations of the traditional DDA prediction and
explored the potential of GCL to solve the limitations. In particular, we pro-
pose a novel Co-contrastive Self-supervised Learning (CSL) framework to tap
candidate drugs for diseases. To be specific, we learn the representation of drugs
and diseases on three relevant views and then introduce a co-contrastive learn-
ing method that can sample positive samples and dig hard negative samples to
generate accurate node representations. Finally, we conducte extensive experi-
ments on three benchmark datasets, justifying the advantages of our proposal
regarding drug-disease association prediction.
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Abstract. In recent years, text-to-image synthesis techniques have
made considerable breakthroughs, but the progress is restricted to sim-
ple scenes. Such techniques turn out to be ineffective if the text appears
complex and contains multiple objects. To address this challenging issue,
we propose a novel text-to-image synthesis model called Object-driven
Self-Attention Generative Adversarial Network (Obj-SA-GAN), where
self-attention mechanisms are utilised to analyse the information with
different granularities at different stages, achieving full exploitation of
text semantic information from coarse to fine. Complex datasets are used
to evaluate the performance of the proposed model. The experimental
results explicitly show that our model outperforms the state-of-the-art
methods. This is because the proposed Obj-SA-GAN model utilises tex-
tual information, which provides a better understanding of complex sce-
narios.

Keywords: Text-to-image synthesis · Attention · Self-Attention ·
Semantic mining · GAN

1 Introduction

With the explosive growth of information and the development of social media,
people are inundated with information nowadays. Image can deliver the core
information in a more effective way to the users than text-based information [1].
People also prefer to perceive image information rather than reading text. Hence,
images play an increasingly indispensable role in the current information deliv-
ery process. However, most available high-quality images, such as cookbooks and
movie posters, are created manually, turning out to be inefficient and expensive
[17]. Motivated by this demand, it is significant to investigate how the machines
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can understand the semantic information in text and generate high-quality cre-
ative images.

Text-to-image synthesis aims to address this problem. It is a technique that
automatically generates images based on textual information. Text-to-image syn-
thesis encompasses two key research areas, i.e., Computer Vision (CV) and Natu-
ral Language Processing (NLP) [14]. The task of text-to-image synthesis typically
includes two stages. First, the semantic sense is parsed from the text message,
which directly determines whether the generated image satisfies the conditions
given in the text message. Second, a generative model is utilised to synthesise a
matched image from the parsed semantic sense [5]. There are a number of exist-
ing text-to-image synthesis models, and they have achieved remarkable success
in many areas, such as medical image generation and computer-aided systems
[18].

In the contemporary research field, there are a few dominant methods for the
text-to-image task, including Variational Auto-Encoder (VAE), Deep Recurrent
Attention Writer (DRAW), and approaches based on Generative Adversarial
Networks (GAN) [27]. Specifically, VAE adopts statistical techniques to build
the model and calculate the mean square error between the generated and gen-
uine images [14]. DRAW is developed based on Convolutional Neural Networks
(CNN) and attention mechanism. However, the resolutions of the images gener-
ated by these models are not clear enough to attain the desired results [5,28].
By contrast, GAN-based models can generally perform better [1,5,14,27]. The
GAN model and its variants take simple text information as input and generate
a high-quality image that matches it exceptionally well. However, such models
are merely limited to simple datasets, which have only one object in each image,
such as faces [28], birds [30] and flowers [15].

When textual information becomes more complex, having multiple objects in
the text message, the GAN based models are likely to miss pivotal fine-grained
information in the generation process, e.g., word-level semantic information. This
leads to significant quality degradation of the generated images and the produced
results fail to match the given semantic conditions [11]. For example, synthesising
an image from the sentence “a woman is sitting on a chair at a table with a cup
and cell phone” requires the generative model to achieve two objectives. First,
it needs to identify all the objects, i.e., woman, chair, table, cup and cell phone.
Second, it needs to rationalise the relationships between the objects, e.g., the
woman sitting on the chair, the cup and the phone in her hands.

GAN models generally do not work well on complex images because they
focus on learning the overall features of the images without paying attention
to the corresponding objects. Taking a living room image as an example, GAN
models fail to distinguish between the table and the bed in it but merely place
some shapes and colours in a particular position of the synthesised images. In
other words, after training, the model does not really understand the image but
only remembers where to place some appropriate shapes or colours. This also
explains the reason for lacking clear details when synthesising complex images
[30]. Therefore, it is challenging to deal with the relationships between objects
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when synthesising complex graphs. To alleviate this problem, some researchers
developed the idea of analysing the relationships between objects specifically
through an additional semantic layer before generating the images, where the
image synthesis phase is based on the result of the semantic layer [7,11]. These
models achieve improvements, but some important image features are missing.
For example, when generating images from the sentence “a brown dog lying on
bed with his banana toy”, the banana toy was not synthesised.

Fig. 1. Synthesised images using object-driven image synthesis models [11].

In this paper, we recognise the importance of semantic layout for complex
image synthesis and propose a generative model, namely, Object-Driven Self-
Attention GAN (Obj-SA-GAN). It leverages Self-Attention (SA) mechanism to
analyse text and then uses it to guide image synthesis. SA has two outstanding
advantages over other architectures, i.e., Recurrent Neural Networks (RNN). SA
extracts features from text sequences by treating the input xi as key, value and
query simultaneously, which can understand the elements in the sequence better
[19]. Furthermore, the longest path for SA is O(1), implying that it directly
links any two words in a sentence through a single computational step. Thus, the
distance between long-distance dependent features is greatly reduced, facilitating
the effective use of these features.

The main contribution of this paper is that we propose an Obj-SA-GAN
model for text-to-image synthesis. In particular, we use the SA to enhance the
generated semantic layout, which makes our model more closely match the pro-
cess of human drawing. In addition, we evaluate our model on the complex
dataset MSCOCO, and the experimental results show that the proposed model
outperforms the current popular generative models in terms of FID metrics and
reaches a new milestone. This also addresses the performance issues of GAN
models when being utilised in complex scenes.

The rest of the paper is organised as follows. In Sect. 2, related works are
introduced, where the advantages and disadvantages of GAN and its common
variants are summarised. In Sect. 3, we elaborate on the proposed Obj-SA-GAN
model. In Sect. 4, we conduct extensive experiments to evaluate the performance
of the proposed model and perform an ablation study to evaluate the contri-
butions of each key component of our method. Finally, the research work is
concluded in Sect. 5, and the directions for future research are explained.
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2 Related Work

The generation of realistic images from textual descriptions brings great con-
tributions to many real-world applications, such as healthcare, education, and
computer-aided systems. Nowadays, a growing number of generative methods
have been proposed for text-to-image synthesis. There are many existing gen-
erative models [2,4,6,9,10,13,18,21], where GAN-based models outperform the
others in terms of the quality of the generated images and the semantic matching
of the text [29,30]. However, the standard GAN model does not use mathemat-
ical models when building generators but rather a data-driven approach. The
data is random, thus, the output of the GAN heavily relies on random vectors,
leading to an uncontrolled process of image generation [27]. With the advent of
the variants of GAN models, such as Conditional GAN (CGAN), the problem is
getting alleviated [5,27].

Based on CGAN, the researchers have modified and optimised a set of GAN
variants, such as Stack-GAN [8], StackGAN++ [25] and AttnGAN [1], which
are based on the stacking or attentional architecture. Existing studies reveal
that these models can produce high-quality images on simple datasets, such
as CUB [15] and CelebA [23]. However, they do not perform well in complex
datasets, such as COCO [30], containing multiple objects. Moreover, the GAN-
based approach has low text utilisation and loses important fine-grained semantic
information. A major challenge in synthesising complex images is to improve the
accuracy of identifying relationships between objects. Hong et al. adopt semantic
layers to analyse the connections between objects before generating images [7],
having two phases, i.e., semantic layer and GAN-based image generation. How-
ever, the text message has been encoded into a single text vector, ignoring the
fine-grained text information. The resulting images do not have enough details
to support the generated results. Similarly, Li et al. design a two-phase model
to synthesise images, where an object-driven GAN neural network is introduced
by using part of the fine-grained information [11]. However, the improved model
misses some important information when generating images, as demonstrated in
Fig. 1. This reveals that their model still suffers from low text utilisation. We
propose a new object-driven self-attention framework to improve the utilisation
of fine-grained content.

The attention mechanism is much like the logic of seeing a picture, where
people’s attention is always focused on the important part of the image. This
allows the attention mechanism to conserve resources and quickly obtain the
most valuable information [20]. As the core theory of the most popular deep
framework, i.e., Transformer, the self-attention mechanism turns out to be a
very effective way to model context, which improves the attention mechanism,
reduces the dependence on external information and is better at capturing the
relevance within the data [23].

In summary, the classic GAN model maps textual information into a single
text vector, ignoring word-level information. Both Hong and Li aim to improve
the text utilisation of the model by introducing a semantic layer before image
generation to achieve significant results in synthesising multi-object images.
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Unfortunately, they used an LSTM model based on the RNN architecture for
the semantic layer, so some fine-grained information is still missed when pars-
ing the semantic information. However, attention mechanisms, in particular self-
attention, can focus limited resources on the detailed information of an object to
fully discover hidden connections. Inspired by these works, we intend to propose
an object-driven SA GAN model that uses self-attention mechanisms to improve
the text utilisation, theoretically enabling the synthesis of complex images better
than baselines. This is the first research work to build a GAN generation model
based on a self-attention and semantic layer.

3 Object-driven Self-Attention Generative Adversarial
Network

The architecture of the proposed Obj-SA-GAN model is presented in Fig. 2.
It takes a text description as input and extracts text information of different
granularity at different stages, from coarse to fine. High-quality semantic layers
are formed gradually and used to guide the downstream image synthesis task.
The semantic generator includes two sub-generators: box and shape generator.
The box generator parses the position and class information of the entity objects
and determines the global layout of the generated images. The shape generator
further refines the generated box sequence, outlining the general contour of each
object. The image generator takes the text vector and the hidden feature map
(hmap) generated by the semantic layer as inputs. In this stage, the semantic
layer information is converted into pixels to form an image that conforms to the
text semantics. This process is generally consistent with the original paper [11].
However, the difference is that we introduce the self-attention mechanism in the
semantic generation part, making the generated semantic layer more accurate
and detailed.

Fig. 2. The overall architecture of the proposed Obj-SA-GAN model.
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3.1 Box Generator

The box generator defines a mapping from a text vector (s) to a sequence of
boxes, namely,

B(1:t) = B1, B2, · · · , Bt ∼ Gbox(s) (1)

It defines what kind of objects should be included in the picture and where to
place these objects. The tth box annotation can be represented as Bt = (bt, lt),
where bt refers to the coordinates of the top left corner of each object box (x,
y) and the width and height of the box (w, h). lt denotes the label informa-
tion of the object. Figure 3 demonstrates the architecture of the box generator.
Box generator is a seq2seq model based on the encoder-decoder architecture.
A given sequence of text is first mapped to an embedding intermediate vector
through an embedding layer, which generates an embedding vector for each text
sequence. The embedding vector is then fed into a Self-Attention module. In the
Self-Attention module, the model extracts key information for each object and
generates a new set of vectors CN , where N denotes the number of objects in
the text. The Self-Attention module pays attention to each object and extracts
the corresponding core information. It also allows to generate more accurate box
sequences for each object.

Fig. 3. The architecture of the box generator.

In order to train the box generator, we use Eq. (2) as the loss.

L(box) = −λl
1
T

T∑

t=1

l∗t logp(lt) − λb
1
T

T∑

t=1

logp(b∗
t ) (2)

In Equation (2), T indicates the number of objects in the text, l∗t refers to the
true label of the box, lt indicates the predicted label, and b∗

t describes the true
bounding box (x, y, w, h). Lbox measures the error between the generated box
coordinates and the actual box coordinates. The box generator only needs to
detect the objects and the corresponding positions. It does not need to detect
if the generated bounding box is consistent with the actual image. Thus, the
predicted bt is not involved in the Eq. (2). The loss function considers both label
loss and bounding box loss. The former describes a Negative Log Likelihood
Loss (NLLLoss) to estimate the error related to the label, while the latter can
be recognised as Squared Loss to estimate the error with the object box. In the
current setting, we set λl= λb=1.0.
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3.2 Shape Generator

The shape generator is a further refinement of the box generator, which aims to
predict the shape of an object in a given sequence of object box. Mathematically,
M(1:T ) = Gshape(B1:T , Z1:T ), where ZT denotes a random noise vector. The
shape generator is restricted by an instance constraint and a global constraint.
The instance constraint ensures that the generated shape keeps consistent with
the position of the previously generated box. The global constraint guarantees
that generated shape fits the elements around it. The core component of the
shape generator is a bidirectional convolutional LSTM (bi-convLSTM) model.
The input is a feature map extracted from the box generator, followed by a bi-
convLSTM block. We perform a self-attention operation before the forward and
backward LSTMs. The hidden states in all steps are weighted to pay attention
to the more important hidden state information in the entire text. This gives a
better performance than using the bi-convLSTM alone.

A training strategy is employed to train the shape generator based on the
GAN architecture. It consists of two components, instance-constrained discrimi-
nator (Dinst) and globally constrained discriminator (Dglobal), respectively. The
loss function is formulated in Eq. (3)

lshape = λilinst + λglglobal + λrlrec (3)

where linst and lglobal denote the loss functions used by the two discriminators
mentioned above. Both adopt the Binary Cross Entropy Loss (BCELoss) to
measure the distance between the generated fake hamps and the real hmaps.
lrec refers to a perceptual loss, which measures the distance between the actual
image and the generated image. In the current setting, we give λi=1.0 λg=1.0
and λr=10.0.

4 Experiments

In this section, extensive experiments are performed to evaluate the proposed
Obj-SA-GAN model by using the MSCOCO dataset. Firstly, a brief description
of the datasets is given. Secondly, we compare the performance of the Obj-
SA-GAN model with state-of-the-art generative models. Thirdly, we perform
ablation experiments to compare the contribution of each module of the model.

4.1 Setup

Datasets: The Microsoft Common Objects in Context 2014 (MS COCO-2014)
dataset [12] and the ImageNet dataset [3] are utilised in this research.

– MS COCO was released in 2014. It is a collection of 164K images, which have
been partitioned into the training set (82K), validation set (41K) and testing
set (41K). The dataset is complex because most of the images possess at least
two objects.

– ImageNet was released in 2009. It consists of 14 million images, covering
most of the categories of images seen in life. ImageNet has more than 20K
classifications, and each image is manually categorised.
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Evaluation Metrics: we adopt Inception Score (IS) and Fréchet Inception
Distance (FID) as evaluation metrics [7,11]. Both are acknowledged as standard
metrics for evaluating the GAN-based generation model. Specifically, IS exam-
ined both the clarity and diversity of the resulting images. The higher the IS,
the better the quality of the generated images. FID calculates the difference
between the generated image and the original image. The smaller the difference,
the better the generated image is.

Baselines: Two baselines are utilised as the counterparts of the proposed model.

– Inferring Semantic Layout for Hierarchical Text-to-Image Synthesis (Infer) [7]
is a text-to-image synthesis model which integrates a semantic layer model
with a generative model.

– Obj-GAN [11] is an improved model of Infer, which focuses on enhancing the
image generator module of Infer. Object-driven attention is adopted in the
GAN to synthesise images.

4.2 Experimental Results

In this subsection, we evaluate the proposed model by comparing it against a
few state-of-the-art generative models quantitatively and qualitatively.

Performance Evaluation: Table 1 demonstrates the results of the quantitative
comparison. It can be seen from the table that the proposed model outperforms
all the baselines. In terms of FID, our Obj-SA-GAN model yields outstanding
performance compared with the existing generative models. Regarding IS, the
Obj-SA-GAN model also performs best, reaching approximately 32.26, almost
twice the Infer baseline. According to the results, we can conclude that involving
Self-Attention in the semantic layer can produce a significantly positive effect on
the deep mining of relationships between objects because it fully utilises limited
textual information.

Qualitative Analysis: In this subsection, qualitative analysis is conducted to
visually and intuitively compare the results of each generated model. Figure 4
demonstrates the images generated by our model at different epochs. The input
text is given as “a brown dog lying on bed with his banana toy”. In Fig. 1, we
have shown the actual image of the sample and the images generated by the
four existing generative models. However, none of the generated images has any
traces of a banana toy. In contrast, by applying our Obj-SA-GAN model, the
shape of the banana becomes more apparent with the epoch increases. The result
explicitly reveals that adding Self-Attention to the semantic layer can promote
the model to generate an accurate and reasonable semantic layout, effectively
guiding the image synthesis.
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Table 1. Experimental results of varied models for Text-To-Image synthesis. Symbols
↑ and ↓ indicate the higher the best and the lower the best, respectively. n/a means
that the indicator is not used in the article. we utilise bold indicates the experimental
results of our proposed model. * indicates the best performance. The value that follows
± is the standard deviation.

Models Inception ↑ FID ↓
Obj-SA-GAN 32.26 ± 0.02 * 18.20 *

Obj-GAN (baseline) [11] 29.89 ± 0.22 21.21

Infer (baseline) [7] 12.40 ± 0.08 n/a

P-AttnGAN 0 [11] 18.84 ± 0.29 59.02

P-AttnGAN 1 [11] 19.32 ± 0.29 54.96

P-AttnGAN 2 [11] 20.81 ± 0.16 48.47

Reed et al. [16] 7.88 ± 0.07 n/a

StackGAN [24] 8.45 ± 0.03 n/a

AttnGAN [22] 23.79 ± 0.32 28.76

vmGAN [26] 9.94 ± 0.12 n/a

Fig. 4. Generation results produced by our proposed model. The four subplots in each
sample correspond to different epochs, ranging from 60 to 100.

Ablation Study: In this subsection, two ablation experiments are conducted
to investigate the effectiveness of the Self-Attention module and shape generator,
respectively. In Table 2, we statistically present the performance of the models by
eliminating the Self-Attention module in box and shape generator, respectively.



348 R. Li et al.

It can be seen from the table that the FID of Obj-SA-GAN1 appears close to
Obj-SA-GAN2. This reveals that the box and shape generator almost contribute
equally to FID. As for IS, Obj-SA-GAN2 reaches 32.54, nearly equal to the
proposed model. This is because IS does not consider the semantic layout when
evaluating the model.

Table 2. Ablation study of Obj-SA-GAN model

Models Box attention Shape attention Inception FID

Obj-SA-GAN YES YES 32.26 18.25

Obj-SA-GAN1 YES NO 31.41 19.21

Obj-SA-GAN2 NO YES 32.54 19.87

5 Conclusion and Future Work

In this paper, we proposed a novel text-to-image synthesis model, called the Obj-
SA-GAN model, incorporating the attention and semantic layer. The proposed
model adopts Self-Attention in the box and shape generator, which enhances
text utilisation and deeply parses complex text descriptions, from coarse to fine,
and gradually forms an accurate and fine-grained semantic layer to guide the
global layout of the generated image. The proposed Obj-SA-GAN model can
achieve excellent performance on the MSCOCO dataset, outperforming most
existing generative models.

In the future, we plan to replace the multi-stage model with an end-to-end
generative model. We also consider designing a novel quantitative assessment
metric that can complement the Inception Score and other metrics.
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Abstract. Knowledge tracing (KT) is a fundamental task in educa-
tional data mining that mainly focuses on students’ dynamic cogni-
tive states of skills. The question-answering process of students can be
regarded as a thinking process that considers the following two problems.
One problem is which skills are needed to answer the question, and the
other is how to use these skills in order. If a student wants to answer a
question correctly, the student should not only master the set of skills
involved in the question, but also think and obtain the associative path
on the skills graph. The nodes in the associative path refer to the skills
needed and the path shows the order of using them. The associative path
is referred to as the skill mode. Thus, obtaining the skill modes is the key
to answering questions successfully. However, most existing KT models
only focus on a set of skills, without considering the skill modes. We pro-
pose a KT model, called APGKT, that exploits skill modes. Specifically,
we extract the subgraph topology of the skills involved in the question
and combine the difficulty level of the skills to obtain the skill modes
via encoding; then, through multi-layer recurrent neural networks, we
obtain a student’s higher-order cognitive states of skills, which is used to
predict the student’s future answering performance. Experiments on five
benchmark datasets validate the effectiveness of the proposed model.

Keywords: Educational data mining · Knowledge tracing · Graph
neural network

1 Introduction

Recent advances in intelligent tutoring systems have promoted the development
of online education and generated a large amount of online learning data [1–3].
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Fig. 1. (a) Instance of students answering questions. Given the same question, Student
1 and Student 2 provide different answers. Assuming that the skills mastery of the two
students is similar, the student who cannot obtain the skill modes through thinking
should have a higher probability of answering incorrectly. (b) Detailed thinking process
of a student. Gi represents every thinking state and the arrow connecting two states
represents a state transition, indicating a student’s thinking and associative behavior.

Knowledge tracing (KT) is used to model students’ dynamic mastery of skills
based on their historical learning data and to infer their future answering perfor-
mance, which is a fundamental and essential task in computer-aided educational
systems and online learning platforms [4,5].

Bayesian knowledge tracing (BKT) [6] was the first KT model proposed by
Corbett et al. It models students’ cognitive states using the hidden markov model
(HMM) with limited representation capabilities [7]. Subsequently, deep learning
models, such as deep knowledge tracing (DKT) [8], were developed, which model
a student’s learning process as a recurrent neural network (RNN), significantly
improving the prediction performance of the traditional Bayesian-based KT.
With the development of graph neural networks (GNN) [9], GNN-based KT
models [10,11], which use the natural graph structure existing in skills to model
students’ cognition, have attracted considerable attention. Although KT models
have developed rapidly in recent years, limitations still exist.

Most of the existing KT models assume that students could obtain the correct
answer only if they mastered all the skills; therefore, they use the cognitive state
of the skills to predict a student’s future answering performance. However, they
ignore the thinking process of students. In addition to mastering skills, two points
need to be considered to predict the future answering performance of a student:
(1) finding the skills needed to answer a question among all the skills mastered,
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and (2) obtaining a reasonable order of use for these skills. If a student wants
to answer a question correctly, the student should not only master the set of
skills involved in the question but should also think and obtain the associative
path on the skills graph, the nodes in which are the skills to be used, and the
path showing the order of using them. Here, the associative path is referred to
as the skill mode. If students only master the skills (e.g., P1 in Fig. 1(b)), the
students cannot solve the problem because they may not establish an association
between s1 and s2; they do not think of using s2 to solve the problem. At this
time, the students get stuck in processing the association from G1 to G2 shown
in Fig. 1(b). Students may fail to establish an association between s2, s3, and s4
as well. At this time, the student gets stuck in processing the association from G2
to G3 shown in Fig. 1(b). Students who do not master any of the processes in P2
may fail to solve the problem. Thus, obtaining skill modes is the key to answering
questions successfully. As shown in Fig. 1(a), Student 1 and Student 2 provide
different answers for the same question. Assuming that the skill mastery of the
two students is similar, the student who cannot obtain the skill modes through
thinking should have a higher probability of answering incorrectly (as shown in
Fig. 1(a)). Students must use the skills they have mastered, the information in
the question, and their experience to find the skills needed to answer a question
and convert the thinking process into answers (as shown in Fig. 1(b)). This study
assumed that students will have a higher probability of getting a question wrong
if they only master the skills without mastering the skill modes.

APGKT is proposed considering skill modes (e.g., P2 in Fig. 1(b)) to improve
performance of KT. The main contributions of this study are as follows:

– This study exploits the associative path on the skills graph for knowledge trac-
ing (KT). The thinking process (i.e., obtaining the associative path) has been
demonstrated to be indispensable for achieving a correct answer (detailed in
Fig. 1). However, most of the existing KT models only consider whether the
set of skills involved in the question have been mastered when predicting a
student’s future answering performance.

– The proposed APGKT model includes the concept of skill modes and higher-
order cognitive states. Considering the dynamic process of students thinking
and answering questions, the skills associated with a specific problem are con-
sidered as a whole to consider the organizational association. We combine the
cognitive state of the skills and the skill modes into a higher-order cognitive
state to accurately represent the cognitive processes of students.

– Extensive experiments on five public datasets proved that the prediction
results of our model are better than those of baseline models, owing to the
consideration of the thinking process during KT.

2 Related Work

In this section, related work regarding KT and the existing GNN-based KT
models is introduced.
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2.1 Knowledge Tracing

KT as a student modeling technique has attracted extensive research work.
Existing KT models can be divided into three main categories: probabilistic
models, logistic models, and deep learning-based models [1]. (1) Probabilis-
tic models, which assume a Markov process to represent the learning process
of students, are mainly of two types [1]: BKT [6] and DBKT [12]. They use
unobservable nodes in the HMM to represent the knowledge state, and Bayesian
networks and dynamic Bayesian networks for KT. (2) Logistic models, which
assume that the probability of correctly answering questions can be expressed
as a mathematical framework of students and skills parameters, are mainly of
three types [1]: LFA [13], PFA [14], and KTM [15]. They use the output of the
logistic regression function to represent the knowledge state, and logistic regres-
sion or factorization machines to model the knowledge state change. (3) Deep
learning-based models adapt to complex learning processes, especially in the
face of extensive interactive data [1], are being considered. Deep learning is a
powerful tool to implement nonlinearity and feature extraction. DKT [8], the
first deep learning-based model for KT, uses a RNN to model the cognitive state
of students and has achieved excellent results. Subsequently, this model has been
further developed into memory-aware [16], problem-aware [17–19], and attention
[20–23] models [1], which use the interactive information in students’ responses.
Due to the natural graph structure of the KT task, GNN-based KT models have
attracted researchers (detailed in Sect. 2.2).

2.2 GNN-based KT Models

GNNs, which process complex graph-structured data, have developed rapidly in
recent years. In GNNs, a graph is a data structure that models a set of objects
(nodes) and their relationships (edges). From the perspective of data structure,
graph structures naturally exist within skills [10]. Therefore, combining the graph
structure of the components (such as skills or questions) with relational inductive
bias should improve the performance of KT models [1].

Recently, several KT-structure frameworks based on GNNs have been devel-
oped. For example, GKT [10] conceptualizes the underlying graph structure of
skills into a graph to influence the updating process of the cognitive states of
skills. HGKT [4] mines the hidden hierarchical relationships among exercises
by constructing a hierarchical exercise graph. GIKT [11] aggregates the embed-
ding of questions and skills through a graph convolutional network (GCN) to
extract the higher-order information from them. By introducing the transfer of
knowledge [24], SKT [25] further explores the knowledge structure and captures
multiple relations in it to model the influence propagation among concepts. JKT
[26] captures high-level semantic information and improves model interpretabil-
ity by modeling the multi-dimensional relationships of “exercise-to-exercise” and
“concept-to-concept” as graphs and fusing them with the “exercise-to-concept”
relationship. Most existing GNN-based KT models only consider the graph struc-
ture within the set of skills involved in questions (e.g. P1 in Fig. 1(b)). Therefore,



APGKT 357

Fig. 2. Framework of the GIKT [11] model.

they lack the mining and utilization of information in the skill modes (e.g., P2
in Fig. 1(b)), which is what we focused on in this study.

2.3 GIKT

Our work is inspired by a graph-based interaction model for knowledge tracing
(GIKT), and we refer readers to the reference [11] for more details about GIKT.

Embedding Propagation. GIKT models the relationship between questions
and skills as a bigraph and uses multiple layers of GCN to aggregate their
embeddings. After the GCN embedding propagation and aggregation processes,
higher-order questions and skill-embedding representations q̃ and s̃ are obtained,
respectively.

Student State Evolution. For each historical time t, GIKT obtains a rep-
resentation of exercise et by concatting the embeddings of aggregated question
q̃t and answer at. Then a long short-term memory network (LSTM) is used to
learn the changes in the cognitive states ht of students using et as input.

History Recap Module. GIKT uses a history recap module to select the
history exercises related to the current answered questions to better represent
the student’s ability to answer the current specific question qt. GIKT provides
two methods for selecting history exercises Ie: hard and soft selections. The
hard selection method only selects questions with skills identical to the current
answered question each time and the soft selection method uses the similarity
between the questions to select the top k-related problems with the highest
correlations with the current question being answered.
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Fig. 3. Complete framework of the APGKT model. The first module on the left is the
graph construction, the bottom of which is the skill modes graph we are concerned
about. The next module is graph representation, where the efficient representation of
the questions and the skill modes are obtained. In the student state evolution module,
we obtain a student’s cognitive state of skills and skill modes. Finally, the prediction
module obtains the final prediction by fusing the higher-order cognitive state obtained
by Concat and other state information.

Generalized Interaction Module. In this module, GIKT uses 〈ht, q̃t〉 to
indicate the student’s mastery of question qt, 〈ht, s̃j〉 to indicate the student’s
mastery of related skill sj ∈ Nqt , 〈hi, q̃t〉, and 〈hi, s̃j〉 to represent the interaction
of the current student state with historical states. GITK considers the interaction
information of all these states to obtain the predicted value.

3 APGKT: Proposed Model

In this section, we introduce the framework (detailed in Sect. 3.1) of our model,
which includes graph construction and representation (detailed in Sect. 3.2), and
student state evolution and prediction (detailed in Sect. 3.3).

3.1 Framework

The framework of the APGKT model is shown in Fig. 3. First, we construct a
graph and obtain its representations (detailed in Sect. 3.2). We then obtain a
student’s higher-order cognitive states by splicing the cognitive state of skills
and skill modes, which is then used to predict the performance of the student
(detailed in Sect. 3.3). In the following sections, we describe in detail each module
of our model.

3.2 Graph Construction and Representation

The structure of the graph is first described. Then, the construction of skill
graph, the generation and representation of skill modes are detailed.
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Structure of the Graph. To represent the relationship between questions,
skills, and skill modes, we constructed a graph with three layers for three rela-
tionships (as shown in Fig. 3).

(1) Three layers. a) The top layer is a question graph that contains all
the questions from the student’s answer record. We represent these questions
by Q =

{
q1, q2, ..., qnq

}
, where nq denotes the total number of questions. b)

The middle layer is a skills graph, which consists of the skills involved in all the
questions. These skills are represented as S = {s1, s2, ..., sns

}, where ns is the
total number of skills. c) The bottom layer is a skill-mode graph, which contains
all the obtained skill modes.

(2) Three relations. a) Each question qi in the question graph is associated
with a skill set in the skills graph, and we represent this skill set as Sseti ={
si1, s

i
2, ..., s

i
hi

}
, hi ≥ 1. si1, s

j
2, ..., s

i
hi

are skills related to question qi and hi

indicates the number of skills related to question qi. The skills in the skills
graph are divided into several skill sets based on the questions. The relationship
between questions Q and skills S is represented by a matrix QS. QS is a two-
dimensional matrix of size nq × ns, where QSi,j = 1 indicates that qi is related
to sj . b) The relationship between skills is constructed using several methods,
which will be introduced in Sect. 3.2. This relationship is represented by a two-
dimensional adjacency matrix SS of size ns × ns, where ns is the number of
skills. 0 ≤ SSi,j ≤ 1 indicates the strength of the association between si and
sj . Note that SSi,j and SSj,i represent different relationships between the skills.
c) The method for obtaining the relationship between skills and skill modes is
introduced in Sect. 3.2. A skill may belong to different skill sets and different
skill modes because it is simultaneously associated with different questions, and
the number of skill modes equals the number of skill sets, as shown in Fig. 3.

Skills Graph Construction. APGKT needs to use the graph structure of
skills when evaluating a student’s proficiency in skills and skill modes. However,
in most cases, the structure of the skills is not explicitly provided. Nakagawa
et al. [10] introduced statistics-based and learning-based approaches for imple-
menting the latent graph structure, of which the former are more efficient with
less time consumption (detailed in Table 2 in [10]). From the aspect of statistics-
based approaches, we assumed that the higher the frequency of two skills appear-
ing together in the same question, the stronger the strength of the association
between the two skills. This was not considered in the statistics-based approaches
in [10]. Therefore, a frequency-based method is proposed in this subsection.

Frequency-based method generates a connected graph according to the num-
ber of times two skills appear together in the same question and the number of
times two skills appear separately in different questions. This is calculated using
Eq. (1).

SSi,j =
ni,j∑ns

k=1 ni,k
, (1)

where ni,j represents the times two skills appear together in the same question.
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Skill Modes Generation and Representation. Through the complete think-
ing process, the skill modes are obtained, which represent the associative paths
on the skills graph (as shown in Fig. 1(b)). In this subsection, the generation and
representation of the skill modes are designed.

Considering that students usually have a thinking process from easy to dif-
ficult when answering questions, we obtain an effective representation of the
skill modes using the encoded association paths and difficulty levels of skills.
Specifically, we first obtain the difficulty level of all the skills through statistical
information using Eq. (2). Then, we obtain the ascending subscripts of the skills
in Sseti according to the skill difficulty and referred to Idxi = {i, j, ..., k}. We
finally extract the local topological structure of Sseti in the SS using Eq. (3).
That is, the values of the i, j, ..., kth row and i, j, ..., kth column in the SS are
extracted and flattened to obtain the initial representation mi of the skill mode.

Diffsi =
ni

N i
, (2)

where ni is the number of wrong answers to questions containing skill si and N i

is the number of questions containing skill si.

mi = Flatten(
∑

i′∈Idxi

∑

j′∈Idxi

SSi′,j′), (3)

where Flatten indicates making multidimensional data one-dimensional.
We encode the initial representation of the skill modes through an encoder

module to obtain the embedding of the skill modes Mi (Eq. (4)), and then
calculate the mean squared error (mse) with the encoded mi after decoding it to
obtain the reconstruction loss Reloss using Eq. (5). Finally, we minimize Reloss
to obtain an effective representation of the skill modes.

Mi = σ(WM × mi + bM ) (4)

Reloss =
1
nq

nq∑

1

(Mi − mi)2 (5)

In Eq. (4), σ indicates a nonlinear mapping, and WM and bM indicate the
weights and biases, respectively, in the encoder that will be trained.

3.3 Student State Evolution and Prediction

For each time step t, the embedding of the aggregated question q̃t and skill modes
Mt of qt are provided as inputs into the LSTM to learn a student’s mastery of
skills and skill modes. Next, we connect the cognitive states of the student’s skills
and skill modes through the Concat module to obtain the student’s higher-order
cognitive state Ht using Eq. (6). Finally, we incorporate the student’s higher-
order cognitive state Ht in (6) to improve the prediction of GIKT, and obtain
the final prediction pt as shown in Eq. (7) and Eq. (8) [11].

Ht = [ht,Ht], (6)
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where [·] represents vector concatenation.

αi,j = Softmaxi,j(WT [fi, fj ] + b), (7)

pt =
∑

fi∈Ie∪{Ht}

∑

fj∈Ñqt∪{q̃t}
αi,jg(fi, fj), (8)

where pt indicates the predicted result at time t, Ie indicates history exercises
related to the qt. Ht is the higher-order cognitive state of the student. Ñqt is the
aggregated neighbor skill embedding of qt. g represents the inner product.

APGKT is optimized by minimizing the cross-entropy loss between the pre-
dicted and the true values using gradient descent as shown in Eq. (9).

L = −
∑

t

(at log pt + (1 − at) log(1 − pt)), (9)

where at represents the true value of the students’ answer at time t.

4 Experiments

Experiments are conducted on five real-world datasets to demonstrate the effec-
tiveness of the proposed model. First, the setup is introduced, including the
datasets, baselines, and implementation details. Then, the comparing results and
Nemenyi tests are presented. Finally, the parameters in the model are analyzed.

4.1 Setup

The setup of the experiments is introduced, including the five datasets, the
compared baselines, and the implementation details.

Datasets. Five real-world datasets were used and their statistics are listed in
Table 1. To verify the effectiveness of our model in the multi-skills scenario, we
further processed the assist09 dataset, and only retained the questions involving
multiple skills and students’ answer records to form the dataset assist09-muti.
The questions in CSEDM, FrcSub, Math1, and Math2 were all related to more
than one skill, and there were no questions related to a single skill.

Comparison Baselines. To verify the effectiveness of our model, APGKT is
compared with the following baselines: DKT [8], DKVMN [16], GKT [10], GIKT
[11] (detailed in Sect. 2.3).
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Table 1. Dataset statistics

Datasets assist09 assist09-muti CSEDM FrcSub Math1 Math2

Number of students 3002 1793 343 536 4209 3911

Number of questions 17705 3014 236 20 15 16

Number of skills 123 54 18 8 11 16

Table 2. Comparison in terms of AUC

Dataset DKT [8] DKVMN [16] GKT [10] GIKT [11] APGKT (Our model)

assist09 0.6995 0.7112 0.7230 0.7742 0.7767

assist09-muti 0.6961 0.7106 0.7320 0.7763 0.7817

CSEDM 0.7543 0.7626 0.7647 0.7836 0.7902

FrcSub 0.8891 0.8729 0.8748 0.8982 0.9059

Math1 0.8349 0.8403 0.8456 0.8892 0.8922

Math2 0.8084 0.8159 0.8181 0.8681 0.8695

Implementation Details. The APGKT code was written using TensorFlow.
The datasets were divided into training and testing sets in the ratio of 8:2. We
set the length of skills, questions, and answer embeddings to 100, which were
not pretrained but were randomly initialized and then optimized during training.
The relationship between the skills was constructed using the Frequency-based
method (detailed in Sect. 3.2). Finally, we used the Adam optimizer with a learn-
ing rate of 0.003 to optimize all the trainable parameters.

4.2 Results

Results including the mean AUC results, the Nemenyi tests, and the parametric
analysis are illustrated in this subsection.

Comparison in Terms of AUC. We used AUC as the evaluation criterion,
and Table 2 shows the AUC scores of the baseline models and our model. We
observed that the AUC scores of APGKT were the highest (denoted in bold) for
all the datasets, which demonstrates the effectiveness of the proposed method.
On comparing the AUC scores of the models on the assist09 and assist09-muti
datasets, we observed that our model performed better than the baseline models
in multi-skill scenarios. This may be due to the abundant skill modes available
in our model in multi-skill scenarios, which improves its predictive performance.

Nemenyi Test. In the experiments, Nemenyi tests [27] were conducted to
statistically compare the five algorithms over five datasets (as shown in Fig. 4).
The test results showed that our model performed better than other models.
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Fig. 4. Nemenyi test results of the proposed model and baselines. The results demon-
strate the better performance of the proposed model.

Fig. 5. Parameter analysis for APGKT. It is observed that our model outperforms the
baselines although the parameters underwent constant changes.

Parametric Analysis. We also conducted parameter analyses on the CSEDM
dataset to analyze the model’s sensitivity to the parameters. Bayes opt (https://
github.com/fmfn/BayesianOptimization) was used to tune the learning rate of
Adam optimizer (lr), learning rate decay (lr-decay), and threshold for determin-
ing whether two questions are related (att-bound). They were initialized ranging
from 0 to 1. It is observed that the performance of our model was superior to that
of the baseline models although the parameters underwent constant changes.

5 Conclusion

Most of the existing KT models ignore the thinking process between specific
skills, leading to suboptimal prediction performance. We introduced skill modes
and higher-order cognitive states to solve this problem and proposed a novel
model named APGKT. Specifically, we considered the dynamic process of stu-
dents thinking and answering questions, and further explored the relationship
between the specific skills involved in the questions. Extensive experiments on
five public datasets verified that the proposed model outperformed the baseline
models. Since the thinking process of students is actually a complex cognitive
process, which is affected by many factors such as psychology, in the future, we

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
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will further explore the representation and application of the thinking process
to improve the model.
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Abstract. Some data from multiple sources can be modeled as multi-
modal time-series events which have different sampling frequencies, data
compositions, temporal relations and characteristics. Different types of
events have complex nonlinear relationships, and the time of each event is
irregular. Neither the classical Recurrent Neural Network (RNN) model
nor the current state-of-the-art Transformer model can deal with these
features well. In this paper, a features fusion framework for multimodal
irregular time-series events is proposed based on the Long Short-Term
Memory networks (LSTM). Firstly, the complex features are extracted
according to the irregular patterns of different events. Secondly, the
nonlinear correlation and complex temporal dependencies relationship
between complex features are captured and fused into a tensor. Finally,
a feature gate are used to control the access frequency of different ten-
sors. Extensive experiments on MIMIC-III dataset demonstrate that the
proposed framework significantly outperforms to the existing methods in
terms of AUC (the area under Receiver Operating Characteristic curve)
and AP (Average Precision).

Keywords: Features fusion · LSTM · Multimodal · Time-series

1 Introduction

In general terms, a modality refers to the way in which something happens or is
experienced [2]. To our best knowledge, many existing works have demonstrated
that Neural Network can achieve an excellent result in single modality processing
such as image classification [23], speech synthesis [13], natural language process-
ing [26]. In the field of data, multimodal is used to represent different forms of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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data, or different formats of the same form, which generally represents text, pic-
ture, audio and video [11,22]. Hence, multimodal data processing have attracted
a wide attention from the academia, especially for multimodal fusion which is
one of the original topics in multimodal machine learning [2]. Neural Networks
is expected to tackle the multimodal fusion problem [18] and has been used
extensively to fuse information for text, image and audio [14,15], gesture recog-
nition [17], and video or image description generation [21,27], since the earliest
investigation of AVSR [20]. However, almost of all these studies focus on text,
images or speech modes rather than multimodal time-series which is a critical
ingredient across many domains, so how to effectively process multimodal data
still need further study. Many methods have been launched to process simple
single mode time-series data [1,29], which have achieved the best result in their
respective field. But they have no way to directly use multimodal time-series
data, for example multisensor data, medical time-series data.

The problem of features fusion is challenging in multimodal irregular time-
series data processing [4]. For example, for clinical data, patient’s electronic
health records can be abstracted into thousands of interrelated medical events
with temporal information, including complex allergy history, family genetic
history, drug list, hospitalization records and other historical records. Different
event has almost absolutely different frequency of recording. E.g. patient’s hos-
pitalization records may be only once a few years, but medication records could
be many times a year. Not only different events have different recording frequen-
cies, but also the same type events have significant differences in their different
nature. For example, attributes of drug taking events such as drug type, dose
and test events include specific indicators and comparison results with normal
range values. In order to integrate the features of these events, we must describe
these dependencies.

In order to solve the above problems in multimodal irregular time-series
events, in this paper, the following contributions is presented in this paper: (1)
We propose a new features fusion method to deal with multimodal data, where
the features of complex data are fused into a common feature subspace. This
method can be applied to different multimodal data. (2) We explore different
encoding methods for temporary features, and found a method to embed the
temporary features into the non-temporary features, which allows us to bet-
ter deal with time-series data (3) We propose a model called FG-LSTM which
developed from the Recurrent Neural Network such as Phased LSTM [16] to deal
with the problem of irregular time-series data. Our proposed model filters the
input features by feature gate while recording the complex temporal relationship
between different features. (4) We compare with other models, and the experi-
ment results based on the real data demonstrate that the prediction performance
of our model is significantly improved.
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2 Related Work

2.1 Multimodal Fusion Problem

Multimodal fusion mainly refers to the comprehensive processing of multimodal
data by computer, which is responsible for fusing the information of each mode
to perform target prediction [22]. Tensor Fusion Network (TFN) [28]is a multi-
modal network for features fusion through matrix operation to directly fuse the
three features vectors of the data with three modes (such as text, image and
audio). However, since TFN calculates the correlation between the elements of
different modes through the tensor outer product between modes, it will greatly
increase the dimension of features tensor and result in a too large model that
is difficult to train. Low-rank Multimodal Fusion [14] uses a low rank matrix
to decompose the weight, and hence the TFN process is changed into a single
linear transformation of each mode. Then the received multi-dimensional point
by Low-rank Multimodal Fusion can be regarded as the sum of multiple low rank
vectors, and thus the number of parameters in the model is reduced. Although
Low-rank Multimodal Fusion is an upgrade of TFN, once the features are too
long, it is still easy to explode parameters. Multimodal Adversarial Representa-
tion Network [10] adds a dual discriminator countermeasure network based on
multimodal fusion (ordinary attention fusion), which captures dynamic common-
ness and invariance respectively. Multimodal Bottleneck Transformer [15] uses a
shared token between two Transformer, so that this token becomes a communi-
cation bottleneck of different modes to save computational attention. In this way,
multimodal interaction can be limited to several shared tokens. Compared with
the above researches, we pay more attention to multimodal time-series events,
and the above researches can also be regarded as special cases of multimodal
time-series events.

2.2 Time-series Forecasting

Recurrent neural network (RNN) is a neural network used to process sequence
data. Theoretically, RNN can store long-term memory and update the previous
state according to the current input at any time, but in fact, it is very difficult.
In another word, RNN is difficult to solve the problem of long-term depen-
dence [5]. LSTM [6] is a special RNN, which is mainly to solve the problems of
gradient disappearance and gradient explosion in the process of long sequence
training. Compared with ordinary RNN, LSTM has better performance in long
sequences, but LSTM can only maintain a long-term dependence within about
50 time steps. Phased LSTM [16] can solve the problem that LSTM can not
process irregular input sequences. By integrating different sampling frequencies
or irregularly sampled data on phase gate, Phase LSTM can remember signals
with different periods, and the state can propagate for a long time. When the
processing sequence reaches thousands of steps, LSTM is almost unavailable,
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while Phased LSTM performs well. But Phased LSTM is not suitable for model-
ing the complex event sequence with thousands of event types. HE-LSTM [12] is
proposed to deal with heterogeneous temporal events in long-term dependence,
but it can only extract event types while the features relationship of events can
not be obtained. Transformer [26] is a powerful architecture that can achieve
excellent performance on a variety of sequential learning tasks, which does not
perform recursion on the sequence, but processes the feedforward model of the
whole sequence simultaneously. Recent research shows that transformer has the
potential to improve the prediction ability [24]. However, transformer has some
serious problems that make it unable to be directly applied to multimodal irregu-
lar time-series data, such as quadratic time complexity, high memory utilization
and the inherent limitations of encoder-decoder architecture [29]. In addition
to the above problems, the biggest problem of Transformer is that the model
contains no recurrence and no convolution, which results in the input tensor can
not contain the time relationship of the input sequence effectively [3].

Fig. 1. The non-temporal features fusion method.

3 Methodology

For time-series S in a given scene, the features of the sequence are consist of
dynamic events {Et}1≤t≤L with length L, and each event occurs at the same
or different time. We arrange it according to the chronological order of events.
Among the events that occur at the same time, the events recorded earlier are
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arranged in front. Each time-series S corresponds to a discrete label, which
indicates the state of the object at a certain time in the future. For example, in
Clinical Endpoint Prediction Task, 0 or 1 indicates the patient’s status (death
or not) at a certain point in time in the future. So prediction of the results of
time-series S with this corresponding discrete label is defined as the classification
of time-series S.

3.1 Features Fusion

Each time-series S contains many types of events, and each event has its own time
of occurrence. We use S to represent the feature space where S is located, E to
represent non-temporal information, that is, the feature space where the events
is located, and T to represent the feature space where temporal information
is located. Formally, a sequence S = [E1, E2, . . . , EL], defines each element as
Ei = (ei, ti), with ei ∈ E being the non-temporal features at time i and ti ∈ T as
an temporal features, and ti is the interval between the occurrence time of this
event and the time when the first event of this time-series occurs. The features
vector are defined over a joint space : S := (E × T ). The resulting permutation-
invariant set is: SE = {E1, E2, . . . , EL} = {(e1, t1) , (e2, t2) , . . . , (eL, tL)}. For
each event we define ei = (type, attribute), where type is the type of event, we
use Ft to represent the feature space where type is located; attribute is the
attribute of the event, we use Fa to represent the feature space where attribute
is located. So the feature space of event : E := (Ft × Fa), E is obviously a joint
space, where Ft is the discrete feature space and Fa is the continuous feature
space. Similarly, attribute consists of two parts: attribute = (valuet, valueu),
where valuet is the type of attribute, and valueu is the specific value of attribute.
The feature vector of attribute are defined over a joint space : Fa := (Vt × Vu),
where Vt is the discrete feature space of valuet and Vu is the continuous feature
space of valueu.

For each type of event, it can contain multiple types of attributes. While
for different types of events, it may contain the same type of attributes or dif-
ferent types of attributes. Therefore, it is difficult to find the feature space of
events directly, and we need to characterize the complex relationship between
different events. We demonstrate the non-temporal features fusion method as
shown in Fig. 1, where dmodel is the encoded dimension: (1) Select the first three-
dimensional feature of attribute, fill up the deficiencies with 0, encode valuet and
valueu as Vt, Vu respectively, and then use Vt×Vu to get a new three-dimensional
feature; (2) Use 1×1 convolution kernel to increase the dimension of the features
obtained in the previous step, and then use 1 × 1 convolution kernel to reduce
the dimension to one-dimensional features after being processed by the tanh
activation function; (3) Stack the features obtained in the previous step with
the features encoded by event, then use 1× 1 convolution kernel to increase the
dimension, after processing by the tanh activation function, use 1 × 1 convolu-
tion kernel to reduce the dimension to obtain the one-dimensional non-temporal
features. For Vu of continuous feature space, we do not simply encode valueu
with convolution or fully connected layers, instead encode valueu with the help
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Fig. 2. Temporal and non-temporal
features fusion methods

Fig. 3. FG-LSTM Model

of Vt of discrete feature space, as shown in the formula:

Vu = Wvt
× valueu + Bvt

(1)

where Wvt
∈ R

LW ×dmodel and Bvt
∈ R

LB×dmodel is the tensor after embedding
valuet, and Vu ∈ R

LV ×dmodel is the result after encoding valueu.
For the fusion of temporal and non-temporal features, many studies directly

adopt the additive method, such as the most famous Transformer architecture
[26]. The fusion of temporal and non-temporal features is not a simple additive
relationship, so the method shown in the Fig. 2 is proposed. Firstly, stack the
temporal and non-temporal features, then increase the dimension of the two
features used 1×1 convolution structure. After processing by the tanh activation
function, we eventually fuse features into one-dimensional tensor on another 1×1
convolution structure.

Because the time interval between events is not equal, and the time of each
event is a very important feature that can not be ignored. We add “time encod-
ing” to the input embeddings and use two methods to encode time:

Function Encoding. We use sine and cosine functions of different frequencies
just as “positional encoding” [26]:

FE(time,2i) = sin
(
time/100002i/dmodel

)
(2)

FE(time,2i+1) = cos
(
time/100002i/dmodel

)
(3)

where i is the dimension, i ∈ {1, . . . , dmodel/2}. That is, each dimension of the
time encoding corresponds to a sinusoid. We chose this function because for any
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fixed time offset k, FEtime+k can be represented as a linear function of FEtime.
The time encoding have the same dimension dmodel as the embeddings, so that
the two can be summed.

Convolution Encoding. We use the convolution structure to learn time encod-
ing:

H = tanh(Conv1d(TL)) ∈ R
L×dmodel/2 (4)

T = tanh(Conv1d(H)) ∈ R
L×dmodel (5)

For the temporal features with length L and dimension 1, that is, the size L×1,
use the convolution kernel of 1 × 1 to learn the matrix with size 1 × dmodel/2,
change the temporal features into the matrix with size L × dmodel/2. After the
tanh activation function, use the convolution kernel of 1× 1 to learn the matrix
with size dmodel/2×dmodel again, and change the temporal features into a matrix
with the size of L × dmodel. Finally get the temporal features with the size of
L × dmodel after tanh activation function.

3.2 Model Architecture

Long short-term memory (LSTM) [6] is an important ingredient for modern deep
RNN architectures. The FG-LSTM extends the LSTM model by adding a new
feature gate st, and the Fig. 3 shows the FG-LSTM model. The xt is the input
features at time t, and others are basically consistent with ordinary LSTM. The
feature gate has two factors: a feature filter and a time gate.

The combination of features and time gates only allows the features of certain
kinds of features to be input into the neuron, and makes the neuron open only
in a specific cycle. This ensures that each neuron will only capture the features
of specific types of events and sample them, which solves the problem of poor
training effect caused by the complexity and diversity of time and long event
sequence.

The opening and closing of this feature gate is controlled by the features and
time. Updates to the cell state ct and ht are permitted only when the gate is
open. We proposed a particularly successful formulation of the feature gate as
following:

st = ReLU(Whs tanh(Wxhxt + bh) + bs) � kt (6)

where Wxh ∈ R
dmodel×h,Whs ∈ R

h×s, bh ∈ R
1×h and bs ∈ R

1×s are the param-
eters to be learned, h is hidden size, s is output size. ReLU and tanh is the
activation function, xt is the tensor input at time t, and kt is the time gate [16].

Compared with traditional RNN and other excellent variants of RNN [9],
FG-LSTM can choose to update the learned parameters at the time point t
of irregular sampling. This allows the FG-LSTM to work with asynchronously
sampled irregular time-series data. We can then rewrite the regular LSTM cell
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update equations for ct and ht, using proposed cell updates c˜t and h˜t mediated
by the feature gate st :

it = σi(xtWxi + ht−1Whi + wci � ct−1 + bi) (7)
ft = σf (xtWxf + ht−1Whf + wcf � ct−1 + bf ) (8)

c˜t = ft � ct−1 + it � tanhc(xtWxc + ht−1Whc + bc) (9)

ct = st � c˜t + (1 − st) � ct−1 (10)
ot = σo(xtWxo + ht−1Who + wco � ct + bo) (11)

h˜t = ot � tanhh(c˜t) (12)

ht = st � h˜t + (1 − st) � ht−1 (13)

To sum up, for a neuron, only when it meets the type conditions of the corre-
sponding feature gate, and the features information in its sampling period, neron
will be updated. Therefore, it can be considered that this neuron represents the
state of a certain type of features in a certain sampling period. This is because
the feature gate st, can be seen as a binary classifier to chose the cluster of fea-
tures types responsible for each neuron. In addition, neurons do not update any
information in the closing stage and maintain a perfect memory of past infor-
mation, i.e. cj = cj−Δ if kt = 0 for tj−Δ ≤ t ≤ tj . Therefore, other neurons that
track other features can directly use the information of this set of features, even
if they are far away from each other in sequence indexing. Because of this special
mechanism, FG-LSTM can have much diverse and longer memory for modeling
the dependency of multiple features.

