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Abstract. Mixed-motive games comprise a subset of games in which indi-
vidual and collective incentives are not entirely aligned. These games are
relevant because they frequently occur in real-world and artificial soci-
eties, and their outcome is often bad for the involved parties. Institutions
and norms offer a good solution for governing mixed-motive systems. Still,
they are usually incorporated into the system in a distributed fashion, or
they are not able to dynamically adjust to the needs of the environment at
run-time. We propose a way of reaching socially good outcomes in mixed-
motive multiagent reinforcement learning settings by enhancing the envi-
ronment with a normative system controlled by an external reinforcement
learning agent. By adopting this proposal, we show it is possible to reach
social welfare in a mixed-motive system of self-interested agents using only
traditional reinforcement learning agent architectures.

Keywords: Mixed-motive games - Centralized norm enforcement -
Multiagent reinforcement learning

1 Introduction

Mixed-motive games, comprise a subset of games in which individual and collec-
tive incentives are not entirely aligned. These games describe situations in which
the combined effects of every individual’s selfishness do not yield a good outcome
for the group, a problem also known as the collective action problem [24]. Two
basic properties define this type of games [8]: a) every individual is incentivized
to socially defect and b) all individuals are better off if all cooperate than if all
defect.

Olson develops the notion of a collective action problem starting from the
raison d’etre of organizations [24]. These, as he describes, are groups that serve
to further the interests of their members. The problem emerges when the indi-
viduals of such groups also have antagonistic incentives to those common to the
collective. Individuals, in this case, are left to choose between harming the orga-
nization as whole in favor of their own benefit, or to pass on the opportunity
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for bigger gains in favor of the group. A collective action problem happens when
the former is systematically preferred over the latter.

Global warming is a real-world case of the collective action problem. In it,
most players—be it an individual, institution, or government—have an incentive
to emit as much greenhouse gases as desired—for matters of comfort, financial
gains, or popularity—, regardless of how much others are emitting. If collective
emissions surpass some threshold to these ends, the system increasingly dips into
an undesirable state that is bad for all involved.

It has been noted that real-world communities are capable of circumventing
this problem with varying success, conditioned on variables such as group size,
the existence of a communication channel, etc. [25,26]. These are tied and serve
to strengthen the idea of social norms; a guide of conduct, or the expectation
individuals hold of others in certain situations [22].

Social norms and norm enforcement mechanisms can be a useful tool in guid-
ing groups of people out of social dilemmas [17], but they can also be incorpo-
rated into multiagent systems (MAS) [5,6]. This institutional machinery provides
ways of governing mixed-motive games either via centralized solutions—when a
central governing body is tasked with running the institutional apparatus by
itself—or decentralized solutions—when the normative system is conducted by
the agents in the system.

Decentralized norm-enforcement approaches have been used to deal with
degrading system properties in MASs [9,15], such as the collective action prob-
lem. However, these decentralized solutions either imply a) pro-social behavior
from the agents or b) some form of direct or indirect retaliatory capacity—e.g.
having the choice not to cooperate in future interactions—that is at least similar
in intensity to the harm caused by the aggressor. We acknowledge the effective-
ness of these solutions in some cases but also recognize they are no panacea.

For instance, how can one—agent or group of agents—successfully drive a
complex MAS towards social order [5] from within without assuming anything
about others’ beliefs, intentions, or goals, and given that punishing uncompliant
behavior is not desirable or allowed? This problem is akin to many situations
in modern society; thus far is impossible to know the beliefs and intentions of
every person we might interact with, and not every problem we face is ideally
solvable by a “taking matters into own hands” approach.

Consider as an example the problem with burglary. We—as society—don’t
expect social norms and good moral values to completely solve the problem—
although they certainly change the rate to which it happens—and when a bur-
glary does happen, we don’t expect the victim to return the favor with a response
of similar intensity—Ilike stealing from the aggressor’s house.

A similar issue may also occur in MASs. Consider a system of self-driving
autonomous vehicles. Every vehicle in it might have an incentive to get to its
destination as fast as possible. Suppose that, to this end, a vehicle engages in
careless maneuvers and risky overtakes to gain a few extra seconds, harming
others—safety and/or performance—close to it in the process. Could we safely
assume agents in this system are pro-social to the degree that such a situation
would never happen?
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This might not always be a good premise. In this example, the system itself
is embedded in a competitive environment of firms fiercely fighting for market
share. Performance, in the form of getting to the final destination faster, might
represent getting a bigger slice of the pie. Does the designer behind the agent
have the right incentives to design pro-social agents? Social defection for the sake
of financial gains is not unthinkable by any means in the automobile industry®.