We use a Softmax layer to predict the true label ŷt of the learned features
tensor of sequence in the given decision times. This consists of two linear trans-
formations with a ReLU activation in the middle.

yt = softmax(max(0, htW1 + b1)W2 + b2) (14)

We use cross-entropy to calculate the classification loss of the prediction yt and
true label ŷt of each sample as follows:

Loss(ŷt, yt) =
1
L

∑
1≤t≤L

(ŷt × ln yt + (1 − ŷt) × ln(1 − yt)) (15)

We can sum up the losses of all the samples in one minibatch to get the total
loss for back propagation.
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4 Experiments

Table 1. The Dataset Distribution

Dataset Target 0 Target 1 Total
training set 475291 59328 534619
validation set 61698 6540 68238
evaluation set 143373 19622 162995

The dataset used in this exper-
iment is generated by Intensive
Care Unit patient medical record
data (MIMIC-III) of Beth Israel
Deaconess Medical Center in the
United States [7]. More than 20000
patient samples in MIMIC-III were
extracted from the dataset, covering more than 4000 kinds and a total of more
than 20 million multimodal irregular time-series data. In the experiment, the
dataset is divided into training set,validation set and evaluation set, with a ratio
of 7 : 1 : 2. Table 1 shows the data distribution of the dataset, which is divided
into two classes. All experiments were implemented by Pytorch [19], optimized
by Adam optimization algorithm [8], with the learning rate of 0.0001 and the
other parameters are selected as default parameters. We set the random number
seed to 1 to ensure the repeatability of the experimental results. Unless other-
wise specified, dmodel (the dimension after features coding) is 256, the batchsize
is 128. The detailed parameter settings of different experiments are described
below. All the experiments are conducted on a single Nvidia RTX 3090 GPU
(24GB memory), which is sufficient for all the baselines.

Table 2. Results of different non-temporal features fusion methods on different models,
among them, different non-temporal feature fusion methods perform the best results,
we use bold numbers in black, and underlined numbers are the best results in different
models of the same fusion method.

Model LSTM Bi-LSTM Phased LSTM HE-LSTM Transformer Informer FG-LSTM Count

Our Method AUC 75.63 75.59 72.52 74.21 75.69 76.05 78.85 12
AP 34.96 34.92 30.45 32.44 34.31 34.93 38.90

Other Method AUC 68.59 70.36 68.95 76.35 64.23 75.91 76.37 2
AP 25.94 26.85 26.63 34.80 21.71 32.85 36.42

Count 0 0 0 0 0 0 4 –

4.1 Evaluating Metrics

AUC (the area under Receiver Operating Characteristic curve) and AP (Average
Precision) [25] are uesd in this paper. AUC is the area of ROC curve and the
x-axis, and AP is the area of PRC (precision recall curve) and the x-axis, both
of which are robust to the imbalanced data of positive and negative samples.

4.2 Comparing Methods

Because the proposed FG-LSTM is a variant based on the classical LSTM [6],
we choose the classical LSTM and three other excellent variants including BI-
LSTM, Phase LSTM [16] and HE-LSTM [12]. Recently, Transformer architecture
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has achieved the best performance in many problems, so we discuss the ability of
Transformer related architecture to deal with multimodal irregular time-series.
We chose the vanilla Transformer [26] and further select one of excellent variants
in it called Informer [29]. Because our experiment does not involve the genera-
tion process, therefore, only the encoder part of the Transformer architecture is
used, and get the final output directly through a fully connected feed-forward
network. For LSTM related architectures, only use one layer. For Informer, the
number of layers in the original author’s open source code is selected, that is,
n = 2. For Transformer, in order to better compare with Informer, we selecte the
same encoder layers as Informer. In addition, dmodel is changed to 256, which
is consistent with LSTM architecture, and there is no change in the parameter
settings of Transformer related architecture.

4.3 Experimental Result

Non-temporal Features Fusion Methods. In many previous studies, the
processing methods of features from different feature spaces are only simple addi-
tion. According to this idea, a method is proposed as a comparative experiment,
as shown below:

x = Ve + sum (Vt × Vu) (16)

where Ve ∈ R
Le×dmodel , Vt ∈ R

Lt×dmodel and Vu ∈ R
Lu×dmodel are the tensor

encoded by event, valuet and valueu respectively. In this experiment, the coding
method without considering the temporary features. We uniformly choose the
(2) (3) proposed above. For the fusion method of temporal features and non-
temporal features, the addition method is directly selected, and the rest are
discussed in detail below.

Table 2 shows the experimental results of AUC and AP on Table 1 dataset
with different model architectures and different non-temporal features fusion
methods. It is obvious that, compared with the common methods, the proposed
method of non-temporary features fusion has better performance. Except for
the best performance in HE-LSTM framework, our proposed method has advan-
tages in all other frameworks. The most obvious improvement is the Transformer
framework, which has increased by 17.84% in AUC and 58.03% in AP. However,
for the excellent Informer framework proposed for single-modal time-series, the
improvement is not very obvious. The AUC and AP have only increased by
0.18% and 6.33% respectively, which shows that the Informer framework is not
very sensitive to feature fusion methods. If we do not pay much attention to
features fusion methods, Informer framework is indeed a good choice. For our
proposed model FG-LSTM, the best performance of all models is obtained in
different non-temporal feature fusion methods, and the AUC and AP are also
improved by 3.24% and 6.80% respectively. Although the improvement is not
very obvious, it also proves the superiority of our proposed model itself. In gen-
eral, different feature fusion methods have great impact on the performance of
different models, but excellent models are not particularly sensitive to feature
fusion methods.
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Table 3. Results of different temporal features fusion methods on different models.

Model FE CE
add conv-add conv − add add conv-add conv − add

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

LSTM 75.63 34.96 76.88 36.38 76.87 36.35 79.47 39.50 79.09 38.56 79.18 38.53
Bi-LSTM 75.59 34.92 78.28 37.67 76.98 37.46 79.04 38.56 77.95 36.06 79.64 39.43
Phased LSTM 72.52 30.45 74.82 33.57 72.83 30.69 76.34 34.03 74.54 32.90 78.01 36.89
HE-LSTM 74.21 32.44 76.78 34.73 75.46 33.24 77.06 35.86 76.79 34.72 75.47 34.37
Transformer 75.69 34.31 76.14 34.88 75.85 34.87 76.41 35.19 75.65 34.22 76.26 35.13
Informer 76.05 34.93 76.19 35.66 75.96 34.86 78.11 35.29 75.99 34.90 76.05 34.12
FG-LSTM 78.85 38.90 80.67 41.94 78.47 38.01 79.33 39.09 81.20 42.69 80.89 41.59
Count 0 0 0 8 2 4

Temporal and Non-temporal Features Fusion Methods. The advanced of
the proposed non-temporal features fusion method has been proved. Therefore,
in this experiment, we verify the progressiveness of our proposed temporal and
non-temporal features fusion method. In order to explore whether it is necessary
to upgrade the dimension, we set up a group of control experiments to fuse the
two features after stack directly with the help of 1 × 1 convolution kernel.

Table 3 shows our experimental results. Where FE is function encoding, CE
is convolution encoding, add is a direct addition method, conv-add is our
method, and conv −add is a comparative method without dimension upgrading.
For the FE method without learning parameters, it can be seen that the conv-
add method has achieved the most advanced experimental results in different
models, while the conv − add method without dimension upgrading is not as
good as the conv-add method. But it is still better than the direct addition
method in many models. For the CE method of learning parameters, it can
be seen that no matter what kind of temporal and non-temporal feature fusion
method, CE is better than FE, but none of the three feature fusion methods
always has best performance in all models. Because our upgraded conv-add
method also has parameters to learn, we believe that as long as the dataset is
larger, the upgraded conv-add method can still be better than other methods
in different models. Finally, for different models, different time coding methods
and different feature fusion methods are used. Our FG-LSTM model is better
than other models, which is enough to prove the robustness of our FG-LSTM. It
also shows that the variants of LSTM are not necessarily inferior to the models
of Transformer series.

Experimental Comparison of Different Length Time-Series. In order
to verify the proposed model in this paper has stronger ability to capture the
temporal dependence between features than other models, in this experiment,
different models are input with different lengths of time-series data, ranging
from 100 to 800. For the temporal feature coding method, choose CE. For
the non-temporal feature fusion method, use our own method. For the tem-
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Fig. 4. The performance of different models on different time-series length.

poral and non-temporal feature fusion method, choose the conv − add method
without dimension upgrading. Figure 4(a) and Fig. 4(b) show the results of this
experiment, for Transformer, when the length of time-series is 600 and 800, the
Transformer failure for the out-of-memory, so we set the batchsize is 64 to make
24GB memory enough. From the experimental results, we can draw the following
conclusions:

Firstly, the time-series information is effective for the prediction results.
When the input length is less than 400, most models will be improved with
the increase of the length of the input sequence. Secondly, compared with other
models, FG-LSTM is better at capturing the timing dependency in time-series.
When the sequence length exceeds 400 and becomes longer and longer, the per-
formance of the model is not improved much in AUC, but the AP is still improved
steadily. However, other models can not capture the timing dependence under
ultra long sequences, so they have not been greatly improved, and even the effect
has become worse. Finally, we can see that the classical LSTM model is superior
to Transformer and its variant model Informer, which shows that the time-series
information extraction of Transformer series models is still slightly insufficient.

5 Conclusion

This paper proposes a features fusion framework and FG-LSTM model updated
on the basis of LSTM. The model can well deal with multimodal irregular time-
series data. At the same time, we also explore how to better encode time features
and how to better integrate temporal features and non-temporal features, which
is particularly important for irregular time-series data. Firstly, through the tem-
poral features coding method and features fusion framework, the representation
tensor obtained by the model can fuse the features and temporal dependency
between different non-temporal information, effectively capture the temporal
dependency under ultra long sequences and the feature information of a minor-
ity events. Then, input the representation tensor of the obtained time-series into
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the FG-LSTM, due to the existence of feature gates, the model can automati-
cally adapt to the multi-scale sampling frequency of multi-source complex data,
asynchronously track the temporal information and feature information of dif-
ferent events. Finally, the experiments demonstrate that the method proposed in
this paper has better performance than other typical methods on real datasets.
The method in this paper is promising to expand and popularize, and can be
further migrated to diverse fields, especially for multi-source asynchronous sam-
pling sensor data and behavior recording data.
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Abstract. Deep learning methods can fit the observation history over
different time series with multiple levels of representations from huge
dataset. However, it is challenging to directly train deep neural networks
on a raw dataset with a large number of time series, as the different
time-series have diverse scales. We initiate the study of an effective deep
residual framework named MIR-TS for time series prediction with multi-
output integration on time series data with diverse scales. Specifically, we
leverage the residual module that constrains the original input average
close to 0 to transform the original input, so that the distribution of
features changes from sparse to dense. Compared with the traditional
residual network, this approach improves the generalization of model via
residual reuse, capturing more detailed features of time series to improve
prediction. The results on the M3 and TOURISM benchmarks show that
MIR-TS achieves a consistent better or highly comparable performance
across different time series frequencies.

Keywords: Neural networks · Nonlinear time series · Diverse scales ·
Deep learning · Residual network

1 Introduction

As an important part of time series analysis [13,20,26], time series prediction
plays a crucial role in statistics, finance, economics, engineering, and computer
science. According to the number of time-related variables, time series predic-
tion problems are divided into univariate prediction and multivariate prediction.
In this study, we focus on univariate time series. Most traditional univariate
time series prediction methods, such as autoregressive integrated moving aver-
age (ARIMA) model [6] and exponential smoothing [12,29], are local prediction
method [5] that means the prediction cannot share information across different
time series.
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With the rapid development of deep learning, various novel deep learning
methods [10,22,23,28] have shown much potential for chaotic and long-history
time series prediction. Most deep learning methods are trained as global models
[5] since in general they require a lot of data to train with. However, as pointed
out in [24], deep learning methods often produce inferior prediction results for
short-history time series. Time series with short observation history widely exist
in practice (e.g., less frequently recorded/sampled, highly summarized, or trun-
cated due to data out of date), and prediction of such time series is in urgent
need (e.g., prediction of the trend of new infectious diseases such as COVID-19).

Among these prediction methods, N-BEATS [22] stands out in achieving
state-of-the-art results on large datasets such as M4 [18] (a dataset with large
number of short-history time series) by deep residual networks. Unlike previous
deep learning methods, N-BEATS uses sliding windows and residual networks to
convert time series prediction into an ordinary regression problem, avoiding the
lack of available historical data on training. However, when training with data
of limited size (in the magnitude of hundreds or thousands of time series) such
as M3 [17], N-BEATS does not show consistently satisfactory results despite
its complicated learning and functional structure. A possible reason is that N-
BEATS is a deep prediction structure, which is hard to train on time series data
with diverse scales if lacking of enough number of time series. One technique to
tackle time series data with diverse scales on small dataset is data augmentation
[24]. However, according to the result of [4], there is no method better than others
on each dataset. Redesigning a flexible and generic data augmentation method is
also an open challenge for time series prediction, which means it must be careful
to select a method to generate new time series. Applying normalization method
is another way to handle time series data with diverse scales, but it is useless for
N-BEATS [22]. Therefore, it demands a simple and more effective deep learning
architecture in the context of time series data with diverse scales.

In this work, we propose a multi-output integration residual framework
named MIR-TS to handle time series data with diverse scales. First, MIR-TS
applies the Naive method [19] as a base prediction to reduce the difference of
deep models’ outputs. Then, for each residual module, we use three fully con-
nected (FC) layers to remove the original input average of the module. Thus,
the residual average will be close to 0 by using original input minus the output
of FC layers. Next, we leverage the independent predictors to deal with different
residuals and obtsain different outputs. Finally, the model output is computed
by adding all outputs and base prediction together, which can increase the gen-
eralization of model with residual reuse. Our main contributions are summarized
as follows:

– We use the residual module to make features gather around 0, which improves
the prediction ability to tackle time series data with diverse scales.

– We propose a simple multi-output residual architecture to improve the gen-
eralization of model by residual reuse.

– Extensive experiments demonstrate a consistent prediction performance of
MIR-TS across different time-series datasets and frequencies.
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2 Related Work

2.1 Time Series Prediction Methods

Traditionally, time series prediction methods are derived from statistics and
signal processing theories. The simplest prediction method is Naive, and more
variants include SNaive and Naive2 [19]. Furthermore, common classic statisti-
cal models are ARIMA [6] and exponential smoothing [12,29]. For instance, the
Theta method [1] which was the winner of M3 competition, decomposes a time
series into two theta-lines and combines them for prediction. The dynamic opti-
mized theta model (DOTM) [9] and EXP [25] are variants of the original Theta
model which achieve great performance on M3. Recently, researchers tend to
combine and ensemble statistical and machine learning methods for prediction
[19,27]. Such methods require manual selection of statistical model parameters
and machine learning architectures on different time series. Recently, deep time
series prediction models have been investigated based on long short-term mem-
ory (LSTM) or transformer. Compared with traditional statistical methods, they
can train the same model with different time series to share information. The
most noteworthy of the LSTM-based models is DeepAR [10]. The transformer-
based work proposed by [15] uses convolution to extract the features of mul-
tiple time steps for self-attention, achieving great results for long-history time
series data such as electric power load prediction. Most of the above methods
require long-history data to fit the model. Unfortunately, deep learning methods
do not have obvious performance advantages over statistical methods in short
time series. Recently, a seq2seq model called N-BEATS [22] was proposed for
short-history data. N-BEATS uses a multi-output deep residual framework to
achieve state-of-the-art on the M4 benchmark [18] with lots of short time series.
However, as confirmed in our experiments N-BEATS does not generalize well
on time series data with diverse scales. Different from N-BEATS, we redesign
the residual structure, reducing the over-fitting on time series data with diverse
scales and achieving better prediction performance. Meanwhile, MIR-TS pro-
vides more accurate prediction by effectively training with ordinary regression
and multi-output ensemble compared with traditional methods.

2.2 Deep Residual Neural Network

The classic residual network structure, ResNet [11], can build a deep convolu-
tional neural network from dozens of layers to hundreds by using the residual
of the previous module as the input of the next module. DenseNet [14] further
develops the ResNet model, which applied all previous residuals as the input of
the next module to improve the residual reuse of the module. The emergence of
ResNet and DenseNet has improved the features representation ability of con-
volutional neural networks, which enables convolutional networks to achieve an
accuracy that exceeds human levels in image recognition tasks. In the research
of time series, WaveNet [21] uses residual connects and dilated casual convolu-
tional layer to represent time series. Compared with ResNet that only uses the
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last residual as the predictor input, MIR-TS leverages all residuals for prediction,
which improves the residual reuse with multi-output structure.

3 Problem Statement

Time series prediction aims at using historical data to predict the time series
values for a range of time in future. This study focuses on the univariate discrete
time series prediction problem. Unlike the LSTM-based statistical prediction
method [10] that uses long-history data for autoregression, we regard the time
series prediction method as an ordinary regression problem.

To be more specific, we want to learn an approximation function ypred = f(x)
to minimize the error between evaluations and true values of future, where x is
a time-irrelevant feature. Because x is not directly from the time series, we also
need to learn a feature extraction function x = g(yob), where yob is the historical
observations of time series. A simple idea is using a sliding window of fixed size
to obtain a subsequence from time series, and then splitting it into two parts
by a cut-point. Next, we can extract time-irrelevant feature from part before
cut-point and use the feature to estimate the values of the part after cut-point.
The above statement can be formulated as: given a length-Ni observation history
[yi,1, ..., yi,Ni

] from the time series set and a length-T prediction range, the goal
is to predict the T unknown values ytarget = [yi,Ni+1, ..., yi,Ni+T ]. The input of
the neural network model is a fixed length-H window before the first prediction
value, denoted as yin = [yi,Ni−H+1, ..., yi,Ni

]. Let L denote loss function, the
overall goal is to minimize

∑
(ytarget,yin)∼D L(ytarget, f(g(yin))). This approach

is inconsistent with the statistical method that uses all observed points as the
input.

MAPE (mean absolute percentage error) and sMAPE (symmetric MAPE)
are commonly used metrics to evaluate prediction performance, where ŷ repre-
sents corresponding predicted values.

MAPE =
100
T

T∑

t=1

|yi,Ni+t − ŷi,Ni+t|
|yi,Ni+t| , (1)

sMAPE =
200
T

T∑

t=1

|yi,Ni+t − ŷi,Ni+t|
|yi,Ni+t| + |ŷi,Ni+t| . (2)

According to official recommendations, for different datasets either MAPE or
sMAPE can be used to better measure the performance.

4 Our Proposed Method

As shown in Fig. 1, MIR-TS can be regarded as a multi-output residual network,
in which each residual connects to an independent predictor. MIR-TS uses resid-
ual to shift the original input average to close to 0, which makes the predictor
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have more ability to process time series data with diverse scales. Unlike N-
BEATS [22], the feature embedding (we call it residual module in this study) and
predictor are different modules in MIR-TS. This makes the feature embedding
module have the ability of generating more detailed features and the predictor
be able to predict better with residual.

Fig. 1. The structure of MIR-TS, where input is a fixed-size subsequence cut from
a time series. First, the module will output the corresponding residuals with multi-
output residual modules. The residual average will be close to 0 compared with original
input average. Next, these residuals will be input to multiple independent predictors,
respectively. Finally, the prediction results are added to obtain the final prediction.
The FC layers of residual model have same structure with predictors but the matrix
weights are different.

4.1 Data Processing

We focus on training deep learning model to predict time series data with diverse
scales, so each time series’s value range is different. In order to make MIR-TS
focus on predicting non-linear trend instead of mean values of time series, we
must restrict the output range of MIR-TS. Thus, we first consider transforming
the target to be predicted ytarget and then use the neural network to predict it.
Considering a linear transform T (x) = a+ bx, let y′

target = T (ytarget) and using
MAPE (Eq. 1) as metric, the new optimization goal is:

MAPE′ =
100
T

T∑

t=1

|a + byi,Ni+t − ŷi,Ni+t|
|a + byi,Ni+t| (3)

It is obvious that MAPE and MAPE’ are not equal. Thus, training model with
MAPE’ will lead to bias when we measure the model’s performance on the test
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set with MAPE. If we use SMAPE as the metric, there will be a similar conclusion
as MAPE. On the contrary, there will be no bias if T is used to transform yout,
because the final prediction is T (yout) so that the metric has the same form for
both training and test. In time series forecasting, a most used transformation
is MaxMin: T (x) = x(MaxV − MinV ) + MinV , where, MaxV and MinV are
the maximum and minimum values of the observed time series. However, the
value of b = MaxV −MinV could be very large, which means |yout|/|yin| << 1.
This will cause the absolute value of the weight of the neural network too small
such that the error will increase. Thus, the coefficient b is set up to 1 to avoid
the error’s increase. Then, we only need to select the coefficient a to provide a
suitable base statistical prediction for the network. A suggestion is the Naive
prediction [19] that only uses the last value as the prediction and is easy to add
to the deep learning framework. The ablation study in Sect. 5.5 demonstrates
that the Naive prediction provides a better initialization than others such as
mean of input window. Thus, in this study, the final prediction is denoted by:

yout = yna + f(g(yin)), (4)

where yna is the Naive prediction.

4.2 Residual Module

In this section, we describe the component of residual module, and analyze its
effect.

Let input yin = ya + yre, where ya is the original input average, and yre is
the residual. Thus, by applying residual operation, we could represent:

ŷre = yin − R(yin), (5)

where ŷre and R(yin) are the estimated values of yre and ya respectively. The
architecture of the residual module is depicted in the bottom left of Fig. 1. The
residual modules consist of three FC layers, and the activation of the first two
layers is ReLU, where ReLU(x) = max(0, x). The last FC layer does not use
the activation function, so we call it the linear layer. The following equations
describe the operation of the residual module:

z1 = FC1(yin) = ReLU(L1(yin)),
z2 = FC2(z1) = ReLU(L2(z1)), (6)

R(yin) = L3(z2),
Li(x) = Wix + bi(i = 1, 2, 3),

where Wi is the matrix of linear transform and bi is bias. The linear layer trans-
forms the input to the weighted average of input in time, and it removes some
part of fluctuating features. The role of ReLU is similar to a half-wave filter,
and it could be applied to remove half-wave features further. Thus, if we use two
ReLU functions, all fluctuating features will be removed. Thus, the residual ŷre
has a similar shape with the original input but its average is close to 0, which can
effectively process time series on time series data with diverse scales. Section 5.4
demonstrates this phenomenon further.



386 H. Li et al.

4.3 Model with Single Residual and Single Predictor

Through the residual operation, we get dense feature compared with original
input. Then, we use independent predictor to process this feature. The predictor
also has three FC layers, and its structure is shown in the bottom right of Fig. 1.
Let the input of predictor be y′

in = ŷre, the final prediction is:

yout = yna + f(g(y′
in))

= yna + f(g(yin − R(yin))). (7)

For simplicity, we assume the first two layers of predictor is the feature extraction
g and the last linear layer is f , and then we can approximately analyze yout by
the Taylor formula with Peano’s remainder:

yout = yna + f(g(yin − R(yin)))
= yna + f(g(yin)) − f(g(R(yin)))

+ Jf◦g(R(yin))(y′
in) + o(|y′

in|2) (8)
= yna + f(g(yin)) − f(g(R(yin)))

+ WfJg(R(yin))(y′
in) + o(|y′

in|2).
Here, Wf denotes the weight matrix of f , Jf◦g represents Jacobian matrix
of composite function f ◦ g, Jg represents Jacobian matrix of function g,
and o() is the small O in Landau notation. Noted that WfJg(R(yin))(y′

in) =
f(Jg(R(yin))(y′

in), the final predictor can be divided into three parts. The first
is the prediction from base statistical prediction yna, the second is original sig-
nal prediction f(g(yin)) minus the prediction with input average f(g(R(yin))),
and the last is reshape of (y′

in). The coefficients of reshape are generated by
f(Jg(R(yin)), which is helpful for re-adjusting the prediction values of the sec-
ond part about input average.

4.4 Integration of Different Prediction Residual Networks

The original ResNet only uses the last residual as the input of the predictor.
In order to improve residual reuse ability, we design a multi-output integration
structure. We first introduce the following notations: Ri denotes the i-th residual
module, Pi denotes the i-th predictor, ŷin,i denotes the i-th estimated values,
yout,i denotes the i-th prediction, gi denotes the i-th feature extraction function,
fi is the i-th regression function, and ypred denotes the final prediction. Then,
we can write the model output as:

ŷin,i = ŷin,i−1 − Ri(ŷin,i−1)(ŷin,0 = yin), (9)

yout,i = Pi(ŷin,i). (10)

Then, the prediction vector is as follows:

ypred = yna +
m∑

i=1

yout,i. (11)
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Table 1. M3 information: the number of time series based on frequency, and statistics
based on frequency.

Yearly Quarterly Monthly Others

Number 645 756 1428 174
Min-Length 20 24 66 71
Max-Length 47 72 144 104
Mean-Length 28.4 48.9 117.3 76.6
STD Mean 1571.6 1350.3 1776.5 4850.6

Table 2. TOURISM information: the number of time series based on frequency, and
statistics based on frequency.

Yearly Quarterly Monthly

Number 518 427 366
Min-Length 11 30 91
Max-Length 47 130 333
Mean-Length 24.4 99.6 298
STD Mean 2041387.8 371021.1 28674.8

By using the Taylor’s formula in the same way, ypred can be represented as:

ypred = yna +
m∑

i=1

[fi(gi(ŷin,i−1)) − fi(gi(Ri(ŷin,i−1)))

+ WfiJgi(Ri(ŷin,i−1))(ŷin,i) + o(|ŷin,i|2)]. (12)

Let f(yin) represents
∑m

i=1 fi(gi(ŷin,i−1)), R(yin) denotes
∑m

i=1 fi(gi(Ri

(ŷin,i−1))), and reshape =
∑m

i=1 WfiJgi(Ri(ŷin,i−1))(ŷin,i), then ypred also can
split into three parts yna, f(yin)− R(yin) and reshape. It further confirms that
MIR-TS can be regarded as an extension of a single output model with better
generalization by reusing residual.

5 Empirical Results

5.1 Dataset

We use two benchmark datasets M3 and TOURISM, both of which have time
series data with diverse scales. M3 [17] is a diverse dataset: the time series come
from business, financial and economic domains. It includes 645 annual series (the
average length is 28.4), 756 quarter series (the average length is 48.9), 1428month
series (the average length is 117.3), and other frequency series (the average length
is 76.6). TOURISM [2] was released in a Kaggle competition and the all of 1311
time series were supplied by governmental tourism organizations. It includes 518
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annual series (the average length is 24.4), 427 quarter series (the average length
is 99.6), and 366 monthly series (the average length is 298). Table 1 and Table 2
also give information of time series scales on the M3 and TOURISM datesets.
STD mean (the standard deviation of the mean of each series) on two datasets
shows that it has large differences in scale of time series on the same frequency.

Table 3. The results represent the average sMAPE performance on the M3 test set
(lower values are better). Bold denotes the best result, and * denotes the second best.
The ± values show 95% confidence intervals.

Yearly(645) Quarterly(756) Monthly(1428) Others(174) Average(3003)

Naive2 17.88 9.95 16.91 6.30 15.47
ARIMA 17.73 10.26 14.81 5.06 14.01
Theta 17.14 9.77 13,86 4.60 13.19
DOTM 15.94 9.28 13.74 4.58 12.90
EXP 16.39 8.98 13.43 5.46 12.71
LGT 15.23* n/a n/a 4.26 n/a
N-BEATS 16.2 8.92 13.45* 4.19 12.64
ResNet 15.56 8.89 13.51 4.09 12.61*
MIR-TS (ours) 15.236±0.090 8.926± 0.059* 13.270±0.041 4.104± 0.061* 12.421±0.030

5.2 Experiment Setup and Comparison Baselines

We follow official settings both of M3 and TOURISM competitions for splitting
training and test sets. The ensemble methods are commonly used for improving
the accuracy and stability on time series prediction. To achieve the best result, we
select lengths from 2/3 times of prediction range as input window size on M3, and
the input size from 2/3/4/5 times of prediction range on TOURISM. We follow
the N-BEATS setup for every fixed input window, using SMAPE/MAPE/MASE
as loss function on M3 training stage to get the different model, and we use
MAPE as loss function on TOURISM training stage. For every fixed input win-
dow and loss function, we use the bagging method [7] to obtain final results
(conducting ten experiments with different random seeds and applying median
as result). For the M3 experiment, the FC layer sizes of first two layers are set at
512, and the number of residual modules is set at 30. For the TOURISM experi-
ment, the first two FC layer sizes are 256 and the residual module number is 20.
For both M3 and TOURISM, we train individual model for each frequency. We
set the batch size as 1024 and the learning rate as 0.001 for both experiments.
We use the last horizon-length data in the training set as the validation set to
select hyperparameters.

The average results of each frequency domain can be found in Table 3 and
Table 4. On M3, we compare against Naive2 [19] (similar with the Naive method
but data are seasonally adjusted if needed, by applying a classical multiplica-
tive decomposition, and a 90% autocorrelation test is performed to decide
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whether the data are seasonal), Theta [1], EXP [25], and LGT [24] (a hybrid
data augmentation approach). On TOURISM, we compare against three sta-
tistical methods: SNaive [19], Theta [1], SaliMali [8] (the winner of the Quar-
terly/Monthly TOURISM competition), Stratometrics (the second place method
of the TOURISM competition), and LeeCBaker [3] (a combination method).
MIR-TS is implemented and trained in PyTorch, and we use one TITAN X
GPU for model training. The source code and data are available at https://
github.com/HaoLi980405/MIR-TS.

Table 4. The results represent the average MAPE performance on the TOURISM test
set (lower values are better). Bold denotes the best result, and * denotes the second
best. The ± values show 95% confidence intervals.

Yearly(518) Quarterly(427) Monthly(366) Average(1311)

SNaive 23.61 16.46 22.56 21.25
Theta 23.45 16.15 22.11 20.88
ARIMA 28.03 16.23 21.13 20.96
LeeCBaker 22.73 15.14 20.19 19.35
Stratometrics 23.15 15.14 20.37 19.52
SaliMali n/a 14.83* 19.64 n/a
N-BEATS 21.43 14.90 19.45* 18.65*
ResNet 22.48 14.93 19.51 18.85
MIR-TS (ours) 21.50± 0.395* 14.76±0.129 19.05±0.115 18.38±0.159

5.3 Prediction Results

Due to the randomness in sampling input data and initializing the model param-
eters of experiments, we conduct five experiments on each model and report 95%
confidence intervals by t-distribution. We apply the result of five experiments to
conduct one-sided test for significance, which shows that MIR-TS achieve the
best average results on both M3 (α = 0.005) and TOURISM (α = 0.025), where
α is the significance level. According to Table 3, MIR-TS achieves state-of-the-art
or same level performance across all frequencies except Monthly. In particular,
the result of MIR-TS is significantly increased by 6% compared with the best
learning-based N-BEATS method and by 11.2% over the winner Theta model of
M3 on M3 Yearly data. MIR-TS achieves the same level result with the hybrid
method LGT, which achieves the best result on M3 annual data. However, LGT
misses the Quarterly and Monthly results to be generalizable. In other words,
MIR-TS also achieves the state-of-the-art results on Yearly frequency while being
more generalizable. In particular, MIR-TS achieves the state-of-the-art results
on Monthly (improved 4.4% over Thata model and 1.3% over N-BEATS) and
Others (increased 1.9% over N-BEATS and 12.8% over Theta). On Quarterly

https://github.com/HaoLi980405/MIR-TS
https://github.com/HaoLi980405/MIR-TS
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frequency, MIR-TS also achieves top-3 result. In addition, the variance of both
models is relatively small.

From Table 4 on the less diverse TOURISM dataset, MIR-TS is better than
N-BEATS on Monthly frequency data (increased 1.5% over N-BEATS and 1.7%
over the third best result). It also achieves the best average performance on
the whole dataset (increased 1.4% over N-BEATS and 2.5% over the third best
result). Another finding is that MIR-TS achieves top-3 results across all fre-
quencies. In summary, the MIR-TS model has demonstrated consistent superior
prediction performance across different frequencies on M3 and TOURISM. MIR-
TS has achieved a performance improvement of 1%-3% compared with N-BEATS
in several frequencies with a small number of time series (Yearly and Others on
M3, and Monthly on TOURISM). These results demonstrate that MIR-TS can
perform well for general datasets and achieve the best results for time series data
with diverse scales.

Fig. 2. Examples of comparison of residual module1 output, residual1, and original
time series. All four time series come from the M3 dataset, with IDs 1, 101, 201, 301.
The horizontal axis represents time, and the vertical axis represents the corresponding
value at each moment.

Fig. 3. (a) and (b) are the distribution mean and standard deviation. In (a), the red
points represent original input of the model, and the blue points represent the residual
after the first residual module. In (b), the red points represent original input of the
model, and the green points represent the output of the first residual module. (c) is
t-SNE output, where red points denote the t-SNE output of original input and blue
points denote the t-SNE of residuals. (Color figure online)
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5.4 Effect of Residual Structure

In order to verify the effect of the residual module, we select four time series data
from the annual data of M3 to investigate their first residual module outputs and
corresponding residuals. Figure 2 shows the linear layer output of first residual
module (backcast1), the first residual (residual1), and the original input of model.
We find the ratio between backcast1 and the original input average is close to
1, which causes the residual1 average to around 0. It verifies our analysis of
residual effect in methodology. Then, Fig. 3(c) shows the t-SNE output [16] of
the original inputs and residuals. The results show data distribution of residuals
is more even than that of original inputs, which reduces the impact of the long
and short tails problem. These reveal that the residual module has the ability to
transform time series data with diverse scales to dense (Fig. 3(a) and Fig. 3(b)
also show the evidence about this). Because all of the residual averages are close
to 0, the predictor can learn more common features across different time series.

Table 5. Results of different base statistical predictions on the TOURISM-Monthly
dataset.

Based MAPE

None 19.61

Naive 19.21

Mean 19.48

Max 29.61

Min 21.61

5.5 Effect of Different Base Statistical Predictions and Multi-output
Structure

This section describes the effect of different base statistical predictions on the
results and the effect of multi-output structure. None means that the result does
not contain the base statistical prediction. Naive means that the base statistical
prediction is the Naive prediction. Mean, Max and Min are the average, maxi-
mum and minimum of input window respectively. We conduct five experiments
and use bagging for results. According to Table 5, Naive is significantly better
than other methods, and thus we set it as the base statistical prediction in all
experiments. ResNet can be regarded as a residual model with single output.
Comparing all results of MIR-TS with ResNet from Table 3 and Table 4, MIR-
TS can achieve 1.5% increase on M3 average result, and 2.5% on TOURISM
Yearly. On each frequency data on both M3 and TOURISM, it also achieves
1–3% increase over ResNet. These results demonstrate that MIR-TS can achieve
better results than the single-output model.
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6 Conclusion

This paper proposed a multi-output residual-based deep learning framework
MIR-TS to effectively learn time series features and predict on time series data
with diverse scales. Theoretical analysis and the changing pattern of the resid-
ual confirm that our residual structure can capture and aggregate the time-series
characteristics to handle time series data with diverse scales and predict more
accurately. We leverage multi-output residual-based deep learning framework
to reuse residual in order to improve the generalization of model. The results
demonstrate MIR-TS can achieve state-of-the-art performance on time series
data with diverse scales. We plan to extend MIR-TS with more complicated
architecture and thoroughly test the framework for more time series forecasting
problems.
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Abstract. Univariate time-series forecasting is a kind of commonly
encountered yet tough problem. Most of the forecast algorithms’ perfor-
mance is constrained by the limited information due to the single input
dimension. No matter how capable a forecast algorithm is, an accurate
output cannot be rendered on an unpredictable time-series. This paper
presents PLAE (Predictability Leveraging Auto-Encoder), a Seq2Seq
model for univariate time-series data aiming to enhance the accuracy
of the given algorithm without dimensional adaptation. The main idea
is decomposing the original input data into a group of more predictable
microscopic time-series on which the forecast algorithm can deliver a
more accurate output. And the final prediction is rendered by aggregat-
ing those components back to the original one-dimension. Experiments
on three public data sets and one real-world data set show that PLAE
can improve the forecast accuracy for 23.38% in terms of MAPE and
19.76% in terms of RMSE. Besides, experimental evidence shows that
PLAE’s adaptive non-linear decomposition mechanism outperforms the
pre-defined additive decomposition w.r.t. both forecasting performance
and components’ interpretability.

Keywords: Time-series prediction · Time-series decomposition ·
Predictability measure · Accuracy enhancement

1 Introduction

Time-series prediction is a widespread task in many industries, like weather
forecast, stock price prediction and sales prediction, etc. Here, we focus our
research on univariate time-series prediction whose definition is shown in [11].
This type of problem looks uncomplicated in a glance but is hard to solve because
of the limitation of the input data dimension and the resultant low predictability.

Most of the readily available time-series forecast algorithms [7,16,25,34] are
trained on historical observation and the corresponding features, trying to find
out implicit patterns that can contribute to the forecast result. However, no fea-
ture is available when problems are limited in the univariate realm which signif-
icantly reduces the predictability. Apart from the algorithms mentioned above,
ARIMA and its revisions [4,6] are a group of algorithms originally designed
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for univariate time-series forecasting. They forecast on an autoregressive basis,
which means the accuracy of the output relies heavily on the historical obser-
vation. In another word, if the data is not sufficiently predictable, the forecast
result will be far from accuracy.

One of the most applied methods to enhance the predictability of the input
data is time-series decomposition. By decomposing the original time-series into
more predictable components like seasonality or long-term trend, the forecast
accuracy can be improved. Huang et al. [15] introduce the Empirical Mode
Decomposition (EMD) and prove its usability in non-stationary data. However,
the decomposed components usually show little interpretability, requiring expert
knowledge to be enrolled. Methods like STL [9] decompose the input data into
a group of more interpretable pre-defined components on an additive basis. And
forecast algorithms like Prophet [28] also implement decomposition on the sim-
ilar idea. However, the pre-defined decomposition performs bad under certain
circumstances. For example, if a time-series shows little seasonal characteristic,
the seasonality component given by STL will be insignificant, leaving only the
other two components to contribute.

Fig. 1. The workflow of PLAE.

This work presents PLAE (Predictability Leveraging Auto-Encoder), a
Seq2Seq model based on an architecture consisting of decomposition, predic-
tion, and aggregation, aiming to enhance the forecast accuracy of the existing
algorithms without requiring dimensional adaptation. The decomposition imple-
ments non-linear mapping on the input data, generating a bunch of microscopic
time-series that are highly predictable. The prediction is made independently on
each microscopic time-series before being aggregated back to the one-dimensional
form. When training, the model learns the self-mapping from X t−T :t to X̂ t−T :t

with the aim of maximising the average predictability of the microscopic time-
series [x 1

t−T :t,x
2
t−T :t, ...,x

k
t−T :t]. Here X is the input univariate time-series, X̂

is the prediction, T is the length of the look-back window, s is the forecast step,
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and x i
t−T :t ∈ RT , i = 1, 2, ..., k is the generated microscopic time-series with

a total number of k. The predictability is obtained by a pre-trained network,
PCNN (Predictability Calculation Neural Network), whose details are shown in
Sect. 3.1. During the prediction stage, x i

t−T :t is formed by the trained encoder
and a s-step-forward forecast is made on it. The final prediction, Ŷ t:t+s, is gained
by mapping the concatenation of x i

t−T+s:t and the prediction ŷ i
t:t+s back to the

one-dimensional form through the trained decoder. The workflow of PLAE is
illustrated in Fig. 1

The main contributions of this paper are twofold: (1) We propose a quan-
titative predictability measure for univariate time-series data ameliorating the
bias in the previous research. (2) We come up with PLAE, a Seq2Seq model for
univariate time-series that can improve the forecast accuracy of existing forecast
algorithms.

2 Related Works

At any time, parametric time-series forecasting algorithms are baseline choices in
the industry, e.g. ARMA [21] and ARIMA [4]. They utilise moving average and
differentiation for auto-regressive modeling. There are also other popular models,
e.g. exponential smoothing [13] and Holt-Winters methods [5]. All the models
mentioned above are lack of sufficient model parameters and their performance
usually cannot match the state-of-the-art models.

Besides statistical methods, decision tree-based models have become popu-
lar choices in recent years, especially gradient boosting decision trees method
(GBDT) like XGBoost [7] and LightGBM [16]. They are competitive in real-
world time-series tasks. However, the performance of GBDT-like models is highly
influenced by exogenous variables and feature engineering. Therefore, GBDT-like
models have bottleneck when no covariate is available, and they are hard to deal
with time-series data with complicated hidden patterns automatically.

Neural networks might be the hottest topic in the machine learning field,
especially for the time-series forecasting. The trend of neural network structures
have been updated constantly, e.g. Vanilla NN [27], CNN [3] and LSTM [2],
etc. RNN and LSTM, which are often considered as the corner stone for deep
learning time-series forecasting, empower the network to learn historical pat-
terns auto-regressively. However, some experiments show that RNN and LSTM
performs inadequately for long sequence time-series forecasting problem [34].
After that, Du et al. [10] figure that the Seq2Seq structure can obtain even
higher performance. Beyond that, Li et al. [19] firstly introduce Transformer
blocks to the time-series field and achieve impressive performance on many of
the public data sets. Nevertheless, transformer-like models still cannot impress
the industry because they need intricate structure tuning, and the model is hard
to converge when time-series data becomes sophisticated. Due to the inadequate
performance mentioned above, we are encouraged to find an adaptable method
that can leverage the power of the existing forecast algorithms.
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In addition, many recent researches were proposed in different aspects. Zhu
et al. [35] suggest that the prediction of the macroscopic time-series can be lever-
aged by the clustering of the microscopic time-series. However, the relationship
between macroscopic and microscopic time-series is fixed and pre-defined with
required extra knowledge. Chen et al. proposed DeepTCN [8] which basically
uses dilated causal convolution and Seq2Seq structure, and provides probabilis-
tic forecasting. However, the implicit yet strong assumption of i.i.d. condition
on all the subjects is needed, which is not usually satisfied in real-world cases.
Salinas et al. [25] proposed DeepAR, which uses an auto-regressive encoder-
decoder structure to offer probabilistic forecasting. DeepAR’s performance is
highly relied on assumptive data distribution, and the specific scale factor will
affect performance directly. In practice, these settings need strong assumption
and intricate hyper-parameters tuning.

Another issue correlated with our work is quantitative predictability measur-
ing. Most of the existing measures are based on information theory and deliver
a notional upper-bound of predictability. Molgedey et al. [22] use n-gram condi-
tional entropy to measure the uncertainty of predicting the next k steps based
on the observation. They show that predictability can be enhanced by basing the
prediction on longer blocks of observation. Garland et al. [14] divide the obser-
vation into two parts: redundancy and entropy generation. They show that the
more redundancy in time-series data, the more predictable it should be. Their
work, together with the work by Pennekamp et al. [24], introduces permutation
entropy [1] to measure the uncertainty, which (1) can discretise the real-valued
time-series into categorical data suitable for entropy calculation; (2) is robust
to observational noise and requires no prior knowledge. Song et al. [26] use an
estimator of actual entropy based on Lempel-Ziv data compression [17] to mea-
sure the uncertainty and they show that the temporal information revealed by
the actual entropy contributes a lot to predictability calculation. Further, Fano’s
inequality [23] is used to define the upper-bound of predictability. However, Xu
et al. [32] point out that the inconsistency of the logarithm base and ambiguous
description in calculating the Lempel-Ziv estimator may lead to misunderstand-
ings and the overestimation of predictability.

3 Proposed Method

3.1 Predictability Measures

Methodology. For a certain time-series, the predictability is the probability
that an appropriate algorithm can deliver a correct answer based on the obser-
vation. The most intuitive method of predictability measuring is by looking at
the forecast accuracy certain algorithms can achieve. Unfortunately, this method
is unreasonable in two ways. First, it is hard to tell that the chosen algorithm
is arguably “the appropriate algorithm”. Second, forecast accuracy on different
test windows may vary a lot and it is irrational to choose one specific test window
over others.
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Song et al. [26] show a quantitative method of predictability measuring. This
information theory-based predictability measure is given by Eq. (1), where S is
the actual entropy, N is the number of different values and Π is the predictability.
By solving Eq. (1), the predictability Π can be obtained.

S = −Π log2 Π − (1 − Π) log2 (1 − Π) + (1 − Π) log2 (N − 1) (1)

However, certain bias exists when this measure is utilised on time-series data
and the main reason is that it fails to capture the time dependencies. Consider
the time-series shown in Eq. (2), where εt ∼ N(0, 1) denotes the white Gaussian
noise. Using Eq. (1), the result would be 44.80% showing that the time-series
is quite unpredictable. The reason is that the strong trend pattern is ignored
during the actual entropy calculation, making the entropy to be overestimated
at 4.65 which further leads to a low level of predictability.

y(t) = x(t) + 4 sin x(t) + εt (2)

Fig. 2. Process of predictability measuring

In order to fix this bias, we introduce a new method whose process is as
follows. First, the temporal information is extracted by Fourier seasonal decom-
position [18] and exponential smoothing, retaining seasonality and trend, respec-
tively. Under the assumption of long-term trend is totally predictable, the pre-
dictability is defined as 100% minus the average absolute bias between long-term
trend (trend component smoothed with a window length equals to 5, which is
a heuristic method that works well in our experiment) and the trend compo-
nent. Because of the periodicity, the seasonal component’s predictability is 100%.
Then, density-based clustering [12] is implemented on the residue and transforms
the continuous time-series into discrete value set based on its distribution. The
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quantitative measure given by Eq. (1) is then utilised on the clustering result to
get the predictability of the residue. The final predictability of the time-series
is calculated by the absolute volume weighted average of the predictability of
those three components. Using this method, the predictability of Eq. (2) is mea-
sured at 97.62% which is a lot more reasonable. The process of this calculation
is illustrated in Fig. 2.

PCNN. In this part, we discuss PCNN, a neural network fitting the predictabil-
ity measure mentioned above in a differentiable form.

Apart from the temporal information required by most time-series analy-
sis approaches, our predictability measure also requires local information when
calculating the actual entropy. Intuitively, a neural network extracting both tem-
poral and spatial information is suitable here. PCNN adopts the similar network
architecture with CRNN [20], an image-based sequence recognition model intro-
duced by Liao et al.. Here, the two-dimensional convolutional layers and pooling
layers are replaced by their one-dimensional form. By training the parameters of
the convolutional layers, PCNN can find the local information around each time
step before temporal information is extracted by the bi-directional LSTM. The
network configuration is shown in Table 1, where k, s, and p stand for kernel
size, stride, and padding size, respectively.

Table 1. PCNN configuration summary

Type Configuration

Dense #hidden units: 64

Dense #hidden units: 64

Dense #hidden units: 512

Bidirectional-LSTM #hidden units: 256

Bidirectional-LSTM #hidden units: 256

Max Pooling window: 1 × 2, s: 1

Convolution #maps: 256, k: 1 × 11, s: 1, p: 5

Batch Normalization –

Convolution #maps: 256, k: 1 × 7, s: 1, p: 3

Max Pooling window: 1 × 2, s: 1

Convolution #maps: 128, k: 1 × 11, s: 1, p: 5

Max Pooling window: 1 × 2, s: 1

Convolution #maps: 128, k: 1 × 11, s: 1, p: 5

Input –

When training, we artificially generate the training data by randomly creat-
ing seasonality, trend and residue as well as their corresponding weights before
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the final aggregation. Labels are calculated by our newly proposed predictability
measure. In our work, PCNN is trained on 400,000 artificially generated time-
series data for 2,000 epochs. The training on 4 T V100 GPUs takes approximately
2 days.

3.2 PLAE

To begin with, PLAE follows an architecture which consists of three parts:
decomposition, prediction, and aggregation. The basic idea is to decompose the
input data into a bunch of highly predictable microscopic time-series on which
the predictions are delivered, and then aggregate them together to form the final
answer. Note that the prediction is made separately on each microscopic time-
series whose dimension is the same as the input’s, meaning the original forecast
algorithm can be used without dimensional adaptation. This three-step-workflow
is illustrated in Fig. 3.

Fig. 3. The general forecast framework consisting of decomposition, prediction and
aggregation.

PLAE implements the decomposition through the encoder block and PCNN.
The encoder block maps the original input X t−T :t ∈ RT to the k microscopic
time-series x t−T :t ∈ Rk,T with two targets: (1) maximising the average pre-
dictability of each microscopic time-series measured by PCNN and (2) penal-
ising the similarities across all microscopic time-series. The first target aims to
enhance the predictability as much as possible and the second target encourages
the network to search for different types of decomposition results. With these two
targets being optimised, the model is trained to generate k highly predictable
univariate microscopic time-series and each of them captures one certain kind of
predictable motif. The aggregation in PLAE is implemented through the decoder
which fits the non-linear mapping from the microscopic time-series back to the
input data. The detail of PLAE is illustrated in Fig. 4.
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Fig. 4. The detailed structure of PLAE.

Overall, the training of PLAE simultaneously (1) minimising the loss of self-
mapping, (2) maximising the average predictability of the microscopic time-series
and (3) minimising the similarities among microscopic time-series. The loss func-
tion can be formulated as Eq. (3), where Pred(•) represents the predictability
given by the pre-trained PCNN and CM(x ) represents the correlation matrix
of the encoder output x . Even though the CM(x ) can only depict the linear
correlation among each pair of microscopic time-series, our experimental anal-
ysis shows it can enforce the PLAE to find microscopic time-series of different
kind. The 0.01 multiple of the predictability loss term prevents the training
from overly focusing on predictability, whose unexpected result is to deliver a
bunch of highly predictable but meaningless microscopic time-series, e.g. per-
fectly smoothed trend or different types of periodical sequences. The training
epoch is set to be 200 in our tests.

loss = MSE(X , X̂ ) + 0.01 × [1 − 1
k

k∑

i=1

Pred(x )] + ‖CM(x )‖1 (3)

In the prediction stage, since the predictability is the theoretical upper-bound
of the forecast accuracy, more accurate output should be delivered on the newly
generated forecast subjects, i.e., microscopic time-series, even though the fore-
cast algorithm remains unchanged. For the ith microscopic time-series, after the
prediction is made, the concatenation of x i

t−T+s:t and ŷ i
t:t+s may serve as the ith

component of the decoder input. Since the decoder output is the concatenation
of X̂ t−T+s:t and Ŷ t:t+s, the final prediction can be rendered explicitly.
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4 Experiments

4.1 Test Data

Public Data Sets. Three public data sets are used for evaluation, which are
traffic1, electricity2, and parts3. The traffic data set describes the occupancy
rate of different car lanes of the San Francisco bay area freeways across time. It
contains 963 time-series and covers the range from Jan 1st, 2008, to Mar 30th,
2009. The electricity data set contains 370 time-series and each of them shows the
power consumption every quarter. The parts data set is a collection of monthly
parts demand from one US automobile manufacturer. These three data sets are
widely used in a variety of relative works [8,25,33]. The data pre-processing we
adopt is aligned with Chen et al. [8]. When testing, we forecast 3 months ahead
for parts and 24 h ahead for traffic and electricity.

Real-World Data Set. A real-world time-series data set is also selected to
show the effectiveness of our method in practice. We adopt internal configurable-
to-order sales data (referred as sales) as the forecast subject. It contains 533
weekly sales from Apr 4th, 2018, to Oct 17th, 2021. When testing, we leave the
last 13 weeks of data as the forecast targets.

4.2 PLAE Against Direct Forecasting

To begin with, we list all the forecast algorithms whose accuracy under both
direct forecasting and PLAE forecasting would be shown and analysed. The
forecast algorithms we choose are (1) Auto ARIMA, which is a representative
linear model; (2) TSB [29], which is an industrial well-accepted demand forecast
algorithm. (3) GBDT Regressor, which is a widely used ensemble learning algo-
rithm; (4) Wen et al. [31], which combines time-series clustering and deep neural
networks; (5) Informer [34], which is a state-of-the-art time-series forecasting
algorithm derived from the famous Transformer model [30].

The evaluation metrics are mean absolute percent error (MAPE) and root
mean square error (RMSE). The test results are shown in Table 2.

It is obvious that, compared with forecasting directly, using PLAE can signifi-
cantly leverage the forecast accuracy of the outputs. Despite the various accuracy
of direct forecasting, we can see a general phenomenon that when forecasted by
PLAE the results can be a lot better. Considering the percentage of improve-
ment measured by MAPE, GBDT regressor on PLAE leads its direct forecasting
result for an average of 27.52%, followed by Wen et al. (27.51%), Auto ARIMA
(26.18%), TSB (21.32%) and Informer (14.38%). When measured by RMSE, the
order of percentage improvement remains unchanged. Again, the algorithm with
the most significant accuracy enhancement is GBDT regressor (with 31.27%

1 https://archive.ics.uci.edu/ml/datasets/PEMS-SF.
2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
3 https://robjhyndman.com/expsmooth/.

https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://robjhyndman.com/expsmooth/
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Table 2. PLAE against direct forecasting

Sales Traffic Electricity Parts

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Auto ARIMA Direct 31.41% 2986.84 30.04% 0.13 35.09% 1130.45 61.34% 1.10

PLAE 18.54% 2116.57 17.72% 0.12 34.10% 892.36 49.12% 1.03

TSB Direct 26.15% 2672.56 55.32% 0.26 65.27% 2316.15 34.67% 1.07

PLAE 23.13% 2097.36 56.76% 0.29 21.42% 1397.51 31.50% 1.05

GBDT Regressor Direct 26.27% 2780.05 31.61% 0.13 28.21% 707.78 54.67% 0.89

PLAE 14.49% 1728.18 27.38% 0.11 23.20% 318.49 36.02% 0.74

Wen et al. Direct 25.37% 2736.36 56.28% 0.25 57.97% 978.93 45.77% 0.68

PLAE 11.86% 1448.76 48.61% 0.18 31.08% 686.22 47.24% 0.68

Informer Direct 24.99% 2628.85 28.54% 0.14 26.25% 722.90 44.32% 0.66

PLAE 23.70% 2497.35 25.62% 0.11 24.89% 647.62 27.95% 0.57

improvement), followed by Wen et al. (25.98%), Auto ARIMA (16.06%), TSB
(12.88%) and Informer (12.62%). Vertically, it shows the average amount that
PLAE can enhance on each forecast subject. Consider the percentage of improve-
ment measured by MAPE first. We can see the percentage improvements are
ranging from 15.13% (on the traffic) to 31.16% (on sales), with 27.87% on the
electricity and 19.38% on the parts locating in between. When measured by the
average percentage RMSE improvement, the results are 28.11%, 12.19%, 31.21%
and 7.54% for sales, the electricity, the traffic, and the parts, respectively. Over-
all, PLAE can improve 23.38% in terms of MAPE and 19.76% in terms of RMSE.
The comparison between direct forecasting and PLAE forecasting shows that the
accuracy improvement does have achieved and PLAE can leverage the existing
algorithms’ performance.

The difference of predictability on the forecast subjects explains the reason for
accuracy enhancement. Table 3 lists the average one-step-forward predictability
of what these two methods forecast on.

Table 3. Predictability on forecast subjects

Method Sales Traffic Electricity Parts

Direct 76.34% 78.51% 73.26% 65.20%

PLAE 90.58% 89.29% 92.21% 88.19%

Obviously, PLAE enhances the original low predictability to a higher degree.
The improvement on sales, traffic, electricity, and parts are 14.24%, 10.78%,
18.95%, and 22.99%, respectively. Since the predictability is the theoretical
upper-bound of the forecast accuracy, the same algorithm can deliver a more
accurate prediction on a more predictable forecast subject.
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4.3 PLAE Against Fixed Decomposition Based Forecasting

Unlike most of the industrial well-accepted methods that decompose the input
data into a set of pre-defined components, PLAE gives the adaptive decompo-
sition on a trainable basis, learning to find the most predictable components
that capture different motifs. In this part, we compare PLAE against two other
methods which deliver prediction based on a fixed decomposition. Specifically,
we choose STL and Prophet. STL is a decomposition method widely used on
sequential data. It decomposes the input data into seasonality, trend, and residue
before the predictions being made on each of them. Prophet also decomposes the
input data in an additive way but with four components, i.e., trend, periodic
changes, holidays and idiosyncratic changes. The comparable analysis between
PLAE and the other two methods can deliver a experimental conclusion on
whether the trainable decomposition based forecasting outperforms the fixed
decomposition based forecasting.

Since STL is a decomposition method per se, certain forecast algorithm has to
be addressed for each component. Here, the forecast algorithm is selected through
backtest, whose step is equal to the forecast step, on the trend component and
residue, respectively. For both STL based forecasting and Prophet, we tuned the
hyper-parameters by grid searching. Results are shown in Table 4.

Table 4. PLAE against fixed decomposition based forecasting

Sales Traffic Electricity Parts

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

STL based forecasting 35.40% 3018.08 46.56% 0.23 27.31% 805.42 41.21% 0.79

Prophet 29.97% 2661.73 47.11% 0.23 33.79% 880.71 49.74% 0.84

On average, PLAE outperforms the STL based forecasting for 17.06%,
11.34%, 0.37%, and 2.84% in terms of MAPE, and 1040.44, 0.07, 16.98, and
−0.02 in terms of RMSE on sales, traffic, electricity, and parts, respectively.
And PLAE outperforms the Prophet for 11.63%, 11.89%, 6.85%, and 11.37%
in terms of MAPE, and 684.09, 0.07, 92.27, and 0.03 in terms of RMSE on
sales, traffic, electricity, and parts, respectively. Across the four data sets, PLAE
has a percentage of improvement for 20.20% (w.r.t. MAPE) and 15.75% (w.r.t.
RMSE) over the STL based forecasting, and 26.80% (w.r.t. MAPE) and 17.19%
(w.r.t. RMSE) over the prophet. Because of the constantly accurate predictions
Informer delivers, we consider PLAE forecasting using Informer (namely PLAE-
Informer) as a high-performance forecast algorithm per se. The PLAE-Informer
outperforms the STL based forecasting for 11.70%, 20.94%, 2.42%, and 13.26%
in terms of MAPE, and 520.73, 0.12, 157.80, and 0.22 in terms of RMSE on sales,
traffic, electricity, and parts, respectively. And it outperforms the Prophet for
6.27%, 21.49%, 8.90%, and 21.79% in terms of MAPE, and 164.38, 0.12, 233.09,
and 0.2 in terms of RMSE on sales, traffic, electricity, and parts, respectively.
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Fig. 5. The decomposition given by STL and PLAE

We also implement a visualised analysis on the microscopic time-series. The
decomposed results on a random picked time-series from the traffic data set are
shown in Fig. 5. For PLAE, only three pieces of the microscopic time-series with
the largest weight are demonstrated.

For this certain input data, the seasonality given by STL is small in value,
leaving this total predictable component insignificant compared with trend and
residue. The residue, however, is quite large. Since the residue component often
appear to be chaotic, this may drag the combined forecast accuracy quite a lot.
PLAE, on the other hand, delivers a quite predictable yet interpretable decom-
position. The PLAE-mts-1 component shows a strong seasonal pattern. The
PLAE-mts-2 component shows the long-term trend. The PLAE-mts-3 compo-
nent shows a constant gain with a seasonal fluctuation. It is obviously that the
microscopic time-series decomposed by PLAE is much more predictable than the
three components decomposed by STL, which further leads to the outperforming
w.r.t. the forecast accuracy on the decomposed series. This visualised analysis
shows the adaptive non-linear decomposition outperforms the predefined addi-
tive decomposition in both performance and interpretability.

5 Conclusion and Future Work

In this paper, we introduce PLAE, a predictability enhancement-based Seq2Seq
model for univariate time-series forecasting. PLAE aims to improve the perfor-
mance of the readily available algorithms without dimensional adaptation. The
concept of PLAE is to build an auto-encoder-like architecture whose encoder
decomposes the input data into a group of microscopic time-series with improved
predictability, and the decoder renders aggregated final output from the micro-
scopic time-series predictions. Experiments on three public data sets and one
real-world data set show that PLAE can improve 23.38% of MAPE and 19.76%
RMSE compared with forecasting directly. We also experimentally prove the
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adaptive non-linear decomposition makes PLAE outperform the pre-defined
additive decomposition in forecasting performance as well as interpretability.

PLAE empowers the commonly encountered yet tough univariate time-series
prediction, however, it currently cannot work with the multivariate data. Our
future work is to push the univariate quantitative predictability measure into
multivariate realm and to propose the multivariate PLAE. We think it will help
the multivariate time-series forecasting algorithms deliver better predictions just
like what PLAE does now.
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Abstract. Knowledge Tracking (KT) attempts to predict students’
learning performance by tracking their changing knowledge state based
on their past performance on exercises. Existing KT models primarily
use knowledge concepts while ignoring the latent information of exer-
cises, particularly for possible changes in students’ learning processes.
This paper proposes a novel Graph attention-based Memory-Enhanced
Knowledge Tracing (GMEKT) model to address these issues, employ-
ing the Graph Attention Network (GAT) and a novel fusion method
to extract additional rich information from the exercises. In detail, we
first create a dynamic adjacency matrix as the input of the graph atten-
tion network to alleviate the sparsity. Then a memory module based on
self-attention and gating network is developed to trace the evolution of
the knowledge state and memory unit when students do the exercises.
Finally, we conduct extensive experiments on public datasets to validate
the proposed model’s effectiveness. Compared to the state-of-the-art KT
models, GMEKT outperforms them by more than 2.67% in AUC.

Keywords: Knowledge state · Knowledge tracing · Graph attention
network · Educational data mining

1 Introduction

Nowadays, knowledge tracking can provide more brilliant educational services to
students by tracking their knowledge states, such as recommending individual-
ized learning paths [10]. Current studies use numerous ways to assess students’
knowledge levels and learning preferences based on historical learning interac-
tions. In these methods, knowledge tracing uses machine learning for sequence
modeling and monitors student knowledge states’ changes using educationally
associated data, which is widely used in various online tutoring systems and
received increasing attention [9].

Existing KT approaches [17,22] typically model knowledge concepts rather
than exercises, resulting in the loss of latent information contained in the exer-
cises. As illustrated in Fig. 1, a knowledge concept may correspond to multiple
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 408–421, 2022.
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Fig. 1. A simple graph of exercises and knowledge concepts.

exercises, and an exercise may contain numerous knowledge concepts. If they
only consider the skills used in the exercises and ignore their characteristics,
their performance may suffer a loss. Unfortunately, data sparsity is a serious
issue because students can only answer a portion of massive exercises. A chal-
lenge in KT is determining how to mine the potential representative information
of the exercises.

The recent models focus on exploiting latent information of exercises via
graphs. For example, Graph-based Knowledge Tracing (GKT) [14] constructs a
skill relation graph to learn their relationship. Graph-based Interaction Knowl-
edge Tracing (GIKT) [21] employs bipartite graphs with Graph Convolutional
Network (GCN) to acquire higher-order information for exercises and knowledge
concepts. However, combining the two methods to improve the model’s predictive
performance is unusual. In contrast, Some studies concentrate on the students’
learning process while ignoring the exercise’s potential information. Individual
Estimation Knowledge Tracing (IEKT) [11] proposes modeling students by com-
bining student characteristics such as cognitive level and knowledge acquisition
sensitivity to exercises. Collaborative Knowledge Tracing (CoKT) [12] obtains
the inter-student information by retrieving the records and sub-sequences of
students with similar question-answering experiences.

To model the student learning process based on the hidden information, we
propose a novel Graph attention-based Memory-Enhanced Knowledge Tracing
(GMEKT), predicting students’ performance via a graph attention network [18]
based embedding and memory module. Specifically, (1) we utilize graph atten-
tion networks to obtain efficient exercise representations from exercise-knowledge
concepts to get the relationship between exercises and knowledge concepts and
build a dynamic adjacency matrix of each batch to alleviate the sparsity problem
of exercises; (2) we improve the feature embedding of the exercise to mine the
latent information of the exercise; (3) we add a memory module based on CNN,
self-attention, and gating network to track the changes in student’s knowledge
state and memory units by simulating their learning process. The memory mod-
ule can update the student’s state by interacting with the current exercise and
the knowledge state at the current time step.

Our main contributions are summarized as follows:

(1) We propose a novel fusion approach with graph attention networks and build
a dynamic adjacency matrix with each batch.
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(2) We present a memory module to model the changes in students’ knowledge
and memory states as they perform the exercises.

(3) We conduct experiments on four benchmark datasets, and the experimental
results show that our model outperforms the state-of-the-art baselines.

2 Related Work

Existing knowledge tracking models can be divided into traditional machine
learning models and deep learning models.

Traditional machine learning models in KT are classified into two types:
Bayesian knowledge tracing [4] and cognitive diagnostic models. Bayesian knowl-
edge tracing used hidden Markov models to simulate students’ learning of various
knowledge concepts. Its knowledge state is binary, mastery or not, but this state
cannot fully reflect the complexity of learning. In contrast, cognitive diagnostic
models are concerned with learning parameters from historical data to make pre-
dictions. Item Response Theory [2] predicted the probability of correct answers
based on student ability and question difficulty. Performance Factors Analysis
[16] predicted student’s performance by counting correct and incorrect attempts
at skills, and Knowledge Tracing Machines [19] used Factorization Machines to
integrate learning-related side information.

Deep learning is widely used in knowledge tracing tasks. The classic Deep
Knowledge Tracing (DKT) [17] first used long short-term memory (LSTM) [6] to
model students’ exercise sequences and outperform other traditional knowledge
tracking models such as BKT and PFA. Later, additional DKT variants were
proposed, such as DKT+ [13], which introduced forgetting features into DKT
to improve the model’s performance. The Dynamic Key-Value Memory Net-
work (DKVMN) [22] used a Memory-Augmented Neural Network to record the
learner’s proficiency with each underlying concept. In light of the DKT model’s
inability to track mastery of each knowledge concept and the DKVMN’s failure
to capture the dependencies of long sequences of student practice records, the
Sequential Key-Value Memory Networks (SKVMNs) [1] were proposed. The Self
Attentive Knowledge Tracing (SAKT) [15] was the first to propose using trans-
formers for knowledge tracking. To capture the presentation of the exercise,
the Context-Aware Attentive Knowledge Tracing (AKT) [5] model employed
a monotonic attention network and Rasch model-based embedding. To better
grasp the students’ mastery of the exercises, Individual Estimation Knowledge
Tracing (IEKT) [11] introduced the cognition level estimation module and knowl-
edge acquisition sensitivity estimation module to knowledge tracing. Collabora-
tive Knowledge Tracing (CoKT) [12] made predictions based on the integration
of the intra-student and inter-student information.

Although the KT models discussed above all highlight their respective advan-
tages and achieve good results, they either lack modeling of the learning pro-
cess or representations to enrich the exercises further. Compared to the preced-
ing models, our model employs a graph attention network and vector fusion to
improve the presentations of exercises. Still, it also uses a memory module to
simulate students’ learning process, thereby improving prediction performance.
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3 Method

This section will go over our model GMEKT in detail, with an overview archi-
tecture shown in Fig. 2. To begin, we define the problem of knowledge tracking
and then describe the embedding input module, student knowledge state update,
and prediction module.

Fig. 2. The architecture of the GMEKT. Exercise embedding’s output xi is the model’s
exercise input, and the memory module’s details can be seen at the bottom of the figure.
Qh, Kh, and Vh are the query, key, and value based on the knowledge state feature’s
convolution. Furthermore, the aggregated feature Zh is obtained by performing self-
attention on Ht and another feature Zm, with Zm is calculated by querying on Km

and Vm. In this case, both Km and Vm are mappings of the memory Mt−1. The
aggregated feature Z is obtained by convolution combining Zh and Zm.

Problem Definition. Knowledge tracking aims to determine whether the stu-
dent can complete the next exercise correctly based on previous answers or the
student’s knowledge state. Since students have completed a series of exercises in
the knowledge tracking task, we can construct the students’ learning sequence as
x = (e1, a1), (e2, a2), ..., (et, at) and the new exercise as et+1, where ei represents
the exercise ID and ai ∈ {0, 1} represents whether the student answered the ques-
tion correctly, and the final goal is to predict the probability p(at+1 = 1|x, et+1).
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3.1 Overview Architecture

GMEKT is made up of three modules, as shown in Fig. 2: the exercise input
module, the student’s knowledge state update module, and the predicting mod-
ule.

The exercise’s input module first obtains the embedding through GAT and
then fuses with the feature embedding to further mine the exercise’s rich informa-
tion. LSTM and a memory module assist the student’s knowledge state update
module. Finally, the predicting module seeks to forecast the student’s perfor-
mance on the next exercise based on the student’s current knowledge state.

3.2 Embedding Input Module

Graph Attention Layer. The potential information of the exercise poses a sig-
nificant challenge in learning its representation. To address the potential infor-
mation of the exercise, we use a bipartite graph G of exercises and knowledge
concepts. For ease of presentation, we define the set of exercises and knowledge
concepts separately as E = (e1, e2, ..., en) and C = (c1, c2, ..., cm), with n and
m denoting the number of exercises and knowledge concepts, respectively. The
bipartite graph is defined as {(e, rec, c)|e ∈ E , c ∈ C}, where rec denotes whether
an exercise is related to a knowledge concept. Furthermore, to obtain better
exercise representations, we aggregate the relevant knowledge-concept features
of the exercise using a graph attention network. It can aggregate the neighbor
nodes through the self-attention mechanism to realize the weight of different
neighbors. Besides, unlike the previous adjacency matrix, we dynamically count
the number of unique exercises Euni and the number of knowledge concepts Cuni

based on all students in each batch size to construct an adjacency matrix Adj.
As a result, we can dynamically adjust the size of the adjacency matrix per batch
to address the sparsity issue.

The exercise set is then represented by an embedding matrix E ∈ R
n×2d,

where d is the dimension, and the knowledge concept set is represented by an
embedding matrix C ∈ R

m×2d. We concatenate the exercise embedding and
knowledge concept embedding corresponding to each batch’s adjacency matrix.
Finally, the input embedding and adjacency matrix are received using the origi-
nal GAT network. Furthermore, we reconstitute the obtained output embedding
into the batch’s exercise sequence embedding via the id mapping relationship,
and the final GAT output embedding is as follows:

g = batchnorm(GAT([Ebatch,Cbatch],Adj)). (1)

The [,] is the operation that concatenates two vectors and Ebatch and Cbatch

indicate the embeddings of unique exercises and knowledge concepts done by all
students in the batch respectively.

Embedding Fusion. Inspired by IRT [2], GMEKT’s input embedding takes the
exercise sequence embedding output by GAT and the exercise’s feature embed-
ding with mean pooling can extract the latent meaning of both better than
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simple summation. Furthermore, we use a multi-layer perception to integrate
the exercise feature embedding further. As a result, at time step t, we build the
exercise embedding as follows:

et = MeanPooling(get + ωt · (W T
1 ft + b1)). (2)

The get ∈ Rd is the GAT exercise sequence embedding at time step t. ωt ∈ Rd

is the feature embedding of exercise, ft ∈ R2d is the embedding that summarizes
exercise information. The weight matrix is W1 ∈ R2d×d, and the bias term is
b1 ∈ Rd. Then, for the answer at, which is either 0 or 1, we expand it to an
all-zero or all-one vector at ∈ Ra, where a is also a dimension. Finally, we
concatenate them as xt input vectors for our model, as shown in the exercise
embedding of Fig. 2.

3.3 Student Knowledge State Update

Knowledge tracking is sequential for each step, and different exercises may have
correlations. We use LSTM [6] to learn the students’ knowledge state from the
exercise input vectors to capture the change in students’ knowledge state doing
exercises. The following are the implementation specifics:

Ht = LSTM(xt, Ĥt−1), (3)

where Ht and Ĥt−1 represent students’ knowledge state, the knowledge state
output of the memory module at the previous time step respectively. We can
get a vague estimation of students’ knowledge state using LSTM. Furthermore,
inspired by SA-convLSTM [8], we introduce a memory unit M and memory
module in LSTM to simulate the changes of memory and knowledge state during
students’ learning process, allowing it to learn the accurate knowledge state of
students and thus improve prediction accuracy.

Memory Module. To more accurately track the students’ knowledge state and
the changes in their memory units, we design a memory module to achieve this
purpose. The input of the module is the previous time step’s memory unit Mt−1

and the current time step’s knowledge state Ht. The CNN and self-attention
are used to aggregate the features. Then, using a gating mechanism, Z and the
original input Ht are used to update the memory. CNN is primarily used to
extract the essential features of the current knowledge state and memory unit
related to the knowledge involved in the exercise and can improve the model’s
expressive ability. Self-attention is used to extract the features of high importance
in the current knowledge state. By multiplying the matrix between query Qh

and key Km, the similarity score em between knowledge state embedding and
memory unit embedding is calculated. All weights used for feature aggregation
are obtained by the SoftMax function along each row:

em = QT
hKm,

αmij =
exp(emij)

∑N
K=1 exp(emij)

, i, j = 1, 2, ..., N.
(4)
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Then, the i-th feature Zm is calculated by a weighted sum across all N
locations, which is defined as follow:

Zmi =
N∑

j=1

αmijWmvM(t−1)j , (5)

where M(t−1)j is the memory’s j-th column and Zh can be generated in the same
way. Finally, with Z = Wz[Zh,Zm], the aggregated feature Z can be obtained.
Furthermore, we use a gating mechanism to update the memory unit so that it
can capture long-term dependencies between exercise content and exercise order.
The aggregated feature Z and the original input Ht are applied to the input
gate i

′
t and the fused feature g

′
t. In addition, the forget gate is replaced with 1−i

′
t

to reduce parameters. The following is the specifics of the updating process:

i
′
t = σ(WziZ + WhiHt + bi),

g
′
t = tanh(WzgZ + WhgHt + bg),

Mt = (1 − i
′
t) ◦ Mt−1 + i

′
t ◦ g

′
t,

(6)

where ◦ is the dot product. Finally, the memory module’s output knowledge
state Ĥt is a dot product of the output gate o

′
t and updated memory Mt, which

can be expressed as follows:

o
′
t = σ(WzoZ + WhoHt + bo),

Ĥt = o
′
t ◦ Mt.

(7)

3.4 Prediction

We predict the student’s performance in the next exercise et+1 using the stu-
dent’s knowledge state Ĥt obtained from the memory module. We concatenate
them first, then pass them through two layers of a fully connected network,
ReLU, and dropout. Finally, we proceed through the sigmoid activation layer:

yt+1 = σ([Ĥt,et+1]). (8)

To optimize our model, we choose the cross-entropy log loss to minimize the
loss between the predicted correct answer probability ŷt and the student’s actual
answer label yt:

L = −
T∑

t=1

(ytlogŷt + (1 − yt)log(1 − ŷt)). (9)

4 Experiments

In this section, we conduct extensive experiments to evaluate our model’s per-
formance on four public datasets. To demonstrate the effectiveness of our added
modules, we perform ablation experiments on the modules of our model. Finally,
we further assess the performance of our model.
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Table 1. Dataset statistics.

Dataset ASSIST2009 ASSIST2012 ASSIST2017 EdNet-KT1

Students 3, 884 29, 018 1, 709 5, 000

Exercises 17, 737 53, 019 3, 162 12, 104

Concepts 123 265 102 189

Interactions 337, 559 2, 711, 813 942, 816 622, 421

Avg. length 81.19 93.45 551.68 111.69

4.1 Datasets

We assess our model’s effectiveness using four real-world datasets (see Table 1)
that are commonly used in KT tasks, all of which collect students’ practice-
answer history. The following are their specifics.

– Assistments 2009(ASSIST2009)1 was came from ASSISTments online
education platform during the school year 2009–2010.

– Assistments 2012(ASSIST2012)2 was gathered from ASSISTments dur-
ing the 2012–2013 school year, where each exercise is only related to one skill,
but one skill corresponds to several exercises.

– Assistments Challenge(ASSIST2017)3 was used in the ASSISTments
data mining competition in 2017.

– EdNet-KT14 was collected by Choi et al. [3]. The entire dataset is massive,
with 131,441,538 records and 784,309 students involved. So we take 5000
students from it and assign each exercise to more than one skill.

4.2 Baseline Model

GMEKT is compared to several state-of-the-art methods. The following are their
specifics:

– DKT [17] leveraged recurrent neural network to assess student knowledge
state. Moreover, we use LSTM to implement it.

– DKVMN [22] had a key matrix to store latent knowledge concepts and a
dynamic value matrix to update the corresponding knowledge state.

– DKT+ [13] was a variant of DKT [17], considering the impact of forgetting
behavior to DKT.

– SAKT [15] introduced the self-attention model to capture the correlation of
relevant exercises from previous interactions to make predictions.

1 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
2 https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-

afect.
3 https://sites.google.com/view/assistmentsdatamining/dataset.
4 http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com/.

https://sites.google.com/site/assistmentsdata/ home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-afect
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-afect
https://sites.google.com/view/assistmentsdatamining/dataset
http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com/
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– GIKT [21] used a graph convolutional network to capture exercise repre-
sentations from the relation graph of exercise and knowledge concepts and a
recap module to capture long-term dependencies.

– AKT [5] leveraged a monotonic attention mechanism to summarize learner
performance and uses Rasch model to capture differences among exercises.

– IEKT [11] incorporated the learner characteristics into the model by consid-
ering learners’ cognition levels and knowledge acquisition sensitivity.

– COKT [12] retrieved the sequences of peer students who have similar
question-answering experiences to obtain the inter-student information and
predict their correctness in answering questions.

Table 2. AUC and ACC values of all comparison methods on all datasets.

Method ASSIST2009 ASSIST2012 ASSIST2017 EdNet-KT1

AUC ACC AUC ACC AUC ACC AUC ACC

DKT [17] 0.7325 0.7148 0.7279 0.7354 0.7205 0.6901 0.6822 0.6875

DKVMN [22] 0.7318 0.7152 0.7236 0.7331 0.7102 0.6839 0.6745 0.6846

DKT+ [13] 0.7428 0.7183 0.7352 0.7313 0.7213 0.6917 0.7029 0.6933

SAKT [15] 0.6898 0.6861 0.7248 0.7383 0.6613 0.6705 0.6915 0.6935

GIKT [21] 0.7647 0.7283 0.7686 0.7503 0.7448 0.6989 0.7324 0.7013

AKT [5] 0.7665 0.7302 0.7694 0.7517 0.7582 0.7089 0.7366 0.7089

IEKT [11] 0.7573 0.7232 0.7371 0.7325 0.7489 0.7013 0.7356 0.7078

COKT [12] 0.7685 0.7329 0.7435 0.7385 0.7911 0.7339 0.7399 0.7102

GMEKT 0.7791 0.7453 0.7795 0.7616 0.8178 0.7520 0.7467 0.7124

4.3 Implementation Details

First, we set all input sequences to a fixed length of 100 for four public
datasets, where longer-than-fixed-length sequences are divided into several short
sequences, and the short sequences are filled with zero vectors for the fixed
length. Besides, we removed the student’s question whose sequence length is
less than three from all datasets. Second, we chose the area under the receiver
operating characteristic (ROC) curve (AUC) and Accuracy (ACC) as evaluation
metrics, which are widely used in existing KT research. Finally, we set some nec-
essary parameters. The hidden state dimension d of LSTM is 128 and answer’s
dimension a is 50, the batch size is 64, and all trainable parameters are optimized
by Adam algorithm with a learning rate of 0.002, the self-attention dimension
is 64, and GAT’s hyper-parameters alpha is 0.003, dropout is 0.1 and n heads is
2. We added a dropout layer with a dropout rate of 0.1 in the prediction mod-
ule to prevent over-fitting. In addition, our exercise input embedding includes a
dropout layer with 0.05 in feature embedding.
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In our experiments, we used standard 5-fold cross-validation across four
datasets in all methods. For each fold, 60%, 20%, and 20% of students are divided
into the training set, validation set, and test set, respectively. The average result
of all folds is regarded as the final result. All experiments are performed on a
14-core Intel Core i7-12700H CPU and an NVIDIA GeForce RTX 3080 Ti GPU
(16G VRAM). In addition, this model is implemented with Pytorch and python
3.7.

4.4 Experimental Results

Our five-fold AUC and ACC average results are shown in Table 2. More specif-
ically, our model outperforms other models by at least 0.68% in AUC, demon-
strating its effectiveness.

On the ASSIST2017 dataset, our model outperforms other models signifi-
cantly, including a 2.67% improvement in AUC and a 1.81% improvement in
ACC over the state-of-the-art model. Since each student’s exercise sequence in
ASSIT2017 is relatively long, our model excels at capturing students’ long his-
torical learning interactions. In addition, our model’s performance on the other
three datasets is also better than existing approaches, verifying the effectiveness
of the proposed model.

4.5 Ablation Study

We conduct ablation experiments on six variants of the model to validate the
effects of the graph attention network, the new fusion method of GAT’s exercise
vector and feature vector, and the memory module in GMEKT. The details of
these variants are shown in Table 3:

Table 3. Ablation study on four datasets.

Method ASSIST2009 ASSIST2012 ASSIST2017 EdNet-KT1

AUC ACC AUC ACC AUC ACC AUC ACC

GMEKT-RGM 0.7334 0.7151 0.7247 0.7308 0.7210 0.6912 0.7034 0.6910

GMEKT-RM 0.7469 0.7203 0.7365 0.7337 0.7382 0.6952 0.7145 0.6962

GMEKT-RGF 0.7605 0.7285 0.7402 0.7356 0.7866 0.7268 0.7318 0.7009

GMEKT-RG 0.7632 0.7301 0.7532 0.7441 0.7904 0.7310 0.7357 0.7048

GMEKT-RF 0.7668 0.7312 0.7683 0.7510 0.8033 0.7395 0.7397 0.7097

GMEKT-RMP 0.7727 0.7378 0.7746 0.7563 0.8155 0.7478 0.7450 0.7102

GMEKT 0.7791 0.7453 0.7795 0.7616 0.8178 0.7520 0.7467 0.7124

GMEKT-RGM(Remove Graph Attention Network and Memory
Module) only uses the embedding vector mapped by the exercise id and uses
LSTM to model the student’s knowledge state.
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GMEKT-RM (Remove Memory Module) removes the memory module
and uses the fusion input of GAT’s exercise vector and feature vector.

GMEKT-RGF (Remove Graph Attention Network and Feature
embedding) removes the exercise feature vector and the GAT’s exercise vector,
only use the embedding vector mapped by the exercise ID.

GMEKT-RG (Remove Graph Attention Network) only uses the exer-
cise feature vector as the input vector, which differs from the input of GMEKT-
RGF.

GMEKT-RF (Remove Feature embedding) uses the GAT’s exercise
vector and the memory module, which removes the exercise feature vector.

GMEKT-RMP (Remove MeanPooling) uses GAT’s exercise vector plus
exercise feature vector as the input vector and uses the memory module.

Table 3 shows that our model GMEKT outperforms all variant models, prov-
ing that our added modules are practical. Furthermore, when the graph attention
module is removed, GMEKT-RG and GMEKT-RGF drop by about 2%, demon-
strating that our model can learn the exercise representation well. Second, after
removing the memory module, we see a significant decrease, indicating that our
proposed model can use the memory module to update students’ knowledge state
during the learning process effectively.

4.6 Length Analysis and Visualization

To investigate the effect of different fixed lengths on our model, we evaluate our
method’s performance with AKT and COKT on all datasets with four different
lengths: 20, 50, 80, and 100 (see Fig. 3). Shorter learning sequences of students
often determine that the model cannot learn better performance. When the
length is 20, GMEKT can slightly outperform AKT and COKT. As the length
increases, GMEKT can also maintain good performance. Clearly, GMEKT can
better simulate students’ knowledge states even in short learning sequences for
better predictions with a certain application value.

Fig. 3. Comparison results of the influence of sequence lengths on four datasets.
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Fig. 4. Visualization cases of student’s individualized knowledge tracing result.

We visualize the process of knowledge tracking for a student in Assist-
ments2017 (see Fig. 4). Among them, 11 means multiplication, 73 means frac-
tions, 75 means inequality-solving, and the probability in the knowledge state
represents the student’s mastery of the current exercise and knowledge concept.
Students’ grasp of knowledge concepts 73 may be under-performed due to the
difficulty of the different exercises. In addition, we notice that the student’s
progress in mastering the deeper concepts of inequality-solving is slow, which
shows that the student cannot understand the concepts proficiently.

5 Conclusion

This paper proposes Graph attention-based Memory-Enhanced Knowledge Trac-
ing (GMEKT), a novel knowledge tracing model for modeling students’ knowl-
edge state and predicting student performance. We first use graph attention net-
works to obtain the exercise’s embedding through dynamic adjacency matrix. A
novel fusion approach is then used to improve the representation further. Besides,
we present a memory module to model how students’ knowledge states and mem-
ory states during the learning process. Experimental results show that GMEKT
outperforms the state-of-the-art KT models.

In future work, we will continue to investigate better ways of representing
the exercise’s information. For example, we will also explore how the contrastive
learning [7] can be further refined in the KT, which is an interesting question.
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National Natural Science Foundation of China under Grant Nos. 61772210 and
U1911201; Guangdong Province Universities Pearl River Scholar Funded Scheme
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Abstract. Visual Information Extraction (VIE) is a task to extract key
information from document images such as waybills and receipts. Exist-
ing methods typically combine multi-modal information including tex-
tual, visual, layout features and achieve promising results on datasets
in various domains. However, previous methods treat the VIE task as a
token-level sequence labelling problem and have not explicitly modelled
the relationship between bounding boxes. VIE heavily depends on the
context, especially the relationship between key-value pairs. To address
this problem, in this paper, we propose a dual-level graph attention
model that combines coarse-grained and fine-grained information. At the
fine-grained token level, we force the graph attention network to focus
on its local token neighbours within a bounding box. At the coarse-
grained bounding box level, we encourage further information interac-
tion between bounding boxes and pay more attention to the potential
key-value pairs. To the best of our knowledge, our method may be the
first attempt to jointly model the correlation between bounding boxes
and tokens under a unified fine-tuning framework. Experimental results
show that the proposed method significantly surpasses previous meth-
ods. Compared to the strong baseline LayoutLM, our method improves
the F1-score by about 3% on both datasets. Our method is an important
complement to existing VIE methods.

Keywords: Visually rich documents · Layout modeling · Graph
attention network

1 Introduction

Visual Information Extraction (VIE) aims to extract key information from doc-
ument images (waybills, invoices) rather than plain text. However, the diversity
of document formats and layouts makes it difficult for machines to understand
the document contexts. In VIE, textual information [1], visual information [2]
and layout information [3] are critical to the understanding of a document.

Currents VIE systems simply treat the VIE task as a sequential tagging or
classification problem and implement it through the named entity (NER) [4]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 422–434, 2022.
https://doi.org/10.1007/978-3-031-20862-1_31
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Fig. 1. An example shows the extraction error of the vanilla LayoutLM model used for
visual information extraction on the Freight-BI dataset. Freight-BIs are often written in
Chinese and English and the positions of text blocks are flexible and not fixed. Keys of
entities are labeled with green boxes, values of entities are labeled with blue boxes, and
key-value pairs are labeled with bidirectional arrows. LayoutLM models predict token
labels in a sequential processing manner. Therefore, they are susceptible to overfitting,
as the model may rely more on token-level spatial and semantic associations. (Color
figure online)

framework. However, treating the document content as a simple linear sequence
loses most of the valuable non-sequential information of the document (e.g.,
location, visual, layout). The main challenge for VIE is to effectively extract
the textual, layout, and visual features of a document and obtain key and value
representations with richer non-textual information. [1,5–7] modeled the layout
structure of documents by using graph convolutional networks. These methods
have achieved superior results by considering visual features. However, most pre-
vious methods are limited to model token-level semantic and spatial associations.
For example, LayoutLM models [8] predict token labels in a sequential processing
manner, more relying on spatial and semantic associations between tokens. They
have not noticed that the layout information between bounding boxes might be
an important clue for the inference of the relationship between key-value pairs.
As shown in Fig. 1, the recognition of the value of “Port of Loading” and “Transit
Port” is difficult, since the document may contain similar text fragments both in
format and in semantic (e.g., “Port of origin” and “Port of discharge”, the values
of weight and volume/size), it raises the ambiguity which is difficult to distin-
guish. Therefore, token-level layout and visual features might be not sufficient
to distinguish between the value of “Port of Loading” and “Transit Port”.

In our preliminary experiments, we find that studying the correlation between
keys and values, i.e., bounding-box-level layout features, may be enhance the VIE
task concerning the following observations and considerations: (1) Text in doc-
ument images usually appears as key-value pairs. If the corresponding value for
a particular key can be found, the class can be determined naturally. (2) The



424 J. Zhang et al.

value corresponding to a key usually appears on the lower or right side of the
key. (3) Although there may be multiple similar texts in a document image (e.g.,
shipper’s address, recipient’s address, weight and volume), the spatial relation-
ship between keys and values are strong hint which can help the model make
prediction. (4) Considering the bounding-level positional relationship between
keys and values can significantly simplify the learning process of the model.

In this paper, we propose a dual-level graph attention network framework,
which captures both the coarse- and fine-grained multi-modal information,
including textual, visual and spatial features at the same time. In addition, our
model pays more attention to key-value pair candidates by using a k-nearest-
neighbour (KNN) graph network. The main contributions of our research are
summarized as follows:

– We propose a dual-level graph attention network that can effectively model
the token- and bounding-box-level multi-modal information. The model
can also capture the correlation between keys and values using k-nearest-
neighbour (KNN) graph network.

– For each granularity, our approach can effectively fuse multi-modal features
(including text, visual, layout and entity relevance), bringing significant accu-
racy improvements and surpassing existing methods.

– We manually annotated a freight booking instruction dataset containing more
than 4,500 images and more than 20 categories with the help of OCR tools.
The code of the proposed method and the dataset will be made public later.

2 Related Work

Traditional approaches extract key information based on feature engineering.
However, this approach [3,9] uses only text and location information and requires
the construction of complex feature engineering. Rule-based approaches rely
heavily on predefined templates or rules, require much effort, and are not scal-
able for most document understanding problems because of the complex and
diverse forms of real-life document layouts. Most modern approaches treat VIE
as a sequential labelling problem. It is much more difficult for a machine to dis-
tinguish classes of entities from complex documents without ambiguity than for
a typical NER task. One of the main reasons is that frameworks, such as BIL-
STM+CRF, only operate on plain text and do not combine visual information
with document layout information to obtain a richer feature representation.

Recently, several studies in the VIE task have attempted to take full advan-
tage of features not yet exploited in complex documents. A study proposed Con-
volutional Universal Text Information Extractor (CUTIE) [10]. CUTIE treats
the document understanding task as an image semantic segmentation task. A
grid is created, and the text is placed in cells corresponding to the position of the
text in the image. The goal is to extract useful information using the position
and content of the text. However, this work uses only text features and does
not involve image features. Although [2,11] uses images for feature extraction,
it only focuses on image features and does not consider text features.
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Inspired by BERT [8,12] proposed the LayoutLM approach. It applies the
architecture of BERT to pre-trained models for text and layout on many docu-
ments and incorporates visual features. Similar to LayoutLM, [13] proposes the
LAMBERT model. Although the above two pre-trained language models for doc-
ument processing perform well in several downstream tasks, they only considers
the relationship between all tokens in a document. They does not consider the
potential relationship between two text segments, which is crucial for extracting
key information in VIE.

Due to the great success of graphical neural networks [14,15] in unstructured
data tasks, more and more research is focused on using GNN to solve the prob-
lem of document structure modelling and improve document understanding. In
[1,5–7,16] GNN are used to model the layout information of a document. With
the messages passed between nodes, the model can understand the general layout
of each document, which helps in subsequent entity extraction. [17] proposed a
lexicon-based graphical neural network that treats Chinese NER (named entity
recognition) as a node classification task. Moreover, the models proposed by [1],
and [5] model the document layout structure by GNN and finally input to a
BiLSTM CRF model for decoding, which, although proved to be effective, how-
ever, both of them only used textual features and did not use visual features. In
[1], each node in the graph is connected to the remaining nodes, so the graph
convolution aggregates useless and redundant information between the nodes
and introduces noise. Unlike fully connected graphs, [6] predicts the connections
between nodes by graph learning and dynamically updates the parameters of the
adjacency matrix, which also improves the results. Although the above graph-
based methods have all achieved good results, these methods using GNN to
encode textual and visual information are hardly guaranteed to learn the rela-
tionships between key-value pairs well. However, our method explicitly learns
the relationship between key-value pairs between bounding boxes, which in turn
improves the effectiveness of VIE.

3 Proposed Model

In this section, we will describe our proposed method in detail. Our method
considers the bounding-box-level and the token-level textual and visual features
at the same time when encoding the node representation of the graph. Then,
the nodes are aggregated by constructing a position-based matrix and a feature
similarity-based matrix to assign different weights to the features of neighbouring
nodes so that the graph convolution can better learn the embedding represen-
tation of bounding box nodes. Finally, we employ a decoder part with BILSTM
and CRF to predict labels.
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Fig. 2. Our Dual-Level graph attention network using both coarse- and fine-grained
layout information.

3.1 Token-Level Graph Attention Network

To obtain token-level features, we employ LayoutLM to generate token-level
representations which contains semantic, layout, and visual information (Fig. 2).

Universal Multi-modal Encoder. The LayoutLM model is used as the
backbone network to extract the fused multi-modal features. Given a doc-
ument D = {bd1, bd2, . . . , bdM}, where bdi denotes the i-th bounding box.
L = {l1, l2, . . . , lM}, li stands for the number of tokens in the i-th bounding
box after performing tokenization using a Bert Tokenizer. The i-th bounding
box that contains li tokens can be represented as:

bdi = W1:N [start : start + li − 1] = {wstart, . . . , wj , . . . , wstart+li},1 ≤ i ≤ n
(1)

start =
∑i′=i−1

i′=1 li′ ,1 ≤ i ≤ n
(2)

Namely, wj stands for the j-th token in bdi; start is the index of the start token
in bdi. Then, the initial token embeddings are obtained by using the LayoutLM
encoder. We encode document D regardless of bounding box boundaries as fol-
lows:

H0:n = LayoutLM(W0:N ) = LayoutLM([CLS]||bd1|| . . . ||bdM ) (3)

where || indicates the concatenation operation on all text blocks, and H0 indi-
cates an special document embeddings at the [CLS] position. Then, we collect all
token embeddings generated by LayoutLM with respect to the indices of tokens
in the document.
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Local Circuit-Breaking Attention. Given a graph G = (V,E), G repre-
sents an bounding box, in which vj ∈ V and j ∈ {1, 2, ..., n}. vj denotes a node
(token) in the bounding box. To force the graph attention network focus on its
local neighbourhood, we facilitates token correlations within the bounding box
using the Circuit-Breaking mechanism. For each bounding box, we encourage the
interaction between the tokens inside the bounding box while prevent informa-
tion passing from the outside bounding boxes. This results in a fully-connected
subgraph for each bounding box. ejj̃ denotes an edge between tokens vj and vj̃ ,
which is computed as

ejj̃ =

{
1, if vj ∈ bdi and vj̃ ∈ bdi

0, if vj /∈ bdi or vj̃ /∈ bdi

(4)

which means that token nodes in the current bounding box are connected, but
none of them are connected with any token out of the current bounding box.

Graph Convolution. For all tokens, we perform graph convolution with the
Circuit-Breaking attention:

hj
(t+1) = δ(

N∑

j̃=1

αjj̃Wh
(t)

j̃
⊗ ejj̃) (5)

where hj
(t+1) is the aggregation and update of hj

(t). hj̃ is the hidden state of
node vj ’s neighbour vj . ⊗ is denotes the operation of element-wise multiplication.
δ is an activation function and αjj̃ is the attention coefficient which indicates
the importance of node j to node j̃. The coefficients is computed by:

αjj̃ =
exp(δ(V T [Whj ⊕ Whk]))

∑
n∈N exp(δ(V T [Whj ⊕ Whn]))

(6)

3.2 BD-Level Graph Attention Network

Position-Aware Text Encoder. Since the document presents the text content
in a 2D structure, it is necessary to encode the text given its layout information.
Following LayoutLM, we normalize and discretize all coordinates to integers in
the range [0, 1000]. Then, we use two positional embedding layers to encode
x-axis features and y-axis features, respectively. Given the normalized position
features of the i-th bounding box bdi–< x0, x1, y0, y1, w, h >, where w is the hor-
izontal length and h is the vertical length of bdi, respectively. Then, we pass six
position features through the two layout embedding layers. Finally, the encoded
embeddings are aggregated to construct the 2D layout embedding pi

pi = [Embx (x0, x1, w) ||Emby (y0, y1, h)] , 1 ≤ i ≤ t (7)
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where || indicates a concatenation operation. Embx and Emby are two position
embedding layers regarding to x-axis and y-axis. To generate BD-text representa-
tions, we use a pre-trained SentenceBert model [18] to encode the plain texts into
parallel vectors. Compared to Bert, SentenceBert can generate semantically-rich
sentence embeddings. The final sentence embedding is computed by combining
the SentenceBert embeddings with projected position embeddings via an affine
transformation Proj as follows:

Si = SentenceBert(bdi) + Proj(pi), 1 ≤ i ≤ t (8)

Position-Aware Visual Encoder. Given a document image I, scaled to 224×
224, we extract visual features from the entire image using a visual encoder with
ResNet [19] inside as the backbone network. Then, we extract the region of
interest (ROI) using the ROIAlign operation based on the coordinates of the
bounding box. The process of visual feature extraction for the i-th bounding box
can be represented as:

Vi = ROIAlign[ResNet(I), bdi] + Proj(pi), 1 ≤ i ≤ t (9)

Feature Fusion. The bounding box features of the nodes in the final BD-level
graph are added as follows:

h̃i = σ(Si ⊕ Vi), 1 ≤ i ≤ t (10)

where σ is an activation function and ⊕ denotes the concatenation operator.

Spatial Distance Matrix. To enhance the information interaction between
keys within the potential key-value pairs candidates, and reduce the inter-
ference between different key-value pairs, we construct the adjacency matrix
Mp ∈ R

T×T based on the Euclidean distance between the bounding boxes. For
all nodes adjacent to node i, M is the number of bounding boxes in a docu-
ment. pĩi denotes the Euclidean distance between nodes i and ĩ. Mp

ĩi
denotes the

Euclidean distance between node i and node ĩ after normalization:

Mp

ĩi
=

pĩi∑
m∈Mpim

w.r.t. pĩi =
exp(−pĩi)∑

m∈M exp(−pim)
(11)

Semantic Similarity Matrix. Analogously, Mq denotes the Spatial Distance
Matrix, the semantic matrix Mq ∈ R

T×T based on feature similarity. The ele-
ments in Mp contiguously update during the learning of graph neural network.
Mq

ij denotes the feature similarity of node i and node ĩ:

Mq

ĩi
=

h̃i · h̃ĩ∥
∥
∥h̃i

∥
∥
∥ ·

∥
∥
∥h̃ĩ

∥
∥
∥

(12)
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K-Nearest-Neighbour Graph Attention Network. Differing from previous
work [1] that they build a fully connected graph neural network, we porpose a
K-Nearest-Neighbour (KNN) graph attention layer by cascading a self-attention
layer to focus only on its neighbour nodes, especially for key nodes. We use four
nearest nodes. Graph convolution is formulated using the four-headed scaled-dot
attention. Given a node vi and encoder representation h̃i after feature fusion,
the output of each layer can be represented as:

h̃
(t+1)
i = δ(

∑

k∈Nt(M,i,K)

γikWh̃
(t)
k ) (13)

where vk stands for one of the neighbour nodes of vi. Nt(M, i,K) is the set of the
indices of the K-nearest neighbour nodes for vi. γik = λ1Mr

ik +λ2M
p
ik +λ3M

q
ik,

λ1, λ2, λ3 satisfying: λ1 + λ2 + λ3 = 1, Mp
ik ∈ Mp,Mq

ik ∈ Mq, are the two
matrices constructed as mentioned above. h̃

(t)
k is the hidden layer representation

of the neighboring nodes of node vk at the time step t. h̃
(t+1)
i sums up the

neighboring node features as well as its own features. W is a linear layer and δ
is an activation function. Following [20], we also use multi-headed attention to
improve the model’s performance. The coefficient of Mĩi for arbitrary ĩ to i can
be expressed as:

Mr
ik =

exp(δ(V T [Wh̃i ⊕ Wh̃k]))
∑

mεM exp(δ(V T [Wh̃i ⊕ Wh̃m]))
(14)

δ is a LeakyReLU function. W and V variables are trainable parameters. The
representations at different graph convolution layers are concatenated to form
the final representation. For each token, we stitch coarse-grained BD-level graph
embeddings, fine-grained token-level graph embeddings, and LayoutLM embed-
dings.

�H0:n = �w0:n ⊕ �h0:n ⊕ �̃
h0:n (15)

3.3 Reader-Ordered Decoder

In our preliminary experiments, we found that the reading order, which controls
the sequence in which the content is presented to the user, has a great influence
on the VIE performance. Thus, it is necessary to model the order of bounding
boxes. To utilize the order information of OCR sequences, we feed the outputs
�H0:n into the standard BiLSTM-CRF layer.

z1:n = BiLSTM( �H1:n; 0, θlstm) (16)

where �zj ∈ R
n×d is obtained by splicing the features of the three components

mentioned above.
A conditional random field (CRF) is used to generate a family of condi-

tional probability for the sequence. Given the tokenwise sequence of final states
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zfinal
1:n =

[
zfinal
1 , zfinal

2 , . . . , zfinal
n

]
, and the probability disritibution of a label

ŷ =
[
l̂1, l̂2..., l̂n

]
sequence can be defined as the follows:

p(ŷ | z) =
exp(

∑n
i=1W(li−1,li)z

final
i + b(li−1,li))

∑
y′∈Y (s) exp(

∑n
i=1 W(l

′
i−1,l

′
i)

zfinal
i + b(l′i−1,l

′
i)

)
(17)

where W and b are the weight and bias parameters and Ŷ are the set of all
arbitrary label sequences. Decoding of CRF layer is to search the output sequence
y∗ having the highest conditional probability for testing. Our model parameters
of whole networks are jointly trained by minimizing the following loss function:

y∗ = argmax
y∈Ŷ

−
n∑

i=1

log(p(yi | zi)) (18)

4 Experiments

4.1 Datasets

We conducted experiments on two real-world datasets, FUNSD and Freight-BI.
The FUNSD dataset is a widely-used public dataset to evaluate VIE models.
Their statistics are presented in Table 1. Note that the layout divergence of
these two datasets is very large.

Table 1. Statistics of training and testing datasets used in this paper. We also give
the averaged number and the standard derivation with respect to the counts of keys,
values, bounding boxes and tokens.

Dataset Training Testing Entities Key Value BD Token

FUNSD 149 50 4 17.8 ± 14.4 21.7 ± 12.1 47.9 ± 26.3 234.4 ± 104.7

Freight-BI 3,375 1,125 20 18.7 ± 28.2 26.5 ± 8.9 71.6 ± 28.2 441.0 ± 213.7

FUNSD [21] is a dataset for understanding forms in noisy scanned documents.
It consists of 199 accurate, complete, scanned form images with annotations. The
dataset is divided into 149 training samples and 50 test samples, which has 4
entities to extract (i.e., Question, Answer, Header and Other).

Freight Booking Instruction (Freight-BI) dataset consists of 4500 images of
shipping bills and contains 20 types of entities. Examples include consignor,
consignee, date, address, phone number, etc. The layout is complex and varied,
with no fixed template. There is much noise in the documents, including the fact
that the bottom of the waybill usually contains complexly formatted sub-tables
and many fields with similar content but different semantics in it.
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4.2 Implementation Details

Networks Setting. The model is trained from using the Adam optimizer with
a learning rate of 0.0005. The feature extractor for catching image features is
implemented by ResNet-101, we set the number of graph convolution layers to
2 and 8 heads for the multi-head attention. We use the text-lines which have
already been annotated in the datasets as the text segments.

Label Generation. For the Freight Booking Instruction, with the help of the
OCR annotation tool, the coordinates of each bounding box are annotated, and
each bounding box is annotated with predefined entity types. We have predefined
20 entity types, including shipper and consignee address, consignee phone, port
of origin, etc. For the FUNSD data, the corresponding annotation files have been
provided. For the above two datasets, we use BIO annotation for the token in
the text of each bounding box.

4.3 Baseline Method

In order to verify the performance of our proposed method, we compared the
performance of the model with the baseline models: Bert [12], BERT-CRF [22]
Bert+BILSTM+CRF, BERT+ResNet, BERT+ResNet+BILSTM+CRF, LAM-
BERT [13], LAMBERT+ResNet, LAMBERT+ResNet+BILSTM+CRF, Lay-
outLM [8]. ResNet is used to extract visual features. Where + indicates model
combination (Figs. 3 and 4).

Table 2. Precession(Prec), Recall(Rec), F1-score performance comparisons from
FUNSD and Freight-BI datasets.

Method FUNSD Freight-BI

Prec Rec F1 Prec Rec F1

BERT 45.61 59.14 51.50 63.46 69.30 66.26

BERT+CRF 46.74 59.14 65.26 65.85 71.91 68.75

BERT+BILSTM+CRF 50.06 57.71 55.61 67.61 70.57 69.06

BERT+ResNet 47.32 61.98 53.67 67.75 72.54 72.07

BERT+ResNet+BILSTM+CRF 55.40 57.90 56.62 69.43 77.74 77.29

LAMBERT 41.47 52.57 46.37 75.56 83.34 79.42

LAMBERT+ResNet 44.09 57.67 49.97 78.41 86.09 82.07

LAMBERT+ResNet+BILSTM+CRF 51.31 60.15 55.38 82.44 87.67 84.77

LayoutLM 77.51 83.56 80.42 83.92 87.22 85.54

Dual-VIE 83.17 83.75 83.46 86.59 90.57 88.54
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Fig. 3. Comparison of state-of-the-art
models in terms of F1-score for FUNSD
categories.

Fig. 4. Comparison of state-of-the-art
models in terms of F1-score on the
Freight-BI categories.

Table 3. Ablation studies of individual component.

Model FUNSD Freight-BI

full model 83.46 88.54

w/o token-level CB-GAT 82.68 87.80

w/o BD-level KNN-GAT 82.80 87.72

w/o Reader-ordered 82.64 87.63

Results on Two Dataset. As shown in Table 2, higher performance is achieved
with the introduction of graphical features compared to the traditional informa-
tion extraction method using only text. It is worth noting that in the LAM-
BERT paper, image features are not considered, and in our experiments, the
model effect is greatly improved after adding image features. LAMBERT does
not work too well in FUNSD dataset, probably because of the size of the dataset.
Meanwhile, LayoutLM achieves a better performance when using text, layout
and image information simultaneously. Our method achieves best results and
outperforms LayoutLM by significant margins (3.02% on FUNSD dataset, 3%
on Freight-BI dataset) due to consideration of different granularity features.

Ablation Studies. As shown in Table 3, we analyzed the impact of each com-
ponent of the model on the model results, including the token granularity graph
neural network, bounding box granularity graph neural network and Reader-
ordered. We set the change in the F1 value of the model when these three
modules are not considered. Without the token granularity graph neural net-
work, the model is not good enough to carry out the information interaction
between tokens within a bounding box, the result drops to the F1 score of 0.78
on FUNSD dataset and 0.74 on Freight-BI dataset. Since the bounding box
granularity graph neural network can model the relationship between key-value
pairs. Without it, the result drops to the F1 score of 0.66 on FUNSD dataset
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and 0.82 on Freight-BI dataset. Without Reader-ordered constraint on label pre-
diction, the result drops to the F1 score of 0.82 on FUNSD dataset and 0.91 on
Freight-BI dataset.

5 Conclusion

This paper propose a novel dual-level graph neural network model for visual
information extraction. The model leverages both token-level and bounding-box-
level layout information to extract keys and values. We investigate the proper
way to aggregate textual, visual and positional features at each granularity.
Furthermore, our model can focus on the potential key-value pair candidates.
Experiment results on two VIE datasets show that coarse-grained spaitial infor-
mation is important for VIE tasks, especially for the documents with complex
layouts as in the Freight-BI dataset. This study provides a novel perspective
for extracting structural information from documents. In future research, we
will consider features such as font size and color in visually rich documents to
enhance model performance.
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Abstract. Graph embedding is a critical aspect of network analysis that
helps to advance various real-world applications such as social recom-
mendation and protein structure prediction. Most of the existing graph
embedding methods are designed for static graphs while many real-world
graphs intrinsically behave as dynamic graphs. Recent works try to com-
bine graph neural networks(GNN) with recurrent neural networks to
address this issue. However, these methods can not independently uti-
lize GNN models to cope with dynamic graphs and they ignore the
inner edge-level correlations in dynamic graphs. To tackle these prob-
lems, we propose a novel dynamic graph embedding framework in this
paper, called DynHyper. Specifically, we introduce a temporal hyper-
graph construction to capture the local structure information and tem-
poral dynamics simultaneously. Then, we employ a hyperedge projection
to obtain edge-level correlations. Further, we propose a temporal edge-
aware hypergraph convolution to transmit and aggregate the messages
in the temporal hypergraph. We conduct our experiments on seven real-
world datasets to evaluate the effectiveness of DynHyper in both link
prediction and node classification tasks. Experimental results show that
DynHyper significantly outperforms all baselines, especially on the more
complex datasets.