Now, suppose that an uncompliant behavior has been identified by another
vehicle close by. Could any form of punishment by the latter be accomplished
without compromising the safety of passengers riding in both vehicles? Further-
more, even if we agree on the safety to reciprocate, there are many situations
where direct retaliation might be undesirable. For instance, how do we address
fairness in these systems? If highly interconnected, even a small violation could
be met with a huge wave of public bashing, similar to the problem of internet
cancel culture?.

In case it is not safe to assume other agents will cooperate and it is not
desirable that agents directly or indirectly punish each other, we may need to
resort to centralized governance of some kind. Jones and Sergot (1994) propose
two complementary models of centralized norm enforcement [16]:

1. Regimentation: Assumes agents can be controlled by some external entity,
therefore non-compliant behavior does not occur.

2. Regulation: Assumes agents can violate norms, and violations may be sanc-
tioned when detected.

A drawback of the former is that it constrains agents’ autonomy [22]. Fur-
thermore, implementing a regimentation system is not necessarily trivial; edge
cases may arise such that violations may still occur [16]. On the other hand, the
latter preserves—to some degree—agents’ autonomy by allowing their actions to
violate norms.

This work proposes a way out of the collective action problem in mixed-
motive multiagent reinforcement learning (MARL) environments through cen-
tralized regulation. The proposal involves enhancing regular mixed-motive envi-
ronments with a normative system, controlled by a reinforcement learning (RL)
agent playing the role of a regulator; able to set norms and sanctions of the
system according to the ADICO grammar of institutions [7]. The primary aim
of this proposal is to solve the collective action problem in mixed-motive MARL
environments given two assumptions:

1. We have no prior knowledge about the agents’ architectures, thus it’s impos-
sible to predict their incentives and behaviors.
2. It’s not desirable for agents in the system to punish each other.

! https://www.bbc.com/news,/business-34324772.
2 https://nypost.com/article/what-is-cancel-culture-breaking-down- the-toxic-
online-trend/.
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We also show that, by employing this method, social control can be achieved
using only off-the-shelf, traditional RL agent architectures®-*.

2 Related Work

Many studies have addressed the collective action problem in mixed-motive
MARL environments [9,15,18,20,27]. Still, most of them have tackled this prob-
lem from an agent-centric perspective; their solutions involve modifying an RL
architecture to the specific needs of multiagent mixed-motive environments. This
has been accomplished in different ways, such as allowing agents to have pro-
social intrinsic motivation [15,20,27], coupling agents with a reciprocity mecha-
nism [9,18], and deploying agents with a normative reasoning engine [23].

This very same problem—and others—has also been addressed in MASs
through the adoption of electronic institutions (EI) [10,11], which specifies
among other definitions, a set of rules that determines what the agents in the
system ought to do or not under predefined circumstances, similar to the role
traditional institutions play [1]. Likewise, the autonomic electronic institution
(AEI) is also a framework that can be used to govern MASs and may be better
suited to cope with the dynamism of complex systems of self-adapting agents
due to its autonomic capabilities (norm-setting at run-time) [1,2].

Our work here presented is similar to the AEI framework in the sense that it
also proposes to overcome a system-level problem by dynamically regulating the
system’s norms at run-time. Still, it differs from such framework by leveraging
in a single agent the learning capabilities RL together with the normative con-
cepts spread across a broad literature. Our work also broadly resembles the AT
Economist framework proposed by Zhen et al. [33], that allows for the training of
RL social planners, that learn optimal tax policies in a multiagent environment
of adaptable economic actors by observing and optimizing for macro-properties
of the system (productivity and equality).

In summary, to the best of our knowledge, none of the studies cited above
have: a) proposed a centralized norm enforcement solution to mixed-motive
MARL environments using another RL agent as a central governing author-
ity, and b) proposed a solution that uses only traditional RL architectures when
peer retaliation is not allowed.

3 Normative Systems and the ADICO Grammar of
Institutions

One way of preventing MASs from falling into social disorder [5] is to augment
the system with a normative qualifier. Thus, a normative system can be simply

3 By traditional RL agent architectures we mean commonly used in other RL tasks
such as A2C [21].

* All relevant code and data for this project is available at https://github.com/
rafacheang/social _dilemmas_regulation.
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defined as one in which norms and normative concepts interfere with its outcomes
[22]. In these settings, despite not having an unified definition, a norm can be
generally described as a behavioral expectation the majority of individuals in a
group hold of others in the same group in certain situations [31].

In normative systems, norms that are not complied with might be subject
to being sanctioned. Sanctions can be generally classified into direct material
sanctions, that have an immediate negative effect on a resource the agent cherish,
such as a fine, or indirect social sanctions, such as a lowering effect on the agent’s
reputation, that can influence its future within the system [4]. Nardin [22] also
describes a third type of sanction; psychological sactions are those inflicted by
an agent to himself as a function of the agent’s internal emotional state.

The ADICO grammar of institutions [7] provides a framework under which
norms can be conceived and operationalized. The ADICO grammar is defined
within five dimensions:

— Attributes: is the set of variables that defines to whom the institutional state-
ment is applied.

— Deontic: is a holder from the three modal operations from deontic logic: may
(permitted), must (obliged), and must not (forbidden). These are used to
distinguish prescriptive from nonprescriptive statements.

— Aim: describes a particular action or set of actions to which the deontic
operator is assigned.

— Conditions: defines the context—when, where, how, etc.—an action is
obliged, permitted or forbidden.

— Or else: defines the sanctions imposed for not following the norm

Example 1. The norm All Brazilian citizens, 18 years of age or older, must
vote in a presidential candidate every four years, or else he/she will be unable
to renew his/her passport as per defined in the ADICO grammar, can be broken
down into: A: Brazilian citizens, 18 years of age or older, D: must, I: vote in a
presidential candidate, C: every four years, O: will be unable to renew his/her
passport.

4 Reinforcement Learning (RL)

4.1 Single-Agent Reinforcement Learning

The reinforcement learning task mathematically formalizes the path of an agent
interacting with an environment, receiving feedback—positive or negative—for
its actions, and learning from them. This formalization is accomplished through
the Markov decision process (MDP), defined by the tuple (S, A, R, P,v) where
S denotes a finite set of environment states; A, a finite set of agent actions; R,
a reward function R : S x A xS — R that defines the immediate—possibly
stochastic—reward an agent gets for taking action a € A in state s € S, and
transitioning to state s’ € S thereafter; P, a transition function P : Sx Ax S —
[0,1] that defines the probability of transitioning to state s’ € S after taking
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action a € A in state s € §; and finally, v € [0,1], a discount factor of future
rewards [29].

In these settings, the agent’s goal is to maximize its long-term expected
reward Gy, given by the infinite sum E[ryy1 + v7ii0 + Y213 + oo + Y int1]-
Solving an MDP ideally means finding an optimal policy m, : S — A, i.e., a
mapping that yields the best action to be taken at each state [29].

4.2 Multi-Agent Reinforcement Learning (M ARL)

One critical difference between RL and MARL is that, instead of the environment
transitioning to a new state as a function of a single action, it does so as a function
of the combined efforts of all agents.

The MDP counterpart in MARL is the Markov Game (MG) [19] also known
as Stochastic Game, and it is defined by a tuple (N, S, { A" }ienr, {R }ienr, P57,
where N' = {1,..., N} denotes the set of N > 1 agents, S, a finite set of environ-
ment states, A?, agent’s i set of possible actions. Let 4 = A! x ... x AV be the
set of agents’ possible joint actions. Then R’ denotes agent’s i reward function
Ri: Sx AxS — R that defines the immediate reward earned by agent i given a
transition from state s € S to state s’ € S after a combination of actions a € A;
P, a transition function P : S x A x § — [0, 1] that defines the probability
of transitioning from state s € S to state s’ € S after a combination of actions
a € A; and v € [0,1], a discount factor on agents future rewards [32].

5 Centralized Norm Enforcement in MARL

Here, we propose a norm-enhanced Markov Game (neMG) for governing mixed-
motive MGs by making use of an RL regulator agent and some added norma-
tive concepts. The proposal builds upon regular mixed-motive MGs. It involves
enhancing the environment’s states with the ADICO information introduced in
Sect. 3. The regulator is then able operate within this new ADICO information,
which is also available for other agents in the game and can be considered for
decision-making.

The method comprises two types of RL agents: N > 1 players and one
regulator. Players are simple RL agents, analogous to the ones that interact
with regular versions of MARL environments. These agents could be modeled
as average self-interested RL agents with off-the-shelf architectures such as A2C
[21]—which facilitates the engineering side.