Keywords: Graph convolutional networks · Dynamic graph
embedding · Hypergraph learning

1 Introduction

Graphs have a great capacity to model the relationship among entities, success-
fully applied in many fields, such as social network [10], finance analysis [15],
and biological network [24]. Many academics are attempting to extend neural
network models to graphs as a result of deep learning’s extraordinary perfor-
mance. These neural network models, also known as graph network embedding,
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have emerged as a prominent method for graphs. The key idea of graph network
embedding is to map node representation into a low-dimensional latent space,
which preserves the similarity of nodes based on their local structure. These
graph network embedding algorithms have been used by numerous academics
for a variety of applications, including node classification, link prediction, and
network visualization [1,3,5,7,22,23,27].

Although existing graph network embedding methods provide excellent per-
formance, they are primarily developed for static graphs where nodes and
edges remain unchanged over time. In most cases, however, networks behave
as dynamic graphs in the actual world. For example, as new friendship contacts
grow, new communication events such as emails and text messages are streamed
on social networks. In e-commerce networks, new goods and ratings arise daily.
In financial networks, transactions are streamed in computational finance, and
supply chain relationships are always changing. In these dynamic graphs, nodes
and edges are constantly evolving. The evolution trend of dynamic graphs can
be recorded by a temporal sequence made up of a series of graph snapshots.
Compared with static graphs, dynamic graphs have an additional dimension(i.e.,
the time dimension) that adds temporal dynamics to them. As a result, dynamic
graph embedding is presented as a solution to the major issue of dynamic graphs,
which is capturing temporal dynamics adequately.

Recently, several efforts, like DynmaicTraid [28], DynGEM [6], and TIMER
[26], use some smoothness regularization to capture temporal dynamics. The
premise behind these strategies is that dynamic graphs change slowly and
thus they are unable to address dynamic graphs with abrupt changes. More
recently, with the remarkable success of graph convolutional networks(GCN),
some researchers focus on extending the GNNs to dynamic graphs by combin-
ing GCN with RNN components(e.g., LSTM or GRU), such as WD-GCN [14],
EvolveGCN [17], and GANE [20]. However, these current GCN methods are
designed for simple graphs that only represent pair-wise relationships among
nodes. Thus, these GCN methods can not handle dynamic graphs composed of
a series of simple graph snapshots independently, forcing them to resort to RNN
components. Therefore, these approaches based on mixed architectures may
break the internal link between topological information and temporal dynamics.
Additionally, these methods only focus on capturing information from nodes and
ignore edge information of graphs which is also an essential component of graph
information.

To tackle the above issues, we propose a novel dynamic graph embedding
framework, called DynHyper. First, we design a temporal hypergraph to model
a dynamic graph that contains the characteristic of both local structure and
temporal dynamics. Compared with simple graphs, hypergraphs can describe
multiple relationships among nodes, and thereby we construct temporal hyper-
graphs to represent the correlation of nodes including local structure and tem-
poral dynamics. To be specific, the main difference between simple graphs and
hypergraphs lies in that hypergraphs contain hyperedges, which can connect an
arbitrary number of nodes. Hence, we employ a hyperedge to connect nodes in
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the same time step, which is enclosed with the local structure information. Inter-
actions between distinct hyperedges can indicate temporal interactions between
nodes, allowing us to capture temporal dynamics in our model. In addition,
edge information is an indispensable part of the graph. Therefore, we introduce
a hyperedge projection for temporal hypergraphs to capture edge-level corre-
lations of hypergraphs. The hyperedge projection aims to convert hyperedges
to nodes, which preserves edge-level relationships of temporal hypergraphs and
can integrate message-passing schemes for nodes. Finally, we propose the tem-
poral edge-aware hypergraph convolution to operate message aggregation and
transmission to update node embeddings on the temporal hypergraph. DynHy-
per’s effectiveness is demonstrated by experimental results on seven real-world
datasets in link prediction and node classification tasks.

In a nutshell, our key contributions can be summarized as follows:

– We introduce a temporal hypergraph construction to capture the local struc-
ture information and temporal dynamics simultaneously for dynamic graphs
and a hyperedge projection to obtain edge-level relationships for temporal
hypergraphs.

– We propose a temporal edge-aware hypergraph convolutional network that
can execute message passing in dynamic graphs autonomously and effectively
without the need for RNN components.

– We conduct our experiments on seven real-world datasets in link prediction
and node classification tasks to evaluate the effectiveness of DynHyper. Our
findings show superior predictive performance, compared to the state-of-the-
art methods in dynamic graph embedding.

2 Related Work

Dynamic graph embedding plays a crucial role in network analysis, which aids in
the advancement of many real-world applications such as social recommendation
and protein structure prediction. Roughly, we classify them into three streams:
random walk methods, autoencoder-based methods, and GNNs-based methods.

Random walk methods aim to apply random walks to generate node
sequences and incrementally update the node embedding affected by temporal
evolution [9,13,25]. For instance, dynnode2vec [13] employs the evolve random
walks that only generate the walks for the changed nodes and proposes a dynamic
skip-gram model, where the previous embedding is initialized as the weight for
the next graph snapshot. For autoencoder-based methods, one seeks to mini-
mize the reconstruct loss of a given graph snapshot. For example, DynGEM [6]
proposes an incremental fully-connected network that can share the parameters
between two consecutive networks to capture temporal evolution. The other aims
to minimize the reconstruct loss between the previous graph snapshots and the
future graph snapshot. For instance, dyngraph2vecAE [4] introduces the autoen-
coder network with the reconstruct loss between the adjacency mapped by the
previous graph embeddings and the adjacency in the next time step.
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Recently, the popular way to cope with dynamic graph embedding is to com-
bine the GNNs model with temporal components(e.g., LSTM). GCRN-M1 [19]
first employs graph convolution to obtain node embedding and then feed them
into an RNN to capture temporal dynamics. The distinction between WD-GCN
[14] and GCRM-M1 [19] lies in that WD-GCN utilizes the separate LSTM com-
ponents per node. EvolveGCN [17] aims to use an RNN to evolve the parameter
of the GNNs model, significantly reducing the mode size(i,e, the model param-
eters). DySAT [18] employs a self-attention mechanism with the GNNs model
to joint learn representation along the dimensions of both local structure and
temporal dynamics. GANE [20] utilizes tensor factorization to obtain temporal
pattern similarity of nodes and incorporates it into the graph attention network
for capturing temporal dynamics.

3 Preliminaries

Notations. A dynamic graph network is defined as a series of static graph
network snapshots collected at each time step t, i.e., G = {G1, G2, . . . , GT },
where T denotes the total number of time steps. Each graph snapshot Gt =
(V t, Et) is a weight undirected graph network made of a node-set V t, an edge
set Et, and a weighted adjacency matrix At at each time step t.

Problem Formulation. In this subsection, we formally define the problem of
dynamic graph embedding. Given a dynamic graph G, dynamic graph embedding
aims to learn mappings f t : {G1, G2, . . . , Gt} −→ R|V t|×d so that they obtain
the latent representation Zt = f t(G1, G2, . . . , Gt), where Zt ∈ R|V t|×d and d
denotes the embedding dimensionality. Here, each row vector Zt

v ∈ Rd is the low
dimensional embedding of node v, which preserves local topological proximities
and temporal evolutionary pattern information up to time step t.

4 Methodology

In this section, we present our proposed framework for dynamic graph embed-
ding, as illustrated in Fig. 1. The proposed framework includes three major parts.
First, we introduce the temporal hypergraph to capture both local structure
information and temporal dynamics for dynamic graphs. Then, we use a hyper-
edge projection to obtain edge-level relationships. After that, we utilize the tem-
poral edge-aware hypergraph convolution to aggregate information and pass on
them among nodes to update nodes embedding, illustrated in the following sec-
tions.

4.1 Temporal Hypergraph Construction

In this subsection, we discuss temporal hypergraph construction. Note that, a
dynamic graph contains a series of graph snapshots. The major challenge for
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Fig. 1. An overview of our proposed framework. Given snapshot graphs {G1, G2, G3} as
input, we first generate the temporal hypergraph based on time steps. To be specific, the
temporal hypergraph contains all original nodes from input snapshots and hyperedges.
A hyperedge is composed of the nodes from the same time step, i.e., e1, e2, e3. Then,
those hyperedges in the temporal hypergraph are operated by a hyperedge projection.
After that, we utilize the temporal edge-aware hypergraph convolution to aggregate
information and pass on them among nodes to update nodes embedding.

dynamic graph embedding is to capture temporal evolution among these graph
snapshots. The prior works mainly focus on restoring to RNN or Transformer
to capture temporal dynamics indirectly, which splits the internal connection
between topological information and temporal dynamics. To address this issue,
we aim to directly capture both temporal dynamics and topological information
through the properties of the hypergraph.

For a given dynamic graph G = {V,E}, where V = {V 1, V 2, . . . , V t} denotes
a series of node sets and E = {E1, E2, . . . , Et} denotes a series of edge sets. We
assume that historical observations start from time step 1 to time step τ . First,
note that V 1 ⊆ V 2 ⊆ . . . ⊆ V τ , V τ contains all nodes in graph snapshots up to
time step τ , so we define V τ as a hypernode set of the temporal hypergraph. Sec-
ond, we aim to construct hyperedges of the temporal hypergraph. More specifi-
cally, a hyperedge e ∈ Eτ is formed by linking a centroid node and its first-order
neighbors at the same time step, where Eτ = {em

vi
|m ∈ {1, .., τ}, vi ∈ V τ} is

the hyperedge set of the temporal hypergraph and m denotes a certain time
step. For example, if a hyperedge connects v1,v2 and v3, it can be denoted
as em

v1
= {v1, v2, v3|v2, v3 ∈ N(v1), v1, v2, v3 ∈ Gm}, where v1 is assigned as

a centroid hypernode, and N(v1) is the first-order neighbors’ set of hypern-
ode v1. Based on the discussion above, we define the temporal hypergraph as
Hτ = (V τ , Eτ ,W ), where W denotes weight matrix for hyperedge, |V τ | is the
number of hypernodes, and |Eτ | is the number of hyperedges. For simplicity, we
use |V | and |E| to represent |V τ | and |Eτ | respectively. Formally, the temporal
hypergraph can be represented by an incidence matrix H ∈ R|V |×|E|:

H(vi, e
m
vj

) =
{

1, if vi ∈ em
vj

0, otherwise
(1)
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Fig. 2. An example of a hyperedge projection.

4.2 Hyperedge Projection

In this subsection, we further explore the edge-level correlations in hypergraphs.
The temporal hypergraph is designed to obtain temporal dynamics of dynamic
graphs, but it cannot well reflect the edge-level correlations in dynamic graphs.
Thus, we introduce a hyperedge projection to extract edge-level correlations for
dynamic graphs. The key idea of hyperedge projection is to capture edge-edge
correlations of the temporal hypergraph. Figure 2 shows an example of a hyper-
edge projection. Specifically, the hypernodes connected to the same hyperedge
are uniformly mapped into an edge that is defined as a node in the new graph.
The hypernode projection can be formally written as follows:

P = D−1
e HT X (2)

where P ∈ R|V |×M is the hyperedge projection embedding of the original hyper-
node representation X, HT is the transpose matrix of the incidence matrix H,
and De ∈ R|E|×|E| denotes the hyperedge degree matrix. Then, these new nodes
are connected if they contain the same hypernode. For example, in Fig. 2, e5
connects e6 by the green line with the number 5, denoting that they contain
the same hypernode v5. In other words, these nodes connected are neighbors if
they share the same hypernodes. Compared to hyperedges, edges only connect
two nodes in this new graph. In a way, we convert the temporal hypergraph to
a simple graph by the hyperedge projection and can easily integrate message-
passing schemes for nodes, which preserves the original edge-level correlations of
the temporal hypergraph.
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4.3 Temporal Edge-Aware Hypergraph Convolution

In this section, we introduce the details of the message passing process via tem-
poral edge-aware hypergraph convolution. In our work, if nodes have not initial
feature, each node v is initialized by a one-hot vector xv ∈ RM , where M is
the number of nodes in Gτ . Then, an update operation for each node v is con-
ducted in the temporal hypergraph, which contains intra-hyperedge aggregation
and inter-hyperedge aggregation. The intra-hyperedge aggregation can be for-
mulated as:

ze =
∑
v∈e

xv

δ(e)
(3)

where ze is the hyperedge representation through the intra-hyperedge aggrega-
tion, xv is the initial representation of the node v, and δ(e) denotes the degree of
the hyperedge |e|. Afterward, the inter-hyperedge aggregation can be expressed
as:

zv =
∑
e∈S

ze

d(v)
(4)

where zv is the embedding of the node v through the inter-hyperedge aggregation,
S is the set of hyperedges containing the node v, and d(v) denotes the number of
hyperedges containing the node v. These two steps can merge and be rewritten
as:

Z = D−1
e HT D−1

v HX (5)

where Z ∈ R|E|×M is the embedding of hypernodes, H ∈ R|V |×|E| denotes
the incident matrix, the original hypernode representation X ∈ R|V |×M ,and
Dv ∈ R|V |×|E| denotes hypernode degree matrix. We observe that this update
operation is equal to the simplified hypergraph convolution [2]. Then, we fur-
ther extend this operation to capture the edge-level correlations in the temporal
hypergraph. According to the hypernode projection mentioned in Sect. 4.2, we
utilize the hypernode projection to replace the original hypernode representation
X with P in the convolution rule as follows:

Zedge = D−1
e HT D−1

v HP (6)

where Zedge ∈ R|E|×M is the edge-level embedding of hypernodes. After cap-
turing the edge-level correlations of the temporal hypergraph, we remap the
edge-level embedding into the node-level embedding which is assigned to each
node in the dynamic graph:

Znode = HZedge (7)

where Znode ∈ R|V |×M is the node-level embedding of hypernodes. Then, we uti-
lize the renormalization trick introduced by [11] and employ a learnbale matrix.
The complete temporal hypergraph propagation rule can be written as follows:

Z̃ = σ
(
D−1/2

v ZnodeD
−1/2
v Θ

)

= σ
(
D−1/2

v HD−1
e HT D−1

v HPD−1/2
v Θ

) (8)
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where Z̃ ∈ R|E|×d is the final embedding of hypernodes, Θ ∈ R|E|×d denotes
the model parameters matrix, d denotes the embedding dimensionality, and σ(·)
denotes the activation function (e.g. ELU).

Table 1. The statistics of datasets

Dataset #nodes #edges #features #labels #time steps

UCI 1,809 16,822 – – 13

Enron 143 2,347 – – 12

Yelp 6,569 95,361 – 12

ML-10M 20,537 43,760 – – 13

Alibaba 5,640 53,049 19 – 11

Epinions 9,368 231,537 44 – 9

Primary School 242 20,009 – 11 40

4.4 Loss Function

In this subsection, we introduce the objective function that enables node repre-
sentations to capture dynamic topological evolution during training our model.
Inspired by DySAT [18], our model encourages nodes sampled in the fixed-length
random walk to obtain similar representations. Formally, we use a binary cross-
entropy loss to optimize the model parameters as follows:

L =
∑
v∈V

(
∑

u∈Nwalk(v)

− log (σ (< z̃w, z̃v >))

− β ·
∑

u′∈Pn(v)

log (1 − σ (< z̃u′ , z̃v >)))
(9)

where z̃v is the final embedding of a node v, σ(·) denotes the sigmoid function,
< · > denotes the inner product. Nwalk(v) is the positive nodes’ set of a node v
sampled by the random walk, and Pn(v) is the negative nodes’ set of a node v
sampled by a negative sampling function based on the degree of nodes. β is the
negative sample value to balance positive and negative samples.

5 Experiments and Analysis

5.1 Experimental Setup

Datasets. To evaluate the performance of our model, we use seven public real-
world datasets in our experiments. The datasets are summarized in Table 1.
UCI [16]is an online social network. Links of this network denote the massage
sent between peer users, i.e., nodes. Enron [12] contains a set of email messages
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concerning the Enron corporation, which is represented as an email communica-
tion network. Nodes of network denote the addresses and links denote there’s an
interaction between these email addresses. Yelp1: is a rating network of users and
businesses where links connect users and businesses if users score the businesses.
ML-10M [8] consists of users and tags that users applied to certain movies. The
links of this network denote there’s an interaction between users and movies.
Alibaba2 is an e-commerce network, consisting of users and items. The edge
between user and item denotes the click interaction. Epinions3 denotes a trusted
network between users. The edge of the network indicates the trust correlation
between users. Primary School [21] represents the contact network. The link of
this network is constructed from the interactions between teachers and students.

Baselines. We compare our proposed model with the following state-of-the-
art dynamic graph embedding methods: (1) DynAE [4] utilizes an autoencoder
framework based on dense layers; (2) DynAERNN [4] is based on DynAE, which
uses recurrent neural networks to capture temporal dynamics of dynamic graphs;
(3) DynGEM [6] adopts an incremental autoencoder framework for a dynamic
graph based on the last graph snapshot; (4) DySAT [18]: DySAT aims to simul-
taneously capture the local structure information and temporal dynamics based
on the self-attention mechanism; (5) EvolveGCN [17] uses the GCN to learn local
structure information for each graph snapshot and employs the GRU or LSTM
to update parameters of GCN to capture temporal evolution based on different
graph snapshots; (6) GAEN [20] incorporates node temporal pattern similarities
based on the tensor factorization technique and neighborhood attention to learn
the node embedding for dynamic graphs.

Settings. In our experiments, we evaluate the performance of our model in
both link prediction and node classification tasks. For link prediction, we train
a logistic regression classifier to predict the existence of links at the time step
t + 1 based on the embeddings learned from previous networks up to time step
t. We randomly sample 60% of nodes for training. We utilize 20% of nodes to
tune hyperparameters of our model and the remaining 20% of nodes for testing.
We utilize the Mean Accuracy(ACC) and the Mean Area Under the ROC Curve
(AUC) as our evaluation metrics of link prediction. For node classification, we
randomly sample 20% of nodes as a validation set. Then, we use 30%, 50%, and
70% of nodes as train sets respectively, the corresponding remaining nodes are
used as test sets. We also train a logistic regression classifier to map nodes into
different categories based on the embeddings learned from previous networks up
to time step t. We employ the Mean Accuracy(ACC) as our evaluation metrics of
node classification. We use mini-batch gradient descent with Adam. For hyper-
parameters, we set batch size as 512, the embedding dimensionality d as 128, the

1 https://www.yelp.com/dataset/.
2 https://tianchi.aliyun.com/competition/entrance/231719/information/.
3 https://cse.msu.edu/∼tangjili/trust.html.

https://www.yelp.com/dataset/
https://tianchi.aliyun.com/competition/entrance/231719/information/
https://cse.msu.edu/~tangjili/trust.html
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learning rate as 10−3, the weight decay as 5 × 10−4, the max epoch as 20, and
negative sample ratio β as 0.01. We conduct our experiments on a machine with
the Intel Core i9-9960X (3.10GHz) CPU, 128 Gb of RAM, and four NVIDIA
2080Ti GPU cards, which are implemented in Python 3.6 with Tensorflow.

Table 2. The predictive performance of link prediction task in terms of AUC and ACC
on UCI, Enron, Yelp, ML-10M, Alibaba, and Epinions. The results are the mean and
standard deviation of 5 different runs. OOM denotes running out of memory on our
machine.

Method Metric UCI Enron Yelp ML-10M Alibaba Epinion

DynAE ACC 69.05± 0.08 68.22± 1.09 60.00± 0.07 64.75± 0.31 75.84± 0.03 74.53± 0.21

AUC 85.94± 0.26 72.64± 0.16 64.17± 0.16 91.14± 0.21 87.51± 0.20 94.17± 0.03

DynAERNN ACC 68.92± 1.34 67.36± 0.40 54.77± 0.67 74.55± 0.32 76.21± 0.39 74.71± 0.94

AUC 82.73± 0.58 75.56± 0.14 56.74± 0.87 76.57± 0.86 82.74± 0.28 82.03± 1.52

DynGEM ACC 71.01± 1.19 66.99± 0.34 60.98± 0.06 OOM 75.42± 0.60 83.82± 0.61

AUC 84.29± 1.88 72.90± 1.36 67.33± 0.04 OOM 87.31± 0.43 91.88± 1.04

EvolveGCN ACC 72.26± 0.45 66.14± 1.09 61.03± 0.29 79.35± 0.32 72.63± 0.08 81.01± 0.57

AUC 79.58± 0.28 72.12± 1.08 64.94± 0.23 87.28± 0.79 79.56± 0.11 89.07± 0.38

DynSAT ACC 68.47± 0.05 74.17± 1.03 65.76± 0.23 82.40± 0.66 67.52± 0.15 89.13± 0.14

AUC 82.77± 0.08 82.97± 1.03 71.84± 0.65 92.86± 0.15 75.34± 0.15 96.14± 0.52

GANE ACC 72.86± 0.94 78.99±0.66 62.38± 0.11 OOM 77.00± 0.02 74.85± 0.55

AUC 80.59± 0.74 86.08± 0.50 65.76± 0.18 OOM 85.45± 0.23 82.20± 2.09

DynHyper(ours) ACC 75.04±0.16 76.21± 0.38 69.90±0.71 82.86±0.61 83.08±0.04 91.58±0.29

AUC 87.81±0.13 87.26±0.39 76.61±0.04 94.14±0.15 90.58±0.03 99.10±0.01

Fig. 3. The results of six datasets in link prediction task in terms of AUC at various
time steps.
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Table 3. The predictive performance of the node prediction task in terms of ACC
on Primary School at different train ratios. The results are the mean and standard
deviation of 5 different runs.

Dataset Primary School

Train ratios 30% 50% 70%

DynAE 47.19± 0.02 47.25± 0.05 46.05± 0.04

DynAERNN 46.85± 0.14 46.99± 0.18 46.99± 0.04

DynGEM 50.01± 0.08 51.05± 0.11 50.84± 0.26

EvolveGCN 42.75± 0.30 45.16± 0.23 46.20± 0.24

DySAT 60.72± 0.38 63.72± 0.24 64.85± 0.39

GANE 55.17± 0.19 57.82± 0.09 59.26± 0.10

DynHyper(ours) 63.39±0.09 65.86±0.17 67.01±0.13

5.2 Experimental Results

Link Prediction. In this subsection, we discuss the performance of our model
in the link prediction task compared with state-of-the-art methods. Experimen-
tal results are illustrated in Table 2. Table 2 shows that DynHyper consistently
outperforms baselines in all datasets except that GANE outperforms DynHy-
per on the Enron dataset under ACC. These results indicate the effectiveness of
DynHyper in link prediction. For example, as compared to the best approach of
baselines(i.e., DySAT) on the Yelp dataset, we get roughly a 5% improvement in
both AUC and ACC. Note that GANE gains better performance than DynHyper
on the Enron dataset. GANE obtains node temporal patterns via tensor factor-
ization to improve performance, which may be more successful on tiny datasets
like Enron having only 143 nodes. However, DynHyper tries to capture the edge-
level correlations on datasets, which may perform better in large datasets rather
than small ones. As the result shows, DynHyper obtains about 94% AUC and
99% AUC on ML-10M and Epinions datasets respectively, which are much larger
datasets than the Enron dataset. Based on the abovementioned, this might be
the reason why our approach on Enron is inferior to GANE. Besides, DynGEM
employs the smoothness regularization to capture temporal dynamics that can
not address the network with abrupt change. Users’ communications on UCI typ-
ically span longer periods, showing that the network is smooth. However, rating
behaviors on Yelp, tend to be erratic and connected with events like restaurant
openings and discounted promotions, indicating a network with abrupt change.
Thus, we observe that DynGEM obtain a relatively better performance on UCI
than the performance on Yelp. The predictive results of DynHyper are consis-
tently superior to DynGEM on all the datasets, especially Yelp, demonstrating
that DynHyper performs well in both smooth and abrupt networks.

Furthermore, we seek to analyze the detailed performance of these methods at
each time step. The results are reported in Fig. 3. First, we note that DynHyper
is inferior to some baselines at the initial time step on some datasets, such as
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Enron and Alibaba. The potential reason is that these datasets do not form
a lot of edge-level relationships at the initial time step. Additionally, we find
that as the time step is increased, DynHyper’s performance improves. Moreover,
DyperHyper is consistently superior to all baselines at each time step on some
datasets, such as Yelp and Epinions. This finding might be caused by these
datasets containing more edge-level correlations. It is worth noticing that Yelp
and Epinions have more links than other datasets.

Fig. 4. Experimental results for ablations

Node Classification. In this subsection, we compare DynHyper’s performance
to that of state-of-the-art approaches in the node classification task. Due to the
lack of dynamic graphs datasets with node labels, we use the Primary School
dataset with different train ratios to fully use this dataset for evaluation. Table 3
shows the results of the experiments. DynHyper achieves a consistent 2%∼3%
ACC improvement on Primary School at different train ratios, demonstrating
DynHyper’s effectiveness in node classification. In addition, approaches with the
RNN component, such as DynAERNN and EvolveGCN, perform poorly in node
classification. DynAERNN is even superior to DynAE, suggesting that Combi-
nation with the RNN component is ineffective at capturing temporal dynamics
in the node classification task.

Ablation Study. In this subsection, we conduct ablation studies to evaluate
the contribution of the hyperedge projection(HP) of our model. HP aims to
capture edge-level relationships of datasets to improve performance. To better
demonstrate this, we compare the performance between our model with HP and
our model without HP at various time steps. The compared results are shown in
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Fig. 4. According to Fig. 4, DynHyper with HP outperforms DynHyper without
HP on most datasets. As discussed above, the Enron dataset is a small dataset
having 143 nodes while HP is much more effective with big datasets. As a result,
we note that DynHyper without HP is superior to DynHyper without HP on
the Enron dataset.

6 Conclusion

In this paper, we propose a dynamic embedding framework to address dynamic
graphs, named DynHyper. We introduce temporal hypergraph construction to
capture effectively temporal dynamics for dynamic graphs. Additionally, we pro-
pose a hyperedge projection to obtain edge-level relationships of temporal hyper-
graphs. Furthermore, We propose a temporal edge-aware hypergraph convolu-
tional network to independently and effectively conduct the message passing in
dynamic graphs without any RNN components. Experimental results confirm
that DynHyper has great performance in both link prediction and node classifi-
cation tasks, especially on the more complex datasets. Our future work aims to
extend our work to address more complex dynamic graphs, such as those with
changeable attributed nodes.
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15. Mizerka, J., Stróżyńska-Szajek, A., Mizerka, P.J.F.R.L.: The role of bitcoin on
developed and emerging markets-on the basis of a bitcoin users graph analysis.
Finan. Res. Lett. 35, 101489 (2020)

16. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior
and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci.
Technol. 60(5), 911–932 (2009)

17. Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic
graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 5363–5370 (2020)

18. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DYSAT: deep neural represen-
tation learning on dynamic graphs via self-attention networks. In: Proceedings of
the 13th International Conference on Web Search and Data Mining, pp. 519–527
(2020)

19. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence mod-
eling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S.,
Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04167-0 33

20. Shi, M., Huang, Y., Zhu, X., Tang, Y., Zhuang, Y., Liu, J.: GAEN: graph attention
evolving networks. In: Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence (IJCAI) (2021)
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Abstract. The performance of ID3 algorithm in decision tree depends
on the information gain but it has a drawback because of tending to select
attributes with many values as the branching attributes. The gain ratio
(especially in C4.5) is proposed to improve the information gain, but it
does not always improve the performance, nor is it always defined. Some
scientists use normalized information distance to improve the gain ratio,
however, it is ineffective. In this paper, we investigate two non-normalized
information distance selection criteria to replace the information gain and
the gain ratio and conduct detailed experiments on 13 datasets classified
into four types with theoretical analysis. Surprisingly, on the datasets
where the number of values of each attribute differ greatly i.e. in Type1
and Type2, non-normalized information distance-based algorithms can
increase the accuracy of about 15–25% of ID3 algorithm. The first rea-
son is that more values for an attribute does not reduce the distances,
which is suggested by Mántaras. The second reason is that the condi-
tional entropy which is the opposite one used in the information gain
can bring balance to the multi-valued biased values. Furthermore, our
methods can maintain results comparable to those of existing algorithms
on other cases. Compared to the gain ratio, the algorithms with
non-normalized information distances conquer the drawback
much better on Type1 datasets, which is strongly confirmed
by experiments and corresponding analysis. It can be presumed
that “normalization” improvement methods such as normalized informa-
tion distance and the gain ratio are not always effective.
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a great deal of attention. Decision tree is one of the classic learning methods in
machine learning, and there has been a surge and renewed interest in learning
decision trees due to their attractive property of being interpretable [2,6,8,15].
ID3 algorithm, the earliest proposal for decision tree by Quinlan, is a type of
supervised learning algorithm designed for general purposes [13]. ID3 algorithm
uses the concept of information entropy in information theory to select branch-
ing attributes by the information gain [16]. However, the method that uses this
information gain tends to select attributes with many values [19]. This is because
the information gain of this type of attribute is larger than the others. However,
the attributes with more values are not always optimal [17,20,22].

Some scientists have already tried to fix the problem of “tending to use
attributes with more values.” Quinlan defined the gain ratio to improve the per-
formance of the information gain, but it has some weak points such as the fact that
it cannot be defined in some cases [14,22], which is discussed later in this paper.
Several studies have attempted to introduce the concept of attribute importance
by incorporating it into the calculation of information entropy. Some improve-
ments rarely increased the accuracy but could simplify the trees [9,12,17,19,21].
Other scientists have proposed methods that incorporate Hellinger distance and
K-L divergence into the calculation of the splitting criteria and have evaluated
their performances compared to various splitting criteria. They, however, have
yet to achieve a significant improvement in accuracy [1,5,18]. Some studies have
attempted to incorporate information distance into the calculation of segmenta-
tion criteria; Ben-Gal et al. proposed new splitting criteria based on information
distance and attempted to improve the performances of the information gain and
the gain ratio. The results sometimes showed advantages against the other criteria
in terms of average depth and classification accuracy, but in other cases, they fell
short of the expectations [3]. Mántaras et al. formally proved that the use of nor-
malized information distance and non-normalized information distance as criteria
does not bias to select multi-valued attributes. Comparing the gain ratio and nor-
malized information distance, they showed that not only they almost could get
equal accuracy, but also that normalized information distance can simplify the
tree construction by experiments [4].

Prior research has attempted various remedies to the problem of “tending
to use attributes with more values.” and some have tested new criteria based
on information distance [3,4]. However, they have not experimented with simple
(non-normalized) information distance before normalization and other calcula-
tions. They have shown that it is not effective so much to utilize normalized
information distance to improve the gain ratio. In this paper, we experimentally
show the performances of non-normalized information distance (D1) that is not
used in the experiments by either Mántaras et al. or Ben-Gal et al. and another
similar distance (D2) that is seldom investigated in other research. These two
non-normalized information distances can in many cases surprisingly produce
much higher accuracy than the gain ratio or the normalized information dis-
tance on imbalanced datasets. We analyze the causes theoretically. Specifically,
13 different UCI datasets are classified into four types, five datasets are provided
which are randomly shuffled for each dataset so that the training data part and
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testing data part are separated differently. The performances of our decision tree
algorithms are tested by the fine-grained experiments for each type compared to
ID3 algorithm and the gain ratio-based algorithm.

The remainder of this paper is organized as follows. In Sect. 2, we present
definition of the four types of datasets used in the experiments of this paper
(Definition 1). In Sect. 3, we investigate the weak point of ID3 algorithm that
we improve in this paper and analyze its cause (Proposition 3). In Sect. 4, we
confirm the criterion gain ratio (Definition 4), a proposed improvement to ID3
algorithm presented by Quinlan [14]. Section 5 presents the definition of two non-
normalized information distances D1 and D2 used in this paper (Definition 6)
and their advantages (Theorem 7, Proposition 8). Section 6 shows the results of
our detailed experiments with some specific decision tree diagrams and analy-
sis between non-normalized information distances and the gain ratio. Section 7
concludes this paper.

2 Types of Datasets

In this paper, all the random variables are discrete. In this section, we define
the four types of the datasets to finely analyze each decision tree algorithm.

Definition 1. Assume that dataset S has n attributes and symbol A is the set
of the attributes that dataset S has. Let NAk

be the number of the values that
the kth attribute Ak (1 ≤ k ≤ n) has and let NClass be the number of the values
that the class of dataset S has. To classify each dataset under four types, we
define the variance V at first:

V (A) =
1
n

n∑

k=1

(NAk
− NA)

2
where NA =

1
n

n∑

k=1

NAk
for all Ak ∈ A. (1)

Type1 - 4 are the types of the datasets used in our experiments, the definitions
of which are below, where max(A) means the number of values for the attribute
with the most values (Table 1).

Type1: V (A) > 1 and max(A) > NClass. The range taken by each NAk
for Ak

is large (in other words, each NAk
for Ak is very different from each other)

and the largest NAk
is larger than NClass.

Type2: V (A) > 1 and max(A) < NClass. The range taken by each NAk
for Ak

is large (in other words, each NAk
for Ak is very different from each other)

and the largest NAk
is smaller than NClass.

Type3: V (A) = 0 and max(A) = min(A) = NClass. All the NAk
and NClass

are the same.
Type4: The others.
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Table 1. The information of the specific datasets of Type4 we use

Dataset V (A) max(A) NClass

Nursery Dataset 0.839 5 5

Balance Scale Dataset 0 5 3

Car Evaluation Dataset 0.3 4 2

Hayes-Roth Dataset 0.25 4 3

Tic-Tac-Toe Endgame Dataset 0 3 2

Chess (King-Rook vs. King-Pawn) Dataset 0.028 3 2

Primary Tumor Dataset 0.154 3 18

3 Disadvantage of ID3 Algorithm

In this section, we investigate ID3 algorithm and consider why it favors attributes
with many values. At first, we take a look at the formula of the information gain
which is used in ID3 algorithm as the selection criterion.

Definition 2. Symbol A is used to express the set of attributes that dataset S
has. Let Ak be the kth attribute dataset S has and let Class be the class of
dataset S. NAk

denotes the number of the values that the kth attribute Ak

(1 ≤ k ≤ n) has and NClass denotes the number of the values that the class of
dataset S has. Aki

(1 ≤ i ≤ NAk
) expresses the ith value of attribute Ak and

Classj (1 ≤ j ≤ NClass) expresses the jth value of class Class, then for each
attribute Ak, the information gain Gain is:

Gain(Ak) = H(Class) − H(Class|Ak) for all Ak ∈ A, (2)

where the entropy and the conditional entropy H are:

H(Class) = −
NClass∑

j=1

P (Classj) log2 P (Classj), where P (Classj) =
|X ∩ Classj |

|X| , (3)

H(Class|Ak) =

NAk∑

i=1

H(Class|Ak = Aki)P (Aki), (4)

where P (Aki) =
|X ∩ Aki |

|X| and

H(Class|Ak = Aki) = −
NClass∑

j=1

P (Classj |Ak = Aki) log2 P (Classj |Ak = Aki).

ID3 algorithm uses the largest information gain as the selection criterion,
however, selecting the largest information gain essentially equals selecting the
smallest conditional entropy, since H(Class) is always the same for each infor-
mation gain Gain(Ak) [10].
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In Proposition 3, we show the conditional entropy of the attribute with less
values can be larger than that with more values.

Proposition 3. Let A′
k be an attribute constructed from attribute Ak by splitting

each value into two. (For example, the ith value Aki
in Ak is split into two types

of values A′
ki1

and A′
ki2

in A′
k.) Then we have that

H(Class|Ak) ≥ H(Class|A′
k). (5)

Proof. Since NA′
k

= 2NAk
, A′

k is the attribute that has more values than Ak.
Thus, the number of the terms of H(Class|A′

k = A′
ki

) is more than that of
H(Class|Ak = Aki

). It also can be presumed that H(Class|A′
k = A′

ki
) for split

attribute A′
k relatively tends to lead to zero or small compared to H(Class|Ak =

Aki
) of non-split attribute Ak. The more terms of H(Class|A′

k = A′
ki

) which are
zero or small number, the smaller H(Class|A′

k) can be calculated. Therefore,
H(Class|Ak) ≥ H(Class|A′

k). The proof is completed. ��
Since H(Class|A′

k) can be smaller than H(Class|Ak), the attributes with
more values tend to be preferred to be selected as the splitting attribute over
attributes with fewer values. This phenomenon can happen when V (A) is large,
in other words when each NAk

for Ak is very different from each other. Thus,
especially on Type1 and Type2 datasets, the accuracy of ID3 algorithm relatively
tends to be low because of this disadvantage.

4 Gain Ratio

Quinlan defined the gain ratio (especially in C4.5) to overcome the disadvantage
of ID3 algorithm [14].

Definition 4. Let Gain be the information gain (Definition 2). Ak denotes the
kth attribute dataset S has, and NAk

denotes the number of the values of the
kth attribute Ak (1 ≤ k ≤ n). The gain ratio GainRatio is:

GainRatio(Ak) =
Gain(Ak)
H(Ak)

, (6)

where the entropy H is:

H(Ak) = −
NAk∑

i=1

P (Aki
) log2 P (Aki

), where P (Aki
) =

|X ∩ Aki
|

|X| . (7)

Here H(Ak) is often called split information. This gain ratio remedies the
problem of ID3 algorithm which is that “tending to use attributes with more
values.” However, the gain ratio may not always be defined because the denomi-
nator i.e. H(Ak) can be zero in some cases. The comparison of the accuracy and
the analysis between the non-normalized information distance-based selection
criteria and the gain ratio are shown in Sect. 6.
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5 Information Distance-Based Splitting Criteria

In this section, we investigate the distance concept and analyze why non-
normalized information distances can overcome the weak point of ID3 algorithm
that we have shown before. Firstly, to be the distance, it must satisfy the fol-
lowing distance axioms [11].

Definition 5. A set E provided with a metric is called a metric space. If a func-
tion d : E×E → R such that for all x, y, z ∈ E satisfies all the conditions below,
it can be called a distance.

– d is non-negative: d(x, y) ≥ 0 with equality if and only if x = y,
– d is symmetric: d(x, y) = d(y, x),
– d verifies the triangular inequality: d(x, y) ≤ d(x, z) + d(z, y).

5.1 Non-normalized Information Distances (Proposed Methods)

We use two types of non-normalized information distances D1 and D2 based on
the information theory introduced by Houllier [7].

Definition 6. Assume that S and Y are random variables. Let H(X,Y ) be the
joint entropy of random variables S and Y and let I(X;Y ) be the mutual infor-
mation of random variables S and Y . The two types of the non-normalized
information distances D1 and D2 are

D1(X,Y ) = H(X,Y ) − I(X;Y ) = H(X|Y ) + H(Y |X), (8)
D2(X,Y ) = max(H(X),H(Y )) − I(X;Y ) = max(H(X|Y ),H(Y |X)). (9)

It is proved that both D1 and D2 satisfy distance axioms in [7]. We use these
D1 and D2 as the new selection criteria. The attribute whose D1 or D2 is the
smallest is used as the splitting attribute of the branching of the decision tree.

5.2 Advantages of Distances

This part shows the two reasons why the non-normalized information distance-
based selection criteria can overcome the disadvantage of ID3 algorithm.

Firstly, we show the reason why D1 and D2 are hardly affected by the
attributes with many values by quoting the theorem in [4]. We rewrite the for-
mulas of D1 and D2 for dataset S. Since the variable Ak has distribution which
can be normalized as the probability distribution, Ak can be dealt as a discrete
random variable, so does the Class:

D1(Ak, Class) = H(Class|Ak) + H(Ak|Class), (10)
D2(Ak, Class) = max(H(Class|Ak),H(Ak|Class)). (11)
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Theorem 7. More values on attributes do not lead to smaller distances. Let A′
k

be an attribute split from attribute Ak into two and the data with attribute Ak

are also divided into two parts accordingly. Then we have that

D1(Ak, Class) ≤ D1(A′
k, Class), (12)

D2(Ak, Class) ≤ D2(A′
k, Class). (13)

Proof. Let A′
ki1

and A′
ki2

be the values divided into two from the ith value Aki

of the kth attribute. Firstly, we take a look at the case of D1. D1(Ak, Class) =
H(Class|Ak) + H(Ak|Class) = −∑NClass

j=1

∑NAk
i=1 P (Classj , Aki

) log2
P (Classj ,Aki

)

P (Aki
) − ∑NAk

i=1

∑NClass

j=1 P (Classj , Aki
) log2

P (Classj ,Aki
)

P (Classj)
, however, the

two terms

P (Classj , Aki
) log2

P (Classj , Aki
)

P (Aki
)

(14)

and

P (Classj , Aki
) log2

P (Classj , Aki
)

P (Classj)
(15)

in D1(Ak, Class) are replaced with

P (Classj , A
′
ki1

) log2

P (Classj , A
′
ki1

)

P (A′
ki1

)
+ P (Classj , A

′
ki2

) log2

P (Classj , A
′
ki2

)

P (A′
ki2

)
(16)

and

P (Classj , A
′
ki1

) log2

P (Classj , A
′
ki1

)

P (Classj)
+ P (Classj , A

′
ki2

) log2

P (Classj , A
′
ki2

)

P (Classj)
(17)

in D1(A
′
k, Class). Because the examples of Aki is split randomly into A′

ki1
and A′

ki2
,

we have
P (Classj ,A

′
ki1

)

P (A′
ki1

)
=

P (Classj ,A
′
ki2

)

P (A′
ki2

)
=

P (Classj ,Aki
)

P (Aki
)

, so the terms (14) and (16)

are equal. But (15) is greater than (17), because when p = p1 + p2 and p, p1, p2 ∈ [0, 1]
we have that log2 p ≥ log2 p1 and log2 p ≥ log2 p2. Therefore D1(Ak, Class) ≤
D1(A

′
k, Class). For D2, D2(Ak, Class) = max(H(Class|Ak), H(Ak|Class)) =

max(− ∑NClass
j=1

∑NAk
i=1 P (Classj , Aki) log2

P (Classj ,Aki
)

P (Aki
)

,− ∑NAk
i=1

∑NClass
j=1 P (Classj ,

Aki) log2

P (Classj ,Aki
)

P (Classj)
). Thus, if (14) and (16) are greater than (15) and (17), then

D2(Ak, Class) = D2(A
′
k, Class), otherwise, D2(Ak, Class) ≤ D2(A

′
k, Class). There-

fore, both D1(Ak, Class) ≤ D1(A
′
k, Class) and D2(Ak, Class) ≤ D2(A

′
k, Class) are

proved. ��
Consequently, this analysis can be the reason why D1 and D2 are scarcely

affected by the attributes with many values when the range taken by each NAk

is large such as Type1 and Type2 datasets.
Secondly, we explain why D1 and D2 perform better than the information

gain, especially in the case of Type1. Here we show the formula of H(Ak|Class)
as well.
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Definition 8. Let Class be the class of dataset S and let Ak be the kth attribute
dataset S has. NClass denotes the number of the values that the class of dataset
S has and NAk

denotes the number of the values that the kth attribute Ak

(1 ≤ k ≤ n) has. Classj (1 ≤ j ≤ NClass) expresses the jth value of class
Class and Aki

(1 ≤ i ≤ NAk
) expresses the ith value of attribute Ak, then the

conditional entropy is:

H(Ak|Class) =

NClass∑

j=1

H(Ak|Class = Classj)P (Classj), (18)

where P (Classj) =
|X ∩ Classj |

|X| and

H(Ak|Class = Classj) = −
NAk∑

i=1

P (Aki |Class = Classj) log2 P (Aki |Class = Classj).

Proposition 9. The conditional entropy H(Ak|Class) which is the opposite con-
ditional entropy used in the information gain can bring balance to the non-
normalized information distance-based selection criteria on Type1 datasets.

Proof. The difference between the information gain and non-normalized infor-
mation distances D1 and D2 is that D1 and D2 calculate not only H(Class|Ak)
but also H(Ak|Class) [3]. Under the case of Type1, for attribute Ak such as
NAk

> NClass, because the number of the terms to calculate H(Ak|Class =
Classj) is more than the number of the terms to calculate H(Class|Ak = Aki

),
H(Ak|Class) tends to be larger than H(Class|Ak). Though H(Class|Ak) has
as many terms as H(Ak|Class = Classj) to calculate, each term to calculate
H(Class|Ak) is multiplied by P (Aki

), the total number of each P (Aki
) is one.

Therefore the number of the terms to calculate H(Class|Ak) can scarcely affect
the scale of H(Class|Ak). The term H(Class|Ak = Aki

) can easily be small when
NAk

> NClass even if it is not reasonable to be a splitting attribute. However, as
we have explained, H(Ak|Class) can be large instead when NAk

> NClass. D1

can be balanced by adding the large H(Ak|Class) to the small H(Class|Ak).
Therefore D1 can avoid favoring attributes with many values without rational
reason under the case of Type1. For D2, since D2 prefers the larger one between
H(Class|Ak) and H(Ak|Class), it is easy to assume that D2 also can avoid
being affected by H(Class|Ak) that is calculated as small without rational rea-
son. Hence, it can be expected that D2 performs as well as D1 under the case of
Type1. This advantage should not be applied to Type2 datasets because Type2
is that NAk

< NClass. The proof is completed. ��

6 Experiments

We have shown the non-normalized information distances D1 and D2, and the
possibility that they can improve the performances of the existing algorithms
in some cases. In this section, we show the experiments using 13 practical UCI
datasets with different backgrounds and the decision tree algorithms with D1 and
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D2 can increase the accuracy by about 15–25%, especially on Type1 and Type2
datasets. We also can notice that they even perform as well as ID3 algorithm
and the algorithm using the gain ratio on the datasets of Type3 and Type4.

The way of our experiments is below.

– If the dataset has missing value, we remove the examples including the missing
values from the dataset to convert the original dataset into the dataset which
has no missing values.

– We shuffle the examples to avoid being the biased datasets because some are
initially sorted by some columns, which leads to bias in the datasets. We use
the five shuffled datasets and verify the accuracy.

– For each dataset of the experiments, we take different proportions 75% for
training and the remaining 25% for testing.

– We classify each dataset under four types as shown in Sect. 2.

6.1 Result Examples for Each Dataset Type

We show a part of the details of some experiments. One thing we have to notice
is that, in the experiments, the numbers NAk

in the training dataset might be
different from the numbers NAk

in the original datasets. It is because when
dividing the datasets into the training part and the testing part, some values
can only exist in either of them.

Type1
Table 2. The results for five experiments of Breast Cancer Dataset (removed the
examples including missing values, V (A) = 9.278 and max(A) = 11, NClass = 2)

Dataset Information gain Gain ratio D1 D2

breast-cancer pattern 1 38.57% 50.00% 60.00% 62.86%

breast-cancer pattern 2 44.29% 40.00% 57.14% 60.00%

breast-cancer pattern 3 47.14% 42.86% 70.00% 67.14%

breast-cancer pattern 4 35.71% 50.00% 61.43% 61.43%

breast-cancer pattern 5 52.86% 51.43% 65.71% 70.00%

Table 3. The results for five experiments of Lymphography Dataset (V (A) = 3.624
and max(A) = 8, NClass = 4)

Dataset Information gain Gain ratio D1 D2

lymphography pattern 1 59.46% 64.86% 83.78% 81.08%

lymphography pattern 2 67.57% 72.97% 75.68% 67.57%

lymphography pattern 3 51.35% 67.57% 62.16% 62.16%

lymphography pattern 4 67.57% 62.16% 81.08% 64.86%

lymphography pattern 5 43.24% 45.95% 81.08% 64.86%
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Type2
Table 4. The results for five experiments of Soybean (Large) Dataset (removed the
examples including missing values, V (A) = 1.064 and max(A) = 7, NClass = 15)

Dataset Information gain Gain ratio D1 D2

soybean-large pattern 1 74.63% 89.55% 89.55% 83.58%

soybean-large pattern 2 71.64% 73.13% 80.60% 73.13%

soybean-large pattern 3 70.15% 86.57% 89.55% 85.07%

soybean-large pattern 4 76.12% 86.57% 82.09% 86.57%

soybean-large pattern 5 71.64% 89.55% 86.57% 83.58%

Type3
Table 5. The results for five experiments of Congressional Voting Records Dataset
(removed the examples including missing values, V (A) = 0 and max(A) = min(A) =
NClass = 2)

Dataset Information gain Gain ratio D1 D2

congressional-voting pattern 1 94.83% 94.83% 93.10% 96.55%

congressional-voting pattern 2 94.83% 94.83% 94.83% 98.28%

congressional-voting pattern 3 94.83% 94.83% 94.83% 96.55

congressional-voting pattern 4 91.38% 91.38% 91.38% 91.38%

congressional-voting pattern 5 93.10% 93.10% 91.38% 91.38%

Type4
Table 6. The results for five experiments of Car Evaluation Dataset (V (A) = 0.3 and
max(A) = 4, NClass = 2)

Dataset Information gain Gain ratio D1 D2

car-evaluation pattern 1 95.37% 95.37% 94.44% 94.44%

car-evaluation pattern 2 98.15% 98.15% 97.45% 97.45%

car-evaluation pattern 3 96.76% 97.22% 95.37% 96.06%

car-evaluation pattern 4 96.30% 96.99% 96.30% 96.30%

car-evaluation pattern 5 97.22% 97.22% 96.99% 96.99%

According to Table 2, 3, 4, 5 and 6, algorithms with non-normalized infor-
mation distances D1 and D2 improve the performance of the information gain
better than the gain ratio in most cases on Type1 and Type2 datasets. Especially
on Type1 datasets, they increase the accuracy a lot (about 15–25%). Compared
between Type1 and Type2, it is seen that the improvement in Type1 is bigger
than that in Type2. This is considered because of Proposition 9, which is men-
tioned in Sect. 5.2. On the other hand, on Type3 and Type4 datasets, D1 and D2

seldom show many advantages against the information gain. However, they also
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do not decrease the accuracy so much. For some cases, they show even better
accuracy than the information gain and the gain ratio.

6.2 Advantage of Distances Compared to Gain Ratio

Here we take a look how non-normalized information distances are the better
splitting criteria than the gain ratio.

Fig. 1. A part of the tree generated by the information gain (ID3 algorithm) for breast-
cancer pattern 1

Fig. 2. A part of the tree generated by the gain ratio for breast-cancer pattern 1

Fig. 3. A part of the tree generated by using D1 for breast-cancer pattern 1

Fig. 4. A part of the tree generated by using D2 for breast-cancer pattern 1
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Table 7. Each information gain (IG), gain ratio (GR), D1, and D2 in breast-cancer
pattern 1 which is sorted respectively (in descending order for information gain and
gain ratio, in ascending-order for D1 and D2)

Attributes(NAk) : IG Attributes(NAk) : GR Attributes(NAk) : D1 Attributes(NAk): D2

inv nodes(7) : 0.0974 inv nodes(7) : 0.0759 node caps(2) : 1.4717 node caps(2) : 0.8160

deb malig(3) : 0.0766 node caps(2) : 0.0741 irradiate(2) : 1.5525 irradiate(2) : 0.8373

node caps(2) : 0.0525 deb malig(3) : 0.0501 breast(2) : 1.8614 breast(2) : 0.9934

tumor size(11) : 0.0515 irradiate(2) : 0.0418 menopause(3) : 1.9532 menopause(3) : 1.0961

irradiate(2) : 0.0312 tumor size(11) : 0.0174 inv nodes(7) : 1.9565 inv nodes(7) : 1.1853

age(6) : 0.0202 menopause(3) : 0.0103 deb malig(3) : 2.2440 deb malig(3) : 1.4520

menopause(3) : 0.0114 age(6) : 0.0099 breast-quad(5) : 2.8140 breast-quad(5) : 1.9483

breast-quad(5) : 0.0028 breast-quad(5) : 0.0014 age(6) : 2.8772 age(6) : 2.0289

breast(2) : 0.0005 breast(2) : 0.0005 tumor size(11) : 3.7279 tumor size(11) : 2.9109

Since GainRatio(Ak) = Gain(Ak)
H(Ak)

, the disadvantages of the gain ratio are:

– if H(Ak) is zero, the gain ratio cannot be defined, and
– it may choose attributes with very low H(Ak) rather than those with high

Gain [4].

As shown in Table 7 and the trees (Fig. 1, 2, 3 and 4), the gain ratio can
overcome the problem “tending to favor the attribute with many values” to some
extent thanks to being divided by the entropy H(Ak). However, the selection
criteria of non-normalized information distances D1 and D2 are seldom affected
by many values in the attributes. Their accuracies are higher than that of the gain
ratio. It is deemed that the effectiveness to add H(Ak|Class) to H(Class|Ak) (to
replace H(Class|Ak) for H(Ak|Class) for non-normalized information distance
D2) is higher than that of what the information gain divided by H(Ak). In
addition, D1 and D2 do not have the cases not to be defined. Therefore, it can
be said that non-normalized information distances D1 and D2 should have more
advantages to be used as the selection criteria than the gain ratio.

6.3 Comprehensive Experimental Results

We show more results in the other experiments. The examples including missing
values are removed from the datasets. The dataset names are below.

Type1: Breast Cancer, Lymphography, Mushroom.
Type2: Soybean (Large).
Type3: Congressional Voting Records, SPECT Heart.
Type4: Nursery, Balance Scale, Car Evaluation, Hayes-Roth, Tic-Tac-Toe
Endgame, Chess (King-Rook vs. King-Pawn), Primary Tumor.
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For each dataset, we prepare five different datasets which are sorted differ-
ently by shuffling them. The summary of the results is below. Let PF (C) be
the performance (accuracy) of the algorithm with criterion C. Here IG and GR
mean the information gain and the gain ratio respectively.

Table 8. The numbers of the cases that the existing algorithms are better than the
non-normalized information distance-based algorithms

Accuracy Type1 Type2 Type3 Type4 Total

PF (IG) > PF (D1) 0/15 0/5 5/10 17/35 22/65

PF (IG) > PF (D2) 1/15 0/5 3/10 16/35 20/65

PF (GR) > PF (D1) 1/15 2/5 6/10 16/35 25/65

PF (GR) > PF (D2) 2/15 3/5 5/10 19/35 29/65

Table 9. The numbers of the cases that the existing algorithms as good as the non-
normalized information distance-based algorithms

Accuracy Type1 Type2 Type3 Type4 Total

PF (IG) = PF (D1) 5/15 0/5 3/10 9/35 17/65

PF (IG) = PF (D2) 6/15 0/5 1/10 12/35 19/65

PF (GR) = PF (D1) 5/15 1/5 3/10 10/35 19/65

PF (GR) = PF (D2) 5/15 2/5 2/10 8/35 17/65

Table 10. The numbers of the cases that the existing algorithms are better than the
non-normalized information distance-based algorithms multiplied by 1.1

Accuracy Type1 Type2 Type3 Type4 Total

PF (IG) > PF (D1) × 1.1 0/15 0/5 1/10 0/35 1/65

PF (IG) > PF (D2) × 1.1 0/15 0/5 0/10 0/35 0/65

PF (GR) > PF (D1) × 1.1 0/15 0/5 1/10 0/35 1/65

PF (GR) > PF (D2) × 1.1 0/15 0/5 0/10 1/35 1/65

According to Table 8 and 9, the non-normalized distance-based algorithms
(D1 and D2) perform better than the algorithms with the information gain or
the gain ratio in most cases, especially on Type1 and Type2 datasets. Table 10
is the comparison between the pure accuracies of the existing criteria and the
those of D1 and D2 multiplied by 1.1. It is shown to avoid to care about that
the algorithms with D1 and D2 slightly lose against those of the information
gain and the gain ratio. Consequently, it can be said that the non-normalized
distance-based algorithms perform well on not only Type1 and Type2 datasets
for sure, but also on Type3 and Type4 datasets.
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7 Conclusion

In conclusion, surprisingly, non-normalized information distances D1 and D2 are
the better criteria than other proposed splitting criteria such as the gain ratio or
normalized information distances. They can overcome the problem that “exist-
ing decision tree algorithms tend to select the attribute with many values when
splitting” in many cases. In this paper, we divide 13 datasets into four types and
shuffle each dataset to create five patterns for precise decision tree experiments.
The results show that decision trees using non-normalized information distances
D1 and D2 significantly increase the accuracy (15–25%) than those using the
information gain and the gain ratio on imbalanced datasets (Type1 and Type2)
with larger differences in the number of values each attribute has. Besides, they
can perform almost as equally as the existing criteria even on the datasets which
are not imbalanced (Type3 and Type4). The decision tree algorithms using non-
normalized information distances as the splitting criteria in this study may lead
to improvements in a variety of recent complex machine learning algorithms.
The results also suggest that methods such as “normalization” does not neces-
sarily make algorithms better, and it is expected that this idea can be applied
to algorithms other than decision trees. In the future, we plan to analyze the
differences between the two non-normalized information distances (D1 and D2)
used in this paper in detail and to study the application of decision trees that
use these non-normalized information distances as the splitting criteria.

Acknowledgements. This work was supported in part by Shanghai Municipal Sci-
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Abstract. The time series classification tasks have commonly faced the prob-
lem, i.e., lower labelled time series data and higher labelling costs. Regarding this
issue, some researchers try introducing representation learning into the time series
classification task. Moreover, recently the researcher proposed a model called TS-
TCC. TS-TCCcombines transformer and representation learning and has achieved
promising performance. Therefore, wewill predict the Time-sequence via Tempo-
ral and Contextual Contrastive Representation Learning (PTS-TCC). PTS-TCC
tends to perform better than TS-TCC in robustness. PTS-TCC consists of four
modules: cluster module, data hidden representation learning module, tempo-
ral hidden representation learning module, and contextual hidden representation
learning module. Extensive quantitative evaluations of the HAR (Human Activ-
ity Recognition), Epilepsy (Epilepsy Seizure Prediction) and Sleep-EDF (Sleep
Stage Classification) datasets verify the effectiveness of our proposed PTS-TCC.
In contrast to SOTA, the average accuracy rate of PTS-TCC improves by 5% in
HAR, Epilepsy and Sleep-EDF.

Keywords: Representation learning · Time series classification · Cluster

1 Introduction

The time series classification task is different from the conventional classification task.
Time series classification aims to classify ordered sequences, which are ordered in
chronological order. For example, ECG/EEG signal classification, action sensor data
classification, etc. Recent research have suggested that the time series classification task
gradually became the most important research task in the time series field. Many time
series classification models [12, 18, 19] are proposed and get better results. All of these
types of models use methods that are deep learning to learn data features.

Indeed, it is not easy to gather so many labelled time series data. Likewise, manual
labelling is hard and unrealistic. Therefore, we do not have enough labelled time-series
data to train the deep learning model.

As discussed above, the problem of insufficient labelling data in time series classifi-
cation tasks is important. One way to overcome this problem is to use the self-supervised
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hidden representation learning method. Elle et al. [2] propose an unsupervised Time-
Series representation learning framework via Temporal and Contextual Contrasting (TS-
TCC). TS-TCC implements the classification tasks on the unlabeled time series data.
Furthermore, TS-TCC gets better test accuracy than the previous supervised time series
classification model.

In order to improve the robustness of themodel based on the TS-TCC [2], we propose
predicting the Time-sequence via Temporal and Contextual Contrastive Representation
Learning (PTS-TCC). PTS-TCC consists of several modules: cluster module, data hid-
den representation learning module, temporal hidden representation learning module,
and contextual hidden representation learning module. Different from TS-TCC, PTS-
TCC uses cluster and informer to enhance model robustness. As we know, the informer
[3] can learn better temporal hidden representation than the transformer. Moreover, our
Clustering module treats data in the same cluster as the positive example of the input
data and the rest in other clusters as the negative example to enhance the model’s dis-
criminative capacity. The experimental result has shown that PTS-TCC has improved
the average test accuracy by at least 4% while maintaining good robustness on the HAR,
Epilepsy and Sleep-EDF dataset. The contributions of this work are shown as follows:

(1) The idea of clustering is introduced into the PTS-TCCmodel to enhance themodel’s
discriminative capacity. The purpose of improving the robustness of the model can
be achieved;

(2) We use the informer, which performs better in time series forecast tasks, to enhance
the model’s capacity to learn hidden temporal representation. With this, we can
accomplish the goal that improves the model’s robustness;

(3) For PTS-TCC, our experimental results demonstrate the state-of-the-art perfor-
mance on the robustness and test accuracy indexes.

2 Related Work

One of the most popular tasks in time series research is the task of time series classi-
fication (TSC) for decades. Lines J et al. [4] used the nearest neighbour classifier and
distance measurement method to solve the TSC task in 2015. DTW is the most dis-
tance measurement method in the TSC task when using an artificial neural network as
a classifier. Furthermore, [4] also proves that neural networks using different distance
metrics combine to superior to sets of individual components. Literature [4] has con-
tributed to the development of the ensembles method. Since then, the gathering method
can be classified into ensembles of decision-making trees [6, 7] and ensembles of the
discriminative classifier. These ensemble methods have a common feature that transfers
the time sequence into a new feature space [8]. In 2015, A method that an ensemble of
35 classifiers called COTE [9] improved performance in the time series classification
task. Literature [10] proposes HIVE-COTE based on COTE. However, HIVE-CODE
loses its practical application value in the case of a large data set.

Recently, researchers have been trying to apply deep learning to TSC task solving
with the successful application of deep learning models in various classification tasks
[11]. Literature [12] uses convolutional neural networks to solve the TSC task for the
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first time in 2017. After that, the deep learning model used in the TSC task can be
categorized into the Generative deep learning classification model and Discriminant
DeepLearningClassificationModel [13].Generative deep learning classificationmodels
[14, 15] need unsupervised training before using classifier learning weight. Discriminant
Deep Learning Classification Model [16, 17] is a classifier that can directly learn the
mapping between the original inputs of a time series (or its hand-designed features) and
the probability distribution of class variables in the dataset. With the development of
deep learning, Discriminant Deep Learning Classification Model use back-propagation
to train the deep learning model to get the feature, rather than manual design.

As we all know, the deep learning model needs large label data. However, labelled
time series data in actual industrial acquisitions are small and expensive to label. TS-
TCC [20] has been proposed, using representation learning to model the TSC task with
unlabeled time series data. TS-TCC gets a better result in unlabeled time series data
classification tasks than the previous model, which uses supervised learning. Inspired
by [20]‘s work, we propose the PTS-TCC with data augmentation methods and the self-
attention mechanism. PTS-TCC differs from TS-TCC in that PTS-TCC uses a cluster
model and informer, which has good performance in the field of time series, to reinforce
the model’s learning of features.

3 The Proposed PTS-TCC Model

In this section, we will introduce PTS-TCC in detail, and the structure is shown in Fig. 1.
Our model aims to solve unlabeled time series data classification tasks. Firstly, we use
a clustering algorithm to group the time series data. Secondly, we use a deep learning
model and data augmentation methods to learn the deep feature and the underlying
dependency relationships of data. This step is mainly composed of three parts: (1) We
use the data augmentation method and neural network to learn the time series data
hidden representation; (2)Weuse an informer to learn the hidden temporal representation
of time series data; (3) We use non-linear projection head to learn hidden contextual
representation. Finally, we need to minimize the loss function of PTS-TCC to get the
appropriate weights of the model.

The main components of the PTS-TCC model and the effect of each module, and
the transfer of inter-module parameters are as follows:

(1) Cluster module. The cluster module’s primary role is to generate clustering for
the input time series sequence, which can enhance the discriminative capacity of
learning data features and improve the robustness of the model. The cluster model’s
input is time-sequence X = {x1, x2, ..., xn}. After the clustering module, we get the
output vector X ′ = {x11, x12, ..., xi1, xi2, ..., xk1, ..., xkNk

}, i ∈ k.

(2) Data hidden representation learningmodules. The data hidden representation learn-
ingmodule’s primary role is to reinforce themodelling capacity of learning data fea-
tures. In this module, the input vector is X ′ = {x11, x12, ..., xi1, xi2, ..., xk1, ..., xkNk

}, i ∈
k. After applying the different data augmentation strategies of PTS-TCC, we will
get two output data hidden representation vectors, Zs and Zw.



468 Y.-y. Liu and J.-w. Liu

Fig. 1. The structure of PTS-TCC. PTS-TCC consists of four parts: cluster module, data hidden
representation learning module, temporal hidden representation learning module, and contextual
hidden representation learning module.

(3) Temporal hidden representation learning module. The temporal hidden representa-
tion learning module’s primary role is to enhance the modelling of the dependency
relationship of time series data and improve the robustness of PTS-TCC. In this
module, the input vector is Zs and Zw. After being processed by the temporal
hidden representation learning module, we will get two output temporal hidden
representation vectors, cs and cw.
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Table 1. Nomenclature

Terms Meaning Terms Meaning

xij The j-th data of the i-th cluster No the number of data in the other
cluster as cit

Nk the amount of all data in the k-th cluster cm
−

j the m-th data in the other cluster as
cit

sim(·) similarity measure function c
j+
t represents the j-th data in the same

cluster as cit
Ni the number of data in the same cluster

as cit

τ augmentation family

cit the input data at time t / /

(4) Contextual hidden representation learningmodule. The contextual hidden represen-
tation learningmodule’s primary role is to learnmore discriminative representations
and improve the robustness of PTS-TCC. In this module, the input vector is cs and
cw. After being handled by the contextual hidden representation learning module,
we will get the similarity between cs and cw (Eq. (13)).

(5) Minimizing loss function (e.g. Equation (1)). Among the Eq. (1), λ1 and λ2 are the
hyper-parameters of PTS-TCC, i.e., the trade-off parameters of every loss function.
Ls and Lw are the loss function of different data augmentation strategies. LCC is the
loss function of the contextual hidden representation learning model (Table 1).

L = λ1 · (Ls + Lw) + λ2 · LCC (1)

3.1 Cluster Module

We introduce the idea of clustering to learn better dependencies between data and
improve the robustness of the model. Considering the size of the dataset and the conver-
gence speed and interpretability of the clustering algorithm, we chose k-means as the
clustering method.

The clustermodule’s input is time-sequenceX = {x1, x2, ..., xn}. After the clustering
module, we get the output vector áX ′ = {x11, x12, ..., xi1, xi2, ..., xk1, ..., xkNk

}, i ∈ k.
We can get positive sample similarity (e.g., Eq. (2)) and full sample similarity (e.g.,

Eq. (3)) based on the above step.

simpositive =
Ni∑

j=1

exp(sim(cit, c
j+
t )/τ) (2)

simall =
Ni∑

j=1

exp(sim(cit, c
j+
j )/τ) +

No∑

m=1

exp(sim(cit, c
m−
j )/τ) (3)
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3.2 Data Hidden Representation Learning Module

The data hidden representation learningmodule consists of two data augmentation strate-
gies and a convolutional neural network [20]. Firstly, the input vector needs to go through
two kinds of data augmentation strategies (Eq. (4) and Eq. (5)). And then, the vector was
input into the convolutional neural network (Eq. (6) and Eq. (7)). The jitter(·) function
represents adding a normal distribution (with a mean of 0 and a standard deviation of
0.8) into the input vector. The permutation(·) function represents a random displacement
from the input vector slicing. The scale(·) function represents multiplying the input vari-
able by a random variable [21]. The Conv(·) function represents a convolution neural
network.

Es(X ′) = jitter(permutation(X ′)) (4)

Ew(X ′) = scale(jitter(X ′)) (5)

Zs = Conv(Es(X ′)) (6)

Zw = Conv(Ew(X ′)) (7)

Based on the feedback structure in the red dotted line in Fig. 1, we derive the data
hidden representation learning’s loss function (Eq. (8) and Eq. (9)). In the Eq. (8) and
Eq. (9), Lw represents the loss function corresponding to the weak enhancement pol-
icy in the t-to-t + H period; Ls represents the loss function corresponding to the weak
enhancement policy in the t-to-t + H period; zit represents the i-th data hidden represen-
tation vector at t time; c represents the temporal hidden representation vector from the
temporal hidden representation learning module; W (·) is a linear layer that can map cit
to the same dimension as (zit)

s.

Ls = − 1

H

H∑

h=1

log
exp((Wh((cit)

s)))T (zit+h)
w)

∑
n∈Nt,h

exp((Wh((cit)s))T (zin)
w)

(8)

Lw = − 1

H

H∑

h=1

log
exp((Wh((cit)

w)))T (zit+h)
s)

∑
n∈Nt,r

exp((Wh((cit)w))T (zin)
s)

(9)

3.3 Temporal Hidden Representation Learning Module

We use the temporal hidden representation learning module to learn the temporal hidden
representation vector. The temporal hidden representation learning module’s every layer
may be divided into Prob-Sparse Multi-Head Attention (PMHA) [3] andMultilayer Per-
ceptron (MLP). PMHA’s main role is to learn the temporal features of the time series
sample (Eq. (10)). MLP’s (Eq. (11)) main role is learning data features and dependen-
cies between data. Moreover, MLP consists of two RELU active functions and a fully
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connected layer with dropout. Lastly, re-operating all L layer’s results to get the final
result ct (Eq. (12)). The effect of the Norm(·) is normalizing the input data

�̃ = PMHA(Norm(W (Z))) (10)

� = MLP(Norm(�̃)) + �̃ (11)

ct = �0
L (12)

3.4 Contextual Hidden Representation Learning Module

The contextual hidden representation learning module consists of two non-linear pro-
jection heads. The non-linear projection head maps the contexts into the space where the
contrasting contextual operation is applied.We can get the loss function of the contextual
hidden representation learning module (Eq. (13)).

LCC = −
N∑

i=1

log

Ni∑
j=1

exp(sim(cit, c
j+
j )/τ)

Ni∑
j=1

exp(sim(cit, c
j+
j )/τ) +

No∑
m=1

exp(sim(cit, c
m−
j )/τ)

(13)

4 Experiment

4.1 Parameters and Preprocessing

We normalized the time series data to eliminate the undesirable effects of singular data
in the time series. We use the Max-Min normalization method to normalize the data in
this experiment. The Max-Min normalization method mainly performs a linear trans-
formation on the original data. We assume that min x and max x are the minima and
maximum values of x. The original value x is mapped to the valued xnorm in the interval
[0,1] through the min-max normalization method, and the formula is shown in Eq. (14).

x′ = x − min x

max x − min x
(14)

4.2 Baseline and Data-Set

We compare our proposed PTS-TCC method with the following baselines: (1) SSL-
ECG [25]; (2) CPC [26]; (3) SimCLR [27]; (4) TS-TCC [20]. Furthermore, we use
Human Activity Recognition [22], Epilepsy Seizure Prediction [23], and Sleep Stage
Classification [24] as the dataset. Table 3 introduces the parameters of three datasets.
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Human Activity Recognition [22]. TheUCIHARdataset is activity recognition based
on smartphone sensor data. It was createdwith the experimental team from theUniversity
of Genoa, Italy, in 2012. The data was collected from 30 volunteers aged 19 to 48. These
people wore smartphones strapped to their waists and performed six everyday activities
(Walking, Walking Upstairs, Walking Downstairs, Sitting, Standing, and Lying). The
records exercise data of 6 normal activities through mobile phone software developed.
The motion data recorded is x, y, and z accelerometer data (linear acceleration) and
gyroscope data (angular velocity) from the smartphone, sampled at 50 Hz (50 data
points per second). Each volunteer performed two activity sequences, the first with the
device on the left side of the waist and the second with the smartphone placed by the user
according to their preferences. At the same time, the video of each volunteer performing
the activity was recorded, and the sports category was manually marked according to
these videos and sensor data later (Table 2).

Table 2. The specific parameter values on the HAR, Epilepsy and Sleep-EDF dataset.

Hyperparameter symbols Dataset values

Har Sleepedf Epilepsy

input_channels 9 1 1

kernel_size 8 25 8

stride 1 3 1

final_out_channels 128 128 128

num_classes 6 5 2

dropout 0.35 0.35 0.35

features_len 18 127 24

num_epoch 40 40 40

beta1 0.9 0.9 0.9

beta2 0.99 0.99 0.99

lr 3e−4 3e−4 3e−4

batch_size 128 128 128

jitter_scale_ratio 1.1 1.5 0.001

jitter_ratio 0.8 2 0.001

max_seg 8 5 5

temperature 0.2 0.2 0.2

hidden_dim 100 64 100

timesteps 6 120 10

Epilepsy Seizure Prediction [23]. The Epilepsy dataset contains EEG recordings from
500 subjects; each subject’s brain activity was recorded for 23.6 s. The original dataset
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Table 3. Parameters of the dataset (Human Activity Recognition, Epilepsy Seizure Prediction,
and Sleep Stage Classification) used in the experiment.

Dataset Train set Test set Validation set Class Length Channel

HAR 5881 2947 1471 6 128 9

Epilepsy 7360 2300 1840 2 178 1

SleepEDF 27425 6805 8078 5 3000 1

is labelled into five classes. Since four categories do not include seizures, we combine
them into one category.

Sleep Stage Classification [24]. The Sleep Stage Classification dataset classifies input
EEG signals into five categories: Wake (W), Non-rapid eye movement (N1, N2, N3),
and Rapid eyemovement (REM). Sleep-EDF includes an overnight PSG sleep recording
during which a single EEG channel (i.e. Fpz-Cz) was sampled at 100 Hz.

4.3 Results and Discussion

Table 4. The experiment results of 10-fold cross-validation in HAR, Epilepsy, and Sleep-EDF
datasets.

Data HAR Epilepsy Sleep-EDF

1-fold 0.9424 0.9926 0.9001

2-fold 0.9447 0.9922 0.9028

3-fold 0.9476 0.9931 0.9006

4-fold 0.9460 0.9931 0.9036

5-fold 0.9512 0.9926 0.9020

6-fold 0.9427 0.9922 0.9036

7-fold 0.9492 0.9909 0.8962

8-fold 0.9489 0.9926 0.9045

9-fold 0.9401 0.9926 0.8935

10-fold 0.9476 0.9922 0.9026

Mean 0.9460 0.9924 0.9009

In this section, we will use discrete coefficients to measure the model’s degree of
volatility in three datasets. Furthermore, we use test accuracy to evaluate the model’s
performance in every dataset. In addition, we use 10-fold cross-validation to measure
the reliability and stability of the model. The results of the 10-fold cross-validation are
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shown in Table 4. Table 5 shows the test accuracy (the accuracy here is the average of
multiple experiments), mean, standard deviation, and discrete coefficient of the baseline
model (SSL-ECG, CPC, SimCLR, TS-TCC) and our model.

Derive fromTable 5’s experiment data, andwewill find: (1) PTS-TCC’s test accuracy
is higher than baseline in HAR, Epilepsy, and Sleep-EDF; (2) PTS-TCC’s mean test
accuracy is five per cent higher than baseline in HAR, Epilepsy, and Sleep-EDF; (3)
PTS-TCC’s discrete coefficient is lower than baseline in HAR, Epilepsy, and Sleep-EDF.

The above phenomenon suggests a conclusion that our model improves the model’s
test accuracy while ensuring robustness in the unlabeled time series dataset. This conclu-
sion is because our model uses the idea of cluster and informer. Compared with TS-TCC,
our model can learn more comprehensive hidden representation information from data.
Moreover, it can further deepen the model’s learning of data features and dependencies
between data. Hence, the model’s robustness and generalization ability are improved,
and test accuracy is increased.

Table 5. The experiment results on HAR, Epilepsy, and Sleep-EDF datasets. We show the test
accuracies, means, standard deviations, and discrete coefficients of the baseline model (e.g. SSL-
ECG, CPC, SimCLR, TS-TCC) and our model.

Method\Data Test accuracy Mean Standard
deviation

Discrete
coefficientHAR Epilepsy Sleep-EDF

SSL-ECG 0.6534 0.8915 0.7458 0.7636 0.1200 0.1572

CPC 0.8385 0.9444 0.8282 0.8704 0.0643 0.0739

SimCLR 0.8097 0.9353 0.7891 0.8447 0.0791 0.0937

TS-TCC 0.9037 0.9554 0.83 0.8964 0.0630 0.0703

PTS-TCC [ours] 0.9460 0.9924 0.9009 0.9464 0.0458 0.0483

5 Conclusions and Future Work

In this paper, we propose to Predict the Time-sequence via Temporal and Contextual
Contrastive Representation Learning (PTS-TCC), which is adaptable for time series
representation learning and classification tasks. PTS-TCC consists of a cluster module,
data augmentation strategy for representation learning, and prob-sparse self-attention
operation of the informer. This structure of PTS-TCC allows our model can learn bet-
ter data features and dependencies between data. Hence, our model can improve the
test accuracy based on better robustness. The experimental results illustrate that our
model is generally superior to the baseline models. In future work, we will explore the
representation learning on the asynchronous event sequences.
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Abstract. The inconsistency between the distribution of training data
and the data that need to be predicted is very common in credit scoring
scenarios, which is called dataset shift. The macroeconomic environment
and risk control strategies are likely to evolve over time, and the behavior
patterns of borrowers may also change. The model trained with past
data may not be applicable to the recent stage. Although dataset shift
can cause poor model performance, the vast majority of studies do not
take this into account. In this study, we propose a method based on
adversarial validation, in which partial training set samples with the
closest distribution to the predicted data are selected for cross-validation
to ensure generalization performance. In addition, the remaining training
samples with inconsistent distribution are also involved in the training
process, but not in the validation, which makes full use of all the data and
further improves the model performance. To verify the effectiveness of the
proposed method, comparative experiments with several other data split
methods are conducted with the Lending Club dataset. The experimental
results demonstrate the importance of dataset shift problem in the field
of credit scoring and the superiority of the proposed method.

Keywords: Dataset shift · Data distribution · Credit scoring ·
Adversarial validation · Cross-validation

1 Introduction

With the rapid development of internet finance in recent years, users can simply
use online platforms to complete peer-to-peer transactions. How to effectively
evaluate the borrowers’ solvency and reduce default risk has become an impor-
tant research area in the academic and business community [8]. At this stage,
with the continuous development of intelligent machine learning methods, credit
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scoring models have made a series of progress in balanced sampling method
[14], feature selection [11], and ensemble model [13]. These advancements have
allowed credit scoring to reach new heights of accuracy, but the vast majority
of them still use the traditional cross-validation schemes for data segmentation
[18,19]. The whole dataset is randomly split without considering the dataset
shift problem.

Fig. 1. Classifier performance loss caused by different data distribution.

Dataset shift [17] is an important topic in machine learning. As shown in Fig.
1 it refers to the scenario where the joint distribution of inputs and outputs is
inconsistent during the training and testing phases. This inconsistency is usually
caused by sample selection bias, which can lead to a loss in the generalization
performance of the model on new data. Applications such as demand predic-
tion [7], customer profiling for marketing [7], and recommender systems [7]
are susceptible to dataset shift. This phenomenon is particularly evident in the
non-stationary environments such as credit scoring [1], where changes in the
macroeconomic environment and risk control strategies can invalidate models
trained with past data.

However, there are few studies on dataset shift in the field of credit scor-
ing. For example, Maldonado et al. [12] proposed an algorithmic-level machine
learning solution, using novel fuzzy support vector machine (FSVM) strategy,
in which the traditional hinge loss function is redefined to account for dataset
shift. To our best knowledge, no data-level machine learning solution has been
proposed to solve the dataset shift problem in the field of credit scoring.

The main reason why the dataset shift problem has not been highlighted
in the credit scoring field is that the major credit scoring public datasets in
the past do not provide the timestamp information of the samples. Such as
German [4], Australian [4], Taiwan [4,20], Japan [4] in the UCI repository1

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php


Managing Dataset Shift by Adversarial Validation for Credit Scoring 479

and PAKDD2, Give Me Some Credit3, Home Credit Default Risk4 provided in
the data mining competitions. As a result, researchers are unable to construct the
training and testing sets in chronological order. However, that can be changed
with the release of the Lending Club5 dataset. Lending Club is a US peer-to-peer
lending company, headquartered in San Francisco, California, and it provided a
large number of real credit data for practitioners and scholars to study. The
provided data have specific timestamp information that allows researchers to
easily study the effect of dataset shift.

The goal of this study is to propose a data-level machine learning solution
to deal with the problem of dataset shift in credit scoring scenarios. To sum up,
the main contributions of this study are as follows:

i. This study is the first solution based on a data-level machine learning app-
roach to address the dataset shift problem in the credit scoring field. This
study recommends paying more attention to the impact of data distribution
on the model effectiveness, rather than just minimizing the classification
error.

ii. The method used to solve the dataset shift problem in this study is based on
adversarial validation. Researchers at Uber [15] have previously proposed
a method that uses adversarial validation to filter features to deal with
dataset shift. They use the feature importance obtained from adversarial
validation to filter the most inconsistently distributed features sequentially.
However, there is a trade-off for this method between the improvement of
generalization performance and losing information. On the contrary, the
method proposed in this study based on adversarial validation can make
full use of all data to improve the model generalization performance.

iii. Experiments on Lending Club data showed that the proposed method in
this study achieves the best results compared to the existing methods that
commonly use cross-validation or timeline filtering to partition data.

The rest of this paper is organized as follows. Section 2 presents some theo-
retical background of dataset shift. Section 3 details the adversarial validation
based method to help balance the training and testing sets. Section 4 shows the
design details and results of the experiments and discusses them. Section 5 gives
the conclusion and illustrates the direction for future research.

2 Dataset Shift

2.1 Definition of Dataset Shift

The term dataset shift was first introduced by J. Quionero-Candela et al. [17].
In this study, dataset shift is represented for the situation where the data used
to train the classifier and the environment where the classifier is deployed do not
follow the same distribution, which means Ptrain(y, x) �= Ptest(y, x).
2 https://pakdd.org/archive/pakdd2009/front/show/competition.html.
3 https://www.kaggle.com/c/GiveMeSomeCredit.
4 https://www.kaggle.com/c/home-credit-default-risk/data.
5 https://www.lendingclub.com/.

https://pakdd.org/archive/pakdd2009/front/show/competition.html
https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/c/home-credit-default-risk/data
https://www.lendingclub.com/
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2.2 Types of Dataset Shift

A classification problem consists of three parts, namely a set of features or covari-
ates x, a target variable y, and joint distribution P (y, x). There are three different
types of shift, depending on which probabilities change or not:

– Covariate shift represents the situation where training and testing data dis-
tribution may differ arbitrarily, but there is only one unknown target condi-
tional class distribution. In other words, it appears only in X → Y problems,
and is mathematically defined as the case where Ptrain(y | x) = Ptest(y | x)
and Ptrain(x) �= Ptest(x).

– Prior probability shift is the reverse case of covariate shift. It appears only
in Y → X problems, and is defined as the case where Ptrain(x | y) = Ptest(x |
y) and Ptrain(y) �= Ptest(y).

– Concept shift happens when the relationship between the input and class
variables changes, which is defined as

Ptrain(y | x) �= Ptest(y | x) and Ptrain(x) = Ptest(x) in X → Y problems.
Ptrain(x | y) �= Ptest(x | y) and Ptrain(y) = Ptest(y) in Y → X problems.

2.3 Causes of Dataset Shift

There are many possible reasons for dataset shift, the two most important of
which are as follows:
Reason 1. Sample selection bias is a systematic defect in the data collection
or labeling process, where the training set is obtained by a biased method and
this non-uniform selection will cause the training set to fail to represent the
real sample space. Joaquin et al. [16] give a mathematical definition of sample
selection bias:

– Ptrain = P (s = 1 | y, x)P (x) and Ptest = P (y | x)P (x) in X → Y problems.
– Ptrain = P (s = 1 | x, y)P (y) and Ptest = P (x | y)P (y) in Y → X problems.

where s is a binary selection variable that decides whether an instance is included
in the training samples (s = 1) or rejected from it (s = 0).

In the credit scoring literature it goes by the name of reject inference, because
potential credit applicants who are rejected under the previous model are not
available to train future models [2].
Reason 2. Non-stationary environments is often caused by temporal or
spatial changes, and is very common in real-world applications. Depending on the
classification problem’s type, non-stationary environments can lead to different
kinds of shift:

– In X → Y problems, a non-stationary environment could create changes in
either P (x) or P (y | x), generating covariate shift or concept shift, respec-
tively.

– In Y → X problems, it could generate prior probability shift with a change
in P (y) or concept shift with a change in P (x | y).
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Non-stationary environments often appears in adversarial classification prob-
lems such as network intrusion detection [10], spam detection [3] and fraud
detection [5]. The presence of an adversary trying to bypass the existing classi-
fier introduces any possible dataset shift, and the bias can change dynamically.

3 Methodology

3.1 Adversarial Validation

Adversarial validation is a method to detect dataset shift, which requires training
a binary classifier and judging whether the sample is from the training set or
the testing set. Specifically, the process of adversarial validation can be divided
into three steps:

i. For the original dataset {train_X, train_y, val_X, val_y}, remove the old
label column {train_y, val_y}, and add a new label column that marks the
source of the data {train_ys, val_ys}, labeling the samples in the train-
ing set as 0 (i.e. train_ys = 0) and the samples in the testing set as 1
(i.e. train_ys = 1).

ii. Train the classifier on the dataset {train_X, train_ys, val_X, val_ys}
with the newly labeled column. The output of the classifier is the prob-
ability that the sample belongs to the testing set. In this study, 5-fold cross-
validation is used.

iii. Observe the results of the classifier. The performance of the classifier indi-
cates the consistency of data distribution. The higher the accuracy of clas-
sifier, the more inconsistent the distribution of training set and testing set.

3.2 Using Adversarial Validation Results to Deal with Dataset Shift

The method proposed based on adversarial validation in this study can not only
judge whether the dataset distribution is consistent, but also further balance the
training and testing sets. A total of two schemes are proposed in this study.

Method 1. Use only the data with the top-ranked adversarial validation results
for 5-fold cross-validation.

The samples inconsistent with the distribution of the testing set can be
removed from the training process. In particular, the training data can be divided
into two parts by the adversarial validation results according to a certain thresh-
old value. The samples that are more consistent with the testing set distribution
are called data_Xa = {train_Xa, val_Xa}, and the remaining samples are
called data_Xb. Pdata_Xa

≈ Ptest_X �= Pdata_Xb
, and only data_Xa is reserved

for 5-fold cross-validation. As a result, model evaluation metrics on the valida-
tion data should have similar results on the testing data, which means that if the
model works well on the validation data, it should also work well on the testing
data.
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Method 2. All data are used for training, and only the data with the top-ranked
adversarial validation results are used for validation.

Although Method 1 alleviates the problem of inconsistent data distribu-
tion between training and testing sets, it has defects in data utilization. Only
data_Xa data was used in the whole training process, and data_Xb data was
wasted. To solve this problem, data_Xb is added to the training data of each fold
in the process of 5-fold cross-validation to assist training, but it does not par-
ticipate in the validation. This not only maintains the consistency of validation
and testing results, but also makes full use of all data.

4 Experimental Study

4.1 Data Collection

The dataset used in this study comes from Lending Club, and the time range
is from 2018M16 to 2020M9 over a period of 33 months. The original dataset
contains 276,685 samples with a positive sample ratio of 21.93%7. The timestamp
information helps divide training and testing sets in strict chronological order.
Specifically, the data of 18 months from 2018M1 to 2019M6 are taken as the
training set, which contains 247,276 samples in total. The data from 2019M7 to
2020M9 were taken as the testing set, including 29,409 samples.

Many original features in the Lending Club data have a high proportion
of missing values, and some of the remaining variables are unavailable to an
investor before deciding to fund the loan. As a result, including the target vari-
able “loan_status”, 25 variables are actually used for modeling. These variables
include basic personal information, credit history and loan information.

4.2 Model and Hyperparameters Set-up

As a modern gradient boosting decision tree (GBDT) [6] library, LightGBM
[9] is chosen as the modeling tool, and the same hyperparameters are used for
both the adversarial validation and credit scoring modeling phases. Unless oth-
erwise noted, the default model setting is used. Specifically, for category vari-
ables, we employ the LightGBM built-in support. For other hyperparameters,
“num_boost_round” is set to 50000, which is a relatively large value. Mean-
while, by setting the parameter “early_stopping_rounds” to 200, the model will
stop training if the AUC for validation data doesn’t improve in the last 200
rounds. It not only ensures sufficient training, but also prevents over-fitting.
Besides, “max_depth”, “colsample_bytree”, “subsample” are set as 4, 0.8 and 0.8
respectively.

6 The representation of time in this study consists of two parts, for example, 2018M1
represents January 2018.

7 The samples with “Charged off” and “Fully Paid” status are taken as positive and
negative samples respectively, all loans with other status have been filtered out as
their final status are unknown.
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Fig. 2. Experimental setup, including 5 experimental sets, comparing a variety of mod-
els’ performance on the testing set, which is trained on data divided by time or by
adversarial validation results.

4.3 Experiment Set-up

As shown in Fig 2, a total of 5 sets of experiments are set up. The testing set
data of each experiment are all from 2019M7 to 2020M9, while the training and
validation sets are divided in different ways.

Experimental Set 1. Select data according to chronological order for 5-fold
cross-validation.

A fixed time point is set and only data after that time point are used for the
5-fold cross-validation. Specifically, the starting month of the cross-validation
data was selected from 2018M1 to 2019M6 for a total of 18 experiments. In
these experiments, the starting point selection 2018M1, which uses all data for
training can be used as a benchmark.

Experimental Set 2. Select data according to chronological order, training
data before, validation data after.

Experiment set 2 only used data closer to the testing set for validation.
Specifically, there are three choices of data time ranges, which are to use all
data, 2018M6 and subsequent data, 2018M12 and subsequent data. These three
groups of data will be divided into training and validation data according to the
sequence of timeline, for a total of 17 + 11 + 5 = 33 experiments.

Experimental Set 3. Use the adversarial validation results as sample weights
added to the training process.
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The output probability of the adversarial validation classifier to the samples,
i.e., the similarity with the testing set samples, is directly used as the weight
in the training process. All data will be used in this one experiment, and no
need to be divided by time or quantile. Specifically, set the “weight” parameter
in LightGBM Dataset API to change the weight of each instance.

Experimental Set 4. Use only the data with the top-ranked adversarial vali-
dation results for 5-fold cross-validation.

The ranking of the output probability of the sample by the adversarial val-
idation classifier is regarded as the criterion of data partitioning. Data that is
more inconsistent with the distribution of the testing set will be discarded, and
the remaining data will be subjected to 5-fold cross-validation. Specifically, 0%,
5% ... 90%, 95% of the data were discarded, respectively, for a total of 20 exper-
iments.

Experimental Set 5. All data are used for training, and only the data with
the top-ranked adversarial validation results are used for validation.

Experimental Set 4 brings about the problem of wasting data. This can also
harm the model performance, especially when the amount of discarded data is
large. Experimental Set 5 adds these discarded data that are inconsistent with
the testing set distribution into the cross-validation training data, but does not
participate in the validation. This not only addresses the problem of dataset shift,
but also makes full use of all data. Similarly, the data are also divided according
to the output probability ranking of the samples by the adversarial validation
classifier, and the number of experiments is the same as in Experimental Set 4,
with a total of 20 experiments.

4.4 Results and Discussion

Results and Analysis of Experimental Set 1. Figure 3 (a) shows the results
of Experimental Set 1. With the increase of the starting month of the selected
data, the AUC of the validation set shows a trend of gradual decline, and the
decline speed increases with the decrease of the selected data. However, for the
testing set, the AUC fluctuated steadily when the selected data started before
2019M2, and only after that did it start to show a significant decreasing trend.
This confirms that the problem of dataset shift does exist, adding data far from
the testing set to the training process can only improve offline validation perfor-
mance rather than the predicted score on the testing set.

The 5-fold cross-validation with all the data could be used as a benchmark,
which the AUC of the testing set was 0.7237. Among all the experiments of
Experimental Set 1, the selection of 2018M2 and later data for cross-validation
is the best, with the testing set AUC reaching 0.7256.
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Results and Analysis of Experimental Set 2. As shown from Fig. 3 (b)
to (d), regardless of the selection range of training validation data starts from
2018M1, 2018M7, or 2019M1, with the gradual increase of data divided into the
training set, the AUC of validation set and testing set both show an increasing
trend, and the gap between them gradually decreases. This indicates that post-
poning the time point of splitting the training and validation sets can improve
both the performance of the model and the consistency of the validation and
testing set results.

Fig. 3. Summary of experimental set results.

Figure 3 (e) integrates the testing set AUC results of the three sub-
experiments, and the optimal results that can be achieved by all three are rela-
tively close. The best result occurs when using the data from 2018M7 to 2019M5
as the training set and the 2019M6 data as the validation set, the testing set
AUC reaches 0.7220. This result is lower than using all the original data directly
for 5-fold cross-validation, since the 2019M6 data, which is closest to the testing
set distribution, is only involved in the validation and not in training.

Results and Analysis of Experimental Set 3. The AUC result of adversarial
validation is 0.9681, much higher than 0.5, which indicates that the classifier
can easily distinguish the training data from the test data, and the two are
indeed inconsistent in distribution. The final AUC obtained for the validation
and testing set are 0.7149 and 0.7202, respectively, which is rather inferior to
the benchmark of using the full data directly for the 5-fold cross-validation. This
indicates that changing only the sample weights without changing the sample
selection does not effectively solve the dataset bias problem.
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Results and Analysis of Experimental Set 4. As shown from Fig. 3 (f),
with the increase of the probability quantile of adversarial validation, the testing
set AUC showed a gradual rise at first, and then a relatively stable fluctuation.
When the quantile selection is 75%, the maximum testing set AUC can reach is
0.7315, which is an improvement compared with the previous three experiments.
When the quantile is small, the performance of the model is greatly reduced due
to the lack of available training data, exposing the drawback that this method
fails to make full use of all data.

Results and Analysis of Experimental Set 5. Figure 3 (g) illustrates the
Experimental Set 5 results, the testing set AUC fluctuation is relatively more
stable. When the quantile is chosen to be 40%, the maximum testing set AUC
value can reach 0.7327, which is also the highest score among all experiments.

Comprehensive Analysis of All Experiments. Figure 3 (h) shows the com-
prehensive comparison of the results of all 5 experimental sets. It can be noted
that the dataset shift problem does exist in credit scoring, and dividing the train-
ing and validation sets in different ways will indeed affect the model performance
on the testing set. Compared with other partitioning or data utilization meth-
ods, using adversarial validation to build a validation set that is more consistent
with the test set and involving more data for training helps in stabilizing and
improving the results. Table 1 shows the specific numerical results.

Table 1. Comparison of optimal testing set results of each experimental set. CV refers
to cross-validation and ADV refers to adversarial validation.

Training methods AUC

Baseline: CV for original data 0.7237
Experimental set 1: CV for recent data 0.7256
Experimental set 2: only use recent data for validation 0.7220
Experimental set 3: use the ADV results as sample weights 0.7203
Experimental set 4: CV for data with top-ranked ADV results 0.7315
Experimental set 5: CV for original data and only use data with top-ranked ADV results for validation 0.7327

5 Conclusion and Future Work

This study proposes a method based on adversarial validation to deal with the
dataset shift problem in the credit scoring field. Only the training samples whose
distribution is consistent with the testing set are used for cross-validation to
ensure the model generalization performance. Furthermore, to make full use
of all data information to further improve model performance, the remaining
training samples whose distribution is inconsistent with the testing set are also
added into the training process of each fold of cross-validation, but not involved
in the validation.
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Experiments on the Lending Club dataset showed that the proposed method
is more helpful in improving performance in scenarios where the data distribution
of the training set and the testing set are inconsistent, rather than dividing data
in chronological order. This work demonstrates the importance of the dataset
shift problem in credit scoring. For the sake of performance on new data, it
recommends paying more attention to the impact of data distribution on the
model effectiveness, rather than just minimizing the classification error.

In the future work plan, more ways to exploit adversarial validation par-
titioned data can be explored. Transfer learning, which aims to improve the
performance of models in different but related target domains, would be a good
choice. In addition to credit scoring, the application of adversarial validation can
be explored in other data distribution inconsistency scenarios.
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Abstract. Linking check-in data to their owners can benefit many
downstream tasks, such as POI (Point of Interest) recommendation, des-
tination prediction, and route planning, since we can obtain redundant
information for each user after linking. Consequently, we formulate and
investigate the novel problem CUL (Check-in-User Linking) in this work.
Notably, the main difference between CUL and the existing problem TUL
(Trajectory-User Linking) is that the trajectories used in TUL are con-
tinuous, while the check-in records in CUL are discrete. To tackle the
problem CUL effectively, we develop a model entitled CULVAE (Check-
in-User Linking via Variational Autoencoder). Firstly, a well-designed
grid index is applied to organize the input check-in records. Then, an
encoding module is developed to embed a user with corresponding grids.
Next, a decoding module is proposed to generate a low-dimensional rep-
resentation of each user. Finally, a multi-class classifier is proposed to link
check-in records to users based on the output of the decoding module.
We conduct extensive experiments on four real-world datasets, and the
results demonstrate that our proposed model CULVAE performs better
than all state-of-art approaches.

Keywords: Check-in Data · Social networks · Variational autoencoder

1 Introduction

The ubiquitous GPS-enabled devices (e.g., mobile phones and bracelets) and the
flourish of location-aware social networks (e.g., Facebook and Twitter) bring the
convenience for acquiring large-scale user-related check-in data. Due to the abun-
dant information and user characteristics involved in these data, there has been
increasing attention paid to check-in based studies, such as POI recommendation
[6,23], route planning [16], and cross-platform user account linkage [3,4].

As the fundamental and an indispensable component of the above-mentioned
studies, the management and analysis of check-in data is increasingly being a
significant study nowadays. In view of this, we formulate and investigate a novel
problem namely CUL (Check-in-User Linking), i.e., linking check-in data to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 489–503, 2022.
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users who generate them. We argue that the study is different from the exist-
ing work TUL (Trajectory-User Linking) [11,26] and the main reasons are as
follows. The points in trajectories generated by cars, trucks, buses, and GPS-
equipped animals are usually automatically sampled by GPS devices with fixed
and short time intervals. However, the check-in data collected from social net-
works are usually very sparse and have no fixed time interval, since the genera-
tion of these data is determined by users’ willingness instead of the GPS devices.
Consider the example in Fig. 1, the trajectories τ1 and τ2 generated by vehicles
are continuous, while the check-in records from r1 to r8 generated by users on
social networks are discrete. Due to the rich sequential information contained by
trajectories, existing studies for TUL have developed many methods, which have
senior performance in modeling sequence information, based on RNN (Recurrent
Neural Network) [25], LSTM (Long Short-Term Memory) [14], and GRU (Gated
Recurrent Unit) [9].

Fig. 1. An example of trajectory and check-in record

Despite the great contributions made by the above-mentioned studies, we
claim that their proposed sequential model-based approaches are ineffective for
CUL, and the reason is twofold. From the spatial perspective, we can model
the route behaviors of users based on the continuous sample points of trajec-
tories, yet such behaviors are hard to obtain with irregular discrete check-in
records. From the temporal perspective, as the time interval between adjacent
sample points in a trajectory is fixed and short, we can model users’ temporal
behaviors effectively with sequential methods, while the irregular time interval
between different check-in records brings the great challenge for modeling such
behaviors. Having observed the difference between trajectory and check-in record
from Fig. 1 and the drawbacks of existing work, we formula the novel problem
CUL and develop a model called CULVAE. Although this study can serve a wide
range of applications, following inevitable problems bring great challenges for it.

Irregularity. To illustrate the problem more clearly, we conduct an analysis on
four real-world check-in datasets, i.e., Brightkite and Gowalla provided by [8],
Foursquare and Twitter provided by [4]. The distributions of distance and time
interval, i.e., dist(l) and dist(t), between three consecutive check-in records ri,
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ri+1, and ri+2 of a user are presented in Fig. 2 (a) and (b) respectively, where
dis(l) and dis(t) are calculated as follows:

dis(l) = |Euclidean(li+2, li+1) − Euclidean(li+1, li)|
dis(t) = ||ti+2 − ti+1| − |ti+1 − ti||

where li and ti denote the location and time-stamp of the record ri respec-
tively. Observed from Fig. 2(a), the distance between three consecutive check-in
records is irregular, as the probability of dis(l) ≥ 10km is large. Meanwhile, we
observe the same irregular distribution of time interval from Fig. 2(b), where the
probability of dis(t) ≥ 10000s is much larger than that of others.

Fig. 2. An analysis for the problems of irregularity and data sparsity

Data Sparsity. We also conduct experiments on the above-mentioned datasets
to illustrate the data sparsity problem from two different perspectives, i.e., the
distribution of the total number of check-ins of each user and the corresponding
density, where the density is defined as the number of check-in record in per
km2. Observed from Fig. 2(c) and (d), most users have less than 100 check-in
records and the density of most users is less than 0.02. Moreover, although there
are some users having more than 1000 check-ins and with a density greater than
0.02, the probability is small.

Obviously, the irregularity and data sparsity problem will deeply weaken the
performance of sequential models, such as RNN, LSTM, and GRU. In view of
this, we develop the model CULVAE based on VAE (Variational Autoencoder)
[18]. The reason for adopting VAE here is that an individual’s mobility pattern
usually centers at some personal geographical regions (e.g., home region and work
region) on location-aware social networks [3,24], and the Gaussian distribution
used in VAE can model this pattern effectively. Specifically, the developed model
CULVAE contains the following four steps. Firstly, we divide the space into grid
cells, and each user is represented by a set of grids that he/she has visited. Sec-
ondly, we develop an encoding module to embed users based on above-mentioned
grids. Thirdly, a decoding module is proposed to rebuild the input of encoder
and output the low-dimensional representation of a user. Finally, we design a
linking module by incorporating MLP (Multilayer Perceptron) and softmax to
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link check-in records to their owners based on the output of the decoding module.
To sum up, we make the following contributions in this work.

– To the best of our knowledge, we are the first to formulate and investigate
the problem CUL.

– To address the problem CUL effectively, we propose a novel model entitled
CULVAE based on Variational Autoencoder.

– We conduct extensive experiments on four real-world datasets, and the results
demonstrate the superiority of our proposed model CULVAE over the state-
of-art methods.

In the rest of the paper, we review related work in Sect. 2 and formulate the
problem in Sect. 3. Section 4 introduces the details of CULVAE, followed by the
experimental study in Sect. 5, and the paper is concluded in Sect. 6.

2 Related Work

The task of TUL is to identify and link trajectories to users who generate them.
Different from the traditional mobility pattern recognition methods that use arti-
ficially set attributes such as check-in time interval [7,15] and POI category [13],
Gao et al. [11] realize the deep learning method for automatic feature extrac-
tion of trajectories and understanding of human mobility models. Specifically,
they develop models TULER-LSTM, TULER-GRU, and Bi-TULER based on
LSTM, GRU, and Bidirectional LSTM respectively. In the following work, the
semi-supervised model TULVAE [26] learns the latent semantics of sequential
trajectories through a variational autoencoder, and utilizes the newly generated
trajectory encoding to achieve linking. Sun et al. [22] propose an end-to-end
attention recurrent neural learning framework TULAR, which introduces the
learning approach Trajectory Semantic Vector (TSV) via unsupervised location
representation learning and recurrent neural networks to reckon the weight of
parts of source trajectory. At the same time, the model DeepTUL [20], which
is composed of a feature representation layer and a neural network with an
attention mechanism, is proposed by combining multiple features that govern
user mobility and learning from labeled historical trajectory to capture the
multi-periodic nature of user mobility. In recent advances, to tackle the problem
of defending against location attacks, such as de-anonymization and location
recovery, the model STULIG [27], which characterizes multiple latent aspects
of human trajectories and their labels into separate latent variables, is devel-
oped based on deep probabilistic generative models. Specifically, the model can
generate synthetic plausible trajectories, thus protecting users’ actual locations
while preserving the meaningful mobility information for various machine learn-
ing tasks. Despite the significant contributions made by the above studies, there
has been no work linking discrete check-in records to users, thus we formulate
and investigate the problem.
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3 Preliminaries

3.1 Variational Autoencoders

The generation model VAE consists of an encoder and a decoder, given an input
x, the encoder is represented as p(z|x), where p(z) is the probability of obtaining
the latent vector z by randomly sampling from the Gaussian distribution, and
the decoder is represented as q(x|z). The output rebuilt from the set of latent
vectors is expected to be similar to the original input, i.e., the probability of
output equal to the input is expected as high as possible, and the problem is
transformed into the maximization of

∑
x log p(x), i.e.,

max
∑

x

log p(x), p(x) =
∫

z

p(z)p(x|z)dz (1)

As the maximum likelihood estimation p(x) cannot be calculated directly, VAE
[19] uses variational distribution q(z|x) to approximate the posterior distribution
p(z|x), i.e. minimizing the Kullback-Leibler (KL) divergence of q(z|x) and p(z|x):

log p(x) = Ez∼q(z|x)[log p(x, z) − log q(z|x)] + KL[q(z|x) ‖ p(z|x)]
≥ εd(t) = Ez∼q(z|x)[log p(x, z) − log q(z|x)]
= Ez∼q(z|x)[log p(x|z)] − KL[q(z|x) ‖ p(z)] (2)

Next, the optimization of VAE is transformed into maximize the evidence lower
bound (ELOB) εd(t).

3.2 Problem Formulation

Definition 1. Check-in Record. Let r = (u, l, t) be a check-in record generated
by a user u, where l = (lat, lng) represents the location information of r, lat and
lng denote the longitude and latitude respectively, and t is the time-stamp.

Notably, we investigate the CUL problem based on the location information
of check-in records, while the time information is not taken into account. This is
because the experimental results in [2] have demonstrated that the time infor-
mation is a negative factor for effective user behavior modeling in the face of the
data sparsity problem introduced in Sect. 1.

Given a set of check-in records R = {r1, r2..., rm} generated by a set of users
U = {u1, u2..., un} on location-aware social networks, this study aims to learn a
mapping function that links check-in records to their owners: R �→ U .

4 Proposed Model CULVAE

The overview of our proposed model CULVAE is presented in Fig. 3(a), which
contains the following four steps. Firstly, a grid index is designed to organize the
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input data. Then, an encoder is proposed to embed each user with correspond-
ing grid cells and calculate the latent distributions of users. Next, a decoder is
developed to rebuild the input of the encoder and optimize the representation
of the latent distributions. Finally, a linking module is proposed to link check-in
records to users based on the latent distributions of VAE.

4.1 Grid Index

We first construct a grid index to organize the input data instead of encoding
each discrete check-in record directly and the reasons are as follows. In real
life, although the sequential behaviors are hard to model due to the irregularity
problem discussed in Sect. 1, we can model the distribution of check-in records
with a Gaussian function from the spatial perspective effectively, since a user’s
mobility pattern usually centers in some specific areas, such as home region and
work region [3,24]. Additionally, we can reduce the size of the input data by only
considering grid cells visited by a user, and this will accelerate the convergence
of our proposed model.

Observed from Fig. 3(b), we divide the space into 5 × 5 grid cells. Given
R = {Ru1 ,Ru2}, where Ru1 and Ru2 denote the set of check-in records of u1 and
u2 respectively. Next, u1 and u2 can be represented as G(u1) = {g10, g11, g13, g24}
and G(u2) = {g1, g4, g13, g15, g21} respectively, by assigning each cell a unique
numerical id from bottom to top and from left to right. Obviously, the size of
grid representation (i.e., |G(u1)| + |G(u2)| =9) is smaller than that of |R| (i.e.,
|R(u1)| + |R(u2)| =18).

Fig. 3. Model architecture and grid index

4.2 Encoder

Although we can reduce the size of input data with grid representation G(u)
based on the index in Fig. 3(b), treating each grid in G(u) equally is not appro-
priate. By way of illustration, u2 has three check-in records in g1, but only one
check-in record of u2 falls into g4, thus g1 and g4 are not equally important
for u2. Additionally, the popular areas (e.g., shopping mall and cafeteria) are
more attractive and usually contain more check-in records than personal private
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places, such as home and office. This phenomenon leads to the low peculiarity
of grids related to popular areas. To fully explore this feature and model the
characteristics of each user more effectively, we assign different weights to grids
in G(u) based on the idea of TF-IDF.