The regulator, in turn, is able to operate on the environment’s norms repre-
sented by the ADICO five dimensions; it can modify one or more dimensions at
every period—a period consists of m time steps, m being a predefined integer
value. This agent senses the state of the environment through a social metric—
i.e. a system-level diagnostic—and the efficacy of its actions is signaled back by
the environment based on the social outcome of past institutions. The regulator
can also be modeled as a self-interested agent with off-the-shelf RL architectures.
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Definition 1. A norm-enhanced Markov Game (neMG) can be formally
defined by a 11-tuple (Np, Sy, { A} }ien, 1R} ien,s Pps Vs Sry Ars Ry Pry ),
with Np,Sp,A;7R;,7)p,’yp being the players’ original MG as per defined in
Sect.4.2. S, denotes the regulator’s set of states; A,, the regulator’s set of
actions; R,., the regulator’s reward function R, : S, x A, xS, — R that deter-
mines the immediate reward earned by the regulator following a transition from
state s, € S, to s.. € S, after an action a € A,; P,, the regulator’s transition
function P, : S, x A, x S, — [0,1] that defines the environment’s probability
of transitioning from state s, € S, to state s,. € S, after an action a, € A,; and
~r € [0, 1], the regulator’s discount factor.

In these settings, a neMG could be run following two RL loops; an outer one
relative to the regulator, and an inner one relative to the players. Algorithm 1
exemplifies how these could be implemented.

Algorithm 1: neMG Pseudocode

algorithm parameters: number of players n, steps per period m;
initialize policy and/or value function parameters;

foreach episode do

initialize environment (set initial states syo and spo);

foreach period do

regulator sets norm by consulting its policy 7, in state s,;
for m/n do

foreach player do
player acts based on its policy 7, in state s,, state transitions to

Sp, player observes its reward 7, and updates its policy mp;

end foreach
end for
regulator observes next state s.., its reward r, and updates its policy 7 ;

end foreach

end foreach

6 Tragedy of the Commons Experiment

The method was tested on a mixed-motive environment that emulates the
tragedy of the commons problem described by Hardin (1968) [14]. The tragedy
of the commons describes a situation wherein a group of people shares a common
resource that replenishes at a given rate. Every person has the own interest to
consume the resource as much as possible, but if the consumption rate consis-
tently exceeds the replenishment rate, the common soon depletes.
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6.1 A neMG of a Tragedy of the Commons Environment

The environment built closely resembles that of Ghorbani et al. (2021) [12] and
was built using both the OpenAl gym [3] and pettingzoo [30] frameworks. An
episode begins with an initial quantity Ry of the common resource. Every n simu-
lation steps—n being the number of agents; five for this simulation—the resource
grows by a quantity given by the logistic function AR = rR(1 — %), with AR
being the amount to increase; r, the growth rate; R, the current resource quan-
tity; and K, the environment’s carrying capacity—an upper bound to resources.
For this experiment, r was set to 0.3, Ry is sampled from a uniform distribution
U(10000, 30000), and K was set to 50000.

The environment also encodes the ADICO variables as described in Sect. 5.
The A, D, and I dimensions remain fixed for this experiment since @) the norm
applies to all players, b) the norm always defines a forbidden action, and c¢)
players have only one action to choose from—they can only decide how much of
the resource to consume and their rewards are proportional to their consumption.
The C' and O dimensions, on the other hand, may be changed by the regulator
agent; i.e., every 100 steps the regulator may change how much of the resource
a player is allowed to consume (I)—sampled at the beginning of each episode
from a normal distribution N(375,93.75)—and the fine applied to those who
violate this condition (f(c,l, \))—Dby setting the value of A, which is sampled at
the beginning of each episode from a normal distribution N(1,0.2). Thus the
ADICO information that enhances this environment is made up of:

— A: all players;

D: forbidden;

— I: consume resources;

— C: when consumption is greater than [;;

— O:pay afineof f = (¢; —1;) x (A+1), with ¢; being the agent’s consumption
in step 4; [; the consumption limit in step ¢; and A, a fine multiplier.

The fine is subtracted from the violator’s consumption in the same step the
norm is violated.

Before a new institution is set, the regulator can evaluate the system-level
state of the environment by observing how much of the resource is left, and a
short-term and long-term sustainability measurement, given by S = Z;zt_p %
defined for ¢; > 0 and p > 0, with p being the number of periods considered as
short-term and long-term—respectively one and four for this simulation —; rp;,
the total amount of resources replenished in period j; c;, the total consumption
in period j; and t, the current period. At the end of the period, the success of
past norms is feed-backed to the regulator by the environment as a reward value
directly proportional to the last period’s total consumption.

At every simulation step, players in the environment can observe R;, [;, and
i, and can choose how much of the resource to consume. An agent’s consumption
may vary from 0 to Cpqz, Where Cpqz is & consumption limit that represents a
physical limit in an analogous real-world scenario. Here, this value was set to
1500. An episode ends after 1000 simulation steps or when resources are depleted.
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Agents in this simulation were built using traditional RL architectures—SAC
[13] for the regulator and A2C [21] for the players—using the Stable Baselines
3 framework [28|, and players were trained on a shared policy. The learning
rates for all agents were set to 0.00039. A summary with all environment related
variables used in this experiment and their values is presented in Table 1.

Table 1. Summary of the variables used in the experiment, their abbreviations, and
values.

Variable name | Description Value
n Number of players 5

m Number of steps in a period 100
Ro Initial quantity of common resource U (10000, 30000)
R Current quantity of common resource var
K Environment’s carrying capacity (resources upper bound) | 50000
r Resources growth rate 0.3
AR Replenishment amount at a single step var

l Norm-set consumption limit var

c Single player consumption var

A Norm-set fine multiplier var

S Sustainability metric var

P Number of periods considered for calculating S 1,4

c Player(s) consumption var
Cmaz Players max consumption (hard limit) 1500
rp Period’s total replenishment var

6.2 Results and Discussion

Figure 1 shows the average total consumption per episode over a 10 simulation
run with and without the regulator agent acting on the environment. As pre-
dicted by the Nash equilibrium, we notice there isn’t much hope for generalized
cooperation in case selfish agents are left playing the game by themselves—i.e.
resources quickly deplete in the beginning of each episode.

Conversely, this is not the case when the regulator is put in place. After a
short period of randomness at the beginning of the simulation, players learn not
to consume from the resource since they frequently get punished when doing so.
Around episode 300, players progressively learn to consume around as much of
the resource as the set limit and the regulator increasingly learns to adjust such
limit so as to keep resources at a sustainable level. A comparison between an
episode at the beginning of a simulation and one at the end is shown in Fig. 2.

Every once in a while, the regulator overshoots by setting too big of a limit
at the beginning of the episode and players quickly deplete the resource. This
explains in parts the total consumption variation depicted in Fig. 1.
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Fig. 1. The total consumption per episode average over a 10 simulation run for the
tragedy of the commons experiment. The green line shows the total consumption for
when the regulator is active and the blue line for when it is inactive. The green shaded
area covers the region one standard deviation above and below the mean for the sim-
ulation with the active regulator. (Color figure online)

Time step consumption vs. norm-set consumption limit
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Fig. 2. Time step consumption vs. consumption limit set by the regulator at an earlier
episode a) and at a later episode b). The orange line shows the resource level at all time
steps and the dotted red line shows the resource level in which the replenishment rate
is greatest (25000). In a) players and the regulator act somewhat randomly and, for this
reason, resources are kept at a sustainable range but consumption is sub-optimal. Players
in b) learn to approximate their consumption to the norm-set consumption limit and the
regulator learns to decrease such limit at times when resources are lower and increase it
when resources are higher. Resources in this episode are still kept at a sustainable range
and consumption sharply increases in comparison to a). (Color figure online)
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Note the system gets relatively close to an upper consumption benchmark by
the end of the simulation—when agents’ combined consumption equals the maxi-
mum replenishment in every iteration. We can calculate this value by multiplying
the maximum replenishment (3750) by the maximum count of replenishments
in a given episode (200). In this case, the value is 750000 units of resource.

7 Conclusion

Delegating norm enforcement to an external central authority might seem
counter-intuitive at first, as we tend to associate distributed solutions with
robustness. It also might seem to go against the findings of Elinor Ostrom [25,26],
who showed that the collective action problem could be solved without the need
of a regulatory central authority and for that, won the nobel prize in economics
in 2009°.

That being said, central regulation is still an important mechanism to govern
complex systems. Many of the world’s modern social and political systems use it
in some form or shape. With this work, we try to show that central regulation is
also a tool that could be useful in governing MAS and MARL, especially when
it is not desirable for actors in the system to punish each other.

Still, centralized norm enforcement brings about many other challenges that
are not present in decentralized norm enforcement. For instance, if poorly
designed (purposefully or not) the regulator himself, through the imposition
norms and sanctions, may drive the system to socially bad outcomes. What
if the designer behind the regulator does not have the good incentives? Con-
straints as such must be taken into consideration when judging the applicability
of centralized norm enforcement in MASs.

As further work, we plan to test this very same method in other mixed-motive
MARL environments.
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