Specifically, TF-IDF has been widely used in data mining and NLP, where TF
refers to the word frequency and IDF denotes the inverse document frequency.
Given a user u, the TF value of the j-th grid of G(u) is defined as:

tfij =
nij∑
k nik

(3)

where nik is the number of check-in records of u in grid gi and k is the number
of different grids in G(u). The TF-IDF value of the j-th grid of G(u) is given as:

idfij = log
|U |

|{i : gj ∈ G(u)}| (4)

where |U | represents the number of users, |{i : gj ∈ G(u)}| denotes the number
of users having check-in record in grid gj . Finally, the corresponding TF-IDF
value is defined as:

tf -idfij = tfij × idfij (5)

Following the calculation of the TF-IDF value and given a user u with G(u) =
{gi, · · · , gl}, we can obtain the input, which is defined as Input(u), of the encoder
related to u by concatenating all tf -idfgi ,

Input(u) = Concat(tf -idfgi , · · · , tf -idfgl) (6)

Then, we apply a two-layer MLP to embed Input(u) into a low-dimensional
space, and the output x is defined as:

x = MLP (Input(u)) (7)

Next, we can obtain the mean vector MX and variance vector SX by cal-
culating the mean and variance for each xi in X = {x1, x2, · · · , xn}. Then, we
apply the Gaussian distribution function to construct the latent distribution of
VAE, i.e.,

z = N (MX , S2
X) (8)

In the semi-supervised learning task, the latent distribution z is concatenated
with the user’s label id(u) to get the latent distribution zu related to u, i.e.,

zu = Concat(z, id(u)) (9)

Next, zu will be fed into the following decoder and more details are discussed
as follows.
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4.3 Decoder

After encoding the check-in data and obtaining labeled and unlabeled latent
distributions zu and z, we optimize the decoder of CULVAE. Specifically, we use
two latent distributions z1, z2 to rebuild the latent distribution z. The value of
z is generated by the prior distribution p(z) that satisfies the Gaussian distri-
bution, and the joint distribution p(G, z1, z2) related to u can be decomposed
into p(G|z1, z2)p(z1|z2)p(z2) [17]. The Kullback-Leibler (KL) divergence between
q(z|G, u) and p(z|G, u) is required to be close to 0, as our goal is to approximate
the true posterior p(z|G, u) with q(z|G, u), and this KL divergence is defined as:

KL[q(z|G, u)||p(z|G, u)] = Ez∼q[log q(z|G, u)
− log p(G|z, u) − log p(u) − log p(z) + log p(G, u)] (10)

The problem of minimizing the KL divergence is transformed into maximizing
the following ELOBεg1(G, u):

log p(G, u) ≥ Ez∼q[log p(z) + log p(G|u, z) − log q(z|G, u)]
= Ez∼q[log p(G|u, z)] − KL[q(z|G, u)||p(z)] = εg1(G, u) (11)

where KL[q(z|G, u)||p(z)] denotes the KL divergence between the latent posterior
q(z|G, u) and the prior distribution p(z) [26] and Ez∼q[log p(u)] is ignored here,
as it is a constant. Next, the maximization of ELOBεg1(G, u) is transformed into
minimizing KL[q(z|G, u)||p(z)], which is disassembled with following method:

KL[q(z|G, u)||p(z)] = KL[q(z,G, u)||q(z)p(G, u)]

+ βKL[q(z)||
∏

j

q(zj)] +
∑

j

KL[q(zj ||p(zj))] (12)

where the first item KL[q(z,G, u)||q(z)p(G, u)] is the mutual information term in
InfoGAN [5]. The second term βKL[q(z)||∏j q(zj)] is called Total Correlation,
it is considered in β-TCVAE [1], where a heavier penalty can lead to better
disentanglement, the larger the value, the greater the correlation. The third
item

∑
j KL[q(zj ||p(zj))] is called dimension-wise KL, it mainly prevents each

latent distribution from being too far away from the corresponding prior.
When faced with unlabeled check-in records, we use a classifier q(u|z), which

is constructed in the next linking module, to generate a predicted label, and get
the following ELOBεg2(G):

log p(G) ≥ Ez∼q[log p(G|u, z) + log p(z) − log q(u, z|G)]

=
∑

u

q(u|x)(εg1(G, u))+H(q(u|G)) =εg2(G) (13)

where H(q(u|G)) is the entropy of information. Finally, the function of the overall
extended ELOB is defined as:

ε=−
∑

G,u∼p̃G

εg1(G, u)+a[log q(u|G)]−
∑

G∼p̃u

εg2(G) (14)
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where the hyperparameter a controls the weight of labeled data learning. From
this, we obtain the final objective function of semi-VAE. p̃G and p̃u represent the
empirical distribution of labeled and unlabeled subsets of check-in data respec-
tively.

4.4 Linking

The above VAE-based semi-supervised learning model is trained to learn the
characteristics of each set of check-in records, thus the latent distribution z used
to restore corresponding records contains key information of users. Next, we use
the latent distribution z to replace the original check-in records during linking.

Specifically, the proposed linking module is composed of a two-layer Multi-
Layer Perception(MLP) and softmax. In general, check-in-user linking can be
viewed as a multi-class classification problem. The input of the MLP is the latent
distribution z after the check-in records are fed into the VAE. Let the output
of the MLP is Y = {y1, y2, ..., yn}. Then the probability that the check-in data
generated by user ui is p(yi) in softmax, and it is defined as p(yi) =

exp(yi)
∑n

j=1 exp(yj)
.

4.5 Training

The VAE optimization process may encounter serious gradient disappearance
and we use the activation function Leaky-ReLU (i.e., f(x) = max(ax, x)) to
alleviate it. At the same time, the data will be batch standardized [28] before
being transmitted to the latent distributions. In the linking module, we apply
cross-entropy as the loss function and use Back Propagation and Adam to opti-
mize our proposed model.

5 Experiments

5.1 Datasets

BHT and GOW. Brightkite1 and Gowalla2 were once location-based social
networking websites, where users shared their locations by checking-in. We
randomly select 739 and 1026 users with 402748 and 356266 check-in records
from the datasets provided by [8] to study the performance of our proposed
approaches. FQ and TW. Foursquare and Twitter are currently popular social
networks, where users can share statues associated with location information.
These two datasets contain 862 and 1717 users with 187795 and 785300 check-in
records respectively. For each dataset, we divide check-in records of a user into
training set and test set according to the ratio of 7:3.

1 https://snap.stanford.edu/data/loc-brightkite.html.
2 https://snap.stanford.edu/data/loc-Gowalla.html.

https://snap.stanford.edu/data/loc-brightkite.html
https://snap.stanford.edu/data/loc-Gowalla.html
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5.2 Compared Methods

We compare the performance of our model CULVAE with those of the fol-
lowing approaches. (1) Trajectory-User Linking methods: TULER [11], TUL-
VAE [26], STULIG [27], and TULAR [22]. These approaches need to embed
unique grids into low-dimensional space through word vectors firstly, and then
encode check-in records according to timestamps. (2) Graph embedding meth-
ods: DeepWalk [21], Node2vec [12], and BiNE [10]. These approaches are also
suitable for learning the relationship between users and check-in data, as we
can construct a bipartite graph between them with the grid index introduced
in Sect. 4.1.

5.3 Parameter Settings

For all TUL methods, each grid cell is embedded into a 250-dimensional vector.
The learning rate and the dropout rate are set to 0.0005 and 0.5 respectively.
TULER, TULAR, TULVAE, and STULIG adopt two-layer stacked RNNs. ReLU
is the activation function and Adam is the optimizer for all models. The batch
size of all methods on datasets BHT, GOW, and FQ is 64, and the size is set
to 32 on dataset TW. Notably, we report the best performance of all compared
methods in this section.

5.4 Experimental Results

Table 1 presents the performance of all methods on four datasets, where the
best results are highlighted in bold. From the table, we have the following
observations. (1) TULAR performs better than other TUL methods, as it
implements training with arbitrary length trajectories, while TULER-LSTM,
TULER-GRU, BiTULER, TULVAE, and STULIG set a fixed length for all
trajectories, which may lead to the loss of information. (2) Graph embedding
approaches (i.e., DeepWalk, Node2vec, and BiNE) have better results than all
TUL methods. This is because the latter are designed for continuous trajecto-
ries, and these sequential models cannot handle discrete check-in records effec-
tively, while the former can extract more effective user features with the bipar-
tite graph constructed based on our proposed grid index. (3) Without surprise,
the model CULVAE performs better than all compared methods, as we use the
latent distribution z instead of the check-in records as the input of the link
module, and the application of the objective function of semi-supervised VAE
and KL divergence disentanglement enables the latent distribution to obtain
better user representation.
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Table 1. Comparison of CULVAE with others methods on four datasets

BHT GOW
Method ACC@1 ACC@5 Macro-F1 ACC@1 ACC@5 Macro-F1

TULER-LSTM 54.95% 62.47% 53.10% 61.26% 70.32% 59.03%

TULER-GRU 55.01% 62.61% 53.83% 61.18% 69.52% 59.93%

BiTULER 55.28% 63.07% 55.29% 62.54% 70.81% 61.20%

TULVAE 59.43% 68.14% 59.13% 66.70% 74.56% 64.86%

STULIG 62.81% 71.40% 60.98% 67.52% 76.16% 65.40%

TULAR 64.24% 73.86% 62.10% 71.89% 78.67% 68.75%

DeepWalk 80.92% 91.20% 77.44% 88.50% 96.20% 86.25%

Node2vec 84.98% 94.08% 80.76% 90.80% 97.50% 85.86%

BiNE 83.36% 93.23% 80.94% 88.00% 96.60% 85.45%

CULVAE 87.60% 94.45% 85.18% 92.70% 97.81% 91.78%
FQ TW

Method ACC@1 ACC@5 Macro-F1 ACC@1 ACC@5 Macro-F1

TULER-LSTM 34.71% 45.12% 32.49% 41.91% 57.76% 38.23%

TULER-GRU 34.40% 45.46% 32.53% 42.12% 58.28% 38.68%

BiTULER 35.87% 45.67% 33.43% 42.63% 58.66% 39.42%

TULVAE 38.01% 49.49% 34.69% 46.14% 63.40% 43.15%

STULIG 39.25% 51.08% 36.81% 47.04% 65.45% 44.28%

TULAR 40.74% 53.46% 38.93% 49.63% 68.57% 46.30%

DeepWalk 60.90% 74.59% 57.11% 61.09% 83.40% 53.68%

Node2vec 63.23% 75.99% 57.76% 75.31% 90.60% 66.48%

BiNE 63.69% 75.41% 59.98% 71.87% 89.87% 66.60%

CULVAE 67.30% 76.68% 65.58% 77.16% 91.10% 73.43%

5.5 Ablation Study

To investigate the benefits brought by different components of CULVAE, we
conduct the ablation study and compare the performance of the following meth-
ods. (1) CULVAE-SD: the method eliminates semi-supervised learning and the
application of disentanglement, and adopts unsupervised learning to complete
the generation task. (2) CULVAE-S: the approach only leverages the disentan-
glement. (3) CULVAE-D: the approach only leverages semi-supervised learning
without the application of disentanglement. (4) CULVAE: our proposed model
employs both semi-supervised learning and disentanglement.

From Fig. 4, all other methods perform better than CULVAE-SD, as both
semi-supervised learning and disentanglement are not considered in it. Addi-
tionally, we can observe that the results of CULVAE-D are higher than those
of CULVAE-S, which proves that semi-supervised learning brings more improve-
ment than disentanglement for our model. This is because the latent distribution
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Fig. 4. Results of ablation study

of VAE based on semi-supervised learning can learn the location features of each
user with an irregular distribution more effectively. Specifically, in the genera-
tion task, the latent distribution generated by the encoder is concatenated with
the user’s label, which makes the generation process more directional. During
the optimization of VAE, the objective function guides these latent distributions
to describe users’ check-in records, which leads to the effective characterization
of users’ features. Furthermore, the highest ACC@1, ACC@5, and Macro-F1 of
CULVAE demonstrates the necessity of considering both semi-supervised learn-
ing and disentanglement.

Fig. 5. Performance of CULVAE w.r.t. varied embedding size

5.6 Parametric Experiment

The embedding size of the latent distribution is a key parameter for our proposed
model. Figure 5 presents the results of CULVAE with different embedding sizes
on four datasets. Observed from which, the larger this parameter, the better
representation of user features. The reason is that we can collect more abundant
and useful information from the check-in records with a larger embedding size
of the latent distribution. Meanwhile, when the size of the latent distribution
exceeds a certain value, the metrics tend to be stable, and it leads to the slower
convergence of the model. Consequently, we set the embedding size to 1000,
2000, 2000, and 2000 for BHT, GOW, FQ, and TW respectively.

The size of the check-in dataset refers to the number of records to be consid-
ered. By way of illustration, the range 0–10 in Fig. 6 means that we only consider
users that have less than 10 check-in records, and > 500 denotes all users having
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Fig. 6. Performance of CULVAE with different sizes of check-in dataset

more than 500 records. Without surprise, we observe the increasing tendency of
the experimental results with the increase of this number. This is because more
information is extracted with a larger number of check-in records. Additionally,
the occasional drop in Fig. 6 may be caused by the noise information contained
by the given dataset.

6 Conclusion and Future Work

Linking check-in records to theirs owners on location-aware social networks can
serve a wide range of applications, such as POI recommendation, location predic-
tion, and route planning, thus we formulate and investigate the problem CUL in
this work. To alleviate the problems of irregularity and data sparsity, we develop
a novel semi-supervised model namely CULVAE, which contains four different
modules, i.e., grid division, encoder, decoder, and linking. The experiments con-
ducted on four real-world datasets demonstrate the higher performance of CUL-
VAE than that of the state-of-art approaches. In the future, we can investigate
the problem CUL across multiple platforms, since many users share statues on
different social networks.
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dation of China under Grant No. 61902270, and the Major Program of the Natural
Science Foundation of Jiangsu Higher Education Institutions of China under Grant
No. 19KJA610002.
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Abstract. Subspace clustering, which aims to cluster the high-
dimensional data samples drawn from a union of multiple subspaces, has
drawn much attention in machine learning and computer vision. As a typ-
ical subspace clustering method, latent low-rank representation (LLRR)
can handle high-dimensional data efficiently. However, the nuclear norm
in its formulation is not the optimal approximation of the rank function,
which may lead to a suboptimal solution for the original rank minimiza-
tion problem. In this paper, a weighted Schatten-p norm (WSN), which
can better induce low rank, is used to replace the nuclear norm in LLRR,
resulting in a novel latent low-rank representation model (WSN-LLRR)
for subspace clustering. Furthermore, considering both the accuracy and
convergence rate, we present an efficient optimization algorithm by using
the alternating direction method of multipliers (ADMM) to solve the pro-
posed model. Finally, experimental results on several real-world subspace
clustering datasets show that the performance of our proposed method
is better than several state-of-the-art methods, which demonstrates that
WSN-LLRR can get a better accurate low-rank solution.

Keywords: Subspace clustering · Latent low-rank representation ·
Weighted schatten-[spsdollar1dollarsps] norm

1 Introduction

Subspace clustering aims to cluster the high-dimensional data samples drawn
from a union of multiple subspaces, into their corresponding low-dimensional
subspaces. It has various real-world applications in computer vision [12], machine
learning [8], image processing [17], etc. Recently, the low-rank representation
(LRR) [9,10] based subspace clustering technique has been widely studied owing
to its ability to capture the global structures of the high-dimensional data. LRR
aims at seeking the lowest-rank representation of all data jointly by solving a
rank minimization problem [9,10].
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However, LRR may suffer from the issue of insufficient sampling [11]. To
overcome this drawback, Liu et al. [11] suggested using the latent low-rank repre-
sentation (LLRR) model, which considers both the observed and the unobserved
data came from the same collection of low-rank subspaces. This problem can be
formulated as:

min
Z

rank(Z) s.t. XO = [XO,XH ]Z, (1)

where XO and XH are the observed and the unobserved data matrix, respec-
tively. The concatenation (along column) of the XO and XH is used as the
dictionary. Unfortunately, the problem (1) is NP-hard. To make the above NP-
hard problem solvable, researchers suggested relaxing the rank function with
some convex functions. For example, LRR [9,10], LLRR [11], and LRRSC [3]
replace the rank function with the nuclear norm, which is defined as the sum of
all singular values of a matrix.

However, the obtained results may be the suboptimal solution since the
nuclear norm process all the singular values equally. Therefore, recently
researchers have developed several more efficient non-convex surrogate functions
to approximate the rank function [16,21–23]. In [16], Nie et al. proposed the
Schatten-p norm to enforce the low-rank regularization. Based on the Schatten-p
norm, Zhang et al. [27] and Cao et al. [2] presented the Schatten-p norm regu-
larized LRR (SPM) and LLRR (Sp-LLRR) for the subspace clustering problem,
respectively. However, the Schatten-p norm ignores the importance of different
rank components, which ultimately affects the improvement of the clustering
performance. To alleviate such a problem, Xie et al. [23] proposed the weighted
Schatten-p norm, which assigns suitable weights to different singular values. In
[26], Zhang et al. proposed the weighted Schatten-p norm and lq-norm regular-
ized LRR (WSPQ) for subspace clustering. Although WSPQ can achieve better
low-rank properties and robustness to various noises, it is only an enhanced
version of LRR and can not handle the issue of insufficient sampling.

In this paper, a novel LLRR model for the subspace clustering problem,
namely, weighted Schatten-p norm regularized LLRR (WSN-LLRR), is pro-
posed. It can obtain a low-rank representation of all the high-dimensional data
samples more accurately than LLRR and overcomes the issue of insufficient sam-
pling in WSPQ. Benefiting from these merits, the proposed model can effectively
improve the subspace clustering performance. However, the introduced weighted
Schatten-p norm is a non-convex low-rank regularizer, leading to a non-convex,
non-smooth optimization problem and is not trivial to solve. To solve the above
problem, we design an efficient optimization algorithm by using the alternat-
ing direction method of multipliers (ADMM) [1,13] framework. The proposed
optimization algorithm has promising accuracy and convergence speed. Mean-
while, experimental results on Extended Yale B, ORL, and COIL-20 datasets,
show that our proposed subspace clustering method can obtain better clustering
performance than the state-of-the-art algorithms.
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2 Related Work

2.1 Low Rank Representation (LRR)

Given an observed data matrix X = [x1, x2, ..., xn] ∈ R
d×n drawn from a union of

multiple different subspaces, each data vector xi ∈ R
n×1 denotes a data sample

and can be represented by the linear combination of the other data vectors.
LRR aims at finding the lowest-rank representation of all data jointly by solving
a rank minimization problem [9,10]. LRR replaces the rank function with the
nuclear norm, and optimizes the following constraint problem:

min
Z

‖Z‖∗ + λ‖E‖2,1 s.t. X = XZ + E, (2)

where ‖E‖2,1 =
∑d

j=1

√∑n
i=1 E2

ij denotes the l2,1-norm to model the error E ∈
R

d×n, λ > 0 is a balance parameter. The optimal solution Z∗ to the problem
(2) is block-diagonal that can uncover the structure of subspaces [9].

Considering that the nuclear norm in problem (2) may lead to the obtained
solution deviating from the optimal solution for the original rank minimization
problem, and the l2,1-norm can not model different noises, Zhang et al. [26]
proposed the weighted Schatten-p norm and lq-norm regularized LRR (WSPQ)
for subspace clustering:

min
Z

‖Z‖p
w,Sp

+ λ‖E‖q s.t. X = XZ + E. (3)

where ‖Z‖p
w,Sp =

∑n
i=1 wiσ

p
i (0 < p ≤ 1) is the weighted Schatten-p norm of

the coefficient matrix Z, w = [w1, w2, ..., wn] is a non-negative weights vector,
and ‖E‖q =

∑d
i=1

∑n
j=1 |Eij |q. Although WSPQ can achieve better low-rank

properties and robustness to different noise, it is only an enhanced version of
LRR and can not handle the issue of insufficient sampling.

2.2 Latent Low Rank Representation (LLRR)

To address the issue mentioned above, Liu et al. [11] suggested using the latent
low-rank representation (LLRR) model, in which both the observed and the
unobserved data sampled from the same collection of low-rank subspaces, are
considered to construct the dictionary. Such a model can be formulated as:

min
Z

‖Z‖∗ + ‖L‖∗ + λ‖E‖1 s.t. X = XZ + LX + E, (4)

where Z ∈ R
n×n and L ∈ R

d×d denotes the coefficient matrix, λ > 0 is a
trade-off parameter, l1-norm is used to model the error term E, here ‖E‖1 =
∑d

i=1

∑n
j=1 |Eij |. The optimal solution Z∗ to the problem (4) is also block-

diagonal that can be used for subspace clustering.



WSN-LLRR for Robust Subspace Clustering 507

3 Robust Subspace Clustering Based on Weighted
Schatten-p Norm Minimization

3.1 The Proposed Model

We formally introduce the proposed non-convex weighted Schatten-p norm reg-
ularized LLRR model (WSN-LLRR), i.e.,

min
Z,L,E

‖Z‖p
w,Sp

+ ‖L‖p
w,Sp

+ λ‖E‖1 s.t. X = XZ + LX + E. (5)

The weighted Schatten-p norm introduced in our model can better induce low
rank, therefore, our model can obtain a low-rank representation of all the high-
dimensional data samples more accurately than the LLRR model.

3.2 Optimization

The problem (5) is non-convex, non-smooth, and difficult to solve. To address
this issue, we design an efficient optimization algorithm by using the ADMM
framework. By introducing two auxiliary variables J and S, problem (5) can be
reformulated as the following equivalent problem:

min
Z,L,J,S,E

‖J‖p
w,Sp

+ ‖S‖p
w,Sp

+ λ‖E‖1
s.t. X = XZ + LX + E,Z = J, L = S. (6)

The above model can be transformed into the following augmented Lagrangian
function form:

Γ(J, S, Z, L,E, Y1, Y2, Y3, μ)
=‖J‖p

w,Sp
+ ‖S‖p

w,Sp
+ λ‖E‖1 + 〈Y1,X − XZ − LX − E〉 + 〈Y2, Z − J〉

+ 〈Y3, L − S〉 +
μ

2
(‖X − XZ − LX − E‖2F + ‖Z − J‖2F + ‖L − S‖2F ), (7)

where Y1 ∈ R
d×n, Y2 ∈ R

n×n, and Y3 ∈ R
d×n are the augmented Lagrangian

multipliers, μ > 0 is the penalty parameter, 〈·, ·〉 and ‖ · ‖F are the matrix inner
product and Frobenius norm of a matrix, respectively. We can alternatively
update the variables J , S, Z, L, E while fixing the others as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jk+1 = arg min
J

1
μk

‖J‖p
w,Sp

+ 1
2‖J − (Zk + Y2,k

μk
)‖2F (8)

Sk+1 = arg min
S

1
μk

‖S‖p
w,Sp

+ 1
2‖S − (Lk + Y3,k

μk
)‖2F (9)

Zk+1 = arg min
Z

‖Jk+1 − (Z + 1
μk

Y2,k)‖2F
+‖Ek − (X − XZ − LkX + 1

μk
Y1,k)‖2F (10)

Lk+1 = arg min
L

‖Sk+1 − (L + 1
μk

Y3,k)‖2F
+‖Ek − (X − XZk+1 − LX + 1

μk
Y1,k)‖2F (11)

Ek+1 = arg min
E

λ
μk

‖E‖1 + 1
2‖E − (X − XZk+1 − Lk+1X + Y1,k

μk
)‖2F(12)
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(1) Update J: problem (8) is a weighted Schatten-p norm minimization
problem and can be translated into multiple independent subproblems, which
are described in Lemma 1.

Lemma 1. (see [23]) Let Y = UΣV T be the SVD of Y ∈ R
d×n, where Σ = diag

(σ1, σ2, ..., σr), r = min(d, n), and all the singular values are in non-ascending
order. Then, the optimal solution to the following problem:

min
X∈Rd×n

λ‖X‖p
w,Sp

+
1
2
‖X − Y ‖2F (13)

will be X∗ = UΣ∗V with Σ∗ = diag(δ1, δ2, ..., δr), where δi is given by solving
the following problem:

min
δ1,...,δr

r∑

i=1

[
1
2
(δi − σi)2 + λwiδ

p
i ] s.t. δi ≥ 0, and δi ≥ δj , for i ≤ j. (14)

If the weights wi (i = 1, ..., r) are in non-descending order, problem (14) can be
decoupled into r independent lp-norm minimization problems:

min
δi≥0

fi(δ) =
1
2
(δi − σi)2 + λwiδ

p
i , i = 1, 2, ..., r, (15)

then, each subproblem can be solved by the generalized soft-thresholding (GST)
algorithm [28], which is shown in Lemma 2.

Lemma 2. (see [28]) Given y ∈ R, p, and λ > 0, an optimal solution to

min
x

1
2
(x − y)2 + λ|x|p, (16)

is described as:

x∗ =
{

0 |y| ≤ τGST
p (λ)

sgn(y)SGST
p (|y|;λ) |y| > τGST

p (λ) , (17)

where τGST
p (λ) = [2λ(1 − p)]

1
2−p + λp[2λ(1 − p)]

p−1
2−p , and SGST

p (|y|;λ) can be
derived by solving the following problem:

SGST
p (|y|;λ) − |y| + λp[SGST

p (|y|;λ)]p−1 = 0 (18)

Based on the prior knowledge that the larger singular values of a matrix are
more important than the smaller ones since they provide the major information
of a matrix, therefore, the larger singulars should be shrunk less and the smaller
ones should be shrunk more. Following the suggestions in [6,23], we set the
weights as: wi = C

√
dn

/
(σi(J) + ε), where C > 0 is a constant, ε = 10−16 is to

avoid dividing by zero.
(2) Update S: problem (9) is also a weighted Schatten-p norm minimization

problem, which can be solved in the same way as problem (8).
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Algorithm 1. Solving problem (7) by ADMM
Input: Data matrix X, parameters λ, p

Initialization: Z = J = 0, L = S = 0, E = 0, Y1 = 0, Y2 = 0, Y3 = 0, μ =
10−6, maxµ = 1010, ρ = 1.5, ε = 10−6, k = 0

1: while not converged do
2: Sequentially update J , S, Z, L, E by solving problem (8), (9), (10), (11), (12),

respectively;
3: Update the multipliers as:

Y1 = Y1 + μ(X − XZ − LX − E), Y2 = Y2 + μ(Z − J), Y3 = Y3 + μ(L − S);
4: Update the parameter μ as: μ = min(ρμ, maxµ);
5: Check the convergence condition:

‖X − XZ − LX − E‖∞ < ε, ‖Z − J‖∞ < ε, ‖L − S‖∞ < ε,
6: end while
Output Coefficient matrix Z∗

(3) Update Z: problem (10) is a standard quadratic optimization problem
with closed-form solution:

Zk+1 = (I + XT X)−1(XT (X − LkX − Ek) + Jk+1 +
(XT Y1,k − Y2,k)

μk
) (19)

(4) Update L: similar to problem (10), problem (11) is also a standard
quadratic optimization problem with closed-form solution:

Lk+1 = ((X − XZk+1 − Ek)XT + Sk+1 +
(Y1,kXT − Y3,k)

μk
)(I + XXT )−1

(20)

(5) Update E: problem (12) is a l1-norm minimization problem with closed-
form solution. We first define Q = X − XZk+1 − Lk+1X + Y1,k

μk
, then Ek+1 can

be calculated element-wisely, and each (Ek+1)ij can be obtained as follows:

(Ek+1)ij =
{

Qij − λ
μk

sgn(Qij) if |Qij | < λ
μk

0 otherwise
. (21)

Finally, we summarize the overall optimization procedure of problem (7) in
Algorithm 1.

3.3 The Complete Clustering Algorithm

As in [9,11], the coefficient matrix Z∗ solved in Algorithm 1 is used to conduct
subspace clustering. We first calculate the skinny SVD of Z∗, denoted as Z∗ =
U∗Σ∗(V ∗)T , then, the affinity matrix W is defined via [W ]ij = ([HHT ]ij)2a,
where H = U∗(Σ∗)

1
2 , a is a parameter usually chosen from {2, 3, 4}. Finally,

spectral clustering techniques such as Normalized Cuts (NCut) [20] could be
applied on W to produce the final clustering results.
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3.4 Complexity Analysis

For a data matrix X of size d × n, the time costs of the complete clustering
algorithm is mainly at updating J , S, Z, L and E in Algorithm 1. Updating both
J and S needs to calculate the SVD, which costs O(n3) and O(d3), respectively.
The GST algorithm in updating J and S costs O(Kn) and O(Kd), respectively,
where K is the number of iterations in the GST algorithm. Updating Z and
L costs O(dn2) and O(d2n), respectively. Updating E costs O(n3). Therefore,
the overall computational complexity of the proposed clustering algorithm is
O(k(d3+2n3+d2n+dn2+Kd+Kn)), where k denotes the number of iterations
in Algorithm 1.

4 Experiments

4.1 Settings

In this section, we conduct experiments to evaluate the performance of our pro-
posed model on three representative benchmark datasets: the Extended Yale B
dataset [5], the ORL dataset [18], and the COIL-20 dataset [15]. We compared
our proposed WSN-LLRR algorithm against several state-of-the-art subspace
clustering methods including SSC [4], LRR [9], LLRR [11], ARM [7], WSPQ
[26], LRRSC [3], and FLLRR [24]. The clustering results of all methods are
generated from the source codes provided by the authors, and the parame-
ters are set according to the original papers. In our method, we select λ from
{10−5, 10−4, 10−3, 10−2, 10−1, 100, 101}, and choose p from 0.1 to 1 with interval
0.1.

Three standard clustering metrics, clustering accuracy (ACC) [14], normal-
ized mutual information (NMI) [14], and adjusted rand index (AR) [25] are used
to evaluate the clustering performance. The ACC is defined as:

ACC =
N(accurately clustered samples)
N(total of clustered samples)

. (22)

The NMI of A and B is defined as follows:

NMI(A,B) =
I(A,B)

√
H(A)H(B)

, (23)

where I(, ·, ) and H(·) denote the mutual information and information entropy,
respectively. The definition of AR [19] is as:

AR =

(
n
2

)
(a + d) − [(a + b)(a + c) + (c + d)(b + d)]
(
n
2

)2 − [(a + b)(a + c) + (c + d)(b + d)]
, (24)

where n is the number of objects. We define M and N as the true partition and
clustering results, respectively, then, a is the number of objects in a pair placed
in the same group in M and the same group in N , b is the number of objects in
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a pair placed in the same group in M and different groups in N , c is the number
of objects in a pair placed in the same group in N and different groups in M ,
and d is the number of objects in a pair placed in different groups in M and
different groups in N .

All the experimental results are produced in MATLAB R2014a on a desktop
PC with Windows Server 2008, an Intel (R) Xeon(R) CPU E5-2680 2.40GHz,
and 256 GB RAM. We conduct each experiment 10 times and record the average
result.

4.2 Experiments on Extended Yale B Dataset

This dataset contains 38 different individuals, each consisting of 64 frontal face
images with 192 × 148 pixels shooted under different lights condition, For ease
the computational cost and memory, these images are downsampled to 48 × 42
pixels. The first 10 individuals of this dataset, namely EYaleB 10, are used in
this experiment, therefore, there are 640 images in this subset and the raw pixels
of each image are organized into a vector with dimensions 2016-D (48×42). The
experimental results by competing methods are shown in Table 1, where the best
results are highlighted in bold. It can be seen that our proposed method outper-
forms other competitive approaches in terms of the three metrics. Specifically, the
improvement of our proposed method is significant against LLRR and FLLRR.
This is because the weighted Schatten-p norm in WSN-LLRR can approximate
the actual rank of data better. The reason why WSPQ and ARM get better
results than LRR is their better rank approximation. LRRSC introduces the
symmetric constraint in LRR and obtains the second-best results.

Table 1. Clustering results of competing methods (%) for EYaleB 10 dataset

Metrics Methods
LRR SSC LLRR ARM WSPQ LRRSC FLLRR Ours

ACC 79.06 76.88 86.56 94.53 94.38 96.09 86.72 96.41
NMI 82.84 76.31 82.43 91.11 90.97 92.14 91.07 92.97
AR 69.10 60.90 67.11 86.92 86.56 91.38 84.55 91.84

Table 2. Clustering results of competing methods (%) for ORL dataset

Metrics Methods
LRR SSC LLRR ARM WSPQ LRRSC FLLRR Ours

ACC 72.50 77.00 77.25 78.25 79.50 79.25 75.50 82.50
NMI 85.47 89.32 87.52 89.49 89.85 90.82 89.01 91.85
AR 58.96 68.79 66.25 68.88 70.67 72.15 68.02 75.38
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4.3 Experiments on ORL Dataset

There are 40 different individuals in the ORL dataset, each subject contains 10
facial images shooted under different illumination and facial expression. Each
image is downsampled to 40 × 30 pixels. The raw pixels of each image are orga-
nized into a vector with dimensions 1200-D. Because the differences between each
image of an individual are much more complex, this dataset is more challenging.
In this experiment, we use the whole dataset. Table 2 shows the clustering results.
One can see that our proposed method achieves the best results in terms of the
three metrics. Specifically, WSN-LLRR improves the ACC, NMI, and AR of the
other methods by at least 3.25%, 1.03%, and 3.23%, respectively. This validates
the efficiency of our proposed method over the other competing methods.

Table 3. Clustering results of competing methods (%) for COIL-20 8 dataset

Metrics Methods
LRR SSC LLRR ARM WSPQ LRRSC FLLRR Ours

ACC 78.47 80.04 80.56 81.25 78.65 81.08 80.73 81.25
NMI 85.71 91.46 90.32 88.49 84.55 91.70 88.44 89.84
AR 76.39 80.51 80.38 76.84 75.75 81.85 79.40 76.99

Fig. 1. Clustering results on the EYaleB 10 dataset (%) with varying p and λ.

4.4 Experiments on COIL-20 Dataset

The COIL-20 dataset contains 1440 object images with a black background,
which come from 20 subjects. Images of each subject were shooted at pose inter-
vals of 5 ◦C, finally, resulting in a total of 72 different images. We resize the
images and put the pixels of each image into a vector with dimension 1024-D
(32× 32). The first 8 classes of this dataset, namely COIL-20 8, are used to con-
duct experiments. Therefore, there are 576 images in the subset and we construct
the data matrix with size 1024 × 576. Table 3 shows the experimental results.
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It can be seen that our proposed WSN-LLRR and ARM achieve the best result
in terms of ACC, namely 81.25%, which achieves a higher value of 0.17% than
the second-best result of LRRSC. In terms of NMI, WSN-LLRR also achieves
comparable results. LRRSC achieves the best results concerning AR.

4.5 Parameter Selection

The proposed model WSN-LLRR has two important parameters p and λ, where
p is to guarantee the low-rank property of the coefficient matrix, and λ is used to
balance the effects between the data term and the low-rank terms. The EYaleB
10 dataset is utilized to test the effectiveness of p and λ. Experimental results
are given below of the clustering accuracy variation under the varying p values
in steps of 0.1. The vertical axis denotes the clustering accuracy subject to p.
From Fig. 1 (a), one can see that, when p = 0.6, the proposed method achieves
relatively better clustering accuracy. In theory, the closer p is to 0, the closer the
weighted Schatten-p norm is to the rank function, therefore, an intuitive way to
set p is that p should be set to a small value. However, we usually do not choose
such a strategy in practice since noises and outliers in data will destroy the low-
rank property of the data matrix, therefore, the strong low-rank constraint is not
suitable. In addition, the parameter λ greatly affects the clustering performance
of our proposed method. Figure 1 (b) shows the experimental results on the
EYaleB 10 dataset in terms of ACC, NMI, and ARI. When λ ranging from 0.1
to 1, ACC varies between 96.41% to 10.78%. This reminds we need to select λ
carefully.

Fig. 2. Convergence curves of WSN-LLRR on three datasets.

4.6 Convergence Analysis

It is not easy to analyze the convergence property of the proposed WSN-LLRR
theoretically since the non-convex nature of the weighted Schatten-p norm. In
this subsection, we provide quantitative results to prove the model’s conver-
gence. For each iteration in the optimization process, we record the relative
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residual error: ‖X−XZ−LX−E‖F

‖X‖F
. Figures 2 (a), (b), and (c) shows the relation-

ship between relative residual error and iterative number on the EYaleB 10,
ORL, and COIL-20 8 datasets, respectively. One can see that the relative errors
can close to 10−6 within 100 iterations on three datasets, which verifies the good
convergence property of the proposed WSN-LLRR model.

5 Conclusion

In this paper, a new robust subspace clustering model based on latent low-rank
representation and the weighted Schatten-p norm is proposed. Specifically, the
proposed model is better to induce low rank than the nuclear norm in the stan-
dard LLRR model. Moreover, an efficient optimization algorithm based on the
ADMM framework is presented to solve the proposed model. Finally, experi-
mental results on Extended Yale B, ORL, and COIL20 datasets show that the
proposed model can get higher clustering accuracy than other state-of-the-art
methods. In addition, we discuss the selection of parameters and verify the pro-
posed model can reach convergence within relatively few iterations. Our future
work is to do more theoretical research on the selection of parameters and apply
the proposed model to multi-view data.
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Abstract. Symbolic regression has multiple applications in data mining
and scientific computing. Genetic Programming (GP) is the mainstream
method of solving symbolic regression problems, but its execution speed
under large datasets has always been a bottleneck. This paper describes
a CUDA-based parallel symbolic regression algorithm that leverages the
parallelism of the GPU to speed up the fitness evaluation process in sym-
bolic regression. We make the fitness evaluation step fully performed on
the GPU and make use of various GPU hardware resources. We com-
pare training time and regression accuracy between the proposed app-
roach and existing symbolic regression frameworks including gplearn,
TensorGP, and KarooGP. The proposed approach is the fastest among
all the tested frameworks in both synthetic benchmarks and large-scale
benchmarks.

Keywords: Symbolic regression · Genetic programming · Parallel
algorithm · Graphics processing unit (GPU) · Compute unified device
architecture (CUDA)

1 Introduction

Exploring and learning relationships from data is the central challenge of the
sciences. Among various methods [33,34] for achieving this goal, symbolic regres-
sion [3] which can represents such relationships as a concise and interpretable
function is the most popular [32]. It has a wider range of applications in curve
fitting [14], data modeling [17], and material science [35].

Symbolic regression is achieved as an optimization problem. Given a dataset
(X, y), symbolic regression is achieved by optimizing an interpretable function
f(X) : Rn → R to minimize the loss D(f(X), y). Achieving symbolic regres-
sion has two common approaches: Genetic Programming (GP) method [23] and
neural network (NN) method [6,24,28]. As one of the Evolutionary Algorithms
(EA), GP optimizes solutions by imitating the evolution procedure in nature
and aims to find global optima. GP is a generalized heuristic search technique
used to optimize a population of computer programs according to a fitness func-
tion that determines the program’s ability to perform a task. Due to its flexible
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 519–533, 2022.
https://doi.org/10.1007/978-3-031-20862-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20862-1_38&domain=pdf
https://doi.org/10.1007/978-3-031-20862-1_38
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representation and good global search ability, GP is the mainstream method
for solving symbolic regression problems. The advantage of GP-based symbolic
regression compared to the recent neural network (NN) methods [6,24,28] is that:
the black-box-like solutions provided by NNs are hard to explain and interpret
by users. In GP-based symbolic regression, each candidate solution in the pop-
ulation is represented as an expression tree, and the evolutionary process of all
participating programs is visible to the user. The user can intuitively discover
the characteristics of the data by the features of the different participating pro-
grams. Therefore, GP can evolve programs with the potential for interpretability.
On the other hand, GP can automatically evolve structures and parameters of
programs, which can eliminate the need for the manual design of NN structures.

However, GP is known for its poor scalability. The main reason is that the
fitness of each GP program is evaluated on the whole dataset in each generation,
causing the GP algorithm to be computationally expensive and time-consuming.
Thus, fitness evaluation is the bottleneck of GP in large-scale problems [8]. There
are various previous works to optimize the fitness evaluation step of GP, such
as caching fitness results of subtree [19], eliminating the need for fitness [7], and
computational parallelization. In symbolic regression problems, using computa-
tional parallelization is the most effective way to speed up the fitness evaluation
step, especially performing parallelizing through GPUs, which can execute thou-
sands of threads in parallel and excel at processing multiple threads using Single
Instruction Multiple Thread (SIMT) [11] intrinsic. The existing GPU approaches
can be broadly grouped into these two categories:

1) Performing data vectorization and leveraging existing data vectorization
interfaces. TensorGP [5] and KarooGP [30] are two common GPU-enabled
GP frameworks that support symbolic regression. Both of them are based on
the Tensorflow [1] interface. KarooGP adopts the Graph Execution Model
[15] of Tensorflow and consequently has a slow execution speed. TensorGP
requires a dataset in tensor type, and it does not support regression in real-
world datasets well due to this limitation.

2) Directly leveraging GPU parallelization by involving more threads in the com-
putation of the fitness evaluation phase. A SIMD interpreter [22] is developed
to evaluate the whole population of GP in parallel. The interpreter computes
the intermediate value of the current node each time the kernel is launched,
which avoids the use of switch-case statements on the GPU to identify the
type of the node. However, the frequent launching of kernel functions will
cause the delay. Chitty [9] improves the stack structure and stores the prefix
on the shared memory. Although better performance is obtained compared
to that without memory access restrictions, they do not make greater use of
the GPU hardware resources.

To better leverage the multi-threaded parallel computing capability of the
GPU in GP-based symbolic regression, this paper proposes a GPU parallel app-
roach to accelerate the fitness evaluation of GP-based symbolic regression. We
use the constant memory for program storage, global memory for the stack that
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records the temporary fitness results, and shared memory for the parallel met-
ric reduction. The whole dataset and the evaluated program are stored in the
device-side memory so that the fitness evaluation step of the proposed method
can be performed entirely on the GPU. In the fitness evaluation process of a
single GP program, the loss of the program in each fitness case will be executed
simultaneously using the GPU parallelism. The experiment results demonstrate
that the proposed approach outperforms other GP-based symbolic regression
frameworks in execution speed without degradation in regression accuracy. The
idea and the novel data structures of the proposed parallel algorithm can be used
not only in symbolic regression but also can be generalized to similar stack-based
GP methods. The contributions of this work are:

1) We create the GPU acceleration in the fitness evaluation step by using the
CUDA C/C++ layer and the code is released at the following address:
https://github.com/RayZhhh/SymbolicRegressionGPU.

2) We accelerate the fitness evaluation step by optimizing data structures for
symbolic regression on the device side and performing a parallel metric reduc-
tion on the GPU, which fully leverages the GPU computational capability.

3) We evaluate the proposed approach against common CPU and GPU frame-
works through synthetic datasets and real-world datasets. The proposed app-
roach turns out to be the fastest among all regression tasks.

2 Background and Related Work

This section introduces the GP algorithm and its application in symbolic regres-
sion. We also introduce existing GP frameworks that support symbolic regression
algorithms.

2.1 Genetic Programming

GP has four major steps: population initialization, selection, mutation, and eval-
uation. GP algorithm uses random mutation, crossover, a fitness function, and
multiple generations of evolution to resolve a user-defined task. GP programs are
often represented as syntax tree [29]. The structure of the syntax tree is defined
by [29] as follows:

• The ‘leaves’ of the syntax tree are called terminals. They are variables, con-
stants, and no-parameter functions in the program.

• The inner nodes of the tree are called functions.
• The depth of a node is the number of edges that need to be traversed to reach

the node starting from the tree’s root node (which is assumed to be at depth
0).

• The depth of a tree is the depth of its deepest leaf (terminal).

https://github.com/RayZhhh/SymbolicRegressionGPU
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2.2 Existing GP Frameworks

The gplearn [31] is implemented based on the scikit-learn [27] machine learning
framework. According to [4], gplearn can also perform parallelization, but the
parallelization can be used only on the mutation step. Our tests did not find that
gplearn’s multithreading parameters could effectively improve the computing
speed. We disabled this parameter in our later benchmarks. DEAP [13] is another
GP framework implemented by Python that provides CPU-based parallelization.

TensorGP and KarooGP are two GPU supported frameworks. Both frame-
works are based on the interface of TensorFlow [1] for data vectorization. In the
fitness evaluation step, TensorGP represents terminal and variable as the tensor
with the same dimension as the input dataset. The metric is calculated by ten-
sor operations (such as tensor multiplication, tensor addition, etc.) provided by
Tensorflow. The required dataset of TensorGP is limited to a tensor for a set of
points uniformly sampled in the problem domain. So it will be inapplicable when
facing real-world problems since the required tensor can not be constructed. Dif-
ferent from TensorGP which leverages the tensor calculation interface, our work
makes more intuitive use of GPU parallelism by having threads perform calcu-
lations on each data point. TensorGP adopts the Eager Execution Model [2] of
TensorFlow, while KarooGP adopts the Graph Execution Model [15] of Tensor-
Flow, which means that in KarooGP, each internal program has to be compiled
into a DAG (Directed Acyclic Graph) before having fitness calculation. Accord-
ing to our experimental results and the conclusion in [4], TensorGP turns out to
be much faster than KarooGP.

Several papers [4,5] adopt Pagie polynomial [26] as the speed benchmark for
GP-based symbolic regression frameworks. Pagie polynomial is considered to be
challenging to approximate and it is recommended by several GP benchmark
articles [16,25]. According to the results in [4], TensorGP (GPU) is faster than
other CPU and GPU frameworks including gplearn, KarooGP, and DEAP.

3 The Proposed Symbolic Regression Algorithm

In this section, we first explain the challenge in implementation. Then, we demon-
strate the process of our algorithms in chronological order of execution.

3.1 Challenge Faced

Directly porting the CPU code logic to the GPU produces only limited per-
formance improvement. This is because the warp divergence and unconstrained
memory access will greatly influence the performance of the GPU. Warp diver-
gence occurs when threads in a warp execute different code blocks. If they exe-
cute different if-else branches, all threads are blocked at the same time except
the one that is executing, which affects performance. The proposed algorithm
avoids warp divergence and also achieves coalesced data access by optimizing
data structures. Modern GPU architectures provide various components (e.g.,
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constant memory, global memory, and shared memory) with different features.
Our work takes the advantage of different components according to specific com-
puting tasks to make full use of the computing resources provided by the GPU.

[9] improves the stack structure and stores the prefix on the shared memory.
The improvement made in our work is that all blocks in the grid evaluate the
same program. Since there will not be a situation where each block evaluates
a different program, we store the programs in constant memory and leverage
the on-chip cache for memory access acceleration. This avoids the transfer from
global memory to shared memory. Our modification may result in GPU computa-
tional resources not being fully used on small-size datasets, while larger datasets
will ensure that the evaluation of a program will take up all GPU computational
resources.

The flow chart of the proposed algorithm is shown in Fig. 1. In the proposed
algorithm, the initialization, selection, and mutation steps are executed on the
CPU; the fitness evaluation step, which is the most expensive component in most
GP algorithms, is executed on the GPU.

Fig. 1. Process of the proposed algorithm. Memory allocation and free parts on the
GPU are ignored.

3.2 Memory Allocation and Dataset Transfer

This step is the initialization of the framework. Since the dataset will not be
modified on the device memory, we transfer it to the device side at the beginning.
This avoids the delay caused by memory transfer between the host side and
device side during fitness evaluation. We also allocate stack memory space in the
global memory and two arrays for a program in the constant memory, which can
be reused for the fitness evaluation of each generation. On the device side, threads
access memory in warp units. If threads of a warp read data with contiguous
addresses, CUDA will coalesce their accesses, performing only one memory access
request. Therefore, we design data structures for the stack and the dataset on
the device side that support coalesced memory access.

We first allocate device-side memory space through cudaMallocPitch(), then
the dataset is converted into the column-major type (shown in Fig. 2) and trans-
ferred to device-side memory through cudaMemcpy2D(). For column-major stor-
age, each time when threads access variables, the entire row of the dataset is
accessed. As the memory addresses of elements in a row are contiguous, coa-
lesced memory access is available. To achieve coalesced memory access, we also
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Fig. 2. The column-major storage of the dataset on the device side memory can achieve
the coalesced access.

do not allow threads to allocate independent stack memory. Instead, we con-
solidate the stack memory space they need. In our implementation, the stack
structure is essentially a 1D array. Our stack structure is shown in Fig. 3, with
512 threads per block used in this work.

Fig. 3. Device-side stack allocation.

As shown in Fig. 3, if stack_top is zero currently, all the threads will access
memory space in the box on the left side. And so on, if stack_top is one, threads
will access memory in the box on the right side. Memory access like this can lead
to a coalesced memory access that will greatly improve memory access efficiency.
The program will not be modified on the GPU, and it will be accessed by all the
threads. In our implementation, a program is stored in constant memory on the
GPU, where a single memory-read request to constant memory can be broadcast
to nearby threads, which saves memory-read-request times and speeds up the
memory access efficiency. In addition, caches can save data of constant memory,
so consecutive reads to the same address will not generate additional memory
access.

3.3 Population Initialization and Selection

Both initialization and selection are carried out on the CPU. Although the GPU
is based on the SIMT (Single Instruction Multiple Threads) architectures, the
performance of the GPU cannot be effectively utilized because threads will per-
form different tasks and execute different instructions when initializing programs,
which affects the performance. The proposed approach supports a user-defined
function set, as well as the three initialization methods including full initial-
ization, growth initialization, and ramped half-and-half [20]. In the selection
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step, the proposed approach only provides tournament selection [10,21]. The
proposed approach also provides a parsimony_coefficient parameter inspired by
[31] to prevent the bloating of programs.

In our implementation, we adopt an elitist preservation approach where the
candidate program with the best fitness of each generation goes directly into
the next generation. Elitist preservation can ensure that the fitness of the next
generation population is not inferior to the current population.

3.4 Mutation

Mutations take place on the CPU because each program is different that using
a GPU is not applicable. The proposed approach supports five mutation types:

• Crossover mutation: A random subtree of the parent tree is replaced by a
random subtree of the donor tree.

• Subtree mutation: A random subtree of the parent tree is replaced by a ran-
dom subtree of a randomly generated tree.

• Hoist mutation: Suppose A is a subtree of the parent tree, B is the subtree
of A, hoist mutation replaces A with B.

• Point mutation: A node of the parent tree is replaced by a random node.
• Point replace mutation: Any given node will be mutated of the parent tree.

Note that hoist mutation can lead to a decrease in program depth, which
can prevent the program from bloating. Since the stack structure we mentioned
earlier limits the maximum depth of the program. To avoid overflow during
fitness evaluation, if we find that the depth of a program exceeds the specified
maximum depth after mutation, the hoist mutation will be repeatedly performed
on the program until the depth of the program is less than the specified depth.

3.5 Fitness Evaluation

The fitness evaluation process is the most complicated part of our algorithm. In
this step, the CPU and GPU need to work together. The CPU is responsible for
data copy, and the GPU is responsible for data calculation. A program is first
converted into a prefix expression. Then, it will be transferred to the constant
memory allocated before. The process is illustrated in Fig. 4. The prefix is repre-
sented by two arrays that record the values and the types for nodes in the prefix.
The element ‘u’ denotes that the node is a unary function; ‘b’ denotes a binary
function; ‘v’ denotes a variable; ‘c’ denotes a constant. Nodes in different types
will correspond to different stack operations in the kernel function.

The metric calculation and reduction steps are performed on the GPU. Each
thread is responsible for calculating the predicted value for a data point with
the help of our device-side stack. The reverse iteration begins from the last
node to the first node of the program. For each node in the iteration, we make
the corresponding operation according to the type of the node. If the node is
a terminal, the thread simply pushes its value into the stack. If the node is
a function, the thread calculates the value according to the function type and
pushes the result into the stack.
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Fig. 4. Program transfers to the device-side memory. Each expression tree is repre-
sented by a prefix and each node of the prefix is identified by two tokens.

In the metric calculation step, each thread is responsible for the difference
value calculating between the predicted value and its corresponding real value.
The proposed approach supports three metric types, they are:

• MAE (Mean Absolute Error)
• MSE (Mean Squared Error)
• RMSE (Root Mean Squared Error)

The metric result computed by each thread will be stored in the shared memory,
which is an on-chip memory that offers fast access speed.

In the reduction step, each block is responsible for the sum of losses calculated
by its internel threads. The results of blocks are stored in a device-side array
allocated in the global memory, which is then copied to the host side. Figure 5
shows the reduction process on the device-side and host-side.

Fig. 5. Reduction on the GPU and the CPU.

After we get the sum of losses calculated by each thread, we will calculate the
final loss result according to the specified loss function. The above procedures
complete the evaluation of a single program, so these steps will be repeated until
all programs in the population obtain fitness. Note that the bank conflict needs
to be avoided in parallel reduction design, which occurs when multiple threads
simultaneously access different addresses of the same bank. Our implementation
ensures that threads in a warp are scattered across different banks during the
shared memory access to avoid bank conflict. The kernel function of the proposed
algorithm is shown in Algorithm 1.
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4 Experiments and Results

This section presents our experimental results on synthetic datasets and large-
scale real-world datasets.

Algorithm 1: Kernel function
Input: prefix, stack, dataset, realValue, result
Output: none
for node in prefix do

doStackOperation(node, stack, dataset);
end
metric = square(stack.top() - realValue);
sharedMem[threadID] = metric;
synchronize();
for i in [256, 128, 64, 32, 16 , 8, 4, 2, 1] do

// the loop is expanded in our inplementation
if threadID < i then

sharedMem[threadID] += sharedMem[threadID + i];
end
synchronize();

end
result[blockID] = sharedMem[0];

Table 1. Hardware and software specifications in synthetic benchmarks and large-scale
benchmarks.

Component Specification Component Specification

CPU AMD Ryzen 5 5600H CUDA Tool Kit Version 11.5
GPU NVIDIA RTX 3050 Laptop OS Windows 11
GPU RAM 4.0 GB Host RAM 16.0 GB

4.1 Benchmarks on Synthetic Datasets

We compare the average execution times between gplearn (CPU), TensorGP
(GPU), KarooGP (GPU), and the proposed approach. We also test the best
fitness after 50 iterations under different dataset sizes [4]. All tests employed in
synthetic benchmark concern the approximation of the Pagie Polynomial [26]
function defined by Eq. 1, following the conventions of GP community [4,16,25].

f(x, y) =
1

1 + x−4 +
1

1 + y−4 (1)

We generate 7 datasets of different size from 64 × 64 = 4, 096 data points
to 4096 × 4096 = 16, 777, 216 by uniformly subsampling data points from the
domain (x, y) ∈ [−5,−5]× [−5,−5]. Framework parameters are listed in Table 2.
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Table 2. Parameters for benchmarks.

Parameter Value Parameter Value

Population size 50 Generations 50

Tournament size 3 Fitness metric RMSE

Maximum initial depth 10 Maximum allowed depth 10

Crossover probability 0.9 Function set +, −, ×, ÷, sin, cos, tan

Mutation probability 0.08 Initialization method Ramped Half and Half

Table 3. Average execution time of 30 runs on NVIDIA GeForce RTX 3050 Laptop
GPU for various frameworks (lower is better). The symbol of “DNF” denotes that the
test does not finish within three hours. The symbol of “MAF” denotes that the memory
allocation failed on the GPU. The bold marks the minimum execution time for each
test.

Framework 4,096 16,384 65,536 262,144 1,048, 576 4,194,304 16,777,216

Our approach 0.152 0.215 0.193 0.331 0.886 3.034 11.851
TensorGP (GPU) 5.655 6.873 6.236 6.473 6.535 17.334 MAF

KarooGP (GPU) 27.42 47.92 60.08 123.97 367.21 DNF DNF

Gplearn (CPU) 1.731 2.936 8.897 53.006 174.228 DNF DNF

Fig. 6. Log-Log Plot of Execution Time for various frameworks on NVIDIA RTX 3050
Laptop GPU (Lower is better).

In our synthetic dataset experiment, we first compare the execution time of
different frameworks in different dataset sizes. We ran each experiment 30 times
and calculated the average execution time. The experimental results are shown
in Table 3 and Fig. 6.
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It can be seen from Table 3 that the proposed approach performs a faster
training speed than other GPU and CPU frameworks for different sizes of
datasets. Compared to gplearn which only supports CPU execution, the pro-
posed approach achieves a maximum speedup of 170× acceleration on the fourth
dataset (1,048,576 data points). The proposed approach is also faster than the
two GPU-supported frameworks across each dataset. To discuss the influence of
GPU models on the proposed algorithm, we also compare the execution speed on
different GPUs. The hardware and software specifications are shown in Table 4.
As shown in Table 5, the proposed approach is faster than TensorGP (GPU) in
all GPU models.

Table 4. Hardware and software specifications in various GPUs tests.

Component Specification Component Specification

CPU Intel Xeon Gold 6310 @ 2.1GHz RAM 32.0 GB

CUDA Tool Kit Version 11.0 OS Ubuntu 18.04.5

From these tests, we notice that under different GPU models, TensorGP did
not show an increasing trend in the dataset of 642 to 10242 data points. This may
be because the GPU-based tensor calculating interface provided by Tensorflow
works well for large-scale tensors, but there is little optimization for smaller
tensors. For the proposed algorithm, the regression time in 642 to 5122 data
points are similar, and the regression time of 5122 to 40962 dataset is close to
linear growth, this is because datasets less than 5122 data points in our test do
not use up all the computing resources provided by the GPU, and the computing
resources of the GPU have been exhausted for datasets in larger sizes that more
computing tasks have to line up and show a linear growth of the regression time.
We also notice that TensorGP has a much more memory consumption than the
proposed method. The memory allocation for the 40962 dataset failed on the
RTX 3050 Laptop GPU with four GB of device memory. This is because that
tensor is a complex data structure, so the encapsulation of the dataset requires
extra memory space.

Table 5. Execution times on various GPUs in seconds (lower is better). The bold
marks the minimum execution time for each test.

Framework GPU 642 1282 2562 5122 10242 20482 40962

TensorGP RTX 2080 Ti 5.751 5.834 5.428 5.03 5.503 8.168 28.31
Our approach 0.086 0.085 0.114 0.149 0.353 1.138 3.561

TensorGP RTX 3090 9.014 8.769 8.551 9.338 9.618 8.7 14.482
Our approach 0.099 0.094 0.155 0.148 0.32 0.806 2.605
TensorGP NVIDIA A100 7.984 6.834 7.568 7.234 6.934 7.301 19.413
Our approach 0.139 0.140 0.184 0.173 0.354 0.847 2.686

TensorGP RTX A6000 8.602 8.454 9.290 7.593 8.528 8.133 22.072
Our approach 0.154 0.138 0.167 0.234 0.470 1.225 3.486
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We also analyze the regression accuracy of the proposed approach under dif-
ferent dataset sizes (shown in Table 6). Compare with the corresponding fitness
results according to Table 6, the regression accuracy of the proposed approach
on synthetic datasets is close to TensorGP. Therefore, on the premise of similar
regression accuracy, the proposed approach is faster than TensorGP in execution
speed.

4.2 Large-Scale Benchmarks

We run large-scale benchmarks on two datasets usually used to compare gradient
boosting frameworks. In particular, we consider the Airline [18] and YearPredic-
tionMSD [12] datasets with 115M and 515K rows respectively.

Since both of these two datasets are not able to transform to a Tensor form
that TensorGP needs, experiments are carried out only on the proposed app-
roach, KarooGP, and gplearn. Each framework will run three times for each
dataset, and we record the execution time and best fitness after 50 generations
of these experiments.

Table 6. Table showing the best RMS Error after 50 iterations.

Size Our approach TensorGP Size Our approach TensorGP

4,096 0.233± 0.045 0.274± 0.048 1,048,576 0.242± 0.052 0.253± 0.066

16,384 0.258± 0.041 0.211± 0.065 4,194,304 0.246± 0.045 0.237± 0.078

65,536 0.246± 0.047 0.265± 0.058 16,777,216 0.247± 0.060 –
262,144 0.240± 0.052 0.239± 0.050

A total 18 runs were performed on gplearn, KarooGP, and the proposed
approach. Karoo GP did not finish on the Airline dataset in less than an hour. So
we only compared with gplearn on the Airline dataset. Table 7 lists the regression
accuracy and average execution time in seconds after 50 iterations.

Table 7. Table containing mean execution time and best fitness across three runs
for gplearn, KarooGP, and the proposed approach on Airline and Year datasets. The
symbol of “DNF” denotes that the test do not finish within an hour.

Airline time Airline fitness Year time Year fitness

Our approach 4.099 37.806 0.629 21.779
Gplearn 251.178 37.757 150.119 22.045
KarooGP DNF DNF 772.822 22.063

We notice that the regression accuracy of different frameworks was sim-
ilar across these two datasets, the proposed approach achieves a speedup of
200× acceleration compared to gplearn and a 1200× acceleration compared to
KarooGP on the YearPredictionMSD dataset. Through these tests, we conclude
that our algorithm can effectively improve the execution speed through GPU
parallelization under the premise of achieving similar regression accuracy.
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5 Summary

This paper introduces a GPU parallelization algorithm to accelerate the GP-
based symbolic regression. We optimize memory access by using column-major
storage for the dataset, and a stack space that supports coalesced access for
threads. We also implement a GPU-side reduction that avoids bank conflict.
After training, the proposed approach preserves the best program in the last
generation and its corresponding metric. This program can be considered the
optimal solution to the symbolic regression. Our experimental results show that
the proposed approach performs faster execution speed than gplearn, TensorGP,
and KarooGP. This indicates that the proposed algorithm can effectively improve
the execution speed of symbolic regression through parallel computation in the
fitness evaluation step. In particular, the fast execution speed on large datasets
indicates that the proposed method has the potential to allow GP-based symbolic
regression to be applied to large problems that it currently is not able to be.
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Abstract. Bayesian optimization (BO) has achieved remarkable suc-
cess in optimizing low-dimensional continuous problems. Recently, BO
in high-dimensional discrete solution space is in demand. However, sat-
isfying BO algorithms tailored to this issue still lack. Fortunately, it
is observed that high-dimensional discrete optimization problems may
exist low-dimensional intrinsic subspace. Inspired by this observation,
this paper proposes a Locality Sensitive Hashing based Bayesian Opti-
mization (LSH-BO) method for high-dimensional discrete functions with
intrinsic dimension. Via randomly embedding solutions from intrin-
sic subspace to original space and discretization, LSH-BO turns high-
dimensional discrete optimization problems into low-dimensional contin-
uous ones. Theoretically we prove that, with probability 1, there exists a
corresponding optimal solution in the intrinsic subspace. The empirically
results on both synthetic functions and binary quadratic programming
task verify that LSH-BO surpasses the compared methods and possesses
the versatility across low-dimensional and high-dimensional kernels.

Keywords: Black-box optimization · Intrinsic subspace · Locality
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1 Introduction

Bayesian Optimization (BO) [5,8] is a principled method to optimize the black-
box problems formulated as x∗ = arg minx∈X f(x). In black-box optimization
(also called derivative-free or zeroth-order optimization), the gradient of objec-
tive functions f is hard to access, and one can only optimize via sampling solu-
tions and modeling the underlying objective functions with the sampled solutions
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x and their evaluated function values f(x). Bayesian optimization is pervasive in
machine learning and scientific computing [20,27]. In those scenarios, the objec-
tive function are often expensive to evaluate, while BO is able to find out a
satisfied solution with limited evaluation budget since it invokes Gaussian pro-
cess (GP) [23] to model the underlying objective functions.

Despite the success of Bayesian optimization, notably, BO is mainly applied
to the low-dimensional and continuous solution space due to its limitation of
scalability and continuity of Gaussian process. Two aspects account for this
limitation. For the issue of scalability, BO suffers from the high cost of each
iteration and the large number of iteration [25]. With the increasing dimen-
sionality of solution space, the solution space expands exponentially and more
solutions need to be sampled in order to well fit the underlying GP model. The
computational complexity of posterior distribution in GP drastically increases
with the increasing number of sampled solutions. Furthermore, the acquisition
functions that determine which solution should be sampled are also high dimen-
sional. Maximizing the high-dimensional acquisition functions is challenging and
the optimizing result of acquisition functions affects the quality of final solution
to be returned by BO. For the issue of continuous solution space, BO uses Gaus-
sian process that relies on the smoothness defined on a kernel function as the
surrogate model and is mainly applied to continuous variables [1]. In discrete
solution space, BO often rounds the real number to the nearest integer. GP
treats the change between two consecutive integers as continuous but ignores
that the objective function is indeed piece-wise for discrete variables. For cate-
gorical variables, the ordinal relationship between variable values does not exist,
and the standard kernels in GP usually ignore the ordinal relationship. Besides,
discrete solution space brings extra difficulty in optimizing the acquisition func-
tions [28].

Bayesian optimization in high-dimensional and discrete solution space is in
demand. For example, the drug discovery problem that is abstracted into a
molecular selection and ranking problem [20], protein sequence design so that
it can bind to a specific substance [28], and bike sharing company deciding
whether or not to place a bike station at a government given space [1], etc. In
those scenarios, the optimization tasks are black-box, discrete and sometimes
high dimensional. Therefore, it is necessary and urgent to extend the success of
Bayesian optimization from low-dimensional continuous solution space to high-
dimensional discrete solution space.

On one hand, many high-dimensional Bayesian optimization algorithms focus
on continuous solution space. One mainstream of these existing work is based on
random embedding [30]. The embedding-based methods [16,19,22,30] assume
that the objective function value is affected by a minority of decision vari-
ables, whereas the other decision variables only have a limited or even no
effect on the function value. Namely, the objective function has an (approx-
imate) low-dimensional intrinsic subspace. When functions possessing a low-
dimensional intrinsic subspace, random embedding enables BO to optimize
in the low-dimensional continuous space while evaluate in the original high-
dimensional continuous solution space. On the other hand, the existing discrete
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BO approaches focus on the modification of covariance kernels [9,21] or the sub-
stitution of surrogate models [1,2,12,28], e.g., tree models. However, these dis-
crete BO algorithms suffer from the issue of high-dimensional scalability. Thus,
high-dimensional discrete Bayesian optimization algorithms still lack.

Fortunately, it is observed that high-dimensional discrete (or even categori-
cal) optimization problems may also exist low-dimensional intrinsic dimension.
For the categorical hyper-parameters in solvers of mixed integer programming
that is NP-hard, only a part of categorical hyper-parameters have a significant
impact on the overall performance of solvers [13,30]. Inspired by this observa-
tion, this paper aims to address high-dimensional discrete Bayesian optimization
problem, and the realistic low intrinsic dimension assumption is added to make
it tractable.

In this paper, we propose a Locality Sensitive Hashing based Bayesian Opti-
mization (LSH-BO) method to handle the challenges from both high dimension-
ality and discreteness. The LSH-BO method focuses on the objective functions
with low intrinsic dimension. Via randomly embedding solutions from intrinsic
subspace to original space, LSH-BO turns high-dimensional discrete optimiza-
tion problems into low-dimensional continuous ones. There are two ingredients
in LSH-BO, embedding matrix (from high dim to low dim) and discretization
(from discrete to continuous). Blending them together separates optimization
and evaluation and enables us to perform optimization in low-dimensional con-
tinuous space while evaluation in original high-dimensional discrete space. The
contribution of this paper is three folds.

– Propose a simple yet effective LSH-BO to handle high-dimensional optimiza-
tion over categorical or discrete solution space with intrinsic dimension. LSH-
BO makes the problem tractable via turning high-dimensional discrete opti-
mization into low-dimensional continuous one.

– Theoretically prove that, with probability 1, there exists a corresponding
optimal solution in the intrinsic subspace.

– Empirically verify that LSH-BO surpasses the compared methods and pos-
sesses the versatility across low-dimensional and high-dimensional kernels.

The rest of the paper reviews the related work, recaps Bayesian optimization,
introduces the proposed LSH-BO and its theoretical result, presents experiment
result, and finally gives a conclusion.

2 Related Work

To address the challenge of discrete search space, there are mainly two lines of
research. The first way is to modify the covariance kernels to make GP adapt
to the categorical space. In [9], a modified kernel is proposed to handle discrete
space by transforming the points to their closest integer values in the kernel.
In [21], a GP based method COMBO generates a combinatorial graph to quan-
tify the “smoothness” of functions and utilizes the diffusion kernel to model the
high-order interactions between variables. The second way to handle discrete
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problems is to substitute surrogate model to avoid dealing with GP in categor-
ical space. Both SMAC [12] and Tree-structured Parzen Estimator (TPE) [2]
adopt tree-shaped model as their surrogate model. SMAC is based on random
forests [4] to model categorical problems. By using random walks to optimize
the discontinuous and non-differentiable acquisition function, it can deal with up
to 76 discrete variables [12,25]. TPE [2] models each input dimension indepen-
dently by a kernel density estimator and mainly suffers from lack of accuracy.
Also, its performance on high dimensional problems is unsatisfactory. Instead
of using tree-shaped model, the AMORTIZED BO [28] uses neural networks to
build the surrogate model. With the increase of dimensionality, designing and
training neural networks become more difficult. BOCS [1] uses sparse Bayesian
linear regression as the surrogate model for BO in binary discrete domain and
is able to learn the interactions among categorical variables automatically. How-
ever, the computational complexity of interactions highly relies on the input
dimension, thus as the dimensionality of problem grows, its performance becomes
undesirable.

To handle the challenge of high dimensionality, one mainstream of the exist-
ing work is based on random embedding and assumes that the objective function
has a low-dimensional intrinsic subspace. In [30], a well-known random embed-
ding method REMBO is proposed to embed the original problem into a low
dimensional search space and then search for the optimum in the intrinsic sub-
space. In [22], a sequential random embeddings approach is proposed to deal with
the high dimensional functions with approximately intrinsic subspace. In [19],
a novel embedding strategy, the hashing-enhanced subspace BO algorithm, is
proposed with a theoretical justification of a bounded error in kernel before and
after applying embedding. In [16], it summaries the current mainstream linear
embedding technology. It is worth noting that most embedding-based methods
only focus on the continuous domain.

This paper follows the line of embedding-based methods. The proposed LSH-
BO differs from REMBO in the following aspects. First, LSH-BO deals with
the binary categorical domain while REMBO mainly focuses on the continuous
domain. The experiment of REMBO on discrete problems only scales to 47
dimensions. Second, the choice of kernels are different. REMBO only uses high
dimensional kernels in discrete problems while both of the high dimensional and
low dimensional kernels can be used in LSH-BO. Third, this paper applies a
different strategy to handle the challenge of discrete search space. We use LSH
which has the property of preserving similarity, while REMBO simply rounds
real number to integer which may not have such a property. Other ways to deal
with high dimensional optimization problems include utilizing the concept of
trust-region, e.g., CASMOPOLITAN [29], and decomposition-based methods,
e.g., Add-GP-UCB [14] and G-Add-GP-UCB [24].

3 Preliminaries: Bayesian Optimization

Bayesian optimization is a principled method to optimize black-box functions
which mainly consists of two parts: surrogate model that learns the underlying
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objective function by Bayesian rule, and acquisition function that guides us to
select the next point to evaluate by trading off exploration and exploitation.

BO invokes Gaussian process (GP) [23] as the surrogate model. GP defines a
distribution over function space which the underlying objective function may be
contained. GP is fully characterized by its mean and covariance function. Given
sampled solutions, prior on mean and covariance function, and a new solution,
GP has a closed form to update mean and covariance function so as to obtain
the posterior distribution over the function space analytically [8].

The popular acquisition functions include probability of improvement
(PI) [15], expected improvement (EI) [18] and upper confidence bounds
(UCB) [7]. PI has the form PI(x) = P (f(x) ≥ f(x∗) + ξ) = φ(m(x) −
f(x∗) − ξ/σ(x)) , where φ(·) is the normal cumulative distribution function
and ξ is a trade-off parameter to avoid PI getting stuck in a local optimum.
Instead of taking the probability of improvement into account as in PI, EI
makes use of the amount of improvement. It can be evaluated in the form
EI(x) = (μ(x) − f(x∗))Φ(Z) + σ(x)φ(z) if σ(x) ≥ 0, otherwise EI(x) = 0,
where Z = m(x) − f(x∗) − ξ/σ(x), and φ(·) and Φ(·) represents the PDF
(probability density function) and CDF (cumulative distribution function) of
the standard normal distribution respectively. Another widely-used acquisition
function is UCB. UCB(x) = μ(x) + κσ(x), where μ(·) and σ(·) are mean and
standard deviation, and κ is a positive parameter to balance exploration and
exploitation.

4 Bayesian Optimization with Locality Sensitive Hashing

Problem Setup. Let f : X → R be a costly-to-evaluate black-box function f
over binary structured domain X = {0, 1}D. Consider the optimization problem
x∗ = arg minx∈{0,1}D f(x). It is worth noting that D could scale up to thousands
or even millions. Such properties (discrete and high dimension) bring a great
challenge to optimization. To this end, this paper proposes a Locality Sensitive
Hashing based Bayesian Optimization (LSH-BO) method which turns the high
dimensional discrete optimization problem into a low dimensional continuous
one, and then effectively deals with it.

Specifically, we first define a new search space with a low dimension and
then construct a function that maps vectors in the low dimensional space to
the original space via Locality Sensitive Hashing (LSH) [6]. LSH is a function
if for any x and y we have Pr

(
f(x) = f(y)

)
= sim(x,y), where sim(x,y) ∈

[0, 1] is some defined similarity between x and y. In another words, LSH is a
class of functions with the property of similarity preservation for some pairwise
similarity. In LSH-BO, we use the cosine similarity. Then, the standard BO is
applied to search for the optimal point in this new search space and solution
evaluation is conducted in the original high dimensional space.

Intrinsic Dimension in Discrete Solution Space. Before presenting the
details of LSH-BO, we redefine the concept of intrinsic low dimension mentioned
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in related work. The motivation is that, in categorical search space, linear addi-
tion and subtraction is not closed, e.g., categorical variables “apple” plus “pear”
is meaningless. Therefore, the classic definition in REMBO [30] with linear intrin-
sic subspace is not suitable for objective functions. We define the intrinsic entry,
constant entry and intrinsic dimensionality as follows

Definition 1. Given a function f : {0, 1}D → R, an entry t is said to be
an intrinsic entry, with t is an integer that 1 ≤ t ≤ D, if there exists a
(x1, . . . , xt−1, xt+1, . . . , xD) ∈ {0, 1}D−1 s.t. f(x1, . . . , xt−1, 0, xt+1, . . . , xD) �=
f(x1, . . . , xt−1, 1, xt+1, . . . , xD), otherwise t is a constant entry. de is the number
of intrinsic entries, called the intrinsic dimensionality (also known as effective
dimensionality or active dimensionality) of f .

The definition is straightforward, only the values at intrinsic entries of a
vector x may affect the value of f(x) while constant entries do not. We then
introduce the used LSH. For a vector y ∈ Y = R

d, we apply a hash function
defined as LSH(y) = g(y) = sign(Ay), where A ∈ R

D×d is a random matrix
with independent entries sampled according to N (0, 1) and sign(·) denotes the
sign function, i.e., mapping positive numbers to 1 and negative numbers to 0.
The above mapping sign(Ay) is named random hyperplane based hash func-
tion [6] and is proved to has the property of similarity preservation for cosine
similarity [10]. It differs from the standard hash function in that the points
close to each other has a higher probability to be hashed into the same bucket.
Given Definition 1 and LSH, the following theorem shows that high dimensional
discrete problems with intrinsic dimensionality can be solved via LSH.

Theorem 1. Assume we are given a function f : {0, 1}D → R with intrinsic
dimensionality de and a random matrix A ∈ R

D×d with independent entries
sampled according to N (0, 1) and d ≥ de. Then, with probability 1, for any
x ∈ R

D there exists a y ∈ R
d s.t. f(x) = f

(
sign(Ay)

)
, where sign(·) projects

positive numbers to 1 and negative ones to 0.

Proof. Since we have defined the intrinsic entries, then for any x′, if x′ has
equivalent values to x at all intrinsic entries, then we have f(x) = f(x′). That
is to say, if there exists a y that sign(Ay) has equivalent values to x at all
intrinsic entries, then f

(
sign(Ay)

)
= f(x). Suppose the number of intrinsic

dimension is de and we only consider the intrinsic dimension, the above statement
is equivalent to: for a random matrix A′, there exists a y such that sign(A′y′) =
x′, where A′ ∈ R

de×d, y′ ∈ R
d×1 and x′ ∈ R

de×1 are A, y and x with only
intrinsic dimension respectively. To ensure that the equation sign(A′y′) = x
has solutions, A′ should have rank de. It remains to show that, with probability
1, the random matrix A′ has rank de, which is similar to [30]. ��

LSH-BO. Theorem 1 states that for any vector x in X, with probability 1,
there exists a corresponding y that satisfies f(x) = g(y). Further, if there exists
an optimal point x∗ of f , we can find a solution y∗ in low dimensional space Y
such that x∗ = sign(Ay∗). This observation motivates our LSH-BO in which
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we apply LSH to generate another search space Y that is low dimensional and
continuous, and construct a mapping from Y to X. We can use the standard
Bayesian optimization method to find the optimal point of g(y) and embed it
back to X as the final solution. The algorithm is shown in Algorithm 1.

Algorithm 1. Locality Sensitive Hashing based Bayesian Optimization (LSH-
BO)
Input:

Objective function f ;
acquisition function acq(·);
The upper bound of intrinsic dimensionality d.

Procedure:
1: Sample a random matrix A∈R

D×d with Ai,j ∼ N (0, 1).
2: Define the function g(y) = f(sign(Ay)).
3: Sample initial points Y0 ∈ Y and let D0 = {(y, g(y)) | y ∈ Y0}.
4: Construct a GP model.
5: for t = 1 to N do
6: Find yt+1 by optimizing the acquisition function yt+1 = arg maxy∈Y acq(y).
7: Dt+1 = Dt ∪ {yt+1, g(yt+1)}, and update the posterior distribution with Dt+1.
8: end for
9: y∗ = arg maxi=1,...,N g(yi ).

10: return x∗ = sign(Ay∗).

It is worth noting that, the design of this mapping is motivated from ran-
dom hyperplane based hash function [6] that real vectors can be converted to
discrete vectors with pairwise distance preservation. Specifically, we treat the
discrete input vectors as hash buckets with 0–1 encoding and continuous vectors
as the input of hash function. Though both LSH-BO and LSH make conversions
between continuous and discrete variables, they focus on different situations.
LSH is mainly for dimensionality reduction, while g(y) in LSH-BO maps vec-
tors from low dimensional continuous space into high dimensional discrete space.
LSH-BO itself aims to turn high dimensional discrete optimization problem into
low dimensional continuous one to effectively use standard BO to handle it.

Generally speaking, LSH-BO is simple to implement yet can avoid the difficul-
ties in both high-dimensional and discrete optimization problems after turning
the search space into low dimensional and continuous one.

Choice of Kernels. This section discusses the choice of kernels that determines
the smoothness of functions sampled from the GP model. One natural choice is
to use the kernels from standard BO, e.g., squared exponential kernel, Matern
kernel and so on. We denote these kernels as LSH-LK, representing that the
distance is measured in low dimension. They benefit from only constructing
GPs in low dimensional space and thus save the computational costs.

Another intuition for using LSH-LK is that, the standard BO kernels have
a distance preserving property, which states that two points with similar cosine
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distance tends to have same values in the original space. Formally, Pr(g(y1) =
g(y2)) = (1−angle(y1,y2)/π)de , where angle(·) presents the angel between two
vectors, thus it is feasible to use low dimensional pairwise distance in the kernel
to define the smoothness. It matters because the objective function g(y) is indeed
a compound function, which may complicate the original function f(x) with an
extra function sign(Ay). The above issue may lead the updated GP model to be
rather “sharper”, i.e., low smoothness, and result in a higher demand for numbers
of evaluations to well fit GP and higher computational cost to optimize the
acquisition function. However, LSH-LK also has the following drawback. LSH-
LK kernels may result in repeated recommendations by the acquisition function
because the candidates may behave differently in low dimensional search space
but be identical in high dimensional space. This leads to a demand for performing
an additional check before evaluation.

Another choice of kernels is to define the pairwise distance in the original
space as kHK(y1,y2) = k(sign(Ay1), sign(Ay2)), where k(·, ·) refers to any
kernel that is available for BO with continuous input. We refer to the notion
of “high-dimensional kernel” defined in REMBO [30] which embeds the low
dimensional pair of points into high dimensional space. Instead of using the
hamming distance and a specific type of squared exponential kernel, we just
choose Euclidean distance and expand to any kernel suitable for BO. The moti-
vation is that we only care about the similarity between two points in the high-
dimensional space, thus Euclidean distance is enough. We denote these kernels
as LSH-HK.

An intuitive benefit for LSH-HK is that the similarity between two points
described by the kernel function is the real similarity, so we do not have to con-
sider the repeated recommendation as in LSH-LK. Besides, LSH-HK is more
sensitive to subtle differences between original vectors as it directly calculates
their distances. However, LSH-HK lacks its matching acquisition functions since
the kernels are built over high dimensional discrete space and the existing acqui-
sition functions are designed for low dimensional continuous space, thus they do
not take high dimensional space information into consideration.

5 Experiments

This section empirically studies the proposed LSH-BO. First, 4 widely-used syn-
thetic functions with intrinsic dimension are used to verify the proposed method
outperforms other compared methods. Then we apply LSH-BO to optimize the
binary quadratic programming [1] problem. In this task, its intrinsic dimension-
ality is not guaranteed. The results show that LSH-BO still outperforms other
methods even when the theoretical assumption of intrinsic dimension whether
holds or not. Further, we conduct experiments to discuss the impact of hyper-
parameters, specifically, the choice of kernels, acquisition functions and d.
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5.1 Experimental Setup

The proposed method is compared with 5 competitive baselines: SMAC [12],
TPE [2], Discrete-BO [17], BOCS [1] and COMBO [21]. We also include two
additional baselines BO, named BaseBO, which performs the naive BO approach
in optimizing the original discrete search space, and random search, denoted as
RANDOM, which indeed is a competitive baseline [3] in high-dimensional sparse
space. We apply EI [18] as acquisition function and for the choice of kernels, we
apply the Matern kernel, which degenerates to high dimensional kernels used in
REMBO after changing the distance measurement. The search boundary of low
dimensional solution space is set as [−3, 3] for each dimension. The experiment
is conducted on the server with the configurations: AMD EPYC 7742 64-Core
processor, 2.25 GHz, 128 GB memory. All experiments are repeated 20 times.

5.2 On Synthetic Functions

In this section we employ 4 standard benchmark problems (minimize the objec-
tive function values): (a) Sphere, (b) Zakharov, (c) Sumsquares, and (d) Levy.
In particular, each test function is with de = 30 and D = 500, i.e., there are
D − de = 470 constant entries that have no impact on the function value as
defined in Definition 1. Besides, the optimization starts with an initial sample
size 5 and the fixed budget for Zakharov, Levy, and Sumsquares are 150 while for
Sphere it is 100. We compare LSH-BO to 7 competitors, namely SMAC, TPE,
Discrete-BO, BOCS, COMBO, BaseBO and RANDOM.

Effectiveness. The results of optimization performance, i.e., effectiveness, are
shown in Fig. 1. In Fig. 1(b), the performance of LSH-BO is close to or even
worse than others at early iterations, however after iteration 50, it starts to
outperform all of its competitors and at iteration 150, it has a better result. The
same phenomenon also exists in all other 3 experiments. This is because the use
of LSH may bring the extra complexity to original function, and as a consequence
the GP model may fail to surrogate the function at the beginning. However, as
the number of evaluations grows, this issue alleviates and the performance of
LSH-BO starts to exceed other competitors. To draw a conclusion, LSH-BO
performs better than all other methods, this shows that our proposed strategy
can effectively handle the existing challenges in high dimensional discrete BO.

Hyper-parameter Analysis. For the issue of choice of kernels, we evaluate
the performance of LSH-BO on Zakharov with different choices of kernels and d.
Specifically, we compare low-dimensional and high-dimensional kernels, denoted
as LSH-LK and LSH-HK, that are defined in Sect. 4, the naive BO is also included
as a baseline. The results are shown in Fig. 2. We can find that for the problem
of Zakharov, no matter what kernel and acquisition function LSH-BO chooses,
LSH-BO achieves significantly better solutions compared with the naive BO.
Besides, the choice of kernel has little impact on the performance of LSH-BO.

For the issue of upper bound of intrinsic dimensionality, we study the impact
of different d on LSH-BO with fixed D = 500 and de = 30. Specifically, we con-
sider three cases: (1) d 	 de. (2) d = de. (3) d > de. Figure 3 shows the results
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Fig. 1. Performance (the smaller the objective function values the better) on 4 synthetic
functions with de = 30, d = 30 and D = 500.

Fig. 2. Performance (the smaller the objective function values the better) on Zakharov
with different kernels. (a) and (b) respectively show the performance of LSH-HK and
LSH-LK with different acuiquisition functions.

on Zakharov with different d ∈ {15, 30, 40}, standing for the above three cases.
From Fig. 3 we can find that for case (1), when d = 15 and de = 30, LSH-BO does
not work well. This is because the low dimensional search space may not cover an
optimal solution. For case (2), when d = de = 30, it performs better than case (1).
Finally, for case (3), when d increases to 40, the performance is slightly better than
case (2). The results above generally match our intuition. When addressing high
dimensional discrete problems with low intrinsic dimension, we would better con-
duct an experiment to get an approximate range of intrinsic dimensionality and
choose a slightly larger d according to the approximation of de.
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Fig. 3. Performance (the smaller the objective function values the better) of LSH-BO
with different d when D = 500 and de = 30 on (a) Zakharov and (b) Sphere.

Fig. 4. (a) Performance (the higher the objective function values the better) on BQP
with d = 50 and D = 500. (b) Performance (the higher the objective function values
the better) of LSH-BO with different kernels and acquisition functions on BQP.

5.3 On Binary Quadratic Programming Task

The binary quadratic programming (BQP) [11] is pervasive in computer vision,
such as in image segmentation [26], BQP is used to find a cut solution to seg-
ment a given image into two parts that conform to given constraints. BQP can
be formulated as the following optimization problem [1]: arg maxx∈X λP (x) +
xT Qx−λ‖x‖1, where Q ∈ R

D×D is a random matrix with entries sampled inde-
pendently according to N (0, 1) and then multiplied element-wise by K ∈ R

D×D,
where Ki,j = exp(−(i − j)/L2

c). The correlation length L2
c defines the rate that

entries of K decay away from the diagonal. We set λ = 0 and L2
c = 10. For BQP,

the higher objective function values represent the better performance.
We first present that LSH-BO could deal with BQP problem even when its

intrinsic dimension whether holds or not is unknown. We set D = 10 and d = 7.
Apparently by enumerating the total inputs is 2D = 1024, we can get the optimal
value. We set the evaluation budget as 50 and apply LSH-BO to see whether it can
find the optima or not. In 30 repetitions, there are 25 times LSH-BO can find the
optimal or suboptimal solution. This empirically verifies that LSH-BO can still
work even when the low intrinsic dimensionality assumption may not hold.
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Fig. 5. Wall-clock time (s) on BQP

We further study the performance of LSH-BO in BQP, where we set D = 500
and d = 50. The results are shown in Fig. 4(a). Besides, the performance of LSH-
BO with different choices of kernels (HK, LK) and acquisition functions (PI,
UCB, EI) is shown in Fig. 4(b). From Fig. 4(a), we can observe the similar phe-
nomenon as in the synthetic functions experiment. The performance of LSH-BO
is close to or even worse than others at the beginning, however at about iteration
100, it is close to TPE and at the end of the optimization LSH-BO achieves a
better solution compared to others. Figure 4(b) exhibits the performance when
choosing different kernels and acquisition functions in which LSH-LK has the
best performance, approximately 20% higher than others.

The execution time of each method is presented in Fig. 5. BOCS and COMBO
are shown in striped bars, meaning that they may be infeasible, i.e., can-
not accomplish within 10 h. Figure 5 implies that LSH-BO achieves a balance
between time efficiency and scalability effectiveness.

This section demonstrates the effectiveness and competitiveness of LSH-BO.
However, some limitations still exist. We only set the input dimension D up to
500 dimensions and also lack the discussion of the search boundary in the low
dimensional space. LSH-BO is less competitive in low dimensional input space.
In this case, direct optimization may work better than transforming the search
space given the small evaluation budget of solution points in discrete space.

6 Conclusion

This paper proposes a locality sensitive hashing based Bayesian optimization
(LSH-BO) method for high-dimensional discrete functions with intrinsic dimen-
sion. Via randomly embedding solutions from intrinsic subspace to original
space and discretization, LSH-BO turns high-dimensional discrete optimization
problems into low-dimensional continuous ones. Theoretical analysis verifies the
existence of optima solution on optimization problem with intrinsic dimension.
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And the experimental results present the effectiveness and competitiveness of
LSH-BO. The future work includes extending LSH-BO to approximate intrinsic
dimension, developing more methods to test the existence of intrinsic dimension,
and exploring more real-world applications.
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Abstract. Multi-label classification is an important topic in machine
learning, where each instance can be classified into more than one cat-
egory, i.e., have a subset of labels instead of only one. Among existing
methods, ML-kNN [25], the direct extension of k-nearest neighbors algo-
rithm to the multi-label scenario, has received much attention due to
its conciseness, great interpretability, and good performance. However,
ML-kNN usually suffers from a terrible storage cost since all training
instances need to be saved in the memory. To address this issue, a nat-
ural way is instance selection, intending to save the important instances
while deleting the redundant ones. However, previous instance selection
methods mainly focus on the single-label scenario, which may have a
poor performance when adapted to the multi-label scenario. Recently,
few works begin to consider the multi-label scenario, but their perfor-
mance is limited due to the inapposite modeling. In this paper, we pro-
pose to formulate the instance selection problem for ML-kNN as a nat-
ural bi-objective optimization problem that considers the accuracy and
the number of retained instances simultaneously, and adapt NSGA-II to
solve it. Experiments on six real-world data sets show that our proposed
method can achieve both not worse prediction accuracy and significantly
better compression ratio, compared with state-of-the-art methods.

Keywords: Multi-label classification · ML-kNN · Instance selection ·
Multi-objective optimization · Multi-objective evolutionary algorithm

1 Introduction

Multi-label classification concerns an important class of classification problems
where each instance may belong to multiple categories simultaneously, i.e., have
several different labels. For example, an image may be associated with several
predefined topics such as “Mountain”, “Tree”, “Water”, etc. [4]. This situation is
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different from the traditional single-label classification (i.e., multi-class) where
each instance can be classified into only one category (i.e., one label), and it is
more challenging. In the past decade, multi-label classification has been exten-
sively studied [26]. Among existing methods, the Multi-Label k-Nearest Neigh-
bor (ML-kNN) algorithm [25] has received much attention due to its conciseness,
great interpretability and good performance.

Despite its potential, ML-kNN has an open issue to be addressed, that is,
all training instances need to be saved in the memory. With the ever-growing of
big data in the real world, this issue would hinder the use of ML-kNN on more
computing platforms, especially those with limited memory, such as smartphones
and embedded systems. To address this issue, a natural way is instance selection
that only requires a small number of instances [17]. It has been widely reported
that instance selection contributes in reducing memory consumption for single-
label classification problems [17]. Thus, it is natural to ask whether instance
selection still works well when applied to ML-kNN.

However, the instance selection for ML-kNN has been rarely addressed in
the literature. To the best of our knowledge, there are only two works [1,10] in
this direction. Although they show some potential of instance selection in con-
text of multi-label classification scenarios, they both handle the problem in a
single-objective manner, i.e., the instances are selected with the only purpose
to maximize the accuracy [1], or to optimize with respect to a weighted sum
of the classifier accuracy and the compression ratio [10]. This might be inap-
propriate as both classifier accuracy and compression ratio are important but
conflicting objectives in practice, and it is unrealistic to overlook either of them.
If more instances are removed, a decrease in the accuracy of the classifier built on
the retained instances is usually inevitable. Hence, it is impossible that a single
solution is optimal in terms of both accuracy and compression ratio. Besides,
as the accuracy and compression ratio are of different physical meanings, sum-
ming them up does not really provide meaningful information and might cause
difficulties in determining the appropriate values of weights.

In this paper, we propose to employ Multi-Objective Evolutionary Algo-
rithms (MOEAs) to solve the instance selection problem for ML-kNN. Specifi-
cally, we formulate the instance selection problem for ML-kNN as a bi-objective
optimization problem that considers the accuracy and the compression ratio as
two separate objectives. The two objectives are conflict with each other, and they
are typically non-differentiable. To address these issues, the well-known Nondom-
inated Sorting Genetic Algorithm II (NSGA-II) [7] that possesses the strong
capability of tackling multi-objective black-box optimization problems [27] is
employed and adapted to the bi-objective instance selection for ML-kNN, lead-
ing to the Multi-Objective Evolutionary Instance Selection algorithm for Multi-
Label classification (MOEIS-ML). To the best of our knowledge, MOEIS-ML is
the first multi-objective evolutionary instance selection algorithm for ML-kNN
that can provide a set of different compromise solutions between accuracy and
compression ratio in a single simulation run. In this way, MOEIS-ML could offer
more options to the end-user, thus providing more flexibility than the single-
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objective approaches. Experiments on six real-world data sets further show that
our proposed algorithm can achieve both not worse prediction accuracy and
significantly better compression ratio, compared with state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 introduces some
preliminaries and reviews the related work. Section 3 presents the bi-objective
problem formulation and the proposed MOEIS-ML. The experimental results
and discussions are provided in Sect. 4. Section 5 concludes this paper and dis-
cusses some promising future work.

2 Preliminaries and Related Work

2.1 Multi-label k Nearest Neighbor Algorithm

ML-kNN [25] is a direct extension of the popular kNN [5,14] to dealing with
multi-label classification problems, which aims to predict the label set of an
unseen instance based on statistical information gained from the label sets of its
neighboring training instances with known label sets.

More formally, let X = Rd denote the d-dimensional instance space and let
Y = {y1, y2, · · · , yq} be the label set of q possible labels. Given a training set
TR = {(xi, Yi)|1 ≤ i ≤ n}, xi ∈ X , Yi ⊆ Y, the task of multi-label classification
is to find a multi-label classifier h : X → 2Y such that the classifier is able to
accurately predict the label set for any unseen instance x ∈ X . To accomplish
this task, ML-kNN conducts as follows.

Several notations are first introduced. For an unseen instance x, let Nk(x)
represent the set of its k nearest neighbors identified in the training set TR.
Let I[·] denote the indicator function, i.e., if · is true, I[·] is set to 1; else,
I[·] is set to 0. The number of instances in Nk(x) with label yj is counted as
Cj =

∑
(x′,Y ′)∈Nk(x)

I[yj ∈ Y ′]. Define Hj as the event that x has label yj ,
then the prior probability that Hj holds is represented as P (Hj), and that Hj

does not hold is represented as P (¬Hj). The posterior probability that Hj holds
under the condition that x has exactly r neighbors with label yj is denoted
as P (Hj |Cj = r), and the posterior probability that Hj does not holds under
that condition is denoted as P (¬Hj |Cj = r). Accordingly, let P (Cj = r|Hj) and
P (Cj = r|¬Hj) represent the likelihood that x has exactly r neighbors with label
yj when Hj holds and when Hj doesn’t hold, respectively. Based on these nota-
tions, the Maximum A Posterior (MAP) rule is utilized to make predictions by
reasoning with the labeling information embodied in the neighbors. Specifically,
the predicted label set for an unseen instance x is determined as follows:

Y = {yj |P (Hj |Cj = r) > P (¬Hj |Cj = r), 1 ≤ j ≤ q}. (1)

Based on Bayes Theorem, we have P (Hj |Cj = r) − P (¬Hj |Cj = r) equals to
(P (Cj = r|Hj)P (Hj) − P (Cj = r|¬Hj)P (¬Hj)) /P (Cj = r). Then, it suffices to
estimate the prior probabilities as well as likelihoods for making predictions.

ML-kNN fulfills the above estimation task via a frequency counting strategy.
First, the prior probabilities are estimated by counting the number of training
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instances associated with each label, i.e. P (Hj) = (s+
∑n

i=1 I[yj ∈ Yi])/(2s+n),
P (¬Hj) = 1 − P (Hj), 1 ≤ j ≤ q, where s is a smoothing parameter controlling
the effect of the uniform prior to the estimation and is commonly set to 1 for
Laplace smoothing. Second, the likelihoods are estimated as follows. Given an
integer r ∈ [0, k] and label yj , let κj [r] denote the number of training instances
that not only have label yj itself, but also have exactly r neighbors with label yj ,
i.e., κj [r] =

∑n
i=1 I[yj ∈ Yi] · I[δj(xi) = r]; and let κ̃j [r] denote the number of

training instances that do not have label yj itself, but have exactly r neighbors
with label yj , i.e., κ̃j [r] =

∑n
i=1 I[yj �∈ Yi] · I[δj(xi) = r]; where δj(xi) =∑

(x′,Y ′)∈Nk(xi)
I[yj ∈ Y ′]. Then, based on the two frequency arrays κj and κ̃j ,

the likelihoods can be estimated as follows: P (Cj = r|Hj) = (s + κj [r])/(s(k +
1)+

∑k
r=0 κj [r]), P (Cj = r|¬Hj) = (s+κ̃j [r])/(s(k+1)+

∑k
r=0 κ̃j [r]), where 1 ≤

j ≤ q. Thereafter, by combining the estimated prior probabilities and estimated
likelihoods, the predicted label set can be obtained accordingly.

2.2 Instance Selection for ML-kNN

The basic idea of instance selection is to select a subset of the training set instead
of directly using the entire training set, thus reducing the memory consumption.
In the past decades, the effectiveness of instance selection has been demon-
strated in a wide range of applications such as intrusion detection [2] and active
learning [9]. In particular, instance selection for kNN has been widely reported
to greatly reduce memory consumption while still performing well for single-
label classification problems [17]. To name a few, the Edited Nearest Neighbor
(ENN) [22] discards an instance in the training set when its class is different from
the majority class of its k nearest neighbors, which achieves better accuracy on
most data sets; the Local Set-based Smoother (LSSm) selector [5] proposes a
concept named the local set, which indicates the set of instances included in the
largest hypersphere centered on a specific instance, to help remove less impor-
tant instances and has been shown to achieve better performance compared with
a number of state-of-the-art methods.

In contrast with the extensive studies on instance selection for single-label
classification mentioned above, instance selection for multi-label classification
has been rarely studied. To the best of our knowledge, there are only two works
reported in this direction. One is the LSSm using Hamming Distance (LSSm-
HD) [1] which extends LSSm to the multi-label scenario, and the other is the
Cooperative Co-evolutionary Instance Selection for Multi-Label classification
(CCISML) algorithm [10]. Although LSSm-HD inherits the good performance of
LSSm, it also carries over its dependence on the assumption of the correlation
between the local set concept and the instance importance, which limits its scope
of application. Besides, as LSSm-HD does not explicitly consider the compres-
sion ratio in the instance selection, the compression ratio of the subset found by
LSSm-HD might be unstable. The CCISML algorithm formulates the instance
selection for multi-label classification as a single-objective optimization problem
by summing up the accuracy and the compression ratio, and then employs an
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Evolutionary Algorithm (EA) [3] to solve it. In this way, this work does not
rely on assumptions about instance importance. However, CCISML still treats
the instance selection problem for ML-kNN as a single-objective optimization
problem. Such an approach, as presented in Sect. 1, might be inappropriate due
to the conflicting nature between classifier accuracy and compression ratio.

3 Multi-objective Instance Selection for ML-kNN

In this paper, we propose to formulate the instance selection for ML-kNN as
a multi-objective optimization problem and solve it with MOEAs. The multi-
objective problem formulation and the proposed MOEIS-ML are presented
below.

3.1 Multi-objective Problem Formulation

Let X = Rd denote the d-dimensional instance space and let Y = {y1, y2, · · · , yq}
be the label set of q possible labels. Given a training set TR = {(xi, Yi)|1 ≤ i ≤
n}, xi ∈ X , Yi ⊆ Y, and a test set TE, the task of instance selection for multi-
label classification is to find a small subset S ⊆ TR such that the classifier
hS : X → 2Y learned from S is able to accurately predict the label set for any
unseen instance in TE.

A solution of instance selection for multi-label classification can be naturally
represented by a binary vector z = (z1, . . . , zn), where element zi indicates
whether the i-th instance in TR will be retained in the selected subset S. That
is, if zi = 1, the i-th instance is retained in S; otherwise, the i-th instance is
removed. Given a seleted instance subset, the ML-kNN, as presented in Sect. 2.1,
is used as the base classifier. More formally, the instance selection problem for
ML-kNN can be formulated as

max
S⊆TR

(1 − HammingLossTE(S),CompressionRatio(S)), (2)

where the two objectives are described in the following.
The first objective, i.e., HammingLoss, is with respect to the classifier accu-

racy, which is a commonly-used metric in the literature of multi-label classifica-
tion [23] and can be computed as

HammingLossTE(S) =
1

|TE|
∑

(x,Y )∈TE

1
q
Δ(hS(x), Y ), (3)

where Δ(·, ·) indicates the Hamming distance between the two binary vectors
representing two subsets of Y.

The second objective, i.e., CompressionRatio, is with respect to the data com-
pression ratio, which measures the compression effect of the instance selection
algorithm. It is computed as

CompressionRatio(S) = 1 − |S|
|TR| . (4)
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Generally, the above two objectives are often conflict with each other, and the
improvement of one objective may lead to the deterioration of the other. Thus,
there exists no single optimal solution that optimizes both objectives simultane-
ously. Instead, we aim to find the best trade-off solutions, which is well-known as
the Pareto-optimal solutions [7], so that decision-makers can make choices from
this set of solutions based on their actual needs.

3.2 MOEIS-ML Algorithm

In the past decades, EAs have emerged as an effective approach to multi-
objective optimization problems and numerous MOEAs have been proposed
[16,21]. Among these MOEAs, NSGA-II [7] has shown superior performance on
not only benchmark problems [27], but also real-world applications [6,15,24]. For
this reason, NSGA-II is adapted to tackle the multi-objective instance selection
problem for ML-kNN, leading to the MOEIS-ML algorithm.

The framework of MOEIS-ML is presented in Algorithm 1. It starts from ini-
tializing a set of diverse solutions. During the initialization, unlike conventional
MOEAs that generate solutions completely at random (which as shown in Fig. 1
fails to generate a set of diverse solutions), the following population initialization
method is employed to enhance population diversity. Recall that given a training
set TR with n instances, each individual is represented as a binary vector z with
length n. By adjusting the number of non-zero elements in z, a set of individuals
with different compression ratios can be easily obtained, and thus a population
with better diversity can be obtained accordingly. Specifically, the probability
that each element in an individual takes a value of 1 is set differently for different
individuals. Concretely, when initializing a new individual, a probability pinit is
first randomly selected from the set {0.1, 0.2, . . . , 0.9} and then each element
of this individual is set to 1 with probability pinit. A set of N individuals is
generated and constitutes the initial population P .

Fig. 1. Examination of population initialization on the data set scene.

After the population initialization, the algorithm performs the optimization
by conducting offspring generation and environmental selection iteratively until
some stopping criterion is fulfilled (usually when a certain predefined number of
evaluation times is reached), and the population finally obtained is the outcome
of the algorithm. For the offspring generation, the classic one-point crossover is
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Algorithm 1: MOEIS-ML
Input: Training set TR, population size N , maximum fitness evaluation times

maxFE
Output: A set of solutions with different trade-offs between accuracy and the

compression ratio
1 Initialize a population P with N diverse individuals, each of which corresponds

to an instance subset of TR;
2 Evaluate the accuracy and compression ratio of each individual in P ;
3 Sort individuals in P using the non-dominated sorting and crowding distance;
4 i = N ;
5 while i < maxFE do
6 Q = ∅;
7 while |Q| ≤ N do
8 Select two parents using the tournament selection;
9 Generate two new individuals by conducting one-point crossover and

the modified bit-wise mutation on parents, and add them to Q
10 end
11 Evaluate the accuracy and compression ratio of each individual in Q;
12 P = P ∪ Q;
13 Select the top N individuals from P using the non-dominated sorting and

crowding distance, and save them as P ;
14 i = i + N

15 end
16 return P

first employed and then the bit-wise mutation with a slight modification to fur-
ther promote population diversity takes place on the newly generated individu-
als. For space considerations, we refrain from providing the detailed information
of the one-point crossover, but direct interested readers to [11]. The modified
bit-wise mutation works as follows: consistent with that of the population ini-
tialization, the main idea is to diversify the compression ratios of new solutions,
which can be accomplished with negligible overhead. Before describing the mod-
ified bit-wise mutation, we would like to have a look at how the original bit-wise
mutation performs in the context of instance selection. Assuming that the num-
ber of 1-bits in a given individual z is l, and a new individual z′ is generated by
applying the original bit-wise mutation with probability p to z, the expectation
of the number of 1-bits in z′ is l(1−p)+(n− l)p = l+(n−2l)p. With this expec-
tation, by repeatedly performing such mutation operation, the number of 1-bits
for the population is likely to aggregate to n/2, which might be detrimental to
population diversity. Thus, to enhance the diversity, we make each individual
have the same opportunity to increase or decrease the number of 1-bits. Con-
cretely, we first set two variants of bit-wise mutation, one is 0-mutation that only
allows 0 to flip to 1 and the other is 1-mutation that only allows 1 to flip to 0,
and each individual has a 1/2 probability to employ 0-mutation or 1-mutation.
In this way, the number of 1-bits in an individual will not aggregate to some spe-
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cific area, thus contributing to more diverse individuals. For the environmental
selection, as that done in NSGA-II, the non-dominated sorting and the crowding
distance-based selection are employed to sort and update the population.

During the above search process, each time a new individual is generated, a
fitness evaluation is performed. As a multi-objective optimization problem, the
fitness of an individual needs to be assigned according to mutliple objectives,
i.e., HammingLoss and CompressionRatio. The objective CompressionRatio can
be natually computed as that shown in Eq. 4, while the objective HammingLoss
cannot for the fact that the test set is unavailable during the optmization. For-
tunately, since the training and test sets are usually assumed to be identically
distributed, the training set can be used for estimation. On the other hand,
another issue in computing HammingLoss is the high computational overhead
in identifying neighbors throughout the whole iterative search process. To reduce
this overhead, instead of identifying neighbors for each individual separately, we
construct a global nearest neighbor table for all individuals to query. Specifically,
given an instance x, all instances in TR are sorted by the ascending order of
their distances from x, and saved as a new list Ax . Then, given an individual z
to be evaluated and assumming its corresponding selected instance subset is S,
the first k instances in Ax that are involved in S are identified as the neighbors
for x. Thus, the objective HammingLoss is estimated on the training set on the
assist of the global nearest neighbor table. Note that this table is released at the
end of the optimization, so there is no additional memory overhead when the
obtained solutions are used.

With all the above components, the algorithm searches and terminates until
some stopping criterion is fulfilled (usually when a certain predefined number of
evaluation times is reached), and the population finally obtained is the outcome
of the algorithm.

4 Experimental Studies

Experimental studies have been carried to evaluate the efficacy of our proposed
approach. The proposed MOEIS-ML is compared with three state-of-the-art
instance selection approaches for ML-kNN to evaluate from two aspects. One
is to evaluate whether the multi-objective MOEIS-ML is able to provide some
advantage over the single-objective approaches. The other is to compare MOEIS-
ML with the state-of-the-art approaches in terms of solution quality.

4.1 Experimental Setup

In the experiments, six real-world data sets from the Mulan multi-label data
sets1 are employed to examine the performance of the proposed algorithm. They
are selected from different application domains and with different number of
instances. The details of the data sets are described in Table 1.

1 http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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Table 1. Data set description

Name Domain #Instances #Features #Labels

emotions Music 593 72 6

genbase Biology 662 1185 27

enron Text 1702 1001 53

scene Images 2407 294 6

yeast Biology 2417 103 14

bibtex Text 7395 1836 159

Three state-of-the-art instance selection approaches for ML-kNN are exam-
ined. Two of them are the two only works in the literature for instance selection
for ML-kNN, i.e., LSSm-HD [1] and CCISML [10]. The third one is an extension
of a classic approach for instance selection for single-label classification, namely
ENN [22], to multi-label scenarios, and it is denoted as ENN-HD in the experi-
ments. Specifically, ENN-HD is extended from ENN by introducing the Hamming
distance to measure the neighbor relationship, as that done in LSSm-HD. For
LSSm-HD and ENN-HD, the parameter θ is set to 0.14 as recommended in the
original paper of LSSm-HD [1]. For the EA-based algorithms, i.e., CCISML [10]
and our MOEIS-ML, the population or subpopulation size is set to 100, and the
maxmimum fitness evaluation times is set to 50,000. The tournament size is 2
and the probabilities of applying crossover and mutation are 1.0 for MOEIS-ML.
The algorithms are run 10 times independently and similar results are obtained.

4.2 Results and Discussions

Figure 2 illustrates the solutions obtained by the examined algorithms in the
objective space. For the EA-based algorithms (CCISML and MOEIS-ML), the
nondominated solutions obtained on training sets in the first run are presented,
as well as their corresponding results when examined on test sets. The solu-
tions obtained by LSSm-HD and ENN-HD are together illustrated in the figures.
From the figures, it can be clearly observed that compared with the three single-
objective approaches, MOEIS-ML achieves a set of solutions that provide a vari-
ety of trade-offs between accuracy and compression ratio. Moreover, MOEIS-ML
always manages to find better or very similar solutions compared with the com-
pared algorithms. Specifically, when compared with ENN-HD and LSSm-HD,
MOEIS-ML consistantly generates better solutions that provides both better
compression ratio and better prediction accuracy; as ENN-HD and LSSm-HD
do not explicitly consider the compression ratio in the instance selection, the
compression ratio the subset found by them is unstable and for this reason, no
feasible solution is found for ENN-HD when it is applied to the data set bib-
tex ; when compared with CCISML, MOEIS-ML obtains better or very similar
solutions.
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Fig. 2. Illustration comparisons in the objective space. MOEIS-ML always achieves
better or very similar solutions when compared with the other examined algorithms.

Furthermore, it would be interesting to check whether a diverse set of solu-
tions can be satisfactorily obtained if the single-objective approaches are carried
out multiple times. The ENN-HD and LSSm-HD are examined in this experi-
ments and CCISML is omitted for its high computational overhead. They are
examined by changing the threshold θ from 0.00 to 0.30 to generate a set of solu-
tions. Figure 3 illustrates the results obtained by running ENN-HD and LSSm-
HD multiple times when applied to the two data sets scene and yeast. The results
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Fig. 3. Illustration comparisons when carrying out single-objective approaches multiple
times. MOEIS-ML still performs better in such scenarios.

further demonstrate the advantages of MOEIS-ML in generating a set of diverse
solutions, especially when compared with LSSm-HD. First, the results indicate
that even if the single-objective approaches are run multiple times, it is difficult
to ensure that diverse solutions will be generated in different runs. Second, such
unsatisfactory results imply difficulties in setting parameters for single-objective
approaches when dealing with the essentially multi-objective instance selection
problem for ML-kNN. In constrast, MOEIS-ML provides many additional and
competitive solutions, enabling an end-user to conveniently make their choices
to meet specific demands.

To compare the algorithms in a quantitative way, the solutions obtained by
the examined algorithms in terms of accuracy and compression ratio are further
presented in Table 2. The results of MOEIS-ML are sorted by compression ratio
in descending order. Consistant with the figures, the advantage of MOEIS-ML
compared with the other examined algorithms lies in that it not only simultane-
ously provides many additional choices to a practitioner, but also achieves not
worse accuracy and significantly better compression ratio.

Despite these advantages, the results show the overfitting problem (e.g., as
observed in Fig. 2f) to be aware of when using MOEIS-ML, which is also an issue
with most optimization-based methods. Specifically, since the algorithm needs
to estimate the fitness of solutions based on the training set during the search,
its performance largely relies on the precision of the estimation. Although the
training and test sets are theoretically identically distributed, they are practically
difficult to achieve this. Thus, the setting of the training set is important for
MOEIS-ML and its counterparts.
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Table 2. Comparison results in terms of test accuracy and compression ratio. For
MOEIS-ML, as a set of solutions with different trade-offs are obtained, for space con-
sideration, we select several representative solutions that dominate as many as or are
very similar to the solutions obtained by other examined algorithms. The values are
shown in %. (For the data set bibtex, ENN-HD with θ = 0.14 gets a set whose size is
less than 10 so its result is marked with “∼”.)

emotions genbase enron
Accuracy Compression Accuracy Compression Accuracy Compression

Basic 72.50 0.00 99.72 0.00 94.64 0.00
LSSm-HD 72.50 25.52 99.78 4.20 94.60 6.21
ENN-HD 70.56 23.08 86.29 97.98 90.64 98.50
CCISML 70.00 97.00 96.79 97.31 93.64 99.28

MOEIS-ML 67.50 98.12 95.30 98.32 94.78 11.43
73.06 95.68 96.68 97.48 94.26 95.30
73.89 82.55 99.94 66.39 94.05 97.78
72.50 16.14 99.89 49.75 93.68 99.35

scene yeast bibtex
Accuracy Compression Accuracy Compression Accuracy Compression

Basic 91.36 0.00 80.93 0.00 98.56 0.00
LSSm-HD 91.22 17.68 80.67 23.72 98.56 0.08
ENN-HD 84.85 44.74 79.43 30.57 ∼ ∼
CCISML 85.48 97.32 76.51 99.45 98.51 85.98

MOEIS-ML 82.37 99.54 77.48 98.25 98.49 99.85
87.55 98.06 80.67 71.54 98.58 99.80
92.05 41.37 80.73 45.66 98.54 89.18
92.25 17.54 80.93 2.44 98.55 20.26

5 Conclusion and Future Work

In this paper, we propose a multi-objective evolutionary optimization approach
for instance selection for multi-label classification. We first formulate the instance
selection for ML-kNN as a bi-objective optimization problem to consider both
accuracy and compression ratio. Then, we propose the MOEIS-ML algorithm
by adapting the well-known NSGA-II to solve the resultant bi-objective opti-
mization problem. Experimental studies on six real-world data sets show that
compared with the state-of-the-art instance selection algorithms for ML-kNN,
MOEIS-ML not only simultaneously provides a set of diverse solutions, but also
achieves not worse accuracy and significantly better compression ratio.

There are several important directions for future work. First, it is worthy to
extend MOEIS-ML to involve more objectives, such as subset accuracy and rank-
ing loss, to fulfill the comprehensive optimization expectation in practice [23].
Second, it would be interesting to combine MOEIS-ML with more sophisticated
search operators. For example, with the ever increasing number of instances, the
problem tends to be a large-scale multi-objective optimization problem [12,13],
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and enhancing its scalability would be worthy of studies. Finally, MOEAs have
shown good performance both theoretically and empirically for solving diverse
subset selection problems, e.g., sparse regression [20], ensemble pruning [19],
unsupervised feature selection [8], and result diversification [18]. Thus, an inter-
esting future work is to perform theoretical analysis of MOEIS-ML.
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Abstract. Search operators play an important role in meta-heuristics.
There are typically a variety of search operators available for solving a
problem, and the selection and order of using the operators can greatly
affect the algorithm performance. Adaptive operator selection (AOS) has
been proposed to select operators during optimisation dynamically and
adaptively. However, most existing studies focus on real-value optimi-
sation problems, while combinatorial optimisation problems, especially
complex routing problems, are seldom considered. Motivated by the effec-
tiveness of AOS on real-value optimisation problems and the urgent need
of efficiency in solving real routing problems, this paper investigates AOS
in complex routing problems obtained from real-world scenarios, the
multi-depot multi-disposal-facility multi-trip capacitated vehicle rout-
ing problems (M3CVRPs). Specifically, the stateless AOS, arguable the
most classic, intuitive and commonly used category of AOS approaches,
is integrated into the region-focused local search (RFLS), the state-of-
the-art algorithm for solving M3CVRPs. Unexpectedly and yet within
understanding, experimental results show that the original RFLS per-
forms better than the RFLS embedded with stateless AOS approaches.
To determine the causes, a novel neighbourhood analysis is conducted to
investigate the characteristics of M3CVRP and the factors that affect the
performance of the AOS. Experimental results indicate that the momen-
tum assumption of stateless AOS, good operators in history will also
work well in current stage, is not satisfied within most of the time dur-
ing the optimisation of the complex problem, leading to the unstable
performance of operators and the failure of stateless AOS.
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1 Introduction

Meta-heuristics in generate-and-test style have shown their effectiveness in opti-
mising real-world problems, such as vehicle scheduling [13,15,22] and engineer-
ing problems [16]. In those algorithms, new solutions are sequentially generated
by search operators based on incumbent solutions. Then, those new solutions
are tested and good ones will be accepted as new incumbents. Search opera-
tors, like crossover and mutation operators in evolutionary algorithm and neigh-
bourhood relation operators in local search algorithm, play an essential role in
meta-heuristics and significantly affect their effectiveness and efficiency. When
tackling a real-world problem, novel search operators are often designed with
domain knowledge according to the problem’s characteristics and cooperate with
classic search operators. A well-known example is vehicle scheduling [5]. Besides
the classic swap, insert and 2-opt operators, diverse problem-specific operators,
such as region-focused mutation and crossover operators [13], that integrate the
consideration of limited route swap region in real life, have also been proposed.
Consequently, to improve the efficiency of applying operators, adaptive operator
selection (AOS) strategies that dynamically select operators according to their
performance have been studied for (1+λ)-evolutionary algorithm [11], genetic
algorithms [17], differential evolution [10,18,19], memetic algorithms [3,12,14].

AOS has achieved great success on real-value optimisation problems [10,19,
21,25] and benchmark combinatorial optimisation problems, such as OneMax [2,
8,11,20], quadratic assignment problem [12,23] and knapsack problem [20]. In
particular, even a simple stateless AOS approach that selects the operator based
on purely the history of its performance regardless of the search state can achieve
promising results. The stateless AOS approach also has other advantages, such as
it is intuitive, simple to design and implement, and requires no extra computation
resource for training the predictor, which is particularly suitable for solving
large-scale real-world optimisation problems. However, in real-world scenarios,
there are much more complex combinatorial optimisation problems with many
complex constraints and a rugged fitness landscape. The effectiveness of AOS on
more complex combinatorial optimisation problems has been seldom studied.

In this paper, we aim to answer the following research questions. (i) Whether
the successful stateless AOS approaches can also work well for complex combina-
torial optimisation problems? (ii) Whether the complexity of the problem affect
the effectiveness of AOS? (iii) Which factors could affect the effectiveness of AOS
in solving combinatorial optimisation problems?

To answer these questions, we conduct empirical experiments and analyses
as a preliminary study. Specifically, we consider the multi-depot multi-disposal-
facility multi-trip capacitated vehicle routing problem (M3CVRP) [13], which
is a very complex and challenging combinatorial optimisation problem with
many important real-world applications such as logistics. We consider a recent
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Algorithm 1. RFLS-AOS.
Require: Solution S, stopping criteria SC1 and SC2

1: S′ ← S
2: while stopping criterion SC1 not met do
3: while stopping criterion SC2 not met do
4: ope ← OSR
5: Apply ope with corresponding parameter to S′

6: r ← CA � Detailed in Eq. (4)
7: Update selection probability with reward r
8: end while
9: Apply RMPS with parameters ρ3 and α to S′

10: end while
11: return S′

and state-of-the-art heuristic optimisation algorithm for M3CVRP, the region-
focused local search (RFLS) [13], and investigate the behaviours of the most
commonly used stateless AOS approaches in the algorithm for solving M3CVRP.

Experimental results on a real-world instance together with 6 re-sampled
instances show that RFLS performs better than the modified RFLS, in which
stateless AOS approaches are embedded. There is a high probability that oper-
ators that performed well in the recent past will not perform as well afterwards,
especially when it becomes increasingly hard to improve an existing solution in
the later stage of optimisation. The momentum assumption of stateless AOS
approaches, operators that performed well in the past will also own a good per-
formance in the later stage, is not satisfied in such complex routing problems.
We suggest that it is a major factor in the unpromising performance of stateless
AOS approaches. At last, we discuss the feature of tested AOS approaches and
the potential improvement of AOS on complex routing problems.

The rest of this paper is organised as follows. Section 2 reviews the exist-
ing work on AOS and briefly describes the RFLS and M3CVRP considered in
this work. The proposed neighbourhood analysis method and the framework of
embedding classic AOS approaches into RFLS are described in Sect. 3. Section 4
presents the experiment setup and discusses the results. Section 5 concludes.

2 Background

This section first introduces the stateless AOS approaches, the focus of this
study, and then describes the M3CVRP and RFLS [13] studied in this paper.

2.1 Stateless Adaptive Operator Selection

The study of AOS dates back to 1989 [6]. Generally, AOS consists of two parts:
the credit assignment (CA), i.e., evaluation of operators’ performance, and the
operator selection rule (OSR), i.e., selection of operators based on the credits.
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Fitness improvement is a commonly used CA in most literature [4,9,24]. State-
less OSRs assume a momentum assumption that operators with good historical
performance are likely to own high searching ability and therefore select high
historical performance operators. Differing from state-based OSRs which extract
features of search state and train learners to map states to operator selection,
expensive feature extraction and training are not required in stateless OSRs.
Therefore, stateless OSRs are manageable in large-scale problems.

Probability matching (PM), adaptive pursuit (AP) and dynamic multi-armed
bandit (D-MAB) are three classic and commonly used OSR approaches in liter-
ature [3,7,14,19]. Various novel approaches have also been proposed [2,18].

Probability matching (PM) is a classic selection strategy in machine learning
that assigns the selection probability of each candidate as its reward probability.
PM in the AOS context is demonstrated as Eq. (1), in which Pi and ri are the
selection probability and the immediate reward of operator i, respectively. K is
the total number of operators, Pmin is the pre-defined lower bound of selection
probability, Qi represents the discounted cumulative reward of operator i and α
is a pre-defined parameter for balancing exploration and exploitation.

Pi = Pmin + (1 − K · Pmin)
Qi

∑K
j=1 Qj

, where Qi = αri + (1 − α)Qi. (1)

Adaptive pursuit (AP) [24] is developed from PM with an extra pre-defined
parameter β, as in Eq. (2). It allocates more resource to candidates with better
performance, which makes it more sensitive to environmental changes than PM.

Pi =

{
β(1 − (K − 1)Pmin) + (1 − β)Pi, if i = arg maxj Qj

βPmin + (1 − β)Pi, otherwise.
(2)

UCB1 [1] is well-known multi-armed bandit (MAB) algorithm. In UCB1,
the estimated reward p̂i and the number of applications ni of each operator i
are recorded, so that resources will be allocated to rarely selected operators for
exploration and the ones with high performance for exploitation. Specifically,

the operator with the maximal value of p̂i +
√

2 log
∑

k nk

ni
will be selected. The

study of [4] formed AOS as the dynamic case of MAB and developed D-MAB
based on UCB1 as an OSR. The detailed process of D-MAB is demonstrated in
Eq. (3) with pre-defined parameters λ and θ. Only the chosen operator i will be
updated at each iteration. In D-MAB, UCB1 is used for decision making and
Page-Hinkley (PH) test is embedded to detect the abrupt changes in operators’
performance. The PH test will be triggered (Mi−mi > λ) by the abrupt changes
and all the recorded values (ni, p̂i,mi,Mi) are reset for better agility.

p̂i =
nip̂i + ri
ni + 1

, mi = mi + (p̂i − ri + θ), Mi = max (Mi,mi). (3)

2.2 M3CVRP

The multi-depot, multi-disposal-facility, multi-trip capacitated vehicle routing
problem (M3CVRP) is a complex combinatorial optimisation problem [13]. Dif-
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ferent from classic CVRPs, there are multiple depots and facilities. A solution
of M3CVRP is a set of routes which serves all the tasks. Each route can be
represented by a sequence of task points served by a vehicle. Each task point
has a specific amount of demand. When a vehicle serves a task, it will collect
its demand. Each vehicle is limited by a capacity value. No vehicle is allowed
to collect demands that exceed the capacity. A vehicle is allowed to clear its
load at a facility at any time and continue serving. Each vehicle must finish the
work within a given time limit and return to the depot from where it departs. In
M3CVRP, there are multiple depots and facilities, which significantly enlarge the
search space, as well as the optimisation difficulty, which makes it a benchmark
for studying AOS with problems of higher complexity. More details of M3CVRP
and a real-world M3CVRP instance of thousands of tasks can be found in [13].

2.3 Region-Focused Local Search

We consider a state-of-the-art algorithm for solving M3CVRP, region-focused
local search (RFLS). Based on the classic local search framework, RFLS involves
three novel search operators: region-focused single-point swap (RFSPS), region-
focused segment swap (RFSS) and relaxed multi-point swap (RMPS) [13]. Com-
bined with another three classic search operators, insertion, swap and 2-opt, a
total number of 6 search operators are used. It makes RFLS a good case for
studying AOS. Details of RFLS can be found in [13].

3 Methodology and Experiment Design

To answer our research questions, two sets of experiments are designed. To verify
the effectiveness of AOS in the context of a complex combinatorial optimisation
problem, in the first set of experiments, we incorporate the AOS into RFLS for
solving M3CVRP and compare it to the original RFLS on several M3CVRP
instances. In the second set of experiments, we investigate the progress of RFLS
and analyse the relationship among the best operators in subsequent iterations
to understand the factors that affect the performance of the AOS.

3.1 Experiment 1: AOS in RFLS

We embed the classic stateless AOS approaches into RFLS, denoted as RFLS-
AOS. Algorithm 1 shows the overall framework of RFLS-AOS. In line 4 of Algo-
rithm 1, the OSR is applied to select the estimated best operator ope from the
five local operators (swap, insertion, 2-opt, PRFSP and RFSS). Then, ope is used
to update the solution S′. In line 6, the reward r is defined as the normalised
fitness improvement and calculated as follows:

r =
2τt

max Φt + max(max Φt−1,max Φt)
, (4)
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where τt is the fitness improvement at iteration t (set as 0 if the new solution
has lower fitness), and Φt is the sliding window (with size l) of fitness improve-
ments, i.e., Φt = {τt−l+1, τt−l+2, . . . , τt}. Compared with linear normalisation,
the described method has a better ability to avoid false triggering of the PH test
when a sudden singular large fitness improvement leaves the sliding window.

Fig. 1. Total distance of solutions over optimisation time, averaged over 30 trials.

In the experiments, the three classic stateless selecting approaches described
in Sect. 2.1, PM, AP and D-MAB, are implemented as OSR, and the resulting
algorithms are referred to as RFLS-PM, RFLS-AP, RFLS-D-MAB, respectively.
We also implement random selection for comparison, denoted as RFLS-random.

3.2 Experiment 2: Neighbourhood Analysis

We design a neighbourhood analysis method, as demonstrated in Algorithm 2,
to analyse the performance of operators on a solution. For a given solution, a set
of neighbour solutions are sampled by each operator independently, as shown in
lines 7–14, referred to as neighbourhood sampling. The best operator to a solution
is defined as the one that achieves the largest average fitness improvement in
neighbourhood sampling. Then the solution is replaced by its best neighbour
and the sampling is repeated, where a new best operator will be found. After
repeating a predefined number of times, a sequence of best operators is generated.

We record the sequence of best operators, denoted as M , and the average
fitness improvement value matrix of each operator at each iteration, denoted as
T̄ . Stability operators’ performance can be measured based on M and T̄ . The
more successive repeated items are in M , the more stable the choice of the best
operator is. At each iteration t, a high improvement of the best operator Mt in
t + 1, recorded in T̄ , implies that the performance of Mt is stable.

4 Results and Analysis

The first part of this section presents the performance of RFLS-AOS in solv-
ing M3CVRP. In the second part, the results of neighbourhood analysis and
discussion of factors that affect the performance are presented.
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4.1 Effectiveness of AOS in RFLS for M3CVRP

In the first set of experiments, we test the RFLS-AOS on the real-world
M3CVRP instance given in [13]. The parameter setting of RFLS-AOS is iden-
tical to [13], while the parameters of AOS are set as follows. In PM and AP,
α = 0.3, β = 0.3, Pmin = 0.5. In D-MAB, θ and λ are set to 0.1 and 0.5, respec-
tively. For each instance, each approach was tested independently for 30 times.
Figure 1 shows the convergence curves (average total distance of the 30 indepen-
dent runs) of the compared algorithms over the search process. From the figure,
we can see that in the earlier stage (0–1000s) the origin RFLS without AOS
performs a distinct advantage. For the average quality of final solutions, only
RFLS-AP shows better performance, while the difference is negligible.

Algorithm 2. Neighbourhood analysis on a given solution.
Require: Solution s, a set of K search operators OPE = {ope1, . . . , opeK}, predefined

parameters m and n, a problem instance I and an evaluator E
1: M ← empty vector with size m
2: x ← s
3: T̄ ← m × K empty matrix
4: dist(x) ← evaluate x with given evaluator E and instance I
5: for j ← 1 to m do
6: neighbours ← ∅
7: for k ← 1 to K do
8: for t ← 1 to n do
9: yk

j,t ← apply opek on x
10: add yk

j,t to neighbours
11: dist(yk

j,t) ← evaluate yk
j,t with given evaluator E and instance I

12: end for

13: T̄j,k ←
∑n

t=1 max{0,dist(x)−dist(yk
j,t)}

n

14: end for

15: ope∗
j ← arg maxk∈{1,...,K}{

∑n
t=1 max{0,dist(x)−dist(yk

j,t)}
n

}
16: Mj ← ope∗

j

17: x ← arg minyk
j,t∈neighbours{dist(yk

j,t)}
18: dist(x) ← minyk

j,t∈neighbours{dist(yk
j,t)}

19: end for
20: return M, T̄

Solutions’ quality, i.e. total distance, of 30 runs of each RFLS-AOS implemen-
tation at each time point are tested by the Wilcoxon rank sum test with origin
RFLS and RFLS-AOS, respectively. Compared with RFLS, RFLS-random and
RFLS-D-MAB are significantly worse the most of time. Other approaches per-
form inferiorly in the earlier stage (0–600 s). Compared with RFLS-random, only
RFLS-AP find final solutions which are significantly better. Solutions’ quality
of RFLS-PM and RFLS-D-MAB, respectively, has no significant difference with
RFLS-random for about 80% of the time during optimisation.
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In summary, we find out that none of the stateless AOS approaches managed
to achieve better performance than the original version for solving the real-world
complex problem, M3CVRP. This is different from the previous success of AOS
on benchmark problems. In other words, we have shown that AOS is not always
effective, and can fail for complex combinatorial optimisation problems. The
Sophisticated design of AOS is still required to achieve promising performance.

Fig. 2. Example of the case that the best operator of a given route A is different to its
best neighbour B. For A, the best operator is 2-opt which eliminates the cross (d-e|h-i)
and forms route B. However, for B the best operator is insertion which moves c to its
best position, i.e. between a and i, and find B’s best neighbour C.

4.2 Further Analysis on Neighbours

Stateless AOS approaches are designed based on the momentum assumption.
However, in VRP, there are situations where the momentum will vanish. Figure 2
demonstrates an example that the best operators on solutions that are generated
in succession, i.e. neighbours, are considerably different. We consider three classic
operators, 2-opt (reverse a section in a route), insertion (move an item in a route
into another position) and swap (swap the positions of a pair of points) and aim
to find the shortest route, i.e., solution in this context. The best operator of the
given route A is 2-opt, which reverses the section d-e-f -g-h-i to d-h-g-f -e-i, so
that the unnecessary travelling distance introduced by the cross is eliminated.
By applying 2-opt, the best neighbour of A, B is found. In the generate-and-test
style, B will replace A as the new incumbent, in other words, A is the solution
in history and B is the current one. However, the performance of 2-opt drops
rapidly after replacement, because all crosses are eliminated and there is no more
significant improvement can be achieved by 2-opt in B. The new best operator
will be insertion, which inserts c to the best position (between a-i) and forms
the best neighbour of B, indexed as C. In such a situation, reasonably it is hard
for stateless AOS approaches to make the correct decision, as the momentum
assumption is not satisfied. To the best of our knowledge, in literature, there is no
study considering verifying the existence of the situation, and the performance
of stateless AOS in such situations.

To investigate the existence of the above case occurring in solving M3CVRP
with RFLS and the consequent impact, we conduct an experimental study on the
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real-world instance introduced in Sect. 2.2, together with 6 re-sampled instances
based on it. The 6 instances are generated by re-sampling the task points, with
sampling rates as 90%, 80% and 70% respectively, from the origin real-world
instance with 3000 task points, marked as 2700-1, 2700-2, 2400-1, 2500-2, 2100-1
and 2100-2, where the former number (2700, 2400, 2100) represents the number
of task points in the instance. All 7 instances are analysed as the following
method.

Fig. 3. Neighbourhood analysis on original instance (left) and instance 2400-1 (right).
Red line demonstrates the frequency that the previous solution (recorded solution x)
has the same best operator with the next solution (the best neighbour of x), i.e. ope∗

1 =
ope∗

2, marked as Prob(consecutive 2). Blue line indicates the estimated probability that
ope∗

1 = ope∗
2 = ope∗

3, marked as Prob(consecutive 3). Black lines indicate the estimated
probability that the best operator of previous solution (recorded solution x) is not
able to achieve any improvement on the next solution (the best neighbour of x), i.e.,
T̄1,k ≤ 0 where k is the index of ope∗

1, marked as Prob(0 improvement). (Color figure
online)

Firstly RFLS is applied for solving and all accepted solutions are recorded
for each instance. Each accepted solution represents a searching stage, therefore
characteristics of operators in all stages of optimisation can be better analysed.
Recorded solutions are indexed by the order that they are found. Larger index
solutions are found in later stages of optimisation. Then each recorded solution
is analysed for 30 independent repeats with the neighbourhood analysis method
introduced in 3.2. n and m are set to 100 and 3. Analysis results of the origi-
nal instance and re-sampled instance 2400-1 are demonstrated in Fig. 3. Results
indicate that (i) values of Prob(consecutive 2) and Prob(consecutive 3) are con-
siderably too low (around 15% and 3%) and of Prob(0 improvement) are too high
(around 80%) for satisfying the momentum assumption, (ii) larger index solution
is likely to perform lower Prob(consecutive 2) and Prob(consecutive 3), while
the Prob(0 improvement) is higher. Normally in the later stage of optimisation,
the solution quality is higher and the difficulty of finding a better solution is also
higher. We suggest that there may exist a strong positive correlation between
the difficulty of solution improving and operator selection momentum vanishing.

We observe that there are sudden changes of the 3 values in larger indexes,
like solution indexed as 89 in original instance and 221 in 2400-1. Detailed exper-
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iment information shows that they are caused by that SC2 is met and RMPS
is triggered to apply. RMPS is designed for jumping out from a local optimum
with a large step size of change. After applying RMPS, if the new solution is
accepted, usually the difficulty of finding a better solution will reduce temporar-
ily because of the escaping from the last local optimum. Therefore the 3 values
will perform a rapid change. This is consistent with the above conclusion.

Table 1. Estimated probability of the top 70% solutions that own the largest index.

Origin 2700-1 2700-2 2400-1 2400-2 2100-1 2100-2

Prob (consecutive 2) 0.1180 0.1974 0.2720 0.1732 0.1815 0.1376 0.2432

Prob (consecutive 3) 0.0132 0.0419 0.0732 0.0368 0.0266 0.0238 0.0551

Prob (0 improvement) 0.8360 0.6585 0.6832 0.7319 0.6751 0.8093 0.5594

Table 1 lists the 3 values on the top 70% solutions that owns the largest
index, for example, solutions indexed in range 27–89 in original instance. The
above discussion is consistent in the experiment of all instances. This may be
the one major factor of stateless AOS performing inferiorly embedding in RFLS
on solving M3CVRP.

5 Conclusion

AOS approaches are developed to dynamically and adaptively select the opti-
mal operator to generate new solutions. Arguably the most classic, intuitive and
commonly used category of AOS approaches, stateless AOS is studied in many
works as the first step. However, in literature, complex combinatorial optimisa-
tions, especially the VRPs with real-world characteristics are seldom considered.
In this paper, we investigate stateless AOS on M3CVRP, a real-world VRP with
multiple constraints and depots. The assumption of stateless AOS, an opera-
tor that performs well recently has a high potential at the current stage, is
verified with a novel neighbourhood analysis approach in this paper. Experi-
mental results in large-scale M3CVRP instances indicate that the performance
of operators is considerably unstable and the aforementioned assumption is not
satisfied in most cases, while in literature it is assumed as satisfied without
test [3,4,8,19,24]. This explains the poor performance of embedding AOS into
RFLS for solving M3CVRP. The proposed analysis approach can be referred
to in the study of stateless AOS on related problems. For a better exploration
of the characteristics of such complex combinatorial optimisation, more related
problems and optimisation algorithms will be studied in our future work.

We also observe that removing the highest reputation operator from the can-
didate list may be a potential way when the reputation is verified as misguiding.
State-based AOS approaches, which train machine learning models that map the
state features into operator selection, is worth considering if extra computation
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resource on training is handled. In literature, most studies focus on calculat-
ing the fitness landscape as the state feature, which is relatively expensive due
to the sampling needed. The effectiveness of state feature extraction is the key
point. Information about the solution itself, such as topology structure, should
be concerned more rather than the fitness values of itself and its neighbours.
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Abstract. Effective feature engineering serves as a prerequisite for
many machine learning tasks. Feature engineering, which usually uses
a series of mathematical functions to transform the features, aims to
find valuable new features that can reflect the insight aspect of data.
Traditional feature engineering is a labor-intensive and time-consuming
task, which depends on expert domain knowledge and requires itera-
tive manner with trial and error. In recent years, many automated fea-
ture engineering (AutoFE) methods have been proposed. These methods
automatically transform the original features to a set of new features
to improve the performance of the machine learning model. However,
existing methods either suffer from computational bottleneck, or do not
support high-order transformations and various feature types. In this
paper, we propose EAAFE, to the best of our knowledge, the first evolu-
tionary algorithm-based automated feature engineering method. We first
formalize the AutoFE problem as a search problem of the optimal fea-
ture transformation sequence. Then, we leverage roulette wheel selection,
subsequence-exchange-based DNA crossover, and ε-greedy-based DNA
mutation to achieve evolution. Despite its simplicity, EAAFE is flexi-
ble and effective, which can not only support feature transformations for
both numerical and categorical features, but also support high-order fea-
ture transformations. Extensive experimental results on public datasets
demonstrate that EAAFE outperforms the existing AutoFE methods in
both effectiveness and efficiency.

Keywords: Automated feature engineering · Evolutionary algorithm

1 Introduction

In many practical machine learning (ML) tasks, the quality of features often
directly determines the upper bound of ML algorithms. Feature engineering,
which aims to extract valuable features from raw data, serves as a prerequi-
site for ML tasks. However, feature engineering is a labor-intensive task, which
depends on extensive domain knowledge and requires an iterative manner with
trial-and -error. Although several ML methods such as deep neural networks
can automatically generate high-level representations from raw data, but these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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high-level features are generally uninterpretable [1]. Because of this, feature engi-
neering is viewed as the most creative and time-consuming stage of ML tasks.

Recently, automated feature engineering (AutoFE) that generates useful fea-
tures without any human intervention has attracted more and more attention.
The core of AutoFE is to search for the best-suited transformations (e.g., unary
and binary arithmetic operators) for raw features. The expansion-reduction
methods [10,15] apply all possible transformations to each feature and select
the features based on the improvement in model performance. Due to the com-
position of feature transformation, such a brute-force method leads to exponen-
tial growth in the space of constructed features. TransGraph [13] leverages a
hierarchical graph structure to represent the feature transformation space. How-
ever, the feature explosion problem also exists, especially in the bottom layer of
the transformation graph because each transformation will act on all features.
To eliminate the feature explosion problem, LFE [20] employ meta-learning to
recommend promising transformations for each feature. However, it does not
support the composition of transformations (i.e., high-order transformations).
Recently, NFS [2] utilizes reinforcement learning to search a transformation
sequence for each feature and achieves the state-of-the-art (SOTA) performance.
Nevertheless, the computation efficiency of NFS is low because it needs to train
an recurrent neural network (RNN) controller for each feature. Moreover, NFS
cannot support feature transformations for categorical features.

Inspired by the success of evolutionary neural architecture search (NAS) [22,
23], in this paper, we propose EAAFE1 to the best of our knowledge, the first
evolutionary algorithm-based automated feature engineering method. We first
formalize the feature engineering problem as a search problem of feature transfor-
mation sequences. Then, we leverage the roulette wheel selection [6] assisted evo-
lutionary algorithm to find the optimal feature transformation sequence for each
raw feature. Specifically, we concatenate the feature transformation sequences
of all features together and view the concatenated sequence as an individual in
the population. The DNA of each individual consists of the encoding of all fea-
ture transformation operations. The encoding space is constrained by the feature
type (i.e., categorical or numerical). The fitness of individual is determined by
the performance of the underlying machine learning model that is trained with
the raw and constructed features.

During the evolutionary process, we further propose a subsequence-exchange-
based DNA crossover method. For each selected DNA pair, we randomly choose
two crossover points in the transformation sequence of each feature, and then
exchange the subsequences between these crossover points. After the DNA
crossover, we propose a ε-greedy-based DNA mutation method. Each transfor-
mation operation in the DNA is mutated with a probability ε.

Our main contributions are summarized as follows:

– We propose an evolutionary AutoFE framework called EAAFE to automat-
ically search for the optimal transformation sequence for each raw feature.

1 EAAFE is available at https://github.com/PasaLab/EAAFE.

https://github.com/PasaLab/EAAFE{}
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In the evolutionary process, we propose a subsequence-exchange-based DNA
crossover method and a ε-greedy-based DNA mutation method.

– Despite its simplicity, the proposed evolutionary approach is flexible and effec-
tive, which can not only support feature transformation for both numerical
and categorical features, but also support high-order feature transformations.

– Extensive experimental results on benchmark classification and regression
tasks reveal that EAAFE outperforms other existing AutoFE methods in
terms of effectiveness and efficiency.

2 Related Work

2.1 Automated Feature Engineering

A basic approach for automated feature engineering is the expansion-selection
approach. It predefines a series of feature transformations and applies them to
raw features for constructing new features, then combines the constructed fea-
tures and raw features as candidate features. With a feature selection step, only
a subset of candidate features is preserved. The expansion-selection approach
suffers from combinatorial explosion problem. The representative method based
on expansion-selection is Deep Feature Synthesis [10]. One Button Machine [15]
adopts similar approach to relational databases.

Another basic approach is the performance-guided method. After new fea-
tures are constructed, their performances on the machine learning model are
evaluated and only promising features will be preserved. Such an approach needs
to explicitly expand the feature space and thus suffers from extensive evaluation
overhead. FEADIS [5] adds constructed features greedily relying on a combina-
tion of random feature generation and feature selection. ExploreKit [11] employs
a feature selection method based on machine learning to rank the newly con-
structed features and greedily evaluate the most promising ones.

To explore the search space more efficiently, transformation-graph based
approaches are proposed, which describe feature transformations as a hierarchi-
cal graph structure. Each node represents a feature set and each edge represents
a transformation. Automated feature engineering can be achieved by iteratively
constructing the graph and designing efficient algorithms to explore it. Cog-
nito [14] recommends a series of transformations based on a greedy heuristic
tree search. The method in [13] utilizes Q-learning to explore the feature trans-
formation tree. LAFEM [19] formalizes feature engineering as a heterogeneous
transformation graph and adopts deep reinforcement learning to achieve Aut-
oFE. Although these methods construct more efficient search space, they also
suffer from the feature explosion problem and low search efficiency.

Recently, LFE [20] proposes a meta-learning based method that learns from
past feature engineering experiences to recommend promising transformations.
DIFER [27] performs AutoFE in a continuous vector space and propose a differ-
entiable search method. NFS [2] utilizes an RNN controller trained by reinforce-
ment learning to transform each raw feature through a series of transformation
operations. NFS can capture potentially valuable high-order transformations and
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achieve the SOTA performance. However, it suffers from slow convergence and
low search efficiency, because it needs to train an RNN controller for each raw
feature.

Fig. 1. Feature transformation sequences.

Similar to NFS, the proposed approach EAAFE, models AutoFE as finding
the optimal feature transformation sequence for each raw feature. Different from
NFS, EAAFE employs a simple and flexible evolutionary algorithm and can
achieve better performance in terms of effectiveness and efficiency.

2.2 Evolutionary Algorithm

Evolutionary algorithm (EA) is a kind of random search algorithm that simu-
lates natural selection and evolution processes of creatures. It streamlines the
complex evolutionary process and abstracts a set of mathematical models. EA
uses an encoding method to represent complex phenomena, and implements
heuristic search for complex search spaces according to simplified genetic pro-
cesses [7]. Traditional evolutionary algorithms first construct a population via
randomly initialized individuals, then evaluate each individual to get the fitness,
and finally perform mutations to generate a new population [4]. As a result, EA
can find the global optimal solution with a high probability [7]. Recently, EA
has been successfully adopted to the machine learning pipeline construction [21]
and neural architecture search [22,23].

In this paper, we consider encoding constraints during the evolution pro-
cess [3,17], leading to different search spaces for different feature types. we also
propose novel DNA crossover and mutation methods in the context of AutoFE.

3 The Proposed Approach

3.1 Problem Formulation

Given a dataset D = 〈F,y〉 containing raw features F = {f1, f2, · · · , fn} and
a target vector y, let V E

M (F,y) denote the performance of a machine learning



578 G. Zhu et al.

model M trained with F and measured by an evaluation metric E. The fea-
ture transformation operations mainly contain unary (e.g., log and square) and
binary operations (e.g., sum and multiply). The transformation performs on
more features can be constructed by nesting multiple binary transformations.

The feature set F can be further divided into a categorical feature set Fc and a
numerical feature set Fn. Different feature types correspond to different transfor-
mation operations. Consequently, we define five types of feature transformation
operations, i.e., T = {T c, T cc, T n, T nn, T cn}, where T n and T nn denote sets of
unary and binary transformations performed on numerical features, respectively.
T c and T cc are similar to T n and T nn, but are performed on categorical fea-
tures. T cn denotes the aggregate transformation operations between categorical
and numerical features.

As shown in Fig. 1, each raw feature fi corresponds to a transformation
sequence ti = 〈ti1, · · · , tij , · · · til〉, where tij denotes the j-th transformation
function in the sequence and l denotes the length of the transformation sequence.
Let T = {t1, t2, · · · , tn} denotes the set of feature transformation sequences of
all features, which transforms the raw feature set F to F̂ . We take the union set
of F and F̂ , i.e., F ∪ F̂ , as the newly constructed feature set. As a result, the
goal of automated feature engineering is to search for the optimal T which can
maximize the performance of the given ML model. Formally as

argmax
T

V E
M (F ∪ F̂ ,y), F̂ = T (F ).

In practice, the lengths of transformation sequences for different raw fea-
tures may be required to be different. To support variable sequence lengths, we
define a terminate operation, which indicates the early-stopping of the feature
transformation sequence. Transformations after it will be ignored. The terminate
operation also enables our approach to automatically find the proper length of
the transformation sequence.

3.2 Constrained DNA Encoding

During the evolutionary process, we take the concatenated transformation
sequence T as an individual in the population, the transformation sequence ti as
a chromosome, and elements in ti as genes. The DNA of each individual can be
viewed as the encoding of all operations in T . The encoding space is represented
by non-overlapping integer intervals. Since a binary transformation operator
takes two features as input, we convert it to a set of unary transformations. In
addition to the operation itself, each converted unary transformation has a fea-
ture index attached to it. For example, we can convert the binary transformation
sum to a set of unary transformations {sum(f1), · · · , sum(fi), · · · , sum(fn)}.

Moreover, different feature types (i.e., categorical or numerical) correspond
to different encoding spaces. Let Sn denote the encoding space of numerical
features, which is determined by the feature transformation sets Tn and Tnn.

Sn = {0, . . . , |Tn|}
⋃

{|Tn| + 1, . . . , |Tn| + |Tnn| ∗ |Fn|}, (1)
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where | T n | and |Fn| denote the number of transformations and the number of
numerical features, respectively. Sn is the combination of the encoding spaces
for the unary and binary transformations. Similarly, let Sc denote the encoding
space of categorical features, which is determined by the feature transformation
sets T c, T cc, and T cn. Thus, Sc is expressed as:

Sc = {− |Tc| , . . . , 0}
⋃

{− |Tc| − |Tcc| ∗ |Fc| − |Tcn| ∗ |Fn| , . . . ,− |Tc| − 1}. (2)

In Eq. 1 and Eq. 2, the number 0 indicates the encoding of the terminate oper-
ation. And the transformations for numerical features and categorical features
are encoded by positive integers and negative integers, respectively. Moreover,
Sn and Sc are not overlapped.

3.3 Evolutionary Search Algorithm

In this subsection, we introduce the evolutionary search algorithm for automated
feature engineering in EAAFE.

In the beginning, we randomly initialize the population according to the
encoding space constrained by the feature type. Suppose that the initial popula-
tion contains p individuals. Then, we perform evolution iteratively. Each evolu-
tion is composed of four steps: calculation of DAN fitness, roulette wheel selec-
tion, DNA crossover, and DNA mutation.

Calculation of DNA Fitness. The fitness reflects the adaptability of an indi-
vidual. For an individual T , its fitness is determined by the performance of given
ML model V E

M (F ∪ F̂ ,y), where F̂ is constructed by transforming the raw fea-
ture set F with T . The evaluation metric E can be F1-score or mean squared
error. And the underlying ML model M is set to random forest by default in our
experiments. We also evaluate the generalization of EAAFE through different
underlying models in Sect. 4.5. Moreover, since the transformation processes of
different raw features are independent with each other, we can transform differ-
ent features in parallel, which can alleviate the combinatorial explosion problem
and further improve the efficiency.

Roulette Wheel Selection. [6] To balance the exploration (i.e., population
diversity) and exploitation (e.g., higher fitness), we leverage the roulette wheel
selection evolutionary algorithm to select N individuals from current popula-
tion according to the fitness. The core of roulette wheel selection is that the
probability of an individual to be selected is proportional to its fitness.

Specifically, let p(xi) indicate the probability of the individual xi being
selected into the next-generation population. There is

p(xi) =
f(xi)∑m
j=1 f(xj)

, (3)

where f(xi) denotes the fitness of the individual xi and m is the size of current
population. Then, we calculate the cumulative probability of each individual,
denoted by q(xi), i.e.,
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q(xi) =
i∑

j=1

p(xj). (4)

Next, we randomly generate an array A of size m, where each element lies in
(0,1). The array A is sorted in ascending order. If q(xi) > A[i], then xi will be
selected. Otherwise, q(xi+1) will be compared with A[i+ 1] until one individual
is selected. Then, we randomly generate an array once again, and the above
process is repeated until N individuals are selected.

Fig. 2. Crossover and mutation in the evolutionary process.

Subsequence-Exchange-Based DNA Crossover. As shown in Fig. 2, the
DNA of an individual is composed of n chromosomes. Each chromosome cor-
responds to a transformation sequence of a raw feature. In the DNA crossover
process, we first randomly select two crossover points in each chromosome. Then,
we exchange the subsequences between the crossover points.

ε-greedy-Based DNA Mutation. The crossover operation can retain out-
standing genes. However, to avoid falling into the local optima, we need to further
perform DNA mutation to increase the diversity of population. Every gene (i.e.,
transformation operation) in the DNA can mutate with a certain probability ε.
Once a mutation occurs, the selected gene will be replaced by another trans-
formation randomly selected from the same encoding space. We continuously
perform crossover and mutation until a new population is generated.

The above-mentioned evolution process is repeated until the predefined num-
ber of iterations or the time limit is reached.
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4 Experiments

We conduct extensive experiments to evaluate the following aspects: (1) the
effectiveness of EAAFE; (2) the efficiency of EAAFE; (3) the effectiveness of the
high-order transformation; (4) the generalization performance of EAAFE.

4.1 Experiment Setup

As the SOTA method NFS [2], we use 23 public datasets from OpenML2, UCI
repository3, and Kaggle4. There are 13 classification (C) datasets and 10 regres-
sion (R) datasets that have various numbers of features (5 to 57) and instances
(500 to 30000). we utilize Random Forest as the underlying ML model in all

Table 1. Comparison between EAAFE and other existing AutoFE methods†. The best
results are marked by bold. F1-Score is reported for classification tasks and 1-(Relative
Absolute Error) is reported for regression tasks. “Inst.” and “Feat.” indicate the number
of instances and the number of features, respectively.

Dataset Source C\R Inst.\Feat. Base Random DFS† AutoFeat† NFS† EAAFE

Bikeshare DC Kaggle R 10886\11 0.816 0.844 0.821 0.85 0.975 0.981
Housing Boston UCIrvine R 506\13 0.434 0.445 0.341 0.469 0.501 0.701
Airfoil UCIrvine R 1503\5 0.496 0.573 0.435 0.596 0.616 0.81
OpenML 586 OpenML R 1000\25 0.662 0.651 0.65 0.728 0.74 0.792
OpenML 589 OpenML R 1000\25 0.644 0.642 0.636 0.686 0.714 0.757
OpenML 607 OpenML R 1000\50 0.634 0.629 0.639 0.67 0.687 0.734
OpenML 616 OpenML R 500\50 0.573 0.571 0.572 0.603 0.592 0.726
OpenML 618 OpenML R 1000\50 0.627 0.617 0.634 0.632 0.64 0.754
OpenML 620 OpenML R 1000\25 0.633 0.618 0.626 0.687 0.675 0.739
OpenML 637 OpenML R 1000\25 0.514 0.527 0.519 0.576 0.569 0.619
PimaIndian UCIrvine C 768\8 0.756 0.757 0.75 0.763 0.784 0.802
SpectF UCIrvine C 267\44 0.775 0.828 0.791 0.816 0.85 0.94
German credit UCIrvine C 1001\24 0.741 0.755 0.749 0.76 0.782 0.803
Ionosphere UCIrvine C 351\34 0.923 0.934 0.918 0.912 0.952 0.986
Credit default UCIrvine C 30000\25 0.804 0.806 0.806 0.806 0.805 0.815
Messidorfeatures UCIrvine C 1150\19 0.658 0.688 0.672 0.736 0.746 0.797
Wine quality red UCIrvine C 999\12 0.532 0.564 0.548 0.524 0.584 0.611
Wine quality white UCIrvine C 4900\12 0.494 0.493 0.488 0.502 0.515 0.524
SpamBase UCIrvine C 4601\57 0.91 0.924 0.91 0.924 0.93 0.984
Credit-a UCIrvine C 690\6 0.838 0.845 0.819 0.839 0.865 0.883
Fertility UCIrvine C 100\9 0.853 0.83 0.75 0.79 0.87 0.91
Hepatitis UCIrvine C 155\6 0.786 0.83 0.826 0.768 0.877 0.923
Megawatt1 UCIrvine C 253\37 0.889 0.897 0.877 0.889 0.913 0.953

2 https://www.openml.org/.
3 https://archive.ics.uci.edu/.
4 https://www.kaggle.com/.

https://www.openml.org/
https://archive.ics.uci.edu/
https://www.kaggle.com/
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other experiments except for Sect. 4.5. For evaluation metrics, we use 1-(relative
absolute error) [24] for regression tasks, and F1-score for classification tasks.
The 5-fold cross validation using random stratified sampling is employed and
the average result of 30 runs is reported.

In the evolutionary process, we set the total number of evolution iterations
to 5000, the population size to 48, and the mutation probability to 0.1. The
length of the transformation sequence for each raw feature is set to 5 for all
experiments except the one to verify the effectiveness of high-order transforma-
tion. Without loss of generality, we utilize 12 feature transformation operations
which cover five types of transformations defined as follows: 1) unary transfor-
mations for numerical features: sqrt, minmaxsacler, log, reciprocal; 2) binary
transformations for numerical features: add, sub, mul, div; 3) unary transfor-
mation for categorical features: count; 4) binary transformations for category
features: cat2cat_count and cat2cat_unique; 5) binary transformation for cat-
egorical and numerical features: cat2num_mean. Other feature transformation
operations can also be flexibly integrated into EAAFE.

Table 2. Comparison between EAAFE and NFS. The number of evaluations is limited
to 5000. The best results are marked by bold.

Dataset Base NFS EAAFE Dataset Base NFS EAAFE

Bikeshare DC 0.816 0.969 0.98 German credit 0.741 0.767 0.803
Housing boston 0.434 0.478 0.525 Ionosphere 0.923 0.949 0.971
Airfoil 0.496 0.606 0.673 Credit default 0.804 0.808 0.815
OpenML 586 0.662 0.662 0.732 Messidorfeatures 0.658 0.727 0.791
OpenML 589 0.644 0.648 0.672 Wine quality red 0.532 0.569 0.604
OpenML 607 0.634 0.638 0.723 Wine quality white 0.494 0.508 0.522
OpenML 616 0.573 0.581 0.714 SpamBase 0.91 0.927 0.98
OpenML 618 0.627 0.627 0.748 Credit-a 0.838 0.861 0.883
OpenML 620 0.633 0.633 0.714 Fertility 0.853 0.87 0.91
OpenML 637 0.514 0.542 0.601 Hepatitis 0.786 0.858 0.923
PimaIndian 0.756 0.768 0.802 Megawatt1 0.889 0.905 0.945
SpectF 0.775 0.828 0.925

4.2 Effectiveness of EAAFE

To verify the effectiveness of EAAFE, we compared it with following methods:

– Base, which directly uses raw datasets for evaluation.
– Random, which generates feature transformation sequences randomly

according to the proposed encoding space.
– DFS [10]: a well-known expansion-reduction method.
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– AutoFeat [8], a popular Python library for AutoFE and feature selection.
– NFS [2], which utilizes the RNN-based controller trained by reinforcement

learning to find transformation operations. NFS can achieve better perfor-
mance than other existing approaches (e.g., TransGraph [13]).

The results of baselines are obtained using open-sourced codes. The experi-
mental settings of these methods, such as the order of transformed features and
the evaluation metrics are same as EAAFE for fair comparison. From Table 1,
we can see that EAAFE achieves the best performance in all datasets. Aut-
oFeat, NFS and EAAFE achieve average improvements of 4.0%, 8.0% and 17.9%
over Base, and average improvements of 2.1%, 5.9% and 15.6% over Random,
respectively. The experimental results demonstrate the importance of feature
engineering, and the effectiveness of automated feature engineering. Compared
with other AutoFE methods, EAAFE is more effective and achieves an average
improvement of 10% and 28.2% over Base on regression tasks and classification
tasks, respectively. The classification tasks benefit more from the feature engi-
neering. Moreover, EAAFE can achieve highly competitive performance even
on relatively larger datasets such as Credit Default (with size 30000×25) and
Bikeshare DC (with size 10886×11).

4.3 Efficiency of EAAFE

The main bottleneck of automated feature engineering methods is the evaluation
process which needs to train the ML model from sketch. Moreover, in practice,
the computational resource is always limited. In this experiment, in order to
verify the efficiency of EAAFE, we limit the total number of evaluations to
5000, and compare EAAFE with NFS .

From Table 2, we can see that EAAFE consistently outperforms NFS and
achieves an average improvement of 13% over NFS in the case of limited evalu-
ation budget. Moreover, on most datasets, EAAFE achieves comparable results,
but NFS obtains even inferior results compare to the results in Table 1, which
can also demonstrate the efficiency and effectiveness of EAAFE.

4.4 Effectiveness of the High-Order Transformation

In order to verify the effectiveness of the high-order transformation, we change
the length of transformation sequence from 1 to 6, and report the relative
improvements of EAAFE over Base on Housing Boston, Airfoil, OpenML 586
and OpenML 616. We omit other datasets, since the experimental results are
similar.
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Fig. 3. Improvements of EAAFE over Base with different lengths of feature transfor-
mation sequences.

Figure 3 illustrates that the performance of EAAFE increases stably with
longer sequence length, but when the sequence length is higher than 5, the per-
formance degrades. Thus, overly complex features will not necessarily bring per-
formance improvement. Moreover, the search space also exponentially increases
with the increasing of transformation sequence length, leading to low search effi-
ciency. Therefore, considering both performance and efficiency, we choose 5 as
the length of the feature transformation sequence in other experiments.

4.5 Generalization Performance of EAAFE

In the previous experiments, we only use Random Forest as the underlying ML
model to evaluate EAAFE. In order to verify whether EAAFE can general-
ize to other frequently-used machine learning models, we further utilize Lasso
Regression [26], Linear SVR [25], and LightGBM [12] for regression tasks, and
Logistic Regression [9], Linear SVC [16], and LightGBM [12] for classification
tasks. Due to lack of space, we omit detailed results and only report the average
improvements of EAAFE over all datasets on these models.

Table 3 shows the average improvements of EAAFE on different ML models,
which can demonstrate the generalization performance of EAAFE. In conclusion,
EAAFE can adapt to various tasks and machine learning models, which is an
essential advantage for real-world applications.
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Table 3. Average improvements of EAAFE on different ML models.

Algorithm Average improvement

Classification Logistic regression 9.65%
LinearSVC 26%
LgbmClassifier 10%

Regression Lasso regression 14.7%
LinearSVR 22.1%
LgbmRegressor 13.8%

5 Conclusion and Future Work

In this paper, we propose an effective and efficient automated feature engineering
framework, named EAAFE. We first formalize the AutoFE problem as a search
problem of the optimal feature transformation sequence. Then we construct an
expressive search space by encoding different types of feature transformations to
different sub-spaces, and propose an effective evolutionary algorithm to explore
the constrained search space. Moreover, we design novel roulette wheel selection,
subsequence-exchange-based crossover, and ε-greedy-based mutation strategies
for the evolution. Despite its simplicity, EAAFE is flexible and effective, which
can support not only both numerical and categorical features, but also high-
order feature transformations. Extensive experimental results on public datasets
demonstrate that EAAFE consistently outperforms other state-of-the-art Aut-
oFE methods in both effectiveness and efficiency.

In the future, we plan to extend EAAFE to support more feature types
and transformation operations. In addition, we intend to employ Ray [18] to
parallelize EAAFE for higher efficiency.
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